High performance, high density hydrocarbon fuels
NASA Technical Reports Server (NTRS)
Frankenfeld, J. W.; Hastings, T. W.; Lieberman, M.; Taylor, W. F.
1978-01-01
The fuels were selected from 77 original candidates on the basis of estimated merit index and cost effectiveness. The ten candidates consisted of 3 pure compounds, 4 chemical plant streams and 3 refinery streams. Critical physical and chemical properties of the candidate fuels were measured including heat of combustion, density, and viscosity as a function of temperature, freezing points, vapor pressure, boiling point, thermal stability. The best all around candidate was found to be a chemical plant olefin stream rich in dicyclopentadiene. This material has a high merit index and is available at low cost. Possible problem areas were identified as low temperature flow properties and thermal stability. An economic analysis was carried out to determine the production costs of top candidates. The chemical plant and refinery streams were all less than 44 cent/kg while the pure compounds were greater than 44 cent/kg. A literature survey was conducted on the state of the art of advanced hydrocarbon fuel technology as applied to high energy propellents. Several areas for additional research were identified.
Connection between the two branches of the quantum two-stream instability across the k space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bret, A.; Haas, F.
2010-05-15
The stability of two quantum counterstreaming electron beams is investigated within the quantum plasma fluid equations for arbitrarily oriented wave vectors k. The analysis reveals that the two quantum two-stream unstable branches are indeed connected by a continuum of unstable modes with oblique wave vectors. Using the longitudinal approximation, the stability domain for any k is analytically explained, together with the growth rate.
Relative performance of three stream bed stability indices as indicators of stream health.
Kusnierz, Paul C; Holbrook, Christopher M
2017-10-16
Bed stability is an important stream habitat attribute because it affects geomorphology and biotic communities. Natural resource managers desire indices of bed stability that can be used under a wide range of geomorphic conditions, are biologically meaningful, and are easily incorporated into sampling protocols. To eliminate potential bias due to presence of instream wood and increase precision of stability values, we modified a stream bed instability index (ISI) to include measurements of bankfull depth (d bf ) and median particle diameter (D 50 ) only in riffles and increased the pebble count to decrease variability (i.e., increase precision) in D 50 . The new riffle-based instability index (RISI) was compared to two established indices: ISI and the riffle stability index (RSI). RISI and ISI were strongly associated with each other but neither was closely associated with RSI. RISI and ISI were closely associated with both a diatom- and two macrovertebrate-based stream health indices, but RSI was only weakly associated with the macroinvertebrate indices. Unexpectedly, precision of D 50 did not differ between RISI and ISI. Results suggest that RISI is a viable alternative to both ISI and RSI for evaluating bed stability in multiple stream types. With few data requirements and a simple protocol, RISI may also better conform to riffle-based sampling methods used by some water quality practitioners.
Relative performance of three stream bed stability indices as indicators of stream health
Kusnierz, Paul C; Holbrook, Christopher
2017-01-01
Bed stability is an important stream habitat attribute because it affects geomorphology and biotic communities. Natural resource managers desire indices of bed stability that can be used under a wide range of geomorphic conditions, are biologically meaningful, and are easily incorporated into sampling protocols. To eliminate potential bias due to presence of instream wood and increase precision of stability values, we modified a stream bed instability index (ISI) to include measurements of bankfull depth (dbf) and median particle diameter (D50) only in riffles and increased the pebble count to decrease variability (i.e., increase precision) in D50.The new riffle-based instability index (RISI) was compared to two established indices: ISI and the riffle stability index (RSI). RISI and ISI were strongly associated with each other but neither was closely associated with RSI. RISI and ISI were closely associated with both a diatom- and two macrovertebrate-based stream health indices, but RSI was only weakly associated with the macroinvertebrate indices. Unexpectedly, precision of D50 did not differ between RISI and ISI. Results suggest that RISI is a viable alternative to both ISI and RSI for evaluating bed stability in multiple stream types. With few data requirements and a simple protocol, RISI may also better conform to riffle-based sampling methods used by some water quality practitioners.
Two-stream instability with time-dependent drift velocity
Qin, Hong; Davidson, Ronald C.
2014-06-26
The classical two-stream instability driven by a constant relative drift velocity between two plasma components is extended to the case with time-dependent drift velocity. A solution method is developed to rigorously define and calculate the instability growth rate for linear perturbations relative to the time-dependent unperturbed two-stream motions. The stability diagrams for the oscillating two-stream instability are presented over a large region of parameter space. It is shown that the growth rate for the classical two-stream instability can be significantly reduced by adding an oscillatory component to the relative drift velocity.
1981-04-01
T-52-1. b) T-51-9. ........................ 104 23 Bank Cross Sectional Profile at section T-49-l(L on Hotophia Creek...8217\\ SECTION NO, T - 51- 9 Figure 22. Cross Sectional Profiles on Hotophia Creek. a) Section T-52-1. h) T-51-9. L 11. 104 14. -7I T-9- I’ 0% 0 12% m ___ DATE...Technical Note, 104 , GTII, pp. 1403-1407. Lutton, R. J. (1969) "Fractures and Failure Mechanics in Loess and Applications to Rock Mechanics," Research
John Day River Subbasin Fish Habitat Enhancement Project, 2005-2006 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, Russ M.; Alley, Pamela D.; Delano, Kenneth H.
2006-03-01
Work undertaken in 2005 included: (1) Four new fence projects were completed thereby protecting 7.55 miles of stream with 9.1 miles of new riparian fence (2) Fence removal 1.7 miles of barbed wire. (3) Completed three spring developments (repair work on two BLM springs on Cottonwood Creek (Dayville), 1 solar on Rock Creek/ Collins property). (4) Dredge tail leveling completed on 0.9 miles of the Middle Fork of the John Day River (5) Cut, hauled and placed 30 junipers on Indian Creek/Kuhl property for bank stability. (6) Collected and planted 1500 willow cuttings on Mountain Creek/Jones property. (7) Conducted steelheadmore » redd counts on Lake Cr./Hoover property and Cottonwood Cr./Mascall properties (8) Seeded 200 lbs of native grass seed on projects where the sites were disturbed by fence construction activities. (9) Maintenance of all active project fences (72.74 miles), watergaps (60), spring developments (30) were checked and repairs performed. (10) Since the initiation of the Fish Habitat Program in 1984 we have installed 156.06 miles of riparian fence on leased property protecting 88.34 miles of anadromous fish bearing stream. With the addition of the Restoration and Enhancement Projects from 1996-2001, where the landowner received the materials, built and maintained the project we have a total of 230.92 miles of fence protecting 144.7 miles of stream and 3285 acres of riparian habitat.« less
NASA Astrophysics Data System (ADS)
Qin, Hong; Davidson, Ronald C.; Lee, W. Wei-Li
1999-11-01
The Beam Equilibrium Stability and Transport (BEST) code, a 3D multispecies nonlinear perturbative particle simulation code, has been developed to study collective effects in intense charged particle beams described self-consistently by the Vlasov-Maxwell equations. A Darwin model is adopted for transverse electromagnetic effects. As a 3D multispecies perturbative particle simulation code, it provides several unique capabilities. Since the simulation particles are used to simulate only the perturbed distribution function and self-fields, the simulation noise is reduced significantly. The perturbative approach also enables the code to investigate different physics effects separately, as well as simultaneously. The code can be easily switched between linear and nonlinear operation, and used to study both linear stability properties and nonlinear beam dynamics. These features, combined with 3D and multispecies capabilities, provides an effective tool to investigate the electron-ion two-stream instability, periodically focused solutions in alternating focusing fields, and many other important problems in nonlinear beam dynamics and accelerator physics. Applications to the two-stream instability are presented.
USDA-ARS?s Scientific Manuscript database
Streambank retreat is a complex cyclical process involving subaerial processes, fluvial erosion, seepage erosion, and geotechnical failures and is driven by several soil properties that themselves are temporally and spatially variable. Therefore, it can be extremely challenging to predict and model ...
Constantz, James; Naranjo, Ramon C.; Niswonger, Richard G.; Allander, Kip K.; Neilson, B.; Rosenberry, Donald O.; Smith, David W.; Rosecrans, C.; Stonestrom, David A.
2016-01-01
The terminus of a stream flowing into a larger river, pond, lake, or reservoir is referred to as the stream-mouth reach or simply the stream mouth. The terminus is often characterized by rapidly changing thermal and hydraulic conditions that result in abrupt shifts in surface water/groundwater (sw/gw) exchange patterns, creating the potential for unique biogeochemical processes and ecosystems. Worldwide shoreline development is changing stream-lake interfaces through channelization of stream mouths, i.e., channel straightening and bank stabilization to prevent natural meandering at the shoreline. In the central Sierra Nevada (USA), Lake Tahoe's shoreline has an abundance of both “unmodified” (i.e., not engineered though potentially impacted by broader watershed engineering) and channelized stream mouths. Two representative stream mouths along the lake's north shore, one channelized and one unmodified, were selected to compare and contrast water and heat exchanges. Hydraulic and thermal properties were monitored during separate campaigns in September 2012 and 2013 and sw/gw exchanges were estimated within the stream mouth-shoreline continuum. Heat-flow and water-flow patterns indicated clear differences in the channelized versus the unmodified stream mouth. For the channelized stream mouth, relatively modulated, cool-temperature, low-velocity longitudinal streambed flows discharged offshore beneath warmer buoyant lakeshore water. In contrast, a seasonal barrier bar formed across the unmodified stream mouth, creating higher-velocity subsurface flow paths and higher diurnal temperature variations relative to shoreline water. As a consequence, channelization altered sw/gw exchanges potentially altering biogeochemical processing and ecological systems in and near the stream mouth.
VMCast: A VM-Assisted Stability Enhancing Solution for Tree-Based Overlay Multicast
Gu, Weidong; Zhang, Xinchang; Gong, Bin; Zhang, Wei; Wang, Lu
2015-01-01
Tree-based overlay multicast is an effective group communication method for media streaming applications. However, a group member’s departure causes all of its descendants to be disconnected from the multicast tree for some time, which results in poor performance. The above problem is difficult to be addressed because overlay multicast tree is intrinsically instable. In this paper, we proposed a novel stability enhancing solution, VMCast, for tree-based overlay multicast. This solution uses two types of on-demand cloud virtual machines (VMs), i.e., multicast VMs (MVMs) and compensation VMs (CVMs). MVMs are used to disseminate the multicast data, whereas CVMs are used to offer streaming compensation. The used VMs in the same cloud datacenter constitute a VM cluster. Each VM cluster is responsible for a service domain (VMSD), and each group member belongs to a specific VMSD. The data source delivers the multicast data to MVMs through a reliable path, and MVMs further disseminate the data to group members along domain overlay multicast trees. The above approach structurally improves the stability of the overlay multicast tree. We further utilized CVM-based streaming compensation to enhance the stability of the data distribution in the VMSDs. VMCast can be used as an extension to existing tree-based overlay multicast solutions, to provide better services for media streaming applications. We applied VMCast to two application instances (i.e., HMTP and HCcast). The results show that it can obviously enhance the stability of the data distribution. PMID:26562152
VMCast: A VM-Assisted Stability Enhancing Solution for Tree-Based Overlay Multicast.
Gu, Weidong; Zhang, Xinchang; Gong, Bin; Zhang, Wei; Wang, Lu
2015-01-01
Tree-based overlay multicast is an effective group communication method for media streaming applications. However, a group member's departure causes all of its descendants to be disconnected from the multicast tree for some time, which results in poor performance. The above problem is difficult to be addressed because overlay multicast tree is intrinsically instable. In this paper, we proposed a novel stability enhancing solution, VMCast, for tree-based overlay multicast. This solution uses two types of on-demand cloud virtual machines (VMs), i.e., multicast VMs (MVMs) and compensation VMs (CVMs). MVMs are used to disseminate the multicast data, whereas CVMs are used to offer streaming compensation. The used VMs in the same cloud datacenter constitute a VM cluster. Each VM cluster is responsible for a service domain (VMSD), and each group member belongs to a specific VMSD. The data source delivers the multicast data to MVMs through a reliable path, and MVMs further disseminate the data to group members along domain overlay multicast trees. The above approach structurally improves the stability of the overlay multicast tree. We further utilized CVM-based streaming compensation to enhance the stability of the data distribution in the VMSDs. VMCast can be used as an extension to existing tree-based overlay multicast solutions, to provide better services for media streaming applications. We applied VMCast to two application instances (i.e., HMTP and HCcast). The results show that it can obviously enhance the stability of the data distribution.
Stream Channel Stability Assessment
DOT National Transportation Integrated Search
1982-01-01
Channel instability is manifested as lateral bank erosion, progressive degradation of the streambed, or natural scour and fill of the streambed. Lateral stability is related to stream type, and four major stream types having different stability chara...
Baldigo, Barry P.; Ernst, Anne G.; Warren, Dana R.; Miller, Sarah J.
2010-01-01
Natural-channel-design (NCD) restorations were recently implemented within large segments of five first- and second-order streams in the Catskill Mountains of New York in an attempt to increase channel stability, reduce bed and bank erosion, and sustain water quality. In conjunction with these efforts, 54 fish and habitat surveys were done from 1999 to 2007 at six restored reaches and five stable control reaches to evaluate the effects of NCD restoration on fish assemblages, habitat, and bank stability. A before–after–control–impact study design and two-factor analysis of variance were used to quantify the net changes in habitat and fish population and community indices at treatment reaches relative to those at unaltered control reaches. The density and biomass of fish communities were often dominated by one or two small prey species and no or few predator species before restoration and by one or more trout (Salmonidae) species after restoration. Significant increases in community richness (30%), diversity (40%), species or biomass equitability (32%), and total biomass (up to 52%) in at least four of the six restored reaches demonstrate that NCD restorations can improve the health and sustainability of fish communities in geomorphically unstable Catskill Mountain streams over the short to marginally long term. Bank stability, stream habitat, and trout habitat suitability indices (HSIs) generally improved significantly at the restored reaches, but key habitat features and trout HSIs did not change or decreased at two of them. Fish communities and trout populations at these two reaches were not positively affected by NCD restorations. Though NCD restorations often had a positive effect on habitat and fish communities, our results show that the initial habitat conditions limit the relative improvements than can be achieved, habitat quality and stability do not necessarily respond in unison, and biotic and abiotic responses cannot always be generalized.
Prathama, Aditya Heru; Pantano, Carlos
2017-08-09
Here, we study the inviscid linear stability of a vertical interface separating two fluids of different densities and subject to a gravitational acceleration field parallel to the interface. In this arrangement, the two free streams are constantly accelerated, which means that the linear stability analysis is not amenable to Fourier or Laplace solution in time. Instead, we derive the equations analytically by the initial-value problem method and express the solution in terms of the well-known parabolic cylinder function. The results, which can be classified as an accelerating Kelvin–Helmholtz configuration, show that even in the presence of surface tension, the interfacemore » is unconditionally unstable at all wavemodes. This is a consequence of the ever increasing momentum of the free streams, as gravity accelerates them indefinitely. The instability can be shown to grow as the exponential of a quadratic function of time.« less
NASA Astrophysics Data System (ADS)
Jamieson, E. C.; Rennie, C. D.; Townsend, R. D.
2009-05-01
Stream barbs (a type of submerged groyne or spur dike) are low-profile linear rock structures that prevent the erosion of stream banks by redirecting high velocity flow away from the bank. Stream barbs are becoming a popular method for stream bank protection as they can be built at a relatively low cost and provide added ecological benefit. The design and construction of stream barbs in Sawmill Creek, a small urban stream in the city of Ottawa, Canada, will serve as a demonstration project for the use of barbs as a bank stabilization technique that will contribute to the rehabilitation of urban creeks while reducing erosion threats to property and infrastructure. As well as providing bank protection, these structures promote vegetated stream banks, create resting pools and scour holes for fish habitat, and increase bio-diversity for aquatic species. Despite these benefits, stream barbs are not a common means of stream bank protection in Canada, due largely to a lack of suitable design guidelines. The overall goal of stream habitat restoration in incising channel systems should be to accelerate natural processes of channel equilibrium recovery, riparian re-vegetation, and stream-floodplain interaction. Incorporating stream barbs, instead of traditional bank protection measures, attempts to achieve these goals. A three-dimensional numerical model: 'Simulation in Intakes with Multiblock option' (SSIIM), was used to model the effects of placing a series of stream barbs along an unstable section of Sawmill Creek. The average bankfull depth, width, and discharge of the creek are 1.2 m, 7.5 m, and 9 m3/s respectively. The model was used to assess various design alternatives for a series of seven stream barbs at two consecutive channel bends requiring stabilization measures along their outer banks. Design criteria were principally based on the reduction of velocity, shear stress and subsequent erosion at the outside bank of each bend, and on the relocation of a new thalweg towards the centre of the channel, away from the outside bank. Sawmill Creek has the added complexity of having predominately clay bed and banks. The erosional behaviour of cohesive sediments such as clay is difficult to model correctly, due to the complex site-specific physio- chemical properties of clay particles. Following the construction of the proposed barbs at our field test site this summer (2009), and data collection the following spring and summer, we hope to advance the current knowledge of cohesive sediment transport processes in a complicated three-dimensional turbulent flow field. For the present modelling effort, erodibility of the consolidated clay bed and bank material was estimated based on establishing an entrainment threshold at near-bankfull conditions. The focus of this research is on (i) the unique site conditions and environmental protection requirements, (ii) design methodology, and (iii) results of the numerical simulation. The three-dimensional numerical model was capable of reproducing the expected distribution of secondary flow in a channel bend, the unique three- dimensional flow field resulting from a series of submerged structures and the associated patterns of soil erosion and deposition. The numerical modelling also demonstrated to be a useful tool for optimizing barb design for stream bank protection at the proposed field test site. Modelling results confirmed that in the vicinity of the barbs, the addition of the proposed barb layout achieved substantial reduction in erosion (up to 98 %), bed shear stress (up to 59 %) and streamwise velocity (up to 51 %).
Stabilization of benthic algal biomass in a temperate stream draining agroecosystems.
Ford, William I; Fox, James F
2017-01-01
Results of the present study quantified carbon sequestration due to algal stabilization in low order streams, which has not been considered previously in carbon stream ecosystem studies. The authors used empirical mode decomposition of an 8-year carbon elemental and isotope dataset to quantify carbon accrual and fingerprint carbon derived from algal stabilization. The authors then applied a calibrated, process-based stream carbon model (ISOFLOC) that elicits further evidence of algal stabilization. Data and modeling results suggested that processes of shielding and burial during an extreme hydrologic event enhance algal stabilization. Given that previous studies assumed stream algae are turned over or sloughed downstream, the authors performed scenario simulations of the calibrated model in order to assess how changing environmental conditions might impact algae stabilization within the stream. Results from modeling scenarios showed an increase in algal stabilization as mean annual water temperature increases ranging from 0 to 0.04 tC km -2 °C -1 for the study watershed. The dependence of algal stabilization on temperature highlighted the importance of accounting for benthic fate of carbon in streams under projected warming scenarios. This finding contradicts the evolving paradigm that net efflux of CO 2 from streams increases with increasing temperatures. Results also quantified sloughed algae that is transported and potentially stabilized downstream and showed that benthos-derived sloughed algae was on the same order of magnitude, and at times greater, than phytoplankton within downstream water bodies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kroll, Alexandra; Behra, Renata; Kaegi, Ralf; Sigg, Laura
2014-01-01
Streams are potential receiving compartments for engineered nanoparticles (NP). In streams, NP may remain dispersed or settle to the benthic compartment. Both dispersed and settling NP can accumulate in benthic biofilms called periphyton that are essential to stream ecosystems. Periphytic organisms excrete extracellular polymeric substances (EPS) that interact with any material reaching the biofilms. To understand the interaction of NP with periphyton it is therefore crucial to study the interaction of NP with EPS. We investigated the influence of EPS on the physicochemical properties of selected NP (CeO2, Ag) under controlled conditions at pH 6, 7.6, 8.6 and light or dark exposure. We extracted EPS from five different periphyton communities, characterized the extracts, and exposed CeO2 and carbonate-stabilized Ag NP (0.5 and 5 mg/L, both 25 nm primary particle size) and AgNO3 to EPS (10 mg/L) over two weeks. We measured NP size distribution, shape, primary particle size, surface plasmon resonance, and dissolution. All EPS extracts were composed of biopolymers, building blocks of humic substances, low molecular weight (Mr) acids, and small amphiphilic or neutral compounds in varying concentrations. CeO2 NP were stabilized by EPS independent of pH and light/dark while dissolution increased over time in the dark at pH 6. EPS induced a size increase in Ag NP in the light with decreasing pH and the formation of metallic Ag NP from AgNO3 at the same conditions via EPS-enhanced photoreduction. NP transformation and formation were slower in the extract with the lowest biopolymer and low Mr acid concentrations. Periphytic EPS in combination with naturally varying pH and light/dark conditions influence the properties of the Ag and CeO2 NP tested and thus the exposure conditions within biofilms. Our results indicate that periphytic organisms may be exposed to a constantly changing mixture of engineered and naturally formed Ag NP and Ag+. PMID:25333364
El-Dib, Yusry O; Ghaly, Ahmed Y
2004-01-01
The present work studies Kelvin-Helmholtz waves propagating between two magnetic fluids. The system is composed of two semi-infinite magnetic fluids streaming throughout porous media. The system is influenced by an oblique magnetic field. The solution of the linearized equations of motion under the boundary conditions leads to deriving the Mathieu equation governing the interfacial displacement and having complex coefficients. The stability criteria are discussed theoretically and numerically, from which stability diagrams are obtained. Regions of stability and instability are identified for the magnetic fields versus the wavenumber. It is found that the increase of the fluid density ratio, the fluid velocity ratio, the upper viscosity, and the lower porous permeability play a stabilizing role in the stability behavior in the presence of an oscillating vertical magnetic field or in the presence of an oscillating tangential magnetic field. The increase of the fluid viscosity plays a stabilizing role and can be used to retard the destabilizing influence for the vertical magnetic field. Dual roles are observed for the fluid velocity in the stability criteria. It is found that the field frequency plays against the constant part for the magnetic field.
NASA Technical Reports Server (NTRS)
Johnson, C. B.
1980-01-01
The time varying effect of nonadiabatic wall conditions on boundary layer properties was studied for a two dimensional wing section and an axisymmetric fuselage. The wing and fuselage sections are representative of the wing root chord and fuselage of a typical transport model for the National Transonic Facility. The analysis was made with a solid wing and three fuselage configurations (one solid and two hollow with varying skin thicknesses) all made from AISI type 310S stainless steel. The displacement thickness and local skin friction were investigated at a station on the model in terms of the time required for these two boundary layer properties to reach an adiabatic wall condition after a 50 K step change in total temperature. The analysis was made for a free stream Mach number of 0.85, a total temperature of 117 K, and stagnation pressures of 2, 6, and 9 atm.
Estimating flood hydrographs and volumes for Alabama streams
Olin, D.A.; Atkins, J.B.
1988-01-01
The hydraulic design of highway drainage structures involves an evaluation of the effect of the proposed highway structures on lives, property, and stream stability. Flood hydrographs and associated flood volumes are useful tools in evaluating these effects. For design purposes, the Alabama Highway Department needs information on flood hydrographs and volumes associated with flood peaks of specific recurrence intervals (design floods) at proposed or existing bridge crossings. This report will provide the engineer with a method to estimate flood hydrographs, volumes, and lagtimes for rural and urban streams in Alabama with drainage areas less than 500 sq mi. Existing computer programs and methods to estimate flood hydrographs and volumes for ungaged streams have been developed in Georgia. These computer programs and methods were applied to streams in Alabama. The report gives detailed instructions on how to estimate flood hydrographs for ungaged rural or urban streams in Alabama with drainage areas less than 500 sq mi, without significant in-channel storage or regulations. (USGS)
Interaction of turbulent premixed flames with combustion products: Role of stoichiometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coriton, Bruno Rene Leon; Frank, Jonathan H.; Gomez, Alessandro
Stabilization methods of turbulent flames often involve mixing of reactants with hot products of combustion. The stabilizing effect of combustion product enthalpy has been long recognized, but the role played by the chemical composition of the product gases is typically overlooked. We employ a counterflow system to pinpoint the effects of the combustion product stoichiometry on the structure of turbulent premixed flames under conditions of both stable burning and local extinction. To that end, a turbulent jet of lean-to-rich, CH 4/O 2/N 2-premixed reactants at a turbulent Reynolds number of 1050 was opposed to a stream of hot products ofmore » combustion that were generated in a preburner. While the combustion product stream temperature was kept constant, its stoichiometry was varied independently from that of the reactant stream, leading to reactant-to-product stratification of relevance to practical combustion systems. The detailed structure of the turbulent flame front was analyzed in two series of experiments using laser-induced fluorescence (LIF): joint CH 2O LIF and OH LIF measurements and joint CO LIF and OH LIF measurements. Results revealed that a decrease in local CH 2O+OH and CO+OH reaction rates coincide with the depletion of OH radicals in the vicinity of the combustion product stream. These critical combustion reaction rates were more readily quenched in the presence of products of combustion from a stoichiometric flame, whereas they were favored by lean combustion products. As a result, stoichiometric combustion products contributed to a greater occurrence of local extinction. Furthermore, they limited the capacity of premixed reactants to ignite and of the turbulent premixed flames to stabilize. In contrast, lean and rich combustion products facilitated flame ignition and stability and reduced the rate of local extinction. The influence of the combustion product stream on the turbulent flame front was limited to a zone of approximately two millimeters from the gas mixing layer interface (GMLI) of the product stream. As a result, flame fronts that were separated from the GMLI by larger distances were unaffected by the product stream stoichiometry.« less
Interaction of turbulent premixed flames with combustion products: Role of stoichiometry
Coriton, Bruno Rene Leon; Frank, Jonathan H.; Gomez, Alessandro
2016-05-30
Stabilization methods of turbulent flames often involve mixing of reactants with hot products of combustion. The stabilizing effect of combustion product enthalpy has been long recognized, but the role played by the chemical composition of the product gases is typically overlooked. We employ a counterflow system to pinpoint the effects of the combustion product stoichiometry on the structure of turbulent premixed flames under conditions of both stable burning and local extinction. To that end, a turbulent jet of lean-to-rich, CH 4/O 2/N 2-premixed reactants at a turbulent Reynolds number of 1050 was opposed to a stream of hot products ofmore » combustion that were generated in a preburner. While the combustion product stream temperature was kept constant, its stoichiometry was varied independently from that of the reactant stream, leading to reactant-to-product stratification of relevance to practical combustion systems. The detailed structure of the turbulent flame front was analyzed in two series of experiments using laser-induced fluorescence (LIF): joint CH 2O LIF and OH LIF measurements and joint CO LIF and OH LIF measurements. Results revealed that a decrease in local CH 2O+OH and CO+OH reaction rates coincide with the depletion of OH radicals in the vicinity of the combustion product stream. These critical combustion reaction rates were more readily quenched in the presence of products of combustion from a stoichiometric flame, whereas they were favored by lean combustion products. As a result, stoichiometric combustion products contributed to a greater occurrence of local extinction. Furthermore, they limited the capacity of premixed reactants to ignite and of the turbulent premixed flames to stabilize. In contrast, lean and rich combustion products facilitated flame ignition and stability and reduced the rate of local extinction. The influence of the combustion product stream on the turbulent flame front was limited to a zone of approximately two millimeters from the gas mixing layer interface (GMLI) of the product stream. As a result, flame fronts that were separated from the GMLI by larger distances were unaffected by the product stream stoichiometry.« less
Stability analysis of confined V-shaped flames in high-velocity streams.
El-Rabii, Hazem; Joulin, Guy; Kazakov, Kirill A
2010-06-01
The problem of linear stability of confined V-shaped flames with arbitrary gas expansion is addressed. Using the on-shell description of flame dynamics, a general equation governing propagation of disturbances of an anchored flame is obtained. This equation is solved analytically for V-flames anchored in high-velocity channel streams. It is demonstrated that dynamics of the flame disturbances in this case is controlled by the memory effects associated with vorticity generated by the perturbed flame. The perturbation growth rate spectrum is determined, and explicit analytical expressions for the eigenfunctions are given. It is found that the piecewise linear V structure is unstable for all values of the gas expansion coefficient. Despite the linearity of the basic pattern, however, evolutions of the V-flame disturbances are completely different from those found for freely propagating planar flames or open anchored flames. The obtained results reveal strong influence of the basic flow and the channel walls on the stability properties of confined V-flames.
Martín-Loeches, M; Hinojosa, J A; Rubia, F J
1999-11-01
The temporal and hierarchical relationships between the dorsal and the ventral streams in selective attention are known only in relation to the use of spatial location as the attentional cue mediated by the dorsal stream. To improve this state of affairs, event-related brain potentials were recorded while subjects attended simultaneously to motion direction (mediated by the dorsal stream) and to a property mediated by the ventral stream (color or shape). At about the same time, a selection positivity (SP) started for attention mediated by both streams. However, the SP for color and shape peaked about 60 ms later than motion SP. Subsequently, a selection negativity (SN) followed by a late positive component (LPC) were found simultaneously for attention mediated by both streams. A hierarchical relationship between the two streams was not observed, but neither SN nor LPC for one property was completely insensitive to the values of the other property.
Hydrodynamical simulations of the stream-core interaction in the slow merger of massive stars
NASA Astrophysics Data System (ADS)
Ivanova, N.; Podsiadlowski, Ph.; Spruit, H.
2002-08-01
We present detailed simulations of the interaction of a stream emanating from a mass-losing secondary with the core of a massive supergiant in the slow merger of two stars inside a common envelope. The dynamics of the stream can be divided into a ballistic phase, starting at the L1 point, and a hydrodynamical phase, where the stream interacts strongly with the core. Considering the merger of a 1- and 5-Msolar star with a 20-Msolar evolved supergiant, we present two-dimensional hydrodynamical simulations using the PROMETHEUS code to demonstrate how the penetration depth and post-impact conditions depend on the initial properties of the stream material (e.g. entropy, angular momentum, stream width) and the properties of the core (e.g. density structure and rotation rate). Using these results, we present a fitting formula for the entropy generated in the stream-core interaction and a recipe for the determination of the penetration depth based on a modified Bernoulli integral.
Struck, S.D.; Selvakumar, A.; Hyer, K.; O'Connor, T.
2007-01-01
Increased urbanization results in a larger percentage of connected impervious areas and can contribute large quantities of stormwater runoff and significant quantities of debris and pollutants (e.g., litter, oils, microorganisms, sediments, nutrients, organic matter, and heavy metals) to receiving waters. To improve water quality in urban and suburban areas, watershed managers often incorporate best management practices (BMPs) to reduce the quantity of runoff as well as to minimize pollutants and other stressors contained in stormwater runoff. It is well known that land-use practices directly impact urban streams. Stream flows in urbanized watersheds increase in magnitude as a function of impervious area and can result in degradation of the natural stream channel morphology affecting the physical, chemical, and biological integrity of the stream. Stream bank erosion, which also increases with increased stream flows, can lead to bank instability, property loss, infrastructure damage, and increased sediment loading to the stream. Increased sediment loads may lead to water quality degradation downstream and have negative impacts on fish, benthic invertebrates, and other aquatic life. Accotink Creek is in the greater Chesapeake Bay and Potomac watersheds, which have strict sediment criteria. The USEPA (United States Environmental Protection Agency) and USGS (United States Geological Survey) are investigating the effectiveness of stream restoration techniques as a BMP to decrease sediment load and improve bank stability, biological integrity, and in-stream water quality in an impaired urban watershed in Fairfax, Virginia. This multi-year project continuously monitors turbidity, specific conductance, pH, and water temperature, as well as biological and chemical water quality parameters. In addition, physical parameters (e.g., pebble counts, longitudinal and cross sectional stream surveys) were measured to assess geomorphic changes associated with the restoration. Data from the pre-construction and initial post-construction phases are presented in this report. ?? 2007 ASCE.
Resonant Drag Instability of Grains Streaming in Fluids
NASA Astrophysics Data System (ADS)
Squire, J.; Hopkins, P. F.
2018-03-01
We show that grains streaming through a fluid are generically unstable if their velocity, projected along some direction, matches the phase velocity of a fluid wave (linear oscillation). This can occur whenever grains stream faster than any fluid wave. The wave itself can be quite general—sound waves, magnetosonic waves, epicyclic oscillations, and Brunt–Väisälä oscillations each generate instabilities, for example. We derive a simple expression for the growth rates of these “resonant drag instabilities” (RDI). This expression (i) illustrates why such instabilities are so virulent and generic and (ii) allows for simple analytic computation of RDI growth rates and properties for different fluids. As examples, we introduce several new instabilities, which could see application across a variety of physical systems from atmospheres to protoplanetary disks, the interstellar medium, and galactic outflows. The matrix-based resonance formalism we introduce can also be applied more generally in other (nonfluid) contexts, providing a simple means for calculating and understanding the stability properties of interacting systems.
NASA Technical Reports Server (NTRS)
Lallemand, Pierre; Luo, Li-Shi
2000-01-01
The generalized hydrodynamics (the wave vector dependence of the transport coefficients) of a generalized lattice Boltzmann equation (LBE) is studied in detail. The generalized lattice Boltzmann equation is constructed in moment space rather than in discrete velocity space. The generalized hydrodynamics of the model is obtained by solving the dispersion equation of the linearized LBE either analytically by using perturbation technique or numerically. The proposed LBE model has a maximum number of adjustable parameters for the given set of discrete velocities. Generalized hydrodynamics characterizes dispersion, dissipation (hyper-viscosities), anisotropy, and lack of Galilean invariance of the model, and can be applied to select the values of the adjustable parameters which optimize the properties of the model. The proposed generalized hydrodynamic analysis also provides some insights into stability and proper initial conditions for LBE simulations. The stability properties of some 2D LBE models are analyzed and compared with each other in the parameter space of the mean streaming velocity and the viscous relaxation time. The procedure described in this work can be applied to analyze other LBE models. As examples, LBE models with various interpolation schemes are analyzed. Numerical results on shear flow with an initially discontinuous velocity profile (shock) with or without a constant streaming velocity are shown to demonstrate the dispersion effects in the LBE model; the results compare favorably with our theoretical analysis. We also show that whereas linear analysis of the LBE evolution operator is equivalent to Chapman-Enskog analysis in the long wave-length limit (wave vector k = 0), it can also provide results for large values of k. Such results are important for the stability and other hydrodynamic properties of the LBE method and cannot be obtained through Chapman-Enskog analysis.
NASA Astrophysics Data System (ADS)
Naganna, Sujay Raghavendra; Deka, Paresh Chandra
2018-07-01
The hydro-geological properties of streambed together with the hydraulic gradients determine the fluxes of water, energy and solutes between the stream and underlying aquifer system. Dam induced sedimentation affects hyporheic processes and alters substrate pore space geometries in the course of progressive stabilization of the sediment layers. Uncertainty in stream-aquifer interactions arises from the inherent complex-nested flow paths and spatio-temporal variability of streambed hydraulic properties. A detailed field investigation of streambed hydraulic conductivity (Ks) using Guelph Permeameter was carried out in an intermittent stream reach of the Pavanje river basin located in the mountainous, forested tract of western ghats of India. The present study reports the spatial and temporal variability of streambed hydraulic conductivity along the stream reach obstructed by two Vented Dams in sequence. Statistical tests such as Levene's and Welch's t-tests were employed to check for various variability measures. The strength of spatial dependence and the presence of spatial autocorrelation among the streambed Ks samples were tested by using Moran's I statistic. The measures of central tendency and dispersion pointed out reasonable spatial variability in Ks distribution throughout the study reach during two consecutive years 2016 and 2017. The streambed was heterogeneous with regard to hydraulic conductivity distribution with high-Ks zones near the backwater areas of the vented dam and low-Ks zones particularly at the tail water section of vented dams. Dam operational strategies were responsible for seasonal fluctuations in sedimentation and modifications to streambed substrate characteristics (such as porosity, grain size, packing etc.), resulting in heterogeneous streambed Ks profiles. The channel downstream of vented dams contained significantly more cohesive deposits of fine sediment due to the overflow of surplus suspended sediment-laden water at low velocity and pressure head. The statistical test results accept the hypothesis of significant spatial variability of streambed Ks but refuse to accept the temporal variations. The deterministic and geo-statistical approaches of spatial interpolation provided virtuous surface maps of streambed Ks distribution.
Spanwise effects on instabilities of compressible flow over a long rectangular cavity
NASA Astrophysics Data System (ADS)
Sun, Y.; Taira, K.; Cattafesta, L. N.; Ukeiley, L. S.
2017-12-01
The stability properties of two-dimensional (2D) and three-dimensional (3D) compressible flows over a rectangular cavity with length-to-depth ratio of L/D=6 are analyzed at a free-stream Mach number of M_∞ =0.6 and depth-based Reynolds number of Re_D=502. In this study, we closely examine the influence of three-dimensionality on the wake mode that has been reported to exhibit high-amplitude fluctuations from the formation and ejection of large-scale spanwise vortices. Direct numerical simulation (DNS) and bi-global stability analysis are utilized to study the stability characteristics of the wake mode. Using the bi-global stability analysis with the time-averaged flow as the base state, we capture the global stability properties of the wake mode at a spanwise wavenumber of β =0. To uncover spanwise effects on the 2D wake mode, 3D DNS are performed with cavity width-to-depth ratio of W/D=1 and 2. We find that the 2D wake mode is not present in the 3D cavity flow with W/D=2, in which spanwise structures are observed near the rear region of the cavity. These 3D instabilities are further investigated via bi-global stability analysis for spanwise wavelengths of λ /D=0.5{-}2.0 to reveal the eigenspectra of the 3D eigenmodes. Based on the findings of 2D and 3D global stability analysis, we conclude that the absence of the wake mode in 3D rectangular cavity flows is due to the release of kinetic energy from the spanwise vortices to the streamwise vortical structures that develops from the spanwise instabilities.
Electrostatic streaming instability modes in complex viscoelastic quantum plasmas
NASA Astrophysics Data System (ADS)
Karmakar, P. K.; Goutam, H. P.
2016-11-01
A generalized quantum hydrodynamic model is procedurally developed to investigate the electrostatic streaming instability modes in viscoelastic quantum electron-ion-dust plasma. Compositionally, inertialess electrons are anticipated to be degenerate quantum particles owing to their large de Broglie wavelengths. In contrast, inertial ions and dust particulates are treated in the same classical framework of linear viscoelastic fluids (non-Newtonian). It considers a dimensionality-dependent Bohmian quantum correction prefactor, γ = [(D - 2)/3D], in electron quantum dynamics, with D symbolizing the problem dimensionality. Applying a regular Fourier-formulaic plane-wave analysis around the quasi-neutral hydrodynamic equilibrium, two distinct instabilities are explored to exist. They stem in ion-streaming (relative to electrons and dust) and dust-streaming (relative to electrons and ions). Their stability is numerically illustrated in judicious parametric windows in both the hydrodynamic and kinetic regimes. The non-trivial influential roles by the relative streams, viscoelasticities, and correction prefactor are analyzed. It is seen that γ acts as a stabilizer for the ion-stream case only. The findings alongside new entailments, as special cases of realistic interest, corroborate well with the earlier predictions in plasma situations. Applicability of the analysis relevant in cosmic and astronomical environments of compact dwarf stars is concisely indicated.
Eash, D.A.
1993-01-01
Procedures provided for applying the drainage-basin and channel-geometry regression equations depend on whether the design-flood discharge estimate is for a site on an ungaged stream, an ungaged site on a gaged stream, or a gaged site. When both a drainage-basin and a channel-geometry regression-equation estimate are available for a stream site, a procedure is presented for determining a weighted average of the two flood estimates. The drainage-basin regression equations are applicable to unregulated rural drainage areas less than 1,060 square miles, and the channel-geometry regression equations are applicable to unregulated rural streams in Iowa with stabilized channels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Erika C.; Gido, Keith B.; Bello, Nora
Stream fish can regulate their environment through direct and indirect pathways, and the relative influence of communities with different taxonomic and functional richness on ecosystem properties likely depends on habitat structure. Given this complexity, it is not surprising that observational studies of how stream fish communities influence ecosystems have shown mixed results. In this study, we evaluated the effect of an observed gradient of taxonomic (zero, one, two or three species) and functional (zero, one or two groups) richness of fishes on several key ecosystem properties in experimental stream mesocosms. Our study simulated small (less than two metres wide) headwatermore » prairie streams with a succession of three pool-riffle structures (upstream, middle and downstream) per mesocosm. Additionally, ecosystem responses included chlorophyll a from floating algal mats and benthic algae, benthic organic matter, macroinvertebrates (all as mass per unit area), algal filament length and stream metabolism (photosynthesis and respiration rate). Ecosystem responses were analysed individually using general linear mixed models. Significant treatment (taxonomic and functional richness) by habitat (pools and riffles) interactions were found for all but one ecosystem response variable. After accounting for location (upstream, middle and downstream) effects, the presence of one or two grazers resulted in shorter mean algal filament lengths in pools compared to no-fish controls. These observations suggest grazers can maintain short algal filaments in pools, which may inhibit long filaments from reaching the surface. Accordingly, floating algal mats decreased in mid- and downstream locations in grazer treatment relative to no-fish controls. At the scale of the entire reach, gross primary productivity and respiration were greater in treatments with two grazer species compared to mixed grazer/insectivore or control treatments. Lastly, the distribution of stream resources across habitat types and locations within a reach can therefore be influenced by the taxonomic and functional composition of fishes in small prairie streams. Thus, disturbances that alter diversity of these systems might have unexpected ecosystem-level consequences.« less
Martin, Erika C.; Gido, Keith B.; Bello, Nora; ...
2016-04-06
Stream fish can regulate their environment through direct and indirect pathways, and the relative influence of communities with different taxonomic and functional richness on ecosystem properties likely depends on habitat structure. Given this complexity, it is not surprising that observational studies of how stream fish communities influence ecosystems have shown mixed results. In this study, we evaluated the effect of an observed gradient of taxonomic (zero, one, two or three species) and functional (zero, one or two groups) richness of fishes on several key ecosystem properties in experimental stream mesocosms. Our study simulated small (less than two metres wide) headwatermore » prairie streams with a succession of three pool-riffle structures (upstream, middle and downstream) per mesocosm. Additionally, ecosystem responses included chlorophyll a from floating algal mats and benthic algae, benthic organic matter, macroinvertebrates (all as mass per unit area), algal filament length and stream metabolism (photosynthesis and respiration rate). Ecosystem responses were analysed individually using general linear mixed models. Significant treatment (taxonomic and functional richness) by habitat (pools and riffles) interactions were found for all but one ecosystem response variable. After accounting for location (upstream, middle and downstream) effects, the presence of one or two grazers resulted in shorter mean algal filament lengths in pools compared to no-fish controls. These observations suggest grazers can maintain short algal filaments in pools, which may inhibit long filaments from reaching the surface. Accordingly, floating algal mats decreased in mid- and downstream locations in grazer treatment relative to no-fish controls. At the scale of the entire reach, gross primary productivity and respiration were greater in treatments with two grazer species compared to mixed grazer/insectivore or control treatments. Lastly, the distribution of stream resources across habitat types and locations within a reach can therefore be influenced by the taxonomic and functional composition of fishes in small prairie streams. Thus, disturbances that alter diversity of these systems might have unexpected ecosystem-level consequences.« less
Stabilization of Landslides for the Improvement of Aquatic Habitat
Michael J. Furniss
1989-01-01
Chronic surface and mass erosion from recent landslides often prevents the recovery of productive stream habitats following initial mass failure events. Low-cost methods that can accelerate recovery and stabilization processes have been employed on numerous failed slopes in the Six Rivers National Forest in the northwest corner of California, with notable success. Two...
Umatilla River Basin Anadromous Fsh Habitat Enhancement Project : 2000 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaw, R. Todd
2001-12-31
The Umatilla River Basin Anadromous Fish Habitat Enhancement Project continued to identify impacted stream reaches throughout the Umatilla River Basin for habitat improvements during the 2000 project period. Public outreach efforts, biological and physical monitoring, and continued development of a Umatilla River Basin Watershed Assessment assisted the project in fostering public cooperation, targeting habitat deficiencies and determining habitat recovery measures. Habitat enhancement projects continued to be maintained on 44 private properties, four riparian easements and one in-stream enhancement agreement were secured, two new projects implemented and two existing projects improved to enhance anadromous fish habitat and natural fisheries production capabilitiesmore » in the Umatilla River Basin. New project locations included sites on the mid Umatilla River and Buckaroo Creek. Improvements were implemented at existing project sites on the upper Umatilla River and Wildhorse Creek. A stream bank stabilization project was implemented at approximately River Mile 37.4 Umatilla River to stabilize 760 feet of eroding stream bank and improve in-stream habitat diversity. Habitat enhancements at this site included construction of six rock barbs with one large conifer root wad incorporated into each barb, stinging approximately 10,000 native willow cuttings, planting 195 tubling willows and 1,800 basin wildrye grass plugs, and seeding 40 pounds of native grass seed. Staff time to assist in development of a subcontract and fence materials were provided to establish eight spring sites for off-stream watering and to protect wetlands within the Buckaroo Creek Watershed. A gravel bar was moved and incorporated into an adjacent point bar to reduce stream energy and stream channel confinement within the existing project area at River Mile 85 Umatilla River. Approximately 10,000 native willow cuttings were stung and trenched into the stream channel margins and stream banks, and 360 basin wildrye grass plugs planted and 190 pounds of native grass seed broadcast on terraces between River Mile 10 and 12.5 within the existing Wildhorse Creek Project Area. Approximately 70 pounds of native grasses were seeded in the existing McKay Creek Project Area at approximately River Mile 21.5. Financial and in-kind cost share assistance was provided by the Confederated Tribes of the Umatilla Indian Reservation, U.S. Bureau of Indian Affairs, U.S. Department of Agriculture, U.S. Fish and Wildlife Service, National Fish and Wildlife Federation and the Umatilla National Forest for the enhancements at River Mile 37.4 Umatilla River and within the Buckaroo Creek Watershed. Monitoring continued to quantify effects of habitat enhancements in the upper basin. Maximum, minimum and average daily stream temperatures were collected from June through September at 22 sites. Suspended sediment samples were obtained at three gage stations to arrive at daily sediment load estimates. Photographs were taken at 94 existing and two newly established photo points to document habitat recovery. Umatilla Basin Watershed Assessment efforts were continued under a subcontract with Washington State University. This endeavor involves compiling existing information, identifying data gaps, determining habitat-limiting factors and recommending actions to improve anadromous fisheries habitat. This watershed assessment document and working databases will be completed in fiscal year 2002 and made available to assist project personnel with sub-watershed prioritization of habitat needs.« less
Grossberg, Stephen
2014-01-01
Neural models of perception clarify how visual illusions arise from adaptive neural processes. Illusions also provide important insights into how adaptive neural processes work. This article focuses on two illusions that illustrate a fundamental property of global brain organization; namely, that advanced brains are organized into parallel cortical processing streams with computationally complementary properties. That is, in order to process certain combinations of properties, each cortical stream cannot process complementary properties. Interactions between these streams, across multiple processing stages, overcome their complementary deficiencies to compute effective representations of the world, and to thereby achieve the property of complementary consistency. The two illusions concern how illusory depth can vary with brightness, and how apparent motion of illusory contours can occur. Illusory depth from brightness arises from the complementary properties of boundary and surface processes, notably boundary completion and surface-filling in, within the parvocellular form processing cortical stream. This illusion depends upon how surface contour signals from the V2 thin stripes to the V2 interstripes ensure complementary consistency of a unified boundary/surface percept. Apparent motion of illusory contours arises from the complementary properties of form and motion processes across the parvocellular and magnocellular cortical processing streams. This illusion depends upon how illusory contours help to complete boundary representations for object recognition, how apparent motion signals can help to form continuous trajectories for target tracking and prediction, and how formotion interactions from V2-to-MT enable completed object representations to be continuously tracked even when they move behind intermittently occluding objects through time. PMID:25389399
Effects of passage barriers on demographics and stability properties of a virtual trout populations
Bret Harvey; Steven Railsback
2011-01-01
Habitat fragmentation is widely assumed to have negative effects on populations and communities, but some effects of fragmentation are subtle, difficult to measure and not always negative. For stream fish, barriers to upstream passage, such as waterfalls or culverts with perched outlets, are a common cause of fragmentation. We explored the effects of barriers on a...
Natural organic matter properties in Swedish agricultural streams
NASA Astrophysics Data System (ADS)
Bieroza, Magdalena; Kyllmar, Katarina; Bergström, Lars; Köhler, Stephan
2016-04-01
We have analysed natural organic matter (NOM) properties in 18 agricultural streams in Sweden covering a broad range of environmental (climate, soil type), land use and water quality (nutrient and concentrations, pH, alkalinity) characteristics. Stream water samples collected every two weeks within an ongoing Swedish Monitoring Programme for Agriculture have been analysed for total/dissolved organic carbon, absorbance and fluorescence spectroscopy. A number of quantitative and qualitative spectroscopic parameters was calculated to help to distinguish between terrestrially-derived, refractory organic material and autochthonous, labile material indicative of biogeochemical transformations of terrestrial NOM and recent biological production. The study provides insights into organic matter properties and carbon budgets in agricultural streams and improves understanding of how agricultural catchments transform natural and anthropogenic fluxes of organic matter and nutrients to signals observed in receiving waters.
Auditory attention strategy depends on target linguistic properties and spatial configurationa)
McCloy, Daniel R.; Lee, Adrian K. C.
2015-01-01
Whether crossing a busy intersection or attending a large dinner party, listeners sometimes need to attend to multiple spatially distributed sound sources or streams concurrently. How they achieve this is not clear—some studies suggest that listeners cannot truly simultaneously attend to separate streams, but instead combine attention switching with short-term memory to achieve something resembling divided attention. This paper presents two oddball detection experiments designed to investigate whether directing attention to phonetic versus semantic properties of the attended speech impacts listeners' ability to divide their auditory attention across spatial locations. Each experiment uses four spatially distinct streams of monosyllabic words, variation in cue type (providing phonetic or semantic information), and requiring attention to one or two locations. A rapid button-press response paradigm is employed to minimize the role of short-term memory in performing the task. Results show that differences in the spatial configuration of attended and unattended streams interact with linguistic properties of the speech streams to impact performance. Additionally, listeners may leverage phonetic information to make oddball detection judgments even when oddballs are semantically defined. Both of these effects appear to be mediated by the overall complexity of the acoustic scene. PMID:26233011
THE USE OF GEOMORPHOLOGY IN THE ASSESSMENT OF STREAM STABILITY
Various applications of geomorphic data and stream stability rating systems are being considered in order to establish tools for the development of TMDLs for clean sediment in streams. The transport of "clean" sediment, as opposed to contaminated sediment, is of concern to the en...
Sediment transport simulation in an armoured stream
Milhous, Robert T.; Bradley, Jeffrey B.; Loeffler, Cindy L.
1986-01-01
Improved methods of calculating bed material stability and transport must be developed for a gravel bed stream having an armoured surface in order to use the HEC-6 model to examine channel change. Good possibilities exist for use of a two layer model based on the Schoklitsch and the Einstein-Brown transport equations. In Einstein-Brown the D35 of the armour is used for stabilities and the D50 of the bed (sub-surface) is used for transport. Data on the armour and sub-surface size distribution needs to be obtained as part of a bed material study in a gravel bed river; a "shovel" sample is not adequate. The Meyer-Peter, Muller equation should not be applied to a gravel bed stream with an armoured surface to estimate the initiation of transport or for calculation of transport at low effective bed shear stress.
NASA Astrophysics Data System (ADS)
McHale, M. R.; Siemion, J.; Davis, W. D.
2015-12-01
Turbidity and suspended sediment concentrations (SSCs) are primary water quality concerns in the upper Esopus Creek watershed, the main tributary to the Ashokan reservoir. The Ashokan reservoir is one of 6 surface water reservoirs that constitute about 90% of New York City's drinking water supply. This study quantified turbidity levels and SSCs at 10 locations throughout the upper Esopus Creek watershed for 3 years prior to the implementation of 2 stream stabilization projects and for 18 months after the projects were completed. More than 93 percent of the total-suspended sediment load occurred on days with flows greater than or equal to the 90th percentile of flows observed during the study period. Discharge, SSC, and turbidity were strongly related at the outlet of the upper Esopus Creek, but not at every monitoring site. In general, relations between discharge and SSC and turbidity were strongest at sites with high SSCs, with the exception of Stony Clove Creek, the largest tributary. Stony Clove Creek, consistently produced higher SSCs and turbidity than any of the other Esopus Creek tributaries. Nonetheless, there was not a strong relation between either turbidity or SSC and discharge because there was a series of eroding banks in contact with fine grained glacio-lacustrine deposits and associated hill slope failures within the Stony Clove Creek watershed that delivered elevated turbidity and SSCs to the stream during all flow conditions. Stream bank stabilization projects were completed at two of the largest bank failures. After the projects were completed there was decrease in stream SSC and turbidity however, flows during the 18 months following the projects were lower than before the projects. Nevertheless, a shift in the SSC and turbidity discharge rating curves suggests that the stream stabilization projects resulted in lower turbidity levels and SSCs for similar discharge conditions as compared to before the projects thereby reducing sediment yields within the watershed as a result of those projects.
Riley, Jeffrey W.; Jacobson, Robert B.
2009-01-01
This report presents the data used to assess geomorphic adjustment of streams over time and to changing land-use conditions. Thirty-seven U.S. Geological Survey streamgages were selected within the Piedmont physiographic region of Georgia. Width, depth, stage, and discharge data from these streams were analyzed to assess channel stability and determine if systematic adjustments of channel morphology could be related to time or land use and land cover. Residual analyses of stage-discharge data were used to infer channel stability, which could then be used as an indicator of habitat stability. Streamgages, representing a gradient of urbanization, were selected to test hypotheses regarding stream stability and adjustment to urban conditions. Results indicate that 14 sites exhibited long-term channel stability, 11 were degrading, 6 were aggrading, and 6 showed variability in response over the study period.
1981-04-01
a part of the noncohesive group. Scour or transport and deposition become a function of the properties of these separate particles. Fortier and Scoby ...and F. C. Scoby , 1926. Permissable canal velocities. Trans. ASCE, Vol. 89. 12. Foster, G. R., L. D. Meyer and C. A. Onstad. 1977. A runoff erosi- vity
Factors affecting hazardous waste solidification/stabilization: a review.
Malviya, Rachana; Chaudhary, Rubina
2006-09-01
Solidification/stabilization is accepted as a well-established disposal technique for hazardous waste. As a result many different types of hazardous wastes are treated with different binders. The S/S products have different property from waste and binders individually. The effectiveness of S/S process is studied by physical, chemical and microstructural methods. This paper summarizes the effect of different waste stream such as heavy metals bearing sludge, filter cake, fly ash, and slag on the properties of cement and other binders. The factors affecting strength development is studied using mix designs, including metal bearing waste alters the hydration and setting time of binders. Pore structure depends on relative quantity of the constituents, cement hydration products and their reaction products with admixtures. Carbonation and additives can lead to strength improvement in waste-binder matrix.
Apparatus and method for burning a lean, premixed fuel/air mixture with low NOx emission
Kostiuk, Larry W.; Cheng, Robert K.
1996-01-01
An apparatus for enabling a burner to stably burn a lean fuel/air mixture. The burner directs the lean fuel/air mixture in a stream. The apparatus comprises an annular flame stabilizer; and a device for mounting the flame stabilizer in the fuel/air mixture stream. The burner may include a body having an internal bore, in which case, the annular flame stabilizer is shaped to conform to the cross-sectional shape of the bore, is spaced from the bore by a distance greater than about 0.5 mm, and the mounting device mounts the flame stabilizer in the bore. An apparatus for burning a gaseous fuel with low NOx emissions comprises a device for premixing air with the fuel to provide a lean fuel/air mixture; a nozzle having an internal bore through which the lean fuel/air mixture passes in a stream; and a flame stabilizer mounted in the stream of the lean fuel/air mixture. The flame stabilizer may be mounted in the internal bore, in which case, it is shaped and is spaced from the bore as just described. In a method of burning a lean fuel/air mixture, a lean fuel/air mixture is provided, and is directed in a stream; an annular eddy is created in the stream of the lean fuel/air mixture; and the lean fuel/air mixture is ignited at the eddy.
Natural organic matter properties in Swedish agricultural streams
NASA Astrophysics Data System (ADS)
Bieroza, Magdalena; Kyllmar, Katarina; Bergström, Lars; Köhler, Stephan
2017-04-01
The following paper shows natural organic matter (NOM) properties of stream water samples collected from 8 agricultural streams and 12 agricultural observational fields in Sweden. The catchments and observational fields cover a broad range of environmental (climate, soil type), land use and water quality (nutrient and concentrations, pH, alkalinity) characteristics. Stream water samples collected every two weeks within an ongoing Swedish Monitoring Programme for Agriculture have been analysed for total/dissolved organic carbon, absorbance and fluorescence spectroscopy. A number of quantitative and qualitative spectroscopic parameters was calculated to help to distinguish between terrestrially-derived, refractory organic material and autochthonous, labile material indicative of biogeochemical transformations of terrestrial NOM and recent biological production. The study provides insights into organic matter properties and carbon budgets in agricultural streams and improves understanding of how agricultural catchments transform natural and anthropogenic fluxes of organic matter and nutrients. The insights from the grab sampling are supported by high-frequency turbidity, fulvic-like and tryptophan-like fluorescence measurements with in situ optical sensor.
Noise from Supersonic Coaxial Jets. Part 2; Normal Velocity Profile
NASA Technical Reports Server (NTRS)
Dahl, M. D.; Morris, P. J.
1997-01-01
Instability waves have been established as noise generators in supersonic jets. Recent analysis of these slowly diverging jets has shown that these instability waves radiate noise to the far field when the waves have components with phase velocities that are supersonic relative to the ambient speed of sound. This instability wave noise generation model has been applied to supersonic jets with a single shear layer and is now applied to supersonic coaxial jets with two initial shear layers. In this paper the case of coaxial jets with normal velocity profiles is considered, where the inner jet stream velocity is higher than the outer jet stream velocity. To provide mean flow profiles at all axial locations, a numerical scheme is used to calculate the mean flow properties. Calculations are made for the stability characteristics in the coaxial jet shear layers and the noise radiated from the instability waves for different operating conditions with the same total thrust, mass flow and exit area as a single reference jet. The effects of changes in the velocity ratio, the density ratio and the area ratio are each considered independently.
Jason B. Dunham; Amanda E. Rosenberger; Charlie H. Luce; Bruce E. Rieman
2007-01-01
Wildfire can influence a variety of stream ecosystem properties. We studied stream temperatures in relation to wildfire in small streams in the Boise River Basin, located in central Idaho, USA. To examine the spatio-temporal aspects of temperature in relation to wildfire, we employed three approaches: a preÂpost fire comparison of temperatures between two sites (one...
Interactions between dorsal and ventral streams for controlling skilled grasp
van Polanen, Vonne; Davare, Marco
2015-01-01
The two visual systems hypothesis suggests processing of visual information into two distinct routes in the brain: a dorsal stream for the control of actions and a ventral stream for the identification of objects. Recently, increasing evidence has shown that the dorsal and ventral streams are not strictly independent, but do interact with each other. In this paper, we argue that the interactions between dorsal and ventral streams are important for controlling complex object-oriented hand movements, especially skilled grasp. Anatomical studies have reported the existence of direct connections between dorsal and ventral stream areas. These physiological interconnections appear to be gradually more active as the precision demands of the grasp become higher. It is hypothesised that the dorsal stream needs to retrieve detailed information about object identity, stored in ventral stream areas, when the object properties require complex fine-tuning of the grasp. In turn, the ventral stream might receive up to date grasp-related information from dorsal stream areas to refine the object internal representation. Future research will provide direct evidence for which specific areas of the two streams interact, the timing of their interactions and in which behavioural context they occur. PMID:26169317
Assessing the accuracy and stability of variable selection ...
Random forest (RF) modeling has emerged as an important statistical learning method in ecology due to its exceptional predictive performance. However, for large and complex ecological datasets there is limited guidance on variable selection methods for RF modeling. Typically, either a preselected set of predictor variables are used, or stepwise procedures are employed which iteratively add/remove variables according to their importance measures. This paper investigates the application of variable selection methods to RF models for predicting probable biological stream condition. Our motivating dataset consists of the good/poor condition of n=1365 stream survey sites from the 2008/2009 National Rivers and Stream Assessment, and a large set (p=212) of landscape features from the StreamCat dataset. Two types of RF models are compared: a full variable set model with all 212 predictors, and a reduced variable set model selected using a backwards elimination approach. We assess model accuracy using RF's internal out-of-bag estimate, and a cross-validation procedure with validation folds external to the variable selection process. We also assess the stability of the spatial predictions generated by the RF models to changes in the number of predictors, and argue that model selection needs to consider both accuracy and stability. The results suggest that RF modeling is robust to the inclusion of many variables of moderate to low importance. We found no substanti
Experimental Investigation of a Large-Scale Low-Boom Inlet Concept
NASA Technical Reports Server (NTRS)
Hirt, Stefanie M.; Chima, Rodrick V.; Vyas, Manan A.; Wayman, Thomas R.; Conners, Timothy R.; Reger, Robert W.
2011-01-01
A large-scale low-boom inlet concept was tested in the NASA Glenn Research Center 8- x 6- foot Supersonic Wind Tunnel. The purpose of this test was to assess inlet performance, stability and operability at various Mach numbers and angles of attack. During this effort, two models were tested: a dual stream inlet designed to mimic potential aircraft flight hardware integrating a high-flow bypass stream; and a single stream inlet designed to study a configuration with a zero-degree external cowl angle and to permit surface visualization of the vortex generator flow on the internal centerbody surface. During the course of the test, the low-boom inlet concept was demonstrated to have high recovery, excellent buzz margin, and high operability. This paper will provide an overview of the setup, show a brief comparison of the dual stream and single stream inlet results, and examine the dual stream inlet characteristics.
System for adding sulfur to a fuel cell stack system for improved fuel cell stability
Mukerjee, Subhasish [Pittsford, NY; Haltiner, Jr., Karl J; Weissman, Jeffrey G [West Henrietta, NY
2012-03-06
A system for adding sulfur to a fuel cell stack, having a reformer adapted to reform a hydrocarbon fuel stream containing sulfur contaminants, thereby providing a reformate stream having sulfur; a sulfur trap fluidly coupled downstream of the reformer for removing sulfur from the reformate stream, thereby providing a desulfurized reformate stream; and a metering device in fluid communication with the reformate stream upstream of the sulfur trap and with the desulfurized reformate stream downstream of the sulfur trap. The metering device is adapted to bypass a portion of the reformate stream to mix with the desulfurized reformate stream, thereby producing a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.
To evaluate anthropogenic changes in stream bed stability or texture from synoptic stream surveys, we calculated relative bed stability RBS* as the ratio of the geometric mean bed surface substrate diameter to the estimated bankfull critical diameter. RBS* decreased with increas...
Physical integrity: the missing link in biological monitoring and TMDLs.
Asmus, Brenda; Magner, Joseph A; Vondracek, Bruce; Perry, Jim
2009-12-01
The Clean Water Act mandates that the chemical, physical, and biological integrity of our nation's waters be maintained and restored. Physical integrity has often been defined as physical habitat integrity, and as such, data collected during biological monitoring programs focus primarily on habitat quality. However, we argue that channel stability is a more appropriate measure of physical integrity and that channel stability is a foundational element of physical habitat integrity in low-gradient alluvial streams. We highlight assessment tools that could supplement stream assessments and the Total Maximum Daily Load stressor identification process: field surveys of bankfull cross-sections; longitudinal thalweg profiles; particle size distribution; and regionally calibrated, visual, stream stability assessments. Benefits of measuring channel stability include a more informed selection of reference or best attainable stream condition for an Index of Biotic Integrity, establishment of a baseline for monitoring changes in present and future condition, and indication of channel stability for investigations of chemical and biological impairments associated with sediment discontinuity and loss of habitat quality.
Mercury stabilization in chemically bonded phosphate ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagh, Arun S.; Jeong, Seung-Young; Singh, Dileep
1997-07-01
We have investigated mercury stabilization in chemically bonded phosphate ceramic (CBPC) using four surrogate waste streams that represent U.S. Department of Energy (DOE) ash, soil, and two secondary waste streams resulting from the destruction of DOE`s high-organic wastes by the DETOX{sup SM} Wet Oxidation Process. Hg content in the waste streams was 0.1 to 0.5 wt.% (added as soluble salts). Sulfidation of Hg and its concurrent stabilization in the CBPC matrix yielded highly nonleachable waste forms. The Toxicity Characteristic Leaching Procedure showed that leaching levels were well below the U.S. Environmental Protection Agency`s regulatory limits. The American Nuclear Society`s ANSmore » 16.1 immersion test also gave very high leaching indices, indicating excellent retention of the contaminants. In particular, leaching levels of Hg in the ash waste form were below the measurement detection limit in neutral and alkaline water, negligibly low but measureable in the first 72 h of leaching in acid water, and below the detection limit after that. These studies indicate that the waste forms are stable in a wide range of chemical environments during storage. 9 refs., 5 tabs.« less
Straub, Timothy D.; Johnson, Gary P.; Roseboom, Donald P.; Sierra, Carlos R.
2006-01-01
Judy's Branch watershed, a small basin (8.64 square miles) in the St. Louis Metro East region in Illinois, was selected as a pilot site to determine suspended-sediment yields and stream-channel processes in the bluffs and American Bottoms (expansive low-lying valley floor in the region). Suspended-sediment and stream-chan-nel data collected and analyzed for Judy's Branch watershed are presented in this report to establish a baseline of data for water-resource managers to evaluate future stream rehabilitation and manage-ment alternatives. The sediment yield analysis determines the amount of sediment being delivered from the watershed and two subwatersheds: an urban tributary and an undeveloped headwater (pri-marily agricultural). The analysis of the subwater-sheds is used to compare the effects of urbanization on sediment yield to the river. The stream-channel contribution to sediment yield was determined by evaluation of the stream-channel processes operat-ing on the streambed and banks of Judy's Branch watershed. Bank stability was related to hydrologic events, bank stratigraphy, and channel geometry through model development and simulation. The average suspended-sediment yield from two upland subwatersheds (drainage areas of 0.23 and 0.40 sq.mi. was 1,163 tons per square mile per year (tons/sq.mi.-year) between July 2000 and June 2004. The suspended-sediment yield at the Route 157 station was 2,523 tons/sq.mi.-year, near the outlet of Judy's Branch watershed (drainage area = 8.33 sq.mi.). This is approximately 1,360 tons/sq.mi.-year greater than the average at the upland stations for the same time period. This result is unexpected in that, generally, the suspended-sediment yield decreases as the watershed area increases because of sediment stored in the channel and flood plain. The difference indicates a possible increase in yield from a source, such as bank retreat, and supports the concept that land-use changes increase stream-flows that may in turn result in higher rates of bank retreat. Utilizing both bank-rod data and resurveyed cross-section data, it was determined that approxi-mately half of the suspended- sediment yield at Route 157 during July 2000-June 2004 came from bank retreat. Given that bank retreat can be a substantial portion of the sediment yield, understanding bank stability processes is important. Bank stability can be assessed mathematically by computing the factor of safety, which is defined by the ratio of the shear strength (resisting force) along the failure surface and the shear stress (driving gravitational force). Once the factor of safety falls below one, the bank theoretically becomes unstable. Bank-stability conditions were related to hydrologic events, bank type, and channel geometry through model develop-ment and simulation. The most common type of bank in the watershed consists of cohesive alluvial soil deposits overlying a stiff glacial till. A stabil-ity chart for different bank types was developed using a bank-stability analysis. Banks steeper than 70 degrees and higher than from 10 to 11.5 feet (depending on bank type) become at risk for mass failure in the watershed under conditions that pro-mote saturation of the bank and a sudden drop in the river level.
System for adding sulfur to a fuel cell stack system for improved fuel cell stability
Mukerjee, Subhasish; Haltiner, Jr., Karl J; Weissman, Jeffrey G
2013-08-13
A system for adding sulfur to a reformate stream feeding a fuel cell stack, having a sulfur source for providing sulfur to the reformate stream and a metering device in fluid connection with the sulfur source and the reformate stream. The metering device injects sulfur from the sulfur source to the reformate stream at a predetermined rate, thereby providing a conditioned reformate stream to the fuel cell stack. The system provides a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.
Stream stability at highway structures.
DOT National Transportation Integrated Search
1995-11-01
This document provides guidelines for identifying stream instability problems at highway stream crossings and for the selection and design of appropriate countermeasures to mitigate potential damages to bridges and other highway components at stream ...
Rock stream stability structures in the vicinity of bridges.
DOT National Transportation Integrated Search
2014-10-01
This report was sponsored by the Utah Department of Transportation (UDOT) to determine if rock stream stability structures could be used as : scour countermeasures and to protect streambanks. Traditional scour countermeasures, such as rock riprap, ar...
Detention Outlet Retrofit Improves the Functionality of Existing ...
Journal Article Provide a stormwater management device for States and watershed management organizations. By discharging excess stormwater runoff at rates that more frequently exceed the critical flow for stream channel erosion, conventional detention basins often contribute to the escalated levels of instability that are common in urban and suburban streams and can be detrimental to aquatic habitat and water quality, as well as adjacent property and infrastructure. However, these ubiquitous assets, valued at ca. $600,000/km2 in a representative suburban watershed in Northern Kentucky, are ideal candidates to aid in reversing such cycles of channel degradation because improving their functionality would not necessarily require property acquisition or heavy construction. The objective of this research was to develop a simple, cost-effective device that could be installed in detention basin outlets to reduce the erosive power of the relatively frequent, but otherwise erosive, storm events (e.g. ~ ≤ 2-yr recurrence) and provide a passive bypass to maintain flood control performance during infrequent storms (e.g. 100-yr recurrence). Results from a pilot installation show that the Detain H2O device can not only meet these goals, but can also contribute to reduced flashiness and prolonged baseflows in receiving streams. When scaling the strategy across a watershed, these results suggest that substantial gains in water quality and stream channel stability could b
Rehan, Waqas; Fischer, Stefan; Rehan, Maaz
2016-09-12
Wireless sensor networks (WSNs) have become more and more diversified and are today able to also support high data rate applications, such as multimedia. In this case, per-packet channel handshaking/switching may result in inducing additional overheads, such as energy consumption, delays and, therefore, data loss. One of the solutions is to perform stream-based channel allocation where channel handshaking is performed once before transmitting the whole data stream. Deciding stream-based channel allocation is more critical in case of multichannel WSNs where channels of different quality/stability are available and the wish for high performance requires sensor nodes to switch to the best among the available channels. In this work, we will focus on devising mechanisms that perform channel quality/stability estimation in order to improve the accommodation of stream-based communication in multichannel wireless sensor networks. For performing channel quality assessment, we have formulated a composite metric, which we call channel rank measurement (CRM), that can demarcate channels into good, intermediate and bad quality on the basis of the standard deviation of the received signal strength indicator (RSSI) and the average of the link quality indicator (LQI) of the received packets. CRM is then used to generate a data set for training a supervised machine learning-based algorithm (which we call Normal Equation based Channel quality prediction (NEC) algorithm) in such a way that it may perform instantaneous channel rank estimation of any channel. Subsequently, two robust extensions of the NEC algorithm are proposed (which we call Normal Equation based Weighted Moving Average Channel quality prediction (NEWMAC) algorithm and Normal Equation based Aggregate Maturity Criteria with Beta Tracking based Channel weight prediction (NEAMCBTC) algorithm), that can perform channel quality estimation on the basis of both current and past values of channel rank estimation. In the end, simulations are made using MATLAB, and the results show that the Extended version of NEAMCBTC algorithm (Ext-NEAMCBTC) outperforms the compared techniques in terms of channel quality and stability assessment. It also minimizes channel switching overheads (in terms of switching delays and energy consumption) for accommodating stream-based communication in multichannel WSNs.
Rehan, Waqas; Fischer, Stefan; Rehan, Maaz
2016-01-01
Wireless sensor networks (WSNs) have become more and more diversified and are today able to also support high data rate applications, such as multimedia. In this case, per-packet channel handshaking/switching may result in inducing additional overheads, such as energy consumption, delays and, therefore, data loss. One of the solutions is to perform stream-based channel allocation where channel handshaking is performed once before transmitting the whole data stream. Deciding stream-based channel allocation is more critical in case of multichannel WSNs where channels of different quality/stability are available and the wish for high performance requires sensor nodes to switch to the best among the available channels. In this work, we will focus on devising mechanisms that perform channel quality/stability estimation in order to improve the accommodation of stream-based communication in multichannel wireless sensor networks. For performing channel quality assessment, we have formulated a composite metric, which we call channel rank measurement (CRM), that can demarcate channels into good, intermediate and bad quality on the basis of the standard deviation of the received signal strength indicator (RSSI) and the average of the link quality indicator (LQI) of the received packets. CRM is then used to generate a data set for training a supervised machine learning-based algorithm (which we call Normal Equation based Channel quality prediction (NEC) algorithm) in such a way that it may perform instantaneous channel rank estimation of any channel. Subsequently, two robust extensions of the NEC algorithm are proposed (which we call Normal Equation based Weighted Moving Average Channel quality prediction (NEWMAC) algorithm and Normal Equation based Aggregate Maturity Criteria with Beta Tracking based Channel weight prediction (NEAMCBTC) algorithm), that can perform channel quality estimation on the basis of both current and past values of channel rank estimation. In the end, simulations are made using MATLAB, and the results show that the Extended version of NEAMCBTC algorithm (Ext-NEAMCBTC) outperforms the compared techniques in terms of channel quality and stability assessment. It also minimizes channel switching overheads (in terms of switching delays and energy consumption) for accommodating stream-based communication in multichannel WSNs. PMID:27626429
Pesticides in streams in New Jersey and Long Island, New York, and relation to land use
Reiser, Robert G.; O'Brien, Anne K.
