Sample records for two-tissue compartment model

  1. Two-compartment modeling of tissue microcirculation revisited.

    PubMed

    Brix, Gunnar; Salehi Ravesh, Mona; Griebel, Jürgen

    2017-05-01

    Conventional two-compartment modeling of tissue microcirculation is used for tracer kinetic analysis of dynamic contrast-enhanced (DCE) computed tomography or magnetic resonance imaging studies although it is well-known that the underlying assumption of an instantaneous mixing of the administered contrast agent (CA) in capillaries is far from being realistic. It was thus the aim of the present study to provide theoretical and computational evidence in favor of a conceptually alternative modeling approach that makes it possible to characterize the bias inherent to compartment modeling and, moreover, to approximately correct for it. Starting from a two-region distributed-parameter model that accounts for spatial gradients in CA concentrations within blood-tissue exchange units, a modified lumped two-compartment exchange model was derived. It has the same analytical structure as the conventional two-compartment model, but indicates that the apparent blood flow identifiable from measured DCE data is substantially overestimated, whereas the three other model parameters (i.e., the permeability-surface area product as well as the volume fractions of the plasma and interstitial distribution space) are unbiased. Furthermore, a simple formula was derived to approximately compute a bias-corrected flow from the estimates of the apparent flow and permeability-surface area product obtained by model fitting. To evaluate the accuracy of the proposed modeling and bias correction method, representative noise-free DCE curves were analyzed. They were simulated for 36 microcirculation and four input scenarios by an axially distributed reference model. As analytically proven, the considered two-compartment exchange model is structurally identifiable from tissue residue data. The apparent flow values estimated for the 144 simulated tissue/input scenarios were considerably biased. After bias-correction, the deviations between estimated and actual parameter values were (11.2 ± 6.4) % (vs. (105 ± 21) % without correction) for the flow, (3.6 ± 6.1) % for the permeability-surface area product, (5.8 ± 4.9) % for the vascular volume and (2.5 ± 4.1) % for the interstitial volume; with individual deviations of more than 20% being the exception and just marginal. Increasing the duration of CA administration only had a statistically significant but opposite effect on the accuracy of the estimated flow (declined) and intravascular volume (improved). Physiologically well-defined tissue parameters are structurally identifiable and accurately estimable from DCE data by the conceptually modified two-compartment model in combination with the bias correction. The accuracy of the bias-corrected flow is nearly comparable to that of the three other (theoretically unbiased) model parameters. As compared to conventional two-compartment modeling, this feature constitutes a major advantage for tracer kinetic analysis of both preclinical and clinical DCE imaging studies. © 2017 American Association of Physicists in Medicine.

  2. Analysis of blind identification methods for estimation of kinetic parameters in dynamic medical imaging

    NASA Astrophysics Data System (ADS)

    Riabkov, Dmitri

    Compartment modeling of dynamic medical image data implies that the concentration of the tracer over time in a particular region of the organ of interest is well-modeled as a convolution of the tissue response with the tracer concentration in the blood stream. The tissue response is different for different tissues while the blood input is assumed to be the same for different tissues. The kinetic parameters characterizing the tissue responses can be estimated by blind identification methods. These algorithms use the simultaneous measurements of concentration in separate regions of the organ; if the regions have different responses, the measurement of the blood input function may not be required. In this work it is shown that the blind identification problem has a unique solution for two-compartment model tissue response. For two-compartment model tissue responses in dynamic cardiac MRI imaging conditions with gadolinium-DTPA contrast agent, three blind identification algorithms are analyzed here to assess their utility: Eigenvector-based Algorithm for Multichannel Blind Deconvolution (EVAM), Cross Relations (CR), and Iterative Quadratic Maximum Likelihood (IQML). Comparisons of accuracy with conventional (not blind) identification techniques where the blood input is known are made as well. The statistical accuracies of estimation for the three methods are evaluated and compared for multiple parameter sets. The results show that the IQML method gives more accurate estimates than the other two blind identification methods. A proof is presented here that three-compartment model blind identification is not unique in the case of only two regions. It is shown that it is likely unique for the case of more than two regions, but this has not been proved analytically. For the three-compartment model the tissue responses in dynamic FDG PET imaging conditions are analyzed with the blind identification algorithms EVAM and Separable variables Least Squares (SLS). A method of identification that assumes that FDG blood input in the brain can be modeled as a function of time and several parameters (IFM) is analyzed also. Nonuniform sampling SLS (NSLS) is developed due to the rapid change of the FDG concentration in the blood during the early postinjection stage. Comparisons of accuracy of EVAM, SLS, NSLS and IFM identification techniques are made.

  3. A model describing diffusion in prostate cancer.

    PubMed

    Gilani, Nima; Malcolm, Paul; Johnson, Glyn

    2017-07-01

    Quantitative diffusion MRI has frequently been studied as a means of grading prostate cancer. Interpretation of results is complicated by the nature of prostate tissue, which consists of four distinct compartments: vascular, ductal lumen, epithelium, and stroma. Current diffusion measurements are an ill-defined weighted average of these compartments. In this study, prostate diffusion is analyzed in terms of a model that takes explicit account of tissue compartmentalization, exchange effects, and the non-Gaussian behavior of tissue diffusion. The model assumes that exchange between the cellular (ie, stromal plus epithelial) and the vascular and ductal compartments is slow. Ductal and cellular diffusion characteristics are estimated by Monte Carlo simulation and a two-compartment exchange model, respectively. Vascular pseudodiffusion is represented by an additional signal at b = 0. Most model parameters are obtained either from published data or by comparing model predictions with the published results from 41 studies. Model prediction error is estimated using 10-fold cross-validation. Agreement between model predictions and published results is good. The model satisfactorily explains the variability of ADC estimates found in the literature. A reliable model that predicts the diffusion behavior of benign and cancerous prostate tissue of different Gleason scores has been developed. Magn Reson Med 78:316-326, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  4. Simulation of radiofrequency ablation in real human anatomy.

    PubMed

    Zorbas, George; Samaras, Theodoros

    2014-12-01

    The objective of the current work was to simulate radiofrequency ablation treatment in computational models with realistic human anatomy, in order to investigate the effect of realistic geometry in the treatment outcome. The body sites considered in the study were liver, lung and kidney. One numerical model for each body site was obtained from Duke, member of the IT'IS Virtual Family. A spherical tumour was embedded in each model and a single electrode was inserted into the tumour. The same excitation voltage was used in all cases to underline the differences in the resulting temperature rise, due to different anatomy at each body site investigated. The same numerical calculations were performed for a two-compartment model of the tissue geometry, as well as with the use of an analytical approximation for a single tissue compartment. Radiofrequency ablation (RFA) therapy appears efficient for tumours in liver and lung, but less efficient in kidney. Moreover, the time evolution of temperature for a realistic geometry differs from that for a two-compartment model, but even more for an infinite homogenous tissue model. However, it appears that the most critical parameters of computational models for RFA treatment planning are tissue properties rather than tissue geometry. Computational simulations of realistic anatomy models show that the conventional technique of a single electrode inside the tumour volume requires a careful choice of both the excitation voltage and treatment time in order to achieve effective treatment, since the ablation zone differs considerably for various body sites.

  5. Shortened acquisition protocols for the quantitative assessment of the 2-tissue-compartment model using dynamic PET/CT 18F-FDG studies.

    PubMed

    Strauss, Ludwig G; Pan, Leyun; Cheng, Caixia; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2011-03-01

    (18)F-FDG kinetics are quantified by a 2-tissue-compartment model. The routine use of dynamic PET is limited because of this modality's 1-h acquisition time. We evaluated shortened acquisition protocols up to 0-30 min regarding the accuracy for data analysis with the 2-tissue-compartment model. Full dynamic series for 0-60 min were analyzed using a 2-tissue-compartment model. The time-activity curves and the resulting parameters for the model were stored in a database. Shortened acquisition data were generated from the database using the following time intervals: 0-10, 0-16, 0-20, 0-25, and 0-30 min. Furthermore, the impact of adding a 60-min uptake value to the dynamic series was evaluated. The datasets were analyzed using dedicated software to predict the results of the full dynamic series. The software is based on a modified support vector machines (SVM) algorithm and predicts the compartment parameters of the full dynamic series. The SVM-based software provides user-independent results and was accurate at predicting the compartment parameters of the full dynamic series. If a squared correlation coefficient of 0.8 (corresponding to 80% explained variance of the data) was used as a limit, a shortened acquisition of 0-16 min was accurate at predicting the 60-min 2-tissue-compartment parameters. If a limit of 0.9 (90% explained variance) was used, a dynamic series of at least 0-20 min together with the 60-min uptake values is required. Shortened acquisition protocols can be used to predict the parameters of the 2-tissue-compartment model. Either a dynamic PET series of 0-16 min or a combination of a dynamic PET/CT series of 0-20 min and a 60-min uptake value is accurate for analysis with a 2-tissue-compartment model.

  6. Chylomicron metabolism in rats: kinetic modeling indicates that the particles remain at endothelial sites for minutes[S

    PubMed Central

    Hultin, Magnus; Savonen, Roger; Chevreuil, Olivier; Olivecrona, Thomas

    2013-01-01

    Chylomicrons labeled in vivo with 14C-oleic acid (primarily in triglycerides, providing a tracer for lipolysis) and 3H-retinol (primarily in ester form, providing a tracer for the core lipids) were injected into rats. Radioactivity in tissues was followed at a series of times up to 40 min and the data were analyzed by compartmental modeling. For heart-like tissues it was necessary to allow the chylomicrons to enter into a compartment where lipolysis is rapid and then transfer to a second compartment where lipolysis is slower. The particles remained in these compartments for minutes and when they returned to blood they had reduced affinity for binding in the tissue. In contrast, the data for liver could readily be fitted with a single compartment for native and lipolyzed chylomicrons in blood, and there was no need for a pathway back to blood. A composite model was built from the individual tissue models. This whole-body model could simultaneously fit all data for both fed and fasted rats and allowed estimation of fluxes and residence times in the four compartments; native and lipolyzed chylomicrons (“remnants”) in blood, and particles in the tissue compartments where lipolysis is rapid and slow, respectively. PMID:23922383

  7. Physiological water model development

    NASA Technical Reports Server (NTRS)

    Doty, Susan

    1993-01-01

    The water of the human body can be categorized as existing in two main compartments: intracellular water and extracellular water. The intracellular water consists of all the water within the cells and constitutes over half of the total body water. Since red blood cells are surrounded by plasma, and all other cells are surrounded by interstitial fluid, the intracellular compartment has been subdivided to represent these two cell types. The extracellular water, which includes all of the fluid outside of the cells, can be further subdivided into compartments which represent the interstitial fluid, circulating blood plasma, lymph, and transcellular water. The interstitial fluid surrounds cells outside of the vascular system whereas plasma is contained within the blood vessels. Avascular tissues such as dense connective tissue and cartilage contain interstitial water which slowly equilibrates with tracers used to determine extracellular fluid volume. For this reason, additional compartments are sometimes used to represent these avascular tissues. The average size of each compartment, in terms of percent body weight, has been determined for adult males and females. These compartments and the forces which cause flow between them are presented. The kidneys, a main compartment, receive about 25 percent of the cardiac output and filters out a fluid similar to plasma. The composition of this filtered fluid changes as it flows through the kidney tubules since compounds are continually being secreted and reabsorbed. Through this mechanism, the kidneys eliminate wastes while conserving body water, electrolytes, and metabolites. Since sodium accounts for over 90 percent of the cations in the extracellular fluid, and the number of cations is balanced by the number of anions, considering the renal handling sodium and water only should sufficiently describe the relationship between the plasma compartment and kidneys. A kidney function model is presented which has been adapted from a previous model of normal renal function in man. To test the validity of the proposed kidney model, results predicted by the model will be compared to actual data involving injected or ingested fluids and subsequent urine flow rates. Comparison of the model simulation to actual data following the ingestion of 1 liter of water is shown. The model simulation is also shown with actual data following the intravenous infusion of hypertonic saline.

  8. A recycling model of the biokinetics of systemic tellurium.

    PubMed

    Giussani, Augusto

    2014-11-01

    To develop a compartmental model of the systemic biokinetics of tellurium required for calculating the internal dose and interpreting bioassay measurements after incorporation of radioactive tellurium. The compartmental model for tellurium was developed with the software SAAM II v. 2.0 (©The Epsilon Group, Charlottesville, Virginia, USA). Model parameters were determined on the basis of published retention and excretion data in humans and animals. The model consists of two blood compartments, one compartment each for liver, kidneys, thyroid, four compartments for bone tissues and a generic compartment for the soft tissues. The model predicts a rapid urinary excretion of systemic tellurium: 45% in the first 24 h and 84% after 50 d. Faecal excretion amounts to 0.4% after 3 d and 9% after 50 d. Whole body retention is 55% after one day, and 2.8% after 100 d. These values as well as the retained fractions in the single organs are reasonably consistent with the available human and animal data (studies with swine and guinea pigs). The proposed model gives a realistic description of the available biokinetic data for tellurium and will be adopted by the International Commission on Radiological Protection for applications in internal dosimetry.

  9. Kinetic modeling of benzodiazepine receptor binding with PET and high specific activity [(11)C]Iomazenil in healthy human subjects.

    PubMed

    Bremner, J D; Horti, A; Staib, L H; Zea-Ponce, Y; Soufer, R; Charney, D S; Baldwin, R

    2000-01-01

    Quantitation of the PET benzodiazepine receptor antagonist, [(11)C]Iomazenil, using low specific activity radioligand was recently described. The purpose of this study was to quantitate benzodiazepine receptor binding in human subjects using PET and high specific activity [(11)C]Iomazenil. Six healthy human subjects underwent PET imaging following a bolus injection of high specific activity (>100 Ci/mmol) [(11)C]iomazenil. Arterial samples were collected at multiple time points after injection for measurement of unmetabolized total and nonprotein-bound parent compound in plasma. Time activity curves of radioligand concentration in brain and plasma were analyzed using two and three compartment model. Kinetic rate constants of transfer of radioligand between plasma, nonspecifically bound brain tissue, and specifically bound brain tissue compartments were fitted to the model. Values for fitted kinetic rate constants were used in the calculation of measures of benzodiazepine receptor binding, including binding potential (the ratio of receptor density to affinity), and product of BP and the fraction of free nonprotein-bound parent compound (V(3)'). Use of the three compartment model improved the goodness of fit in comparison to the two compartment model. Values for kinetic rate constants and measures of benzodiazepine receptor binding, including BP and V(3)', were similar to results obtained with the SPECT radioligand [(123)I]iomazenil, and a prior report with low specific activity [(11)C]Iomazenil. Kinetic modeling using the three compartment model with PET and high specific activity [(11)C]Iomazenil provides a reliable measure of benzodiazepine receptor binding. Synapse 35:68-77, 2000. Published 2000 Wiley-Liss, Inc.

  10. The role of the bi-compartmental stem cell niche in delaying cancer

    NASA Astrophysics Data System (ADS)

    Shahriyari, Leili; Komarova, Natalia L.

    2015-10-01

    In recent years, by using modern imaging techniques, scientists have found evidence of collaboration between different types of stem cells (SCs), and proposed a bi-compartmental organization of the SC niche. Here we create a class of stochastic models to simulate the dynamics of such a heterogeneous SC niche. We consider two SC groups: the border compartment, S1, is in direct contact with transit-amplifying (TA) cells, and the central compartment, S2, is hierarchically upstream from S1. The S1 SCs differentiate or divide asymmetrically when the tissue needs TA cells. Both groups proliferate when the tissue requires SCs (thus maintaining homeostasis). There is an influx of S2 cells into the border compartment, either by migration, or by proliferation. We examine this model in the context of double-hit mutant generation, which is a rate-limiting step in the development of many cancers. We discover that this type of a cooperative pattern in the stem niche with two compartments leads to a significantly smaller rate of double-hit mutant production compared with a homogeneous, one-compartmental SC niche. Furthermore, the minimum probability of double-hit mutant generation corresponds to purely symmetric division of SCs, consistent with the literature. Finally, the optimal architecture (which minimizes the rate of double-hit mutant production) requires a large proliferation rate of S1 cells along with a small, but non-zero, proliferation rate of S2 cells. This result is remarkably similar to the niche structure described recently by several authors, where one of the two SC compartments was found more actively engaged in tissue homeostasis and turnover, while the other was characterized by higher levels of quiescence (but contributed strongly to injury recovery). Both numerical and analytical results are presented.

  11. Radiofrequency ablation: importance of background tissue electrical conductivity--an agar phantom and computer modeling study.

    PubMed

    Solazzo, Stephanie A; Liu, Zhengjun; Lobo, S Melvyn; Ahmed, Muneeb; Hines-Peralta, Andrew U; Lenkinski, Robert E; Goldberg, S Nahum

    2005-08-01

    To determine whether radiofrequency (RF)-induced heating can be correlated with background electrical conductivity in a controlled experimental phantom environment mimicking different background tissue electrical conductivities and to determine the potential electrical and physical basis for such a correlation by using computer modeling. The effect of background tissue electrical conductivity on RF-induced heating was studied in a controlled system of 80 two-compartment agar phantoms (with inner wells of 0.3%, 1.0%, or 36.0% NaCl) with background conductivity that varied from 0.6% to 5.0% NaCl. Mathematical modeling of the relationship between electrical conductivity and temperatures 2 cm from the electrode (T2cm) was performed. Next, computer simulation of RF heating by using two-dimensional finite-element analysis (ETherm) was performed with parameters selected to approximate the agar phantoms. Resultant heating, in terms of both the T2cm and the distance of defined thermal isotherms from the electrode surface, was calculated and compared with the phantom data. Additionally, electrical and thermal profiles were determined by using the computer modeling data and correlated by using linear regression analysis. For each inner compartment NaCl concentration, a negative exponential relationship was established between increased background NaCl concentration and the T2cm (R2= 0.64-0.78). Similar negative exponential relationships (r2 > 0.97%) were observed for the computer modeling. Correlation values (R2) between the computer and experimental data were 0.9, 0.9, and 0.55 for the 0.3%, 1.0%, and 36.0% inner NaCl concentrations, respectively. Plotting of the electrical field generated around the RF electrode identified the potential for a dramatic local change in electrical field distribution (ie, a second electrical peak ["E-peak"]) occurring at the interface between the two compartments of varied electrical background conductivity. Linear correlations between the E-peak and heating at T2cm (R2= 0.98-1.00) and the 50 degrees C isotherm (R2= 0.99-1.00) were established. These results demonstrate the strong relationship between background tissue conductivity and RF heating and further explain electrical phenomena that occur in a two-compartment system.

  12. Anatomical Study of Temporal Fat Compartments and its Clinical Application for Temporal Fat Grafting

    PubMed Central

    Huang, Ru-Lin; Xie, Yun; Wang, Wenjin; Herrler, Tanja; Zhou, Jia; Zhao, Peijuan; Pu, Lee LQ; Li, Qingfeng

    2017-01-01

    Abstract Background Low satisfaction rates and severe complications are two major limitations for temporal hollowing augmentation using autologous fat grafting. Despite fat compartments in temporal region have been reported, its clinical applied anatomy for fat grafting have not been the subject of studies that show its benefits objectively and statistically. Objectives To investigate temporal fat compartments and relative neurovascular structures in cadavers, developing a safe and effective fat grafting technique for temporal hollowing augmentation. Methods The study was conducted on 8 cadavers (16 temples). The tissue layers, fat compartments, ligaments, and neurovascular structures in the temporal region were analysed. The variables were the number and location of sentinel veins, perforator vessels of the middle temporal vein. Measurements were taken with a digital calliper. Results Two separate fat compartments, the lateral temporal-cheek fat compartment and lateral orbital fat compartment, were found in the subcutaneous layer, and two separate septum compartments, the upper and lower temporal compartment, were found in the loose areolar tissue layer. One sentinel vein and 1 to 6 perforator vessels were found to travel through the subcutaneous tissue layer, traverse the overlapping tissue layers in the lower temporal septum region, and finally join in the middle temporal vein. Conclusions The four fat compartments in the temporal region are ideal receipt sites for fat grafting. The medial border of the junction of the hairline and temporal line is a safe and effective cannula entry site for temporal fat grafting. The anterior half of the lower temporal compartment is a “zone of caution” for temporal fat grafting. PMID:28520850

  13. Pharmacokinetic Studies of Oxathio-Heterocycle Fused Chalcones.

    PubMed

    Okoniewska, Krystyna; Konieczny, Marek T; Lemke, Krzysztof; Grabowski, Tomasz

    2017-02-01

    Chalcone constitutes one of the most used molecular frameworks in medicinal chemistry and its derivatives exhibit a broad spectrum of biological activities. Low absolute bioavailability, poor distribution, intensive metabolism and elimination of chalcones are the main problems in designing new drugs based on their structure. One of the fundamental steps in evaluation of drug candidates is a comparative analysis of pharmacokinetic parameters. The aim of the studies was the pharmacokinetic characterization of the selected oxathio-heterocycle fused chalcones. The pharmacokinetic parameters of 19 compounds were reported. The analyzed chalcones were examined after a single intravenous administration to forty 7-week-old mature male rats of Wistar stock. Pharmacokinetic analysis was performed independently using SHAM (slopes, highest, amounts, and moments) and the two-compartment model. Basic physiochemical parameters were calculated. The bioanalytical methods were validated in terms of repeatability, linearity, accuracy, precision, and selectivity. The pharmacokinetics of the examined group of chalcones are compatible with the two-compartment model. The physicochemical characteristics of this group are quite homogeneous. The kinetics of the examined chalcones are indicative of a distribution to the tissue compartment with the predominance of a rate constant from central to peripheral compartments (k 12 ) over the rate constant from peripheral to central compartments (k 21 ). The elimination from the central compartment (k 10 ) is higher than the transfer from the central compartment to the tissues (k 10  > k 12 ) in almost all examined cases. The presented group of compounds may form a starting point for studies into drugs treating autoimmune diseases of the gastro-intestinal tract.

  14. Whole-body mathematical model for simulating intracranial pressure dynamics

    NASA Technical Reports Server (NTRS)

    Lakin, William D. (Inventor); Penar, Paul L. (Inventor); Stevens, Scott A. (Inventor); Tranmer, Bruce I. (Inventor)

    2007-01-01

    A whole-body mathematical model (10) for simulating intracranial pressure dynamics. In one embodiment, model (10) includes 17 interacting compartments, of which nine lie entirely outside of intracranial vault (14). Compartments (F) and (T) are defined to distinguish ventricular from extraventricular CSF. The vasculature of the intracranial system within cranial vault (14) is also subdivided into five compartments (A, C, P, V, and S, respectively) representing the intracranial arteries, capillaries, choroid plexus, veins, and venous sinus. The body's extracranial systemic vasculature is divided into six compartments (I, J, O, Z, D, and X, respectively) representing the arteries, capillaries, and veins of the central body and the lower body. Compartments (G) and (B) include tissue and the associated interstitial fluid in the intracranial and lower regions. Compartment (Y) is a composite involving the tissues, organs, and pulmonary circulation of the central body and compartment (M) represents the external environment.

  15. Blind identification of the kinetic parameters in three-compartment models

    NASA Astrophysics Data System (ADS)

    Riabkov, Dmitri Y.; Di Bella, Edward V. R.

    2004-03-01

    Quantified knowledge of tissue kinetic parameters in the regions of the brain and other organs can offer information useful in clinical and research applications. Dynamic medical imaging with injection of radioactive or paramagnetic tracer can be used for this measurement. The kinetics of some widely used tracers such as [18F]2-fluoro-2-deoxy-D-glucose can be described by a three-compartment physiological model. The kinetic parameters of the tissue can be estimated from dynamically acquired images. Feasibility of estimation by blind identification, which does not require knowledge of the blood input, is considered analytically and numerically in this work for the three-compartment type of tissue response. The non-uniqueness of the two-region case for blind identification of kinetic parameters in three-compartment model is shown; at least three regions are needed for the blind identification to be unique. Numerical results for the accuracy of these blind identification methods in different conditions were considered. Both a separable variables least-squares (SLS) approach and an eigenvector-based algorithm for multichannel blind deconvolution approach were used. The latter showed poor accuracy. Modifications for non-uniform time sampling were also developed. Also, another method which uses a model for the blood input was compared. Results for the macroparameter K, which reflects the metabolic rate of glucose usage, using three regions with noise showed comparable accuracy for the separable variables least squares method and for the input model-based method, and slightly worse accuracy for SLS with the non-uniform sampling modification.

  16. A novel single compartment in vitro model for electrophysiological research using the perfluorocarbon FC-770.

    PubMed

    Choudhary, M; Clavica, F; van Mastrigt, R; van Asselt, E

    2016-06-20

    Electrophysiological studies of whole organ systems in vitro often require measurement of nerve activity and/or stimulation of the organ via the associated nerves. Currently two-compartment setups are used for such studies. These setups are complicated and require two fluids in two separate compartments and stretching the nerve across one chamber to the other, which may damage the nerves. We aimed at developing a simple single compartment setup by testing the electrophysiological properties of FC-770 (a perfluorocarbon) for in vitro recording of bladder afferent nerve activity and electrical stimulation of the bladder. Perflurocarbons are especially suitable for such a setup because of their high oxygen carrying capacity and insulating properties. In male Wistar rats, afferent nerve activity was recorded from postganglionic branches of the pelvic nerve in vitro, in situ and in vivo. The bladder was stimulated electrically via the efferent nerves. Organ viability was monitored by recording spontaneous contractions of the bladder. Additionally, histological examinations were done to test the effect of FC-770 on the bladder tissue. Afferent nerve activity was successfully recorded in a total of 11 rats. The bladders were stimulated electrically and high amplitude contractions were evoked. Histological examinations and monitoring of spontaneous contractions showed that FC-770 maintained organ viability and did not cause damage to the tissue. We have shown that FC-770 enables a simple, one compartment in vitro alternative for the generally used two compartment setups for whole organ electrophysiological studies.

  17. Prediction of water loss and viscoelastic deformation of apple tissue using a multiscale model.

    PubMed

    Aregawi, Wondwosen A; Abera, Metadel K; Fanta, Solomon W; Verboven, Pieter; Nicolai, Bart

    2014-11-19

    A two-dimensional multiscale water transport and mechanical model was developed to predict the water loss and deformation of apple tissue (Malus × domestica Borkh. cv. 'Jonagold') during dehydration. At the macroscopic level, a continuum approach was used to construct a coupled water transport and mechanical model. Water transport in the tissue was simulated using a phenomenological approach using Fick's second law of diffusion. Mechanical deformation due to shrinkage was based on a structural mechanics model consisting of two parts: Yeoh strain energy functions to account for non-linearity and Maxwell's rheological model of visco-elasticity. Apparent parameters of the macroscale model were computed from a microscale model. The latter accounted for water exchange between different microscopic structures of the tissue (intercellular space, the cell wall network and cytoplasm) using transport laws with the water potential as the driving force for water exchange between different compartments of tissue. The microscale deformation mechanics were computed using a model where the cells were represented as a closed thin walled structure. The predicted apparent water transport properties of apple cortex tissue from the microscale model showed good agreement with the experimentally measured values. Deviations between calculated and measured mechanical properties of apple tissue were observed at strains larger than 3%, and were attributed to differences in water transport behavior between the experimental compression tests and the simulated dehydration-deformation behavior. Tissue dehydration and deformation in the high relative humidity range ( > 97% RH) could, however, be accurately predicted by the multiscale model. The multiscale model helped to understand the dynamics of the dehydration process and the importance of the different microstructural compartments (intercellular space, cell wall, membrane and cytoplasm) for water transport and mechanical deformation.

  18. PET Pharmacokinetic Modelling

    NASA Astrophysics Data System (ADS)

    Müller-Schauenburg, Wolfgang; Reimold, Matthias

    Positron Emission Tomography is a well-established technique that allows imaging and quantification of tissue properties in-vivo. The goal of pharmacokinetic modelling is to estimate physiological parameters, e.g. perfusion or receptor density from the measured time course of a radiotracer. After a brief overview of clinical application of PET, we summarize the fundamentals of modelling: distribution volume, Fick's principle of local balancing, extraction and perfusion, and how to calculate equilibrium data from measurements after bolus injection. Three fundamental models are considered: (i) the 1-tissue compartment model, e.g. for regional cerebral blood flow (rCBF) with the short-lived tracer [15O]water, (ii) the 2-tissue compartment model accounting for trapping (one exponential + constant), e.g. for glucose metabolism with [18F]FDG, (iii) the reversible 2-tissue compartment model (two exponentials), e.g. for receptor binding. Arterial blood sampling is required for classical PET modelling, but can often be avoided by comparing regions with specific binding with so called reference regions with negligible specific uptake, e.g. in receptor imaging. To estimate the model parameters, non-linear least square fits are the standard. Various linearizations have been proposed for rapid parameter estimation, e.g. on a pixel-by-pixel basis, for the prize of a bias. Such linear approaches exist for all three models; e.g. the PATLAK-plot for trapping substances like FDG, and the LOGAN-plot to obtain distribution volumes for reversibly binding tracers. The description of receptor modelling is dedicated to the approaches of the subsequent lecture (chapter) of Millet, who works in the tradition of Delforge with multiple-injection investigations.

  19. Limitations of the permeability-limited compartment model in estimating vascular permeability and interstitial volume fraction in DCE-MRI.

    PubMed

    Carreira, Guido Correia; Gemeinhardt, Ole; Gorenflo, Rudolf; Beyersdorff, Dirk; Franiel, Tobias; Plendl, Johanna; Lüdemann, Lutz

    2011-06-01

    Dynamic contrast-enhanced magnetic resonance imaging commonly uses compartment models to estimate tissue parameters in general and perfusion parameters in particular. Compartment models assume a homogeneous distribution of the injected tracer throughout the compartment volume. Since tracer distribution within a compartment cannot be assessed, the parameters obtained by means of a compartment model might differ from the actual physical values. This work systematically examines the widely used permeability-surface-limited one-compartment model to determine the reliability of the parameters obtained by comparing them with their actual values. A computer simulation was used to model spatial tracer distribution within the interstitial volume using diffusion of contrast agent in tissue. Vascular parameters were varied as well as tissue parameters. The vascular parameters used were capillary radius (4 and 12 μm), capillary permeability (from 0.03 to 3.3 μm/s) and intercapillary distances from 30 to 300 μm. The tissue parameters used were tortuosity (λ), porosity (α) and interstitial volume fraction (v(e)). Our results suggest that the permeability-surface-limited compartment model generally underestimates capillary permeability for capillaries with a radius of 4 μm by factors from ≈0.03 for α=0.04, to ≈ 0.1 for α=0.2, to ≈ 0.5 for α=1.0. An overestimation of actual capillary permeability for capillaries with a radius of 12 μm by a factor of ≥1.3 was found for α=1.0, while α=0.2 yielded an underestimation by a factor of ≈0.3 and α=0.04 by a factor of ≈ 0.03. The interstitial volume fraction, v(e), obtained by the compartment model differed with increasing intercapillary distances and for low vessel permeability, whereas v(e) was found to be estimated approximately accurately for P=0.3 μm/s and P=3.3 μm/s for vessel distances <100 μm. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. A method to quantify at late imaging a release rate of 18F-FDG in tissues.

    PubMed

    Laffon, Eric; Allard, Michèle; Marthan, Roger; Ducassou, Dominique

    2005-08-01

    This theoretical work shows that the rate constant for the (18)F-FDG release in tissues can be assessed without needing any arterial blood sampling. The method requires that the clearance of (18)F-FDG from plasma has occurred, whereas (18)F-FDG is still present in the tissue. This condition can be met dating from 3 h after (18)F-FDG injection, when hydration and/or phlorizin injection are applied after the routine static acquisition. The release rate constant can be obtained from a graphical analysis performed at the later decreasing phase of the tissue tracer activity. A two-compartment and a three-compartment model are developed, both in accordance with one another. To cite this article: E. Laffon et al., C. R. Biologies 328 (2005).

  1. Normal tissue complication probability (NTCP) parameters for breast fibrosis: pooled results from two randomised trials.

    PubMed

    Mukesh, Mukesh B; Harris, Emma; Collette, Sandra; Coles, Charlotte E; Bartelink, Harry; Wilkinson, Jenny; Evans, Philip M; Graham, Peter; Haviland, Jo; Poortmans, Philip; Yarnold, John; Jena, Raj

    2013-08-01

    The dose-volume effect of radiation therapy on breast tissue is poorly understood. We estimate NTCP parameters for breast fibrosis after external beam radiotherapy. We pooled individual patient data of 5856 patients from 2 trials including whole breast irradiation followed with or without a boost. A two-compartment dose volume histogram model was used with boost volume as the first compartment and the remaining breast volume as second compartment. Results from START-pilot trial (n=1410) were used to test the predicted models. 26.8% patients in the Cambridge trial (5 years) and 20.7% patients in the EORTC trial (10 years) developed moderate-severe breast fibrosis. The best fit NTCP parameters were BEUD3(50)=136.4 Gy, γ50=0.9 and n=0.011 for the Niemierko model and BEUD3(50)=132 Gy, m=0.35 and n=0.012 for the Lyman Kutcher Burman model. The observed rates of fibrosis in the START-pilot trial agreed well with the predicted rates. This large multi-centre pooled study suggests that the effect of volume parameter is small and the maximum RT dose is the most important parameter to influence breast fibrosis. A small value of volume parameter 'n' does not fit with the hypothesis that breast tissue is a parallel organ. However, this may reflect limitations in our current scoring system of fibrosis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Insulin-like growth factor (IGF)-I controls prostate fibromuscular development: IGF-I inhibition prevents both fibromuscular and glandular development in eugonadal mice.

    PubMed

    Kleinberg, David L; Ruan, Weifeng; Yee, Douglas; Kovacs, Kalman T; Vidal, Sergio

    2007-03-01

    Although antiandrogen therapy has been shown effective in treating prostatic tumors, it is relatively ineffective in treating benign prostatic hyperplasia (BPH). In an attempt to understand better the role of androgens in the development of the normal prostate and BPH, we studied the relative effects of testosterone and IGF-I on the development of the two compartments of the prostate in castrated IGF-I((-/-)) male mice. Here we report that IGF-I stimulated the development of the fibromuscular compartment, but testosterone inhibited it (stromal epithelial ratio 2.17 vs. 0.83, respectively; P < 0.001). Testosterone also impaired IGF-I induced insulin receptor substrate-1 phosphorylation and cell division, and increased apoptosis in fibromuscular tissue. In sharp contrast IGF-I and testosterone both stimulated the development of the glandular compartment individually and together. The combined effects were either additive or synergistic on compartment size, cell division, insulin receptor substrate-1 phosphorylation, and probasin production. Together they also had a greater inhibitory effect on apoptosis in gland tissue. To determine whether IGF-I inhibition would inhibit both fibromuscular and glandular compartments, we tested the effect of IGF binding protein-1 on prostate development in two different models: castrated Ames dwarf mice and eugonadal normal male mice. IGF binding protein-1 blocked bovine GH-induced fibromuscular and glandular development in both. It also inhibited epithelial cell division and increased apoptosis in both prostate compartments in the eugonadal mice. The observed discordance between IGF-I and testosterone control of prostate compartment development might explain the relative failure of 5alpha-reductase inhibition in BPH and why testosterone inhibition might theoretically reduce gland volume but increase fibromuscular tissue. The work also provides a rationale for considering IGF-I inhibition as therapy for BPH to reduce the size of both prostate compartments.

  3. Measuring Compartment Size and Gas Solubility in Marine Mammals

    DTIC Science & Technology

    2015-09-30

    bends? Effect of diving behaviour and physiology on modelled gas exchange for three species: Ziphius cavirostris, Mesoplodon densirostris and Hyperoodon...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Measuring Compartment Size and Gas Solubility in Marine...is to develop methods to estimate marine mamal tissue compartment sizes, and tissue gas solubility. We aim to improve the data available for the

  4. A physiology-based parametric imaging method for FDG-PET data

    NASA Astrophysics Data System (ADS)

    Scussolini, Mara; Garbarino, Sara; Sambuceti, Gianmario; Caviglia, Giacomo; Piana, Michele

    2017-12-01

    Parametric imaging is a compartmental approach that processes nuclear imaging data to estimate the spatial distribution of the kinetic parameters governing tracer flow. The present paper proposes a novel and efficient computational method for parametric imaging which is potentially applicable to several compartmental models of diverse complexity and which is effective in the determination of the parametric maps of all kinetic coefficients. We consider applications to [18 F]-fluorodeoxyglucose positron emission tomography (FDG-PET) data and analyze the two-compartment catenary model describing the standard FDG metabolization by an homogeneous tissue and the three-compartment non-catenary model representing the renal physiology. We show uniqueness theorems for both models. The proposed imaging method starts from the reconstructed FDG-PET images of tracer concentration and preliminarily applies image processing algorithms for noise reduction and image segmentation. The optimization procedure solves pixel-wise the non-linear inverse problem of determining the kinetic parameters from dynamic concentration data through a regularized Gauss-Newton iterative algorithm. The reliability of the method is validated against synthetic data, for the two-compartment system, and experimental real data of murine models, for the renal three-compartment system.

  5. Extravascular transport in normal and tumor tissues.

    PubMed

    Jain, R K; Gerlowski, L E

    1986-01-01

    The transport characteristics of the normal and tumor tissue extravascular space provide the basis for the determination of the optimal dosage and schedule regimes of various pharmacological agents in detection and treatment of cancer. In order for the drug to reach the cellular space where most therapeutic action takes place, several transport steps must first occur: (1) tissue perfusion; (2) permeation across the capillary wall; (3) transport through interstitial space; and (4) transport across the cell membrane. Any of these steps including intracellular events such as metabolism can be the rate-limiting step to uptake of the drug, and these rate-limiting steps may be different in normal and tumor tissues. This review examines these transport limitations, first from an experimental point of view and then from a modeling point of view. Various types of experimental tumor models which have been used in animals to represent human tumors are discussed. Then, mathematical models of extravascular transport are discussed from the prespective of two approaches: compartmental and distributed. Compartmental models lump one or more sections of a tissue or body into a "compartment" to describe the time course of disposition of a substance. These models contain "effective" parameters which represent the entire compartment. Distributed models consider the structural and morphological aspects of the tissue to determine the transport properties of that tissue. These distributed models describe both the temporal and spatial distribution of a substance in tissues. Each of these modeling techniques is described in detail with applications for cancer detection and treatment in mind.

  6. Allometric Scaling and Cell Ratios in Multi-Organ in vitro Models of Human Metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ucciferri, Nadia; Interdepartmental Research Center “E. Piaggio”, University of Pisa, Pisa; Sbrana, Tommaso

    2014-12-17

    Intelligent in vitro models able to recapitulate the physiological interactions between tissues in the body have enormous potential as they enable detailed studies on specific two-way or higher order tissue communication. These models are the first step toward building an integrated picture of systemic metabolism and signaling in physiological or pathological conditions. However, the rational design of in vitro models of cell–cell or cell–tissue interaction is difficult as quite often cell culture experiments are driven by the device used, rather than by design considerations. Indeed, very little research has been carried out on in vitro models of metabolism connecting differentmore » cell or tissue types in a physiologically and metabolically relevant manner. Here, we analyze the physiological relationship between cells, cell metabolism, and exchange in the human body using allometric rules, downscaling them to an organ-on-a-plate device. In particular, in order to establish appropriate cell ratios in the system in a rational manner, two different allometric scaling models (cell number scaling model and metabolic and surface scaling model) are proposed and applied to a two compartment model of hepatic-vascular metabolic cross-talk. The theoretical scaling studies illustrate that the design and hence relevance of multi-organ models is principally determined by experimental constraints. Two experimentally feasible model configurations are then implemented in a multi-compartment organ-on-a-plate device. An analysis of the metabolic response of the two configurations demonstrates that their glucose and lipid balance is quite different, with only one of the two models recapitulating physiological-like homeostasis. In conclusion, not only do cross-talk and physical stimuli play an important role in in vitro models, but the numeric relationship between cells is also crucial to recreate in vitro interactions, which can be extrapolated to the in vivo reality.« less

  7. Allometric Scaling and Cell Ratios in Multi-Organ in vitro Models of Human Metabolism.

    PubMed

    Ucciferri, Nadia; Sbrana, Tommaso; Ahluwalia, Arti

    2014-01-01

    Intelligent in vitro models able to recapitulate the physiological interactions between tissues in the body have enormous potential as they enable detailed studies on specific two-way or higher order tissue communication. These models are the first step toward building an integrated picture of systemic metabolism and signaling in physiological or pathological conditions. However, the rational design of in vitro models of cell-cell or cell-tissue interaction is difficult as quite often cell culture experiments are driven by the device used, rather than by design considerations. Indeed, very little research has been carried out on in vitro models of metabolism connecting different cell or tissue types in a physiologically and metabolically relevant manner. Here, we analyze the physiological relationship between cells, cell metabolism, and exchange in the human body using allometric rules, downscaling them to an organ-on-a-plate device. In particular, in order to establish appropriate cell ratios in the system in a rational manner, two different allometric scaling models (cell number scaling model and metabolic and surface scaling model) are proposed and applied to a two compartment model of hepatic-vascular metabolic cross-talk. The theoretical scaling studies illustrate that the design and hence relevance of multi-organ models is principally determined by experimental constraints. Two experimentally feasible model configurations are then implemented in a multi-compartment organ-on-a-plate device. An analysis of the metabolic response of the two configurations demonstrates that their glucose and lipid balance is quite different, with only one of the two models recapitulating physiological-like homeostasis. In conclusion, not only do cross-talk and physical stimuli play an important role in in vitro models, but the numeric relationship between cells is also crucial to recreate in vitro interactions, which can be extrapolated to the in vivo reality.

  8. Lymphaticovenous Anastomoses for Lymphedema Complicated by Severe Lymphorrhea Following Resection of Soft-Tissue Sarcomas of the Adductor Compartment: A Report of Two Cases.

    PubMed

    Kobayashi, Hiroshi; Iida, Takuya; Yamamoto, Takumi; Ikegami, Masachika; Shinoda, Yusuke; Tanaka, Sakae; Kawano, Hirotaka

    2017-01-01

    Lymphedema and lymphorrhea are major causes of wound complications after the resection of soft-tissue sarcomas in the adductor compartment of the thigh. We report 2 cases of successful treatment of lymphedema and lymphorrhea, which had been refractory to nonoperative treatment, with use of lymphaticovenous anastomosis (LVA) and intraoperative indocyanine green lymphography after the resection of a sarcoma in the adductor compartment. These 2 cases highlight that LVA can be a useful and minimally invasive alternative to myocutaneous flaps for the treatment of wound complications caused by lymphedema and lymphorrhea after surgery for soft-tissue sarcomas in the adductor compartment of the thigh.

  9. Parabolic quantitative structure-activity relationships and photodynamic therapy: application of a three-compartment model with clearance to the in vivo quantitative structure-activity relationships of a congeneric series of pyropheophorbide derivatives used as photosensitizers for photodynamic therapy.

    PubMed

    Potter, W R; Henderson, B W; Bellnier, D A; Pandey, R K; Vaughan, L A; Weishaupt, K R; Dougherty, T J

    1999-11-01

    An open three-compartment pharmacokinetic model was applied to the in vivo quantitative structure-activity relationship (QSAR) data of a homologous series of pyropheophorbide photosensitizers for photodynamic therapy (PDT). The physical model was a lipid compartment sandwiched between two identical aqueous compartments. The first compartment was assumed to clear irreversibly at a rate K0. The measured octanol-water partition coefficients, P(i) (where i is the number of carbons in the alkyl chain) and the clearance rate K0 determined the clearance kinetics of the drugs. Solving the coupled differential equations of the three-compartment model produced clearance kinetics for each of the sensitizers in each of the compartments. The third compartment was found to contain the target of PDT. This series of compounds is quite lipophilic. Therefore these drugs are found mainly in the second compartment. The drug level in the third compartment represents a small fraction of the tissue level and is thus not accessible to direct measurement by extraction. The second compartment of the model accurately predicted the clearance from the serum of mice of the hexyl ether of pyropheophorbide a, one member of this series of compounds. The diffusion and clearance rate constants were those found by fitting the pharmacokinetics of the third compartment to the QSAR data. This result validated the magnitude and mechanistic significance of the rate constants used to model the QSAR data. The PDT response to dose theory was applied to the kinetic behavior of the target compartment drug concentration. This produced a pharmacokinetic-based function connecting PDT response to dose as a function of time postinjection. This mechanistic dose-response function was fitted to published, single time point QSAR data for the pheophorbides. As a result, the PDT target threshold dose together with the predicted QSAR as a function of time postinjection was found.

  10. Practical Modeling Concepts for Connective Tissue Stem Cell and Progenitor Compartment Kinetics

    PubMed Central

    2003-01-01

    Stem cell activation and development is central to skeletal development, maintenance, and repair, as it is for all tissues. However, an integrated model of stem cell proliferation, differentiation, and transit between functional compartments has yet to evolve. In this paper, the authors review current concepts in stem cell biology and progenitor cell growth and differentiation kinetics in the context of bone formation. A cell-based modeling strategy is developed and offered as a tool for conceptual and quantitative exploration of the key kinetic variables and possible organizational hierarchies in bone tissue development and remodeling, as well as in tissue engineering strategies for bone repair. PMID:12975533

  11. First plasma and tissue pharmacokinetic study of the YSNSG cyclopeptide, a new integrin antagonist, using microdialysis.

    PubMed

    Slimano, Florian; Djerada, Zoubir; Bouchene, Salim; Van Gulick, Laurence; Brassart-Pasco, Sylvie; Dukic, Sylvain

    2017-07-15

    The YSNSG peptide is a synthetic peptide targeting α v β 3 integrin. This peptide exhibits promising activity in vitro and in vivo against melanoma. To determine pharmacokinetic parameters and predictive active doses in the central nervous system (CNS) and subcutaneous tissue (SC), we conducted microdialysis coupled with pharmacokinetic modeling and Monte Carlo simulation. After a recovery period of surgical procedures, a microdialysis probe was inserted in the caudate and in subcutaneous tissue. Plasma samples and dialysates collected 5h after YSNSG intravenous administration (10mg/kg) were analyzed by UPLC-MS/MS. A nonlinear mixed-effect modeling approach implemented in Monolix® 2016R1 was performed. Model selection and evaluation were based on the usual diagnostic plot, precision and information criteria. The primary plasma and tissue pharmacokinetic parameters were comparable with those of other integrin antagonists, such as cilengitide or ATN-161. Tissue/plasma and brain/plasma area under the curve (AUC) ratio were 66.2±21.6% and 3.6±4.7%, respectively. Two models of 2-compartments with an additional microdialysis compartment, parameterized as rate constants (k for elimination, k12/k21 and k13/k31 for distribution) and volumes (central V1 and peripheral microdialysis compartment V3) with zero-order input were selected to describe the dialysate concentrations in CNS and SC. The inter-individual variability (IIV) was described by exponential terms, and residual variability was described by a combined additive and proportional error model. Individual AUC (plasma and tissues) values were derived for each animal using the Empirical-Bayes-Estimates of the individual parameters. The regimens needed to achieve an in vitro predetermined target concentration in tissues were studied by Monte Carlo simulations using Monolix® 2016R1. YSNSG pharmacokinetic parameters show promising results in terms of subcutaneous disposition. Further investigations into such processes as encapsulation and intratumoral disposition are currently being conducted. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Near Infra-Red Spectroscopy to Reduce Prophylactic Fasciotomies for and Missed Cases of Acute Compartment Syndrome in Soldiers Injured in OEF/OIF

    DTIC Science & Technology

    2013-10-01

    demonstrated that NIRS measurement of hemoglobin oxygen saturation in the tibial compartment provided reliable and sensitive correlation to increases...on 60 healthy participants. Our results indicated that NIRS was able to detect changes in oxygen saturation of muscle with exercise in all 60...Model 41 Introduction 42 Over the last two decades, tissue oxygenation saturation (StO2) measured by near infrared 43 spectroscopy (NIRS) has

  13. Physiologicomathematical model for studying human exposure to organic solvents: kinetics of blood/tissue n-hexane concentrations and of 2,5-hexanedione in urine.

    PubMed Central

    Perbellini, L; Mozzo, P; Brugnone, F; Zedde, A

    1986-01-01

    The physiologicomathematical model with eight compartments described allows the simulation of the absorbtion, distribution, biotransformation, excretion of an organic solvent, and the kinetics of its metabolites. The usual compartments of the human organism (vessel rich group, muscle group, and fat group) are integrated with the lungs, the metabolising tissues, and three other compartments dealing with the metabolic kinetics (biotransformation, water, and urinary compartments). The findings obtained by mathematical simulation of exposure to n-hexane were compared with data previously reported. The concentrations of n-hexane in alveolar air and in venous blood described both in experimental and occupational exposures provided a substantial validation for the data obtained by mathematical simulation. The results of the urinary excretion of 2,5-hexanedione given by the model were in good agreement with data already reported. The simulation of an exposure to n-hexane repeated five days a week suggested that the solvent accumulates in the fat tissue. The half life of n-hexane in fat tissue equalled 64 hours. The kinetics of 2,5-hexanedione resulting from the model suggest that occupational exposure results in the presence of large amounts of 2,5-hexanedione in the body for the whole working week. PMID:3790456

  14. Optimizing homeostatic cell renewal in hierarchical tissues

    PubMed Central

    Fider, Nicole A.

    2018-01-01

    In order to maintain homeostasis, mature cells removed from the top compartment of hierarchical tissues have to be replenished by means of differentiation and self-renewal events happening in the more primitive compartments. As each cell division is associated with a risk of mutation, cell division patterns have to be optimized, in order to minimize or delay the risk of malignancy generation. Here we study this optimization problem, focusing on the role of division tree length, that is, the number of layers of cells activated in response to the loss of terminally differentiated cells, which is related to the balance between differentiation and self-renewal events in the compartments. Using both analytical methods and stochastic simulations in a metapopulation-style model, we find that shorter division trees are advantageous if the objective is to minimize the total number of one-hit mutants in the cell population. Longer division trees on the other hand minimize the accumulation of two-hit mutants, which is a more likely evolutionary goal given the key role played by tumor suppressor genes in cancer initiation. While division tree length is the most important property determining mutant accumulation, we also find that increasing the size of primitive compartments helps to delay two-hit mutant generation. PMID:29447149

  15. Multi-compartment microscopic diffusion imaging

    PubMed Central

    Kaden, Enrico; Kelm, Nathaniel D.; Carson, Robert P.; Does, Mark D.; Alexander, Daniel C.

    2017-01-01

    This paper introduces a multi-compartment model for microscopic diffusion anisotropy imaging. The aim is to estimate microscopic features specific to the intra- and extra-neurite compartments in nervous tissue unconfounded by the effects of fibre crossings and orientation dispersion, which are ubiquitous in the brain. The proposed MRI method is based on the Spherical Mean Technique (SMT), which factors out the neurite orientation distribution and thus provides direct estimates of the microscopic tissue structure. This technique can be immediately used in the clinic for the assessment of various neurological conditions, as it requires only a widely available off-the-shelf sequence with two b-shells and high-angular gradient resolution achievable within clinically feasible scan times. To demonstrate the developed method, we use high-quality diffusion data acquired with a bespoke scanner system from the Human Connectome Project. This study establishes the normative values of the new biomarkers for a large cohort of healthy young adults, which may then support clinical diagnostics in patients. Moreover, we show that the microscopic diffusion indices offer direct sensitivity to pathological tissue alterations, exemplified in a preclinical animal model of Tuberous Sclerosis Complex (TSC), a genetic multi-organ disorder which impacts brain microstructure and hence may lead to neurological manifestations such as autism, epilepsy and developmental delay. PMID:27282476

  16. A Comparative Data-Based Modeling Study on Respiratory CO2 Gas Exchange during Mechanical Ventilation

    PubMed Central

    Kim, Chang-Sei; Ansermino, J. Mark; Hahn, Jin-Oh

    2016-01-01

    The goal of this study is to derive a minimally complex but credible model of respiratory CO2 gas exchange that may be used in systematic design and pilot testing of closed-loop end-tidal CO2 controllers in mechanical ventilation. We first derived a candidate model that captures the essential mechanisms involved in the respiratory CO2 gas exchange process. Then, we simplified the candidate model to derive two lower-order candidate models. We compared these candidate models for predictive capability and reliability using experimental data collected from 25 pediatric subjects undergoing dynamically varying mechanical ventilation during surgical procedures. A two-compartment model equipped with transport delay to account for CO2 delivery between the lungs and the tissues showed modest but statistically significant improvement in predictive capability over the same model without transport delay. Aggregating the lungs and the tissues into a single compartment further degraded the predictive fidelity of the model. In addition, the model equipped with transport delay demonstrated superior reliability to the one without transport delay. Further, the respiratory parameters derived from the model equipped with transport delay, but not the one without transport delay, were physiologically plausible. The results suggest that gas transport between the lungs and the tissues must be taken into account to accurately reproduce the respiratory CO2 gas exchange process under conditions of wide-ranging and dynamically varying mechanical ventilation conditions. PMID:26870728

  17. Kinetic analysis of the translocator protein positron emission tomography ligand [18F]GE-180 in the human brain.

    PubMed

    Feeney, Claire; Scott, Gregory; Raffel, Joel; Roberts, S; Coello, Christopher; Jolly, Amy; Searle, Graham; Goldstone, A P; Brooks, David J; Nicholas, Richard S; Trigg, William; Gunn, Roger N; Sharp, David J

    2016-11-01

    PET can image neuroinflammation by targeting the translocator protein (TSPO), which is upregulated in activated microglia. The high nonspecific binding of the first-generation TSPO radioligand [ 11 C]PK-11195 limits accurate quantification. [ 18 F]GE-180, a novel TSPO ligand, displays superior binding to [ 11 C]PK-11195 in vitro. Our objectives were to: (1) evaluate tracer characteristics of [ 18 F]GE-180 in the brains of healthy human subjects; and (2) investigate whether the TSPO Ala147Thr polymorphism influences outcome measures. Ten volunteers (five high-affinity binders, HABs, and five mixed-affinity binders, MABs) underwent a dynamic PET scan with arterial sampling after injection of [ 18 F]GE-180. Kinetic modelling of time-activity curves with one-tissue and two-tissue compartment models and Logan graphical analysis was applied to the data. The primary outcome measure was the total volume of distribution (V T ) across various regions of interest (ROIs). Secondary outcome measures were the standardized uptake values (SUV), the distribution volume and SUV ratios estimated using a pseudoreference region. The two-tissue compartment model was the best model. The average regional delivery rate constant (K 1 ) was 0.01 mL cm -3  min -1 indicating low extraction across the blood-brain barrier (1 %). The estimated median V T across all ROIs was also low, ranging from 0.16 mL cm -3 in the striatum to 0.38 mL cm -3 in the thalamus. There were no significant differences in V T between HABs and MABs across all ROIs. A reversible two-tissue compartment model fitted the data well and determined that the tracer has a low first-pass extraction (approximately 1 %) and low V T estimates in healthy individuals. There was no observable dependency on the rs6971 polymorphism as compared to other second-generation TSPO PET tracers. Investigation of [ 18 F]GE-180 in populations with neuroinflammatory disease is needed to determine its suitability for quantitative assessment of TSPO expression.

  18. A Monte Carlo study of fluorescence generation probability in a two-layered tissue model

    NASA Astrophysics Data System (ADS)

    Milej, Daniel; Gerega, Anna; Wabnitz, Heidrun; Liebert, Adam

    2014-03-01

    It was recently reported that the time-resolved measurement of diffuse reflectance and/or fluorescence during injection of an optical contrast agent may constitute a basis for a technique to assess cerebral perfusion. In this paper, we present results of Monte Carlo simulations of the propagation of excitation photons and tracking of fluorescence photons in a two-layered tissue model mimicking intra- and extracerebral tissue compartments. Spatial 3D distributions of the probability that the photons were converted from excitation to emission wavelength in a defined voxel of the medium (generation probability) during their travel between source and detector were obtained for different optical properties in intra- and extracerebral tissue compartments. It was noted that the spatial distribution of the generation probability depends on the distribution of the fluorophore in the medium and is influenced by the absorption of the medium and of the fluorophore at excitation and emission wavelengths. Simulations were also carried out for realistic time courses of the dye concentration in both layers. The results of the study show that the knowledge of the absorption properties of the medium at excitation and emission wavelengths is essential for the interpretation of the time-resolved fluorescence signals measured on the surface of the head.

  19. Modeling the movement and equilibrium of water in the body of ruminants in relation to estimating body composition by deuterium oxide dilution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, R.N.

    1986-01-01

    Deuterium oxide (D/sub 2/O) dilution was evaluated for use in estimating body composition of ruminants. Empty body composition of cattle could not be accurately estimated by two- or three-compartment models when solved on the basis of clearance of D/sub 2/O from blood. A 29-compartment blood-flow model was developed from measured blood flow rates and water volumes of tissues of sheep. The rates of equilibration of water in tissues that were simulated by the blood-flow model were much faster than actual rates measured in sheep and cattle. The incorporation of diffusion hindrances for movement of water into tissues enabled the bloodmore » flow model to simulate the measured equilibration rates in tissues, but the values of the diffusion coefficients were different for each tissue. The D/sub 2/O-disappearance curve for blood simulated by the blood-flow model with diffusion limitations was comprised for four exponential components. The tissues and gastrointestinal tract contents were placed into five groups based upon the rate of equilibration. Water in the organs of the body equilibrated with water in blood within 3 min. Water in visceral fat, head, and some of the gastrointestinal tract tissues equilibrated within 8 to 16 min. Water in skeletal muscle, fat, and bone and the contents of some segments of the gastrointestinal tract equilibrated within 30 to 36 min. Water in the tissues and contents of the cecum and upper-large intestine equilibrated within 160 to 200 min. Water in ruminal tissue and contents equilibrated within 480 min.« less

  20. Compartmental analysis of washout effect in rat brain: in-beam OpenPET measurement using a 11C beam

    NASA Astrophysics Data System (ADS)

    Hirano, Yoshiyuki; Kinouchi, Shoko; Ikoma, Yoko; Yoshida, Eiji; Wakizaka, Hidekazu; Ito, Hiroshi; Yamaya, Taiga

    2013-12-01

    In-beam positron emission tomography (PET) is expected to enable visualization of a dose verification using positron emitters (β+ decay). For accurate dose verification, correction of the washout of the positron emitters should be made. In addition, the quantitative washout rate has a potential usefulness as a diagnostic index, but modeling for this has not been studied yet. In this paper, therefore, we applied compartment analyses to in-beam PET data acquired by our small OpenPET prototype, which has a physically opened field-of-view (FOV) between two detector rings. A rat brain was located at the FOV and was irradiated by a 11C beam. Time activity curves of the irradiated field were measured immediately after the irradiations, and the washout rate was obtained based on two models: the two-washout model (medium decay, k2m; slow decay, k2s) developed in a study of rabbit irradiation; and the two-compartment model used in nuclear medicine, where efflux from tissue to blood (k2), influx (k3) and efflux (k4) from the first to second compartments in tissue were evaluated. The observed k2m and k2s were 0.34 and 0.005 min-1, respectively, which was consistent with the rabbit study. Also k2m was close to the washout rate in cerebral blood flow (CBF) measurements by dynamic PET with 15O-water, while, k2, k3, and k4 were 0.16, 0.15 and 0.007 min-1. Our present work suggested the dynamics of 11C might be relevant to CBF or permeability of a molecule containing 11C atoms might be regulated by a transporter because the k2 was relatively low compared with a simple diffusion tracer.

  1. Near-Infrared Monitoring of Model Chronic Compartment Syndrome In Exercising Skeletal Muscle

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.; Breit, G. A.; Gross, J. H.; Watenpaugh, D. E.; Chance, B.

    1995-01-01

    Chronic compartment syndrome (CCS) is characterized by muscle ischemia, usually in the anterior oompartment of the leg, caused by high intramuscular pressure during exercise. Dual-wave near-infrared (NIR) spectroscopy is an optical technique that allows noninvasive tracking of variations in muscle tissue oxygenation (Chance et al., 1988). We hypothesized that with a model CCS, muscle tissue oxygenation will show a greater decline during exercise and a slower recovery post-exercise than under normal conditions.

  2. Population Pharmacokinetic Modeling as a Tool To Characterize the Decrease in Ciprofloxacin Free Interstitial Levels Caused by Pseudomonas aeruginosa Biofilm Lung Infection in Wistar Rats

    PubMed Central

    Torres, Bruna G. S.; Helfer, Victória E.; Bernardes, Priscila M.; Macedo, Alexandre José; Nielsen, Elisabet I.; Friberg, Lena E.

    2017-01-01

    ABSTRACT Biofilm formation plays an important role in the persistence of pulmonary infections, for example, in cystic fibrosis patients. So far, little is known about the antimicrobial lung disposition in biofilm-associated pneumonia. This study aimed to evaluate, by microdialysis, ciprofloxacin (CIP) penetration into the lungs of healthy and Pseudomonas aeruginosa biofilm-infected rats and to develop a comprehensive model to describe the CIP disposition under both conditions. P. aeruginosa was immobilized into alginate beads and intratracheally inoculated 14 days before CIP administration (20 mg/kg of body weight). Plasma and microdialysate were sampled from different animal groups, and the observations were evaluated by noncompartmental analysis (NCA) and population pharmacokinetic (popPK) analysis. The final model that successfully described all data consisted of an arterial and a venous central compartment and two peripheral distribution compartments, and the disposition in the lung was modeled as a two-compartment model structure linked to the venous compartment. Plasma clearance was approximately 32% lower in infected animals, leading to a significantly higher level of plasma CIP exposure (area under the concentration-time curve from time zero to infinity, 27.3 ± 12.1 μg · h/ml and 13.3 ± 3.5 μg · h/ml in infected and healthy rats, respectively). Despite the plasma exposure, infected animals showed a four times lower tissue concentration/plasma concentration ratio (lung penetration factor = 0.44 and 1.69 in infected and healthy rats, respectively), and lung clearance (CLlung) was added to the model for these animals (CLlung = 0.643 liters/h/kg) to explain the lower tissue concentrations. Our results indicate that P. aeruginosa biofilm infection reduces the CIP free interstitial lung concentrations and increases plasma exposure, suggesting that plasma concentrations alone are not a good surrogate of lung concentrations. PMID:28461311

  3. Ex vivo culture platform for assessment of cartilage repair treatment strategies.

    PubMed

    Schwab, Andrea; Meeuwsen, Annick; Ehlicke, Franziska; Hansmann, Jan; Mulder, Lars; Smits, Anthal; Walles, Heike; Kock, Linda

    2017-01-01

    There is a great need for valuable ex vivo models that allow for assessment of cartilage repair strategies to reduce the high number of animal experiments. In this paper we present three studies with our novel ex vivo osteochondral culture platform. It consists of two separated media compartments for cartilage and bone, which better represents the in vivo situation and enables supply of factors specific to the different needs of bone and cartilage. We investigated whether separation of the cartilage and bone compartments and/or culture media results in the maintenance of viability, structural and functional properties of cartilage tissue. Next, we evaluated for how long we can preserve cartilage matrix stability of osteochondral explants during long-term culture over 84 days. Finally, we determined the optimal defect size that does not show spontaneous self-healing in this culture system. It was demonstrated that separated compartments for cartilage and bone in combination with tissue-specific medium allow for long-term culture of osteochondral explants while maintaining cartilage viability, matrix tissue content, structure and mechanical properties for at least 56 days. Furthermore, we could create critical size cartilage defects of different sizes in the model. The osteochondral model represents a valuable preclinical ex vivo tool for studying clinically relevant cartilage therapies, such as cartilage biomaterials, for their regenerative potential, for evaluation of drug and cell therapies, or to study mechanisms of cartilage regeneration. It will undoubtedly reduce the number of animals needed for in vivo testing.

  4. Multiphoton fluorescence lifetime imaging of chemotherapy distribution in solid tumors

    NASA Astrophysics Data System (ADS)

    Carlson, Marjorie; Watson, Adrienne L.; Anderson, Leah; Largaespada, David A.; Provenzano, Paolo P.

    2017-11-01

    Doxorubicin is a commonly used chemotherapeutic employed to treat multiple human cancers, including numerous sarcomas and carcinomas. Furthermore, doxorubicin possesses strong fluorescent properties that make it an ideal reagent for modeling drug delivery by examining its distribution in cells and tissues. However, while doxorubicin fluorescence and lifetime have been imaged in live tissue, its behavior in archival samples that frequently result from drug and treatment studies in human and animal patients, and murine models of human cancer, has to date been largely unexplored. Here, we demonstrate imaging of doxorubicin intensity and lifetimes in archival formalin-fixed paraffin-embedded sections from mouse models of human cancer with multiphoton excitation and multiphoton fluorescence lifetime imaging microscopy (FLIM). Multiphoton excitation imaging reveals robust doxorubicin emission in tissue sections and captures spatial heterogeneity in cells and tissues. However, quantifying the amount of doxorubicin signal in distinct cell compartments, particularly the nucleus, often remains challenging due to strong signals in multiple compartments. The addition of FLIM analysis to display the spatial distribution of excited state lifetimes clearly distinguishes between signals in distinct compartments such as the cell nuclei versus cytoplasm and allows for quantification of doxorubicin signal in each compartment. Furthermore, we observed a shift in lifetime values in the nuclei of transformed cells versus nontransformed cells, suggesting a possible diagnostic role for doxorubicin lifetime imaging to distinguish normal versus transformed cells. Thus, data here demonstrate that multiphoton FLIM is a highly sensitive platform for imaging doxorubicin distribution in normal and diseased archival tissues.

  5. Estimation of the Number of Compartments Associated With the Apparent Diffusion Coefficient in MRI: The Theoretical and Experimental Investigations.

    PubMed

    Ashoor, Mansour; Khorshidi, Abdollah

    2016-03-01

    The goal of the present study was to estimate the number of compartments and the mean apparent diffusion coefficient (ADC) value with the use of the DWI signal curve. A useful new mathematic model that includes internal correlation among subcompartments with a distinct number of compartments was proposed. The DWI signal was simulated to estimate the approximate association between the number of subcompartments and the molecular density, with density corresponding to the ratio of the ADC values of the compartments, as determined using the Monte Carlo method. Various factors, such as energy depletion, temperature, intracellular water accumulation, changes in the tortuosity of the extracellular diffusion paths, and changes in cell membrane permeability, have all been implicated as factors contributing to changes in the ADC of water (ADCw); therefore, one may consider them as pseudocompartments in the new model proposed in this study. The lower the coefficient is, the lower the contribution of the compartment to the net signal will be. The results of the simulation indicate that when the number of compartments increases, the signal will become significantly lower, because the gradient factor (i.e., the b value) will increase. In other words, the signal curve is approximately linear at all b values when the number of compartments in which the tissues have been severely damaged is low; however, when the number of compartments is high, the curve will become constant at high b values, and the perfusion parameters will prevail on the diffusion parameters at low b values. Therefore, normal tissues will be investigated when the number of compartments and the ADC values are high and the b values are low, whereas damaged tissues will be evaluated when the number of compartments and the ADC values are low and the b values are high. The present study investigates damaged tissues at high b values for which the effect of eddy currents will also be compensated. These b values will probably be used in functional MRI.

  6. Aging of microstructural compartments in human compact bone

    NASA Technical Reports Server (NTRS)

    Akkus, Ozan; Polyakova-Akkus, Anna; Adar, Fran; Schaffler, Mitchell B.

    2003-01-01

    Composition of microstructural compartments in compact bone of aging male subjects was assessed using Raman microscopy. Secondary mineralization of unremodeled fragments persisted for two decades. Replacement of these tissue fragments with secondary osteons kept mean composition constant over age, but at a fully mineralized limit. Slowing of remodeling may increase fracture susceptibility through an increase in proportion of highly mineralized tissue. In this study, the aging process in the microstructural compartments of human femoral cortical bone was investigated and related to changes in the overall tissue composition within the age range of 17-73 years. Raman microprobe analysis was used to assess the mineral content, mineral crystallinity, and carbonate substitution in fragments of primary lamellar bone that survived remodeling for decades. Tissue composition of the secondary osteonal population was investigated to determine the composition of turned over tissue volume. Finally, Raman spectral analysis of homogenized tissue was performed to evaluate the effects of unremodeled and newly formed tissue on the overall tissue composition. The chemical composition of the primary lamellar bone exhibited two chronological stages. Organic matrix became more mineralized and the crystallinity of the mineral improved during the first stage, which lasted for two decades. The mineral content and the mineral crystallinity did not vary during the second stage. The results for the primary lamellar bone demonstrated that physiological mineralization, as evidenced by crystal growth and maturation, is a continuous process that may persist as long as two decades, and the growth and maturation process stops after the organic matrix becomes "fully mineralized." The average mineral content and the average mineral crystallinity of the homogenized tissue did not change with age. It was also observed that the mineral content of the homogenized tissue was consistently greater than the osteons and similar to the "fully mineralized" stage of primary bone. The results of this study demonstrated that unremodeled compartments of bone grow older through maturation and growth of mineral crystals in a protracted fashion. However, the secondary osteonal remodeling impedes this aging process and maintains the mean tissue age fairly constant over decades. Therefore, slowing of remodeling may lead to brittle bone tissue through accumulation of fully mineralized tissue fragments.

  7. Two-Compartment Model as a Teaching Tool for Cholesterol Homeostasis

    ERIC Educational Resources Information Center

    Wrona, Artur; Balbus, Joanna; Hrydziuszko, Olga; Kubica, Krystian

    2015-01-01

    Cholesterol is a vital structural and functional molecule in the human body that is only slightly soluble in water and therefore does not easily travels by itself in the bloodstream. To enable cholesterol's targeted delivery to cells and tissues, it is encapsulated by different fractions of lipoproteins, complex particles containing both proteins…

  8. Modeling of Complex Mixtures: JP-8 Toxicokinetics

    DTIC Science & Technology

    2008-10-01

    generic tissue compartments in which we have combined diffusion limitation and deep tissue (global tissue model). We also applied a QSAR approach for...SUBJECT TERMS jet fuel, JP-8, PBPK modeling, complex mixtures, nonane, decane, naphthalene, QSAR , alternative fuels 16. SECURITY CLASSIFICATION OF...necessary, to apply to the interaction of specific compounds with specific tissues. We have also applied a QSAR approach for estimating blood and tissue

  9. Measurements of pulmonary vascular permeability with PET and gallium-68 transferrin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mintun, M.A.; Dennis, D.R.; Welch, M.J.

    1987-11-01

    We quantified pulmonary vascular permeability with positron emission tomography (PET) and gallium-68-(/sup 68/Ga) labeled transferrin. Six dogs with oleic acid-induced lung injury confined to the left lower lobe, two normal human volunteers, and two patients with the adult respiratory distress syndrome (ARDS) were evaluated. Lung tissue-activity measurements were obtained from sequential 1-5 min PET scans collected over 60 min, after in vivo labeling of transferrin through intravenous administration of (/sup 68/Ga)citrate. Blood-activity measurements were measured from simultaneously obtained peripheral blood samples. A forward rate constant describing the movement of transferrin from pulmonary vascular to extravascular compartments, the pulmonary transcapillary escapemore » rate (PTCER), was then calculated from these data using a two-compartment model. In dogs, PTCER was 49 +/- 18 in normal lung tissue and 485 +/- 114 10(-4) min-1 in injured lung. A repeat study in these dogs 4 hr later showed no significant change. Values in the human subjects showed similarly marked differences between normal and abnormal lung tissue. We conclude that PET will be a useful method of evaluating vascular permeability changes after acute lung injury.« less

  10. Modeling the effects of exercise during 100% oxygen prebreathe on the risk of hypobaric decompression sickness

    NASA Technical Reports Server (NTRS)

    Loftin, K. C.; Conkin, J.; Powell, M. R.

    1997-01-01

    BACKGROUND: Several previous studies indicated that exercise during prebreathe with 100% O2 decreased the incidence of hypobaric decompression sickness (DCS). We report a meta-analysis of these investigations combined with a new study in our laboratory to develop a statistical model as a predictive tool for DCS. HYPOTHESIS: Exercise during prebreathe increases N2 elimination in a theoretical 360-min half-time compartment decreasing the incidence of DCS. METHODS: A dose-response probability tissue ratio (TR) model with 95% confidence limits was created for two groups, prebreathe with exercise (n = 113) and resting prebreathe (n = 113), using nonlinear regression analysis with maximum likelihood optimization. RESULTS: The model predicted that prebreathe exercise would reduce the residual N2 in a 360-min half-time compartment to a level analogous to that in a 180-min compartment. This finding supported the hypothesis. The incidence of DCS for the exercise prebreathe group was significantly decreased (Chi-Square = 17.1, p < 0.0001) from the resting prebreathe group. CONCLUSIONS: The results suggested that exercise during prebreathe increases tissue perfusion and N2 elimination approximately 2-fold and markedly lowers the risk of DCS. Based on the model, the prebreathe duration may be reduced from 240 min to a predicted 91 min for the protocol in our study, but this remains to be verified. The model provides a useful planning tool to develop and test appropriate prebreathe exercise protocols and to predict DCS risks for astronauts.