1999-01-01
Only three of the seven most frequently detected compounds?atrazine, metolachlor, and carbaryl?are among the seven most heavily applied pesticides in New Jersey. This is because detection frequencies are the result of physical and chemical properties of the pesticide compounds as well as application rates. Water solubility and soil-adsorption coefficients appear to be the two physical properties of pesticides that most influence their presence in streams.
Stabilization of beam-weibel instability by equilibrium density ripples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, S. K., E-mail: nishfeb@gmail.com; Kaw, Predhiman; Das, A.
In this paper, we present an approach to achieve suppression/complete stabilization of the transverse electromagnetic beam Weibel instability in counter streaming electron beams by modifying the background plasma with an equilibrium density ripple, shorter than the skin depth; this weakening is more pronounced when thermal effects are included. On the basis of a linear two stream fluid model, it is shown that the growth rate of transverse electromagnetic instabilities can be reduced to zero value provided certain threshold values for ripple parameters are exceeded. We point out the relevance of the work to recent experimental investigations on sustained (long length)more » collimation of fast electron beams and integral beam transport for laser induced fast ignition schemes, where beam divergence is suppressed with the assistance of carbon nano-tubes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spiering, Colleen
2001-11-15
BPA proposes to fund a project with the Colville Confederated Tribes that will improve spawning and rearing specifically for summer steelhead in the Omak Creek Watershed. Efforts to achieve this objective include improved livestock and forestry management and barrier removal. These techniques include exclusionary fencing, spring developments, hardened-rock crossings, road decommissioning, culvert removal and placement, riparian vegetation planting and installation of instream structures. The result of implementing these techniques will reduce fine sediment delivered to the stream channel which will result in increased hatching success of summer steelhead. Also, reestablishing riparian vegetation will provide canopy and enclose the stream channelmore » resulting in reduced stream temperatures. Two “on-the-ground” projects are proposed for this year. One project consists of installing three instream structures and planting riparian vegetation to provide bank stability along approximately 200’ of privately owned stream bank of Omak Creek. Also a fence will be constructed to exclude the landowner’s horses. The second project consists of removal of an inadequate sized culvert (5’ diameter) and replacement with a larger bottomless arch (6’ x 12’). This project will also include seven instream structures to stabilize the stream bank both upstream and downstream of the culvert and direct flows through the center of the bottomless arch.« less
Stream Channel Stability. Appendix E. Geomorphic Controls of Channel Stability,
1981-04-01
first from late-Eocene to middle- Oligocene and the second from middle-Miocene to Pleistocene. These two times of cooling were separated by a warming ...Starkel, 1966). It was warm but rather dry with pronounced fluctuations in humidity. For the North American continent, however, climatic conditions were...post-glacial warming continued until 3500 to 4000 yr BP (Zumberge and Potzer, 1956). This was the warmest and driest period during the Holocene for
Nonlinear Delta-f Simulations of Collective Effects in Intense Charged Particle Beams
NASA Astrophysics Data System (ADS)
Qin, Hong
2002-11-01
A nonlinear delta-f particle simulation method based on the Vlasov-Maxwell equations has been recently developed to study collective processes in high-intensity beams, where space-charge and magnetic self-field effects play a critical role in determining the nonlinear beam dynamics. Implemented in the Beam Equilibrium, Stability and Transport (BEST) code, the nonlinear delta-f method provides a low-noise and self-consistent tool for simulating collective interactions and nonlinear dynamics of high-intensity beams in modern and next- generation accelerators and storage rings, such as the Spallation Neutron Source, and heavy ion fusion drivers. Simulation results for the electron-proton two-stream instability in the Proton Storage Ring (PSR) experiment at Los Alamos National Laboratory agree well with experimental observations. Large-scale parallel simulations have also been carried out for the ion-electron two-stream instability in the very high-intensity heavy ion beams envisioned for heavy ion fusion applications. In both cases, the simulation results indicate that the dominant two-stream instability has a dipole-mode (hose-like) structure and can be stabilized by a modest axial momentum spread of the beam particles of less than 0.25collective processes in high-intensity beams, such as anisotropy-driven instabilities, collective eigenmode excitations for perturbations about stable beam equilibria, and the Darwin model for fully electromagnetic perturbations will also be discussed.
Bed Stability and sedimentation associated with human disturbances in Pacific Northwest streams
To evaluate anthropogenic sedimentation in United States (U.S.) Pacific Northwest coastal streams, we applied an index of relative bed stability (LRBS*) to summer low flow survey data collected using the U.S. Environmental Protection Agency's Environmental Monitoring and Assessme...
Stability of a laminar premixed supersonic free shear layer with chemical reactions
NASA Technical Reports Server (NTRS)
Menon, S.; Anderson, J. D., Jr.; Pai, S. I.
1984-01-01
The stability of a two-dimensional compressible supersonic flow in the wake of a flat plate is discussed. The fluid is a multi-species mixture which is undergoing finite rate chemical reactions. The spatial stability of an infinitesimal disturbance in the fluid is considered. Numerical solutions of the eigenvalue stability equations for both reactive and nonreactive supersonic flows are presented and discussed. The chemical reactions have significant influence on the stability behavior. For instance, a neutral eigenvalue is observed near the freestream Mach number of 2.375 for the nonreactive case, but disappears when the reaction is turned on. For reactive flows, the eigenvalues are not very dependent on the free stream Mach number.
NASA Technical Reports Server (NTRS)
Vlahos, L.; Papadopoulos, K.
1979-01-01
A modified continuous injection model for impulsive solar flares that includes self-consistent plasma nonlinearities based on the concept of marginal stability is presented. A quasi-stationary state is established, composed of a hot truncated electron Maxwellian distribution confined by acoustic turbulence on the top of the loop and energetic electron beams precipitating in the chromosphere. It is shown that the radiation properties of the model are in accordance with observations.
NASA Astrophysics Data System (ADS)
Saikia, Bijaylakshmi; Ramachandran, Ashwin; Sinha, Krishnendu; Govindarajan, Rama
2017-02-01
Accurate prediction of laminar to turbulent transition in compressible flows is a challenging task, as it can be affected by a combination of factors. Compressibility causes large variations in thermodynamic as well as transport properties of a gas, which in turn are known to affect flow stability. We study the stratification of individual transport properties and their combined behavior. We also examine the effect of a change in the magnitude of viscosity and conductivity on flow stability. The Couette flow of a perfect gas is our model problem and both modal and non-modal analyses are carried out. We notice a large destabilizing role of the increase in the conductivity value and a dramatic stabilizing effect of mean viscosity stratification, over a range of free-stream Mach number, Reynolds number, Prandtl number, and disturbance wavenumber. In the combined case, viscosity stratification plays a dominant role. We find this to be the case for finite-time transient growth in the parameter regime below linear instability as well as asymptotically at large time. A budget of the transient growth energy amplification is also shown to identify the effects of transport properties on the constituents of perturbation energy. The extensive results presented in this paper, we believe should motivate those studying more realistic flows to examine how these contrasting effects of stratification come together.
McKnight, Diane M.; Bencala, K.E.
1989-01-01
A pH perturbation experiment was conducted in an acidic, metal-enriched, mountain stream to identify relative rates of chemical and hydrologic processes as they influence iron transport. During the experiment the pH was lowered from 4.2 to 3.2 for three hours by injection of sulfuric acid. Amorphous iron oxides are abundant on the streambed, and dissolution and photoreduction reactions resulted in a rapid increase in the dissolved iron concentration. The increase occurred simultaneously with the decrease in pH. Ferrous iron was the major aqueous iron species. The changes in the iron concentration during the experiment indicate that variation exists in the solubility properties of the hydrous iron oxides on the streambed with dissolution of at least two compartments of hydrous iron oxides contributing to the iron pulse. Spatial variations of the hydrologic properties along the stream were quantified by simulating the transport of a coinjected tracer, lithium. A simulation of iron transport, as a conservative solute, indicated that hydrologie transport had a significant role in determining downstream changes in the iron pulse. The rapidity of the changes in iron concentration indicates that a model based on dynamic equilibrium may be adequate for simulating iron transport in acid streams. A major challenge for predictive solute transport models of geochemical processes may be due to substantial spatial and seasonal variations in chemical properties of the reactive hydrous oxides in such streams, and in the physical and hydrologic properties of the stream. ?? 1989.
ASSESSING STREAM BED STABILITY AND EXCESS SEDIMENTATION IN MOUNTAIN STREAMS
Land use and resource exploitation in headwaters catchments?such as logging, mining, and road building?often increase sediment supply to streams, potentially causing excess sedimentation. Decreases in mean substrate size and increases in fine stream bed sediments can lead to inc...
Durai-Swamy, Kandaswamy
1982-01-01
In a process for recovery of values contained in solid carbonaceous material, the solid carbonaceous material is comminuted and then subjected to pyrolysis, in the presence of a carbon containing solid particulate source of heat and a beneficially reactive transport gas in a transport flash pyrolysis reactor, to form a pyrolysis product stream. The pyrolysis product stream contains a gaseous mixture and particulate solids. The solids are separated from the gaseous mixture to form a substantially solids-free gaseous stream which comprises volatilized hydrocarbon free radicals newly formed by pyrolysis. Preferably the solid particulate source of heat is formed by oxidizing part of the separated particulate solids. The beneficially reactive transport gas inhibits the reactivity of the char product and the carbon-containing solid particulate source of heat. Condensed stabilized hydrocarbons are obtained by quenching the gaseous mixture stream with a quench fluid which contains a capping agent for stabilizing and terminating newly formed volatilized hydrocarbon free radicals. The capping agent is partially depleted of hydrogen by the stabilization and termination reaction. Hydrocarbons of four or more carbon atoms in the gaseous mixture stream are condensed. A liquid stream containing the stabilized liquid product is then treated or separated into various fractions. A liquid containing the hydrogen depleted capping agent is hydrogenated to form a regenerated capping agent. At least a portion of the regenerated capping agent is recycled to the quench zone as the quench fluid. In another embodiment capping agent is produced by the process, separated from the liquid product mixture, and recycled.
Chemically modified carbonic anhydrases useful in carbon capture systems
Novick, Scott; Alvizo, Oscar
2013-01-15
The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.
Chemically modified carbonic anhydrases useful in carbon capture systems
Novick, Scott J; Alvizo, Oscar
2013-10-29
The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.
We evaluated anthropogenic sedimentation in U.S. Pacific Northwest coastal streams using an index of relative bed stability (LRBS*) based on low flow survey data collected using the U.S. Environmental Protection Agency’s Environmental Monitoring and Assessment Program (EMAP) fiel...
NASA Astrophysics Data System (ADS)
Mittal, Sanjay; Kumar, Bhaskar
2003-02-01
Flow past a spinning circular cylinder placed in a uniform stream is investigated via two-dimensional computations. A stabilized finite element method is utilized to solve the incompressible Navier Stokes equations in the primitive variables formulation. The Reynolds number based on the cylinder diameter and free-stream speed of the flow is 200. The non-dimensional rotation rate, [alpha] (ratio of the surface speed and freestream speed), is varied between 0 and 5. The time integration of the flow equations is carried out for very large dimensionless time. Vortex shedding is observed for [alpha] < 1.91. For higher rotation rates the flow achieves a steady state except for 4.34 < [alpha] < 4:70 where the flow is unstable again. In the second region of instability, only one-sided vortex shedding takes place. To ascertain the instability of flow as a function of [alpha] a stabilized finite element formulation is proposed to carry out a global, non-parallel stability analysis of the two-dimensional steady-state flow for small disturbances. The formulation and its implementation are validated by predicting the Hopf bifurcation for flow past a non-rotating cylinder. The results from the stability analysis for the rotating cylinder are in very good agreement with those from direct numerical simulations. For large rotation rates, very large lift coefficients can be obtained via the Magnus effect. However, the power requirement for rotating the cylinder increases rapidly with rotation rate.
Use of multiple dispersal pathways facilitates amphibian persistence in stream networks.
Campbell Grant, Evan H; Nichols, James D; Lowe, Winsor H; Fagan, William F
2010-04-13
Although populations of amphibians are declining worldwide, there is no evidence that salamanders occupying small streams are experiencing enigmatic declines, and populations of these species seem stable. Theory predicts that dispersal through multiple pathways can stabilize populations, preventing extinction in habitat networks. However, empirical data to support this prediction are absent for most species, especially those at risk of decline. Our mark-recapture study of stream salamanders reveals both a strong upstream bias in dispersal and a surprisingly high rate of overland dispersal to adjacent headwater streams. This evidence of route-dependent variation in dispersal rates suggests a spatial mechanism for population stability in headwater-stream salamanders. Our results link the movement behavior of stream salamanders to network topology, and they underscore the importance of identifying and protecting critical dispersal pathways when addressing region-wide population declines.
Use of multiple dispersal pathways facilitates amphibian persistence in stream networks
Campbell, Grant E.H.; Nichols, J.D.; Lowe, W.H.; Fagan, W.F.
2010-01-01
Although populations of amphibians are declining worldwide, there is no evidence that salamanders occupying small streams are experiencing enigmatic declines, and populations of these species seem stable. Theory predicts that dispersal through multiple pathways can stabilize populations, preventing extinction in habitat networks. However, empirical data to support this prediction are absent for most species, especially those at risk of decline. Our mark-recapture study of stream salamanders reveals both a strong upstream bias in dispersal and a surprisingly high rate of overland dispersal to adjacent headwater streams. This evidence of route-dependent variation in dispersal rates suggests a spatial mechanism for population stability in headwater-stream salamanders. Our results link the movement behavior of stream salamanders to network topology, and they underscore the importance of identifying and protecting critical dispersal pathways when addressing region-wide population declines.
Use of multiple dispersal pathways facilitates amphibian persistence in stream networks
Campbell Grant, Evan H.; Nichols, James D.; Lowe, Winsor H.; Fagan, William F.
2010-01-01
Although populations of amphibians are declining worldwide, there is no evidence that salamanders occupying small streams are experiencing enigmatic declines, and populations of these species seem stable. Theory predicts that dispersal through multiple pathways can stabilize populations, preventing extinction in habitat networks. However, empirical data to support this prediction are absent for most species, especially those at risk of decline. Our mark-recapture study of stream salamanders reveals both a strong upstream bias in dispersal and a surprisingly high rate of overland dispersal to adjacent headwater streams. This evidence of route-dependent variation in dispersal rates suggests a spatial mechanism for population stability in headwater-stream salamanders. Our results link the movement behavior of stream salamanders to network topology, and they underscore the importance of identifying and protecting critical dispersal pathways when addressing region-wide population declines. PMID:20351269
Ernst, Anne G.; Baldigo, Barry P.; Mulvihill, Christiane; Vian, Mark
2010-01-01
Stream restoration has received much attention in recent years, yet there has been little effort to evaluate its impacts on physical habitat, stability, and biota. A popular but controversial stream restoration approach is natural channel design (NCD), which cannot be adequately evaluated without a long-term, independent assessment of its effects on stream habitat. Six reaches of five Catskill Mountain streams in southeastern New York were restored during 2000–2003 following NCD techniques to decrease bed and bank degradation, decrease sediment loads, and improve water quality. Habitat surveys were conducted during summer low flows from 2001 to 2007. The effects of the NCD projects on stream condition were assessed via a before–after–control–impact study design to quantify the net changes in stream and bank habitat variables relative to those in unaltered control reaches. Analysis of variance tests of three different measures of bank stability show that on average stream stability increased at treatment sites for 2–5 years after restoration. Mean channel depth, thalweg depth, and the pool–riffle ratio generally increased, whereas mean channel width, percent streambank coverage by trees, and shade decreased. Habitat suitability indices for local salmonid species increased at four of six reaches after restoration. The changes in channel dimensions rendered them generally more characteristic of stabler stream forms in the given valley settings. Although these studies were done relatively soon after project completion, our findings demonstrate that habitat conditions can be improved in degraded Catskill Mountain streams through NCD restoration.
Method for removal and stabilization of mercury in mercury-containing gas streams
Broderick, Thomas E.
2005-09-13
The present invention is directed to a process and apparatus for removing and stabilizing mercury from mercury-containing gas streams. A gas stream containing vapor phase elemental and/or speciated mercury is contacted with reagent, such as an oxygen-containing oxidant, in a liquid environment to form a mercury-containing precipitate. The mercury-containing precipitate is kept or placed in solution and reacts with one or more additional reagents to form a solid, stable mercury-containing compound.
THE EMERGING USE OF LIDAR AS A TOOL FOR ASSESSING WATERSHED MORPHOLOGY
Stream channel morphology is an integral component of the stream fluvial process and is inherently related to the stability of stream aquatic ecology. Numerous studies have shown that changes in stream channel geometry are related to changes in biotic integrity. In urbanizing la...
Stabilization and Solidification of Nitric Acid Effluent Waste at Y-12
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Dileep; Lorenzo-Martin, Cinta
Consolidated Nuclear Security, LLC (CNS) at the Y-12 plant is investigating approaches for the treatment (stabilization and solidification) of a nitric acid waste effluent that contains uranium. Because the pH of the waste stream is 1-2, it is a difficult waste stream to treat and stabilize by a standard cement-based process. Alternative waste forms are being considered. In this regard, Ceramicrete technology, developed at Argonne National Laboratory, is being explored as an option to solidify and stabilize the nitric acid effluent wastes.
Effect of nano-ZnO on biogas generation from simulated landfills.
Temizel, İlknur; Emadian, S Mehdi; Di Addario, Martina; Onay, Turgut T; Demirel, Burak; Copty, Nadim K; Karanfil, Tanju
2017-05-01
Extensive use of nanomaterials in commercial consumer products and industrial applications eventually leads to their release to the waste streams and the environment. Nano-ZnO is one of the most widely-used nanomaterials (NMs) due to its unique properties. It is also known to impact biological processes adversely. In this study, the effect of nano-ZnO on biogas generation from sanitary landfills was investigated. Two conventional and two bioreactor landfills were operated using real MSW samples at mesophilic temperature (35°C) for a period of about 1year. 100mg nano-ZnO/kg of dry waste was added to the simulated landfill reactors. Daily gas production, gas composition and leachate Zn concentrations were regularly monitored. A model describing the fate of the nano-ZnO was also developed. The results obtained indicated that as much as 99% of the nano-ZnO was retained within the waste matrix for both reactor operation modes. Waste stabilization was faster in simulated landfill bioreactors with and without the addition of nano-ZnO. Moreover, the presence of the nano-ZnO within the waste led to a decrease in biogas production of about 15%, suggesting that the nano-ZnO might have some inhibitory effects on waste stabilization. This reduction can have potentially significant implications on waste stabilization and the use of biogas from landfills as a renewable energy source. Copyright © 2017 Elsevier Ltd. All rights reserved.
Influence of calcium on the distribution of the pheasant in North America
Dale, F.H.
2000-01-01
Rapid Bioassessment Protocols (RBP) and the Sediment Quality Triad (SQT) were used to evaluate the biological effects of a municipal waste-water treatment facility (WWTF) on a small southern stream. During major storm events, raw sewage from the WWTF is released directly into the stream. The headwaters of the stream also receive non-point surface runoff from urban areas. RBP analyses, which included benthos, fish and habitat evaluations, and SQT, including the benthos (from the RBP), contaminant analyses (metals, organochlorine pesticides, PCBs and PAHs) andl toxicity tests of depositional sediment (exposures of Hyalella azteca to solid-phase sediment and pore water) were conducted at five sites on the stream (two upstream of the WWTF and three downstream). The stream has been channelized throughout its entire length, resulting in high, unstable banks, degraded stream channel, and unstable substratum. RBP analyses indicated that the two stations upstream of the WWTF were degraded due to poor physical habitat quality (unstable benthic substratum and lack of fish habitat). The SQT also showed reduced habitat quality at the two stations above the WWTF, but the cause was attributed to high concentrations of PAHs and metals in the sediments. The increased discharge and stabilized base flow provided by the WWTF improved habitat quality downnstream, although conditions were still impaired due to the habitat alteration. Though the causes of degradation were attributed to different factors (physical habitat vs. contamination), there was close concordance between the RBP and SQT in identifying the degraded sites in this stream. The combination of these two procedures provides a robust examination of environmental quality utilizing the weight of evidence approach.
Khorshidi, Behnam; Biswas, Ishita; Ghosh, Tanushree; Thundat, Thomas; Sadrzadeh, Mohtada
2018-01-15
The development of nano-enabled composite materials has led to a paradigm shift in the manufacture of high-performance nanocomposite membranes with enhanced permeation, thermo-mechanical, and antibacterial properties. The major challenges to the successful incorporation of nanoparticles (NPs) to polymer films are the severe aggregation of the NPs and the weak compatibility of NPs with polymers. These two phenomena lead to the formation of non-selective voids at the interface of the polymer and NPs, which adversely affect the separation performance of the membrane. To overcome these challenges, we have developed a new method for the fabrication of robust TFN reverse osmosis membranes. This approach relies on the simultaneous synthesis and surface functionalization of TiO 2 NPs in an organic solvent (heptane) via biphasic solvothermal reaction. The resulting stable suspension of the TiO 2 NPs in heptane was then utilized in the interfacial (in-situ) polymerization reaction where the NPs were entrapped within the matrix of the polyamide (PA) membrane. TiO 2 NPs of 10 nm were effectively incorporated into the thin PA layer and improved the thermal stability and anti-biofouling properties of the resulting TFN membranes. These features make our synthesized membranes potential candidates for applications where the treatment of high-temperature streams containing biomaterials is desirable.
Responses to riparian restoration in the Spring Creek watershed, Central Pennsylvania
Carline, R.F.; Walsh, M.C.
2007-01-01
Riparian treatments, consisting of 3- to 4-m buffer strips, stream bank stabilization, and rock-lined stream crossings, were installed in two streams with livestock grazing to reduce sediment loading and stream bank erosion. Cedar Run and Slab Cabin Run, the treatment streams, and Spring Creek, an adjacent reference stream without riparian grazing, were monitored prior to (1991-1992) and 3-5 years after (2001-2003) riparian buffer installation to assess channel morphology, stream substrate composition, suspended sediments, and macroinvertebrate communities. Few changes were found in channel widths and depths, but channel-structuring flow events were rare in the drought period after restoration. Stream bank vegetation increased from 50% or less to 100% in nearly all formerly grazed riparian buffers. The proportion of fine sediments in stream substrates decreased in Cedar Run but not in Slab Cabin Run. After riparian treatments, suspended sediments during base flow and storm flow decreased 47-87% in both streams. Macroinvertebrate diversity did not improve after restoration in either treated stream. Relative to Spring Creek, macroinvertebrate densities increased in both treated streams by the end of the posttreatment sampling period. Despite drought conditions that may have altered physical and biological effects of riparian treatments, goals of the riparian restoration to minimize erosion and sedimentation were met. A relatively narrow grass buffer along 2.4 km of each stream was effective in improving water quality, stream substrates, and some biological metrics. ?? 2007 Society for Ecological Restoration International.
Long-term monitoring of stream bank stability under different vegetation cover
NASA Astrophysics Data System (ADS)
Krzeminska, Dominika; Skaalsveen, Kamilla; Kerkhof, Tjibbe
2017-04-01
Vegetated buffer zones are common environmental measures in many countries, including Norway. The presence of riparian vegetation on stream banks not only provides ecological benefits but also influence bank slope stability, through several complex interactions between riparian vegetation and hydro - mechanical processes. The hydrological processes associated with slope stability are complex and yet difficult to quantify, especially because their transient effects (e.g. changes throughout the vegetation life cycle). Additionally, there is very limited amount of field scale research focusing on investigation of coupled hydrological and mechanical influence of vegetation on stream bank behavior, accounting for both seasonal time scale and different vegetation type, and none dedicated to marine clay soils (typically soil for Norway). In order to fill this gap we established continues, long term hydrogeological monitoring o selected cross - section within stream bank, covered with different types of vegetation, typical for Norwegian agriculture areas (grass, shrubs, and trees). The monitoring involves methods such as spatial and temporal monitoring of soil moisture conditions, ground water level and fluctuation of water level in the stream. Herein we will present first 10 months of monitoring data: observed hydrological trends and differences between three cross - sections. Moreover, we will present first modelling exercises that aims to estimate stream banks stability with accounting on presence of different vegetation types using BSTEM and HYDRUS models. With this presentation, we would like to stimulate the discussion and get feedback that could help us to improve both, our experimental set up and analysis approach.
Monitoring of bioengineering stabilization projects : final report.
DOT National Transportation Integrated Search
2009-08-01
Four sites with bioengineered stream banks were monitored for four years. Observations included quantitative : measurements of stream discharge, stage and velocity. No bank erosion was observed to have affected the stream : banks at any of the monito...
2013-05-02
Bank erosion is endangering approximately 1,100 feet of a 42-inch concrete gravity sanitary main, two manholes, and a 30-inch iron sanitary sewer...stabilizing the bank. Kingfisher nests are excavated burrows with bare soil along stream banks (USACE, 2009). “Banks with a high content of clay , gravel, or...34’ g -- - -- - - ---- --- -------- 1 LEGEND ESTIMATED 42’’ GRAVITY SEWER LINE ESTIMATED 30’’ FORCE MAIN ® SANITARY SEWER MANHOLE • AUTO
Milner, Alexander M.; Knudsen, E. Eric; Soiseth, Chad; Robertson, Anne L.; Schell, Don; Phillips, Ian T.; Magnusson, Katrina
2000-01-01
In May 1997, physical and biological variables were studied in 16 streams of different ages and contrasting stages of development following glacial recession in Glacier Bay National Park, southeast Alaska. The number of microcrustacean and macroinvertebrate taxa and juvenile fish abundance and diversity were significantly greater in older streams. Microcrustacean diversity was related to the amount of instream wood and percent pool habitat, while the number of macroinvertebrate taxa was related to bed stability, amount of instream wood, and percent pool habitat. The percent contribution of Ephemeroptera to stream benthic communities increased significantly with stream age and the amount of coarse benthic organic matter. Juvenile Dolly Varden (Salvelinus malma) were dominant in the younger streams, but juvenile coho salmon (Oncorhynchus kisutch) abundance was greater in older streams associated with increased pool habitat. Upstream lakes significantly influenced channel stability, percent Chironomidae, total macroinvertebrate and meiofaunal abundance, and percent fish cover. Stable isotope analyses indicated nitrogen enrichment from marine sources in macroinvertebrates and juvenile fish in older streams with established salmon runs. The findings are encapsulated in a conceptual summary of stream development that proposes stream assemblages to be determined by direct interactions with the terrestrial, marine, and lake ecosystems.
C. Kerry Overton; Gwynne L. Chandler; Janice A. Pisano
1994-01-01
Stream reaches that have been rested from livestock grazing appear to have stable banks and more bank undercuts than grazed stream sections. Ungrazed reference streams that are similar in parent geology, precipitation, channel type, habitat types, drainage area, and stream width had greater bank stability values and lower width-todepth ratios than those of grazed and...
Active volcanism beneath the West Antarctic ice sheet and implications for ice-sheet stability
Blankenship, D.D.; Bell, R.E.; Hodge, S.M.; Brozena, J.M.; Behrendt, John C.; Finn, C.A.
1993-01-01
IT is widely understood that the collapse of the West Antarctic ice sheet (WAIS) would cause a global sea level rise of 6 m, yet there continues to be considerable debate about the detailed response of this ice sheet to climate change1-3. Because its bed is grounded well below sea level, the stability of the WAIS may depend on geologically controlled conditions at the base which are independent of climate. In particular, heat supplied to the base of the ice sheet could increase basal melting and thereby trigger ice streaming, by providing the water for a lubricating basal layer of till on which ice streams are thought to slide4,5. Ice streams act to protect the reservoir of slowly moving inland ice from exposure to oceanic degradation, thus enhancing ice-sheet stability. Here we present aerogeophysical evidence for active volcanism and associated elevated heat flow beneath the WAIS near the critical region where ice streaming begins. If this heat flow is indeed controlling ice-stream formation, then penetration of ocean waters inland of the thin hot crust of the active portion of the West Antarctic rift system could lead to the disappearance of ice streams, and possibly trigger a collapse of the inland ice reservoir.
Ion-Flow-Induced Excitation of Electrostatic Cyclotron Mode in Magnetized Dusty Plasma
NASA Astrophysics Data System (ADS)
Bezbaruah, P.; Das, N.
2018-05-01
The stability of electrostatic cyclotron mode is investigated in a flowing magnetized dusty plasma in the presence of strong ion-neutral collisions. In the high magnetic field limit, when the dust magnetization becomes important, it is expected that the collective behavior of magnetized dust grains suspended in the near-sheath region substantially influences the dispersion properties of electrostatic modes. The growth/damping of the collective excitation is significantly controlled by such parameters as the ion-neutral collision frequency, Mach number, and magnetic field strength. In our case, the explicit dependence of the Mach number on the magnetic field and collision frequency has been taken into account and possible implications on the stability of the mode is analyzed. Streaming instability of cyclotron modes may be important to understand issues related to the interaction mechanism between dust grains and other associated phenomena like Coulomb crystallization, phase behavior, transport properties, etc., in the relatively strong magnetic field limit, which is currently accessible in the DPD (Kiel University) and MDPX (PSL, Auburn University) experiments.
NASA Astrophysics Data System (ADS)
Kitzmann, D.; Patzer, A. B. C.; Rauer, H.
2013-09-01
Context. Owing to their wavelength-dependent absorption and scattering properties, clouds have a strong impact on the climate of planetary atmospheres. The potential greenhouse effect of CO2 ice clouds in the atmospheres of terrestrial extrasolar planets is of particular interest because it might influence the position and thus the extension of the outer boundary of the classic habitable zone around main sequence stars. Such a greenhouse effect, however, is a complicated function of the CO2 ice particles' optical properties. Aims: We study the radiative effects of CO2 ice particles obtained by different numerical treatments to solve the radiative transfer equation. To determine the effectiveness of the scattering greenhouse effect caused by CO2 ice clouds, the radiative transfer calculations are performed over the relevant wide range of particle sizes and optical depths, employing different numerical methods. Methods: We used Mie theory to calculate the optical properties of particle polydispersion. The radiative transfer calculations were done with a high-order discrete ordinate method (DISORT). Two-stream radiative transfer methods were used for comparison with previous studies. Results: The comparison between the results of a high-order discrete ordinate method and simpler two-stream approaches reveals large deviations in terms of a potential scattering efficiency of the greenhouse effect. The two-stream methods overestimate the transmitted and reflected radiation, thereby yielding a higher scattering greenhouse effect. For the particular case of a cool M-type dwarf, the CO2 ice particles show no strong effective scattering greenhouse effect by using the high-order discrete ordinate method, whereas a positive net greenhouse effect was found for the two-stream radiative transfer schemes. As a result, previous studies of the effects of CO2 ice clouds using two-stream approximations overrated the atmospheric warming caused by the scattering greenhouse effect. Consequently, the scattering greenhouse effect of CO2 ice particles seems to be less effective than previously estimated. In general, higher order radiative transfer methods are needed to describe the effects of CO2 ice clouds accurately as indicated by our numerical radiative transfer studies.
STREAM CORRIDOR RESTORATION AND ITS POTENTIAL TO IMPROVE WATER QUALITY
Watershed stream corridors are being degraded by anthropogenic impacts of increased flow from runoff, sediment loading from erosion and contaminants such as nitrate from non-point sources. One solution is to restore stream corridors with bank stabilization and energy dissipation ...
Use of computer programs STLK1 and STWT1 for analysis of stream-aquifer hydraulic interaction
Desimone, Leslie A.; Barlow, Paul M.
1999-01-01
Quantifying the hydraulic interaction of aquifers and streams is important in the analysis of stream base fow, flood-wave effects, and contaminant transport between surface- and ground-water systems. This report describes the use of two computer programs, STLK1 and STWT1, to analyze the hydraulic interaction of streams with confined, leaky, and water-table aquifers during periods of stream-stage fuctuations and uniform, areal recharge. The computer programs are based on analytical solutions to the ground-water-flow equation in stream-aquifer settings and calculate ground-water levels, seepage rates across the stream-aquifer boundary, and bank storage that result from arbitrarily varying stream stage or recharge. Analysis of idealized, hypothetical stream-aquifer systems is used to show how aquifer type, aquifer boundaries, and aquifer and streambank hydraulic properties affect aquifer response to stresses. Published data from alluvial and stratifed-drift aquifers in Kentucky, Massachusetts, and Iowa are used to demonstrate application of the programs to field settings. Analytical models of these three stream-aquifer systems are developed on the basis of available hydrogeologic information. Stream-stage fluctuations and recharge are applied to the systems as hydraulic stresses. The models are calibrated by matching ground-water levels calculated with computer program STLK1 or STWT1 to measured ground-water levels. The analytical models are used to estimate hydraulic properties of the aquifer, aquitard, and streambank; to evaluate hydrologic conditions in the aquifer; and to estimate seepage rates and bank-storage volumes resulting from flood waves and recharge. Analysis of field examples demonstrates the accuracy and limitations of the analytical solutions and programs when applied to actual ground-water systems and the potential uses of the analytical methods as alternatives to numerical modeling for quantifying stream-aquifer interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safari, S.; Jazi, B., E-mail: jaziada@kashanu.ac.ir; Jahanbakht, S.
2016-08-15
In this work, two stream instability in a metallic waveguide with elliptical cross-section and with a hollow annular dielectric layer is studied for generation and amplification of THz electromagnetic waves. Dispersion relation of waves and their dependents to geometric dimensions and characteristics of the electron beam are analyzed. In continuation, the diagrams of growth rate for some operating frequencies are presented, so that effective factors on the growth rates, such as geometrical dimensions, dielectric constant of dielectric layer, accelerating voltage, and applied current intensity are analyzed. It is shown that while an electron beam is responsible for instability, another electronmore » beam plays a stabilizing role.« less
Additional support for the TDK/MABL computer program
NASA Technical Reports Server (NTRS)
Nickerson, G. R.; Dunn, Stuart S.
1993-01-01
An advanced version of the Two-Dimensional Kinetics (TDK) computer program was developed under contract and released to the propulsion community in early 1989. Exposure of the code to this community indicated a need for improvements in certain areas. In particular, the TDK code needed to be adapted to the special requirements imposed by the Space Transportation Main Engine (STME) development program. This engine utilizes injection of the gas generator exhaust into the primary nozzle by means of a set of slots. The subsequent mixing of this secondary stream with the primary stream with finite rate chemical reaction can have a major impact on the engine performance and the thermal protection of the nozzle wall. In attempting to calculate this reacting boundary layer problem, the Mass Addition Boundary Layer (MABL) module of TDK was found to be deficient in several respects. For example, when finite rate chemistry was used to determine gas properties, (MABL-K option) the program run times became excessive because extremely small step sizes were required to maintain numerical stability. A robust solution algorithm was required so that the MABL-K option could be viable as a rocket propulsion industry design tool. Solving this problem was a primary goal of the phase 1 work effort.
Nonlinear development and secondary instability of Gortler vortices in hypersonic flows
NASA Technical Reports Server (NTRS)
Fu, Yibin B.; Hall, Philip
1991-01-01
In a hypersonic boundary layer over a wall of variable curvature, the region most susceptible to Goertler vortices is the temperature adjustment layer over which the basic state temperature decreases monotonically to its free stream value. Except for a special wall curvature distribution, the evolution of Goertler vortices trapped in the temperature adjustment layer will in general be strongly affected by the boundary layer growth through the O(M sup 3/2) curvature of the basic state, where M is the free stream Mach number. Only when the local wavenumber becomes as large as of order M sup 3/8, do nonparallel effects become negligible in the determination of stability properties. In the latter case, Goertler vortices will be trapped in a thin layer of O(epsilon sup 1/2) thickness which is embedded in the temperature adjustment layer; here epsilon is the inverse of the local wavenumber. A weakly nonlinear theory is presented in which the initial nonlinear development of Goertler vortices in the neighborhood of the neutral position is studied and two coupled evolution equations are derived. From these, it can be determined whether the vortices are decaying or growing depending on the sign of a constant which is related to wall curvature and the basic state temperature.
Ryan, D; Shephard, S; Kelly, F L
2016-09-01
This study investigates temporal stability in the scale microchemistry of brown trout Salmo trutta in feeder streams of a large heterogeneous lake catchment and rates of change after migration into the lake. Laser-ablation inductively coupled plasma mass spectrometry was used to quantify the elemental concentrations of Na, Mg, Mn, Cu, Zn, Ba and Sr in archived (1997-2002) scales of juvenile S. trutta collected from six major feeder streams of Lough Mask, County Mayo, Ireland. Water-element Ca ratios within these streams were determined for the fish sampling period and for a later period (2013-2015). Salmo trutta scale Sr and Ba concentrations were significantly (P < 0·05) correlated with stream water sample Sr:Ca and Ba:Ca ratios respectively from both periods, indicating multi-annual stability in scale and water-elemental signatures. Discriminant analysis of scale chemistries correctly classified 91% of sampled juvenile S. trutta to their stream of origin using a cross-validated classification model. This model was used to test whether assumed post-depositional change in scale element concentrations reduced correct natal stream classification of S. trutta in successive years after migration into Lough Mask. Fish residing in the lake for 1-3 years could be reliably classified to their most likely natal stream, but the probability of correct classification diminished strongly with longer lake residence. Use of scale chemistry to identify natal streams of lake S. trutta should focus on recent migrants, but may not require contemporary water chemistry data. © 2016 The Fisheries Society of the British Isles.
Beaver Colony Density Trends on the Chequamegon-Nicolet National Forest, 1987 – 2013
Ribic, Christine A.; Donner, Deahn M.; Beck, Albert J.; Reinecke, Sue; Eklund, Dan
2017-01-01
The North American beaver (Castor canadensis) is a managed species in the United States. In northern Wisconsin, as part of the state-wide beaver management program, the Chequamegon-Nicolet National Forest removes beavers from targeted trout streams on U.S. Forest Service lands. However, the success of this management program has not been evaluated. Targeted removals comprise only 3% of the annual beaver harvest, a level of effort that may not affect the beaver population. We used colony location data along Forest streams from 1987–2013 (Nicolet, northeast Wisconsin) and 1997–2013 (Chequamegon, northwest Wisconsin) to assess trends in beaver colony density on targeted trout streams compared to non-targeted streams. On the Chequamegon, colony density on non-targeted trout and non-trout streams did not change over time, while colony density on targeted trout streams declined and then stabilized. On the Nicolet, beaver colony density decreased on both non-targeted streams and targeted trout streams. However, colony density on targeted trout streams declined faster. The impact of targeted trapping was similar across the two sides of the Forest (60% reduction relative to non-targeted trout streams). Exploratory analyses of weather influences found that very dry conditions and severe winters were associated with transient reductions in beaver colony density on non-targeted streams on both sides of the Forest. Our findings may help land management agencies weigh more finely calibrated beaver control measures against continued large-scale removal programs. PMID:28081271
Beaver Colony Density Trends on the Chequamegon-Nicolet National Forest, 1987 - 2013.
Ribic, Christine A; Donner, Deahn M; Beck, Albert J; Rugg, David J; Reinecke, Sue; Eklund, Dan
2017-01-01
The North American beaver (Castor canadensis) is a managed species in the United States. In northern Wisconsin, as part of the state-wide beaver management program, the Chequamegon-Nicolet National Forest removes beavers from targeted trout streams on U.S. Forest Service lands. However, the success of this management program has not been evaluated. Targeted removals comprise only 3% of the annual beaver harvest, a level of effort that may not affect the beaver population. We used colony location data along Forest streams from 1987-2013 (Nicolet, northeast Wisconsin) and 1997-2013 (Chequamegon, northwest Wisconsin) to assess trends in beaver colony density on targeted trout streams compared to non-targeted streams. On the Chequamegon, colony density on non-targeted trout and non-trout streams did not change over time, while colony density on targeted trout streams declined and then stabilized. On the Nicolet, beaver colony density decreased on both non-targeted streams and targeted trout streams. However, colony density on targeted trout streams declined faster. The impact of targeted trapping was similar across the two sides of the Forest (60% reduction relative to non-targeted trout streams). Exploratory analyses of weather influences found that very dry conditions and severe winters were associated with transient reductions in beaver colony density on non-targeted streams on both sides of the Forest. Our findings may help land management agencies weigh more finely calibrated beaver control measures against continued large-scale removal programs.
Beaver colony density trends on the Chequamegon-Nicolet National Forest, 1987 – 2013
Ribic, Christine; Donner, Deahn M.; Beck, Albert J.; Rugg, David J.; Reinecke, Sue; Eklund, Dan
2017-01-01
The North American beaver (Castor canadensis) is a managed species in the United States. In northern Wisconsin, as part of the state-wide beaver management program, the Chequamegon-Nicolet National Forest removes beavers from targeted trout streams on U.S. Forest Service lands. However, the success of this management program has not been evaluated. Targeted removals comprise only 3% of the annual beaver harvest, a level of effort that may not affect the beaver population. We used colony location data along Forest streams from 1987–2013 (Nicolet, northeast Wisconsin) and 1997–2013 (Chequamegon, northwest Wisconsin) to assess trends in beaver colony density on targeted trout streams compared to non-targeted streams. On the Chequamegon, colony density on non-targeted trout and non-trout streams did not change over time, while colony density on targeted trout streams declined and then stabilized. On the Nicolet, beaver colony density decreased on both non-targeted streams and targeted trout streams. However, colony density on targeted trout streams declined faster. The impact of targeted trapping was similar across the two sides of the Forest (60% reduction relative to non-targeted trout streams). Exploratory analyses of weather influences found that very dry conditions and severe winters were associated with transient reductions in beaver colony density on non-targeted streams on both sides of the Forest. Our findings may help land management agencies weigh more finely calibrated beaver control measures against continued large-scale removal programs.
Analysis of supersonic plug nozzle flowfield and heat transfer
NASA Technical Reports Server (NTRS)
Murthy, S. N. B.; Sheu, W. H.
1988-01-01
A number of problems pertaining to the flowfield in a plug nozzle, designed as a supersonic thruster nozzle, with provision for cooling the plug with a coolant stream admitted parallel to the plug wall surface, were studied. First, an analysis was performed of the inviscid, nonturbulent, gas dynamic interaction between the primary hot stream and the secondary coolant stream. A numerical prediction code for establishing the resulting flowfield with a dividing surface between the two streams, for various combinations of stagnation and static properties of the two streams, was utilized for illustrating the nature of interactions. Secondly, skin friction coefficient, heat transfer coefficient and heat flux to the plug wall were analyzed under smooth flow conditions (without shocks or separation) for various coolant flow conditions. A numerical code was suitably modified and utilized for the determination of heat transfer parameters in a number of cases for which data are available. Thirdly, an analysis was initiated for modeling turbulence processes in transonic shock-boundary layer interaction without the appearance of flow separation.
Highly stable beta-class carbonic anhydrases useful in carbon capture systems
Alvizo, Oscar; Benoit, Mike; Novick, Scott
2013-04-16
The present disclosure relates to .beta.-class carbonic anhydrase polypeptides having improved properties including increased thermostability and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides formulations and uses of the polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering. Also provided are polynucleotides encoding the carbonic anhydrase polypeptides and host cells capable of expressing them.
Highly stable beta-class carbonic anhydrases useful in carbon capture systems
Alvizo, Oscar; Benoit, Michael R; Novick, Scott J
2013-08-20
The present disclosure relates to .beta.-class carbonic anhydrase polypeptides having improved properties including increased thermostability and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides formulations and uses of the polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering. Also provided are polynucleotides encoding the carbonic anhydrase polypeptides and host cells capable of expressing them.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruger, A.A.; Olson, R.A.; Tennis, P.D.
1995-04-01
Portland cement blended with fly ash and attapulgite clay was mixed with high-alkaline solution simulating low-level radioactive waste stream at a one-to-one weight ratio. Mixtures were adiabatically and isothermally cured at various temperatures and analyzed for phase composition, total alkalinity, pore solution chemistry, and transport properties as measured by impedance spectroscopy. Total alkalinity is characterized by two main drops. The early one corresponds to a rapid removal of phosphorous, aluminum, sodium, and to a lesser extent potassium solution. The second drop from about 10 h to 3 days is mainly associated with the removal of aluminum, silicon, and sodium. Thereafter,more » the total alkalinity continues descending, but at a lower rate. All pastes display a rapid flow loss that is attributed to an early precipitation of hydrated products. Hemicarbonate appears as early as one hour after mixing and is probably followed by apatite precipitation. However, the former is unstable and decomposes at a rate that is inversely related to the curing temperature. At high temperatures, zeolite appears at about 10 h after mixing. At 30 days, the stabilized crystalline composition Includes zeolite, apatite and other minor amounts of CaCO{sub 3}, quartz, and monosulfate Impedance spectra conform with the chemical and mineralogical data. The normalized conductivity of the pastes shows an early drop, which is followed by a main decrease from about 12 h to three days. At three days, the permeability of the cement-based waste as calculated by Katz-Thompson equation is over three orders of magnitude lower than that of ordinary portland cement paste. However, a further decrease in the calculated permeability is questionable. Chemical stabilization is favorable through incorporation of waste species into apatite and zeolite.« less
NASA Astrophysics Data System (ADS)
Padowski, J.; Yang, Q.; Brady, M.; Jessup, E.; Yoder, J.
2016-12-01
In 2013, the Washington State Supreme Court ruled against a 2001 amendment that set aside groundwater reservations for development within the Skagit River Basin (Swinomish Indian Tribal Community v. Washington State Department of Ecology). As a consequence, hundreds of properties no longer have a secure, uninterruptible water right and must be fully mitigated to offset their impacts on minimum in-stream flows. To date, no solutions have been amenable to the private, tribal and government parties involved. The objective of this study is to identify implementable, alternative water mitigation strategies for meeting minimum in-stream flow requirements while providing non-interruptible water to 455 property owners without legal water rights in the Skagit Basin. Three strategies of interest to all parties involved were considered: 1) streamflow augmentation from small-gauge municipal pipes, or trucked water deliveries for either 2) direct household use or 3) streamflow augmentation. Each mitigation strategy was assessed under two different demand scenarios and five augmentation points along 19 sub-watershed (HUC12) stream reaches. Results indicate that water piped for streamflow augmentation could provide mitigation at a cost of <10,000 per household for 20 - 60% of the properties in question, but a similar approach could be up to twenty times more expensive for those remaining properties in basins furthest from existing municipal systems. Trucked water costs also increase for upper basin properties, but over a 20-year period are still less expensive for basins where piped water costs would be high (e.g., 100,000 for trucking vs. $200,000 for piped water). This work suggests that coordination with municipal water systems to offset in-stream flow reductions, in combination with strategic mobile water delivery, could provide mitigation solutions within the Skagit Basin that may satisfy concerned parties.
Forest linkages to diversity and abundancein lowland stream fish communities
Melvin L. Warren; Wendell R. Haag; Susan B. Adams
2000-01-01
In 1999 we sampled fish and fish habitat in 79 stream reaches within watersheds of north-central Mississippi. Despite a program of successful reforestation and soil stabilization (Yazoo-Little Tallahatchie Project, 1949â1985), nearly all streams in the region are channelized or incised. In these sandy, upper Coastal Plain streams, we explored the relationships among in...
Study of Basin Recession Characteristics and Groundwater Storage Properties
NASA Astrophysics Data System (ADS)
Yen-Bo, Chen; Cheng-Haw, Lee
2017-04-01
Stream flow and groundwater storage are freshwater resources that human live on.In this study, we discuss southern area basin recession characteristics and Kao-Ping River basin groundwater storage, and hope to supply reference to Taiwan water resource management. The first part of this study is about recession characteristics. We apply Brutsaert (2008) low flow analysis model to establish two recession data pieces sifting models, including low flow steady period model and normal condition model. Within individual event analysis, group event analysis and southern area basin recession assessment, stream flow and base flow recession characteristics are parameterized. The second part of this study is about groundwater storage. Among main basin in southern Taiwan, there are sufficient stream flow and precipitation gaging station data about Kao-Ping River basin and extensive drainage data, and data about different hydrological characteristics between upstream and downstream area. Therefore, this study focuses on Kao-Ping River basin and accesses groundwater storage properties. Taking residue of groundwater volume in dry season into consideration, we use base flow hydrograph to access periodical property of groundwater storage, in order to establish hydrological period conceptual model. With groundwater storage and precipitation accumulative linearity quantified by hydrological period conceptual model, their periodical changing and alternation trend properties in each drainage areas of Kao-Ping River basin have been estimated. Results of this study showed that the recession time of stream flow is related to initial flow rate of the recession events. The recession time index is lower when the flow is stream flow, not base flow, and the recession time index is higher in low flow steady flow period than in normal recession condition. By applying hydrological period conceptual model, groundwater storage could explicitly be analyzed and compared with precipitation, by only using stream flow data. Keywords: stream flow, base flow, recession characteristics, groundwater storage
Stream macrophytes are often removed with their sediments to deepen stream channels, stabilize channel banks, or provide habitat for target species. These sediments may support enhanced nitrogen processing. To evaluate sediment nitrogen processing, identify seasonal patterns, and...
Excessive erosion, transport and deposition of sediment are major problems in streams and rivers throughout the United States. We examined evidence of anthropogenic sedimentation in Oregon and Washington coastal streams using relatively rapid measurements taken from surveys duri...
Predicting geomorphic stability in low-order streams of the western Lake Superior basin
Width:depth ratios, entrenchment ratios, gradients, and median substrate particle sizes (D50s) were measured in 32 second and third order stream reaches in the western Lake Superior basin, and stream reaches were assigned a Rosgen geomorphic classification. Over 700 measurements ...
NASA Astrophysics Data System (ADS)
Daniels, M.; Albertson, L.; Sklar, L. S.; Tumolo, B.; Mclaughlin, M. K.
2017-12-01
Several studies have demonstrated the substantial effects that organisms can have on earth surface processes. Known as ecosystem engineers, in streams these organisms maintain, modify, or create physical habitat structure by influencing fluvial processes such as gravel movement, fine sediment deposition and bank erosion. However, the ecology of ecosystem engineers and the magnitude of ecosystem engineering effects in a world increasingly influence by anthropogenically-driven changes is not well understood. Here we present a synthesis of research findings on the potential gravel stabilization effects of Hydropsychid caddisflies, a globally distributed group of net-spinning insects that live in the benthic substrate of most freshwater streams. Hydropsychid caddisflies act as ecosystem engineers because these silk structures can fundamentally alter sediment transport conditions, including sediment stability and flow currents. The silk nets spun by these insects attach gravel grains to one another, increasing the shear stress required to initiate grain entrainment. In a series of independent laboratory experiments, we investigate the gravel size fractions most affected by these silk attachments. We also investigate the role of anthropogenic environmental stresses on ecosystem engineering potential by assessing the impact of two common stressors, high fine sediment loads and stream drying, on silk structures. Finally, an extensive field survey of grain size and Hydropsychid caddisfly population densities informs a watershed-scale network model of Hydropsychid caddisfly gravel stabilizing potential. Our findings provide some of the first evidence that caddisfly silk may be a biological structure that is resilient to various forms of human-mediated stress and that the effects of animal ecosystem engineers are underappreciated as an agent of resistance and recovery for aquatic communities experiencing changes in sediment loads and hydrologic regimes.
The general dispersion relation of induced streaming instabilities in quantum outflow systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehdian, H., E-mail: mehdian@khu.ac.ir; Hajisharifi, K.; Hasanbeigi, A.
2015-11-15
In this manuscript the dispersion relations of streaming instabilities, by using the unique property (neutralized in charge and current by default) of plasma shells colliding, have been generalized and studied. This interesting property for interpenetrating beams enables one to find the general dispersion relations without any restrictions used in the previous works in this area. In our previous work [H. Mehdian et al., ApJ. 801, 89 (2015)], employing the plasma shell concept and boost frame method, the general dispersion relation for filamentation instability has been derived in the relativistic classical regime. But in this paper, using the above mentioned concepts,more » the general dispersion relations (for each of streaming instabilities, filamentation, two-stream and multi-stream) in the non-relativistic quantum regime have been derived by employing the quantum fluid equations together with Maxwell equations. The derived dispersion relations enable to describe any arbitrary system of interacting two and three beams, justified neutralization condition, by choosing the inertial reference frame embedded on the one of the beams. Furthermore, by the numerical and analytical study of these dispersion relations, many new features of streaming instabilities (E.g. their cut-off wave numbers and growth rates) in terms of all involved parameters have been illustrated. The obtained results in this paper can be used to describe many astrophysical systems and laboratory astrophysics setting, such as collision of non-parallel plasma shells over a background plasma or the collision of three neutralized plasma slabs, and justifying the many plasma phenomena such as particle accelerations and induced fields.« less
The general dispersion relation of induced streaming instabilities in quantum outflow systems
NASA Astrophysics Data System (ADS)
Mehdian, H.; Hajisharifi, K.; Hasanbeigi, A.
2015-11-01
In this manuscript the dispersion relations of streaming instabilities, by using the unique property (neutralized in charge and current by default) of plasma shells colliding, have been generalized and studied. This interesting property for interpenetrating beams enables one to find the general dispersion relations without any restrictions used in the previous works in this area. In our previous work [H. Mehdian et al., ApJ. 801, 89 (2015)], employing the plasma shell concept and boost frame method, the general dispersion relation for filamentation instability has been derived in the relativistic classical regime. But in this paper, using the above mentioned concepts, the general dispersion relations (for each of streaming instabilities, filamentation, two-stream and multi-stream) in the non-relativistic quantum regime have been derived by employing the quantum fluid equations together with Maxwell equations. The derived dispersion relations enable to describe any arbitrary system of interacting two and three beams, justified neutralization condition, by choosing the inertial reference frame embedded on the one of the beams. Furthermore, by the numerical and analytical study of these dispersion relations, many new features of streaming instabilities (E.g. their cut-off wave numbers and growth rates) in terms of all involved parameters have been illustrated. The obtained results in this paper can be used to describe many astrophysical systems and laboratory astrophysics setting, such as collision of non-parallel plasma shells over a background plasma or the collision of three neutralized plasma slabs, and justifying the many plasma phenomena such as particle accelerations and induced fields.
Effects of Large Wood on River-Floodplain Connectivity in a Headwater Appalachian Stream
NASA Astrophysics Data System (ADS)
Keys, T.; Govenor, H.; Jones, C. N.; Hession, W. C.; Scott, D.; Hester, E. T.
2017-12-01
Large wood (LW) plays an important, yet often undervalued role in stream ecosystems. Traditionally, LW has been removed from streams for aesthetic, navigational, and flood mitigation purposes. However, extensive research over the last three decades has directly linked LW to critical ecosystem functions including habitat provisioning, stream geomorphic stability, and water quality improvements; and as such, LW has increasingly been implemented in stream restoration activities. One of the proposed benefits to this restoration approach is that LW increases river-floodplain connectivity, potentially decreasing downstream flood peaks and improving water quality. Here, we conducted two experiential floods (i.e., one with and one without LW) in a headwater, agricultural stream to explore the effect of LW on river-floodplain connectivity and resulting hydrodynamic processes. During each flood, we released an equal amount of water to the stream channel, measured stream discharge at upstream and downstream boundaries, and measured inundation depth at multiple locations across the floodplain. We then utilized a 2-dimensional hydrodynamic model (HEC-RAS) to simulate floodplain hydrodynamics. We first calibrated the model using observations from the two experimental floods. Then, we utilized the calibrated model to evaluate differing LW placement strategies and effects under various flow conditions. Results show that the addition of LW to the channel decreased channel velocity and increased inundation extent, inundation depth, and floodplain velocity. Differential placement of LW along the stream impacted the levels of floodplain discharge, primarily due to the geomorphic characteristics of the stream. Finally, we examined the effects of LW on floodplain hydrodynamics across a synthetic flow record, and found that the magnitude of river-floodplain connectivity decreased as recurrence interval increased, with limited impacts on storm events with a recurrence interval of 25 years or greater. These findings suggest that LW plays a substantial role in river-floodplain connectivity of headwater streams and associated ecosystem services.
NASA Astrophysics Data System (ADS)
Butturini, Andrea; Guarch, Alba; Battin, Tom
2017-04-01
Dissolved organic matter (DOM) concentration and properties in headwater streams are strongly shaped by hydrology. Besides the direct relationship with storms and high flows, seasonal variability of base flow also influences DOM variability. This study focuses on identifying the singularities and similarities in DOM - discharge relationships between an intermittent Mediterranean stream (Fuirosos) and a perennial Alpine stream (Oberer Seebach). Oberer Seebach had a higher discharge mean, but Fuirosos had a higher variability in flow and in magnitude of storm events. During three years we performed an intensive sampling that allows us to satisfactorily capture abrupt and extreme storms. We analysed dissolved organic carbon concentration (DOC) and optical properties of DOM and we calculated the specific ultraviolet absorbance (SUVA), the spectral slopes ratio (SR), the fluorescence index (FI), the biological index (BIX) and the humification index (HIX). DOM in Fuirosos was significantly more concentrated than in Oberer Seebach, and more terrigenous (lower FI), more degraded (lower BIX), more aromatic (higher SUVA) and more humificated (higher HIX). Most of the DOM properties showed a clear relationship with discharge and the sign of the global response was identical in both streams. However, discharge was a more robust predictor of DOM variability in Oberer Seebach than in Fuirosos. In fact, low flow and rewetting periods in Fuirosos introduced considerable dispersion in the relationship. During snowmelt in Oberer Seebach the sensitivity to discharge also decreased (DOC and BIX) or disappeared (SR, FI and HIX). The magnitude of the storm events (DQ) in Fuirosos significantly drove the changes in DOC, FI, BIX and SUVA. This suggests that the flushing/dilution patterns were essentially associated to the occurrence of storm episodes in Fuirosos. In contrast, in Oberer Seebach all DOM qualitative properties were unrelated to DQ and it significantly explained only the change in DOC. While the storms were behind the DOC oscillations, DOM quality change in Oberer Seebach was more coupled to basal flow conditions. Finally, the biogeochemical analysis of two hydrologically different headwaters motivates to speculate about the impact of the hydrological regime alteration forced by atmospheric drivers on DOM quantity and properties.
NASA Astrophysics Data System (ADS)
Voepel, H.; Hodge, R. A.; Leyland, J.; Sear, D. A.; Ahmed, S. I.
2014-12-01
Uncertainty for bedload estimates in gravel bed rivers is largely driven by our inability to characterize the arrangement and orientation of the sediment grains within the bed. The characteristics of the surface structure are produced by the water working of grains, which leads to structural differences in bedforms through differential patterns of grain sorting, packing, imbrication, mortaring and degree of bed armoring. Until recently the technical and logistical difficulties of characterizing the arrangement of sediment in 3D have prohibited a full understanding of how grains interact with stream flow and the feedback mechanisms that exist. Micro-focus X-ray CT has been used for non-destructive 3D imaging of grains within a series of intact sections of river bed taken from key morphological units (see Figure 1). Volume, center of mass, points of contact, protrusion and spatial orientation of individual surface grains are derived from these 3D images, which in turn, facilitates estimates of 3D static force properties at the grain-scale such as pivoting angles, buoyancy and gravity forces, and grain exposure. By aggregating representative samples of grain-scale properties of localized interacting sediment into overall metrics, we can compare and contrast bed stability at a macro-scale with respect to stream bed morphology. Understanding differences in bed stability through representative metrics derived at the grain-scale will ultimately lead to improved bedload estimates with reduced uncertainty and increased understanding of interactions between grain-scale properties on channel morphology. Figure 1. CT-Scans of a water worked gravel-filled pot. a. 3D rendered scan showing the outer mesh, and b. the same pot with the mesh removed. c. vertical change in porosity of the gravels sampled in 5mm volumes. Values are typical of those measured in the field and lab. d. 2-D slices through the gravels at 20% depth from surface (porosity = 0.35), and e. 75% depth from surface (porosity = 0.24), showing the presence of fine sediments 'mortaring' the larger gravels. f. shows a longitudinal slide from which pivot angle measurements can be determined for contact points between particles. g. Example of two particle extraction from the CT scan showing how particle contact areas can be measured (dark area).
Algorithm for Compressing Time-Series Data
NASA Technical Reports Server (NTRS)
Hawkins, S. Edward, III; Darlington, Edward Hugo
2012-01-01
An algorithm based on Chebyshev polynomials effects lossy compression of time-series data or other one-dimensional data streams (e.g., spectral data) that are arranged in blocks for sequential transmission. The algorithm was developed for use in transmitting data from spacecraft scientific instruments to Earth stations. In spite of its lossy nature, the algorithm preserves the information needed for scientific analysis. The algorithm is computationally simple, yet compresses data streams by factors much greater than two. The algorithm is not restricted to spacecraft or scientific uses: it is applicable to time-series data in general. The algorithm can also be applied to general multidimensional data that have been converted to time-series data, a typical example being image data acquired by raster scanning. However, unlike most prior image-data-compression algorithms, this algorithm neither depends on nor exploits the two-dimensional spatial correlations that are generally present in images. In order to understand the essence of this compression algorithm, it is necessary to understand that the net effect of this algorithm and the associated decompression algorithm is to approximate the original stream of data as a sequence of finite series of Chebyshev polynomials. For the purpose of this algorithm, a block of data or interval of time for which a Chebyshev polynomial series is fitted to the original data is denoted a fitting interval. Chebyshev approximation has two properties that make it particularly effective for compressing serial data streams with minimal loss of scientific information: The errors associated with a Chebyshev approximation are nearly uniformly distributed over the fitting interval (this is known in the art as the "equal error property"); and the maximum deviations of the fitted Chebyshev polynomial from the original data have the smallest possible values (this is known in the art as the "min-max property").
Geomorphic and vegetative recovery processes along modified stream channels of West Tennessee
Simon, Andrew; Hupp, C.R. Tennessee
1992-01-01
Hundreds of miles of streams in West Tennessee have been channelized or otherwise modt@ed since the turn of century. After all or parts of a stream are straightened, dredged, or cleared, systematic hydrologic, geomorphic, and ecologic processes collectively begin to reduce energy conditions towards the premodified state. One hundred and five sites along 15 streams were studied in the Obion, Forked Deer, Hatchie, and Wolf River basins. All studied streams, except the Hatchie River, have had major channel modi@cation along all or parts of their courses. Bank material shear-strength properties were determined through drained borehole-shear testing (168 tests) and used to interpret present critical bank conditions and factors of safety, and to estimate future channel-bank stability. Mean values of cohesive strength and angle of internal friction were 1.26 pounds per square inch and 30.1 degrees, respectively. Dendrogeomorphic analyses were made using botanical evidence of channel-bank failures to determine rates of channel widening; buried riparian stems were analyzed to determine rates of bank accretion. Channel bed-level changes through time and space were represented by a power equation. Plant ecological analyses were ma& to infer relative bank stability, to identify indicator species of the stage of bank recovery, and to determine patterns of vegetation development through the course of channel evolution. Quantitative data on morphologic changes were used with previously developed six-stage models of channel evolution and bank-slope development to estimate trends of geomorphic and ecologic processes and forms through time. Immediately after channel modr@cations, a 10- to 1%yearperiod of channel-bed degradation ensues at and upstream from the most recent modifications (area of maximum disturbance). Channel-bed lowering by &gradation was as much as 20 feet along some stream reaches. Downstream from the area of maximum disturbance, the bed was aggraded by the deposition of sediment supplied by knickpoint migration upstream; aggradation also occurred in initially degraded sites with time. Additionally, if degradation caused an increase in bank height beyond the critical limits of the bank material, a period of channel widening by mass wasting followed. Degradation knickpoints migrated upstream at rates greater than 1 mile per year; the rates attenuated with distance above the area of maximum disturbance. Channel widening rates of up to 16 feet per year were documented along some severely degraded reaches. Planar failures were generally more frequent but rotational failures dominated the most rapidly widening reaches. Total volumes of bank erosion may represent 75percent or more of the total material eroded from the channel, but this material generally exits the drainage basin. Mean factors of safety vary with the stage of channel evolution with the lowest values for planar and rotational failures occurring during the threshold stage (stage IV) 1.00 and 1.15, respectively. As channel gradients decrease, degradation ceases and then a period of ?secondary aggradation ? (at lesser rates than degradation) and bank accretion begins that may fill the channel to near floodplain level. This shift@ in process represents an oscillation in channel bed-level adjustment. Streams in basins underlain by loess may require an order of magnitude more time than sand-bed streams to stabilize due to a lack of coarse-grained material (sand) for aggradation. A systematic progression of riparian species that reflects the six-stage model of channel evolution has been identified. This progression can be used to infer ambient channel stability and hydrogeomorphic conditions. Woody vegetation establishes on low- and mid-bank surfaces (the slough line, initially) at about the same time that bank accretion begins. This slough line forms at a mean temporary stability angle of 24 degrees and expands upslope with time by the accretion of sediments. Species involve
Can air temperature be used to project influences of climate change on stream temperature?
Arismendi, Ivan; Safeeq, Mohammad; Dunham, Jason B.; Johnson, Sherri L.
2014-01-01
Worldwide, lack of data on stream temperature has motivated the use of regression-based statistical models to predict stream temperatures based on more widely available data on air temperatures. Such models have been widely applied to project responses of stream temperatures under climate change, but the performance of these models has not been fully evaluated. To address this knowledge gap, we examined the performance of two widely used linear and nonlinear regression models that predict stream temperatures based on air temperatures. We evaluated model performance and temporal stability of model parameters in a suite of regulated and unregulated streams with 11–44 years of stream temperature data. Although such models may have validity when predicting stream temperatures within the span of time that corresponds to the data used to develop them, model predictions did not transfer well to other time periods. Validation of model predictions of most recent stream temperatures, based on air temperature–stream temperature relationships from previous time periods often showed poor performance when compared with observed stream temperatures. Overall, model predictions were less robust in regulated streams and they frequently failed in detecting the coldest and warmest temperatures within all sites. In many cases, the magnitude of errors in these predictions falls within a range that equals or exceeds the magnitude of future projections of climate-related changes in stream temperatures reported for the region we studied (between 0.5 and 3.0 °C by 2080). The limited ability of regression-based statistical models to accurately project stream temperatures over time likely stems from the fact that underlying processes at play, namely the heat budgets of air and water, are distinctive in each medium and vary among localities and through time.
2017-02-13
NUMBER 6. AUTHOR(S) Tamara Harms 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME... ORGANIZATION REPORT NUMBER 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) Strategic Environmental... organic matter, temperature, turbidity, conductivity, and optical properties of organic matter were deployed in two streams draining the US Army’s
NASA Technical Reports Server (NTRS)
Yentsch, C. S.; Phinney, D. A.
1985-01-01
The term 'ring' is generally used in the case of a subdivision of ocean eddies. in the present investigation, it denotes mesoscale features which are spawned by the Gulf Stream. This investigation is concerned with the mechanism involved in the regulation of the growth of phytoplankton by the physical oceanographic features of rings. Gulf Stream rings were first observed by Parker (1971) and Fuglister (1972) as a result of extensive temperature measurements from ships in the Gulf Stream. Attention is given to changes in density boundaries associated with the rotation of rings, a synthetic model of a newly formed warm core ring, convection-stabilization, the role of light, the influence of convective overturn in adding nutrients to surface waters of warm core rings, and two major areas which require study.
NASA Technical Reports Server (NTRS)
McPherron, Robert L.; Weygand, James
2006-01-01
Corotating interaction regions during the declining phase of the solar cycle are the cause of recurrent geomagnetic storms and are responsible for the generation of high fluxes of relativistic electrons. These regions are produced by the collision of a high-speed stream of solar wind with a slow-speed stream. The interface between the two streams is easily identified with plasma and field data from a solar wind monitor upstream of the Earth. The properties of the solar wind and interplanetary magnetic field are systematic functions of time relative to the stream interface. Consequently the coupling of the solar wind to the Earth's magnetosphere produces a predictable sequence of events. Because the streams persist for many solar rotations it should be possible to use terrestrial observations of past magnetic activity to predict future activity. Also the high-speed streams are produced by large unipolar magnetic regions on the Sun so that empirical models can be used to predict the velocity profile of a stream expected at the Earth. In either case knowledge of the statistical properties of the solar wind and geomagnetic activity as a function of time relative to a stream interface provides the basis for medium term forecasting of geomagnetic activity. In this report we use lists of stream interfaces identified in solar wind data during the years 1995 and 2004 to develop probability distribution functions for a variety of different variables as a function of time relative to the interface. The results are presented as temporal profiles of the quartiles of the cumulative probability distributions of these variables. We demonstrate that the storms produced by these interaction regions are generally very weak. Despite this the fluxes of relativistic electrons produced during those storms are the highest seen in the solar cycle. We attribute this to the specific sequence of events produced by the organization of the solar wind relative to the stream interfaces. We also show that there are large quantitative differences in various parameters between the two cycles.
Extended frequency turbofan model
NASA Technical Reports Server (NTRS)
Mason, J. R.; Park, J. W.; Jaekel, R. F.
1980-01-01
The fan model was developed using two dimensional modeling techniques to add dynamic radial coupling between the core stream and the bypass stream of the fan. When incorporated into a complete TF-30 engine simulation, the fan model greatly improved compression system frequency response to planar inlet pressure disturbances up to 100 Hz. The improved simulation also matched engine stability limits at 15 Hz, whereas the one dimensional fan model required twice the inlet pressure amplitude to stall the simulation. With verification of the two dimensional fan model, this program formulated a high frequency F-100(3) engine simulation using row by row compression system characteristics. In addition to the F-100(3) remote splitter fan, the program modified the model fan characteristics to simulate a proximate splitter version of the F-100(3) engine.
Anning, David W.
2003-01-01
Stream properties and water-chemistry constituent concentrations from data collected by the National Water-Quality Assessment and other U.S. Geological Survey water-quality programs were analyzed to (1) assess water quality, (2) determine natural and human factors affecting water quality, and (3) compute stream loads for the surface-water resources in the Central Arizona Basins study area. Stream temperature, pH, dissolved-oxygen concentration and percent saturation, and dissolved-solids, suspended-sediment, and nutrient concentration data collected at 41 stream-water quality monitoring stations through water year 1998 were used in this assessment. Water-quality standards applicable to the stream properties and water-chemistry constituent concentration data for the stations investigated in this study generally were met, although there were some exceedences. In a few samples from the White River, the Black River, and the Salt River below Stewart Mountain Dam, the pH in reaches designated as a domestic drinking water source was higher than the State of Arizona standard. More than half of the samples from the Salt River below Stewart Mountain Dam and almost all of the samples from the stations on the Central Arizona Project Canal?two of the three most important surface-water sources used for drinking water in the Central Arizona Basins study area?exceeded the U.S. Environmental Protection Agency drinking water Secondary Maximum Contaminant Level for dissolved solids. Two reach-specific standards for nutrients established by the State of Arizona were exceeded many times: (1) the annual mean concentration of total phosphorus was exceeded during several years at stations on the main stems of the Salt and Verde Rivers, and (2) the annual mean concentration of total nitrogen was exceeded during several years at the Salt River near Roosevelt and at the Salt River below Stewart Mountain Dam. Stream properties and water-chemistry constituent concentrations were related to streamflow, season, water management, stream permanence, and land and water use. Dissolved-oxygen percent saturation, pH, and nutrient concentrations were dependent on stream regulation, stream permanence, and upstream disposal of wastewater. Seasonality and correlation with streamflow were dependant on stream regulation, stream permanence, and upstream disposal of wastewater. Temporal trends in streamflow, stream properties, and water-chemistry constituent concentrations were common in streams in the Central Arizona Basins study area. Temporal trends in the streamflow of unregulated perennial reaches in the Central Highlands tended to be higher from 1900 through the 1930s, lower from the 1940s through the 1970s, and high again after the 1970s. This is similar to the pattern observed for the mean annual precipitation for the Southwestern United States and indicates long-term trends in flow of streams draining the Central Highlands were driven by long-term trends in climate. Streamflow increased over the period of record at stations on effluent-dependent reaches as a result of the increase in the urban population and associated wastewater returns to the Salt and Gila Rivers in the Phoenix metropolitan area and the Santa Cruz River in the Tucson metropolitan area. Concentrations of dissolved solids decreased in the Salt River below Stewart Mountain Dam and in the Verde River below Bartlett Dam. This decrease represents an improvement in the water quality and resulted from a concurrent increase in the amount of runoff entering the reservoirs. Stream loads of water-chemistry constituents were compared at different locations along the streams with one another, and stream loads were compared to upstream inputs of the constituent from natural and anthropogenic sources to determine the relative importance of different sources and to determine the fate of the water-chemistry constituent. Of the dissolved solids transported into the Basin and Range Lowlands each year
NASA Astrophysics Data System (ADS)
Macmannis, K. R.; Hawley, R. J.