  11. Probabilistic pharmacokinetic models of decompression sickness in humans, part 1: Coupled perfusion-limited compartments.

    PubMed

    Murphy, F Gregory; Hada, Ethan A; Doolette, David J; Howle, Laurens E

    2017-07-01

    Decompression sickness (DCS) is a disease caused by gas bubbles forming in body tissues following a reduction in ambient pressure, such as occurs in scuba diving. Probabilistic models for quantifying the risk of DCS are typically composed of a collection of independent, perfusion-limited theoretical tissue compartments which describe gas content or bubble volume within these compartments. It has been previously shown that 'pharmacokinetic' gas content models, with compartments coupled in series, show promise as predictors of the incidence of DCS. The mechanism of coupling can be through perfusion or diffusion. This work examines the application of five novel pharmacokinetic structures with compartments coupled by perfusion to the prediction of the probability and time of onset of DCS in humans. We optimize these models against a training set of human dive trial data consisting of 4335 exposures with 223 DCS cases. Further, we examine the extrapolation quality of the models on an additional set of human dive trial data consisting of 3140 exposures with 147 DCS cases. We find that pharmacokinetic models describe the incidence of DCS for single air bounce dives better than a single-compartment, perfusion-limited model. We further find the U.S. Navy LEM-NMRI98 is a better predictor of DCS risk for the entire training set than any of our pharmacokinetic models. However, one of the pharmacokinetic models we consider, the CS2T3 model, is a better predictor of DCS risk for single air bounce dives and oxygen decompression dives. Additionally, we find that LEM-NMRI98 outperforms CS2T3 on the extrapolation data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. What lies beneath? Diffusion EAP-based study of brain tissue microstructure.

    PubMed

    Zucchelli, Mauro; Brusini, Lorenza; Andrés Méndez, C; Daducci, Alessandro; Granziera, Cristina; Menegaz, Gloria

    2016-08-01

    Diffusion weighted magnetic resonance signals convey information about tissue microstructure and cytoarchitecture. In the last years, many models have been proposed for recovering the diffusion signal and extracting information to constitute new families of numerical indices. Two main categories of reconstruction models can be identified in diffusion magnetic resonance imaging (DMRI): ensemble average propagator (EAP) models and compartmental models. From both, descriptors can be derived for elucidating the underlying microstructural architecture. While compartmental models indices directly quantify the fraction of different cell compartments in each voxel, EAP-derived indices are only a derivative measure and the effect of the different microstructural configurations on the indices is still unclear. In this paper, we analyze three EAP indices calculated using the 3D Simple Harmonic Oscillator based Reconstruction and Estimation (3D-SHORE) model and estimate their changes with respect to the principal microstructural configurations. We take advantage of the state of the art simulations to quantify the variations of the indices with the simulation parameters. Analysis of in-vivo data correlates the EAP indices with the microstructural parameters obtained from the Neurite Orientation Dispersion and Density Imaging (NODDI) model as a pseudo ground truth for brain data. Results show that the EAP derived indices convey information on the tissue microstructure and that their combined values directly reflect the configuration of the different compartments in each voxel. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Evaluation of a press-fit osteochondral poly(ester-urethane) scaffold in a rabbit defect model.

    PubMed

    Dresing, Iska; Zeiter, Stephan; Auer, Jörg; Alini, Mauro; Eglin, David

    2014-07-01

    The purpose of this study was to evaluate the impact on osteochondral healing of press-fitted multiphasic osteochondral scaffolds consisting of poly(ester-urethane) (PUR) and hydroxyapatite into a cylindric osteochondral defect in the distal non-weight bearing femoral trochlear ridge of the rabbit. Two scaffolds were investigated, one with and one without an intermediate microporous membrane between the cartilage and the bone compartment of the scaffold. A control group without a scaffold placed into the defect was included. After 12 weeks macroscopic and histomorphological analyses were performed. The scaffold was easily press-fitted and provided a stable matrix for tissue repair. The membrane did not demonstrate a detrimental effect on tissue healing compared with the scaffold without membrane. However, the control group had statistically superior healing as reflected by histological differences in the cartilage and subchondral bone compartment between control group and each scaffold group. A more detailed analysis revealed that the difference was localized in the bone compartment healing. The present study demonstrates that an elastomeric PUR scaffold can easily be press-fitted into an osteochondral defect and provides a stable matrix for tissue repair. However, the multi-phasic scaffold did not provide a clear advantage for tissue healing. Future investigations should refine especially the bone phase of the implant to increase its stiffness, biocompatibility and osteoconductive activity. A more precise fabrication technique would be necessary for the matching of tissue organisation.

  14. Zinc transport in rabbit tissues. Some hormonal aspects of the turnover of zinc in female reproductive organs, liver and body fluids

    PubMed Central

    McIntosh, J. E. A.; Lutwak-Mann, C.

    1972-01-01

    1. To investigate the influence of hormonal conditions upon the kinetics of zinc transport, specific radioactivity of 65Zn was determined in certain tissues and fluids from unmated or pregnant rabbits during the first half of gestation. 2. Compartmental analysis was used to find the simplest mathematical model that simulated satisfactorily tracer behaviour. Models were fitted to experimental results by a numerical procedure using a computer. 3. The kinetics of zinc exchange in most tissues investigated could adequately be described by a three-compartment model, in which total tissue zinc content was divided into a rapidly exchanging pool, with a turnover time of about 1h, and a slowly exchanging pool, the turnover time of which was in liver 15h, in peak-stage corpus luteum 8h, and in the other tissues 30–70h. 4. In rabbit endometrium zinc transport varied with hormonal conditions, the turnover rate being higher in non-pregnant than pregnant endometrium. 5. Uptake of 65Zn by uterine fluid was slow, and in the free-lying embryos (blastocysts) slower still, in keeping with uterine fluid acting as carrier of zinc into the unimplanted embryos. 6. In placental tissue zinc transport varied with gestational stage. Foetal placenta exchanged zinc with blood plasma four times faster than maternal placenta. In foetuses zinc turnover time and flux equalled that of the slow zinc compartment in foetal placenta. 7. Corpus luteum on days 5–6 of gestation showed peak specific radioactivity and zinc flux values, which exceeded those of all other tissues. 8. In liver the slow zinc compartment had a higher rate of turnover than corresponding compartments in tissues other than peak-stage corpus luteum, but no hormone-dependent changes were observed. 9. Zinc uptake by erythrocytes was the slowest of all examined. PMID:5073239

  15. Towards an improved understanding of processes controlling absorption efficiency and biomagnification of organic chemicals by fish.

    PubMed

    Xiao, Ruiyang; Arnot, Jon A; MacLeod, Matthew

    2015-11-01

    Dietary exposure is considered the dominant pathway for fish exposed to persistent, hydrophobic chemicals in the environment. Here we present a dynamic, fugacity-based three-compartment bioaccumulation model that describes the fish body as one compartment and the gastrointestinal tract (GIT) as two compartments. The model simulates uptake from the GIT by passive diffusion and micelle-mediated diffusion, and chemical degradation in the fish and the GIT compartments. We applied the model to a consistent measured dietary uptake and depuration dataset for rainbow trout (n=215) that is comprised of chlorinated benzenes, biphenyls, dioxins, diphenyl ethers, and polycyclic aromatic hydrocarbons (PAHs). Model performance relative to the measured data is statistically similar regardless of whether micelle-mediated diffusion is included; however, there are considerable uncertainties in modeling this process. When degradation in the GIT is assumed to be negligible, modeled chemical elimination rates are similar to measured rates; however, predicted concentrations of the PAHs are consistently higher than measurements by up to a factor of 20. Introducing a kinetic limit on chemical transport from the fish compartment to the GIT and increasing the rate constant for degradation of PAHs in tissues of the liver and/or GIT are required to achieve good agreement between the modelled and measured concentrations for PAHs. Our results indicate that the apparent low absorption efficiency of PAHs relative to the chemicals with similar hydrophobicity is attributable to biotransformation in the liver and/or the GIT. Our results provide process-level insights about controls on the extent of bioaccumulation of chemicals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. The peri-esophageal connective tissue layers and related compartments: visualization by histology and magnetic resonance imaging.

    PubMed

    Weijs, T J; Goense, L; van Rossum, P S N; Meijer, G J; van Lier, A L H M W; Wessels, F J; Braat, M N G; Lips, I M; Ruurda, J P; Cuesta, M A; van Hillegersberg, R; Bleys, R L A W

    2017-02-01

    An organized layer of connective tissue coursing from aorta to esophagus was recently discovered in the mediastinum. The relations with other peri-esophageal fascias have not been described and it is unclear whether this layer can be visualized by non-invasive imaging. This study aimed to provide a comprehensive description of the peri-esophageal fascias and determine whether the connective tissue layer between aorta and esophagus can be visualized by magnetic resonance imaging (MRI). First, T2-weighted MRI scanning of the thoracic region of a human cadaver was performed, followed by histological examination of transverse sections of the peri-esophageal tissue between the thyroid gland and the diaphragm. Secondly, pretreatment motion-triggered MRI scans were prospectively obtained from 34 patients with esophageal cancer and independently assessed by two radiologists for the presence and location of the connective tissue layer coursing from aorta to esophagus. A layer of connective tissue coursing from the anterior aspect of the descending aorta to the left lateral aspect of the esophagus, with a thin extension coursing to the right pleural reflection, was visualized ex vivo in the cadaver on MR images, macroscopic tissue sections, and after histologic staining, as well as on in vivo MR images. The layer connecting esophagus and aorta was named 'aorto-esophageal ligament' and the layer connecting aorta to the right pleural reflection 'aorto-pleural ligament'. These connective tissue layers divides the posterior mediastinum in an anterior compartment containing the esophagus, (carinal) lymph nodes and vagus nerve, and a posterior compartment, containing the azygos vein, thoracic duct and occasionally lymph nodes. The anterior compartment was named 'peri-esophageal compartment' and the posterior compartment 'para-aortic compartment'. The connective tissue layers superior to the aortic arch and at the diaphragm corresponded with the currently available anatomic descriptions. This study confirms the existence of the previously described connective tissue layer coursing from aorta to esophagus, challenging the long-standing paradigm that no such structure exists. A comprehensive, detailed description of the peri-esophageal fascias is provided and, furthermore, it is shown that the connective tissue layer coursing from aorta to esophagus can be visualized in vivo by MRI. © 2016 Anatomical Society.

  17. Predicting Drug Concentration‐Time Profiles in Multiple CNS Compartments Using a Comprehensive Physiologically‐Based Pharmacokinetic Model

    PubMed Central

    Yamamoto, Yumi; Välitalo, Pyry A.; Huntjens, Dymphy R.; Proost, Johannes H.; Vermeulen, An; Krauwinkel, Walter; Beukers, Margot W.; van den Berg, Dirk‐Jan; Hartman, Robin; Wong, Yin Cheong; Danhof, Meindert; van Hasselt, John G. C.

    2017-01-01

    Drug development targeting the central nervous system (CNS) is challenging due to poor predictability of drug concentrations in various CNS compartments. We developed a generic physiologically based pharmacokinetic (PBPK) model for prediction of drug concentrations in physiologically relevant CNS compartments. System‐specific and drug‐specific model parameters were derived from literature and in silico predictions. The model was validated using detailed concentration‐time profiles from 10 drugs in rat plasma, brain extracellular fluid, 2 cerebrospinal fluid sites, and total brain tissue. These drugs, all small molecules, were selected to cover a wide range of physicochemical properties. The concentration‐time profiles for these drugs were adequately predicted across the CNS compartments (symmetric mean absolute percentage error for the model prediction was <91%). In conclusion, the developed PBPK model can be used to predict temporal concentration profiles of drugs in multiple relevant CNS compartments, which we consider valuable information for efficient CNS drug development. PMID:28891201

  18. Mapping the parameter space of a T2-dependent model of water diffusion MR in brain tissue.

    PubMed

    Hansen, Brian; Vestergaard-Poulsen, Peter

    2006-10-01

    We present a new model for describing the diffusion-weighted (DW) proton nuclear magnetic resonance signal obtained from normal grey matter. Our model is analytical and, in some respects, is an extension of earlier model schemes. We model tissue as composed of three separate compartments with individual properties of diffusion and transverse relaxation. Our study assumes slow exchange between compartments. We attempt to take cell morphology into account, along with its effect on water diffusion in tissues. Using this model, we simulate diffusion-sensitive MR signals and compare model output to experimental data from human grey matter. In doing this comparison, we perform a global search for good fits in the parameter space of the model. The characteristic nonmonoexponential behavior of the signal as a function of experimental b value is reproduced quite well, along with established values for tissue-specific parameters such as volume fraction, tortuosity and apparent diffusion coefficient. We believe that the presented approach to modeling diffusion in grey matter adds new aspects to the treatment of a longstanding problem.

  19. A first-in-man PET study of [18F]PSS232, a fluorinated ABP688 derivative for imaging metabotropic glutamate receptor subtype 5.

    PubMed

    Warnock, Geoffrey; Sommerauer, Michael; Mu, Linjing; Pla Gonzalez, Gloria; Geistlich, Susanne; Treyer, Valerie; Schibli, Roger; Buck, Alfred; Krämer, Stefanie D; Ametamey, Simon M

    2018-06-01

    Non-invasive imaging of metabotropic glutamate receptor 5 (mGlu 5 ) in the brain using PET is of interest in e.g., anxiety, depression, and Parkinson's disease. Widespread application of the most widely used mGlu 5 tracer, [ 11 C]ABP688, is limited by the short physical half-life of carbon-11. [ 18 F]PSS232 is a fluorinated analog with promising preclinical properties and high selectivity and specificity for mGlu 5 . In this first-in-man study, we evaluated the brain uptake pattern and kinetics of [ 18 F]PSS232 in healthy volunteers. [ 18 F]PSS232 PET was performed with ten healthy male volunteers aged 20-40 years. Seven of the subjects received a bolus injection and the remainder a bolus/infusion protocol. Cerebral blood flow was determined in seven subjects using [ 15 O]water PET. Arterial blood activity was measured using an online blood counter. Tracer kinetics were evaluated by compartment modeling and parametric maps were generated for both tracers. At 90 min post-injection, 59.2 ± 11.1% of total radioactivity in plasma corresponded to intact tracer. The regional first pass extraction fraction of [ 18 F]PSS232 ranged from 0.41 ± 0.06 to 0.55 ± 0.03 and brain distribution pattern matched that of [ 11 C]ABP688. Uptake kinetics followed a simple two-tissue compartment model. The volume of distribution of total tracer (V T , ml/cm 3 ) ranged from 1.18 ± 0.20 for white matter to 2.91 ± 0.51 for putamen. The respective mean distribution volume ratios (DVR) with cerebellum as the reference tissue were 0.88 ± 0.06 and 2.12 ± 0.10, respectively. The tissue/cerebellum ratios of a bolus/infusion protocol (30/70 dose ratio) were close to the DVR values. Brain uptake of [ 18 F]PSS232 matched the distribution of mGlu 5 and followed a two-tissue compartment model. The well-defined kinetics and the possibility to use reference tissue models, obviating the need for arterial blood sampling, make [ 18 F]PSS232 a promising fluorine-18 labeled radioligand for measuring mGlu 5 density in humans.

  20. Ultrasonic Apparatus and Method to Assess Compartment Syndrome

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Ueno, Toshiaki (Inventor); Hargens, Alan R. (Inventor)

    2009-01-01

    A process and apparatus for measuring pressure buildup in a body compartment that encases muscular tissue. The method includes assessing the body compartment configuration and identifying the effect of pulsatible components on compartment dimensions and muscle tissue characteristics. This process is used in preventing tissue necrosis, and in decisions of whether to perform surgery on the body compartment for prevention of Compartment Syndrome. An apparatus is used for measuring pressure build-up in the body compartment having components for imparting ultrasonic waves such as a transducer, placing the transducer to impart the ultrasonic waves, capturing the imparted ultrasonic waves, mathematically manipulating the captured ultrasonic waves and categorizing pressure build-up in the body compartment from the mathematical manipulations.

  1. Analysis of tracer transit in rat brain after carotid artery and femoral vein administrations using linear system theory.

    PubMed

    Rudin, M; Beckmann, N; Sauter, A

    1997-01-01

    Determination of tissue perfusion rates by MRI bolus tracking methods relies on the central volume principle which states that tissue blood flow is given by the tissue blood volume divided by the mean tracer transit time (MTT). Accurate determination of the MTT requires knowledge of the arterial input function which in MRI experiments is usually not known, especially when using small animals. The problem of unknown arterial input can be circumvented in animal experiments by directly injecting the contrast agent into a feeding artery of the tissue of interest. In the present article the passage of magnetite nanoparticles through the rat cerebral cortex is analyzed after injection into the internal carotid artery. The results are discussed in the framework of linear system theory using a one-compartment model for brain tissue and by using the well characterized gamma-variate function to describe the tissue concentration profile of the contrast agent. The results obtained from the intra-arterial tracer administration experiments are then compared with the commonly used intra-venous injection of the contrast agent in order to estimate the contribution of the peripheral circulation to the MTT values in the latter case. The experiments were analyzed using a two-compartment model and the gamma-variate function. As an application perfusion rates in normal and ischemic cerebral cortex of hypertensive rats were estimated in a model of focal cerebral ischemia. The results indicate that peripheral circulation has a significant influence on the MTT values and thus on the perfusion rates, which cannot be neglected.

  2. Quantification of Dynamic 11C-Phenytoin PET Studies.

    PubMed

    Mansor, Syahir; Boellaard, Ronald; Froklage, Femke E; Bakker, Esther D M; Yaqub, Maqsood; Voskuyl, Rob A; Schwarte, Lothar A; Verbeek, Joost; Windhorst, Albert D; Lammertsma, Adriaan

    2015-09-01

    The overexpression of P-glycoprotein (Pgp) is thought to be an important mechanism of pharmacoresistance in epilepsy. Recently, (11)C-phenytoin has been evaluated preclinically as a tracer for Pgp. The aim of the present study was to assess the optimal plasma kinetic model for quantification of (11)C-phenytoin studies in humans. Dynamic (11)C-phenytoin PET scans of 6 healthy volunteers with arterial sampling were acquired twice on the same day and analyzed using single- and 2-tissue-compartment models with and without a blood volume parameter. Global and regional test-retest (TRT) variability was determined for both plasma to tissue rate constant (K1) and volume of distribution (VT). According to the Akaike information criterion, the reversible single-tissue-compartment model with blood volume parameter was the preferred plasma input model. Mean TRT variability ranged from 1.5% to 16.9% for K1 and from 0.5% to 5.8% for VT. Larger volumes of interest showed better repeatabilities than smaller regions. A 45-min scan provided essentially the same K1 and VT values as a 60-min scan. A reversible single-tissue-compartment model with blood volume seems to be a good candidate model for quantification of dynamic (11)C-phenytoin studies. Scan duration may be reduced to 45 min without notable loss of accuracy and precision of both K1 and VT, although this still needs to be confirmed under pathologic conditions. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  3. Pharmacokinetics of topically applied pilocarpine in the albino rabbit eye.

    PubMed

    Makoid, M C; Robinson, J R

    1979-04-01

    The temporal and spatial pattern of [3H]-pilocarpine nitrate distribution in the albino rabbit eye following topical administration was determined. A four-compartment caternary chain model describing this disposition corresponds to the precorneal area, the cornea, the aqueous humor, and the lens and vitreous. Simultaneous computer fitting of data from tissue corresponding to some compartments in the model supported the proposed model. Additional support was provided by the excellent correlation between predicted and observed values in multiple-dosing studies. Several important aspects of ocular drug disposition are evident from the model. The extensive parallel elimination at the absorption site gives rise to an apparent absorption rate constant that is one to two orders of magnitude larger than the true absorption rate constant. In addition, aqueous flow accounts for most of the drug removal. Thus, major effects on absorption and elimination, independent of the drug structure, suggest the possibility of similar pharmacokinetics for vastly different drugs.

  4. The Selector Gene apterous and Notch Are Required to Locally Increase Mechanical Cell Bond Tension at the Drosophila Dorsoventral Compartment Boundary

    PubMed Central

    Michel, Marcus; Aliee, Maryam; Rudolf, Katrin; Bialas, Lisa; Jülicher, Frank; Dahmann, Christian

    2016-01-01

    The separation of cells with distinct fates and functions is important for tissue and organ formation during animal development. Regions of different fates within tissues are often separated from another along straight boundaries. These compartment boundaries play a crucial role in tissue patterning and growth by stably positioning organizers. In Drosophila, the wing imaginal disc is subdivided into a dorsal and a ventral compartment. Cells of the dorsal, but not ventral, compartment express the selector gene apterous. Apterous expression sets in motion a gene regulatory cascade that leads to the activation of Notch signaling in a few cell rows on either side of the dorsoventral compartment boundary. Both Notch and apterous mutant clones disturb the separation of dorsal and ventral cells. Maintenance of the straight shape of the dorsoventral boundary involves a local increase in mechanical tension at cell bonds along the boundary. The mechanisms by which cell bond tension is locally increased however remain unknown. Here we use a combination of laser ablation of cell bonds, quantitative image analysis, and genetic mutants to show that Notch and Apterous are required to increase cell bond tension along the dorsoventral compartment boundary. Moreover, clonal expression of the Apterous target gene capricious results in cell separation and increased cell bond tension at the clone borders. Finally, using a vertex model to simulate tissue growth, we find that an increase in cell bond tension at the borders of cell clones, but not throughout the cell clone, can lead to cell separation. We conclude that Apterous and Notch maintain the characteristic straight shape of the dorsoventral compartment boundary by locally increasing cell bond tension. PMID:27552097

  5. Fluid balance within the canine anterolateral compartment and its relationship to compartment syndromes.

    PubMed

    Hargens, A R; Akeson, W H; Mubarak, S J; Owen, C A; Evans, K L; Garetto, L P; Gonsalves, M R; Schmidt, D A

    1978-06-01

    Fluid homeostasis within muscle compartments is maintained by four pressures: capillary blood pressure, capillary blood oncotic pressure, tissue-fluid pressure, and tissue fluid oncotic pressure. As determined in the canine anterolateral compartment, capillary blood pressure is 25 +/- 3 millimeters of mercury; capillary blood oncotic pressure, 26 +/- 3 millimeters of mercury, tissue-pbessure, -2 +/- 2 millimeters of mercury; and tissue-fluid oncotic pressure, 11 +/- 1 millimeters of mercury. The wick technique allows direct measurement of tissue-fluid pressure in skeletal muscle and, with minor modifications, is adapted to collect microsamples of interstitial fluid for determinations of tissue-fluid oncotic pressure. The wick technique detects very slight fluctuations in intracompartmental pressure such as light finger compression, injection of small volumes of fluid, and even pulsation due to adjacent arterial pressure. Adjacent muscle compartments may contain different tissue-fluid pressure due to impermeable osseofascial barriers. Our results obtained in canine muscle compartments pressurized by infusion of autologous plasma suggest that risks of muscle damage are significant at intracompartmental pressures greater than thirty millimeters of mercury.

  6. The biodistribution and dosimetry of {sup 117m}Sn DTPA with special emphasis on active marrow absorbed doses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stubbs, J.; Atkins, H.

    1999-01-01

    {sup 117m}Sn(4+) DTPA is a new radiopharmaceutical for the palliation of pain associated with metastatic bone cancer. Recently, the Phase 2 clinical trials involving 47 patients were completed. These patients received administered activities in the range 6.7--10.6 MBq/kg of body mass. Frequent collections of urine were acquired over the first several hours postadministration and daily cumulative collections were obtained for the next 4--10 days. Anterior/posterior gamma camera images were obtained frequently over the initial 10 days. Radiation dose estimates were calculated for 8 of these patients. Each patient`s biodistribution data were mathematically simulated using a multicompartmental model. The model consistedmore » of the following compartments: central, bone, kidney, other tissues, and cumulative urine. The measured cumulative urine data were used as references for the cumulative urine excretion compartment. The total-body compartment (sum of the bone surfaces, central, kidney, and other tissues compartments) was reference to all activity not excreted in the urine.« less

  7. Influence of the viscoelastic properties of the respiratory system on the energetically optimum breathing frequency.

    PubMed

    Bates, J H; Milic-Emili, J

    1993-01-01

    We hypothesized that the viscoelastic properties of the respiratory system should have significant implications for the energetically optimal frequency of breathing, in view of the fact that these properties cause marked dependencies of overall system resistance and elastance on frequency. To test our hypothesis we simulated two models of canine and human respiratory system mechanics during sinusoidal breathing and calculated the inspiratory work (WI) and pressure-time integral (PTI) per minute under both resting and exercise conditions. The two models were a two-compartment viscoelastic model and a single-compartment model. Requiring minute alveolar ventilation to be fixed, we found that both models predicted almost identical optimum breathing frequencies. The calculated PTI was very insensitive to increases in breathing frequency above the optimal frequencies, while WI was found to increase slowly with frequency above its optimum. In contrast, both WI and PTI increased sharply as frequency decreased below their respective optima. A sensitivity analysis showed that the model predictions were very insensitive to the elastance and resistance values chosen to characterize tissue viscoelasticity. We conclude that the WI criterion for choosing the frequency of breathing is compatible with observations in nature, whereas the optimal frequency predictions of the PTI are rather too high. Both criteria allow for a fairly wide margin of choice in frequency above the optimum values without incurring excessive additional energy expenditure. Furthermore, contrary to our expectations, the viscoelastic properties of the respiratory system tissues do not pose a noticeable problem to the respiratory controller in terms of energy expenditure.

  8. Essential tactics of tissue preparation and matrix nano-spotting for successful compound imaging mass spectrometry.

    PubMed

    Végvári, Akos; Fehniger, Thomas E; Gustavsson, Lena; Nilsson, Anna; Andrén, Per E; Kenne, Kerstin; Nilsson, Johan; Laurell, Thomas; Marko-Varga, György

    2010-04-18

    The ultimate goal of MALDI-Imaging Mass Spectrometry (MALDI-IMS) is to achieve spatial localization of analytes in tissue sections down to individual tissue compartments or even at the level of a few cells. With compound tissue imaging, it is possible to track the transportation of an unlabelled, inhaled reference compound within lung tissue, through the application of MALDI-IMS. The procedure for isolation and preparation of lung tissues is found to be crucial in order to preserve the anatomy and structure of the pulmonary compartments. To avoid delocalization of analytes within lung tissue compartments we have applied an in-house designed nano-spotter, based on a microdispenser mounted on an XY table, of which movement and spotting functionality were fully computer controlled. We demonstrate the usefulness of this platform in lung tissue sections isolated from rodent in vivo model, applied to compound tissue imaging as exemplified with the determination of the spatial distribution of (1alpha,2beta,4beta,7beta)-7-[(hydroxidi-2-thienylacetyl)oxy]-9,9-dimethyl-3-oxa-9-azoniatricyclo[3.3.1.0(2,4)]nonane, also known as tiotropium. We provide details on tissue preparation protocols and sample spotting technology for successful identification of drug in mouse lung tissue by using MALDI-Orbitrap instrumentation. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Phenotypic plasticity and targeting of Siglec-F(high) CD11c(low) eosinophils to the airway in a murine model of asthma.

    PubMed

    Abdala Valencia, H; Loffredo, L F; Misharin, A V; Berdnikovs, S

    2016-02-01

    Eosinophil recruitment in asthma is a multistep process, involving both trans-endothelial migration to the lung interstitium and trans-epithelial migration into the airways. While the trans-endothelial step is well studied, trans-epithelial recruitment is less understood. To contrast eosinophil recruitment between these two compartments, we employed a murine kinetics model of asthma. Eosinophils were phenotyped by multicolor flow cytometry in digested lung tissue and bronchoalveolar lavage (BAL) simultaneously, 6 h after each ovalbumin (OVA) challenge. There was an early expansion of tissue eosinophils after OVA challenge followed by eosinophil buildup in both compartments and a shift in phenotype over the course of the asthma model. Gradual transition from a Siglec-F(med) CD11c(-) to a Siglec-F(high) CD11c(low) phenotype in lung tissue was associated with eosinophil recruitment to the airways, as all BAL eosinophils were of the latter phenotype. Secondary microarray analysis of tissue-activated eosinophils demonstrated upregulation of specific integrin and chemokine receptor signature suggesting interaction with the mucosa. Using adhesion assays, we demonstrated that integrin CD11c mediated adhesion of eosinophils to fibrinogen, a significant component of epithelial barrier repair and remodeling. To the best of our knowledge, this is the only report to date dissecting compartmentalization of eosinophil recruitment as it unfolds during allergic inflammation. By capturing the kinetics of eosinophil phenotypic change in both tissue and BAL using flow cytometry and sorting, we were able to demonstrate a previously undocumented association between phenotypic shift of tissue-recruited eosinophils and their trans-epithelial movement, which implicates the existence of a specific mechanism targeting these cells to mucosal airways. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Image-based evaluations of distribution and cytotoxicity of Irinotecan (CPT-11) in a multi-compartment micro-cell coculture device.

    PubMed

    Nakayama, Hidenari; Kimura, Hiroshi; Fujii, Teruo; Sakai, Yasuyuki

    2014-06-01

    We recently developed a polydimethylsiloxane (PDMS)-based three-compartment microfluidic cocultivation device enabling real-time interactions of different cell populations as an advanced physiologically-relevant cell-based assay. This device had valves and small magnetic stirrer-based internal pumps for easy and flexible perfusion operations. In this study, we applied this device for the evaluation of Irinotecan (CPT-11) toxicity to the lung, because it is detoxified by the liver and accumulated in the fat in humans. We successfully cultured representative three different tissue model cells in each compartment under the individual culture conditions and also in entire perfusion. Growth inhibition of rat lung epithelial cell line L-2, was measured when administered with 50 μM CPT-11 under various cocultivation conditions with respect to the presences and absence of primary rat hepatocytes (liver tissue model) and adipocyte-like cells (fat tissue model) induced from a mouse fibroblast cell line, 3T3-L1. Although CPT-11 showed moderate toxicity to the pure culture of L-2 cells in the device after 72 h of perfusion culture, this was lowered mainly in the presence of the liver tissue. Inhibition of the L-2 cell growth agreed with the area under curve (AUC) values obtained from fluorescent image-based analyses in each compartment. These results demonstrate that developed simple and flexible microfluidic cocultivation device, with appropriate image-based analyses, can be used in evaluating toxicokinetic behaviors of drug candidates in systemic levels. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Hepatic function imaging using dynamic Gd-EOB-DTPA enhanced MRI and pharmacokinetic modeling.

    PubMed

    Ning, Jia; Yang, Zhiying; Xie, Sheng; Sun, Yongliang; Yuan, Chun; Chen, Huijun

    2017-10-01

    To determine whether pharmacokinetic modeling parameters with different output assumptions of dynamic contrast-enhanced MRI (DCE-MRI) using Gd-EOB-DTPA correlate with serum-based liver function tests, and compare the goodness of fit of the different output assumptions. A 6-min DCE-MRI protocol was performed in 38 patients. Four dual-input two-compartment models with different output assumptions and a published one-compartment model were used to calculate hepatic function parameters. The Akaike information criterion fitting error was used to evaluate the goodness of fit. Imaging-based hepatic function parameters were compared with blood chemistry using correlation with multiple comparison correction. The dual-input two-compartment model assuming venous flow equals arterial flow plus portal venous flow and no bile duct output better described the liver tissue enhancement with low fitting error and high correlation with blood chemistry. The relative uptake rate Kir derived from this model was found to be significantly correlated with direct bilirubin (r = -0.52, P = 0.015), prealbumin concentration (r = 0.58, P = 0.015), and prothrombin time (r = -0.51, P = 0.026). It is feasible to evaluate hepatic function by proper output assumptions. The relative uptake rate has the potential to serve as a biomarker of function. Magn Reson Med 78:1488-1495, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  12. The Decompression Sickness and Venous Gas Emboli Consequences of Air Breaks During 100% Oxygen Prebreathe

    NASA Technical Reports Server (NTRS)

    Conkin, J.; Gernhardt, M. L.; Powell, M. R.

    2004-01-01

    Not enough is known about the increased risk of hypobaric decompression sickness (DCS) and production of venous (VGE) and arterial (AGE) gas emboli following an air break in an otherwise normal 100% resting oxygen (O2) prebreathe (PB), and certainly a break in PB when exercise is used to accelerate nitrogen (N2) elimination from the tissues. Current Aeromedical Flight Rules at the Johnson Space Center about additional PB payback times are untested, possibly too conservative, and therefore not optimized for operational use. A 10 min air break at 90 min into a 120 min PB that includes initial dual-cycle ergometry for 10 min will show a measurable increase in the risk of DCS and VGE after ascent to 4.3 psia compared to a 10 min break at 15 min into the PB, or when there is no break in PB. Data collection with humans begins in 2005, but here we first evaluate the hypothesis using three models of tissue N2 kinetics: Model I is a simple single half-time compartment exponential model, Model II is a three compartment half-time exponential model, and Model III is a variable half-time compartment model where the percentage of maximum O2 consumption for the subject during dual-cycle ergometry exercise defines the half-time compartment. Model I with large rate constants to simulate an exercise effect always showed a late break in PB had the greatest consequence. Model II showed an early break had the greatest consequence. Model III showed there was no difference between early or late break in exercise PB. Only one of these outcomes will be observed when humans are tested. Our results will favor one of these models, and so advance our understanding of tissue N2 kinetics, and of altitude DCS after an air break in PB.

  13. SU-D-207A-02: Possible Characterization of the Brain Tumor Vascular Environment by a Novel Strategy of Quantitative Analysis in Dynamic Contrast Enhanced MR Imaging: A Combination of Both Patlak and Logan Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yee, S; Chinnaiyan, P; Wloch, J

    Purpose: The majority of quantitative analyses involving dynamic contrast enhanced (DCE) MRI have been performed to obtain kinetic parameters such as Ktrans and ve. Such analyses are generally performed assuming a “reversible” tissue compartment, where the tracer is assumed to be rapidly equilibrated between the plasma and tissue compartments. However, some tumor vascular environments may be more suited for a “non-reversible” tissue compartment, where, as with FDG PET imaging, the tracer is continuously deposited into the tissue compartment (or the return back to the plasma compartment is very slow in the imaging time scale). Therefore, Patlak and Logan analyses, whichmore » represent tools for the “non-reversible” and “reversible” modeling, respectively, were performed to better characterize the brain tumor vascular environment. Methods: A voxel-by-voxel analysis was performed to generate both Patlak and Logan plots in two brain tumor patients, one with grade III astrocytoma and the other with grade IV astrocytoma or glioblastoma. The slopes of plots and the r-square were then obtained by linear fitting and compared for each voxel. Results: The 2-dimensional scatter plots of Logan (Y-axis) vs. Patlak slopes (X-axis) clearly showed increased Logan slopes for glioblastoma (Figure 3A). The scatter plots of goodness-of-fit (Figure 3B) also suggested glioblastoma, relative to grade III astrocytoma, might consist of more voxels that are kinetically Logan-like (i.e. rapidly equilibrated extravascular space and active vascular environment). Therefore, the enhanced Logan-like behavior (and the Logan slope) in glioblastoma may imply an increased fraction of active vascular environment, while the enhanced Patlak-like behavior implies the vascular environment permitting a relatively slower washout of the tracer. Conclusion: Although further verification is required, the combination of Patlak and Logan analyses in DCE MRI may be useful in characterizing the tumor vascular environment, and thus, may have implications in tumor grading and monitoring response to anti-vascular therapy.« less

  14. Distribution, persistence and interchange of Epstein-Barr virus strains among PBMC, plasma and saliva of primary infection subjects.

    PubMed

    Kwok, Hin; Chan, Koon Wing; Chan, Kwok Hung; Chiang, Alan Kwok Shing

    2015-01-01

    Our study aimed at investigating the distribution, persistence and interchange of viral strains among peripheral blood mononuclear cells (PBMC), plasma and saliva of primary Epstein-Barr virus (EBV) infection subjects. Twelve infectious mononucleosis (IM) patients and eight asymptomatic individuals (AS) with primary EBV infection were followed longitudinally at several time points for one year from the time of diagnosis, when blood and saliva samples were collected and separated into PBMC, plasma and saliva, representing circulating B cell, plasma and epithelial cell compartments, respectively. To survey the viral strains, genotyping assays for the natural polymorphisms in two latent EBV genes, EBNA2 and LMP1, were performed and consisted of real-time PCR on EBNA2 to distinguish type 1 and 2 viruses, fluorescent-based 30-bp typing assay on LMP1 to distinguish deletion and wild type LMP1, and fluorescent-based heteroduplex tracking assays on both EBNA2 and LMP1 to distinguish defined polymorphic variants. No discernible differences were observed between IM patients and AS. Multiple viral strains were acquired early at the start of infection. Stable persistence of dominant EBV strains in the same tissue compartment was observed throughout the longitudinal samples. LMP1-defined strains, China 1, China 2 and Mediterranean+, were the most common strains observed. EBNA2-defined groups 1 and 3e predominated the PBMC and saliva compartments. Concordance of EBNA2 and LMP1 strains between PBMC and saliva suggested ready interchange of viruses between circulating B cell and epithelial cell pools, whilst discordance of viral strains observed between plasma and PBMC/saliva indicated presence of viral pools in other undetermined tissue compartments. Taken together, the results indicated that the distribution, persistence and interchange of viral strains among the tissue compartments are more complex than those proposed by the current model of EBV life cycle.

  15. Distribution, Persistence and Interchange of Epstein-Barr Virus Strains among PBMC, Plasma and Saliva of Primary Infection Subjects

    PubMed Central

    Kwok, Hin; Chan, Koon Wing; Chan, Kwok Hung; Chiang, Alan Kwok Shing

    2015-01-01

    Our study aimed at investigating the distribution, persistence and interchange of viral strains among peripheral blood mononuclear cells (PBMC), plasma and saliva of primary Epstein-Barr virus (EBV) infection subjects. Twelve infectious mononucleosis (IM) patients and eight asymptomatic individuals (AS) with primary EBV infection were followed longitudinally at several time points for one year from the time of diagnosis, when blood and saliva samples were collected and separated into PBMC, plasma and saliva, representing circulating B cell, plasma and epithelial cell compartments, respectively. To survey the viral strains, genotyping assays for the natural polymorphisms in two latent EBV genes, EBNA2 and LMP1, were performed and consisted of real-time PCR on EBNA2 to distinguish type 1 and 2 viruses, fluorescent-based 30-bp typing assay on LMP1 to distinguish deletion and wild type LMP1, and fluorescent-based heteroduplex tracking assays on both EBNA2 and LMP1 to distinguish defined polymorphic variants. No discernible differences were observed between IM patients and AS. Multiple viral strains were acquired early at the start of infection. Stable persistence of dominant EBV strains in the same tissue compartment was observed throughout the longitudinal samples. LMP1-defined strains, China 1, China 2 and Mediterranean+, were the most common strains observed. EBNA2-defined groups 1 and 3e predominated the PBMC and saliva compartments. Concordance of EBNA2 and LMP1 strains between PBMC and saliva suggested ready interchange of viruses between circulating B cell and epithelial cell pools, whilst discordance of viral strains observed between plasma and PBMC/saliva indicated presence of viral pools in other undetermined tissue compartments. Taken together, the results indicated that the distribution, persistence and interchange of viral strains among the tissue compartments are more complex than those proposed by the current model of EBV life cycle. PMID:25807555

  16. Physiologically Based Pharmacokinetic Model for Terbinafine in Rats and Humans

    PubMed Central

    Hosseini-Yeganeh, Mahboubeh; McLachlan, Andrew J.

    2002-01-01

    The aim of this study was to develop a physiologically based pharmacokinetic (PB-PK) model capable of describing and predicting terbinafine concentrations in plasma and tissues in rats and humans. A PB-PK model consisting of 12 tissue and 2 blood compartments was developed using concentration-time data for tissues from rats (n = 33) after intravenous bolus administration of terbinafine (6 mg/kg of body weight). It was assumed that all tissues except skin and testis tissues were well-stirred compartments with perfusion rate limitations. The uptake of terbinafine into skin and testis tissues was described by a PB-PK model which incorporates a membrane permeability rate limitation. The concentration-time data for terbinafine in human plasma and tissues were predicted by use of a scaled-up PB-PK model, which took oral absorption into consideration. The predictions obtained from the global PB-PK model for the concentration-time profile of terbinafine in human plasma and tissues were in close agreement with the observed concentration data for rats. The scaled-up PB-PK model provided an excellent prediction of published terbinafine concentration-time data obtained after the administration of single and multiple oral doses in humans. The estimated volume of distribution at steady state (Vss) obtained from the PB-PK model agreed with the reported value of 11 liters/kg. The apparent volume of distribution of terbinafine in skin and adipose tissues accounted for 41 and 52%, respectively, of the Vss for humans, indicating that uptake into and redistribution from these tissues dominate the pharmacokinetic profile of terbinafine. The PB-PK model developed in this study was capable of accurately predicting the plasma and tissue terbinafine concentrations in both rats and humans and provides insight into the physiological factors that determine terbinafine disposition. PMID:12069977

  17. Cyclic motion encoding for enhanced MR visualization of slip interfaces.

    PubMed

    Mariappan, Yogesh K; Glaser, Kevin J; Manduca, Armando; Ehman, Richard L

    2009-10-01

    To develop and test a magnetic resonance imaging-based method for assessing the mechanical shear connectivity across tissue interfaces with phantom experiments and in vivo feasibility studies. External vibrations were applied to phantoms and tissue and the differential motion on either side of interfaces within the media was mapped onto the phase of the MR images using cyclic motion encoding gradients. The phase variations within the voxels of functional slip interfaces reduced the net magnitude signal in those regions, thus enhancing their visualization. A simple two-compartment model was developed to relate this signal loss to the intravoxel phase variations. In vivo studies of the abdomen and forearm were performed to visualize slip interfaces in healthy volunteers. The phantom experiments demonstrated that the proposed technique can assess the functionality of shear slip interfaces and they provided experimental validation for the theoretical model developed. Studies of the abdomen showed that the slip interface between the small bowel and the peritoneal wall can be visualized. In the forearm, this technique was able to depict the slip interfaces between the functional compartments of the extrinsic forearm muscles. Functional shear slip interfaces can be visualized sensitively using cyclic motion encoding of externally applied tissue vibrations. (c) 2009 Wiley-Liss, Inc.

  18. NS3 protease resistance-associated substitutions in liver tissue and plasma samples from patients infected by hepatitis C virus genotype 1A or 1B.

    PubMed

    Morsica, Giulia; Andolina, Andrea; Merli, Marco; Messina, Emanuela; Hasson, Hamid; Lazzarin, Adriano; Uberti-Foppa, Caterina; Bagaglio, Sabrina

    2017-08-01

    The presence of naturally occurring resistance-associated substitutions (RASs) in the HCV-protease domain has been poorly investigated in the liver, the main site of HCV replication. We evaluated the natural resistance of the virus to NS3 protease inhibitors in liver tissue and plasma samples taken from HCV-infected patients. RASs were investigated by means of viral population sequencing in liver tissue samples from 18 HCV-infected patients harbouring genotype 1a or genotype 1b; plasma samples from 12 of these patients were also available for virological investigation. A discordant genotype was found in two of the 12 patients (16.6%) who provided samples from both compartments. Sequence analysis of the NS3 protease domain showed the presence of RASs in four of the 18 liver tissue samples (22.2%), two of which showed cross-resistance to protease inhibitors in clinical use or phase 2-3 trials. The analysis of the 12 paired tissues and plasma samples excluded the presence of RASs in the plasma compartment. The dominance of discordant genotypes in the paired liver and plasma samples of some HCV-infected patients suggests mixed infection possibly leading to the selective advantage of different genotype in the two compartments. The presence of RASs at intra-hepatic level is not uncommon and may lead to the early emergence of cross-resistant strains.

  19. A Multi-Compartment 3-D Finite Element Model of Rectocele and Its Interaction with Cystocele

    PubMed Central

    Luo, Jiajia; Chen, Luyun; Fenner, Dee E.; Ashton-Miller, James A.; DeLancey, John O. L.

    2015-01-01

    We developed a subject-specific 3-D finite element model to understand the mechanics underlying formation of female pelvic organ prolapse, specifically a rectocele and its interaction with a cystocele. The model was created from MRI 3-D geometry of a healthy 45 year-old multiparous woman. It included anterior and posterior vaginal walls, levator ani muscle, cardinal and uterosacral ligaments, anterior and posterior arcus tendineus fascia pelvis, arcus tendineus levator ani, perineal body, perineal membrane and anal sphincter. Material properties were mostly from the literature. Tissue impairment was modeled as decreased tissue stiffness based on previous clinical studies. Model equations were solved using Abaqus v 6.11. The sensitivity of anterior and posterior vaginal wall geometry was calculated for different combinations tissue impairments under increasing intraabdominal pressure. Prolapse size was reported as POP-Q point at point Bp for rectocele and point Ba for cystocele. Results show that a rectocele resulted from impairments of the levator ani and posterior compartment support. For 20% levator and 85% posterior support impairments, simulated rectocele size (at POP-Q point: Bp) increased 0.29 mm/cm H2O without apical impairment and 0.36 mm/cm H2O with 60% apical impairment, as intraabdominal pressures increased from 0 to 150 cm H2O. Apical support impairment could result in the development of either a cystocele or rectocele. Simulated repair of posterior compartment support decreased rectocele but increased a preexisting cystocele. We conclude that development of rectocele and cystocele depend on the presence of anterior, posterior, levator and/or or apical support impairments, as well as the interaction of the prolapse with the opposing compartment. PMID:25757664

  20. Automatic segmentation of abdominal organs and adipose tissue compartments in water-fat MRI: Application to weight-loss in obesity.

    PubMed

    Shen, Jun; Baum, Thomas; Cordes, Christian; Ott, Beate; Skurk, Thomas; Kooijman, Hendrik; Rummeny, Ernst J; Hauner, Hans; Menze, Bjoern H; Karampinos, Dimitrios C

    2016-09-01

    To develop a fully automatic algorithm for abdominal organs and adipose tissue compartments segmentation and to assess organ and adipose tissue volume changes in longitudinal water-fat magnetic resonance imaging (MRI) data. Axial two-point Dixon images were acquired in 20 obese women (age range 24-65, BMI 34.9±3.8kg/m(2)) before and after a four-week calorie restriction. Abdominal organs, subcutaneous adipose tissue (SAT) compartments (abdominal, anterior, posterior), SAT regions along the feet-head direction and regional visceral adipose tissue (VAT) were assessed by a fully automatic algorithm using morphological operations and a multi-atlas-based segmentation method. The accuracy of organ segmentation represented by Dice coefficients ranged from 0.672±0.155 for the pancreas to 0.943±0.023 for the liver. Abdominal SAT changes were significantly greater in the posterior than the anterior SAT compartment (-11.4%±5.1% versus -9.5%±6.3%, p<0.001). The loss of VAT that was not located around any organ (-16.1%±8.9%) was significantly greater than the loss of VAT 5cm around liver, left and right kidney, spleen, and pancreas (p<0.05). The presented fully automatic algorithm showed good performance in abdominal adipose tissue and organ segmentation, and allowed the detection of SAT and VAT subcompartments changes during weight loss. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Correcting for the echo-time effect after measuring the cerebral blood flow by arterial spin labeling.

    PubMed

    Foucher, Jack R; Roquet, Daniel; Marrer, Corinne; Pham, Bich-Thuy; Gounot, Daniel

    2011-10-01

    To take into account the echo time (TE) influence on arterial spin labeling (ASL) signal when converting it in regional cerebral blood flow (rCBF). Gray matter ASL signal decrease with increasing TE as a consequence of the difference in the apparent transverse relaxation rates between labeled water in capillaries and nonlabeled water in the tissue (δR 2*). We aimed to measure ASL/rCBF changes in different parts of the brain and correct them. Fifteen participants underwent ASL measurements at TEs of 9.7-30 ms. Decreases in ASL values were localized by statistical parametric mapping. The corrections assessed were a subject-per-subject adjustment, an average δR 2* value adjustment, and a two-compartment model adjustment. rCBF decreases associated with increasing TEs were found for gray matter and were corrected using an average δR 2* value of 20 s(-1) . Conversely, for white matter, rCBF values increased with increasing TEs (δR 2* = -23 s(-1)). Our correction was as good as using a two-compartment model. However, it must be done separately for the gray and white matter rCBF values because the capillary R 2* values are, respectively, larger and smaller than those of surrounding tissues. Copyright © 2011 Wiley-Liss, Inc.

  2. Mathematical modeling of inhalation exposure

    NASA Technical Reports Server (NTRS)

    Fiserova-Bergerova, V.

    1976-01-01

    The paper presents a mathematical model of inhalation exposure in which uptake, distribution and excretion are described by exponential functions, while rate constants are determined by tissue volumes, blood perfusion and by the solubility of vapors (partition coefficients). In the model, tissues are grouped into four pharmokinetic compartments. The model is used to study continuous and interrupted chronic exposures and is applied to the inhalation of Forane and methylene chloride.

  3. Ratios of transfer coefficients for radiocesium transport in ruminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assimakopoulos, P.A.; Ioannides, K.G.; Karamanis, D.

    1995-09-01

    A corollary of the multiple-compartment model for the transport of trace elements through animals was tested for cows, goats, and sheep. According to this corollary, for a given body {open_quotes}compartment{close_quotes} k of the animal (soft tissue, lung, liver, etc.), the ratio a(k)=f(k)/f(blood) of the transfer coefficients f, should exhibit similar values for physiologically similar animals. In order to verify this prediction, two experiments were performed at the Agricultural Research Station of Ioannina and at the facilities of Ria Pripyat in Pripyat, Ukranine. Eight animals in the first experiment and eighteen in the second were housed in individual pens and weremore » artificially contaminated with a constant daily dose of radiocesium until equilibrium was reached. the animals were then sacrificed and transfer coefficients f(k) to twelve body {open_quotes}compartments{close_quotes} k were measured. These data were used to calculate the ratios a(k). The results were in accordance with predictions of the model and average values of a(k) were extracted for ruminants. It is concluded that these values may be employed for the prediction of animal contamination in any body compartment through the measurement of blood samples. 7 refs., 8 tabs.« less

  4. Evaluation of kinetic parameters of natural phytoalexin in resveratrol orally administered in wine to rats.

    PubMed

    Bertelli, A A; Giovannini, L; Stradi, R; Urien, S; Tillement, J P; Bertelli, A

    1998-01-01

    In view of the increasing interest in the biological activity of resveratrol, one of the components of red wine which is considered to be one of the main ingredients responsible for the beneficial effect of wine on human health, we have studied plasma kinetics and tissue bioavailability of this compound after red wine oral administration in rats. Plasma pharmacokinetics after oral administration of resveratrol could be described by an open one- or two-compartment model. Tissue concentrations show a significant cardiac bioavailability, and a strong affinity for the liver and kidneys.

  5. The Position of the Patella and Extensor Mechanism Affects Intraoperative Compartmental Loads During Total Knee Arthroplasty: A Pilot Study Using Intraoperative Sensing to Guide Soft Tissue Balance.

    PubMed

    Schnaser, Erik; Lee, Yuo-yu; Boettner, Friedrich; Gonzalez Della Valle, Alejandro

    2015-08-01

    The achievement of a well-balanced total knee arthroplasty is necessary for long-term success. We hypothesize that the dislocation of the patella during surgery affects the distribution of loads in the medial and lateral compartments. Intraoperative load sensors were used to record medial and lateral compartment loads in 56 well-balanced TKAs. Loads were recorded in full extension, relaxed extension, at 45 and 90° of flexion at full gravity-assisted flexion, with the patella in four different positions: dislocated (everted and not), located, and located and secured with two retinacular sutures. The loads in the lateral compartment in flexion were higher with a dislocated patella than with a located patella (P<0.001). A lateralized extensor mechanism artificially increases in the lateral compartment loads in flexion during TKA surgery. Instruments that allow intraoperative soft tissue balance with the patella in a physiologic position are more likely to replicate postoperative compartment loads. II (prospective comparative study). Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. A three-compartment thermometry model for the improved estimation of changes in body heat content.

    PubMed

    Jay, Ollie; Gariépy, Louise M; Reardon, Francis D; Webb, Paul; Ducharme, Michel B; Ramsay, Tim; Kenny, Glen P

    2007-01-01

    The aim of this study was to use whole body calorimetry to directly measure the change in body heat content (DeltaH(b)) during steady-state exercise and compare these values with those estimated using thermometry. The thermometry models tested were the traditional two-compartment model of "core" and "shell" temperatures, and a three-compartment model of "core," "muscle," and "shell" temperatures; with individual compartments within each model weighted for their relative influence upon DeltaH(b) by coefficients subject to a nonnegative and a sum-to-one constraint. Fifty-two participants performed 90 min of moderate-intensity exercise (40% of Vo(2 peak)) on a cycle ergometer in the Snellen air calorimeter, at regulated air temperatures of 24 degrees C or 30 degrees C and a relative humidity of either 30% or 60%. The "core" compartment was represented by temperatures measured in the esophagus (T(es)), rectum (T(re)), and aural canal (T(au)), while the "muscle" compartment was represented by regional muscle temperature measured in the vastus lateralis (T(vl)), triceps brachii (T(tb)), and upper trapezius (T(ut)). The "shell" compartment was represented by the weighted mean of 12 skin temperatures (T(sk)). The whole body calorimetry data were used to derive optimally fitting two- and three-compartment thermometry models. The traditional two-compartment model was found to be statistically biased, systematically underestimating DeltaH(b) by 15.5% (SD 31.3) at 24 degrees C and by 35.5% (SD 21.9) at 30 degrees C. The three-compartment model showed no such bias, yielding a more precise estimate of DeltaH(b) as evidenced by a mean estimation error of 1.1% (SD 29.5) at 24 degrees C and 5.4% (SD 30.0) at 30 degrees C with an adjusted R(2) of 0.48 and 0.51, respectively. It is concluded that a major source of error in the estimation of DeltaH(b) using the traditional two-compartment thermometry model is the lack of an expression independently representing the heat storage in muscle during exercise.

  7. Forearm Compartment Syndrome: Evaluation and Management.

    PubMed

    Kistler, Justin M; Ilyas, Asif M; Thoder, Joseph J

    2018-02-01

    Compartment syndrome of the forearm is uncommon but can have devastating consequences. Compartment syndrome is a result of osseofascial swelling leading to decreased tissue perfusion and tissue necrosis. There are numerous causes of forearm compartment syndrome and high clinical suspicion must be maintained to avoid permanent disability. The most widely recognized symptoms include pain out of proportion and pain with passive stretch of the wrist and digits. Early diagnosis and decompressive fasciotomy are essential in the treatment of forearm compartment syndrome. Closure of fasciotomy wounds can often be accomplished by primary closure but many patients require additional forms of soft tissue coverage procedures. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The estimation of the rates of lead exchange between body compartments of smelter employees.

    PubMed

    Behinaein, Sepideh; Chettle, David R; Egden, Lesley M; McNeill, Fiona E; Norman, Geoff; Richard, Norbert; Stever, Susan

    2014-07-01

    The overwhelming proportion of the mass of lead (Pb) is stored in bone and the residence time of Pb in bone is much longer than that in other tissues. Hence, in a metabolic model that we used to solve the differential equations governing the transfer of lead between body compartments, three main compartments are involved: blood (as a transfer compartment), cortical bone (tibia), and trabecular bone (calcaneus). There is a bidirectional connection between blood and the other two compartments. A grid search chi-squared minimization method was used to estimate the initial values of lead transfer rate values from tibia (λTB) and calcaneus (λCB) to blood of 209 smelter employees whose bone lead measurements are available from 1994, 1999, and 2008, and their blood lead level from 1967 onwards (depending on exposure history from once per month to once per year), and then the initial values of kinematic parameters were used to develop multivariate models in order to express λTB and λCB as a function of employment time, age, body lead contents and their interaction. We observed a significant decrease in the transfer rate of lead from bone to blood with increasing body lead contents. The model was tested by calculating the bone lead concentration in 1999 and 2008, and by comparing those values with the measured ones. A good agreement was found between the calculated and measured tibia/calcaneus lead values. Also, we found that the transfer rate of lead from tibia to blood can be expressed solely as a function of cumulative blood lead index.

  9. Dual-energy X-ray absorptiometry: analysis of pediatric fat estimate errors due to tissue hydration effects.

    PubMed

    Testolin, C G; Gore, R; Rivkin, T; Horlick, M; Arbo, J; Wang, Z; Chiumello, G; Heymsfield, S B

    2000-12-01

    Dual-energy X-ray absorptiometry (DXA) percent (%) fat estimates may be inaccurate in young children, who typically have high tissue hydration levels. This study was designed to provide a comprehensive analysis of pediatric tissue hydration effects on DXA %fat estimates. Phase 1 was experimental and included three in vitro studies to establish the physical basis of DXA %fat-estimation models. Phase 2 extended phase 1 models and consisted of theoretical calculations to estimate the %fat errors emanating from previously reported pediatric hydration effects. Phase 1 experiments supported the two-compartment DXA soft tissue model and established that pixel ratio of low to high energy (R values) are a predictable function of tissue elemental content. In phase 2, modeling of reference body composition values from birth to age 120 mo revealed that %fat errors will arise if a "constant" adult lean soft tissue R value is applied to the pediatric population; the maximum %fat error, approximately 0.8%, would be present at birth. High tissue hydration, as observed in infants and young children, leads to errors in DXA %fat estimates. The magnitude of these errors based on theoretical calculations is small and may not be of clinical or research significance.

  10. Quantitative Functional Imaging Using Dynamic Positron Computed Tomography and Rapid Parameter Estimation Techniques

    NASA Astrophysics Data System (ADS)

    Koeppe, Robert Allen

    Positron computed tomography (PCT) is a diagnostic imaging technique that provides both three dimensional imaging capability and quantitative measurements of local tissue radioactivity concentrations in vivo. This allows the development of non-invasive methods that employ the principles of tracer kinetics for determining physiological properties such as mass specific blood flow, tissue pH, and rates of substrate transport or utilization. A physiologically based, two-compartment tracer kinetic model was derived to mathematically describe the exchange of a radioindicator between blood and tissue. The model was adapted for use with dynamic sequences of data acquired with a positron tomograph. Rapid estimation techniques were implemented to produce functional images of the model parameters by analyzing each individual pixel sequence of the image data. A detailed analysis of the performance characteristics of three different parameter estimation schemes was performed. The analysis included examination of errors caused by statistical uncertainties in the measured data, errors in the timing of the data, and errors caused by violation of various assumptions of the tracer kinetic model. Two specific radioindicators were investigated. ('18)F -fluoromethane, an inert freely diffusible gas, was used for local quantitative determinations of both cerebral blood flow and tissue:blood partition coefficient. A method was developed that did not require direct sampling of arterial blood for the absolute scaling of flow values. The arterial input concentration time course was obtained by assuming that the alveolar or end-tidal expired breath radioactivity concentration is proportional to the arterial blood concentration. The scale of the input function was obtained from a series of venous blood concentration measurements. The method of absolute scaling using venous samples was validated in four studies, performed on normal volunteers, in which directly measured arterial concentrations were compared to those predicted from the expired air and venous blood samples. The glucose analog ('18)F-3-deoxy-3-fluoro-D -glucose (3-FDG) was used for quantitating the membrane transport rate of glucose. The measured data indicated that the phosphorylation rate of 3-FDG was low enough to allow accurate estimation of the transport rate using a two compartment model.

  11. Near-infrared spectroscopy for monitoring of tissue oxygenation of exercising skeletal muscle in a chronic compartment syndrome model

    NASA Technical Reports Server (NTRS)

    Breit, G. A.; Gross, J. H.; Watenpaugh, D. E.; Chance, B.; Hargens, A. R.

    1997-01-01

    Variations in the levels of muscle hemoglobin and of myoglobin oxygen saturation can be detected non-invasively with near-infrared spectroscopy. This technique could be applied to the diagnosis of chronic compartment syndrome, in which invasive testing has shown increased intramuscular pressure associated with ischemia and pain during exercise. We simulated chronic compartment syndrome in ten healthy subjects (seven men and three women) by applying external compression, through a wide inflatable cuff, to increase the intramuscular pressure in the anterior compartment of the leg. The tissue oxygenation of the tibialis anterior muscle was measured with near-infrared spectroscopy during gradual inflation of the cuff to a pressure of forty millimeters of mercury (5.33 kilopascals) during fourteen minutes of cyclic isokinetic dorsiflexion and plantar flexion of the ankle. The subjects exercised with and without external compression. The data on tissue oxygenation for each subject then were normalized to a scale of 100 per cent (the baseline value, or the value at rest) to 0 per cent (the physiological minimum, or the level of oxygenation achieved by exercise to exhaustion during arterial occlusion of the lower extremity). With external compression, tissue oxygenation declined at a rate of 1.4 +/- 0.3 per cent per minute (mean and standard error) during exercise. After an initial decrease at the onset, tissue oxygenation did not decline during exercise without compression. The recovery of tissue oxygenation after exercise was twice as slow with compression (2.5 +/- 0.6 minutes) than it was without the use of compression (1.3 +/- 0.2 minutes).

  12. Biological Effects of Protracted Exposure to Ionizing Radiation: Review, Analysis, and Model Development

    DTIC Science & Technology

    1991-11-01

    dynamics, physiological changes, morphologi- cal changes, cell/tissue damage and recovery mechanisms, and existing radiobiological injury and recovery...humans and the ferret. The gut injury model (GIM) is a three-compartment hierarchial- type tissue model to simulate radiation-induced changes in the...Prodromal Symptoms Diarrhea Gastrointestinal Symptoms Dose Rate Cell Survival Intestinal Injury Fatigability Cell Damage Cell Repair Cell Proliferation

  13. Evaluation of pharmacokinetic models for perfusion imaging with dynamic contrast-enhanced magnetic resonance imaging in porcine skeletal muscle using low-molecular-weight contrast agents.

    PubMed

    Hindel, Stefan; Papanastasiou, Giorgos; Wust, Peter; Maaß, Marc; Söhner, Anika; Lüdemann, Lutz

    2018-06-01

    Pharmacokinetic models for perfusion quantification with a low-molecular-weight contrast agent (LMCA) in skeletal muscle using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) were evaluated. Tissue perfusion was measured in seven regions of interest (ROIs) placed in the total hind leg supplied by the femoral artery in seven female pigs. DCE-MRI was performed using a 3D gradient echo sequence with k-space sharing. The sequence was acquired twice, first after LMCA and then after blood pool contrast agent injection. Blood flow was augmented by continuous infusion of the vasodilator adenosine into the femoral artery, resulting in up to four times increased blood flow. The results obtained with several LMCA models were compared with those of a two-compartment blood pool model (2CBPM) consisting of a capillary and an arteriolar compartment. Measurements performed with a Doppler flow probe placed at the femoral artery served as ground truth. The two-compartment exchange model extended by an arteriolar compartment (E2CXM) showed the highest fit quality of all LMCA models and the most significant correlation with the Doppler measurements, r = 0.78 (P < 0.001). The best correspondence between the capillary perfusion measurements of the LMCA models and those of the 2CBPM was found with the E2CXM (slope of the regression line equal to 1, r = 0.85, P < 0.001). The results for the clinical patient data corresponded very well with the results obtained in the animal experiments. Double-contrast agent DCE-MRI in combination with the E2CXM yields the most reliable results and can be used in clinical routine. Magn Reson Med 79:3154-3162, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  14. Two-Compartment Pharmacokinetic Models for Chemical Engineers

    ERIC Educational Resources Information Center

    Kanneganti, Kumud; Simon, Laurent

    2011-01-01

    The transport of potassium permanganate between two continuous-stirred vessels was investigated to help chemical and biomedical engineering students understand two-compartment pharmacokinetic models. Concepts of modeling, mass balance, parameter estimation and Laplace transform were applied to the two-unit process. A good agreement was achieved…

  15. Two-compartmental population balance modeling of a pulsed spray fluidized bed granulation based on computational fluid dynamics (CFD) analysis.

    PubMed

    Liu, Huolong; Li, Mingzhong

    2014-11-20

    In this work a two-compartmental population balance model (TCPBM) was proposed to model a pulsed top-spray fluidized bed granulation. The proposed TCPBM considered the spatially heterogeneous granulation mechanisms of the granule growth by dividing the granulator into two perfectly mixed zones of the wetting compartment and drying compartment, in which the aggregation mechanism was assumed in the wetting compartment and the breakage mechanism was considered in the drying compartment. The sizes of the wetting and drying compartments were constant in the TCPBM, in which 30% of the bed was the wetting compartment and 70% of the bed was the drying compartment. The exchange rate of particles between the wetting and drying compartments was determined by the details of the flow properties and distribution of particles predicted by the computational fluid dynamics (CFD) simulation. The experimental validation has shown that the proposed TCPBM can predict evolution of the granule size and distribution within the granulator under different binder spray operating conditions accurately. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. INDIVIDUAL TISSUE TO TOTAL BODY-WEIGHT RELATIONSHIPS AND TOTAL, POLAR, AND NON-POLAR LIPIDS IN TISSUES OF HATCHERY LAKE TROUT

    EPA Science Inventory

    Tissue body weight relaltionships, total lipid, and major lipid subclasses were measured in 20 adult hatchery lake trout to obtain a more in-depth understanding of the major lipid compartments of the "lean" lake trout for use in modeling the disposition of xenobiotics. It is sug...

  17. Hepatic sinusoid is not well-stirred: estimation of the degree of axial mixing by analysis of lobular concentration gradients formed during uptake of thyroxine by the perfused rat liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisiger, R.A.; Mendel, C.M.; Cavalieri, R.R.

    1986-03-01

    Two general models have been proposed for predicting the effects of metabolism, protein binding, and plasma flow on the removal of drugs by the liver. These models differ in the degree of plasma mixing assumed to exist within each hepatic sinusoid. The venous equilibrium model treats the sinusoid as a single well-stirred compartment, whereas the sinusoidal model effectively breaks up the sinusoid into a large number of sequentially perfused compartments which do not exchange their contents except through plasma flow. As a consequence, the sinusoidal model, but not the venous equilibrium model, predicts that the concentration of highly extracted drugsmore » will decline as the plasma flows through the hepatic lobule. To determine which of these alternative models best describes the hepatic uptake process, we looked for evidence that concentration gradients are formed during the uptake of (/sup 125/I)thyroxine by the perfused rat liver. Autoradiography of tissue slices after perfusion of the portal vein at physiologic flow rates with protein-free buffer containing (/sup 125/I)thyroxine demonstrated a rapid exponential fall in grain density with distance from the portal venule, declining by half for each 8% of the mean length of the sinusoid. Reversing the direction of perfusate flow reversed the direction of the autoradiographic gradients, indicating that they primarily reflect differences in the concentration of thyroxine within the hepatic sinusoids rather than differences in the uptake capacity of portal and central hepatocytes. Analysis of the data using models in which each sinusoid was represented by different numbers of sequentially perfused compartments (1-20) indicated that at least eight compartments were necessary to account for the magnitude of the gradients seen.« less

  18. Finite-element simulation of blood perfusion in muscle tissue during compression and sustained contraction.

    PubMed

    Vankan, W J; Huyghe, J M; Slaaf, D W; van Donkelaar, C C; Drost, M R; Janssen, J D; Huson, A

    1997-09-01

    Mechanical interaction between tissue stress and blood perfusion in skeletal muscles plays an important role in blood flow impediment during sustained contraction. The exact mechanism of this interaction is not clear, and experimental investigation of this mechanism is difficult. We developed a finite-element model of the mechanical behavior of blood-perfused muscle tissue, which accounts for mechanical blood-tissue interaction in maximally vasodilated vasculature. Verification of the model was performed by comparing finite-element results of blood pressure and flow with experimental measurements in a muscle that is subject to well-controlled mechanical loading conditions. In addition, we performed simulations of blood perfusion during tetanic, isometric contraction and maximal vasodilation in a simplified, two-dimensional finite-element model of a rat calf muscle. A vascular waterfall in the venous compartment was identified as the main cause for blood flow impediment both in the experiment and in the finite-element simulations. The validated finite-element model offers possibilities for detailed analysis of blood perfusion in three-dimensional muscle models under complicated loading conditions.

  19. A compartmental model of uranium in human hair for protracted ingestion of natural uranium in drinking water.

    PubMed

    Li, W B; Karpas, Z; Salonen, L; Kurttio, P; Muikku, M; Wahl, W; Höllriegl, V; Hoeschen, C; Oeh, U

    2009-06-01

    To predict uranium in human hair due to chronic exposure through drinking water, a compartment representing human hair was added into the uranium biokinetic model developed by the International Commission on Radiological Protection (ICRP). The hair compartmental model was used to predict uranium excretion in human hair as a bioassay indicator due to elevated uranium intakes. Two excretion pathways, one starting from the compartment of plasma and the other from the compartment of intermediate turnover soft tissue, are assumed to transfer uranium to the compartment of hair. The transfer rate was determined from reported uranium contents in urine and in hair, taking into account the hair growth rate of 0.1 g d(-1). The fractional absorption in the gastrointestinal tract of 0.6% was found to fit best to describe the measured uranium levels among the users of drilled wells in Finland. The ingestion dose coefficient for (238)U, which includes its progeny of (234)Th, (234m)Pa, and (234)Pa, was calculated equal to 1.3 x 10(-8) Sv Bq(-1) according to the hair compartmental model. This estimate is smaller than the value of 4.5 x 10(-8) Sv Bq(-1) published by ICRP for the members of the public. In this new model, excretion of uranium through urine is better represented when excretion to the hair compartment is accounted for and hair analysis can provide a means for assessing the internal body burden of uranium. The model is applicable for chronic exposure as well as for an acute exposure incident. In the latter case, the hair sample can be collected and analyzed even several days after the incident, whereas urinalysis requires sample collection shortly after the exposure. The model developed in this study applies to ingestion intakes of uranium.

  20. A PHYSIOLOGICALLY BASED TOXICOKINETIC MODEL FOR LAKE TROUT (SALVELINUS NAMAYCUSH)

    EPA Science Inventory

    A physiologically based toxicokinetic (PB-TK) model for fish, incorporating chemical exchange at the gill and accumulation in five tissue compartments, was used to examine the effect of natural variability in physiological, morphological, and physico-chemical parameters on model ...

  1. Investigation of tDCS volume conduction effects in a highly realistic head model

    NASA Astrophysics Data System (ADS)

    Wagner, S.; Rampersad, S. M.; Aydin, Ü.; Vorwerk, J.; Oostendorp, T. F.; Neuling, T.; Herrmann, C. S.; Stegeman, D. F.; Wolters, C. H.

    2014-02-01

    Objective. We investigate volume conduction effects in transcranial direct current stimulation (tDCS) and present a guideline for efficient and yet accurate volume conductor modeling in tDCS using our newly-developed finite element (FE) approach. Approach. We developed a new, accurate and fast isoparametric FE approach for high-resolution geometry-adapted hexahedral meshes and tissue anisotropy. To attain a deeper insight into tDCS, we performed computer simulations, starting with a homogenized three-compartment head model and extending this step by step to a six-compartment anisotropic model. Main results. We are able to demonstrate important tDCS effects. First, we find channeling effects of the skin, the skull spongiosa and the cerebrospinal fluid compartments. Second, current vectors tend to be oriented towards the closest higher conducting region. Third, anisotropic WM conductivity causes current flow in directions more parallel to the WM fiber tracts. Fourth, the highest cortical current magnitudes are not only found close to the stimulation sites. Fifth, the median brain current density decreases with increasing distance from the electrodes. Significance. Our results allow us to formulate a guideline for volume conductor modeling in tDCS. We recommend to accurately model the major tissues between the stimulating electrodes and the target areas, while for efficient yet accurate modeling, an exact representation of other tissues is less important. Because for the low-frequency regime in electrophysiology the quasi-static approach is justified, our results should also be valid for at least low-frequency (e.g., below 100 Hz) transcranial alternating current stimulation.

  2. Evaluation of conceptual models of natural organic matter (humus) from a consideration of the chemical and biochemical processes of humification

    USGS Publications Warehouse

    Wershaw, Robert L.

    2004-01-01

    Natural organic matter (NOM) has been studied for more than 200 years because of its importance in enhancing soil fertility, soil structure, and water-holding capacity and as a carbon sink in the global carbon cycle. Two different types of models have been proposed for NOM: (1) the humic polymer models and (2) the molecular aggregate models. In the humic polymer models, NOM molecules are depicted as large (humic) polymers that have unique chemical structures that are different from those of the precursor plant degradation products. In the molecular aggregate models, NOM is depicted as being composed of molecular aggregates (supramolecular aggregates) of plant degradation products held together by non-covalent bonds. The preponderance of evidence favors the supramolecular aggregate models. These models were developed by studying the properties of NOM extracted from soils and natural waters, and as such, they provide only a very generalized picture of the structure of NOM aggregates in soils and natural waters prior to extraction. A compartmental model, in which the structure of the NOM in each of the compartments is treated separately, should provide a more accurate representation of NOM in soil and sediment systems. The proposed NOM compartments are: (1) partially degraded plant tissue, (2) biomass from microorganisms, (3) organic coatings on mineral grains, (4) pyrolytic carbon, (5) organic precipitates, and (6) dissolved organic matter (DOM) in interstitial water. Within each of these compartments there are NOM supramolecular aggregates that will be dissolved by the solvent systems that are used by researchers for extraction of NOM from soils and sediments. In natural water systems DOM may be considered as existing in two subcompartments: (1) truly dissolved DOM and (2) colloidal DOM.