2013-12-01
The mechanisms controlling stability on small streams in steep settings are not well documented but have many implications related to stream integrity and water quality. For example, channel instability on first and second order streams is a potential source of sediment in regulated areas with Total Maximum Daily Loads (TMDLs) on water bodies that are impaired for sedimentation, such as the Chesapeake Bay. Management strategies that preserve stream integrity and protect channel stability are critical to communities that may otherwise require large capital investments to meet TMDLs and other water quality criteria. To contribute to an improved understanding of ephemeral step-pool systems, we collected detailed hydrogeomorphic data on 4 steep (0.06 - 0.12 meter/meter) headwater streams draining to lower relief alluvial valleys in Spencer County, Kentucky, USA. The step-pool streams (mean step height of 0.47 meter, mean step spacing of 4 meters) drained small undeveloped catchments dominated by early successional forest. Data collection for each of the 4 streams included 2 to 3 cross section surveys, bed material particle counts at cross section locations, and profile surveys ranging from approximately 125 to 225 meters in length. All survey data was systematically processed to understand geometric parameters such as cross sectional area, depth, and top width; bed material gradations; and detailed profile measurements such as slope, pool and riffle lengths, pool spacing, pool depth, step height, and step length. We documented the location, frequency, and type of step-forming materials (i.e., large woody debris (LWD), rock, and tree roots), compiling a database of approximately 130 total steps. Lastly, we recorded a detailed tree assessment of all trees located within 2 meters of the top of bank, detailing the species of tree, trunk diameter, and approximate distance from the top of bank. Analysis of geometric parameters illustrated correlations between channel characteristics (e.g., step height was positively correlated to slope while pool spacing was inversely correlated to slope). Most importantly, we assessed the step-forming materials with respect to channel stability. LWD has been widely documented as an important component of geomorphic stability and habitat diversity across many settings; however, our research highlights the importance of roots in providing bed stability in steep, first and second-order ephemeral streams, as 40 percent of the steps in these step-pool systems were controlled by tree roots. Similar to the key member in naturally-occurring log jams, lateral tree roots frequently served as the anchor for channel steps that were often supplemented by rocks or LWD. Assessment of the trees throughout the riparian zone suggested average tree densities of 0.30 trees/square meter or 0.40 trees/meter could provide adequate riparian zone coverage to promote channel stability. These results have implications to land use planning and stormwater management. For example, on developments draining to step-pool systems, maintaining the integrity of the riparian zone would seem to be as important as ensuring hydrologic mimicry if channel integrity is to be preserved.
Entanglement-assisted quantum convolutional coding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilde, Mark M.; Brun, Todd A.
2010-04-15
We show how to protect a stream of quantum information from decoherence induced by a noisy quantum communication channel. We exploit preshared entanglement and a convolutional coding structure to develop a theory of entanglement-assisted quantum convolutional coding. Our construction produces a Calderbank-Shor-Steane (CSS) entanglement-assisted quantum convolutional code from two arbitrary classical binary convolutional codes. The rate and error-correcting properties of the classical convolutional codes directly determine the corresponding properties of the resulting entanglement-assisted quantum convolutional code. We explain how to encode our CSS entanglement-assisted quantum convolutional codes starting from a stream of information qubits, ancilla qubits, and shared entangled bits.
NASA Astrophysics Data System (ADS)
Lee-Cullin, J. A.; Zarnetske, J. P.; Wiewiora, E.; Ruhala, S.; Hampton, T. B.
2016-12-01
Dissolved organic carbon (DOC) is a critical component to biogeochemical cycling and water quality in surface waters. As DOC moves through stream networks, from headwaters to higher order streams, the sediment-water interface (SWI), where streams and groundwater readily interact, exerts a strong influence on DOC concentrations and compositional characteristics (i.e., molecular properties). Few studies examine SWI patterns at larger spatial scales, instead focusing primarily on site-level studies because sampling in the SWI is methodologically time and labor intensive. It is presently unknown how land use and landcover influence the fate of DOC in the SWI and therefore the function of the SWI on catchment-scale DOC conditions. Here, we performed a catchment-scale, high spatial-resolution SWI sampling campaign to test how landscape pattern DOC signatures are propagated into the stream and groundwater, and to assess the fate of these signatures when DOC travels through the SWI. We sampled across 39 sites composed of first-, second-, and third-order locations in a lowland, third-order catchment composed of diverse landscape units and properties, including wetland, upland forest, and agriculture. At each of these locations, surface water, groundwater, and SWI water were collected, including six discrete depths across the SWI. The major land use and landcover properties were also determined for each of these locations. We developed two simple generalized linear models to identify the landscape properties with greatest explanatory power for DOC conditions - one for stream water and one for groundwater. The correlation between landscape properties and surface water DOC characteristics was stronger than between landscape properties and groundwater DOC characteristics. To test if the DOC properties from surface and groundwater were preserved or removed by the SWI, the resulting best-fit models for each water source were used to predict the DOC conditions across the SWI. The models were unable to predict SWI DOC conditions, indicating that the landscape signature present in both the surface water and groundwater is removed by processes occurring in the SWI. Overall, this suggests that the SWI functions as and effective zone for processing the landscape-derived DOC signatures.
NASA Astrophysics Data System (ADS)
Lee-Cullin, J. A.; Zarnetske, J. P.; Wiewiora, E.; Ruhala, S.; Hampton, T. B.
2017-12-01
Dissolved organic carbon (DOC) is a critical component to biogeochemical cycling and water quality in surface waters. As DOC moves through stream networks, from headwaters to higher order streams, the sediment-water interface (SWI), where streams and groundwater readily interact, exerts a strong influence on DOC concentrations and compositional characteristics (i.e., molecular properties). Few studies examine SWI patterns at larger spatial scales, instead focusing primarily on site-level studies because sampling in the SWI is methodologically time and labor intensive. It is presently unknown how land use and landcover influence the fate of DOC in the SWI and therefore the function of the SWI on catchment-scale DOC conditions. Here, we performed a catchment-scale, high spatial-resolution SWI sampling campaign to test how landscape pattern DOC signatures are propagated into the stream and groundwater, and to assess the fate of these signatures when DOC travels through the SWI. We sampled across 39 sites composed of first-, second-, and third-order locations in a lowland, third-order catchment composed of diverse landscape units and properties, including wetland, upland forest, and agriculture. At each of these locations, surface water, groundwater, and SWI water were collected, including six discrete depths across the SWI. The major land use and landcover properties were also determined for each of these locations. We developed two simple generalized linear models to identify the landscape properties with greatest explanatory power for DOC conditions - one for stream water and one for groundwater. The correlation between landscape properties and surface water DOC characteristics was stronger than between landscape properties and groundwater DOC characteristics. To test if the DOC properties from surface and groundwater were preserved or removed by the SWI, the resulting best-fit models for each water source were used to predict the DOC conditions across the SWI. The models were unable to predict SWI DOC conditions, indicating that the landscape signature present in both the surface water and groundwater is removed by processes occurring in the SWI. Overall, this suggests that the SWI functions as and effective zone for processing the landscape-derived DOC signatures.
Sediment transport and channel morphology of small, forested streams.
Marwan A. Hassan; Michael Church; Thomas E. Lisle; Francesco Brardinoni; Lee Benda; Gordon E. Grant
2005-01-01
This paper reviews sediment transport and channel morphology in small, forested streams in the Pacific Northwest region of North America to assess current knowledge of channel stability and morphology relevant to riparian management practices around small streams. Small channels are defined as ones in which morphology and hydraulics may be significantly influenced by...
Physical consequences of large organic debris in Pacific Northwest streams.
Frederick J. Swanson; George W. Lienkaemper
1978-01-01
Large organic debris in streams controls the distribution of aquatic habitats, the routing of sediment through stream systems, and the stability of streambed and banks. Management activities directly alter debris loading by addition or removal of material and indirectly by increasing the probability of debris torrents and removing standing streamside trees. We propose...
The evaluation of the current condition is critical to the management of streams impaired by sediment and other non-point source stressors, which adversely affect both physical habitat and water quality. Several rating and classification systems based on geomorphic data exist for...
Atlantic salmon Salmo salar in the chalk streams of England are genetically unique.
Ikediashi, C; Paris, J R; King, R A; Beaumont, W R C; Ibbotson, A; Stevens, J R
2018-03-01
Recent research has identified genetic groups of Atlantic salmon Salmo salar that show association with geological and environmental boundaries. This study focuses on one particular subgroup of the species inhabiting the chalk streams of southern England, U.K. These fish are genetically distinct from other British and European S. salar populations and have previously demonstrated markedly low admixture with populations in neighbouring regions. The genetic population structure of S. salar occupying five chalk streams was explored using 16 microsatellite loci. The analysis provides evidence of the genetic distinctiveness of chalk-stream S. salar in southern England, in comparison with populations from non-chalk regions elsewhere in western Europe. Little genetic differentiation exists between the chalk-stream populations and a pattern of isolation by distance was evident. Furthermore, evidence of temporal stability of S. salar populations across the five chalk streams was found. This work provides new insights into the temporal stability and lack of genetic population sub-structuring within a unique component of the species' range of S. salar. © 2018 The Fisheries Society of the British Isles.
The stability of perfect elliptic disks. 1: The maximum streaming case
NASA Technical Reports Server (NTRS)
Levine, Stephen E.; Sparke, Linda S.
1994-01-01
Self-consistent distribution functions are constructed for two-dimensional perfect elliptic disks (for which the potential is exactly integrable) in the limit of maximum streaming; these are tested for stability by N-body integration. To obtain a discrete representation for each model, simulated annealing is used to choose a set of orbits which sample the distribution function and reproduce the required density profile while carrying the greatest possible amount of angular momentum. A quiet start technique is developed to place particles on these orbits uniformly in action-angle space, making the initial conditions as smooth as possible. The roundest models exhibit spiral instabilities similar to those of cold axisymmetric disks; the most elongated models show bending instabilities like those seen in prolate systems. Between these extremes, there is a range of axial ratios 0.25 approximately less than b/a approximately less than 0.6 within which these models appear to be stable. All the methods developed in this investigation can easily be extended to integrable potentials in three dimensions.
Stability of a non-orthogonal stagnation flow to three dimensional disturbances
NASA Technical Reports Server (NTRS)
Lasseigne, D. G.; Jackson, T. L.
1991-01-01
A similarity solution for a low Mach number nonorthogonal flow impinging on a hot or cold plate is presented. For the constant density case, it is known that the stagnation point shifts in the direction of the incoming flow and that this shift increases as the angle of attack decreases. When the effects of density variations are included, a critical plate temperature exists; above this temperature the stagnation point shifts away from the incoming stream as the angle is decreased. This flow field is believed to have application to the reattachment zone of certain separated flows or to a lifting body at a high angle of attack. Finally, the stability of this nonorthogonal flow to self similar, 3-D disturbances is examined. Stability properties of the flow are given as a function of the parameters of this study; ratio of the plate temperature to that of the outer potential flow and angle of attack. In particular, it is shown that the angle of attack can be scaled out by a suitable definition of an equivalent wavenumber and temporal growth rate, and the stability problem for the nonorthogonal case is identical to the stability problem for the orthogonal case.
NASA Astrophysics Data System (ADS)
Chang, Ho-Myung; Lim, Hye Su; Choe, Kun Hyung
2012-12-01
A thermodynamic study is carried out to investigate the effect of multi-stream heat exchanger on the performance of natural gas (NG) liquefaction with mixed refrigerant (MR). A cold stream (low-pressure MR) is in thermal contact with opposite flow of two hot streams (high-pressure MR and NG feed) at the same time. In typical process simulation with commercial software (such as Aspen HYSYS®), the liquefaction performance is estimated with a method of minimum temperature approach, simply assuming that two hot streams have the same temperature. In this study, local energy balance equations are rigorously solved with temperature-dependent properties of MR and NG feed, and are linked to the thermodynamic cycle analysis. The figure of merit (FOM) is quantitatively examined in terms of UA (the product of overall heat transfer coefficient and heat exchange area) between respective streams. In a single-stage MR process, it is concluded that the temperature profile from HYSYS is difficult to realize in practice, and the FOM value from HYSYS is an over-estimate, but can be closely achieved with a proper heat-exchanger design. It is also demonstrated that there exists a unique optimal ratio in three UA's, and no direct heat exchanger between hot streams is recommended.
E. coli Surface Properties Differ between Stream Water and Sediment Environments.
Liang, Xiao; Liao, Chunyu; Thompson, Michael L; Soupir, Michelle L; Jarboe, Laura R; Dixon, Philip M
2016-01-01
The importance of E. coli as an indicator organism in fresh water has led to numerous studies focusing on cell properties and transport behavior. However, previous studies have been unable to assess if differences in E. coli cell surface properties and genomic variation are associated with different environmental habitats. In this study, we investigated the variation in characteristics of E. coli obtained from stream water and stream bottom sediments. Cell properties were measured for 77 genomically different E. coli strains (44 strains isolated from sediments and 33 strains isolated from water) under common stream conditions in the Upper Midwestern United States: pH 8.0, ionic strength 10 mM and 22°C. Measured cell properties include hydrophobicity, zeta potential, net charge, total acidity, and extracellular polymeric substance (EPS) composition. Our results indicate that stream sediment E. coli had significantly greater hydrophobicity, greater EPS protein content and EPS sugar content, less negative net charge, and higher point of zero charge than stream water E. coli . A significant positive correlation was observed between hydrophobicity and EPS protein for stream sediment E. coli but not for stream water E. coli . Additionally, E. coli surviving in the same habitat tended to have significantly larger (GTG) 5 genome similarity. After accounting for the intrinsic impact from the genome, environmental habitat was determined to be a factor influencing some cell surface properties, such as hydrophobicity. The diversity of cell properties and its resulting impact on particle interactions should be considered for environmental fate and transport modeling of aquatic indicator organisms such as E. coli .
Selection of Two-Phase Flow Patterns at a Simple Junction in Microfluidic Devices
NASA Astrophysics Data System (ADS)
Engl, W.; Ohata, K.; Guillot, P.; Colin, A.; Panizza, P.
2006-04-01
We study the behavior of a confined stream made of two immiscible fluids when it reaches a T junction. Two flow patterns are witnessed: the stream is either directed in only one sidearm, yielding a preferential flow pathway for the dispersed phase, or splits between both. We show that the selection of these patterns is not triggered by the shape of the junction nor by capillary effects, but results from confinement. It can be anticipated in terms of the hydrodynamic properties of the flow. A simple model yielding universal behavior in terms of the relevant adimensional parameters of the problem is presented and discussed.
A Low Cost Brush Deflection System for Bank Stabilization and Revegetation
Mary Elizabeth Meyer
1989-01-01
A series of brush deflectors were installed along an eroding, undercut streambank on Lindo Channel in Chico, California. Pieces of brush were wired to sets of metal fenceposts driven into the bank perpendicular to stream flow and at strategic points upstream. Dormant cuttings of riparian plants were added for revegetation and long-term bank protection. To date (two...
Distinct Contributions of the Magnocellular and Parvocellular Visual Streams to Perceptual Selection
Denison, Rachel N.; Silver, Michael A.
2014-01-01
During binocular rivalry, conflicting images presented to the two eyes compete for perceptual dominance, but the neural basis of this competition is disputed. In interocular switch (IOS) rivalry, rival images periodically exchanged between the two eyes generate one of two types of perceptual alternation: 1) a fast, regular alternation between the images that is time-locked to the stimulus switches and has been proposed to arise from competition at lower levels of the visual processing hierarchy, or 2) a slow, irregular alternation spanning multiple stimulus switches that has been associated with higher levels of the visual system. The existence of these two types of perceptual alternation has been influential in establishing the view that rivalry may be resolved at multiple hierarchical levels of the visual system. We varied the spatial, temporal, and luminance properties of IOS rivalry gratings and found, instead, an association between fast, regular perceptual alternations and processing by the magnocellular stream and between slow, irregular alternations and processing by the parvocellular stream. The magnocellular and parvocellular streams are two early visual pathways that are specialized for the processing of motion and form, respectively. These results provide a new framework for understanding the neural substrates of binocular rivalry that emphasizes the importance of parallel visual processing streams, and not only hierarchical organization, in the perceptual resolution of ambiguities in the visual environment. PMID:21861685
Farkas, Dávid; Denham, Susan L.; Bendixen, Alexandra; Tóth, Dénes; Kondo, Hirohito M.; Winkler, István
2016-01-01
Multi-stability refers to the phenomenon of perception stochastically switching between possible interpretations of an unchanging stimulus. Despite considerable variability, individuals show stable idiosyncratic patterns of switching between alternative perceptions in the auditory streaming paradigm. We explored correlates of the individual switching patterns with executive functions, personality traits, and creativity. The main dimensions on which individual switching patterns differed from each other were identified using multidimensional scaling. Individuals with high scores on the dimension explaining the largest portion of the inter-individual variance switched more often between the alternative perceptions than those with low scores. They also perceived the most unusual interpretation more often, and experienced all perceptual alternatives with a shorter delay from stimulus onset. The ego-resiliency personality trait, which reflects a tendency for adaptive flexibility and experience seeking, was significantly positively related to this dimension. Taking these results together we suggest that this dimension may reflect the individual’s tendency for exploring the auditory environment. Executive functions were significantly related to some of the variables describing global properties of the switching patterns, such as the average number of switches. Thus individual patterns of perceptual switching in the auditory streaming paradigm are related to some personality traits and executive functions. PMID:27135945
Thermodynamic evaluation of transonic compressor rotors using the finite volume approach
NASA Technical Reports Server (NTRS)
Moore, J.; Nicholson, S.; Moore, J. G.
1985-01-01
Research at NASA Lewis Research Center gave the opportunity to incorporate new control volumes in the Denton 3-D finite-volume time marching code. For duct flows, the new control volumes require no transverse smoothing and this allows calculations with large transverse gradients in properties without significant numerical total pressure losses. Possibilities for improving the Denton code to obtain better distributions of properties through shocks were demonstrated. Much better total pressure distributions through shocks are obtained when the interpolated effective pressure, needed to stabilize the solution procedure, is used to calculate the total pressure. This simple change largely eliminates the undershoot in total pressure down-stream of a shock. Overshoots and undershoots in total pressure can then be further reduced by a factor of 10 by adopting the effective density method, rather than the effective pressure method. Use of a Mach number dependent interpolation scheme for pressure then removes the overshoot in static pressure downstream of a shock. The stability of interpolation schemes used for the calculation of effective density is analyzed and a Mach number dependent scheme is developed, combining the advantages of the correct perfect gas equation for subsonic flow with the stability of 2-point and 3-point interpolation schemes for supersonic flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
da Costa Sousa, Leonardo; Foston, Marcus; Bokade, Vijay
One of the key challenges facing lignin conversion to fuels and chemicals is related to the level of carbohydrate and ash impurities found in extracted lignin. Structural modifications of lignin may also occur as a result of biomass pretreatment and harsh lignin extraction protocols. Extractive-Ammonia (EA) is a new pretreatment technology that uses liquid ammonia to cleave lignin–carbohydrate complexes, decrystallize cellulose, solubilize lignin, and selectively extract lignin from lignocellulosic biomass, enabling better utilization of both lignin and carbohydrate components in a biorefinery. The EA-based biorefinery produces two different lignin-rich streams, with different properties, that could potentially be upgraded to fuelsmore » and chemicals using green processes. Here, a water/ethanol-based fractionation method was developed to enrich the ammonia-soluble extractives, resulting in a major product stream containing 92% lignin. Detailed characterization of the various streams resulting from EA treatment, including compositional analysis, structural characterization by nuclear magnetic resonance (NMR) spectrometry, elemental analysis, molecular weight analysis, and thermo-gravimetric analysis provides a broad evaluation of the EA-derived lignin product stream structures and properties, assessing their potential for commercial applications. In conclusion, EA-derived lignins preserve much of lignin's functionality, including the sensitive β-aryl ether units. Furthermore, we observed nitrogen incorporation in the lignin-rich streams, notably due to the presence of hydroxycinnamoyl amides formed during ammonia pretreatment.« less
An acoustic streaming instability in thermoacoustic devices utilizing jet pumps.
Backhaus, S; Swift, G W
2003-03-01
Thermoacoustic-Stirling hybrid engines and feedback pulse tube refrigerators can utilize jet pumps to suppress streaming that would otherwise cause large heat leaks and reduced efficiency. It is desirable to use jet pumps to suppress streaming because they do not introduce moving parts such as bellows or membranes. In most cases, this form of streaming suppression works reliably. However, in some cases, the streaming suppression has been found to be unstable. Using a simple model of the acoustics in the regenerators and jet pumps of these devices, a stability criterion is derived that predicts when jet pumps can reliably suppress streaming.
Particle in cell simulation of instabilities in space and astrophysical plasmas
NASA Astrophysics Data System (ADS)
Tonge, John William
Several plasma instabilities relevant to space physics are investigated using the parallel PIC plasma simulation code P3arsec. This thesis addresses electrostatic micro-instabilities relevant to ion ring distributions, proceeds to electromagnetic micro-instabilities pertinent to streaming plasmas, and then to the stability of a plasma held in the field of a current rod. The physical relevance of each of these instabilities is discussed, a phenomenological description is given, and analytic and simulation results are presented and compared. Instability of a magnetized plasma with a portion of the ions in a velocity ring distribution around the magnetic field is investigated using simulation and analytic theory. The physics of this distribution is relevant to solar flares, x-ray emission by comets, and pulsars. Physical parameters, including the mass ratio, are near those of a solar flare in the simulation. The simulation and analytic results show agreement in the linear regime. In the nonlinear stage the simulation shows highly accelerated electrons in agreement with the observed spectrum of x-rays emitted by solar flares. A mildly relativistic streaming electron positron plasma with no ambient magnetic field is known to be unstable to electrostatic (two-stream/beam instability) and purely electromagnetic (Weibel) modes. This instability is relevant to highly energetic interstellar phenomena, including pulsars, supernova remnants, and the early universe. It is also important for experiments in which relativistic beams penetrate a background plasma, as in fast ignitor scenarios. Cold analytic theory is presented and compared to simulations. There is good agreement in the regime where cold theory applies. The simulation and theory shows that to properly characterize the instability, directions parallel and perpendicular to propagation of the beams must be considered. A residual magnetic field is observed which may be of astro-physical significance. The stability of a plasma in the magnetic field of a current rod is investigated for various temperature and density profiles. Such a plasma obeys similar physics to a plasma in a dipole magnetic field, while the current rod is much easier to analyze theoretically and realize in simulations. The stability properties of a plasma confined in a dipole field are important for understanding a variety of space phenomena and the Levitated Dipole eXperiment (LDX). Simple energy principle calculations and simulations with a variety of temperature and density profiles show that the plasma is stable to interchange for pressure profiles ∝ r-10/3. The simulations also show that the density profile will be stationary as long as density ∝ r -2 even though the temperature profile may not be stable.
1981-04-01
streambanks except on very small channels and agricultural waterways. Vegetation is commonly used to stabilize small agricultural storm runoff ...subjected to severe hydrologic and plant growth stresses during 1980. Large storm runoff events, occurring early in the year, produced velocities in...than average for the prevailing conditions. The overall survival rate for the 1979 and 1980 plantings of the shrub type bristly locus (Robinia fertilis
Grossberg, Stephen
2016-01-01
The FACADE model, and its laminar cortical realization and extension in the 3D LAMINART model, have explained, simulated, and predicted many perceptual and neurobiological data about how the visual cortex carries out 3D vision and figure-ground perception, and how these cortical mechanisms enable 2D pictures to generate 3D percepts of occluding and occluded objects. In particular, these models have proposed how border ownership occurs, but have not yet explicitly explained the correlation between multiple properties of border ownership neurons in cortical area V2 that were reported in a remarkable series of neurophysiological experiments by von der Heydt and his colleagues; namely, border ownership, contrast preference, binocular stereoscopic information, selectivity for side-of-figure, Gestalt rules, and strength of attentional modulation, as well as the time course during which such properties arise. This article shows how, by combining 3D LAMINART properties that were discovered in two parallel streams of research, a unified explanation of these properties emerges. This explanation proposes, moreover, how these properties contribute to the generation of consciously seen 3D surfaces. The first research stream models how processes like 3D boundary grouping and surface filling-in interact in multiple stages within and between the V1 interblob—V2 interstripe—V4 cortical stream and the V1 blob—V2 thin stripe—V4 cortical stream, respectively. Of particular importance for understanding figure-ground separation is how these cortical interactions convert computationally complementary boundary and surface mechanisms into a consistent conscious percept, including the critical use of surface contour feedback signals from surface representations in V2 thin stripes to boundary representations in V2 interstripes. Remarkably, key figure-ground properties emerge from these feedback interactions. The second research stream shows how cells that compute absolute disparity in cortical area V1 are transformed into cells that compute relative disparity in cortical area V2. Relative disparity is a more invariant measure of an object's depth and 3D shape, and is sensitive to figure-ground properties. PMID:26858665
Grossberg, Stephen
2015-01-01
The FACADE model, and its laminar cortical realization and extension in the 3D LAMINART model, have explained, simulated, and predicted many perceptual and neurobiological data about how the visual cortex carries out 3D vision and figure-ground perception, and how these cortical mechanisms enable 2D pictures to generate 3D percepts of occluding and occluded objects. In particular, these models have proposed how border ownership occurs, but have not yet explicitly explained the correlation between multiple properties of border ownership neurons in cortical area V2 that were reported in a remarkable series of neurophysiological experiments by von der Heydt and his colleagues; namely, border ownership, contrast preference, binocular stereoscopic information, selectivity for side-of-figure, Gestalt rules, and strength of attentional modulation, as well as the time course during which such properties arise. This article shows how, by combining 3D LAMINART properties that were discovered in two parallel streams of research, a unified explanation of these properties emerges. This explanation proposes, moreover, how these properties contribute to the generation of consciously seen 3D surfaces. The first research stream models how processes like 3D boundary grouping and surface filling-in interact in multiple stages within and between the V1 interblob-V2 interstripe-V4 cortical stream and the V1 blob-V2 thin stripe-V4 cortical stream, respectively. Of particular importance for understanding figure-ground separation is how these cortical interactions convert computationally complementary boundary and surface mechanisms into a consistent conscious percept, including the critical use of surface contour feedback signals from surface representations in V2 thin stripes to boundary representations in V2 interstripes. Remarkably, key figure-ground properties emerge from these feedback interactions. The second research stream shows how cells that compute absolute disparity in cortical area V1 are transformed into cells that compute relative disparity in cortical area V2. Relative disparity is a more invariant measure of an object's depth and 3D shape, and is sensitive to figure-ground properties.
Fox, Eric W; Hill, Ryan A; Leibowitz, Scott G; Olsen, Anthony R; Thornbrugh, Darren J; Weber, Marc H
2017-07-01
Random forest (RF) modeling has emerged as an important statistical learning method in ecology due to its exceptional predictive performance. However, for large and complex ecological data sets, there is limited guidance on variable selection methods for RF modeling. Typically, either a preselected set of predictor variables are used or stepwise procedures are employed which iteratively remove variables according to their importance measures. This paper investigates the application of variable selection methods to RF models for predicting probable biological stream condition. Our motivating data set consists of the good/poor condition of n = 1365 stream survey sites from the 2008/2009 National Rivers and Stream Assessment, and a large set (p = 212) of landscape features from the StreamCat data set as potential predictors. We compare two types of RF models: a full variable set model with all 212 predictors and a reduced variable set model selected using a backward elimination approach. We assess model accuracy using RF's internal out-of-bag estimate, and a cross-validation procedure with validation folds external to the variable selection process. We also assess the stability of the spatial predictions generated by the RF models to changes in the number of predictors and argue that model selection needs to consider both accuracy and stability. The results suggest that RF modeling is robust to the inclusion of many variables of moderate to low importance. We found no substantial improvement in cross-validated accuracy as a result of variable reduction. Moreover, the backward elimination procedure tended to select too few variables and exhibited numerous issues such as upwardly biased out-of-bag accuracy estimates and instabilities in the spatial predictions. We use simulations to further support and generalize results from the analysis of real data. A main purpose of this work is to elucidate issues of model selection bias and instability to ecologists interested in using RF to develop predictive models with large environmental data sets.
Properties of large scale plasma flow during the early stage of the plasmaspheric refilling
NASA Technical Reports Server (NTRS)
Singh, Nagendra; Craven, P.; Torr, D. G.; Richards, P. G.
1990-01-01
The objective is to better characterize the macroscopic properties of the interhemisphere plasma flow by solving a more complete set of hydrodynamic equations than that solved previously. Specifically, the ion continuity, momentum and energy equations were solved for the plasma flow along the closed magnetic field lines. During the initial stage of the supersonic outflow in the equatorial region, the ions cool substantially. Using the hydrodynamic model for the large-scale plasma flow, the dynamics of shocks was examined which form in the geomagnetic flux tubes during the early stages of refilling. These shocks are more like those forming in neutral gases than the electrostatic shocks driven by microinstabilities involving ion-ion interaction. Therefore, the shocks seen in the hydrodynamic model are termed as hydrodynamic shocks. Such shocks are generally unsteady and therefore the usual shock jump conditions given by Rankine-Hugoniot relations are not strictly applicable to them. The density, flow velocity and temperature structures associated with the shocks are examined for both asymmetrical and symmetrical flows. In the asymmetrical flow the outflow from one of two conjugate ionospheres is dominant. On the other hand, in the symmetrical case outflows from the two ionospheric sources are identical. Both cases are treated by a two-stream model. In the late type of flow, the early-time refilling shows a relaxation type of oscillation, which is driven by the large-scale interactions between the two identical streams. After this early stage, the resulting temperature structure shows some interesting features. In the equatorial region the streams are isothermal, but in the off-equatorial regions the streams have quite different temperatures, and also densities and flow velocities. The dense and slow stream is found to be warmer than the low-density fast stream. In the late stage of refilling, the temperature is found to steadily increase from the conjugate ionospheres towards the equator; the equatorial temperature is found to be as high as about 8000 K compared to the ionospheric temperature of 3600 K.
Monodispersed silk fibroin microdroplets for protein stabilization
NASA Astrophysics Data System (ADS)
Liu, Qiang; Jiang, Nan; Liu, Dewen; Ying, Guoliang; Shi, Qiusheng; Yetisen, Ali K.; Liu, Haifeng; Fan, Yubo
2018-04-01
Low stability of globular protein droplets in emulsion significantly limits their applications in drug encapsulation, long-term storage, and controlled drug release. Here, a microfluidic flow-focusing device was utilized to synthesize horseradish peroxidase (HRP)-loaded silk fibroin microdroplets. The two immiscible streams of microfluidic flow-focusing were regenerated by silk fibroin solution and a mixture of 95 wt. % sunflower oil and 5 wt. % span 80 as the dispersed and continuous phases, respectively. In this study, the water-in-oil silk fibroin microdroplets were homogeneously produced by leveraging the discrete and periodic breakup of microdroplets and regulating the flow rates. Moreover, the result showed that the stability of encapsulated HRP in microdroplets was 25% higher than that of HRP after 6 weeks incubation. Thus, the microfluidic flow-focusing is a promising technique to form monodisperse microdroplets and maximize the stability of protein droplets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, J.W.; Thacker, M.S.; DeWitt, C.B.
In the area of environmental restoration, one of the most challenging problems is the task of remediating mixed waste-contaminated sites. This paper discusses a successful Interim Corrective Measure (ICM) performed at a mixed waste-contaminated site on Kirtland Air Force Base (AFB) in Albuquerque, New Mexico. The site, known as RW-68, Cratering Area and Radium Dump/Slag Piles, was used during the late 1940s and early 1950s for the destruction and incineration of captured World War II aircraft. It contained 19 slag piles totaling approximately 150 tons of slag, ash, refractory brick, and metal debris. The piles were contaminated with radium-226 andmore » RCRA-characteristic levels of heavy metals. Therefore, the piles were considered mixed waste. To eliminate the threat to human health and the environment, an ICM of removal, segregation, stabilization, and disposal was conducted from October through December 1996. Approximately 120 cubic yards (cu yds) of mixed waste, 188 cu yds of low-level radioactive-contaminated soil, 1 cu yd of low-level radioactive-contaminated debris, 5 cu yds of RCRA-characteristic hazardous waste, and 45 tons of nonhazardous debris were stabilized and disposed of during the ICM. To render the RCRA metals and radionuclides insoluble, stabilization was performed on the mixed and RCRA-characteristic waste streams. All stabilized material was subjected to TCLP analysis to verify it no longer exhibited RCRA-characteristic properties. Radiological and geophysical surveys were conducted concurrently with site remediation activities. These surveys provided real-time documentation of site conditions during each phase of the ICM and confirmed successful cleanup of the site. The three radioactive waste streams, stabilized mixed waste, low-level radioactive-contaminated soil, and low-level radioactive-contaminated debris, were disposed of at the Envirocare low-level radioactive disposal facility.« less
Method of dye removal for the textile industry
Stone, Mark L.
2000-01-01
The invention comprises a method of processing a waste stream containing dyes, such as a dye bath used in the textile industry. The invention comprises using an inorganic-based polymer, such as polyphosphazene, to separate dyes and/or other chemicals from the waste stream. Membranes comprising polyphosphazene have the chemical and thermal stability to survive the harsh, high temperature environment of dye waste streams, and have been shown to completely separate dyes from the waste stream. Several polyphosplhazene membranes having a variety of organic substituent have been shown effective in removing color from waste streams.
Neotropical Amphibian Declines Affect Stream Ecosystem Properties
NASA Astrophysics Data System (ADS)
Connelly, S.; Pringle, C. M.; Bixby, R. J.; Whiles, M. R.; Lips, K. R.; Brenes, R.; Colon-Gaud, J. C.; Kilham, S.; Hunte-Brown, M.
2005-05-01
Global declines of amphibians are well documented, yet effects of these dramatic losses on ecosystem structure and function are poorly understood. As part of a larger collaborative project, we compared two upland Panamanian streams. Both streams are biologically and geologically similar; however, one stream (Fortuna) has recently experienced almost complete extirpation of stream-dwelling frogs, while the other (Cope) still has intact populations. We experimentally excluded tadpoles from localized areas in each stream. We then compared chlorophyll a, algal community composition, ash-free dry mass (AFDM), inorganic matter, and insect assemblages in control and exclusion areas. Additionally, we sampled the natural substrate of both streams monthly for chlorophyll a, algal community composition, AFDM, and inorganic matter. At Cope, chlorophyll a, AFDM, and inorganic matter were greater in areas where tadpoles were excluded than in their presence. Numbers of dominant algal species (e.g., Nupela praecipua and Eunotia siolii) were greater in the exclusion versus control treatments. Monthly sampling of natural substrate indicated higher chlorophyll a and AFDM at Cope compared to Fortuna. Our data suggest that stream-dwelling anuran larvae have significant impacts on algal communities. These results also have implications for predicting the relevance of short-term experimental manipulations to long-term, whole-stream processes.
Modulation of protein stability and aggregation properties by surface charge engineering.
Raghunathan, Govindan; Sokalingam, Sriram; Soundrarajan, Nagasundarapandian; Madan, Bharat; Munussami, Ganapathiraman; Lee, Sun-Gu
2013-09-01
An attempt to alter protein surface charges through traditional protein engineering approaches often affects the native protein structure significantly and induces misfolding. This limitation is a major hindrance in modulating protein properties through surface charge variations. In this study, as a strategy to overcome such a limitation, we attempted to co-introduce stabilizing mutations that can neutralize the destabilizing effect of protein surface charge variation. Two sets of rational mutations were designed; one to increase the number of surface charged amino acids and the other to decrease the number of surface charged amino acids by mutating surface polar uncharged amino acids and charged amino acids, respectively. These two sets of mutations were introduced into Green Fluorescent Protein (GFP) together with or without stabilizing mutations. The co-introduction of stabilizing mutations along with mutations for surface charge modification allowed us to obtain functionally active protein variants (s-GFP(+15-17) and s-GFP(+5-6)). When the protein properties such as fluorescent activity, folding rate and kinetic stability were assessed, we found the possibility that the protein stability can be modulated independently of activity and folding by engineering protein surface charges. The aggregation properties of GFP could also be altered through the surface charge engineering.
Code of Federal Regulations, 2011 CFR
2011-01-01
... conservation and water control facilities such as dikes, terraces, detention reservoirs, stream channels... vegetative measures to stabilize stream channels and gullies. (iv) Basic farm conservation practices to control runoff, erosion, and sedimentation. (6) Installing, repairing, and improving water storage...
Grazed Riparian Management and Stream Channel Response in Southeastern Minnesota (USA) Streams
NASA Astrophysics Data System (ADS)
Magner, Joseph A.; Vondracek, Bruce; Brooks, Kenneth N.
2008-09-01
The U.S. Department of Agriculture-Natural Resources Conservation Service has recommended domestic cattle grazing exclusion from riparian corridors for decades. This recommendation was based on a belief that domestic cattle grazing would typically destroy stream bank vegetation and in-channel habitat. Continuous grazing (CG) has caused adverse environmental damage, but along cohesive-sediment stream banks of disturbed catchments in southeastern Minnesota, short-duration grazing (SDG), a rotational grazing system, may offer a better riparian management practice than CG. Over 30 physical and biological metrics were gathered at 26 sites to evaluate differences between SDG, CG, and nongrazed sites (NG). Ordinations produced with nonmetric multidimensional scaling (NMS) indicated a gradient with a benthic macroinvertebrate index of biotic integrity (IBI) and riparian site management; low IBI scores associated with CG sites and higher IBI scores associated with NG sites. Nongrazed sites were associated with reduced soil compaction and higher bank stability, as measured by the Pfankuch stability index; whereas CG sites were associated with increased soil compaction and lower bank stability, SDG sites were intermediate. Bedrock geology influenced NMS results: sites with carbonate derived cobble were associated with more stable channels and higher IBI scores. Though current riparian grazing practices in southeastern Minnesota present pollution problems, short duration grazing could reduce sediment pollution if managed in an environmentally sustainable fashion that considers stream channel response.
Grazed riparian management and stream channel response in southeastern Minnesota (USA) streams
Magner, J.A.; Vondracek, B.; Brooks, K.N.
2008-01-01
The U.S. Department of Agriculture-Natural Resources Conservation Service has recommended domestic cattle grazing exclusion from riparian corridors for decades. This recommendation was based on a belief that domestic cattle grazing would typically destroy stream bank vegetation and in-channel habitat. Continuous grazing (CG) has caused adverse environmental damage, but along cohesive-sediment stream banks of disturbed catchments in southeastern Minnesota, short-duration grazing (SDG), a rotational grazing system, may offer a better riparian management practice than CG. Over 30 physical and biological metrics were gathered at 26 sites to evaluate differences between SDG, CG, and nongrazed sites (NG). Ordinations produced with nonmetric multidimensional scaling (NMS) indicated a gradient with a benthic macroinvertebrate index of biotic integrity (IBI) and riparian site management; low IBI scores associated with CG sites and higher IBI scores associated with NG sites. Nongrazed sites were associated with reduced soil compaction and higher bank stability, as measured by the Pfankuch stability index; whereas CG sites were associated with increased soil compaction and lower bank stability, SDG sites were intermediate. Bedrock geology influenced NMS results: sites with carbonate derived cobble were associated with more stable channels and higher IBI scores. Though current riparian grazing practices in southeastern Minnesota present pollution problems, short duration grazing could reduce sediment pollution if managed in an environmentally sustainable fashion that considers stream channel response. ?? 2008 Springer Science+Business Media, LLC.
Fish abundance and population stability in a reservoir tailwater and an unregulated headwater stream
Jacobs, K.E.; Swink, W.D.
1983-01-01
Fish abundance and population stability were compared in the tailwater and in an unregulated tributary of Barren River Lake, a flood control reservoir in south central Kentucky. Fish abundance was greater in the tailwater near the dam and was dominated by three species common in the reservoir: gizzard shad (Dorosoma cepedianum), bluegills (Lepomis macrochirus), and white crappies (Pomoxis annularis). Three riverine suckers were less abundant in the tailwater than in the unregulated stream: northern hog suckers (Hypentelium nigricans), black redhorse (Moxostoma duquesnei), and golden redhorse (Moxostoma erythrurum). The fish populations in the tailwater, particularly common carp (Cyprinus carpio), northern hog suckers, black redhorse, and golden redhorse, were less stable than those in the unregulated stream. Population stability is defined as the extent to which fish remain in a stream section. This study suggests that the occurrence of reservoir species in the tailwater was the result of fish passage from the reservoir during high discharges in fall and winter. Reservoir operations (altered flow, low summer water temperature, and poor summer water quality) probably were responsible for the unstable populations of common carp and riverine suckers in the tailwater.
The art of seeing and painting.
Grossberg, Stephen
2008-01-01
The human urge to represent the three-dimensional world using two-dimensional pictorial representations dates back at least to Paleolithic times. Artists from ancient to modern times have struggled to understand how a few contours or color patches on a flat surface can induce mental representations of a three-dimensional scene. This article summarizes some of the recent breakthroughs in scientifically understanding how the brain sees that shed light on these struggles. These breakthroughs illustrate how various artists have intuitively understood paradoxical properties about how the brain sees, and have used that understanding to create great art. These paradoxical properties arise from how the brain forms the units of conscious visual perception; namely, representations of three-dimensional boundaries and surfaces. Boundaries and surfaces are computed in parallel cortical processing streams that obey computationally complementary properties. These streams interact at multiple levels to overcome their complementary weaknesses and to transform their complementary properties into consistent percepts. The article describes how properties of complementary consistency have guided the creation of many great works of art.
Ernst, Anne G.; Warren, Dana R.; Baldigo, Barry P.
2012-01-01
Stream restorations that increase geomorphic stability can improve habitat quality, which should benefit selected species and local aquatic ecosystems. This assumption is often used to define primary restoration goals; yet, biological responses to restoration are rarely monitored or evaluated methodically. Macroinvertebrate communities were inventoried at 6 study reaches within 5 Catskill Mountain streams between 2002 and 2006 to characterize their responses to natural-channel-design (NCD) restoration. Although bank stability increased significantly at most restored reaches, analyses of variation showed that NCD restorations had no significant effect on 15 of 16 macroinvertebrate community metrics. Multidimensional scaling ordination indicated that communities from all reach types within a stream were much more similar to each other within any given year than they were in the same reaches across years or within any type of reach across streams. These findings indicate that source populations and watershed-scale factors were more important to macroinvertebrate community characteristics than were changes in channel geomorphology associated with NCD restoration. Furthermore, the response of macroinvertebrates to restoration cannot always be used to infer the response of other stream biota to restoration. Thus, a broad perspective is needed to characterize and evaluate the full range of effects that restoration can have on stream ecosystems.
Aerogeophysical evidence for active volcanism beneath the West Antarctic Ice Sheet
NASA Technical Reports Server (NTRS)
Blankenship, Donald D.; Bell, Robin E.; Hodge, Steven M.; Brozena, John M.; Behrendt, John C.
1993-01-01
Although it is widely understood that the collapse of the West Antarctic Ice Sheet (WAIS) would cause a global sea-level rise of 6 m, there continues to be considerable debate about the response of this ice sheet to climate change. The stability of the WAIS, which is characterized by a bed grounded well below sea level, may depend on geologically controlled conditions at the base, which are independent of climate. Ice streams moving up to 750 m/yr disperse material from the interior through to the oceans. As these ice streams tend to buffer the reservoir of slow-moving inland ice from exposure to oceanic degradation, understanding the ice-streaming process is important for evaluating WAIS stability. There is strong evidence that ice streams slide on a lubricating layer of water-saturated till. Development of this basal layer requires both water and easily eroded sediments. Active lithospheric extension may elevate regional heat flux, increase basal melting, and trigger ice streaming. If a geologically defined boundary with a sharp contrast in geothermal flux exists beneath the WAIS, ice streams may only be capable of operating as a buffer over a restricted region. Should ocean waters penetrate beyond this boundary, the ice-stream buffer would disappear, possibly triggering a collapse of the inland ice reservoir. Aerogeophysical evidence for active volcanism and elevated heat flux beneath the WAIS near the critical region where ice streaming begins is presented.
Use of RORA for Complex Ground-Water Flow Conditions
Rutledge, A.T.
2004-01-01
The RORA computer program for estimating recharge is based on a condition in which ground water flows perpendicular to the nearest stream that receives ground-water discharge. The method, therefore, does not explicitly account for the ground-water-flow component that is parallel to the stream. Hypothetical finite-difference simulations are used to demonstrate effects of complex flow conditions that consist of two components: one that is perpendicular to the stream and one that is parallel to the stream. Results of the simulations indicate that the RORA program can be used if certain constraints are applied in the estimation of the recession index, an input variable to the program. These constraints apply to a mathematical formulation based on aquifer properties, recession of ground-water levels, and recession of streamflow.
How Does Decommissioning Forest Roads Effect Hydrologic and Geomorphic Risk?
NASA Astrophysics Data System (ADS)
Black, T.; Luce, C.; Cissel, R. M.; Nelson, N.; Staab, B.
2010-12-01
The US Forest Service is investigating road decommissioning projects to understand how treatments change hydrologic and geomorphic risks. Road treatment effect was measured using a before after control impact design (BACI), using the Geomorphic Road Analysis and Inventory Package (http://www.fs.fed.us/GRAIP). This suite of inventory and analysis tools evaluates: road-stream hydrologic connectivity, fine sediment production and delivery, shallow landslide risk, gully initiation risk, and risks associated with stream crossing failures. The Skokomish River study site is steep and wet and received a high intensity treatment including the removal of stream crossing pipes and fills, all ditch relief pipes and a full hillslope recontouring. Road to stream hydrologic connectivity was reduced by 70%. The treatments reduced fine sediment delivery by 21.8 tons or 81%. The removal of the stream crossing culverts and large associated road fills eliminated the risk of pipe plugging related failures and the eventual erosion of over 4,000 m3 of fill. The slope stability risk was assessed using a modified version of SINMAP (Pack et al, 2005). Risk below drain point locations on the original road was reduced as water was redistributed across the hillslope to waterbars and diffuse drainage. It is unclear; however, if landslide risk was reduced across the entire treated road length because treatments slightly increased risk in some areas where new concentrated drainage features were added above steep slopes. Similarly, values of a gully index ESI (Istanbulluoglu et al, 2003), were reduced at many of the original drainage points, however some new drainage was added. ESI values still exceed a predicted conservative initiation thresholds at some sites, therefore it is uncertain if gully risk will be changed. Mann Creek occupies a moderately steep mid-elevation site in Southern Idaho. The high intensity treatments removed all constructed road drainage features including stream crossing pipes and fills, and recontoured the hillslope. The length of road that was hydrologically connected to streams was reduced by 2,923 m, or 97%. The model predicts that fine sediment delivery was reduced by 98%, to 1.0 ton annually. The risk presented by stream crossings becoming plugged was eliminated. The potential for streamflow diversion onto roads and hillslopes was precluded. The slope stability risk below drain point locations on the original road was reduced as water was no longer concentrated and discharged through a single drainage feature. Treatments are predicted to return slope stability to near undisturbed levels. Gully initiation risks, already low prior to treatment, may be reduced to negligible values. Results from these two case studies suggest that high intensity road decommissioning can be effective at reducing the risk of road sediment delivery, hydrologic connectivity and failures associated with stream crossings. Post storm monitoring will help validate these predictions and reduce uncertainty around the hydrology of decommissioned roads. If decommissioned roads continue to concentrate water and discharge it onto steep slopes, landslides and gully risk may remain elevated.
Raymond M. Rice; Norman H. Pillsbury; Kurt W. Schmidt
1985-01-01
Abstract - A linear discriminant function, developed to predict debris avalanches after clearcut logging on a granitic batholith in northwestern California, was tested on data from two batholiths. The equation was inaccurate in predicting slope stability on one of them. A new equation based on slope, crown cover, and distance from a stream (retained from the original...
De Angelis, C; Onori, S; Pacilio, M; Cirrone, G A P; Cuttone, G; Raffaele, L; Bucciolini, M; Mazzocchi, S
2002-02-01
The dosimetric properties of two PTW Riga diamond detectors type 60003 were studied in high-energy photon and electron therapy beam. Properties under study were current-voltage characteristic, polarization effect, time stability of response, dose response, dose-rate dependence, temperature stability, and beam quality dependence of the sensitivity factor. Differences were shown between the two detectors for most of the previous properties. Also, the observed behavior was, to some extent, different from what was reported in the PTW technical specifications. The necessity to characterize each diamond detector individually was addressed.
NASA Astrophysics Data System (ADS)
Osburn, Christopher L.; Oviedo-Vargas, Diana; Barnett, Emily; Dierick, Diego; Oberbauer, Steven F.; Genereux, David P.
2018-03-01
A paired-watershed approach was used to compare the quality and fluxes of dissolved organic matter (DOM) during stormflow and baseflow in two lowland tropical rainforest streams located in northeastern Costa Rica. The Arboleda stream received regional groundwater (RGW) flow, whereas the Taconazo stream did not. DOM quality was assessed with absorbance and fluorescence and stable carbon isotope (δ13C-DOC) values. RGW DOM lacked detectable fluorescence and had specific ultraviolet absorption (SUVA254) and absorbance slope ratio (SR) values consistent with low aromaticity and low molecular weight material, respectively. We attributed these properties to microbial degradation and sorption of humic DOM to mineral surfaces during transport through bedrock. SUVA254 values were lower and SR values were higher in the Arboleda stream during baseflow compared to the Taconazo stream, presumably due to dilution by RGW. However, no significant difference in SUVA254 or SR occurred between the streams during stormflow. SUVA254 was negatively correlated to δ13C-DOC (r2 = 0.61, P < 0.001), demonstrating a strong linkage between stream DOM characteristics and the relative amounts of RGW flow and local watershed runoff containing soil and throughfall C sources. Mean DOC export from the Taconazo stream during the study period was 2.62 ± 0.39 g C m-2 year-1, consistent with other tropical streams, yet mean DOC export from the Arboleda stream was 13.79 ± 2.07 g C m-2 year-1, one of the highest exports reported and demonstrating a substantial impact of old RGW from outside the watershed boundary can have on surface water carbon cycling.
NASA Astrophysics Data System (ADS)
Zhu, ZhengXi
Nanoparticles loaded with hydrophobic components (e.g., active pharmaceutical ingredients, medical diagnostic agents, nutritional or personal care chemicals, catalysts, dyes/pigments, and substances with exceptional magnetic/optical/electronic/thermal properties) have tremendous industrial applications. The common desire is to efficiently generate nanoparticles with a desired size, size distribution, and size stability. Recently, Flash NanoPrecipition (FNP) technique with a fast, continuous, and easily scalable process has been developed to efficiently generate hydrophobe-loaded nanoparticles. This dissertation extended this technique, optimized process conditions and material formulations, and gave new insights into the mechanism and kinetics of nanoparticle formation. This dissertation demonstrated successful generation of spherical beta-carotene nanoparticles with an average diameter of 50--100 nm (90 wt% nanoparticles below 200 nm), good size stability (maintained an average diameter below 200 nm for at least one week in saline), and much higher loading (80--90 wt%) than traditional carriers, such as micelles and polymersomes (typically <20 wt%). Moreover, the nanoparticles are amorphous and expected to have a high dissolution rate and bioavailability. To give insights into the mechanism and kinetics of nanoparticle formation, much remarkable evidence supported the kinetically frozen structures of the nanoparticles rather than the thermodynamic equilibrium micelles. Time scales of the particle formation via FNP were proposed. To optimize the material formulations, either polyelectrolytes (i.e., epsilon-polylysine, branched and linear poly(ethylene imine), and chitosan) or amphiphilic diblock copolymers (i.e., polystyrene-b-poly(ethylene glycol) (PS-b-PEG), polycarprolactone-b-poly(ethylene glycol) (PCL-b-PEG), poly(lactic acid)-b-poly(ethylene glycol) (PLA-b-PEG), and poly(lactic-co-glycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG)) were selectively screened to study the nanoparticle size, distribution, and stability. The effect of the molecular weight of the polymers and pH were also studied. Chitosan and PLGA-b-PEG best stabilized the beta-carotene nanoparticles. Solubility of the hydrophobic drug solute in the aqueous mixture was considered to dominate the nanoparticle stability (i.e., size and morphology) in terms of Ostwald ripening and recrystallization. The lower solubility the drug is of, the greater stability the nanoparticles have. Chemically bonding drug compounds with cleavable hydrophobic moieties to form prodrugs were used to enhance their hydrophobicity and thus the nanoparticle stability. It opened a generic strategy to enhance the stability of nanoparticles formed via FNP. beta-carotene, paclitaxel, paclitaxel prodrug, betulin, hydrocortisone, and hydrocortisone prodrug as the drugs were studied. Solubility parameter (delta), and octanol/water partition coefficients (LogP), provide hydrophobicity indicators for the compounds. LogP showed a good correlation with the nanoparticle stability. An empirical rule was built to conveniently predict particle stability for randomly selected drugs. To optimize the process conditions, two-stream confined impinging jet mixer (CIJ) and four-stream confined vortex jet mixer were used. The particle size was studied by varying drug and polymer concentrations, and flow rate (corresponding to Reynolds number (Re)). To extend the FNP technique, this dissertation demonstrated successful creation of stabilized nanoparticles by integrating an in-situ reactive coupling of a hydrophilic polymer block with a hydrophobic one with FNP. The kinetics of the fast coupling reaction was studied. This dissertation also introduced polyelectrolytes (i.e., epsilon-polylysine, poly(ethylene imine), and chitosan) into FNP to electrosterically stabilize nanoparticles.
NASA Astrophysics Data System (ADS)
Yu, Guo-an; Huang, He Qing; Wang, Zhaoyin; Brierley, Gary; Zhang, Kang
2012-01-01
SummaryRehabilitation of Shengou Creek, a small, steep mountain stream in southwestern China that is prone to debris flows, started more than 30 years ago through an integrated program of engineering applications (check dams and guiding dikes), biological measures (reforestation), and social measures (reducing human disturbance). Small and medium-sized check dams and guiding dikes were constructed on key upper and middle sections of the creek to stabilize hillslopes and channel bed. Meanwhile, Leucaena leucocephala, a drought-tolerant, fast-growing, and highly adaptive plant species, was introduced to promote vegetation recovery in the watershed. The collective community structure of tree, shrub, and herb assemblages in the artificial L. leucocephala forest, which developed after 7 years, enhanced soil structure and drastically reduced soil erosion on hillslopes. Cultivation of steep land was strictly controlled in the basin, and some inhabitants were encouraged to move from upstream areas to downstream towns to reduce disturbance. These integrated measures reduced sediment supply from both hillslopes and upstream channels, preventing sediment-related hazards. The development of natural streambed resistance structures (mainly step-pool systems) and luxuriant riparian vegetation aided channel stability, diversity of stream habitat, and ecological maintenance in the creek. These findings are compared with Jiangjia and Xiaobaini Ravines, two adjacent non-rehabilitated debris-flow streams which have climate and geomorphologic conditions similar to Shengou Creek. Habitat diversity indices, taxa richness, biodiversity, and bio-community indices are much higher in Shengou Creek relative to Jiangjia and Xiaobaini Ravines, attesting to the effectiveness of rehabilitation measures.
Arc Jet Flow Properties Determined from Laser-Induced Fluorescence of Atomic Nitrogen
NASA Technical Reports Server (NTRS)
Fletcher, Douglas; Wercinski, Paul F. (Technical Monitor)
1998-01-01
An laser-spectroscopic investigation of the thermocheMical state of arcjet flows is currently being conducted in the Aerodynamic Heating Facility (AHF) Circlet at NASA Ames Research Center. Downstream of the nozzle exit, but upstream of the test article, Laser-Induced Fluorescence (LIF) of atomic nitrogen is used to assess the nonequilibriuM distribution of flow enthalpy in the free stream. The two-photon LIF technique provides simultaneous measurements of free stream velocity, translational temperature, and nitrogen number density on the flow centerline. Along with information from facility instrumentation, these measurements allow a determination of the free stream total enthalpy, and its apportionment in to thermal, kinetic, and chemical mode contributions. Experimental results are presented and discussed for two different niti-ogen/argon test gas flow runs during which the current is varied while the pressure remains constant .
Dynamics of streaming instability with quantum correction
NASA Astrophysics Data System (ADS)
Goutam, H. P.; Karmakar, P. K.
2017-05-01
A modified quantum hydrodynamic model (m-QHD) is herein proposed on the basis of the Thomas-Fermi (TF) theory of many fermionic quantum systems to investigate the dynamics of electrostatic streaming instability modes in a complex (dusty) quantum plasma system. The newly formulated m-QHD, as an amelioration over the existing usual QHD, employs a dimensionality-dependent Bohmian quantum correction prefactor, γ = [(D-2)/3D], in the electron quantum dynamics, where D symbolizing the problem dimensionality under consideration. The normal mode analysis of the coupled structure equations reveals the excitation of two distinct streaming modes associated with the flowing ions (against electrons and dust) and the flowing dust particulates (against the electrons and ions). It is mainly shown that the γ-factor introduces a new source of stability and dispersive effects to the ion-streaming instability solely; but not to the dust counterparts. A non-trivial application of our investigation in electrostatic beam-plasma (flow-driven) coupled dynamics leading to the development of self-sustained intense electric current, and hence, of strong magnetic field in compact astrophysical objects (in dwarf-family stars) is summarily indicated.
Biophysical Controls on Carbon Cycling in Restored and Unrestored Urban Streams
NASA Astrophysics Data System (ADS)
Larsen, L. G.; Harvey, J. W.; Singh, J. D.; Sinclair, G. A.; Langston, T.; Maglio, M. M.
2012-12-01
Stream restoration is a multibillion dollar industry, yet how restoration impacts the ecological functioning of streams remains poorly understood. Because stream restoration may alter numerous biophysical controls, including light availability (through tree removal during bank regrading), hydraulics, sediment characteristics, and/or nutrient concentrations, it can be challenging to achieve a general understanding of how different aspects of stream restoration design influence ecosystem function (e.g., carbon cycling). In this study we combined strategies of continuously monitoring hydrology, turbidity, and dissolved oxygen at a station with spatially distributed but temporally sparse synoptic sampling to understand how restoration and land-use impact carbon fixation and respiration in urban streams. The study was performed over three years in three adjacent 3rd-4th order stream reaches in the urban Chesapeake Bay watershed, one of which was restored in 2002 using the ubiquitous Natural Channel Design method. By parsing the dissolved oxygen time series into contributions from respiration and gross primary production, we found the unrestored urban reach to be the most heterotrophic. It removed two times more carbon from the stream to the atmosphere than an unrestored suburban stream that was nutrient impacted and five times more carbon than the restored urban stream. The synoptic sampling revealed that nutrients, light, and hydrodynamic disturbance were the primary controls on carbon fixation and respiration, with fine sediment also exhibiting importance, likely as a vehicle for nutrient transport. Low rates of net carbon removal in the restored stream arose from high light availability resulting in high primary production, combined with low fine sediment availability restricting respiration. Thus, while restoration may have been effective for stream stabilization, it has decreased the functionality of the stream for net carbon removal to the atmosphere. Surprisingly, streambed potential respiration rates were indistinguishable between different geomorphic zones within the streams, suggesting that large-scale factors (i.e., nutrient and fine sediment supply) were more dominant controls than geomorphically controlled local variability.
Gerhardt, H Carl; Brooks, Robert
2009-10-01
Even simple biological signals vary in several measurable dimensions. Understanding their evolution requires, therefore, a multivariate understanding of selection, including how different properties interact to determine the effectiveness of the signal. We combined experimental manipulation with multivariate selection analysis to assess female mate choice on the simple trilled calls of male gray treefrogs. We independently and randomly varied five behaviorally relevant acoustic properties in 154 synthetic calls. We compared response times of each of 154 females to one of these calls with its response to a standard call that had mean values of the five properties. We found directional and quadratic selection on two properties indicative of the amount of signaling, pulse number, and call rate. Canonical rotation of the fitness surface showed that these properties, along with pulse rate, contributed heavily to a major axis of stabilizing selection, a result consistent with univariate studies showing diminishing effects of increasing pulse number well beyond the mean. Spectral properties contributed to a second major axis of stabilizing selection. The single major axis of disruptive selection suggested that a combination of two temporal and two spectral properties with values differing from the mean should be especially attractive.
Zhao, De-Zhi; Shi, Chuan; Li, Xiao-Song; Zhu, Ai-Min; Jang, Ben W-L
2012-11-15
At room temperature, the enhanced effect of water vapor on ozone catalytic oxidation (OZCO) of formaldehyde to CO2 over MnOx catalysts and the reaction stability was reported. In a dry air stream, only below 20% of formaldehyde could be oxidized into CO2 by O3. In humid air streams (RH≥55%), ∼100% of formaldehyde were oxidized into CO2 by O3 and the reaction stability was significantly enhanced. Meanwhile, in situ Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectra of OZCO of HCHO demonstrate that the amount of both monodentate and bidentate carbonate species on MnOx, in the dry stream, increased gradually with time on stream (TOS). However, in the humid stream, almost no accumulation of carbonate species on the catalysts was observed. To clarify the enhanced mechanism, formaldehyde surface reactions and CO2 adsorption/desorption on the fresh, O3 and O3+H2O treated MnOx catalysts were examined comparatively. Copyright © 2012 Elsevier B.V. All rights reserved.
Frederick Swanson; George W. Lienkaemper; James R. Sedell
1976-01-01
Large organic debris has historically been an important element in small mountain streams of the Pacific Northwest. The debris serves to slow the movement of water and inorganic and fine organic matter through the channel. Debris may remain in the channel for decades or longer, and tends to stabilize some sections of a streambed and stream banks while destabilizing...
Channel stability of Turkey Creek, Nebraska
Rus, David L.; Soenksen, Philip J.
1998-01-01
Channelization on Turkey Creek and its receiving stream, the South Fork Big Nemaha River, has disturbed the equilibrium of Turkey Creek and has led to channel-stability problems, such as degradation and channel widening, which pose a threat to bridges and land adjacent to the stream. As part of a multiagency study, the U.S. Geological Survey assessed channel stability at two bridge sites on upper and middle portions of Turkey Creek by analyzing streambed-elevation data for gradation changes, comparing recent cross-section surveys and historic accounts, identifying bank-failure blocks, and analyzing tree-ring samples. These results were compared to gradation data and trend results for a U.S. Geological Survey streamflow-gaging station near the mouth of Turkey Creek from a previous study. Examination of data on streambed elevations reveals that degradation has occurred. The streambed elevation declined 0.5 m at the upper site from 1967-97. The streambed elevation declined by 3.2 m at the middle site from 1948-97 and exposed 2 m of the pilings of the Nebraska Highway 8 bridge. Channel widening could not be verified at the two sites from 1967-97, but a historic account indicates widening at the middle site to be two to three times that of the 1949 channel width. Small bank failures were evident at the upper site and a 4-m-wide bank failure occurred at the middle site in 1987 according to tree ring analyses. Examination of streambed-elevation data from a previous study at the lower site reveals a statistically significant aggrading trend from 1958-93. Further examination of these data suggests minor degradation occurred until 1975, followed by aggradation.
A study of the stability of Jovian winds from HST images: 1995 - 1998
NASA Astrophysics Data System (ADS)
Garcia-Melendo, E.; Sanchez-Lavega, A.
2000-10-01
The resolution of the best WFPC-2 HST Jupiter images was 200 kmpix-1, which is close to the maximum resolution obtained by the narrow angle cameras on board Voyager 1 and 2, 160 kmpix-1. This property of the best HST Jupiter imaging spanning a whole Jovian rotation, encouraged the use of correlation techniques to obtain a series of high resolution zonal wind profiles with a velocity data scatter similar to that obtained from Voyager images. This approach provided a unique opportunity to study the Jovian winds during a time span of 4 years, which is about 12 times longer than the 4 month lapse between the two Voyager flybys in 1979, 16 years later, and before the Cassini encounter at the end of 2000. A total of six series of wind profiles from October 5, 1995 to July 16, 1998, in the 410nm, 889nm, and 953nm bands were obtained with an average velocity scatter between 5 and 6 m/s. Jovian winds were also explored up to planetographic latitudes close to +80 degrees north and -70 degrees south. Results show the presence of two previously unknown jets over +60N and at least an additional one to the south of 60S degrees latitude. Wind profiles obtained at different wavelengths were also virtually indistinguishable, suggesting a negligible influence of a possible height effect. One of the most conspicuous results is the strong general stability displayed by the wind profile during the four year span, although the jet stream at 26S showed important alterations in shape. Comparing the HST wind profiles with the Voyager 2 wind profile obtained in violet light by S. Limaye (Icarus, Vol. 65, 335, 1986), slight latitude differences up to 1.5 degrees latitude are suggested for the location of some westerly and easterly jet streams, specially in the planet's northern hemisphere. Important changes also occurred in the eastward jets at 6S and 23N degrees of latitude. This work was supported by E. Duran Foundation and Gobierno Vasco PI 034/97.
On the Goertler instability in hypersonic flows: Sutherland law fluids and real gas effects
NASA Technical Reports Server (NTRS)
Fu, Yibin B.; Hall, Philip; Blackaby, Nicholas D.
1990-01-01
The Goertler vortex instability mechanism in a hypersonic boundary layer on a curved wall is investigated. The precise roles of the effects of boundary layer growth, wall cooling, and gas dissociation is clarified in the determination of stability properties. It is first assumed that the fluid is an ideal gas with viscosity given by Sutherland's law. It is shown that when the free stream Mach number M is large, the boundary layer divides into two sublayers: a wall layer of O(M sup 3/2) thickness over which the basic state temperature is O(M squared) and a temperature adjustment layer of O(1) thickness over which the basic state temperature decreases monotonically to its free stream value. Goertler vortices which have wavelengths comparable with the boundary layer thickness are referred to as wall modes. It is shown that their downstream evolution is governed by a set of parabolic partial differential equations and that they have the usual features of Goertler vortices in incompressible boundary layers. As the local wavenumber increases, the neutral Goertler number decreases and the center of vortex activity moves towards the temperature adjustment layer. Goertler vortices with wavenumbers of order one or larger must necessarily be trapped in the temperature adjustment layer and it is this mode which is most dangerous. For this mode, it was found that the leading order term in the Goertler number expansion is independent of the wavenumber and is due to the curvature of the basic state. This term is also the asymptotic limit of the neutral Goertler numbers of the wall mode. To determine the higher order corrections terms in the Goertler number expansion, two wall curvature cases are distinguished. Real gas effects were investigated by assuming that the fluid is an ideal dissociating gas. It was found that both gas dissociation and wall cooling are destabilizing for the mode trapped in the temperature adjustment layer, but for the wall mode trapped near the wall the effect of gas dissociation can be either destabilizing or stabilizing.
Trujillo-Cayado, L A; Alfaro, M C; Muñoz, J; Raymundo, A; Sousa, I
2016-05-01
The influence of gum concentration and rhamsan/welan gum ratio on rheological properties, droplet size distribution and physical stability of eco-friendly O/W emulsions stabilized by an ecological surfactant were studied in the present work. The emulsions were prepared with 30wt% α-pinene, a terpenic solvent and an ecological alternative for current volatile organic compounds. Rheological properties of emulsions showed an important dependence on the two studied variables. Flow curves were fitted to the Cross model and no synergistic effect between rhamsan and welan gums was demonstrated. Emulsions with submicron mean diameters were obtained regardless of the gum concentration or the rhamsan/welan ratio used. Multiple light scattering illustrated that creaming was practically eliminated by the incorporation of polysaccharides. The use of rhamsan and welan gums as stabilizers lead to apparent enhancements in emulsion rheology and physical stability. Copyright © 2016. Published by Elsevier B.V.
Diversity and stability in Mississippi stream fish assemblages
Jocob F. Schaefer; Scott R. Clark; Melvin L. Jr. Warren
2012-01-01
Positive correlations between diversity and stability have been reported for a number of ecosystems and are thought to be caused by a stabilizing effect of differential speciesâ responses to environmental perturbation. Empirical field studies in which investigators tested for diversityâstability relationships are lacking for some taxonomic groups and typically have not...
NASA Technical Reports Server (NTRS)
Plesniak, Michael W.; Johnston, J. P.
1989-01-01
The construction and development of the multi-component traversing system and associated control hardware and software are presented. A hydrogen bubble/laser sheet flow visualization technique was developed to visually study the characteristics of the mixing layers. With this technique large-scale rollers arising from the Taylor-Gortler instability and its interaction with the primary Kelvin-Helmholtz structures can be studied.
StreamSqueeze: a dynamic stream visualization for monitoring of event data
NASA Astrophysics Data System (ADS)
Mansmann, Florian; Krstajic, Milos; Fischer, Fabian; Bertini, Enrico
2012-01-01
While in clear-cut situations automated analytical solution for data streams are already in place, only few visual approaches have been proposed in the literature for exploratory analysis tasks on dynamic information. However, due to the competitive or security-related advantages that real-time information gives in domains such as finance, business or networking, we are convinced that there is a need for exploratory visualization tools for data streams. Under the conditions that new events have higher relevance and that smooth transitions enable traceability of items, we propose a novel dynamic stream visualization called StreamSqueeze. In this technique the degree of interest of recent items is expressed through an increase in size and thus recent events can be shown with more details. The technique has two main benefits: First, the layout algorithm arranges items in several lists of various sizes and optimizes the positions within each list so that the transition of an item from one list to the other triggers least visual changes. Second, the animation scheme ensures that for 50 percent of the time an item has a static screen position where reading is most effective and then continuously shrinks and moves to the its next static position in the subsequent list. To demonstrate the capability of our technique, we apply it to large and high-frequency news and syslog streams and show how it maintains optimal stability of the layout under the conditions given above.
Physical-scale models of engineered log jams in rivers
USDA-ARS?s Scientific Manuscript database
Stream restoration and river engineering projects are employing engineered log jams increasingly for stabilization and in-stream improvements. To further advance the design of these structures and their morphodynamic effects on corridors, the basis for physical-scale models of rivers with engineere...
NASA Astrophysics Data System (ADS)
Nguyen, Tuyen Van; Cho, Woon-Seok; Kim, Hungsoo; Jung, Il Hyo; Kim, YongKuk; Chon, Tae-Soo
2014-03-01
Definition of ecological integrity based on community analysis has long been a critical issue in risk assessment for sustainable ecosystem management. In this work, two indices (i.e., Shannon index and exergy) were selected for the analysis of community properties of benthic macroinvertebrate community in streams in Korea. For this purpose, the means and variances of both indices were analyzed. The results found an extra scope of structural and functional properties in communities in response to environmental variabilities and anthropogenic disturbances. The combination of these two parameters (four indices) was feasible in identification of disturbance agents (e.g., industrial pollution or organic pollution) and specifying states of communities. The four-aforementioned parameters (means and variances of Shannon index and exergy) were further used as input data in a self-organizing map for the characterization of water quality. Our results suggested that Shannon index and exergy in combination could be utilized as a suitable reference system and would be an efficient tool for assessment of the health of aquatic ecosystems exposed to environmental disturbances.
NASA Technical Reports Server (NTRS)
Hall, J. L.
1974-01-01
A study of the effect of free-stream thermal-energy release from shock-induced exothermic reactions on boundary-layer development and transition is presented. The flow model is that of a boundary layer developing behind a moving shock wave in two-dimensional unsteady flow over a shock-tube wall. Matched sets of combustible hydrogen-oxygen-nitrogen mixtures and inert hydrogen-nitrogen mixtures were used to obtain transition data over a range of transition Reynolds numbers from 1,100,000 to 21,300,000. The heat-energy is shown to significantly stabilize the boundary layer without changing its development character. A method for application of this data to flat-plate steady flows is included.
Copper speciation and binding by organic matter in copper-contaminated streamwater
Breault, R.F.; Colman, J.A.; Aiken, G.R.; McKnight, D.
1996-01-01
Fulvic acid binding sites (1.3-70 ??M) and EDTA (0.0017-0.18 ??M) accounted for organically bound Cu in seven stream samples measured by potentiometric titration. Cu was 84-99% organically bound in filtrates with 200 nM total Cu. Binding of Cu by EDTA was limited by competition from other trace metals. Water hardness was inversely related to properties of dissolved organic carbon (DOC) that enhance fulvic acid binding: DOC concentration, percentage of DOC that is fulvic acid, and binding sites per fulvic acid carbon. Dissolved trace metals, stabilized by organic binding, occurred at increased concentration in soft water as compared to hard water.
NASA Astrophysics Data System (ADS)
Terentjeva, Alexandra
2017-03-01
3600 individual photographic orbits of meteor bodies and about 2000 visual meteor radiants with corresponding velocities were compiled and carefully studied in detail. 154 minor meteor streams were detected in the Solar System, their basic orbital and other data are given. Firstly some remarkable shower and stream properties are established: examples of the large elliptic radiation areas with semi-major axes perpendicular to the Ecliptic; the existence of the Northern (N) , Southern (S) and Ecliptical (Q) branches of some streams; stream-antipodes and radiant-antipodes (symmetrically arranged relatively to the Ecliptic) with angular distances from the Ecliptic to 40-80°; a number of short-perihelion streams (q 0.05-0.07 A.U.); some meteor streams perpendicular to the Ecliptic's plane. There are also some unique meteor bodies with their orbits enclosed within the limits of the Earth's one, or having the clockwise and anticlockwise direction in two similar orbits. Hyperbolic photographic velocities vh = 57-88 km /sec are treated as real ones according to the best radar and visual observations. A "bunch" of ecliptical streams, discovered in the USSR in 1950, is a complex of orbits of the mostly massive meteor particles of the Zodiacal Cloud. The stream evolution rate is comparatively high. The total complex of sporadic meteor bodies is not totally chaotic and accidental.
Evidence for the assimilation of ancient glacier organic carbon in a proglacial stream food web
Fellman, Jason; Hood, Eran; Raymond, Peter A.; Hudson, J.H.; Bozeman, Maura; Arimitsu, Mayumi L.
2015-01-01
We used natural abundance δ13C, δ15N, and Δ14C to compare trophic linkages between potential carbon sources (leaf litter, epilithic biofilm, and particulate organic matter) and consumers (aquatic macroinvertebrates and fish) in a nonglacial stream and two reaches of the heavily glaciated Herbert River. We tested the hypothesis that proglacial stream food webs are sustained by organic carbon released from glacial ecosystems. Carbon sources and consumers in the nonglacial stream had carbon isotope values that ranged from -30‰ to -25‰ for δ13C and from -14‰ to 53‰ for Δ14C reflecting a food web sustained mainly on contemporary primary production. In contrast, biofilm in the two glacial stream sites was highly Δ14C-depleted (-215‰ to 175‰) relative to the nonglacial stream consistent with the assimilation of ancient glacier organic carbon. IsoSource modeling showed that in upper Herbert River, macroinvertebrates (Δ14C = -171‰ to 22‰) and juvenile salmonids (Δ14C = −102‰ to 17‰) reflected a feeding history of both biofilm (~ 56%) and leaf litter (~ 40%). We estimate that in upper Herbert River on average 36% of the carbon incorporated into consumer biomass is derived from the glacier ecosystem. Thus, 14C-depleted glacial organic carbon was likely transferred to higher trophic levels through a feeding history of bacterial uptake of dissolved organic carbon and subsequent consumption of 14C-depleted biofilm by invertebrates and ultimately fish. Our findings show that the metazoan food web is sustained in part by glacial organic carbon such that future changes in glacial runoff could influence the stability and trophic structure of proglacial aquatic ecosystems.