  3. Interspecies Mixed-Effect Pharmacokinetic Modeling of Penicillin G in Cattle and Swine

    PubMed Central

    Li, Mengjie; Gehring, Ronette; Tell, Lisa; Baynes, Ronald; Huang, Qingbiao

    2014-01-01

    Extralabel drug use of penicillin G in food-producing animals may cause an excess of residues in tissue which will have the potential to damage human health. Of all the antibiotics, penicillin G may have the greatest potential for producing allergic responses to the consumer of food animal products. There are, however, no population pharmacokinetic studies of penicillin G for food animals. The objective of this study was to develop a population pharmacokinetic model to describe the time-concentration data profile of penicillin G across two species. Data were collected from previously published pharmacokinetic studies in which several formulations of penicillin G were administered to diverse populations of cattle and swine. Liver, kidney, and muscle residue data were also used in this study. Compartmental models with first-order absorption and elimination were fit to plasma and tissue concentrations using a nonlinear mixed-effect modeling approach. A 3-compartment model with extra tissue compartments was selected to describe the pharmacokinetics of penicillin G. Typical population parameter estimates (interindividual variability) were central volumes of distribution of 3.45 liters (12%) and 3.05 liters (8.8%) and central clearance of 105 liters/h (32%) and 16.9 liters/h (14%) for cattle and swine, respectively, with peripheral clearance of 24.8 liters/h (13%) and 9.65 liters/h (23%) for cattle and 13.7 liters/h (85%) and 0.52 liters/h (40%) for swine. Body weight and age were the covariates in the final pharmacokinetic models. This study established a robust model of penicillin for a large and diverse population of food-producing animals which could be applied to other antibiotics and species in future analyses. PMID:24867969

  4. Combined Recirculatory-compartmental Population Pharmacokinetic Modeling of Arterial and Venous Plasma S(+) and R(-) Ketamine Concentrations.

    PubMed

    Henthorn, Thomas K; Avram, Michael J; Dahan, Albert; Gustafsson, Lars L; Persson, Jan; Krejcie, Tom C; Olofsen, Erik

    2018-05-16

    The pharmacokinetics of infused drugs have been modeled without regard for recirculatory or mixing kinetics. We used a unique ketamine dataset with simultaneous arterial and venous blood sampling, during and after separate S(+) and R(-) ketamine infusions, to develop a simplified recirculatory model of arterial and venous plasma drug concentrations. S(+) or R(-) ketamine was infused over 30 min on two occasions to 10 healthy male volunteers. Frequent, simultaneous arterial and forearm venous blood samples were obtained for up to 11 h. A multicompartmental pharmacokinetic model with front-end arterial mixing and venous blood components was developed using nonlinear mixed effects analyses. A three-compartment base pharmacokinetic model with additional arterial mixing and arm venous compartments and with shared S(+)/R(-) distribution kinetics proved superior to standard compartmental modeling approaches. Total pharmacokinetic flow was estimated to be 7.59 ± 0.36 l/min (mean ± standard error of the estimate), and S(+) and R(-) elimination clearances were 1.23 ± 0.04 and 1.06 ± 0.03 l/min, respectively. The arm-tissue link rate constant was 0.18 ± 0.01 min and the fraction of arm blood flow estimated to exchange with arm tissue was 0.04 ± 0.01. Arterial drug concentrations measured during drug infusion have two kinetically distinct components: partially or lung-mixed drug and fully mixed-recirculated drug. Front-end kinetics suggest the partially mixed concentration is proportional to the ratio of infusion rate and total pharmacokinetic flow. This simplified modeling approach could lead to more generalizable models for target-controlled infusions and improved methods for analyzing pharmacokinetic-pharmacodynamic data.

  5. A physiologically based pharmacokinetic model for lactational transfer of Na-131I

    NASA Astrophysics Data System (ADS)

    Turner, Anita Loretta

    The excretion of radionuclides in human breast milk after administration of radiopharmaceuticals is a concern as a radiation risk to nursing infants. It is not uncommon to administer radiopharmaceuticals to lactating patients due to emergency nuclear medicine investigations such as thyroid complications, kidney failure, and pulmonary embolism. There is a need to quantify the amount of radioactivity translocated into breast milk in cases of ingestion by a breast-fed infant. A physiologically based pharmacokinetic model (PBPK) and a modified International Commission on Radiological Protection (ICRP) model have been developed to predict iodine concentrations in breast milk after ingestion of radioiodine by the mother. In the PBPK model, all compartments are interconnected by blood flow and represent real anatomic tissue regions in the body. All parameters involved are measurable values with physiological or physiochemical meaning such as tissue masses, blood flow rates, partition coefficients and cardiac output. However, some of the parameters such as the partition coefficients and metabolic constants are not available for iodine and had to be inferred from other information. The structure of the PBPK model for the mother consists of the following tissue compartments: gastrointestinal tract, blood, kidney, thyroid, milk, and other tissues. With the exception of the milk compartment, the model for the nursing infant is structured similarly to the mother. The ICRP model describing iodine metabolism in a standard 70-kg man was modified to represent iodine metabolism in a lactating woman and nursing infant. The parameters involved in this model are transfer rates and biological half-lives which are based on experimental observations. The results of the PBPK model and the modified ICRP model describing the lactational transfer of iodine were compared. When administering 1 mCi of Na131I to the lactating mother, the concentration reaches a maximum of 0.1 mCi/liter in 24 hours and decreases with an effective half-life of 1.2 day.

  6. Parametric mapping of [18F]fluoromisonidazole positron emission tomography using basis functions.

    PubMed

    Hong, Young T; Beech, John S; Smith, Rob; Baron, Jean-Claude; Fryer, Tim D

    2011-02-01

    In this study, we show a basis function method (BAFPIC) for voxelwise calculation of kinetic parameters (K(1), k(2), k(3), K(i)) and blood volume using an irreversible two-tissue compartment model. BAFPIC was applied to rat ischaemic stroke micro-positron emission tomography data acquired with the hypoxia tracer [(18)F]fluoromisonidazole because irreversible two-tissue compartmental modelling provided good fits to data from both hypoxic and normoxic tissues. Simulated data show that BAFPIC produces kinetic parameters with significantly lower variability and bias than nonlinear least squares (NLLS) modelling in hypoxic tissue. The advantage of BAFPIC over NLLS is less pronounced in normoxic tissue. K(i) determined from BAFPIC has lower variability than that from the Patlak-Gjedde graphical analysis (PGA) by up to 40% and lower bias, except for normoxic tissue at mid-high noise levels. Consistent with the simulation results, BAFPIC parametric maps of real data suffer less noise-induced variability than do NLLS and PGA. Delineation of hypoxia on BAFPIC k(3) maps is aided by low variability in normoxic tissue, which matches that in K(i) maps. BAFPIC produces K(i) values that correlate well with those from PGA (r(2)=0.93 to 0.97; slope 0.99 to 1.05, absolute intercept <0.00002 mL/g per min). BAFPIC is a computationally efficient method of determining parametric maps with low bias and variance.

  7. Quantitative Assessment of Heterogeneity in Tumor Metabolism Using FDG-PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vriens, Dennis, E-mail: d.vriens@nucmed.umcn.nl; Disselhorst, Jonathan A.; Oyen, Wim J.G.

    2012-04-01

    Purpose: [{sup 18}F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) images are usually quantitatively analyzed in 'whole-tumor' volumes of interest. Also parameters determined with dynamic PET acquisitions, such as the Patlak glucose metabolic rate (MR{sub glc}) and pharmacokinetic rate constants of two-tissue compartment modeling, are most often derived per lesion. We propose segmentation of tumors to determine tumor heterogeneity, potentially useful for dose-painting in radiotherapy and elucidating mechanisms of FDG uptake. Methods and Materials: In 41 patients with 104 lesions, dynamic FDG-PET was performed. On MR{sub glc} images, tumors were segmented in quartiles of background subtracted maximum MR{sub glc} (0%-25%, 25%-50%, 50%-75%, and 75%-100%).more » Pharmacokinetic analysis was performed using an irreversible two-tissue compartment model in the three segments with highest MR{sub glc} to determine the rate constants of FDG metabolism. Results: From the highest to the lowest quartile, significant decreases of uptake (K{sub 1}), washout (k{sub 2}), and phosphorylation (k{sub 3}) rate constants were seen with significant increases in tissue blood volume fraction (V{sub b}). Conclusions: Tumor regions with highest MR{sub glc} are characterized by high cellular uptake and phosphorylation rate constants with relatively low blood volume fractions. In regions with less metabolic activity, the blood volume fraction increases and cellular uptake, washout, and phosphorylation rate constants decrease. These results support the hypothesis that regional tumor glucose phosphorylation rate is not dependent on the transport of nutrients (i.e., FDG) to the tumor.« less

  8. A Physiologically Based Model for Methylmercury in Female American Kestrels

    EPA Science Inventory

    A physiologically based toxicokinetic (PBTK) model was developed to describe the uptake, distribution, and elimination of methylmercury (CH3Hg) in female American kestrels. The model consists of six tissue compartments corresponding to the brain, liver, kidney, gut, red blood cel...

  9. Method and apparatus to assess compartment syndrome

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R. (Inventor); Yost, William T. (Inventor); Ueno, Toshiaki (Inventor)

    2008-01-01

    A method and apparatus for measuring pressure buildup in a body compartment that encases muscular tissue. The method includes assessing the body compartment configuration and identifying the effect of pulsatile components on at least one compartment dimension. This process is used in preventing tissue necrosis, and in decisions of whether to perform surgery on the body compartment for prevention of Compartment Syndrome. An apparatus is used for measuring excess pressure in the body compartment having components for imparting ultrasonic waves such as a transducer, placing the transducer to impart the ultrasonic waves, capturing the reflected imparted ultrasonic waves, and converting them to electrical signals, a pulsed phase-locked loop device for assessing a body compartment configuration and producing an output signal, and means for mathematically manipulating the output signal to thereby categorize pressure build-up in the body compartment from the mathematical manipulations.

  10. Population modelling to describe pharmacokinetics of amiodarone in rats: relevance of plasma protein and tissue depot binding.

    PubMed

    Campos Moreno, Eduardo; Merino Sanjuán, Matilde; Merino, Virginia; Nácher, Amparo; Martín Algarra, Rafael V; Casabó, Vicente G

    2007-02-01

    The objective of this paper was to characterize the disposition phase of AM in rats, after different high doses and modalities of i.v. administration. Three fitting programs, WINNONLIN, ADAPT II and NONMEM were employed. The two-stage fitting methods led to different results, none of which can adequately explain amiodarone's behaviour, although a great amount of data per subject is available. The non-linear mixed effect modelling approach allows satisfactory estimation of population pharmacokinetic parameters, and their respective variability. The best model to define the AM pharmacokinetic profile is a two-compartment model, with saturable and dynamic plasma protein binding and linear tissular depot dynamic binding. These results indicate that peripheral tissues act as depots, causing an important fall in AM plasma levels in the first moment after dosing. Later, the return of the drug from these depots causes a slow increase in serum concentration whenever the dose is reduced.

  11. Quantification of tumor perfusion using dynamic contrast-enhanced ultrasound: impact of mathematical modeling

    NASA Astrophysics Data System (ADS)

    Doury, Maxime; Dizeux, Alexandre; de Cesare, Alain; Lucidarme, Olivier; Pellot-Barakat, Claire; Bridal, S. Lori; Frouin, Frédérique

    2017-02-01

    Dynamic contrast-enhanced ultrasound has been proposed to monitor tumor therapy, as a complement to volume measurements. To assess the variability of perfusion parameters in ideal conditions, four consecutive test-retest studies were acquired in a mouse tumor model, using controlled injections. The impact of mathematical modeling on parameter variability was then investigated. Coefficients of variation (CV) of tissue blood volume (BV) and tissue blood flow (BF) based-parameters were estimated inside 32 sub-regions of the tumors, comparing the log-normal (LN) model with a one-compartment model fed by an arterial input function (AIF) and improved by the introduction of a time delay parameter. Relative perfusion parameters were also estimated by normalization of the LN parameters and normalization of the one-compartment parameters estimated with the AIF, using a reference tissue (RT) region. A direct estimation (rRTd) of relative parameters, based on the one-compartment model without using the AIF, was also obtained by using the kinetics inside the RT region. Results of test-retest studies show that absolute regional parameters have high CV, whatever the approach, with median values of about 30% for BV, and 40% for BF. The positive impact of normalization was established, showing a coherent estimation of relative parameters, with reduced CV (about 20% for BV and 30% for BF using the rRTd approach). These values were significantly lower (p  <  0.05) than the CV of absolute parameters. The rRTd approach provided the smallest CV and should be preferred for estimating relative perfusion parameters.

  12. Validation of Perfusion Quantification with 3D Gradient Echo Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using a Blood Pool Contrast Agent in Skeletal Swine Muscle

    PubMed Central

    Hindel, Stefan; Sauerbrey, Anika; Maaß, Marc; Maderwald, Stefan; Schlamann, Marc; Lüdemann, Lutz

    2015-01-01

    The purpose of our study was to validate perfusion quantification in a low-perfused tissue by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with shared k-space sampling using a blood pool contrast agent. Perfusion measurements were performed in a total of seven female pigs. An ultrasonic Doppler probe was attached to the right femoral artery to determine total flow in the hind leg musculature. The femoral artery was catheterized for continuous local administration of adenosine to increase blood flow up to four times the baseline level. Three different stable perfusion levels were induced. The MR protocol included a 3D gradient-echo sequence with a temporal resolution of approximately 1.5 seconds. Before each dynamic sequence, static MR images were acquired with flip angles of 5°, 10°, 20°, and 30°. Both static and dynamic images were used to generate relaxation rate and baseline magnetization maps with a flip angle method. 0.1 mL/kg body weight of blood pool contrast medium was injected via a central venous catheter at a flow rate of 5 mL/s. The right hind leg was segmented in 3D into medial, cranial, lateral, and pelvic thigh muscles, lower leg, bones, skin, and fat. The arterial input function (AIF) was measured in the aorta. Perfusion of the different anatomic regions was calculated using a one- and a two-compartment model with delay- and dispersion-corrected AIFs. The F-test for model comparison was used to decide whether to use the results of the one- or two-compartment model fit. Total flow was calculated by integrating volume-weighted perfusion values over the whole measured region. The resulting values of delay, dispersion, blood volume, mean transit time, and flow were all in physiologically and physically reasonable ranges. In 107 of 160 ROIs, the blood signal was separated, using a two-compartment model, into a capillary and an arteriolar signal contribution, decided by the F-test. Overall flow in hind leg muscles, as measured by the ultrasound probe, highly correlated with total flow determined by MRI, R = 0.89 and P = 10−7. Linear regression yielded a slope of 1.2 and a y-axis intercept of 259 mL/min. The mean total volume of the investigated muscle tissue corresponds to an offset perfusion of 4.7mL/(min ⋅ 100cm3). The DCE-MRI technique presented here uses a blood pool contrast medium in combination with a two-compartment tracer kinetic model and allows absolute quantification of low-perfused non-cerebral organs such as muscles. PMID:26061498

  13. Compartment syndromes

    NASA Technical Reports Server (NTRS)

    Mubarak, S. J.; Pedowitz, R. A.; Hargens, A. R.

    1989-01-01

    The compartment syndrome is defined as a condition in which high pressure within a closed fascial space (muscle compartment) reduces capillary blood perfusion below the level necessary for tissue viability'. This condition occurs in acute and chronic (exertional) forms, and may be secondary to a variety of causes. The end-result of an extended period of elevated intramuscular pressure may be the development of irreversible tissue injury and Volkmann's contracture. The goal of treatment of the compartment syndrome is the reduction of intracompartmental pressure thus facilitating reperfusion of ischaemic tissue and this goal may be achieved by decompressive fasciotomy. Controversy exists regarding the critical pressure-time thresholds for surgical decompression and the optimal diagnostic methods of measuring intracompartmental pressures. This paper will update and review some current knowledge regarding the pathophysiology, aetiology, diagnosis, and treatment of the acute compartment syndrome.

  14. Water diffusion-exchange effect on the paramagnetic relaxation enhancement in off-resonance rotating frame

    NASA Astrophysics Data System (ADS)

    Zhang, Huiming; Xie, Yang; Ji, Tongyu

    2007-06-01

    The off-resonance rotating frame technique based on the spin relaxation properties of off-resonance T1 ρ can significantly increase the sensitivity of detecting paramagnetic labeling at high magnetic fields by MRI. However, the in vivo detectable dimension for labeled cell clusters/tissues in T1 ρ-weighted images is limited by the water diffusion-exchange between mesoscopic scale compartments. An experimental investigation of the effect of water diffusion-exchange between compartments on the paramagnetic relaxation enhancement of paramagnetic agent compartment is presented for in vitro/ in vivo models. In these models, the size of paramagnetic agent compartment is comparable to the mean diffusion displacement of water molecules during the long RF pulses that are used to generate the off-resonance rotating frame. The three main objectives of this study were: (1) to qualitatively correlate the effect of water diffusion-exchange with the RF parameters of the long pulse and the rates of water diffusion, (2) to explore the effect of water diffusion-exchange on the paramagnetic relaxation enhancement in vitro, and (3) to demonstrate the paramagnetic relaxation enhancement in vivo. The in vitro models include the water permeable dialysis tubes or water permeable hollow fibers embedded in cross-linked proteins gels. The MWCO of the dialysis tubes was chosen from 0.1 to 15 kDa to control the water diffusion rate. Thin hollow fibers were chosen to provide sub-millimeter scale compartments for the paramagnetic agents. The in vivo model utilized the rat cerebral vasculatures as a paramagnetic agent compartment, and intravascular agents (Gd-DTPA) 30-BSA were administrated into the compartment via bolus injections. Both in vitro and in vivo results demonstrate that the paramagnetic relaxation enhancement is predominant in the T1 ρ-weighted image in the presence of water diffusion-exchange. The T1 ρ contrast has substantially higher sensitivity than the conventional T1 contrast in detecting paramagnetic agents, especially at low paramagnetic agent volumetric fractions, low paramagnetic agent concentrations, and low RF amplitudes. Short pulse duration, short pulse recycle delay and efficient paramagnetic relaxation can reduce the influence of water diffusion-exchange on the paramagnetic enhancement. This study paves the way for the design of off-resonance rotating experiments to detect labeled cell clusters/tissue compartments in vivo at a sub-millimeter scale.

  15. Temperature effects on kinetics of paralytic shellfish toxin elimination in Atlantic surfclams, Spisula solidissima

    NASA Astrophysics Data System (ADS)

    Monica Bricelj, V.; Cembella, Allan D.; Laby, David

    2014-05-01

    Surfclams, Spisula solidissima, pose a particular health risk for human consumption as they are characterized by accumulation of extremely high levels of toxins associated with paralytic shellfish poisoning (PSP), slow toxin elimination and an extremely high post-ingestive capacity for toxin bioconversion. Surfclam populations experience a wide range of temperatures along the NW Atlantic continental shelf, and are undergoing range contraction that has been attributed to global warming. In this study the influence of temperature (5, 12 and 21 °C) on detoxification kinetics of individual PSP toxins in two tissue compartments of juvenile surfclams (∼35 mm shell length) was determined under controlled laboratory conditions, over prolonged (2.4 months) depuration. Clams were toxified with a representative regional Gulf of Maine isolate of the dinoflagellate Alexandrium fundyense of known toxin profile, allowing tracking of changes in toxin composition and calculated toxicity in surfclam tissues. The visceral mass detoxified at all temperatures, although toxin loss rate increased with increasing temperature. In contrast, total toxin content and calculated toxicities in other tissues remained constant or even increased during depuration, suggesting a physiological or biochemical toxin-retention mechanism in this tissue pool and temperature-independent detoxification. In vivo toxin compositional changes in surfclam tissues found in this study provide evidence of specific toxin conversion pathways, involving both reductive and decarbamoylation pathways. We conclude that such toxin biotransformations, especially in non-visceral tissues, may introduce a discrepancy in describing kinetics of total toxicity (in saxitoxin equivalents [STXeq]) of S. solidissima over prolonged detoxification. Nevertheless, use of total toxicity values generated by routine regulatory monitoring based upon mouse bioassays or calculated from chemical analytical determination of molar toxin concentrations is adequate for first-order modeling of toxin kinetics in this species. Furthermore, the differential detoxification response of viscera and other tissues in relation to temperature emphasizes the need for two-compartment modeling to describe the fate of PSP toxins in this species. Finally, key parameters were identified that may prove useful in hindcasting the timing of toxic blooms or new toxin input in deep offshore waters where routine monitoring of toxic phytoplankton is impractical.

  16. Connexin Communication Compartments and Wound Repair in Epithelial Tissue.

    PubMed

    Chanson, Marc; Watanabe, Masakatsu; O'Shaughnessy, Erin M; Zoso, Alice; Martin, Patricia E

    2018-05-03

    Epithelial tissues line the lumen of tracts and ducts connecting to the external environment. They are critical in forming an interface between the internal and external environment and, following assault from environmental factors and pathogens, they must rapidly repair to maintain cellular homeostasis. These tissue networks, that range from a single cell layer, such as in airway epithelium, to highly stratified and differentiated epithelial surfaces, such as the epidermis, are held together by a junctional nexus of proteins including adherens, tight and gap junctions, often forming unique and localised communication compartments activated for localised tissue repair. This review focuses on the dynamic changes that occur in connexins, the constituent proteins of the intercellular gap junction channel, during wound-healing processes and in localised inflammation, with an emphasis on the lung and skin. Current developments in targeting connexins as corrective therapies to improve wound closure and resolve localised inflammation are also discussed. Finally, we consider the emergence of the zebrafish as a concerted whole-animal model to study, visualise and track the events of wound repair and regeneration in real-time living model systems.

  17. A PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODEL FOR TRICHLOROETHYLENE WITH SPECIFICITY FOR THE LONG EVANS RAT

    EPA Science Inventory

    A PBPK model for TCE with specificity for the male LE rat that accurately predicts TCE tissue time-course data has not been developed, although other PBPK models for TCE exist. Development of such a model was the present aim. The PBPK model consisted of 5 compartments: fat; slowl...

  18. Oscillation mechanics of the respiratory system.

    PubMed

    Bates, Jason H T; Irvin, Charles G; Farré, Ramon; Hantos, Zoltán

    2011-07-01

    The mechanical impedance of the respiratory system defines the pressure profile required to drive a unit of oscillatory flow into the lungs. Impedance is a function of oscillation frequency, and is measured using the forced oscillation technique. Digital signal processing methods, most notably the Fourier transform, are used to calculate impedance from measured oscillatory pressures and flows. Impedance is a complex function of frequency, having both real and imaginary parts that vary with frequency in ways that can be used empirically to distinguish normal lung function from a variety of different pathologies. The most useful diagnostic information is gained when anatomically based mathematical models are fit to measurements of impedance. The simplest such model consists of a single flow-resistive conduit connecting to a single elastic compartment. Models of greater complexity may have two or more compartments, and provide more accurate fits to impedance measurements over a variety of different frequency ranges. The model that currently enjoys the widest application in studies of animal models of lung disease consists of a single airway serving an alveolar compartment comprising tissue with a constant-phase impedance. This model has been shown to fit very accurately to a wide range of impedance data, yet contains only four free parameters, and as such is highly parsimonious. The measurement of impedance in human patients is also now rapidly gaining acceptance, and promises to provide a more comprehensible assessment of lung function than parameters derived from conventional spirometry. © 2011 American Physiological Society.

  19. Quantitative nuclear magnetic resonance imaging: characterisation of experimental cerebral oedema.

    PubMed Central

    Barnes, D; McDonald, W I; Johnson, G; Tofts, P S; Landon, D N

    1987-01-01

    Magnetic resonance imaging (MRI) has been used quantitatively to define the characteristics of two different models of experimental cerebral oedema in cats: vasogenic oedema produced by cortical freezing and cytotoxic oedema induced by triethyl tin. The MRI results have been correlated with the ultrastructural changes. The images accurately delineated the anatomical extent of the oedema in the two lesions, but did not otherwise discriminate between them. The patterns of measured increase in T1' and T2' were, however, characteristic for each type of oedema, and reflected the protein content. The magnetisation decay characteristics of both normal and oedematous white matter were monoexponential for T1 but biexponential for T2 decay. The relative sizes of the two component exponentials of the latter corresponded with the physical sizes of the major tissue water compartments. Quantitative MRI data can provide reliable information about the physico-chemical environment of tissue water in normal and oedematous cerebral tissue, and are useful for distinguishing between acute and chronic lesions in multiple sclerosis. Images PMID:3572428

  20. A Monte Carlo study of macroscopic and microscopic dose descriptors for kilovoltage cellular dosimetry

    NASA Astrophysics Data System (ADS)

    Oliver, P. A. K.; Thomson, Rowan M.

    2017-02-01

    This work investigates how doses to cellular targets depend on cell morphology, as well as relations between cellular doses and doses to bulk tissues and water. Multicellular models of five healthy and cancerous soft tissues are developed based on typical values of cell compartment sizes, elemental compositions and number densities found in the literature. Cells are modelled as two concentric spheres with nucleus and cytoplasm compartments. Monte Carlo simulations are used to calculate the absorbed dose to the nucleus and cytoplasm for incident photon energies of 20-370 keV, relevant for brachytherapy, diagnostic radiology, and out-of-field radiation in higher-energy external beam radiotherapy. Simulations involving cell clusters, single cells and single nuclear cavities are carried out for cell radii between 5 and 10~μ m, and nuclear radii between 2 and 9~μ m. Seven nucleus and cytoplasm elemental compositions representative of animal cells are considered. The presence of a cytoplasm, extracellular matrix and surrounding cells can affect the nuclear dose by up to 13 % . Differences in cell and nucleus size can affect dose to the nucleus (cytoplasm) of the central cell in a cluster of 13 cells by up to 13 % (8 % ). Furthermore, the results of this study demonstrate that neither water nor bulk tissue are reliable substitutes for subcellular targets for incident photon energies  <50 keV: nuclear (cytoplasm) doses differ from dose-to-medium by up to 32 % (18 % ), and from dose-to-water by up to 21 % (8 % ). The largest differences between dose descriptors are seen for the lowest incident photon energies; differences are less than 3 % for energies ≥slant 90 keV. The sensitivity of results with regard to the parameters of the microscopic tissue structure model and cell model geometry, and the importance of the nucleus and cytoplasm as targets for radiation-induced cell death emphasize the importance of accurate models for cellular dosimetry studies.

  1. Numerical calculation on a two-step subdiffusion behavior of lateral protein movement in plasma membranes

    NASA Astrophysics Data System (ADS)

    Sumi, Tomonari; Okumoto, Atsushi; Goto, Hitoshi; Sekino, Hideo

    2017-10-01

    A two-step subdiffusion behavior of lateral movement of transmembrane proteins in plasma membranes has been observed by using single-molecule experiments. A nested double-compartment model where large compartments are divided into several smaller ones has been proposed in order to explain this observation. These compartments are considered to be delimited by membrane-skeleton "fences" and membrane-protein "pickets" bound to the fences. We perform numerical simulations of a master equation using a simple two-dimensional lattice model to investigate the heterogeneous diffusion dynamics behavior of transmembrane proteins within plasma membranes. We show that the experimentally observed two-step subdiffusion process can be described using fence and picket models combined with decreased local diffusivity of transmembrane proteins in the vicinity of the pickets. This allows us to explain the two-step subdiffusion behavior without explicitly introducing nested double compartments.

  2. 3-compartment talaporfin sodium pharmacokinetic model by optimization using fluorescence measurement data from canine skin to estimate the concentration in interstitial space

    NASA Astrophysics Data System (ADS)

    Uno, Yuko; Ogawa, Emiyu; Aiyoshi, Eitaro; Arai, Tsunenori

    2018-02-01

    We constructed the 3-compartment talaporfin sodium pharmacokinetic model for canine by an optimization using the fluorescence measurement data from canine skin to estimate the concentration in the interstitial space. It is difficult to construct the 3-compartment model consisted of plasma, interstitial space, and cell because there is a lack of the dynamic information. Therefore, we proposed the methodology to construct the 3-compartment model using the measured talaporfin sodium skin fluorescence change considering originated tissue part by a histological observation. In a canine animal experiment, the talaporfin sodium concentration time history in plasma was measured by a spectrophotometer with a prepared calibration curve. The time history of talaporfin sodium Q-band fluorescence on left femoral skin of a beagle dog excited by talaporfin sodium Soret-band of 409 nm was measured in vivo by our previously constructed measurement system. The measured skin fluorescence was classified to its source, that is, specific ratio of plasma, interstitial space, and cell. We represented differential rate equations of the talaporfin sodium concentration in plasma, interstitial space, cell. The specific ratios and a converting constant to obtain absolute value of skin concentration were arranged. Minimizing the squared error of the difference between the measured fluorescence data and calculated concentration by the conjugate gradient method in MATLAB, the rate constants in the 3-compartment model were determined. The accuracy of the fitting operation was confirmed with determination coefficient of 0.98. We could construct the 3-compartment pharmacokinetic model for canine using the measured talaporfin sodium fluorescence change from canine skin.

  3. Precise measurement of renal filtration and vascular parameters using a two-compartment model for dynamic contrast-enhanced MRI of the kidney gives realistic normal values.

    PubMed

    Tofts, Paul S; Cutajar, Marica; Mendichovszky, Iosif A; Peters, A Michael; Gordon, Isky

    2012-06-01

    To model the uptake phase of T(1)-weighted DCE-MRI data in normal kidneys and to demonstrate that the fitted physiological parameters correlate with published normal values. The model incorporates delay and broadening of the arterial vascular peak as it appears in the capillary bed, two distinct compartments for renal intravascular and extravascular Gd tracer, and uses a small-vessel haematocrit value of 24%. Four physiological parameters can be estimated: regional filtration K ( trans ) (ml min(-1) [ml tissue](-1)), perfusion F (ml min(-1) [100 ml tissue](-1)), blood volume v ( b ) (%) and mean residence time MRT (s). From these are found the filtration fraction (FF; %) and total GFR (ml min(-1)). Fifteen healthy volunteers were imaged twice using oblique coronal slices every 2.5 s to determine the reproducibility. Using parenchymal ROIs, group mean values for renal biomarkers all agreed with published values: K ( trans ): 0.25; F: 219; v ( b ): 34; MRT: 5.5; FF: 15; GFR: 115. Nominally cortical ROIs consistently underestimated total filtration (by ~50%). Reproducibility was 7-18%. Sensitivity analysis showed that these fitted parameters are most vulnerable to errors in the fixed parameters kidney T(1), flip angle, haematocrit and relaxivity. These renal biomarkers can potentially measure renal physiology in diagnosis and treatment. • Dynamic contrast-enhanced magnetic resonance imaging can measure renal function. • Filtration and perfusion values in healthy volunteers agree with published normal values. • Precision measured in healthy volunteers is between 7 and 15%.

  4. Characterization of New Zealand White Rabbit Gut-Associated Lymphoid Tissues and Use as Viral Oncology Animal Model.

    PubMed

    Haines, Robyn A; Urbiztondo, Rebeccah A; Haynes, Rashade A H; Simpson, Elaine; Niewiesk, Stefan; Lairmore, Michael D

    2016-01-01

    Rabbits have served as a valuable animal model for the pathogenesis of various human diseases, including those related to agents that gain entry through the gastrointestinal tract such as human T cell leukemia virus type 1. However, limited information is available regarding the spatial distribution and phenotypic characterization of major rabbit leukocyte populations in mucosa-associated lymphoid tissues. Herein, we describe the spatial distribution and phenotypic characterization of leukocytes from gut-associated lymphoid tissues (GALT) from 12-week-old New Zealand White rabbits. Our data indicate that rabbits have similar distribution of leukocyte subsets as humans, both in the GALT inductive and effector sites and in mesenteric lymph nodes, spleen, and peripheral blood. GALT inductive sites, including appendix, cecal tonsil, Peyer's patches, and ileocecal plaque, had variable B cell/T cell ratios (ranging from 4.0 to 0.8) with a predominance of CD4 T cells within the T cell population in all four tissues. Intraepithelial and lamina propria compartments contained mostly T cells, with CD4 T cells predominating in the lamina propria compartment and CD8 T cells predominating in the intraepithelial compartment. Mesenteric lymph node, peripheral blood, and splenic samples contained approximately equal percentages of B cells and T cells, with a high proportion of CD4 T cells compared with CD8 T cells. Collectively, our data indicate that New Zealand White rabbits are comparable with humans throughout their GALT and support future studies that use the rabbit model to study human gut-associated disease or infectious agents that gain entry by the oral route. © The Author 2016. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Circulation and metabolic rates in a natural hibernator: an integrative physiological model

    PubMed Central

    Nelson, Bethany T.; Andrews, Matthew T.

    2010-01-01

    Small hibernating mammals show regular oscillations in their heart rate and body temperature throughout the winter. Long periods of torpor are abruptly interrupted by arousals with heart rates that rapidly increase from 5 beats/min to over 400 beats/min and body temperatures that increase by ∼30°C only to drop back into the hypothermic torpid state within hours. Surgically implanted transmitters were used to obtain high-resolution electrocardiogram and body temperature data from hibernating thirteen-lined ground squirrels (Spermophilus tridecemlineatus). These data were used to construct a model of the circulatory system to gain greater understanding of these rapid and extreme changes in physiology. Our model provides estimates of metabolic rates during the torpor-arousal cycles in different model compartments that would be difficult to measure directly. In the compartment that models the more metabolically active tissues and organs (heart, brain, liver, and brown adipose tissue) the peak metabolic rate occurs at a core body temperature of 19°C approximately midway through an arousal. The peak metabolic rate of the active tissues is nine times the normothermic rate after the arousal is complete. For the overall metabolic rate in all tissues, the peak-to-resting ratio is five. This value is high for a rodent, which provides evidence for the hypothesis that the arousal from torpor is limited by the capabilities of the cardiovascular system. PMID:20844258

  6. DISTING: A web application for fast algorithmic computation of alternative indistinguishable linear compartmental models.

    PubMed

    Davidson, Natalie R; Godfrey, Keith R; Alquaddoomi, Faisal; Nola, David; DiStefano, Joseph J

    2017-05-01

    We describe and illustrate use of DISTING, a novel web application for computing alternative structurally identifiable linear compartmental models that are input-output indistinguishable from a postulated linear compartmental model. Several computer packages are available for analysing the structural identifiability of such models, but DISTING is the first to be made available for assessing indistinguishability. The computational algorithms embedded in DISTING are based on advanced versions of established geometric and algebraic properties of linear compartmental models, embedded in a user-friendly graphic model user interface. Novel computational tools greatly speed up the overall procedure. These include algorithms for Jacobian matrix reduction, submatrix rank reduction, and parallelization of candidate rank computations in symbolic matrix analysis. The application of DISTING to three postulated models with respectively two, three and four compartments is given. The 2-compartment example is used to illustrate the indistinguishability problem; the original (unidentifiable) model is found to have two structurally identifiable models that are indistinguishable from it. The 3-compartment example has three structurally identifiable indistinguishable models. It is found from DISTING that the four-compartment example has five structurally identifiable models indistinguishable from the original postulated model. This example shows that care is needed when dealing with models that have two or more compartments which are neither perturbed nor observed, because the numbering of these compartments may be arbitrary. DISTING is universally and freely available via the Internet. It is easy to use and circumvents tedious and complicated algebraic analysis previously done by hand. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Kinetic Modelling of Infection Tracers [18F]FDG, [68Ga]Ga-Citrate, [11C]Methionine, and [11C]Donepezil in a Porcine Osteomyelitis Model.

    PubMed

    Jødal, Lars; Jensen, Svend B; Nielsen, Ole L; Afzelius, Pia; Borghammer, Per; Alstrup, Aage K O; Hansen, Søren B

    2017-01-01

    Positron emission tomography (PET) is increasingly applied for infection imaging using [ 18 F]FDG as tracer, but uptake is unspecific. The present study compares the kinetics of [ 18 F]FDG and three other PET tracers with relevance for infection imaging. A juvenile porcine osteomyelitis model was used. Eleven pigs underwent PET/CT with 60-minute dynamic PET imaging of [ 18 F]FDG, [ 68 Ga]Ga-citrate, [ 11 C]methionine, and/or [ 11 C]donepezil, along with blood sampling. For infectious lesions, kinetic modelling with one- and two-tissue-compartment models was conducted for each tracer. Irreversible uptake was found for [ 18 F]FDG and [ 68 Ga]Ga-citrate; reversible uptake was found for [ 11 C]methionine (two-tissue model) and [ 11 C]donepezil (one-tissue model). The uptake rate for [ 68 Ga]Ga-citrate was slow and diffusion-limited. For the other tracers, the uptake rate was primarily determined by perfusion (flow-limited uptake). Net uptake rate for [ 18 F]FDG and distribution volume for [ 11 C]methionine were significantly higher for infectious lesions than for correspondingly noninfected tissue. For [ 11 C]donepezil in pigs, labelled metabolite products appeared to be important for the analysis. The kinetics of the four studied tracers in infection was characterized. For clinical applications, [ 18 F]FDG remains the first-choice PET tracer. [ 11 C]methionine may have a potential for detecting soft tissue infections. [ 68 Ga]Ga-citrate and [ 11 C]donepezil were not found useful for imaging of osteomyelitis.

  8. Modeling of the contrast-enhanced perfusion test in liver based on the multi-compartment flow in porous media.

    PubMed

    Rohan, Eduard; Lukeš, Vladimír; Jonášová, Alena

    2018-01-24

    The paper deals with modeling the liver perfusion intended to improve quantitative analysis of the tissue scans provided by the contrast-enhanced computed tomography (CT). For this purpose, we developed a model of dynamic transport of the contrast fluid through the hierarchies of the perfusion trees. Conceptually, computed time-space distributions of the so-called tissue density can be compared with the measured data obtained from CT; such a modeling feedback can be used for model parameter identification. The blood flow is characterized at several scales for which different models are used. Flows in upper hierarchies represented by larger branching vessels are described using simple 1D models based on the Bernoulli equation extended by correction terms to respect the local pressure losses. To describe flows in smaller vessels and in the tissue parenchyma, we propose a 3D continuum model of porous medium defined in terms of hierarchically matched compartments characterized by hydraulic permeabilities. The 1D models corresponding to the portal and hepatic veins are coupled with the 3D model through point sources, or sinks. The contrast fluid saturation is governed by transport equations adapted for the 1D and 3D flow models. The complex perfusion model has been implemented using the finite element and finite volume methods. We report numerical examples computed for anatomically relevant geometries of the liver organ and of the principal vascular trees. The simulated tissue density corresponding to the CT examination output reflects a pathology modeled as a localized permeability deficiency.

  9. A physiological pharmacokinetic model describing the disposition of lycopene in healthy men.

    PubMed

    Diwadkar-Navsariwala, Veda; Novotny, Janet A; Gustin, David M; Sosman, Jeffery A; Rodvold, Keith A; Crowell, James A; Stacewicz-Sapuntzakis, Maria; Bowen, Phyllis E

    2003-10-01

    A physiological pharmacokinetic model was developed to describe the disposition of lycopene, delivered as a tomato beverage formulation in five graded doses (10, 30, 60, 90, or 120 mg), for a phase I study in healthy male subjects (five per dose). Blood was collected before dose administration (0 h) and at scheduled intervals until 672 h. Serum concentrations of carotenoids and vitamins were measured by high performance liquid chromatography analysis. The model was comprised of seven compartments: gastrointestinal tract, enterocytes, chylomicrons, plasma lipoproteins, fast-turnover liver, slow-turnover tissues, and a delay compartment before the enterocytes. As predicted, the percent absorption at the 10 mg dose (33.9 +/- 8.1%) was significantly greater than at the higher doses; however, the amount of lycopene absorbed (mg) was not statistically different (mean: 4.69 +/- 0.55 mg) between doses, suggesting a possible saturation of absorptive mechanisms. The slow-turnover tissue compartment served as a slow-depleting reservoir for lycopene, and the liver represented the fast-turnover pool. Independent of dose, 80% of the subjects absorbed less than 6 mg of lycopene. This may have important implications for planning clinical trials with pharmacological doses of lycopene in cancer control and prevention if absorption saturation occurs at levels that are already being consumed in the population.

  10. Gamma time-dependency in Blaxter's compartmental model.

    NASA Technical Reports Server (NTRS)

    Matis, J. H.

    1972-01-01

    A new two-compartment model for the passage of particles through the gastro-intestinal tract of ruminants is proposed. In this model, a gamma distribution of lifetimes is introduced in the first compartment; thereby, passage from that compartment becomes time-dependent. This modification is strongly suggested by the physical alteration which certain substances, e.g. hay particles, undergo in the digestive process. The proposed model is applied to experimental data.

  11. A physiologically based toxicokinetic model for methylmercury in female American kestrels

    USGS Publications Warehouse

    Nichols, J.W.; Bennett, R.S.; Rossmann, R.; French, J.B.; Sappington, K.G.

    2010-01-01

    A physiologically based toxicokinetic (PBTK) model was developed to describe the uptake, distribution, and elimination of methylmercury (CH 3Hg) in female American kestrels. The model consists of six tissue compartments corresponding to the brain, liver, kidney, gut, red blood cells, and remaining carcass. Additional compartments describe the elimination of CH3Hg to eggs and growing feathers. Dietary uptake of CH 3Hg was modeled as a diffusion-limited process, and the distribution of CH3Hg among compartments was assumed to be mediated by the flow of blood plasma. To the extent possible, model parameters were developed using information from American kestrels. Additional parameters were based on measured values for closely related species and allometric relationships for birds. The model was calibrated using data from dietary dosing studies with American kestrels. Good agreement between model simulations and measured CH3Hg concentrations in blood and tissues during the loading phase of these studies was obtained by fitting model parameters that control dietary uptake of CH 3Hg and possible hepatic demethylation. Modeled results tended to underestimate the observed effect of egg production on circulating levels of CH3Hg. In general, however, simulations were consistent with observed patterns of CH3Hg uptake and elimination in birds, including the dominant role of feather molt. This model could be used to extrapolate CH 3Hg kinetics from American kestrels to other bird species by appropriate reassignment of parameter values. Alternatively, when combined with a bioenergetics-based description, the model could be used to simulate CH 3Hg kinetics in a long-term environmental exposure. ?? 2010 SETAC.

  12. Measuring Compartment Size and Gas Solubility in Marine Mammals

    DTIC Science & Technology

    2014-09-30

    analyzed by gas chromatography . Injection of the sample into the gas chromatograph is done using a sample loop to minimize volume injection error. We...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Measuring Compartment Size and Gas Solubility in Marine...study is to develop methods to estimate marine mammal tissue compartment sizes, and tissue gas solubility. We aim to improve the data available for

  13. [Biocybernetic approach to the thermometric methods of blood supply measurements of periodontal tissues].

    PubMed

    Pastusiak, J; Zakrzewski, J

    1988-11-01

    Specific biocybernetic approach to the problem of the blood supply determination of paradontium tissues by means of thermometric methods has been presented in the paper. The compartment models of the measuring procedure have been given. Dilutodynamic methology and classification has been applied. Such an approach enables to select appropriate biophysical parameters describing the state of blood supply of paradontium tissues and optimal design of transducers and measuring methods.

  14. A physiologically based pharmacokinetic model for developmental exposure to BDE-47 in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emond, Claude, E-mail: claude.emond@umontreal.c; BioSimulation Consulting Inc., Newark, DE 19711; Raymer, James H.

    2010-02-01

    Polybrominated diphenyl ethers (PBDEs) are used commercially as additive flame retardants and have been shown to transfer into environmental compartments, where they have the potential to bioaccumulate in wildlife and humans. Of the 209 possible PBDEs, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) is usually the dominant congener found in human blood and milk samples. BDE-47 has been shown to have endocrine activity and produce developmental, reproductive, and neurotoxic effects. The objective of this study was to develop a physiologically based pharmacokinetic (PBPK) model for BDE-47 in male and female (pregnant and non-pregnant) adult rats to facilitate investigations of developmental exposure. This model consistsmore » of eight compartments: liver, brain, adipose tissue, kidney, placenta, fetus, blood, and the rest of the body. Concentrations of BDE-47 from the literature and from maternal-fetal pharmacokinetic studies conducted at RTI International were used to parameterize and evaluate the model. The results showed that the model simulated BDE-47 tissue concentrations in adult male, maternal, and fetal compartments within the standard deviations of the experimental data. The model's ability to estimate BDE-47 concentrations in the fetus after maternal exposure will be useful to design in utero exposure/effect studies. This PBPK model is the first one designed for any PBDE pharmaco/toxicokinetic description. The next steps will be to expand this model to simulate BDE-47 pharmacokinetics and distributions across species (mice), and then extrapolate it to humans. After mouse and human model development, additional PBDE congeners will be incorporated into the model and simulated as a mixture.« less

  15. Stability of knee ligament complex of Thiel-embalmed cadaver compared to in vivo knee.

    PubMed

    Völlner, Florian; Pilsl, Ulrike; Craiovan, Benjamin; Zeman, Florian; Schneider, Michael; Wörner, Michael; Grifka, Joachim; Weber, Markus

    2017-07-01

    The first biomechanical evaluation of new implants is usually carried out with cadavers. Fixation of Thiel-embalmed cadavers is supposed to preserve the histological structure, colour and consistency of the tissue and has a low risk of infection and toxicity. However, the biomechanical properties of Thiel-fixated tissue are still unknown. The aim of this study was to quantify the effect of the Thiel-embalming method on the elastic properties of the ligament complex of the knee compared to in vivo knees during total knee arthroplasty. The results of biomechanical tensile tests with 10 Thiel-embalmed knees were compared with the findings of 10 patients who underwent total knee arthroplasty with a standardised knee balancer at our department. We reconstructed the force-elongation curves of the medial and lateral ligament complex and calculated the stiffness in direct correlation with overall soft tissue stability in full extension and in 90° of flexion. All curves consisted of a non-linear part at the beginning and a linear part from about 80N onwards. In full extension, median stiffness in the cadavers was 26.6N/mm for the medial compartment and 31.6N/mm for the lateral compartment. The values for in vivo were 25.7N/mm for the medial compartment and 25.3N/mm for the lateral compartment (p=0.684 for the medial compartment and p=0.247 for the lateral compartment). In 90° of flexion, median stiffness in the cadaver group was 24.7N/mm for the medial compartment and 22.2N/mm for the lateral compartment. In vivo, median stiffness was 30.3N/mm for the medial compartment and 29.2N/mm for the lateral compartment (p=0.009 for the medial compartment and p=0.143 for the lateral compartment). Stiffness of the medial and lateral ligament complex in the knee was comparable between Thiel-embalmed cadavers and in vivo patients during total knee arthroplasty. Thiel fixation seems to preserve the soft tissue properties similar to those in vivo. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Clinical anatomy of the pelvic floor.

    PubMed

    Fritsch, H; Lienemann, A; Brenner, E; Ludwikowski, B

    2004-01-01

    The study presented here comparing cross-sectional anatomy of the fetal and the adult pelvic connective tissue with the results of modern imaging techniques and actual surgical techniques shows that the classical concepts concerning the subdivision of the pelvic connective tissue and muscles need to be revised. According to clinical requirements, the subdivision of the pelvic cavity into anterior, posterior, and middle compartments is feasible. Predominating connecting tissue structures within the different compartments are: Paravisceral fat pad within the anterior compartment (Fig. 17, I), rectal adventitia or perirectal tissue within the posterior compartment (Fig. 17, II), and uterosacral ligaments within the middle compartment. The nerve-vessel guiding plate can be found in all of these compartments; it starts within the posterior compartment and it ends within the anterior one. It constitutes the morphological border between the anterior and posterior compartments in the male. This border is supplied by the uterosacral ligaments in the female. Whereas in gross anatomy no further border is discernable between anterior and posterior or middle compartment, the rectal fascia (hardly visible in embalmed cadavers) demarcates the rectal adventitia and is one of the most important pelvic structures for the surgeon. In principle, the outlined subdivision of the pelvic connective tissue is identical in the male and in the female; facts that become clear from early human life and that are already established during this period (Fig. 18). The uterus is interposed between the bladder and rectum and subdivides the pelvic peritoneum into two pouches thus establishing the only real difference between male and female pelvic cavity. The preferential direction of the pelvic connective tissue fibers is not changed by the interposition of the uterovaginal complex. The pelvic floor muscles are composed of the portions of the levator ani muscle, the muscles of the cavernous organs and the deep transverse perineal muscle in the male. The latter does not exist in the female. We have clearly shown that the different muscles can already be found in early human life and that they are never intermingled with the muscular walls of the pelvic organs. The levator ani muscle of the female, however, is intermingled with connective tissue long before the female sexual hormones exert influence. We have also shown that the distinct sexual differences within the pelvic floor muscles as well as within the sphincter muscles can already be found in early human life. Both the external urethral and the external anal sphincter muscles are not completely circular. The external anal sphincter is intimately connected with the internal sphincter as well as with the longitudinal muscle. Whereas the innervation and function of the urethral sphincter muscles are mostly clear, cloacal development, innervation, and function of all parts of anal sphincter complex are not completely clarified. As to the support of the pelvic viscera, we believe that intact pelvic floor muscles, an undisturbed topography of the pelvic organs, and an undisturbed perineum are of more importance than the so-called pelvic ligaments. Our hypothesis points to the fact that the support of pelvic viscera is multistructural. Thus in pelvic surgery, a lot of techniques have to be revised with the aim to preserve or to reconstruct all the structures mentioned. This is a multidisciplinary task that can only be solved by cooperation of morphologists, urologists, gynecologists, and coloproctologic surgeons or by creating a multidisciplinary pelvic floor specialist.

  17. Comparison of Kinetic Models for Dual-Tracer Receptor Concentration Imaging in Tumors

    PubMed Central

    Hamzei, Nazanin; Samkoe, Kimberley S; Elliott, Jonathan T; Holt, Robert W; Gunn, Jason R; Hasan, Tayyaba; Pogue, Brian W; Tichauer, Kenneth M

    2014-01-01

    Molecular differences between cancerous and healthy tissue have become key targets for novel therapeutics specific to tumor receptors. However, cancer cell receptor expression can vary within and amongst different tumors, making strategies that can quantify receptor concentration in vivo critical for the progression of targeted therapies. Recently a dual-tracer imaging approach capable of providing quantitative measures of receptor concentration in vivo was developed. It relies on the simultaneous injection and imaging of receptor-targeted tracer and an untargeted tracer (to account for non-specific uptake of the targeted tracer). Early implementations of this approach have been structured on existing “reference tissue” imaging methods that have not been optimized for or validated in dual-tracer imaging. Using simulations and mouse tumor model experimental data, the salient findings in this study were that all widely used reference tissue kinetic models can be used for dual-tracer imaging, with the linearized simplified reference tissue model offering a good balance of accuracy and computational efficiency. Moreover, an alternate version of the full two-compartment reference tissue model can be employed accurately by assuming that the K1s of the targeted and untargeted tracers are similar to avoid assuming an instantaneous equilibrium between bound and free states (made by all other models). PMID:25414912

  18. Effects of long-duration bed rest on structural compartments of m. soleus in man

    NASA Technical Reports Server (NTRS)

    Belozerova, I.; Shenkman, B.; Mazin, M.; Leblanc, A.; LeBlanc, A. D. (Principal Investigator)

    2001-01-01

    Magnetic resonance imaging (MRI), histomorphometry and electron microscopy of muscle demonstrate that long-term exposure to actual or simulated weightlessness (including head down bed rest) leads to decreased volume of antigravity muscles in mammals. In muscles interbundle space is occupied by the connective tissue. Rat studies show that hindlimb unloading induces muscle fiber atrophy along with increase in muscle non-fiber connective tissue compartment. Beside that, usually 20% of the muscle fiber volume is comprised by non-contractile (non-myofibrillar) compartment. The aim of the present study was to compare changes in muscle volume, and in muscle fiber size with alterations in myofibrillar apparatus, and in connective tissue compartment in human m. soleus under conditions of 120 day long head down bed rest (HDBR).

  19. Rice proteome database: a step toward functional analysis of the rice genome.

    PubMed

    Komatsu, Setsuko

    2005-09-01

    The technique of proteome analysis using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) has the power to monitor global changes that occur in the protein complement of tissues and subcellular compartments. In this study, the proteins of rice were cataloged, a rice proteome database was constructed, and a functional characterization of some of the identified proteins was undertaken. Proteins extracted from various tissues and subcellular compartments in rice were separated by 2D-PAGE and an image analyzer was used to construct a display of the proteins. The Rice Proteome Database contains 23 reference maps based on 2D-PAGE of proteins from various rice tissues and subcellular compartments. These reference maps comprise 13129 identified proteins, and the amino acid sequences of 5092 proteins are entered in the database. Major proteins involved in growth or stress responses were identified using the proteome approach. Some of these proteins, including a beta-tubulin, calreticulin, and ribulose-1,5-bisphosphate carboxylase/oxygenase activase in rice, have unexpected functions. The information obtained from the Rice Proteome Database will aid in cloning the genes for and predicting the function of unknown proteins.

  20. Body composition in elderly people: effect of criterion estimates on predictive equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumgartner, R.N.; Heymsfield, S.B.; Lichtman, S.

    1991-06-01

    The purposes of this study were to determine whether there are significant differences between two- and four-compartment model estimates of body composition, whether these differences are associated with aqueous and mineral fractions of the fat-free mass (FFM); and whether the differences are retained in equations for predicting body composition from anthropometry and bioelectric resistance. Body composition was estimated in 98 men and women aged 65-94 y by using a four-compartment model based on hydrodensitometry, {sup 3}H{sub 2}O dilution, and dual-photon absorptiometry. These estimates were significantly different from those obtained by using Siri's two-compartment model. The differences were associated significantly (Pmore » less than 0.0001) with variation in the aqueous fraction of FFM. Equations for predicting body composition from anthropometry and resistance, when calibrated against two-compartment model estimates, retained these systematic errors. Equations predicting body composition in elderly people should be calibrated against estimates from multicompartment models that consider variability in FFM composition.« less

  1. Clinical pharmacokinetics of the PDT photosensitizers porfimer sodium (Photofrin), 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (Photochlor) and 5-ALA-induced protoporphyrin IX.

    PubMed

    Bellnier, David A; Greco, William R; Loewen, Gregory M; Nava, Hector; Oseroff, Allan R; Dougherty, Thomas J

    2006-06-01

    Photodynamic therapy (PDT) uses a photosensitizer activated by light, in an oxygen-rich environment, to destroy malignant tumors. Clinical trials of PDT at Roswell Park Cancer Institute (RPCI) use the photosensitizers Photofrin, Photochlor, and 5-ALA-induced protoporphyrin IX (PpIX). In some studies the concentrations of photosensitizer in blood, and occasionally in tumor tissue, were obtained. Pharmacokinetic (PK) data from these individual studies were pooled and analyzed. This is the first published review to compare head-to-head the PK of Photofrin and Photochlor. Blood and tissue specimens were obtained from patients undergoing PDT at RPCI. Concentrations of Photofrin, Photochlor, and PpIX were measured using fluorescence analysis. A non-linear mixed effects modeling approach was used to analyze the PK data for Photochlor (up to 4 days post-infusion; two-compartment model) and a simpler multipatient-data-pooling approach was used to model PK data for both Photofrin and Photochlor (at least 150 days post-infusion; three-compartment models). Physiological parameters were standardized to correspond to a standard (70 kg; 1.818 m2 surface area) man to facilitate comparisons between Photofrin and Photochlor. Serum concentration-time profiles obtained for Photofrin and Photochlor showed long circulating half-lives, where both sensitizers could be found more than 3 months after intravenous infusion; however, estimated plasma clearances (standard man) were markedly smaller for Photofrin (25.8 ml/hour) than for Photochlor (84.2 ml/hour). Volumes of distribution of the central compartment (standard man) for both Photofrin and Photochlor were about the size (3.14 L, 4.29 L, respectively) of plasma volume, implying that both photosensitizers are almost 100% bound to serum components. Circulating levels of PpIX were generally quite low, falling below the level of instrument sensitivity within a few days after topical application of 5-ALA. We have modeled the PK of Photochlor and Photofrin. PK parameter estimates may, in part, explain the relatively long skin photosensitivity attributed to Photofrin but not Photochlor. Due to the potential impact and limited experimental PK data in the PDT field further clinical studies of photosensitizer kinetics in tumor and normal tissues are warranted. Copyright 2006 Wiley-Liss, Inc.

  2. Subcellular Mn compartation, anatomic and biochemical changes of two grape varieties in response to excess manganese.

    PubMed

    Yao, Yinan; Xu, Gang; Mou, Dongling; Wang, Junru; Ma, Jinbiao

    2012-09-01

    To explore the underlying mechanism for the high tolerance to excess manganese stress in the grape species (Vitis vinifera Linn), we observed the subcellular compartment of Mn element, anatomic and biochemical responses of two grape cultivars (Combier and Shuijin) under excess Mn stress in semi-controlled environmental condition. Grape species exhibited typical detoxifying or tolerant mechanism as following: first, majority of Mn element accumulated in leaf was excluded into cell wall or comparted into cell vacuole to avoid cellular Mn-toxicity; Mn and other elements were also secreted into leaf surface or deposited in vascular wall; second, only small amount of Mn was located in cellular organ, and excess Mn in chloroplast was detoxified by depositing in starch granule, which serve as a novel detoxifying strategy; additionally, the cellular Mn was further chelated by phytochelatins; third, to quench the toxic oxygen radicals, the total phenolic compounds and polyamine (putrescine and spermidine) were enhanced. Although the obvious symptom of Mn-toxicity was not detected, we observed the dessication symptom under high level of Mn treatment in the two cultivars, such as sunk stomata, thickened palisade tissue, enhanced palisade/spongy tissue ratio and abscisic acid concentration. The growth inhibition and dessication symptom in the two grape cultivars could be largely associated with osmotic stress resulted from high concentration of leaf Mn. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. α-blockade, apoptosis, and prostate shrinkage: how are they related?

    PubMed

    Chłosta, Piotr; Drewa, Tomasz; Kaplan, Steven

    2013-01-01

    The α1-adrenoreceptor antagonists, such as terazosin and doxazosin, induce prostate programmed cell death (apoptosis) within prostate epithelial and stromal cells in vitro. This treatment should cause prostate volume decrease, However, this has never been observed in clinical conditions. The aim of this paper is to review the disconnect between these two processes. PubMed and DOAJ were searched for papers related to prostate, apoptosis, and stem cell death. The following key words were used: prostate, benign prostate hyperplasia, programmed cell death, apoptosis, cell death, α1-adrenoreceptor antagonist, α-blockade, prostate epithelium, prostate stroma, stem cells, progenitors, and in vitro models. We have shown how discoveries related to stem cells can influence our understanding of α-blockade treatment for BPH patients. Prostate epithelial and mesenchymal compartments have stem (progenitors) and differentiating cells. These compartments are described in relation to experimental in vitro and in vivo settings. Apoptosis is observed within prostate tissue, but this effect has no clinical significance and cannot lead to prostate shrinkage. In part, this is due to stem cells that are responsible for prostate tissue regeneration and are resistant to apoptosis triggered by α1-receptor antagonists.

  4. Notch and affinity boundaries in Drosophila.

    PubMed

    Herranz, Héctor; Milán, Marco

    2006-02-01

    Cells in multicellular organisms often do not intermingle freely with each other. Differential cell affinities can contribute to organizing cells into different tissues. Drosophila limbs and the vertebrate central nervous system are subdivided into compartments. Cells in adjacent compartments do not mix. Cell interactions mediated by Notch-family receptors have been implicated in the specification of these compartment boundaries. Two recent reports analyze the role of the Notch signaling pathway in the generation of an affinity boundary in the Drosophila wing. The first report analyzes the connection between Notch and the actin cytoskeleton. The second report analyzes the differential requirements of Notch and the transcription factor Suppressor of Hairless in generating the affinity boundary.

  5. An electrical description of the generation of slow waves in the antrum of the guinea-pig

    PubMed Central

    Edwards, FR; Hirst, GDS

    2005-01-01

    This paper provides an electrical description of the generation of slow waves in the guinea-pig gastric antrum. A short segment of a circular smooth muscle bundle with an attached network of myenteric interstitial cells of Cajal (ICC-MY) and longitudinal muscle sheet was modelled as three electrical compartments with resistive connexions between the ICC-MY compartment and each of the smooth muscle compartments. The circular smooth muscle layer contains a proportion of intramuscular interstitial cells of Cajal (ICC-IM), responsible for the regenerative component of the slow wave. Hence the equivalent cell representing the circular muscle layer incorporated a mechanism, modelled as a two stage reaction, which produces an intracellular messenger. The first stage of the reaction is proposed to be activated in a voltage-dependent manner as described by Hodgkin and Huxley. A similar mechanism was incorporated into the equivalent cell describing the ICC-MY network. Spontaneous discrete transient depolarizations, termed unitary potentials, are detected in records taken from either bundles of circular smooth muscle containing ICC-IM or from ICC-MY. In the simulation the mean rate of discharge of unitary potentials was allowed to vary with the concentration of messenger according to a conventional dose–effect relationship. Such a mechanism, which describes regenerative potentials generated by the circular muscle layer, also simulated the plateau component of the pacemaker potential in the ICC-MY network. A voltage-sensitive membrane conductance was included in the ICC-MY compartment; this was used to describe the primary component of the pacemaker potential. The model generates a range of membrane potential changes with properties similar to those generated by the three cell types present in the intact tissue. PMID:15613372

  6. Non-invasive breast biopsy method using GD-DTPA contrast enhanced MRI series and F-18-FDG PET/CT dynamic image series

    NASA Astrophysics Data System (ADS)

    Magri, Alphonso William

    This study was undertaken to develop a nonsurgical breast biopsy from Gd-DTPA Contrast Enhanced Magnetic Resonance (CE-MR) images and F-18-FDG PET/CT dynamic image series. A five-step process was developed to accomplish this. (1) Dynamic PET series were nonrigidly registered to the initial frame using a finite element method (FEM) based registration that requires fiducial skin markers to sample the displacement field between image frames. A commercial FEM package (ANSYS) was used for meshing and FEM calculations. Dynamic PET image series registrations were evaluated using similarity measurements SAVD and NCC. (2) Dynamic CE-MR series were nonrigidly registered to the initial frame using two registration methods: a multi-resolution free-form deformation (FFD) registration driven by normalized mutual information, and a FEM-based registration method. Dynamic CE-MR image series registrations were evaluated using similarity measurements, localization measurements, and qualitative comparison of motion artifacts. FFD registration was found to be superior to FEM-based registration. (3) Nonlinear curve fitting was performed for each voxel of the PET/CT volume of activity versus time, based on a realistic two-compartmental Patlak model. Three parameters for this model were fitted; two of them describe the activity levels in the blood and in the cellular compartment, while the third characterizes the washout rate of F-18-FDG from the cellular compartment. (4) Nonlinear curve fitting was performed for each voxel of the MR volume of signal intensity versus time, based on a realistic two-compartment Brix model. Three parameters for this model were fitted: rate of Gd exiting the compartment, representing the extracellular space of a lesion; rate of Gd exiting a blood compartment; and a parameter that characterizes the strength of signal intensities. Curve fitting used for PET/CT and MR series was accomplished by application of the Levenburg-Marquardt nonlinear regression algorithm. The best-fit parameters were used to create 3D parametric images. Compartmental modeling evaluation was based on the ability of parameter values to differentiate between tissue types. This evaluation was used on registered and unregistered image series and found that registration improved results. (5) PET and MR parametric images were registered through FEM- and FFD-based registration. Parametric image registration was evaluated using similarity measurements, target registration error, and qualitative comparison. Comparing FFD and FEM-based registration results showed that the FEM method is superior. This five-step process constitutes a novel multifaceted approach to a nonsurgical breast biopsy that successfully executes each step. Comparison of this method to biopsy still needs to be done with a larger set of subject data.

  7. Applications of minimal physiologically-based pharmacokinetic models

    PubMed Central

    Cao, Yanguang

    2012-01-01

    Conventional mammillary models are frequently used for pharmacokinetic (PK) analysis when only blood or plasma data are available. Such models depend on the quality of the drug disposition data and have vague biological features. An alternative minimal-physiologically-based PK (minimal-PBPK) modeling approach is proposed which inherits and lumps major physiologic attributes from whole-body PBPK models. The body and model are represented as actual blood and tissue usually total body weight) volumes, fractions (fd) of cardiac output with Fick’s Law of Perfusion, tissue/blood partitioning (Kp), and systemic or intrinsic clearance. Analyzing only blood or plasma concentrations versus time, the minimal-PBPK models parsimoniously generate physiologically-relevant PK parameters which are more easily interpreted than those from mam-millary models. The minimal-PBPK models were applied to four types of therapeutic agents and conditions. The models well captured the human PK profiles of 22 selected beta-lactam antibiotics allowing comparison of fitted and calculated Kp values. Adding a classical hepatic compartment with hepatic blood flow allowed joint fitting of oral and intravenous (IV) data for four hepatic elimination drugs (dihydrocodeine, verapamil, repaglinide, midazolam) providing separate estimates of hepatic intrinsic clearance, non-hepatic clearance, and pre-hepatic bioavailability. The basic model was integrated with allometric scaling principles to simultaneously describe moxifloxacin PK in five species with common Kp and fd values. A basic model assigning clearance to the tissue compartment well characterized plasma concentrations of six monoclonal antibodies in human subjects, providing good concordance of predictions with expected tissue kinetics. The proposed minimal-PBPK modeling approach offers an alternative and more rational basis for assessing PK than compartmental models. PMID:23179857

  8. Matrix metalloproteinase-9 expression in the nuclear compartment of neurons and glial cells in aging and stroke.

    PubMed

    Pirici, Daniel; Pirici, Ionica; Mogoanta, Laurentiu; Margaritescu, Otilia; Tudorica, Valerica; Margaritescu, Claudiu; Ion, Daniela A; Simionescu, Cristiana; Coconu, Marieta

    2012-10-01

    Matrix metalloproteinases (MMPs) are well-recognized denominators for extracellular matrix remodeling in the pathology of both ischemic and hemorrhagic strokes. Recent data on non-nervous system tissue showed intracellular and even intranuclear localizations for different MMPs, and together with this, a plethora of new functions have been proposed for these intracellular active enzymes, but are mostly related to apoptosis induction and malign transformation. In neurons and glial cells, on human tissue, animal models and cell cultures, different active MMPs have been also proven to be located in the intra-cytoplasmic or intra-nuclear compartments, with no clear-cut function. In the present study we show for the first time on human tissue the nuclear expression of MMP-9, mainly in neurons and to a lesser extent in astrocytes. We have studied ischemic and hemorrhagic stroke patients, as well as aged control patients. Age and ischemic suffering seemed to be the best predictors for an elevated MMP-9 nuclear expression, and there was no evidence of a clear-cut extracellular proteolytic activity for this compartment, as revealed by intact vascular basement membranes and assessment of vascular densities. More, the majority of the cells expressing MMP-9 in the nuclear compartment also co-expressed activated-caspase 3, indicating a possible link between nuclear MMP-9 localization and apoptosis in neuronal and glial cells following an ischemic or hemorrhagic event. These results, besides showing for the first time the nuclear localization of MMP-9 on a large series of human stroke and aged brain tissues, raise new questions regarding the unknown spectrum of the functions MMPs in human CNS pathology. © 2011 Japanese Society of Neuropathology.

  9. Multi-Compartment T2 Relaxometry Using a Spatially Constrained Multi-Gaussian Model

    PubMed Central

    Raj, Ashish; Pandya, Sneha; Shen, Xiaobo; LoCastro, Eve; Nguyen, Thanh D.; Gauthier, Susan A.

    2014-01-01

    The brain’s myelin content can be mapped by T2-relaxometry, which resolves multiple differentially relaxing T2 pools from multi-echo MRI. Unfortunately, the conventional fitting procedure is a hard and numerically ill-posed problem. Consequently, the T2 distributions and myelin maps become very sensitive to noise and are frequently difficult to interpret diagnostically. Although regularization can improve stability, it is generally not adequate, particularly at relatively low signal to noise ratio (SNR) of around 100–200. The purpose of this study was to obtain a fitting algorithm which is able to overcome these difficulties and generate usable myelin maps from noisy acquisitions in a realistic scan time. To this end, we restrict the T2 distribution to only 3 distinct resolvable tissue compartments, modeled as Gaussians: myelin water, intra/extra-cellular water and a slow relaxing cerebrospinal fluid compartment. We also impose spatial smoothness expectation that volume fractions and T2 relaxation times of tissue compartments change smoothly within coherent brain regions. The method greatly improves robustness to noise, reduces spatial variations, improves definition of white matter fibers, and enhances detection of demyelinating lesions. Due to efficient design, the additional spatial aspect does not cause an increase in processing time. The proposed method was applied to fast spiral acquisitions on which conventional fitting gives uninterpretable results. While these fast acquisitions suffer from noise and inhomogeneity artifacts, our preliminary results indicate the potential of spatially constrained 3-pool T2 relaxometry. PMID:24896833

  10. Predictable "individual differences" in uptake and excretion of gases and lipid soluble vapours simulation study.

    PubMed Central

    Fiserova-Bergerova, V; Vlach, J; Cassady, J C

    1980-01-01

    A five-compartment pharmacokinetic model with two excretory pathways, exhalation and metabolism, based on first order kinetics is used to outline the effect of body build, pulmonary ventilation, and lipid content in blood on uptake, distribution, and clearance of low solubility gases and lipid soluble vapours during and after exposure. The model shows the extent that individual differences have on altering uptake and distribution, with consequent changes in blood concentration, rate of excretion, and toxicity, even when variations in these parameters are within physiological ranges. The model is also used to describe the concentration variation of inhaled substances in tissues of subjects exposed to concentrations with permitted excursions. During the same course of exposure, the tissue concentrations of low solubility gases fluctuate much more than tissue concentrations of lipid soluble vapours. The fluctuation is reduced by metabolism of inhaled substance. These conclusions are recommended for consideration whenever evaluating the effect of excursions above the threshold limit values used in the control of industrial exposures (by excursion factors). PMID:7370192

  11. Isolation of the Lateral Border Recycling Compartment using a diaminobenzidine-induced density shift

    PubMed Central

    Sullivan, David P.; Rüffer, Claas; Muller, William A.

    2014-01-01

    The migration of leukocytes across the endothelium and into tissue is critical to mounting an inflammatory response. The Lateral Border Recycling Compartment (LBRC), a complex vesicular-tubule invagination of the plasma membrane found at endothelial cell borders, plays an important role in the this process. Although a few proteins have been shown to be present in the LBRC, no unique marker is known. Here we detail methods that can be used to characterize a subcellular compartment that lacks an identifying marker. Initial characterization of the LBRC was performed using standard subcellular fractionation with sucrose gradients and took advantage of the observation that the compartment migrated at a lower density than other membrane compartments. To isolate larger quantities of the compartment, we modified a classic technique known as a diaminobenzidine (DAB)-induced density shift. The DAB-induced density shift allowed for specific isolation of membranes labeled with HRP conjugated antibody. Because the LBRC could be differentially labeled at 4°C and 37°C, we were able to identify proteins that are enriched in the compartment, despite lacking a unique marker. These methods serve as a model to others studying poorly characterized compartments and organelles and are applicable to a wide variety of biological systems. PMID:24915828

  12. Assessment of mercury and selenium tissular concentrations and total mercury body burden in 6 Steller sea lion pups from the Aleutian Islands.

    PubMed

    Correa, Lucero; Rea, Lorrie D; Bentzen, Rebecca; O'Hara, Todd M

    2014-05-15

    Concentrations of total mercury ([THg]) and selenium ([TSe]) were measured in several tissue compartments in Steller sea lion (Eumetopias jubatus) pups; in addition we determined specific compartment and body burdens of THg. Compartmental and body burdens were calculated by multiplying specific compartment fresh weight by the [THg] (summing compartment burdens equals body burden). In all 6 pup tissue sets (1) highest [THg] was in hair, (2) lowest [THg] was in bone, and (3) pelt, muscle and liver burdens contributed the top three highest percentages of THg body burden. In 5 of 6 pups the Se:Hg molar ratios among compartments ranged from 0.9 to 43.0. The pup with the highest hair [THg] had Se:Hg molar ratios in 9 of 14 compartments that were ⩽ 0.7 potentially indicating an inadequate [TSe] relative to [THg]. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Bioavailability of a Lipidic Formulation of Curcumin in Healthy Human Volunteers

    PubMed Central

    Pawar, Yogesh B.; Munjal, Bhushan; Arora, Saurabh; Karwa, Manoj; Kohli, Gunjan; Paliwal, Jyoti K.; Bansal, Arvind K.