Volatilization of organic compounds from streams
Rathburn, R.E.; Tai, D.Y.
1982-01-01
Mass-transfer coefficients for the volatilization of ethylene and propane were correlated with the hydraulic and geometric properties of seven streams, and predictive equations were developed. The equations were evaluated using a normalized root-mean-square error as the criterion of comparison. The two best equations were a two-variable equation containing the energy dissipated per unit mass per unit time and the average depth of flow and a three-variable equation containing the average velocity, the average depth of flow, and the slope of the stream. Procedures for adjusting the ethylene and propane coefficients for other organic compounds were evaluated. These procedures are based on molecular diffusivity, molecular diameter, or molecular weight. Because of limited data, none of these procedures have been extensively verified. Therefore, until additional data become available, it is suggested that the mass-transfer coefficient be assumed to be inversely proportional to the square root of the molecular weight.
Stability of a Benzyl Amine Based CO2 Capture Adsorbent in View of Regeneration Strategies
2017-01-01
In this work, the chemical and thermal stability of a primary amine-functionalized ion-exchange resin (Lewatit VP OC 1065) is studied in view of the potential options of regenerating this sorbent in a CO2 removal application. The adsorbent was treated continuously in the presence of air, different O2/CO2/N2 mixtures, concentrated CO2, and steam, and then the remaining CO2 adsorption capacity was measured. Elemental analysis, BET/BJH analysis, Fourier transform infrared spectroscopy, and thermogravimetric analysis were applied to characterize adsorbent properties. This material was found to be thermally and hydrothermally stable at high temperatures. However, significant oxidative degradation occurred already at moderate temperatures (above 70 °C). Temperatures above 120 °C lead to degradation in concentrated dry CO2. Adding moisture to the concentrated CO2 stream improves the CO2-induced stability. Adsorbent regeneration with nitrogen stripping is studied with various parameters, focusing on minimizing the moles of purge gas required per mole of CO2 desorbed. PMID:28405055
System metabolism in the Kanawha River basin: comparing two models
Resource managers and regulatory agencies typically monitor aquatic ecosystem condition using a combination of measures that describe stream structure (e.g. physical habitat variables, species richness metrics) and physiochemical properties (e.g., pH, DO, turbidity). Recently, me...
NASA Astrophysics Data System (ADS)
Walker, E.; Tardif, E.; Glover, P. W.; Ruel, J.; Hadjigeorgiou, J.
2009-12-01
Electro-kinetic properties of rocks allow the generation of an electric potential by the flow of an aqueous fluid through a porous media. The electrical potential is called the streaming potential, and the streaming potential coupling coefficient Cs is the ratio of the generated electric potential to the pressure difference that causes the fluid flow. The streaming potential coupling coefficient for rocks is described in the steady-state regime by the well known Helmholtz-Smoluchowski equation, and is supported by a relatively small body of experimental data. However, the electrokinetic coupling coefficient measurement is important for the further development of different area of expertise such as reservoir prospection and monitoring, volcano and earthquake monitoring and the underground sequestration of CO2. We have designed, constructed and tested a new experimental cell that is capable of measuring the DC streaming potential of consolidated and unconsolidated porous media. The new cell is made from stainless steel, perspex and other engineering polymers. Cylindrical samples of 25.4 mm can be placed in a deformable rubber sleeve and subjected to a radial confining pressure of compressed nitrogen up to 4.5 MPa. Actively degassed aqueous fluids can be flowed by an Agilent 1200 series binary pump (2 to 10 mL/min). A maximum input fluid pressure of 2.5 MPa can be applied, with a maximum exit pressure of 1 MPa to ensure sample saturation is stable and to reduce gas bubbles. The pressures each side of the sample are measured by high stability pressure transducers (Omega PX302-300GV), previously calibrated by a high precision differential pressure transducer Endress and Hauser Deltabar S PMD75. The streaming potentials are measured with Harvard Apparatus LF-1 and LF-2 Ag/AgCl non-polarising miniature electrodes. An axial pressure is applied (1 to 6.5 MPa) to counteract the radial pressure and provide additional axial load with a hydraulic piston. It is our intention to complete the testing of the cell and to use it to measure the electrokinetic properties of porous rocks in the DC regime in order to provide sufficient data to improve the theories and models of DC streaming potentials.
NASA Astrophysics Data System (ADS)
Walker, Emilie; Tardif, Eric; Glover, Paul; Ruel, Jean; Lalande, Guillaume; Hadjigeorgiou, John
2010-05-01
Electro-kinetic properties of rocks allow the generation of an electric potential by the flow of an aqueous fluid through a porous media. The electrical potential is called the streaming potential, and the streaming potential coupling coefficient is the ratio of the generated electric potential to the pressure difference that causes the fluid flow. The streaming potential coupling coefficient for rocks is described in the steady-state regime by the well known Helmholtz-Smoluchowski equation, and is supported by a relatively small body of experimental data. However, the electrokinetic coupling coefficient measurement is important for the further development of different area of expertise such as reservoir prospection and monitoring, volcano and earthquake monitoring and the underground sequestration of carbon dioxide. We have designed, constructed and tested a new experimental cell that is capable of measuring the DC streaming potential of consolidated and unconsolidated porous media. The new cell is made from stainless steel, perspex and other engineering polymers. Cylindrical samples of 25.4 mm can be placed in a deformable rubber sleeve and subjected to a radial confining pressure of compressed nitrogen up to 4.5 MPa. Actively degassed aqueous fluids can be flowed by an Agilent 1200 series binary pump (2 to 10 mL/min). A maximum input fluid pressure of 2.5 MPa can be applied, with a maximum exit pressure of 1 MPa to ensure sample saturation is stable and to reduce gas bubbles. The pressures each side of the sample are measured by high stability pressure transducers (Omega PX302-300GV), previously calibrated by a high precision differential pressure transducer Endress and Hauser Deltabar S PMD75. The streaming potentials are measured with Harvard Apparatus LF-1 and LF-2 Ag/AgCl non-polarising miniature electrodes. An axial pressure is applied (1 to 6.5 MPa) to counteract the radial pressure and provide additional axial load with a hydraulic piston. It is our intention to complete the testing of the cell and to use it to measure the electrokinetic properties of porous rocks in the DC regime in order to provide sufficient data to improve the theories and models of DC streaming potentials.
NASA Astrophysics Data System (ADS)
Srinivasan, Vasudevan
Air plasma spray is inherently complex due to the deviation from equilibrium conditions, three dimensional nature, multitude of interrelated (controllable) parameters and (uncontrollable) variables involved, and stochastic variability at different stages. The resultant coatings are complex due to the layered high defect density microstructure. Despite the widespread use and commercial success for decades in earthmoving, automotive, aerospace and power generation industries, plasma spray has not been completely understood and prime reliance for critical applications such as thermal barrier coatings on gas turbines are yet to be accomplished. This dissertation is aimed at understanding the in-flight particle state of the plasma spray process towards designing coatings and achieving coating reliability with the aid of noncontact in-flight particle and spray stream sensors. Key issues such as the phenomena of optimum particle injection and the definition of spray stream using particle state are investigated. Few strategies to modify the microstructure and properties of Yttria Stabilized Zirconia coatings are examined systematically using the framework of process maps. An approach to design process window based on design relevant coating properties is presented. Options to control the process for enhanced reproducibility and reliability are examined and the resultant variability is evaluated systematically at the different stages in the process. The 3D variability due to the difference in plasma characteristics has been critically examined by investigating splats collected from the entire spray footprint.
Kume, Jack; Lindgren, R.J.; Stullken, L.E.
1985-01-01
A two-dimensional finite difference computer model was used to project changes in the potentiometric surface, saturated thickness, and stream aquifer leakage in an alluvial aquifer resulting from four instances of projected groundwater development. The alluvial aquifer occurs in the South Fork Solomon River valley between Webster Reservoir and Waconda Lake in north-central Kansas. In the first two projections, pumpage for irrigation was held constant at 1978 rates throughout the projection period (1979-2020). In the second two projections, the 1978 pumpage was progressively increased each yr through 2020. In the second and fourth projections, surface water diversions in the Osborne Irrigation Canal were decreased by 50 %. For the third and fourth projections, each grid-block in the modeled area was classified initially as one of six types according to whether it represented irrigable or nonirrigable land, to its saturated thickness, to its location inside or outside the canal-river area, and to its pumping rate. The projected base-flow rates (leakage from the aquifer to the river) were lower during the irrigation season (June, July, and August) than during the other months of the yr because of the decline in hydraulic head produced by groundwater pumpage. Stream depletion, calculated as a decrease below the average (1970-78) estimated winter base-flow rate of 16.5 cu ft/sec, varied inversely with base flow. For the first two projections, a constant annual cycle of well pumpage and recharge was used throughout the projection period. Aquifer leakage to the river was nearly constant by the mid-to-late 1990's, implying that flow conditions had attained a stabilized annual cycle. The third and fourth projections never attained an annual stabilized cycle because the irrigation pumpage rate was increased each year. By the early 1980's, the hydraulic head had fallen below river stage, reversing the hydraulic gradient at the stream-aquifer interface and resulting in net leakage from the river to the aquifer during the summer months. By the early 1990 's, the projected potentiometric surface of the aquifer was lower than the river stage even during the winter and spring months. (Author 's abstract)
Optimized open-flow mixing: insights from microbubble streaming
NASA Astrophysics Data System (ADS)
Rallabandi, Bhargav; Wang, Cheng; Guo, Lin; Hilgenfeldt, Sascha
2015-11-01
Microbubble streaming has been developed into a robust and powerful flow actuation technique in microfluidics. Here, we study it as a paradigmatic system for microfluidic mixing under a continuous throughput of fluid (open-flow mixing), providing a systematic optimization of the device parameters in this practically important situation. Focusing on two-dimensional advective stirring (neglecting diffusion), we show through numerical simulation and analytical theory that mixing in steady streaming vortices becomes ineffective beyond a characteristic time scale, necessitating the introduction of unsteadiness. By duty cycling the streaming, such unsteadiness is introduced in a controlled fashion, leading to exponential refinement of the advection structures. The rate of refinement is then optimized for particular parameters of the time modulation, i.e. a particular combination of times for which the streaming is turned ``on'' and ``off''. The optimized protocol can be understood theoretically using the properties of the streaming vortices and the throughput Poiseuille flow. We can thus infer simple design principles for practical open flow micromixing applications, consistent with experiments. Current Address: Mechanical and Aerospace Engineering, Princeton University.
NASA Astrophysics Data System (ADS)
Bingham, R. G.; Rippin, D. M.; Karlsson, N. B.; Corr, H.; Ferraccioli, F.; Jordan, T. A.; Le Brocq, A.; Ross, N.; Wright, A.; Siegert, M. J.
2012-12-01
Radio-echo sounding (RES) across polar ice sheets reveals extensive, isochronous internal layers, whose stratigraphy, and especially their degree of continuity over multi-km distances, can inform us about both present ice flow and past ice-flow histories. Here, we bring together for the first time two recent advances in this field of cryospheric remote sensing to analyse ice flow into the Weddell Sea sector of West Antarctica. Firstly, we have developed a new quantitative routine for analysing the continuity of internal layers obtained over large areas of ice by airborne RES surveys - we term this routine the "Internal-Layering Continuity-Index (ILCI)". Secondly, in the austral season 2010-11 we acquired, by airborne RES survey, the first comprehensive dataset of deep internal layering across Institute and Möller Ice Streams, two of the more significant feeders of ice into the Filchner-Ronne Ice Shelf. Applying the ILCI to SAR-processed (migrated) RES profiles across Institute Ice Stream's catchment reveals two contrasting regions of internal-layering continuity behaviour. In the western portion of the catchment, where ice-stream tributaries incise deeply through the Ellsworth Subglacial Highlands, the continuity of internal layers is most disrupted across the present ice streams. We therefore interpret the ice-flow configuration in this western region as predominantly spatially stable over the lifetime of the ice. Further east, towards Möller Ice Stream, and towards the interior of the ice sheet, the ILCI does not closely match the present ice flow configuration, while across most of present-day Möller Ice Stream itself, the continuity of internal layers is generally low. We propose that the variation in continuity of internal layering across eastern Institute Ice Stream and the neighbouring Möller results primarily from two factors. Firstly, the noncorrespondence of some inland tributaries with internal-layering continuity acts as evidence for past spatial migration of those tributaries, with likely consequences for the relative positions of Institute and Möller Ice Streams over recent history. Secondly, the subglacial roughness, in part a function of the underlying geology across the region, imposes a strong influence on the continuity of the overlying deep internal layers, though whether it controls, or is a function of, ice flow, remains undetermined. We conclude that in the subglacially mountainous Ellsworth Subglacial Highlands sector, there is long-term stability in the spatial configuration of ice flow, but that elsewhere across Insitute and Möller Ice Streams, the ice-flow configuration has the potential to switch.
Radar-imaged internal layering in the Weddell Sea sector of West Antarctica
NASA Astrophysics Data System (ADS)
Bingham, Robert G.; Rippin, David M.; Karlsson, Nanna B.; Corr, Hugh F. J.; Ferraccioli, Fausto; Jordan, Tom A.; Le Brocq, Anne M.; Ross, Neil; Wright, Andrew P.; Siegert, Martin J.
2013-04-01
Radio-echo sounding (RES) across polar ice sheets reveals extensive, isochronous internal layers, whose stratigraphy, and especially their degree of continuity over multi-km distances, can inform us about both present ice flow and past ice-flow histories. Here, we bring together for the first time two recent advances in this field of cryospheric remote sensing to analyse ice flow into the Weddell Sea sector of West Antarctica. Firstly, we have developed a new quantitative routine for analysing the continuity of internal layers obtained over large areas of ice by airborne RES surveys - we term this routine the "Internal-Layering Continuity-Index (ILCI)". Secondly, in the austral season 2010-11 we acquired, by airborne RES survey, the first comprehensive dataset of deep internal layering across Institute and Möller Ice Streams, two of the more significant feeders of ice into the Filchner-Ronne Ice Shelf. Applying the ILCI to SAR-processed (migrated) RES profiles across Institute Ice Stream's catchment reveals two contrasting regions of internal-layering continuity behaviour. In the western portion of the catchment, where ice-stream tributaries incise deeply through the Ellsworth Subglacial Highlands, the continuity of internal layers is most disrupted across the present ice streams. We therefore interpret the ice-flow configuration in this western region as predominantly spatially stable over the lifetime of the ice. Further east, towards Möller Ice Stream, and towards the interior of the ice sheet, the ILCI does not closely match the present ice flow configuration, while across most of present-day Möller Ice Stream itself, the continuity of internal layers is generally low. We propose that the variation in continuity of internal layering across eastern Institute Ice Stream and the neighbouring Möller results primarily from two factors. Firstly, the noncorrespondence of some inland tributaries with internal-layering continuity acts as evidence for past spatial migration of those tributaries, with likely consequences for the relative positions of Institute and Möller Ice Streams over recent history. Secondly, the subglacial roughness, in part a function of the underlying geology across the region, imposes a strong influence on the continuity of the overlying deep internal layers, though whether it controls, or is a function of, ice flow, remains undetermined. We conclude that in the subglacially mountainous Ellsworth Subglacial Highlands sector, there is long-term stability in the spatial configuration of ice flow, but that elsewhere across Insitute and Möller Ice Streams, the ice-flow configuration is not stable.
Konrad, Christopher P.; Booth, Derek B.; Burges, Stephen J.
2005-01-01
Recovery and protection of streams in urban areas depend on a comprehensive understanding of how human activities affect stream ecosystems. The hydrologic effects of urban development and the consequences for stream channel form and streambed stability were examined in 16 streams in the Puget Lowland, Washington, using three streamflow metrics that integrate storm‐scale effects of urban development over annual to decadal timescales: the fraction of time that streamflow exceeds the mean streamflow (TQmean), the coefficient of variation of annual maximum streamflow (CVAMF), and the fraction of time that streamflow exceeds the 0.5‐year flood (T0.5). Urban streams had low interannual variability in annual maximum streamflow and brief duration of frequent high flows, as indicated by significant correlations between road density and both CVAMFand T0.5. The broader distribution of streamflow indicated by TQmean may be affected by urban development, but differences in TQmean between streams are also likely a result of other physiographic factors. The increase in the magnitude of frequent high flows due to urban development but not their cumulative duration has important consequences for channel form and bed stability in gravel bed streams because geomorphic equilibrium depends on moderate duration streamflow (e.g., exceeded 10% of the time). Streams with low values of TQmean and T0.5 are narrower than expected from hydraulic geometry. Dimensionless boundary shear stress (t*) for the 0.5‐year flood was inversely related to T0.5 among the streams, indicating frequent and extensive bed disturbance in streams with low values of T0.5. Although stream channels expand and the size of bed material increases in response to urban streamflow patterns, these adjustments may be insufficient to reestablish the disturbance regime in urban streams because of the differential increase in the magnitude of frequent high flows causing disturbance relative to any changes in longer duration, moderate flows that establish a stable channel.
Heino, Jani; Melo, Adriano S; Bini, Luis Mauricio; Altermatt, Florian; Al-Shami, Salman A; Angeler, David G; Bonada, Núria; Brand, Cecilia; Callisto, Marcos; Cottenie, Karl; Dangles, Olivier; Dudgeon, David; Encalada, Andrea; Göthe, Emma; Grönroos, Mira; Hamada, Neusa; Jacobsen, Dean; Landeiro, Victor L; Ligeiro, Raphael; Martins, Renato T; Miserendino, María Laura; Md Rawi, Che Salmah; Rodrigues, Marciel E; Roque, Fabio de Oliveira; Sandin, Leonard; Schmera, Denes; Sgarbi, Luciano F; Simaika, John P; Siqueira, Tadeu; Thompson, Ross M; Townsend, Colin R
2015-03-01
The hypotheses that beta diversity should increase with decreasing latitude and increase with spatial extent of a region have rarely been tested based on a comparative analysis of multiple datasets, and no such study has focused on stream insects. We first assessed how well variability in beta diversity of stream insect metacommunities is predicted by insect group, latitude, spatial extent, altitudinal range, and dataset properties across multiple drainage basins throughout the world. Second, we assessed the relative roles of environmental and spatial factors in driving variation in assemblage composition within each drainage basin. Our analyses were based on a dataset of 95 stream insect metacommunities from 31 drainage basins distributed around the world. We used dissimilarity-based indices to quantify beta diversity for each metacommunity and, subsequently, regressed beta diversity on insect group, latitude, spatial extent, altitudinal range, and dataset properties (e.g., number of sites and percentage of presences). Within each metacommunity, we used a combination of spatial eigenfunction analyses and partial redundancy analysis to partition variation in assemblage structure into environmental, shared, spatial, and unexplained fractions. We found that dataset properties were more important predictors of beta diversity than ecological and geographical factors across multiple drainage basins. In the within-basin analyses, environmental and spatial variables were generally poor predictors of variation in assemblage composition. Our results revealed deviation from general biodiversity patterns because beta diversity did not show the expected decreasing trend with latitude. Our results also call for reconsideration of just how predictable stream assemblages are along ecological gradients, with implications for environmental assessment and conservation decisions. Our findings may also be applicable to other dynamic systems where predictability is low.
NASA Astrophysics Data System (ADS)
Shi, Deyong; Song, Wenyan; Wang, Yuhang; Wang, Yanhua
2017-08-01
In this work, the effects of cavity flameholder configurations on flameholding and performances of kerosene fueled scramjet combustor were studied experimentally and numerically. For experiments, a directly connected ground facility was used and clean high enthalpy air, with a total temperature of 800 K and a total pressure of 800 Kpa, was provided by an electricity resistance heater. To investigate the effects of cavity configurations on flameholding capacity and reacting-flow characteristics, three different flameholders, one single cavity flameholder and two tandem cavity flameholders, were used in experiments. For the two combustors with tandem cavity flameholders, the location and configurations of its up-stream cavity were same with the single cavity flameholder, and the length-to-depth ratios for down-stream cavities were 9 and 11 respectively. The experimental results showed that stabilize kerosene combustion were achieved for combustor with tandem cavity flameholders mounted, and none for that with single cavity flameholder. The none-reacting and reacting flows of combustor models with tandem cavity flameholders were compared and studied with numerical and experimental results. The results showed that higher combustion efficiencies and pressure recovery ratios were achieved for the combustor with down-stream cavity length-to-depth ratio of 9.
NASA Technical Reports Server (NTRS)
Schmidt, R. C.; Patankar, S. V.
1991-01-01
The capability of two k-epsilon low-Reynolds number (LRN) turbulence models, those of Jones and Launder (1972) and Lam and Bremhorst (1981), to predict transition in external boundary-layer flows subject to free-stream turbulence is analyzed. Both models correctly predict the basic qualitative aspects of boundary-layer transition with free stream turbulence, but for calculations started at low values of certain defined Reynolds numbers, the transition is generally predicted at unrealistically early locations. Also, the methods predict transition lengths significantly shorter than those found experimentally. An approach to overcoming these deficiencies without abandoning the basic LRN k-epsilon framework is developed. This approach limits the production term in the turbulent kinetic energy equation and is based on a simple stability criterion. It is correlated to the free-stream turbulence value. The modification is shown to improve the qualitative and quantitative characteristics of the transition predictions.
Niswonger, R.G.; Prudic, David E.; Pohll, G.; Constantz, J.
2005-01-01
Seepage losses along numerous mountain front streams that discharge intermittently onto alluvial fans and piedmont alluvial plains are an important source of groundwater in the Basin and Range Province of the Western United States. Determining the distribution of seepage loss along mountain front streams is important when assessing groundwater resources of the region. Seepage loss along a mountain front stream in northern Nevada was evaluated using a one-dimensional unsteady streamflow model. Seepage loss was incorporated into the spatial derivatives of the streamflow equations. Because seepage loss from streams is dependent on stream depth, wetted perimeter, and streambed properties, a two-dimensional variably saturated flow model was used to develop a series of relations between seepage loss and stream depth for each reach. This method works when streams are separated from groundwater by variably saturated sediment. Two periods of intermittent flow were simulated to evaluate the modeling approach. The model reproduced measured flow and seepage losses along the channel. Seepage loss in the spring of 2000 was limited to the upper reaches on the alluvial plain and totaled 196,000 m3, whereas 64% of the seepage loss in the spring of 2004 occurred at the base of the alluvial plain and totaled 273,000 m3. A greater seepage loss at the base of the piedmont alluvial plain is attributed to increased streambed hydraulic conductivity caused by less armoring of the channel. The modeling approach provides a method for quantifying and distributing seepage loss along mountain front streams that cross alluvial fans or piedmont alluvial plains. Copyright 2005 by the American Geophysical Union.
DOT National Transportation Integrated Search
2014-06-01
Rivers and streams evolve all the time. As a result, no stream channel is absolutely stable. Channels evolve at various speeds both vertically (degradation/aggradation) and horizontally (meander : migration). They also respond to man-made changes ran...
New Splitting Criteria for Decision Trees in Stationary Data Streams.
Jaworski, Maciej; Duda, Piotr; Rutkowski, Leszek; Jaworski, Maciej; Duda, Piotr; Rutkowski, Leszek; Rutkowski, Leszek; Duda, Piotr; Jaworski, Maciej
2018-06-01
The most popular tools for stream data mining are based on decision trees. In previous 15 years, all designed methods, headed by the very fast decision tree algorithm, relayed on Hoeffding's inequality and hundreds of researchers followed this scheme. Recently, we have demonstrated that although the Hoeffding decision trees are an effective tool for dealing with stream data, they are a purely heuristic procedure; for example, classical decision trees such as ID3 or CART cannot be adopted to data stream mining using Hoeffding's inequality. Therefore, there is an urgent need to develop new algorithms, which are both mathematically justified and characterized by good performance. In this paper, we address this problem by developing a family of new splitting criteria for classification in stationary data streams and investigating their probabilistic properties. The new criteria, derived using appropriate statistical tools, are based on the misclassification error and the Gini index impurity measures. The general division of splitting criteria into two types is proposed. Attributes chosen based on type- splitting criteria guarantee, with high probability, the highest expected value of split measure. Type- criteria ensure that the chosen attribute is the same, with high probability, as it would be chosen based on the whole infinite data stream. Moreover, in this paper, two hybrid splitting criteria are proposed, which are the combinations of single criteria based on the misclassification error and Gini index.
Habitat stability and occurrences of malaria vector larvae in western Kenya highlands.
Himeidan, Yousif E; Zhou, Guofa; Yakob, Laith; Afrane, Yaw; Munga, Stephen; Atieli, Harrysone; El-Rayah, El-Amin; Githeko, Andrew K; Yan, Guiyun
2009-10-21
Although the occurrence of malaria vector larvae in the valleys of western Kenya highlands is well documented, knowledge of larval habitats in the uphill sites is lacking. Given that most inhabitants of the highlands actually dwell in the uphill regions, it is important to develop understanding of mosquito breeding habitat stability in these sites in order to determine their potential for larval control. A total of 128 potential larval habitats were identified in hilltops and along the seasonal streams in the Sigalagala area of Kakamega district, western Kenya. Water availability in the habitats was followed up daily from August 3, 2006 to February 23, 2007. A habitat is defined as stable when it remains aquatic continuously for at least 12 d. Mosquito larvae were observed weekly. Frequencies of aquatic, stable and larvae positive habitats were compared between the hilltop and seasonal stream area using chi2-test. Factors affecting the presence/absence of Anopheles gambiae larvae in the highlands were determined using multiple logistic regression analysis. Topography significantly affected habitat availability and stability. The occurrence of aquatic habitats in the hilltop was more sporadic than in the stream area. The percentage of habitat occurrences that were classified as stable during the rainy season is 48.76% and 80.79% respectively for the hilltop and stream area. Corresponding frequencies of larvae positive habitats were 0% in the hilltop and 5.91% in the stream area. After the rainy season, only 23.42% of habitat occurrences were stable and 0.01% larvae positive habitats were found in the hilltops, whereas 89.75% of occurrences remained stable in the stream area resulting in a frequency of 12.21% larvae positive habitats. The logistic regression analysis confirmed the association between habitat stability and larval occurrence and indicated that habitat surface area was negatively affecting the occurrence of An. gambiae larvae. While An. gambiae and An. funestus larvae occurred throughout the study period along the streams, a total of only 15 An. gambiae larvae were counted in the hilltops, and no An. funestus were found. Moreover, no larvae managed to develop into adults in the hilltops, and the density of adult An. gambiae was consistently low, averaging at 0.06 females per house per survey. The occurrence of malaria vector larvae in the hilltop area was uncommon as a result of the low availability and high instability of habitats. To optimize the cost-effectiveness of malaria interventions in the western Kenya highlands, larval control should be focused primarily along the streams, as these are likely the only productive habitats at high altitude.
Saini, Vipin K; Pires, João
2017-05-01
Reticulated foam shaped adsorbents are more efficient for the removal of volatile organic compounds (VOCs), particularly from low VOC-concentration indoor air streams. In this study composite structure of zeolite and metal organic frameworks (MOFs), referred as ZMF, has been fabricated by immobilization of fine MOF-199 powder on foam shaped Zeolite Socony Mobil-5 (ZSM-5) Zeolitic structure, referred as ZF. The ZMF possess a uniform and well-dispersed coating of MOF-199 on the porous framework of ZF. It shows higher surface area, pore volume, and VOCs adsorption capacity, as compared to ZF-structure. Post-fabrication changes in selective adsorption properties of ZMF were studied with three common indoor VOCs (benzene, n-hexane, and cyclohexane), using gravimetric adsorption technique. The adsorption capacity of ZMF with different VOCs follow the order of benzene>n-hexane>cyclohexane. In comparison with MOF-199 and ZF, the composite structure ZMF shows improvement in selectivity for benzene from other two VOCs. Further, improvement in efficiency and stability of prepared ZMF was found to be associated with its high MOF loading capacity and unique morphological and structural properties. The developed composite structure with improved VOCs removal and recyclability could be a promising material for small to limited scale air pollution treatment units. Copyright © 2016. Published by Elsevier B.V.
The Parker Instability with Cosmic-Ray Streaming
NASA Astrophysics Data System (ADS)
Heintz, Evan; Zweibel, Ellen G.
2018-06-01
Recent studies have found that cosmic-ray transport plays an important role in feedback processes such as star formation and the launching of galactic winds. Although cosmic-ray buoyancy is widely held to be a destabilizing force in galactic disks, the effect of cosmic-ray transport on the stability of stratified systems has yet to be analyzed. We perform a stability analysis of a stratified layer for three different cosmic-ray transport models: decoupled (Classic Parker), coupled with γ c = 4/3 but not streaming (Modified Parker), and finally coupled with streaming at the Alfvén speed. When the compressibility of the cosmic rays is decreased the system becomes much more stable, but the addition of cosmic-ray streaming to the Parker instability severely destabilizes it. Through comparison of these three cases and analysis of the work contributions for the perturbed quantities of each system, we demonstrate that cosmic-ray heating of the gas is responsible for the destabilization of the system. We find that a 3D system is unstable over a larger range of wavelengths than the 2D system. Therefore, the Parker instability with cosmic-ray streaming may play an important role in cosmic-ray feedback.
Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 2001 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaw, R. Todd; Sexton, Amy D.
The Umatilla River Basin Anadromous Fish Habitat Enhancement Project continued to identify impacted stream reaches throughout the Umatilla River Basin for habitat improvements during the 2001 project period. Public outreach efforts, biological and physical monitoring, and continued development of a Umatilla Subbasin Watershed Assessment assisted the project in fostering public cooperation, targeting habitat deficiencies and determining habitat recovery measures. Projects continued to be maintained on 49 private properties, one 25-year Non-Exclusive Bureau of Indian Affairs' Easement was secured, six new projects implemented and two existing project areas improved to enhance anadromous fish habitat. New project locations included sites on themore » mid Umatilla River, upper Umatilla River, Mission Creek, Cottonwood Creek and Buckaroo Creek. New enhancements included: (1) construction of 11,264 feet of fencing between River Mile 43.0 and 46.5 on the Umatilla River, (2) a stream bank stabilization project implemented at approximately River Mile 63.5 Umatilla River to stabilize 330 feet of eroding stream bank and improve instream habitat diversity, included construction of eight root wad revetments and three boulder J-vanes, (3) drilling a 358-foot well for off-stream livestock watering at approximately River Mile 46.0 Umatilla River, (4) installing a 50-foot bottomless arch replacement culvert at approximately River Mile 3.0 Mission Creek, (5) installing a Geoweb stream ford crossing on Mission Creek (6) installing a 22-foot bottomless arch culvert at approximately River Mile 0.5 Cottonwood Creek, and (7) providing fence materials for construction of 21,300 feet of livestock exclusion fencing in the Buckaroo Creek Drainage. An approximate total of 3,800 native willow cuttings and 350 pounds of native grass seed was planted at new upper Umatilla River, Mission Creek and Cottonwood Creek project sites. Habitat improvements implemented at existing project sites included development of a 105-foot well for off-stream livestock watering at approximately River Mile 12.0 Wildhorse Creek and construction of an engineered stream ford at approximately River Mile 3.0 Mission Creek. A total of $277,848 in financial cost share assistance was provided by the Confederated Tribes of the Umatilla Indian Reservation, U.S. Bureau of Indian Affairs, U.S. Environmental Protection Agency, U.S. Department of Agriculture, National Oceanic and Atmospheric Administration, U.S. Workforce Investment Act, Oregon Watershed Enhancement Board, Umatilla County and Pheasants Forever for planning efforts and habitat enhancements. Monitoring continued to quantify baseline conditions and the effects of habitat enhancements in the upper basin. Daily stream temperatures were collected from June through September at 22 sites. Suspended sediment samples were obtained at three gage stations to arrive at daily sediment load estimates. Photographs were taken at 96 existing and three newly established photo points to document habitat recovery and pre-project conditions. Transects were measured at three stream channel cross sections to assist with engineering and design and to obtain baseline data regarding channel morphology. Biological inventories were conducted at River Mile 3.0 Mission Creek to determine pre-project fish utilization above and below the passage barrier. Post-project inventories were also conducted at River Mile 85.0 of the Umatilla River at a project site completed in 1999. Umatilla Subbasin Watershed Assessment efforts were continued under a subcontract with Eco-Pacific. This watershed assessment document and working databases will be completed in fiscal year 2002 and made available to assist project personnel with sub-watershed prioritization of habitat needs. Water Works Consulting, Duck Creek Associates and Ed Salminen Consulting were subcontracted for watershed assessment and restoration planning in the Meacham Creek Subwatershed. A document detailing current conditions in the Meacham Creek Subwatershed and necessary restoration actions will be available for review in 2003.« less
SOLIDIFICATION/STABILIZATION OF SLUDGE AND ASH FROM WASTEWATER TREATMENT PLANTS
Tests were performed to determine the physical properties and chemical leaching characteristics of the residuals and the stabilized/solidified products from two publicly-owned wastewater treatment works (POTW). The two POTW waste products included in this study were an anaerobic ...
The effect of periodic forcing on the stability transition of ice friction
NASA Astrophysics Data System (ADS)
McCarthy, C.; Savage, H. M.; Skarbek, R. M.; Nettles, M.
2017-12-01
A growing body of literature documents the sensitivity of glacier flow to tidal modulation, raising the possibility of using glacier and ice stream response to relatively well-known periodic forcing to infer key glacier properties. However, much is unknown about the physics of tidal response, which can be quite large despite the small size of the tidal signal. Glaciers in Antarctica and Greenland display tidally triggered responses that vary from continuously modulated steady sliding to stick-slip motion with accompanying seismicity. In an attempt to explain differing behaviors of basal slip and aid in the prediction of future stability, we ran a series of laboratory friction experiments to explore the onset of stick-slip behavior in a simple ice-on-rock system exposed to shear velocity oscillations. Using a custom, cryo-friction apparatus, we conducted experiments in a double direct shear configuration in vertical displacement control, with constant horizontal/normal stress and at controlled temperature. A sinusoid in velocity was applied on top of the median load point velocity at various frequencies and amplitudes. We examined the effects of temperature (-2°C to -10°C), normal stress (0.1 to 1MPa), median velocity (1 and 10 microns/s), frequency (1 to 0.01 Hz), and amplitude (100% to 20% of the median) on frictional response. By varying the conditions within a single experiment, we observed transitions from smooth modulation, to repeatable stick-slips, to slow slip events. The rate and magnitude of loading appear to most strongly affect the system response. Velocity steps were analyzed to identify key rate-state parameters for the system. We will present a stability map that details the transition from stable to unstable sliding as functions of the above parameters. Ultimately these results can be scaled up to a glacier system, extended to include till and entrained debris, and used in modeling efforts to predict longterm stability of tidewater glaciers and ice streams.
An orbit fit to likely Hermus Stream stars
NASA Astrophysics Data System (ADS)
Martin, Charles; Amy, Paul M.; Newberg, Heidi Jo; Shelton, Siddhartha; Carlin, Jeffrey L.; Beers, Timothy C.; Denissenkov, Pavel; Willett, Benjamin A.
2018-06-01
We selected blue horizontal branch (BHB) stars within the expected distance range and sky position of the Hermus Stream from Data Release 10 of the Sloan Digital Sky Survey. We identify a moving group of 19 BHB stars that are concentrated within two degrees of the Hermus Stream, between 10 and 14 kpc from the Sun. The concentration in velocity is inconsistent with a Gaussian distribution with 98 per cent confidence (2.33 sigma). The stars in the moving group have line-of-sight velocities of vgsr ˜ 50 km s-1, a velocity dispersion of σv ≲ 11 km s-1, a line-of-sight depth of ˜1 kpc, and a metallicity of [Fe/H] = -2.1 ± 0.4. The best-fitting orbit has a perigalacticon of ˜4 kpc, apogalacticon of ˜17 kpc, orbital period of ˜247 Myr, eccentricity e = 0.62, and inclination i ˜ 75° from b = 90°. The BHB stars in the stream are estimated to be 12 Gyr old. An N-body simulation of a mass-follows-light ultrafaint dwarf galaxy with mass 106 M⊙ and radius 40 pc is consistent with the observed properties. The properties of the identified moving group of 19 BHB stars are close enough to those of the Hermus Stream (which is traced predominantly in turnoff stars) that we find it likely that they are associated. If that is the case, then our orbit fit would imply that there is no relationship between the Hermus and Phoenix streams, as previously proposed.
NASA Technical Reports Server (NTRS)
Nelson, Herbert C; Cunningham, Herbert J
1956-01-01
A Rayleigh type analysis involving chosen modes of the panel as degrees of freedom is used to treat the flutter of a two-dimensional flat panel supported at its leading and trailing edges and subjected to a middle-plane tensile force. The panel has a supersonic stream passing over its upper surface and still air below. The aerodynamic forces due to the supersonic stream are obtained from the theory for linearized two-dimensional unsteady flow and the forces due to the still air are obtained from acoustical theory. In order to study the effect of increasing the number of modes in the analysis, two and then four modes are employed. The modes used are the first four natural modes of the panel in a vacuum with no tensile force acting. The analysis includes these variables: Mach number, structural damping, tensile force, density of the still air, and edge fixity (clamped and pinned). For certain combinations of these variables, stability boundaries are obtained which can be used to determine the panel thickness required to prevent flutter for any panel material and altitude.
Modeling radium and radon transport through soil and vegetation
Kozak, J.A.; Reeves, H.W.; Lewis, B.A.
2003-01-01
A one-dimensional flow and transport model was developed to describe the movement of two fluid phases, gas and water, within a porous medium and the transport of 226Ra and 222Rn within and between these two phases. Included in this model is the vegetative uptake of water and aqueous 226Ra and 222Rn that can be extracted from the soil via the transpiration stream. The mathematical model is formulated through a set of phase balance equations and a set of species balance equations. Mass exchange, sink terms and the dependence of physical properties upon phase composition couple the two sets of equations. Numerical solution of each set, with iteration between the sets, is carried out leading to a set-iterative compositional model. The Petrov-Galerkin finite element approach is used to allow for upstream weighting if required for a given simulation. Mass lumping improves solution convergence and stability behavior. The resulting numerical model was applied to four problems and was found to produce accurate, mass conservative solutions when compared to published experimental and numerical results and theoretical column experiments. Preliminary results suggest that the model can be used as an investigative tool to determine the feasibility of phytoremediating radium and radon-contaminated soil. ?? 2003 Elsevier Science B.V. All rights reserved.
Increased urbanization results in a larger percentage of connected impervious areas and can contribute large quantities of stormwater runoff and significant quantities of debris and pollutants (e.g., litter, oils, microorganisms, sediments, nutrients, organic matter, and heavy me...
To improve water quality in urban and suburban areas, watershed managers often incorporate best management practices (BMPs) to reduce the quantity of runoff, as well as minimize pollutants and other stressors contained in stormwater runoff. It is well known that land use practice...
Predicting geomorphic stability in low-order streams of the western Lake Superior basin - Poster
Width:depth ratios, entrenchment ratios, gradients, and median substrate particle sizes (D50s) were measured in 32 second- and third-order stream reaches in the western Lake Superior basin in 1997-1998. More than 700 measurements of suspended sediment concentration during snowmel...
USDA-ARS?s Scientific Manuscript database
Pasture-based best management practices (BMPs), including stream bank fencing, stream crossings, and bank stabilization, improved water quality ten years after installation by reducing sediment, but did not affect nitrogen concentration. Abundance and diversity of aquatic macroinvertebrates increas...
The inviscid axisymmetric stability of the supersonic flow along a circular cylinder
NASA Technical Reports Server (NTRS)
Duck, Peter W.
1990-01-01
The supersonic flow past a thin straight circular cylinder is investigated. The associated boundary-layer flow (i.e. the velocity and temperature field) is computed; the asymptotic, far downstream solution is obtained, and compared with the full numerical results. The inviscid, linear, axisymmetric (temporal) stability of this boundary layer is also studied. A so-called 'doubly generalized' inflexion condition is derived, which is a condition for the existence of so-called 'subsonic' neutral modes. The eigenvalue problem (for the complex wavespeed) is computed for two free-stream Mach numbers (2.8 and 3.8), and this reveals that curvature has a profound effect on the stability of the flow. The first unstable inviscid mode is seen to disappear rapidly as curvature is introduced, while the second (and generally the most important) mode suffers a substantially reduced amplification rate.
The upcycling of post-industrial PP/PET waste streams through in-situ microfibrillar preparation
NASA Astrophysics Data System (ADS)
Delva, Laurens; Ragaert, Kim; Cardon, Ludwig
2015-12-01
Post-industrial plastic waste streams can be re-used as secondary material streams for polymer processing by extrusion or injection moulding. One of the major commercially available waste stream contains polypropylene (PP) contaminated with polyesters (mostly polyethylene tereftalate - PET). An important practical hurdle for the direct implementation of this waste stream is the immiscibility of PP and PET in the melt, which leads to segregation within the polymer structure and adversely affects the reproducibility and mechanical properties of the manufactured parts. It has been indicated in literature that the creation of PET microfibrils in the PP matrix could undo these drawbacks and upcycle the PP/PET combination. Within the current research, a commercially available virgin PP/PET was evaluated for the microfibrillar preparation. The mechanical (tensile and impact) properties, thermal properties and morphology of the composites were characterized at different stages of the microfibrillar preparation.
Influence of geomorphological properties and stage on in-stream travel time
NASA Astrophysics Data System (ADS)
Åkesson, Anna; Wörman, Anders
2014-05-01
The travel time distribution within stream channels is known to vary non-linearly with stage (discharge), depending on the combined effects of geomorphologic, hydrodynamic and kinematic dispersions. This non-linearity, implying that stream network travel time generally decreases with increasing discharge is a factor that is important to account for in hydrological modelling - especially when making peak flow predictions where uncertainty is often high and large values can be at risk. Through hydraulic analysis of several stream networks, we analyse how travel time distributions varies with discharge. The principal focus is the coupling to the geomorphologic properties of stream networks with the final goal being to use this physically based information as a parameterisation tool of the streamflow component of hydrologic models. For each of the studied stream networks, a 1D, steady-state, distributed routing model was set up to determine the velocities in each reach during different flow conditions. Although the model (based in the Manning friction formula) is built on the presence of uniform conditions within sub-reaches, the model can in the stream network scale be considered to include effects of non-uniformity as supercritical conditions in sections of the stream network give rise to backwater effects that reduce the flow velocities in upstream reaches in the stream. By coupling the routing model to a particle tracking routine tracing water "parcels" through the stream network, the average travel time within the stream network can be determined quantitatively for different flow conditions. The data used to drive the model is digitised stream network maps, topographical data (DEMs). The model is not calibrated in any way, but is run for with different sets of parameters representing a span of possible friction coefficients and cross-sectional geometries as this information is not generally known. The routing model is implemented in several different stream networks (representing catchments of the spatial scale of a few hundred km2) in different geographic regions in Sweden displaying different geomorphological properties. Results show that the geomorphological properties (data that is often available in the form of maps and/or DEMs) of individual stream networks have major influence on the stream network travel times. By coupling the geomorphological information to general expressions for stage dependency, catchment-specific relationships of how the travel times within stream networks can be determined. Basing the parameterisation procedure of a hydrological model in physical catchment properties and process understanding rather than statistical parameterisation (based in how a catchment has responded in the past) - is believed to lead to more reliable hydrological predictions - during extreme conditions as well as during changing conditions such as climate change and landscape modifications, and/or when making predictions in ungauged basins.
Inviscid spatial stability of a compressible mixing layer. II - The flame sheet model
NASA Technical Reports Server (NTRS)
Jackson, T. L.; Grosch, C. E.
1990-01-01
The results of an inviscid spatial calculation for a compressible reacting mixing layer are reported. The limit of infinitive activation energy is taken and the diffusion flame is approximated by a flame sheet. Results are reported for the phase speeds of the neutral waves and maximum growth rates of the unstable waves as a function of the parameters of the problem: the ratio of the temperature of the stationary stream to that of the moving stream, the Mach number of the moving streams, the heat release per unit mass fraction of the reactant, the equivalence ratio of the reaction, and the frequency of the disturbance. These results are compared to the phase speeds and growth rates of the corresponding nonreacting mixing layer. We show that the addition of combustion has important and complex effects on the flow stability.
Robustness of the filamentation instability as shock mediator in arbitrarily oriented magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bret, A.; Alvaro, E. Perez
2011-08-15
The filamentation instability (sometimes also referred to as ''Weibel'') is a key process in many astrophysical scenario. In the Fireball model for gamma ray bursts, this instability is believed to mediate collisionless shock formation from the collision of two plasma shells. It has been known for long that a flow aligned magnetic field can completely cancel this instability. We show here that in the general case where there is an angle between the field and the flow, the filamentation instability can never be stabilized, regardless of the field strength. The presented model analyzes the stability of two symmetric counter-streaming coldmore » electron/proton plasma shells. Relativistic effects are accounted for, and various exact analytical results are derived. This result guarantees the occurrence of the instability in realistic settings fulfilling the cold approximation.« less
Entrainment and mixing of shelf/slope waters in the near-surface Gulf Stream
NASA Astrophysics Data System (ADS)
Lillibridge, J. L., III; Hitchcock, G.; Rossby, T.; Lessard, E.; Mork, M.; Golmen, L.
1990-08-01
An interdisciplinary study of the entrainment of shelf and slope waters in the Gulf Stream front was undertaken in October 1985 northeast of Cape Hatteras. Fifteen hydrographic transects of the Gulf Stream front and of the shelf water intrusion known as Ford water were completed in 2 1/2 days with a towed undulating profiler, the SeaSoar, equipped with a conductivity-temperature-depth probe and a fluorometer. Upstream sections within 50 km of the shelf break show entrainment of surface and subsurface waters along the northern edge of the high-velocity Gulf Stream. The low-salinity core, first observed at 70 m, is subducted to >100 m. The subsurface Ford water is also at a maximum in chlorophyll, fluorescence, and dissolved oxygen and contains a distinct diatom assemblage of nearshore species. Productivity rates in the Ford water may be equivalent to those in slope waters. Expendable current profilers yield an estimated transport for subsurface shelf waters of 1 to 5×105 m3 s-1 and indicate that vertical shear at the depth of maximum static stability is typically 2×10-2 s-1. A bulk Richardson number is estimated over vertical scales of several meters by combining SeaSoar density profiles with velocity shear from concurrent expendable current profiler deployments. The minimum values are generally >1, and only infrequently are they at or below the 0.25 threshold for shear instability. The presence of double-diffusive processes around the low-salinity core of Ford water is indicated by elevated conductivity Cox numbers. The stability parameter "Turner angle" shows that low-salinity Ford water and its associated T-S property front are sites of double-diffusive mixing, given general agreement between the distributions of Turner angle and Cox number. We conclude that double-diffusive processes are more important than shear flow instability in governing cross-isopycnal mixing. However, downstream transit times are so swift that no measurable change or decay occurs in the Ford water. This explains the occurrence of distinct shelf water phytoplankton species within the low-salinity waters downstream of Cape Hatteras.
USE OF WATERSHED CLASSIFICATION IN MONITORING FRAMEWORKS FOR THE WESTERN LAKE SUPERIOR BASIS
In this case study we predicted stream sensitivity to nonpoint source pollution based on the nonlinear responses of hydrologic regimes and associated loadings of nonpoint source pollutants to catchment properties. We assessed two hydrologically-based thresholds of impairment, on...
NASA Astrophysics Data System (ADS)
Genereux, D. P.; Osburn, C. L.; Nagy, L.; Oberbauer, S. F.; Rojas-Jiménez, L. D.
2013-12-01
Field studies of watershed carbon (C) fluxes and budgets are critical for understanding the C cycle, but the role of deep regional groundwater is poorly known and field examples are lacking. Discharge of regional groundwater has a major effect on C concentrations and fluxes in a lowland Costa Rican rainforest, observable through chemical, isotopic, and flux signals in groundwater, surface water, and air, and driven largely by the elevated dissolved inorganic C (DIC) in regional groundwater. Comparing two watersheds with different inputs of high-DIC regional groundwater (the Taconazo with none and the Arboleda with about 40% of stream discharge due to regional groundwater), the Arboleda has a higher stream DIC concentration (factor of ~12) and stream export of DIC (factor of ~70). Stream δ13C-DIC is higher in the Arboleda, -4.4‰ vs. -22.4‰, due to the influence of regional groundwater. A major question is the fate of old DIC discharged to streams by regional groundwater (i.e., uptake via in-stream photosynthesis vs. export by stream discharge or stream degassing). Particulate organic C (POC) δ13C values and C:N ratios were similar in the two streams and typical of soil organic matter from terrestrial C3 plants, suggesting little incorporation of DIC from regional groundwater into POC in the Arboleda stream (i.e., little algal production from old DIC). This finding is consistent with the large DIC export for the Arboleda. DIC from regional groundwater experiences little to no within-watershed sequestration, and thus augments the C flux out of the watershed with stream flow and, based on preliminary estimates, the degassing flux from the stream. Also, in air collected above the two streams in the early morning before daytime mixing of the canopy air, we found higher CO2 concentrations and δ13C-CO2 above the Arboleda compared to the Taconazo, consistent with an enhanced flux of isotopically-heavy CO2 from the Arboleda stream. Dissolved organic matter (DOM) also differs between the two watersheds. Slope ratio, a property of the light absorbance by DOM, was higher in the Arboleda than in the Taconazo, consistent with the DOM from regional groundwater being lower in molecular mass and/or weakly-aromatic (perhaps more degraded after its long subsurface residence time, ~3000 yr). Preliminary data suggest older DOM from regional groundwater is less bioavailable in rainforest streams. Regional groundwater inputs may alter watershed export of DOC (the C in DOM) in two ways: additional input of DOM to the watershed, and input of DOM that is more likely to experience hydrologic export from the watershed. Correct interpretation of the C source/sink status of this ecosystem from field data requires accounting for the role of regional groundwater. The widespread occurrence of two key factors (regional interbasin groundwater flow, and elevated dissolved C in regional groundwater) suggests regional groundwater may affect C fluxes and budgets at many sites.
Stability evaluation of Styrylpyrone derivative (SPD) incorporated products
NASA Astrophysics Data System (ADS)
Bahtiar, Adibah Ahamad; Nor, Norefrina Shafinaz Md.; Ibrahim, Nazlina
2015-09-01
Styrylpyrone derivative (SPD) from Goniothalamus umbrosus has been shown to have antiviral properties against Herpes Simplex virus type-1 (HSV-1). This study aimed to evaluate the purity of isolated SPD and stability of SPD-incorporated formulations. Pure SPD was isolated from dried roots of G. umbrosus as confirmed by GC-MS. Two types of SPD-incorporated products (ointment and gel) were produced. Both products showed stable physical properties after two months and retained the SPD content for one month.
Leacock, William B.; Eby, Lisa A.; Stanford, Jack A.
2016-01-01
Accurately estimating population sizes is often a critical component of fisheries research and management. Although there is a growing appreciation of the importance of small-scale salmon population dynamics to the stability of salmon stock-complexes, our understanding of these populations is constrained by a lack of efficient and cost-effective monitoring tools for streams. Weirs are expensive, labor intensive, and can disrupt natural fish movements. While conventional video systems avoid some of these shortcomings, they are expensive and require excessive amounts of labor to review footage for data collection. Here, we present a novel method for quantifying salmon in small streams (<15 m wide, <1 m deep) that uses both time-lapse photography and video in a model-based double sampling scheme. This method produces an escapement estimate nearly as accurate as a video-only approach, but with substantially less labor, money, and effort. It requires servicing only every 14 days, detects salmon 24 h/day, is inexpensive, and produces escapement estimates with confidence intervals. In addition to escapement estimation, we present a method for estimating in-stream salmon abundance across time, data needed by researchers interested in predator--prey interactions or nutrient subsidies. We combined daily salmon passage estimates with stream specific estimates of daily mortality developed using previously published data. To demonstrate proof of concept for these methods, we present results from two streams in southwest Kodiak Island, Alaska in which high densities of sockeye salmon spawn. PMID:27326378
SPENDING TOO MUCH TIME AT THE GALACTIC BAR: CHAOTIC FANNING OF THE OPHIUCHUS STREAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price-Whelan, Adrian M.; Johnston, Kathryn V.; Sesar, Branimir
2016-06-20
The Ophiuchus stellar stream is peculiar: (1) its length is short given the age of its constituent stars, and (2) several probable member stars have dispersions in sky position and velocity that far exceed those seen within the stream. The stream’s proximity to the Galactic center suggests that its dynamical history is significantly influenced by the Galactic bar. We explore this hypothesis with models of stream formation along orbits consistent with Ophiuchus’ properties in a Milky Way potential model that includes a rotating bar. In all choices for the rotation parameters of the bar, orbits fit to the stream aremore » strongly chaotic. Mock streams generated along these orbits qualitatively match the observed properties of the stream: because of chaos, stars stripped early generally form low-density, high-dispersion “fans” leaving only the most recently disrupted material detectable as a strong over-density. Our models predict that there should be a significant amount of low-surface-brightness tidal debris around the stream with a complex phase-space morphology. The existence of or lack of these features could provide interesting constraints on the Milky Way bar and would rule out formation scenarios for the stream. This is the first time that chaos has been used to explain the properties of a stellar stream and is the first demonstration of the dynamical importance of chaos in the Galactic halo. The existence of long, thin streams around the Milky Way, presumably formed along non- or weakly chaotic orbits, may represent only a subset of the total population of disrupted satellites.« less
Electrochemical Upgrading of Bio-Oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elangovan, S.; Larsen, Dennis; Bay, Insoo
Bio-oil produced by fast pyrolysis of biomass is a potential source of low carbon, renewable hydrocarbon fuel. However, the properties such as low heating value, incomplete volatility, acidity, instability, and incompatibility with standard fuels restrict its use. The undesirable properties of pyrolysis oil result from its chemical composition that mostly consists of different classes of oxygenated organic compounds. Current process of Hydrodeoxygenation to remove oxygen involves high-temperature, high-pressure processing in the presence of hydrogen and catalyst. An alternative process of deoxygenation of bio-oil using solid-state, oxygen conductor based electrochemical cell is under investigation. The electrolysis process removes oxygen from themore » oxygenated organic molecule as well from steam to produce hydrogen in-situ allowing for a distributed, small scale integrated upgrading unit. Mixtures of model compounds and a slip stream of pyrolysis vapor were tested. The results show the potential for integrating a pyrolyzer and an electrochemical device for stabilizing pyrolysis oil.« less
2014-01-01
Research on psychophysics, neurophysiology, and functional imaging shows particular representation of biological movements which contains two pathways. The visual perception of biological movements formed through the visual system called dorsal and ventral processing streams. Ventral processing stream is associated with the form information extraction; on the other hand, dorsal processing stream provides motion information. Active basic model (ABM) as hierarchical representation of the human object had revealed novelty in form pathway due to applying Gabor based supervised object recognition method. It creates more biological plausibility along with similarity with original model. Fuzzy inference system is used for motion pattern information in motion pathway creating more robustness in recognition process. Besides, interaction of these paths is intriguing and many studies in various fields considered it. Here, the interaction of the pathways to get more appropriated results has been investigated. Extreme learning machine (ELM) has been implied for classification unit of this model, due to having the main properties of artificial neural networks, but crosses from the difficulty of training time substantially diminished in it. Here, there will be a comparison between two different configurations, interactions using synergetic neural network and ELM, in terms of accuracy and compatibility. PMID:25276860
Bisinger, J J; Russell, J R; Morrical, D G; Isenhart, T M
2014-08-01
For 2 grazing seasons, effects of pasture size, stream access, and off-stream water on cow distribution relative to a stream were evaluated in six 12.1-ha cool-season grass pastures. Two pasture sizes (small [4.0 ha] and large [12.1 ha]) with 3 management treatments (unrestricted stream access without off-stream water [U], unrestricted stream access with off-stream water [UW], and stream access restricted to a stabilized stream crossing [R]) were alternated between pasture sizes every 2 wk for 5 consecutive 4-wk intervals in each grazing season. Small and large pastures were stocked with 5 and 15 August-calving cows from mid May through mid October. At 10-min intervals, cow location was determined with Global Positioning System collars fitted on 2 to 3 cows in each pasture and identified when observed in the stream (0-10 m from the stream) or riparian (0-33 m from the stream) zones and ambient temperature was recorded with on-site weather stations. Over all intervals, cows were observed more (P ≤ 0.01) frequently in the stream and riparian zones of small than large pastures regardless of management treatment. Cows in R pastures had 24 and 8% less (P < 0.01) observations in the stream and riparian zones than U or UW pastures regardless of pasture size. Off-stream water had little effect on the presence of cows in or near pasture streams regardless of pasture size. In 2011, the probability of cow presence in the stream and riparian zones increased at greater (P < 0.04) rates as ambient temperature increased in U and UW pastures than in 2010. As ambient temperature increased, the probability of cow presence in the stream and riparian zones increased at greater (P < 0.01) rates in small than large pastures. Across pasture sizes, the probability of cow presence in the stream and riparian zone increased less (P < 0.01) with increasing ambient temperatures in R than U and UW pastures. Rates of increase in the probability of cow presence in shade (within 10 m of tree drip lines) in the total pasture with increasing temperatures did not differ between treatments. However, probability of cow presence in riparian shade increased at greater (P < 0.01) rates in small than large pastures. Pasture size was a major factor affecting congregation of cows in or near pasture streams with unrestricted access.
Large variability of biochar stability and biochar properties
NASA Astrophysics Data System (ADS)
Lehmann, J.; Nguyen, B.; Hanley, K.; Enders, A.
2008-12-01
In general, charring or purposeful pyrolysis increases the stability of biomass. It is less clear, however, to what extent biochar properties influence its stability. Chemical and physical properties of biochars and biomass-derived black carbons (BC) vary greatly as a function of the type of biomass it was generated from and of the production temperature. We show that these properties greatly affect the stability of BC is a function of both these factors, with highly significant interactions. BC produced from corn stalks produced at 350°C decomposed much quicker when incubated at field capacity at 30°C for one year than those produced at 600°C. In contrast, there was hardly a difference noted between those two temperatures if oak was the precursor biomass. Such differences in labile carbon not only affect the proportion of stable carbon in BC, but also influence the quantification of long-term stability. Extrapolation from short-term decay to long-term stability may require prior knowledge about the decay rate of the labile fraction of BC. Some indications are provided for the short-term oxidation of BC.
Impacts of biological diversity on sediment transport in streams
NASA Astrophysics Data System (ADS)
Albertson, L. K.; Cardinale, B. J.; Sklar, L. S.
2012-12-01
Over the past decade, an increasing number of studies have shown that biological structures (e.g. plant roots) have large impacts on sediment transport, and that physical models that do not incorporate these biological impacts can produce qualitatively incorrect predictions. But while it is now recognized that biological structures influence sediment transport, work to date has focused primarily on the impacts of individual, usually dominant, species. Here, we ask whether competitive interactions cause multi-species communities to have fundamentally different impacts on sediment mobility than single-species systems. We use a model system with caddisfly larvae, which are insects that live in the benthic habitat of streams where they construct silken catchnets across pore spaces between rocks to filter food particles. Because caddisflies can reach densities of 1,000s per m2 with each larva spinning hundreds of silken threads between rocks, studies have shown that caddisflies reduce the probability of bed movement during high discharge events. To test whether streams with multiple species of caddisfly are stabilized any differently than single-species streams, we manipulated the presence or absence of two common species (Ceratopsyche oslari, Arctopsyche californica) in substrate patches (0.15 m2) in experimental stream channels (50-m long x 1-m wide) with fully controlled hydrology at the Sierra Nevada Aquatic Research Laboratory. This experiment was designed to extend the scale of previous laboratory mesocosm studies, which showed that critical shear stress is 31% higher in a multi-species flume mesocosm compared to a single-species mesocosm. Under these more realistic field conditions, we found that critical shear stress was, on average, 30% higher in streams with caddisflies vs. controls with no caddisflies. However, no differences were detected between treatments with 2 vs. 1 species. We hypothesize that the minimal effect of diversity on critical shear stress resulted because intense competitive interactions (fighting, biting, etc.) caused the caddisflies to drift downstream and distribute longitudinally instead of vertically within the sediments, as we had previously observed in the mesocosm study. Taken together with previous results, our findings show that species interactions in multi-species communities can generate synergies that have fundamentally unique impacts on sediment stability compared to just single species communities, but these impacts will be scale dependent and vary with ecosystem complexity. Field tests are the next step to improve our ability to accurately quantify the influence of stream insects on sediment transport conditions, and the results reported here will help refine experimental design for tests in natural streams.
Assessing Stream Channel Stability at Bridges in Physiographic Regions
DOT National Transportation Integrated Search
2006-07-01
The objective of this study was to expand and improve a rapid channel stability assessment method developed previously by Johnson et al. to include additional factors, such as major physiographic units across the United States, a greater range of ban...
Macroinvertebrate diversity loss in urban streams from tropical forests.
Docile, Tatiana N; Figueiró, Ronaldo; Portela, Clayton; Nessimian, Jorge L
2016-04-01
The increase of human activities in recent years has significantly interfered and affected aquatic ecosystems. In this present study, we investigate the effects of urbanization in the community structure of aquatic macroinvertebrates from Atlantic Forest streams. The sampling was conducted in the mountainous region of the State of Rio de Janeiro, Brazil in 10 urban and 10 preserved streams during the dry season (August-September) of 2012. The streams were characterized for its environmental integrity conditions and physico-chemical properties of water. The macroinvertebrates were sampled on rocky substrates with a kicknet. A total of 5370 individuals were collected from all streams and were distributed among Ephemeroptera, Odonata, Plecoptera, Hemiptera, Megaloptera, Coleoptera, Trichoptera, Lepidoptera, and Diptera. In urban sites, all those orders were found, except Megaloptera, while only Mollusca was not found in preserved streams. We performed a non-metric multidimensional scaling (NMDS) analysis that separated two groups distributed among sites in urban communities and another group outside this area. The dominance was significantly higher at urban sites, while the α diversity and equitability were greater in preserved sites. A canonical correspondence analysis (CCA) was also performed, indicating that most taxa associated with high values of the Habitat Integrity Index (HII) and a few genus of the order Diptera with the high values of ammonia, total nitrogen, associated to streams in urban sites. Urban and preserved streams differ by physical-chemical variables and aquatic macroinvertebrates. In urban streams, there is most dominance, while α diversity and equitability are higher in preserved streams.
A theory of solar type 3 radio bursts
NASA Technical Reports Server (NTRS)
Goldstein, M. L.; Papadopoulos, K.; Smith, R. A.
1979-01-01
Energetic electrons propagating through the interplanetary medium are shown to excite the one dimensional oscillating two stream instability (OTSI). The OTSI is in turn stabilized by anomalous resistivity which completes the transfer of long wavelength Langmuir waves to short wavelengths, out of resonance with the electrons. The theory explains the small energy losses suffered by the electrons in propagating to 1 AU, the predominance of second harmonic radiation, and the observed correlation between radio and electron fluxes.
The stability of aluminium oxide monolayer and its interface with two-dimensional materials
NASA Astrophysics Data System (ADS)
Song, Ting Ting; Yang, Ming; Chai, Jian Wei; Callsen, Martin; Zhou, Jun; Yang, Tong; Zhang, Zheng; Pan, Ji Sheng; Chi, Dong Zhi; Feng, Yuan Ping; Wang, Shi Jie
2016-07-01
The miniaturization of future electronic devices requires the knowledge of interfacial properties between two-dimensional channel materials and high-κ dielectrics in the limit of one atomic layer thickness. In this report, by combining particle-swarm optimization method with first-principles calculations, we present a detailed study of structural, electronic, mechanical, and dielectric properties of Al2O3 monolayer. We predict that planar Al2O3 monolayer is globally stable with a direct band gap of 5.99 eV and thermal stability up to 1100 K. The stability of this high-κ oxide monolayer can be enhanced by substrates such as graphene, for which the interfacial interaction is found to be weak. The band offsets between the Al2O3 monolayer and graphene are large enough for electronic applications. Our results not only predict a stable high-κ oxide monolayer, but also improve the understanding of interfacial properties between a high-κ dielectric monolayer and two-dimensional material.
Stephens, Terrance L; Budwig, Ralph S
2007-01-01
Two acoustic devices to stabilize a droplet in an open gas stream (single-axis and three-axis levitators) have been designed and tested. The gas stream was provided by a jet apparatus with a 64 mm exit diameter and a uniform velocity profile. The acoustic source used was a Langevin vibrator with a concave reflector. The single-axis levitator relied primarily on the radial force from the acoustic field and was shown to be limited because of significant droplet wandering. The three-axis levitator relied on a combination of the axial and radial forces. The three-axis levitator was applied to examine droplet deformation and circulation and to investigate the uptake of SO(2) from the gas stream to the droplet. Droplets ranging in diameters from 2 to 5 mm were levitated in gas streams with velocities up to 9 ms. Droplet wandering was on the order of a half droplet diameter for a 3 mm diameter droplet. Droplet circulation ranged from the predicted Hadamard-Rybczynski pattern to a rotating droplet pattern. Droplet pH over a central volume of the droplet was measured by planar laser induced fluorescence. The results for the decay of droplet pH versus time are in general agreement with published theory and experiments.
NASA Astrophysics Data System (ADS)
Stephens, Terrance L.; Budwig, Ralph S.
2007-01-01
Two acoustic devices to stabilize a droplet in an open gas stream (single-axis and three-axis levitators) have been designed and tested. The gas stream was provided by a jet apparatus with a 64mm exit diameter and a uniform velocity profile. The acoustic source used was a Langevin vibrator with a concave reflector. The single-axis levitator relied primarily on the radial force from the acoustic field and was shown to be limited because of significant droplet wandering. The three-axis levitator relied on a combination of the axial and radial forces. The three-axis levitator was applied to examine droplet deformation and circulation and to investigate the uptake of SO2 from the gas stream to the droplet. Droplets ranging in diameters from 2to5mm were levitated in gas streams with velocities up to 9m /s. Droplet wandering was on the order of a half droplet diameter for a 3mm diameter droplet. Droplet circulation ranged from the predicted Hadamard-Rybczynski pattern to a rotating droplet pattern. Droplet pH over a central volume of the droplet was measured by planar laser induced fluorescence. The results for the decay of droplet pH versus time are in general agreement with published theory and experiments.
Singularly Perturbed Lie Bracket Approximation
Durr, Hans-Bernd; Krstic, Miroslav; Scheinker, Alexander; ...
2015-03-27
Here, we consider the interconnection of two dynamical systems where one has an input-affine vector field. We show that by employing a singular perturbation analysis and the Lie bracket approximation technique, the stability of the overall system can be analyzed by regarding the stability properties of two reduced, uncoupled systems.
PHOSPHITE STABILIZATION EFFECTS ON TWO-STEP MELT-SPUN FIBERS OF POLYLACTIDE. (R826733)
The effects of molecular weight stabilization on mechanical properties of polylactide (PLA) fibers are investigated. The textile-grade PLA contains a 98:02 ratio of L:D stereocenters and fibers are produced by the two step method, involving a primary quench and cold drawing. M...
ERIC Educational Resources Information Center
Lowe, Patricia A.; Reynolds, Cecil R.
2006-01-01
The psychometric properties of the Adult Manifest Anxiety Scale-Elderly Version (AMAS-E) scores were evaluated in two studies. In Study 1, the temporal stability and construct validity of the AMAS-E test scores were examined in a group of 226 older adults, aged 60 years and older. Results indicated adequate to excellent temporal stability (2-week…
Geochemical controls on lead concentrations in stream water and sediments
Hem, J.D.
1976-01-01
The equilibrium distribution of lead in solution and adsorbed on cation exchange sites in sediment theoretically may be calculated from equations representing selectivities of substrate for lead over H+, Ca2+ and Na+, and the stabilities of lead solute species. Such calculations include consideration of total concentrations of major ions, cation exchange capacity (CEC) of substrate, and pH, at values expected in various natural systems. Measurements of CEC and selectivity coefficients were made for synthetic halloysite, a finely divided amorphous 1:1 clay prepared by precipitation from a mixture of solutions of aluminum and silica. Where suspended sediment having the same properties is present in concentrations of 10-1,000 mg/1 at pH 6-8, more than 90% of the lead present can be adsorbed on sediment surfaces. The cation exchange behavior of lead and other minor cationic species in natural systems could be predicted by this type of model if enough other supporting information were available. Information of the type needed describing natural stream sediments, however, is presently inadequate for accurate predictions. ?? 1976.
Inviscid spatial stability of a compressible mixing layer. Part 2: The flame sheet model
NASA Technical Reports Server (NTRS)
Jackson, T. L.; Grosch, C. E.
1989-01-01
The results of an inviscid spatial calculation for a compressible reacting mixing layer are reported. The limit of infinitive activation energy is taken and the diffusion flame is approximated by a flame sheet. Results are reported for the phase speeds of the neutral waves and maximum growth rates of the unstable waves as a function of the parameters of the problem: the ratio of the temperature of the stationary stream to that of the moving stream, the Mach number of the moving streams, the heat release per unit mass fraction of the reactant, the equivalence ratio of the reaction, and the frequency of the disturbance. These results are compared to the phase speeds and growth rates of the corresponding nonreacting mixing layer. We show that the addition of combustion has important, and complex effects on the flow stability.
What's a stream without water? Disproportionality in headwater regions impacting water quality.
Armstrong, Andrea; Stedman, Richard C; Bishop, Joseph A; Sullivan, Patrick J
2012-11-01
Headwater streams are critical components of the stream network, yet landowner perceptions, attitudes, and property management behaviors surrounding these intermittent and ephemeral streams are not well understood. Our research uses the concept of watershed disproportionality, where coupled social-biophysical conditions bear a disproportionate responsibility for harmful water quality outcomes, to analyze the potential influence of riparian landowner perceptions and attitudes on water quality in headwater regions. We combine social science survey data, aerial imagery, and an analysis of spatial point processes to assess the relationship between riparian landowner perceptions and attitudes in relation to stream flow regularity. Stream flow regularity directly and positively shapes landowners' water quality concerns, and also positively influences landowners' attitudes of stream importance-a key determinant of water quality concern as identified in a path analysis. Similarly, riparian landowners who do not notice or perceive a stream on their property are likely located in headwater regions. Our findings indicate that landowners of headwater streams, which are critical areas for watershed-scale water quality, are less likely to manage for water quality than landowners with perennial streams in an obvious, natural channel. We discuss the relationships between streamflow and how landowners develop understandings of their stream, and relate this to the broader water quality implications of headwater stream mismanagement.
Headwater Stream Management Dichotomies: Local Amphibian Habitat vs. Downstream Fish Habitat
NASA Astrophysics Data System (ADS)
Jackson, C. R.
2002-12-01
Small headwater streams in mountainous areas of the Pacific Northwest often do not harbor fish populations because of low water depth and high gradients. Rather, these streams provide habitat for dense assemblages of stream-dwelling amphibians. A variety of management goals have been suggested for such streams such as encouraging large woody debris recruitment to assist in sediment trapping and valley floor formation, encouraging large woody debris recruitment to provide downstream wood when debris flows occur, providing continuous linear stream buffers within forest harvest areas to provide shade and bank stability, etc. A basic problem with analying the geomorphic or biotic benefits of any of these strategies is the lack of explicit management goals for such streams. Should managers strive to optimize downstream fish habitat, local amphibian habitat, or both? Through observational data and theoretical considerations, it will be shown that these biotic goals will lead to very different geomorphic management recommendations. For instance, woody debris greater than 60 cm diameter may assist in valley floor development, but it is likely to create subsurface channel flow of unknown value to amphibians. Trapping and retention of fine sediments within headwater streams may improve downstream spawning gravels, but degrades stream-dwelling amphibian habitat. In response to the need for descriptive information on habitat and channel morphology specific to small, non-fish-bearing streams in the Pacific Northwest, morphologies and wood frequencies in forty-two first- and second-order forested streams less than four meters wide were surveyed. Frequencies and size distributions of woody debris were compared between small streams and larger fish-bearing streams as well as between second-growth and virgin timber streams. Statistical models were developed to explore dominant factors affecting channel morphology and habitat. Findings suggest geomorphological relationships, specifically the role of woody debris in habitat formation, documented for larger streams do not apply to headwater streams. Relatively small wood (diameters between 10 and 40 cm), inorganic material, and organic debris (diameters less than 10 cm) were major step-forming agents while big woody debris pieces (> 40 cm dia.) created less than 10% of steps. Streams in virgin and managed stands did not differ in relative importance of very large woody debris. Due to low fluvial power, pool habitat was rare. These streams featured mostly step-riffle morphology, not step-pool, indicating insufficient flow for pool-scour. Stream power and unit stream power were dominant channel shaping factors.
The quality of our Nation’s waters--ecological health in the Nation's streams, 1993-2005
Carlisle, Daren M.; Meador, Michael R.; Short, Terry M.; Tate, Cathy M.; Gurtz, Martin E.; Bryant, Wade L.; Falcone, James A.; Woodside, Michael D.
2013-01-01
This report summarizes a national assessment of the ecological health of streams done by the U.S. Geological Survey's (USGS) National Water-Quality Assessment Program (NAWQA). Healthy functioning stream ecosystems provide society with many benefits, including water purification, flood control, nutrient recycling, waste decomposition, fisheries, and aesthetics. The value to society of many of these benefits is substantial; for example, sportfishing in the United States generates an estimated annual economic output of $125 billion, including more than 1 million jobs (National Research Council, 2005; American Sportfishing Association, 2008). Continued monitoring and assessment of the Nation’s streams is needed to support informed decisions that will safeguard this important natural and economic resource. The quality of streams and rivers is often assessed with measures of the chemical or physical properties of water. However, a more comprehensive perspective is obtained if resident biological communities are also assessed. Guidelines to protect human health and aquatic life have been established for specific physical and chemical properties of water and have become useful yardsticks with which to assess water quality. Biological communities provide additional crucial information because they live within streams for weeks to years and therefore integrate through time the effects of changes to their chemical or physical environment. In addition, biological communities are a direct measure of stream health—an indicator of the ability of a stream to support aquatic life. Thus, the condition of biological communities, integrated with key physical and chemical properties, provides a comprehensive assessment of stream health.
Wang, Mei-Zhen; Lai, Bai-Min; Dandekar, Ajai A; Yang, Yu-Sheng; Li, Na; Yin, Jun; Shen, Dong-Sheng
2017-08-15
Pseudomonas aeruginosa SD-1 is efficient at degrading aromatic compounds and can therefore contribute to the bioremediation of wastewater. P. aeruginosa uses quorum sensing (QS) to regulate the production of numerous secreted "public goods." In wastewater bioaugmentation applications, there are myriad nitrogen sources, and we queried whether various nitrogen sources impact the stabilities of both QS and the bacterial populations. In a laboratory strain of P. aeruginosa , PAO1, the absence of a nitrogen source has been shown to destabilize these populations through the emergence of QS mutant "cheaters." We tested the ability of SD-1 to grow in casein broth, a condition that requires QS for growth, when the nitrogen source with either NH 4 Cl, NaNO 3 , or NaNO 2 or with no added nitrogen source. There was great variability in susceptibility to invasion by QS mutant cheaters and, by extension, the stability of the SD-1 population. When grown with NH 4 Cl as an extra nitrogen source, no population collapse was observed; by contrast, two-thirds of cultures grown in the presence of NaNO 2 collapsed. In the populations that collapsed, the frequency of social cheaters exceeded 40%. NaNO 3 and NaNO 2 directly favor QS mutants of P. aeruginosa SD-1. Although the mechanism by which these nitrogen sources act is not clear, these data indicate that the metabolism of nitrogen can affect the stability of bacterial populations, an important observation for continuing industrial applications with this species. IMPORTANCE Bioaugmentation as a method to help remediate wastewater pollutant streams holds significant potential to enhance traditional methods of treatment. Addition of microbes that can catabolize organic pollutants can be an effective method to remove several toxic compounds. Such bioaugmented strains of bacteria have been shown to be susceptible to competition from the microbiota that are present in wastewater streams, limiting their potential effectiveness. Here, we show that bioaugmentation strains of bacteria might also be susceptible to invasion by social cheaters and that the nitrogen sources available in the wastewater might influence the ability of cheaters to overtake the bioaugmentation strains. Our results imply that control over the nitrogen sources in a wastewater stream or selective addition of certain nitrogen sources could help stabilize bioaugmentation strains of bacteria. Copyright © 2017 American Society for Microbiology.
Recurrent solar wind streams observed by interplanetary scintillation of 3C 48
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, T.; Kakinuma, T.
1972-10-01
The interplanetary scintillation of 3C 48 was observed by two spaced receivers (69.3 MHz) during February and March 1971. The recurrent property of the observed velocity increase of the solar wind is clearly seen, and their recurrent period is 24 to 25 days. This value is shorter than the synodic period of 27 days, but this deviation may be explained by the displacement of the closest point to the Sun on the line of sight for 3C 48. A comparison with the data of the wind velocity obtained by apace probes shows that the observed enhancements are associated with twomore » high-velocity streams corotating around the Sun. The enhancements of the scintillation index precede by about two days the velocity enhancements, and it may be concluded that such enhancement of the scintillation index has resulted from the compressed region of the interplanetary plasma formed in front of the high-velocity corotating stream. (auth)« less
The remnant of a merger between two dwarf galaxies in Andromeda II.
Amorisco, N C; Evans, N W; van de Ven, G
2014-03-20
Driven by gravity, massive structures like galaxies and clusters of galaxies are believed to grow continuously through hierarchical merging and accretion of smaller systems. Observational evidence of accretion events is provided by the coherent stellar streams crossing the outer haloes of massive galaxies, such as the Milky Way or Andromeda. At similar mass scales, around 10(11) solar masses in stars, further evidence of merging activity is also ample. Mergers of lower-mass galaxies are expected within the hierarchical process of galaxy formation, but have hitherto not been seen for galaxies with less than about 10(9) solar masses in stars. Here we report the kinematic detection of a stellar stream in one of the satellite galaxies of Andromeda, the dwarf spheroidal Andromeda II, which has a mass of only 10(7) solar masses in stars. The properties of the stream show that we are observing the remnant of a merger between two dwarf galaxies. This had a drastic influence on the dynamics of the remnant, which is now rotating around its projected major axis. The stellar stream in Andromeda II illustrates the scale-free character of the formation of galaxies, down to the lowest galactic mass scales.
RS-Forest: A Rapid Density Estimator for Streaming Anomaly Detection.
Wu, Ke; Zhang, Kun; Fan, Wei; Edwards, Andrea; Yu, Philip S
Anomaly detection in streaming data is of high interest in numerous application domains. In this paper, we propose a novel one-class semi-supervised algorithm to detect anomalies in streaming data. Underlying the algorithm is a fast and accurate density estimator implemented by multiple fully randomized space trees (RS-Trees), named RS-Forest. The piecewise constant density estimate of each RS-tree is defined on the tree node into which an instance falls. Each incoming instance in a data stream is scored by the density estimates averaged over all trees in the forest. Two strategies, statistical attribute range estimation of high probability guarantee and dual node profiles for rapid model update, are seamlessly integrated into RS-Forest to systematically address the ever-evolving nature of data streams. We derive the theoretical upper bound for the proposed algorithm and analyze its asymptotic properties via bias-variance decomposition. Empirical comparisons to the state-of-the-art methods on multiple benchmark datasets demonstrate that the proposed method features high detection rate, fast response, and insensitivity to most of the parameter settings. Algorithm implementations and datasets are available upon request.
RS-Forest: A Rapid Density Estimator for Streaming Anomaly Detection
Wu, Ke; Zhang, Kun; Fan, Wei; Edwards, Andrea; Yu, Philip S.
2015-01-01
Anomaly detection in streaming data is of high interest in numerous application domains. In this paper, we propose a novel one-class semi-supervised algorithm to detect anomalies in streaming data. Underlying the algorithm is a fast and accurate density estimator implemented by multiple fully randomized space trees (RS-Trees), named RS-Forest. The piecewise constant density estimate of each RS-tree is defined on the tree node into which an instance falls. Each incoming instance in a data stream is scored by the density estimates averaged over all trees in the forest. Two strategies, statistical attribute range estimation of high probability guarantee and dual node profiles for rapid model update, are seamlessly integrated into RS-Forest to systematically address the ever-evolving nature of data streams. We derive the theoretical upper bound for the proposed algorithm and analyze its asymptotic properties via bias-variance decomposition. Empirical comparisons to the state-of-the-art methods on multiple benchmark datasets demonstrate that the proposed method features high detection rate, fast response, and insensitivity to most of the parameter settings. Algorithm implementations and datasets are available upon request. PMID:25685112
Spatial Distribution of Bed Particles in Natural Boulder-Bed Streams
NASA Astrophysics Data System (ADS)
Clancy, K. F.; Prestegaard, K. L.
2001-12-01
The Wolman pebble count is used to obtain the size distribution of bed particles in natural streams. Statistics such as median particle size (D50) are used in resistance calculations. Additional information such as bed particle heterogeneity may also be obtained from the particle distribution, which is used to predict sediment transport rates (Hey, 1979), (Ferguson, Prestegaard, Ashworth, 1989). Boulder-bed streams have an extreme range of particles in the particle size distribution ranging from sand size particles to particles larger than 0.5-m. A study of a natural boulder-bed reach demonstrated that the spatial distribution of the particles is a significant factor in predicting sediment transport and stream bed and bank stability. Further experiments were performed to test the limits of the spatial distribution's effect on sediment transport. Three stream reaches 40-m in length were selected with similar hydrologic characteristics and spatial distributions but varying average size particles. We used a grid 0.5 by 0.5-m and measured four particles within each grid cell. Digital photographs of the streambed were taken in each grid cell. The photographs were examined using image analysis software to obtain particle size and position of the largest particles (D84) within the reach's particle distribution. Cross section, topography and stream depth were surveyed. Velocity and velocity profiles were measured and recorded. With these data and additional surveys of bankfull floods, we tested the significance of the spatial distributions as average particle size decreases. The spatial distribution of streambed particles may provide information about stream valley formation, bank stability, sediment transport, and the growth rate of riparian vegetation.
Penta-P2X (X=C, Si) monolayers as wide-bandgap semiconductors: A first principles prediction
NASA Astrophysics Data System (ADS)
Naseri, Mosayeb; Lin, Shiru; Jalilian, Jaafar; Gu, Jinxing; Chen, Zhongfang
2018-06-01
By means of density functional theory computations, we predicted two novel two-dimensional (2D) nanomaterials, namely P2X (X=C, Si) monolayers with pentagonal configurations. Their structures, stabilities, intrinsic electronic, and optical properties as well as the effect of external strain to the electronic properties have been systematically examined. Our computations showed that these P2C and P2Si monolayers have rather high thermodynamic, kinetic, and thermal stabilities, and are indirect semiconductors with wide bandgaps (2.76 eV and 2.69 eV, respectively) which can be tuned by an external strain. These monolayers exhibit high absorptions in the UV region, but behave as almost transparent layers for visible light in the electromagnetic spectrum. Their high stabilities and exceptional electronic and optical properties suggest them as promising candidates for future applications in UV-light shielding and antireflection layers in solar cells.
T-mixer operating with water at different temperatures: Simulation and stability analysis
NASA Astrophysics Data System (ADS)
Siconolfi, L.; Camarri, S.; Salvetti, M. V.
2018-03-01
In this paper we investigate the transition from the vortex to the engulfment regime in a T-mixer when the two entering flows have different viscosity. In particular we consider as working fluid water entering the two inlet channels of the mixer at two different temperatures. Contrary to the isothermal case, at low Reynolds numbers the vortex regime shows only a single reflectional symmetry, due to the nonhomogeneous distribution of the viscosity. Increasing the Reynolds number, a symmetry-breaking bifurcation drives the system to a new steady flow configuration, usually called the engulfment regime, similar to what it is possible to observe in an isothermal case. This flow regime is associated with an increase of the mixing between the two inlet streams. It is shown by direct numerical simulation (DNS) and by stability analysis that the engulfment regime is promoted by the temperature difference. Starting from the DNSs, the resulting flow fields are analyzed in detail considering different temperature jumps between the two inlet boundaries. Furthermore, dedicated linear stability analyses are carried out to investigate the instability mechanism associated with the occurrence of the engulfment regime. In particular, similarly to the case without temperature differences, the onset of engulfment is driven by the momentum equation, and the temperature field does not lead to any additional instability mechanism. However, the existence of a temperature field leads to quantitative changes of the stability characteristics and of the resulting flow fields via a variation of the viscosity coefficient.
Gug, JeongIn; Cacciola, David; Sobkowicz, Margaret J
2015-01-01
Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in higher heating value. Analysis of the post-processing water uptake and compressive strength showed a correlation between density and stability to both mechanical stress and humid environment. Proximate analysis indicated heating values comparable to coal. The results showed that mechanical and moisture uptake stability were improved when the moisture and air contents were optimized. Moreover, the briquette sample composition was similar to biomass fuels but had significant advantages due to addition of waste plastics that have high energy content compared to other waste types. Addition of PP and HDPE presented better benefits than addition of PET due to lower softening temperature and lower oxygen content. It should be noted that while harmful emissions such as dioxins, furans and mercury can result from burning plastics, WTE facilities have been able to control these emissions to meet US EPA standards. This research provides a drop-in coal replacement that reduces demand on landfill space and replaces a significant fraction of fossil-derived fuel with a renewable alternative. Copyright © 2014 Elsevier Ltd. All rights reserved.
Minebank Run is a degraded second-order flashy urban stream in Baltimore County which is slated to undergo restoration in August 2003 to re-establish geomorphic stability. We are currently conducting an intensive investigation of surface water/ground water interaction and nutrien...
Vegetative Measures for Streambank Stabilization: Case Studies from Illinois and Missouri
Teri Heyer
1997-01-01
Streambank erosion is a common problem throughout the United States. A stream naturally loses bank material and redeposits it elsewhere. However, sediment carried by the stream can decrease water quality especially for the aquatic population by covering substrate and increasing turbidity. Once begun, streambank erosion can be a chronic problem, causing continual loss...
Rolls, Edmund T; Mills, W Patrick C
2018-05-01
When objects transform into different views, some properties are maintained, such as whether the edges are convex or concave, and these non-accidental properties are likely to be important in view-invariant object recognition. The metric properties, such as the degree of curvature, may change with different views, and are less likely to be useful in object recognition. It is shown that in a model of invariant visual object recognition in the ventral visual stream, VisNet, non-accidental properties are encoded much more than metric properties by neurons. Moreover, it is shown how with the temporal trace rule training in VisNet, non-accidental properties of objects become encoded by neurons, and how metric properties are treated invariantly. We also show how VisNet can generalize between different objects if they have the same non-accidental property, because the metric properties are likely to overlap. VisNet is a 4-layer unsupervised model of visual object recognition trained by competitive learning that utilizes a temporal trace learning rule to implement the learning of invariance using views that occur close together in time. A second crucial property of this model of object recognition is, when neurons in the level corresponding to the inferior temporal visual cortex respond selectively to objects, whether neurons in the intermediate layers can respond to combinations of features that may be parts of two or more objects. In an investigation using the four sides of a square presented in every possible combination, it was shown that even though different layer 4 neurons are tuned to encode each feature or feature combination orthogonally, neurons in the intermediate layers can respond to features or feature combinations present is several objects. This property is an important part of the way in which high capacity can be achieved in the four-layer ventral visual cortical pathway. These findings concerning non-accidental properties and the use of neurons in intermediate layers of the hierarchy help to emphasise fundamental underlying principles of the computations that may be implemented in the ventral cortical visual stream used in object recognition. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, Mingjing; Rhoads, Bruce L.
2018-05-01
The flux of fine sediment within agricultural watersheds is an important factor determining the environmental quality of streams and rivers. Despite this importance, the contributions of sediment sources to suspended sediment loads within intensively managed agricultural watersheds remain poorly understood. This study assesses the provenance of fine suspended sediment in the headwater portion of a river flowing through an agricultural landscape in Illinois. Sediment source samples were collected from five sources: croplands, forested floodplains, grasslands, upper grazed floodplains, and lower grazed floodplains. Event-based and aggregated suspended sediment samples were collected from the stream at the watershed outlet. Quantitative geochemical fingerprinting techniques and a mixing model were employed to estimate the relative contributions of sediment from the five sources to the suspended sediment loads. To account for possible effects of small sample sizes, the analysis was repeated with only two sources: grazed floodplains and croplands/grasslands/forested floodplains. Results based on mean values of tracers indicate that the vast majority of suspended sediment within the stream (>95%) is derived from erosion of channel banks and the soil surface within areas of grazed floodplains. Uncertainty analysis based on Monte Carlo simulations indicates that mean values of tracer properties, which do not account for sampling variability in these properties, probably overestimate contributions from the two major sources. Nevertheless, this analysis still supports the conclusion that floodplain erosion accounts for the largest percentage of instream sediment (≈55-75%). Although grazing occurs over only a small portion of the total watershed area, grazed floodplains, which lie in close proximity to the stream channel, are an important source of sediment in this headwater steam system. Efforts to reduce fluxes of fine sediment in this intensively managed landscape should focus on eroding floodplain surfaces and channel banks within heavily grazed reaches of the stream.
Nonlinear Stability and Structure of Compressible Reacting Mixing Layers
NASA Technical Reports Server (NTRS)
Day, M. J.; Mansour, N. N.; Reynolds, W. C.
2000-01-01
The parabolized stability equations (PSE) are used to investigate issues of nonlinear flow development and mixing in compressible reacting shear layers. Particular interest is placed on investigating the change in flow structure that occurs when compressibility and heat release are added to the flow. These conditions allow the 'outer' instability modes- one associated with each of the fast and slow streams-to dominate over the 'central', Kelvin-Helmholtz mode that unaccompanied in incompressible nonreacting mixing layers. Analysis of scalar probability density functions in flows with dominant outer modes demonstrates the ineffective, one-sided nature of mixing that accompany these flow structures. Colayer conditions, where two modes have equal growth rate and the mixing layer is formed by two sets of vortices, offer some opportunity for mixing enhancement. Their extent, however, is found to be limited in the mixing layer's parameter space. Extensive validation of the PSE technique also provides a unique perspective on central- mode vortex pairing, further supporting the view that pairing is primarily governed perspective sheds insight on how linear stability theory is able to provide such an accurate prediction of experimentally-observed, fully nonlinear flow phenomenon.
NASA Technical Reports Server (NTRS)
Connell, Andrea M.
2011-01-01
The Deep Space Network (DSN) has three communication facilities which handle telemetry, commands, and other data relating to spacecraft missions. The network requires these three sites to share data with each other and with the Jet Propulsion Laboratory for processing and distribution. Many database management systems have replication capabilities built in, which means that data updates made at one location will be automatically propagated to other locations. This project examines multiple replication solutions, looking for stability, automation, flexibility, performance, and cost. After comparing these features, Oracle Streams is chosen for closer analysis. Two Streams environments are configured - one with a Master/Slave architecture, in which a single server is the source for all data updates, and the second with a Multi-Master architecture, in which updates originating from any of the servers will be propagated to all of the others. These environments are tested for data type support, conflict resolution, performance, changes to the data structure, and behavior during and after network or server outages. Through this experimentation, it is determined which requirements of the DSN can be met by Oracle Streams and which cannot.
Inviscid linear stability analysis of two fluid columns of different densities subject to gravity
NASA Astrophysics Data System (ADS)
Prathama, Aditya; Pantano, Carlos
2017-11-01
We investigate the inviscid linear stability of vertical interface between two fluid columns of different densities under the influence of gravity. In this flow arrangement, the two free streams are continuously accelerating, in contrast to the canonical Kelvin-Helmholtz or Rayleigh-Taylor instabilities whose base flows are stationary (or weakly time dependent). In these classical cases, the temporal evolution of the interface can be expressed as Fourier or Laplace solutions in time. This is not possible in our case; instead, we employ the initial value problem method to solve the equations analytically. The results, expressed in terms of the well-known parabolic cylinder function, indicate that the instability grows as the exponential of a quadratic function of time. The analysis shows that in this accelerating Kelvin-Helmholtz configuration, the interface is unconditionally unstable at all wave modes, despite the presence of surface tension. Department of Energy, National Nuclear Security Administration (Award No. DE-NA0002382) and the California Institute of Technology.
Bougamont, M.; Christoffersen, P.; Price, S. F.; ...
2015-10-21
Ongoing, centennial-scale flow variability within the Ross ice streams of West Antarctica suggests that the present-day positive mass balance in this region may reverse in the future. Here we use a three-dimensional ice sheet model to simulate ice flow in this region over 250 years. The flow responds to changing basal properties, as a subglacial till layer interacts with water transported in an active subglacial hydrological system. We show that a persistent weak bed beneath the tributaries of the dormant Kamb Ice Stream is a source of internal ice flow instability, which reorganizes all ice streams in this region, leadingmore » to a reduced (positive) mass balance within decades and a net loss of ice within two centuries. This hitherto unaccounted for flow variability could raise sea level by 5 mm this century. Furthermore, better constraints on future sea level change from this region will require improved estimates of geothermal heat flux and subglacial water transport.« less
Kioseoglou, J; Kalesaki, E; Lymperakis, L; Karakostas, Th; Komninou, Ph
2013-01-30
First-principles calculations relating to the atomic structure and electronic properties of {101[overline]3} GaN surfaces reveal significant differentiations between the two polarity orientations. The (101[overline]3) surface exhibits a remarkable morphological stability, stabilizing a metallic structure (Ga adlayer) over the entire range of the Ga chemical potential. In contrast, the semiconducting, cleaved surface is favoured on (101[overline]3[overline]) under extremely and moderately N-rich conditions, a Ga bilayer is stabilized under corresponding Ga-rich conditions and various transitions between metallic reconstructions take place in intermediate growth stoichiometries. Efficient growth schemes for smooth, two-dimensional GaN layers and the isolation of {101[overline]3} material from parasitic orientations are identified.
NASA Astrophysics Data System (ADS)
Zhou, Wenhan; Guo, Shiying; Liu, Xuhai; Cai, Bo; Song, Xiufeng; Zhu, Zhen; Zhang, Shengli
2018-01-01
We propose a family of hydrogenated- and halogenated-SbIV (SbIVX-2) materials that simultaneously have two-dimensional (2D) structures, high stability and appealing electronic properties. Based on first-principles total-energy and vibrational-spectra calculations, SbIVX-2 monolayers are found both thermally and dynamically stable. Varying IV and X elements can rationally tune the electronic properties of SbIVX-2 monolayers, effectively modulating the band gap from 0 to 3.42 eV. Regarding such superior stability and broad band-gap range, SbIVX-2 monolayers are expected to be synthesized in experiments and taken as promising candidates for low-dimensional electronic and optoelectronic devices, such as blue-to-ultraviolet light-emitting diodes (LED) and photodetectors.
Experimental study on the stability and failure of individual step-pool
NASA Astrophysics Data System (ADS)
Zhang, Chendi; Xu, Mengzhen; Hassan, Marwan A.; Chartrand, Shawn M.; Wang, Zhaoyin
2018-06-01
Step-pools are one of the most common bedforms in mountain streams, the stability and failure of which play a significant role for riverbed stability and fluvial processes. Given this importance, flume experiments were performed with a manually constructed step-pool model. The experiments were carried out with a constant flow rate to study features of step-pool stability as well as failure mechanisms. The results demonstrate that motion of the keystone grain (KS) caused 90% of the total failure events. The pool reached its maximum depth and either exhibited relative stability for a period before step failure, which was called the stable phase, or the pool collapsed before its full development. The critical scour depth for the pool increased linearly with discharge until the trend was interrupted by step failure. Variability of the stable phase duration ranged by one order of magnitude, whereas variability of pool scour depth was constrained within 50%. Step adjustment was detected in almost all of the runs with step-pool failure and was one or two orders smaller than the diameter of the step stones. Two discharge regimes for step-pool failure were revealed: one regime captures threshold conditions and frames possible step-pool failure, whereas the second regime captures step-pool failure conditions and is the discharge of an exceptional event. In the transitional stage between the two discharge regimes, pool and step adjustment magnitude displayed relatively large variabilities, which resulted in feedbacks that extended the duration of step-pool stability. Step adjustment, which was a type of structural deformation, increased significantly before step failure. As a result, we consider step deformation as the direct explanation to step-pool failure rather than pool scour, which displayed relative stability during step deformations in our experiments.
Walla Walla River Basin Fish Habitat Enhancement Project, 2002-2003 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkman, Jed
2005-12-01
In 2002 and 2003, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts on private properties in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of this effort is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. The CTUIR has currently enrolled nine properties into this program: two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and four properties on the mainstem Walla Walla River. Major accomplishments during the reportingmore » period include the following: (1) Secured approximately $229,000 in project cost share; (2) Purchase of 46 acres on the mainstem Walla Walla River to be protected perpetually for native fish and wildlife; (3) Developed three new 15 year conservation easements with private landowners; (4) Installed 3000 feet of weed barrier tarp with new plantings within project area on the mainstem Walla Walla River; (5) Expanded easement area on Couse Creek to include an additional 0.5 miles of stream corridor and 32 acres of upland habitat; (6) Restored 12 acres on the mainstem Walla Walla River and 32 acres on Couse Creek to native perennial grasses; and (7) Installed 50,000+ new native plants/cuttings within project areas.« less
NASA Astrophysics Data System (ADS)
Fedders, E. R.; Anderson, W. P., Jr.; Hengst, A. M.; Gu, C.
2017-12-01
Boone Creek is a headwater stream of low to moderate gradient located in Boone, North Carolina, USA. Total impervious surface coverage in the 5.2 km2 catchment drained by the 1.9 km study reach increases from 13.4% in the upstream half of the reach to 24.3% in the downstream half. Other markers of urbanization, including culverting, lack of riparian shade vegetation, and bank armoring also increase downstream. Previous studies have shown the stream to be prone to temperature surges on short timescales (minutes to hours) caused by summer runoff from the urban hardscaping. This study investigates the effects of urbanization on the stream's thermal regime at daily to yearly timescales. To do this, we developed an analytical model of daily average stream temperatures based on daily average air temperatures. We utilized a two-part model comprising annual and biannual components and a daily component consisting of a 3rd-order Markov process in order to fit the thermal dynamics of our small, gaining stream. Optimizing this model at each of our study sites in each studied year (78 total site-years of data) yielded annual thermal exchange coefficients (K) for each site. These K values quantify the strength of the relationship between stream and air temperature, or inverse thermal stability. In a uniform, pristine catchment environment, K values are expected to decrease downstream as the stream gains discharge volume and, therefore, thermal inertia. Interannual average K values for our study reach, however, show an overall increase from 0.112 furthest upstream to 0.149 furthest downstream, despite a near doubling of stream discharge between these monitoring points. K values increase only slightly in the upstream, less urban, half of the reach. A line of best fit through these points on a plot of reach distance versus K value has a slope of 2E-6. But the K values of downstream, more urbanized sites increase at a rate of 2E-5 per meter of reach distance, an order of magnitude greater. This indicates a possible tipping point in the stream temperature-water temperature relationship at which increased urbanization overpowers increasing stream thermal inertia.
The value of DCIP geophysical surveys for contaminated site investigations
NASA Astrophysics Data System (ADS)
Balbarini, N.; Rønde, V.; Maurya, P. K.; Møller, I.; McKnight, U. S.; Christiansen, A. V.; Binning, P. J.; Bjerg, P. L.
2017-12-01
Geophysical methods are increasingly being used in contaminant hydrogeology to map lithology, hydraulic properties, and contaminant plumes with a high ionic strength. Advances in the Direct Current resistivity and Induced Polarization (DCIP) method allow the collection of high resolution three dimensional (3D) data sets. The DC resistivity can describe both soil properties and the water electrical conductivity, while the IP can describe the lithology and give information on hydrogeological properties. The aim of the study was to investigate a large contaminant plume discharging to a stream from an old factory site by combining traditional geological, hydrological, and contaminant concentration data with DCIP surveys. The plume consisted of xenobiotic organic compounds and inorganics. The study assesses benefits and limitations of DCIP geophysics for contaminated site investigations. A 3D geological model was developed from borehole logs and DCIP data as framework for the complex transport pathways near the meandering stream. IP data were useful in indicating the continuity and the changes in thickness of local clay layers between the borehole logs. The geological model was employed to develop a groundwater flow model describing groundwater flows to the stream. The hydraulic conductivity distribution was based on IP data, slug tests and grain size analysis. The distribution of contaminant concentrations revealed two chemically distinct plumes, separated by a clay layer, with different transport paths to the stream. The DC resistivity was useful in mapping ionic compounds, but also organic compounds whose spatial distribution coincided with the ionic compounds. A conceptual model describing the contaminant plume was developed, and it matched well with contaminant concentrations in stream water and below the streambed. Surface DCIP surveys supported the characterization of the spatial variability in geology, hydraulic conductivity and contaminant concentration. Though DCIP data interpretation required additional borehole data, the DCIP survey reduced the number of boreholes required and helped design field campaigns. The results suggest DCIP surveys are useful and inexpensive tools, which has potential as an integrated part of contaminated site investigations.
NASA Technical Reports Server (NTRS)
Fishbach, L. H.; Koenig, R. W.
1972-01-01
A computer program which calculates steady-state design and off-design jet engine performance for two- or three-spool turbofans with one, two, or three nozzles is described. Included in the report are complete FORTRAN 4 listings of the program with sample results for nine basic turbofan engines that can be calculated: (1) three-spool, three-stream engine; (2) two-spool, three-stream, boosted-fan engine; (3) two-spool, three-stream, supercharged-compressor engine; (4) three-spool, two-stream engine; (5) two-spool, two-stream engine; (6) three-spool, three-stream, aft-fan engine; (7) two-spool, three-stream, aft-fan engine; (8) two-spool, two-stream, aft-engine; and (9) three-spool, two-stream, aft-fan engine. The simulation of other engines by using logical variables built into the program is also described.
On feathers, bifurcations and shells: the dynamics of tidal streams across the mass scale
NASA Astrophysics Data System (ADS)
Amorisco, N. C.
2015-06-01
I present an organic description of the spectrum of regimes of collisionless tidal streams and define the orderings between the relevant physical quantities that shape their morphology. Three fundamental dichotomies are identified and described in the form of dimensionless inequalities. These govern (i) the speed of the stream's growth, (ii) the internal coherence of the stream and (iii) its thickness or opening angle, within and outside the orbital plane. The mechanisms through which such main qualitative properties are regulated and the relevant limiting cases are analysed. For example, the slope of the host's density profile strongly influences the speed of the stream's growth, in both length and width, as steeper density profiles enhance differential streaming. Internal coherence is the natural requirement for the appearance of substructure and overdensities in tidal debris, and I concentrate on the characteristic `feathering' typical of streams of star clusters. Overdensities and substructures are associated with minima in the relative streaming velocity of the stream members. For streams with high circularity, these are caused by the epicyclic oscillations of stars; however, for highly non-circular progenitor's orbits, internal substructure is caused by the oscillating differences in energy and actions with which material is shed at different orbital phases of the progenitor. This modulation results in different streaming speeds along the tidal arm: the streakline of material shed between two successive apocentric passages is folded along its length, pulled at its centre by the faster differential streaming of particles released near pericentre, which are therefore more widely scattered. When the stream is coherent enough, the same mechanism is potentially capable of generating a bimodal profile in the density distributions of the longer wraps of more massive progenitors, which I dub `bifurcations'. The conditions that allow streams to be internally coherent are explored and I comment on the cases of Palomar 5, Willman 1, the Anticenter and Sagittarius' streams. Analytical methods are accompanied by numerical experiments, performed using a purposely built generative model, also presented here.
Mercury stabilization in chemically bonded phosphate ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagh, A. S.; Singh, D.; Jeong, S. Y.
2000-04-04
Mercury stabilization and solidification is a significant challenge for conventional stabilization technologies. This is because of the stringent regulatory limits on leaching of its stabilized products. In a conventional cement stabilization process, Hg is converted at high pH to its hydroxide, which is not a very insoluble compound; hence the preferred route for Hg sulfidation to convert it into insoluble cinnabar (HgS). Unfortunately, efficient formation of this compound is pH-dependent. At a high pH, one obtains a more soluble Hg sulfate, in a very low pH range, insufficient immobilization occurs because of the escape of hydrogen sulfide, while efficient formationmore » of HgS occurs only in a moderately acidic region. Thus, the pH range of 4 to 8 is where stabilization with Chemically Bonded Phosphate Ceramics (CBPC) is carried out. This paper discusses the authors experience on bench-scale stabilization of various US Department of Energy (DOE) waste streams containing Hg in the CBPC process. This process was developed to treat DOE's mixed waste streams. It is a room-temperature-setting process based on an acid-base reaction between magnesium oxide and monopotassium phosphate solution that forms a dense ceramic within hours. For Hg stabilization, addition of a small amount (< 1 wt.%) of Na{sub 2}S or K{sub 2}S is sufficient in the binder composition. Here the Toxicity Characteristic Leaching Procedure (TCLP) results on CBPC waste forms of surrogate waste streams representing secondary Hg containing wastes such as combustion residues and Delphi DETOX{trademark} residues are presented. The results show that although the current limit on leaching of Hg is 0.2 mg/L, the results from the CBPC waste forms are at least one order lower than this stringent limit. Encouraged by these results on surrogate wastes, they treated actual low-level Hg-containing mixed waste from their facility at Idaho. TCLP results on this waste are presented here. The efficient stabilization in all these cases is attributed to chemical immobilization as both a sulfide (cinnabar) and a phosphate, followed by its physical encapsulation in a dense matrix of the ceramic.« less
Castellón, Erick; Martínez, María; Madrigal-Carballo, Sergio; Arias, María Laura; Vargas, William E; Chavarría, Max
2013-01-01
Río Celeste (Sky-Blue River) in Tenorio National Park (Costa Rica), a river that derives from the confluence and mixing of two colorless streams--Río Buenavista (Buenavista River) and Quebrada Agria (Sour Creek)--is renowned in Costa Rica because it presents an atypical intense sky-blue color. Although various explanations have been proposed for this unusual hue of Río Celeste, no exhaustive tests have been undertaken; the reasons hence remain unclear. To understand this color phenomenon, we examined the physico-chemical properties of Río Celeste and of the two streams from which it is derived. Chemical analysis of those streams with ion-exchange chromatography (IC) and inductively coupled plasma atomic emission spectroscopy (ICP-OES) made us discard the hypothesis that the origin of the hue is due to colored chemical species. Our tests revealed that the origin of this coloration phenomenon is physical, due to suspended aluminosilicate particles (with diameters distributed around 566 nm according to a lognormal distribution) that produce Mie scattering. The color originates after mixing of two colorless streams because of the enlargement (by aggregation) of suspended aluminosilicate particles in the Río Buenavista stream due to a decrease of pH on mixing with the acidic Quebrada Agria. We postulate a chemical mechanism for this process, supported by experimental evidence of dynamic light scattering (DLS), zeta potential measurements, X-ray diffraction and scanning electron microscopy (SEM) with energy-dispersive spectra (EDS). Theoretical modeling of the Mie scattering yielded a strong coincidence between the observed color and the simulated one.
Interfacial properties, thin film stability and foam stability of casein micelle dispersions.
Chen, Min; Sala, Guido; Meinders, Marcel B J; van Valenberg, Hein J F; van der Linden, Erik; Sagis, Leonard M C
2017-01-01
Foam stability of casein micelle dispersions (CMDs) strongly depends on aggregate size. To elucidate the underlying mechanism, the role of interfacial and thin film properties was investigated. CMDs were prepared at 4°C and 20°C, designated as CMD 4°C and CMD 20°C . At equal protein concentrations, foam stability of CMD 4 °C (with casein micelle aggregates) was markedly higher than CMD 20°C (without aggregates). Although the elastic modulus of CMD 4°C was twice as that of CMD 20°C at 0.005Hz, the protein adsorbed amount was slightly higher for CMD 20°C than for CMD 4°C , which indicated a slight difference in interfacial composition of the air/water interface. Non-linear surface dilatational rheology showed minor differences between mechanical properties of air/water interfaces stabilized by two CMDs. These differences in interfacial properties could not explain the large difference in foam stability between two CMDs. Thin film analysis showed that films made with CMD 20°C drained to a more homogeneous film compared to films stabilized by CMD 4°C . Large casein micelle aggregates trapped in the thin film of CMD 4°C made the film more heterogeneous. The rupture time of thin films was significantly longer for CMD 4°C (>1h) than for CMD 20°C (<600s) at equal protein concentration. After homogenization, which broke down the aggregates, the thin films of CMD 4°C became much more homogeneous, and both the rupture time of thin films and foam stability decreased significantly. In conclusion, the increased stability of foam prepared with CMD 4°C appears to be the result of entrapment of casein micelle aggregates in the liquid films of the foam. Copyright © 2016 Elsevier B.V. All rights reserved.
ASSESSING RELATIVE BED STABILITY AND EXCESS FINE SEDIMENTS IN STREAMS
Excess fine sedimentation is recognized as a leading cause of water quality impairment in surface waters in the United States. We developed an index of Relative Bed Stability (RBS) that factors out natural controls on streambed particle size to allow evaluation of the role of hu...
We developed an index of relative bed stability (LRBS) based on low flow survey data collected using the U.S. Environmental Protection Agency’s Environmental Monitoring and Assessment Program (EMAP) field methods to assess anthropogenic sedimentation in streams. LRBS is the log ...
Douglas N. Swanston
1980-01-01
Natural events affecting vegetative cover and the hydrology and stability of a stream and its parent watershed are key factors influencing the quality of anadromous fish habitat. High intensity storms, drought, soil mass movement, and fire have the greatest impacts. Wind, stream icing, and the influence of insects and disease are important locally...
Establishing riparian vegetation through use of a self-cleaning siphon system
Mark D. Ankeny; L. Bradford Sumrall; Kuo-Chin Hsu
1999-01-01
Storm water or overland flow can be captured and injected into a soil trench or infiltration gallery attached to a siphon and emplaced adjacent to a stream or arroyo bank. This injected soil water can be used by stream side vegetation for wildlife habitat, bank stabilization or other purposes. The siphon system has three hydrologically-distinct flow regimes: (1)...
ERIC Educational Resources Information Center
Technology & Learning, 2008
2008-01-01
When it comes to IT, there has always been an important link between data center control and client flexibility. As computing power increases, so do the potentially crippling threats to security, productivity and financial stability. This article talks about Dell's On-Demand Desktop Streaming solution which is designed to centralize complete…
Europa Kinetic Ice Penetrator System for Hyper Velocity Instrument Deposition
NASA Astrophysics Data System (ADS)
Robinson, Tessa
Landing of a payload on any celestial body has only used a soft landing system. These systems use retro rockets and atmospheric components to match velocity and then overcome local gravity in order to land on the surface. This is a proposed system for depositing instrumentation on an icy surface at hypervelocity using the properties of different projectiles and ejecta properties that would negate the need for a soft landing system. This system uses two projectiles, a cylinder with inner aerodynamic surfaces and a payload section with a conical nose and aerodynamic surfaces. The cylinder lands first, creates a region of fractured ice, and directs that fractured material into a collimated ejecta stream. The payload travels through the ejecta and lands in the fractured region. The combination of the ejecta stream and the softened target material reduces the impact acceleration to within survivable levels.
Hydrogen Exchange and Mass Spectrometry: A Historical Perspective
Englander, S. Walter
2012-01-01
Protein molecules naturally emit streams of information-rich signals in the language of hydrogen exchange concerning the intimate details of their stability, dynamics, function, changes therein, and effects thereon, all resolved to the level of their individual amino acids. The effort to measure protein hydrogen exchange behavior, understand the underlying chemistry and structural physics of hydrogen exchange processes, and use this information to learn about protein properties and function has continued for 50 years. Recent work uses mass spectrometric analysis together with an earlier proteolytic fragmentation method to extend the hydrogen exchange capability to large biologically interesting proteins. This article briefly reviews the advances that have led us to this point and the understanding that has so far been achieved. PMID:16876429
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Eric M.; Mattigod, Shas V.; Westsik, Joseph H.
2010-01-30
Pacific Northwest National Laboratory has initiated a waste form testing program to support the long-term durability evaluation of a waste form for secondary wastes generated from the treatment and immobilization of Hanford radioactive tank wastes. The purpose of the work discussed in this report is to identify candidate stabilization technologies and getters that have the potential to successfully treat the secondary waste stream liquid effluent, mainly from off-gas scrubbers and spent solids, produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Down-selection to the most promising stabilization processes/waste forms is needed to support the design of a solidificationmore » treatment unit (STU) to be added to the Effluent Treatment Facility (ETF). To support key decision processes, an initial screening of the secondary liquid waste forms must be completed by February 2010.« less
NASA Astrophysics Data System (ADS)
Pulok, Md Kamrul Hasan
Intelligent and effective monitoring of power system stability in control centers is one of the key issues in smart grid technology to prevent unwanted power system blackouts. Voltage stability analysis is one of the most important requirements for control center operation in smart grid era. With the advent of Phasor Measurement Unit (PMU) or Synchrophasor technology, real time monitoring of voltage stability of power system is now a reality. This work utilizes real-time PMU data to derive a voltage stability index to monitor the voltage stability related contingency situation in power systems. The developed tool uses PMU data to calculate voltage stability index that indicates relative closeness of the instability by producing numerical indices. The IEEE 39 bus, New England power system was modeled and run on a Real-time Digital Simulator that stream PMU data over the Internet using IEEE C37.118 protocol. A Phasor data concentrator (PDC) is setup that receives streaming PMU data and stores them in Microsoft SQL database server. Then the developed voltage stability monitoring (VSM) tool retrieves phasor measurement data from SQL server, performs real-time state estimation of the whole network, calculate voltage stability index, perform real-time ranking of most vulnerable transmission lines, and finally shows all the results in a graphical user interface. All these actions are done in near real-time. Control centers can easily monitor the systems condition by using this tool and can take precautionary actions if needed.
Essaid, Hedeff I; Caldwell, Rodney R
2017-12-01
Changes in groundwater discharge to streams caused by irrigation practices can influence stream temperature. Observations along two currently flood-irrigated reaches in the 640-square-kilometer upper Smith River watershed, an important agricultural and recreational fishing area in west-central Montana, showed a downstream temperature decrease resulting from groundwater discharge to the stream. A watershed-scale coupled surface water and groundwater flow model was used to examine changes in streamflow, groundwater discharge to the stream and stream temperature resulting from irrigation practices. The upper Smith River watershed was used to develop the model framework including watershed climate, topography, hydrography, vegetation, soil properties and current irrigation practices. Model results were used to compare watershed streamflow, groundwater recharge, and groundwater discharge to the stream for three scenarios: natural, pre-irrigation conditions (PreIrr); current irrigation practices involving mainly stream diversion for flood and sprinkler irrigation (IrrCurrent); and a hypothetical scenario with only groundwater supplying sprinkler irrigation (IrrGW). Irrigation increased groundwater recharge relative to natural PreIrr conditions because not all applied water was removed by crop evapotranspiration. Groundwater storage and groundwater discharge to the stream increased relative to natural PreIrr conditions when the source of irrigation water was mainly stream diversion as in the IrrCurrent scenario. The hypothetical IrrGW scenario, in which groundwater withdrawals were the sole source of irrigation water, resulted in widespread lowering of the water table and associated decreases in groundwater storage and groundwater discharge to the stream. A mixing analysis using model predicted groundwater discharge along the reaches suggests that stream diversion and flood irrigation, represented in the IrrCurrent scenario, has led to cooling of stream temperatures relative to natural PreIrr conditions improving fish thermal habitat. However, the decrease in groundwater discharge in the IrrGW scenario resulting from large-scale groundwater withdrawal for irrigation led to warmer than natural stream temperatures and possible degradation of fish habitat. Published by Elsevier B.V.
Essaid, Hedeff I.; Caldwell, Rodney R.
2017-01-01
Changes in groundwater discharge to streams caused by irrigation practices can influence stream temperature. Observations along two currently flood-irrigated reaches in the 640-square-kilometer upper Smith River watershed, an important agricultural and recreational fishing area in west-central Montana, showed a downstream temperature decrease resulting from groundwater discharge to the stream. A watershed-scale coupled surface water and groundwater flow model was used to examine changes in streamflow, groundwater discharge to the stream and stream temperature resulting from irrigation practices. The upper Smith River watershed was used to develop the model framework including watershed climate, topography, hydrography, vegetation, soil properties and current irrigation practices. Model results were used to compare watershed streamflow, groundwater recharge, and groundwater discharge to the stream for three scenarios: natural, pre-irrigation conditions (PreIrr); current irrigation practices involving mainly stream diversion for flood and sprinkler irrigation (IrrCurrent); and a hypothetical scenario with only groundwater supplying sprinkler irrigation (IrrGW). Irrigation increased groundwater recharge relative to natural PreIrr conditions because not all applied water was removed by crop evapotranspiration. Groundwater storage and groundwater discharge to the stream increased relative to natural PreIrr conditions when the source of irrigation water was mainly stream diversion as in the IrrCurrent scenario. The hypothetical IrrGW scenario, in which groundwater withdrawals were the sole source of irrigation water, resulted in widespread lowering of the water table and associated decreases in groundwater storage and groundwater discharge to the stream. A mixing analysis using model predicted groundwater discharge along the reaches suggests that stream diversion and flood irrigation, represented in the IrrCurrent scenario, has led to cooling of stream temperatures relative to natural PreIrr conditions improving fish thermal habitat. However, the decrease in groundwater discharge in the IrrGW scenario resulting from large-scale groundwater withdrawal for irrigation led to warmer than natural stream temperatures and possible degradation of fish habitat.
A New Numerical Scheme for Cosmic-Ray Transport
NASA Astrophysics Data System (ADS)
Jiang, Yan-Fei; Oh, S. Peng
2018-02-01
Numerical solutions of the cosmic-ray (CR) magnetohydrodynamic equations are dogged by a powerful numerical instability, which arises from the constraint that CRs can only stream down their gradient. The standard cure is to regularize by adding artificial diffusion. Besides introducing ad hoc smoothing, this has a significant negative impact on either computational cost or complexity and parallel scalings. We describe a new numerical algorithm for CR transport, with close parallels to two-moment methods for radiative transfer under the reduced speed of light approximation. It stably and robustly handles CR streaming without any artificial diffusion. It allows for both isotropic and field-aligned CR streaming and diffusion, with arbitrary streaming and diffusion coefficients. CR transport is handled explicitly, while source terms are handled implicitly. The overall time step scales linearly with resolution (even when computing CR diffusion) and has a perfect parallel scaling. It is given by the standard Courant condition with respect to a constant maximum velocity over the entire simulation domain. The computational cost is comparable to that of solving the ideal MHD equation. We demonstrate the accuracy and stability of this new scheme with a wide variety of tests, including anisotropic streaming and diffusion tests, CR-modified shocks, CR-driven blast waves, and CR transport in multiphase media. The new algorithm opens doors to much more ambitious and hitherto intractable calculations of CR physics in galaxies and galaxy clusters. It can also be applied to other physical processes with similar mathematical structure, such as saturated, anisotropic heat conduction.
NASA Technical Reports Server (NTRS)
Anilkumar, A. V.; Bhowmick, J.; Grugel, R. N.
2001-01-01
Our previous experiments with NaNO3 float-zones revealed that steady thermocapillary flow can be balanced/offset by the controlled surface streaming flow induced by end-wall vibration. In the current experiments we are examining the effects of streaming flow on steadying/stabilizing nonsteady thermocapillary flow in such zones. To this effect we have set up a controlled NaNO3 half-zone experiment, where the processing parameters, like zone dimensions and temperature gradients, can be easily varied to generate nonsteady thermocapillary flows. In the present paper we present preliminary results of our investigations into stabilizing such flows by employing endwall vibration.
NASA Technical Reports Server (NTRS)
Anilkumar, A. V.; Bhowmick, J.; Grugel, R. N.a
2000-01-01
Our previous experiments with NaNO3 float-zones revealed that steady thermocapillary flow can be balanced/offset by the controlled surface streaming flow induced by end-wall vibration. In the current experiments we are examining the effects of streaming flow on steadying/stabilizing nonsteady thermocapillary flow in such zones. To this effect we have set up a controlled NaNO3 half-zone experiment, where the processing parameters, like zone dimensions and temperature gradients, can be easily varied to generate nonsteady thermocapillary flows. In the present paper we present preliminary results of our investigations into stabilizing such flows by employing end-wall vibration.
Albertson, Lindsey K.; Cardinale, Bradley J.; Sklar, Leonard S.
2014-01-01
Previous studies have shown that biological structures such as plant roots can have large impacts on landscape morphodynamics, and that physical models that do not incorporate biology can generate qualitatively incorrect predictions of sediment transport. However, work to date has focused almost entirely on the impacts of single, usually dominant, species. Here we ask whether multiple, coexisting species of hydropsychid caddisfly larvae have different impacts on sediment mobility compared to single-species systems due to competitive interactions and niche differences. We manipulated the presence of two common species of net-spinning caddisfly (Ceratopsyche oslari, Arctopsyche californica) in laboratory mesocosms and measured how their silk filtration nets influence the critical shear stress required to initiate sediment grain motion when they were in monoculture versus polyculture. We found that critical shear stress increases non-additively in polycultures where species were allowed to interact. Critical shear stress was 26% higher in multi-species assemblages compared to the average single-species monoculture, and 21% greater than levels of stability achieved by the species having the largest impact on sediment motion in monoculture. Supplementary behavioral experiments suggest the non-additive increase in critical shear stress may have occurred as competition among species led to shifts in the spatial distribution of the two populations and complementary habitat use. To explore the implications of these results for field conditions, we used results from the laboratory study to parameterize a common model of sediment transport. We then used this model to estimate potential bed movement in a natural stream for which we had measurements of channel geometry, grain size, and daily discharge. Although this extrapolation is speculative, it illustrates that multi-species impacts could be sufficiently large to reduce bedload sediment flux over annual time scales in streams where multiple species of caddisfly are present. PMID:25101964
O'Neill, Hester G; Redelinghuys, Pierre; Schwager, Sylva L U; Sturrock, Edward D
2008-09-01
The N and C domains of somatic angiotensin-converting enzyme (sACE) differ in terms of their substrate specificity, inhibitor profiling, chloride dependency and thermal stability. The C domain is thermally less stable than sACE or the N domain. Since both domains are heavily glycosylated, the effect of glycosylation on their thermal stability was investigated by assessing their catalytic and physicochemical properties. Testis ACE (tACE) expressed in mammalian cells, mammalian cells in the presence of a glucosidase inhibitor and insect cells yielded proteins with altered catalytic and physicochemical properties, indicating that the more complex glycans confer greater thermal stabilization. Furthermore, a decrease in tACE and N-domain N-glycans using site-directed mutagenesis decreased their thermal stability, suggesting that certain N-glycans have an important effect on the protein's thermodynamic properties. Evaluation of the thermal stability of sACE domain swopover and domain duplication mutants, together with sACE expressed in insect cells, showed that the C domain contained in sACE is less dependent on glycosylation for thermal stabilization than a single C domain, indicating that stabilizing interactions between the two domains contribute to the thermal stability of sACE and are decreased in a C-domain-duplicating mutant.
NASA Technical Reports Server (NTRS)
Eberhardt, D. S.; Baganoff, D.; Stevens, K.
1984-01-01
Implicit approximate-factored algorithms have certain properties that are suitable for parallel processing. A particular computational fluid dynamics (CFD) code, using this algorithm, is mapped onto a multiple-instruction/multiple-data-stream (MIMD) computer architecture. An explanation of this mapping procedure is presented, as well as some of the difficulties encountered when trying to run the code concurrently. Timing results are given for runs on the Ames Research Center's MIMD test facility which consists of two VAX 11/780's with a common MA780 multi-ported memory. Speedups exceeding 1.9 for characteristic CFD runs were indicated by the timing results.
The Boundary Layer Flows of a Rivlin-Ericksen Fluid
NASA Astrophysics Data System (ADS)
Sadeghy, K.; Khabazi, N.; Taghavi, S. M.
The present work deals with the two-dimensional incompressible, laminar, steady-state boundary layer equations. First, we determine a family of velocity distributions outside the boundary layer such that these problems may have similarity solutions. We study the Falkner-Skan flow of a viscoelastic fluid governed by second order model, as the Reynolds number Re→ ∞. We obtain an ordinary forth order differential equation to obtain the stream function, velocity profile and the stress. The stream function is then governed by a generalized Falkner-Skan equation. In comparison with Newtonian Falkner-Skan equation that has two coefficients this new one has four coefficients that two of them represent elastic properties of the fluid. The effects of the elastic parameter on the velocity filed have been discussed. As it is shown in the figure there is a good agreement between numerical results and previous special cases confirm the validity of the presented algorithm.
Development of a cross-section based stream package for MODFLOW
NASA Astrophysics Data System (ADS)
Ou, G.; Chen, X.; Irmak, A.
2012-12-01
Accurate simulation of stream-aquifer interactions for wide rivers using the streamflow routing package in MODFLOW is very challenging. To better represent a wide river spanning over multiple model grid cells, a Cross-Section based streamflow Routing (CSR) package is developed and incorporated into MODFLOW to simulate the interaction between streams and aquifers. In the CSR package, a stream segment is represented as a four-point polygon instead of a polyline which is traditionally used in streamflow routing simulation. Each stream segment is composed of upstream and downstream cross-sections. A cross-section consists of a number of streambed points possessing coordinates, streambed thicknesses and streambed hydraulic conductivities to describe the streambed geometry and hydraulic properties. The left and right end points are used to determine the locations of the stream segments. According to the cross-section geometry and hydraulic properties, CSR calculates the new stream stage at the cross-section using the Brent's method to solve the Manning's Equation. A module is developed to automatically compute the area of the stream segment polygon on each intersected MODFLOW grid cell as the upstream and downstream stages change. The stream stage and streambed hydraulic properties of model grids are interpolated based on the streambed points. Streambed leakage is computed as a function of streambed conductance and difference between the groundwater level and stream stage. The Muskingum-Cunge flow routing scheme with variable parameters is used to simulate the streamflow as the groundwater (discharge or recharge) contributes as lateral flows. An example is used to illustrate the capabilities of the CSR package. The result shows that the CSR is applicable to describing the spatial and temporal variation in the interaction between streams and aquifers. The input data become simple due to that the internal program automatically interpolates the cross-section data to each model grid cell.
NASA Technical Reports Server (NTRS)
Gayda, John
2003-01-01
As part of NASA s Advanced Subsonic Technology Program, a study of stabilization heat treatment options for an advanced nickel-base disk alloy, ME 209, was performed. Using a simple, physically based approach, the effect of stabilization heat treatments on tensile and creep properties was analyzed in this paper. Solutions temperature, solution cooling rate, and stabilization temperature/time were found to have a significant impact on tensile and creep properties. These effects were readily quantified using the following methodology. First, the effect of solution cooling rate was assessed to determine its impact on a given property. The as-cooled property was then modified by using two multiplicative factors which assess the impact of solution temperature and stabilization parameters. Comparison of experimental data with predicted values showed this physically based analysis produced good results that rivaled the statistical analysis employed, which required numerous changes in the form of the regression equation depending on the property and temperature in question. As this physically based analysis uses the data for input, it should be noted that predictions which attempt to extrapolate beyond the bounds of the data must be viewed with skepticism. Future work aimed at expanding the range of the stabilization/aging parameters explored in this study would be highly desirable, especially at the higher solution cooling rates.
Optimization of ultrasonication period for better dispersion and stability of TiO2-water nanofluid.
Mahbubul, I M; Elcioglu, Elif Begum; Saidur, R; Amalina, M A
2017-07-01
Nanofluids are promising in many fields, including engineering and medicine. Stability deterioration may be a critical constraint for potential applications of nanofluids. Proper ultrasonication can improve the stability, and possibility of the safe use of nanofluids in different applications. In this study, stability properties of TiO 2 -H 2 O nanofluid for varying ultrasonication durations were tested. The nanofluids were prepared through two-step method; and electron microscopies, with particle size distribution and zeta potential analyses were conducted for the evaluation of their stability. Results showed the positive impact of ultrasonication on nanofluid dispersion properties up to some extent. Ultrasonication longer than 150min resulted in re-agglomeration of nanoparticles. Therefore, ultrasonication for 150min was the optimum period yielding highest stability. A regression analysis was also done in order to relate the average cluster size and ultrasonication time to zeta potential. It can be concluded that performing analytical imaging and colloidal property evaluation during and after the sample preparation leads to reliable insights. Copyright © 2017 Elsevier B.V. All rights reserved.
The relationship between the spatial scaling of biodiversity and ecosystem stability
Delsol, Robin; Loreau, Michel; Haegeman, Bart
2018-01-01
Aim Ecosystem stability and its link with biodiversity have mainly been studied at the local scale. Here we present a simple theoretical model to address the joint dependence of diversity and stability on spatial scale, from local to continental. Methods The notion of stability we use is based on the temporal variability of an ecosystem-level property, such as primary productivity. In this way, our model integrates the well-known species–area relationship (SAR) with a recent proposal to quantify the spatial scaling of stability, called the invariability–area relationship (IAR). Results We show that the link between the two relationships strongly depends on whether the temporal fluctuations of the ecosystem property of interest are more correlated within than between species. If fluctuations are correlated within species but not between them, then the IAR is strongly constrained by the SAR. If instead individual fluctuations are only correlated by spatial proximity, then the IAR is unrelated to the SAR. We apply these two correlation assumptions to explore the effects of species loss and habitat destruction on stability, and find a rich variety of multi-scale spatial dependencies, with marked differences between the two assumptions. Main conclusions The dependence of ecosystem stability on biodiversity across spatial scales is governed by the spatial decay of correlations within and between species. Our work provides a point of reference for mechanistic models and data analyses. More generally, it illustrates the relevance of macroecology for ecosystem functioning and stability. PMID:29651225
Biological and economic impact of stream alteration in the Virginia Piedmont
Whelan, James B.
1981-01-01
A 31 month (September 1974 - March 1977) study was conducted on warmwater streams located in the Roanoke Creek watershed of the Piedmont Region of Virginia. The purpose of the study was to determine the effects of stream channelization on the aquatic/riparian wildlife resource and agricultural land-use patterns associated with the altered streams. Three streams, which were channelized 3, 6, and 10 years prior to initiation of the study, and teo unaltered streams, were selected as representative streams for the study. Recently channelized streams lacked overstory cover but has an abundance of herbaceous and small woody plany cover, Conversely, control streams had significantly larger percentages of trees over 46 m tall. Plant species diversity, foliage height diversity, and evenness diversity increased as age since channelization increased. No major differences in water quality parameters were found for either channelized or control streams, although channelized streams had greater deposits of sand and lesser amount of rock, rubble, and gravel. These changes in substrate composition did not significantly modify actual stream flow rates. Fish species composition and species diversity among channelized and unchannelized streams were only slightly different, with most of the differences probably attributable to strays from adjacent habitats, However, evenness diversity for fish communities was lower in channelized streams. The benthic population showed greater changes than did the fish populations with an increase in Chironominae tolerant of unstable sand substrates in channelized streams. Evenness diversity of benthic populations was also higher and showed more consistency in the control stream than in channelized streams. Evenness diversity of benthic communities in control stream averaged between 0.5 to 0.6 and was quite consistent; whereas, the average in the two youngest channelized streams was 0.3 to 0.4. These data seem to indicate decreased stability of the biota in altered streams. In general, benthic macroinvertabrate and fish community parameters collected from channelized streams located 1200 m below a reservoir were either comparable to, or intermediate between, upstream (unchannelized) and reservoir tailwater values. The shallow surface discharge impoundments associated with channelized streams appeared to have a highly localized impact on the downstream benthic marcoinvertabrate and fish communities. During winter, bird species diversity (BSD) among channelized stream sites was not significantly different. During the breeding season, species richness (number of breeding species) and BSD increased with age since channelization. Breeding bird densities were 6.2 pairs/ha in the most recent (3 yr) channelized site and 13.3 pairs/ha on the control streams. Bird diversity and density, particularly for Parulids (warblers), during the breeding season were reduced significantly by removal of tree and shrub layers along channelized streams. No significant differences were found among study sites for either total number of small mammals or their species diversity indices; although, there was a trend toward increasing diversity as age since channelization increased. Smaller differences in species diversity values for small mammals on channelized sites than for birds suggests that small mammal populations require less time for recovery following channelization than avian communities. When streams are channelized: 1) vegetation should be removed from only one side of the stream, with minimal disturbance of top-soil; followed by plantings of herbaceous and woody vegetation, 2) hedgrow plantings should be maintained between agricultural fields and the stream for bank stabilization, 3) dead snags and large trees should be left for birds, 4) all channelization projects should be designed according to the most recent guidelines recommended by the SCS and other resources agencies. In 1958, the Roanoke County Watershed Work Plan projected annual costs of the structured measures (mainly reservoirs and downstream channelization) to be $79,897 and the average annual monetary benefits to be $111,103. With this favorable benefit/cost ration of 1.4, work began in 1960. In 1970, the annual capital cost was 60,780 and operations/maintenance costs were 10,402, or a total annual project cost of $71, 182. High and low values of annual benefits from agricultural income, water supply, recreation, and non-agricultural flood damage were determined for 1970 and compared to annual project cost. The benefit/cost ratio obtained was between 0.25 and 0.58, considerably lower than the 1.4 estimate of the 1958. work plan. This unsatisfactory ratio for the project was due mainly to the failure of the project to encourage large scale cropping of bottomland area. Future projects should be planned with 1) a greater recognition of constraints on farm operator behavior which affect land use change, 2) conservative projection for land use changes in area where agriculture ids in overall decline, 3) increased use of sensitivity analysis to examine the consequences for project economic justification of alternative land use change projections.
Heteroaggregation of lipid droplets coated with sodium caseinate and lactoferrin.
de Figueiredo Furtado, Guilherme; Michelon, Mariano; de Oliveira, Davi Rocha Bernardes; da Cunha, Rosiane Lopes
2016-11-01
Formation and characterization of droplet heteroaggregates were investigated by mixing two emulsions previously stabilized by proteins oppositely charged. Emulsions were composed of 5vol.% of sunflower oil and 95vol.% of sodium caseinate or lactoferrin aqueous dispersions. They were produced using ultrasound with fixed power (300W) and sonication time (6min). Different volume ratios (0-100%) of sodium caseinate-stabilized emulsion (droplet diameter around 1.75μm) to lactoferrin-stabilized emulsion (droplet diameter around 1.55μm) were mixed under conditions that both proteins showed opposite charges (pH7). Influence of ionic strength (0-400mM NaCl) on the heteroaggregates stability was also evaluated. Creaming stability, zeta potential, microstructure, mean particle diameter and rheological properties of the heteroaggregates were measured. These properties depended on the volume ratio (0-100%) of sodium caseinate to lactoferrin-stabilized emulsion (C:L) and the ionic strength. In the absence of salt, different zeta potential values were obtained, rheological properties (viscosity and elastic moduli) were improved and the largest heteroaggregates were formed at higher content of lactoferrin-stabilized emulsion (60-80%). The system containing 40 and 60vol.% of sodium caseinate and lactoferrin stabilized emulsion, respectively, presented good stability against phase separation besides showing enhanced rheological and size properties due to extensive droplets aggregation. Phase separation was observed only in the absence of sodium caseinate, demonstrating the higher susceptibility of lactoferrin to NaCl. The heteroaggregates produced may be useful functional agents for texture modification and controlled release since different rheological properties and sizes can be achieved depending on protein concentrations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Successional colonization of temporary streams: An experimental approach using aquatic insects
NASA Astrophysics Data System (ADS)
Godoy, Bruno Spacek; Queiroz, Luciano Lopes; Lodi, Sara; Nascimento de Jesus, Jhonathan Diego; Oliveira, Leandro Gonçalves
2016-11-01
The metacommunity concept studies the processes that structure communities on local and regional scales. This concept is useful to assess spatial variability. However, temporal patterns (e.g., ecological succession and colonization) are neglected in metacommunity studies, since such patterns require temporally extensive, and hard to execute studies. We used experimental habitats in temporary streams located within the Brazilian Cerrado to evaluate the importance of succession for the aquatic insect metacommunity. Five artificial habitats consisting of wrapped crushed rock were set transversally to the water flow in five streams. The habitats were sampled weekly to assess community composition, and replaced after sampling to identify new potential colonizers. We analyzed the accumulation of new colonizers after each week using a logistic model. We selected pairs of experimental habitats and estimated the Bray-Curtis dissimilarity index to assess the community composition trajectory during the experiment. We used the dissimilarity values in ANOVA tests, identifying the importance of time and space for the community. The number of new taxa stabilized in the third week, and we estimated a weekly increase of 1.61 new taxa in the community after stabilization. The overall pattern was a small change on community composition, but one stream had a higher weekly turnover. Our results showed a relevant influence of time in the initial communities of aquatic insects of temporary streams. However, we must observe the temporal pattern in a spatial context, once different streams have different successional history regarding number of taxa and community turnover. We highlight the importance of aerial dispersal and movement to seek oviposition sites as an important factor in determining colonization patterns.
NASA Technical Reports Server (NTRS)
Martinez-Sanchez, Manuel
1991-01-01
MPD work at MIT is presented in the form of the view-graphs. The following subject areas are covered: the MIT program, its goals, achievements, and roadblocks; quasi one-dimensional modeling; two-dimensional modeling - transport effects and Hall effect; microscopic instabilities in MPD flows and modified two stream instability; electrothermal stability theory; separation of onset and anode depletion; exit plane spectroscopic measurements; phenomena of onset as performance limiter; explanations of onset; geometry effects on onset; onset at full ionization and its consequences; relationship to anode depletion; summary on self-field MPD; applied field MPD - the logical growth path; the case for AF; the challenges of AF MPD; and recommendations.
NASA Astrophysics Data System (ADS)
Buxton, T. H.
2015-12-01
Salmon spawning in streams involves the female salmon digging a pit in the bed where she deposits eggs for fertilization before covering them with gravel excavated from the next pit upstream. Sequences of pit excavation and filling winnow fines, loosen sediment, and move bed material into a tailspill mound resembling the shape of a dune. Research suggests salmonid nests (redds) destabilize streambeds by reducing friction between loosened grains and converging flow that elevates shear stress on redd topography. However, bed stability may be enhanced by form drag from redds in clusters that lower shear stress on the granular bed, but this effect will vary with the proportion of the bed surface that is occupied by redds (P). I used simulated redds and water-worked ("unspawned") beds in a laboratory flume to evaluate these competing influences on grain stability and bedload transport rates with P=0.12, 0.34, and 0.41. Results indicate that competence (largest-grain) and reference transport rate estimates of critical conditions for particle entrainment inversely relate to P. Bedload transport increased as exponential functions of P and excess boundary shear stress. Therefore, redd form drag did not overcome the destabilizing effects of spawning. Instead, grain mobility and bedload transport increased with P because larger areas of the bed were composed of relatively loose, unstable grains and redd topography that experienced elevated shear stress. Consequently, the presence of redds in fish-bearing streams likely reduces the effects of sedimentation from landscape disturbance on stream habitats that salmon use for reproduction.
Protect and Restore Lolo Creek Watershed, 2004-2005 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McRoberts, Heidi
2005-12-01
The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Lolo Creek watershed are coordinated with the Clearwater National Forest and Potlatch Corporation. The Nez Perce Tribe began watershed restoration projects within the Lolo Creek watershed of the Clearwater River in 1996. Fencing to exclude cattle for stream banks, stream bank stabilization, decommissioning roads, and upgrading culverts are the primary focuses of this project. Riparian enhancement through planting of riparian trees and streambank bioengineering was completed. Culvert inventory was completed in 2004 on US Forestmore » Service and Potlatch Corporation lands in the Lolo Creek drainage. Two high priority culverts were replaced, and are now accessible for fish species. Four miles of road was decommissioned. Tribal crews completed maintenance to the previously built fence.« less
Gao, Yuan; Gao, Jing; Liu, Ziling; Kan, Hongliang; Zu, Hui; Sun, Wanjin; Zhang, Jianjun; Qian, Shuai
2012-11-15
Adefovir dipivoxil (AD) is a bis(pivaloyloxymethyl) prodrug of adefovir with chemical stability problem. It undergoes two degradation pathways including hydrolysis and dimerization during storage. Pharmaceutical cocrystallization exhibits a promising approach to enhance aqueous solubility as well as physicochemical stability. In this study we attempted to prepare and investigate the physiochemical properties of AD cocrystals, which were formed with two coformers having different acidity and alkalinity (weakly acidic saccharin (SAC) and weakly basic nicotinamide (NCT)). The presence of different coformer molecules along with AD resulted in altered physicochemical properties. AD-SAC cocrystal showed great improvement in solubility and chemical stability, while AD-NCT did not. Several potential factors giving rise to different solid-state properties were summarized. Different coformers resulted in different cocrystal formation, packing style and hydrogen bond formation. This study could provide the coformer selection strategy based on degradation pathways for some unstable drugs in pharmaceutical cocrystal design. Copyright © 2012 Elsevier B.V. All rights reserved.
Dunham, J.B.; Rosenberger, A.E.; Luce, C.H.; Rieman, B.E.
2007-01-01
Wildfire can influence a variety of stream ecosystem properties. We studied stream temperatures in relation to wildfire in small streams in the Boise River Basin, located in central Idaho, USA. To examine the spatio-temporal aspects of temperature in relation to wildfire, we employed three approaches: a pre-post fire comparison of temperatures between two sites (one from a burned stream and one unburned) over 13 years, a short-term (3 year) pre-post fire comparison of a burned and unburned stream with spatially extensive data, and a short-term (1 year) comparative study of spatial variability in temperatures using a "space for time" substitutive design across 90 sites in nine streams (retrospective comparative study). The latter design included streams with a history of stand-replacing wildfire and streams with severe post-fire reorganization of channels due to debris flows and flooding. Results from these three studies indicated that summer maximum water temperatures can remain significantly elevated for at least a decade following wildfire, particularly in streams with severe channel reorganization. In the retrospective comparative study we investigated occurrence of native rainbow trout (Oncorhynchus mykiss) and tailed frog larvae (Ascaphus montanus) in relation to maximum stream temperatures during summer. Both occurred in nearly every site sampled, but tailed frog larvae were found in much warmer water than previously reported in the field (26.6??C maximum summer temperature). Our results show that physical stream habitats can remain altered (for example, increased temperature) for many years following wildfire, but that native aquatic vertebrates can be resilient. In a management context, this suggests wildfire may be less of a threat to native species than human influences that alter the capacity of stream-living vertebrates to persist in the face of natural disturbance. ?? 2007 Springer Science+Business Media, LLC.
NASA Astrophysics Data System (ADS)
Pinty, B.; Clerici, M.; Andredakis, I.; Kaminski, T.; Taberner, M.; Verstraete, M. M.; Gobron, N.; Plummer, S.; Widlowski, J.-L.
2011-05-01
The two-stream model parameters and associated uncertainties retrieved by inversion against MODIS broadband visible and near-infrared white sky surface albedos were discussed in a companion paper. The present paper concentrates on the partitioning of the solar radiation fluxes delivered by the Joint Research Centre Two-stream Inversion Package (JRC-TIP). The estimation of the various flux fractions related to the vegetation and the background layers separately capitalizes on the probability density functions of the model parameters discussed in the companion paper. The propagation of uncertainties from the observations to the model parameters is achieved via the Hessian of the cost function and yields a covariance matrix of posterior parameter uncertainties. This matrix is propagated to the radiation fluxes via the model's Jacobian matrix of first derivatives. Results exhibit a rather good spatiotemporal consistency given that the prior values on the model parameters are not specified as a function of land cover type and/or vegetation phenological states. A specific investigation based on a scenario imposing stringent conditions of leaf absorbing and scattering properties highlights the impact of such constraints that are, as a matter of fact, currently adopted in vegetation index approaches. Special attention is also given to snow-covered and snow-contaminated areas since these regions encompass significant reflectance changes that strongly affect land surface processes. A definite asset of the JRC-TIP lies in its capability to control and ultimately relax a number of assumptions that are often implicit in traditional approaches. These features greatly help us understand the discrepancies between the different data sets of land surface properties and fluxes that are currently available. Through a series of selected examples, the inverse procedure implemented in the JRC-TIP is shown to be robust, reliable, and compliant with large-scale processing requirements. Furthermore, this package ensures the physical consistency between the set of observations, the two-stream model parameters, and radiation fluxes. It also documents the retrieval of associated uncertainties.
Choi, Sunho; Gray, McMahan L; Jones, Christopher W
2011-05-23
Silica supported poly(ethyleneimine) (PEI) materials are prepared via impregnation and demonstrated to be promising adsorbents for CO(2) capture from ultra-dilute gas streams such as ambient air. A prototypical class 1 adsorbent, containing 45 wt% PEI (PEI/silica), and two new modified PEI-based aminosilica adsorbents, derived from PEI modified with 3-aminopropyltrimethoxysilane (A-PEI/silica) or tetraethyl orthotitanate (T-PEI/silica), are prepared and characterized by using thermogravimetric analysis and FTIR spectroscopy. The modifiers are shown to enhance the thermal stability of the polymer-oxide composites, leading to higher PEI decomposition temperatures. The modified adsorbents present extremely high CO(2) adsorption capacities under conditions simulating ambient air (400 ppm CO(2) in inert gas), exceeding 2 mol(CO (2)) kg(sorbent)(-1), as well as enhanced adsorption kinetics compared to conventional class 1 sorbents. The new adsorbents show excellent stability in cyclic adsorption-desorption operations, even under dry conditions in which aminosilica adsorbents are known to lose capacity due to urea formation. Thus, the adsorbents of this type can be considered promising materials for the direct capture of CO(2) from ultra-dilute gas streams such as ambient air. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Juniper for Streambank Stabilization in Eastern Oregon
Guy R. Sheeter; Errol W. Claire
1989-01-01
Cut juniper trees (Juniperous osteosperma Hook.) anchored along eroded streambanks proved beneficial in stabilizing 96 percent of the erosion on eight streams evaluated in eastern Oregon over a 14-year-period. Juniper revetment was a successful substitute for costly rock structures on straight or slightly curved banks, but failed when placed on outside curves or when...
Miao, Xinmei; Ma, Yiwen; Chen, Zezhi; Gong, Huijuan
2017-09-05
Catalytic oxidation desulfurization using chelated iron catalyst is an effective method to remove H 2 S from various gas streams including biogas. However, the ligand of ethylenediaminetetraacetic acid (EDTA), which is usually adopted to prepare chelated iron catalyst, is liable to be oxidative degraded, and leads to the loss of desulfurization performance. In order to improve the degradation stability of the iron chelate, a series of iron chelates composed of two ligands including citric acid (CA) and EDTA were prepared and the oxidative degradation stability as well as desulfurization performance of these chelated iron catalysts were studied. Results show that the iron chelate of Fe-CA is more stable than Fe-EDTA, while for the desulfurization performance, the situation is converse. For the dual-ligand iron chelates of Fe-EDTA/CA, with the increase of mol ratio of CA to EDTA in the iron chelate solution, the oxidative degradation stability increased while the desulfurization performance decreased. The results of this work showed that Fe-EDTA/CA with a mol ratio of CA:EDTA = 1:1 presents a relative high oxidative degradation stability and an acceptable desulfurization performance with over 90% of H 2 S removal efficiency.