    2012-01-01

    Numerous publications have reported the significant pharmacodynamic activity of Curcumin (CRM) despite low or undetectable levels in plasma. The objective of the present study was to perform a detailed pharmacokinetic evaluation of CRM after the oral administration of a highly bioavailable lipidic formulation of CRM (CRM-LF) in human subjects. Cmax, Tmax and AUC0–∞ were found to be 183.35 ± 37.54 ng/mL, 0.60 ± 0.05 h and 321.12 ± 25.55 ng/mL respectively, at a dose of 750 mg. The plasma profile clearly showed three distinct phases, viz., absorption, distribution and elimination. A close evaluation of the primary pharmacokinetic parameters provided valuable insight into the behavior of the CRM after absorption by CRM-LF. CRM-LF showed a lag time (Tlag) of 0.18 h (around 12 min). Pharmacokinetic modeling revealed that CRM-LF followed a two-compartment model with first order absorption, lag time and first order elimination. A high absorption rate constant (K01, 4.51/h) signifies that CRM-LF ensured rapid absorption of the CRM into the central compartment. This was followed by the distribution of CRM from the central to peripheral compartment (K12, 2.69/h). The rate of CRM transfer from the peripheral to central compartment (K21, 0.15/h) was slow. This encourages higher tissue levels of CRM as compared with plasma levels. The study provides an explanation of the therapeutic efficacy of CRM, despite very low/undetectable levels in the plasma. PMID:24300368

  14. Physiologically based pharmacokinetic model for quinocetone in pigs and extrapolation to mequindox.

    PubMed

    Zhu, Xudong; Huang, Lingli; Xu, Yamei; Xie, Shuyu; Pan, Yuanhu; Chen, Dongmei; Liu, Zhenli; Yuan, Zonghui

    2017-02-01

    Physiologically based pharmacokinetic (PBPK) models are scientific methods used to predict veterinary drug residues that may occur in food-producing animals, and which have powerful extrapolation ability. Quinocetone (QCT) and mequindox (MEQ) are widely used in China for the prevention of bacterial infections and promoting animal growth, but their abuse causes a potential threat to human health. In this study, a flow-limited PBPK model was developed to simulate simultaneously residue depletion of QCT and its marker residue dideoxyquinocetone (DQCT) in pigs. The model included compartments for blood, liver, kidney, muscle and fat and an extra compartment representing the other tissues. Physiological parameters were obtained from the literature. Plasma protein binding rates, renal clearances and tissue/plasma partition coefficients were determined by in vitro and in vivo experiments. The model was calibrated and validated with several pharmacokinetic and residue-depletion datasets from the literature. Sensitivity analysis and Monte Carlo simulations were incorporated into the PBPK model to estimate individual variation of residual concentrations. The PBPK model for MEQ, the congener compound of QCT, was built through cross-compound extrapolation based on the model for QCT. The QCT model accurately predicted the concentrations of QCT and DQCT in various tissues at most time points, especially the later time points. Correlation coefficients between predicted and measured values for all tissues were greater than 0.9. Monte Carlo simulations showed excellent consistency between estimated concentration distributions and measured data points. The extrapolation model also showed good predictive power. The present models contribute to improve the residue monitoring systems of QCT and MEQ, and provide evidence of the usefulness of PBPK model extrapolation for the same kinds of compounds.

  15. Understanding the in vivo uptake kinetics of a phosphatidylethanolamine-binding agent 99mTc-Duramycin

    PubMed Central

    Audi, Said; Li, Zhixin; Capacete, Joseph; Liu, Yu; Fang, Wei; Shu, Laura G.; Zhao, Ming

    2013-01-01

    Introduction 99mTc-Duramycin is a peptide-based molecular probe that binds specifically to phosphatidylethanolamine (PE). The goal was to characterize the kinetics of molecular interactions between 99mTc-Duramycin and the target tissue. Methods High level of accessible PE is induced in cardiac tissues by myocardial ischemia (30 min) and reperfusion (120 min) in Sprague Dawley rats. Target binding and biodistribution of 99mTc-duramycin was captured using SPECT/CT. To quantify the binding kinetics, the presence of radioactivity in ischemic versus normal cardiac tissues was measured by gamma counting at 3, 10, 20, 60 and 180 min after injection. A partially inactivated form of 99mTc-Duramycin was analyzed in the same fashion. A compartment model was developed to quantify the uptake kinetics of 99mTc-Duramycin in normal and ischemic myocardial tissue. Results 99mTc-duramycin binds avidly to the damaged tissue with a high target-to-background radio. Compartment modeling shows that accessibility of binding sites in myocardial tissue to 99mTc-Duramycin is not a limiting factor and the rate constant of target binding in the target tissue is at 2.2 ml/nmol/min/g. The number of available binding sites for 99mTc-Duramycin in ischemic myocardium was estimated at 0.14 nmol/g. Covalent modification of D15 resulted in a 9 fold reduction in binding affinity. Conclusion 99mTc-Duramycin accumulates avidly in target tissues in a PE-dependent fashion. Model results reflect an efficient uptake mechanism, consistent with the low molecular weight of the radiopharmaceutical and the relatively high density of available binding sites. These data help better define the imaging utilities of 99mTc-Duramycin as a novel PE-binding agent. PMID:22534031

  16. Population pharmacokinetic analysis of clopidogrel in healthy Jordanian subjects with emphasis optimal sampling strategy.

    PubMed

    Yousef, A M; Melhem, M; Xue, B; Arafat, T; Reynolds, D K; Van Wart, S A

    2013-05-01

    Clopidogrel is metabolized primarily into an inactive carboxyl metabolite (clopidogrel-IM) or to a lesser extent an active thiol metabolite. A population pharmacokinetic (PK) model was developed using NONMEM(®) to describe the time course of clopidogrel-IM in plasma and to design a sparse-sampling strategy to predict clopidogrel-IM exposures for use in characterizing anti-platelet activity. Serial blood samples from 76 healthy Jordanian subjects administered a single 75 mg oral dose of clopidogrel were collected and assayed for clopidogrel-IM using reverse phase high performance liquid chromatography. A two-compartment (2-CMT) PK model with first-order absorption and elimination plus an absorption lag-time was evaluated, as well as a variation of this model designed to mimic enterohepatic recycling (EHC). Optimal PK sampling strategies (OSS) were determined using WinPOPT based upon collection of 3-12 post-dose samples. A two-compartment model with EHC provided the best fit and reduced bias in C(max) (median prediction error (PE%) of 9.58% versus 12.2%) relative to the basic two-compartment model, AUC(0-24) was similar for both models (median PE% = 1.39%). The OSS for fitting the two-compartment model with EHC required the collection of seven samples (0.25, 1, 2, 4, 5, 6 and 12 h). Reasonably unbiased and precise exposures were obtained when re-fitting this model to a reduced dataset considering only these sampling times. A two-compartment model considering EHC best characterized the time course of clopidogrel-IM in plasma. Use of the suggested OSS will allow for the collection of fewer PK samples when assessing clopidogrel-IM exposures. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Measurement of compartment elasticity using pressure related ultrasound: a method to identify patients with potential compartment syndrome.

    PubMed

    Sellei, R M; Hingmann, S J; Kobbe, P; Weber, C; Grice, J E; Zimmerman, F; Jeromin, S; Gansslen, A; Hildebrand, F; Pape, H C

    2015-01-01

    PURPOSE OF THE STUDY Decision-making in treatment of an acute compartment syndrome is based on clinical assessment, supported by invasive monitoring. Thus, evolving compartment syndrome may require repeated pressure measurements. In suspected cases of potential compartment syndromes clinical assessment alone seems to be unreliable. The objective of this study was to investigate the feasibility of a non-invasive application estimating whole compartmental elasticity by ultrasound, which may improve accuracy of diagnostics. MATERIAL AND METHODS In an in-vitro model, using an artificial container simulating dimensions of the human anterior tibial compartment, intracompartmental pressures (p) were raised subsequently up to 80 mm Hg by infusion of saline solution. The compartmental depth (mm) in the cross-section view was measured before and after manual probe compression (100 mm Hg) upon the surface resulting in a linear compartmental displacement (Δd). This was repeated at rising compartmental pressures. The resulting displacements were related to the corresponding intra-compartmental pressures simulated in our model. A hypothesized relationship between pressures related compartmental displacement and the elasticity at elevated compartment pressures was investigated. RESULTS With rising compartmental pressures, a non-linear, reciprocal proportional relation between the displacement (mm) and the intra-compartmental pressure (mm Hg) occurred. The Pearson's coefficient showed a high correlation (r2 = -0.960). The intraobserver reliability value kappa resulted in a statistically high reliability (κ = 0.840). The inter-observer value indicated a fair reliability (κ = 0.640). CONCLUSIONS Our model reveals that a strong correlation between compartmental strain displacements assessed by ultrasound and the intra-compartmental pressure changes occurs. Further studies are required to prove whether this assessment is transferable to human muscle tissue. Determining the complete compartmental elasticity by ultrasound enhancement, this application may improve detection of early signs of potential compartment syndrome. Key words: compartment syndrome, intra-compartmental pressure, non-invasive diagnostic, elasticity measurement, elastography.

  18. Temperature-controlled radiofrequency ablation of different tissues using two-compartment models.

    PubMed

    Singh, Sundeep; Repaka, Ramjee

    2016-08-30

    This study aims to analyse the efficacy of temperature-controlled radiofrequency ablation (RFA) in different tissues. A three-dimensional, 12 cm cubical model representing the healthy tissue has been studied in which spherical tumour of 2.5 cm has been embedded. Different body sites considered in the study are liver, kidney, lung and breast. The thermo-electric analysis has been performed to estimate the temperature distribution and ablation volume. A programmable temperature-controlled RFA has been employed by incorporating the closed-loop feedback PID controller. The model fidelity and integrity have been evaluated by comparing the numerical results with the experimental in vitro results obtained during RFA of polyacrylamide tissue-mimicking phantom gel. The results revealed that significant variations persist among the input voltage requirements and the temperature distributions within different tissues of interest. The highest ablation volume has been produced in hypovascular lungs whereas least ablation volume has been produced in kidney being a highly perfused tissue. The variation in optimal treatment time for complete necrosis of tumour along with quantification of damage to the surrounding healthy tissue has also been reported. The results show that the surrounding tissue environment significantly affects the ablation volume produced during RFA. The optimal treatment time for complete tumour ablation can play a critical role in minimising the damage to the surrounding healthy tissue and ensuring safe and risk free application of RFA. The obtained results emphasise the need for developing organ-specific clinical protocols and systems during RFA of tumour.

  19. A COMPREHENSIVE INSIGHT ON OCULAR PHARMACOKINETICS

    PubMed Central

    Agrahari, Vibhuti; Mandal, Abhirup; Agrahari, Vivek; Trinh, Hoang My; Joseph, Mary; Ray, Animikh; Hadji, Hicheme; Mitra, Ranjana; Pal, Dhananjay; Mitra, Ashim K.

    2017-01-01

    Eye is a distinctive organ with protective anatomy and physiology. Several pharmacokinetics compartment model of ocular drug delivery has been developed for describing the absorption, distribution and elimination of ocular drugs in the eye. Determining pharmacokinetics parameters in ocular tissues is a major challenge because of the complex anatomy and dynamic physiological barrier of the eye. In this review, pharmacokinetics of these compartments exploring different drugs, delivery systems and routes of administration are discussed including factors affecting intraocular bioavailability. Factors such as pre-corneal fluid drainage, drug binding to tear proteins, systemic drug absorption, corneal factors, melanin binding, drug metabolism renders ocular delivery challenging and elaborated in this manuscript. Several compartment models are discussed those are developed in ocular drug delivery to study the pharmacokinetics parameters. There are several transporters present in both anterior and posterior segments of the eye which play a significant role in ocular pharmacokinetics and summarized briefly. Moreover, several ocular pharmacokinetics animal models and relevant studies are reviewed and discussed in addition to the pharmacokinetics of various ocular formulations. PMID:27798766

  20. Independent Bottlenecks Characterize Colonization of Systemic Compartments and Gut Lymphoid Tissue by Salmonella

    PubMed Central

    Lim, Chee Han; Voedisch, Sabrina; Wahl, Benjamin; Rouf, Syed Fazle; Geffers, Robert

    2014-01-01

    Vaccination represents an important instrument to control typhoid fever in humans and protects mice from lethal infection with mouse pathogenic serovars of Salmonella species. Mixed infections with tagged Salmonella can be used in combination with probabilistic models to describe the dynamics of the infection process. Here we used mixed oral infections with tagged Salmonella strains to identify bottlenecks in the infection process in naïve and vaccinated mice. We established a next generation sequencing based method to characterize the composition of tagged Salmonella strains which offers a fast and reliable method to characterise the composition of genome-tagged Salmonella strains. We show that initial colonization of Salmonella was distinguished by a non-Darwinian selection of few bacteria setting up the infection independently in gut associated lymphoid tissue and systemic compartments. Colonization of Peyer's patches fuels the sustained spread of bacteria into mesenteric lymph nodes via dendritic cells. In contrast, infection of liver and spleen originated from an independent pool of bacteria. Vaccination only moderately reduced invasion of Peyer's patches but potently uncoupled bacterial populations present in different systemic compartments. Our data indicate that vaccination differentially skews the capacity of Salmonella to colonize systemic and gut immune compartments and provide a framework for the further dissection of infection dynamics. PMID:25079958

  1. On dependency properties of the ISIs generated by a two-compartmental neuronal model.

    PubMed

    Benedetto, Elisa; Sacerdote, Laura

    2013-02-01

    One-dimensional leaky integrate and fire neuronal models describe interspike intervals (ISIs) of a neuron as a renewal process and disregarding the neuron geometry. Many multi-compartment models account for the geometrical features of the neuron but are too complex for their mathematical tractability. Leaky integrate and fire two-compartment models seem a good compromise between mathematical tractability and an improved realism. They indeed allow to relax the renewal hypothesis, typical of one-dimensional models, without introducing too strong mathematical difficulties. Here, we pursue the analysis of the two-compartment model studied by Lansky and Rodriguez (Phys D 132:267-286, 1999), aiming of introducing some specific mathematical results used together with simulation techniques. With the aid of these methods, we investigate dependency properties of ISIs for different values of the model parameters. We show that an increase of the input increases the strength of the dependence between successive ISIs.

  2. Grey and white matter differences in brain energy metabolism in first episode schizophrenia: 31P-MRS chemical shift imaging at 4 Tesla.

    PubMed

    Jensen, J Eric; Miller, Jodi; Williamson, Peter C; Neufeld, Richard W J; Menon, Ravi S; Malla, Ashok; Manchanda, Rahul; Schaefer, Betsy; Densmore, Maria; Drost, Dick J

    2006-03-31

    Altered high energy and membrane metabolism, measured with phosphorus magnetic resonance spectroscopy (31P-MRS), has been inconsistently reported in schizophrenic patients in several anatomical brain regions implicated in the pathophysiology of this illness, with little attention to the effects of brain tissue type on the results. Tissue regression analysis correlates brain tissue type to measured metabolite levels, allowing for the extraction of "pure" estimated grey and white matter compartment metabolite levels. We use this tissue analysis technique on a clinical dataset of first episode schizophrenic patients and matched controls to investigate the effect of brain tissue specificity on altered energy and membrane metabolism. In vivo brain spectra from two regions, (a) the fronto-temporal-striatal region and (b) the frontal-lobes, were analyzed from 12 first episode schizophrenic patients and 11 matched controls from a (31)P chemical shift imaging (CSI) study at 4 Tesla (T) field strength. Tissue regression analyses using voxels from each region were performed relating metabolite levels to tissue content, examining phosphorus metabolite levels in grey and white matter compartments. Compared with controls, the first episode schizophrenic patient group showed significantly increased adenosine triphosphate levels (B-ATP) in white matter and decreased B-ATP levels in grey matter in the fronto-temporal-striatal region. No significant metabolite level differences were found in grey or white matter compartments in the frontal cortex. Tissue regression analysis reveals grey and white matter specific aberrations in high-energy phosphates in first episode schizophrenia. Although past studies report inconsistent regional differences in high-energy phosphate levels in schizophrenia, the present analysis suggests more widespread differences that seem to be strongly related to tissue type. Our data suggest that differences in grey and white matter tissue content between past studies may account for some of the variance in the literature.

  3. Antiretroviral drug transporters and metabolic enzymes in human testicular tissue: potential contribution to HIV-1 sanctuary site.

    PubMed

    Huang, Yiying; Hoque, Md Tozammel; Jenabian, Mohammad-Ali; Vyboh, Kishanda; Whyte, Sana-Kay; Sheehan, Nancy L; Brassard, Pierre; Bélanger, Maud; Chomont, Nicolas; Fletcher, Courtney V; Routy, Jean-Pierre; Bendayan, Reina

    2016-07-01

    The testes are a potential viral sanctuary site for HIV-1 infection. Our study aims to provide insight into the expression and localization of key drug transporters and metabolic enzymes relevant to ART in this tissue compartment. We characterized gene and protein expression of 12 representative drug transporters and two metabolic enzymes in testicular tissue samples obtained from uninfected (n = 8) and virally suppressed HIV-1-infected subjects on ART (n = 5) and quantified antiretroviral drug concentrations in plasma and testicular tissues using LC/MS/MS from HIV-1-infected subjects. Our data demonstrate that key ABC drug transporters (permeability glycoprotein, multidrug-resistance protein 1, 2 and 4, and breast cancer resistance protein), solute carrier transporters (organic anion transporting polypeptides 1B1 and 2B1, organic anion transporter 1, concentrative nucleoside transporter 1, equilibrative nucleoside transporter 2) and cytochrome P450 metabolic enzymes (CYP3A4 and CYP2D6) previously shown to interact with many commonly used antiretroviral drugs are expressed at the mRNA and protein level in the testes of both subject groups and localize primarily at the blood-testis barrier, with no significant differences between the two groups. Furthermore, we observed that PIs known to be substrates for ATP-binding cassette membrane transporters, displayed variable testicular tissue penetration, with darunavir concentrations falling below therapeutic values. In contrast, the NRTIs emtricitabine, lamivudine and tenofovir displayed favourable tissue penetration, reaching concentrations comparable to plasma levels. We also demonstrated that nuclear receptors, peroxisome proliferator-activated receptors α and γ exhibited higher gene expression in the testicular tissue compared with pregnane X receptor and constitutive androstane receptor, suggesting a potential regulatory pathway governing drug transporter and metabolic enzyme expression in this tissue compartment. Our data suggest the testes are a complex pharmacological compartment that can restrict the distribution of certain antiretroviral drugs and potentially contribute to HIV-1 persistence. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Optimization of the method for assessment of brain perfusion in humans using contrast-enhanced reflectometry: multidistance time-resolved measurements

    NASA Astrophysics Data System (ADS)

    Milej, Daniel; Janusek, Dariusz; Gerega, Anna; Wojtkiewicz, Stanislaw; Sawosz, Piotr; Treszczanowicz, Joanna; Weigl, Wojciech; Liebert, Adam

    2015-10-01

    The aim of the study was to determine optimal measurement conditions for assessment of brain perfusion with the use of optical contrast agent and time-resolved diffuse reflectometry in the near-infrared wavelength range. The source-detector separation at which the distribution of time of flights (DTOF) of photons provided useful information on the inflow of the contrast agent to the intracerebral brain tissue compartments was determined. Series of Monte Carlo simulations was performed in which the inflow and washout of the dye in extra- and intracerebral tissue compartments was modeled and the DTOFs were obtained at different source-detector separations. Furthermore, tests on diffuse phantoms were carried out using a time-resolved setup allowing the measurement of DTOFs at 16 source-detector separations. Finally, the setup was applied in experiments carried out on the heads of adult volunteers during intravenous injection of indocyanine green. Analysis of statistical moments of the measured DTOFs showed that the source-detector separation of 6 cm is recommended for monitoring of inflow of optical contrast to the intracerebral brain tissue compartments with the use of continuous wave reflectometry, whereas the separation of 4 cm is enough when the higher-order moments of DTOFs are available.

  5. Acute compartment syndrome of hand resulting from radiographic contrast iohexol extravasation

    PubMed Central

    Vinod, Kolar Vishwanath; Shravan, Rampelli; Shrivarthan, Radhakrishnan; Radhakrishna, Pedapati; Dutta, Tarun Kumar

    2016-01-01

    Intravenous (IV) administration of iodinated contrast agents (ICAs) is frequently employed for image enhancement while performing radiographic studies such as computed tomography and angiography. Complications related to IV administration of ICAs such as immediate hypersensitivity reactions and nephrotoxicity are well-known. However, severe skin and soft tissue injuries and acute compartment syndrome resulting from contrast extravasation are rare. This is especially so with small volume extravasation of a low osmolar, nonionic ICA such as iohexol. Here, we report a 63-year-old woman who developed acute compartment syndrome of left hand following iohexol extravasation and had swelling, blistering, cutaneous and soft tissue necrosis. She underwent fasciotomy for acute compartment syndrome of hand and later surgical debridement of necrotic skin and soft tissues was carried out. Clinical pharmacology of ICAs, extravasation injuries following their IV administration, their management and measures to reduce them are discussed in brief. PMID:27127398

  6. Acute compartment syndrome of hand resulting from radiographic contrast iohexol extravasation.

    PubMed

    Vinod, Kolar Vishwanath; Shravan, Rampelli; Shrivarthan, Radhakrishnan; Radhakrishna, Pedapati; Dutta, Tarun Kumar

    2016-01-01

    Intravenous (IV) administration of iodinated contrast agents (ICAs) is frequently employed for image enhancement while performing radiographic studies such as computed tomography and angiography. Complications related to IV administration of ICAs such as immediate hypersensitivity reactions and nephrotoxicity are well-known. However, severe skin and soft tissue injuries and acute compartment syndrome resulting from contrast extravasation are rare. This is especially so with small volume extravasation of a low osmolar, nonionic ICA such as iohexol. Here, we report a 63-year-old woman who developed acute compartment syndrome of left hand following iohexol extravasation and had swelling, blistering, cutaneous and soft tissue necrosis. She underwent fasciotomy for acute compartment syndrome of hand and later surgical debridement of necrotic skin and soft tissues was carried out. Clinical pharmacology of ICAs, extravasation injuries following their IV administration, their management and measures to reduce them are discussed in brief.

  7. Reasons for and Against Use of Non-absorbable, Synthetic Mesh During Pelvic Organ Prolapse Repair, According to the Prolapsed Compartment.

    PubMed

    Kontogiannis, Stavros; Goulimi, Evangelia; Giannitsas, Konstantinos

    2017-01-01

    Awareness and reporting of mesh-related complications of pelvic organ prolapse repairs have increased in recent years. As a result, deciding whether to use a mesh or not has become a difficult task for urogynecologists. Our aim was to summarize reasons for and against the use of mesh in prolapse repair based on a review of relevant literature. Scopus and PubMed databases were searched for papers reporting on the efficacy and safety of native tissue versus non-absorbable, synthetic mesh prolapse repairs. Randomized controlled trials, systematic reviews, and meta-analyses were included. Evidence is presented for each vaginal compartment separately. In the anterior compartment, mesh repairs seem to offer clearly superior efficacy and durability of results compared to native tissue repairs, but with an equally clear increase in complication rates. In the isolated posterior compartment prolapse, high-quality evidence is sparse. As far as the apical compartment is concerned, sacrocolpopexy is the most efficacious, yet the most invasive procedure. Data on the comparison of transvaginal mesh versus native tissue repairs of the apical compartment are somewhat ambiguous. Given the inevitable coexistence of advantages and disadvantages of mesh use in each of the prolapsed vaginal compartments, an individualized treatment decision, based on weighing risks against benefits for each patient, seems to be the most rational approach.

  8. ABCD2 identifies a subclass of peroxisomes in mouse adipose tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaoxi, E-mail: xiaoxi.liu@uky.edu; Liu, Jingjing, E-mail: jingjing.liu0@gmail.com; Lester, Joshua D., E-mail: joshua.lester@uky.edu

    2015-01-02

    Highlights: • We examined the D2 localization and the proteome of D2-containing compartment in mouse adipose tissue. • We confirmed the presence of D2 on a subcellular compartment that has typical structure as a microperoxisome. • We demonstrated the scarcity of peroxisome markers on D2-containing compartment. • The D2-containing compartment may be a subpopulation of peroxisome in mouse adipose tissue. • Proteomic data suggests potential association between D2-containing compartment and mitochondria and ER. - Abstract: ATP-binding cassette transporter D2 (D2) is an ABC half transporter that is thought to promote the transport of very long-chain fatty acyl-CoAs into peroxisomes. Bothmore » D2 and peroxisomes increase during adipogenesis. Although peroxisomes are essential to both catabolic and anabolic lipid metabolism, their function, and that of D2, in adipose tissues remain largely unknown. Here, we investigated the D2 localization and the proteome of D2-containing organelles, in adipose tissue. Centrifugation of mouse adipose homogenates generated a fraction enriched with D2, but deficient in peroxisome markers including catalase, PEX19, and ABCD3 (D3). Electron microscopic imaging of this fraction confirmed the presence of D2 protein on an organelle with a dense matrix and a diameter of ∼200 nm, the typical structure and size of a microperoxisome. D2 and PEX19 antibodies recognized distinct structures in mouse adipose. Immunoisolation of the D2-containing compartment confirmed the scarcity of PEX19 and proteomic profiling revealed the presence of proteins associated with peroxisome, endoplasmic reticulum (ER), and mitochondria. D2 is localized to a distinct class of peroxisomes that lack many peroxisome proteins, and may associate physically with mitochondria and the ER.« less

  9. Ages and transit times as important diagnostics of model performance for predicting C allocation in ecosystem models

    NASA Astrophysics Data System (ADS)

    Ceballos-Núñez, Verónika; Richardson, Andrew; Sierra, Carlos

    2017-04-01

    The global carbon cycle is strongly controlled by the source/sink strength of vegetation as well as the capacity of terrestrial ecosystems to retain this carbon. However, it is uncertain how some vegetation dynamics such as the allocation of carbon to different ecosystem compartments should be represented in models. The assumptions behind model structures may result in highly divergent model predictions. Here, we asses model performance by calculating the age of the carbon in the system and in each compartment, and the overall transit time of C in the system. We used these diagnostics to assess the influence of three different carbon allocation schemes on the rates of C cycling in vegetation. First, we used published measurements of ecosystem C compartments from the Harvard Forest Environmental Measurement Site to find the best set of parameters for the different model structures. Second, we calculated C stocks, respiration fluxes, radiocarbon values, ages, and transit times. We found a good fit of the three model structures to the available data, but the time series of C in foliage and wood need to be complemented with other ecosystem compartments in order to reduce the high parameter collinearity that we observed and reduce model equifinality. Differences in model structures had a small impact on predicting ecosystem C compartments, but overall they resulted in very different predictions of age and transit time distributions. In particular, the inclusion of a storage compartment had an important impact on predicting system ages and transit times. In the case of the models with 1 or 2 storage compartments, the age of carbon in the system and in each of the compartments was distributed more towards younger ages than in the model that had no storage; the mean system age of these two models with storage was 80 years younger than in the model without storage. As expected from these age distributions, the mean transit time for the two models with storage compartments was 50 years faster than for the model without storage. These results suggest that ages and transit times, which can be indirectly measured using isotope tracers, serve as important diagnostics of model structure and could largely help to reduce uncertainties in model predictions. Furthermore, by considering age and transit times of C in vegetation compartments as distributions, not only their mean values, we obtain additional insights on the temporal dynamics of carbon use, storage, and allocation to plant parts, which not only depends on the rate at which this C is transferred in and out of the compartments, but also on the stochastic nature of the process itself.

  10. RiArsB and RiMT-11: Two novel genes induced by arsenate in arbuscular mycorrhiza.

    PubMed

    Maldonado-Mendoza, Ignacio E; Harrison, Maria J

    Plants associated with arbuscular mycorrhizal fungi (AMF) increase their tolerance to arsenic-polluted soils. This study aims to investigate the genes involved in the AMF molecular response to arsenic pollution. Genes encoding proteins involved in arsenic metabolism were identified and their expression assessed by PCR or RT-qPCR. The As-inducible gene GiArsA (R. irregularis ABC ATPase component of the ArsAB arsenite efflux pump) and two new genes, an arsenate/arsenite permease component of ArsAB (RiArsB) and a methyltransferase type 11 (RiMT-11) were induced when arsenate was added to two-compartment in vitro monoxenic cultures of R. irregularis-transformed carrot roots. RiArsB and RiMT-11 expression in extraradical hyphae in response to arsenate displayed maximum induction 4-6 h after addition of 350 μM arsenate. Their expression was also detected in colonized root tissues grown in pots, or in the root-fungus compartment of two-compartment in vitro systems. We used a Medicago truncatula double mutant (mtpt4/mtpt8) to demonstrate that RiMT-11 and RiArsB transcripts accumulate in response to the addition of arsenate but not in response to phosphate. These results suggest that these genes respond to arsenate addition regardless of non-functional Pi symbiotic transport, and that RiMT-11 may be involved in arsenate detoxification by methylation in AMF-colonized tissues. Copyright © 2017 British Mycological Society. All rights reserved.

  11. The biomechanics of leg ulceration.

    PubMed Central

    Chant, A.

    1999-01-01

    Research performed in the late 1960s, using 24Na, suggested that the perfusion of skin and subcutaneous tissues is critically dependent on the relationship between capillary (Pc) and tissue pressures (Pt). Perfusion changes differed significantly between controls and patients with venous disease and the differences could be interpreted as evidence that Pt remained high in venous diseased patients. From this starting point, a biomechanical theory for the aetiology of venous ulceration was developed and tested by measuring skin elasticity, limb cross-sectional area and laser Doppler flux. The results confirm that, modelled as a two-compartment system (vascular and interstitial fluid), forces can be demonstrated sufficient to cause intermittent capillary closure and subsequent reperfusion injury. These forces are maximal in the gaiter area, the site of most leg ulcers. Images Figure 2 Figure 4 PMID:10364960

  12. A review of recent methods for efficiently quantifying immunogold and other nanoparticles using TEM sections through cells, tissues and organs.

    PubMed

    Mayhew, Terry M; Mühlfeld, Christian; Vanhecke, Dimitri; Ochs, Matthias

    2009-04-01

    Detecting, localising and counting ultrasmall particles and nanoparticles in sub- and supra-cellular compartments are of considerable current interest in basic and applied research in biomedicine, bioscience and environmental science. For particles with sufficient contrast (e.g. colloidal gold, ferritin, heavy metal-based nanoparticles), visualization requires the high resolutions achievable by transmission electron microscopy (TEM). Moreover, if particles can be counted, their spatial distributions can be subjected to statistical evaluation. Whatever the level of structural organisation, particle distributions can be compared between different compartments within a given structure (cell, tissue and organ) or between different sets of structures (in, say, control and experimental groups). Here, a portfolio of stereology-based methods for drawing such comparisons is presented. We recognise two main scenarios: (1) section surface localisation, in which particles, exemplified by antibody-conjugated colloidal gold particles or quantum dots, are distributed at the section surface during post-embedding immunolabelling, and (2) section volume localisation (or full section penetration), in which particles are contained within the cell or tissue prior to TEM fixation and embedding procedures. Whatever the study aim or hypothesis, the methods for quantifying particles rely on the same basic principles: (i) unbiased selection of specimens by multistage random sampling, (ii) unbiased estimation of particle number and compartment size using stereological test probes (points, lines, areas and volumes), and (iii) statistical testing of an appropriate null hypothesis. To compare different groups of cells or organs, a simple and efficient approach is to compare the observed distributions of raw particle counts by a combined contingency table and chi-squared analysis. Compartmental chi-squared values making substantial contributions to total chi-squared values help identify where the main differences between distributions reside. Distributions between compartments in, say, a given cell type, can be compared using a relative labelling index (RLI) or relative deposition index (RDI) combined with a chi-squared analysis to test whether or not particles preferentially locate in certain compartments. This approach is ideally suited to analysing particles located in volume-occupying compartments (organelles or tissue spaces) or surface-occupying compartments (membranes) and expected distributions can be generated by the stereological devices of point, intersection and particle counting. Labelling efficiencies (number of gold particles per antigen molecule) in immunocytochemical studies can be determined if suitable calibration methods (e.g. biochemical assays of golds per membrane surface or per cell) are available. In addition to relative quantification for between-group and between-compartment comparisons, stereological methods also permit absolute quantification, e.g. total volumes, surfaces and numbers of structures per cell. Here, the utility, limitations and recent applications of these methods are reviewed.

  13. Time-multiplexed two-channel capacitive radiofrequency hyperthermia with nanoparticle mediation.

    PubMed

    Kim, Ki Soo; Hernandez, Daniel; Lee, Soo Yeol

    2015-10-24

    Capacitive radiofrequency (RF) hyperthermia suffers from excessive temperature rise near the electrodes and poorly localized heat transfer to the deep-seated tumor region even though it is known to have potential to cure ill-conditioned tumors. To better localize heat transfer to the deep-seated target region in which electrical conductivity is elevated by nanoparticle mediation, two-channel capacitive RF heating has been tried on a phantom. We made a tissue-mimicking phantom consisting of two compartments, a tumor-tissue-mimicking insert against uniform background agarose. The tumor-tissue-mimicking insert was made to have higher electrical conductivity than the normal-tissue-mimicking background by applying magnetic nanoparticle suspension to the insert. Two electrode pairs were attached on the phantom surface by equal-angle separation to apply RF electric field to the phantom. To better localize heat transfer to the tumor-tissue-mimicking insert, RF power with a frequency of 26 MHz was delivered to the two channels in a time-multiplexed way. To monitor the temperature rise inside the phantom, MR thermometry was performed at a 3T MRI intermittently during the RF heating. Finite-difference-time-domain (FDTD) electromagnetic and thermal simulations on the phantom model were also performed to verify the experimental results. As compared to the one-channel RF heating, the two-channel RF heating with time-multiplexed driving improved the spatial localization of heat transfer to the tumor-tissue-mimicking region in both the simulation and experiment. The two-channel RF heating also reduced the temperature rise near the electrodes significantly. Time-multiplexed two-channel capacitive RF heating has the capability to better localize heat transfer to the nanoparticle-mediated tumor region which has higher electrical conductivity than the background normal tissues.

  14. Semipermeable Hollow Fiber Phantoms for Development and Validation of Perfusion-Sensitive MR Methods and Signal Models

    PubMed Central

    Anderson, J.R.; Ackerman, J.J.H.; Garbow, J.R.

    2015-01-01

    Two semipermeable, hollow fiber phantoms for the validation of perfusion-sensitive magnetic resonance methods and signal models are described. Semipermeable hollow fibers harvested from a standard commercial hemodialysis cartridge serve to mimic tissue capillary function. Flow of aqueous media through the fiber lumen is achieved with a laboratory-grade peristaltic pump. Diffusion of water and solute species (e.g., Gd-based contrast agent) occurs across the fiber wall, allowing exchange between the lumen and the extralumenal space. Phantom design attributes include: i) small physical size, ii) easy and low-cost construction, iii) definable compartment volumes, and iv) experimental control over media content and flow rate. PMID:26167136

  15. Population Pharmacokinetic Modeling of the Unbound Levofloxacin Concentrations in Rat Plasma and Prostate Tissue Measured by Microdialysis

    PubMed Central

    Hurtado, Felipe K.; Weber, Benjamin; Derendorf, Hartmut; Hochhaus, Guenther

    2014-01-01

    Levofloxacin is a broad-spectrum fluoroquinolone used in the treatment of both acute and chronic bacterial prostatitis. Currently, the treatment of bacterial prostatitis is still difficult, especially due to the poor distribution of many antimicrobials into the prostate, thus preventing the drug to reach effective interstitial concentrations at the infection site. Newer fluoroquinolones show a greater penetration into the prostate. In the present study, we compared the unbound levofloxacin prostate concentrations measured by microdialysis to those in plasma after a 7-mg/kg intravenous bolus dose to Wistar rats. Plasma and dialysate samples were analyzed using a validated high-pressure liquid chromatography-fluorescence method. Both noncompartmental analysis (NCA) and population-based compartmental modeling (NONMEM 6) were performed. Unbound prostate tissue concentrations represented 78% of unbound plasma levels over a period of 12 h by comparing the extent of exposure (unbound AUC0–∞) of 6.4 and 4.8 h·μg/ml in plasma and tissue, respectively. A three-compartment model with simultaneous passive diffusion and saturable distribution kinetics from the prostate to the central compartment gave the best results in terms of curve fitting, precision of parameter estimates, and model stability. The following parameter values were estimated by the population model: V1 (0.38 liter; where V1 represents the volume of the central compartment), CL (0.22 liter/h), k12 (2.27 h−1), k21 (1.44 h−1), k13 (0.69 h−1), Vmax (7.19 μg/h), kM (0.35 μg/ml), V3/fuprostate (0.05 liter; where fuprostate represents the fraction unbound in the prostate), and k31 (3.67 h−1). The interindividual variability values for V1, CL, Vmax, and kM were 21, 37, 42, and 76%, respectively. Our results suggest that levofloxacin is likely to be substrate for efflux transporters in the prostate. PMID:24217697

  16. A physiologically based toxicokinetic model for lake trout (Salvelinus namaycush).

    PubMed

    Lien, G J; McKim, J M; Hoffman, A D; Jenson, C T

    2001-01-01

    A physiologically based toxicokinetic (PB-TK) model for fish, incorporating chemical exchange at the gill and accumulation in five tissue compartments, was parameterized and evaluated for lake trout (Salvelinus namaycush). Individual-based model parameterization was used to examine the effect of natural variability in physiological, morphological, and physico-chemical parameters on model predictions. The PB-TK model was used to predict uptake of organic chemicals across the gill and accumulation in blood and tissues in lake trout. To evaluate the accuracy of the model, a total of 13 adult lake trout were exposed to waterborne 1,1,2,2-tetrachloroethane (TCE), pentachloroethane (PCE), and hexachloroethane (HCE), concurrently, for periods of 6, 12, 24 or 48 h. The measured and predicted concentrations of TCE, PCE and HCE in expired water, dorsal aortic blood and tissues were generally within a factor of two, and in most instances much closer. Variability noted in model predictions, based on the individual-based model parameterization used in this study, reproduced variability observed in measured concentrations. The inference is made that parameters influencing variability in measured blood and tissue concentrations of xenobiotics are included and accurately represented in the model. This model contributes to a better understanding of the fundamental processes that regulate the uptake and disposition of xenobiotic chemicals in the lake trout. This information is crucial to developing a better understanding of the dynamic relationships between contaminant exposure and hazard to the lake trout.

  17. A human cadaver fascial compartment pressure measurement model.

    PubMed

    Messina, Frank C; Cooper, Dylan; Huffman, Gretchen; Bartkus, Edward; Wilbur, Lee

    2013-10-01

    Fresh human cadavers provide an effective model for procedural training. Currently, there are no realistic models to teach fascial compartment pressure measurement. We created a human cadaver fascial compartment pressure measurement model and studied its feasibility with a pre-post design. Three faculty members, following instructions from a common procedure textbook, used a standard handheld intra-compartment pressure monitor (Stryker(®), Kalamazoo, MI) to measure baseline pressures ("unembalmed") in the anterior, lateral, deep posterior, and superficial posterior compartments of the lower legs of a fresh human cadaver. The right femoral artery was then identified by superficial dissection, cannulated distally towards the lower leg, and connected to a standard embalming machine. After a 5-min infusion, the same three faculty members re-measured pressures ("embalmed") of the same compartments on the cannulated right leg. Unembalmed and embalmed readings for each compartment, and baseline readings for each leg, were compared using a two-sided paired t-test. The mean baseline compartment pressures did not differ between the right and left legs. Using the embalming machine, compartment pressure readings increased significantly over baseline for three of four fascial compartments; all in mm Hg (±SD): anterior from 40 (±9) to 143 (±44) (p = 0.08); lateral from 22 (±2.5) to 160 (±4.3) (p < 0.01); deep posterior from 34 (±7.9) to 161 (±15) (p < 0.01); superficial posterior from 33 (±0) to 140 (±13) (p < 0.01). We created a novel and measurable fascial compartment pressure measurement model in a fresh human cadaver using a standard embalming machine. Set-up is minimal and the model can be incorporated into teaching curricula. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Quantification of 11C-Laniquidar Kinetics in the Brain.

    PubMed

    Froklage, Femke E; Boellaard, Ronald; Bakker, Esther; Hendrikse, N Harry; Reijneveld, Jaap C; Schuit, Robert C; Windhorst, Albert D; Schober, Patrick; van Berckel, Bart N M; Lammertsma, Adriaan A; Postnov, Andrey

    2015-11-01

    Overexpression of the multidrug efflux transport P-glycoprotein may play an important role in pharmacoresistance. (11)C-laniquidar is a newly developed tracer of P-glycoprotein expression. The aim of this study was to develop a pharmacokinetic model for quantification of (11)C-laniquidar uptake and to assess its test-retest variability. Two (test-retest) dynamic (11)C-laniquidar PET scans were obtained in 8 healthy subjects. Plasma input functions were obtained using online arterial blood sampling with metabolite corrections derived from manual samples. Coregistered T1 MR images were used for region-of-interest definition. Time-activity curves were analyzed using various plasma input compartmental models. (11)C-laniquidar was metabolized rapidly, with a parent plasma fraction of 50% at 10 min after tracer injection. In addition, the first-pass extraction of (11)C-laniquidar was low. (11)C-laniquidar time-activity curves were best fitted to an irreversible single-tissue compartment (1T1K) model using conventional models. Nevertheless, significantly better fits were obtained using 2 parallel single-tissue compartments, one for parent tracer and the other for labeled metabolites (dual-input model). Robust K1 results were also obtained by fitting the first 5 min of PET data to the 1T1K model, at least when 60-min plasma input data were used. For both models, the test-retest variability of (11)C-laniquidar rate constant for transfer from arterial plasma to tissue (K1) was approximately 19%. The accurate quantification of (11)C-laniquidar kinetics in the brain is hampered by its fast metabolism and the likelihood that labeled metabolites enter the brain. Best fits for the entire 60 min of data were obtained using a dual-input model, accounting for uptake of (11)C-laniquidar and its labeled metabolites. Alternatively, K1 could be obtained from a 5-min scan using a standard 1T1K model. In both cases, the test-retest variability of K1 was approximately 19%. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  19. Soft tissue balance changes depending on joint distraction force in total knee arthroplasty.

    PubMed

    Nagai, Kanto; Muratsu, Hirotsugu; Matsumoto, Tomoyuki; Miya, Hidetoshi; Kuroda, Ryosuke; Kurosaka, Masahiro

    2014-03-01

    The influence of joint distraction force on intraoperative soft tissue balance was evaluated using Offset Repo-Tensor® for 78 knees that underwent primary posterior-stabilized total knee arthroplasty. The joint center gap and varus ligament balance were measured between osteotomized surfaces using 20, 40 and 60 lbs of joint distraction force. These values were significantly increased at extension and flexion as the distraction force increased. Furthermore, lateral compartment stiffness was significantly lower than medial compartment stiffness. Thus, larger joint distraction forces led to larger varus ligament balance and joint center gap, because of the difference in soft tissue stiffness between lateral and medial compartments. These findings indicate the importance of the strength of joint distraction force in the assessment of soft tissue balance, especially when using gap-balancing technique. © 2014.

  20. Estimation of pharmacokinetic parameters from non-compartmental variables using Microsoft Excel.

    PubMed

    Dansirikul, Chantaratsamon; Choi, Malcolm; Duffull, Stephen B

    2005-06-01

    This study was conducted to develop a method, termed 'back analysis (BA)', for converting non-compartmental variables to compartment model dependent pharmacokinetic parameters for both one- and two-compartment models. A Microsoft Excel spreadsheet was implemented with the use of Solver and visual basic functions. The performance of the BA method in estimating pharmacokinetic parameter values was evaluated by comparing the parameter values obtained to a standard modelling software program, NONMEM, using simulated data. The results show that the BA method was reasonably precise and provided low bias in estimating fixed and random effect parameters for both one- and two-compartment models. The pharmacokinetic parameters estimated from the BA method were similar to those of NONMEM estimation.

  1. Compartment elasticity measured by pressure-related ultrasound to determine patients "at risk" for compartment syndrome: an experimental in vitro study.

    PubMed

    Sellei, Richard Martin; Hingmann, Simon Johannes; Kobbe, Philipp; Weber, Christian; Grice, John Edward; Zimmerman, Frauke; Jeromin, Sabine; Hildebrand, Frank; Pape, Hans-Christoph

    2015-01-01

    Decision-making in treatment of an acute compartment syndrome is based on clinical assessment, supported by invasive monitoring. Thus, evolving compartment syndrome may require repeated pressure measurements. In suspected cases of potential compartment syndromes clinical assessment alone seems to be unreliable. The objective of this study was to investigate the feasibility of a non-invasive application estimating whole compartmental elasticity by ultrasound, which may improve accuracy of diagnostics. In an in vitro model, using an artificial container simulating dimensions of the human anterior tibial compartment, intra-compartmental pressures (p) were raised subsequently up to 80 mmHg by infusion of saline solution. The compartmental depth (mm) in the cross-section view was measured before and after manual probe compression (100 mmHg) upon the surface resulting in a linear compartmental displacement (∆d). This was repeated at rising compartmental pressures. The resulting displacements were related to the corresponding intra-compartmental pressures simulated in our model. A hypothesized relationship between pressures related compartmental displacement and the elasticity at elevated compartment pressures was investigated. With rising compartmental pressures, a non-linear, reciprocal proportional relation between the displacement (mm) and the intra-compartmental pressure (mmHg) occurred. The Pearson coefficient showed a high correlation (r(2) = -0.960). The intra-observer reliability value kappa resulted in a statistically high reliability (κ = 0.840). The inter-observer value indicated a fair reliability (κ = 0.640). Our model reveals that a strong correlation between compartmental strain displacements assessed by ultrasound and the intra-compartmental pressure changes occurs. Further studies are required to prove whether this assessment is transferable to human muscle tissue. Determining the complete compartmental elasticity by ultrasound enhancement, this application may improve detection of early signs of potential compartment syndrome.

  2. Application of separable parameter space techniques to multi-tracer PET compartment modeling.

    PubMed

    Zhang, Jeff L; Michael Morey, A; Kadrmas, Dan J

    2016-02-07

    Multi-tracer positron emission tomography (PET) can image two or more tracers in a single scan, characterizing multiple aspects of biological functions to provide new insights into many diseases. The technique uses dynamic imaging, resulting in time-activity curves that contain contributions from each tracer present. The process of separating and recovering separate images and/or imaging measures for each tracer requires the application of kinetic constraints, which are most commonly applied by fitting parallel compartment models for all tracers. Such multi-tracer compartment modeling presents challenging nonlinear fits in multiple dimensions. This work extends separable parameter space kinetic modeling techniques, previously developed for fitting single-tracer compartment models, to fitting multi-tracer compartment models. The multi-tracer compartment model solution equations were reformulated to maximally separate the linear and nonlinear aspects of the fitting problem, and separable least-squares techniques were applied to effectively reduce the dimensionality of the nonlinear fit. The benefits of the approach are then explored through a number of illustrative examples, including characterization of separable parameter space multi-tracer objective functions and demonstration of exhaustive search fits which guarantee the true global minimum to within arbitrary search precision. Iterative gradient-descent algorithms using Levenberg-Marquardt were also tested, demonstrating improved fitting speed and robustness as compared to corresponding fits using conventional model formulations. The proposed technique overcomes many of the challenges in fitting simultaneous multi-tracer PET compartment models.

  3. Application of separable parameter space techniques to multi-tracer PET compartment modeling

    NASA Astrophysics Data System (ADS)

    Zhang, Jeff L.; Morey, A. Michael; Kadrmas, Dan J.

    2016-02-01

    Multi-tracer positron emission tomography (PET) can image two or more tracers in a single scan, characterizing multiple aspects of biological functions to provide new insights into many diseases. The technique uses dynamic imaging, resulting in time-activity curves that contain contributions from each tracer present. The process of separating and recovering separate images and/or imaging measures for each tracer requires the application of kinetic constraints, which are most commonly applied by fitting parallel compartment models for all tracers. Such multi-tracer compartment modeling presents challenging nonlinear fits in multiple dimensions. This work extends separable parameter space kinetic modeling techniques, previously developed for fitting single-tracer compartment models, to fitting multi-tracer compartment models. The multi-tracer compartment model solution equations were reformulated to maximally separate the linear and nonlinear aspects of the fitting problem, and separable least-squares techniques were applied to effectively reduce the dimensionality of the nonlinear fit. The benefits of the approach are then explored through a number of illustrative examples, including characterization of separable parameter space multi-tracer objective functions and demonstration of exhaustive search fits which guarantee the true global minimum to within arbitrary search precision. Iterative gradient-descent algorithms using Levenberg-Marquardt were also tested, demonstrating improved fitting speed and robustness as compared to corresponding fits using conventional model formulations. The proposed technique overcomes many of the challenges in fitting simultaneous multi-tracer PET compartment models.

  4. Nonparametric Residue Analysis of Dynamic PET Data With Application to Cerebral FDG Studies in Normals.

    PubMed

    O'Sullivan, Finbarr; Muzi, Mark; Spence, Alexander M; Mankoff, David M; O'Sullivan, Janet N; Fitzgerald, Niall; Newman, George C; Krohn, Kenneth A

    2009-06-01

    Kinetic analysis is used to extract metabolic information from dynamic positron emission tomography (PET) uptake data. The theory of indicator dilutions, developed in the seminal work of Meier and Zierler (1954), provides a probabilistic framework for representation of PET tracer uptake data in terms of a convolution between an arterial input function and a tissue residue. The residue is a scaled survival function associated with tracer residence in the tissue. Nonparametric inference for the residue, a deconvolution problem, provides a novel approach to kinetic analysis-critically one that is not reliant on specific compartmental modeling assumptions. A practical computational technique based on regularized cubic B-spline approximation of the residence time distribution is proposed. Nonparametric residue analysis allows formal statistical evaluation of specific parametric models to be considered. This analysis needs to properly account for the increased flexibility of the nonparametric estimator. The methodology is illustrated using data from a series of cerebral studies with PET and fluorodeoxyglucose (FDG) in normal subjects. Comparisons are made between key functionals of the residue, tracer flux, flow, etc., resulting from a parametric (the standard two-compartment of Phelps et al. 1979) and a nonparametric analysis. Strong statistical evidence against the compartment model is found. Primarily these differences relate to the representation of the early temporal structure of the tracer residence-largely a function of the vascular supply network. There are convincing physiological arguments against the representations implied by the compartmental approach but this is the first time that a rigorous statistical confirmation using PET data has been reported. The compartmental analysis produces suspect values for flow but, notably, the impact on the metabolic flux, though statistically significant, is limited to deviations on the order of 3%-4%. The general advantage of the nonparametric residue analysis is the ability to provide a valid kinetic quantitation in the context of studies where there may be heterogeneity or other uncertainty about the accuracy of a compartmental model approximation of the tissue residue.

  5. Effects of Local Compression on Peroneal Nerve Function in Humans

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.; Botte, Michael J.; Swenson, Michael R.; Gelberman, Richard H.; Rhoades, Charles E.; Akeson, Wayne H.

    1993-01-01

    A new apparatus was developed to compress the anterior compartment selectively and reproducibly in humans. Thirty-five normal volunteers were studied to determine short-term thresholds of local tissue pressure that produce significant neuromuscular dysfunction. Local tissue fluid pressure adjacent to the deep peroneal nerve was elevated by the compression apparatus and continuously monitored for 2-3 h by the slit catheter technique. Elevation of tissue fluid pressure to within 35-40 mm Hg of diastolic blood pressure (approx. 40 mm Hg of in situ pressure in our subjects) elicited a consistent progression of neuromuscular deterioration including, in order, (a) gradual loss of sensation, as assessed by Semmes-Weinstein monofilaments, (b) subjective complaints, (c) reduced nerve conduction velocity, (d) decreased action potential amplitude of the extensor digitorum brevis muscle, and (e) motor weakness of muscles within the anterior compartment. Generally, higher intracompartment at pressures caused more rapid deterioration of neuromuscular function. In two subjects, when in situ compression levels were 0 and 30 mm Hg, normal neuromuscular function was maintained for 3 h. Threshold pressures for significant dysfunction were not always the same for each functional parameter studied, and the magnitudes of each functional deficit did not always correlate with compression level. This variable tolerance to elevated pressure emphasizes the need to monitor clinical signs and symptoms carefully in the diagnosis of compartment syndromes. The nature of the present studies was short term; longer term compression of myoneural tissues may result in dysfunction at lower pressure thresholds.

  6. An open source software for analysis of dynamic contrast enhanced magnetic resonance images: UMMPerfusion revisited.

    PubMed

    Zöllner, Frank G; Daab, Markus; Sourbron, Steven P; Schad, Lothar R; Schoenberg, Stefan O; Weisser, Gerald

    2016-01-14

    Perfusion imaging has become an important image based tool to derive the physiological information in various applications, like tumor diagnostics and therapy, stroke, (cardio-) vascular diseases, or functional assessment of organs. However, even after 20 years of intense research in this field, perfusion imaging still remains a research tool without a broad clinical usage. One problem is the lack of standardization in technical aspects which have to be considered for successful quantitative evaluation; the second problem is a lack of tools that allow a direct integration into the diagnostic workflow in radiology. Five compartment models, namely, a one compartment model (1CP), a two compartment exchange (2CXM), a two compartment uptake model (2CUM), a two compartment filtration model (2FM) and eventually the extended Toft's model (ETM) were implemented as plugin for the DICOM workstation OsiriX. Moreover, the plugin has a clean graphical user interface and provides means for quality management during the perfusion data analysis. Based on reference test data, the implementation was validated against a reference implementation. No differences were found in the calculated parameters. We developed open source software to analyse DCE-MRI perfusion data. The software is designed as plugin for the DICOM Workstation OsiriX. It features a clean GUI and provides a simple workflow for data analysis while it could also be seen as a toolbox providing an implementation of several recent compartment models to be applied in research tasks. Integration into the infrastructure of a radiology department is given via OsiriX. Results can be saved automatically and reports generated automatically during data analysis ensure certain quality control.

  7. Compartmental analysis of [11C]flumazenil kinetics for the estimation of ligand transport rate and receptor distribution using positron emission tomography.

    PubMed

    Koeppe, R A; Holthoff, V A; Frey, K A; Kilbourn, M R; Kuhl, D E

    1991-09-01

    The in vivo kinetic behavior of [11C]flumazenil ([11C]FMZ), a non-subtype-specific central benzodiazepine antagonist, is characterized using compartmental analysis with the aim of producing an optimized data acquisition protocol and tracer kinetic model configuration for the assessment of [11C]FMZ binding to benzodiazepine receptors (BZRs) in human brain. The approach presented is simple, requiring only a single radioligand injection. Dynamic positron emission tomography data were acquired on 18 normal volunteers using a 60- to 90-min sequence of scans and were analyzed with model configurations that included a three-compartment, four-parameter model, a three-compartment, three-parameter model, with a fixed value for free plus nonspecific binding; and a two-compartment, two-parameter model. Statistical analysis indicated that a four-parameter model did not yield significantly better fits than a three-parameter model. Goodness of fit was improved for three- versus two-parameter configurations in regions with low receptor density, but not in regions with moderate to high receptor density. Thus, a two-compartment, two-parameter configuration was found to adequately describe the kinetic behavior of [11C]FMZ in human brain, with stable estimates of the model parameters obtainable from as little as 20-30 min of data. Pixel-by-pixel analysis yields functional images of transport rate (K1) and ligand distribution volume (DV"), and thus provides independent estimates of ligand delivery and BZR binding.

  8. Adipose tissue redistribution caused by an early consumption of a high sucrose diet in a rat model.

    PubMed

    Castellanos Jankiewicz, Ashley Kate; Rodríguez Peredo, Sofía Montserrat; Cardoso Saldaña, Guillermo; Díaz Díaz, Eulises; Tejero Barrera, María Elizabeth; del Bosque Plata, Laura; Carbó Zabala, Roxana

    2015-06-01

    Obesity is a major public health problem worldwide. The quantity and site of accumulation of adipose tissue is of great importance for the physiopathology of this disease. The aim of this study was to assess the effect of a high carbohydrate diet on adipose tissue distribution. Male Wistar rats, control (CONT) and high sucrose diet (HSD; 30% sucrose in their drinking water), were monitored during 24 weeks and total energy and macronutrient intake were estimated by measuring daily average consumption. A bioelectrical impedance procedure was performed at 22 weeks of treatment to assess body compartments and systolic arterial blood pressure was measured. Serum was obtained and retroperitoneal adipose tissue was collected and weighed. HSD ingested less pellets and beverage, consuming less lipids and proteins than CONT, but the same amount of carbohydrates. Retroperitoneal adipose tissue was more abundant in HSD. Both groups were normoglycemic; triglycerides, adiponectin and leptin levels were higher, while total cholesterol and HDL-cholesterol were lower in HSD; insulin, HOMA index and systolic blood pressure had a tendency of being higher in HSD. This model presents dyslipidemia and a strong tendency for insulin resistance and hypertension. Even though there was no difference in body compartments between groups, retroperitoneal adipose tissue was significantly increased in HSD. This suggests that a rearrangement of adipose tissue distribution towards the abdominal cavity takes place as a result of chronic high sucrose consumption, which contributes to a higher risk of suffering from metabolic and chronic degenerative diseases. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  9. On being the right size: scaling effects in designing a human-on-a-chip

    PubMed Central

    Moraes, Christopher; Labuz, Joseph M.; Leung, Brendan M.; Inoue, Mayumi; Chun, Tae-Hwa; Takayama, Shuichi

    2013-01-01

    Developing a human-on-a-chip by connecting multiple model organ systems would provide an intermediate screen for therapeutic efficacy and toxic side effects of drugs prior to conducting expensive clinical trials. However, correctly designing individual organs and scaling them relative to each other to make a functional microscale human analog is challenging, and a generalized approach has yet to be identified. In this work, we demonstrate the importance of rational design of both the individual organ and its relationship with other organs, using a simple two-compartment system simulating insulin-dependent glucose uptake in adipose tissues. We demonstrate that inter-organ scaling laws depend on both the number of cells, and on the spatial arrangement of those cells within the microfabricated construct. We then propose a simple and novel inter-organ ‘metabolically-supported functional scaling’ approach predicated on maintaining in vivo cellular basal metabolic rates, by limiting resources available to cells on the chip. This approach leverages findings from allometric scaling models in mammals that limited resources in vivo prompts cells to behave differently than in resource-rich in vitro cultures. Although applying scaling laws directly to tissues can result in systems that would be quite challenging to implement, engineering workarounds may be used to circumvent these scaling issues. Specific workarounds discussed include the limited oxygen carrying capacity of cell culture media when used as a blood substitute and the ability to engineer non-physiological structures to augment organ function, to create the transport-accessible, yet resource-limited environment necessary for cells to mimic in vivo functionality. Furthermore, designing the structure of individual tissues in each organ compartment may be a useful strategy to bypass scaling concerns at the inter-organ level. PMID:23925524

  10. Two distinct populations of Chiari I malformation based on presence or absence of posterior fossa crowdedness on magnetic resonance imaging.

    PubMed

    Taylor, Davis G; Mastorakos, Panagiotis; Jane, John A; Oldfield, Edward H

    2017-06-01

    OBJECTIVE A subset of patients with Chiari I malformation demonstrate patent subarachnoid spaces around the cerebellum, indicating that reduced posterior fossa volume alone does not account for tonsillar descent. The authors distinguish two subsets of Chiari I malformation patients based on the degree of "posterior fossa crowdedness" on MRI. METHODS Two of the coauthors independently reviewed the preoperative MR images of 49 patients with Chiari I malformation and categorized the posterior fossa as "spacious" or "crowded." Volumetric analysis of posterior fossa structures was then performed using open-source DICOM software. The preoperative clinical and imaging features of the two groups were compared. RESULTS The posterior fossae of 25 patients were classified as spacious and 20 as crowded by both readers; 4 were incongruent. The volumes of the posterior fossa compartment, posterior fossa tissue, and hindbrain (posterior fossa tissue including herniated tonsils) were statistically similar between the patients with spacious and crowed subtypes (p = 0.33, p = 0.17, p = 0.20, respectively). However, patients in the spacious and crowded subtypes demonstrated significant differences in the ratios of posterior fossa tissue to compartment volumes as well as hindbrain to compartment volumes (p = 0.001 and p = 0.0004, respectively). The average age at surgery was 29.2 ± 19.3 years (mean ± SD) and 21.9 ± 14.9 years for spacious and crowded subtypes, respectively (p = 0.08). Syringomyelia was more prevalent in the crowded subtype (50% vs 28%, p = 0.11). CONCLUSIONS The authors' study identifies two subtypes of Chiari I malformation, crowded and spacious, that can be distinguished by MRI appearance without volumetric analysis. Earlier age at surgery and presence of syringomyelia are more common in the crowded subtype. The presence of the spacious subtype suggests that crowdedness alone cannot explain the pathogenesis of Chiari I malformation in many patients, supporting the need for further investigation.

  11. Near-infrared Spectroscopy to Reduce Prophylactic Fasciotomies for and Missed Cases of Acute Compartment Syndrome in Soldiers Injured in OEF/OIF

    DTIC Science & Technology

    2012-10-01

    studies demonstrated that NIRS measurement of hemoglobin oxygen saturation in the tibial compartment provided reliable and sensitive correlation to...pressure increases with muscle damage, there is not a complete loss of tissue oxygen saturation in the tissue over the 14 hours of the protocol. In...allow greater detail of information and flexibility in the analysis of tissue oxygenation levels. Although the 7610 oximeter has not been

  12. A new graphic plot analysis for determination of neuroreceptor binding in positron emission tomography studies.

    PubMed

    Ito, Hiroshi; Yokoi, Takashi; Ikoma, Yoko; Shidahara, Miho; Seki, Chie; Naganawa, Mika; Takahashi, Hidehiko; Takano, Harumasa; Kimura, Yuichi; Ichise, Masanori; Suhara, Tetsuya

    2010-01-01

    In positron emission tomography (PET) studies with radioligands for neuroreceptors, tracer kinetics have been described by the standard two-tissue compartment model that includes the compartments of nondisplaceable binding and specific binding to receptors. In the present study, we have developed a new graphic plot analysis to determine the total distribution volume (V(T)) and nondisplaceable distribution volume (V(ND)) independently, and therefore the binding potential (BP(ND)). In this plot, Y(t) is the ratio of brain tissue activity to time-integrated arterial input function, and X(t) is the ratio of time-integrated brain tissue activity to time-integrated arterial input function. The x-intercept of linear regression of the plots for early phase represents V(ND), and the x-intercept of linear regression of the plots for delayed phase after the equilibrium time represents V(T). BP(ND) can be calculated by BP(ND)=V(T)/V(ND)-1. Dynamic PET scanning with measurement of arterial input function was performed on six healthy men after intravenous rapid bolus injection of [(11)C]FLB457. The plot yielded a curve in regions with specific binding while it yielded a straight line through all plot data in regions with no specific binding. V(ND), V(T), and BP(ND) values calculated by the present method were in good agreement with those by conventional non-linear least-squares fitting procedure. This method can be used to distinguish graphically whether the radioligand binding includes specific binding or not.

  13. Bacterial assemblages differ between compartments within the coral holobiont

    NASA Astrophysics Data System (ADS)

    Sweet, M. J.; Croquer, A.; Bythell, J. C.

    2011-03-01

    It is widely accepted that corals are associated with a diverse and host species-specific microbiota, but how they are organized within their hosts remains poorly understood. Previous sampling techniques (blasted coral tissues, coral swabs and milked mucus) may preferentially sample from different compartments such as mucus, tissue and skeleton, or amalgamate them, making comparisons and generalizations between studies difficult. This study characterized bacterial communities of corals with minimal mechanical disruption and contamination from water, air and sediments from three compartments: surface mucus layer (SML), coral tissue and coral skeleton. A novel apparatus (the `snot sucker') was used to separate the SML from tissues and skeleton, and these three compartments were compared to swab samples and milked mucus along with adjacent environmental samples (water column and sediments). Bacterial 16S rRNA gene diversity was significantly different between the various coral compartments and environmental samples (PERMANOVA, F = 6.9, df = 8, P = 0.001), the only exceptions being the complete crushed coral samples and the coral skeleton, which were similar, because the skeleton represents a proportionally large volume and supports a relatively rich microflora. Milked mucus differed significantly from the SML collected with the `snot sucker' and was contaminated with zooxanthellae, suggesting that it may originate at least partially from the gastrovascular cavity rather than the tissue surface. A common method of sampling the SML, surface swabs, produced a bacterial community profile distinct from the SML sampled using our novel apparatus and also showed contamination from coral tissues. Our results indicate that microbial communities are spatially structured within the coral holobiont, and methods used to describe these need to be standardized to allow comparisons between studies.

  14. Quantification of cell surface receptor expression in live tissue culture media using a dual-tracer stain and rinse approach

    NASA Astrophysics Data System (ADS)

    Xu, Xiaochun; Sinha, Lagnojita; Singh, Aparna; Yang, Cynthia; Xiang, Jialing; Tichauer, Kenneth M.

    2015-03-01

    Immunofluorescence staining is a robust way to visualize the distribution of targeted biomolecules invasively in in fixed tissues and tissue culture. Despite the fact that these methods has been a well-established method in fixed tissue imaging for over 70 years, quantification of receptor concentration still simply assumes that the signal from the targeted fluorescent marker after incubation and sufficient rinsing is directly proportional to the concentration of targeted biomolecules, thus neglecting the experimental inconsistencies in incubation and rinsing procedures and assuming no, nonspecific binding of the fluorescent markers. This work presents the first imaging approach capable of quantifying the concentration of cell surface receptor on cancer cells grown in vitro based on compartment modeling in a nondestructive way. The approach utilizes a dual-tracer protocol where any non-specific retention or variability in incubation and rinsing of a receptor-targeted imaging agent is corrected by simultaneously imaging the retention of a chemically similar, "untargeted" imaging agent. Various different compartment models were used to analyze the data in order to find the optimal procedure for extracting estimates of epidermal growth factor receptor (EGFR) concentration (a receptor overexpressed in many cancers and a key target for emerging molecular therapies) in tissue cultures with varying concentrations of human glioma cells (U251). Preliminary results demonstrated a need to model nonspecific binding of both the targeted and untargeted imaging agents used. The approach could be used to carry out the first repeated measures of cell surface receptor dynamics during 3D tumor mass development, in addition to the receptor response to therapies.

  15. Staged minimally invasive plate osteosynthesis of proximal tibial fractures with acute compartment syndrome.

    PubMed

    Kim, Joon-Woo; Oh, Chang-Wug; Oh, Jong-Keon; Kyung, Hee-Soo; Park, Kyeong-Hyeon; Kim, Hee-June; Jung, Jae-Wook; Jung, Young-Soo

    2017-06-01

    High-energy proximal tibial fractures often accompany compartment syndrome and are usually treated by fasciotomy with external fixation followed by secondary plating. However, the initial soft tissue injury may affect bony union, the fasciotomy incision or external fixator pin sites may lead to postoperative wound infections, and the staged procedure itself may adversely affect lower limb function. We assess the results of staged minimally invasive plate osteosynthesis (MIPO) for proximal tibial fractures with acute compartment syndrome. Twenty-eight patients with proximal tibial fractures accompanied by acute compartment syndrome who underwent staged MIPO and had a minimum of 12 months follow-up were enrolled. According to the AO/OTA classification, 6 were 41-A, 15 were 41-C, 2 were 42-A and 5 were 42-C fractures; this included 6 cases of open fractures. Immediate fasciotomy was performed once compartment syndrome was diagnosed and stabilization of the fracture followed using external fixation. After the soft tissue condition normalized, internal conversion with MIPO was done on an average of 37 days (range, 9-158) after index trauma. At the time of internal conversion, the external fixator pin site grades were 0 in 3 cases, 1 in 12 cases, 2 in 10 cases and 3 in 3 cases, as described by Dahl. Radiographic assessment of bony union and alignment and a functional assessment using the Knee Society Score and American Orthopedic Foot and Ankle Society (AOFAS) score were carried out. Twenty-six cases achieved primary bony union at an average of 18.5 weeks. Two cases of nonunion healed after autogenous bone grafting. The mean Knee Society Score and the AOFAS score were 95 and 95.3 respectively, at last follow-up. Complications included 1 case of osteomyelitis in a patient with a grade IIIC open fracture and 1 case of malunion caused by delayed MIPO due to poor wound conditions. Duration of external fixation and the external fixator pin site grade were not related to the occurrence of infection. Staged MIPO for proximal tibial fractures with acute compartment syndrome may achieve satisfactory bony union and functional results, while decreasing deep infections and soft tissue complications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Pharmacokinetics and tissue distribution of furanodiene W/O/W multiple emulsions in rats by a fast and sensitive HPLC-APCI-MS/MS method.

    PubMed

    Zhang, Li-Feng; Lu, Tao-Tao; Zhang, Shu-Qiu; Lin, Wen-Han; Li, Qing-Shan

    2013-12-01

    A sensitive and specific HPLC-APCI-MS/MS method was developed and validated for the quantification of furanodiene, a natural antitumor compound in rat plasma and tissues. W/O/W multiple emulsions of furanodiene, identified through microscope-observation and eosin staining method, were prepared with a two-step-procedure. Pharmacokinetics and tissue distribution were studied in rats after oral, intraperitoneal and intravenous injection with the dose of 5, 10 and 50 mg/kg, respectively. The assay achieved a good sensitivity and specificity for the determination of furanodiene in biological samples. The results showed that the concentration-time curves of furanodiene in rats after intravenous injection were fitted to a two-compartment model and the linear pharmacokinetic characteristic. The highest concentration in rat tissue was observed in the spleen, followed by heart, liver, lung, kidney, small intestine and brain. Comparing with the low concentration in plasma, furanodiene could be detected in various tissue samples after oral or intraperitoneal injection which indicated furanodiene had good and rapid tissue uptake. The results suggested that the wide tissue distribution of furanodiene could conduce to the therapeutic effects, but the short biological half-life limited its further application as an antitumor agent. The results are helpful for the structure modification of furanodiene as an antitumor candidate.

  17. Modeling the Pharmacokinetics of Perfluorooctanoic Acid (PFOA) During Gestation and Lactation in Mice

    EPA Science Inventory

    To address the pharmacokinetics of PFOA during gestation and lactation, a biologically supported dynamic model was developed. A two compartment system linked via placental blood flow described gestation, while milk production linked the dam to a pup litter compartment during lact...

  18. A Three Component Model to Estimate Sensible Heat Flux Over Sparse Shrubs in Nevada

    USGS Publications Warehouse

    Chehbouni, A.; Nichols, W.D.; Njoku, E.G.; Qi, J.; Kerr, Y.H.; Cabot, F.

    1997-01-01

    It is now recognized that accurate partitioning of available energy into sensible and latent heat flux is crucial to understanding surface-atmosphere interactions. This issue is more complicated in arid and semi-arid regions where the relative contribution to surface fluxes from the soil and vegetation may vary significantly throughout the day and throughout the season. The objective of this paper is to present a three-component model to estimate sensible heat flux over heterogeneous surfaces. The surface was represented with two adjacent compartments. The first compartment is made up of two components, shrubs and shaded soil; the second compartment consists of bare, unshaded soil. Data collected at two different sites in Nevada during the summers of 1991 and 1992 were used to evaluate model performance. The results show that the present model is sufficiently general to yield satisfactory results for both sites.

  19. A physiologically based pharmacokinetic model for atrazine and its main metabolites in the adult male C57BL/6 mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin Zhoumeng; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602; Fisher, Jeffrey W.

    Atrazine (ATR) is a chlorotriazine herbicide that is widely used and relatively persistent in the environment. In laboratory rodents, excessive exposure to ATR is detrimental to the reproductive, immune, and nervous systems. To better understand the toxicokinetics of ATR and to fill the need for a mouse model, a physiologically based pharmacokinetic (PBPK) model for ATR and its main chlorotriazine metabolites (Cl-TRIs) desethyl atrazine (DE), desisopropyl atrazine (DIP), and didealkyl atrazine (DACT) was developed for the adult male C57BL/6 mouse. Taking advantage of all relevant and recently made available mouse-specific data, a flow-limited PBPK model was constructed. The ATR andmore » DACT sub-models included blood, brain, liver, kidney, richly and slowly perfused tissue compartments, as well as plasma protein binding and red blood cell binding, whereas the DE and DIP sub-models were constructed as simple five-compartment models. The model adequately simulated plasma levels of ATR and Cl-TRIs and urinary dosimetry of Cl-TRIs at four single oral dose levels (250, 125, 25, and 5 mg/kg). Additionally, the model adequately described the dose dependency of brain and liver ATR and DACT concentrations. Cumulative urinary DACT amounts were accurately predicted across a wide dose range, suggesting the model's potential use for extrapolation to human exposures by performing reverse dosimetry. The model was validated using previously reported data for plasma ATR and DACT in mice and rats. Overall, besides being the first mouse PBPK model for ATR and its Cl-TRIs, this model, by analogy, provides insights into tissue dosimetry for rats. The model could be used in tissue dosimetry prediction and as an aid in the exposure assessment to this widely used herbicide.« less

  20. The longest telomeres: a general signature of adult stem cell compartments

    PubMed Central

    Flores, Ignacio; Canela, Andres; Vera, Elsa; Tejera, Agueda; Cotsarelis, George; Blasco, María A.

    2008-01-01

    Identification of adult stem cells and their location (niches) is of great relevance for regenerative medicine. However, stem cell niches are still poorly defined in most adult tissues. Here, we show that the longest telomeres are a general feature of adult stem cell compartments. Using confocal telomere quantitative fluorescence in situ hybridization (telomapping), we find gradients of telomere length within tissues, with the longest telomeres mapping to the known stem cell compartments. In mouse hair follicles, we show that cells with the longest telomeres map to the known stem cell compartments, colocalize with stem cell markers, and behave as stem cells upon treatment with mitogenic stimuli. Using K15-EGFP reporter mice, which mark hair follicle stem cells, we show that GFP-positive cells have the longest telomeres. The stem cell compartments in small intestine, testis, cornea, and brain of the mouse are also enriched in cells with the longest telomeres. This constitutes the description of a novel general property of adult stem cell compartments. Finally, we make the novel finding that telomeres shorten with age in different mouse stem cell compartments, which parallels a decline in stem cell functionality, suggesting that telomere loss may contribute to stem cell dysfunction with age. PMID:18283121

  1. Application of separable parameter space techniques to multi-tracer PET compartment modeling

    PubMed Central

    Zhang, Jeff L; Morey, A Michael; Kadrmas, Dan J

    2016-01-01

    Multi-tracer positron emission tomography (PET) can image two or more tracers in a single scan, characterizing multiple aspects of biological functions to provide new insights into many diseases. The technique uses dynamic imaging, resulting in time-activity curves that contain contributions from each tracer present. The process of separating and recovering separate images and/or imaging measures for each tracer requires the application of kinetic constraints, which are most commonly applied by fitting parallel compartment models for all tracers. Such multi-tracer compartment modeling presents challenging nonlinear fits in multiple dimensions. This work extends separable parameter space kinetic modeling techniques, previously developed for fitting single-tracer compartment models, to fitting multi-tracer compartment models. The multi-tracer compartment model solution equations were reformulated to maximally separate the linear and nonlinear aspects of the fitting problem, and separable least-squares techniques were applied to effectively reduce the dimensionality of the nonlinear fit. The benefits of the approach are then explored through a number of illustrative examples, including characterization of separable parameter space multi-tracer objective functions and demonstration of exhaustive search fits which guarantee the true global minimum to within arbitrary search precision. Iterative gradient-descent algorithms using Levenberg–Marquardt were also tested, demonstrating improved fitting speed and robustness as compared to corresponding fits using conventional model formulations. The proposed technique overcomes many of the challenges in fitting simultaneous multi-tracer PET compartment models. PMID:26788888

  2. Dual-input two-compartment pharmacokinetic model of dynamic contrast-enhanced magnetic resonance imaging in hepatocellular carcinoma.

    PubMed

    Yang, Jian-Feng; Zhao, Zhen-Hua; Zhang, Yu; Zhao, Li; Yang, Li-Ming; Zhang, Min-Ming; Wang, Bo-Yin; Wang, Ting; Lu, Bao-Chun

    2016-04-07

    To investigate the feasibility of a dual-input two-compartment tracer kinetic model for evaluating tumorous microvascular properties in advanced hepatocellular carcinoma (HCC). From January 2014 to April 2015, we prospectively measured and analyzed pharmacokinetic parameters [transfer constant (Ktrans), plasma flow (Fp), permeability surface area product (PS), efflux rate constant (kep), extravascular extracellular space volume ratio (ve), blood plasma volume ratio (vp), and hepatic perfusion index (HPI)] using dual-input two-compartment tracer kinetic models [a dual-input extended Tofts model and a dual-input 2-compartment exchange model (2CXM)] in 28 consecutive HCC patients. A well-known consensus that HCC is a hypervascular tumor supplied by the hepatic artery and the portal vein was used as a reference standard. A paired Student's t-test and a nonparametric paired Wilcoxon rank sum test were used to compare the equivalent pharmacokinetic parameters derived from the two models, and Pearson correlation analysis was also applied to observe the correlations among all equivalent parameters. The tumor size and pharmacokinetic parameters were tested by Pearson correlation analysis, while correlations among stage, tumor size and all pharmacokinetic parameters were assessed by Spearman correlation analysis. The Fp value was greater than the PS value (FP = 1.07 mL/mL per minute, PS = 0.19 mL/mL per minute) in the dual-input 2CXM; HPI was 0.66 and 0.63 in the dual-input extended Tofts model and the dual-input 2CXM, respectively. There were no significant differences in the kep, vp, or HPI between the dual-input extended Tofts model and the dual-input 2CXM (P = 0.524, 0.569, and 0.622, respectively). All equivalent pharmacokinetic parameters, except for ve, were correlated in the two dual-input two-compartment pharmacokinetic models; both Fp and PS in the dual-input 2CXM were correlated with Ktrans derived from the dual-input extended Tofts model (P = 0.002, r = 0.566; P = 0.002, r = 0.570); kep, vp, and HPI between the two kinetic models were positively correlated (P = 0.001, r = 0.594; P = 0.0001, r = 0.686; P = 0.04, r = 0.391, respectively). In the dual input extended Tofts model, ve was significantly less than that in the dual input 2CXM (P = 0.004), and no significant correlation was seen between the two tracer kinetic models (P = 0.156, r = 0.276). Neither tumor size nor tumor stage was significantly correlated with any of the pharmacokinetic parameters obtained from the two models (P > 0.05). A dual-input two-compartment pharmacokinetic model (a dual-input extended Tofts model and a dual-input 2CXM) can be used in assessing the microvascular physiopathological properties before the treatment of advanced HCC. The dual-input extended Tofts model may be more stable in measuring the ve; however, the dual-input 2CXM may be more detailed and accurate in measuring microvascular permeability.

  3. Population pharmacokinetics of telapristone (CDB-4124) and its active monodemethylated metabolite CDB-4453, with a mixture model for total clearance.

    PubMed

    Morris, Denise; Podolski, Joseph; Kirsch, Alan; Wiehle, Ronald; Fleckenstein, Lawrence

    2011-12-01

    Telapristone is a selective progesterone antagonist that is being developed for the long-term treatment of symptoms associated with endometriosis and uterine fibroids. The population pharmacokinetics of telapristone (CDB-4124) and CDB-4453 was investigated using nonlinear mixed-effects modeling. Data from two clinical studies (n = 32) were included in the analysis. A two-compartment (parent) one compartment (metabolite) mixture model (with two populations for apparent clearance) with first-order absorption and elimination adequately described the pharmacokinetics of telapristone and CDB-4453. Telapristone was rapidly absorbed with an absorption rate constant (Ka) of 1.26 h(-1). Moderate renal impairment resulted in a 74% decrease in Ka. The population estimates for oral clearance (CL/F) for the two populations were 11.6 and 3.34 L/h, respectively, with 25% of the subjects being allocated to the high-clearance group. Apparent volume of distribution for the central compartment (V2/F) was 37.4 L, apparent inter-compartmental clearance (Q/F) was 21.9 L/h, and apparent peripheral volume of distribution for the parent (V4/F) was 120 L. The ratio of the fraction of telapristone converted to CDB-4453 to the distribution volume of CDB-4453 (Fmet(est)) was 0.20/L. Apparent volume of distribution of the metabolite compartment (V3/F) was fixed to 1 L and apparent clearance of the metabolite (CLM/F) was 2.43 L/h. A two-compartment parent-metabolite model adequately described the pharmacokinetics of telapristone and CDB-4453. The clearance of telapristone was separated into two populations and could be the result of metabolism via polymorphic CYP3A5.

  4. Understanding the in vivo uptake kinetics of a phosphatidylethanolamine-binding agent (99m)Tc-Duramycin.

    PubMed

    Audi, Said; Li, Zhixin; Capacete, Joseph; Liu, Yu; Fang, Wei; Shu, Laura G; Zhao, Ming

    2012-08-01

    (99m)Tc-Duramycin is a peptide-based molecular probe that binds specifically to phosphatidylethanolamine (PE). The goal was to characterize the kinetics of molecular interactions between (99m)Tc-Duramycin and the target tissue. High level of accessible PE is induced in cardiac tissues by myocardial ischemia (30 min) and reperfusion (120 min) in Sprague-Dawley rats. Target binding and biodistribution of (99m)Tc-duramycin were captured using SPECT/CT. To quantify the binding kinetics, the presence of radioactivity in ischemic versus normal cardiac tissues was measured by gamma counting at 3, 10, 20, 60 and 180 min after injection. A partially inactivated form of (99m)Tc-Duramycin was analyzed in the same fashion. A compartment model was developed to quantify the uptake kinetics of (99m)Tc-Duramycin in normal and ischemic myocardial tissue. (99m)Tc-duramycin binds avidly to the damaged tissue with a high target-to-background radio. Compartment modeling shows that accessibility of binding sites in myocardial tissue to (99m)Tc-Duramycin is not a limiting factor and the rate constant of target binding in the target tissue is at 2.2 ml/nmol/min/g. The number of available binding sites for (99m)Tc-Duramycin in ischemic myocardium was estimated at 0.14 nmol/g. Covalent modification of D15 resulted in a 9-fold reduction in binding affinity. (99m)Tc-Duramycin accumulates avidly in target tissues in a PE-dependent fashion. Model results reflect an efficient uptake mechanism, consistent with the low molecular weight of the radiopharmaceutical and the relatively high density of available binding sites. These data help better define the imaging utilities of (99m)Tc-Duramycin as a novel PE-binding agent. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. The dynamical analysis of modified two-compartment neuron model and FPGA implementation

    NASA Astrophysics Data System (ADS)

    Lin, Qianjin; Wang, Jiang; Yang, Shuangming; Yi, Guosheng; Deng, Bin; Wei, Xile; Yu, Haitao

    2017-10-01

    The complexity of neural models is increasing with the investigation of larger biological neural network, more various ionic channels and more detailed morphologies, and the implementation of biological neural network is a task with huge computational complexity and power consumption. This paper presents an efficient digital design using piecewise linearization on field programmable gate array (FPGA), to succinctly implement the reduced two-compartment model which retains essential features of more complicated models. The design proposes an approximate neuron model which is composed of a set of piecewise linear equations, and it can reproduce different dynamical behaviors to depict the mechanisms of a single neuron model. The consistency of hardware implementation is verified in terms of dynamical behaviors and bifurcation analysis, and the simulation results including varied ion channel characteristics coincide with the biological neuron model with a high accuracy. Hardware synthesis on FPGA demonstrates that the proposed model has reliable performance and lower hardware resource compared with the original two-compartment model. These investigations are conducive to scalability of biological neural network in reconfigurable large-scale neuromorphic system.

  6. In vivo engineering of bone tissues with hematopoietic functions and mixed chimerism

    PubMed Central

    Shih, Yu-Ru; Kang, Heemin; Rao, Vikram; Chiu, Yu-Jui; Kwon, Seong Keun; Varghese, Shyni

    2017-01-01

    Synthetic biomimetic matrices with osteoconductivity and osteoinductivity have been developed to regenerate bone tissues. However, whether such systems harbor donor marrow in vivo and support mixed chimerism remains unknown. We devised a strategy to engineer bone tissues with a functional bone marrow (BM) compartment in vivo by using a synthetic biomaterial with spatially differing cues. Specifically, we have developed a synthetic matrix recapitulating the dual-compartment structures by modular assembly of mineralized and nonmineralized macroporous structures. Our results show that these matrices incorporated with BM cells or BM flush transplanted into recipient mice matured into functional bone displaying the cardinal features of both skeletal and hematopoietic compartments similar to native bone tissue. The hematopoietic function of bone tissues was demonstrated by its support for a higher percentage of mixed chimerism compared with i.v. injection and donor hematopoietic cell mobilization in the circulation of nonirradiated recipients. Furthermore, hematopoietic cells sorted from the engineered bone tissues reconstituted the hematopoietic system when transplanted into lethally irradiated secondary recipients. Such engineered bone tissues could potentially be used as ectopic BM surrogates for treatment of nonmalignant BM diseases and as a tool to study hematopoiesis, donor–host cell dynamics, tumor tropism, and hematopoietic cell transplantation. PMID:28484009

  7. In vivo engineering of bone tissues with hematopoietic functions and mixed chimerism.

    PubMed

    Shih, Yu-Ru; Kang, Heemin; Rao, Vikram; Chiu, Yu-Jui; Kwon, Seong Keun; Varghese, Shyni

    2017-05-23

    Synthetic biomimetic matrices with osteoconductivity and osteoinductivity have been developed to regenerate bone tissues. However, whether such systems harbor donor marrow in vivo and support mixed chimerism remains unknown. We devised a strategy to engineer bone tissues with a functional bone marrow (BM) compartment in vivo by using a synthetic biomaterial with spatially differing cues. Specifically, we have developed a synthetic matrix recapitulating the dual-compartment structures by modular assembly of mineralized and nonmineralized macroporous structures. Our results show that these matrices incorporated with BM cells or BM flush transplanted into recipient mice matured into functional bone displaying the cardinal features of both skeletal and hematopoietic compartments similar to native bone tissue. The hematopoietic function of bone tissues was demonstrated by its support for a higher percentage of mixed chimerism compared with i.v. injection and donor hematopoietic cell mobilization in the circulation of nonirradiated recipients. Furthermore, hematopoietic cells sorted from the engineered bone tissues reconstituted the hematopoietic system when transplanted into lethally irradiated secondary recipients. Such engineered bone tissues could potentially be used as ectopic BM surrogates for treatment of nonmalignant BM diseases and as a tool to study hematopoiesis, donor-host cell dynamics, tumor tropism, and hematopoietic cell transplantation.

  8. [Bioimpedometry and its utilization in dialysis therapy].

    PubMed

    Lopot, František

    2016-01-01

    Measurement of living tissue impedance - bioimpedometry - started to be used in medicine some 50 years ago, first exclusively for estimation of extracellular and intracellular compartment volumes. Its most simple single frequency (50 kHz) version works directly with the measured impedance vector. Technically more sophisticated versions convert the measured impedance in values of volumes of different compartments of body fluids and calculate also principal markers of nutritional status (lean body mass, adipose tissue mass). The latest version specifically developed for application in dialysis patients includes body composition modelling and provides even absolute value of overhydration (excess fluid). Still in experimental phase is the bioimpedance exploitation for more precise estimation of residual glomerular filtration. Not yet standardized is also segmental bioimpedance measurement which should enable separate assessment of hydration status of the trunk segment and ultrafiltration capacity of peritoneum in peritoneal dialysis patients.Key words: assessment - bioimpedance - excess fluid - fluid status - glomerular filtration - haemodialysis - nutritional status - peritoneal dialysis.

  9. Parameterisation of multi-scale continuum perfusion models from discrete vascular networks.

    PubMed

    Hyde, Eoin R; Michler, Christian; Lee, Jack; Cookson, Andrew N; Chabiniok, Radek; Nordsletten, David A; Smith, Nicolas P

    2013-05-01

    Experimental data and advanced imaging techniques are increasingly enabling the extraction of detailed vascular anatomy from biological tissues. Incorporation of anatomical data within perfusion models is non-trivial, due to heterogeneous vessel density and disparate radii scales. Furthermore, previous idealised networks have assumed a spatially repeating motif or periodic canonical cell, thereby allowing for a flow solution via homogenisation. However, such periodicity is not observed throughout anatomical networks. In this study, we apply various spatial averaging methods to discrete vascular geometries in order to parameterise a continuum model of perfusion. Specifically, a multi-compartment Darcy model was used to provide vascular scale separation for the fluid flow. Permeability tensor fields were derived from both synthetic and anatomically realistic networks using (1) porosity-scaled isotropic, (2) Huyghe and Van Campen, and (3) projected-PCA methods. The Darcy pressure fields were compared via a root-mean-square error metric to an averaged Poiseuille pressure solution over the same domain. The method of Huyghe and Van Campen performed better than the other two methods in all simulations, even for relatively coarse networks. Furthermore, inter-compartment volumetric flux fields, determined using the spatially averaged discrete flux per unit pressure difference, were shown to be accurate across a range of pressure boundary conditions. This work justifies the application of continuum flow models to characterise perfusion resulting from flow in an underlying vascular network.

  10. Coupling volume-excluding compartment-based models of diffusion at different scales: Voronoi and pseudo-compartment approaches

    PubMed Central

    Taylor, P. R.; Baker, R. E.; Simpson, M. J.; Yates, C. A.

    2016-01-01

    Numerous processes across both the physical and biological sciences are driven by diffusion. Partial differential equations are a popular tool for modelling such phenomena deterministically, but it is often necessary to use stochastic models to accurately capture the behaviour of a system, especially when the number of diffusing particles is low. The stochastic models we consider in this paper are ‘compartment-based’: the domain is discretized into compartments, and particles can jump between these compartments. Volume-excluding effects (crowding) can be incorporated by blocking movement with some probability. Recent work has established the connection between fine- and coarse-grained models incorporating volume exclusion, but only for uniform lattices. In this paper, we consider non-uniform, hybrid lattices that incorporate both fine- and coarse-grained regions, and present two different approaches to describe the interface of the regions. We test both techniques in a range of scenarios to establish their accuracy, benchmarking against fine-grained models, and show that the hybrid models developed in this paper can be significantly faster to simulate than the fine-grained models in certain situations and are at least as fast otherwise. PMID:27383421

  11. The Constraints, Construction, and Verification of a Strain-Specific Physiologically Based Pharmacokinetic Rat Model.

    PubMed

    Musther, Helen; Harwood, Matthew D; Yang, Jiansong; Turner, David B; Rostami-Hodjegan, Amin; Jamei, Masoud

    2017-09-01

    The use of in vitro-in vivo extrapolation (IVIVE) techniques, mechanistically incorporated within physiologically based pharmacokinetic (PBPK) models, can harness in vitro drug data and enhance understanding of in vivo pharmacokinetics. This study's objective was to develop a user-friendly rat (250 g, male Sprague-Dawley) IVIVE-linked PBPK model. A 13-compartment PBPK model including mechanistic absorption models was developed, with required system data (anatomical, physiological, and relevant IVIVE scaling factors) collated from literature and analyzed. Overall, 178 system parameter values for the model are provided. This study also highlights gaps in available system data required for strain-specific rat PBPK model development. The model's functionality and performance were assessed using previous literature-sourced in vitro properties for diazepam, metoprolol, and midazolam. The results of simulations were compared against observed pharmacokinetic rat data. Predicted and observed concentration profiles in 10 tissues for diazepam after a single intravenous (i.v.) dose making use of either observed i.v. clearance (CL iv ) or in vitro hepatocyte intrinsic clearance (CL int ) for simulations generally led to good predictions in various tissue compartments. Overall, all i.v. plasma concentration profiles were successfully predicted. However, there were challenges in predicting oral plasma concentration profiles for metoprolol and midazolam, and the potential reasons and according solutions are discussed. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. Analysis of space radiation exposure levels at different shielding configurations by ray-tracing dose estimation method

    NASA Astrophysics Data System (ADS)

    Kartashov, Dmitry; Shurshakov, Vyacheslav

    2018-03-01

    A ray-tracing method to calculate radiation exposure levels of astronauts at different spacecraft shielding configurations has been developed. The method uses simplified shielding geometry models of the spacecraft compartments together with depth-dose curves. The depth-dose curves can be obtained with different space radiation environment models and radiation transport codes. The spacecraft shielding configurations are described by a set of geometry objects. To calculate the shielding probability functions for each object its surface is composed from a set of the disjoint adjacent triangles that fully cover the surface. Such description can be applied for any complex shape objects. The method is applied to the space experiment MATROSHKA-R modeling conditions. The experiment has been carried out onboard the ISS from 2004 to 2016. Dose measurements were realized in the ISS compartments with anthropomorphic and spherical phantoms, and the protective curtain facility that provides an additional shielding on the crew cabin wall. The space ionizing radiation dose distributions in tissue-equivalent spherical and anthropomorphic phantoms and for an additional shielding installed in the compartment are calculated. There is agreement within accuracy of about 15% between the data obtained in the experiment and calculated ones. Thus the calculation method used has been successfully verified with the MATROSHKA-R experiment data. The ray-tracing radiation dose calculation method can be recommended for estimation of dose distribution in astronaut body in different space station compartments and for estimation of the additional shielding efficiency, especially when exact compartment shielding geometry and the radiation environment for the planned mission are not known.

  13. Association between developmental steps in the organogenesis of the uterine cervix and locoregional progression of cervical cancer: a prospective clinicopathological analysis.

    PubMed

    Höckel, Michael; Hentschel, Bettina; Horn, Lars-Christian

    2014-04-01

    Our previous work provided evidence that early cervical cancer is locally confined to the Müllerian compartment that develops in women from the embryonic paramesonephric-mesonephric complex. We aimed to investigate if the concept of tumour permeation within ontogenetic domains is also valid for tumour progression and advanced disease. Starting from Carnegie stage 13, four successive steps in the organogenesis of the human uterine cervix were defined and an ontogenetic staging system for cervical cancer based on organ development was described. Histopathological and clinical data of patients with cervical cancer FIGO stages IB-IVA were raised prospectively from Oct 16, 1999, until Dec 20, 2012, and from March 8, 2000, until April 4, 2013, for two surgical trials of ontogenetic compartment resection without adjuvant radiation at the University of Leipzig (total or extended mesometrial resection [TMMR or EMMR]; and [laterally] extended endopelvic resection [LEER]). The primary endpoints of these trials were pathological resection state and locoregional tumour control. Patients who underwent TMMR and EMMR had follow-up assessment every 3-6 months for 5 years, and yearly thereafter. Patients who had (L)EER, every 3-6 months for 10 years, and yearly thereafter. By analysing the presence of disease within the classified tissues and disease outcome in these patients, and by examining relapse patterns, we were able to observe whether surgical excision within developmental compartments was sufficient for disease control. Survival curves were compared using the log-rank test. The effect of ontogenetic tumour stage and pathological tumour stage on overall survival was assessed by Cox proportional hazard models. The trials are registered as an ongoing observational monocentric study at the University of Leipzig Cancer Centre (ULCC012-13-28012013). 367 patients were included in our analysis. Staged organogenesis of the uterine cervix and progressive local growth of cervical carcinoma occur in the same tissue domains. The neoplasm originating in the uterine cervix, ontogenetic tumour stage 1 (oT1, n=217), permeates successively during its malignant progression the tissues developed from the Müllerian compartment (oT2, n=101), the genital metacompartment (oT3, n=38), and the urogenitorectal metacompartment (oT4, n=11). Ontogenetic staging, when comparing patients with oT1 and oT2 disease to those with oT3 and oT4 disease (hazard ratio 5·9, 95% CI 2·2-15·5; p=0·00036) was a better prognostic indicator for survival than pathological staging when comparing pT1b and pT2a with pT2b and pT4 disease (2·0, 95% CI 0·7-5·5; p=0·170). Resection of the stage-related ontogenetically specified tissue domains and their associated regional lymphoid tissues achieved an R0 resection in 363 (99%) of 367 patients and locoregional tumour control at 5 years was 94% (95% CI 92-97). 13 patients had grade 3 or 4 adverse events, the majority of which were urinary (10, 77%). Cervical cancer infiltrates the adult tissues established during ontogeny, pursuing the developmental steps in retrograde sequence. Clinical translation of these insights into ontogenetic tumour staging and compartment resection holds the potential to improve prognostic assessment and curative treatment. University of Leipzig and Leipzig School of Radical Pelvic Surgery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Information generation and processing systems that regulate periodontal structure and function.

    PubMed

    Bartold, P Mark; McCulloch, Christopher A

    2013-10-01

    The periodontium is a very dynamic organ that responds rapidly to mechanical and chemical stimuli. It is very complex in that it is composed of two hard tissues (cementum and bone) and two soft connective tissues (periodontal ligament and gingiva). Together these tissues are defined by the molecules expressed by the resident periodontal cells in each compartment and this determines not only the structure and function of the periodontium but also how it responds to infection and inflammation. The biological activity of these molecules is tightly regulated in time and space to preserve tissue homeostasis, influence inflammatory responses and participate in tissue regeneration. In this issue of Periodontology 2000 we explore new experimental approaches and data sets which help to understand the molecules and cells that regulate tissue form and structure in health, disease and regeneration. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Exocytosis of macrophage lysosomes leads to digestion of apoptotic adipocytes and foam cell formation[S

    PubMed Central

    Haka, Abigail S.; Barbosa-Lorenzi, Valéria C.; Lee, Hyuek Jong; Falcone, Domenick J.; Hudis, Clifford A.; Dannenberg, Andrew J.

    2016-01-01

    Many types of apoptotic cells are phagocytosed and digested by macrophages. Adipocytes can be hundreds of times larger than macrophages, so they are too large to be digested by conventional phagocytic processes. The nature of the interaction between macrophages and apoptotic adipocytes has not been studied in detail. We describe a cellular process, termed exophagy, that is important for macrophage clearance of dead adipocytes and adipose tissue homeostasis. Using mouse models of obesity, human tissue, and a cell culture model, we show that macrophages form hydrolytic extracellular compartments at points of contact with dead adipocytes using local actin polymerization. These compartments are acidic and contain lysosomal enzymes delivered by exocytosis. Uptake and complete degradation of adipocyte fragments, which are released by extracellular hydrolysis, leads to macrophage foam cell formation. Exophagy-mediated foam cell formation is a highly efficient means by which macrophages internalize large amounts of lipid, which may ultimately overwhelm the metabolic capacity of the macrophage. This process provides a mechanism for degradation of objects, such as dead adipocytes, that are too large to be phagocytosed by macrophages. PMID:27044658

  16. Spontaneous myogenic differentiation of Flk-1-positive cells from adult pancreas and other nonmuscle tissues.

    PubMed

    Di Rocco, Giuliana; Tritarelli, Alessandra; Toietta, Gabriele; Gatto, Ilaria; Iachininoto, Maria Grazia; Pagani, Francesca; Mangoni, Antonella; Straino, Stefania; Capogrossi, Maurizio C

    2008-02-01

    At the embryonic or fetal stages, autonomously myogenic cells (AMCs), i.e., cells able to spontaneously differentiate into skeletal myotubes, have been identified from several different sites other than skeletal muscle, including the vascular compartment. However, in the adult animal, AMCs from skeletal muscle-devoid tissues have been described in only two cases. One is represented by thymic myoid cells, a restricted population of committed myogenic progenitors of unknown derivation present in the thymic medulla; the other is represented by a small subset of adipose tissue-associated cells, which we recently identified. In the present study we report, for the first time, the presence of spontaneously differentiating myogenic precursors in the pancreas and in other skeletal muscle-devoid organs such as spleen and stomach, as well as in the periaortic tissue of adult mice. Immunomagnetic selection procedures indicate that AMCs derive from Flk-1(+) progenitors. Individual clones of myogenic cells from nonmuscle organs are morphologically and functionally indistinguishable from skeletal muscle-derived primary myoblasts. Moreover, they can be induced to proliferate in vitro and are able to participate in muscle regeneration in vivo. Thus, we provide evidence that fully competent myogenic progenitors can be derived from the Flk-1(+) compartment of several adult tissues that are embryologically unrelated to skeletal muscle.

  17. Expression profiles of antimicrobial peptides in the genital tract of women using progesterone intrauterine devices versus combined oral contraceptives.

    PubMed

    Introini, Andrea; Kaldensjö, Tove; Hirbod, Taha; Röhl, Maria; Tjernlund, Annelie; Andersson, Sonia; Broliden, Kristina

    2014-11-01

    Sex hormones can influence the immune defenses of the female genital tract (FGT) and its susceptibility to infections. Here we investigated the effect of different hormonal contraceptives on the production of antimicrobial peptides (AMPs) in different compartments of the female genital mucosa (FGM), secretions and tissue. Cervicovaginal secretions (CVS) and ectocervical tissue samples obtained from women using progesterone intrauterine devices (pIUD) (n = 23) and combined oral contraceptives (COC) (n = 23) were analyzed for the expression and in situ localization of HNP1-3, BD-2, LL-37, SLPI and trappin-2 by ELISA, real-time PCR and immunohistochemistry. Women using COC had significantly lower mRNA levels of BD-2 and trappin-2 in ectocervical tissue than pIUD users. The two groups showed no differences in CVS concentration, as well as similar in situ expression patterns in ectocervical tissue, of all five AMPs. The use of hormonal contraceptives influences AMP expression differently in genital secretions compared to ectocervical tissue. This suggests that the impact of sex hormones on local immune defenses varies in different compartments of the FGM, and likely in different locations across the FGT. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Free water determines diffusion alterations and clinical status in cerebral small vessel disease.

    PubMed

    Duering, Marco; Finsterwalder, Sofia; Baykara, Ebru; Tuladhar, Anil Man; Gesierich, Benno; Konieczny, Marek J; Malik, Rainer; Franzmeier, Nicolai; Ewers, Michael; Jouvent, Eric; Biessels, Geert Jan; Schmidt, Reinhold; de Leeuw, Frank-Erik; Pasternak, Ofer; Dichgans, Martin

    2018-06-01

    Diffusion tensor imaging detects early tissue alterations in Alzheimer's disease and cerebral small vessel disease (SVD). However, the origin of diffusion alterations in SVD is largely unknown. To gain further insight, we applied free water (FW) imaging to patients with genetically defined SVD (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy [CADASIL], n = 57), sporadic SVD (n = 444), and healthy controls (n = 28). We modeled freely diffusing water in the extracellular space (FW) and measures reflecting fiber structure (tissue compartment). We tested associations between these measures and clinical status (processing speed and disability). Diffusion alterations in SVD were mostly driven by increased FW and less by tissue compartment alterations. Among imaging markers, FW showed the strongest association with clinical status (R 2 up to 34%, P < .0001). Findings were consistent across patients with CADASIL and sporadic SVD. Diffusion alterations and clinical status in SVD are largely determined by extracellular fluid increase rather than alterations of white matter fiber organization. Copyright © 2018 the Alzheimer's Association. All rights reserved.

  19. Interstitial diffusion and the relationship between compartment modelling and multi-scale spatial-temporal modelling of (18)F-FLT tumour uptake dynamics.

    PubMed

    Liu, Dan; Chalkidou, Anastasia; Landau, David B; Marsden, Paul K; Fenwick, John D

    2014-09-07

    Tumour cell proliferation can be imaged via positron emission tomography of the radiotracer 3'-deoxy-3'-18F-fluorothymidine (18F-FLT). Conceptually, the number of proliferating cells might be expected to correlate more closely with the kinetics of 18F-FLT uptake than with uptake at a fixed time. Radiotracer uptake kinetics are standardly visualized using parametric maps of compartment model fits to time-activity-curves (TACs) of individual voxels. However the relationship between the underlying spatiotemporal accumulation of FLT and the kinetics described by compartment models has not yet been explored. In this work tumour tracer uptake is simulated using a mechanistic spatial-temporal model based on a convection-diffusion-reaction equation solved via the finite difference method. The model describes a chain of processes: the flow of FLT between the spatially heterogeneous tumour vasculature and interstitium; diffusion and convection of FLT within the interstitium; transport of FLT into cells; and intracellular phosphorylation. Using values of model parameters estimated from the biological literature, simulated FLT TACs are generated with shapes and magnitudes similar to those seen clinically. Results show that the kinetics of the spatial-temporal model can be recovered accurately by fitting a 3-tissue compartment model to FLT TACs simulated for those tumours or tumour sub-volumes that can be viewed as approximately closed, for which tracer diffusion throughout the interstitium makes only a small fractional change to the quantity of FLT they contain. For a single PET voxel of width 2.5-5 mm we show that this condition is roughly equivalent to requiring that the relative difference in tracer uptake between the voxel and its neighbours is much less than one.

  20. Inflammatory Response of Human Gestational Membranes to Ureaplasma parvum Using a Novel Dual-Chamber Tissue Explant System.

    PubMed

    Potts, Lauren C; Feng, Liping; Seed, Patrick C; Jayes, Friederike L; Kuchibhatla, Maragatha; Antczak, Brian; Nazzal, Matthew K; Murtha, Amy P

    2016-05-01

    Preterm premature rupture of membranes (PPROM) is often associated with intra-amniotic inflammation and infection. Current understanding of the pathogenesis of PPROM includes activation of pro-inflammatory cytokines and proteolytic enzymes leading to compromise of membrane integrity. The impact of exposure to bacterial pathogens, including Ureaplasma parvum, on gestational membranes is poorly understood. Our objective was to develop a dual-chamber system to characterize the inflammatory response of gestational membranes to U. parvum in a directional nature. Full-thickness human gestational membrane explants, with either choriodecidua or amnion oriented superiorly, were suspended between two washers in a cylindrical device, creating two distinct compartments. Brilliant green dye was introduced into the top chamber to assess the integrity of the system. Tissue viability was evaluated after 72 h using a colorimetric cell proliferation assay. Choriodecidua or amnion was exposed to three doses of U. parvum and incubated for 24 h. Following treatment, media from each compartment were used for quantification of U. parvum (quantitative PCR), interleukin (IL)-8 (enzyme-linked immunosorbent assay), and matrix metalloproteinase (MMP)-2 and MMP-9 activity (zymography). We observed that system integrity and explant viability were maintained over 72 h. Dose-dependent increases in recovered U. parvum, IL-8 concentration, and MMP-2 activity were detected in both compartments. Significant differences in IL-8 concentration and MMP-9 activity were found between the choriodecidua and amnion. This tissue explant system can be used to investigate the inflammatory consequences of directional bacterial exposure for gestational membranes and provides insight into the pathogenesis of PPROM and infectious complications of pregnancy. © 2016 by the Society for the Study of Reproduction, Inc.

  1. The physiological kinetics of nitrogen and the prevention of decompression sickness.

    PubMed

    Doolette, D J; Mitchell, S J

    2001-01-01

    Decompression sickness (DCS) is a potentially crippling disease caused by intracorporeal bubble formation during or after decompression from a compressed gas underwater dive. Bubbles most commonly evolve from dissolved inert gas accumulated during the exposure to increased ambient pressure. Most diving is performed breathing air, and the inert gas of interest is nitrogen. Divers use algorithms based on nitrogen kinetic models to plan the duration and degree of exposure to increased ambient pressure and to control their ascent rate. However, even correct execution of dives planned using such algorithms often results in bubble formation and may result in DCS. This reflects the importance of idiosyncratic host factors that are difficult to model, and deficiencies in current nitrogen kinetic models. Models describing the exchange of nitrogen between tissues and blood may be based on distributed capillary units or lumped compartments, either of which may be perfusion- or diffusion-limited. However, such simplistic models are usually poor predictors of experimental nitrogen kinetics at the organ or tissue level, probably because they fail to account for factors such as heterogeneity in both tissue composition and blood perfusion and non-capillary exchange mechanisms. The modelling of safe decompression procedures is further complicated by incomplete understanding of the processes that determine bubble formation. Moreover, any formation of bubbles during decompression alters subsequent nitrogen kinetics. Although these factors mandate complex resolutions to account for the interaction between dissolved nitrogen kinetics and bubble formation and growth, most decompression schedules are based on relatively simple perfusion-limited lumped compartment models of blood: tissue nitrogen exchange. Not surprisingly, all models inevitably require empirical adjustment based on outcomes in the field. Improvements in the predictive power of decompression calculations are being achieved using probabilistic bubble models, but divers will always be subject to the possibility of developing DCS despite adherence to prescribed limits.

  2. Promotion of Testa Rupture during Garden Cress Germination Involves Seed Compartment-Specific Expression and Activity of Pectin Methylesterases1[OPEN

    PubMed Central

    Scheler, Claudia; Weitbrecht, Karin; Pearce, Simon P.; Hampstead, Anthony; Büttner-Mainik, Annette; Lee, Kieran J.D.; Voegele, Antje; Oracz, Krystyna; Dekkers, Bas J.W.; Wang, Xiaofeng; Wood, Andrew T.A.; Bentsink, Leónie; King, John R.; Knox, J. Paul; Holdsworth, Michael J.; Müller, Kerstin; Leubner-Metzger, Gerhard

    2015-01-01

    Pectin methylesterase (PME) controls the methylesterification status of pectins and thereby determines the biophysical properties of plant cell walls, which are important for tissue growth and weakening processes. We demonstrate here that tissue-specific and spatiotemporal alterations in cell wall pectin methylesterification occur during the germination of garden cress (Lepidium sativum). These cell wall changes are associated with characteristic expression patterns of PME genes and resultant enzyme activities in the key seed compartments CAP (micropylar endosperm) and RAD (radicle plus lower hypocotyl). Transcriptome and quantitative real-time reverse transcription-polymerase chain reaction analysis as well as PME enzyme activity measurements of separated seed compartments, including CAP and RAD, revealed distinct phases during germination. These were associated with hormonal and compartment-specific regulation of PME group 1, PME group 2, and PME inhibitor transcript expression and total PME activity. The regulatory patterns indicated a role for PME activity in testa rupture (TR). Consistent with a role for cell wall pectin methylesterification in TR, treatment of seeds with PME resulted in enhanced testa permeability and promoted TR. Mathematical modeling of transcript expression changes in germinating garden cress and Arabidopsis (Arabidopsis thaliana) seeds suggested that group 2 PMEs make a major contribution to the overall PME activity rather than acting as PME inhibitors. It is concluded that regulated changes in the degree of pectin methylesterification through CAP- and RAD-specific PME and PME inhibitor expression play a crucial role during Brassicaceae seed germination. PMID:25429110

  3. Modulatory compartments in cortex and local regulation of cholinergic tone.

    PubMed

    Coppola, Jennifer J; Ward, Nicholas J; Jadi, Monika P; Disney, Anita A

    2016-09-01

    Neuromodulatory signaling is generally considered broad in its impact across cortex. However, variations in the characteristics of cortical circuits may introduce regionally-specific responses to diffuse modulatory signals. Features such as patterns of axonal innervation, tissue tortuosity and molecular diffusion, effectiveness of degradation pathways, subcellular receptor localization, and patterns of receptor expression can lead to local modification of modulatory inputs. We propose that modulatory compartments exist in cortex and can be defined by variation in structural features of local circuits. Further, we argue that these compartments are responsible for local regulation of neuromodulatory tone. For the cholinergic system, these modulatory compartments are regions of cortical tissue within which signaling conditions for acetylcholine are relatively uniform, but between which signaling can vary profoundly. In the visual system, evidence for the existence of compartments indicates that cholinergic modulation likely differs across the visual pathway. We argue that the existence of these compartments calls for thinking about cholinergic modulation in terms of finer-grained control of local cortical circuits than is implied by the traditional view of this system as a diffuse modulator. Further, an understanding of modulatory compartments provides an opportunity to better understand and perhaps correct signal modifications that lead to pathological states. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Analysis of factors that influence rates of carbon monoxide uptake, distribution, and washout from blood and extravascular tissues using a multicompartment model.

    PubMed

    Bruce, Margaret C; Bruce, Eugene N

    2006-04-01

    To better understand factors that influence carbon monoxide (CO) washout rates, we utilized a multicompartment mathematical model to predict rates of CO uptake, distribution in vascular and extravascular (muscle vs. other soft tissue) compartments, and washout over a range of exposure and washout conditions with varied subject-specific parameters. We fitted this model to experimental data from 15 human subjects, for whom subject-specific parameters were known, multiple washout carboxyhemoglobin (COHb) levels were available, and CO exposure conditions were identical, to investigate the contributions of exposure conditions and individual variability to CO washout from blood. We found that CO washout from venous blood was biphasic and that postexposure times at which COHb samples were obtained significantly influenced the calculated CO half times (P < 0.0001). The first, more rapid, phase of CO washout from the blood reflected the loss of CO to the expired air and to a slow uptake by the muscle compartment, whereas the second, slower washout phase was attributable to CO flow from the muscle compartment back to the blood and removal from blood via the expired air. When the model was used to predict the effects of varying exposure conditions for these subjects, the CO exposure duration, concentration, peak COHb levels, and subject-specific parameters each influenced washout half times. Blood volume divided by ventilation correlated better with half-time predictions than did cardiac output, muscle mass, or ventilation, but it explained only approximately 50% of half-time variability. Thus exposure conditions, COHb sampling times, and individual parameters should be considered when estimating CO washout rates for poisoning victims.

  5. Development of a computer code to calculate the distribution of radionuclides within the human body by the biokinetic models of the ICRP.

    PubMed

    Matsumoto, Masaki; Yamanaka, Tsuneyasu; Hayakawa, Nobuhiro; Iwai, Satoshi; Sugiura, Nobuyuki

    2015-03-01

    This paper describes the Basic Radionuclide vAlue for Internal Dosimetry (BRAID) code, which was developed to calculate the time-dependent activity distribution in each organ and tissue characterised by the biokinetic compartmental models provided by the International Commission on Radiological Protection (ICRP). Translocation from one compartment to the next is taken to be governed by first-order kinetics, which is formulated by the first-order differential equations. In the source program of this code, the conservation equations are solved for the mass balance that describes the transfer of a radionuclide between compartments. This code is applicable to the evaluation of the radioactivity of nuclides in an organ or tissue without modification of the source program. It is also possible to handle easily the cases of the revision of the biokinetic model or the application of a uniquely defined model by a user, because this code is designed so that all information on the biokinetic model structure is imported from an input file. The sample calculations are performed with the ICRP model, and the results are compared with the analytic solutions using simple models. It is suggested that this code provides sufficient result for the dose estimation and interpretation of monitoring data. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Marginal reticular cells: a stromal subset directly descended from the lymphoid tissue organizer

    PubMed Central

    Katakai, Tomoya

    2012-01-01

    The architecture of secondary lymphoid organs (SLOs) is supported by several non-hematopoietic stromal cells. Currently it is established that two distinct stromal subsets, follicular dendritic cells and fibroblastic reticular cells, play crucial roles in the formation of tissue compartments within SLOs, i.e., the follicle and T zone, respectively. Although stromal cells in the anlagen are essential for SLO development, the relationship between these primordial cells and the subsets in adulthood remains poorly understood. In addition, the roles of stromal cells in the entry of antigens into the compartments through some tissue structures peculiar to SLOs remain unclear. A recently identified stromal subset, marginal reticular cells (MRCs), covers the margin of SLOs that are primarily located in the outer edge of follicles and construct a unique reticulum. MRCs are closely associated with specialized endothelial or epithelial structures for antigen transport. The similarities in marker expression profiles and successive localization during development suggest that MRCs directly descend from organizer stromal cells in the anlagen. Therefore, MRCs are thought to be a crucial stromal component for the organization and function of SLOs. PMID:22807928

  7. [ESTIMATION OF IONIZING RADIATION EFFECTIVE DOSES IN THE INTERNATIONAL SPACE STATION CREWS BY THE METHOD OF CALCULATION MODELING].

    PubMed

    Mitrikas, V G

    2015-01-01

    Monitoring of the radiation loading on cosmonauts requires calculation of absorbed dose dynamics with regard to the stay of cosmonauts in specific compartments of the space vehicle that differ in shielding properties and lack means of radiation measurement. The paper discusses different aspects of calculation modeling of radiation effects on human body organs and tissues and reviews the effective dose estimates for cosmonauts working in one or another compartment over the previous period of the International space station operation. It was demonstrated that doses measured by a real or personal dosimeters can be used to calculate effective dose values. Correct estimation of accumulated effective dose can be ensured by consideration for time course of the space radiation quality factor.

  8. Body Fat and Muscle Mass as Functions of Body Water

    ERIC Educational Resources Information Center

    Sutton, R. A.; Miller, Carolyn

    2007-01-01

    Hydrostatic weighing and chemical dilution are well accepted methods for measuring body composition. Recently, Dual Energy X-ray Absorptiometry (DEXA) has become the preferred method. The two compartment algorithms used by these methods assume a fixed constant for lean body tissue. This constant has long been suspect of variations due to many…

  9. A Molecular Probe for the Detection of Polar Lipids in Live Cells

    PubMed Central

    Bader, Christie A.; Shandala, Tetyana; Carter, Elizabeth A.; Ivask, Angela; Guinan, Taryn; Hickey, Shane M.; Werrett, Melissa V.; Wright, Phillip J.; Simpson, Peter V.; Stagni, Stefano; Voelcker, Nicolas H.; Lay, Peter A.; Massi, Massimiliano; Brooks, Douglas A.

    2016-01-01

    Lipids have an important role in many aspects of cell biology, including membrane architecture/compartment formation, intracellular traffic, signalling, hormone regulation, inflammation, energy storage and metabolism. Lipid biology is therefore integrally involved in major human diseases, including metabolic disorders, neurodegenerative diseases, obesity, heart disease, immune disorders and cancers, which commonly display altered lipid transport and metabolism. However, the investigation of these important cellular processes has been limited by the availability of specific tools to visualise lipids in live cells. Here we describe the potential for ReZolve-L1™ to localise to intracellular compartments containing polar lipids, such as for example sphingomyelin and phosphatidylethanolamine. In live Drosophila fat body tissue from third instar larvae, ReZolve-L1™ interacted mainly with lipid droplets, including the core region of these organelles. The presence of polar lipids in the core of these lipid droplets was confirmed by Raman mapping and while this was consistent with the distribution of ReZolve-L1™ it did not exclude that the molecular probe might be detecting other lipid species. In response to complete starvation conditions, ReZolve-L1™ was detected mainly in Atg8-GFP autophagic compartments, and showed reduced staining in the lipid droplets of fat body cells. The induction of autophagy by Tor inhibition also increased ReZolve-L1™ detection in autophagic compartments, whereas Atg9 knock down impaired autophagosome formation and altered the distribution of ReZolve-L1™. Finally, during Drosophila metamorphosis fat body tissues showed increased ReZolve-L1™ staining in autophagic compartments at two hours post puparium formation, when compared to earlier developmental time points. We concluded that ReZolve-L1™ is a new live cell imaging tool, which can be used as an imaging reagent for the detection of polar lipids in different intracellular compartments. PMID:27551717

  10. Deterministic Models of Inhalational Anthrax in New Zealand White Rabbits

    PubMed Central

    2014-01-01

    Computational models describing bacterial kinetics were developed for inhalational anthrax in New Zealand white (NZW) rabbits following inhalation of Ames strain B. anthracis. The data used to parameterize the models included bacterial numbers in the airways, lung tissue, draining lymph nodes, and blood. Initial bacterial numbers were deposited spore dose. The first model was a single exponential ordinary differential equation (ODE) with 3 rate parameters that described mucociliated (physical) clearance, immune clearance (bacterial killing), and bacterial growth. At 36 hours postexposure, the ODE model predicted 1.7×107 bacteria in the rabbit, which agreed well with data from actual experiments (4.0×107 bacteria at 36 hours). Next, building on the single ODE model, a physiological-based biokinetic (PBBK) compartmentalized model was developed in which 1 physiological compartment was the lumen of the airways and the other was the rabbit body (lung tissue, lymph nodes, blood). The 2 compartments were connected with a parameter describing transport of bacteria from the airways into the body. The PBBK model predicted 4.9×107 bacteria in the body at 36 hours, and by 45 hours the model showed all clearance mechanisms were saturated, suggesting the rabbit would quickly succumb to the infection. As with the ODE model, the PBBK model results agreed well with laboratory observations. These data are discussed along with the need for and potential application of the models in risk assessment, drug development, and as a general aid to the experimentalist studying inhalational anthrax. PMID:24527843

  11. Compartmental modeling with nitrogen-15 to determine effects of degree of fat saturation on intraruminal N recycling.

    PubMed

    Oldick, B S; Firkins, J L; Kohn, R A

    2000-09-01

    Two- and three-compartment models were developed to describe N kinetics within the rumen using three Holstein heifers and one nonlactating Holstein cow fitted with ruminal and duodenal cannulas. A 4 x 4 Latin square design included a control diet containing no supplemental fat and diets containing 4.85% of diet dry matter as partially hydrogenated tallow (iodine value = 13), tallow (iodine value = 51), or animal-vegetable fat (iodine value = 110). Effects of fat on intraruminal N recycling and relationships between intraruminal N recycling and ruminal protozoa concentration or the efficiency of microbial protein synthesis were determined. A pulse dose of 15(NH4)2SO4 was introduced into the ruminal NH3 N pool, and samples were taken over time from the ruminal NH3 N and nonammonia N pools. For the three-compartment model, precipitates of nonammonia N after trichloroacetic acid and ethanol extraction were defined as slowly turning over nonammonia N; rapidly turning over nonammonia N was determined by difference. Curves of 15N enrichment were fit to models with two (NH3 N and nonammonia N) or three (NH3 N, rapidly turning over nonammonia N, and slowly turning over nonammonia N) compartments using the software SAAM II. Because the three-compartment model did not remove a small systematic bias or improve the fit of the data, the two-compartment model was used to provide measurements of intraruminal N recycling. Intraruminal NH3 N recycling (45% for control) decreased linearly as fat unsaturation increased (50.2, 43.0, and 41.7% for partially hydrogenated tallow, tallow, and animal-vegetable fat, respectively). Intraruminal nitrogen recycling was not correlated with efficiency of microbial protein synthesis or ruminal protozoa counts.

  12. Flutriciclamide (18F-GE180) PET: First-in-Human PET Study of Novel Third-Generation In Vivo Marker of Human Translocator Protein.

    PubMed

    Fan, Zhen; Calsolaro, Valeria; Atkinson, Rebecca A; Femminella, Grazia D; Waldman, Adam; Buckley, Christopher; Trigg, William; Brooks, David J; Hinz, Rainer; Edison, Paul

    2016-11-01

    Neuroinflammation is associated with neurodegenerative disease. PET radioligands targeting the 18-kDa translocator protein (TSPO) have been used as in vivo markers of neuroinflammation, but there is an urgent need for novel probes with improved signal-to-noise ratio. Flutriciclamide ( 18 F-GE180) is a recently developed third-generation TSPO ligand. In this first study, we evaluated the optimum scan duration and kinetic modeling strategies for 18 F-GE180 PET in (older) healthy controls. Ten healthy controls, 6 TSPO high-affinity binders, and 4 mixed-affinity binders were recruited. All subjects underwent detailed neuropsychologic tests, MRI, and a 210-min 18 F-GE180 dynamic PET/CT scan using metabolite-corrected arterial plasma input function. We evaluated 5 different kinetic models: irreversible and reversible 2-tissue-compartment models, a reversible 1-tissue model, and 2 models with an extra irreversible vascular compartment. The minimal scan duration was established using 210-min scan data. The feasibility of generating parametric maps was also investigated using graphical analysis. 18 F-GE180 concentration was higher in plasma than in whole blood during the entire scan duration. The volume of distribution (V T ) was 0.17 in high-affinity binders and 0.12 in mixed-affinity binders using the kinetic model. The model that best represented brain 18 F-GE180 kinetics across regions was the reversible 2-tissue-compartment model (2TCM4k), and 90 min resulted as the optimum scan length required to obtain stable estimates. Logan graphical analysis with arterial input function gave a V T highly consistent with V T in the kinetic model, which could be used for voxelwise analysis. We report for the first time, to our knowledge, the kinetic properties of the novel third-generation TSPO PET ligand 18 F-GE180 in humans: 2TCM4k is the optimal method to quantify the brain uptake, 90 min is the optimal scan length, and the Logan approach could be used to generate parametric maps. Although these control subjects have shown relatively low V T , the methodology presented here forms the basis for quantification for future PET studies using 18 F-GE180 in different pathologies. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  13. A three-compartment model of osmotic water exchange in the lung microvasculature.

    PubMed

    Seale, K T; Harris, T R

    2000-08-01

    A bolus injection of hypertonic NaCl into the pulmonary arterial circulation of an isolated perfused dog lung causes the osmotic movement of water first into, and then out of the capillary. The associated changes in blood constituent concentrations and density are referred to as the osmotic transient (OT). Measurement of the sound conduction velocity of effluent blood during an OT is a highly sensitive way to monitor water movement between the vascular and extravascular spaces. It was our objective to develop a mathematical model that adequately describes this transient change in the sound conduction velocity and evaluate its application under conditions of homogeneous and heterogeneous capillary flow distributions. The model accounts for osmotic water exchange between the capillary and two parallel extravascular compartments, and includes as parameters the osmotic conductances (sigmaK1 ,sigmaK2) of the two compartments. The osmotic conductance parameters incorporate the filtration coefficient for water and reflection coefficient for salt for the two pathways of water exchange. The partition of total extravascular lung water (EVLW) between the two extravascular compartments is a third parameter of the model. The homogeneous model parameter estimates (per gram wet lung weight +/-95% confidence limits) from the best-fit analysis of a typical curve were sigmaK1=2.15 +/-0.07, sigmaK2 = 0.03 + 0.00 [ml h(-1) (mosmol/liter)(-1) g(-1)] and V1 = 23.83+/-0.12 ml, with a coefficient of variation (CV) of 0.08. The heterogeneous parameter estimates for a capillary transit time distribution with mean transit time (MTTc) = 1.72 s, and relative dispersion (RDc) = 0.35 were KI = 2.38+/-0.05, or K2 = 0.03+/-0.00 [ml h(-1) (mosmol/liter)(-1) g(-1)], V1 = 23.91+/-0.08 ml, and CV=0.05. EVLW was 42.1 ml for both models. We conclude that the three-compartment mathematical model adequately describes a typical OT under both homogeneous and heterogeneous blood flow assumptions.

  14. TOXICOKINETICS OF TREMOROGENIC NATURAL PRODUCTS, HARMANE AND HARMINE, IN MALE SPRAGUE-DAWLEY RATS

    PubMed Central

    Guan, Yongbiao; Louis, Elan D.; Zheng, Wei

    2016-01-01

    Tremorogenic β-carboline alkaloids are present in foodstuffs and beverages. Acute exposure to β-carboline derivatives causes severe tremor; however, the disposition of these dietary contaminants remains unclear. This study was performed to evaluate toxicokinetics of harmane and harmine, two major β-carboline alkaloids, in rats. Blood concentrations of both toxicants were quantified by high-performance liquid chromatography (HPLC). Following an intravenous injection (0.5 mg/ kg), the concentration–time profiles of harmane or harmine fit well with a two-compartment model. While both compounds had comparable elimination t1/ 2β (24 and 26 min for harmane and harmine, respectively), the systemic clearance (CLs) for harmine (103.2 ml/ kg/ml) was two times greater than that for harmane (52.2 ml/ kg/ml). Accordingly, the area under the blood concentration–time curve (AUC) in harmane-treated rats was 2.7-fold greater than that in harmine-treated rats. Harmine appeared to distribute to tissues better than harmane, with a larger volume of distribution (Vd) (3.9 and 1.6 L/ kg for harmine and harmane, respectively). After an oral dose (20 mg/ kg), the absolute bioavailability (F) was 19% for harmane and 3% for harmine. Harmane was absorbed more slowly (lower Ka), yet more completely (higher Cmax, AUC, and F) than harmine. An oral administration of harmane resulted in blood harmine whose formation accounted for 13% of the ingested harmane, indicating a biotransformation of harmane to harmine. These results suggest that harmane is absorbed into the systemic circulation more completely than harmine. Upon entering the body, harmane can be metabolized to form harmine; the latter may better distribute to the tissue compartment. PMID:11766171

  15. Toxicokinetics of tremorogenic natural products, harmane and harmine, in male Sprague-Dawley rats.

    PubMed

    Guan, Y; Louis, E D; Zheng, W

    2001-12-21

    Tremorogenic beta-carboline alkaloids are present in foodstuffs and beverages. Acute exposure to beta-carboline derivatives causes severe tremor; however, the disposition of these dietary contaminants remains unclear. This study was performed to evaluate toxicokinetics of harmane and harmine, two major beta-carboline alkaloids, in rats. Blood concentrations of both toxicants were quantified by high-performance liquid chromatography (HPLC). Following an intravenous injection (0.5 mg/kg), the concentration-time profiles of harmane or harmine fit well with a two-compartment model. While both compounds had comparable elimination t 1/2beta (24 and 26 min for harmane and harmine, respectively), the systemic clearance (CLs) for harmine (103.2 ml/kg/ml) was two times greater than that for harmane (52.2 ml/kg/ml). Accordingly, the area under the blood concentration-time curve (AUC) in harmane-treated rats was 2.7-fold greater than that in harmine-treated rats. Harmine appeared to distribute to tissues better than harmane, with a larger volume of distribution (V,d) (3.9 and 1.6 L/kg for harmine and harmane, respectively). After an oral dose (20 mg/kg), the absolute bioavailability (F) was 19% for harmane and 3% for harmine. Harmane was absorbed more slowly (lower Ka), yet more completely (higher Cmax' AUC, and F) than harmine. An oral administration of harmane resulted in blood harmine whose formation accounted for 13% of the ingested harmane, indicating a biotransformation of harmane to harmine. These results suggest that harmane is absorbed into the systemic circulation more completely than harmine. Upon entering the body, harmane can be metabolized to form harmine; the latter may better distribute to the tissue compartment.

  16. Estimation of perfusion properties with MR Fingerprinting Arterial Spin Labeling.

    PubMed

    Wright, Katherine L; Jiang, Yun; Ma, Dan; Noll, Douglas C; Griswold, Mark A; Gulani, Vikas; Hernandez-Garcia, Luis

    2018-03-12

    In this study, the acquisition of ASL data and quantification of multiple hemodynamic parameters was explored using a Magnetic Resonance Fingerprinting (MRF) approach. A pseudo-continuous ASL labeling scheme was used with pseudo-randomized timings to acquire the MRF ASL data in a 2.5 min acquisition. A large dictionary of MRF ASL signals was generated by combining a wide range of physical and hemodynamic properties with the pseudo-random MRF ASL sequence and a two-compartment model. The acquired signals were matched to the dictionary to provide simultaneous quantification of cerebral blood flow, tissue time-to-peak, cerebral blood volume, arterial time-to-peak, B 1 , and T 1. A study in seven healthy volunteers resulted in the following values across the population in grey matter (mean ± standard deviation): cerebral blood flow of 69.1 ± 6.1 ml/min/100 g, arterial time-to-peak of 1.5 ± 0.1 s, tissue time-to-peak of 1.5 ± 0.1 s, T 1 of 1634 ms, cerebral blood volume of 0.0048 ± 0.0005. The CBF measurements were compared to standard pCASL CBF estimates using a one-compartment model, and a Bland-Altman analysis showed good agreement with a minor bias. Repeatability was tested in five volunteers in the same exam session, and no statistical difference was seen. In addition to this validation, the MRF ASL acquisition's sensitivity to the physical and physiological parameters of interest was studied numerically. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. The New York Head—A precise standardized volume conductor model for EEG source localization and tES targeting

    PubMed Central

    Huang, Yu; Parra, Lucas C.; Haufe, Stefan

    2018-01-01

    In source localization of electroencephalograpic (EEG) signals, as well as in targeted transcranial electric current stimulation (tES), a volume conductor model is required to describe the flow of electric currents in the head. Boundary element models (BEM) can be readily computed to represent major tissue compartments, but cannot encode detailed anatomical information within compartments. Finite element models (FEM) can capture more tissue types and intricate anatomical structures, but with the higher precision also comes the need for semiautomated segmentation, and a higher computational cost. In either case, adjusting to the individual human anatomy requires costly magnetic resonance imaging (MRI), and thus head modeling is often based on the anatomy of an ‘arbitrary’ individual (e.g. Colin27). Additionally, existing reference models for the human head often do not include the cerebrospinal fluid (CSF), and their field of view excludes portions of the head and neck—two factors that demonstrably affect current-flow patterns. Here we present a highly detailed FEM, which we call ICBM-NY, or “New York Head”. It is based on the ICBM152 anatomical template (a non-linear average of the MRI of 152 adult human brains) defined in MNI coordinates, for which we extended the field of view to the neck and performed a detailed segmentation of six tissue types (scalp, skull, CSF, gray matter, white matter, air cavities) at 0.5 mm 3 resolution. The model was solved for 231 electrode locations. To evaluate its performance, additional FEMs and BEMs were constructed for four individual subjects. Each of the four individual FEMs (regarded as the ‘ground truth’) is compared to its BEM counterpart, the ICBM-NY, a BEM of the ICBM anatomy, an ‘individualized’ BEM of the ICBM anatomy warped to the individual head surface, and FEMs of the other individuals. Performance is measured in terms of EEG source localization and tES targeting errors. Results show that the ICBM-NY outperforms FEMs of mismatched individual anatomies as well as the BEM of the ICBM anatomy according to both criteria. We therefore propose the New York Head as a new standard head model to be used in future EEG and tES studies whenever an individual MRI is not available. We release all model data online at neuralengr.com/nyhead/ to facilitate broad adoption. PMID:26706450

  18. The New York Head-A precise standardized volume conductor model for EEG source localization and tES targeting.

    PubMed

    Huang, Yu; Parra, Lucas C; Haufe, Stefan

    2016-10-15

    In source localization of electroencephalograpic (EEG) signals, as well as in targeted transcranial electric current stimulation (tES), a volume conductor model is required to describe the flow of electric currents in the head. Boundary element models (BEM) can be readily computed to represent major tissue compartments, but cannot encode detailed anatomical information within compartments. Finite element models (FEM) can capture more tissue types and intricate anatomical structures, but with the higher precision also comes the need for semi-automated segmentation, and a higher computational cost. In either case, adjusting to the individual human anatomy requires costly magnetic resonance imaging (MRI), and thus head modeling is often based on the anatomy of an 'arbitrary' individual (e.g. Colin27). Additionally, existing reference models for the human head often do not include the cerebro-spinal fluid (CSF), and their field of view excludes portions of the head and neck-two factors that demonstrably affect current-flow patterns. Here we present a highly detailed FEM, which we call ICBM-NY, or "New York Head". It is based on the ICBM152 anatomical template (a non-linear average of the MRI of 152 adult human brains) defined in MNI coordinates, for which we extended the field of view to the neck and performed a detailed segmentation of six tissue types (scalp, skull, CSF, gray matter, white matter, air cavities) at 0.5mm(3) resolution. The model was solved for 231 electrode locations. To evaluate its performance, additional FEMs and BEMs were constructed for four individual subjects. Each of the four individual FEMs (regarded as the 'ground truth') is compared to its BEM counterpart, the ICBM-NY, a BEM of the ICBM anatomy, an 'individualized' BEM of the ICBM anatomy warped to the individual head surface, and FEMs of the other individuals. Performance is measured in terms of EEG source localization and tES targeting errors. Results show that the ICBM-NY outperforms FEMs of mismatched individual anatomies as well as the BEM of the ICBM anatomy according to both criteria. We therefore propose the New York Head as a new standard head model to be used in future EEG and tES studies whenever an individual MRI is not available. We release all model data online at neuralengr.com/nyhead/ to facilitate broad adoption. Published by Elsevier Inc.

  19. Vulvar field resection: novel approach to the surgical treatment of vulvar cancer based on ontogenetic anatomy.

    PubMed

    Höckel, Michael; Schmidt, Katja; Bornmann, Karoline; Horn, Lars-Christian; Dornhöfer, Nadja

    2010-10-01

    Current local treatment of vulvar cancer is wide tumor excision and radical vulvectomy based on functional anatomy established from the adult and on the view of radial progressive tumor permeation. Standard surgery is associated with a considerable local failure rate and severe disturbance of the patients' body image. Vulvar field resection (VFR) is based on ontogenetic anatomy and on the concept of local tumor spread within permissive compartments. VFR combined with anatomical reconstruction (AR) is proposed as a new surgical approach to the treatment of vulvar cancer. A prospective trial was launched to test the compartment theory for vulvar cancer and to assess safety and effectiveness of the new therapy. In 54 consecutive patients 46 tumors were locally confined to the tissue compartment differentiated from the vulvar anlage. The 8 tumors having transgressed into adjacent tissue compartments of different embryonic origins exhibited signs of advanced malignant progression. 38 patients with vulvar cancer, stages T1-3 were treated with VFR and AR. The perioperative complication rate was low. At 19 (3-50) months follow-up no patient failed locally. 33 patients estimated their body image as undisturbed. Vulvar cancer permeates within ontogenetic tissue compartments and surgical treatment with VFR and AR appears to be safe and effective. Patients should benefit from the new approach as local tumor control is high and the preserved tissue can be successfully used for restoration of vulvar form and function. Confirmatory trials with more patients and longer follow-up are suggested. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. SimpleBox 4.0: Improving the model while keeping it simple….

    PubMed

    Hollander, Anne; Schoorl, Marian; van de Meent, Dik

    2016-04-01

    Chemical behavior in the environment is often modeled with multimedia fate models. SimpleBox is one often-used multimedia fate model, firstly developed in 1986. Since then, two updated versions were published. Based on recent scientific developments and experience with SimpleBox 3.0, a new version of SimpleBox was developed and is made public here: SimpleBox 4.0. In this new model, eight major changes were implemented: removal of the local scale and vegetation compartments, addition of lake compartments and deep ocean compartments (including the thermohaline circulation), implementation of intermittent rain instead of drizzle and of depth dependent soil concentrations, adjustment of the partitioning behavior for organic acids and bases as well as of the value for enthalpy of vaporization. In this paper, the effects of the model changes in SimpleBox 4.0 on the predicted steady-state concentrations of chemical substances were explored for different substance groups (neutral organic substances, acids, bases, metals) in a standard emission scenario. In general, the largest differences between the predicted concentrations in the new and the old model are caused by the implementation of layered ocean compartments. Undesirable high model complexity caused by vegetation compartments and a local scale were removed to enlarge the simplicity and user friendliness of the model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Adipose Tissue Quantification by Imaging Methods: A Proposed Classification

    PubMed Central

    Shen, Wei; Wang, ZiMian; Punyanita, Mark; Lei, Jianbo; Sinav, Ahmet; Kral, John G.; Imielinska, Celina; Ross, Robert; Heymsfield, Steven B.

    2007-01-01

    Recent advances in imaging techniques and understanding of differences in the molecular biology of adipose tissue has rendered classical anatomy obsolete, requiring a new classification of the topography of adipose tissue. Adipose tissue is one of the largest body compartments, yet a classification that defines specific adipose tissue depots based on their anatomic location and related functions is lacking. The absence of an accepted taxonomy poses problems for investigators studying adipose tissue topography and its functional correlates. The aim of this review was to critically examine the literature on imaging of whole body and regional adipose tissue and to create the first systematic classification of adipose tissue topography. Adipose tissue terminology was examined in over 100 original publications. Our analysis revealed inconsistencies in the use of specific definitions, especially for the compartment termed “visceral” adipose tissue. This analysis leads us to propose an updated classification of total body and regional adipose tissue, providing a well-defined basis for correlating imaging studies of specific adipose tissue depots with molecular processes. PMID:12529479

  2. Models and signal processing for an implanted ethanol bio-sensor.

    PubMed

    Han, Jae-Joon; Doerschuk, Peter C; Gelfand, Saul B; O'Connor, Sean J

    2008-02-01

    The understanding of drinking patterns leading to alcoholism has been hindered by an inability to unobtrusively measure ethanol consumption over periods of weeks to months in the community environment. An implantable ethanol sensor is under development using microelectromechanical systems technology. For safety and user acceptability issues, the sensor will be implanted subcutaneously and, therefore, measure peripheral-tissue ethanol concentration. Determining ethanol consumption and kinetics in other compartments from the time course of peripheral-tissue ethanol concentration requires sophisticated signal processing based on detailed descriptions of the relevant physiology. A statistical signal processing system based on detailed models of the physiology and using extended Kalman filtering and dynamic programming tools is described which can estimate the time series of ethanol concentration in blood, liver, and peripheral tissue and the time series of ethanol consumption based on peripheral-tissue ethanol concentration measurements.

  3. Treatment of a case of subacute lumbar compartment syndrome using the Graston technique.

    PubMed

    Hammer, Warren I; Pfefer, Mark T

    2005-01-01

    To discuss subacute lumbar compartment syndrome and its treatment using a soft tissue mobilization technique. A patient presented with low back pain related to exercise combined with prolonged flexion posture. The symptoms were relieved with rest and lumbar extension. The patient had restrictive lumbar fascia in flexion and rotation and no neurological deficits. The restrictive lumbar posterior fascial layers and adjoining restrictive fascia (thoracic, gluteal, hamstring) were treated with a form of instrument-assisted soft tissue mobilization called the Graston technique. Restoration of fascial extensibility and resolution of the complaint occurred after 6 treatment visits. The posterior spinal fascial compartments may be responsible for intermittent lower back pain. Functional clinical tests can be employed to determine whether the involved fascia is abnormally restrictive. Treatment directed at the restrictive fascia using this soft tissue technique may result in improved fascial functional testing and reduction of symptoms.

  4. Treatment model of dengue hemorrhagic fever infection in human body

    NASA Astrophysics Data System (ADS)

    Handayani, D.; Nuraini, N.; Primasari, N.; Wijaya, K. P.

    2014-03-01

    The treatment model of DHF presented in this paper involves the dynamic of five time-dependent compartments, i.e. susceptible, infected, free virus particle, immune cell, and haematocrit level. The treatment model is investigated based on normalization of haematocrit level, which is expressed as intravenous fluid infusion control. We analyze the stability of the disease free equilibrium and the endemic equilibrium. The numerical simulations will explain the dynamic of each compartment in human body. These results show particularly that infected compartment and free virus particle compartment are tend to be vanished in two weeks after the onset of dengue virus. However, these simulation results also show that without the treatment, the haematocrit level will decrease even though not up to the normal level. Therefore the effective haematocrit normalization should be done with the treatment control.

  5. A simple method for comparing immunogold distributions in two or more experimental groups illustrated using GLUT1 labelling of isolated trophoblast cells.

    PubMed

    Mayhew, T M; Desoye, G

    2004-07-01

    Colloidal gold-labelling, combined with transmission electron microscopy, is a valuable technique for high-resolution immunolocalization of identified antigens in different subcellular compartments. Whilst the technique has been applied to placental tissues, few quantitative studies have been made. Subcellular compartments exist in three main categories (viz. organelles, membranes, filaments/tubules) and this affects the possibilities for quantification. Generally, gold particles are counted in order to compare either (a) compartments within an experimental group or (b) compartmental labelling distributions between groups. For the former, recent developments make it possible to test whether or not there is differential (nonrandom) labelling of compartments. The methods (relative labelling index and labelling density) are ideally suited to analysing label in one category of compartment (organelle or membrane or filament) but may be adapted to deal with a mixture of categories. They also require information about compartment size (e.g. profile area or trace length). Here, a simple and efficient method for drawing between-group comparisons of labelling distributions is presented. The method does not require information about compartment size or specimen magnification. It relies on multistage random sampling of specimens and unbiased counting of gold particles associated with different compartments. Distributions of observed gold counts in different experimental groups are compared by contingency table analysis with degrees of freedom for chi-squared (chi(2)) values being determined by the numbers of compartments and experimental groups. Compartmental values of chi(2)which contribute substantially to total chi(2)identify the principal subcellular sites of between-group differences. The method is illustrated using datasets from immunolabelling studies on the localization of GLUT1 glucose transporters in cultured human trophoblast cells exposed to different treatments.

  6. Quantitative kinetic analysis of PET amyloid imaging agents [(11)C]BF227 and [(18)F]FACT in human brain.

    PubMed

    Shidahara, Miho; Watabe, Hiroshi; Tashiro, Manabu; Okamura, Nobuyuki; Furumoto, Shozo; Watanuki, Shoichi; Furukawa, Katsutoshi; Arakawa, Yuma; Funaki, Yoshihito; Iwata, Ren; Gonda, Kohsuke; Kudo, Yukitsuka; Arai, Hiroyuki; Ishiwata, Kiichi; Yanai, Kazuhiko

    2015-09-01

    The purpose of this study was to compare two amyloid imaging agents, [(11)C]BF227 and [(18)F]FACT (derivative from [(11)C]BF227) through quantitative pharmacokinetics analysis in human brain. Positron emission tomography studies were performed on six elderly healthy control (HC) subjects and seven probable Alzheimer's disease (AD) patients with [(11)C]BF227 and 10 HC subjects and 10 probable AD patients with [(18)F]FACT. Data from nine regions of interest were analyzed by several approaches, namely non-linear least-squared fitting methods with arterial input functions (one-tissue compartment model(1TCM), two-tissue compartment model (2TCM)), Logan plot, and linearized methods with reference region (Reference Logan plot (RefLogan), MRTM0, MRTM2). We also evaluated SUV and SUVR for both tracers. The parameters estimated by several approaches were compared between two tracers for detectability of differences between HC and AD patients. For [(11)C]BF227, there were no significant difference of VT (2TCM, 1TCM) and SUV in all regions (Student t-test; p<0.05) and significant differences in the DVRs (Logan, RefLogan, and MRTM2) and SUVRs in six neocortical regions (p<0.05) between the HC and AD groups. For [(18)F]FACT, significant differences in DVRs (RefLogan, MRTM0, and MRTM2) were observed in more than four neocortical regions between the HC and AD groups (p<0.05), and the significant differences were found in SUVRs for two neocortical regions (inferior frontal coretex and lateral temporal coretex). Our results showed that both tracers can clearly distinguish between HC and AD groups although the pharmacokinetics and distribution patterns in brain for two tracers were substantially different. This study revealed that although the PET amyloid imaging agents [(11)C]BF227 and [(18)F]FACT have similar chemical and biological properties, they have different pharmacokinetics, and caution must be paid for usage of the tracers. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. [Immunochemical study of the proteins of various tissues in Crustacea (Decapoda): nature, role, origin].