Effect of ionic liquid properties on lipase stabilization under microwave irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Hua; Baker, Gary A; Song, Zhiyan
2009-01-01
Ionic liquids (ILs) as neoteric solvents and microwave irradiation as alternative energy source are becoming two important tools for many enzymatic reactions. However, it is not well understood what properties of ILs govern the enzyme stabilization, and whether the microwave irradiation could activate enzymes in ILs. To tackle these two important issues, the synthetic activities of immobilized Candida antarctica lipase B (Novozyme 435) were examined in more than twenty ILs through microwave heating. Under microwave irradiation, enhanced enzyme activities were observed when the enzyme was surrounded by a layer of water molecules. However, such enhancement diminished when the reaction systemmore » was dried. To understand the effect of IL properties, the enzyme activities under microwave irradiation were correlated with the viscosity, polarity and hydrophobicity (log P) of ILs, respectively. The initial reaction rates bear no direct relationship with the viscosity and polarity (in terms of dielectric constant and EN T ) of ILs, but have a loose correlation (a bell curve) with log P values. The enzyme stabilization by ILs was explained from aspects of hydrogen-bond basicity of anions, dissolution of the enzyme, ionic association strength of anions, and substrate ground-state stabilization by ILs.« less
Palencia, Manuel; Rivas, Bernabé L
2011-11-15
Metal-ion retention properties of water-soluble amphiphilic polymers in presence of double emulsion were studied by diafiltration. Double emulsion systems, water-in-oil-in-water, with a pH gradient between external and internal aqueous phases were prepared. A poly(styrene-co-maleic anhydride) (PSAM) solution at pH 6.0 was added to the external aqueous phase of double emulsion and by application of pressure a divalent metal-ion stream was continuously added. Metal-ions used were Cu(2+) and Cd(2+) at the same pH of polymer solution. According to our results, metal-ion retention is mainly the result of polymer-metal interaction. Interaction between PSMA and reverse emulsion globules is strongly controlled by amount of metal-ions added in the external aqueous phase. In addition, as metal-ion concentration was increased, a negative effect on polymer retention capacity and promotion of flocculation phenomena were produced. Copyright © 2011 Elsevier Inc. All rights reserved.
Warenda, Monika; Richter, Anne; Schmidt, Diana; Janke, Andreas; Müller, Martin; Simon, Frank; Zimmermann, Ralf; Eichhorn, Klaus-Jochen; Voit, Brigitte; Appelhans, Dietmar
2012-09-14
For using successful (ultra)thin dendritic macromolecule films in (bio)sensing and microfluidic devices and for obtaining reproducible film properties, alteration effects arising from precoatings have to be avoided. Here, oligosaccharide-modified hyperbranched poly(ethylene imine)s (PEI-OS) were used to fabricate very thin PEI-OS films (15-20 nm in dry state), cross-linked with citric acid under condensation, and vacuum condition. However, no reactive precoating is necessary to obtain stable films, which allows very simple film preparation and avoids alteration of the PEIS-OS film properties arising from precoating. Several methods [(in situ) ellipsometry, AFM, XPS, (in situ) ATR-IR, streaming potential measurements] were applied to characterize homogeneity, surface morphology, and stability of these PEI-OS films between pH 2 and pH 10, but also the low protein adsorption behavior. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shifts in the trophic base of intermittent stream food webs
Dekar, Matthew P.; Magoulick, Daniel D.; Huxel, G.R.
2009-01-01
Understanding spatial and temporal variation in the trophic base of stream food webs is critical for predicting population and community stability, and ecosystem function. We used stable isotope ratios (13C/12C, and 15N/14N) to characterize the trophic base of two streams in the Ozark Mountains of northwest Arkansas, U.S.A. We predicted that autochthonous resources would be more important during the spring and summer and allochthonous resources would be more important in the winter due to increased detritus inputs from the riparian zone during autumn leaf drop. We predicted that stream communities would demonstrate increased reliance on autochthonous resources at sites with larger watersheds and greater canopy openness. The study was conducted at three low-order sites in the Mulberry River Drainage (watershed area range: 81-232 km2) seasonally in 2006 and 2007. We used circular statistics to examine community-wide shifts in isotope space among fish and invertebrate consumers in relation to basal resources, including detritus and periphyton. Mixing models were used to quantify the relative contribution of autochthonous and allochthonous energy sources to individual invertebrate consumers. Significant isotopic shifts occurred but results varied by season and site indicating substantial variation in the trophic base of stream food webs. In terms of temporal variation, consumers shifted toward periphyton in the summer during periods of low discharge, but results varied during the interval between summer and winter. Our results did not demonstrate increased reliance on periphyton with increasing watershed area or canopy openness, and detritus was important at all the sites. In our study, riffle-pool geomorphology likely disrupted the expected spatial pattern and stream drying likely impacted the availability and distribution of basal resources.
Gulf stream velocity structure through combined inversion of hydrographic and acoustic Doppler data
NASA Technical Reports Server (NTRS)
Pierce, S. D.
1986-01-01
Near-surface velocities from an acoustic Doppler instrument are used in conjunction with CTD/O2 data to produce estimates of the absolute flow field off Cape Hatteras. The data set consists of two transects across the Gulf Stream made by the R/V Endeavor cruise EN88 in August 1982. An inverse procedure is applied which makes use of both the acoustic Doppler data and property conservation constraints. Velocity sections at approximately 73 deg. W and 71 deg. W are presented with formal errors of 1-2 cm/s. The net Gulf Stream transports are estimated to be 116 + or - 2 Sv across the south leg and 161 + or - 4 Sv across the north. A Deep Western Boundary Current transport of 4 + or - 1 Sv is also estimated. While these values do not necessarily represent the mean, they are accurate estimates of the synoptic flow field in the region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bougamont, M.; Christoffersen, P.; Price, S. F.
Ongoing, centennial-scale flow variability within the Ross ice streams of West Antarctica suggests that the present-day positive mass balance in this region may reverse in the future. Here we use a three-dimensional ice sheet model to simulate ice flow in this region over 250 years. The flow responds to changing basal properties, as a subglacial till layer interacts with water transported in an active subglacial hydrological system. We show that a persistent weak bed beneath the tributaries of the dormant Kamb Ice Stream is a source of internal ice flow instability, which reorganizes all ice streams in this region, leadingmore » to a reduced (positive) mass balance within decades and a net loss of ice within two centuries. This hitherto unaccounted for flow variability could raise sea level by 5 mm this century. Furthermore, better constraints on future sea level change from this region will require improved estimates of geothermal heat flux and subglacial water transport.« less
NASA Astrophysics Data System (ADS)
Jahangiri, Soran; Mosey, Nicholas J.
2018-01-01
Nickel hydroxide is a material composed of two-dimensional layers that can be rolled up to form cylindrical nanotubes belonging to a class of inorganic metal hydroxide nanotubes that are candidates for applications in catalysis, energy storage, and microelectronics. The stabilities and other properties of this class of inorganic nanotubes have not yet been investigated in detail. The present study uses self-consistent-charge density-functional tight-binding calculations to examine the stabilities, mechanical properties, and electronic properties of nickel hydroxide nanotubes along with the energetics associated with the adsorption of water by these systems. The tight-binding model was parametrized for this system based on the results of first-principles calculations. The stabilities of the nanotubes were examined by calculating strain energies and performing molecular dynamics simulations. The results indicate that single-walled nickel hydroxide nanotubes are stable at room temperature, which is consistent with experimental investigations. The nanotubes possess size-dependent mechanical properties that are similar in magnitude to those of other inorganic nanotubes. The electronic properties of the nanotubes were also found to be size-dependent and small nickel oxyhydroxide nanotubes are predicted to be semiconductors. Despite this size-dependence, both the mechanical and electronic properties were found to be almost independent of the helical structure of the nanotubes. The calculations also show that water molecules have higher adsorption energies when binding to the interior of the nickel hydroxide nanotubes when compared to adsorption in nanotubes formed from other two-dimensional materials such as graphene. The increased adsorption energy is due to the hydrophilic nature of nickel hydroxide. Due to the broad applications of nickel hydroxide, the nanotubes investigated here are also expected to be used in catalysis, electronics, and clean energy production.
NASA Astrophysics Data System (ADS)
Riverman, K. L.; Anandakrishnan, S.; Alley, R. B.; Peters, L. E.; Christianson, K. A.; Muto, A.
2013-12-01
Northeast Greenland Ice Stream (NEGIS) is the largest ice stream in Greenland, draining approximately 8.4% of the ice sheet's area. The flow pattern and stability mechanism of this ice stream are unique to others in Greenland and Antarctica, and merit further study to ascertain the sensitivity of this ice stream to future climate change. Geophysical methods are valuable tools for this application, but their results are sensitive to the structure of the firn and any spatial variations in firn properties across a given study region. Here we present firn data from a 40-km-long seismic profile across the upper reaches of NEGIS, collected in the summer of 2012 as part of an integrated ground-based geophysical survey. We find considerable variations in firn thickness that are coincident with the ice stream shear margins, where a thinner firn layer is present within the margins, and a thicker, more uniform firn layer is present elsewhere in our study region. Higher accumulation rates in the marginal surface troughs due to drift-snow trapping can account for some of this increased densification; however, our seismic results also highlight enhanced anisotropy within the firn and upper ice column that is confined to narrow bands within the shear margins. We thus interpret these large firn thickness variations and abrupt changes in anisotropy as indicators of firn densification dependent on the effective stress state as well as the overburden pressure, suggesting that the strain rate increases nonlinearly with stress across the shear margins. A GPS strain grid maintained for three weeks across both margins observed strong side shearing, with rapid stretching and then compression along particle paths, indicating large deviatoric stresses in the margins. This work demonstrates the importance of developing a high-resolution firn densification model when conducting geophysical field work in regions possessing a complex ice flow history; it also motivates the need for a more detailed firn densification study along NEGIS to better understand the evolution of these abrupt structural variations within the firn.
Catarino, S O; Minas, G; Miranda, J M
2016-07-01
This paper reports the use of acoustic waves for promoting and improving streaming in tridimensional polymethylmethacrylate (PMMA) cuvettes of 15mm width×14mm height×2.5mm thickness. The acoustic waves are generated by a 28μm thick poly(vinylidene fluoride) - PVDF - piezoelectric transducer in its β phase, actuated at its resonance frequency: 40MHz. The acoustic transmission properties of two materials - SU-8 and polydimethylsiloxane (PDMS) - were numerically compared. It was concluded that PDMS inhibits, while SU-8 allows, the transmission of the acoustic waves to the propagation medium. Therefore, by simulating the acoustic transmission properties of different materials, it is possible to preview the acoustic behavior in the fluidic system, which allows the optimization of the best layout design, saving costs and time. This work also presents a comparison between numerical and experimental results of acoustic streaming obtained with that β-PVDF transducer in the movement and in the formation of fluid recirculation in tridimensional closed domains. Differences between the numerical and experimental results are credited to the high sensitivity of acoustic streaming to the experimental conditions and to limitations of the numerical method. The reported study contributes for the improvement of simulation models that can be extremely useful for predicting the acoustic effects of new materials in fluidic devices, as well as for optimizing the transducers and matching layers positioning in a fluidic structure. Copyright © 2016 Elsevier B.V. All rights reserved.
Trophic state, eutrophication and nutrient criteria in streams.
Dodds, Walter K
2007-12-01
Trophic state is the property of energy availability to the food web and defines the foundation of community integrity and ecosystem function. Describing trophic state in streams requires a stoichiometric (nutrient ratio) approach because carbon input rates are linked to nitrogen and phosphorus supply rates. Light determines the source of carbon. Cross system analyses, small experiments and ecosystem level manipulations have recently advanced knowledge about these linkages, but not to the point of building complex predictive models that predict all effects of nutrient pollution. Species diversity could indicate the natural distribution of stream trophic status over evolutionary time scales. Delineation of factors that control trophic state and relationships with biological community properties allows determination of goals for management of stream biotic integrity.
Simple, robust storage of drops and fluids in a microfluidic device.
Boukellal, Hakim; Selimović, Seila; Jia, Yanwei; Cristobal, Galder; Fraden, Seth
2009-01-21
We describe a single microfluidic device and two methods for the passive storage of aqueous drops in a continuous stream of oil without any external control but hydrodynamic flow. Advantages of this device are that it is simple to manufacture, robust under operation, and drops never come into contact with each other, making it unnecessary to stabilize drops against coalescence. In one method the device can be used to store drops that are created upstream from the storage zone. In the second method the same device can be used to simultaneously create and store drops from a single large continuous fluid stream without resorting to the usual flow focusing or T-junction drop generation processes. Additionally, this device stores all the fluid introduced, including the first amount, with zero waste. Transport of drops in this device depends, however, on whether or not the aqueous drops wet the device walls. Analysis of drop transport in these two cases is presented. Finally, a method for extraction of the drops from the device is also presented, which works best when drops do not wet the walls of the chip.
A Two-Stream Plasma Electron Microwave Source for High-Power Millimeter Wave Generation. Phase 1
1989-03-29
MIT Press, Cambridge, MA, 1963). these findings that strong amplification is possible for repre- ’See, for example, G. E. Guest and D. J. Sigmar , Nucl...stringency of the stability criteria for electrostatic and whistler modes, as fl(z=O, 6, t=O) = -i/2u,(e/m) discussed by Guest and Sigmar [22], and...therein. Function. Academic Press, New York (1961). 1221 GUEST, G.E., SIGMAR , D.J., Nuci. Fusion It1(1971) [271 ABRAMOWITZ, M., STEGUN. I.A. (Eds
NASA Astrophysics Data System (ADS)
Enyashin, A. N.; Ivanovskii, A. L.
2013-11-01
The structural, electronic properties and stability of the new MXene compounds—two-dimensional pristine carbonitrides Ti3C2-xNx and their hydroxylated derivatives Ti3C2-xNx(OH)2 are studied by means of DFTB calculations. The genesis of the properties is discussed in the sequence: binary MXenes Ti3C2 (Ti3N2)→hydroxylated forms Ti3C2(OH)2 (Ti3N2(OH)2)→pristine MXene Ti3C2-xNx→hydroxylated Ti3C2-xNx(OH)2. All examined materials are metallic-like. The most favorable type of OH-covering is presented by the occupation of the hollow sites between three neighboring carbon (nitrogen) atoms. Two-dimensional MXene carbonitrides with random distribution of C and N atoms are found to be thermodynamically more favorable.
NASA Astrophysics Data System (ADS)
Pickard, Amy E.; Heal, Kate V.; McLeod, Andrew R.; Dinsmore, Kerry J.
2017-04-01
Aquatic systems draining peatland catchments receive a high loading of dissolved organic carbon (DOC) from the surrounding terrestrial environment. Whilst photo-processing is known to be an important process in the transformation of aquatic DOC, the drivers of temporal variability in this pathway are less well understood. In this study, 8 h laboratory irradiation experiments were conducted on water samples collected from two contrasting peatland aquatic systems in Scotland: a peatland stream and a reservoir in a catchment with high percentage peat cover. Samples were collected monthly at both sites from May 2014 to May 2015 and from the stream system during two rainfall events. DOC concentrations, absorbance properties and fluorescence characteristics were measured to investigate characteristics of the photochemically labile fraction of DOC. CO2 and CO produced by irradiation were also measured to determine gaseous photoproduction and intrinsic sample photoreactivity. Significant variation was seen in the photoreactivity of DOC between the two systems, with total irradiation-induced changes typically 2 orders of magnitude greater at the high-DOC stream site. This is attributed to longer water residence times in the reservoir rendering a higher proportion of the DOC recalcitrant to photo-processing. During the experimental irradiation, 7 % of DOC in the stream water samples was photochemically reactive and direct conversion to CO2 accounted for 46 % of the measured DOC loss. Rainfall events were identified as important in replenishing photoreactive material in the stream, with lignin phenol data indicating mobilisation of fresh DOC derived from woody vegetation in the upper catchment. This study shows that peatland catchments produce significant volumes of aromatic DOC and that photoreactivity of this DOC is greatest in headwater streams; however, an improved understanding of water residence times and DOC input-output along the source to sea aquatic pathway is required to determine the fate of peatland carbon.
Smith, Douglas G.; Ferrell, G.M.; Harned, Douglas A.; Cuffney, Thomas F.
2011-01-01
The effects of agricultural best management practices and in-stream restoration on suspended-sediment concentrations, stream habitat, and benthic macroinvertebrate assemblages were examined in a comparative study of three small, rural stream basins in the Piedmont and Blue Ridge Physiographic Provinces of North Carolina and Virginia between 2004 and 2007. The study was designed to assess changes in stream quality associated with stream-improvement efforts at two sites in comparison to a control site (Hogan Creek), for which no improvements were planned. In the drainage basin of one of the stream-improvement sites (Bull Creek), several agricultural best management practices, primarily designed to limit cattle access to streams, were implemented during this study. In the drainage basin of the second stream-improvement site (Pauls Creek), a 1,600-foot reach of the stream channel was restored and several agricultural best management practices were implemented. Streamflow conditions in the vicinity of the study area were similar to or less than the long-term annual mean streamflows during the study. Precipitation during the study period also was less than normal, and the geographic distribution of precipitation indicated drier conditions in the southern part of the study area than in the northern part. Dry conditions during much of the study limited opportunities for acquiring high-flow sediment samples and streamflow measurements. Suspended-sediment yields for the three basins were compared to yield estimates for streams in the southeastern United States. Concentrations of suspended sediment and nutrients in samples from Bull Creek, the site where best management practices were implemented, were high compared to the other two sites. No statistically significant change in suspended-sediment concentrations occurred at the Bull Creek site following implementation of best management practices. However, data collected before and after channel stabilization at the Pauls Creek site indicated a statistically significant (p<0.05) decrease in suspended-sediment discharge following in-stream restoration. Stream habitat characteristics were similar at the Bull Creek and Hogan Creek reaches. However, the Pauls Creek reach was distinguished from the other two sites by a lack of pools, greater bankfull widths, greater streamflow and velocity, and larger basin size. Historical changes in the stream channel in the vicinity of the Pauls Creek streamgage are evident in aerial photographs dating from 1936 to 2005 and could have contributed to stream-channel instability. The duration of this study likely was inadequate for detecting changes in stream habitat characteristics. Benthic macroinvertebrate assemblages differed by site and changed during the course of the study. Bull Creek, the best management practices site, stood out as the site having the poorest overall conditions and the greatest improvement in benthic macroinvertebrate communities during the study period. Richness and diversity metrics indicated that benthic macroinvertebrate community conditions at the Hogan Creek and Pauls Creek sites declined during the study, although the status was excellent based on the North Carolina Index of Biotic Integrity. Experiences encountered during this study exemplify the difficulties of attempting to assess the short-term effects of stream-improvement efforts on a watershed scale and, in particular, the difficulty of finding similar basins for a comparative study. Data interpretation was complicated by dry climatic conditions and unanticipated land disturbances that occurred during the study in each of the three study basins. For example, agricultural best management practices were implemented in the drainage basin of the control site prior to and during the study. An impoundment on Bull Creek upstream from the streamgaging station probably influenced water-quality conditions and streamflow. Road construction in the vicinity of the Pauls Creek site potentially masked changes related to stream-improvement efforts. In addition, stream-improvement activities occurred in each of the three study basins over a period of several years prior to and during the study so that there were no discrete before and after periods available for meaningful comparisons. Historical and current land-use activities in each of the three study basins likely affected observed stream conditions. The duration of this study probably was insufficient to detect changes associated with agricultural best management practices and stream-channel restoration.
Bioassessment in nonperennial streams: Hydrologic stability influences assessment validity
NASA Astrophysics Data System (ADS)
Mazor, R. D.; Stein, E. D.; Schiff, K.; Ode, P.; Rehn, A.
2011-12-01
Nonperennial streams pose a challenge for bioassessment, as assessment tools developed in perennial streams may not work in these systems. For example, indices of biotic integrity (IBIs) developed in perennial streams may give improper indications of impairment in nonperennial streams, or may be unstable. We sampled benthic macroinvertebrates from 12 nonperennial streams in southern California. In addition, we deployed loggers to obtain continuous measures of flow. 3 sites were revisited over 2 years. For each site, we calculated several metrics, IBIs, and O/E scores to determine if assessments were consistent and valid throughout the summer. Hydrology varied widely among the streams, with several streams drying between sampling events. IBIs suggested good ecological health at the beginning of the study, but declined sharply at some sites. Multivariate ordination suggested that, despite differences among sites, changes in community structure were similar, with shifts from Ephemeroptera, Plecoptera, and Trichoptera to Coleoptera and more tolerant organisms. Site revisits revealed a surprising level of variability, as 2 of the 3 revisited sites had perennial or near-perennial flow in the second year of sampling. IBI scores were more consistent in streams with stable hydrographs than in those with strongly intermittent hydrographs. These results suggest that nonperennial streams can be monitored successfully, but they may require short index periods and distinct metrics from those used in perennial streams. In addition, better approaches to mapping nonperennial streams are required.
Kent, Robert; Belitz, Kenneth; Altmann, Andrea J.; Wright, Michael T.; Mendez, Gregory O.
2005-01-01
A study of the occurrence and distribution of pesticide compounds in surface water of the highly urbanized Santa Ana Basin, California, was done as part of the U.S. Geological Survey's National Water-Quality Assessment Program (NAWQA). One-hundred and forty-eight samples were collected from 23 sites, and analyzed for pesticide compounds during the study period from November 1998 to September 2001. Sixty-six different pesticide compounds were detected at varying frequencies and concentrations, and one or more pesticides were detected in 92 percent of the samples. All pesticide concentrations were below maximum levels permitted in drinking water. However, two compounds-diazinon and diuron-exceeded nonenforceable drinking water health-advisory levels in at least one stream sample, and five compounds exceeded guidelines to protect aquatic life-carbaryl, chlorpyrifos, diazinon, lindane, and malathion. Twenty-two pesticide compounds were detected in at least 25 percent of the samples collected from any one fixed site. These are identified as 'major' pesticide compounds and are emphasized in this report. The degree to which pesticides were used in the basin, as well as their physical-chemical properties, are important explanatory factors in stream pesticide occurrence, and most pesticides probably enter streams with urban runoff. Stormflow substantially increases urban runoff, and storm effects on stream pesticide concentrations sometimes persist for several days or weeks after the storm. Water sources other than urban runoff also deliver pesticide compounds to surface water in the basin. For example, atrazine may enter streams in gaining reaches where ground water carries high loads as a result of historical use in the basin. Also, the data suggest that lindane, and perhaps bromacil, are present in treated wastewater, the predominant source of water to streams in the Santa Ana Basin.
NASA Technical Reports Server (NTRS)
Langston, L. S.
1980-01-01
Progress is reported in an effort to study the three dimensional separation of fluid flow around two isolated cylinders mounted on an endwall. The design and performance of a hydrogen bubble generator for water tunnel tests to determine bulk flow properties and to measure main stream velocity and boundary layer thickness are described. Although the water tunnel tests are behind schedule because of inlet distortion problems, tests are far enough along to indicate cylinder spacing, wall effects and low Reynolds number behavior, all of which impacted wind tunnel model design. The construction, assembly, and operation of the wind tunnel and the check out of its characteristics are described. An off-body potential flow program was adapted to calculate normal streams streamwise pressure gradients at the saddle point locations.
NASA Astrophysics Data System (ADS)
Lajtha, K.; Strid, A.; Lee, B. S.
2014-12-01
Dissolved organic matter (DOM) production and transport play an important role in regulating organic matter (OM) distribution through a soil profile and ultimately, OM stabilization or export to aquatic systems. The contributions of varying OM inputs to the quality and amount of DOM as it passes through a soil profile remain relatively unknown. The Detrital Input and Removal Treatment (DIRT) site at the H. J. Andrews Experimental Forest in Oregon has undergone 17 years of litter, wood and root input manipulations and allows us to guage shifts in DOM chemistry induced by long-term changes to aboveground and belowground OM additions and exclusions. Using fluorescence and UV spectroscopy to characterize fluorescent properties, extent of decomposition, and sources of DOM in streams and soil solutions collected with lysimeters and soil extractions, we have assessed the importance of fresh OM inputs to DOM chemistry. Soil extracts from DIRT plots had a higher fluorescence index (FI) than lysimeter solutions or stream water. A high FI in surface water is generally interpreted as indicative of a high proportion of microbially-derived DOM. However, we suspect that the high FI in soil extracts is due to a higher proportion of non-aromatic DOM from fresh soil that microorganisms consume in transit through the soil profile to lysimeters or to streams. High redox index (RI) values were observed in lysimeters from the April 2014 sampling compared with the November 2013 sampling. These RI values show evidence of more reducing conditions at the end of the rainy season in the spring compared to the onset of the rainy season in the fall. Lysimeter water collected in No Input, No Litter, and No Root treatments contained high proportions of protein, suggesting the absence of carbon inputs changes activities of the microbial community. Observed variations reflect the viability of using fluorescent properties to explore the terrestrial-aquatic interface.
Lam, H K; Leung, Frank H F
2007-10-01
This correspondence presents the stability analysis and performance design of the continuous-time fuzzy-model-based control systems. The idea of the nonparallel-distributed-compensation (non-PDC) control laws is extended to the continuous-time fuzzy-model-based control systems. A nonlinear controller with non-PDC control laws is proposed to stabilize the continuous-time nonlinear systems in Takagi-Sugeno's form. To produce the stability-analysis result, a parameter-dependent Lyapunov function (PDLF) is employed. However, two difficulties are usually encountered: 1) the time-derivative terms produced by the PDLF will complicate the stability analysis and 2) the stability conditions are not in the form of linear-matrix inequalities (LMIs) that aid the design of feedback gains. To tackle the first difficulty, the time-derivative terms are represented by some weighted-sum terms in some existing approaches, which will increase the number of stability conditions significantly. In view of the second difficulty, some positive-definitive terms are added in order to cast the stability conditions into LMIs. In this correspondence, the favorable properties of the membership functions and nonlinear control laws, which allow the introduction of some free matrices, are employed to alleviate the two difficulties while retaining the favorable properties of PDLF-based approach. LMI-based stability conditions are derived to ensure the system stability. Furthermore, based on a common scalar performance index, LMI-based performance conditions are derived to guarantee the system performance. Simulation examples are given to illustrate the effectiveness of the proposed approach.
Ad Hoc Selection of Voice over Internet Streams
NASA Technical Reports Server (NTRS)
Macha, Mitchell G. (Inventor); Bullock, John T. (Inventor)
2014-01-01
A method and apparatus for a communication system technique involving ad hoc selection of at least two audio streams is provided. Each of the at least two audio streams is a packetized version of an audio source. A data connection exists between a server and a client where a transport protocol actively propagates the at least two audio streams from the server to the client. Furthermore, software instructions executable on the client indicate a presence of the at least two audio streams, allow selection of at least one of the at least two audio streams, and direct the selected at least one of the at least two audio streams for audio playback.
Ad Hoc Selection of Voice over Internet Streams
NASA Technical Reports Server (NTRS)
Macha, Mitchell G. (Inventor); Bullock, John T. (Inventor)
2008-01-01
A method and apparatus for a communication system technique involving ad hoc selection of at least two audio streams is provided. Each of the at least two audio streams is a packetized version of an audio source. A data connection exists between a server and a client where a transport protocol actively propagates the at least two audio streams from the server to the client. Furthermore, software instructions executable on the client indicate a presence of the at least two audio streams, allow selection of at least one of the at least two audio streams, and direct the selected at least one of the at least two audio streams for audio playback.
Stream and floodplain restoration in a riparian ecosystem disturbed by placer mining
Karle, Kenneth F.; Densmore, Roseann V.
1994-01-01
Techniques for the hydrologic restoration of placer-mined streams and floodplains were developed in Denali National Park and Preserve Alaska, USA. The hydrologic study focused on a design of stream and floodplain geometry using hydraulic capacity and shear stress equations. Slope and sinuosity values were based on regional relationships. Design requirements include a channel capacity for a 1.5-year (bankfull) discharge and a floodplain capacity for a 1.5- to 100-year discharge. Concern for potential damage to the project from annual flooding before natural revegetation occurs led to development of alder (Alnus crispa) brush bars to dissipate floodwater energy and encourage sediment deposition. The brush bars, constructed of alder bundles tied together and anchored laterally adjacent to the channel, were installed on the floodplain in several configurations to test their effectiveness. A moderate flood near the end of the two-year construction phase of the project provided data on channel design, stability, floodplain erosion, and brush bar effectiveness. The brush bars provided substantial protection, but unconsolidated bank material and a lack of bed armour for a new channel segment led to some bank erosion, slope changes and an increase in sinuosity in several reaches of the study area.
Tomer, M D; Boomer, K M B; Porter, S A; Gelder, B K; James, D E; McLellan, E
2015-05-01
A watershed's riparian corridor presents opportunities to stabilize streambanks, intercept runoff, and influence shallow groundwater with riparian buffers. This paper presents a system to classify these riparian opportunities and apply them toward riparian management planning in hydrologic unit code 12 watersheds. In two headwater watersheds from each of three landform regions found in Iowa and Illinois, high-resolution (3-m grid) digital elevation models were analyzed to identify spatial distributions of surface runoff contributions and zones with shallow water tables (SWTs) (within 1.5 m of the channel elevation) along the riparian corridors. Results were tabulated, and a cross classification was applied. Classes of buffers include those primarily placed to (i) trap runoff and sediment, (ii) influence shallow groundwater, (iii) address both runoff and shallow groundwater, and (iv) maintain/improve stream bank stability. Riparian buffers occupying about 2.5% of these six watersheds could effectively intercept runoff contributions from 81 to 94% of the watersheds' contributing areas. However, extents of riparian zones where a narrow buffer (<10 m wide) would adequately intercept runoff but where >25 m width of buffer vegetation could root to a SWT varied according to landform region ( < 0.10). Yet, these wide-SWT riparian zones were widespread and occupied 23 to 53% of the lengths of stream banks among the six watersheds. The wide-SWT setting provides opportunities to reduce dissolved nutrients (particularly NO-N) carried via groundwater. This riparian classification and mapping system is part of a ArcGIS toolbox and could provide a consistent basis to identify riparian management opportunities in Midwestern headwater catchments wherever high-resolution elevation data are available. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Robert H. Hilderbrand; A. Dennis Lemly; C. Andrew Dolloff; Kelly L. Harpster
1998-01-01
Log length exerted a critical influence in stabilizing large woody debris (LWD) pieces added as an experimental stream restoration technique. Logs longer than the average bank-full channel width (5.5 m) were significantly less likely to be displaced than logs shorter than this width. The longest log in stable log groups was significantly longer than the longest log in...
NASA Astrophysics Data System (ADS)
Rasmussen, Chadwick Clifford
An extensive study of flame stability in a cavity-based fuel injector/flameholder has been performed. Flames were stabilized in cavities with two different aft wall configurations and length to depth ratios of 3 and 4. Fuel was injected directly into the cavity using two injector configurations. Fuel injected from the aft wall of the cavity entered directly into the recirculation zone and provided desirable performance near the lean blowout limit. At high fuel flowrates, the cavity became flooded with fuel and rich blowout occurred. When fuel was injected from the floor of the cavity, excess fuel was directed out of the cavity which allowed for flame stabilization at extremely high fuel flowrates; however, this phenomenon also resulted in suboptimal performance near the lean limit where the blowout point was less predictable. Images of planar laser-induced fluorescence (PLIF) of CH, OH, and formaldehyde give insight into the flameholding mechanisms. CH layers in the cavity are thin and continuous and show structure that is comparable to lifted jet flames, while broad CH zones are sometimes observed in the shear layer. OH PLIF images show that hot recirculated products are always present at the location of flame stabilization, whereas images of formaldehyde indicate that partial premixing takes place in the shear layer portion of the flame. Nonreacting measurements of the boundary layer and the free stream velocity profiles were obtained to provide necessary boundary conditions for computational modeling. Mean and instantaneous velocity profiles were determined for the nonreacting flow using particle image velocimetry (PIV). A correlation of the blowout points for a directly-fueled cavity in a supersonic flow was accomplished using a Damkohler number and an equivalence ratio based upon an effective air mass flowrate. The chemical time was formulated using a generic measure of the reaction rate, tauc ˜ alpha/ S2L , which was found to be adequate for correlating lean blowout data from methane, ethylene, acetylene, and hydrogen flames. Blowout data was collected at a number of conditions with varied pressure and temperature and Mach numbers of 2, 2.4, and 3. The effective air mass flowrate was determined using scaling laws for compressible mixing layers, which correctly incorporated the impact of compressibility on air entrainment.
Formulation/cure technology for ultrahigh molecular weight silphenylene-siloxane polymers
NASA Technical Reports Server (NTRS)
Hundley, N. H.; Patterson, W. J.
1985-01-01
Molecular weights above one million were achieved for methylvinylsilphenylene-siloxane terpolymers using a two-stage polymerization technique which was successfully scaled up to 200 grams. The resulting polymer was vulcanized by two different formulations and compared to an identically formulated commercial methylvinyl silicone on the basis of ultimate strength, Young's modulus, percent elongation at failure, and tear strength. Relative thermal/oxidative stabilities of the elastomers were assessed by gradient and isothermal thermogravimetric analyses performed in both air and nitrogen. The experimental elastomer exhibited enhanced thermal/oxidative stability and possed equivalent or superior mechanical properties. The effect of variations in prepolymer molecular weight on mechanical properties was also investigated.
Resolved Stellar Streams around NGC 4631 from a Subaru/Hyper Suprime-Cam Survey
NASA Astrophysics Data System (ADS)
Tanaka, Mikito; Chiba, Masashi; Komiyama, Yutaka
2017-06-01
We present the first results of the Subaru/Hyper Suprime-Cam survey of the interacting galaxy system, NGC 4631 and NGC 4656. From the maps of resolved stellar populations, we identify 11 dwarf galaxies (including already-known dwarfs) in the outer region of NGC 4631 and the two tidal stellar streams around NGC 4631, named Stream SE and Stream NW, respectively. This paper describes the fundamental properties of these tidal streams. Based on the tip of the red giant branch method and the Bayesian statistics, we find that Stream SE (7.10 Mpc in expected a posteriori, EAP, with 90% credible intervals of [6.22, 7.29] Mpc) and Stream NW (7.91 Mpc in EAP with 90% credible intervals of [6.44, 7.97] Mpc) are located in front of and behind NGC 4631, respectively. We also calculate the metallicity distribution of stellar streams by comparing the member stars with theoretical isochrones on the color-magnitude diagram. We find that both streams have the same stellar population based on the Bayesian model selection method, suggesting that they originated from a tidal interaction between NGC 4631 and a single dwarf satellite. The expected progenitor has a positively skewed metallicity distribution function with {[M/H]}{EAP}=-0.92, with 90% credible intervals of [-1.46, -0.51]. The stellar mass of the progenitor is estimated as 3.7× {10}8 {M}⊙ , with 90% credible intervals of [5.8× {10}6,8.6× {10}9] {M}⊙ based on the mass-metallicity relation for Local group dwarf galaxies. This is in good agreement with the initial stellar mass of the progenitor that was presumed in the previous N-body simulation.
NASA Astrophysics Data System (ADS)
Schilt, S.; Dolgovskiy, V.; Bucalovic, N.; Schori, C.; Stumpf, M. C.; Di Domenico, G.; Pekarek, S.; Oehler, A. E. H.; Südmeyer, T.; Keller, U.; Thomann, P.
2012-11-01
We present a detailed investigation of the noise properties of an optical frequency comb generated from a femtosecond diode-pumped solid-state laser operating in the 1.5-μm spectral region. The stabilization of the passively mode-locked Er:Yb:glass laser oscillator, referred to as ERGO, is achieved using pump power modulation for the control of the carrier envelope offset (CEO) frequency and by adjusting the laser cavity length for the control of the repetition rate. The stability and the noise of the ERGO comb are characterized in free-running and in phase-locked operation by measuring the noise properties of the CEO, of the repetition rate, and of a comb line at 1558 nm. The comb line is analyzed from the heterodyne beat signal with a cavity-stabilized ultra-narrow-linewidth laser using a frequency discriminator. Two different schemes to stabilize the comb to a radio-frequency (RF) reference are compared. The comb properties (phase noise, frequency stability) are limited in both cases by the RF oscillator used to stabilize the repetition rate, while the contribution of the CEO is negligible at all Fourier frequencies, as a consequence of the low-noise characteristics of the CEO-beat. A linewidth of ≈150 kHz and a fractional frequency instability of 4.2×10-13 at 1 s are obtained for an optical comb line at 1558 nm. Improved performance is obtained by stabilizing the comb to an optical reference, which is a cavity-stabilized ultra-narrow linewidth laser at 1558 nm. The fractional frequency stability of 8×10-14 at 1 s, measured in preliminary experiments, is limited by the reference oscillator used in the frequency comparison.
Woodward, Emily; Hladik, Michelle; Kolpin, Dana W.
2016-01-01
Nitrapyrin is a bactericide that is co-applied with fertilizer to prevent nitrification and enhance corn yields. While there have been studies of the environmental fate of nitrapyrin, there is no documentation of its off-field transport to streams. In 2016, 59 water samples from 11 streams across Iowa were analyzed for nitrapyrin and its degradate, 6-chloropicolinic acid (6-CPA), along with three widely used herbicides, acetochlor, atrazine, and metolachlor. Nitrapyrin was detected in seven streams (39% of water samples) with concentrations ranging from 12 to 240 ng/L; 6-CPA was never detected. The herbicides were ubiquitously detected (100% of samples, 28–16000 ng/L). Higher nitrapyrin concentrations in streams were associated with rainfall events following spring fertilizer applications. Nitrapyrin persisted in streams for up to 5 weeks. These results highlight the need for more research focused on the environmental fate and transport of nitrapyrin and the potential toxicity this compound could have on nontarget organisms.
NASA Astrophysics Data System (ADS)
Zhou, Ming De; Liu, Tian Shu
The effects of heat pulses from surface-mounted wires on the laminar boundary-layer flow on an 800 x 300 x 32-mm flat wooden plate with a 6:1 elliptical nose are investigated experimentally in the 1.5 x 0.3-m working section of the DFVLR-AVA Goettingen low-turbulence wind tunnel at maximum free-stream velocity 45 m/s and longitudinal turbulence intensity about 0.05 percent. The results of flow visualization and hot-film measurements are presented in extensive graphs and photographs and analyzed. It is found that the initial amplification of disturbances is accurately predicted by two-dimensional linear stability theory, even when the disturbances include significant three-dimensional components. Subharmonic paths to turbulence are shown to begin from lower initial-disturbance fluctuation levels or at lower Reynolds numbers than predicted by the 'K' mechanism (Klebanoff et al., 1962), and the oblique wave angles at which maximum amplification occurs are seen as consistent with the resonant triad model of Craik (1971).
A cubic spline approximation for problems in fluid mechanics
NASA Technical Reports Server (NTRS)
Rubin, S. G.; Graves, R. A., Jr.
1975-01-01
A cubic spline approximation is presented which is suited for many fluid-mechanics problems. This procedure provides a high degree of accuracy, even with a nonuniform mesh, and leads to an accurate treatment of derivative boundary conditions. The truncation errors and stability limitations of several implicit and explicit integration schemes are presented. For two-dimensional flows, a spline-alternating-direction-implicit method is evaluated. The spline procedure is assessed, and results are presented for the one-dimensional nonlinear Burgers' equation, as well as the two-dimensional diffusion equation and the vorticity-stream function system describing the viscous flow in a driven cavity. Comparisons are made with analytic solutions for the first two problems and with finite-difference calculations for the cavity flow.
Sensitivity of system stability to model structure
Hosack, G.R.; Li, H.W.; Rossignol, P.A.
2009-01-01
A community is stable, and resilient, if the levels of all community variables can return to the original steady state following a perturbation. The stability properties of a community depend on its structure, which is the network of direct effects (interactions) among the variables within the community. These direct effects form feedback cycles (loops) that determine community stability. Although feedback cycles have an intuitive interpretation, identifying how they form the feedback properties of a particular community can be intractable. Furthermore, determining the role that any specific direct effect plays in the stability of a system is even more daunting. Such information, however, would identify important direct effects for targeted experimental and management manipulation even in complex communities for which quantitative information is lacking. We therefore provide a method that determines the sensitivity of community stability to model structure, and identifies the relative role of particular direct effects, indirect effects, and feedback cycles in determining stability. Structural sensitivities summarize the degree to which each direct effect contributes to stabilizing feedback or destabilizing feedback or both. Structural sensitivities prove useful in identifying ecologically important feedback cycles within the community structure and for detecting direct effects that have strong, or weak, influences on community stability. The approach may guide the development of management intervention and research design. We demonstrate its value with two theoretical models and two empirical examples of different levels of complexity. ?? 2009 Elsevier B.V. All rights reserved.
Bio-oil Stabilization by Hydrogenation over Reduced Metal Catalysts at Low Temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Huamin; Lee, Suh-Jane; Olarte, Mariefel V.
Biomass fast pyrolysis integrated with bio-oil upgrading represents a very attractive approach for converting biomass to hydrocarbon transportation fuels. However, the thermal and chemical instability of bio-oils presents significant problems when they are being upgraded, and development of effective approaches for stabilizing bio-oils is critical to the success of the technology. Catalytic hydrogenation to remove reactive species in bio-oil has been considered as one of the most efficient ways to stabilize bio-oil. This paper provides a fundamental understanding of hydrogenation of actual bio-oils over a Ru/TiO2 catalyst under conditions relevant to practical bio-oil hydrotreating processes. Bio-oil feed stocks, bio-oils hydrogenatedmore » to different extents, and catalysts have been characterized to provide insights into the chemical and physical properties of these samples and to understand the correlation of the properties with the composition of the bio-oil and catalysts. The results indicated hydrogenation of various components of the bio-oil, including sugars, aldehydes, ketones, alkenes, aromatics, and carboxylic acids, over the Ru/TiO2 catalyst and 120 to 160oC. Hydrogenation of these species significantly changed the chemical and physical properties of the bio-oil and overall improved its thermal stability, especially by reducing the carbonyl content, which represented the content of the most reactive species (i.e., sugar, aldehydes, and ketones). The change of content of each component in response to increasing hydrogen additions suggests the following bio-oil hydrogenation reaction sequence: sugar conversion to sugar alcohols, followed by ketone and aldehyde conversion to alcohols, followed by alkene and aromatic hydrogenation, and then followed by carboxylic acid hydrogenation to alcohols. Hydrogenation of bio-oil samples with different sulfur contents or inorganic material contents suggested that sulfur poisoning of the reduced Ru metal catalysts was significant during hydrogenation; however, the inorganics at low concentrations had minimal impact at short times on stream, indicating that sulfur poisoning was the primary deactivation mode for the bio-oil hydrogenation catalyst. Reducing the sulfur content in bio-oil could significantly increase the lifetime of the hydrogenation catalyst used. The knowledge gained during this work will allow rational design of more effective catalysts and processes for stabilizing and upgrading bio-oils.« less
Nicholls, Colin I.
1992-07-14
An on-line product sampling apparatus and method for measuring product samples from a product stream (12) in a flow line (14) having a sampling aperture (11), includes a sampling tube (18) for containing product samples removed from flow line (14). A piston (22) removes product samples from the product stream (12) through the sampling aperture (11) and returns samples to product stream (12). A sensor (20) communicates with sample tube (18), and senses physical properties of samples while the samples are within sample tube (18). In one embodiment, sensor (20) comprises a hydrogen transient nuclear magnetic resonance sensor for measuring physical properties of hydrogen molecules.
Multistability in auditory stream segregation: a predictive coding view
Winkler, István; Denham, Susan; Mill, Robert; Bőhm, Tamás M.; Bendixen, Alexandra
2012-01-01
Auditory stream segregation involves linking temporally separate acoustic events into one or more coherent sequences. For any non-trivial sequence of sounds, many alternative descriptions can be formed, only one or very few of which emerge in awareness at any time. Evidence from studies showing bi-/multistability in auditory streaming suggest that some, perhaps many of the alternative descriptions are represented in the brain in parallel and that they continuously vie for conscious perception. Here, based on a predictive coding view, we consider the nature of these sound representations and how they compete with each other. Predictive processing helps to maintain perceptual stability by signalling the continuation of previously established patterns as well as the emergence of new sound sources. It also provides a measure of how well each of the competing representations describes the current acoustic scene. This account of auditory stream segregation has been tested on perceptual data obtained in the auditory streaming paradigm. PMID:22371621
NASA Astrophysics Data System (ADS)
Rachels, A. A.; Bladon, K. D.; Bywater-Reyes, S.
2017-12-01
Historically, timber-harvesting has increased fine sediment inputs to streams due to increased hillslope and streambank erosion and mass wasting along roads. However, under modern best management practices, the relative importance and variability of these sources is poorly understood. We present preliminary results from an ongoing study investigating the primary sources of suspended sediment in Oregon Coast Range streams influenced by timber harvesting. We instrumented two catchments, Enos Creek (harvested 2016) and Scheele Creek (reference) in fall 2016. Phillips samplers (5-6 per catchment) have been deployed longitudinally down the streams to enable robust characterization of suspended sediments—the collected samples integrate the chemical signatures of upstream sediment exports. We will collect samples monthly over 2 wet seasons and return to the laboratory to analyze the sediment using source fingerprinting approaches. The fingerprinting technique compares the chemical properties of stream sediment samples with the chemical properties of potential source areas, including 1) roads, 2) stream banks, and 3) hillslopes. To design a robust model for sediment-source identification, different types of chemical data are required—we will analyze sediment samples using a combination of: a) stable isotopes and C/N ratios (i.e., δ15N, δ13C, and C/N), b) geochemistry (Fe, K, and Ca), and c) radiogenic isotopes (137Cs and 210Pb). At the harvested site, the C/N ratios of the streambanks (17.9 ± 3.8) and the hillslopes (26.4 ± 4.8) are significantly different from one another (p = .016). C/N ratios of the suspended sediment (20.5 ± 2.0) are intermediate values between potential endmembers and behave conservatively with transport. The C/N ratios of the suspended sediment appear unaffected by roads (18.9 ± 8.7) along specific sections of the stream, suggesting that roads are not a primary sediment contributor. Under this assumption, the suspended sediment is, on average, comprised of 69.5% streambank sediments and 30.5% hillslope sediments. Additional analyses are required (and in progress) to support these implications and to further interpret the importance and variability of suspended sediment sources through both space (from head to outlet) and time.
Implications of the USGS analysis of slope stability at Sulphur Creek
L. M. Reid
1998-01-01
The slope stability equation and values for material properties recommended by USGS geologist Dr. Raymond Wilson were used to map the stability regime of the four units of THP 1-97-307 HUM and the two units of THP 1-96-413 HUM. When calculations are carried out for conditions without trees, results indicate that each unit includes significant areas that would be...
NASA Technical Reports Server (NTRS)
Palasezski, Bryan; Sullivan, Neil S.; Hamida, Jaha; Kokshenev, V.
2006-01-01
The proposed research will investigate the stability and cryogenic properties of solid propellants that are critical to NASA s goal of realizing practical propellant designs for future spacecraft. We will determine the stability and thermal properties of a solid hydrogen-liquid helium stabilizer in a laboratory environment in order to design a practical propellant. In particular, we will explore methods of embedding atomic species and metallic nano-particulates in hydrogen matrices suspended in liquid helium. We will also measure the characteristic lifetimes and diffusion of atomic species in these candidate cryofuels. The most promising large-scale advance in rocket propulsion is the use of atomic propellants; most notably atomic hydrogen stabilized in cryogenic environments, and metallized-gelled liquid hydrogen (MGH) or densified gelled hydrogen (DGH). The new propellants offer very significant improvements over classic liquid oxygen/hydrogen fuels because of two factors: (1) the high energy-release, and (ii) the density increase per unit energy release. These two changes can lead to significant reduced mission costs and increased payload to orbit weight ratios. An achievable 5 to 10 percent improvement in specific impulse for the atomic propellants or MGH fuels can result in a doubling or tripling of system payloads. The high-energy atomic propellants must be stored in a stabilizing medium such as solid hydrogen to inhibit or delay their recombination into molecules. The goal of the proposed research is to determine the stability and thermal properties of the solid hydrogen-liquid helium stabilizer. Magnetic resonance techniques will be used to measure the thermal lifetimes and the diffusive motions of atomic species stored in solid hydrogen grains. The properties of metallic nano-particulates embedded in hydrogen matrices will also be studied and analyzed. Dynamic polarization techniques will be developed to enhance signal/noise ratios in order to be able to detect low concentrations of the introduced species. The required lifetimes for atomic hydrogen and other species can only be realized at low temperatures to avoid recombination of atoms before use as a fuel.
Ryu, J H; Takagi, S; Nagai, R
1995-04-01
In mesophyll cells of the aquatic angiosperm Vallisneria gigantea, bundles of microfilaments (MFs) serve as tracks for the rotational streaming of the cytoplasm, which occurs along the two longer side walls and the two shorter end walls. The stationary organization of these bundles has been shown to depend on the association of the bundles with the plasma membrane at the end walls. To identify the sites of such association, the effects of cytochalasin B (CB) on the configuration of the bundles of MFs were examined. In the case of the side walls, MFs were completely disrupted after treatment with CB at 100 micrograms/ml for 24 hours. By contrast, in the case of the end walls, a number of partially disrupted MFs remained even after 48 hours of treatment. After removal of CB, a completely normal arrangement of bundles of MFs was once again evident within 24 hours after a rather complicated process of reassembly. When reassembly had been completed, the direction of cytoplasmic streaming was reversed only in a small fraction of the treated cells, suggesting that bundles of MFs are anchored and stabilized at the end walls of each cell and that the polarity of reorganized bundles and, therefore, the direction of the cytoplasmic streaming is determined in a manner that depends on the original polarity of MFs that remained in spite of the disruptive action of CB. By contrast, the direction of reinitiated cytoplasmic streaming was reversed in 50% of cells in which the bundles of MFs had been completely disrupted by exogenously applied trypsin prior treatment with CB.(ABSTRACT TRUNCATED AT 250 WORDS)
NASA Astrophysics Data System (ADS)
Yang, Liyang; Chang, Soon-Woong; Shin, Hyun-Sang; Hur, Jin
2015-04-01
The source of river dissolved organic matter (DOM) during storm events has not been well constrained, which is critical in determining the quality and reactivity of DOM. This study assessed temporal changes in the contributions of four end members (weeds, leaf litter, soil, and groundwater), which exist in a small forested watershed (the Ehwa Brook, South Korea), to the stream DOM during two storm events, using end member mixing analysis (EMMA) based on spectroscopic properties of DOM. The instantaneous export fluxes of dissolved organic carbon (DOC), chromophoric DOM (CDOM), and fluorescent components were all enhanced during peak flows. The DOC concentration increased with the flow rate, while CDOM and humic-like fluorescent components were diluted around the peak flows. Leaf litter was dominant for the DOM source in event 2 with a higher rainfall, although there were temporal variations in the contributions of the four end members to the stream DOM for both events. The contribution of leaf litter peaked while that of deeper soils decreased to minima at peak flows. Our results demonstrated that EMMA based on DOM properties could be used to trace the DOM source, which is of fundamental importance for understanding the factors responsible for river DOM dynamics during storm events.
A model of economic growth with physical and human capital: The role of time delays.
Gori, Luca; Guerrini, Luca; Sodini, Mauro
2016-09-01
This article aims at analysing a two-sector economic growth model with discrete delays. The focus is on the dynamic properties of the emerging system. In particular, this study concentrates on the stability properties of the stationary solution, characterised by analytical results and geometrical techniques (stability crossing curves), and the conditions under which oscillatory dynamics emerge (through Hopf bifurcations). In addition, this article proposes some numerical simulations to illustrate the behaviour of the system when the stationary equilibrium is unstable.
SOIL ALUMINUM DISTRIBUTION IN THE NEAR-STREAM ZONE AT THE BEAR BROOK WATERSHED IN MAINE
Near-stream and upslope soil chemical properties were analyzed to infer linkages between soil and surface water chemistry at the Bear Brook Watershed in Maine [BBWM]. Organic and mineral soil samples were collected along six 20 m transects perpendicular to the stream and one 200 ...
Biogeochemistry of the Amazon River Basin: the role of aquatic ecosystems in the Amazon functioning
NASA Astrophysics Data System (ADS)
Victoria, R. L.; Ballester, V. R.; Krushe, A. V.; Richey, J. E.; Aufdenkampe, A. K.; Kavaguishi, N. L.; Gomes, B. M.; Victoria, D. D.; Montebello, A. A.; Niell, C.; Deegan, L.
2004-12-01
In this study we present the results of an integrated analysis of physical and anthropogenic controls of river biogeochemistry in Amazônia. At the meso-scale level, our results show that both soil properties and land use are the main drivers of river biogeochemistry and metabolism, with pasture cover and soil exchange cation capacity explaining 99% (p < 0.01) of the variability observed in surface water ions and nutrients concentrations. In small rivers, forest clearing can increase cations, P and C inputs. P and light are the main PPL limiting factors in forested streams, while in pasture streams N becomes limiting. P export to streams may increase or remain nearly undetectable after forest-to-pasture conversion, depending on soil type. Pasture streams on Oxisols have very low P export, while on Ultisols P export is increased. Conversions of forest to pasture leads to extensive growth of in channel Paspalum resulting in higher DOC concentrations and respiration rates. Pasture streams have higher DOC fluxes when compared to the forest ones. In pasture areas the soil are compacted, there is less infiltration and higher surface run off, leaching soil superficial layers and caring more DOC to the streams. In forest areas infiltration is deeper into the soils and canopy interaction is higher. Mineralogy and soil properties are key factors determining exports of nutrients to streams. Therefore, land use change effects on nutrient export from terrestrial to aquatic ecosystems and the atmosphere must be understood within the context of varying soil properties across the Amazon Basin.
Oki, Delwyn S.
2003-01-01
Surface water in Hawaii is a valued resource as well as a potential threat to human lives and property. The surface-water resources of Hawaii are of significant economic, ecologic, cultural, and aesthetic importance. Streams supply more than 50 percent of the irrigation water in Hawaii, and although streams supply only a few percent of the drinking water statewide, surface water is the main source of drinking water in some places. Streams also are a source of hydroelectric power, provide important riparian and instream habitats for many unique native species, support traditional and customary Hawaiian gathering rights and the practice of taro cultivation, and possess valued aesthetic qualities. Streams affect the physical, chemical, and aesthetic quality of receiving waters, such as estuaries, bays, and nearshore waters, which are critical to the tourism-based economy of the islands. Streams in Hawaii pose a danger because of their flashy nature; a stream's stage, or water level, can rise several feet in less than an hour during periods of intense rainfall. Streams in Hawaii are flashy because rainfall is intense, drainage basins are small, basins and streams are steep, and channel storage is limited. Streamflow generated during periods of heavy rainfall has led to loss of property and human lives in Hawaii. Most Hawaiian streams originate in the mountainous interiors of the islands and terminate at the coast. Streams are significant sculptors of the Hawaiian landscape because of the erosive power of the water they convey. In geologically young areas, such as much of the southern part of the island of Hawaii, well-defined stream channels have not developed because the permeability of the surface rocks generally is so high that rainfall infiltrates before flowing for significant distances on the surface. In geologically older areas that have received significant rainfall, streams and mass wasting have carved out large valleys.
NASA Astrophysics Data System (ADS)
Kirihara, T.; Miki, Y.; Mori, M.
2017-08-01
We examine the nature, possible orbits and physical properties of the progenitor of the north-western stellar stream (NWS) in the halo of the Andromeda galaxy (M31). The progenitor is assumed to be an accreting dwarf galaxy with globular clusters (GCs). It is, in general, difficult to determine the progenitor's orbit precisely because of many necessary parameters. Recently, Veljanoski et al. reported five GCs whose positions and radial velocities suggest an association with the stream. We use these data to constrain the orbital motions of the progenitor using test-particle simulations. Our simulations split the orbit solutions into two branches according to whether the stream ends up in the foreground or in the background of M31. Upcoming observations that will determine the distance to the NWS will be able to reject one of the two branches. In either case, the solutions require that the pericentric radius of any possible orbit be over 2 kpc. We estimate the efficiency of the tidal disruption and confirm the consistency with the assumption for the progenitor being a dwarf galaxy. The progenitor requires the mass ≳ 2 × 106 M⊙ and half-light radius ≳ 30 pc. In addition, N-body simulations successfully reproduce the basic observed features of the NWS and the GCs' line-of-sight velocities.
NASA Astrophysics Data System (ADS)
Penna, Daniele; Gobbi, Alberto; Mantese, Nicola; Borga, Marco
2010-05-01
Hydrological processes driving runoff generation in mountain basins depend on a wide number of factors which are often strictly interconnected. Among them, topography is widely recognized as one of the dominant controls influencing soil moisture distribution in the root zone, depth to water table and location and extent of saturated areas possibly prone to runoff production. Morphological properties of catchments are responsible for the alternation between steep slopes and relatively flat areas which have the potentials to control the storage/release of water and hence the hydrological response of the whole watershed. This work aims to: i) identify the role of topography as the main factor controlling the spatial distribution of near-surface soil moisture; ii) evaluate the possible switch in soil moisture spatial organization between wet and relatively dry periods and the stability of patterns during triggering of surface/subsurface runoff; iii) assess the possible connection between the develop of an ephemeral river network and the groundwater variations, examining the influence of the catchment topographical properties on the hydrological response. Hydro-meteorological data were collected in a small subcatchment (Larch Creek Catchment, 0.033 km²) of Rio Vauz basin (1.9 km²), in the eastern Italian Alps. Precipitation, discharge, water table level over a net of 14 piezometric wells and volumetric soil moisture at 0-30 cm depth were monitored continuously during the late spring-early autumn months in 2007 and 2008. Soil water content at 0-6 and 0-20 cm depth was measured manually during 22 field surveys in summer 2007 over a 44-sampling point experimental plot (approximately 3000 m²). In summer 2008 the sampling grid was extended to 64 points (approximately 4500 m²) and 28 field surveys were carried out. The length of the ephemeral stream network developed during rainfall events was assessed by a net of 24 Overland Flow Detectors (OFDs), which are able to detect the presence/absence of surface runoff. Results show a significant correlation between plot-averaged soil moisture at 0-20 cm depth, local slope and local curvature, while poor correlations were found with aspect and solar radiation: this suggests a sharp control of the catchment topological architecture (likely coupled with soil properties) on soil moisture distribution. This was also confirmed by the visual inspection of interpolated maps which reveal the persistence of high values of soil moisture in hollow areas and, conversely, of low values over the hillslopes. Moreover, a strong correlation between plot-averaged soil moisture patterns over time, with no decline after rainfall events, indicates a good temporal stability of water content distribution and its independence from the triggering of surface flow and transient lateral subsurface flow during wet conditions. The analysis of the time lag between storm centroid and piezometric peak shows an increasing delay of water table reaction with increasing distance from the stream, revealing different groundwater dynamics between the near-stream and the hillslope zone. Furthermore, the significant correlation between groundwater time lag monitored for the net of piezometers and the local slope suggests a topographical influence on the temporal and spatial variability of subsurface runoff. Finally, the extent of the ephemeral stream network was clearly dependent on the amount of precipitation but a different percentage of active OFDs and piezometers for the same rainfall event suggests a decoupling between patterns of surface and subsurface flows in the study area. Key words: topographical controls, soil moisture patterns, groundwater level, overland flow.
Production of Low Cost Carbon-Fiber through Energy Optimization of Stabilization Process.
Golkarnarenji, Gelayol; Naebe, Minoo; Badii, Khashayar; Milani, Abbas S; Jazar, Reza N; Khayyam, Hamid
2018-03-05
To produce high quality and low cost carbon fiber-based composites, the optimization of the production process of carbon fiber and its properties is one of the main keys. The stabilization process is the most important step in carbon fiber production that consumes a large amount of energy and its optimization can reduce the cost to a large extent. In this study, two intelligent optimization techniques, namely Support Vector Regression (SVR) and Artificial Neural Network (ANN), were studied and compared, with a limited dataset obtained to predict physical property (density) of oxidative stabilized PAN fiber (OPF) in the second zone of a stabilization oven within a carbon fiber production line. The results were then used to optimize the energy consumption in the process. The case study can be beneficial to chemical industries involving carbon fiber manufacturing, for assessing and optimizing different stabilization process conditions at large.
Production of Low Cost Carbon-Fiber through Energy Optimization of Stabilization Process
Golkarnarenji, Gelayol; Naebe, Minoo; Badii, Khashayar; Milani, Abbas S.; Jazar, Reza N.; Khayyam, Hamid
2018-01-01
To produce high quality and low cost carbon fiber-based composites, the optimization of the production process of carbon fiber and its properties is one of the main keys. The stabilization process is the most important step in carbon fiber production that consumes a large amount of energy and its optimization can reduce the cost to a large extent. In this study, two intelligent optimization techniques, namely Support Vector Regression (SVR) and Artificial Neural Network (ANN), were studied and compared, with a limited dataset obtained to predict physical property (density) of oxidative stabilized PAN fiber (OPF) in the second zone of a stabilization oven within a carbon fiber production line. The results were then used to optimize the energy consumption in the process. The case study can be beneficial to chemical industries involving carbon fiber manufacturing, for assessing and optimizing different stabilization process conditions at large. PMID:29510592
The Molybdenum titanium Phase Diagram Evaluated from Ab initio Calculations
2016-10-07
thermodynamic properties of this binary system are not well known and two conflicting descriptions of the β-phase stability have been presented in the...computational thermodynamics CALPHAD approach [13] and the Thermo-Calc software [14]. These studies led to two conflicting descriptions of the stability of...energy calculations, with an energy cutoff separating core and valence states of -6 Ry. 2.2. Thermodynamic modeling The formation enthalpy of a
Technical specifications for mechanical recycling of agricultural plastic waste.
Briassoulis, D; Hiskakis, M; Babou, E
2013-06-01
Technical specifications appropriate for the recycling of agricultural plastic wastes (APWs), widely accepted by the recycling industry were developed. The specifications establish quality standards to be met by the agricultural plastics producers, users and the agricultural plastic waste management chain. They constitute the base for the best economical and environmental valorisation of the APW. The analysis of the APW streams conducted across Europe in the framework of the European project "LabelAgriWaste" revealed the inherent characteristics of the APW streams and the inherent constraints (technical or economical) of the APW. The APW stream properties related to its recycling potential and measured during pilot trials are presented and a subsequent universally accepted simplified and expanded list of APW recycling technical specifications is proposed and justified. The list includes two sets of specifications, applied to two different quality categories of recyclable APW: one for pellet production process ("Quality I") and another one for plastic profile production process ("Quality II"). Parameters that are taken into consideration in the specifications include the APW physical characteristics, contamination, composition and degradation. The proposed specifications are focused on polyethylene based APW that represents the vast majority of the APW stream. However, the specifications can be adjusted to cover also APW of different materials (e.g. PP or PVC) that are found in very small quantities in protected cultivations in Europe. The adoption of the proposed specifications could transform this waste stream into a labelled commodity traded freely in the market and will constitute the base for the best economical and environmental valorisation of the APW. Copyright © 2013 Elsevier Ltd. All rights reserved.
Seramur, K.C.; Powell, R.D.; Carlson, P.R.
1997-01-01
In the marine environment, stability of the glacier terminus and the location of subglacial streams are the dominant controls on the distribution of grounding-line deposits within morainal banks. A morainal bank complex in Muir Inlet, Glacier Bay, SE Alaska, is used to develop a model of terminus stability and location of subglacial streams along the grounding line of temperate marine glaciers. This model can be used to interpret former grounding-line conditions in other glacimarine settings from the facies architecture within morainal bank deposits. The Muir Inlet morainal bank complex was deposited between 1860 A.D. and 1899 A.D., and historical observations provide a record of terminus positions, glacial retreat rates and sedimentary sources. These data are used to reconstruct the depositional environment and to develop a correlation between sedimentary facies and conditions along the grounding line. Four seismic facies identified on the high-resolution seismic-reflection profiles are used to interpret sedimentary facies within the morainal bank complex. Terminus stability is interpreted from the distribution of sedimentary facies within three distinct submarine geomorphic features, a grounding-line fan; stratified ridges, and a field of push ridges. The grounding-line fan was deposited along a stable terminus and is represented on seismic-reflection profiles by two distinct seismic facies, a proximal and a distal fan facies. The proximal fan facies was deposited at the efflux of subglacial streams and indicates the location of former glacifluvial discharges into the sea. Stratified ridges formed as a result of the influence of a quasi-stable terminus on the distribution of sedimentary facies along the grounding line. A field of push ridges formed along the grounding line of an unstable terminus that completely reworked the grounding-line deposits through glacitectonic deformation. Between 1860 A.D. and 1899 A.D. (39 years), 8.96 x 108 m3 of sediment were deposited within the Muir Inlet morainal bank complex at an average annual sediment accumulation rate of 2.3 x 107 m3/a. This rate represents the annual sediment production capacity of the glacier when the Muir Inlet drainage basin is filled with glacial ice.
Cayuela, M L; Mondini, C; Sánchez-Monedero, M A; Roig, A
2008-07-01
Two-phase olive mill waste (TPOMW) is a semisolid sludge generated during the extraction of olive oil by the two-phase centrifugation system. Among all the available disposal options, composting is gaining interest as a sustainable strategy to recycle TPOMW for agricultural purposes. The quality of compost for agronomical use depends on the degree of organic matter stabilization, but despite several studies on the topic, there is not a single method available which alone can give a certain indication of compost stability. In addition, information on the biological and biochemical properties, including the enzymatic activity (EA) of compost, is rare. The aim of this work was to investigate the suitability of some enzymatic activities (beta-glucosidase, arylsulphatase, acid-phosphatase, alkaline-phosphatase, urease and fluorescein diacetate hydrolysis (FDA)) as parameters to evaluate organic matter stability during the composting of TPOMW. These enzymatic indices were also compared to conventional stability indices. For this purpose two composting piles were prepared by mixing TPOMW with sheep manure and grape stalks in different proportions, with forced aeration and occasional turnings. The composting of TPOMW followed the common pattern reported previously for this kind of material with a reduction of 40-50% of organic matter, a gradual increase in pH, disappearance of phytotoxicity and formation of humic-like C. All EA increased during composting except acid-phosphatase. Significant correlations were found between EA and some important conventional stability indices indicating that EA can be a simple and reliable tool to determine the degree of stability of TPOMW composts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heng, Kevin; Kitzmann, Daniel, E-mail: kevin.heng@csh.unibe.ch, E-mail: daniel.kitzmann@csh.unibe.ch
We present a novel generalization of the two-stream method of radiative transfer, which allows for the accurate treatment of radiative transfer in the presence of strong infrared scattering by aerosols. We prove that this generalization involves only a simple modification of the coupling coefficients and transmission functions in the hemispheric two-stream method. This modification originates from allowing the ratio of the first Eddington coefficients to depart from unity. At the heart of the method is the fact that this ratio may be computed once and for all over the entire range of values of the single-scattering albedo and scattering asymmetrymore » factor. We benchmark our improved two-stream method by calculating the fraction of flux reflected by a single atmospheric layer (the reflectivity) and comparing these calculations to those performed using a 32-stream discrete-ordinates method. We further compare our improved two-stream method to the two-stream source function (16 streams) and delta-Eddington methods, demonstrating that it is often more accurate at the order-of-magnitude level. Finally, we illustrate its accuracy using a toy model of the early Martian atmosphere hosting a cloud layer composed of carbon dioxide ice particles. The simplicity of implementation and accuracy of our improved two-stream method renders it suitable for implementation in three-dimensional general circulation models. In other words, our improved two-stream method has the ease of implementation of a standard two-stream method, but the accuracy of a 32-stream method.« less
Modelling the complete operation of a free-piston shock tunnel for a low enthalpy condition
NASA Astrophysics Data System (ADS)
McGilvray, M.; Dann, A. G.; Jacobs, P. A.
2013-07-01
Only a limited number of free-stream flow properties can be measured in hypersonic impulse facilities at the nozzle exit. This poses challenges for experimenters when subsequently analysing experimental data obtained from these facilities. Typically in a reflected shock tunnel, a simple analysis that requires small amounts of computational resources is used to calculate quasi-steady gas properties. This simple analysis requires initial fill conditions and experimental measurements in analytical calculations of each major flow process, using forward coupling with minor corrections to include processes that are not directly modeled. However, this simplistic approach leads to an unknown level of discrepancy to the true flow properties. To explore the simple modelling techniques accuracy, this paper details the use of transient one and two-dimensional numerical simulations of a complete facility to obtain more refined free-stream flow properties from a free-piston reflected shock tunnel operating at low-enthalpy conditions. These calculations were verified by comparison to experimental data obtained from the facility. For the condition and facility investigated, the test conditions at nozzle exit produced with the simple modelling technique agree with the time and space averaged results from the complete facility calculations to within the accuracy of the experimental measurements.
Surface-water quality, Twin Ponies watershed, Pottawattamie and Mills counties, Iowa
Detroy, Mark G.
1981-01-01
It is probable that the variations between constituent concentrations in samples collected during runoff and those collected during low flow will be similar after grade-stabilization structures have been constructed on streams and after land-treatment measures have been implemented in the watershed as proposed by the U.S. Soil Conservation Service. Grade-stabilization structures should reduce gully and channel erosion in the watershed by dissipating the erosive energy of streamflow during significant runoff. Land-treatment measures to be implemented in conjunction with the project would help reduce sediment yield to stream channels. With the impoundments~ a decrease in velocity of the in-flowing water should produce a decrease of both the suspended~sediment concentrations and the chemical and biological constituents associated with the suspended sediMent in the impounded water.
Ortiz-Rascón, E; Bruce, N C; Garduño-Mejía, J; Carrillo-Torres, R; Hernández-Paredes, J; Álvarez-Ramos, M E
2017-11-20
This paper discusses the main differences between two different methods for determining the optical properties of tissue optical phantoms by fitting the spatial and temporal intensity distribution functions to the diffusion approximation theory. The consistency in the values of the optical properties is verified by changing the width of the recipient containing the turbid medium; as the optical properties are an intrinsic value of the scattering medium, independently of the recipient width, the stability in these values for different widths implies a better measurement system for the acquisition of the optical properties. It is shown that the temporal fitting method presents higher stability than the spatial fitting method; this is probably due to the addition of the time of flight parameter into the diffusion theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yanwen; Linville, Jessica L.; Ignacio-de Leon, Patricia Anne A.
This study presents an integrated waste-to-energy process, using two waste streams, sludge generated from the municipal wastewater treatment plants (WWTPs) and biochar generated from the biomass gasification systems, to produce fungible biomethane and nutrient-rich digestate with fertilizer value. Two woody biochar, namely pinewood (PBC) and white oak biochar (WOBC) were used as additives during anaerobic digestion (AD) of WWTP sludge to enhance methane production at mesophilic and thermophilic temperatures. The PBC and WOBC have porous structure, large surface area and desirable chemical properties to be used as AD amendment material to sequester CO2 from biogas in the digester. The biochar-amendedmore » digesters achieved average methane content in biogas of up to 92.3% and 79.0%, corresponding to CO2 sequestration by up to 66.2% and 32.4% during mesophilic and thermophilic AD, respectively. Biochar addition enhanced process stability by increasing the alkalinity, but inhibitory effects were observed at high dosage. It also alleviated free ammonia inhibition by up to 10.5%. The biochar-amended digesters generated digestate rich in macro- and micronutrients including K (up to 300 m/L), Ca (up to 750 mg/L), Mg (up to 1800 mg/L) and Fe (up to 390 mg/L), making biochar-amended digestate a potential alternative used as agricultural lime fertilizer.« less
NASA Astrophysics Data System (ADS)
Basu, Nandita B.; Fure, Adrian D.; Jawitz, James W.
2008-07-01
Simulations of nonpartitioning and partitioning tracer tests were used to parameterize the equilibrium stream tube model (ESM) that predicts the dissolution dynamics of dense nonaqueous phase liquids (DNAPLs) as a function of the Lagrangian properties of DNAPL source zones. Lagrangian, or stream-tube-based, approaches characterize source zones with as few as two trajectory-integrated parameters, in contrast to the potentially thousands of parameters required to describe the point-by-point variability in permeability and DNAPL in traditional Eulerian modeling approaches. The spill and subsequent dissolution of DNAPLs were simulated in two-dimensional domains having different hydrologic characteristics (variance of the log conductivity field = 0.2, 1, and 3) using the multiphase flow and transport simulator UTCHEM. Nonpartitioning and partitioning tracers were used to characterize the Lagrangian properties (travel time and trajectory-integrated DNAPL content statistics) of DNAPL source zones, which were in turn shown to be sufficient for accurate prediction of source dissolution behavior using the ESM throughout the relatively broad range of hydraulic conductivity variances tested here. The results were found to be relatively insensitive to travel time variability, suggesting that dissolution could be accurately predicted even if the travel time variance was only coarsely estimated. Estimation of the ESM parameters was also demonstrated using an approximate technique based on Eulerian data in the absence of tracer data; however, determining the minimum amount of such data required remains for future work. Finally, the stream tube model was shown to be a more unique predictor of dissolution behavior than approaches based on the ganglia-to-pool model for source zone characterization.
Improved understanding of the relationship between hydraulic properties and streaming potentials
NASA Astrophysics Data System (ADS)
Cassiani, G.; Brovelli, A.