    PubMed

    Durliat, M

    1983-11-01

    The main proteins of the haemolymph of Crustacea Decapoda have been identified and analysed: haemocyanin, plasma coagulogen, heteroagglutinins, vitellogenins, and molt-related proteins. All these complex components exhibit a high molecular weight and as oligomeric fractions are able to aggregate or dissociate in subunits according to the composition of medium and experimental procedures. Besides their important rôle in the defense mechanism, some proteins are involved in the edification of diverse tissues. They are detected within different compartments: soft integument, calcified carapace and hepatopancreas. They are either in transit or sequestered or synthetized within these tissues. In the crayfish Astacus leptodactylus, some components have been identified in different compartments: --in aqueous extracts from soft integument: the haemocyanin, coagulogen and both fraction F1 (lipoprotein with an approximate molecular weight of 45 kdal) and fraction F2 related to the molt. Both coagulogen and fraction F2 appear sometimes as melanized. These two latter fractions exhibit some glucose-mannose residues and they occur with a higher relative amount than in the blood. --in soluble extracts from calcified cuticle: among the numerous fractions showing a high molecular weight, the haemocyanin and coagulogen are detected. --in aqueous extracts from hepatopancreas: both haemocyanin and coagulogen appear with a little relative amount. Components termed as Fa and Fb are found with a high concentration. One minor fraction is also detected. --in aqueous extracts from eggs: the haemocyanin and fraction Fb are present. Other proteins showing only some antigenic identities with those of the haemolymph are also detected in all these tissues. The haemolymph proteins are not present within these compartments following a passive diffusion. Indeed, their relative amount varies according to the tissue investigated and is different from that found in the blood. Except the haemocyanin detected in all tissues with different aggregation states, the haemolymph proteins identified vary in the organs studied. A qualitative and quantitative selection occurs when the blood proteins enter the other compartments. Perhaps some other proteins are not detected following alterations underwent either in the epithelial barriers or during the tannage process or the chitino-proteic complex formation or due to experimental procedures. On the other hand, each tissue has its own proteins. The integument contains crustacyanins alpha, beta, gamma; the eggs are mainly constituted of lipovitellins and the hepatopancreas is rich in small molecular weight proteins and digestive enzymes.(ABSTRACT TRUNCATED AT 400 WORDS)

  8. Micro Finite Element models of the vertebral body: Validation of local displacement predictions.

    PubMed

    Costa, Maria Cristiana; Tozzi, Gianluca; Cristofolini, Luca; Danesi, Valentina; Viceconti, Marco; Dall'Ara, Enrico

    2017-01-01

    The estimation of local and structural mechanical properties of bones with micro Finite Element (microFE) models based on Micro Computed Tomography images depends on the quality bone geometry is captured, reconstructed and modelled. The aim of this study was to validate microFE models predictions of local displacements for vertebral bodies and to evaluate the effect of the elastic tissue modulus on model's predictions of axial forces. Four porcine thoracic vertebrae were axially compressed in situ, in a step-wise fashion and scanned at approximately 39μm resolution in preloaded and loaded conditions. A global digital volume correlation (DVC) approach was used to compute the full-field displacements. Homogeneous, isotropic and linear elastic microFE models were generated with boundary conditions assigned from the interpolated displacement field measured from the DVC. Measured and predicted local displacements were compared for the cortical and trabecular compartments in the middle of the specimens. Models were run with two different tissue moduli defined from microindentation data (12.0GPa) and a back-calculation procedure (4.6GPa). The predicted sum of axial reaction forces was compared to the experimental values for each specimen. MicroFE models predicted more than 87% of the variation in the displacement measurements (R2 = 0.87-0.99). However, model predictions of axial forces were largely overestimated (80-369%) for a tissue modulus of 12.0GPa, whereas differences in the range 10-80% were found for a back-calculated tissue modulus. The specimen with the lowest density showed a large number of elements strained beyond yield and the highest predictive errors. This study shows that the simplest microFE models can accurately predict quantitatively the local displacements and qualitatively the strain distribution within the vertebral body, independently from the considered bone types.

  9. Ultrathin Ceramic Membranes as Scaffolds for Functional Cell Coculture Models on a Biomimetic Scale

    PubMed Central

    Jud, Corinne; Ahmed, Sher; Müller, Loretta; Kinnear, Calum; Vanhecke, Dimitri; Umehara, Yuki; Frey, Sabine; Liley, Martha; Angeloni, Silvia; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2015-01-01

    Abstract Epithelial tissue serves as an interface between biological compartments. Many in vitro epithelial cell models have been developed as an alternative to animal experiments to answer a range of research questions. These in vitro models are grown on permeable two-chamber systems; however, commercially available, polymer-based cell culture inserts are around 10 μm thick. Since the basement membrane found in biological systems is usually less than 1 μm thick, the 10-fold thickness of cell culture inserts is a major limitation in the establishment of realistic models. In this work, an alternative insert, accommodating an ultrathin ceramic membrane with a thickness of only 500 nm (i.e., the Silicon nitride Microporous Permeable Insert [SIMPLI]-well), was produced and used to refine an established human alveolar barrier coculture model by both replacing the conventional inserts with the SIMPLI-well and completing it with endothelial cells. The structural–functional relationship of the model was evaluated, including the translocation of gold nanoparticles across the barrier, revealing a higher translocation if compared to corresponding polyethylene terephthalate (PET) membranes. This study demonstrates the power of the SIMPLI-well system as a scaffold for epithelial tissue cell models on a truly biomimetic scale, allowing construction of more functionally accurate models of human biological barriers. PMID:26713225

  10. MR-perfusion (MRP) and diffusion-weighted imaging (DWI) in prostate cancer: quantitative and model-based gadobenate dimeglumine MRP parameters in detection of prostate cancer.

    PubMed

    Scherr, M K; Seitz, M; Müller-Lisse, U G; Ingrisch, M; Reiser, M F; Müller-Lisse, U L

    2010-12-01

    Various MR methods, including MR-spectroscopy (MRS), dynamic, contrast-enhanced MRI (DCE-MRI), and diffusion-weighted imaging (DWI) have been applied to improve test quality of standard MRI of the prostate. To determine if quantitative, model-based MR-perfusion (MRP) with gadobenate dimeglumine (Gd-BOPTA) discriminates between prostate cancer, benign tissue, and transitional zone (TZ) tissue. 27 patients (age, 65±4 years; PSA 11.0±6.1 ng/ml) with clinical suspicion of prostate cancer underwent standard MRI, 3D MR-spectroscopy (MRS), and MRP with Gd-BOPTA. Based on results of combined MRI/MRS and subsequent guided prostate biopsy alone (17/27), biopsy and radical prostatectomy (9/27), or sufficient negative follow-up (7/27), maps of model-free, deconvolution-based mean transit time (dMTT) were generated for 29 benign regions (bROIs), 14 cancer regions (cROIs), and 18 regions of transitional zone (tzROIs). Applying a 2-compartment exchange model, quantitative perfusion analysis was performed including as parameters: plasma flow (PF), plasma volume (PV), plasma mean transit time (PMTT), extraction flow (EFL), extraction fraction (EFR), interstitial volume (IV) and interstitial mean transit time (IMTT). Two-sided T-tests (significance level p<0.05) discriminated bROIs vs. cROIs and cROIs vs. tzROIs, respectively. PMTT discriminated best between bROIs (11.8±3.0 s) and cROIs (24.3±9.6 s) (p<0.0001), while PF, PV, PS, EFR, IV, IMTT also differed significantly (p 0.00002-0.0136). Discrimination between cROIs and tzROIs was insignificant for all parameters except PV (14.3±2.5 ml vs. 17.6±2.6 ml, p<0.05). Besides MRI, MRS and DWI quantitative, 2-compartment MRP with Gd-BOPTA discriminates between prostate cancer and benign tissue with several parameters. However, distinction of prostate cancer and TZ does not appear to be reliable. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  11. Feasibility of Quantifying Arterial Cerebral Blood Volume Using Multiphase Alternate Ascending/Descending Directional Navigation (ALADDIN).

    PubMed

    Kim, Ki Hwan; Choi, Seung Hong; Park, Sung-Hong

    2016-01-01

    Arterial cerebral blood volume (aCBV) is associated with many physiologic and pathologic conditions. Recently, multiphase balanced steady state free precession (bSSFP) readout was introduced to measure labeled blood signals in the arterial compartment, based on the fact that signal difference between labeled and unlabeled blood decreases with the number of RF pulses that is affected by blood velocity. In this study, we evaluated the feasibility of a new 2D inter-slice bSSFP-based arterial spin labeling (ASL) technique termed, alternate ascending/descending directional navigation (ALADDIN), to quantify aCBV using multiphase acquisition in six healthy subjects. A new kinetic model considering bSSFP RF perturbations was proposed to describe the multiphase data and thus to quantify aCBV. Since the inter-slice time delay (TD) and gap affected the distribution of labeled blood spins in the arterial and tissue compartments, we performed the experiments with two TDs (0 and 500 ms) and two gaps (300% and 450% of slice thickness) to evaluate their roles in quantifying aCBV. Comparison studies using our technique and an existing method termed arterial volume using arterial spin tagging (AVAST) were also separately performed in five subjects. At 300% gap or 500-ms TD, significant tissue perfusion signals were demonstrated, while tissue perfusion signals were minimized and arterial signals were maximized at 450% gap and 0-ms TD. ALADDIN has an advantage of visualizing bi-directional flow effects (ascending/descending) in a single experiment. Labeling efficiency (α) of inter-slice blood flow effects could be measured in the superior sagittal sinus (SSS) (20.8±3.7%.) and was used for aCBV quantification. As a result of fitting to the proposed model, aCBV values in gray matter (1.4-2.3 mL/100 mL) were in good agreement with those from literature. Our technique showed high correlation with AVAST, especially when arterial signals were accentuated (i.e., when TD = 0 ms) (r = 0.53). The bi-directional perfusion imaging with multiphase ALADDIN approach can be an alternative to existing techniques for quantification of aCBV.

  12. PET Imaging of D2/3 agonist binding in healthy human subjects with the radiotracer [11C]-N-propyl-nor-apomorphine (NPA): preliminary evaluation and reproducibility studies

    PubMed Central

    Narendran, Rajesh; Frankle, W. Gordon; Mason, N. Scott; Laymon, Charles M.; Lopresti, Brian J; Price, Julie C.; Kendro, Steve; Vora, Shivangi; Litschge, Maralee; Mountz, James M.; Mathis, Chester A.

    2009-01-01

    Objective (-)-N-[11C]-Propyl-norapomorphine (NPA) is a full dopamine D2/3 receptor agonist radiotracer suitable for imaging D2/3 receptors configured in a state of high affinity for agonists using Positron Emission Tomography (PET). The aim of the present study was to define the optimal analytic method to derive accurate and reliable D2/3 receptor parameters with [11C]NPA. Methods Six healthy subjects (4 females/2 males) underwent two [11C]NPA scans in the same day. D2/3 receptor binding parameters were estimated using kinetic analysis (using 1- and 2- tissue compartment models) as well as simplified reference tissue method in the three functional subdivisions of the striatum (associative striatum, AST; limbic striatum LST and sensorimotor striatum SMST). The test-retest variability and intraclass correlation coefficient were assessed for distribution volume (VT), binding potential relative to plasma concentration (BPP), and binding potential relative to nondisplaceable uptake (BPND) Results A two-tissue compartment kinetic model adequately described the functional subdivisions of the striatum as well as cerebellum time-activity data. The reproducibility of VT was excellent (≤ 10%) in all regions, for this approach. The reproducibility of both BPP (≤ 12%) and BPND (≤ 10%) was also excellent. The intraclass correlation coefficient of BPP and BPND were acceptable as well (> 0.75) in the three functional subdivisions of the striatum. Although SRTM led to an underestimation of BPND values relative to that estimated by kinetic analysis by 8 to 13%, the values derived using both the methods were reasonably well correlated (r2 = 0.89, n = 84). Both methods were similarly effective at detecting the differences in [11C]NPA BPND between subjects. Conclusion The results of this study indicate that [11C]NPA can be used to measure D2/3 receptors configured in a state of high affinity for the agonists with high reliability and reproducibility in the functional subdivisions of the human striatum. PMID:19301416

  13. Ages and transit times as important diagnostics of model performance for predicting carbon dynamics in terrestrial vegetation models

    NASA Astrophysics Data System (ADS)

    Ceballos-Núñez, Verónika; Richardson, Andrew D.; Sierra, Carlos A.

    2018-03-01

    The global carbon cycle is strongly controlled by the source/sink strength of vegetation as well as the capacity of terrestrial ecosystems to retain this carbon. These dynamics, as well as processes such as the mixing of old and newly fixed carbon, have been studied using ecosystem models, but different assumptions regarding the carbon allocation strategies and other model structures may result in highly divergent model predictions. We assessed the influence of three different carbon allocation schemes on the C cycling in vegetation. First, we described each model with a set of ordinary differential equations. Second, we used published measurements of ecosystem C compartments from the Harvard Forest Environmental Measurement Site to find suitable parameters for the different model structures. And third, we calculated C stocks, release fluxes, radiocarbon values (based on the bomb spike), ages, and transit times. We obtained model simulations in accordance with the available data, but the time series of C in foliage and wood need to be complemented with other ecosystem compartments in order to reduce the high parameter collinearity that we observed, and reduce model equifinality. Although the simulated C stocks in ecosystem compartments were similar, the different model structures resulted in very different predictions of age and transit time distributions. In particular, the inclusion of two storage compartments resulted in the prediction of a system mean age that was 12-20 years older than in the models with one or no storage compartments. The age of carbon in the wood compartment of this model was also distributed towards older ages, whereas fast cycling compartments had an age distribution that did not exceed 5 years. As expected, models with C distributed towards older ages also had longer transit times. These results suggest that ages and transit times, which can be indirectly measured using isotope tracers, serve as important diagnostics of model structure and could largely help to reduce uncertainties in model predictions. Furthermore, by considering age and transit times of C in vegetation compartments as distributions, not only their mean values, we obtain additional insights into the temporal dynamics of carbon use, storage, and allocation to plant parts, which not only depends on the rate at which this C is transferred in and out of the compartments but also on the stochastic nature of the process itself.

  14. Dynamics of tissue topology during cancer invasion and metastasis

    NASA Astrophysics Data System (ADS)

    Munn, Lance L.

    2013-12-01

    During tumor progression, cancer cells mix with other cell populations including epithelial and endothelial cells. Although potentially important clinically as well as for our understanding of basic tumor biology, the process of mixing is largely a mystery. Furthermore, there is no rigorous, analytical measure available for quantifying the mixing of compartments within a tumor. I present here a mathematical model of tissue repair and tumor growth based on collective cell migration that simulates a wide range of observed tumor behaviors with correct tissue compartmentalization and connectivity. The resulting dynamics are analyzed in light of the Euler characteristic number (χ), which describes key topological features such as fragmentation, looping and cavities. The analysis predicts a number of regimes in which the cancer cells can encapsulate normal tissue, form a co-interdigitating mass, or become fragmented and encapsulated by endothelial or epithelial structures. Key processes that affect the topological changes are the production of provisional matrix in the tumor, and the migration of endothelial or epithelial cells on this matrix. Furthermore, the simulations predict that topological changes during tumor invasion into blood vessels may contribute to metastasis. The topological analysis outlined here could be useful for tumor diagnosis or monitoring response to therapy and would only require high resolution, 3D image data to resolve and track the various cell compartments.

  15. Coping with the diagnostic complexities of the compartment syndrome

    NASA Technical Reports Server (NTRS)

    Mubarak, S. J.; Hargens, A. R.; Karkal, S. S.

    1988-01-01

    This review recognizes that, given the various complexities associated with the condition, no pat answers can be given to fit every patient with the compartment syndrome. The authors first give a definition of the syndrome, together with a brief account of how this self-perpetuating pathologic cycle is triggered. Next, they delineate specific anatomical features of compartments that are likely to be involved, and follow this with an inventory of symptoms and signs to look for in suspected cases. After sorting out the entities that can mimic the compartment syndrome, the authors describe three essential techniques of measuring tissue pressure, which can prove invaluable in diagnosing the compartment syndrome.

  16. A physiologically based toxicokinetic model for inhaled ethylene and ethylene oxide in mouse, rat, and human.

    PubMed

    Filser, Johannes Georg; Klein, Dominik

    2018-04-01

    Ethylene (ET) is the largest volume organic chemical. Mammals metabolize the olefin to ethylene oxide (EO), another important industrial chemical. The epoxide alkylates macromolecules and has mutagenic and carcinogenic properties. In order to estimate the EO burden in mice, rats, and humans resulting from inhalation exposure to gaseous ET or EO, a physiological toxicokinetic model was developed. It consists of the compartments lung, richly perfused tissues, kidneys, muscle, fat, arterial blood, venous blood, and liver containing the sub-compartment endoplasmic reticulum. Modeled ET metabolism is mediated by hepatic cytochrome P450 2E1, EO metabolism by hepatic microsomal epoxide hydrolase or cytosolic glutathione S-transferase in various tissues. EO is also spontaneously hydrolyzed or conjugated with glutathione. The model was validated on experimental data collected in mice, rats, and humans. Modeled were uptake by inhalation, wash-in-wash-out effect in the upper respiratory airways, distribution into tissues and organs, elimination via exhalation and metabolism, and formation of 2-hydroxyethyl adducts with hemoglobin and DNA. Simulated concentration-time courses of ET or EO in inhaled (gas uptake studies) or exhaled air, and of EO in blood during exposures to ET or EO agreed excellently with measured data. Predicted levels of adducts with DNA and hemoglobin, induced by ET or EO, agreed with reported levels. Exposures to 10000 ppm ET were predicted to induce the same adduct levels as EO exposures to 3.95 (mice), 5.67 (rats), or 0.313 ppm (humans). The model is concluded to be applicable for assessing health risks from inhalation exposure to ET or EO. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  17. The pars intermedia: an anatomic basis for a coordinated vascular response to female genital arousal.

    PubMed

    Shih, Cheryl; Cold, Christopher J; Yang, Claire C

    2013-06-01

    The pars intermedia is an area of the vulva that has been inconsistently described in the literature. We conducted anatomic studies to better describe the tissues and vascular structures of the pars intermedia and proposed a functional rationale of the pars intermedia in the female sexual response. Nine cadaveric vulvectomy specimens were used. Each was serially sectioned and stained with hematoxylin and eosin and Masson's trichrome. Histologic ultrastructural description of the pars intermedia. The pars intermedia contains veins traveling longitudinally in the angle of the clitoris, supported by collagen-rich stromal tissues. These veins drain the different vascular compartments of the vulva, including the clitoris, the bulbs, and labia minora; also, the interconnecting veins link the different vascular compartments. The pars intermedia is not composed of erectile tissue, distinguishing it from the erectile tissues of the corpora cavernosa of the clitoris as well as the corpus spongiosum of the clitoral (vestibular) bulbs. The venous communications of the pars intermedia, linking the erectile tissues with the other vascular compartments of the vulva, appear to provide the anatomic basis for a coordinated vascular response during female sexual arousal. © 2012 International Society for Sexual Medicine.

  18. Impact of fitting algorithms on errors of parameter estimates in dynamic contrast-enhanced MRI

    NASA Astrophysics Data System (ADS)

    Debus, C.; Floca, R.; Nörenberg, D.; Abdollahi, A.; Ingrisch, M.

    2017-12-01

    Parameter estimation in dynamic contrast-enhanced MRI (DCE MRI) is usually performed by non-linear least square (NLLS) fitting of a pharmacokinetic model to a measured concentration-time curve. The two-compartment exchange model (2CXM) describes the compartments ‘plasma’ and ‘interstitial volume’ and their exchange in terms of plasma flow and capillary permeability. The model function can be defined by either a system of two coupled differential equations or a closed-form analytical solution. The aim of this study was to compare these two representations in terms of accuracy, robustness and computation speed, depending on parameter combination and temporal sampling. The impact on parameter estimation errors was investigated by fitting the 2CXM to simulated concentration-time curves. Parameter combinations representing five tissue types were used, together with two arterial input functions, a measured and a theoretical population based one, to generate 4D concentration images at three different temporal resolutions. Images were fitted by NLLS techniques, where the sum of squared residuals was calculated by either numeric integration with the Runge-Kutta method or convolution. Furthermore two example cases, a prostate carcinoma and a glioblastoma multiforme patient, were analyzed in order to investigate the validity of our findings in real patient data. The convolution approach yields improved results in precision and robustness of determined parameters. Precision and stability are limited in curves with low blood flow. The model parameter ve shows great instability and little reliability in all cases. Decreased temporal resolution results in significant errors for the differential equation approach in several curve types. The convolution excelled in computational speed by three orders of magnitude. Uncertainties in parameter estimation at low temporal resolution cannot be compensated by usage of the differential equations. Fitting with the convolution approach is superior in computational time, with better stability and accuracy at the same time.

  19. Glucose predictability, blood capillary permeability, and glucose utilization rate in subcutaneous, skeletal muscle, and visceral fat tissues.

    PubMed

    Koutny, Tomas

    2013-11-01

    This study suggests an approach for the comparison and evaluation of particular compartments with modest experimental setup costs. A glucose level prediction model was used to evaluate the compartment's glucose transport rate across the blood capillary membrane and the glucose utilization rate by the cells. The glucose levels of the blood, subcutaneous tissue, skeletal muscle tissue, and visceral fat were obtained in experiments conducted on hereditary hypertriglyceridemic rats. After the blood glucose level had undergone a rapid change, the experimenter attempted to reach a steady blood glucose level by manually correcting the glucose infusion rate and maintaining a constant insulin infusion rate. The interstitial fluid glucose levels of subcutaneous tissue, skeletal muscle tissue, and visceral fat were evaluated to determine the reaction delay compared with the change in the blood glucose level, the interstitial fluid glucose level predictability, the blood capillary permeability, the effect of the concentration gradient, and the glucose utilization rate. Based on these data, the glucose transport rate across the capillary membrane and the utilization rate in a particular tissue were determined. The rates obtained were successfully verified against positron emission tomography experiments. The subcutaneous tissue exhibits the lowest and the most predictable glucose utilization rate, whereas the skeletal muscle tissue has the greatest glucose utilization rate. In contrast, the visceral fat is the least predictable and has the shortest reaction delay compared with the change in the blood glucose level. The reaction delays obtained for the subcutaneous tissue and skeletal muscle tissue were found to be approximately equal using a metric based on the time required to reach half of the increase in the interstitial fluid glucose level. © 2013 Published by Elsevier Ltd.

  20. B Cell Development in the Bone Marrow Is Regulated by Homeostatic Feedback Exerted by Mature B Cells

    PubMed Central

    Shahaf, Gitit; Zisman-Rozen, Simona; Benhamou, David; Melamed, Doron; Mehr, Ramit

    2016-01-01

    Cellular homeostasis in the B cell compartment is strictly imposed to balance cell production and cell loss. However, it is not clear whether B cell development in the bone marrow is an autonomous process or subjected to regulation by the peripheral B cell compartment. To specifically address this question, we used mice transgenic for human CD20, where effective depletion of B lineage cells is obtained upon administration of mouse anti-human CD20 antibodies, in the absence of any effect on other cell lineages and/or tissues. We followed the kinetics of B cell return to equilibrium by BrdU labeling and flow cytometry and analyzed the resulting data by mathematical modeling. Labeling was much faster in depleted mice. Compared to control mice, B cell-depleted mice exhibited a higher proliferation rate in the pro-/pre-B compartment, and higher cell death and lower differentiation in the immature B cell compartment. We validated the first result by analysis of the expression of Ki67, the nuclear protein expressed in proliferating cells, and the second using Annexin V staining. Collectively, our results suggest that B lymphopoiesis is subjected to homeostatic feedback mechanisms imposed by mature B cells in the peripheral compartment. PMID:27047488

  1. A tracer kinetic model for 18F-FHBG for quantitating herpes simplex virus type 1 thymidine kinase reporter gene expression in living animals using PET.

    PubMed

    Green, Leeta Alison; Nguyen, Khoi; Berenji, Bijan; Iyer, Meera; Bauer, Eileen; Barrio, Jorge R; Namavari, Mohammad; Satyamurthy, Nagichettiar; Gambhir, Sanjiv S

    2004-09-01

    Reporter probe 9-(4-18F-fluoro-3-[hydroxymethyl]butyl)guanine (18F-FHBG) and reporter gene mutant herpes simplex virus type 1 thymidine kinase (HSV1-sr39tk) have been used for imaging reporter gene expression with PET. Current methods for quantitating the images using the percentage injected dose per gram of tissue do not distinguish between the effects of probe transport and subsequent phosphorylation. We therefore investigated tracer kinetic models for 18F-FHBG dynamic microPET data and noninvasive methods for determining blood time-activity curves in an adenoviral gene delivery model in mice. 18F-FHBG (approximately 7.4 MBq [approximately 200 microCi]) was injected into 4 mice; 18F-FHBG concentrations in plasma and whole blood were measured from mouse heart left ventricle (LV) direct sampling. Replication-incompetent adenovirus (0-2 x 10(9) plaque-forming units) with the E1 region deleted (n = 8) or replaced by HSV1-sr39tk (n = 18) was tail-vein injected into mice. Mice were dynamically scanned using microPET (approximately 7.4 MBq [approximately 200 microCi] 18F-FHBG) over 1 h; regions of interest were drawn on images of the heart and liver. Serial whole blood 18F-FHBG concentrations were measured in 6 of the mice by LV sampling, and 1 least-squares ratio of the heart image to the LV time-activity curve was calculated for all 6 mice. For 2 control mice and 9 mice expressing HSV1-sr39tk, heart image (input function) and liver image time-activity curves (tissue curves) were fit to 2- and 3-compartment models using Levenberg-Marquardt nonlinear regression. The models were compared using an F statistic. HSV1-sr39TK enzyme activity was determined from liver samples and compared with model parameter estimates. For another 3 control mice and 6 HSV1-sr39TK-positive mice, the model-predicted relative percentage of metabolites was compared with high-performance liquid chromatography analysis. The ratio of 18F-FHBG in plasma to whole blood was 0.84 +/- 0.05 (mean +/- SE) by 30 s after injection. The least-squares ratio of the heart image time-activity curve to the LV time-activity curve was 0.83 +/- 0.02, consistent with the recovery coefficient for the partial-volume effect (0.81) based on independent measures of heart geometry. A 3-compartment model best described 18F-FHBG kinetics in mice expressing HSV1-sr39tk in the liver; a 2-compartment model best described the kinetics in control mice. The 3-compartment model parameter, k3, correlated well with the HSV1-sr39TK enzyme activity (r2 = 0.88). 18F-FHBG equilibrates rapidly between plasma and whole blood in mice. Heart image time-activity curves corrected for partial-volume effects well approximate LV time-activity curves and can be used as input functions for 2- and 3-compartment models. The model parameter k3 from the 3-compartment model can be used as a noninvasive estimate for HSV1-sr39TK reporter protein activity and can predict the relative percentage of metabolites.

  2. Light-patterning of synthetic tissues with single droplet resolution.

    PubMed

    Booth, Michael J; Restrepo Schild, Vanessa; Box, Stuart J; Bayley, Hagan

    2017-08-24

    Synthetic tissues can be generated by forming networks of aqueous droplets in lipid-containing oil. Each droplet contains a cell-free expression system and is connected to its neighbor through a lipid bilayer. In the present work, we have demonstrated precise external control of such networks by activating protein expression within single droplets, by using light-activated DNA to encode either a fluorescent or a pore-forming protein. By controlling the extent of activation, synthetic tissues were generated with graded levels of protein expression in patterns of single droplets. Further, we have demonstrated reversible activation within individual compartments in synthetic tissues by turning a fluorescent protein on-and-off. This is the first example of the high-resolution patterning of droplet networks, following their formation. Single-droplet control will be essential to power subsets of compartments within synthetic tissues or to stimulate subsets of cells when synthetic tissues are interfaced with living tissues.

  3. The Human Cutaneous Chemokine System

    PubMed Central

    McCully, Michelle L.; Moser, Bernhard

    2011-01-01

    Irrespective of the immune status, the vast majority of all lymphocytes reside in peripheral tissues whereas those present in blood only amount to a small fraction of the total. It has been estimated that T cells in healthy human skin outnumber those present in blood by at least a factor of two. How lymphocytes within these two compartments relate to each other is not well understood. However, mounting evidence suggest that the study of T cell subsets present in peripheral blood does not reflect the function of their counterparts at peripheral sites. This is especially true under steady-state conditions whereby long-lived memory T cells in healthy tissues, notably those in epithelial tissues at body surfaces, are thought to fulfill a critical immune surveillance function by contributing to the first line of defense against a series of local threats, including microbes, tumors, and toxins, and by participating in wound healing. The relative scarcity of information regarding peripheral T cells and the factors regulating their localization is primarily due to inherent difficulties in obtaining healthy tissue for the extraction and study of immune cells on a routine basis. This is most certainly true for humans. Here, we review our current understanding of T cell homing to human skin and compare it when possible with gut-selective homing. We also discuss candidate chemokines that may account for the tissue selectivity in this process and present a model whereby CCR8, and its ligand CCL1, selectively regulate the homeostatic migration of memory lymphocytes to skin tissue. PMID:22566823

  4. Validation of Anthropometric Indices of Adiposity against Whole-Body Magnetic Resonance Imaging – A Study within the German European Prospective Investigation into Cancer and Nutrition (EPIC) Cohorts

    PubMed Central

    Neamat-Allah, Jasmine; Wald, Diana; Hüsing, Anika; Teucher, Birgit; Wendt, Andrea; Delorme, Stefan; Dinkel, Julien; Vigl, Matthaeus; Bergmann, Manuela M.; Feller, Silke; Hierholzer, Johannes; Boeing, Heiner; Kaaks, Rudolf

    2014-01-01

    Background In epidemiological studies, measures of body fat generally are obtained through anthropometric indices such as the body mass index (BMI), waist (WC), and hip circumferences (HC). Such indices, however, can only provide estimates of a person’s true body fat content, overall or by adipose compartment, and may have limited accuracy, especially for the visceral adipose compartment (VAT). Objective To determine the extent to which different body adipose tissue compartments are adequately predicted by anthropometry, and to identify anthropometric measures alone, or in combination to predict overall adiposity and specific adipose tissue compartments, independently of age and body size (height). Methods In a sub-study of 1,192 participants of the German EPIC (European Prospective Investigation into Cancer and Nutrition) cohorts, whole-body MRI was performed to determine adipose and muscle tissue compartments. Additional anthropometric measurements of BMI, WC and HC were taken. Results After adjusting for age and height, BMI, WC and HC were better predictors of total body volume (TBV), total adipose tissue (TAT) and subcutaneous adipose tissue (SAT) than for VAT, coronary adipose tissue (CAT) and skeletal muscle tissue (SMT). In both sexes, BMI was the best predictor for TBV (men: r = 0.72 [0.68–0.76], women: r = 0.80 [0.77–0.83]) and SMT (men: r = 0.52 [0.45–0.57], women: r = 0.48 [0.41–0.54]). WC was the best predictor variable for TAT (r = 0.48 [0.41–0.54]), VAT (r = 0.44 [0.37–0.50]) and CAT (r = 0.34 [0.26–0.41]) (men), and for VAT (r = 0.42 [0.35–0.49]) and CAT (r = 0.29 [0.22–0.37]) (women). BMI was the best predictor for TAT (r = 0.49 [0.43–0.55]) (women). HC was the best predictor for SAT (men (r = 0.39 [0.32–0.45]) and women (r = 0.52 [0.46–0.58])). Conclusions Especially the volumes of internal body fat compartments are poorly predicted by anthropometry. A possible implication may be that associations of chronic disease risks with the sizes of internal body fat as measured by BMI, WC and HC may be strongly underestimated. PMID:24626110

  5. Scary gas: pathways in the axial body for soft tissue gas dissection (part I).

    PubMed

    Sandstrom, Claire K; Osman, Sherif F; Linnau, Ken F

    2017-10-01

    Gas is often encountered in abnormal locations in the torso, including within soft tissue compartments, vessels, and bones. The clinical significance of this gas ranges from incidental, benign, and self-limited to aggressive infection requiring immediate surgery. As a result of fascial interconnectivity and pressure differences between compartments, gas can dissect distant from its source. Gas can easily dissect between spaces of the extrapleural thorax, subperitoneal abdomen, deep cervical spaces, and subcutaneous tissues. The pleural and peritoneal cavities are normally isolated but may communicate with the other spaces in select situations. Dissection of gas may cause confusion as to its origin, potentially delaying treatment or prompting unnecessary and/or distracting workup and therapies. The radiologist might be the first to suggest and identify a remote source of dissecting gas when the clinical manifestation alone might be misleading. The purpose of this paper, the first in a three-part series on soft tissue gas, is to explore the various pathways by which gas dissects through the superficial and deep compartments of the torso.

  6. Determination of carboxyhaemoglobin in humans following low-level exposures to carbon monoxide.

    PubMed

    Gosselin, Nathalie H; Brunet, Robert C; Carrier, Gaétan

    2009-11-01

    This study proposes to estimate carboxyhaemoglobin (COHb) levels in the blood of men and women of various ages exposed to common concentrations of carbon monoxide (CO) using a model with only one free parameter while integrating alveoli-blood and blood-tissue CO exchanges. The model retained is essentially that of Coburn et al. (1965) with two important additions: an alveoli compartment for the dynamics of CO exchanges between alveoli and blood, and a compartment for the significant amounts of CO bound to heme proteins in extravascular spaces. The model was validated by comparing its simulations with various published data sets for the COHb time profiles of volunteers exposed to known CO concentrations. Once the model was validated, it was used to simulate various situations of interest for their impact on public health. This approach yields reliable estimations of the time profiles of COHb levels resulting from different levels of CO exposure over various periods of time and under various conditions (resting, exercise, working, and smoking). The non-linear kinetics of CO, observed experimentally, were correctly reproduced by simulations with the model. Simulations were also carried out iteratively to determine the exposure times and CO concentrations in ambient air needed to reach the maximum levels of COHb recommended by Health Canada, the U.S. Environmental Protection Agency (EPA), and the World Health Organisation (WHO) for each age group of the general population. The lowest CO concentrations leading to maximum COHb levels of 1.5, 2, and 2.5% were determined.

  7. Multiple zonal projections of the nucleus reticularis tegmenti pontis to the cerebellar cortex of the rat.

    PubMed

    Serapide, M F; Parenti, R; Pantò, M R; Zappalà, A; Cicirata, F

    2002-06-01

    Compartmentalization (alternating labelled and unlabelled stripes) of mossy fibre terminals was found in the cerebellar cortex after iontophoretic injections of biotinylated dextran amine into discrete regions of the nucleus reticularis tegmenti pontis (NRTP). The zonal pattern was only observed when volumes of nuclear tissue ranging from 4.5 x 106 to 17.66 x 106 microm3 were impregnated. Up to nine compartments (i.e. up to five stripes separated by four interstripes) were found in crus I and in vermal lobule VI. Up to seven compartments (four stripes and three interstripes) were found in crus II; up to five compartments (three stripes and two interstripes) were identified in the lobulus simplex, the paraflocculus and vermal lobules IV, V and VII; up to three compartments (two stripes and one interstripe) were identified in the paramedian lobule and, finally, up to two compartments (one stripe and one interstripe) were identified in the copula pyramidis, in the flocculus and in vermal lobules II, III, VIII and IX. The projections of the NRTP are arranged according to a divergent/convergent projection pattern. From single injections in the NRTP, projections were traced to a set of cortical stripes widely distributed over the cerebellar cortex. The set of stripes labelled from different regions of the NRTP partially overlapped but complete overlap was never found. This finding revealed that the topographic combination of the projections of the NRTP to the cerebellar cortex is specific for each region of the NRTP. Finally, the projections to single cortical areas were arranged according to a pattern of compartmentalization that is specific for each cortical area, independent of the site of injection in the NRTP and of the number of stripes evident in the cortex.

  8. Granular fountains: convection cascade in a compartmentalized granular gas.

    PubMed

    van der Meer, Devaraj; van der Weele, Ko; Reimann, Peter

    2006-06-01

    This paper extends the two-compartment granular fountain [D. van der Meer, P. Reimann, K. van der Weele, and D. Lohse, Phys. Rev. Lett. 92, 184301 (2004)] to an arbitrary number of compartments: the tendency of a granular gas to form clusters is exploited to generate spontaneous convective currents, with particles going down in the well-filled compartments and going up in the diluted ones. We focus upon the bifurcation diagram of the general -compartment system, which is constructed using a dynamical flux model and which proves to agree quantitatively with results from molecular dynamics simulations.

  9. Tissue fluid pressures - From basic research tools to clinical applications

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.; Akeson, Wayne H.; Mubarak, Scott J.; Owen, Charles A.; Gershuni, David H.

    1989-01-01

    This paper describes clinical applications of two basic research tools developed and refined in the past 20 years: the wick catheter (for measuring tissue fluid pressure) and the colloid osmometer (for measuring osmotic pressure). Applications of the osmometer include estimations of the reduced osmotic pressure of sickle-cell hemoglobin with deoxygenation, and of reduced swelling pressure of human nucleus pulposus with hydration or upon action of certain enzymes. Clinical uses of the wick-catheter technique include an improvement of diagnosis and treatment of acute and chronic compartment syndromes, the elucidation of the tissue pressure thresholds for neuromuscular dysfunction, and the development of a better tourniquet for orthopedics.

  10. Stochastic Model of Vesicular Sorting in Cellular Organelles

    NASA Astrophysics Data System (ADS)

    Vagne, Quentin; Sens, Pierre

    2018-02-01

    The proper sorting of membrane components by regulated exchange between cellular organelles is crucial to intracellular organization. This process relies on the budding and fusion of transport vesicles, and should be strongly influenced by stochastic fluctuations, considering the relatively small size of many organelles. We identify the perfect sorting of two membrane components initially mixed in a single compartment as a first passage process, and we show that the mean sorting time exhibits two distinct regimes as a function of the ratio of vesicle fusion to budding rates. Low ratio values lead to fast sorting but result in a broad size distribution of sorted compartments dominated by small entities. High ratio values result in two well-defined sorted compartments but sorting is exponentially slow. Our results suggest an optimal balance between vesicle budding and fusion for the rapid and efficient sorting of membrane components and highlight the importance of stochastic effects for the steady-state organization of intracellular compartments.

  11. Analytical solutions to compartmental indoor air quality models with application to environmental tobacco smoke concentrations measured in a house.

    PubMed

    Ott, Wayne R; Klepeis, Neil E; Switzer, Paul

    2003-08-01

    This paper derives the analytical solutions to multi-compartment indoor air quality models for predicting indoor air pollutant concentrations in the home and evaluates the solutions using experimental measurements in the rooms of a single-story residence. The model uses Laplace transform methods to solve the mass balance equations for two interconnected compartments, obtaining analytical solutions that can be applied without a computer. Environmental tobacco smoke (ETS) sources such as the cigarette typically emit pollutants for relatively short times (7-11 min) and are represented mathematically by a "rectangular" source emission time function, or approximated by a short-duration source called an "impulse" time function. Other time-varying indoor sources also can be represented by Laplace transforms. The two-compartment model is more complicated than the single-compartment model and has more parameters, including the cigarette or combustion source emission rate as a function of time, room volumes, compartmental air change rates, and interzonal air flow factors expressed as dimensionless ratios. This paper provides analytical solutions for the impulse, step (Heaviside), and rectangular source emission time functions. It evaluates the indoor model in an unoccupied two-bedroom home using cigars and cigarettes as sources with continuous measurements of carbon monoxide (CO), respirable suspended particles (RSP), and particulate polycyclic aromatic hydrocarbons (PPAH). Fine particle mass concentrations (RSP or PM3.5) are measured using real-time monitors. In our experiments, simultaneous measurements of concentrations at three heights in a bedroom confirm an important assumption of the model-spatial uniformity of mixing. The parameter values of the two-compartment model were obtained using a "grid search" optimization method, and the predicted solutions agreed well with the measured concentration time series in the rooms of the home. The door and window positions in each room had considerable effect on the pollutant concentrations observed in the home. Because of the small volumes and low air change rates of most homes, indoor pollutant concentrations from smoking activity in a home can be very high and can persist at measurable levels indoors for many hours.

  12. Robust tumor morphometry in multispectral fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Tabesh, Ali; Vengrenyuk, Yevgen; Teverovskiy, Mikhail; Khan, Faisal M.; Sapir, Marina; Powell, Douglas; Mesa-Tejada, Ricardo; Donovan, Michael J.; Fernandez, Gerardo

    2009-02-01

    Morphological and architectural characteristics of primary tissue compartments, such as epithelial nuclei (EN) and cytoplasm, provide important cues for cancer diagnosis, prognosis, and therapeutic response prediction. We propose two feature sets for the robust quantification of these characteristics in multiplex immunofluorescence (IF) microscopy images of prostate biopsy specimens. To enable feature extraction, EN and cytoplasm regions were first segmented from the IF images. Then, feature sets consisting of the characteristics of the minimum spanning tree (MST) connecting the EN and the fractal dimension (FD) of gland boundaries were obtained from the segmented compartments. We demonstrated the utility of the proposed features in prostate cancer recurrence prediction on a multi-institution cohort of 1027 patients. Univariate analysis revealed that both FD and one of the MST features were highly effective for predicting cancer recurrence (p <= 0.0001). In multivariate analysis, an MST feature was selected for a model incorporating clinical and image features. The model achieved a concordance index (CI) of 0.73 on the validation set, which was significantly higher than the CI of 0.69 for the standard multivariate model based solely on clinical features currently used in clinical practice (p < 0.0001). The contributions of this work are twofold. First, it is the first demonstration of the utility of the proposed features in morphometric analysis of IF images. Second, this is the largest scale study of the efficacy and robustness of the proposed features in prostate cancer prognosis.

  13. Abdominal adipose tissue compartments vary with ethnicity in Asian neonates: Growing Up in Singapore Toward Healthy Outcomes birth cohort study.

    PubMed

    Tint, Mya Thway; Fortier, Marielle V; Godfrey, Keith M; Shuter, Borys; Kapur, Jeevesh; Rajadurai, Victor S; Agarwal, Pratibha; Chinnadurai, Amutha; Niduvaje, Krishnamoorthy; Chan, Yiong-Huak; Aris, Izzuddin Bin Mohd; Soh, Shu-E; Yap, Fabian; Saw, Seang-Mei; Kramer, Michael S; Gluckman, Peter D; Chong, Yap-Seng; Lee, Yung-Seng

    2016-05-01

    A susceptibility to metabolic diseases is associated with abdominal adipose tissue distribution and varies between ethnic groups. The distribution of abdominal adipose tissue at birth may give insights into whether ethnicity-associated variations in metabolic risk originate partly in utero. We assessed the influence of ethnicity on abdominal adipose tissue compartments in Asian neonates in the Growing Up in Singapore Toward Healthy Outcomes mother-offspring cohort. MRI was performed at ≤2 wk after birth in 333 neonates born at ≥34 wk of gestation and with birth weights ≥2000 g. Abdominal superficial subcutaneous tissue (sSAT), deep subcutaneous tissue (dSAT), and internal adipose tissue (IAT) compartment volumes (absolute and as a percentage of the total abdominal volume) were quantified. In multivariate analyses that were controlled for sex, age, and parity, the absolute and percentage of dSAT and the percentage of sSAT (but not absolute sSAT) were greater, whereas absolute IAT (but not the percentage of IAT) was lower, in Indian neonates than in Chinese neonates. Compared with Chinese neonates, Malay neonates had greater percentages of sSAT and dSAT but similar percentages of IAT. Marginal structural model analyses largely confirmed the results on the basis of volume percentages with controlled direct effects of ethnicity on abdominal adipose tissue; dSAT was significantly greater (1.45 mL; 95% CI: 0.49, 2.41 mL, P = 0.003) in non-Chinese (Indian or Malay) neonates than in Chinese neonates. However, ethnic differences in sSAT and IAT were NS [3.06 mL (95% CI:-0.27, 6.39 mL; P = 0.0712) for sSAT and -1.30 mL (95% CI: -2.64, 0.04 mL; P = 0.057) for IAT in non-Chinese compared with Chinese neonates, respectively]. Indian and Malay neonates have a greater dSAT volume than do Chinese neonates. This finding supports the notion that in utero influences may contribute to higher cardiometabolic risk observed in Indian and Malay persons in our population. If such differences persist in the longitudinal tracking of adipose tissue growth, these differences may contribute to the ethnic disparities in risks of cardiometabolic diseases. This trial was registered at clinicaltrials.gov as NCT01174875. © 2016 American Society for Nutrition.

  14. Contact forces in the tibiofemoral joint from soft tissue tensions: Implications to soft tissue balancing in total knee arthroplasty.

    PubMed

    Verstraete, Matthias A; Meere, Patrick A; Salvadore, Gaia; Victor, Jan; Walker, Peter S

    2017-06-14

    Proper tension of the knee's soft tissue envelope is important during total knee arthroplasty; incorrect tensioning potentially leads to joint stiffness or instability. The latter remains an important trigger for revision surgery. The use of sensors quantifying the intra-articular loads, allows surgeons to assess the ligament tension at the time of surgery. However, realistic target values are missing. In the framework of this paper, eight non-arthritic cadaveric specimens were tested and the intra-articular loads transferred by the medial and lateral compartment were measured using custom sensor modules. These modules were inserted below the articulating surfaces of the proximal tibia, with the specimens mounted on a test setup that mimics surgical conditions. For both compartments, the highest loads are observed in full extension. While creating knee flexion by lifting the femur and flexing the hip, mean values (standard deviation) of 114N (71N) and 63N (28N) are observed at 0° flexion for the medial and lateral compartment respectively. Upon flexion, both medial and lateral loads decrease with mean values at 90° flexion of 30N (22N) and 6N (5N) respectively. The majority of the load is transmitted through the medial compartment. These observations are linked to the deformation of the medial and lateral collaterals, in addition to the anatomy of the passive soft tissues surrounding the knee. In conclusion, these findings provide tangible clinical guidance in assessing the soft tissue loads when dealing with anatomically designed total knee implants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Americium-241 and plutonium-237 turnover in mussels ( Mytilus galloprovincialis) living in field enclosures

    NASA Astrophysics Data System (ADS)

    Guary, J. C.; Fowler, S. W.

    1981-02-01

    Loss of 241Am and 237Pu from contaminated mussels ( Mytilus galloprovincialis) living in situ in the Mediterranean Sea is described as the sum of three exponential functions. In the case of 241Am, two short-lived compartments representing a total of 80% of the incorporated radionuclide turned over rapidly with biological half-lives of 2 and 3 weeks. The remaining fraction of 241Am, associated with a long-lived compartment, was lost at an extremely slow rate ( Tb1/2=1·3 years). Plutonium-237 turnover in the two short-lived compartments (containing 70% of the Pu) was more rapid ( Tb1/2=1-2 days and 2 weeks) than that of 241Am; however, there was some indication that subsequent loss rates of the two radionuclides in long-lived compartments may be similar if determined over comparable periods of time. Loss rates of 241Am differed for the various tissues, with the most rapid rates occurring in gill, viscera and shell. Abrupt changes in loss observed in muscle and mantle suggested a translocation of 241Am to muscle and mantle during depuration. Whole shell contained by far the largest fraction (˜90%) of both 241Am and 237Pu taken up; in addition, these radionuclides are not irreversibly bound to mussel shell but readily leach into the water. These observations suggest that mollusc shell may influence the biogeochemistry of transuranic elements in littoral zones.

  16. Inert gas transport in blood and tissues.

    PubMed

    Baker, A Barry; Farmery, Andrew D

    2011-04-01

    This article establishes the basic mathematical models and the principles and assumptions used for inert gas transfer within body tissues-first, for a single compartment model and then for a multicompartment model. From these, and other more complex mathematical models, the transport of inert gases between lungs, blood, and other tissues is derived and compared to known experimental studies in both animals and humans. Some aspects of airway and lung transfer are particularly important to the uptake and elimination of inert gases, and these aspects of gas transport in tissues are briefly described. The most frequently used inert gases are those that are administered in anesthesia, and the specific issues relating to the uptake, transport, and elimination of these gases and vapors are dealt with in some detail showing how their transfer depends on various physical and chemical attributes, particularly their solubilities in blood and different tissues. Absorption characteristics of inert gases from within gas cavities or tissue bubbles are described, and the effects other inhaled gas mixtures have on the composition of these gas cavities are discussed. Very brief consideration is given to the effects of hyper- and hypobaric conditions on inert gas transport. © 2011 American Physiological Society. Compr Physiol 1:569-592, 2011.

  17. Pharmacodynamic correlations using fresh and cryopreserved tissue following use of vaginal rings containing dapivirine and/or maraviroc in a randomized, placebo controlled trial

    PubMed Central

    Dezzutti, Charlene S.; Richardson-Harman, Nicola; Rohan, Lisa C.; Marzinke, Mark A.; Hoesley, Craig J.; Panther, Lori; Johnson, Sherri; Nuttall, Jeremy P.; Nel, Annalene; Chen, Beatrice A.

    2016-01-01

    Abstract Background: The ex vivo challenge assay is a bio-indicator of drug efficacy and was utilized in this randomized, placebo controlled trial as one of the exploratory endpoints. Fresh and cryopreserved tissues were evaluated for human immunodeficiency virus (HIV) infection and pharmacokinetic (PK)/pharmacodynamic (PD) relationships. Methods: HIV-negative women used vaginal rings containing 25 mg dapivirine (DPV)/100 mg maraviroc (MVC) (n = 12), DPV only (n = 12), MVC only (n = 12), or placebo (n = 12) for 28 days. Blood plasma, cervicovaginal fluid (CVF), and cervical biopsies were collected for drug quantification and the ex vivo challenge assay; half (fresh) were exposed immediately to HIV while the other half were cryopreserved, thawed, then exposed to HIV. HIV replication was monitored by p24 enzyme-linked immunosorbent assay from culture supernatant. Data were log-transformed and analyzed by linear least squared regression, nonlinear Emax dose–response model and Satterthwaite t test. Results: HIV replication was greater in fresh compared to cryopreserved tissue (P = 0.04). DPV was detected in all compartments, while MVC was consistently detected only in CVF. Significant negative correlations between p24 and DPV levels were observed in fresh cervical tissue (P = 0.01) and CVF (P = 0.03), but not plasma. CVF MVC levels showed a significant negative correlation with p24 levels (P = 0.03); drug levels in plasma and tissue were not correlated with HIV suppression. p24 levels from cryopreserved tissue did not correlate to either drug from any compartment. Conclusion: Fresh tissue replicated HIV to greater levels and defined PK/PD relationships while cryopreserved tissue did not. The ex vivo challenge assay using fresh tissue could prioritize drugs being considered for HIV prevention. PMID:27428211

  18. Pharmacodynamic correlations using fresh and cryopreserved tissue following use of vaginal rings containing dapivirine and/or maraviroc in a randomized, placebo controlled trial.

    PubMed

    Dezzutti, Charlene S; Richardson-Harman, Nicola; Rohan, Lisa C; Marzinke, Mark A; Hoesley, Craig J; Panther, Lori; Johnson, Sherri; Nuttall, Jeremy P; Nel, Annalene; Chen, Beatrice A

    2016-07-01

    The ex vivo challenge assay is a bio-indicator of drug efficacy and was utilized in this randomized, placebo controlled trial as one of the exploratory endpoints. Fresh and cryopreserved tissues were evaluated for human immunodeficiency virus (HIV) infection and pharmacokinetic (PK)/pharmacodynamic (PD) relationships. HIV-negative women used vaginal rings containing 25 mg dapivirine (DPV)/100 mg maraviroc (MVC) (n = 12), DPV only (n = 12), MVC only (n = 12), or placebo (n = 12) for 28 days. Blood plasma, cervicovaginal fluid (CVF), and cervical biopsies were collected for drug quantification and the ex vivo challenge assay; half (fresh) were exposed immediately to HIV while the other half were cryopreserved, thawed, then exposed to HIV. HIV replication was monitored by p24 enzyme-linked immunosorbent assay from culture supernatant. Data were log-transformed and analyzed by linear least squared regression, nonlinear Emax dose-response model and Satterthwaite t test. HIV replication was greater in fresh compared to cryopreserved tissue (P = 0.04). DPV was detected in all compartments, while MVC was consistently detected only in CVF. Significant negative correlations between p24 and DPV levels were observed in fresh cervical tissue (P = 0.01) and CVF (P = 0.03), but not plasma. CVF MVC levels showed a significant negative correlation with p24 levels (P = 0.03); drug levels in plasma and tissue were not correlated with HIV suppression. p24 levels from cryopreserved tissue did not correlate to either drug from any compartment. Fresh tissue replicated HIV to greater levels and defined PK/PD relationships while cryopreserved tissue did not. The ex vivo challenge assay using fresh tissue could prioritize drugs being considered for HIV prevention.

  19. Modelling dimercaptosuccinic acid (DMSA) plasma kinetics in humans.

    PubMed

    van Eijkeren, Jan C H; Olie, J Daniël N; Bradberry, Sally M; Vale, J Allister; de Vries, Irma; Meulenbelt, Jan; Hunault, Claudine C

    2016-11-01

    No kinetic models presently exist which simulate the effect of chelation therapy on lead blood concentrations in lead poisoning. Our aim was to develop a kinetic model that describes the kinetics of dimercaptosuccinic acid (DMSA; succimer), a commonly used chelating agent, that could be used in developing a lead chelating model. This was a kinetic modelling study. We used a two-compartment model, with a non-systemic gastrointestinal compartment (gut lumen) and the whole body as one systemic compartment. The only data available from the literature were used to calibrate the unknown model parameters. The calibrated model was then validated by comparing its predictions with measured data from three different experimental human studies. The model predicted total DMSA plasma and urine concentrations measured in three healthy volunteers after ingestion of DMSA 10 mg/kg. The model was then validated by using data from three other published studies; it predicted concentrations within a factor of two, representing inter-human variability. A simple kinetic model simulating the kinetics of DMSA in humans has been developed and validated. The interest of this model lies in the future potential to use it to predict blood lead concentrations in lead-poisoned patients treated with DMSA.

  20. The pseudo-compartment method for coupling partial differential equation and compartment-based models of diffusion.

    PubMed

    Yates, Christian A; Flegg, Mark B

    2015-05-06

    Spatial reaction-diffusion models have been employed to describe many emergent phenomena in biological systems. The modelling technique most commonly adopted in the literature implements systems of partial differential equations (PDEs), which assumes there are sufficient densities of particles that a continuum approximation is valid. However, owing to recent advances in computational power, the simulation and therefore postulation, of computationally intensive individual-based models has become a popular way to investigate the effects of noise in reaction-diffusion systems in which regions of low copy numbers exist. The specific stochastic models with which we shall be concerned in this manuscript are referred to as 'compartment-based' or 'on-lattice'. These models are characterized by a discretization of the computational domain into a grid/lattice of 'compartments'. Within each compartment, particles are assumed to be well mixed and are permitted to react with other particles within their compartment or to transfer between neighbouring compartments. Stochastic models provide accuracy, but at the cost of significant computational resources. For models that have regions of both low and high concentrations, it is often desirable, for reasons of efficiency, to employ coupled multi-scale modelling paradigms. In this work, we develop two hybrid algorithms in which a PDE in one region of the domain is coupled to a compartment-based model in the other. Rather than attempting to balance average fluxes, our algorithms answer a more fundamental question: 'how are individual particles transported between the vastly different model descriptions?' First, we present an algorithm derived by carefully redefining the continuous PDE concentration as a probability distribution. While this first algorithm shows very strong convergence to analytical solutions of test problems, it can be cumbersome to simulate. Our second algorithm is a simplified and more efficient implementation of the first, it is derived in the continuum limit over the PDE region alone. We test our hybrid methods for functionality and accuracy in a variety of different scenarios by comparing the averaged simulations with analytical solutions of PDEs for mean concentrations. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  1. In situ macrophage phenotypic transition is affected by altered cellular composition prior to acute sterile muscle injury.

    PubMed

    Patsalos, Andreas; Pap, Attila; Varga, Tamas; Trencsenyi, Gyorgy; Contreras, Gerardo Alvarado; Garai, Ildiko; Papp, Zoltan; Dezso, Balazs; Pintye, Eva; Nagy, Laszlo

    2017-09-01

    The in situ phenotypic switch of macrophages is delayed in acute injury following irradiation. The combination of bone marrow transplantation and local muscle radiation protection allows for the identification of a myeloid cell contribution to tissue repair. PET-MRI allows monitoring of myeloid cell invasion and metabolism. Altered cellular composition prior to acute sterile injury affects the in situ phenotypic transition of invading myeloid cells to repair macrophages. There is reciprocal intercellular communication between local muscle cell compartments, such as PAX7 positive cells, and recruited macrophages during skeletal muscle regeneration. Skeletal muscle regeneration is a complex interplay between various cell types including invading macrophages. Their recruitment to damaged tissues upon acute sterile injuries is necessary for clearance of necrotic debris and for coordination of tissue regeneration. This highly dynamic process is characterized by an in situ transition of infiltrating monocytes from an inflammatory (Ly6C high ) to a repair (Ly6C low ) macrophage phenotype. The importance of the macrophage phenotypic shift and the cross-talk of the local muscle tissue with the infiltrating macrophages during tissue regeneration upon injury are not fully understood and their study lacks adequate methodology. Here, using an acute sterile skeletal muscle injury model combined with irradiation, bone marrow transplantation and in vivo imaging, we show that preserved muscle integrity and cell composition prior to the injury is necessary for the repair macrophage phenotypic transition and subsequently for proper and complete tissue regeneration. Importantly, by using a model of in vivo ablation of PAX7 positive cells, we show that this radiosensitive skeletal muscle progenitor pool contributes to macrophage phenotypic transition following acute sterile muscle injury. In addition, local muscle tissue radioprotection by lead shielding during irradiation preserves normal macrophage transition dynamics and subsequently muscle tissue regeneration. Taken together, our data suggest the existence of a more extensive and reciprocal cross-talk between muscle tissue compartments, including satellite cells, and infiltrating myeloid cells upon tissue damage. These interactions shape the macrophage in situ phenotypic shift, which is indispensable for normal muscle tissue repair dynamics. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  2. The reliability of a segmentation methodology for assessing intramuscular adipose tissue and other soft-tissue compartments of lower leg MRI images.

    PubMed

    Karampatos, Sarah; Papaioannou, Alexandra; Beattie, Karen A; Maly, Monica R; Chan, Adrian; Adachi, Jonathan D; Pritchard, Janet M

    2016-04-01

    Determine the reliability of a magnetic resonance (MR) image segmentation protocol for quantifying intramuscular adipose tissue (IntraMAT), subcutaneous adipose tissue, total muscle and intermuscular adipose tissue (InterMAT) of the lower leg. Ten axial lower leg MRI slices were obtained from 21 postmenopausal women using a 1 Tesla peripheral MRI system. Images were analyzed using sliceOmatic™ software. The average cross-sectional areas of the tissues were computed for the ten slices. Intra-rater and inter-rater reliability were determined and expressed as the standard error of measurement (SEM) (absolute reliability) and intraclass coefficient (ICC) (relative reliability). Intra-rater and inter-rater reliability for IntraMAT were 0.991 (95% confidence interval [CI] 0.978-0.996, p < 0.05) and 0.983 (95% CI 0.958-9.993, p < 0.05), respectively. For the other soft tissue compartments, the ICCs were all >0.90 (p < 0.05). The absolute intra-rater and inter-rater reliability (expressed as SEM) for segmenting IntraMAT were 22.19 mm(2) (95% CI 16.97-32.04) and 78.89 mm(2) (95% CI 60.36-113.92), respectively. This is a reliable segmentation protocol for quantifying IntraMAT and other soft-tissue compartments of the lower leg. A standard operating procedure manual is provided to assist users, and SEM values can be used to estimate sample size and determine confidence in repeated measurements in future research.

  3. Relationship between mean body temperature calculated by two- or three-compartment models and active cutaneous vasodilation in humans: a comparison between cool and warm environments during leg exercise.

    PubMed

    Demachi, Koichi; Yoshida, Tetsuya; Tsuneoka, Hideyuki

    2012-03-01

    The aim of this study was to assess whether the three-compartment model of mean body temperature (Tb3) calculated from the esophageal temperature (Tes), temperature in deep tissue of exercising muscle (Tdt), and mean skin temperature (Tsk) has the potential to provide a better match with the thermoregulatory responses than the two-component model of mean body temperature (Tb2) calculated from Tes and Tsk. Seven male subjects performed 40 min of a prolonged cycling exercise at 30% maximal oxygen uptake at 21°C or 31°C (50% relative humidity). Throughout the experiment, Tsk, Tb2, Tb3, and Tdt were significantly (P < 0.01) lower at 21°C than at 31°C temperature conditions, while Tes was similar under both conditions. During exercise, an increase in cutaneous vascular conductance (skin blood flow / mean arterial pressure) over the chest (%CVCc) was observed at both 21°C and 31°C, while no increase was observed at the forearm at 21°C. Furthermore, the Tb3 and Tdt threshold for the onset of the increase in %CVCc was similar, but the Tes and Tb2 threshold differed significantly (P < 0.05) between the conditions tested. These results suggest that active cutaneous vasodilation at the chest is related more closely to Tb3 or Tdt than that measured by Tes or Tb2 calculated by Tes and Tsk during exercise at both 21°C and 31°C.

  4. [Porous matrix and primary-cell culture: a shared concept for skin and cornea tissue engineering].

    PubMed

    Auxenfans, C; Builles, N; Andre, V; Lequeux, C; Fievet, A; Rose, S; Braye, F-M; Fradette, J; Janin-Manificat, H; Nataf, S; Burillon, C; Damour, O

    2009-06-01

    Skin and cornea both feature an epithelium firmly anchored to its underlying connective compartment: dermis for skin and stroma for cornea. A breakthrough in tissue engineering occurred in 1975 when skin stem cells were successfully amplified in culture by Rheinwald and Green. Since 1981, they are used in the clinical arena as cultured epidermal autografts for the treatment of patients with extensive burns. A similar technique has been later adapted to the amplification of limbal-epithelial cells. The basal layer of the limbal epithelium is located in a transitional zone between the cornea and the conjunctiva and contains the stem cell population of the corneal epithelium called limbal-stem cells (LSC). These cells maintain the proper renewal of the corneal epithelium by generating transit-amplifying cells that migrate from the basal layer of the limbus towards the basal layer of the cornea. Tissue-engineering protocols enable the reconstruction of three-dimensional (3D) complex tissues comprising both an epithelium and its underlying connective tissue. Our in vitro reconstruction model is based on the combined use of cells and of a natural collagen-based biodegradable polymer to produce the connective-tissue compartment. This porous substrate acts as a scaffold for fibroblasts, thereby, producing a living dermal/stromal equivalent, which once epithelialized results into a reconstructed skin/hemicornea. This paper presents the reconstruction of surface epithelia for the treatment of pathological conditions of skin and cornea and the development of 3D tissue-engineered substitutes based on a collagen-GAG-chitosan matrix for the regeneration of skin and cornea.

  5. Comparative uptake from sea water and tissue distribution of 60Co in marine mollusks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carvalho, F.P.

    Five different species of marine mollusks, Mytilus galloprovincialis Lmk., Tapes decussatus L., Cerastoderma (Cardium) edule (L.), Donax vittatus (da Costa) and Patella vulgata L., were exposed to /sup 60/Co-labelled sea water under laboratory conditions. After a 1-mo exposure, tested species reached different whole-body /sup 60/Co concentration factors (CF) over radioactive sea water of 73 +/- 27, 22 +/- 10, 84 +/- 25, 6.3 +/- 1.4 and 31 +/- 10, respectively, which are not dependent upon the size of mollusks. Equations for the experimental uptake curves, obtained using a multi-exponential model, indicate that /sup 60/Co uptake by mollusks involves two ormore » three compartments, according to the species. In all species, the larger compartments turn over with long biological half-lives, dependent upon species. At the beginning of the experiment, /sup 60/CoCl2 added to sea water was mainly in cationic forms. These forms were progressively converted into anionic plus neutral forms most likely due to complex formation with organic ligands. With time this physico-chemical evolution had a lowering effect on /sup 60/Co bioaccumulation by mollusks. Analysis of /sup 60/Co in tissues revealed that Donax shell and mantle do not accumulate the radionuclide in great quantities, generating the low whole-body concentration factor found. In contrast, shell and mantle from all other species displayed variable but high CFs. Shell by itself accounts for more than half of the /sup 60/Co whole-body burden. Among soft tissues, gills and viscera displayed the highest CF and muscle the lowest. From these experiments, one may conclude that significant differences among species do exist regarding Co bioaccumulation potential.« less

  6. Preliminary model of fluid and solute distribution and transport during hemorrhage.

    PubMed

    Gyenge, C C; Bowen, B D; Reed, R K; Bert, J L

    2003-01-01

    The distribution and transport of fluid, ions, and other solutes (plasma proteins and glucose) are described in a mathematical model of unresuscitated hemorrhage. The model is based on balances of each material in both the circulation and its red blood cells, as well as in a whole-body tissue compartment along with its cells. Exchange between these four compartments occurs by a number of different mechanisms. The hemorrhage model has as its basis a validated model, due to Gyenge et al., of fluid and solute exchange in the whole body of a standard human. Hypothetical but physiologically based features such as glucose and small ion releases along with cell membrane changes are incorporated into the hemorrhage model to describe the system behavior, particularly during larger hemorrhages. Moderate (10%-30% blood volume loss) and large (> 30% blood loss) hemorrhage dynamics are simulated and compared with available data. The model predictions compare well with the available information for both types of hemorrhages and provide a reasonable description of the progression of a large hemorrhage from the compensatory phase through vascular collapse.

  7. Pharmacokinetics, tissue distribution, and metabolism of nitrofurantoin in the channel catfish (Ictalurus punctatus)

    USGS Publications Warehouse

    Stehly, G.R.; Plakas, S.M.

    1993-01-01

    The pharmacokinetics, tissue distribution, and metabolism of the drug nitrofurantoin were examined in the channel catfish (Ictalurus punctatus) after intravascular or oral dosing. Mean plasma concentrations of nitrofurantoin after intravascular administration at 1 and 10 mg/kg of body weight were best fit to two- and three-compartment pharmacokinetic models, respectively. Nitrofurantoin was rapidly eliminated from the plasma after intravascular dosing; at 1 and 10 mg/kg, the terminal half-lives were 23 and 46 min, respectively. After oral dosing at 1 mg/kg, peak plasma concentrations (0.06 mu g/ml) occurred at 2 h; the bioavailability was 17%. Residues of nitrofurantoin and its metabolites in the tissues were initially eliminated rapidly but persisted at the later sampling times. Residue concentrations were highest in the plasma and excretory tissues. Approximately 21% and 4% of the oral dose were eliminated in the urine and bile, respectively. Parent nitrofurantoin was the major radiolabelled compound found in the urine; however, the percentage of total residues composed of metabolites increased with time. Biliary residues consisted mostly of nitrofurantoin metabolites. High-performance liquid chromatography revealed the presence of at least five metabolites in the urine and bile.

  8. Simulation of the inhibition of microbial sulfate reduction in a two-compartment upflow bioreactor subjected to molybdate injection.

    PubMed

    de Jesus, E B; de Andrade Lima, L R P

    2016-08-01

    Souring of oil fields during secondary oil recovery by water injection occurs mainly due to the action of sulfate-reducing bacteria (SRB) adhered to the rock surface in the vicinity of injection wells. Upflow packed-bed bioreactors have been used in petroleum microbiology because of its similarity to the oil field near the injection wells or production. However, these reactors do not realistically describe the regions near the injection wells, which are characterized by the presence of a saturated zone and a void region close to the well. In this study, the hydrodynamics of the two-compartment packing-free/packed-bed pilot bioreactor that mimics an oil reservoir was studied. The packed-free compartment was modeled using a continuous stirred tank model with mass exchange between active and stagnant zones, whereas the packed-bed compartment was modeled using a piston-dispersion-exchange model. The proposed model adequately represents the hydrodynamic of the packed-free/packed-bed bioreactor while the simulations provide important information about the characteristics of the residence time distribution (RTD) curves for different sets of model parameters. Simulations were performed to represent the control of the sulfate-reducing bacteria activity in the bioreactor with the use of molybdate in different scenarios. The simulations show that increased amounts of molybdate cause an effective inhibition of the souring sulfate-reducing bacteria activity.

  9. Use of Magnetic Nanoparticles to Monitor Alginate-Encapsulated βTC-tet Cells

    PubMed Central

    Constantinidis, Ioannis; Grant, Samuel C.; Simpson, Nicholas E.; Oca-Cossio, Jose A.; Sweeney, Carol A.; Mao, Hui; Blackband, Stephen J.; Sambanis, Athanassios

    2008-01-01

    Non-invasive monitoring of tissue-engineered constructs is an important component in optimizing construct design and assessing therapeutic efficacy. In recent years, cellular and molecular imaging initiatives have spurred the use of iron oxide based contrast agents in the field of NMR imaging. Although their use in medical research has been widespread, their application in tissue engineering has been limited. In this study, the utility of Monocrystalline Iron Oxide Nanoparticles (MION) as an NMR contrast agent was evaluated for βTC-tet cells encapsulated within alginate/poly-L-lysine/alginate (APA) microbeads. The constructs were labeled with MION in two different ways: (a) MION-labeled βTC-tet cells were encapsulated in APA beads (i.e., intracellular compartment); and (b) MION particles were suspended in the alginate solution prior to encapsulation so that the alginate matrix was labeled with MION instead of the cells (i.e., extracellular compartment). The data show that although the location of cells can be identified within APA beads, cell growth or rearrangement within these constructs cannot be effectively monitored, regardless of the location of MION compartmentalization. The advantages and disadvantages of these techniques and their potential use in tissue engineering are discussed. PMID:19165877

  10. Fluorescein-methotrexate transport in dogfish shark (Squalus acanthias) choroid plexus.

    PubMed

    Baehr, Carsten H; Fricker, Gert; Miller, David S

    2006-08-01

    The vertebrate choroid plexus removes potentially toxic metabolites and xenobiotics from cerebrospinal fluid (CSF) to blood for subsequent excretion in urine and bile. We used confocal microscopy and quantitative image analysis to characterize the mechanisms driving transport of the large organic anion, fluorescein-methotrexate (FL-MTX), from bath (CSF-side) to blood vessels in intact lateral choroid plexus from dogfish shark, Squalus acanthias, an evolutionarily ancient vertebrate. With 2 microM FL-MTX in the bath, steady-state fluorescence in the subepithelium/vascular space exceeded bath levels by 5- to 10-fold, and fluorescence in the epithelial cells was slightly below bath levels. FL-MTX accumulation in both tissue compartments was reduced by NaCN, Na removal, and ouabain, but not by a 10-fold increase in medium K. Certain organic anions, e.g., probenecid, MTX, and taurocholate, reduced FL-MTX accumulation in both tissue compartments; p-aminohippurate and estrone sulfate reduced subepithelial/vascular accumulation, but not cellular accumulation. At low concentrations, digoxin, leukotriene C4, and MK-571 reduced fluorescence in the subepithelium/vascular space while increasing cellular fluorescence, indicating preferential inhibition of efflux over uptake. In the presence of 10 microM digoxin (reduced efflux, enhanced cellular accumulation), cellular FL-MTX accumulation was specific, concentrative, and Na dependent. Thus transepithelial FL-MTX transport involved the following two carrier-mediated steps: electroneutral, Na-dependent uptake at the apical membrane and electroneutral efflux at the basolateral membrane. Finally, FL-MTX accumulation in both tissue compartments was reduced by phorbol ester and increased by forskolin, indicating antagonistic modulation by protein kinase C and protein kinase A.

  11. Tracing compartment exchange by NMR diffusometry: Water in lithium-exchanged low-silica X zeolites

    NASA Astrophysics Data System (ADS)

    Lauerer, A.; Kurzhals, R.; Toufar, H.; Freude, D.; Kärger, J.

    2018-04-01

    The two-region model for analyzing signal attenuation in pulsed field gradient (PFG) NMR diffusion studies with molecules in compartmented media implies that, on their trajectory, molecules get from one region (one type of compartment) into the other one with a constant (i.e. a time-invariant) probability. This pattern has proved to serve as a good approach for considering guest diffusion in beds of nanoporous host materials, with the two regions ("compartments") identified as the intra- and intercrystalline pore spaces. It is obvious, however, that the requirements of the application of the two-region model are not strictly fulfilled given the correlation between the covered diffusion path lengths in the intracrystalline pore space and the probability of molecular "escape" from the individual crystallites. On considering water diffusion in lithium-exchanged low-silica X zeolite, we are now assuming a different position since this type of material is known to offer "traps" in the trajectories of the water molecules. Now, on attributing the water molecules in the traps and outside of the traps to these two types of regions, we perfectly comply with the requirements of the two-region model. We do, moreover, benefit from the option of high-resolution measurements owing to the combination of magic angle spinning (MAS) with PFG NMR. Data analysis via the two-region model under inclusion of the influence of nuclear magnetic relaxation yields satisfactory agreement between experimental evidence and theoretical estimates. Limitations in accuracy are shown to result from the fact that mass transfer outside of the traps is too complicated for being adequately reflected by simple Fick's laws with but one diffusivity.

  12. A new, open-source, multi-modality digital breast phantom

    NASA Astrophysics Data System (ADS)

    Graff, Christian G.

    2016-03-01

    An anthropomorphic digital breast phantom has been developed with the goal of generating random voxelized breast models that capture the anatomic variability observed in vivo. This is a new phantom and is not based on existing digital breast phantoms or segmentation of patient images. It has been designed at the outset to be modality agnostic (i.e., suitable for use in modeling x-ray based imaging systems, magnetic resonance imaging, and potentially other imaging systems) and open source so that users may freely modify the phantom to suit a particular study. In this work we describe the modeling techniques that have been developed, the capabilities and novel features of this phantom, and study simulated images produced from it. Starting from a base quadric, a series of deformations are performed to create a breast with a particular volume and shape. Initial glandular compartments are generated using a Voronoi technique and a ductal tree structure with terminal duct lobular units is grown from the nipple into each compartment. An additional step involving the creation of fat and glandular lobules using a Perlin noise function is performed to create more realistic glandular/fat tissue interfaces and generate a Cooper's ligament network. A vascular tree is grown from the chest muscle into the breast tissue. Breast compression is performed using a neo-Hookean elasticity model. We show simulated mammographic and T1-weighted MRI images and study properties of these images.

  13. Starling forces drive intracranial water exchange during normal and pathological states.

    PubMed

    Linninger, Andreas A; Xu, Colin; Tangen, Kevin; Hartung, Grant

    2017-12-31

    To quantify the exchange of water between cerebral compartments, specifically blood, tissue, perivascular pathways, and cerebrospinal fluid-filled spaces, on the basis of experimental data and to propose a dynamic global model of water flux through the entire brain to elucidate functionally relevant fluid exchange phenomena. The mechanistic computer model to predict brain water shifts is discretized by cerebral compartments into nodes. Water and species flux is calculated between these nodes across a network of arcs driven by Hagen-Poiseuille flow (blood), Darcy flow (interstitial fluid transport), and Starling's Law (transmembrane fluid exchange). Compartment compliance is accounted for using a pressure-volume relationship to enforce the Monro-Kellie doctrine. This nonlinear system of differential equations is solved implicitly using MATLAB software. The model predictions of intraventricular osmotic injection caused a pressure rise from 10 to 22 mmHg, followed by a taper to 14 mmHg over 100 minutes. The computational results are compared to experimental data with R2=0.929. Moreover, simulated osmotic therapy of systemic (blood) injection reduced intracranial pressure from 25 to 10 mmHg. The modeled volume and intracranial pressure changes following cerebral edema agree with experimental trends observed in animal models with R2=0.997. The model successfully predicted time course and the efficacy of osmotic therapy for clearing cerebral edema. Furthermore, the mathematical model implicated the perivascular pathways as a possible conduit for water and solute exchange. This was a first step to quantify fluid exchange throughout the brain.

  14. HIV-1 RNA Levels and Antiretroviral Drug Resistance in Blood and Non-Blood Compartments from HIV-1–Infected Men and Women enrolled in AIDS Clinical Trials Group Study A5077

    PubMed Central

    Kantor, Rami; Bettendorf, Daniel; Bosch, Ronald J.; Mann, Marita; Katzenstein, David; Cu-Uvin, Susan; D’Aquila, Richard; Frenkel, Lisa; Fiscus, Susan; Coombs, Robert

    2014-01-01

    Background Detectable HIV-1 in body compartments can lead to transmission and antiretroviral resistance. Although sex differences in viral shedding have been demonstrated, mechanisms and magnitude are unclear. We compared RNA levels in blood, genital-secretions and saliva; and drug resistance in plasma and genital-secretions of men and women starting/changing antiretroviral therapy (ART) in the AIDS Clinical Trials Group (ACTG) 5077 study. Methods Blood, saliva and genital-secretions (compartment fluids) were collected from HIV-infected adults (≥13 years) at 14 United-States sites, who were initiating or changing ART with plasma viral load (VL) ≥2,000 copies/mL. VL testing was performed on all compartment fluids and HIV resistance genotyping on plasma and genital-secretions. Spearman rank correlations were used to evaluate concordance and Fisher’s and McNemar’s exact tests to compare VL between sexes and among compartments. Results Samples were available for 143 subjects; 36% treated (23 men, 29 women) and 64% ‘untreated’ (40 men, 51 women). RNA detection was significantly more frequent in plasma (100%) than genital-secretions (57%) and saliva (64%) (P<0.001). A higher proportion of men had genital shedding versus women (78% versus 41%), and RNA detection was more frequent in saliva versus genital-secretions in women when adjusted for censoring at the limit of assay detection. Inter-compartment fluid VL concordance was low in both sexes. In 22 (13 men, 9 women) paired plasma-genital-secretion genotypes from treated subjects, most had detectable resistance in both plasma (77%) and genital-secretions (68%). Resistance discordance was observed between compartments in 14% of subjects. Conclusions HIV shedding and drug resistance detection prior to initiation/change of ART in ACTG 5077 subjects differed among tissues and between sexes, making the gold standard blood-plasma compartment assessment not fully representative of HIV at other tissue sites. Mechanisms of potential sex-dependent tissue compartmentalization should be further characterized to aid in optimizing treatment and prevention of HIV transmission. Trial Registration ClinicalTrials.gov NCT00007488 PMID:24699474

  15. Acute compartment syndrome caused by uncontrolled hypothyroidism.

    PubMed

    Modi, Anar; Amin, Hari; Salzman, Matthew; Morgan, Farah

    2017-06-01

    Acute compartment syndrome is increased tissue pressure exceeding perfusion pressure in a closed compartment resulting in nerve and muscle ischemia. Common precipitating causes are crush injuries, burns, substance abuse, osseous or vascular limb trauma. This is a case of 42year old female with history of hypothyroidism who presented to emergency room with acute onset of severe pain and swelling in right lower extremity. Physical examination was concerning for acute compartment syndrome of right leg which was confirmed by demonstration of elevated compartmental pressures. No precipitating causes were readily identified. Further laboratory testing revealed uncontrolled hypothyroidism. Management included emergent fasciotomy and initiating thyroid hormone replacement. This case represents a rare association between acute compartment syndrome and uncontrolled hypothyroidism. We also discuss the pathogenesis of compartment syndrome in hypothyroid patients and emphasize the importance of evaluating for less common causes, particularly in setting of non-traumatic compartment syndrome. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Mathematical model for the contribution of individual organs to non-zero y-intercepts in single and multi-compartment linear models of whole-body energy expenditure.

    PubMed

    Kaiyala, Karl J

    2014-01-01

    Mathematical models for the dependence of energy expenditure (EE) on body mass and composition are essential tools in metabolic phenotyping. EE scales over broad ranges of body mass as a non-linear allometric function. When considered within restricted ranges of body mass, however, allometric EE curves exhibit 'local linearity.' Indeed, modern EE analysis makes extensive use of linear models. Such models typically involve one or two body mass compartments (e.g., fat free mass and fat mass). Importantly, linear EE models typically involve a non-zero (usually positive) y-intercept term of uncertain origin, a recurring theme in discussions of EE analysis and a source of confounding in traditional ratio-based EE normalization. Emerging linear model approaches quantify whole-body resting EE (REE) in terms of individual organ masses (e.g., liver, kidneys, heart, brain). Proponents of individual organ REE modeling hypothesize that multi-organ linear models may eliminate non-zero y-intercepts. This could have advantages in adjusting REE for body mass and composition. Studies reveal that individual organ REE is an allometric function of total body mass. I exploit first-order Taylor linearization of individual organ REEs to model the manner in which individual organs contribute to whole-body REE and to the non-zero y-intercept in linear REE models. The model predicts that REE analysis at the individual organ-tissue level will not eliminate intercept terms. I demonstrate that the parameters of a linear EE equation can be transformed into the parameters of the underlying 'latent' allometric equation. This permits estimates of the allometric scaling of EE in a diverse variety of physiological states that are not represented in the allometric EE literature but are well represented by published linear EE analyses.

  17. Reaction time for trimolecular reactions in compartment-based reaction-diffusion models

    NASA Astrophysics Data System (ADS)

    Li, Fei; Chen, Minghan; Erban, Radek; Cao, Yang

    2018-05-01

    Trimolecular reaction models are investigated in the compartment-based (lattice-based) framework for stochastic reaction-diffusion modeling. The formulae for the first collision time and the mean reaction time are derived for the case where three molecules are present in the solution under periodic boundary conditions. For the case of reflecting boundary conditions, similar formulae are obtained using a computer-assisted approach. The accuracy of these formulae is further verified through comparison with numerical results. The presented derivation is based on the first passage time analysis of Montroll [J. Math. Phys. 10, 753 (1969)]. Montroll's results for two-dimensional lattice-based random walks are adapted and applied to compartment-based models of trimolecular reactions, which are studied in one-dimensional or pseudo one-dimensional domains.

  18. Effect of Gender on the Total Abdominal Fat, Intra-Abdominal Adipose Tissue and Abdominal Sub-Cutaneous Adipose Tissue among Indian Hypertensive Patients.

    PubMed

    Sahoo, Jaya Prakash; Kumari, Savita; Jain, Sanjay

    2016-04-01

    Abdominal obesity is a better marker of adverse metabolic profile than generalized obesity in hypertensive subjects. Further, gender has effect on adiposity and its distribution. Effect of gender on obesity and the distribution of fat in different sub-compartments of abdomen among Indian hypertensive subjects. This observational study included 278 adult subjects (Males-149 & Females-129) with essential hypertension from a tertiary care centre in north India over one year. A detailed history taking and physical examination including anthropometry were performed in all patients. Total Abdominal Fat (TAF) and abdominal adipose tissue sub-compartments like Intra-Abdominal Adipose Tissue (IAAT) and Sub-Cutaneous Adipose Tissue (SCAT) were measured using the predictive equations developed for Asian Indians. Female hypertensive subjects had higher Body Mass Index (BMI) with more overweight (BMI ≥ 23kg/m(2)), and obesity (BMI≥ 25 kg/m(2)). Additionally, they had higher prevalence of central obesity based on both Waist Circumference (WC) criteria (WC≥ 90 cm in males and WC≥ 80 cm in females) and TAF criteria {≥245.6 cm(2) (males) and ≥203.46 cm(2) (females)} than male patients. But there was no difference in the prevalence of central obesity based on Waist Hip Ratio (WHR) criteria (WHR ≥0.90 in males and WHR ≥ 0.85 in females) between two genders. High TAF & IAAT were present in more females although there was no difference in the distribution of high SCAT between two genders. Female hypertensive subjects were more obese with higher abnormal TAF & IAAT compared to male patients. However, there was no difference in the distribution of high SCAT among them.

  19. Chemometric strategy for modeling metabolic biological space along the gastrointestinal tract and assessing microbial influences.

    PubMed

    Martin, François-Pierre J; Montoliu, Ivan; Kochhar, Sunil; Rezzi, Serge

    2010-12-01

    Over the past decade, the analysis of metabolic data with advanced chemometric techniques has offered the potential to explore functional relationships among biological compartments in relation to the structure and function of the intestine. However, the employed methodologies, generally based on regression modeling techniques, have given emphasis to region-specific metabolic patterns, while providing only limited insights into the spatiotemporal metabolic features of the complex gastrointestinal system. Hence, novel approaches are needed to analyze metabolic data to reconstruct the metabolic biological space associated with the evolving structures and functions of an organ such as the gastrointestinal tract. Here, we report the application of multivariate curve resolution (MCR) methodology to model metabolic relationships along the gastrointestinal compartments in relation to its structure and function using data from our previous metabonomic analysis. The method simultaneously summarizes metabolite occurrence and contribution to continuous metabolic signatures of the different biological compartments of the gut tract. This methodology sheds new light onto the complex web of metabolic interactions with gut symbionts that modulate host cell metabolism in surrounding gut tissues. In the future, such an approach will be key to provide new insights into the dynamic onset of metabolic deregulations involved in region-specific gastrointestinal disorders, such as Crohn's disease or ulcerative colitis.

  20. Mechanistic quantitative structure-activity relationship model for the photoinduced toxicity of polycyclic aromatic hydrocarbons. 1: Physical model based on chemical kinetics in a two-compartment system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krylov, S.N.; Huang, X.D.; Zeiler, L.F.

    1997-11-01

    A quantitative structure-activity relationship model for the photoinduced toxicity of 16 polycyclic aromatic hydrocarbons (PAHs) to duckweed (Lemna gibba) in simulated solar radiation (SSR) was developed. Lemna gibba was chosen for this study because toxicity could be considered in two compartments: water column and leaf tissue. Modeling of photoinduced toxicity was described by photochemical reactions between PAHs and a hypothetical group of endogenous biomolecules (G) required for normal growth, with damage to G by PAHs and/or photomodified PAHs in SSR resulting in impaired growth. The reaction scheme includes photomodification of PAHs, uptake of PAHs into leaves, triplet-state formation of intactmore » PAHs, photosensitization reactions that damage G, and reactions between photomodified PAHs and G. The assumptions used were: the PAH photomodification rate is slower than uptake of chemicals into leaves, the PAH concentration in aqueous solution is nearly constant during a toxicity test, the fluence rate of actinic radiation is lower within leaves than in the aqueous phase, and the toxicity of intact PAHs in the dark is negligible. A series of differential equations describing the reaction kinetics of intact and photomodifed PAHs with G was derived. The resulting equation for PAH toxicity was a function of treatment period, initial PAH concentration, relative absorbance of SSR by each PAH, quantum yield for formation of triplet-state PAH, and rate of PAH photomodification. Data for growth in the presence of intact and photomodified PAHs were used to empirically solve for a photosensitization constant (PSC) and a photomodification constant (PMC) for each of the 16 PAHs tested. For 9 PAHs the PMC dominates and for 7 PAHs the PSC dominates.« less

  1. Elevated compartment pressures from copperhead envenomation successfully treated with antivenin.

    PubMed

    Mazer-Amirshahi, Maryann; Boutsikaris, Amy; Clancy, Cathleen

    2014-01-01

    Copperhead envenomation causes local soft tissue effects; however, associated compartment syndrome is rare. We report a case of a 17-month-old with significantly elevated compartment pressures successfully treated with antivenin and supportive care. A 17-month-old girl sustained a copperhead bite to the foot and presented with circumferential edema, erythema, and ecchymosis of the foot and distal ankle. The patient had palpable pulses and was neurologically intact. Four vials of Crotalidae polyvalent immune Fab was initiated and additional doses were administered in an attempt to achieve local control. Within 10 h of presentation, the patient's edema extended to the groin, although sensation was maintained and pulses were documented by Doppler. Lower-extremity compartment pressures were measured and were most notable for an anterior pressure of 85 mm Hg, despite having received 12 vials of antivenin. Fasciotomy was deferred and the patient received two additional six-vial doses of antivenin to achieve local control. Compartment pressures improved with a 2.2-cm mean decrease in limb diameter within 48 h. Maintenance dosing was initiated and the patient ultimately received a total of 26 vials of antivenin. The patient did not develop significant coagulopathy or thrombocytopenia. Swelling continued to improve with return of limb function. In this case, early and aggressive treatment with antivenin may have avoided invasive fasciotomy, and its use should be considered in patients with copperhead envenomation and significantly elevated compartment pressures. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Simulation of the toxicokinetics of trichloroethylene, methylene chloride, styrene and n-hexane by a toxicokinetics/toxicodynamics model using experimental data.

    PubMed

    Nakayama, Yumiko; Kishida, Fumio; Nakatsuka, Iwao; Matsuo, Masatoshi

    2005-01-01

    The toxicokinetics/toxicodynamics (TKTD) model simulates the toxicokinetics of a chemical based on physiological data such as blood flow, tissue partition coefficients and metabolism. In this study, Andersen and Clewell's TKTD model was used with seven compartments and ten differential equations for calculating chemical balances in the compartments (Andersen and Clewell 1996, Workshop on physiologically-based pharmacokinetic/pharmacodynamic modeling and risk assessment, Aug. 5-16 at Colorado State University, U.S.A) . Using this model, the authors attempted to simulate the behavior of four chemicals: trichloroethylene, methylene chloride, styrene and n-hexane, and the results were evaluated. Simulations of the behavior of trichloroethylene taken in via inhalation and oral exposure routes were also done. The differences between simulations and measurements are due to the differences between the absorption rates of the exposure routes. By changing the absorption rates, the simulation showed agreement with the measured values. The simulations of the other three chemicals showed good results. Thus, this model is useful for simulating the behavior of chemicals for preliminary toxicity assessment.

  3. Compositional breast imaging using a dual-energy mammography protocol

    PubMed Central

    Laidevant, Aurelie D.; Malkov, Serghei; Flowers, Chris I.; Kerlikowske, Karla; Shepherd, John A.

    2010-01-01

    Purpose: Mammography has a low sensitivity in dense breasts due to low contrast between malignant and normal tissue confounded by the predominant water density of the breast. Water is found in both adipose and fibroglandular tissue and constitutes most of the mass of a breast. However, significant protein mass is mainly found in the fibroglandular tissue where most cancers originate. If the protein compartment in a mammogram could be imaged without the influence of water, the sensitivity and specificity of the mammogram may be improved. This article describes a novel approach to dual-energy mammography, full-field digital compositional mammography (FFDCM), which can independently image the three compositional components of breast tissue: water, lipid, and protein. Methods: Dual-energy attenuation and breast shape measures are used together to solve for the three compositional thicknesses. Dual-energy measurements were performed on breast-mimicking phantoms using a full-field digital mammography unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the compositional compartments. They were made of two main stacks of thicknesses around 2 and 4 cm. Twenty-six thickness and composition combinations were used to derive the compositional calibration using a least-squares fitting approach. Results: Very high accuracy was achieved with a simple cubic fitting function with root mean square errors of 0.023, 0.011, and 0.012 cm for the water, lipid, and protein thicknesses, respectively. The repeatability (percent coefficient of variation) of these measures was tested using sequential images and was found to be 0.5%, 0.5%, and 3.3% for water, lipid, and protein, respectively. However, swapping the location of the two stacks of the phantom on the imaging plate introduced further errors showing the need for more complete system uniformity corrections. Finally, a preliminary breast image is presented of each of the compositional compartments separately. Conclusions: FFDCM has been derived and exhibited good compositional thickness accuracy on phantoms. Preliminary breast images demonstrated the feasibility of creating individual compositional diagnostic images in a clinical environment. PMID:20175478

  4. Kinematically aligned total knee arthroplasty limits high tibial forces, differences in tibial forces between compartments, and abnormal tibial contact kinematics during passive flexion.

    PubMed

    Roth, Joshua D; Howell, Stephen M; Hull, Maury L

    2018-06-01

    Following total knee arthroplasty (TKA), high tibial forces, large differences in tibial forces between the medial and lateral compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion indicate abnormal knee function. Because the goal of kinematically aligned TKA is to restore native knee function without soft tissue release, the objectives were to determine how well kinematically aligned TKA limits high tibial forces, differences in tibial forces between compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion. Using cruciate retaining components, kinematically aligned TKA was performed on thirteen human cadaveric knee specimens with use of manual instruments without soft tissue release. The tibial forces and tibial contact locations were measured in both the medial and lateral compartments from 0° to 120° of passive flexion using a custom tibial force sensor. The average total tibial force (i.e. sum of medial + lateral) ranged from 5 to 116 N. The only significant average differences in tibial force between compartments occurred at 0° of flexion (29 N, p = 0.0008). The contact locations in both compartments translated posteriorly in all thirteen kinematically aligned TKAs by an average of 14 mm (p < 0.0001) and 18 mm (p < 0.0001) in the medial and lateral compartments, respectively, from 0° to 120° of flexion. After kinematically aligned TKA, average total tibial forces due to the soft tissue restraints were limited to 116 N, average differences in tibial forces between compartments were limited to 29 N, and a net posterior translation of the tibial contact locations was observed in all kinematically aligned TKAs during passive flexion from 0° to 120°, which are similar to what has been measured previously in native knees. While confirmation in vivo is warranted, these findings give surgeons who perform kinematically aligned TKA confidence that the alignment method and surgical technique limit high tibial forces, differences in tibial forces between compartments, and anterior translation of the tibial contact locations during passive flexion.

  5. An experimental approach towards the development of an in vitro cortical-thalamic co-culture model.

    PubMed

    Kanagasabapathi, Thirukumaran T; Massobrio, Paolo; Tedesco, Mariateresa; Martinoia, Sergio; Wadman, Wytse J; Decré, Michel M J

    2011-01-01

    In this paper, we propose an experimental approach to develop an in vitro dissociated cortical-thalamic co-culture model using a dual compartment neurofluidic device. The device has two compartments separated by 10 μm wide and 3 μm high microchannels. The microchannels provide a physical isolation of neurons allowing only neurites to grow between the compartments. Long-term viable co-culture was maintained in the compartmented device, neurite growth through the microchannels was verified using immunofluorescence staining, and electrophysiological recordings from the co-culture system was investigated. Preliminary analysis of spontaneous activities from the co-culture shows a distinctively different firing pattern associated with cultures of individual cell types and further analysis is proposed for a deeper understanding of the dynamics involved in the network connectivity in such a co-culture system.

  6. Image-guided spatial localization of heterogeneous compartments for magnetic resonance

    PubMed Central

    An, Li; Shen, Jun

    2015-01-01

    Purpose: Image-guided localization SPectral Localization Achieved by Sensitivity Heterogeneity (SPLASH) allows rapid measurement of signals from irregularly shaped anatomical compartments without using phase encoding gradients. Here, the authors propose a novel method to address the issue of heterogeneous signal distribution within the localized compartments. Methods: Each compartment was subdivided into multiple subcompartments and their spectra were solved by Tikhonov regularization to enforce smoothness within each compartment. The spectrum of a given compartment was generated by combining the spectra of the components of that compartment. The proposed method was first tested using Monte Carlo simulations and then applied to reconstructing in vivo spectra from irregularly shaped ischemic stroke and normal tissue compartments. Results: Monte Carlo simulations demonstrate that the proposed regularized SPLASH method significantly reduces localization and metabolite quantification errors. In vivo results show that the intracompartment regularization results in ∼40% reduction of error in metabolite quantification. Conclusions: The proposed method significantly reduces localization errors and metabolite quantification errors caused by intracompartment heterogeneous signal distribution. PMID:26328977

  7. Transplacental transfer of 2-naphthol in human placenta.

    PubMed

    Mirghani, Hisham; Osman, Nawal; Dhanasekaran, Subramanian; Elbiss, Hassan M; Bekdache, Gharid

    2015-01-01

    To determine the transfer of 2-naphthol (2-NPH) in fullterm human placental tissues. Six placentas were studied. The ex-vivo dual closed-loop human placental cotyledon perfusion model was used. 2-NPH was added to the perfusate in the maternal compartment. Samples were obtained from the maternal and fetal up to 360 min measuring. The mean fetal weight was 2880 ± 304.2 g. Mean perfused cotyledon weight was 26.3 (±5.5) g. All unperfused placental tissue samples contained NPH with a mean level of 7.98 (±1.73) μg\\g compared to a mean of 15.58 (±4.53) μg\\g after 360 min perfusion. A rapid drop in maternal 2-NPH concentration was observed; from 5.54 μg\\g in the first 15 min and 13.8 μg\\g in 360 min. The fetal side increased from 0.65 μg\\g in the initial 15 min to 1.5 μg\\g in 360 min. The transfer rate of NPH was much lower than that of antipyrine. 2-NPH has the ability to rapidly across the placenta from the maternal to the fetal compartment within 15 min. The placenta seems to play a role in limiting the passage of 2-NPH in the fetal compartment.

  8. Noninvasive parametric blood flow imaging of head and neck tumours using [15O]H2O and PET/CT.

    PubMed

    Komar, Gaber; Oikonen, Vesa; Sipilä, Hannu; Seppänen, Marko; Minn, Heikki

    2012-11-01

    The aim of this study was to develop a simple noninvasive method for measuring blood flow using [15O]H2O PET/CT for the head and neck area applicable in daily clinical practice. Fifteen dynamic [15O]H2O PET emission scans with simultaneous online radioactivity measurements of radial arterial blood [Blood-input functions (IFs)] were performed. Two noninvasively obtained population-based input functions were calculated by averaging all Blood-IF curves corrected for patients' body mass and injected dose [standardized uptake value (SUV)-IF] and for body surface area (BSA-IF) and injected dose. Parametric perfusion images were calculated for each set of IFs using a linearized two-compartment model, and values for several tissues were compared using Blood-IF as the gold standard. On comparing all tissues, the correlation between blood flow obtained with the invasive Blood-IF and both SUV-IF and BSA-IF was significant (R2=0.785 with P<0.001 and R2=0.813 with P<0.001, respectively). In individual tissues, the performance of the two noninvasive methods was most reliable in resting muscle and slightly less reliable in tumour and cerebellar regions. In these two tissues, only BSA-IF showed a significant correlation with Blood-IF (R2=0.307 with P=0.032 in tumours and R2=0.398 with P<0.007 in the cerebellum). The BSA-based noninvasive method enables clinically relevant delineation between areas of low and high blood flow in tumours. The blood flow of low-perfusion tissues can be reliably quantified using either of the evaluated noninvasive methods.

  9. 75 FR 81 - Special Conditions: Boeing Model 787-8 Airplane; Overhead Flightcrew Rest Compartment Occupiable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-04

    ..., explain the reason for any recommended change, and include supporting data. We ask that you send us two... changes to the approved OFCR compartment configuration that affect crewmember emergency egress or any other procedures affecting safety of the occupying crewmembers or related emergency training will...

  10. 75 FR 75 - Special Conditions: Boeing Model 787-8 Airplane; Overhead Crew Rest Compartment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-04

    ..., explain the reason for any recommended change, and include supporting data. We ask that you send us two...-site operational evaluation. Any changes to the approved OCR compartment configuration that affect crewmember emergency egress or any other procedures affecting safety of the occupying crewmembers or related...

  11. Advanced tissue engineering scaffold design for regeneration of the complex hierarchical periodontal structure.

    PubMed

    Costa, Pedro F; Vaquette, Cédryck; Zhang, Qiyi; Reis, Rui L; Ivanovski, Saso; Hutmacher, Dietmar W

    2014-03-01

    This study investigated the ability of an osteoconductive biphasic scaffold to simultaneously regenerate alveolar bone, periodontal ligament and cementum. A biphasic scaffold was built by attaching a fused deposition modelled bone compartment to a melt electrospun periodontal compartment. The bone compartment was coated with a calcium phosphate (CaP) layer for increasing osteoconductivity, seeded with osteoblasts and cultured in vitro for 6 weeks. The resulting constructs were then complemented with the placement of PDL cell sheets on the periodontal compartment, attached to a dentin block and subcutaneously implanted into athymic rats for 8 weeks. Scanning electron microscopy, X-ray diffraction, alkaline phosphatase and DNA content quantification, confocal laser microscopy, micro computerized tomography and histological analysis were employed to evaluate the scaffold's performance. The in vitro study showed that alkaline phosphatase activity was significantly increased in the CaP-coated samples and they also displayed enhanced mineralization. In the in vivo study, significantly more bone formation was observed in the coated scaffolds. Histological analysis revealed that the large pore size of the periodontal compartment permitted vascularization of the cell sheets, and periodontal attachment was achieved at the dentin interface. This work demonstrates that the combination of cell sheet technology together with an osteoconductive biphasic scaffold could be utilized to address the limitations of current periodontal regeneration techniques. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Lung inhomogeneities, inflation and [18F]2-fluoro-2-deoxy-D-glucose uptake rate in acute respiratory distress syndrome.

    PubMed

    Cressoni, Massimo; Chiumello, Davide; Chiurazzi, Chiara; Brioni, Matteo; Algieri, Ilaria; Gotti, Miriam; Nikolla, Klodiana; Massari, Dario; Cammaroto, Antonio; Colombo, Andrea; Cadringher, Paolo; Carlesso, Eleonora; Benti, Riccardo; Casati, Rosangela; Zito, Felicia; Gattinoni, Luciano

    2016-01-01

    The aim of the study was to determine the size and location of homogeneous inflamed/noninflamed and inhomogeneous inflamed/noninflamed lung compartments and their association with acute respiratory distress syndrome (ARDS) severity.In total, 20 ARDS patients underwent 5 and 45 cmH2O computed tomography (CT) scans to measure lung recruitability. [(18)F]2-fluoro-2-deoxy-d-glucose ([(18)F]FDG) uptake and lung inhomogeneities were quantified with a positron emission tomography-CT scan at 10 cmH2O. We defined four compartments with normal/abnormal [(18)F]FDG uptake and lung homogeneity.The homogeneous compartment with normal [(18)F]FDG uptake was primarily composed of well-inflated tissue (80±16%), double-sized in nondependent lung (32±27% versus 16±17%, p<0.0001) and decreased in size from mild, moderate to severe ARDS (33±14%, 26±20% and 5±9% of the total lung volume, respectively, p=0.05). The homogeneous compartment with high [(18)F]FDG uptake was similarly distributed between the dependent and nondependent lung. The inhomogeneous compartment with normal [(18)F]FDG uptake represented 4% of the lung volume. The inhomogeneous compartment with high [(18)F]FDG uptake was preferentially located in the dependent lung (21±10% versus 12±10%, p<0.0001), mostly at the open/closed interfaces and related to recruitability (r(2)=0.53, p<0.001).The homogeneous lung compartment with normal inflation and [(18)F]FDG uptake decreases with ARDS severity, while the inhomogeneous poorly/not inflated compartment increases. Most of the lung inhomogeneities are inflamed. A minor fraction of healthy tissue remains in severe ARDS. Copyright ©ERS 2016.

  13. PET brain kinetics studies of 11C-ITMM and 11C-ITDM,radioprobes for metabotropic glutamate receptor type 1, in a nonhuman primate

    PubMed Central

    Yamasaki, Tomoteru; Maeda, Jun; Fujinaga, Masayuki; Nagai, Yuji; Hatori, Akiko; Yui, Joji; Xie, Lin; Nengaki, Nobuki; Zhang, Ming-Rong

    2014-01-01

    The metabotropic glutamate receptor type 1 (mGluR1) is a novel target protein for the development of new drugs against central nervous system disorders. Recently, we have developed 11C-labeled PET probes 11C-ITMM and 11C-ITDM, which demonstrate similar profiles, for imaging of mGluR1. In the present study, we compared 11C-ITMM and 11C-ITDM PET imaging and quantitative analysis in the monkey brain. Respective PET images showed similar distribution of uptake in the cerebellum, thalamus, and cingulate cortex. Slightly higher uptake was detected with 11C-ITDM than with 11C-ITMM. For the kinetic analysis using the two-tissue compartment model (2-TCM), the distribution volume (VT) in the cerebellum, an mGluR1-rich region in the brain, was 2.5 mL∙cm-3 for 11C-ITMM and 3.6 mL∙cm-3 for 11C-ITDM. By contrast, the VT in the pons, a region with negligible mGluR1 expression, was similarly low for both radiopharmaceuticals. Based on these results, we performed noninvasive PET quantitative analysis with general reference tissue models using the time-activity curve of the pons as a reference region. We confirmed the relationship and differences between the reference tissue models and 2-TCM using correlational scatter plots and Bland-Altman plots analyses. Although the scattergrams of both radiopharmaceuticals showed over- or underestimations of reference tissue model-based the binding potentials against 2-TCM, there were no significant differences between the two kinetic analysis models. In conclusion, we first demonstrated the potentials of 11C-ITMM and 11C-ITDM for noninvasive PET quantitative analysis using reference tissue models. In addition, our findings suggest that 11C-ITDM may be superior to 11C-ITMM as a PET probe for imaging of mGluR1, because regional VT values in PET with 11C-ITDM were higher than those of 11C-ITMM. Clinical studies of 11C-ITDM in humans will be necessary in the future. PMID:24795840

  14. PET brain kinetics studies of (11)C-ITMM and (11)C-ITDM,radioprobes for metabotropic glutamate receptor type 1, in a nonhuman primate.

    PubMed

    Yamasaki, Tomoteru; Maeda, Jun; Fujinaga, Masayuki; Nagai, Yuji; Hatori, Akiko; Yui, Joji; Xie, Lin; Nengaki, Nobuki; Zhang, Ming-Rong

    2014-01-01

    The metabotropic glutamate receptor type 1 (mGluR1) is a novel target protein for the development of new drugs against central nervous system disorders. Recently, we have developed (11)C-labeled PET probes (11)C-ITMM and (11)C-ITDM, which demonstrate similar profiles, for imaging of mGluR1. In the present study, we compared (11)C-ITMM and (11)C-ITDM PET imaging and quantitative analysis in the monkey brain. Respective PET images showed similar distribution of uptake in the cerebellum, thalamus, and cingulate cortex. Slightly higher uptake was detected with (11)C-ITDM than with (11)C-ITMM. For the kinetic analysis using the two-tissue compartment model (2-TCM), the distribution volume (VT) in the cerebellum, an mGluR1-rich region in the brain, was 2.5 mL∙cm(-3) for (11)C-ITMM and 3.6 mL∙cm(-3) for (11)C-ITDM. By contrast, the VT in the pons, a region with negligible mGluR1 expression, was similarly low for both radiopharmaceuticals. Based on these results, we performed noninvasive PET quantitative analysis with general reference tissue models using the time-activity curve of the pons as a reference region. We confirmed the relationship and differences between the reference tissue models and 2-TCM using correlational scatter plots and Bland-Altman plots analyses. Although the scattergrams of both radiopharmaceuticals showed over- or underestimations of reference tissue model-based the binding potentials against 2-TCM, there were no significant differences between the two kinetic analysis models. In conclusion, we first demonstrated the potentials of (11)C-ITMM and (11)C-ITDM for noninvasive PET quantitative analysis using reference tissue models. In addition, our findings suggest that (11)C-ITDM may be superior to (11)C-ITMM as a PET probe for imaging of mGluR1, because regional VT values in PET with (11)C-ITDM were higher than those of (11)C-ITMM. Clinical studies of (11)C-ITDM in humans will be necessary in the future.

  15. Chronic Exertional Compartment Syndrome.

    PubMed

    Braver, Richard T

    2016-04-01

    Increased tissue pressure within a fascial compartment may be the result from any increase in volume within its contents, or any decrease in size of the fascial covering or its distensibility. This may lead to symptoms of leg tightness, pain or numbness brought about by exercise. There are multiple differential diagnoses of exercise induced leg pain and the proper diagnoses of chronic exertional compartment syndrome (CECS) is made by a careful history and by exclusion of other maladies and confirmed by compartment syndrome testing as detailed in this text. Surgical fasciotomies for the anterior, lateral, superficial and deep posterior compartments are described in detail along with ancillary procedures for chronic shin splints that should allow the athlete to return to competitive activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. User's instructions for the Grodins' respiratory control model using the UNIVAC 1110 remote batch and demand processing

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The transient and steady state response of the respiratory control system for variations in volumetric fractions of inspired gases and special system parameters are modeled. The program contains the capability to change workload. The program is based on Grodins' respiratory control model and can be envisioned as a feedback control system comprised of a plant (the controlled system) and the regulating component (controlling system). The controlled system is partitioned into 3 compartments corresponding to lungs, brain, and tissue with a fluid interconnecting patch representing the blood.

  17. A novel and simple model of the uptake of organic chemicals by vegetation from air and soil.

    PubMed

    Hung, H; Mackay, D

    1997-09-01

    A novel and simple three-compartment fugacity model has been developed to predict the kinetics and equilibria of the uptake of organic chemicals in herbaceous agricultural plants at various times, including the time of harvest using only readily available input data. The chemical concentration in each of the three plant compartments leaf, stem which includes fruits and seeds, and root) is expressed as a function of both time and chemical concentrations in soil and air. The model was developed using the fugacity concept; however, the final expressions are presented in terms of concentrations in soil and air, equilibrium partition coefficients and a set of transport and transformation half-lives. An illustrative application of the model is presented which describes the uptake of bromacil by a soybean plant under hydroponic conditions. The model, which is believed to give acceptably accurate prediction of the distribution of chemicals among plant tissues, air and soil, may be used for the assessment of exposure to, and risk from contaminants consumed either directly from vegetation or indirectly in natural and agricultural food chains.

  18. Kinetics of oxytocin and deaminooxytocin displacement from the OXTR-receptor compartment in rat uterus ex vivo.

    PubMed

    Pliska, Vladimir; Jutz, Guido

    2018-02-01

    The oil immersion method suggested earlier by Kalsner and Nickerson for analysing actions of sympathomimetic drugs upon smooth muscle tissues was applied to isometric preparations of rat myometrium stimulated by oxytocin and deaminooxytocin. An exchange of the aqueous medium by mineral oil allows monitoring the displacement of the peptides from their receptor compartment in absence of free diffusion transport between tissue and organ medium. Exponential analysis of the data from the uterotonic decay phase allows several inferences to be drawn: 1) Transport rate constants (roughly equal for the two peptides) are higher than rate constants of (irreversible) elimination from the receptor compartment. 2) The response decay rate in the oil immersion phase is proportional solely to the peptide elimination and thus offers estimates of elimination rate constants. 3) Peptide elimination kinetics in the receptor compartment is only insignificantly influenced by the kinetics of ligand-receptor binding. 4) As expected, the elimination rate constant of deaminooxytocin is considerably lower than for oxytocin. The apparent concentration of receptors in the paracellular space of the myometrium ("apparent", since receptor molecules are embedded in the cell membrane and hence not exposed to a diffusive flux), estimated from histometric parameters, appears rather high: 7 and 120 μM for high and low affinity receptors, respectively. Concentration-response curves for rat uterus stimulated by oxytocin or deaminooxytocin indicate that only about 0.25 to 5 per cent of the available receptors are involved in eliciting a maximal uterus contraction. The remnant receptor pool is likely to behave as a receptor reserve ("spare receptors"). Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Mass-spectrometric analysis of hydroperoxy- and hydroxy-derivatives of cardiolipin and phosphatidylserine in cells and tissues induced by pro-apoptotic and pro-inflammatory stimuli

    PubMed Central

    Tyurin, Vladimir A.; Tyurina, Yulia Y.; Jung, Mi-Yeon; Tungekar, Muhammad A.; Wasserloos, Karla J.; Bayir, Hülya; Greenberger, Joel S.; Kochanek, Patrick M.; Shvedova, Anna A.; Pitt, Bruce; Kagan, Valerian E.

    2009-01-01

    Oxidation of two anionic phospholipids - cardiolipin (CL) in mitochondria and phosphatidylserine (PS) in extramitochondrial compartments - are important signaling events, particularly during the execution of programmed cell death and clearance of apoptotic cells. Quantitative analysis of CL and PS oxidation products is central to understanding their molecular mechanisms of action. We combined the identification of diverse phospholipid molecular species by ESI-MS with quantitative assessments of lipid hydroperoxides using a fluorescence HPLC-based protocol. We characterized CL and PS oxidation products formed in a model system (cyt c/H2O2), in apoptotic cells (neurons, pulmonary artery endothelial cells) and mouse lung under inflammatory/oxidative stress conditions (hyperoxia, inhalation of single walled carbon nanotubes). Our results demonstrate the usefulness of this approach for quantitative assessments, identification of individual molecular species and structural characterization of anionic phospholipids that are involved in oxidative modification in cells and tissues. PMID:19328050

  20. GLUT4 Retention in Adipocytes Requires Two Intracellular Insulin-regulated Transport Steps

    PubMed Central

    Zeigerer, Anja; Lampson, Michael A.; Karylowski, Ola; Sabatini, David D.; Adesnik, Milton; Ren, Mindong; McGraw, Timothy E.

    2002-01-01

    Insulin regulates glucose uptake into fat and muscle by modulating the distribution of the GLUT4 glucose transporter between the surface and interior of cells. The GLUT4 trafficking pathway overlaps with the general endocytic recycling pathway, but the degree and functional significance of the overlap are not known. In this study of intact adipocytes, we demonstrate, by using a compartment-specific fluorescence-quenching assay, that GLUT4 is equally distributed between two intracellular pools: the transferrin receptor-containing endosomes and a specialized compartment that excludes the transferrin receptor. These pools of GLUT4 are in dynamic communication with one another and with the cell surface. Insulin-induced redistribution of GLUT4 to the surface requires mobilization of both pools. These data establish a role for the general endosomal system in the specialized, insulin-regulated trafficking of GLUT4. Trafficking through the general endosomal system is regulated by rab11. Herein, we show that rab11 is required for the transport of GLUT4 from endosomes to the specialized compartment and for the insulin-induced translocation to the cell surface, emphasizing the importance of the general endosomal pathway in the specialized trafficking of GLUT4. Based on these findings we propose a two-step model for GLUT4 trafficking in which the general endosomal recycling compartment plays a specialized role in the insulin-regulated traffic of GLUT4. This compartment-based model provides the framework for understanding insulin-regulated trafficking at a molecular level. PMID:12134080

  1. GLUT4 retention in adipocytes requires two intracellular insulin-regulated transport steps.

    PubMed

    Zeigerer, Anja; Lampson, Michael A; Karylowski, Ola; Sabatini, David D; Adesnik, Milton; Ren, Mindong; McGraw, Timothy E

    2002-07-01

    Insulin regulates glucose uptake into fat and muscle by modulating the distribution of the GLUT4 glucose transporter between the surface and interior of cells. The GLUT4 trafficking pathway overlaps with the general endocytic recycling pathway, but the degree and functional significance of the overlap are not known. In this study of intact adipocytes, we demonstrate, by using a compartment-specific fluorescence-quenching assay, that GLUT4 is equally distributed between two intracellular pools: the transferrin receptor-containing endosomes and a specialized compartment that excludes the transferrin receptor. These pools of GLUT4 are in dynamic communication with one another and with the cell surface. Insulin-induced redistribution of GLUT4 to the surface requires mobilization of both pools. These data establish a role for the general endosomal system in the specialized, insulin-regulated trafficking of GLUT4. Trafficking through the general endosomal system is regulated by rab11. Herein, we show that rab11 is required for the transport of GLUT4 from endosomes to the specialized compartment and for the insulin-induced translocation to the cell surface, emphasizing the importance of the general endosomal pathway in the specialized trafficking of GLUT4. Based on these findings we propose a two-step model for GLUT4 trafficking in which the general endosomal recycling compartment plays a specialized role in the insulin-regulated traffic of GLUT4. This compartment-based model provides the framework for understanding insulin-regulated trafficking at a molecular level.

  2. Evidence from a mouse model that epithelial cell migration and mesenchymal-epithelial transition contribute to rapid restoration of uterine tissue integrity during menstruation.

    PubMed

    Cousins, Fiona L; Murray, Alison; Esnal, Arantza; Gibson, Douglas A; Critchley, Hilary O D; Saunders, Philippa T K

    2014-01-01

    In women dynamic changes in uterine tissue architecture occur during each menstrual cycle. Menses, characterised by the shedding of the upper functional layer of the endometrium, is the culmination of a cascade of irreversible changes in tissue function including stromal decidualisation, inflammation and production of degradative enzymes. The molecular mechanisms that contribute to the rapid restoration of tissue homeostasis at time of menses are poorly understood. A modified mouse model of menses was developed to focus on the events occurring within the uterine lining during endometrial shedding/repair. Decidualisation, vaginal bleeding, tissue architecture and cell proliferation were evaluated at 4, 8, 12, and 24 hours after progesterone (P4) withdrawal; mice received a single injection of bromodeoxyuridine (BrdU) 90 mins before culling. Expression of genes implicated in the regulation of mesenchymal to epithelial transition (MET) was determined using a RT2 PCR profiler array, qRTPCR and bioinformatic analysis. Mice exhibited vaginal bleeding between 4 and 12 hours after P4 withdrawal, concomitant with detachment of the decidualised cell mass from the basal portion of the endometrial lining. Immunostaining for BrdU and pan cytokeratin revealed evidence of epithelial cell proliferation and migration. Cells that appeared to be in transition from a mesenchymal to an epithelial cell identity were identified within the stromal compartment. Analysis of mRNAs encoding genes expressed exclusively in the epithelial or stromal compartments, or implicated in MET, revealed dynamic changes in expression, consistent with a role for reprogramming of mesenchymal cells so that they could contribute to re-epithelialisation. These studies have provided novel insights into the cellular processes that contribute to re-epithelialisation post-menses implicating both epithelial cell migration and mesenchymal cell differentiation in restoration of an intact epithelial cell layer. These insights may inform development of new therapies to induce rapid healing in the endometrium and other tissues and offer hope to women who suffer from heavy menstrual bleeding.

  3. Advanced technique for long term culture of epithelia in a continuous luminal-basal medium gradient.

    PubMed

    Schumacher, Karl; Strehl, Raimund; de, Vries Uwe; Minuth, Will W

    2002-02-01

    The majority of epithelia in our organism perform barrier functions on being exposed to different fluids at the luminal and basal sides. To simulate this natural situation under in vitro conditions for biomaterial testing and tissue engineering the epithelia have to withstand mechanical and fluid stress over a prolonged period of time. Leakage, edge damage and pressure differences in the culture system have to be avoided so that the epithelial barrier function is maintained. Besides, the environmental influences on important cell biological features such as, sealing or transport functions, have to remain upregulated and a loss of characteristics by dedifferentiation is prevented. Our aim is to expose embryonic renal collecting duct (CD) epithelia as model tissue for 14 days to fluid gradients and to monitor the development of tissue-specific features. For these experiments, cultured embryonic epithelia are placed in tissue carriers and in gradient containers, where different media are superfused at the luminal and basal sides. Epithelia growing on the tissue carriers act as a physiological barrier during the whole culture period. To avoid mechanical damage of the tissue and to suppress fluid pressure differences between the luminal and basal compartments improved transport of the medium and an elimination of unilaterally accumulated gas bubbles in the gradient container compartments by newly developed gas expander modules is introduced. By the application of these tools the yield of embryonic renal collecting duct epithelia with intact barrier function on a fragile natural support material could be increased significantly as compared to earlier experiments. Epithelia treated with a luminal NaCl load ranging from 3 to 24 mmol l were analyzed by immunohistochemical methods to determine the degree of differentiation. The tissue showed an upregulation of individual CD cell features as compared to embryonic epithelia in the neonatal kidney.

  4. γδ T cells in homeostasis and host defence of epithelial barrier tissues.

    PubMed

    Nielsen, Morten M; Witherden, Deborah A; Havran, Wendy L

    2017-12-01

    Epithelial surfaces line the body and provide a crucial interface between the body and the external environment. Tissue-resident epithelial γδ T cells represent a major T cell population in the epithelial tissues and are ideally positioned to carry out barrier surveillance and aid in tissue homeostasis and repair. In this Review, we focus on the intraepithelial γδ T cell compartment of the two largest epithelial tissues in the body - namely, the epidermis and the intestine - and provide a comprehensive overview of the crucial contributions of intraepithelial γδ T cells to tissue integrity and repair, host homeostasis and protection in the context of the symbiotic relationship with the microbiome and during pathogen clearance. Finally, we describe epithelium-specific butyrophilin-like molecules and briefly review their emerging role in selectively shaping and regulating epidermal and intestinal γδ T cell repertoires.

  5. Continuous versus short-term infusion of cefuroxime: assessment of concept based on plasma, subcutaneous tissue, and bone pharmacokinetics in an animal model.

    PubMed

    Tøttrup, Mikkel; Bibby, Bo M; Hardlei, Tore F; Bue, Mats; Kerrn-Jespersen, Sigrid; Fuursted, Kurt; Søballe, Kjeld; Birke-Sørensen, Hanne

    2015-01-01

    The relatively short half-lives of most β-lactams suggest that continuous infusion of these time-dependent antimicrobials may be favorable compared to short-term infusion. Nevertheless, only limited solid-tissue pharmacokinetic data are available to support this theory. In this study, we randomly assigned 12 pigs to receive cefuroxime as either a short-term or continuous infusion. Measurements of cefuroxime were obtained every 30 min in plasma, subcutaneous tissue, and bone. For the measurements in solid tissues, microdialysis was applied. A two-compartment population model was fitted separately to the drug concentration data for the different tissues using a nonlinear mixed-effects regression model. Estimates of the pharmacokinetic parameters and time with concentrations above the MIC were derived using Monte Carlo simulations. Except for subcutaneous tissue in the short-term infusion group, the tissue penetration was incomplete for all tissues. For short-term infusion, the tissue penetration ratios were 0.97 (95% confidence interval [CI], 0.67 to 1.39), 0.61 (95% CI, 0.51 to 0.73), and 0.45 (95% CI, 0.36 to 0.56) for subcutaneous tissue, cancellous bone, and cortical bone, respectively. For continuous infusion, they were 0.53 (95% CI, 0.33 to 0.84), 0.38 (95% CI, 0.23 to 0.57), and 0.27 (95% CI, 0.13 to 0.48) for the same tissues, respectively. The absolute areas under the concentration-time curve were also lower in the continuous infusion group. Nevertheless, a significantly longer time with concentrations above the MIC was found for continuous infusion up until MICs of 4, 2, 2, and 0.5 μg/ml for plasma and the same three tissues mentioned above, respectively. For drugs with a short half-life, like cefuroxime, continuous infusion seems to be favorable compared to short-term infusion; however, incomplete tissue penetration and high MIC strains may jeopardize the continuous infusion approach. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Dictyostelium LvsB has a regulatory role in endosomal vesicle fusion

    PubMed Central

    Falkenstein, Kristin; De Lozanne, Arturo

    2014-01-01

    ABSTRACT Defects in human lysosomal-trafficking regulator (Lyst) are associated with the lysosomal disorder Chediak–Higashi syndrome. The absence of Lyst results in the formation of enlarged lysosome-related compartments, but the mechanism for how these compartments arise is not well established. Two opposing models have been proposed to explain Lyst function. The fission model describes Lyst as a positive regulator of fission from lysosomal compartments, whereas the fusion model identifies Lyst as a negative regulator of fusion between lysosomal vesicles. Here, we used assays that can distinguish between defects in vesicle fusion versus fission. We compared the phenotype of Dictyostelium discoideum cells defective in LvsB, the ortholog of Lyst, with that of two known fission defect mutants (μ3- and WASH-null mutants). We found that the temporal localization characteristics of the post-lysosomal marker vacuolin, as well as vesicular acidity and the fusion dynamics of LvsB-null cells are distinct from those of both μ3- and WASH-null fission defect mutants. These distinctions are predicted by the fusion defect model and implicate LvsB as a negative regulator of vesicle fusion. PMID:25086066

  7. The large intestine as a major reservoir for simian immunodeficiency virus in macaques with long-term, nonprogressing infection.

    PubMed

    Ling, Binhua; Mohan, Mahesh; Lackner, Andrew A; Green, Linda C; Marx, Preston A; Doyle, Lara A; Veazey, Ronald S

    2010-12-15

    Although patients with human immunodeficiency virus type 1 infection who are receiving antiretroviral therapy and those with long-term, nonprogressive infection (LTNPs) usually have undetectable viremia, virus persists in tissue reservoirs throughout infection. However, the distribution and magnitude of viral persistence and replication in tissues has not been adequately examined. Here, we used the simian immunodeficiency virus (SIV) macaque model to quantify and compare viral RNA and DNA in the small (jejunum) and large (colon) intestine of LTNPs. In LTNPs with chronic infection, the colon had consistently higher viral levels than did the jejunum. The colon also had higher percentages of viral target cells (memory CD4(+) CCR5(+) T cells) and proliferating memory CD4(+) T cells than did the jejunum, whereas markers of cell activation were comparable in both compartments. These data indicate that the large intestine is a major viral reservoir in LTNPs, which may be the result of persistent, latently infected cells and higher turnover of naive and central memory CD4(+) T cells in this major immunologic compartment.

  8. Three-dimensional epithelial tissues generated from human embryonic stem cells.

    PubMed

    Hewitt, Kyle J; Shamis, Yulia; Carlson, Mark W; Aberdam, Edith; Aberdam, Daniel; Garlick, Jonathan A

    2009-11-01

    The use of pluripotent human embryonic stem (hES) cells for tissue engineering may provide advantages over traditional sources of progenitor cells because of their ability to give rise to multiple cell types and their unlimited expansion potential. We derived cell populations with properties of ectodermal and mesenchymal cells in two-dimensional culture and incorporated these divergent cell populations into three-dimensional (3D) epithelial tissues. When grown in specific media and substrate conditions, two-dimensional cultures were enriched in cells (EDK1) with mesenchymal morphology and surface markers. Cells with a distinct epithelial morphology (HDE1) that expressed cytokeratin 12 and beta-catenin at cell junctions became the predominant cell type when EDK1 were grown on surfaces enriched in keratinocyte-derived extracellular matrix proteins. When these cells were incorporated into the stromal and epithelial tissue compartments of 3D tissues, they generated multilayer epithelia similar to those generated with foreskin-derived epithelium and fibroblasts. Three-dimensional tissues demonstrated stromal cells with morphologic features of mature fibroblasts, type IV collagen deposition in the basement membrane, and a stratified epithelium that expressed cytokeratin 12. By deriving two distinct cell lineages from a common hES cell source to fabricate complex tissues, it is possible to explore environmental cues that will direct hES-derived cells toward optimal tissue form and function.

  9. Quantitative PET of liver functions

    PubMed Central

    Keiding, Susanne; Sørensen, Michael; Frisch, Kim; Gormsen, Lars C; Munk, Ole Lajord

    2018-01-01

    Improved understanding of liver physiology and pathophysiology is urgently needed to assist the choice of new and upcoming therapeutic modalities for patients with liver diseases. In this review, we focus on functional PET of the liver: 1) Dynamic PET with 2-deoxy-2-[18F]fluoro-D-galactose (18F-FDGal) provides quantitative images of the hepatic metabolic clearance K met (mL blood/min/mL liver tissue) of regional and whole-liver hepatic metabolic function. Standard-uptake-value (SUV) from a static liver 18F-FDGal PET/CT scan can replace K met and is currently used clinically. 2) Dynamic liver PET/CT in humans with 11C-palmitate and with the conjugated bile acid tracer [N-methyl-11C]cholylsarcosine (11C-CSar) can distinguish between individual intrahepatic transport steps in hepatic lipid metabolism and in hepatic transport of bile acid from blood to bile, respectively, showing diagnostic potential for individual patients. 3) Standard compartment analysis of dynamic PET data can lead to physiological inconsistencies, such as a unidirectional hepatic clearance of tracer from blood (K 1; mL blood/min/mL liver tissue) greater than the hepatic blood perfusion. We developed a new microvascular compartment model with more physiology, by including tracer uptake into the hepatocytes from the blood flowing through the sinusoids, backflux from hepatocytes into the sinusoidal blood, and re-uptake along the sinusoidal path. Dynamic PET data include information on liver physiology which cannot be extracted using a standard compartment model. In conclusion, SUV of non-invasive static PET with 18F-FDGal provides a clinically useful measurement of regional and whole-liver hepatic metabolic function. Secondly, assessment of individual intrahepatic transport steps is a notable feature of dynamic liver PET. PMID:29755841

  10. Quantitative PET of liver functions.

    PubMed

    Keiding, Susanne; Sørensen, Michael; Frisch, Kim; Gormsen, Lars C; Munk, Ole Lajord

    2018-01-01

    Improved understanding of liver physiology and pathophysiology is urgently needed to assist the choice of new and upcoming therapeutic modalities for patients with liver diseases. In this review, we focus on functional PET of the liver: 1) Dynamic PET with 2-deoxy-2-[ 18 F]fluoro- D -galactose ( 18 F-FDGal) provides quantitative images of the hepatic metabolic clearance K met (mL blood/min/mL liver tissue) of regional and whole-liver hepatic metabolic function. Standard-uptake-value ( SUV ) from a static liver 18 F-FDGal PET/CT scan can replace K met and is currently used clinically. 2) Dynamic liver PET/CT in humans with 11 C-palmitate and with the conjugated bile acid tracer [ N -methyl- 11 C]cholylsarcosine ( 11 C-CSar) can distinguish between individual intrahepatic transport steps in hepatic lipid metabolism and in hepatic transport of bile acid from blood to bile, respectively, showing diagnostic potential for individual patients. 3) Standard compartment analysis of dynamic PET data can lead to physiological inconsistencies, such as a unidirectional hepatic clearance of tracer from blood ( K 1 ; mL blood/min/mL liver tissue) greater than the hepatic blood perfusion. We developed a new microvascular compartment model with more physiology, by including tracer uptake into the hepatocytes from the blood flowing through the sinusoids, backflux from hepatocytes into the sinusoidal blood, and re-uptake along the sinusoidal path. Dynamic PET data include information on liver physiology which cannot be extracted using a standard compartment model. In conclusion , SUV of non-invasive static PET with 18 F-FDGal provides a clinically useful measurement of regional and whole-liver hepatic metabolic function. Secondly, assessment of individual intrahepatic transport steps is a notable feature of dynamic liver PET.

  11. Starling forces drive intracranial water exchange during normal and pathological states

    PubMed Central

    Linninger, Andreas A.; Xu, Colin; Tangen, Kevin; Hartung, Grant

    2017-01-01

    Aim To quantify the exchange of water between cerebral compartments, specifically blood, tissue, perivascular pathways, and cerebrospinal fluid-filled spaces, on the basis of experimental data and to propose a dynamic global model of water flux through the entire brain to elucidate functionally relevant fluid exchange phenomena. Methods The mechanistic computer model to predict brain water shifts is discretized by cerebral compartments into nodes. Water and species flux is calculated between these nodes across a network of arcs driven by Hagen-Poiseuille flow (blood), Darcy flow (interstitial fluid transport), and Starling’s Law (transmembrane fluid exchange). Compartment compliance is accounted for using a pressure-volume relationship to enforce the Monro-Kellie doctrine. This nonlinear system of differential equations is solved implicitly using MATLAB software. Results The model predictions of intraventricular osmotic injection caused a pressure rise from 10 to 22 mmHg, followed by a taper to 14 mmHg over 100 minutes. The computational results are compared to experimental data with R2 = 0.929. Moreover, simulated osmotic therapy of systemic (blood) injection reduced intracranial pressure from 25 to 10 mmHg. The modeled volume and intracranial pressure changes following cerebral edema agree with experimental trends observed in animal models with R2 = 0.997. Conclusion The model successfully predicted time course and the efficacy of osmotic therapy for clearing cerebral edema. Furthermore, the mathematical model implicated the perivascular pathways as a possible conduit for water and solute exchange. This was a first step to quantify fluid exchange throughout the brain. PMID:29308830

  12. A generic biokinetic model for carbon-14 labelled compounds

    NASA Astrophysics Data System (ADS)

    Manger, Ryan Paul

    Carbon-14, a radioactive nuclide, is used in many industrial applications. Due to its wide range of uses in industry, many workers are at risk of accidental internal exposure to 14C. Being a low energy beta emitter, 14C is not a significant external radiation hazard, but the internal consequences posed by 14C are important, especially because of its long half life of 5730 years [46]. The current biokinetic model recommended by the International Commission on Radiological Protection (ICRP) is a conservative estimate of how radiocarbon is treated by the human body. The ICRP generic radiocarbon model consists of a single compartment representing the entire human body. This compartment has a biological half life of 40 days yielding an effective dose coefficient of 5.8x10-10 Sv B q-1 [44, 45, 49, 53, 54]. This overestimates the dose of all radiocarbon compounds that have been studied [96]. An improved model has been developed that includes and alimentary tract, a urinary bladder, CO2 model, and an "Other" compartment used to model systemic tissues. The model can be adapted to replicate any excretion curve and excretion pattern. In addition, the effective dose coefficient produced by the updated model is near the mean effective dose coefficient of carbon compounds that have been considered in this research. The major areas of improvement are: more anatomically significant, a less conservative dose coefficient, and the ability to manipulate the model for known excretion data. Due to the wide variety of carbon compounds, it is suggested that specific biokinetic models be implemented for known radiocarbon substances. If the source of radiocarbon is dietary, then the physiologically based model proposed by Whillans [102] that splits all ingested radiocarbon compounds into carbohydrates, fats, and proteins should be used.

  13. Developmental Exposure to Estrogen Alters Differentiation and Epigenetic Programming in a Human Fetal Prostate Xenograft Model

    PubMed Central

    Saffarini, Camelia M.; McDonnell-Clark, Elizabeth V.; Amin, Ali; Huse, Susan M.; Boekelheide, Kim

    2015-01-01

    Prostate cancer is the most frequent non-cutaneous malignancy in men. There is strong evidence in rodents that neonatal estrogen exposure plays a role in the development of this disease. However, there is little information regarding the effects of estrogen in human fetal prostate tissue. This study explored early life estrogen exposure, with and without a secondary estrogen and testosterone treatment in a human fetal prostate xenograft model. Histopathological lesions, proliferation, and serum hormone levels were evaluated at 7, 30, 90, and 200-day time-points after xenografting. The expression of 40 key genes involved in prostatic glandular and stromal growth, cell-cycle progression, apoptosis, hormone receptors and tumor suppressors was evaluated using a custom PCR array. Epigenome-wide analysis of DNA methylation was performed on whole tissue, and laser capture-microdissection (LCM) isolated epithelial and stromal compartments of 200-day prostate xenografts. Combined initial plus secondary estrogenic exposures had the most severe tissue changes as revealed by the presence of hyperplastic glands at day 200. Gene expression changes corresponded with the cellular events in the KEGG prostate cancer pathway, indicating that initial plus secondary exposure to estrogen altered the PI3K-Akt signaling pathway, ultimately resulting in apoptosis inhibition and an increase in cell cycle progression. DNA methylation revealed that differentially methylated CpG sites significantly predominate in the stromal compartment as a result of estrogen-treatment, thereby providing new targets for future investigation. By using human fetal prostate tissue and eliminating the need for species extrapolation, this study provides novel insights into the gene expression and epigenetic effects related to prostate carcinogenesis following early life estrogen exposure. PMID:25799167

  14. Role of nitric oxide in in vitro contractile activity of the third compartment of the stomach in llamas.

    PubMed

    Van Hoogmoed, L; Rakestraw, P C; Snyder, J R; Harmon, F A

    1998-09-01

    To determine the role of nitric oxide and an apamin-sensitive nonadrenergic-noncholinergic inhibitory transmitter in in vitro contractile activity of the third compartment in llamas. Isolated strips of third compartment of the stomach from 5 llamas. Strips were mounted in tissue baths containing oxygenated Kreb's buffer solution and connected to a polygraph chart recorder to measure contractile activity. Atropine, guanethidine, and indomethacin were added to tissue baths to inhibit muscarinic receptors, adrenoreceptors, and prostaglandin synthesis. Responses to electrical field stimulation following addition of the nitric oxide antagonist Nwo-nitro-L-arginine methyl ester (L-NAME) and apamin were evaluated. Electrical field stimulation (EFS) resulted in a reduction in the amplitude and frequency of contractile activity, followed by rebound contraction when EFS was stopped. Addition of L-NAME resulted in a significant reduction in inhibition of contractile activity. Addition of apamin also resulted in a significant reduction in inhibitory contractile activity at most stimulation frequencies. The combination of L-NAME and apamin resulted in a significant reduction in inhibition at all frequencies. Nitric oxide and a transmitter acting via an apamin-sensitive mechanism appear to be involved in inhibition of contractile activity of the third compartment in llamas. Results suggest that nitric oxide plays an important role in mediating contractile activity of the third compartment in llamas. Use of nitric oxide synthase inhibitors may have a role in the therapeutic management of llamas with lesions of the third compartment.

  15. Intestinal stem cells and their defining niche.

    PubMed

    Tan, David Wei-Min; Barker, Nick

    2014-01-01

    The intestinal epithelium is a classic example of a rapidly self-renewing tissue fueled by dedicated resident stem cells. These stem cells reside at the crypt base, generating committed progeny that mature into the various functional epithelial lineages while following a rapid migratory path toward the villi. Two models of intestinal stem cell location were proposed half a century ago and data have been presented in support of both models, dividing the scientific community. Molecular markers have been identified and validated using new techniques such as in vivo lineage tracing and ex vivo organoid culture. The intestinal stem cell niche comprises both epithelial cells, in particular the Paneth cell, and the stromal compartment, where cell-associated ligands and soluble factors regulate stem cell behavior. This review highlights the recent advances in identifying and characterizing the intestinal stem cells and their defining niche. © 2014 Elsevier Inc. All rights reserved.

  16. Photoprotection by pistachio bioactives in a 3-dimensional human skin equivalent tissue model.

    PubMed

    Chen, C-Y Oliver; Smith, Avi; Liu, Yuntao; Du, Peng; Blumberg, Jeffrey B; Garlick, Jonathan

    2017-09-01

    Reactive oxygen species (ROS) generated during ultraviolet (UV) light exposure can induce skin damage and aging. Antioxidants can provide protection against oxidative injury to skin via "quenching" ROS. Using a validated 3-dimensional (3D) human skin equivalent (HSE) tissue model that closely mimics human skin, we examined whether pistachio antioxidants could protect HSE against UVA-induced damage. Lutein and γ-tocopherol are the predominant lipophilic antioxidants in pistachios; treatment with these compounds prior to UVA exposure protected against morphological changes to the epithelial and connective tissue compartments of HSE. Pistachio antioxidants preserved overall skin thickness and organization, as well as fibroblast morphology, in HSE exposed to UVA irradiation. However, this protection was not substantiated by the analysis of the proliferation of keratinocytes and apoptosis of fibroblasts. Additional studies are warranted to elucidate the basis of these discordant results and extend research into the potential role of pistachio bioactives promoting skin health.

  17. Uncertainty quantification in flux balance analysis of spatially lumped and distributed models of neuron-astrocyte metabolism.

    PubMed

    Calvetti, Daniela; Cheng, Yougan; Somersalo, Erkki

    2016-12-01

    Identifying feasible steady state solutions of a brain energy metabolism model is an inverse problem that allows infinitely many solutions. The characterization of the non-uniqueness, or the uncertainty quantification of the flux balance analysis, is tantamount to identifying the degrees of freedom of the solution. The degrees of freedom of multi-compartment mathematical models for energy metabolism of a neuron-astrocyte complex may offer a key to understand the different ways in which the energetic needs of the brain are met. In this paper we study the uncertainty in the solution, using techniques of linear algebra to identify the degrees of freedom in a lumped model, and Markov chain Monte Carlo methods in its extension to a spatially distributed case. The interpretation of the degrees of freedom in metabolic terms, more specifically, glucose and oxygen partitioning, is then leveraged to derive constraints on the free parameters to guarantee that the model is energetically feasible. We demonstrate how the model can be used to estimate the stoichiometric energy needs of the cells as well as the household energy based on the measured oxidative cerebral metabolic rate of glucose and glutamate cycling. Moreover, our analysis shows that in the lumped model the net direction of lactate dehydrogenase (LDH) in the cells can be deduced from the glucose partitioning between the compartments. The extension of the lumped model to a spatially distributed multi-compartment setting that includes diffusion fluxes from capillary to tissue increases the number of degrees of freedom, requiring the use of statistical sampling techniques. The analysis of the distributed model reveals that some of the conclusions valid for the spatially lumped model, e.g., concerning the LDH activity and glucose partitioning, may no longer hold.

  18. Convergence of methods for coupling of microscopic and mesoscopic reaction-diffusion simulations

    NASA Astrophysics Data System (ADS)

    Flegg, Mark B.; Hellander, Stefan; Erban, Radek

    2015-05-01

    In this paper, three multiscale methods for coupling of mesoscopic (compartment-based) and microscopic (molecular-based) stochastic reaction-diffusion simulations are investigated. Two of the three methods that will be discussed in detail have been previously reported in the literature; the two-regime method (TRM) and the compartment-placement method (CPM). The third method that is introduced and analysed in this paper is called the ghost cell method (GCM), since it works by constructing a "ghost cell" in which molecules can disappear and jump into the compartment-based simulation. Presented is a comparison of sources of error. The convergent properties of this error are studied as the time step Δt (for updating the molecular-based part of the model) approaches zero. It is found that the error behaviour depends on another fundamental computational parameter h, the compartment size in the mesoscopic part of the model. Two important limiting cases, which appear in applications, are considered: Δt → 0 and h is fixed; Δt → 0 and h → 0 such that √{ Δt } / h is fixed. The error for previously developed approaches (the TRM and CPM) converges to zero only in the limiting case (ii), but not in case (i). It is shown that the error of the GCM converges in the limiting case (i). Thus the GCM is superior to previous coupling techniques if the mesoscopic description is much coarser than the microscopic part of the model.

  19. Activated Pancreatic Stellate Cells Sequester CD8+ T-Cells to Reduce Their Infiltration of the Juxtatumoral Compartment of Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Ene-Obong, Abasi; Clear, Andrew J.; Watt, Jennifer; Wang, Jun; Fatah, Rewas; Riches, John C.; Marshall, John F.; Chin-Aleong, Joanne; Chelala, Claude; Gribben, John G.; Ramsay, Alan G.; Kocher, Hemant M.

    2013-01-01

    Background & Aims Pancreatic ductal adenocarcinoma (PDAC) is characterized by a prominent desmoplastic microenvironment that contains many different immune cells. Activated pancreatic stellate cells (PSCs) contribute to the desmoplasia. We investigated whether distinct stromal compartments are differentially infiltrated by different types of immune cells. Method We used tissue microarray analysis to compare immune cell infiltration of different pancreatico-biliary diseased tissues (PDAC, ampullary carcinoma, cholangiocarcinoma, mucinous cystic neoplasm, chronic inflammation, and chronic pancreatitis), and juxtatumoral stromal (<100 μm from tumor) and panstromal compartments. We investigated the association between immune infiltrate and patient survival times. We analyzed T-cell migration and tumor infiltration in LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre (KPC) mice, and the effects of all-trans retinoic acid (ATRA) on these processes. Results Juxtatumoral compartments in PDAC samples from 2 independent groups of patients contained increased numbers of myeloperoxidase+ and CD68+ cells, compared with panstromal compartments. However, juxtatumoral compartments of PDACs contained fewer CD8+, FoxP3+, CD56+, or CD20+ cells than panstromal compartments, a distinction absent in ampullary carcinomas and cholangiocarcinomas. Patients with PDACs that had high densities of CD8+ T-cells in the juxtatumoral compartment had longer survival times than patients with lower densities. In KPC mice, administration of ATRA, which renders PSCs quiescent, increased numbers of CD8+ T-cells in juxtatumoral compartments. We found that activated PSCs express cytokines, chemokines, and adhesion molecules that regulate T-cell migration. In vitro migration assays showed that CD8+ T-cells from PDAC patients had increased chemotaxis towards activated PSCs, which secrete CXCL12, compared with quiescent PSC or tumor cells. These effects could be reversed by knockdown of CXCL12 or treatment of PSCs with ATRA. Conclusion Based on studies of human PDAC samples and KPC mice, activated PSCs appear to reduce migration of CD8+ T-cells to juxtatumoral stromal compartments, preventing their access to cancer cells. Deregulated signaling by activated PSCs could prevent an effective anti-tumor immune response. PMID:23891972

  20. Pharmacokinetics and tissue distribution study of Praeruptorin D from Radix peucedani in rats by high-performance liquid chromatography (HPLC).

    PubMed

    Liang, Taigang; Yue, Wenyan; Du, Xue; Ren, Luhui; Li, Qingshan

    2012-01-01

    Praeruptorin D (PD), a major pyranocoumarin isolated from Radix Peucedani, exhibited antitumor and anti-inflammatory activities. The aim of this study was to investigate the pharmacokinetics and tissue distribution of PD in rats following intravenous (i.v.) administration. The levels of PD in plasma and tissues were measured by a simple and sensitive reversed-phase high-performance liquid chromatography (HPLC) method. The biosamples were treated by liquid-liquid extraction (LLE) with methyl tert-butyl ether (MTBE) and osthole was used as the internal standard (IS). The chromatographic separation was accomplished on a reversed-phase C(18) column using methanol-water (75:25, v/v) as mobile phase at a flow rate of 0.8 mL/min and ultraviolet detection wave length was set at 323 nm. The results demonstrate that this method has excellent specificity, linearity, precision, accuracy and recovery. The pharmacokinetic study found that PD fitted well into a two-compartment model with a fast distribution phase and a relative slow elimination phase. Tissue distribution showed that the highest concentration was observed in the lung, followed by heart, liver and kidney. Furthermore, PD can also be detected in the brain, which indicated that PD could cross the blood-brain barrier after i.v. administration.