2009-12-01
Streaming potential (SP) measurements have been satisfactorily used in a number of recent studies as a non-invasive tool to monitor fluid movement in both the vadose and the saturated zone. SPs are generated from the coupling between two independent physical processes oc-curring at the pore-level, namely water flow and excess of ions at the negatively charged solid matrix-water interface. The intensity of the measured potentials depends on physical proper-ties of the medium, including the internal micro-geometry of the system, the charge density of the interface and the composition of the pore fluid, which affects its ionic strength, pH and redox potential. The goal of this work is to investigate whether a relationship between the intensity of the SPs and the saturated hydraulic conductivity can be identified. Both properties are - at least to some extent - dependent on the pore-size distribution and connectivity of the pores, and there-fore some degree of correlation is expected. We used a pore-scale numerical model previously developed to simulate both the bulk hydraulic conductivity and the intensity of the SPs gener-ated in a three-dimensional pore-network. The chemical-physical properties of both the inter-face (Zeta-potential) and of the aqueous phase are computed using an analytical, physically based model that has shown good agreement with experimental data. Modelling results were satisfactorily compared with experimental data, showing that the model, although simplified retains the key properties and mechanisms that control SP generation. A sensitivity analysis with respect to the key geometrical and chemical parameters was conducted to evaluate how the correlation between the two studied variables changes and to ascertain whether the bulk hydraulic conductivity can be estimated from SP measurements alone.
M.E. McTammany; E.F. Benfield; J.R. Webster
2008-01-01
Agriculture causes high sediment, nutrient and light input to streams, which may affect rates of ecosystem processes, such as organic matter decay. In the southern Appalachians, socioeconomic trends over the past 50 years have caused widespread abandonment of farmland with subsequent reforestation. Physical and chemical properties of streams in these...
E.F Benfield McTammany; J.R. Webster
2008-01-01
Agriculture causes high sediment, nutrient and light input to streams, which may affect rates of ecosystem processes, such as organic matter decay. In the southern Appalachians, socioeconomic trends over the past 50 years have caused widespread abandonment of farmland with subsequent reforestation. Physical and chemical properties of streams in these reforested areas...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-22
... organic compounds (TOC) (minus methane and ethane) by 98 weight-percent or to a TOC (minus methane and...- effectiveness) per unit reduction of TOC associated with an individual vent stream, based on vent stream flow rate, emission rate of TOC, net heating value and corrosion properties, whether or not the vent stream...
Electrokinetic coupling in unsaturated porous media.
Revil, A; Linde, N; Cerepi, A; Jougnot, D; Matthäi, S; Finsterle, S
2007-09-01
We consider a charged porous material that is saturated by two fluid phases that are immiscible and continuous on the scale of a representative elementary volume. The wetting phase for the grains is water and the nonwetting phase is assumed to be an electrically insulating viscous fluid. We use a volume-averaging approach to derive the linear constitutive equations for the electrical current density as well as the seepage velocities of the wetting and nonwetting phases on the scale of a representative elementary volume. These macroscopic constitutive equations are obtained by volume-averaging Ampère's law together with the Nernst-Planck equation and the Stokes equations. The material properties entering the macroscopic constitutive equations are explicitly described as functions of the saturation of the water phase, the electrical formation factor, and parameters that describe the capillary pressure function, the relative permeability functions, and the variation of electrical conductivity with saturation. New equations are derived for the streaming potential and electro-osmosis coupling coefficients. A primary drainage and imbibition experiment is simulated numerically to demonstrate that the relative streaming potential coupling coefficient depends not only on the water saturation, but also on the material properties of the sample, as well as the saturation history. We also compare the predicted streaming potential coupling coefficients with experimental data from four dolomite core samples. Measurements on these samples include electrical conductivity, capillary pressure, the streaming potential coupling coefficient at various levels of saturation, and the permeability at saturation of the rock samples. We found very good agreement between these experimental data and the model predictions.
NASA Astrophysics Data System (ADS)
Jia, Kun; Mei, Deqing; Meng, Jianxin; Yang, Keji
2014-10-01
Ultrasonic manipulation has become an attractive method for surface-sensitive objects in micro-technology. Related phenomena, such as radiation force, multiple scattering, and acoustic streaming, have been widely studied. However, in current studies, the behavior of micro-particles in potential force fields is always analyzed in a quasi-static manner. We developed a dynamic model of a dilute micro-particle in the commonly used two-dimensional ultrasonic manipulation system to provide a systemic and quantitative analysis of the transient properties of particle movement. In this model, the acoustic streaming and hydrodynamic forces, omitted in previous work, were both considered. The trajectory of a spherical silica particle with different initial conditions was derived by numerically solving the established nonlinear differential integral equation system, which was then validated experimentally. The envelope of the experimental data on the x-axis showed good agreement with the theoretical calculation, and the greater influence on the y-axis of the deviation between the actual sound field and the ideal distribution employed in our dynamic model could account for the differences in displacement in that direction. Finally, the influence of particle size on its movement and the effect of acoustic streaming on calculating the hydrodynamic forces for an isolated particle with motion relative to the fluid were analyzed theoretically. It was found that the ultrasonic manipulation system will translate from an under-damped system to an over-damped system with a decrease in particle size and the micro-scale acoustic streaming velocity was negligible when calculating the hydrodynamic forces on the particle in the ultrasonic manipulation system.
Monitoring Changes in Channel Morphology in Las Vegas Wash with Global Fiducials Program Imagery
NASA Astrophysics Data System (ADS)
Wheeler, D. J.
2012-12-01
To borrow from a popular adage, "What happens in Las Vegas [Wash], stays in Las Vegas [Wash]"—but only with a lot of help. This past decade has seen a concerted effort to curb erosion and sediment transport along the 12 mile long channel between East Las Vegas and Lake Mead. Las Vegas Wash is prototypical of an urban river in an arid environment that is being impacted by increasing urban development and impervious surface runoff within its drainage area. Rapid urbanization since the 1970s has increased the flow of water into Las Vegas Wash, causing severe channel destabilization. Within two decades millions of cubic yards of rocks and sediment were scoured out of the wash and transported downstream to Lake Mead. The wetlands that once covered over 2,000 acres within Las Vegas Wash dwindled to 200 acres in the 1990s as the channel became as much as 40 feet deeper and 300 feet wider at some points. In 1999 the Las Vegas Wash Coordination Committee (LVWCC) initiated a 20-year plan to construct erosion control structures (weirs) for channel stabilization and rock riprap for stream bank protection. The hope is to design structures that will slow down the water flow, trap sediments, and to eventually restore much of the wetland environment. Using high-resolution satellite imagery from the Global Fiducials Program Library housed at the U. S. Geological Survey, this transition is being tracked from 1999 to the present. From November 1999 to July 2008 new residential and commercial development has claimed an additional 12 square kilometers (3000 acres) of land in Henderson, NV, along the south side of Las Vegas Wash. Even with the increased volume of surface and groundwater runoff entering the wash, current sediment yields are much lower than the 1999 totals. The imagery documents the construction of 14 of the 22 LVWCC planned weirs by the year 2011. It also shows many miles of stream bank stabilization by riprap, planting of riparian vegetation and placing of obstructions in the channel. The replanting of native vegetation on storm debris flats is stabilizing some of the soil in the wash and also rejuvenating much of the wetland habitat. Las Vegas Wash is a test bed for the design and implementation of innovative methods for modifying stream morphology to achieve desirable results, as some of these methods are deemed successful and some are not as effective. The lessons learned about curbing erosion and sediment transport within Las Vegas Wash may be applied to other urban streams in arid environments.
No Snow No Flow: How Montane Stream Networks Respond to Drought
NASA Astrophysics Data System (ADS)
Grant, G.; Nolin, A. W.; Selker, J. S.; Lewis, S.; Hempel, L. A.; Jefferson, A.; Walter, C.; Roques, C.
2015-12-01
Hydrologic extremes, such as drought, offer an exceptional opportunity to explore how runoff generation mechanisms and stream networks respond to changing precipitation regimes. The winter of 2014-2015 was the warmest on record in western Oregon, US, with record low snowpacks, and was followed by an anomalously warm, dry spring, resulting in historically low streamflows. But a year like 2015 is more than an outlier meteorological year. It provides a unique opportunity to test fundamental hypotheses for how montane hydrologic systems will respond to anticipated changes in amount and timing of recharge. In particular, the volcanic Cascade Mountains represent a "landscape laboratory" comprised of two distinct runoff regimes: the surface-flow dominated Western Cascade watersheds, with flashy streamflow regimes, rapid baseflow recession, and very low summer flows; and (b) the spring-fed High Cascade watersheds, with a slow-responding streamflow regime, and a long and sustained baseflow recession that maintains late summer streamflow through deep-groundwater contributions to high volume, coldwater springs. We hypothesize that stream network response to the extremely low snowpack and recharge varies sharply in these two regions. In surface flow dominated streams, the location of channel heads can migrate downstream, contracting the network longitudinally; wetted channel width and depth contract laterally as summer recession proceeds and flows diminish. In contrast, in spring-fed streams, channel heads "jump" to the next downstream spring when upper basin spring flow diminishes to zero. Downstream of flowing springs, wetted channel width and depth contract laterally as flows recede. To test these hypotheses, we conducted a field campaign to measure changing discharge, hydraulic geometry, and channel head location in both types of watersheds throughout the summer and early fall. Multiple cross-section sites were established on 6 streams representing both flow regime types on either side of the Cascade crest. We also took Isotopic water samples to determine recharge elevations of receding streams. Taken together these measurements reveal the processes by which drainage networks contract as flows diminish - a fundamental property of montane stream systems both now and in the future.
Craven, S.W.; Peterson, J.T.; Freeman, Mary C.; Kwak, T.J.; Irwin, E.
2010-01-01
Modifications to stream hydrologic regimes can have a profound influence on the dynamics of their fish populations. Using hierarchical linear models, we examined the relations between flow regime and young-of-year fish density using fish sampling and discharge data from three different warmwater streams in Illinois, Alabama, and Georgia. We used an information theoretic approach to evaluate the relative support for models describing hypothesized influences of five flow regime components representing: short-term high and low flows; short-term flow stability; and long-term mean flows and flow stability on fish reproductive success during fish spawning and rearing periods. We also evaluated the influence of ten fish species traits on fish reproductive success. Species traits included spawning duration, reproductive strategy, egg incubation rate, swimming locomotion morphology, general habitat preference, and food habits. Model selection results indicated that young-of-year fish density was positively related to short-term high flows during the spawning period and negatively related to flow variability during the rearing period. However, the effect of the flow regime components varied substantially among species, but was related to species traits. The effect of short-term high flows on the reproductive success was lower for species that broadcast their eggs during spawning. Species with cruiser swimming locomotion morphologies (e.g., Micropterus) also were more vulnerable to variable flows during the rearing period. Our models provide insight into the conditions and timing of flows that influence the reproductive success of warmwater stream fishes and may guide decisions related to stream regulation and management. ?? 2010 US Government.
Fire, flow and dynamic equilibrium in stream macroinvertebrate communities
Arkle, R.S.; Pilliod, D.S.; Strickler, K.
2010-01-01
The complex effects of disturbances on ecological communities can be further complicated by subsequent perturbations within an ecosystem. We investigated how wildfire interacts with annual variations in peak streamflow to affect the stability of stream macroinvertebrate communities in a central Idaho wilderness, USA. We conducted a 4-year retrospective analysis of unburned (n = 7) and burned (n = 6) catchments, using changes in reflectance values (??NBR) from satellite imagery to quantify the percentage of each catchment's riparian and upland vegetation that burned at high and low severity. For this wildland fire complex, increasing riparian burn severity and extent were associated with greater year-to-year variation, rather than a perennial increase, in sediment loads, organic debris, large woody debris (LWD) and undercut bank structure. Temporal changes in these variables were correlated with yearly peak flow in burned catchments but not in unburned reference catchments, indicating that an interaction between fire and flow can result in decreased habitat stability in burned catchments. Streams in more severely burned catchments exhibited increasingly dynamic macroinvertebrate communities and did not show increased similarity to reference streams over time. Annual variability in macroinvertebrates was attributed, predominantly, to the changing influence of sediment, LWD, riparian cover and organic debris, as quantities of these habitat components fluctuated annually depending on burn severity and annual peak streamflows. These analyses suggest that interactions among fire, flow and stream habitat may increase inter-annual habitat variability and macroinvertebrate community dynamics for a duration approaching the length of the historic fire return interval of the study area. ?? 2009 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Owens, H.; Skaugset, A. E.
2012-12-01
Resident Coastal Cutthroat trout are ubiquitous in headwater streams across western Oregon. The federal Endangered Species Act lists coastal cutthroat trout as a species of concern and lists habitat modification due to forest management as a cause of population decline. Protection of cutthroat trout is a concern to natural resource managers, yet the dynamics of cutthroat trout populations are complex and poorly understood. Thus, identifying the factors that drive the dynamics of cutthroat trout populations is important to the management of forested headwater watersheds. This poster describes an interdisciplinary study to identify hydrologic determinants of annual abundance, age structure, and growth in resident Cutthroat trout in headwater streams of the western Cascades of southern Oregon. Discharge is a primary variable of interest because it affects habitat volume, stream velocity, channel hydraulics, water quality, channel geomorphology, bed-load stability, and resource availability. Discharge is also affected by forest management activities, specifically timber harvest. The objective of this project is to identify and quantify the influence streamflow has on the abundance of resident cutthroat trout in western Oregon. The study was a part of the Hinkle Creek Paired Watershed Study and took place in the foothills of the Cascade Mountains in the Umpqua River basin from 2004-2011. Streamflow and fish populations were measured in the streams of a 3rd order, 1,950 hectare watershed. The study design was a nested paired watershed study that allowed the investigation to occur at multiple spatial and temporal scales. The study watersheds supported harvest-regenerated stands of Douglas-fir (pseudotsuga menziesii) and are part of a larger study to investigate the environmental impacts of contemporary forest practices on fish-bearing headwater streams. Fish populations and channel habitat characteristics were measured throughout the stream network annually. Discharge was measured at eight gaging stations (two 3rd-order and six 2nd-order streams). Stream temperature was measured at 29 locations throughout the study period. Linear regression was used to model potential explanatory variables of discharge, temperature, and habitat characteristics to explain annual trout abundance, age structure, and growth.
Foster, Guy M.
2014-01-01
The Neosho River and its primary tributary, the Cottonwood River, are the primary sources of inflow to the John Redmond Reservoir in east-central Kansas. Sedimentation rate in the John Redmond Reservoir was estimated as 743 acre-feet per year for 1964–2006. This estimated sedimentation rate is more than 80 percent larger than the projected design sedimentation rate of 404 acre-feet per year, and resulted in a loss of 40 percent of the conservation pool since its construction in 1964. To reduce sediment input into the reservoir, the Kansas Water Office implemented stream bank stabilization techniques along an 8.3 mile reach of the Neosho River during 2010 through 2011. The U.S. Geological Survey, in cooperation with the Kansas Water Office and funded in part through the Kansas State Water Plan Fund, operated continuous real-time water-quality monitors upstream and downstream from stream bank stabilization efforts before, during, and after construction. Continuously measured water-quality properties include streamflow, specific conductance, water temperature, and turbidity. Discrete sediment samples were collected from June 2009 through September 2012 and analyzed for suspended-sediment concentration (SSC), percentage of sediments less than 63 micrometers (sand-fine break), and loss of material on ignition (analogous to amount of organic matter). Regression models were developed to establish relations between discretely measured SSC samples, and turbidity or streamflow to estimate continuously SSC. Continuous water-quality monitors represented between 96 and 99 percent of the cross-sectional variability for turbidity, and had slopes between 0.91 and 0.98. Because consistent bias was not observed, values from continuous water-quality monitors were considered representative of stream conditions. On average, turbidity-based SSC models explained 96 percent of the variance in SSC. Streamflow-based regressions explained 53 to 60 percent of the variance. Mean squared prediction error for turbidity-based regression relations ranged from -32 to 48 percent, whereas mean square prediction error for streamflow-based regressions ranged from -69 to 218 percent. These models are useful for evaluating the variability of SSC during rapidly changing conditions, computing loads and yields to assess SSC transport through the watershed, and for providing more accurate load estimates compared to streamflow-only based estimation methods used in the past. These models can be used to evaluate the efficacy of streambank stabilization efforts.
Collision Tomography: Physical Properties of Possible Progenitors of the Andromeda Stellar Stream
NASA Astrophysics Data System (ADS)
Miki, Yohei; Mori, Masao; Rich, R. Michael
2016-08-01
To unveil a progenitor of the Andromeda Giant Stellar Stream, we investigate the interaction between an accreting satellite galaxy and the Andromeda Galaxy using an N-body simulation. We perform a comprehensive exploration of the properties of the progenitor dwarf galaxy, using 247 models of varying mass, mass distribution, and size. We show that the binding energy of the progenitor is the crucial parameter in reproducing the Andromeda Giant Stellar Stream and the shell-like structures surrounding the Andromeda Galaxy. As a result of the simulations, the progenitor must satisfy a simple scaling relation between the core radius, the total mass and the tidal radius. Using this relation, we successfully constrain the physical properties of the progenitors to have masses ranging from 5× {10}8{M}⊙ to 5× {10}9{M}⊙ and central surface densities around {10}3 {M}⊙ {{pc}}-2. A detailed comparison between our result and the nearby observed galaxies indicates that possible progenitors of the Andromeda Giant Stellar Stream include a dwarf elliptical galaxy, a dwarf irregular galaxy, and a small spiral galaxy.
Perryman, Shane E; Rees, Gavin N; Walsh, Christopher J; Grace, Michael R
2011-05-01
The export of nitrogen from urban catchments is a global problem, and denitrifying bacteria in stream ecosystems are critical for reducing in-stream N. However, the environmental factors that control the composition of denitrifying communities in streams are not well understood. We determined whether denitrifying community composition in sediments of nine streams on the eastern fringe of Melbourne, Australia was correlated with two measures of catchment urban impact: effective imperviousness (EI, the proportion of a catchment covered by impervious surfaces with direct connection to streams) or septic tank density (which affects stream water chemistry, particularly stream N concentrations). Denitrifying community structure was examined by comparing terminal restriction fragment length polymorphisms of nosZ genes in the sediments, as the nosZ gene codes for nitrous oxide reductase, the last step in the denitrification pathway. We also determined the chemical and physical characteristics of the streams that were best correlated with denitrifying community composition. EI was strongly correlated with community composition and sediment physical and chemical properties, while septic tank density was not. Sites with high EI were sandier, with less fine sediment and lower organic carbon content, higher sediment cations (calcium, sodium and magnesium) and water filterable reactive phosphorus concentrations. These were also the best small-scale environmental variables that explained denitrifying community composition. Among our study streams, which differed in the degree of urban stormwater impact, sediment grain size and carbon content are the most likely drivers of change in community composition. Denitrifying community composition is another in a long list of ecological indicators that suggest the profound degradation of streams is caused by urban stormwater runoff. While the relationships between denitrifying community composition and denitrification rates are yet to be unequivocally established, landscape-scale indices of environmental impact such as EI may prove to be useful indicators of change in microbial communities.
Prediction of pesticide toxicity in Midwest streams
Shoda, Megan E.; Stone, Wesley W.; Nowell, Lisa H.
2016-01-01
The occurrence of pesticide mixtures is common in stream waters of the United States, and the impact of multiple compounds on aquatic organisms is not well understood. Watershed Regressions for Pesticides (WARP) models were developed to predict Pesticide Toxicity Index (PTI) values in unmonitored streams in the Midwest and are referred to as WARP-PTI models. The PTI is a tool for assessing the relative toxicity of pesticide mixtures to fish, benthic invertebrates, and cladocera in stream water. One hundred stream sites in the Midwest were sampled weekly in May through August 2013, and the highest calculated PTI for each site was used as the WARP-PTI model response variable. Watershed characteristics that represent pesticide sources and transport were used as the WARP-PTI model explanatory variables. Three WARP-PTI models—fish, benthic invertebrates, and cladocera—were developed that include watershed characteristics describing toxicity-weighted agricultural use intensity, land use, agricultural management practices, soil properties, precipitation, and hydrologic properties. The models explained between 41 and 48% of the variability in the measured PTI values. WARP-PTI model evaluation with independent data showed reasonable performance with no clear bias. The models were applied to streams in the Midwest to demonstrate extrapolation for a regional assessment to indicate vulnerable streams and to guide more intensive monitoring.
Hong, Geun Pyo; Min, Sang-Gi; Chin, Koo Bok
2012-01-01
In this study, the effects of microbial transglutaminase (MTG) and calcium alginate (CA) systems in combination with soybean oil on the emulsion properties of porcine myofibrillar protein (MP) were evaluated under various pH conditions. MTG was shown to improve emulsifying capacity and creaming stability, which increased with increasing pH values up to 6.5. The CA did not influence emulsifying capacity, but it improved the creaming stability of the MP-stabilized emulsions. Both MTG and CA enhanced the rheological properties, but their effects on the physical characteristics of the protein evidenced an opposite trend in relation to pH, i.e., the MTG system improved both the emulsion and gelling properties with increasing pH, whereas the CA system was effective when the pH was lowered. By combining the two MP gelling systems, a stable and pH-insensible emulsion could be produced. Copyright © 2011 Elsevier Ltd. All rights reserved.
Psychometric properties and norms of the German ABC-Community and PAS-ADD Checklist.
Zeilinger, Elisabeth L; Weber, Germain; Haveman, Meindert J
2011-01-01
The aim of the present study was to standardize and generate psychometric evidence of the German language versions of two well-established English language mental health instruments: the Aberrant Behavior Checklist-Community (ABC-C) and the Psychiatric Assessment Schedule for Adults with Developmental Disabilities (PAS-ADD) Checklist. New methods in this field were introduced: a simulation method for testing the factor structure and an exploration of long-term stability over two years. The checklists were both administered to a representative sample of 270 individuals with intellectual disability (ID) and, two years later in a second data collection, to 128 participants of the original sample. Principal component analysis and parallel analysis were performed. Reliability measures, long-term stability, subscale intercorrelations, as well as standardized norms were generated. Prevalence of mental health problems was examined. Psychometric properties were mostly excellent, with long-term stability showing moderate to strong effects. The original factor structure of the ABC-C was replicated. PAS-ADD Checklist produced a similar, but still different structure compared with findings from the English language area. The overall prevalence rate of mental health problems in the sample was about 20%. Considering the good results on the measured psychometric properties, the two checklists are recommended for the early detection of mental health problems in persons with ID. Copyright © 2011 Elsevier Ltd. All rights reserved.
Coprocessed nuclear fuels containing (U, Pu) values as oxides, carbides or carbonitrides
Lloyd, M.H.
1981-01-09
Method for direct coprocessing of nuclear fuels derived from a product stream of fuels reprocessing facility containing uranium, plutonium, and fission product values comprising nitrate stabilization of said stream vacuum concentration to remove water and nitrates, neutralization to form an acid deficient feed solution for the internal gelation mode of sol-gel technology, green spherule formation, recovery and treatment for loading into a fuel element by vibra packed or pellet formation technologies.
Coprocessed nuclear fuels containing (U, Pu) values as oxides, carbides or carbonitrides
Lloyd, Milton H.
1983-01-01
Method for direct coprocessing of nuclear fuels derived from a product stream of a fuels reprocessing facility containing uranium, plutonium, and fission product values comprising nitrate stabilization of said stream vacuum concentration to remove water and nitrates, neutralization to form an acid deficient feed solution for the internal gelation mode of sol-gel technology, green spherule formation, recovery and treatment for loading into a fuel element by vibra packed or pellet formation technologies.
USDA-ARS?s Scientific Manuscript database
Indole-3-carbinol (I3C) and diindolylmethane (DIM) are two bioactive compounds from Cruciferous vegetables. Their stabilities are the major challenges for their pharmaceutical applications. In this study, zein and zein/carboxymethyl chitosan (zein/CMCS) nanoparticles have been prepared to encapsulat...
How dynamic are ice-stream beds?
NASA Astrophysics Data System (ADS)
Davies, Damon; Bingham, Robert G.; King, Edward C.; Smith, Andrew M.; Brisbourne, Alex M.; Spagnolo, Matteo; Graham, Alastair G. C.; Hogg, Anna E.; Vaughan, David G.
2018-05-01
Projections of sea-level rise contributions from West Antarctica's dynamically thinning ice streams contain high uncertainty because some of the key processes involved are extremely challenging to observe. An especially poorly observed parameter is sub-decadal stability of ice-stream beds, which may be important for subglacial traction, till continuity and landform development. Only two previous studies have made repeated geophysical measurements of ice-stream beds at the same locations in different years, but both studies were limited in spatial extent. Here, we present the results from repeat radar measurements of the bed of Pine Island Glacier, West Antarctica, conducted 3-6 years apart, along a cumulative ˜ 60 km of profiles. Analysis of the correlation of bed picks between repeat surveys shows that 90 % of the bed displays no significant change despite the glacier increasing in speed by up to 40 % over the last decade. We attribute the negligible detection of morphological change at the bed of Pine Island Glacier to the ubiquitous presence of a deforming till layer, wherein sediment transport is in steady state, such that sediment is transported along the basal interface without inducing morphological change to the radar-sounded basal interface. Given the precision of our measurements, the upper limit of subglacial erosion observed here is 500 mm a-1, far exceeding erosion rates reported for glacial settings from proglacial sediment yields, but substantially below subglacial erosion rates of 1.0 m a-1 previously reported from repeat geophysical surveys in West Antarctica.
Woody debris in north Iberian streams: influence of geomorphology, vegetation, and management.
Diez, J R; Elosegi, A; Pozo, J
2001-11-01
The effect of stream geomorphology, maturity, and management of riparian forests on abundance, role, and mobility of wood was evaluated in 20 contrasting reaches in the Agüera stream catchment (northern Iberian Peninsula). During 1 year the volume of woody debris exceeding 1 cm in diameter was measured in all reaches. All large woody debris (phi > 5 cm) pieces were tagged, their positions mapped, and their subsequent changes noted. Volume of woody debris was in general low and ranged from 40 to 22,000 cm3 m-2; the abundance of debris dams ranged from 0 to 5.5 per 100 m of channel. Wood was especially rare and unstable in downstream reaches, or under harvested forests (both natural or plantations). Results stress that woody debris in north Iberian streams has been severely reduced by forestry and log removal. Because of the important influence of woody debris on structure and function of stream systems, this reduction has likely impacted stream communities. Therefore, efforts to restore north Iberian streams should include in-channel and riparian management practices that promote greater abundance and stability of large woody debris whenever possible.
Developing a national stream morphology data exchange: needs, challenges, and opportunities
Collins, Mathias J.; Gray, John R.; Peppler, Marie C.; Fitzpatrick, Faith A.; Schubauer-Berigan, Joseph P.
2012-01-01
Stream morphology data, primarily consisting of channel and foodplain geometry and bed material size measurements, historically have had a wide range of applications and uses including culvert/ bridge design, rainfall- runoff modeling, food inundation mapping (e.g., U.S. Federal Emergency Management Agency food insurance studies), climate change studies, channel stability/sediment source investigations, navigation studies, habitat assessments, and landscape change research. The need for stream morphology data in the United States, and thus the quantity of data collected, has grown substantially over the past 2 decades because of the expanded interests of resource management agencies in watershed management and restoration. The quantity of stream morphology data collected has also increased because of state-of-the-art technologies capable of rapidly collecting high-resolution data over large areas with heretofore unprecedented precision. Despite increasing needs for and the expanding quantity of stream morphology data, neither common reporting standards nor a central data archive exist for storing and serving these often large and spatially complex data sets. We are proposing an open- access data exchange for archiving and disseminating stream morphology data.
Developing a national stream morphology data exchange: Needs, challenges, and opportunities
NASA Astrophysics Data System (ADS)
Collins, Mathias J.; Gray, John R.; Peppler, Marie C.; Fitzpatrick, Faith A.; Schubauer-Berigan, Joseph P.
2012-05-01
Stream morphology data, primarily consisting of channel and foodplain geometry and bed material size measurements, historically have had a wide range of applications and uses including culvert/ bridge design, rainfall- runoff modeling, food inundation mapping (e.g., U.S. Federal Emergency Management Agency food insurance studies), climate change studies, channel stability/sediment source investigations, navigation studies, habitat assessments, and landscape change research. The need for stream morphology data in the United States, and thus the quantity of data collected, has grown substantially over the past 2 decades because of the expanded interests of resource management agencies in watershed management and restoration. The quantity of stream morphology data collected has also increased because of state-of-the-art technologies capable of rapidly collecting high-resolution data over large areas with heretofore unprecedented precision. Despite increasing needs for and the expanding quantity of stream morphology data, neither common reporting standards nor a central data archive exist for storing and serving these often large and spatially complex data sets. We are proposing an open- access data exchange for archiving and disseminating stream morphology data.
Bacterial degradation of acetone in an outdoor model stream
Rathbun, R.E.; Stephens, D.W.; Tai, D.Y.
1993-01-01
Diurnal variations of the acetone concentration in an outdoor model stream were measured with and without a nitrate supplement to determine if the nitrate supplement would stimulate bacterial degradation of the acetone. Acetone loss coefficients were computed from the diurnal data using a fitting procedure based on a Lagrangian particle model. The coefficients indicated that bacterial degradation of the acetone was occurring in the downstream part of the stream during the nitrate addition. However, the acetone concentrations stabilized at values considerably above the limit of detection for acetone determination, in contrast to laboratory respirometer studies where the acetone concentration decreased rapidly to less than the detection limit, once bacterial acclimation to the acetone had occurred. One possible explanation for the difference in behavior was the limited 6-hour residence time of the acetone in the model stream.
Evaluation of passive samplers for the collection of dissolved organic matter in streams.
Warner, Daniel L; Oviedo-Vargas, Diana; Royer, Todd V
2015-01-01
Traditional sampling methods for dissolved organic matter (DOM) in streams limit opportunities for long-term studies due to time and cost constraints. Passive DOM samplers were constructed following a design proposed previously which utilizes diethylaminoethyl (DEAE) cellulose as a sampling medium, and they were deployed throughout a temperate stream network in Indiana. Two deployments of the passive samplers were conducted, during which grab samples were frequently collected for comparison. Differences in DOM quality between sites and sampling methods were assessed using several common optical analyses. The analyses revealed significant differences in optical properties between sampling methods, with the passive samplers preferentially collecting terrestrial, humic-like DOM. We assert that the differences in DOM composition from each sampling method were caused by preferential binding of complex humic compounds to the DEAE cellulose in the passive samplers. Nonetheless, the passive samplers may provide a cost-effective, integrated sample of DOM in situations where the bulk DOM pool is composed mainly of terrestrial, humic-like compounds.
NASA Technical Reports Server (NTRS)
Majda, G.
1985-01-01
A large set of variable coefficient linear systems of ordinary differential equations which possess two different time scales, a slow one and a fast one is considered. A small parameter epsilon characterizes the stiffness of these systems. A system of o.d.e.s. in this set is approximated by a general class of multistep discretizations which includes both one-leg and linear multistep methods. Sufficient conditions are determined under which each solution of a multistep method is uniformly bounded, with a bound which is independent of the stiffness of the system of o.d.e.s., when the step size resolves the slow time scale, but not the fast one. This property is called stability with large step sizes. The theory presented lets one compare properties of one-leg methods and linear multistep methods when they approximate variable coefficient systems of stiff o.d.e.s. In particular, it is shown that one-leg methods have better stability properties with large step sizes than their linear multistep counter parts. The theory also allows one to relate the concept of D-stability to the usual notions of stability and stability domains and to the propagation of errors for multistep methods which use large step sizes.
Large-Scale Low-Boom Inlet Test Overview
NASA Technical Reports Server (NTRS)
Hirt, Stefanie
2011-01-01
This presentation provides a high level overview of the Large-Scale Low-Boom Inlet Test and was presented at the Fundamental Aeronautics 2011 Technical Conference. In October 2010 a low-boom supersonic inlet concept with flow control was tested in the 8'x6' supersonic wind tunnel at NASA Glenn Research Center (GRC). The primary objectives of the test were to evaluate the inlet stability and operability of a large-scale low-boom supersonic inlet concept by acquiring performance and flowfield validation data, as well as evaluate simple, passive, bleedless inlet boundary layer control options. During this effort two models were tested: a dual stream inlet intended to model potential flight hardware and a single stream design to study a zero-degree external cowl angle and to permit surface flow visualization of the vortex generator flow control on the internal centerbody surface. The tests were conducted by a team of researchers from NASA GRC, Gulfstream Aerospace Corporation, University of Illinois at Urbana-Champaign, and the University of Virginia
NASA Astrophysics Data System (ADS)
Sarkar, Kausik
2016-11-01
Intravenously injected microbubbles used as ultrasound contrast enhancing agents are encapsulated by a nanometer-thick layer of lipids, proteins or polymers to stabilize them against premature dissolution. Over the years, we have developed interfacial rheological models for the encapsulation and used them to characterize several contrast agents by acoustic means. We will present an overview of our research emphasizing recent efforts in two directions. The first is on using subharmonic signals from the contrast microbubbles for non-invasive pressure estimation. Experimental measurement and modeling show that the subharmonic signal can both increase or decrease with pressure depending on frequency. Secondly, we will discuss boundary element (BEM) simulation of the collapse of an encapsulated microbubbles forming a jet near a blood vessel wall. Different rheology models of the encapsulation have been rigorously implemented in the BEM formulation. We will discuss the resulting stresses and the acoustic streaming near the wall leading to sonoporation and other bioeffects. Partially supported by Natinal Science Foundation.
Johnson, Gordon R.
1983-01-01
Dry bulk density and grain density measurements were made on 182 samples of igneous, sedimentary, and metamorphic rocks from various world-wide localities. Total porosity values and both water-accessible and helium-accessible porosities were calculated from the density data. Magnetic susceptibility measurements were made on the solid samples and permeability and streaming potentials were concurrently measured on most samples. Dry bulk densities obtained using two methods of volume determination, namely direct measurement and Archlmedes principle, were nearly equivalent for most samples. Grain densities obtained on powdered samples were typically greater than grain densities obtained on solid samples, but differences were usually small. Sedimentary rocks had the highest percentage of occluded porosity per rock volume whereas metamorphic rocks had the highest percentage of occluded porosity per total porosity. There was no apparent direct relationship between permeability and streaming potential for most samples, although there were indications of such a relationship in the rock group consisting of granites, aplites, and syenites. Most rock types or groups of similar rock types of low permeability had, when averaged, comparable levels of streaming potential per unit of permeability. Three calcite samples had negative streaming potentials.
NASA Astrophysics Data System (ADS)
Osman, Yassin Z.; Bruen, Michael P.
2002-07-01
Seepage from a stream, which partially penetrates an unconfined alluvial aquifer, is studied for the case when the water table falls below the streambed level. Inadequacies are identified in current modelling approaches to this situation. A simple and improved method of incorporating such seepage into groundwater models is presented. This considers the effect on seepage flow of suction in the unsaturated part of the aquifer below a disconnected stream and allows for the variation of seepage with water table fluctuations. The suggested technique is incorporated into the saturated code MODFLOW and is tested by comparing its predictions with those of a widely used variably saturated model, SWMS_2D simulating water flow and solute transport in two-dimensional variably saturated media. Comparisons are made of both seepage flows and local mounding of the water table. The suggested technique compares very well with the results of variably saturated model simulations. Most currently used approaches are shown to underestimate the seepage and associated local water table mounding, sometimes substantially. The proposed method is simple, easy to implement and requires only a small amount of additional data about the aquifer hydraulic properties.
Limitations and implications of stream classification
Juracek, K.E.; Fitzpatrick, F.A.
2003-01-01
Stream classifications that are based on channel form, such as the Rosgen Level II classification, are useful tools for the physical description and grouping of streams and for providing a means of communication for stream studies involving scientists and (or) managers with different backgrounds. The Level II classification also is used as a tool to assess stream stability, infer geomorphic processes, predict future geomorphic response, and guide stream restoration or rehabilitation activities. The use of the Level II classification for these additional purposes is evaluated in this paper. Several examples are described to illustrate the limitations and management implications of the Level II classification. Limitations include: (1) time dependence, (2) uncertain applicability across physical environments, (3) difficulty in identification of a true equilibrium condition, (4) potential for incorrect determination of bankfull elevation, and (5) uncertain process significance of classification criteria. Implications of using stream classifications based on channel form, such as Rosgen's, include: (1) acceptance of the limitations, (2) acceptance of the risk of classifying streams incorrectly, and (3) classification results may be used inappropriately. It is concluded that use of the Level II classification for purposes beyond description and communication is not appropriate. Research needs are identified that, if addressed, may help improve the usefulness of the Level II classification.
Skagen, Susan K.; Muths, Erin; Adams, Rod D.
2001-01-01
Four amphibian species, three reptile species, and one mammal species are highly vulnerable to bank stabilization activities. Tiger salamanders, boreal toads, western chorus frogs, spotted frogs, rubber boas, racers, western garter snakes, and water shrews are expected to respond primarily to alterations in stream and bank morphology and the loss of still water for amphibian breeding.
Electrokinetic transport phenomena: Mobility measurement and electrokinetic instability
NASA Astrophysics Data System (ADS)
Oddy, Michael Huson
Miniaturization and integration of traditional bioassay procedures into microfabricated on-chip assay systems, commonly referred to as "Micro Total Analysis" (muTAS) systems, may have a significant impact on the fields of genomics, proteomics, and clinical analysis. These bioanalytical microsystems leverage electroosmosis and electrophoresis for sample transport, mixing, manipulation, and separation. This dissertation addresses the following three topics relevant to such systems: a new diagnostic for measuring the electrophoretic mobility of sub-micron, fluorescently-labeled particles and the electroosmotic mobility of a microchannel; a novel method and device for rapidly stirring micro- and nanoliter volume solutions for microfluidic bioanalytical applications; and a multiple-species electrokinetic instability model. Accurate measurement of the electrophoretic particle mobility and the electroosmotic mobility of microchannel surfaces is crucial to understanding the stability of colloidal suspensions, obtaining particle tracking-based velocimetry measurements of electroosmotic flow fields, and the quantification of electrokinetic bioanalytical device performance. A method for determining these mobilities from alternating and direct current electrokinetic particle tracking measurements is presented. The ability to rapidly mix fluids at low Reynolds numbers is important to the functionality of many bioanalytical, microfluidic devices. We present an electrokinetic process for rapidly stirring microflow streams by initiating an electrokinetic flow instability. The design, fabrication and performance analysis of two micromixing devices capable of rapidly stirring two low Reynolds number fluid streams are presented. Electroosmotic and electrophoretic transport in the presence of conductivity mismatches between reagent streams and the background electrolytes, can lead to an unstable flow field generating significant sample dispersion. In the multiple-species electrokinetic instability model, we consider a high aspect ratio microchannel geometry, a conductivity gradient orthogonal to the applied electric field, and a four-species chemistry model. A linear stability analysis of the depth-averaged governing equations shows unstable eigenmodes for conductivity ratios as close to unity as 1.01. Experiments and full nonlinear simulations of the governing equations were conducted for a conductivity ratio of 1.05. Images of the disturbance dye field from the nonlinear simulations show good qualitative and quantitative agreement with experiment. Species electromigration is shown to a have significant influence on the development of the conductivity field and instability dynamics in multi-ion configurations.
NASA Technical Reports Server (NTRS)
Holanda, R.
1984-01-01
The thermoelectric properties alloys of the nickel-base, iron-base, and cobalt-base groups containing from 1% to 25% 106 chromium were compared and correlated with the following material characteristics: atomic percent of the principle alloy constituent; ratio of concentration of two constituents; alloy physical property (electrical resistivity); alloy phase structure (percent precipitate or percent hardener content); alloy electronic structure (electron concentration). For solid-solution-type alloys the most consistent correlation was obtained with electron concentration, for precipitation-hardenable alloys of the nickel-base superalloy group, the thermoelectric potential correlated with hardener content in the alloy structure. For solid-solution-type alloys, no problems were found with thermoelectric stability to 1000; for precipitation-hardenable alloys, thermoelectric stability was dependent on phase stability. The effects of the compositional range of alloy constituents on temperature measurement uncertainty are discussed.
NASA Astrophysics Data System (ADS)
Tsai, Cheng-Che; Chao, Wei-Hsiang; Chu, Sheng-Yuan; Hong, Cheng-Shong; Weng, Chung-Ming; Su, Hsiu-Hsien
2016-12-01
In this work, the process of two-stage modifications for (Ba0.97Ca0.03)(Ti0.96Sn0.04-xHfx)O3 (BCTS4-100xH100x) ceramics was studied. The trade-off composition was obtained by Hf substitution for Sn and MnO2 doping (two-stage modification) which improves the temperature stability and piezoelectric properties. The phase structure ratio, microstructure, and dielectric, piezoelectric, ferroelectric, and temperature stability properties were systematically investigated. Results showed that BCTS4-100xH100x piezoelectric ceramics with x=0.035 had a relatively high Curie temperature (TC) of about 112 °C, a piezoelectric charge constant (d33) of 313 pC/N, an electromechanical coupling factor (kp) of 0.49, a mechanical quality factor (Qm) of 122, and a remnant polarization (Pr) of 19 μ C /cm2 . In addition, the temperature stability of the resonant frequency (fr), kp, and aging d33 could be tuned via Hf content. Good piezoelectric temperature stability (up to 110 °C) was found with x =0.035. BCTS0.5H3.5 + a mol% Mn (BCTSH + a Mn) piezoelectric ceramics with a = 2 had a high TC of about 123 °C, kp ˜ 0.39, d33 ˜ 230 pC/N, Qm ˜ 341, and high temperature stability due to the produced oxygen vacancies. This mechanism can be depicted using the complex impedance analysis associated with a valence compensation model on electric properties. Two-stage modification for lead-free (Ba0.97Ca0.03)(Ti0.96Sn0.04)O3 ceramics suitably adjusts the compositions for applications in piezoelectric motors and actuators.
Bionic Control of Cheetah Bounding with a Segmented Spine.
Wang, Chunlei; Wang, Shigang
2016-01-01
A cheetah model is built to mimic real cheetah and its mechanical and dimensional parameters are derived from the real cheetah. In particular, two joints in spine and four joints in a leg are used to realize the motion of segmented spine and segmented legs which are the key properties of the cheetah bounding. For actuating and stabilizing the bounding gait of cheetah, we present a bioinspired controller based on the state-machine. The controller mainly mimics the function of the cerebellum to plan the locomotion and keep the body balance. The haptic sensor and proprioception system are used to detect the trigger of the phase transition. Besides, the vestibular modulation could perceive the pitching angle of the trunk. At last, the cerebellum acts as the CPU to operate the information from the biological sensors. In addition, the calculated results are transmitted to the low-level controller to actuate and stabilize the cheetah bounding. Moreover, the delay feedback control method is employed to plan the motion of the leg joints to stabilize the pitching motion of trunk with the stability criterion. Finally, the cyclic cheetah bounding with biological properties is realized. Meanwhile, the stability and dynamic properties of the cheetah bounding gait are analyzed elaborately.
An Analysis of the Optimal Control Modification Method Applied to Flutter Suppression
NASA Technical Reports Server (NTRS)
Drew, Michael; Nguyen, Nhan T.; Hashemi, Kelley E.; Ting, Eric; Chaparro, Daniel
2017-01-01
Unlike basic Model Reference Adaptive Control (MRAC)l, Optimal Control Modification (OCM) has been shown to be a promising MRAC modification with robustness and analytical properties not present in other adaptive control methods. This paper presents an analysis of the OCM method, and how the asymptotic property of OCM is useful for analyzing and tuning the controller. We begin with a Lyapunov stability proof of an OCM controller having two adaptive gain terms, then the less conservative and easily analyzed OCM asymptotic property is presented. Two numerical examples are used to show how this property can accurately predict steady state stability and quantitative robustness in the presence of time delay, and relative to linear plant perturbations, and nominal Loop Transfer Recovery (LTR) tuning. The asymptotic property of the OCM controller is then used as an aid in tuning the controller applied to a large scale aeroservoelastic longitudinal aircraft model for flutter suppression. Control with OCM adaptive augmentation is shown to improve performance over that of the nominal non-adaptive controller when significant disparities exist between the controller/observer model and the true plant model.
Holtgrieve, Gordon W; Schindler, Daniel E
2011-02-01
In coastal areas of the North Pacific Ocean, annual returns of spawning salmon provide a substantial influx of nutrients and organic matter to streams and are generally believed to enhance the productivity of recipient ecosystems. Loss of this subsidy from areas with diminished salmon runs has been hypothesized to limit ecosystem productivity in juvenile salmon rearing habitats (lakes and streams), thereby reinforcing population declines. Using five to seven years of data from an Alaskan stream supporting moderate salmon densities, we show that salmon predictably increased stream water nutrient concentrations, which were on average 190% (nitrogen) and 390% (phosphorus) pre-salmon values, and that primary producers incorporated some of these nutrients into tissues. However, benthic algal biomass declined by an order of magnitude despite increased nutrients. We also measured changes in stream ecosystem metabolic properties, including gross primary productivity (GPP) and ecosystem respiration (ER), from three salmon streams by analyzing diel measurements of oxygen concentrations and stable isotopic ratios (delta O-O2) within a Bayesian statistical model of oxygen dynamics. Our results do not support a shift toward higher primary productivity with the return of salmon, as is expected from a nutrient fertilization mechanism. Rather, net ecosystem metabolism switched from approximately net autotrophic (GPP > or = ER) to a strongly net heterotrophic state (GPP < ER) in response to bioturbation of benthic habitats by salmon. Following the seasonal arrival of salmon, GPP declined to <12% of pre-salmon rates, while ER increased by over threefold. Metabolism by live salmon could not account for the observed increase in ER early in the salmon run, suggesting salmon nutrients and disturbance enhanced in situ heterotrophic respiration. Salmon also changed the physical properties of the stream, increasing air-water gas exchange by nearly 10-fold during peak spawning. We suggest that management efforts to restore salmon ecosystems should consider effects on ecosystem metabolic properties and how salmon disturbance affects the incorporation of marine-derived nutrients into food webs.
The importance of fluvial hydraulics to fish-habitat restoration in low-gradient alluvial streams
Rabeni, Charles F.; Jacobson, Robert B.
1993-01-01
1. A major cause of degradation and loss of stream fish is alteration of physical habitat within and adjacent to the channel. We describe a potentially efficient approach to fish restoration based upon the relationship between fluvial hydraulics, geomorphology, and those habitats important to fish.2. The aquatic habitat in a low-gradient, alluvial stream in the Ozark Plateaus physiographical province was classified according to location in the channel, patterns of water flow, and structures that control flow. The resulting habitat types were ranked in terms of their temporal stability and ability to be manipulated.3. Delineation and quantification of discrete physical spaces in a stream, termed hydraulic habitat units, are shown to be useful in stream restoration programmes if the ecological importance of each habitat unit is known, and if habitats are defined by fluvial dynamics so that restoration is aided by natural forces.4. Examples, using different taxa, are given to illustrate management options.
Contaminants in urban waters—Science capabilities of the U.S. Geological Survey
Jastram, John D.; Hyer, Kenneth E.
2016-04-29
Streams and estuaries with urban watersheds commonly exhibit increased streamflow and decreased base flow; diminished stream-channel stability; excessive amounts of contaminants such as pesticides, metals, industrial and municipal waste, and combustion products; and alterations to biotic community structure. Collectively, these detrimental effects have been termed the “urban-stream syndrome.” Water-resource managers seek to lessen the effects on receiving water bodies of new urban development and remediate the effects in areas of existing urbanization. Similarly, the scientific community has produced extensive research on these topics, with researchers from the U.S. Geological Survey (USGS) leading many studies of urban streams and the processes responsible for the urban-stream syndrome. Increasingly, USGS studies are evaluating the effects of management and restoration activities to better understand how urban waters respond to the implementation of management practices. The USGS has expertise in collecting and interpreting data for many physical, chemical, and ecological processes in urban waters and, thus, provides holistic assessments to inform managers of urban water resources.
Agriculture and stream water quality: A biological evaluation of erosion control practices
NASA Astrophysics Data System (ADS)
Lenat, David R.
1984-07-01
Agricultural runoff affects many streams in North Carolina. However, there is is little information about either its effect on stream biota or any potential mitigation by erosion control practices. In this study, benthic macroinvertebrates were sampled in three different geographic areas of North Carolina, comparing control watersheds with well-managed and poorly managed watersheds. Agricultural streams were characterized by lower taxa richness (especially for intolerant groups) and low stability. These effects were most evident at the poorly managed sites. Sedimentation was the apparent major problem, but some changes at agricultural sites implied water quality problems. The groups most intolerant of agricultural runoff were Ephemeroptera, Plecoptera and Trichoptera. Tolerant species were usually filter-feeders or algal grazers, suggesting a modification of the food web by addition of particulate organic matter and nutrients. This study clearly indicates that agricultural runoff can severely impact stream biota. However, this impact can be greatly mitigated by currently recommended erosion control practices.
Floodplain sedimentology and sediment accumulation assessment – Savannah River Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeager, Kevin M.
2016-01-03
The primary goal of the larger research program, of which this work is one component, is to restore the hydrodynamics and energy gradients of targeted Savannah River Site (SRS) streams to a condition comparable to local natural streams or rivers of similar order, and to stabilize sediment transport (net degradation/aggregation) with the assumption that the faunal components of these systems will quickly recover on their own (e.g., Pen Branch; Lakly and McArthur, 2000). This work is specifically focused on the identification of near-stream floodplain areas that exhibit sediment deposition or erosion, and the quantification of these processes over a historicalmore » time scale (last ~100 years).« less
NASA Technical Reports Server (NTRS)
Dziubala, T. J.; Marroquin, J.; Cleary, J. W.; Mellenthin, J. A.
1973-01-01
An experimental investigation was performed in the Ames Research Center 3.5-Foot Hypersonic Wind Tunnel to obtain detailed effects which interactions between the RCS jet flow field and the local orbiter flow field have on orbiter hypersonic stability and control characteristics. Six-component force data were obtained through an angle-of-attack range of 15 to 35 deg with 0 deg angle of sideslip. The test was conducted with yaw, pitch and roll jet simulation at a free-stream Mach number of 10.3. These data simulate two SSV reentry flight conditions at Mach numbers of 28.3 and 10.3. Fuselage base pressures and pressures on the nonmetric RCS pods were obtained in addition to the basic force measurements. Model 42-0 was used for these tests.
NASA Astrophysics Data System (ADS)
Schamel, Hans; Mandal, Debraj; Sharma, Devendra
2017-03-01
An outstanding notion for collisionless plasmas is the essential nonlinear character of their coherent structures, which in the stationary, weak amplitude limit are described by a continuum of cnoidal electron and ion hole modes governed by a multiparametric nonlinear dispersion relation. The well-known discrete structure of undamped linear plasma modes is seamlessly embedded in this nonlinear continuum as the microscopic texture of plasma begins to reveal itself in the high temperature collisionless plasma limit. This transforms the linear-threshold-based operating mechanism of plasma turbulence into a fundamental nonlinear, multifaceted one. Based on a comprehensive three-level description of increasing profundity, a proof of this novel dictum is presented, which makes use of the joint properties of such structures, their coherency and stationarity, and uses in succession a fluid, linear Vlasov and a full Vlasov description. It unifies discrete and continuum limits by resolving the inevitable resonant region and shows that coherent electrostatic equilibria are generally controlled by kinetic particle trapping and are hence fundamentally nonlinear. By forging a link between damped and growing wave solutions, these modes render plasma stability complex and difficult to evaluate due to the entangled pattern of the stability boundary in function and parameter space, respectively. A direct consequence is the existence of negative energy modes of arbitrarily small amplitudes in the subcritical region of the two-stream instability as well as the failure of linear Landau (Vlasov, van Kampen) theory, whenever resonant particles are involved, in addressing the onset of instability in a current-carrying plasma. Responsible for this subtle phase space behavior is hence the thresholdless omnipresence of the trapping nonlinearity originating from coherency. A high resolution, exact-mass-ratio, multispecies, and collisionless plasma simulation is employed to illustrate exemplarily how tiny seed fluctuations in phase-space can act as a triggering agent for a subcritical plasma excitation verifying an access to these modes in the noisy, collisionless plasma limit.
Perugini, Luisa; Cinelli, Giuseppe; Cofelice, Martina; Ceglie, Andrea; Lopez, Francesco; Cuomo, Francesca
2018-02-05
In the present investigation the properties of edible nanoemulsions were studied. Sodium caseinate represents a good candidate for food emulsion preparations thanks to its surface-active properties and because it is perceived as a natural product by consumers. Nevertheless, it is very sensitive to acidic pH close to its isoelectric point and, if used as emulsion stabilizer, this aspect can negatively affect the emulsion stability. In order to prevent this drawback, sodium caseinate was used in combination with a non-ionic surfactant (Tween 20) as emulsifier of oil/water nanoemulsions. For these reasons, nanoemulsions stabilized by Tween 20, sodium caseinate and by a blend of the two emulsifiers were studied and compared according to their response to pH variations. Nanoemulsions were characterized for size of the dispersed phase with variation of time and temperature, for their rheological properties, for surface charge as a function of pH and for protein fluorescence. Noticeably, it was ascertained that, at pH close to caseinate isoelectric point, emulsions stabilized with the blend of caseinate and Tween 20 were more stable, compared with emulsions stabilized only with sodium caseinate. Such behavior was explained according to the composition of the emulsifiers at the oil/water interface where, at acidic pH, the presence of Tween 20 ensured the steric stabilization thus improving the role of sodium caseinate as emulsion stabilizer. Copyright © 2018 Elsevier B.V. All rights reserved.
Lin, J E; Hard, J J; Naish, K A; Peterson, D; Hilborn, R; Hauser, L
2016-01-01
Predation can affect both phenotypic variation and population productivity in the wild, but quantifying evolutionary and demographic effects of predation in natural environments is challenging. The aim of this study was to estimate selection differentials and coefficients associated with brown bear (Ursus arctos) predation in wild sockeye salmon (Oncorhynchus nerka) populations spawning in pristine habitat that is often subject to intense predation pressure. Using reconstructed genetic pedigrees, individual reproductive success (RS) was estimated in two sockeye salmon populations for two consecutive brood years with very different predation intensities across brood years. Phenotypic data on individual adult body length, body depth, stream entry timing and reproductive lifespan were used to calculate selection coefficients based on RS, and genetic variance components were estimated using animal models. Bears consistently killed larger and more recently arrived adults, although selection differentials were small. In both populations, mean RS was higher in the brood year experiencing lower predation intensity. Selection coefficients were similar across brood years with different levels of predation, often indicating stabilizing selection on reproductive lifespan as well as directional selection for longer reproductive lifespan. Despite these selection pressures, genetic covariation of morphology, phenology and lifespan appears to have maintained variation in spawner body size and stream entry timing in both populations. Our results therefore suggest considerable demographic but limited evolutionary effects of bear predation in the two study populations. PMID:26860201
Lin, J E; Hard, J J; Naish, K A; Peterson, D; Hilborn, R; Hauser, L
2016-05-01
Predation can affect both phenotypic variation and population productivity in the wild, but quantifying evolutionary and demographic effects of predation in natural environments is challenging. The aim of this study was to estimate selection differentials and coefficients associated with brown bear (Ursus arctos) predation in wild sockeye salmon (Oncorhynchus nerka) populations spawning in pristine habitat that is often subject to intense predation pressure. Using reconstructed genetic pedigrees, individual reproductive success (RS) was estimated in two sockeye salmon populations for two consecutive brood years with very different predation intensities across brood years. Phenotypic data on individual adult body length, body depth, stream entry timing and reproductive lifespan were used to calculate selection coefficients based on RS, and genetic variance components were estimated using animal models. Bears consistently killed larger and more recently arrived adults, although selection differentials were small. In both populations, mean RS was higher in the brood year experiencing lower predation intensity. Selection coefficients were similar across brood years with different levels of predation, often indicating stabilizing selection on reproductive lifespan as well as directional selection for longer reproductive lifespan. Despite these selection pressures, genetic covariation of morphology, phenology and lifespan appears to have maintained variation in spawner body size and stream entry timing in both populations. Our results therefore suggest considerable demographic but limited evolutionary effects of bear predation in the two study populations.
NASA Astrophysics Data System (ADS)
Rǎdulescu, I. R.; Cândea, D.; Kaslik, E.
2017-01-01
In this paper, a delay differential equations (DDEs) model of leukemia is introduced and its dynamical properties are investigated in comparison with the modified fractional-order system where the Caputo's derivative is used. The model takes into account three types of division that a stem-like cell can undergo and cell competition between healthy and leukemia cell populations. The action of the immune system on the leukemic cell populations is also considered. The stability properties of the equilibrium points are established through numerical results and the differences between the two types of approaches are discussed. Medical conclusions are drawn in view of the obtained numerical simulations.
Acoustic Streaming in Microgravity: Flow Stability and Heat Transfer Enhancement
NASA Technical Reports Server (NTRS)
Trinh, E. H.
1999-01-01
Experimental results are presented for drops and bubbles levitated in a liquid host, with particular attention given to the effect of shape oscillations and capillary waves on the local flow fields. Some preliminary results are also presented on the use of streaming flows for the control of evaporation rate and rotation of electrostatically levitated droplets in 1 g. The results demonstrate the potential for the technological application of acoustic methods to active control of forced convection in microgravity.
Speechley, William J; Ngan, Elton T C
2008-01-01
Delusions, a cardinal feature of schizophrenia, are characterized by the development and preservation of false beliefs despite reason and evidence to the contrary. A number of cognitive models have made important contributions to our understanding of delusions, though it remains unclear which core cognitive processes are malfunctioning to enable individuals with delusions to form and maintain erroneous beliefs. We propose a modified dual-stream processing model that provides a viable and testable mechanism that can account for this debilitating symptom. Dual-stream models divide decision-making into two streams: a fast, intuitive and automatic form of processing (Stream 1); and a slower, conscious and deliberative process (Stream 2). Our novel model proposes two key influences on the way these streams interact in everyday decision-making: conflict and emotion. Conflict: in most decision-making scenarios one obvious answer presents itself and the two streams converge onto the same conclusion. However, in instances where there are competing alternative possibilities, an individual often experiences dissonance, or a sense of conflict. The detection of this conflict biases processing towards the more deliberative Stream 2. Emotion: highly emotional states can result in behavior that is reflexive and action-oriented. This may be due to the power of emotionally valenced stimuli to bias reasoning towards Stream 1. We propose that in schizophrenia, an abnormal response to these two influences results in a pathological schism between Stream 1 and Stream 2, enabling erroneous intuitive explanations to coexist with contrary logical explanations of the same event. Specifically, we suggest that delusions are the result of a failure to reconcile the two streams due to both a failure of conflict to bias decision-making towards Stream 2 and an accentuated emotional bias towards Stream 1.
Sweeten, Sara E.; Ford, W. Mark
2016-01-01
Large-scale coal mining practices, particularly surface coal extraction and associated valley fills as well as residential wastewater discharge, are of ecological concern for aquatic systems in central Appalachia. Identifying and quantifying alterations to ecosystems along a gradient of spatial scales is a necessary first-step to aid in mitigation of negative consequences to aquatic biota. In central Appalachian headwater streams, apart from fish, salamanders are the most abundant vertebrate predator that provide a significant intermediate trophic role linking aquatic and terrestrial food webs. Stream salamander species are considered to be sensitive to aquatic stressors and environmental alterations, as past research has shown linkages among microhabitat parameters, large-scale land use such as urbanization and logging, and salamander abundances. However, there is little information examining these relationships between environmental conditions and salamander occupancy in the coalfields of central Appalachia. In the summer of 2013, 70 sites (sampled two to three times each) in the southwest Virginia coalfields were visited to collect salamanders and quantify stream and riparian microhabitat parameters. Using an information-theoretic framework, effects of microhabitat and large-scale land use on stream salamander occupancy were compared. The findings indicate that Desmognathus spp. occupancy rates are more correlated to microhabitat parameters such as canopy cover than to large-scale land uses. However, Eurycea spp. occupancy rates had a strong association with large-scale land uses, particularly recent mining and forest cover within the watershed. These findings suggest that protection of riparian habitats is an important consideration for maintaining aquatic systems in central Appalachia. If this is not possible, restoration riparian areas should follow guidelines using quick-growing tree species that are native to Appalachian riparian areas. These types of trees would rapidly establish a canopy cover, stabilize the soil, and impede invasive plant species which would, in turn, provide high-quality refuges for stream salamanders.
Fitzpatrick, F.A.; Scudder, B.C.; Lenz, B.N.; Sullivan, D.J.
2001-01-01
The U.S. Geological Survey examined 25 agricultural streams in eastern Wisconsin to determine relations between fish, invertebrate, and algal metrics and multiple spatial scales of land cover, geologic setting, hydrologic, aquatic habitat, and water chemistry data. Spearman correlation and redundancy analyses were used to examine relations among biotic metrics and environmental characteristics. Riparian vegetation, geologic, and hydrologic conditions affected the response of biotic metrics to watershed agricultural land cover but the relations were aquatic assemblage dependent. It was difficult to separate the interrelated effects of geologic setting, watershed and buffer land cover, and base flow. Watershed and buffer land cover, geologic setting, reach riparian vegetation width, and stream size affected the fish IBI, invertebrate diversity, diatom IBI, and number of algal taxa; however, the invertebrate FBI, percentage of EPT, and the diatom pollution index were more influenced by nutrient concentrations and flow variability. Fish IBI scores seemed most sensitive to land cover in the entire stream network buffer, more so than watershed-scale land cover and segment or reach riparian vegetation width. All but one stream with more than approximately 10 percent buffer agriculture had fish IBI scores of fair or poor. In general, the invertebrate and algal metrics used in this study were not as sensitive to land cover effects as fish metrics. Some of the reach-scale characteristics, such as width/depth ratios, velocity, and bank stability, could be related to watershed influences of both land cover and geologic setting. The Wisconsin habitat index was related to watershed geologic setting, watershed and buffer land cover, riparian vegetation width, and base flow, and appeared to be a good indicator of stream quality. Results from this study emphasize the value of using more than one or two biotic metrics to assess water quality and the importance of environmental characteristics at multiple scales.
Roberts, James H.; Hitt, Nathaniel P.
2010-01-01
Five conceptual models of longitudinal fish community organization in streams were examined: (1) niche diversity model (NDM), (2) stream continuum model (SCM), (3) immigrant accessibility model (IAM), (4) environmental stability model (ESM), and (5) adventitious stream model (ASM). We used differences among models in their predictions about temporal species turnover, along with five spatiotemporal fish community data sets, to evaluate model applicability. Models were similar in predicting a positive species richness–stream size relationship and longitudinal species nestedness, but differed in predicting either similar temporal species turnover throughout the stream continuum (NDM, SCM), higher turnover upstream (IAM, ESM), or higher turnover downstream (ASM). We calculated measures of spatial and temporal variation from spatiotemporal fish data in five wadeable streams in central and eastern North America spanning 34–68 years (French Creek [New York], Piasa Creek [Illinois], Spruce Run [Virginia], Little Stony Creek [Virginia], and Sinking Creek [Virginia]). All streams exhibited substantial species turnover (i.e., at least 27% turnover in stream-scale species pools), in contrast to the predictions of the SCM. Furthermore, community change was greater in downstream than upstream reaches in four of five streams. This result is most consistent with the ASM and suggests that downstream communities are strongly influenced by migrants to and from species pools outside the focal stream. In Sinking Creek, which is isolated from external species pools, temporal species turnover (via increased richness) was higher upstream than downstream, which is a pattern most consistent with the IAM or ESM. These results corroborate the hypothesis that temperate stream habitats and fish communities are temporally dynamic and that fish migration and environmental disturbances play fundamental roles in stream fish community organization.
The Biogeochemistry of Seattle's Urban Streams
NASA Astrophysics Data System (ADS)
Yonemura, R.
2016-12-01
Urban development is underway at an unprecedented pace in the city of Seattle, WA. What were once productive salmon spawning ecosystems are now highly altered ecosystems that reflect the impacts of human land-use change. However, the impact that these changes have had on the carbon biogeochemistry have not been studied. We investigate the biogeochemical properties over time of two urban streams in Seattle; Ravenna Creek, an urban park and closed network, and Thornton Creek, a recently day-lighted and restored stream network. We conducted a longitudinal sampling along each of these creeks from their headwaters down to their confluences with Lake Washington. Our data suggest that these systems are supersaturated in both dissolved carbon dioxide and dissolved methane. Preliminary results reveal that carbon dioxide and methane are both highest at the end of Ravenna Creek located on the surface of a preexisting landfill. The highest carbon dioxide and methane levels on Thornton Creek are located at the uppermost site and the site directly below a golf course. These findings suggest that local land-use has an impact on the concentrations of dissolved gases in the surrounding water bodies with implications for urban streams as localized sources of carbon dioxide and methane to the atmosphere. Additional data on nutrients and stream metabolism will highlight the consistency of these gas concentrations over time, and provide an additional indicator into the health of these urban systems.
Final Report: Sampling-Based Algorithms for Estimating Structure in Big Data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matulef, Kevin Michael
The purpose of this project was to develop sampling-based algorithms to discover hidden struc- ture in massive data sets. Inferring structure in large data sets is an increasingly common task in many critical national security applications. These data sets come from myriad sources, such as network traffic, sensor data, and data generated by large-scale simulations. They are often so large that traditional data mining techniques are time consuming or even infeasible. To address this problem, we focus on a class of algorithms that do not compute an exact answer, but instead use sampling to compute an approximate answer using fewermore » resources. The particular class of algorithms that we focus on are streaming algorithms , so called because they are designed to handle high-throughput streams of data. Streaming algorithms have only a small amount of working storage - much less than the size of the full data stream - so they must necessarily use sampling to approximate the correct answer. We present two results: * A streaming algorithm called HyperHeadTail , that estimates the degree distribution of a graph (i.e., the distribution of the number of connections for each node in a network). The degree distribution is a fundamental graph property, but prior work on estimating the degree distribution in a streaming setting was impractical for many real-world application. We improve upon prior work by developing an algorithm that can handle streams with repeated edges, and graph structures that evolve over time. * An algorithm for the task of maintaining a weighted subsample of items in a stream, when the items must be sampled according to their weight, and the weights are dynamically changing. To our knowledge, this is the first such algorithm designed for dynamically evolving weights. We expect it may be useful as a building block for other streaming algorithms on dynamic data sets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, W. J.; Zheng, Yue, E-mail: zhengy35@mail.sysu.edu.cn; Wu, C. M.
Thermodynamic calculation and phase-field simulation have been conducted to investigate the misfit strain-temperature phase diagrams, dielectric property, and domain stability of asymmetric ferroelectric capacitors (FCs), with considering the effects of dissimilar screening properties and work function steps at the two interfaces. The distinct features of asymmetric FCs from their symmetric counterparts have been revealed and discussed. Polar states with nonzero out-of-plane polarization in parallel with the built-in field are found preferential to form in asymmetric FCs. Meanwhile, the built-in field breaks the degeneracy of states with out-of-plane polarization in anti-directions. This leads to the necessity of redefining phases according tomore » the bistability of out-of-plane polarization. Moreover, the phase stability as well as the dielectric behavior can be significantly controlled by the properties of electrodes, misfit strain, and temperature. The phase-field simulation result also shows that polydomain instability would happen in asymmetric FCs as the equivalence of domain stability in anti-directions is destroyed.« less
Technical specifications for mechanical recycling of agricultural plastic waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briassoulis, D., E-mail: briassou@aua.gr; Hiskakis, M.; Babou, E.
Highlights: • Technical specifications for agricultural plastic wastes (APWs) recycling proposed. • Specifications are the base for best economical and environmental APW valorisation. • Analysis of APW reveals inherent characteristics and constraints of APW streams. • Thorough survey on mechanical recycling processes and industry as it applies to APW. • Specifications for APW recycling tested, adjusted and verified through pilot trials. - Abstract: Technical specifications appropriate for the recycling of agricultural plastic wastes (APWs), widely accepted by the recycling industry were developed. The specifications establish quality standards to be met by the agricultural plastics producers, users and the agricultural plasticmore » waste management chain. They constitute the base for the best economical and environmental valorisation of the APW. The analysis of the APW streams conducted across Europe in the framework of the European project “LabelAgriWaste” revealed the inherent characteristics of the APW streams and the inherent constraints (technical or economical) of the APW. The APW stream properties related to its recycling potential and measured during pilot trials are presented and a subsequent universally accepted simplified and expanded list of APW recycling technical specifications is proposed and justified. The list includes two sets of specifications, applied to two different quality categories of recyclable APW: one for pellet production process (“Quality I”) and another one for plastic profile production process (“Quality II”). Parameters that are taken into consideration in the specifications include the APW physical characteristics, contamination, composition and degradation. The proposed specifications are focused on polyethylene based APW that represents the vast majority of the APW stream. However, the specifications can be adjusted to cover also APW of different materials (e.g. PP or PVC) that are found in very small quantities in protected cultivations in Europe. The adoption of the proposed specifications could transform this waste stream into a labelled commodity traded freely in the market and will constitute the base for the best economical and environmental valorisation of the APW.« less
NASA Astrophysics Data System (ADS)
Bowles, C. J.; Lawrence, R. L.; Noll, C.; Hancock, G. S.
2005-12-01
Channel incision is a widely observed response to increased flow in urbanized watersheds, but the effects of channel lowering on riparian water tables is not well documented. In a rapidly incising suburban stream in the Virginia Coastal Plain, we hypothesize that stream incision has lowered floodplain water tables and decreased the overbank flow frequency. The monitored stream is a tributary to the James River draining 1.3 km2 of which 15% is impervious cover. Incision has occurred largely through upstream migration of a one meter high knickpoint at a rate of ~1.5 m/yr, primarily during high flow events. We installed 63 wells in six stream-perpendicular transects as well as a cluster of wells around the knickpoint to assess water table elevations beneath the floodplain adjacent to the incising stream. Two transects are located 30 and 50 m upstream of the knickpoint in the unincised floodplain, and the remainder are 5, 30, 70, and 100 m downstream in the incised floodplain. In one transect above and two below, pressure transducers attached to dataloggers provide a high-resolution record of water table changes. Erosion pins were installed and channel cross-sections surveyed to determine streambed stability. Significant differences are observed in bank morphology and groundwater flow above vs. below the knickpoint. Above the knickpoint, the banks are stable, ~3 m wide, and ~0.3 m deep, and widen and deepen slightly toward the knickpoint. The water table is relatively flat and is 0.2-0.4 m below the floodplain surface, and groundwater contours suggest flow is parallel to the stream direction. The water table responds immediately to precipitation events, and rises to the floodplain surface in significant rainfall events. Immediately downstream of the knickpoint, channel width increases by about a meter, and stream depth increases to ~1.5 meters. The water table immediately below the knickpoint possesses a steep gradient, and is up to one meter below the floodplain surface. Groundwater flow is redirected toward the stream. Moving downstream banks continue to widen, and the channel is up to 8 m wide and ~1.3 m deep ~100 m below the current knickpoint position. In the most downstream transects, the water table slopes gently toward the stream and remains ~1 m below the floodplain surface, equivalent to the depth of incision generated by knickpoint passage. Upstream of the knickpoint, overbank flooding occurs frequently, while below the knickpoint the majority of storm flow is contained within the incised channel and occupation of the floodplain is rare. The impact of incision to the riparian water table is dramatic, with a lowered water table and redirection of groundwater flow toward the stream. The incision is driven by suburbanization upstream of this riparian corridor, and has likely reduced the ability of this protected riparian system to improve the water quality of the suburban runoff that passes through it.
Multi-stability and variable stiffness of cellular solids designed based on origami patterns
NASA Astrophysics Data System (ADS)
Sengupta, Sattam; Li, Suyi
2017-04-01
The application of origami-inspired designs to engineered structures and materials has been a subject of much research efforts. These structures and materials, whose mechanical properties are directly related to the geometry of folding, are capable of achieving a host of unique adaptive functions. In this study, we investigate a three-dimensional multistability and variable stiffness function of a cellular solid based on the Miura-Ori folding pattern. The unit cell of such a solid, consisting of two stacked Miura-Ori sheets, can be elastically bistable due to the nonlinear relationship between rigid-folding deformation and crease material bending. Such a bistability possesses an unorthodox property: the critical, unstable configuration lies on the same side of two stable ones, so that two different force-deformation curves co-exist within the same range of deformation. By exploiting such unique stability properties, we can achieve a programmable stiffness change between the two elastically stable states, and the stiffness differences can be prescribed by tailoring the crease patterns of the cell. This paper presents a comprehensive parametric study revealing the correlations between such variable stiffness and various design parameters. The unique properties stemming from the bistability and design of such a unit cell can be advanced further by assembling them into a solid which can be capable of shape morphing and programmable mechanical properties.
NASA Astrophysics Data System (ADS)
Rokhzadi, Arman; Mohammadian, Abdolmajid; Charron, Martin
2018-01-01
The objective of this paper is to develop an optimized implicit-explicit (IMEX) Runge-Kutta scheme for atmospheric applications focusing on stability and accuracy. Following the common terminology, the proposed method is called IMEX-SSP2(2,3,2), as it has second-order accuracy and is composed of diagonally implicit two-stage and explicit three-stage parts. This scheme enjoys the Strong Stability Preserving (SSP) property for both parts. This new scheme is applied to nonhydrostatic compressible Boussinesq equations in two different arrangements, including (i) semiimplicit and (ii) Horizontally Explicit-Vertically Implicit (HEVI) forms. The new scheme preserves the SSP property for larger regions of absolute monotonicity compared to the well-studied scheme in the same class. In addition, numerical tests confirm that the IMEX-SSP2(2,3,2) improves the maximum stable time step as well as the level of accuracy and computational cost compared to other schemes in the same class. It is demonstrated that the A-stability property as well as satisfying "second-stage order" and stiffly accurate conditions lead the proposed scheme to better performance than existing schemes for the applications examined herein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anast, Kurt Roy; Funk, David John
The inadvertent creation of transuranic waste carrying hazardous waste codes D001 and D002 requires the treatment of the material to eliminate the hazardous characteristics and allow its eventual shipment and disposal at the Waste Isolation Pilot Plant (WIPP). This report documents the effectiveness of two treatment methods proposed to stabilize both the unremediated and remediated nitrate salt waste streams (UNS and RNS, respectively). The two technologies include the addition of zeolite (with and without the addition of water as a processing aid) and cementation. Surrogates were developed to evaluate both the solid and liquid fractions expected from parent waste containers,more » and both the solid and liquid fractions were tested. Both technologies are shown to be effective at eliminating the characteristic of ignitability (D001), and the addition of zeolite was determined to be effective at eliminating corrosivity (D002), with the preferred option1 of zeolite addition currently planned for implementation at the Waste Characterization, Reduction, and Repackaging Facility. During the course of this work, we established the need to evaluate and demonstrate the effectiveness of the proposed remedy for debris material, if required. The evaluation determined that Wypalls absorbed with saturated nitrate salt solutions exhibit the ignitability characteristic (all other expected debris is not classified as ignitable). Follow-on studies will be developed to demonstrate the effectiveness of stabilization for ignitable Wypall debris. Finally, liquid surrogates containing saturated nitrate salts did not exhibit the characteristic of ignitability in their pure form (those neutralized with Kolorsafe and mixed with sWheat did exhibit D001). As a result, additional nitrate salt solutions (those exhibiting the oxidizer characteristic) will be tested to demonstrate the effectiveness of the remedy.« less
Using HEC-RAS to Enhance Interpretive Capabilities of Geomorphic Assessments
NASA Astrophysics Data System (ADS)
Keefer, L. L.
2005-12-01
The purpose of a geomorphic assessment is to characterize and evaluate a fluvial system for determining the past watershed and channel conditions, current geomorphic character and potential future channel adjustments. The geomorphic assessment approach utilized by the Illinois State Water Survey assesses channel response to disturbance at multiple temporal and spatial scales to help identify the underlying factors and events which led to the existing channel morphology. This is accomplished through two phases of investigation that involve a historical and physical analysis of the watershed, disturbance history, and field work at increasing levels of detail. To infer future channel adjustments, the geomorphic assessment protocol combines two methods of analyses that are dependent on the quantity and detail of the available data. The first method is the compilation of multiple lines of evidence using qualitative information related to the dominant fluvial environment, channel gradient, stream power thresholds, and channel evolution models. The second method is the use of hydraulic models which provide additional interpretative skills to evaluate potential channel adjustments. The structured data collection framework of the geomorphic assessment approach is used for the development of a HEC-RAS model. The model results are then used as another tool to determine the influence of bridges and control structures on channel stability, stream power profiles to identify potential channel bed degradation zones, and provide data for physically-based bank stability models. This poster will demonstrate the advantages of using a hydraulic model, such as HEC-RAS, to expand the interpretive capabilities of geomorphic assessments. The results from applying this approach will be demonstrated for the Big Creek watershed of the Cache River Basin in southern Illinois.
Charles H. Luce; Daniele Tonina; Frank Gariglio; Ralph Applebee
2013-01-01
Work over the last decade has documented methods for estimating fluxes between streams and streambeds from time series of temperature at two depths in the streambed. We present substantial extension to the existing theory and practice of using temperature time series to estimate streambed water fluxes and thermal properties, including (1) a new explicit analytical...
Kaye, Jesse T.; Bradford, Daniel E.; Curtin, John J.
2016-01-01
The current study provides a comprehensive evaluation of critical psychometric properties of commonly used psychophysiology laboratory tasks/measures within the NIMH RDoC. Participants (N = 128) completed the No Shock, Predictable Shock, Unpredictable Shock (NPU) task, Affective Picture Viewing task, and Resting State task at two study visits separated by one week. We examined potentiation/modulation scores in NPU (predictable or unpredictable shock vs. no shock) and Affective Picture Viewing tasks (pleasant or unpleasant vs. neutral pictures) for startle and corrugator responses with two commonly used quantification methods. We quantified startle potentiation/modulation scores with raw and standardized responses. We quantified corrugator potentiation/modulation in the time and frequency domains. We quantified general startle reactivity in the Resting State Task as the mean raw startle response during the task. For these three tasks, two measures, and two quantification methods we evaluated effect size robustness and stability, internal consistency (i.e., split-half reliability), and one-week temporal stability. The psychometric properties of startle potentiation in the NPU task were good but concerns were noted for corrugator potentiation in this task. Some concerns also were noted for the psychometric properties of both startle and corrugator modulation in the Affective Picture Viewing task, in particular for pleasant picture modulation. Psychometric properties of general startle reactivity in the Resting State task were good. Some salient differences in the psychometric properties of the NPU and Affective Picture Viewing tasks were observed within and across quantification methods. PMID:27167717
Brannen-Donnelly, Kathleen; Engel, Annette S
2015-01-01
Unchanging physicochemical conditions and nutrient sources over long periods of time in cave and karst subsurface habitats, particularly aquifers, can support stable ecosystems, termed autochthonous microbial endokarst communities (AMEC). AMEC existence is unknown for other karst settings, such as epigenic cave streams. Conceptually, AMEC should not form in streams due to faster turnover rates and seasonal disturbances that have the capacity to transport large quantities of water and sediment and to change allochthonous nutrient and organic matter sources. Our goal was to investigate whether AMEC could form and persist in hydrologically active, epigenic cave streams. We analyzed bacterial diversity from cave water, sediments, and artificial substrates (Bio-Traps®) placed in the cave at upstream and downstream locations. Distinct communities existed for the water, sediments, and Bio-Trap® samplers. Throughout the study period, a subset of community members persisted in the water, regardless of hydrological disturbances. Stable habitat conditions based on flow regimes resulted in more than one contemporaneous, stable community throughout the epigenic cave stream. However, evidence for AMEC was insufficient for the cave water or sediments. Community succession, specifically as predictable exogenous heterotrophic microbial community succession, was evident from decreases in community richness from the Bio-Traps®, a peak in Bio-Trap® community biomass, and from changes in the composition of Bio-Trap® communities. The planktonic community was compositionally similar to Bio-Trap® initial colonizers, but the downstream Bio-Trap® community became more similar to the sediment community at the same location. These results can help in understanding the diversity of planktonic and attached microbial communities from karst, as well as microbial community dynamics, stability, and succession during disturbance or contamination responses over time.
NASA Technical Reports Server (NTRS)
Wong, P. K.
1975-01-01
The closely-related problems of designing reliable feedback stabilization strategy and coordinating decentralized feedbacks are considered. Two approaches are taken. A geometric characterization of the structure of control interaction (and its dual) was first attempted and a concept of structural homomorphism developed based on the idea of 'similarity' of interaction pattern. The idea of finding classes of individual feedback maps that do not 'interfere' with the stabilizing action of each other was developed by identifying the structural properties of nondestabilizing and LQ-optimal feedback maps. Some known stability properties of LQ-feedback were generalized and some partial solutions were provided to the reliable stabilization and decentralized feedback coordination problems. A concept of coordination parametrization was introduced, and a scheme for classifying different modes of decentralization (information, control law computation, on-line control implementation) in control systems was developed.
Tillman, Fred; Anning, David W.; Heilman, Julian A.; Buto, Susan G.; Miller, Matthew P.
2018-01-01
Elevated concentrations of dissolved-solids (salinity) including calcium, sodium, sulfate, and chloride, among others, in the Colorado River cause substantial problems for its water users. Previous efforts to reduce dissolved solids in upper Colorado River basin (UCRB) streams often focused on reducing suspended-sediment transport to streams, but few studies have investigated the relationship between suspended sediment and salinity, or evaluated which watershed characteristics might be associated with this relationship. Are there catchment properties that may help in identifying areas where control of suspended sediment will also reduce salinity transport to streams? A random forests classification analysis was performed on topographic, climate, land cover, geology, rock chemistry, soil, and hydrologic information in 163 UCRB catchments. Two random forests models were developed in this study: one for exploring stream and catchment characteristics associated with stream sites where dissolved solids increase with increasing suspended-sediment concentration, and the other for predicting where these sites are located in unmonitored reaches. Results of variable importance from the exploratory random forests models indicate that no simple source, geochemical process, or transport mechanism can easily explain the relationship between dissolved solids and suspended sediment concentrations at UCRB monitoring sites. Among the most important watershed characteristics in both models were measures of soil hydraulic conductivity, soil erodibility, minimum catchment elevation, catchment area, and the silt component of soil in the catchment. Predictions at key locations in the basin were combined with observations from selected monitoring sites, and presented in map-form to give a complete understanding of where catchment sediment control practices would also benefit control of dissolved solids in streams.
Large woody debris and land management in California's hardwood-dominated watersheds.
Opperman, Jeff J
2005-03-01
Although large woody debris (LWD) has been studied extensively in conifer-dominated watersheds, relatively little is known about LWD in hardwood-dominated watersheds. Field surveys of 32 hardwood-dominated stream reaches in northern coastal California revealed that levels of LWD varied with land ownership and that living trees strongly influenced debris jam formation. Almost half of the channel-spanning debris jams, which stored the most wood and were most likely to form a pool, were formed behind a key piece that was still living. These living key pieces might provide greater longevity and stability than would otherwise be expected from hardwood LWD. Compared to streams on private land, streams on public land had significantly greater LWD loading and debris-jam frequency. Land management practices that remove wood from streams might be contributing to the degradation of salmonid habitat in California's hardwood-dominated watersheds.
Yet Another Stream Search Among 2401 Photographic Meteors
NASA Technical Reports Server (NTRS)
Cook, A. F., II; Lindblad, B.; Marsden, B. G.; Mccrosky, R. E.; Posen, A.
1973-01-01
Two streams previously listed (one of them with a classification on Ceplecha's system in terms of beginning height) by Cook are shown probably not to exist, a possibility already pointed out by Cook. One stream that he questioned was revised as to membership and then classified. Four streams are added to the list and one of these is classified. Previous reports exist for three of these streams, while one is new. The two Piscid streams of Lindblad and his alpha Triangulid stream are regrouped into two streams, one already called the Andromedids by Cook and the other still called the Piscids; the alpha Triangulids are absorbed into the Andromedids. The Piscids are classified along with the iota Aquarids. The classifications of the Taurids and the Andromedids remain unchanged.
Paddys Run Streambank Stabilization Project at the Fernald Preserve, Harrison, OH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hooten, Gwendolyn; Hertel, Bill; Homer, John
The Fernald Preserve is a former uranium-processing plant that underwent extensive remediation pursuant to CERCLA and is now managed by the US DOE Office of Legacy Management. While remediation of buildings and soil contamination was completed in 2006, aquifer remediation is ongoing. Paddys Run is a second-order stream that runs to the south along the western side of the Fernald Preserve. The Paddys Run watershed encompasses nearly 41 km2 (16 mi2), including most of the Fernald site. Field personnel conducting routine site inspections in March 2014 observed that Paddys Run was migrating east via bank erosion into the “Pit 3more » Swale,” an area of known surface-water contamination. The soil there was certified pursuant to site regulatory agreements and meets all final remediation levels. However, weekly surface-water monitoring is conducted from two puddles within the swale area, when water that exceeds the final remediation levels is present. Paddys Run had migrated east approximately 4 m (13 ft) in 2 years and was approximately 29 m (95 ft) from the sample location. This rapid migration threatened existing conditions that allowed for continued monitoring of the swale area and also threatened Paddys Run water quality. Therefore, DOE and regulators determined that the east bank of Paddys Run required stabilization. This was accomplished with a design that included the following components: relocation of approximately 145 m (475 ft) of streambed 9 m (30 ft) west, installation of a rock toe along the east bank, installation of two cross-vane in-stream grade-control structures, stabilization of a portion of the east bank using soil encapsulated lifts, and regrading, seeding, and planting within remaining disturbed areas. In an effort to take advantage of low-flow conditions in Paddys Run, construction was initiated in September 2014. Weather delays and subsurface flow within the Paddys Run streambed resulted in an interim shutdown of the project area in December 2014. Construction activities resumed in April 2015, with completion in November 2015. To date, this stabilization project has been successful. The regraded bank and streambed have remained stable, and no compromise to installed cross-vanes, the rock toe, or the soil encapsulated lifts has been observed.« less
Castellón, Erick; Martínez, María; Madrigal-Carballo, Sergio; Arias, María Laura; Vargas, William E.; Chavarría, Max
2013-01-01
Río Celeste (Sky-Blue River) in Tenorio National Park (Costa Rica), a river that derives from the confluence and mixing of two colorless streams—Río Buenavista (Buenavista River) and Quebrada Agria (Sour Creek)—is renowned in Costa Rica because it presents an atypical intense sky-blue color. Although various explanations have been proposed for this unusual hue of Río Celeste, no exhaustive tests have been undertaken; the reasons hence remain unclear. To understand this color phenomenon, we examined the physico-chemical properties of Río Celeste and of the two streams from which it is derived. Chemical analysis of those streams with ion-exchange chromatography (IC) and inductively coupled plasma atomic emission spectroscopy (ICP-OES) made us discard the hypothesis that the origin of the hue is due to colored chemical species. Our tests revealed that the origin of this coloration phenomenon is physical, due to suspended aluminosilicate particles (with diameters distributed around 566 nm according to a lognormal distribution) that produce Mie scattering. The color originates after mixing of two colorless streams because of the enlargement (by aggregation) of suspended aluminosilicate particles in the Río Buenavista stream due to a decrease of pH on mixing with the acidic Quebrada Agria. We postulate a chemical mechanism for this process, supported by experimental evidence of dynamic light scattering (DLS), zeta potential measurements, X-ray diffraction and scanning electron microscopy (SEM) with energy-dispersive spectra (EDS). Theoretical modeling of the Mie scattering yielded a strong coincidence between the observed color and the simulated one. PMID:24058661
Considerations of Scale and Processes in Stream Restoration and Ecological Response
NASA Astrophysics Data System (ADS)
Simon, A.; Shields, D.; Kuhnle, R.; Knight, S.
2005-12-01
Stream restoration as a means of controlling accelerated channel erosion and improving biological function in streams has become pervasive in the United States over the past twenty years. A broad range of practices often involving direct modifications to stream channels and adjacent floodplains, including alterations to morphology and pattern have been used for stream restoration. Because alluvial-channel processes and biological functioning operate as linked, open systems, any restoration project must be placed in the context of existing watershed and channel processes with a quantitative understanding of the rates of transfer of flow energy and materials. This is particularly true of reach-scale projects where local stabilization and habitat improvements may be completely overwhelmed by watershed or channel-system scale instabilities. In this regard, it is unlikely that a reach-scale project will be successful in an unstable alluvial system. This is analogous to constructing bank-stabilization measures in an actively incising channel. A conceptual model of channel response and evolution that marks systematic shifts in channel processes over time and space has been linked to fish-community structure in Mississippi streams. This link reflects changing habitat conditions and sediment-transport regimes over the course of fluvial adjustment. Suspended-sediment concentrations that can increase by orders of magnitude for a given discharge during the incision and mass-wasting phases abrade fish gills and reduce the ability of fish to hunt for food due to reduced water clarity. Similarly, durations of high suspended-sediment concentrations are shown to be inversely related to numbers of benthic macro invertebrates. Streambeds experiencing active incision (Stage III) may be too mobile for benthic macro invertebrate communities to thrive. Channels dominated by mass-wasting processes (Stages IV and V) lose riparian vegetative cover and shading which may result in higher stream temperatures. Aggradation processes typical of Stage V result in loss of interstitial spaces for spawning, de-oxygenation of substrate and may suffocate organisms. Perhaps most importantly, channel widening produces shallower depths at base flow and renders streams less retentive of large wood. Ecological characteristics recover in advanced stages of channel evolution as baseflow channels are narrowed and berms re-vegetate (Stage VI), but full recovery to pre-incision (Stage I) conditions has not been observed for both ecologic and sediment-transport systems. The processes reflected by stages of evolution can operate over entire fluvial networks and over time scales in the order of 100 years. Issues regarding effectiveness or benefit of stream restoration practices, therefore, must address scale. Furthermore, site and approach selection for reach-scale restoration projects should be guided by knowledge of watershed-scale processes. As an example, a grade control structure installed on Hotophia Creek, Mississippi successfully eliminated upstream-progressing incision and resulted in locally improved aquatic populations in the stilling basin. However, the trapping of hydraulically-controlled sediment on the upstream side of the structure resulted in streambed incision, de-stabilization of streambanks and degraded aquatic habitat in downstream reaches not protected by other grade-control structures.
Dal Magro, Lucas; Silveira, Vitória C C; de Menezes, Eliana Weber; Benvenutti, Edilson Valmir; Nicolodi, Sabrina; Hertz, Plinho F; Klein, Manuela P; Rodrigues, Rafael C
2018-04-07
In the present study, we prepared two different magnetic biocatalysts of pectinase and cellulase: carrier-free magnetic CLEAs (CLEA-MP*) and immobilization on glutaraldehyde-activated magnetite (Enz-Glu-MP*). The biocatalysts were compared to their magnetic properties, immobilization parameters, stability and grape juice clarification. Enz-Glu-MP* presented higher magnetic properties than CLEA-MP*, whereas this presented higher surface area and pore volume. The K M of the enzyme immobilized on Enz-Glu-MP* was 25.65mM, lower in comparison to the CLEA-MP* (33.83mM). On the other hand, CLEA-MP* was the most active and stable biocatalyst, presenting higher recovered activity (33.4% of cellulase), higher thermal stability (2.39 stabilization factor) and improved reusability (8cycles). The integration of magnetic technology with enzymatic immobilization emerges as a possibility to increase the recover and reuse of biocatalysts for application in juice technology. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Leschik, S.; Musolff, A.; Reinstorf, F.; Strauch, G.; Schirmer, M.
2009-05-01
Urban streams receive effluents of wastewater treatment plants and untreated wastewater during combined sewer overflow events. In the case of losing streams substances, which originate from wastewater, can reach the groundwater and deteriorate its quality. The estimation of mass flow rates Mex from losing streams to the groundwater is important to support groundwater management strategies, but is a challenging task. Variable inflow of wastewater with time-dependent concentrations of wastewater constituents causes a variable water composition in urban streams. Heterogeneities in the structure of the streambed and the connected aquifer lead, in combination with this variable water composition, to heterogeneous concentration patterns of wastewater constituents in the vicinity of urban streams. Groundwater investigation methods based on conventional point sampling may yield unreliable results under these conditions. Integral Pumping Tests (IPT) can overcome the problem of heterogeneous concentrations in an aquifer by increasing the sampled volume. Long-time pumping (several days) and simultaneous sampling yields reliable average concentrations Cav and mass flow rates Mcp for virtual control planes perpendicular to the natural flow direction. We applied the IPT method in order to estimate Mex of a stream section in Leipzig (Germany). The investigated stream is strongly influenced by combined sewer overflow events. Four pumping wells were installed up- and downstream of the stream section and operated for a period of five days. The study was focused on four inorganic (potassium, chloride, nitrate and sulfate) and two organic (caffeine and technical-nonylphenol) wastewater constituents with different transport properties. The obtained concentration-time series were used in combination with a numerical flow model to estimate Mcp of the respective wells. The difference of the Mcp's between up- and downstream wells yields Mex of wastewater constituents that increase downstream of the stream. In order to confirm the obtained Mcp's concentrations of additional measurements in the investigated stream were compared with the concentrations in the groundwater up- and downstream of the stream section. The results revealed increased Mcp's downstream of the stream section for chloride, potassium and nitrate, whereas Mcp of sulfate was decreased. Micropollutants caffeine and technical-nonylphenol showed decreased Mcp's downstream of the stream section in 75 % of the cases. Values of Mex could only be given for chloride, potassium, nitrate and caffeine. The comparison of concentrations in the stream with those in the groundwater points to the streambed as a zone where mass accumulation and degradation processes occur. The obtained results imply that the applied method can provide reliable data about the influence of losing streams on groundwater quality.
Prediction of protein mutant stability using classification and regression tool.
Huang, Liang-Tsung; Saraboji, K; Ho, Shinn-Ying; Hwang, Shiow-Fen; Ponnuswamy, M N; Gromiha, M Michael
2007-02-01
Prediction of protein stability upon amino acid substitutions is an important problem in molecular biology and the solving of which would help for designing stable mutants. In this work, we have analyzed the stability of protein mutants using two different datasets of 1396 and 2204 mutants obtained from ProTherm database, respectively for free energy change due to thermal (DeltaDeltaG) and denaturant denaturations (DeltaDeltaG(H(2)O)). We have used a set of 48 physical, chemical energetic and conformational properties of amino acid residues and computed the difference of amino acid properties for each mutant in both sets of data. These differences in amino acid properties have been related to protein stability (DeltaDeltaG and DeltaDeltaG(H(2)O)) and are used to train with classification and regression tool for predicting the stability of protein mutants. Further, we have tested the method with 4 fold, 5 fold and 10 fold cross validation procedures. We found that the physical properties, shape and flexibility are important determinants of protein stability. The classification of mutants based on secondary structure (helix, strand, turn and coil) and solvent accessibility (buried, partially buried, partially exposed and exposed) distinguished the stabilizing/destabilizing mutants at an average accuracy of 81% and 80%, respectively for DeltaDeltaG and DeltaDeltaG(H(2)O). The correlation between the experimental and predicted stability change is 0.61 for DeltaDeltaG and 0.44 for DeltaDeltaG(H(2)O). Further, the free energy change due to the replacement of amino acid residue has been predicted within an average error of 1.08 kcal/mol and 1.37 kcal/mol for thermal and chemical denaturation, respectively. The relative importance of secondary structure and solvent accessibility, and the influence of the dataset on prediction of protein mutant stability have been discussed.
Stability of two-mode internal resonance in a nonlinear oscillator
NASA Astrophysics Data System (ADS)
Zanette, Damián H.
2018-05-01
We analyze the stability of synchronized periodic motion for two coupled oscillators, representing two interacting oscillation modes in a nonlinear vibrating beam. The main oscillation mode is governed by the forced Duffing equation, while the other mode is linear. By means of the multiple-scale approach, the system is studied in two situations: an open-loop configuration, where the excitation is an external force, and a closed-loop configuration, where the system is fed back with an excitation obtained from the oscillation itself. The latter is relevant to the functioning of time-keeping micromechanical devices. While the accessible amplitudes and frequencies of stationary oscillations are identical in the two situations, their stability properties are substantially different. Emphasis is put on resonant oscillations, where energy transfer between the two coupled modes is maximized and, consequently, the strong interdependence between frequency and amplitude caused by nonlinearity is largely suppressed.
Empirical flow parameters - a tool for hydraulic model validity assessment.
DOT National Transportation Integrated Search
2013-08-01
Data in Texas from the U.S. Geological Survey (USGS) physical stream flow and channel property measurements for gaging stations in the state of Texas were used to construct relations between observed stream flow, topographic slope, mean section veloc...
Impact of managed moorland burning on DOC concentrations in soil solutions and stream waters
NASA Astrophysics Data System (ADS)
Palmer, Sheila; Wearing, Catherine; Johnson, Kerrylyn; Holden, Joseph; Brown, Lee
2013-04-01
In the UK uplands, prescribed burning of moorland vegetation is a common practice to maintain suitable habitats for game birds. Many of these landscapes are in catchments covered by significant deposits of blanket peat (typically one metre or more in depth). There is growing interest in the effect of land management on the stability of these peatland carbon stores, and their contribution to dissolved and particulate organic carbon in surface waters (DOC and POC, respectively) and subsequent effects on stream biogeochemistry and ecology. Yet there are surprisingly few published catchment-scale studies on the effect of moorland burning on DOC and POC. As part of the EMBER project, stream chemistry data were collected approximately monthly in ten upland blanket peat catchments in the UK, five of which acted as controls and were not subject to burning. The other five catchments were subject to a history of prescribed burning, typically in small patches (300-900 m2) in rotations of 8-25 years. Soil solution DOC was also monitored at four depths at two intensively studied sites (one regularly burned and one control). At the two intensive sites, soil solution DOC was considerably higher at the burned site, particularly in surface solutions where concentrations in excess of 100 mg/L were recorded on several occasions (median 37 mg/L over 18 months). The high soil solution DOC concentrations at the burned site occurred in the most recently burned plots (less than 2 years prior to start of sampling) and the lowest DOC concentrations were observed in plots burned 15-25 years previously. On average, median stream DOC and POC concentrations were approximately 43% and 35% higher respectively in burned catchments relative to control catchments. All streams exhibited peak DOC in late summer/early autumn with higher peak DOC concentrations in burned catchments (20-66 mg/L) compared to control catchments (18-54 mg/L). During winter months, DOC concentrations were low in control catchments (typically less than 15 mg/L) but were highly variable in burned catchments (9-40 mg/L), implying some instability of peat carbon stores and/or fluctuation in source. The results offer strong evidence for an impact of burning on the delivery of DOC to streams, possibly through increased surface run-off from bare or partially vegetated patches.
Brown, Dexter W.; Turco, Michael J.
2009-01-01
The U.S. Geological Survey (USGS), in cooperation with the Houston-Galveston Area Council and the Texas Commission on Environmental Quality, collected water-quality, stream-habitat, and biological data from two sites at West Fork Double Bayou, two sites at Cotton Bayou, and one site at Hackberry Gully in Chambers County, Texas, during July 2006-August 2007. Water-quality data-collection surveys consisted of synoptic 24-hour continuous measurements of water temperature, pH, specific conductance, and dissolved oxygen at the five sites and periodically collected samples at four sites analyzed for several properties and constituents of interest. Stream-habitat data were collected at each of four sites three times during the study. At each site, a representative stream reach was selected and within this reach, five evenly spaced stream transects were determined. At each transect, stream attributes (wetted channel width, water depth, bottom material, instream cover) and riparian attributes (bank slope and erosion potential, width of natural vegetation, type of vegetation, percentage tree canopy) were measured. Benthic macroinvertebrate and fish data were collected from the same reaches identified for habitat evaluation. A total of 2,572 macroinvertebrate individuals were identified from the four reaches; insect taxa were more abundant than non-insect taxa at all reaches. A total of 1,082 fish, representing 30 species and 13 families, were collected across all reaches. Stream-habitat and aquatic biota (benthic macroinvertebrates and fish) were assessed at the four sites to evaluate aquatic life use. Habitat quality index scores generally indicated 'intermediate' aquatic life use at most reaches. Benthic macroinvertebrate metrics scores indicated generally 'intermediate' aquatic life use for the West Fork Double Bayou reaches and generally 'high' aquatic life use for the Cotton Bayou and Hackberry Gully reaches. Index of biotic integrity scores for fish indicated generally 'high' aquatic life use at one West Fork Double Bayou reach; 'intermediate' aquatic life use at the other West Fork Double Bayou reach; and generally 'intermediate' aquatic life use at the Cotton Bayou and Hackberry Gully reaches.
Selective Removal of Lanthanides from Natural Waters, Acidic Streams and Dialysate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yantasee, Wassana; Fryxell, Glen E.; Addleman, Raymond S.
2009-09-15
The increased demand for the lanthanides in commercial products result in increased production of lanthanide containing ores, increasing public exposure to the lanthanides, both from various commercial products and from production wastes/effluents. This work investigates lanthanide (La, Ce, Pr, Nd, Eu, Gd, Lu) binding properties of self-assembled monolayers on mesoporous silica supports (SAMMS®) that were functionalized with diphosphonic acid (DiPhos), acetamide phosphonic acid (AcPhos), propionamide phosphonic acid (ProPhos), and 1-hydroxy-2-pyridinone (1,2-HOPO) from natural waters (river, ground, and sea waters), acid solutions (to mimic certain industrial process streams), and dialysate and compares their performance to a high surface area activated carbon.more » The properties include sorption affinity, capacity, and sorption kinetics. Stability and regenerability of SAMMS materials were also investigated. Going from the acid side over to the alkaline side, the AcPhos- and DiPhos-SAMMS maintain their outstanding affinity for lanthanides, which enable the use of the materials in the systems where the pH may fluctuate. While the activated carbon is as effective as 1,2-HOPO-SAMMS for capturing lanthanides in natural (alkaline) waters, it has no affinity in acid solutions (pH 2.4) and low affinity in carbonate-rich dialysate. Over 99% of 100 ug/L of Gd in dialysate was removed by the ProPhos-SAMMS after ten minutes. SAMMS can be regenerated with an acid wash (0.5 M HCl) without losing the binding properties, for a number of regeneration cycles. In acid solutions, PhoPhos- and 1,2-HOPO-SAMMS have differing affinity along the lanthanide series, suggesting their potential for chromatographic lanthanide separations. Thus, SAMMS materials have a great potential to be used as sorbents in large scale treatment of lanthanides, lanthanide separation prior to analytical instruments, and sorbent dialyzers for lanthanide clearances.« less
Hydrology of Channelized and Natural Headwater Streams
USDA-ARS?s Scientific Manuscript database
Understanding hydrology is paramount for optimal ecologic function and management of headwater streams. The objective of this study was to characterize and compare headwater streams within the Upper Big Walnut Creek watershed in Ohio. Two channelized and two unchannelized streams were instrumented w...
Hydrologic regime and herbivory stabilize an alternative state in Yellowstone National Park.
Wolf, Evan C; Cooper, David J; Hobbs, N Thompson
2007-09-01
A decline in the stature and abundance of willows during the 20th century occurred throughout the northern range of Yellowstone National Park, where riparian woody-plant communities are key components in multiple-trophic-level interactions. The potential causes of willow decline include climate change, increased elk browsing coincident with the loss of an apex predator, the gray wolf, and an absence of habitat engineering by beavers. The goal of this study was to determine the spatial and temporal patterns of willow establishment through the 20th century and to identify causal processes. Sampled willows established from 1917 to 1999 and contained far fewer young individuals than was predicted from a modeled stable willow population, indicating reduced establishment during recent decades. Two hydrologically distinct willow establishment environments were identified: fine-grained beaver pond sediments and coarse-grained alluvium. Willows established on beaver pond sediment earlier in time, higher on floodplain surfaces, and farther from the current stream channel than did willows on alluvial sediment. Significant linear declines from the 1940s to the 1990s in alluvial willow establishment elevation and lateral distance from the stream channel resulted in a much reduced area of alluvial willow establishment. Willow establishment was not well correlated with climate-driven hydrologic variables, but the trends were consistent with the effects of stream channel incision initiated in ca. 1950, 20-30 years after beaver dam abandonment. Radiocarbon dates and floodplain stratigraphy indicate that stream incision of the present magnitude may be unprecedented in the past two millennia. We propose that hydrologic changes, stemming from competitive exclusion of beaver by elk overbrowsing, caused the landscape to transition from a historical beaver-pond and willow-mosaic state to its current alternative stable state where active beaver dams and many willow stands are absent. Because of hydrologic changes in streams, a rapid return to the historical state may not occur by reduction of elk browsing alone. Management intervention to restore the historical hydrologic regime may be necessary to recover willows and beavers across the landscape.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, R. L.; Damewood, L.; Zeng, Y. J.
To search for half-metallic materials for spintronic applications, instead of using an expensive trial-and-error experimental scheme, it is more efficient to use first-principles calculations to design materials first, and then grow them. In particular, using a priori information of the structural stability and the effect of the spin–orbit interaction (SOI) enables experimentalists to focus on favorable properties that make growing half-metals easier. We suggest that using acoustic phonon spectra is the best way to address the stability of promising half-metallic materials. Additionally, by carrying out accurate first-principles calculations, we propose two criteria for neglecting the SOI so the half-metallicity persists.more » As a result, based on the mechanical stability and the negligible SOI, we identified two half-metals, β-LiCrAs and β-LiMnSi, as promising half-Heusler alloys worth growing.« less
Zhang, R. L.; Damewood, L.; Zeng, Y. J.; ...
2017-07-07
To search for half-metallic materials for spintronic applications, instead of using an expensive trial-and-error experimental scheme, it is more efficient to use first-principles calculations to design materials first, and then grow them. In particular, using a priori information of the structural stability and the effect of the spin–orbit interaction (SOI) enables experimentalists to focus on favorable properties that make growing half-metals easier. We suggest that using acoustic phonon spectra is the best way to address the stability of promising half-metallic materials. Additionally, by carrying out accurate first-principles calculations, we propose two criteria for neglecting the SOI so the half-metallicity persists.more » As a result, based on the mechanical stability and the negligible SOI, we identified two half-metals, β-LiCrAs and β-LiMnSi, as promising half-Heusler alloys worth growing.« less
Columnar Segregation of Magnocellular and Parvocellular Streams in Human Extrastriate Cortex
2017-01-01
Magnocellular versus parvocellular (M-P) streams are fundamental to the organization of macaque visual cortex. Segregated, paired M-P streams extend from retina through LGN into V1. The M stream extends further into area V5/MT, and parts of V2. However, elsewhere in visual cortex, it remains unclear whether M-P-derived information (1) becomes intermixed or (2) remains segregated in M-P-dominated columns and neurons. Here we tested whether M-P streams exist in extrastriate cortical columns, in 8 human subjects (4 female). We acquired high-resolution fMRI at high field (7T), testing for M- and P-influenced columns within each of four cortical areas (V2, V3, V3A, and V4), based on known functional distinctions in M-P streams in macaque: (1) color versus luminance, (2) binocular disparity, (3) luminance contrast sensitivity, (4) peak spatial frequency, and (5) color/spatial interactions. Additional measurements of resting state activity (eyes closed) tested for segregated functional connections between these columns. We found M- and P-like functions and connections within and between segregated cortical columns in V2, V3, and (in most experiments) area V4. Area V3A was dominated by the M stream, without significant influence from the P stream. These results suggest that M-P streams exist, and extend through, specific columns in early/middle stages of human extrastriate cortex. SIGNIFICANCE STATEMENT The magnocellular and parvocellular (M-P) streams are fundamental components of primate visual cortical organization. These streams segregate both anatomical and functional properties in parallel, from retina through primary visual cortex. However, in most higher-order cortical sites, it is unknown whether such M-P streams exist and/or what form those streams would take. Moreover, it is unknown whether M-P streams exist in human cortex. Here, fMRI evidence measured at high field (7T) and high resolution revealed segregated M-P streams in four areas of human extrastriate cortex. These results suggest that M-P information is processed in segregated parallel channels throughout much of human visual cortex; the M-P streams are more than a convenient sorting property in earlier stages of the visual system. PMID:28724749
Tuning direct current streaming dielectrophoresis of proteins
Nakano, Asuka; Camacho-Alanis, Fernanda; Chao, Tzu-Chiao; Ros, Alexandra
2012-01-01
Dielectrophoresis (DEP) of biomolecules has large potential to serve as a novel selectivity parameter for bioanalytical methods such as (pre)concentration, fractionation, and separation. However, in contrast to well-characterized biological cells and (nano)particles, the mechanism of protein DEP is poorly understood, limiting bioanalytical applications for proteins. Here, we demonstrate a detailed investigation of factors influencing DEP of diagnostically relevant immunoglobulin G (IgG) molecules using insulator-based DEP (iDEP) under DC conditions. We found that the pH range in which concentration of IgG due to streaming iDEP occurs without aggregate formation matches the pH range suitable for immunoreactions. Numerical simulations of the electrokinetic factors pertaining to DEP streaming in this range further suggested that the protein charge and electroosmotic flow significantly influence iDEP streaming. These predictions are in accordance with the experimentally observed pH-dependent iDEP streaming profiles as well as the determined IgG molecular properties. Moreover, we observed a transition in the streaming behavior caused by a change from positive to negative DEP induced through micelle formation for the first time experimentally, which is in excellent qualitative agreement with numerical simulations. Our study thus relates molecular immunoglobulin properties to observed iDEP, which will be useful for the future development of protein (pre)concentration or separation methods based on DEP. PMID:23908679
The devil is in the tails: the role of globular cluster mass evolution on stream properties
NASA Astrophysics Data System (ADS)
Balbinot, Eduardo; Gieles, Mark
2018-02-01
We present a study of the effects of collisional dynamics on the formation and detectability of cold tidal streams. A semi-analytical model for the evolution of the stellar mass function was implemented and coupled to a fast stellar stream simulation code, as well as the synthetic cluster evolution code EMACSS for the mass evolution as a function of a globular cluster orbit. We find that the increase in the average mass of the escaping stars for clusters close to dissolution has a major effect on the observable stream surface density. As an example, we show that Palomar 5 would have undetectable streams (in an SDSS-like survey) if it was currently three times more massive, despite the fact that a more massive cluster loses stars at a higher rate. This bias due to the preferential escape of low-mass stars is an alternative explanation for the absence of tails near massive clusters, than a dark matter halo associated with the cluster. We explore the orbits of a large sample of Milky Way globular clusters and derive their initial masses and remaining mass fraction. Using properties of known tidal tails, we explore regions of parameter space that favour the detectability of a stream. A list of high-probability candidates is discussed.
J. Hwang; S.W. Oak; S.N. Jeffers
2011-01-01
To evaluate the number of stream sample sites needed to effectively survey a given stream network for species of Phytophthora, two stream networks, Davidson River and Cathey's Creek, in western North Carolina (USA) were studied. One-litre water samples were collected from the terminal drainage points and most of the tributaries in each stream...
Connection between encounter volume and diffusivity in geophysical flows
NASA Astrophysics Data System (ADS)
Rypina, Irina I.; Smith, Stefan G. Llewellyn; Pratt, Larry J.
2018-04-01
Trajectory encounter volume - the volume of fluid that passes close to a reference fluid parcel over some time interval - has been recently introduced as a measure of mixing potential of a flow. Diffusivity is the most commonly used characteristic of turbulent diffusion. We derive the analytical relationship between the encounter volume and diffusivity under the assumption of an isotropic random walk, i.e., diffusive motion, in one and two dimensions. We apply the derived formulas to produce maps of encounter volume and the corresponding diffusivity in the Gulf Stream region of the North Atlantic based on satellite altimetry, and discuss the mixing properties of Gulf Stream rings. Advantages offered by the derived formula for estimating diffusivity from oceanographic data are discussed, as well as applications to other disciplines.
Photofermentative hydrogen production from wastes.
Keskin, Tugba; Abo-Hashesh, Mona; Hallenbeck, Patrick C
2011-09-01
In many respects, hydrogen is an ideal biofuel. However, practical, sustainable means of its production are presently lacking. Here we review recent efforts to apply the capacity of photosynthetic bacteria to capture solar energy and use it to drive the nearly complete conversion of substrates to hydrogen and carbon dioxide. This process, called photofermentation, has the potential capacity to use a variety of feedstocks, including the effluents of dark fermentations, leading to the development of various configurations of two-stage systems, or various industrial and agricultural waste streams rich in sugars or organic acids. The metabolic and enzymatic properties of this system are presented and the possible waste streams that might be successfully used are discussed. Recently, various immobilized systems have been developed and their advantages and disadvantages are examined. Copyright © 2011 Elsevier Ltd. All rights reserved.
Gu, Sen; Gruau, Gérard; Dupas, Rémi; Rumpel, Cornélia; Crème, Alexandra; Fovet, Ophélie; Gascuel-Odoux, Chantal; Jeanneau, Laurent; Humbert, Guillaume; Petitjean, Patrice
2017-11-15
In agricultural landscapes, establishment of vegetated buffer zones in riparian wetlands (RWs) is promoted to decrease phosphorus (P) emissions because RWs can trap particulate P from upslope fields. However, long-term accumulation of P risks the release of dissolved P, since the unstable hydrological conditions in these zones may mobilize accumulated particulate P by transforming it into a mobile dissolved P species. This study evaluates how hydroclimate variability, topography and soil properties interact and influence this mobilization, using a three-year dataset of molybdate-reactive dissolved P (MRDP) and total dissolved P (TDP) concentrations in soil water from two RWs located in an agricultural catchment in western France (Kervidy-Naizin), along with stream P concentrations. Two main drivers of seasonal dissolved P release were identified: i) soil rewetting during water-table rise after dry periods and ii) reductive dissolution of soil Fe (hydr)oxides during prolonged water saturation periods. These mechanisms were shown to vary greatly in space (according to topography) and time (according to intra- and interannual hydroclimate variability). The concentration and speciation of the released dissolved P also varied spatially depending on soil chemistry and local topography. Comparison of sites revealed a similar correlation between soil P speciation (percentage of organic P ranging from 35-70%) and the concentration and speciation of the released P (MRDP from <0.10 to 0.40mgl -1 ; percentage of MRDP in TDP from 25-70%). These differences propagated to stream water, suggesting that the two RWs investigated were the main sources of dissolved P to streams. RWs can be critical areas due to their ability to biogeochemically transform the accumulated P in these zones into highly mobile and highly bioavailable dissolved P forms. Hydroclimate variability, local topography and soil chemistry must be considered to decrease the risk of remobilizing legacy soil P when establishing riparian buffer zones in agricultural landscapes. Copyright © 2017 Elsevier B.V. All rights reserved.
Hashempour-Baltork, Fataneh; Torbati, Mohammadali; Azadmard-Damirchi, Sodeif; Peter Savage, Geoffrey
2018-03-01
Purpose: Nutritional quality and oxidation stability are two main factors in the evaluation of edible oils. Oils in their pure form do not have an ideal fatty acid composition or suitable oxidative stability during processing or storage. Methods: This study was designed to evaluate the chemical, nutritional and rheological properties of oil mixtures in three ratios of olive: sesame: linseed, 65:30:5; 60:30:10 and 55:30:15. Acidity value, peroxide value, rancimat test, fatty acid profile, nutritional indexes and rheological properties of the oil blends were determined. The nutritional quality was determined by indexes, including the atherogenic and thrombogenic indexs; the ratios of hypocholesterolemic: hypercholesterolemic; poly unsaturated fatty acid: saturated fatty acid and the ω 6 :ω 3 . Results: The results indicated that blending of other vegetable oils with linseed oil could balance ω 6 :ω 3 . Results showed that formulated oils had a good balance of oxidation stability and nutritional properties as well. Rheological data showed that these oil blends followed Newtonian behavior at 4°C and 25°C. Conclusion: According to the results, addition of linseed oil to vegetable oils containing high levels of bioactive compounds was a simple and economic practice to obtain a functional oil with good nutritional and stability properties.
Rehabilitating agricultural streams in Australia with wood: a review.
Lester, Rebecca E; Boulton, Andrew J
2008-08-01
Worldwide, the ecological condition of streams and rivers has been impaired by agricultural practices such as broadscale modification of catchments, high nutrient and sediment inputs, loss of riparian vegetation, and altered hydrology. Typical responses include channel incision, excessive sedimentation, declining water quality, and loss of in-stream habitat complexity and biodiversity. We review these impacts, focusing on the potential benefits and limitations of wood reintroduction as a transitional rehabilitation technique in these agricultural landscapes using Australian examples. In streams, wood plays key roles in shaping velocity and sedimentation profiles, forming pools, and strengthening banks. In the simplified channels typical of many agricultural streams, wood provides habitat for fauna, substrate for biofilms, and refuge from predators and flow extremes, and enhances in-stream diversity of fish and macroinvertebrates.Most previous restoration studies involving wood reintroduction have been in forested landscapes, but some results might be extrapolated to agricultural streams. In these studies, wood enhanced diversity of fish and macroinvertebrates, increased storage of organic material and sediment, and improved bed and bank stability. Failure to meet restoration objectives appeared most likely where channel incision was severe and in highly degraded environments. Methods for wood reintroduction have logistical advantages over many other restoration techniques, being relatively low cost and low maintenance. Wood reintroduction is a viable transitional restoration technique for agricultural landscapes likely to rapidly improve stream condition if sources of colonists are viable and water quality is suitable.
Aquifer response to stream-stage and recharge variations. II. Convolution method and applications
Barlow, P.M.; DeSimone, L.A.; Moench, A.F.
2000-01-01
In this second of two papers, analytical step-response functions, developed in the companion paper for several cases of transient hydraulic interaction between a fully penetrating stream and a confined, leaky, or water-table aquifer, are used in the convolution integral to calculate aquifer heads, streambank seepage rates, and bank storage that occur in response to streamstage fluctuations and basinwide recharge or evapotranspiration. Two computer programs developed on the basis of these step-response functions and the convolution integral are applied to the analysis of hydraulic interaction of two alluvial stream-aquifer systems in the northeastern and central United States. These applications demonstrate the utility of the analytical functions and computer programs for estimating aquifer and streambank hydraulic properties, recharge rates, streambank seepage rates, and bank storage. Analysis of the water-table aquifer adjacent to the Blackstone River in Massachusetts suggests that the very shallow depth of water table and associated thin unsaturated zone at the site cause the aquifer to behave like a confined aquifer (negligible specific yield). This finding is consistent with previous studies that have shown that the effective specific yield of an unconfined aquifer approaches zero when the capillary fringe, where sediment pores are saturated by tension, extends to land surface. Under this condition, the aquifer's response is determined by elastic storage only. Estimates of horizontal and vertical hydraulic conductivity, specific yield, specific storage, and recharge for a water-table aquifer adjacent to the Cedar River in eastern Iowa, determined by the use of analytical methods, are in close agreement with those estimated by use of a more complex, multilayer numerical model of the aquifer. Streambank leakance of the semipervious streambank materials also was estimated for the site. The streambank-leakance parameter may be considered to be a general (or lumped) parameter that accounts not only for the resistance of flow at the river-aquifer boundary, but also for the effects of partial penetration of the river and other near-stream flow phenomena not included in the theoretical development of the step-response functions.Analytical step-response functions, developed for several cases of transient hydraulic interaction between a fully penetrating stream and a confined, leaky, or water-table aquifer, are used in the convolution integral to calculate aquifer heads, streambank seepage rates, and bank storage that occur in response to stream-stage fluctuations and basinwide recharge or evapotranspiration. Two computer programs developed on the basis of these step-response functions and the convolution integral are applied to the analysis of hydraulic interaction of two alluvial stream-aquifer systems. These applications demonstrate the utility of the analytical functions and computer programs for estimating aquifer and streambank seepage rates and bank storage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, X.; Florinski, V.
We present a new model that couples galactic cosmic-ray (GCR) propagation with magnetic turbulence transport and the MHD background evolution in the heliosphere. The model is applied to the problem of the formation of corotating interaction regions (CIRs) during the last solar minimum from the period between 2007 and 2009. The numerical model simultaneously calculates the large-scale supersonic solar wind properties and its small-scale turbulent content from 0.3 au to the termination shock. Cosmic rays are then transported through the background, and thus computed, with diffusion coefficients derived from the solar wind turbulent properties, using a stochastic Parker approach. Ourmore » results demonstrate that GCR variations depend on the ratio of diffusion coefficients in the fast and slow solar winds. Stream interfaces inside the CIRs always lead to depressions of the GCR intensity. On the other hand, heliospheric current sheet (HCS) crossings do not appreciably affect GCR intensities in the model, which is consistent with the two observations under quiet solar wind conditions. Therefore, variations in diffusion coefficients associated with CIR stream interfaces are more important for GCR propagation than the drift effects of the HCS during a negative solar minimum.« less
López-Chávez, Ernesto; Peña-Castañeda, Yésica A; de la Portilla-Maldonado, L César; Guzmán-Pantoja, Javier; Martínez-Magadán, José Manuel; Oviedo-Roa, Raúl; de Landa Castillo-Alvarado, Fray; Cruz-Torres, Armando
2014-07-01
The design of polymer electrolyte membranes for fuel cells must satisfy two equally important fundamental principles: optimization of the reactivity and the selectivity in order to improve the ion transport properties of the membrane as well as its long-term stability in the hydrated state at high temperature (above 100 °C). A study utilizing density functional theory (DFT) to elucidate the effect of the degree of sulfonation on the chemical stability, reactivity, and selectivity of poly(ether imide) (PEI), which allows the ionic transport properties of the membrane to be predicted, is reported here. Sulfonated poly(ether imide) (SPEI) structures with (-SO3H) n (n = 1-6) groups were built and optimized in order to calculate the above properties as functions of the number of sulfonyl groups. A comparative study demonstrated that the SPEI with four sulfonyl groups in its backbone is the polymer with the properties best suited for use in fuel cells.
Temporal model of an optically pumped co-doped solid state laser
NASA Technical Reports Server (NTRS)
Wangler, T. G.; Swetits, J. J.; Buoncristiani, A. M.
1993-01-01
Currently, research is being conducted on the optical properties of materials associated with the development of solid state lasers in the two micron region. In support of this effort, a mathematical model describing the energy transfer in a holmium laser sensitized with thulium is developed. In this paper, we establish some qualitative properties of the solution of the model, such as non-negativity, boundedness, and integrability. A local stability analysis is then performed from which conditions for asymptotic stability are attained. Finally, we report on our numerical analysis of the system and how it compares with experimental results.
Thermophysical properties of plasma sprayed coatings
NASA Technical Reports Server (NTRS)
Wilkes, K. E.; Lagedrost, J. F.
1973-01-01
Thermophysical properties of plasma sprayed materials were determined for the following plasma sprayed materials: CaO - stabilized ZrO2, Y2O3 - stabilized ZerO2, Al2O3, HfO2 Mo, nichrome, NiAl, Mo-ZrO2, and MoAl2O3 mixtures. In all cases the thermal conductivity of the as-sprayed materials was found to be considerably lower than that of the bulk material. The flash-laser thermal diffusivity technique was used both for diffusivity determination of single-layer materials and to determine the thermal contact resistance at the interface of two-layer specimens.
Disruption of current filaments and isotropization of magnetic field in counter-streaming plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiuza, Frederico
We study the stability of current filaments produced by the Weibel, or current filamentation, instability in weakly magnetized counter-streaming plasmas. It is shown that a resonance exists between the current-carrying ions and a longitudinal drift-kink mode that strongly deforms and eventually breaks the current filaments. Analytical estimates of the wavelength, growth rate and saturation level of the resonant mode are derived and validated by three-dimensional particle-in-cell simulations. Furthermore, self-consistent simulations of counter-streaming plasmas indicate that this drift-kink mode is dominant in the slow down of the flows and in the isotropization of the magnetic field, playing an important role inmore » the formation of collision less shocks.« less
Johnson, Steven M.; Swanson, Robert B.
1994-01-01
Prototype stream-monitoring sites were operated during part of 1992 in the Central Nebraska Basins (CNBR) and three other study areas of the National Water-Quality Assessment (NAWQ) Program of the U.S. Geological Survey. Results from the prototype project provide information needed to operate a net- work of intensive fixed station stream-monitoring sites. This report evaluates operating procedures for two NAWQA prototype sites at Maple Creek near Nickerson and the Platte River at Louisville, eastern Nebraska. Each site was sampled intensively in the spring and late summer 1992, with less intensive sampling in midsummer. In addition, multiple samples were collected during two high- flow periods at the Maple Creek site--one early and the other late in the growing season. Water-samples analyses included determination of pesticides, nutrients, major ions, suspended sediment, and measurements of physical properties. Equipment and protocols for the water-quality sampling procedures were evaluated. Operation of the prototype stream- monitoring sites included development and comparison of onsite and laboratory sample-processing proce- dures. Onsite processing was labor intensive but allowed for immediate preservation of all sampled constituents. Laboratory processing required less field labor and decreased the risk of contamination, but allowed for no immediate preservation of the samples.
Orientifolds and duality cascades: confinement before the wall
NASA Astrophysics Data System (ADS)
Argurio, Riccardo; Bertolini, Matteo
2018-02-01
We consider D-branes at orientifold singularities and discuss two properties of the corresponding low energy four-dimensional effective theories which are not shared, generically, by other Calabi-Yau singularities. The first property is that duality cascades are finite and, unlike ordinary ones, do not require an infinite number of degrees of freedom to be UV-completed. The second is that orientifolds tend to stabilize runaway directions. These two properties can have interesting implications and widen in an intriguing way the variety of gauge theories one can describe using D-branes.
Synergistic performance of lecithin and glycerol monostearate in oil/water emulsions.
Moran-Valero, María I; Ruiz-Henestrosa, Víctor M Pizones; Pilosof, Ana M R
2017-03-01
The effects of the combination of two low-molecular weight emulsifiers (lecithin and glycerol-monostearate (GMS)) on the stability, the dynamic interfacial properties and rheology of emulsions have been studied. Different lecithin/GMS ratios were tested in order to assess their impact in the formation and stabilization of oil in water emulsions. The combination of the two surfactants showed a synergistic behaviour, mainly when combined at the same ratio. The dynamic film properties and ζ-potential showed that lecithin dominated the surface of oil droplets, providing stability to the emulsions against flocculation and coalescence, while allowing the formation of small oil droplets. At long times of adsorption, all of the mixtures showed similar interfacial activity. However, higher values of interfacial pressure at the initial times were reached when lecithin and GMS were at the same ratio. Interfacial viscoelasticity and viscosity of mixed films were also similar to that of lecithin alone. On the other hand, emulsions viscosity was dominated by GMS. The synergistic performance of lecithin-GMS blends as stabilizers of oil/water emulsions is attributed to their interaction both in the bulk and at the interface. Copyright © 2016 Elsevier B.V. All rights reserved.
Wu, Man; Xu, Ming-Gang; Zhang, Wen-Ju; Wu, Hai-Wen
2012-07-01
In order to clarify the effects of soil properties on the stabilization process of the cadmium (Cd) added, 11 different soils were collected and incubated under a moisture content of 65%-70% at 25 degrees C. The changes of available Cd contents with incubation time (in 360 days) in Cd and Cd-Pb contaminated treatments were determined. The stabilization process was simulated using dynamic equations. The results showed that after 1.0 mg x kg(-1) Cd or 500 mg x kg(-1) Pb + 1.0 mg x kg(-1) Cd were added into the soil, the available Cd content decreased rapidly during the first 15 days, and then the decreasing rate slowed down, with an equilibrium content reached after 60 days' incubation. In Cd-Pb contaminated soils, the presence of Pb increased the content of available Cd. The stabilization process of Cd could be well described by the second-order equation and the first order exponential decay; meanwhile, dynamic parameters including equilibrium content and stabilization velocity were used to characterize the stabilization process of Cd. These two key dynamic parameters were significantly affected by soil properties. Correlation analysis and stepwise regression suggested that high pH and high cation exchange capacity (CEC) significantly retarded the availability of Cd. High pH had the paramount effect on the equilibrium content. The stabilization velocity of Cd was influenced by the soil texture. It took shorter time for Cd to get stabilized in sandy soil than in the clay.
Two different streams form the dorsal visual system: anatomy and functions.
Rizzolatti, Giacomo; Matelli, Massimo
2003-11-01
There are two radically different views on the functional role of the dorsal visual stream. One considers it as a system involved in space perception. The other is of a system that codes visual information for action organization. On the basis of new anatomical data and a reconsideration of previous functional and clinical data, we propose that the dorsal stream and its recipient parietal areas form two distinct functional systems: the dorso-dorsal stream (d-d stream) and the ventro-dorsal stream (v-d stream). The d-d stream is formed by area V6 (main d-d extrastriate visual node) and areas V6A and MIP of the superior parietal lobule. Its major functional role is the control of actions "on line". Its damage leads to optic ataxia. The v-d stream is formed by area MT (main v-d extrastriate visual node) and by the visual areas of the inferior parietal lobule. As the d-d stream, v-d stream is responsible for action organization. It, however, also plays a crucial role in space perception and action understanding. The putative mechanisms linking action and perception in the v-d stream is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enyashin, A.N.; Ivanovskii, A.L., E-mail: ivanovskii@ihim.uran.ru
2013-11-15
The structural, electronic properties and stability of the new MXene compounds—two-dimensional pristine carbonitrides Ti{sub 3}C{sub 2−x}N{sub x} and their hydroxylated derivatives Ti{sub 3}C{sub 2−x}N{sub x}(OH){sub 2} are studied by means of DFTB calculations. The genesis of the properties is discussed in the sequence: binary MXenes Ti{sub 3}C{sub 2} (Ti{sub 3}N{sub 2})→hydroxylated forms Ti{sub 3}C{sub 2}(OH){sub 2} (Ti{sub 3}N{sub 2}(OH){sub 2})→pristine MXene Ti{sub 3}C{sub 2−x}N{sub x}→hydroxylated Ti{sub 3}C{sub 2−x}N{sub x}(OH){sub 2}. All examined materials are metallic-like. The most favorable type of OH-covering is presented by the occupation of the hollow sites between three neighboring carbon (nitrogen) atoms. Two-dimensional MXene carbonitrides withmore » random distribution of C and N atoms are found to be thermodynamically more favorable. - Graphical abstract: The side views of the optimized atomic structures of some examined hydroxylated derivatives of MXene Ti{sub 3}CN and their electronic band structures. Display Omitted - Highlights: • Very recently 2D titanium carbonitrides have been synthesized. • Structural, electronic properties and stability for these materials were evaluated. • The hydroxylated derivatives of 2D titanium carbonitrides are examined.« less
Calorimetric Determination of Thermodynamic Stability of MAX and MXene Phases
Sharma, Geetu; Naguib, Michael; Feng, Dawei; ...
2016-11-19
MXenes are layered two dimensional materials with exciting properties useful to a wide range of energy applications. They are derived from ceramics (MAX phases) by leaching and their properties reflect their resulting complex compositions which include intercalating cations and anions and water. Their thermodynamic stability is likely linked to these functional groups but has not yet been addressed by quantitative experimental measurements. We report enthalpies of formation from the elements at 25 °C measured using high temperature oxide melt solution calorimetry for a layered Ti-Al-C MAX phase, and the corresponding Ti-C based MXene. The thermodynamic stability of the Ti 3Cmore » 2T x MXene (Tx stands for anionic surface moieties, and intercalated cations) was assessed by calculating the enthalpy of reaction of the MAX phase (ideal composition Ti 3AlC 2) to form MXene, The very exothermic enthalpy of reaction confirms the stability of MXene in an aqueous environment. The surface terminations (O, OH and F) and cations (Li) chemisorbed on the surface and intercalated in the interlayers play a major role in the thermodynamic stabilization of MXene. These findings help to understand and potentially improve properties and performance by characterizing the energetics of species binding to MXene surfaces during synthesis and in energy storage, water desalination and other applications.« less
Molecular assembly, interfacial rheology and foaming properties of oligofructose fatty acid esters.
van Kempen, Silvia E H J; Schols, Henk A; van der Linden, Erik; Sagis, Leonard M C
2014-01-01
Two major types of food-grade surfactants used to stabilize foams are proteins and low molecular weight (LMW) surfactants. Proteins lower the surface tension of interfaces and tend to unfold and stabilize the interface by the formation of a visco-elastic network, which leads to high surface moduli. In contrast, LMW surfactants lower the surface tension more than proteins, but do not form interfaces with a high modulus. Instead, they stabilize the interface through the Gibbs-Marangoni mechanism that relies on rapid diffusion of surfactants, when surface tension gradients develop as a result of deformations of the interface. A molecule than can lower the surface tension considerably, like a LMW surfactant, but also provide the interface with a high modulus, like a protein, would be an excellent foam stabilizer. In this article we will discuss molecules with those properties: oligofructose fatty acid esters, both in pure and mixed systems. First, we will address the synthesis and structural characterization of the esters. Next, we will address self-assembly and rheological properties of air/water interfaces stabilized by the esters. Subsequently, this paper will deal with mixed systems of mono-esters with either di-esters and lauric acid, or proteins. Then, the foaming functionality of the esters is discussed.
Takechi, Hiroki; Kawamura, Hinata
2017-01-01
Formation of a functional neuronal network requires not only precise target recognition, but also stabilization of axonal contacts within their appropriate synaptic layers. Little is known about the molecular mechanisms underlying the stabilization of axonal connections after reaching their specifically targeted layers. Here, we show that two receptor protein tyrosine phosphatases (RPTPs), LAR and Ptp69D, act redundantly in photoreceptor afferents to stabilize axonal connections to the specific layers of the Drosophila visual system. Surprisingly, by combining loss-of-function and genetic rescue experiments, we found that the depth of the final layer of stable termination relied primarily on the cumulative amount of LAR and Ptp69D cytoplasmic activity, while specific features of their ectodomains contribute to the choice between two synaptic layers, M3 and M6, in the medulla. These data demonstrate how the combination of overlapping downstream but diversified upstream properties of two RPTPs can shape layer-specific wiring. PMID:29116043
Schmalzried, Hans D; Fallon, L Fleming
2013-01-01
Major funding cuts have occurred throughout the United States public health system during the past several years. Funding for local public health agency (LPHA) services and programs is obtained through a patchwork of sources that vary both within and among states. Even though local city and county sources provide a significant proportion of funding for LPHAs, information available in the literature about these revenues is sparse and is not clearly described. This study focused on a single specific revenue stream included in the local sources (local city and county) category: funds voted on directly by the public. The primary purpose of this study was to examine whether this type of funding source provided fiscal advantages for LPHAs. Specifically, we wanted to see how sensitive levy votes were to changing general economic conditions. A questionnaire to collect LPHA levy data was developed, approved, and mailed to county boards of elections in Ohio (n = 88). Elections officials were asked to provide voting results for all LPHA levy ballot attempts since 1994 regardless of outcome. In the study period (1994 through 2011), 250 LPHA property tax levies were placed on election ballots in Ohio. LPHAs were successful in 155 (62.0%) and unsuccessful in 95 (38.0%) attempts. Over the 18-year period, the most noteworthy outcome was a 94.6% pass rate for renewal levies. Our study demonstrated that voter-approved tax levies provide some fiscal advantages for LPHAs: higher per capita revenues than those who have to rely on other sources of income and predictable revenue streams. This translates into more funds being available for public health programs and services. Property tax levies allow citizens to make direct investments in their local health departments.
Numerical Solutions for Supersonic Flow of an Ideal Gas Around Blunt Two-Dimensional Bodies
NASA Technical Reports Server (NTRS)
Fuller, Franklyn B.
1961-01-01
The method described is an inverse one; the shock shape is chosen and the solution proceeds downstream to a body. Bodies blunter than circular cylinders are readily accessible, and any adiabatic index can be chosen. The lower limit to the free-stream Mach number available in any case is determined by the extent of the subsonic field, which in turn depends upon the body shape. Some discussion of the stability of the numerical processes is given. A set of solutions for flows about circular cylinders at several Mach numbers and several values of the adiabatic index is included.
Shewry, P R; Gilbert, S M; Savage, A W J; Tatham, A S; Wan, Y-F; Belton, P S; Wellner, N; D'Ovidio, R; Békés, F; Halford, N G
2003-02-01
The gene encoding high-molecular-weight (HMW) subunit 1Bx20 was isolated from durum wheat cv. Lira. It encodes a mature protein of 774 amino acid residues with an M(r) of 83,913. Comparison with the sequence of subunit 1Bx7 showed over 96% identity, the main difference being the substitution of two cysteine residues in the N-terminal domain of subunit 1Bx7 with tyrosine residues in 1Bx20. Comparison of the structures and stabilities of the two subunits purified from wheat using Fourier-transform infra-red and circular dichroism spectroscopy showed no significant differences. However, incorporation of subunit 1Bx7 into a base flour gave increased dough strength and stability measured by Mixograph analysis, while incorporation of subunit 1Bx20 resulted in small positive or negative effects on the parameters measured. It is concluded that the different effects of the two subunits could relate to the differences in their cysteine contents, thereby affecting the cross-linking and hence properties of the glutenin polymers.
Tsui, Lok-kun; Benavidez, Angelica; Palanisamy, Ponnusamy; ...
2017-04-13
The development of on-board sensors for emissions monitoring is necessary for continuous monitoring of the performance of catalytic systems in automobiles. We have fabricated mixed potential electrochemical gas sensing devices with Pt, La 0.8Sr 0.2CrO 3 (LSCO), and Au/Pd alloy electrodes and a porous yttria-stabilized zirconia electrolyte. The three-electrode design takes advantage of the preferential selectivity of the Pt + Au/Pd and Pt + LSCO pairs towards different species of gases and has additional tunable selectivity achieved by applying a current bias to the latter pair. Voltages were recorded in single, binary, and ternary gas streams of NO, NO 2,more » C 3H 8, and CO. We have also trained artificial neural networks to examine the voltage output from sensors in biased and unbiased modes to both identify which single test gas or binary mixture of two test gases is present in a gas stream as well as extract concentration values. We were then able to identify single and binary mixtures of these gases with accuracy of at least 98%. For determining concentration, the peak in the error distribution for binary mixtures was 5% and 80% of test data fell under <12% error. The sensor stability was also evaluated over the course of over 100 days and the ability to retrain ANNs with a small dataset was demonstrated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsui, Lok-kun; Benavidez, Angelica; Palanisamy, Ponnusamy
The development of on-board sensors for emissions monitoring is necessary for continuous monitoring of the performance of catalytic systems in automobiles. We have fabricated mixed potential electrochemical gas sensing devices with Pt, La 0.8Sr 0.2CrO 3 (LSCO), and Au/Pd alloy electrodes and a porous yttria-stabilized zirconia electrolyte. The three-electrode design takes advantage of the preferential selectivity of the Pt + Au/Pd and Pt + LSCO pairs towards different species of gases and has additional tunable selectivity achieved by applying a current bias to the latter pair. Voltages were recorded in single, binary, and ternary gas streams of NO, NO 2,more » C 3H 8, and CO. We have also trained artificial neural networks to examine the voltage output from sensors in biased and unbiased modes to both identify which single test gas or binary mixture of two test gases is present in a gas stream as well as extract concentration values. We were then able to identify single and binary mixtures of these gases with accuracy of at least 98%. For determining concentration, the peak in the error distribution for binary mixtures was 5% and 80% of test data fell under <12% error. The sensor stability was also evaluated over the course of over 100 days and the ability to retrain ANNs with a small dataset was demonstrated.« less
Wutz, Andreas; Weisz, Nathan; Braun, Christoph; Melcher, David
2014-01-22
Dynamic vision requires both stability of the current perceptual representation and sensitivity to the accumulation of sensory evidence over time. Here we study the electrophysiological signatures of this intricate balance between temporal segregation and integration in vision. Within a forward masking paradigm with short and long stimulus onset asynchronies (SOA), we manipulated the temporal overlap of the visual persistence of two successive transients. Human observers enumerated the items presented in the second target display as a measure of the informational capacity read-out from this partly temporally integrated visual percept. We observed higher β-power immediately before mask display onset in incorrect trials, in which enumeration failed due to stronger integration of mask and target visual information. This effect was timescale specific, distinguishing between segregation and integration of visual transients that were distant in time (long SOA). Conversely, for short SOA trials, mask onset evoked a stronger visual response when mask and targets were correctly segregated in time. Examination of the target-related response profile revealed the importance of an evoked α-phase reset for the segregation of those rapid visual transients. Investigating this precise mapping of the temporal relationships of visual signals onto electrophysiological responses highlights how the stream of visual information is carved up into discrete temporal windows that mediate between segregated and integrated percepts. Fragmenting the stream of visual information provides a means to stabilize perceptual events within one instant in time.
Double streams of protons in the distant geomagnetic tail
NASA Technical Reports Server (NTRS)
Villante, U.; Lazarus, A. J.
1975-01-01
Two intermingled streams of protons have been observed in the distant geomagnetic tail. The number densities of the two streams are comparable, and their velocity difference tends to lie along the field direction. The lower-velocity stream is probably composed of magnetosheath protons which have diffused through the boundary of the distant tail. The higher-velocity stream appears to originate in the field reversal region.
Hybrid Magnetic Core-Shell Nanophotocatalysts for Environmental Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaulden, Patrick; Murph, Simona Hunyadi
2016-07-29
This research study describes a facile sol-gel method to creating hybrid iron (III) oxide/silica/titania nanomaterials decorated with gold nanoparticles for use in environmental applications. The multi-functional composition of the nanomaterials allows for photocatalyzed reactions to occur in both the visible and the UV range. The morphologies, elemental composition, and surface charge of the nanoparticles were determined by Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), and Phase Analysis Light Scattering (PALS), respectively. The photocatalytic activity of the synthesized hybrid nanoparticles for breaking down a model analyte, methyl orange (MO), was then evaluated using UV-Vis Spectroscopy. The efficiency of themore » photocatalyst under UV light irradiation was measured and compared to other well-studied nanophotocatalysts, namely titanium oxide and iron oxide nanoparticles. The concentration dependence of both the photocatalyst and the analyte was also investigated. By utilizing the known UV-active properties of TiO 2, the magnetic properties of Fe 2O 3, the optical properties of gold in the visible range of the spectrum, and the high stability of silica, a novel, highly efficient photocatalyst that is active on a broad range of the spectrum (UV-Vis) can be created to destroy organic pollutants in wastewater streams.« less
NASA Astrophysics Data System (ADS)
Ahmad, A. F.; Razali, A. R.; Razelan, I. S. M.; Jalil, S. S. A.; Noh, M. S. M.; Idris, A. A.
2017-05-01
Plastic bottle for recycling can be found from the household waste stream, and most of them are made from Polyethylene Terephthalate. In this research, PET is utilized to explore the potential prospects to upgrade asphalt mixture properties. The objectives include deciding the best measure of PET to be used. For experimental, Marshall mix design was utilized to determine the ideal bitumen binder content and to test the modified mixture properties. The samples were created per the requirement for aggregate course wearing (ACW14) using the Standard Specification of Road Work (SSRW) in Malaysia. 20 samples were utilized to determine the binder content, and 30 samples were used to research the impact of modifying asphalt mixtures. 2%, 5%, 10%, 15% and 20% of PET by weight of the optimum binder content (4.8%) were tested. Optimum PET content is 10%, and the result shows a good stability with 16.824kN, 2.32g/cm3 bulk density, void filled with bitumen (VFB) with 71.35%, flow with 3.2248mm, air void (AV) with 4.53%, and void of mineral aggregate (VMA) with 15.15%. The outcomes showed that PET modifier gives better engineering properties. Therefore, 10% of PET by the weight of binder content was suggested as the best amount of the modifier.
2005 Tri-Service Infrastructure Systems Conference and Exhibition. Volume 5, Track 5
2005-08-04
Patrick O’Brien and David Biedenharn Watershed Approach to Stream Stability and Benefits Related to the Reduction of Nutrients, by John B. Smith A Lake ...J.B. Smith and Randall A. Wise Bluff Stabilization along Lake Michigan, using Active and Passive Dewatering Techniques, by Rennie Kaunda, Eileen...Sacred Falls, Oahsacred Falls, Oahu Section 227 Demonstration Project Track 4 Fern Ridge LakFern Ridge Lake Hydrologic Aspects of Operation during Failure
Enhanced catalyst stability for cyclic co methanation operations
Risch, Alan P.; Rabo, Jule A.
1983-01-01
Carbon monoxide-containing gas streams are passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. The active carbon is thereafter reacted with steam or hydrogen to form methane. Enhanced catalyst stability for long term, cyclic operation is obtained by the incorporation of an alkali or alkaline earth dopant in a silica binding agent added to the catalyst-support additive composition.
Influence of nanoclay on properties of HDPE/wood composites
Yong Lei; Qinglin Wu; Craig M. Clemons; Fei Yao; Yanjun Xu
2007-01-01
Composites based on high density polyethylene (HDPE), pine flour, and organic clay were made by melt compounding and then injection molding. The influence of clay on crystallization behavior, mechanical properties, water absorption, and thermal stability of HDPE/pine composites was investigated. The HDPE/pine composites containing exfoliated clay were made by a two-...
Wagner, Brian J.; Harvey, Judson W.
1997-01-01
Tracer experiments are valuable tools for analyzing the transport characteristics of streams and their interactions with shallow groundwater. The focus of this work is the design of tracer studies in high-gradient stream systems subject to advection, dispersion, groundwater inflow, and exchange between the active channel and zones in surface or subsurface water where flow is stagnant or slow moving. We present a methodology for (1) evaluating and comparing alternative stream tracer experiment designs and (2) identifying those combinations of stream transport properties that pose limitations to parameter estimation and therefore a challenge to tracer test design. The methodology uses the concept of global parameter uncertainty analysis, which couples solute transport simulation with parameter uncertainty analysis in a Monte Carlo framework. Two general conclusions resulted from this work. First, the solute injection and sampling strategy has an important effect on the reliability of transport parameter estimates. We found that constant injection with sampling through concentration rise, plateau, and fall provided considerably more reliable parameter estimates than a pulse injection across the spectrum of transport scenarios likely encountered in high-gradient streams. Second, for a given tracer test design, the uncertainties in mass transfer and storage-zone parameter estimates are strongly dependent on the experimental Damkohler number, DaI, which is a dimensionless combination of the rates of exchange between the stream and storage zones, the stream-water velocity, and the stream reach length of the experiment. Parameter uncertainties are lowest at DaI values on the order of 1.0. When DaI values are much less than 1.0 (owing to high velocity, long exchange timescale, and/or short reach length), parameter uncertainties are high because only a small amount of tracer interacts with storage zones in the reach. For the opposite conditions (DaI ≫ 1.0), solute exchange rates are fast relative to stream-water velocity and all solute is exchanged with the storage zone over the experimental reach. As DaI increases, tracer dispersion caused by hyporheic exchange eventually reaches an equilibrium condition and storage-zone exchange parameters become essentially nonidentifiable.
The role of penetrating gas streams in setting the dynamical state of galaxy clusters
NASA Astrophysics Data System (ADS)
Zinger, E.; Dekel, A.; Birnboim, Y.; Kravtsov, A.; Nagai, D.
2016-09-01
We utilize cosmological simulations of 16 galaxy clusters at redshifts z = 0 and z = 0.6 to study the effect of inflowing streams on the properties of the X-ray emitting intracluster medium. We find that the mass accretion occurs predominantly along streams that originate from the cosmic web and consist of heated gas. Clusters that are unrelaxed in terms of their X-ray morphology are characterized by higher mass inflow rates and deeper penetration of the streams, typically into the inner third of the virial radius. The penetrating streams generate elevated random motions, bulk flows and cold fronts. The degree of penetration of the streams may change over time such that clusters can switch from being unrelaxed to relaxed over a time-scale of several giga years.