  1. Evidence for an enduring ischaemic penumbra following central retinal artery occlusion, with implications for fibrinolytic therapy.

    PubMed

    McLeod, David; Beatty, Stephen

    2015-11-01

    The rationale behind hyperacute fibrinolytic therapy for cerebral and retinal arterial occlusion is to rescue ischaemic cells from irreversible damage through timely restitution of tissue perfusion. In cerebral stroke, an anoxic tissue compartment (the "infarct core") is surrounded by a hypoxic compartment (the "ischaemic penumbra"). The latter comprises electrically-silent neurons that undergo delayed apoptotic cell death within 1-6 h unless salvaged by arterial recanalisation. Establishment of an equivalent hypoxic compartment within the inner retina following central retinal artery occlusion (CRAO) isn't widely acknowledged. During experimental CRAO, electroretinography reveals 3 oxygenation-based tissue compartments (anoxic, hypoxic and normoxic) that contribute 32%, 27% and 41% respectively to the pre-occlusion b-wave amplitude. Thus, once the anoxia survival time (≈2 h) expires, the contribution from the infarcted posterior retina is irreversibly extinguished, but electrical activity continues in the normoxic periphery. Inbetween these compartments, an annular hypoxic zone (the "penumbra obscura") endures in a structurally-intact but functionally-impaired state until retinal reperfusion allows rapid recovery from electrical silence. Clinically, residual circulation of sufficient volume flow rate generates the heterogeneous fundus picture of "partial" CRAO. Persistent retinal venous hypoxaemia signifies maximal extraction of oxygen by an enduring "polar penumbra" that permeates or largely replaces the infarct core. On retinal reperfusion some days later, the retinal venous oxygen saturation reverts to normal and vision improves. Thus, penumbral inner retina, marginally oxygenated by the choroid or by residual circulation, isn't at risk of delayed apoptotic infarction (unlike hypoxic cerebral cortex). Emergency fibrinolytic intervention is inappropriate, therefore, once the duration of CRAO exceeds 2 h. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Numerical Cerebrospinal System Modeling in Fluid-Structure Interaction.

    PubMed

    Garnotel, Simon; Salmon, Stéphanie; Balédent, Olivier

    2018-01-01

    Cerebrospinal fluid (CSF) stroke volume in the aqueduct is widely used to evaluate CSF dynamics disorders. In a healthy population, aqueduct stroke volume represents around 10% of the spinal stroke volume while intracranial subarachnoid space stroke volume represents 90%. The amplitude of the CSF oscillations through the different compartments of the cerebrospinal system is a function of the geometry and the compliances of each compartment, but we suspect that it could also be impacted be the cardiac cycle frequency. To study this CSF distribution, we have developed a numerical model of the cerebrospinal system taking into account cerebral ventricles, intracranial subarachnoid spaces, spinal canal and brain tissue in fluid-structure interactions. A numerical fluid-structure interaction model is implemented using a finite-element method library to model the cerebrospinal system and its interaction with the brain based on fluid mechanics equations and linear elasticity equations coupled in a monolithic formulation. The model geometry, simplified in a first approach, is designed in accordance with realistic volume ratios of the different compartments: a thin tube is used to mimic the high flow resistance of the aqueduct. CSF velocity and pressure and brain displacements are obtained as simulation results, and CSF flow and stroke volume are calculated from these results. Simulation results show a significant variability of aqueduct stroke volume and intracranial subarachnoid space stroke volume in the physiological range of cardiac frequencies. Fluid-structure interactions are numerous in the cerebrospinal system and difficult to understand in the rigid skull. The presented model highlights significant variations of stroke volumes under cardiac frequency variations only.

  3. In vitro differentiation of bone marrow stromal cells into neurons and glial cells and differential protein expression in a two-compartment bone marrow stromal cell/neuron co-culture system.

    PubMed

    Qi, Xu; Shao, Ming; Peng, Haisheng; Bi, Zhenggang; Su, Zhiqiang; Li, Hulun

    2010-07-01

    This study was performed to establish a bone marrow stromal cell (BMSC)/neuron two-compartment co-culture model in which differentiation of BMSCs into neurons could occur without direct contact between the two cell types, and to investigate protein expression changes during differentiation of this entirely BMSC-derived population. Cultured BMSCs isolated from Wistar rats were divided into three groups: BMSC culture, BMSC/neuron co-culture and BMSC/neuron two-compartment co-culture. Cells were examined for neuron-specific enolase (NSE) and glial fibrillary acidic protein (GFAP) expression. The electrophysiological behavior of the BMSCs was examined using patch clamping. Proteins that had significantly different expression levels in BMSCs cultured alone and co-cultured with neurons were studied using a protein chip-mass spectroscopy technique. Expression of NSE and GFAP were significantly higher in co-culture cells than in two-compartment co-culture cells, and significantly higher in both co-culture groups than in BMSCs cultured alone. Five proteins showed significant changes in expression during differentiation: TIP39_RAT and CALC_RAT underwent increases, and INSL6_RAT, PNOC_RAT and PCSK1_RAT underwent decreases in expression. We conclude that BMSCs can differentiate into neurons during both contact co-culture with neurons and two-compartment co-culture with neurons. The rate at which BMSCs differentiated into neurons was higher in contact co-culture than in non-contact co-culture.

  4. Micro Finite Element models of the vertebral body: Validation of local displacement predictions

    PubMed Central

    Costa, Maria Cristiana; Tozzi, Gianluca; Cristofolini, Luca; Danesi, Valentina; Viceconti, Marco

    2017-01-01

    The estimation of local and structural mechanical properties of bones with micro Finite Element (microFE) models based on Micro Computed Tomography images depends on the quality bone geometry is captured, reconstructed and modelled. The aim of this study was to validate microFE models predictions of local displacements for vertebral bodies and to evaluate the effect of the elastic tissue modulus on model’s predictions of axial forces. Four porcine thoracic vertebrae were axially compressed in situ, in a step-wise fashion and scanned at approximately 39μm resolution in preloaded and loaded conditions. A global digital volume correlation (DVC) approach was used to compute the full-field displacements. Homogeneous, isotropic and linear elastic microFE models were generated with boundary conditions assigned from the interpolated displacement field measured from the DVC. Measured and predicted local displacements were compared for the cortical and trabecular compartments in the middle of the specimens. Models were run with two different tissue moduli defined from microindentation data (12.0GPa) and a back-calculation procedure (4.6GPa). The predicted sum of axial reaction forces was compared to the experimental values for each specimen. MicroFE models predicted more than 87% of the variation in the displacement measurements (R2 = 0.87–0.99). However, model predictions of axial forces were largely overestimated (80–369%) for a tissue modulus of 12.0GPa, whereas differences in the range 10–80% were found for a back-calculated tissue modulus. The specimen with the lowest density showed a large number of elements strained beyond yield and the highest predictive errors. This study shows that the simplest microFE models can accurately predict quantitatively the local displacements and qualitatively the strain distribution within the vertebral body, independently from the considered bone types. PMID:28700618

  5. Quantitative dynamic ¹⁸FDG-PET and tracer kinetic analysis of soft tissue sarcomas.

    PubMed

    Rusten, Espen; Rødal, Jan; Revheim, Mona E; Skretting, Arne; Bruland, Oyvind S; Malinen, Eirik

    2013-08-01

    To study soft tissue sarcomas using dynamic positron emission tomography (PET) with the glucose analog tracer [(18)F]fluoro-2-deoxy-D-glucose ((18)FDG), to investigate correlations between derived PET image parameters and clinical characteristics, and to discuss implications of dynamic PET acquisition (D-PET). D-PET images of 11 patients with soft tissue sarcomas were analyzed voxel-by-voxel using a compartment tracer kinetic model providing estimates of transfer rates between the vascular, non-metabolized, and metabolized compartments. Furthermore, standard uptake values (SUVs) in the early (2 min p.i.; SUVE) and late (45 min p.i.; SUVL) phases of the PET acquisition were obtained. The derived transfer rates K1, k2 and k3, along with the metabolic rate of (18)FDG (MRFDG) and the vascular fraction νp, was fused with the computed tomography (CT) images for visual interpretation. Correlations between D-PET imaging parameters and clinical parameters, i.e. tumor size, grade and clinical status, were calculated with a significance level of 0.05. The temporal uptake pattern of (18)FDG in the tumor varied considerably from patient to patient. SUVE peak was higher than SUVL peak for four patients. The images of the rate constants showed a systematic pattern, often with elevated intensity in the tumors compared to surrounding tissue. Significant correlations were found between SUVE/L and some of the rate parameters. Dynamic (18)FDG-PET may provide additional valuable information on soft tissue sarcomas not obtainable from conventional (18)FDG-PET. The prognostic role of dynamic imaging should be investigated.

  6. Revisiting the Logan plot to account for non-negligible blood volume in brain tissue.

    PubMed

    Schain, Martin; Fazio, Patrik; Mrzljak, Ladislav; Amini, Nahid; Al-Tawil, Nabil; Fitzer-Attas, Cheryl; Bronzova, Juliana; Landwehrmeyer, Bernhard; Sampaio, Christina; Halldin, Christer; Varrone, Andrea

    2017-08-18

    Reference tissue-based quantification of brain PET data does not typically include correction for signal originating from blood vessels, which is known to result in biased outcome measures. The bias extent depends on the amount of radioactivity in the blood vessels. In this study, we seek to revisit the well-established Logan plot and derive alternative formulations that provide estimation of distribution volume ratios (DVRs) that are corrected for the signal originating from the vasculature. New expressions for the Logan plot based on arterial input function and reference tissue were derived, which included explicit terms for whole blood radioactivity. The new methods were evaluated using PET data acquired using [ 11 C]raclopride and [ 18 F]MNI-659. The two-tissue compartment model (2TCM), with which signal originating from blood can be explicitly modeled, was used as a gold standard. DVR values obtained for [ 11 C]raclopride using the either blood-based or reference tissue-based Logan plot were systematically underestimated compared to 2TCM, and for [ 18 F]MNI-659, a proportionality bias was observed, i.e., the bias varied across regions. The biases disappeared when optimal blood-signal correction was used for respective tracer, although for the case of [ 18 F]MNI-659 a small but systematic overestimation of DVR was still observed. The new method appears to remove the bias introduced due to absence of correction for blood volume in regular graphical analysis and can be considered in clinical studies. Further studies are however required to derive a generic mapping between plasma and whole-blood radioactivity levels.

  7. Analysis of steady-state flow and advective transport in the eastern Snake River Plain aquifer system, Idaho

    USGS Publications Warehouse

    Ackerman, D.J.

    1995-01-01

    Quantitative estimates of ground-water flow directions and traveltimes for advective flow were developed for the regional aquifer system of the eastern Snake River Plain, Idaho. The work included: (1) descriptions of compartments in the aquifer that function as intermediate and regional flow systems, (2) descriptions of pathlines for flow originating at or near the water table, and (3) quantitative estimates of traveltimes for advective transport originating at or near the water table. A particle-tracking postprocessing program was used to compute pathlines on the basis of output from an existing three-dimensional steady-state flow model. The flow model uses 1980 conditions to approximate average annual conditions for 1950-80. The advective transport model required additional information about the nature of flow across model boundaries, aquifer thickness, and porosity. Porosity of two types of basalt strata has been reported for more than 1,500 individual cores from test holes, wells, and outcrops near the south side of the Idaho National Engineering Laboratory. The central 80 percent of samples had porosities of 0.08 to 0.25, the central 50 percent of samples, O. 11 to 0.21. Calibration of the model involved choosing a value for porosity that yielded the best solution. Two radiologic contaminants, iodine-129 and tritium, both introduced to the flow system about 40 years ago, are relatively conservative tracers. Iodine- 129 was considered to be more useful because of a lower analytical detection limit, longer half-life, and longer flow path. The calibration value for porosity was 0.21. Most flow in the aquifer is contained within a regional-scale compartment and follows paths that discharge to the Snake River downstream from Milner Dam. Two intermediate-scale compartments exist along the southeast side of the aquifer and near Mud Lake.One intermediate-scale compartment along the southeast side of the aquifer discharges to the Snake River near American Fails Reservoir and covers an area of nearly 1,000 square miles. This compartment, which receives recharge from an area of intensive surface-water irrigation, is apparently fairly stable. The other intermediate-scale compartment near Mud Lake covers an area of 300 square miles. The stability and size of this compartment are uncertain, but are assumed to be in a state of change. Traveltimes for advective flow from the water table to discharge points in the regional compartment ranged from 12 to 350 years for 80 percent of the particles; in the intermediate-scale flow compartment near American Falls Reservoir, from 7 to 60 years for 80 percent of the particles; and in the intermediate-scale compartment near Mud Lake, from 25 to 100 years for 80 percent of the particles. Traveltimes are sensitive to porosity and assumptions regarding the importance of the strength of internal sinks, which represent ground-water pumpage. A decrease in porosity results in shorter traveltimes but not a uniform decrease in traveltime, because the porosity and thickness is different in each model layer. Most flow was horizontal and occurred in the top 500 feet of the aquifer. An important limitation of the model is the assumption of steady-state flow. The most recent trend in the flow system has been a decrease in recharge since 1987 because of an extended drought and changes in land use. A decrease in flow through the system will result in longer traveltimes than those predicted for a greater flow. Because the interpretation of the model was limited to flow on a larger scale, and did not consider individual wells or well fields, the interpretations were not seriously limited by the discretization of well discharge. The interpretations made from this model also were limited by the discretization of the major discharge areas. Near discharge areas, pathlines might not be representative at the resolution of the grid. Most improvement in the estimates of ground-waterflow directions and travelt

  8. Quantification of myocardial perfusion based on signal intensity of flow sensitized MRI

    NASA Astrophysics Data System (ADS)

    Abeykoon, Sumeda B.

    The quantitative assessment of perfusion is important for early recognition of a variety of heart diseases, determination of disease severity and their cure. In conventional approach of measuring cardiac perfusion by arterial spin labeling, the relative difference in the apparent T1 relaxation times in response to selective and non-selective inversion of blood entering the region of interest is related to perfusion via a two-compartment tissue model. But accurate determination of T1 in small animal hearts is difficult and prone to errors due to long scan times. The purpose of this study is to develop a fast, robust and simple method to quantitatively assess myocardial perfusion using arterial spin labeling. The proposed method is based on signal intensities (SI) of inversion recovery slice-select, non-select and steady-state images. Especially in this method data are acquired at a single inversion time and at short repetition times. This study began by investigating the accuracy of assessment of perfusion using a two compartment system. First, determination of perfusion by T1 and SI were implemented to a simple, two-compartment phantom model. Mathematical model developed for full spin exchange models (in-vivo experiments) by solving a modified Bloch equation was modified to develop mathematical models (T1 and SI) for a phantom (zero spin exchange). The phantom result at different flow rates shows remarkable evidence of accuracy of the two-compartment model and SI, T1 methods: the SI method has less propagation error and less scan time. Next, twelve healthy C57BL/6 mice were scanned for quantitative perfusion assessment and three of them were repeatedly scanned at three different time points for a reproducibility test. The myocardial perfusion of healthy mice obtained by the SI-method, 5.7+/-1.6 ml/g/min, was similar (p=0.38) to that obtained by the conventional T1 method, 5.6+/- 2.3 ml/g/min. The reproducibility of the SI method shows acceptable results: the maximum percentage deviation is about 5%. Then the SI-method was used in comparison to a delayed enhanced method to qualitatively and quantitatively assess perfusion deficits in an ischemia-reperfusion (IR) mouse model. The infarcted region of the perfusion map is comparable to the hyper intense region of the delayed enhanced image of the IR mouse. The SI method also used to record a chronological comparison of perfusion on delta sarcoglycan null (DSG) mice. Perfusion of DSG and wild-type (WT) mice at ages of 12 weeks and 32 weeks were compared and percentage change of perfusion was estimated. The result shows that in DSG mice perfusion changes considerably. Finally, the SI method was implemented on a 3 Tesla Philip scanner by modifying to data acquisition method. The perfusion obtained in this is consistent with literature values but further adjustment of pulse sequence and modification of numerical solution is needed. The most important benefit of the SI method is that it reduces scan time 30%--40% and lessens motion artifacts of images compared to the T1 method. This study demonstrates that the signal intensity-based ASL method is a robust alternative to the conventional T1-method.

  9. Modelling the balance between quiescence and cell death in normal and tumour cell populations.

    PubMed

    Spinelli, Lorenzo; Torricelli, Alessandro; Ubezio, Paolo; Basse, Britta

    2006-08-01

    When considering either human adult tissues (in vivo) or cell cultures (in vitro), cell number is regulated by the relationship between quiescent cells, proliferating cells, cell death and other controls of cell cycle duration. By formulating a mathematical description we see that even small alterations of this relationship may cause a non-growing population to start growing with doubling times characteristic of human tumours. Our model consists of two age structured partial differential equations for the proliferating and quiescent cell compartments. Model parameters are death rates from and transition rates between these compartments. The partial differential equations can be solved for the steady-age distributions, giving the distribution of the cells through the cell cycle, dependent on specific model parameter values. Appropriate formulas can then be derived for various population characteristic quantities such as labelling index, proliferation fraction, doubling time and potential doubling time of the cell population. Such characteristic quantities can be estimated experimentally, although with decreasing precision from in vitro, to in vivo experimental systems and to the clinic. The model can be used to investigate the effects of a single alteration of either quiescence or cell death control on the growth of the whole population and the non-trivial dependence of the doubling time and other observable quantities on particular underlying cell cycle scenarios of death and quiescence. The model indicates that tumour evolution in vivo is a sequence of steady-states, each characterised by particular death and quiescence rate functions. We suggest that a key passage of carcinogenesis is a loss of the communication between quiescence, death and cell cycle machineries, causing a defect in their precise, cell cycle dependent relationship.

  10. Lipids and collagen matrix restrict the hydraulic permeability within the porous compartment of adult cortical bone

    PubMed Central

    Wen, Demin; Androjna, Caroline; Vasanji, Amit; Belovich, Joanne; Midura, Ronald J.

    2010-01-01

    In vivo the hydraulic permeability of cortical bone influences the transport of nutrients, waste products and signaling molecules, thus influencing the metabolic functions of osteocytes and osteoblasts. In the current study two hypotheses were tested: the presence of (1) lipids and (2) collagen matrix in the porous compartment of cortical bone restricts its permeability. Our approach was to measure the radial permeability of adult canine cortical bone before and after extracting lipids with acetone-methanol, and before and after digesting collagen with bacterial collagenase. Our results showed that the permeability of adult canine cortical bone was below 4.0 × 10−17 m2, a value consistent with prior knowledge. After extracting lipids, permeability increased to a median value of 8.6 × 10−16 m2. After further digesting with collagenase, permeability increased to a median value of 1.4 × 10−14 m2. We conclude that the presence of both lipids and collagen matrix within the porous compartment of cortical bone restricts its radial permeability. These novel findings suggest that the chemical composition of the tissue matrix within the porous compartment of cortical bone influences the transport and exchange of nutrients and waste products, and possibly influences the metabolic functions of osteocytes and osteoblasts. PMID:19967451

  11. Improved Arthroscopic Visualization of Peripheral Compartment

    PubMed Central

    Suslak, Adam G.; Mather, Richard C.; Kelly, Bryan T.; Nho, Shane J.

    2012-01-01

    Femoroacetabular impingement is a recognized cause of hip pain and motion restrictions. Advancements in hip arthroscopy have allowed surgeons the ability to treat this condition more effectively. However, the learning curve is steep for osteochondroplasty of the femoral head-neck junction in the peripheral compartment. Therefore we present a reproducible technique that allows improved visualization of the peripheral compartment and treatment of the cam lesion with hip arthroscopy. Our technique uses the anterior portal as a viewing portal, a distal anterolateral accessory portal as a working portal, and the anterolateral portal for soft-tissue retraction. PMID:23766977

  12. The relationships between half-life (t1/2) and mean residence time (MRT) in the two-compartment open body model.

    PubMed

    Sobol, Eyal; Bialer, Meir

    2004-05-01

    In the one-compartment model following i.v. administration the mean residence time (MRT) of a drug is always greater than its half-life (t(1/2)). However, following i.v. administration, drug plasma concentration (C) versus time (t) is best described by a two-compartment model or a two exponential equation:C=Ae(-alpha t)+Be(-beta t), where A and B are concentration unit-coefficients and alpha and beta are exponential coefficients. The relationships between t(1/2) and MRT in the two-compartment model have not been explored and it is not clear whether in this model too MRT is always greater than t(1/2). In the current paper new equations have been developed that describe the relationships between the terminal t(1/2) (or t(1/2 beta)) and MRT in the two-compartment model following administration of i.v. bolus, i.v. infusion (zero order input) and oral administration (first order input). A critical value (CV) equals to the quotient of (1-ln2) and (1-beta/alpha) (CV=(1-ln2)/(1-beta/alpha)=0.307/(1-beta/alpha)) has been derived and was compared with the fraction (f(1)) of drug elimination or AUC (AUC-area under C vs t curve) associated with the first exponential term of the two-compartment equation (f(1)=A/alpha/AUC). Following i.v. bolus, CV ranges between a minimal value of 0.307 (1-ln2) and infinity. As long as f(1)t(1/2) and vice versa, and when f(1)=CV, then MRT=t(1/2). Following i.v. infusion and oral administration the denominator of the CV equation does not change but its numerator increases to (0.307+beta T/2) (T-infusion duration) and (0.307+beta/ka) (ka-absorption rate constant), respectively. Examples of various drugs are provided. For every drug that after i.v. bolus shows two-compartment disposition kinetics the following conclusions can be drawn (a) When f(1)<0.307, then f(1)t(1/2). (b) When beta/alpha>ln2, then CV>1>f(1) and thus(,) MRT>t(1/2). (c) When ln2>beta/alpha>(ln4-1), then 1>CV>0.5 and thus, in order for t(1/2)>MRT, f(1) has to be greater than its complementary fraction f(2) (f(1)>f(2)). (d) When beta/alpha<(ln4-1), it is possible that t(1/2)>MRT even when f(2)>f(1), as long as f(1)>CV. (e) As beta gets closer to alpha, CV approaches its maximal value (infinity) and therefore, the chances of MRT>t(1/2) are growing. (f) As beta becomes smaller compared with alpha, beta/alpha approaches zero, the denominator approaches unity and consequently, CV gets its minimal value and thus, the chances of t(1/2)>MRT are growing. (g) Following zero and first order input MRT increases compared with i.v. bolus and so does CV and thus, the chances of MRT>t(1/2) are growing. Copyright 2004 John Wiley & Sons, Ltd.

  13. Parameter estimation using weighted total least squares in the two-compartment exchange model.

    PubMed

    Garpebring, Anders; Löfstedt, Tommy

    2018-01-01

    The linear least squares (LLS) estimator provides a fast approach to parameter estimation in the linearized two-compartment exchange model. However, the LLS method may introduce a bias through correlated noise in the system matrix of the model. The purpose of this work is to present a new estimator for the linearized two-compartment exchange model that takes this noise into account. To account for the noise in the system matrix, we developed an estimator based on the weighted total least squares (WTLS) method. Using simulations, the proposed WTLS estimator was compared, in terms of accuracy and precision, to an LLS estimator and a nonlinear least squares (NLLS) estimator. The WTLS method improved the accuracy compared to the LLS method to levels comparable to the NLLS method. This improvement was at the expense of increased computational time; however, the WTLS was still faster than the NLLS method. At high signal-to-noise ratio all methods provided similar precisions while inconclusive results were observed at low signal-to-noise ratio. The proposed method provides improvements in accuracy compared to the LLS method, however, at an increased computational cost. Magn Reson Med 79:561-567, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  14. TCDD induces dermal accumulation of keratinocyte-derived matrix metalloproteinase-10 in an organotypic model of human skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Abrew, K. Nadira; Thomas-Virnig, Christina L.; Rasmussen, Cathy A.

    2014-05-01

    The epidermis of skin is the first line of defense against the environment. A three dimensional model of human skin was used to investigate tissue-specific phenotypes induced by the environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Continuous treatment of organotypic cultures of human keratinocytes with TCDD resulted in intracellular spaces between keratinocytes of the basal and immediately suprabasal layers as well as thinning of the basement membrane, in addition to the previously reported hyperkeratinization. These tissue remodeling events were preceded temporally by changes in expression of the extracellular matrix degrading enzyme, matrix metalloproteinase-10 (MMP-10). In organotypic cultures MMP-10 mRNA and protein were highlymore » induced following TCDD treatment. Q-PCR and immunoblot results from TCDD-treated monolayer cultures, as well as indirect immunofluorescence and immunoblot analysis of TCDD-treated organotypic cultures, showed that MMP-10 was specifically contributed by the epidermal keratinocytes but not the dermal fibroblasts. Keratinocyte-derived MMP-10 protein accumulated over time in the dermal compartment of organotypic cultures. TCDD-induced epidermal phenotypes in organotypic cultures were attenuated by the keratinocyte-specific expression of tissue inhibitor of metalloproteinase-1, a known inhibitor of MMP-10. These studies suggest that MMP-10 and possibly other MMP-10-activated MMPs are responsible for the phenotypes exhibited in the basement membrane, the basal keratinocyte layer, and the cornified layer of TCDD-treated organotypic cultures. Our studies reveal a novel mechanism by which the epithelial–stromal microenvironment is altered in a tissue-specific manner thereby inducing structural and functional pathology in the interfollicular epidermis of human skin. - Highlights: • TCDD causes hyperkeratosis and basement membrane changes in a model of human skin. • TCDD induces MMP-10 expression in organotypic cultures of human keratinocytes. • Keratinocyte-expressed MMP-10 accumulates in the dermal compartment. • Keratinocyte K14 promoter-driven TIMP-1 expression ablates TCDD-induced phenotypes.« less

  15. Systematic investigation on the validity of partition model dosimetry for 90Y radioembolization using Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Aziz Hashikin, Nurul Ab; Yeong, Chai-Hong; Guatelli, Susanna; Jeet Abdullah, Basri Johan; Ng, Kwan-Hoong; Malaroda, Alessandra; Rosenfeld, Anatoly; Perkins, Alan Christopher

    2017-09-01

    We aimed to investigate the validity of the partition model (PM) in estimating the absorbed doses to liver tumour ({{D}T} ), normal liver tissue ({{D}NL} ) and lungs ({{D}L} ), when cross-fire irradiations between these compartments are being considered. MIRD-5 phantom incorporated with various treatment parameters, i.e. tumour involvement (TI), tumour-to-normal liver uptake ratio (T/N) and lung shunting (LS), were simulated using the Geant4 Monte Carlo (MC) toolkit. 108 track histories were generated for each combination of the three parameters to obtain the absorbed dose per activity uptake in each compartment (DT{{AT}} , DNL{{ANL}} , and DL{{AL}} ). The administered activities, A were estimated using PM, so as to achieve either limiting doses to normal liver, DNLlim or lungs, ~DLlim (70 or 30 Gy, respectively). Using these administered activities, the activity uptake in each compartment ({{A}T} , {{A}NL} , and {{A}L} ) was estimated and multiplied with the absorbed dose per activity uptake attained using the MC simulations, to obtain the actual dose received by each compartment. PM overestimated {{D}L} by 11.7% in all cases, due to the escaped particles from the lungs. {{D}T} and {{D}NL} by MC were largely affected by T/N, which were not considered by PM due to cross-fire exclusion at the tumour-normal liver boundary. These have resulted in the overestimation of {{D}T} by up to 8% and underestimation of {{D}NL} by as high as  -78%, by PM. When DNLlim was estimated via PM, the MC simulations showed significantly higher {{D}NL} for cases with higher T/N, and LS  ⩽  10%. All {{D}L} and {{D}T} by MC were overestimated by PM, thus DLlim were never exceeded. PM leads to inaccurate dose estimations due to the exclusion of cross-fire irradiation, i.e. between the tumour and normal liver tissue. Caution should be taken for cases with higher TI and T/N, and lower LS, as they contribute to major underestimation of {{D}NL} . For {{D}L} , a different correction factor for dose calculation may be used for improved accuracy.

  16. Estimating fat-free mass in elite-level male rowers: a four-compartment model validation of laboratory and field methods.

    PubMed

    Kendall, Kristina L; Fukuda, David H; Hyde, Parker N; Smith-Ryan, Abbie E; Moon, Jordon R; Stout, Jeffrey R

    2017-04-01

    The purpose of this study was to investigate the accuracy of fat-free mass (FFM) estimates from two-compartment (2C) models including air displacement plethysmography (ADP), ultrasound (US), near-infrared interactance (NIR), and the Jackson and Pollock skinfold equation (SKF) against a criterion four-compartment (4C) model in elite male rowers. Twenty-three elite-level male rowers (mean± SD; age 24.6 ± 2.2 years; stature: 191.4 ± 7.2 cm; mass: 87.2 ± 11.2 kg) participated in this investigation. All body composition assessments were performed on the same day in random order, except for hydrostatic weighing (HW), which was measured last. FFM was evaluated using a 4C model, which included total body water from bioimpedance spectroscopy, body volume from HW, and total body bone mineral via dual-energy X-ray absorptiometry. The major findings of the study were that the 2C models evaluated overestimated FFM and should be considered with caution for the assessment of FFM in elite male rowers. Future studies should use multiple-compartment models, with measurement of TBW and bone mineral content, for the estimation of FFM.

  17. Bowel Radiation Injury: Complexity of the Pathophysiology and Promises of Cell and Tissue Engineering.

    PubMed

    Moussa, Lara; Usunier, Benoît; Demarquay, Christelle; Benderitter, Marc; Tamarat, Radia; Sémont, Alexandra; Mathieu, Noëlle

    2016-10-01

    Ionizing radiation is effective to treat malignant pelvic cancers, but the toxicity to surrounding healthy tissue remains a substantial limitation. Early and late side effects not only limit the escalation of the radiation dose to the tumor but may also be life-threatening in some patients. Numerous preclinical studies determined specific mechanisms induced after irradiation in different compartments of the intestine. This review outlines the complexity of the pathogenesis, highlighting the roles of the epithelial barrier in the vascular network, and the inflammatory microenvironment, which together lead to chronic fibrosis. Despite the large number of pharmacological molecules available, the studies presented in this review provide encouraging proof of concept regarding the use of mesenchymal stromal cell (MSC) therapy to treat radiation-induced intestinal damage. The therapeutic efficacy of MSCs has been demonstrated in animal models and in patients, but an enormous number of cells and multiple injections are needed due to their poor engraftment capacity. Moreover, it has been observed that although MSCs have pleiotropic effects, some intestinal compartments are less restored after a high dose of irradiation. Future research should seek to optimize the efficacy of the injected cells, particularly with regard to extending their life span in the irradiated tissue. Moreover, improving the host microenvironment, combining MSCs with other specific regenerative cells, or introducing new tissue engineering strategies could be tested as methods to treat the severe side effects of pelvic radiotherapy.

  18. Can a pin-tract infection cause an acute generalized soft tissue infection and a compartment syndrome?

    PubMed

    Orhun, Haldun; Saka, Gürsel; Enercan, Meriç

    2005-10-01

    A patient who developed soft tissue infection and osteomyelitis secondary to pin tract infection after skeletal traction was evaluated. Tibial traction was performed on a patient who had exposed to a femoral pertrochanteric fracture after falling from a tree in a rural public hospital. On the first postoperative day shortly after development of soft tissue swelling, redness, and tenderness in the affected leg, compartment syndrome was noted with subsequent removal of the pin at the same health center. After arrival of the case in our center surgical decompression with an open faciatomy and proper antibiotherapy were instituted. Simultaneously hyperbaric oxygen was administered. After eradication of soft tissue infection we treated the fracture with a Richards compression screw-plate device. The patient was discharged with complete cure. This case presented how seriously a simple pin-tract infection can cause a grave clinical entity resulting in potential loss of an extremity.

  19. Cellular Mechanisms of Somatic Stem Cell Aging

    PubMed Central

    Jung, Yunjoon

    2014-01-01

    Tissue homeostasis and regenerative capacity rely on rare populations of somatic stem cells endowed with the potential to self-renew and differentiate. During aging, many tissues show a decline in regenerative potential coupled with a loss of stem cell function. Cells including somatic stem cells have evolved a series of checks and balances to sense and repair cellular damage to maximize tissue function. However, during aging the mechanisms that protect normal cell function begin to fail. In this review, we will discuss how common cellular mechanisms that maintain tissue fidelity and organismal lifespan impact somatic stem cell function. We will highlight context-dependent changes and commonalities that define aging, by focusing on three age-sensitive stem cell compartments: blood, neural, and muscle. Understanding the interaction between extrinsic regulators and intrinsic effectors that operate within different stem cell compartments is likely to have important implications for identifying strategies to improve health span and treat age-related degenerative diseases. PMID:24439814

  20. A Model of the Spatio-temporal Dynamics of Drosophila Eye Disc Development.

    PubMed

    Fried, Patrick; Sánchez-Aragón, Máximo; Aguilar-Hidalgo, Daniel; Lehtinen, Birgitta; Casares, Fernando; Iber, Dagmar

    2016-09-01

    Patterning and growth are linked during early development and have to be tightly controlled to result in a functional tissue or organ. During the development of the Drosophila eye, this linkage is particularly clear: the growth of the eye primordium mainly results from proliferating cells ahead of the morphogenetic furrow (MF), a moving signaling wave that sweeps across the tissue from the posterior to the anterior side, that induces proliferating cells anterior to it to differentiate and become cell cycle quiescent in its wake. Therefore, final eye disc size depends on the proliferation rate of undifferentiated cells and on the speed with which the MF sweeps across the eye disc. We developed a spatio-temporal model of the growing eye disc based on the regulatory interactions controlled by the signals Decapentaplegic (Dpp), Hedgehog (Hh) and the transcription factor Homothorax (Hth) and explored how the signaling patterns affect the movement of the MF and impact on eye disc growth. We used published and new quantitative data to parameterize the model. In particular, two crucial parameter values, the degradation rate of Hth and the diffusion coefficient of Hh, were measured. The model is able to reproduce the linear movement of the MF and the termination of growth of the primordium. We further show that the model can explain several mutant phenotypes, but fails to reproduce the previously observed scaling of the Dpp gradient in the anterior compartment.

  1. Heroin-Related Compartment Syndrome: An Increasing Problem for Acute Care Surgeons.

    PubMed

    Benns, Matthew; Miller, Keith; Harbrecht, Brian; Bozeman, Matthew; Nash, Nicholas

    2017-09-01

    Heroin use has been increasing in the United States with the rate of heroin overdose nearly quadrupling in the last 10 years. Heroin overdose can occasionally lead to compartment syndrome (CS) because of extended periods of immobility and pressure tissue injury. Heroin-related compartment syndrome (HRCS) has previously been described, but has been limited to isolated case reports. We sought to examine our experience with HRCS in the climate of rising rates of heroin use among the general population. Medical records of all patients undergoing operative decompression for a CS at our academic medical center over a six-year period (2010-2015) were examined. Patient demographics, operation performed, and etiology were recorded. Cases of HRCS were identified, and clinical outcomes examined. A total of 213 patients undergoing fasciotomy were identified. Twenty-two of these patients had HRCS. Heroin was the second most common etiology of CS after trauma. Only one case of HRCS presented during the first three years of the study period, with the remaining 95 per cent of cases occurring within the last three years. The most common single location for HRCSs was gluteal (31.8%); 36 per cent of HRCS patients needed dialysis and 27 per cent suffered complications such as tissue loss. The incidence of HRCS has increased dramatically over the past several years and is now the second most common etiology for CS in our patient population. Patients with HRCS may present with severe manifestations of CS and different body areas affected.

  2. Characteristics, changes and influence of body composition during a 4486 km transcontinental ultramarathon: results from the Transeurope Footrace mobile whole body MRI-project

    PubMed Central

    2013-01-01

    Background Almost nothing is known about the medical aspects of runners doing a transcontinental ultramarathon over several weeks. The results of differentiated measurements of changes in body composition during the Transeurope Footrace 2009 using a mobile whole body magnetic resonance (MR) imager are presented and the proposed influence of visceral and somatic adipose and lean tissue distribution on performance tested. Methods 22 participants were randomly selected for the repeated MR measurements (intervals: 800 km) with a 1.5 Tesla MR scanner mounted on a mobile unit during the 64-stage 4,486 km ultramarathon. A standardized and validated MRI protocol was used: T1 weighted turbo spin echo sequence, echo time 12 ms, repetition time 490 ms, slice thickness 10 mm, slice distance 10 mm (breath holding examinations). For topographic tissue segmentation and mapping a modified fuzzy c-means algorithm was used. A semi-automatic post-processing of whole body MRI data sets allows reliable analysis of the following body tissue compartments: Total body volume (TV), total somatic (TSV) and total visceral volume (TVV), total adipose (TAT) and total lean tissue (TLT), somatic (SLT) and visceral lean tissue (VLT), somatic (SAT) and visceral adipose tissue (VAT) and somatic adipose soft tissue (SAST). Specific volume changes were tested on significance. Tests on difference and relationship regarding prerace and race performance and non-finishing were done using statistical software SPSS. Results Total, somatic and visceral volumes showed a significant decrease throughout the race. Adipose tissue showed a significant decrease compared to the start at all measurement times for TAT, SAST and VAT. Lean adipose tissues decreased until the end of the race, but not significantly. The mean relative volume changes of the different tissue compartments at the last measurement compared to the start were: TV −9.5% (SE 1.5%), TSV −9.4% (SE 1.5%), TVV −10.0% (SE 1.4%), TAT −41.3% (SE 2.3%), SAST −48.7% (SE 2.8%), VAT −64.5% (SE 4.6%), intraabdominal adipose tissue (IAAT) −67.3% (SE 4.3%), mediastinal adopose tissue (MAT) −41.5% (SE 7.1%), TLT −1.2% (SE 1.0%), SLT −1.4% (SE 1.1%). Before the start and during the early phase of the Transeurope Footrace 2009, the non-finisher group had a significantly higher percentage volume of TVV, TAT, SAST and VAT compared to the finisher group. VAT correlates significantly with prerace training volume and intensity one year before the race and with 50 km- and 24 hour-race records. Neither prerace body composition nor specific tissue compartment volume changes showed a significant relationship to performance in the last two thirds of the Transeurope Footrace 2009. Conclusions With this mobile MRI field study the complex changes in body composition during a multistage ultramarathon could be demonstrated in detail in a new and differentiated way. Participants lost more than half of their adipose tissue. Even lean tissue volume (mainly skeletal muscle tissue) decreased due to the unpreventable chronic negative energy balance during the race. VAT has the fastest and highest decrease compared to SAST and lean tissue compartments during the race. It seems to be the most sensitive morphometric parameter regarding the risk of non-finishing a transcontinental footrace and shows a direct relationship to prerace-performance. However, body volume or body mass and, therefore, fat volume has no correlation with total race performances of ultra-athletes finishing a 4,500 km multistage race. PMID:23657091

  3. Effect of defective collagen synthesis on epithelial implant interface: lathyritic model in dogs. An experimental preliminary study.

    PubMed

    Cengiz, Murat Inanç; Kirtiloğlu, Tuğrul; Acikgoz, Gökhan; Trisi, Paolo; Wang, Hom-Lay

    2012-04-01

    Peri-implant mucosa is composed of 2 compartments: a marginal junctional epithelium and a zone of connective tissue attachment. Both structures consist mainly of collagen. Lathyrism is characterized by defective collagen synthesis due to inhibition of lysyl oxidase, an enzyme that is essential for interfibrillar collagen cross-linking. The lathyritic agent beta-aminoproprionitrile (β-APN) is considered a suitable agent to disrupt the connective tissue metabolism. Therefore, the purpose of this study was to assess the effect of defective connective tissue metabolism on epithelial implant interface by using β-APN created chronic lathyrism in the canine model. Two 1-year-old male dogs were included in this study. A β-APN dosage of 5 mg/0.4 mL/volume 100 g/body weight was given to the test dog for 10 months, until lathyritic symptoms developed. After this, the mandibular premolar teeth (p2, p3, p4) of both dogs were atraumatically extracted, and the investigators waited 3 months before implants were placed. In the test dog, 3 implants were placed in the left mandible, and 2 implants were placed in the right mandible. In the control dog, 2 implants were placed in the left mandibular premolar site. The dogs were sacrificed 10 months after healing. Peri-implant tissues obtained from the dogs were examined histomorphologically and histopathologically. Bone to implant contact (BIC) values and bone volumes (BV) were lower in the lathyritic group compared to the control group; however, no statistical significance was found. Significant histologic and histomorphometric changes were observed in peri-implant bone, connective tissue, and peri-implant mucosal width between test and control implants. Defective collagen metabolism such as lathyrism may negatively influence the interface between implant and surrounding soft tissue attachment.

  4. Numerical analysis of air-flow and temperature field in a passenger car compartment

    NASA Astrophysics Data System (ADS)

    Kamar, Haslinda Mohamed; Kamsah, Nazri; Mohammad Nor, Ahmad Miski

    2012-06-01

    This paper presents a numerical study on the temperature field inside a passenger's compartment of a Proton Wira saloon car using computational fluid dynamics (CFD) method. The main goal is to investigate the effects of different glazing types applied onto the front and rear windscreens of the car on the distribution of air-temperature inside the passenger compartment in the steady-state conditions. The air-flow condition in the passenger's compartment is also investigated. Fluent CFD software was used to develop a three-dimensional symmetrical model of the passenger's compartment. Simplified representations of the driver and one rear passenger were incorporated into the CFD model of the passenger's compartment. Two types of glazing were considered namely clear insulated laminated tint (CIL) with a shading coefficient of 0.78 and green insulated laminate tint (GIL) with a shading coefficient of 0.5. Results of the CFD analysis were compared with those obtained when the windscreens are made up of clear glass having a shading coefficient of 0.86. Results of the CFD analysis show that for a given glazing material, the temperature of the air around the driver is slightly lower than the air around the rear passenger. Also, the use of GIL glazing material on both the front and rear windscreens significantly reduces the air temperature inside the passenger's compartment of the car. This contributes to a better thermal comfort condition to the occupants. Swirling air flow condition occurs in the passenger compartment. The air-flow intensity and velocity are higher along the side wall of the passenger's compartment compared to that along the middle section of the compartment. It was also found that the use of glazing materials on both the front and rear windscreen has no significant effects on the air-flow condition inside the passenger's compartment of the car.

  5. A system model of the effects of exercise on plasma Interleukin-6 dynamics in healthy individuals: Role of skeletal muscle and adipose tissue.

    PubMed

    Morettini, Micaela; Palumbo, Maria Concetta; Sacchetti, Massimo; Castiglione, Filippo; Mazzà, Claudia

    2017-01-01

    Interleukin-6 (IL-6) has been recently shown to play a central role in glucose homeostasis, since it stimulates the production and secretion of Glucagon-like Peptide-1 (GLP-1) from intestinal L-cells and pancreas, leading to an enhanced insulin response. In resting conditions, IL-6 is mainly produced by the adipose tissue whereas, during exercise, skeletal muscle contractions stimulate a marked IL-6 secretion as well. Available mathematical models describing the effects of exercise on glucose homeostasis, however, do not account for this IL-6 contribution. This study aimed at developing and validating a system model of exercise's effects on plasma IL-6 dynamics in healthy humans, combining the contributions of both adipose tissue and skeletal muscle. A two-compartment description was adopted to model plasma IL-6 changes in response to oxygen uptake's variation during an exercise bout. The free parameters of the model were estimated by means of a cross-validation procedure performed on four different datasets. A low coefficient of variation (<10%) was found for each parameter and the physiologically meaningful parameters were all consistent with literature data. Moreover, plasma IL-6 dynamics during exercise and post-exercise were consistent with literature data from exercise protocols differing in intensity, duration and modality. The model successfully emulated the physiological effects of exercise on plasma IL-6 levels and provided a reliable description of the role of skeletal muscle and adipose tissue on the dynamics of plasma IL-6. The system model here proposed is suitable to simulate IL-6 response to different exercise modalities. Its future integration with existing models of GLP-1-induced insulin secretion might provide a more reliable description of exercise's effects on glucose homeostasis and hence support the definition of more tailored interventions for the treatment of type 2 diabetes.

  6. In vivo response to starch-based scaffolds designed for bone tissue engineering applications.

    PubMed

    Salgado, A J; Coutinho, O P; Reis, R L; Davies, J E

    2007-03-15

    Our purpose was to evaluate the in vivo endosseous response to three starch-based scaffolds implanted in rats (n = 54). We implanted the three scaffold groups; a 50/50 (wt %) blend of corn starch and ethylene-vinyl alcohol (SEVA-C), the same composition coated with a biomimetic calcium phosphate (Ca-P) layer (SEVA-C/CaP), and a 50/50 (wt %) blend of corn starch and cellulose acetate (SCA), all produced by extrusion with blowing agents, into distal femurs proximal to the epiphyseal plate, for 1, 3, or 6 weeks. Our results showed that at 1 week considerable reparative bone formed around all scaffold groups, although the bone was separated from the scaffold by an intervening soft tissue interfacial zone that comprised two distinct compartments: the surface of the scaffold was occupied by multinucleate giant cells and the compartment between these cells and the surrounding bone was occupied by a streaming fibrous-like tissue. The extracellular matrix of the latter was continuous with the extracellular bone matrix itself, labeled positively for osteocalcin and appeared mineralized by back-scattered electron imaging. All three scaffolds showed a similar tissue response, with the soft tissue interface diminishing with time. No bone contact was observed with SEVA-C at any time point, only transitory bone contact was observed with SEVA-C/CaP at 3 weeks, but SCA exhibited direct bone contact at 6 weeks where 56.23 +/- 6.46% of the scaffold surface was occupied by bone. We conclude that all materials exhibited a favorable bony response and that the rapidly forming initial "connective tissue" seen around all scaffolds was a very early form of bone formation.

  7. Multi-compartmental modeling of SORLA’s influence on amyloidogenic processing in Alzheimer’s disease

    PubMed Central

    2012-01-01

    Background Proteolytic breakdown of the amyloid precursor protein (APP) by secretases is a complex cellular process that results in formation of neurotoxic Aβ peptides, causative of neurodegeneration in Alzheimer’s disease (AD). Processing involves monomeric and dimeric forms of APP that traffic through distinct cellular compartments where the various secretases reside. Amyloidogenic processing is also influenced by modifiers such as sorting receptor-related protein (SORLA), an inhibitor of APP breakdown and major AD risk factor. Results In this study, we developed a multi-compartment model to simulate the complexity of APP processing in neurons and to accurately describe the effects of SORLA on these processes. Based on dose–response data, our study concludes that SORLA specifically impairs processing of APP dimers, the preferred secretase substrate. In addition, SORLA alters the dynamic behavior of β-secretase, the enzyme responsible for the initial step in the amyloidogenic processing cascade. Conclusions Our multi-compartment model represents a major conceptual advance over single-compartment models previously used to simulate APP processing; and it identified APP dimers and β-secretase as the two distinct targets of the inhibitory action of SORLA in Alzheimer’s disease. PMID:22727043

  8. Dynamic contrast-enhanced CT of head and neck tumors: perfusion measurements using a distributed-parameter tracer kinetic model. Initial results and comparison with deconvolution-based analysis

    NASA Astrophysics Data System (ADS)

    Bisdas, Sotirios; Konstantinou, George N.; Sherng Lee, Puor; Thng, Choon Hua; Wagenblast, Jens; Baghi, Mehran; San Koh, Tong

    2007-10-01

    The objective of this work was to evaluate the feasibility of a two-compartment distributed-parameter (DP) tracer kinetic model to generate functional images of several physiologic parameters from dynamic contrast-enhanced CT data obtained of patients with extracranial head and neck tumors and to compare the DP functional images to those obtained by deconvolution-based DCE-CT data analysis. We performed post-processing of DCE-CT studies, obtained from 15 patients with benign and malignant head and neck cancer. We introduced a DP model of the impulse residue function for a capillary-tissue exchange unit, which accounts for the processes of convective transport and capillary-tissue exchange. The calculated parametric maps represented blood flow (F), intravascular blood volume (v1), extravascular extracellular blood volume (v2), vascular transit time (t1), permeability-surface area product (PS), transfer ratios k12 and k21, and the fraction of extracted tracer (E). Based on the same regions of interest (ROI) analysis, we calculated the tumor blood flow (BF), blood volume (BV) and mean transit time (MTT) by using a modified deconvolution-based analysis taking into account the extravasation of the contrast agent for PS imaging. We compared the corresponding values by using Bland-Altman plot analysis. We outlined 73 ROIs including tumor sites, lymph nodes and normal tissue. The Bland-Altman plot analysis revealed that the two methods showed an accepted degree of agreement for blood flow, and, thus, can be used interchangeably for measuring this parameter. Slightly worse agreement was observed between v1 in the DP model and BV but even here the two tracer kinetic analyses can be used interchangeably. Under consideration of whether both techniques may be used interchangeably was the case of t1 and MTT, as well as for measurements of the PS values. The application of the proposed DP model is feasible in the clinical routine and it can be used interchangeably for measuring blood flow and vascular volume with the commercially available reference standard of the deconvolution-based approach. The lack of substantial agreement between the measurements of vascular transit time and permeability-surface area product may be attributed to the different tracer kinetic principles employed by both models and the detailed capillary tissue exchange physiological modeling of the DP technique.

  9. Tissue microstructure estimation using a deep network inspired by a dictionary-based framework.

    PubMed

    Ye, Chuyang

    2017-12-01

    Diffusion magnetic resonance imaging (dMRI) captures the anisotropic pattern of water displacement in the neuronal tissue and allows noninvasive investigation of the complex tissue microstructure. A number of biophysical models have been proposed to relate the tissue organization with the observed diffusion signals, so that the tissue microstructure can be inferred. The Neurite Orientation Dispersion and Density Imaging (NODDI) model has been a popular choice and has been widely used for many neuroscientific studies. It models the diffusion signal with three compartments that are characterized by distinct diffusion properties, and the parameters in the model describe tissue microstructure. In NODDI, these parameters are estimated in a maximum likelihood framework, where the nonlinear model fitting is computationally intensive. Therefore, efforts have been made to develop efficient and accurate algorithms for NODDI microstructure estimation, which is still an open problem. In this work, we propose a deep network based approach that performs end-to-end estimation of NODDI microstructure, which is named Microstructure Estimation using a Deep Network (MEDN). MEDN comprises two cascaded stages and is motivated by the AMICO algorithm, where the NODDI microstructure estimation is formulated in a dictionary-based framework. The first stage computes the coefficients of the dictionary. It resembles the solution to a sparse reconstruction problem, where the iterative process in conventional estimation approaches is unfolded and truncated, and the weights are learned instead of predetermined by the dictionary. In the second stage, microstructure properties are computed from the output of the first stage, which resembles the weighted sum of normalized dictionary coefficients in AMICO, and the weights are also learned. Because spatial consistency of diffusion signals can be used to reduce the effect of noise, we also propose MEDN+, which is an extended version of MEDN. MEDN+ allows incorporation of neighborhood information by inserting a stage with learned weights before the MEDN structure, where the diffusion signals in the neighborhood of a voxel are processed. The weights in MEDN or MEDN+ are jointly learned from training samples that are acquired with diffusion gradients densely sampling the q-space. We performed MEDN and MEDN+ on brain dMRI scans, where two shells each with 30 gradient directions were used, and measured their accuracy with respect to the gold standard. Results demonstrate that the proposed networks outperform the competing methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Wave propagation, input impedance, and wall mechanics of the calf trachea from 16 to 1,600 Hz.

    PubMed

    Suki, B; Habib, R H; Jackson, A C

    1993-12-01

    Propagation of waves in the airways is important in flow limitation as well as in oscillation mechanics. In five excised calf tracheae, we measured phase propagation velocity (c) and input impedance with open (Zop) or closed end (Zcl) for frequencies (f) between 16 and 1,600 Hz at two axial tensions [nonstretched (TN) and stretched (TS); TS > TN]. From 16 to 64 Hz, c slightly increased because of the viscoelastic properties of the wall tissues. Between 64 and 200 Hz, c was relatively constant and less than the free-field speed of sound (c0 = 340 m/s), with values smaller at TS (140 +/- 39 m/s) than at TN (172 +/- 35 m/s). Above 200 Hz, c exceeded c0 and displayed two maxima at approximately 300 and approximately 700 Hz, with values of approximately 360 and approximately 550 m/s, respectively. For f > 1,400 Hz, c approached c0. We provide evidence that the two maxima in c were the result of the two-compartment behavior of the wall tissues, i.e., the separate cartilaginous and soft tissues. A nonrigid tube model with its wall impedance composed of two series resistance, compliance, and inertance pathways in parallel simultaneously fits c, Zop, and Zcl well and hence provides a link among these data. By use of the relationship between volumetric wall parameters and the tracheal geometry, separate material properties such as viscosity and Young's modulus of both the soft tissue (approximately 1 cmH2O.s and approximately 0.26 x 10(4) cmH2O, respectively) and the cartilage (approximately 3.7 cmH2O.s and approximately 2 x 10(4) cmH2O, respectively) were estimated. These results indicate that measures of c and Zop or Zcl data over these frequencies provide information about the dynamic mechanical properties of both the soft tissue and cartilage in the airway walls.

  11. Mimicking Metastases Including Tumor Stroma: A New Technique to Generate a Three-Dimensional Colorectal Cancer Model Based on a Biological Decellularized Intestinal Scaffold.

    PubMed

    Nietzer, Sarah; Baur, Florentin; Sieber, Stefan; Hansmann, Jan; Schwarz, Thomas; Stoffer, Carolin; Häfner, Heide; Gasser, Martin; Waaga-Gasser, Ana Maria; Walles, Heike; Dandekar, Gudrun

    2016-07-01

    Tumor models based on cancer cell lines cultured two-dimensionally (2D) on plastic lack histological complexity and functionality compared to the native microenvironment. Xenogenic mouse tumor models display higher complexity but often do not predict human drug responses accurately due to species-specific differences. We present here a three-dimensional (3D) in vitro colon cancer model based on a biological scaffold derived from decellularized porcine jejunum (small intestine submucosa+mucosa, SISmuc). Two different cell lines were used in monoculture or in coculture with primary fibroblasts. After 14 days of culture, we demonstrated a close contact of human Caco2 colon cancer cells with the preserved basement membrane on an ultrastructural level as well as morphological characteristics of a well-differentiated epithelium. To generate a tissue-engineered tumor model, we chose human SW480 colon cancer cells, a reportedly malignant cell line. Malignant characteristics were confirmed in 2D cell culture: SW480 cells showed higher vimentin and lower E-cadherin expression than Caco2 cells. In contrast to Caco2, SW480 cells displayed cancerous characteristics such as delocalized E-cadherin and nuclear location of β-catenin in a subset of cells. One central drawback of 2D cultures-especially in consideration of drug testing-is their artificially high proliferation. In our 3D tissue-engineered tumor model, both cell lines showed decreased numbers of proliferating cells, thus correlating more precisely with observations of primary colon cancer in all stages (UICC I-IV). Moreover, vimentin decreased in SW480 colon cancer cells, indicating a mesenchymal to epithelial transition process, attributed to metastasis formation. Only SW480 cells cocultured with fibroblasts induced the formation of tumor-like aggregates surrounded by fibroblasts, whereas in Caco2 cocultures, a separate Caco2 cell layer was formed separated from the fibroblast compartment beneath. To foster tissue generation, a bioreactor was constructed for dynamic culture approaches. This induced a close tissue-like association of cultured tumor cells with fibroblasts reflecting tumor biopsies. Therapy with 5-fluorouracil (5-FU) was effective only in 3D coculture. In conclusion, our 3D tumor model reflects human tissue-related tumor characteristics, including lower tumor cell proliferation. It is now available for drug testing in metastatic context-especially for substances targeting tumor-stroma interactions.

  12. Fibrosis of the pancreas: the initial tissue damage and the resulting pattern.

    PubMed

    Klöppel, Günter; Detlefsen, Sönke; Feyerabend, Bernd

    2004-07-01

    Fibrosis in the pancreas is caused by such processes as necrosis/apoptosis, inflammation or duct obstruction. The initial event that induces fibrogenesis in the pancreas is an injury that may involve the interstitial mesenchymal cells, the duct cells and/or the acinar cells. Damage to any one of these tissue compartments of the pancreas is associated with cytokine-triggered transformation of resident fibroblasts/pancreatic stellate cells into myofibroblasts and the subsequent production and deposition of extracellular matrix. Depending on the site of injury in the pancreas and the involved tissue compartment, predominantly inter(peri)lobular fibrosis (as in alcoholic chronic pancreatitis), periductal fibrosis (as in hereditary pancreatitis), periductal and interlobular fibrosis (as in autoimmune pancreatitis) or diffuse inter- and intralobular fibrosis (as in obstructive chronic pancreatitis) develops.

  13. 3D printed multi-compartment capsular devices for two-pulse oral drug delivery.

    PubMed

    Maroni, A; Melocchi, A; Parietti, F; Foppoli, A; Zema, L; Gazzaniga, A

    2017-12-28

    In the drug delivery area, versatile therapeutic systems intended to yield customized combinations of drugs, drug doses and release kinetics have drawn increasing attention, especially because of the advantages that personalized pharmaceutical treatments would offer. In this respect, a previously proposed capsular device able to control the release performance based on its design and composition, which could extemporaneously be filled, was improved to include multiple separate compartments so that differing active ingredients or formulations may be conveyed. The compartments, which may differ in thickness and composition, resulted from assembly of two hollow halves through a joint also acting as a partition. The systems were manufactured by fused deposition modeling (FDM) 3D printing, which holds special potential for product personalization, and injection molding (IM) that would enable production on a larger scale. Through combination of compartments having wall thickness of 600 or 1200μm, composed of promptly soluble, swellable/erodible or enteric soluble polymers, devices showing two-pulse release patterns, consistent with the nature of the starting materials, were obtained. Systems fabricated using the two techniques exhibited comparable performance, thus proving the prototyping ability of FDM versus IM. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Design of vaccination and fumigation on Host-Vector Model by input-output linearization method

    NASA Astrophysics Data System (ADS)

    Nugraha, Edwin Setiawan; Naiborhu, Janson; Nuraini, Nuning

    2017-03-01

    Here, we analyze the Host-Vector Model and proposed design of vaccination and fumigation to control infectious population by using feedback control especially input-output liniearization method. Host population is divided into three compartments: susceptible, infectious and recovery. Whereas the vector population is divided into two compartment such as susceptible and infectious. In this system, vaccination and fumigation treat as input factors and infectious population as output result. The objective of design is to stabilize of the output asymptotically tend to zero. We also present the examples to illustrate the design model.

  15. Dihydroergocryptine: a pseudo-irreversible alpha-adrenergic antagonist in the guinea pig vas deferens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilberding, C.A.; Marks, B.H.

    1981-03-01

    The ergot alkaloid, dihydroergocryptine, exhibits some of the characteristics of a competitive alpha-adrenergic antagonist. Dihydroergocryptine physiological antagonism is surmountable by high concentrations of alpha-adrenergic agonists and (/sup 3/H)-dihydroergocryptine readily binds and dissociates from crude membranes with the characteristics expected of an alpha-adrenoreceptor ligand. However, during physiological studies, dihydroergocryptine antagonism is not readily reversible by washing. To explain this apparently paradoxical behavior of dihydroergocryptine, the characteristic of (/sup 3/H)-dihydroergocryptine accumulation and efflux in the guinea pig vas deferens were studied. Vas deferens segments accumulated 0.99 pmol (/sup 3/H)-dihydroergocryptine/mg protein. Most of the radioligand was extractable by acid-ethanol. About 5-6% of themore » radioligand remained bound to extracted tissue residues and appeared to be associated with crude membrane fractions prepared from vas deferens segments. Kinetic analysis of (/sup 3/H)-dihydroergocryptine efflux from vas deferens segments indicated the presence of three compartments of radioligand in this tissue. A large compartment of (/sup 3/H)-dihydroergocryptine emptied slowly and may represent radioligand accumulated into the intracellular space. (/sup 3/H)-Dihydroergocryptine also was released from a compartment which exhibited the size and kinetics characteristic of alpha-adrenoreceptor sites on guinea pig vas deferens crude membranes. A small compartment of (/sup 3/H)-dihydroergocryptine was nonexchangeable and nonextractable by acid-ethanol; this nonextractable radioligand may be bound covalently to membrane sites and/or other tissue components.« less

  16. HCV-RNA quantification in liver bioptic samples and extrahepatic compartments, using the abbott RealTime HCV assay.

    PubMed

    Antonucci, FrancescoPaolo; Cento, Valeria; Sorbo, Maria Chiara; Manuelli, Matteo Ciancio; Lenci, Ilaria; Sforza, Daniele; Di Carlo, Domenico; Milana, Martina; Manzia, Tommaso Maria; Angelico, Mario; Tisone, Giuseppe; Perno, Carlo Federico; Ceccherini-Silberstein, Francesca

    2017-08-01

    We evaluated the performance of a rapid method to quantify HCV-RNA in the hepatic and extrahepatic compartments, by using for the first time the Abbott RealTime HCV-assay. Non-tumoral (NT), tumoral (TT) liver samples, lymph nodes and ascitic fluid from patients undergoing orthotopic-liver-transplantation (N=18) or liver resection (N=4) were used for the HCV-RNA quantification; 5/22 patients were tested after or during direct acting antivirals (DAA) treatment. Total RNA and DNA quantification from tissue-biopsies allowed normalization of HCV-RNA concentrations in IU/μg of total RNA and IU/10 6 liver-cells, respectively. HCV-RNA was successfully quantified with high reliability in liver biopsies, lymph nodes and ascitic fluid samples. Among the 17 untreated patients, a positive and significant HCV-RNA correlation between serum and NT liver-samples was observed (Pearson: rho=0.544, p=0.024). Three DAA-treated patients were HCV-RNA "undetectable" in serum, but still "detectable" in all tested liver-tissues. Differently, only one DAA-treated patient, tested after sustained-virological-response, showed HCV-RNA "undetectability" in liver-tissue. HCV-RNA was successfully quantified with high reliability in liver bioptic samples and extrahepatic compartments, even when HCV-RNA was "undetectable" in serum. Abbott RealTime HCV-assay is a good diagnostic tool for HCV quantification in intra- and extra-hepatic compartments, whenever a bioptic sample is available. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Determination of absorption changes from moments of distributions of times of flight of photons: optimization of measurement conditions for a two-layered tissue model.

    PubMed

    Liebert, Adam; Wabnitz, Heidrun; Elster, Clemens

    2012-05-01

    Time-resolved near-infrared spectroscopy allows for depth-selective determination of absorption changes in the adult human head that facilitates separation between cerebral and extra-cerebral responses to brain activation. The aim of the present work is to analyze which combinations of moments of measured distributions of times of flight (DTOF) of photons and source-detector separations are optimal for the reconstruction of absorption changes in a two-layered tissue model corresponding to extra- and intra-cerebral compartments. To this end we calculated the standard deviations of the derived absorption changes in both layers by considering photon noise and a linear relation between the absorption changes and the DTOF moments. The results show that the standard deviation of the absorption change in the deeper (superficial) layer increases (decreases) with the thickness of the superficial layer. It is confirmed that for the deeper layer the use of higher moments, in particular the variance of the DTOF, leads to an improvement. For example, when measurements at four different source-detector separations between 8 and 35 mm are available and a realistic thickness of the upper layer of 12 mm is assumed, the inclusion of the change in mean time of flight, in addition to the change in attenuation, leads to a reduction of the standard deviation of the absorption change in the deeper tissue layer by a factor of 2.5. A reduction by another 4% can be achieved by additionally including the change in variance.

  18. The usage of a three-compartment model to investigate the metabolic differences between hepatic reductase null and wild-type mice.

    PubMed

    Hill, Lydia; Chaplain, Mark A J; Wolf, Roland; Kapelyukh, Yury

    2017-03-01

    The Cytochrome P450 (CYP) system is involved in 90% of the human body's interactions with xenobiotics and due to this, it has become an area of avid research including the creation of transgenic mice. This paper proposes a three-compartment model which is used to explain the drug metabolism in the Hepatic Reductase Null (HRN) mouse developed by the University of Dundee (Henderson, C. J., Otto, D. M. E., Carrie, D., Magnuson, M. A., McLaren, A. W., Rosewell, I. and Wolf, C. R. (2003) Inactivation of the hepatic cytochrome p450 system by conditional deletion of hepatic cytochrome p450 reductase. J. Biol. Chem. , 13480-13486). The model is compared with a two-compartment model using experimental data from studies using wild-type and HRN mice. This comparison allowed for metabolic differences between the two types of mice to be isolated. The three sets of drug data (Gefitinib, Midazolam and Thalidomide) showed that the transgenic mouse has a decreased rate of metabolism. © The authors 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  19. Dynamic contrast-enhanced x-ray CT measurement of cerebral blood volume in a rabbit tumor model

    NASA Astrophysics Data System (ADS)

    Cenic, Aleksa; Lee, Ting-Yim; Craen, Rosemary A.; Gelb, Adrian W.

    1998-07-01

    Cerebral blood volume (CBV) is a major determinant of intracranial pressure (ICP). Hyperventilation is commonly employed to reduce raised ICP (e.g. in brain tumour patients) presumably through its effect on CBV. With the advent of slip- ring CT scanners, dynamic contrast-enhanced imaging allows for the measurement of CBV with high spatial resolution. Using a two-compartment model to characterize the distribution of X- ray contrast agent in the brain, we have developed a non- equilibrium CT method to measure CBV in normal and pathological regions. We used our method to investigate the effect of hyperventilation on CBV during propofol anaesthesia in rabbits with implanted brain tumours. Eight New Zealand White rabbits with implanted VX2 carcinoma brain tumours were studied. For each rabbit, regional CBV measurements were initially made at normocapnia (PaCO2 40 mmHg) and then at hyperventilation (PaCO2 25 mmHg) during propofol anaesthesia. The head was positioned such that a coronal image through the brain incorporated a significant cross-section of the brain tumour as well as a radial artery in a forelimb. Images at the rate of 1 per second were acquired for 2 minutes as Omnipaque 300 (1.5 ml/kg rabbit weight) was injected via a peripheral vein. In these CT images, regions of interest in the brain tissue (e.g. tumour, contra-lateral normal, and peri-tumoural) and the radial artery were drawn. For each region, the mean CT number in pre-contrast images was subtracted from the mean CT number in post-contrast images to produce either the tissue contrast concentration curve, or the arterial contrast concentration curve. Using our non- equilibrium analysis method based on a two-compartment model, regional CBV values were determined from the measured contrast concentration curves. From our study, the mean CBV values [+/- SD] in the tumour, peri-tumoural, and contra-lateral normal regions during normocapnia were: 5.47 plus or minus 1.97, 3.28 plus or minus 1.01, and 1.86 plus or minus 0.54 ml/100 g, respectively. Following hyperventilation, we found a significant decrease (p less than 0.025) of 10.4% in CBV in the peri-tumoural region, and no statistically significant change in CBV in the tumour or contra-lateral normal regions. We have developed a convenient method for measuring CBV in normal and pathological tissue using a slip-ring CT scanner. In a brain tumour model, we found that CBV was markedly increased in tumour and peri-tumoural regions compared to normal regions. Our results suggest that the reduction of raised ICP following hyperventilation during propofol anaesthesia may be mainly due to a reduction in CBV in the peri-tumoural tissue rather than in the bulk of the tumour or normal regions. Our method has the potential to provide further knowledge on the cerebral hemodynamics of space- occupying lesions during different anaesthetic interventions or treatment regiments.

  20. Regulatory T-Cell Distribution within Lung Compartments in COPD.

    PubMed

    Sales, Davi S; Ito, Juliana T; Zanchetta, Ivy A; Annoni, Raquel; Aun, Marcelo V; Ferraz, Luiz Fernando S; Cervilha, Daniela A B; Negri, Elnara; Mauad, Thais; Martins, Mílton A; Lopes, Fernanda D T Q S

    2017-10-01

    The importance of the adaptive immune response, specifically the role of regulatory T (Treg) cells in controlling the obstruction progression in smokers, has been highlighted. To quantify the adaptive immune cells in different lung compartments, we used lung tissues from 21 never-smokers without lung disease, 22 current and/or ex-smokers without lung disease (NOS) and 13 current and/or ex-smokers with chronic obstructive pulmonary disease (COPD) for histological analysis. We observed increased T, B, IL-17 and BAFF + cells in small and large airways of COPD individuals; however, in the NOS, we only observed increase in T and IL-17 + cells only in small airways. A decrease in the density of Treg + , TGF-β + and IL-10 + in small and large airways was observed only in COPD individuals. In the lymphoid tissues, Treg, T,B-cells and BAFF + cells were also increased in COPD; however, changes in Treg inhibitory associated cytokines were not observed in this compartment. Therefore, our results suggest that difference in Treg + cell distributions in lung compartments and the decrease in TGF-β + and IL-10 + cells in the airways may lead to the obstruction in smokers.

  1. PET imaging of focal demyelination and remyelination in a rat model of multiple sclerosis: comparison of [11C]MeDAS, [11C]CIC and [11C]PIB.

    PubMed

    Faria, Daniele de Paula; Copray, Sjef; Sijbesma, Jurgen W A; Willemsen, Antoon T M; Buchpiguel, Carlos A; Dierckx, Rudi A J O; de Vries, Erik F J

    2014-05-01

    In this study, we compared the ability of [(11)C]CIC, [(11)C]MeDAS and [(11)C]PIB to reveal temporal changes in myelin content in focal lesions in the lysolecithin rat model of multiple sclerosis. Pharmacokinetic modelling was performed to determine the best method to quantify tracer uptake. Sprague-Dawley rats were stereotactically injected with either 1 % lysolecithin or saline into the corpus callosum and striatum of the right brain hemisphere. Dynamic PET imaging with simultaneous arterial blood sampling was performed 7 days after saline injection (control group), 7 days after lysolecithin injection (demyelination group) and 4 weeks after lysolecithin injection (remyelination group). The kinetics of [(11)C]CIC, [(11)C]MeDAS and [(11)C]PIB was best fitted by Logan graphical analysis, suggesting that tracer binding is reversible. Compartment modelling revealed that all tracers were fitted best with the reversible two-tissue compartment model. Tracer uptake and distribution volume in lesions were in agreement with myelin status. However, the slow kinetics and homogeneous brain uptake of [(11)C]CIC make this tracer less suitable for in vivo PET imaging. [(11)C]PIB showed good uptake in the white matter in the cerebrum, but [(11)C]PIB uptake in the cerebellum was low, despite high myelin density in this region. [(11)C]MeDAS distribution correlated well with myelin density in different brain regions. This study showed that PET imaging of demyelination and remyelination processes in focal lesions is feasible. Our comparison of three myelin tracers showed that [(11)C]MeDAS has more favourable properties for quantitative PET imaging of demyelinated and remyelinated lesions throughout the CNS than [(11)C]CIC and [(11)C]PIB.

  2. Coreceptor use in nonhuman primate models of HIV infection.

    PubMed

    Sina, Silvana Tasca; Ren, Wuze; Cheng-Mayer, Cecilia

    2011-01-27

    SIV or SHIV infection of nonhuman primates (NHP) has been used to investigate the impact of coreceptor usage on the composition and dynamics of the CD4+ T cell compartment, mechanisms of disease induction and development of clinical syndrome. As the entire course of infection can be followed, with frequent access to tissue compartments, infection of rhesus macaques with CCR5-tropic SHIVs further allows for study of HIV-1 coreceptor switch after intravenous and mucosal inoculation, with longitudinal and systemic analysis to determine the timing, anatomical sites and cause for the change in envelope glycoprotein and coreceptor preference. Here, we review our current understanding of coreceptor use in NHPs and their impact on the pathobiological characteristics of the infection, and discuss recent advances in NHP studies to uncover the underlying selective pressures for the change in coreceptor preference in vivo.

  3. Kinetics of CLL cells in tissues and blood during therapy with the BTK inhibitor ibrutinib.

    PubMed

    Wodarz, Dominik; Garg, Naveen; Komarova, Natalia L; Benjamini, Ohad; Keating, Michael J; Wierda, William G; Kantarjian, Hagop; James, Danelle; O'Brien, Susan; Burger, Jan A

    2014-06-26

    The Bruton tyrosine kinase (BTK) inhibitor ibrutinib has excellent clinical activity in patients with chronic lymphocytic leukemia (CLL). Characteristically, ibrutinib causes CLL cell redistribution from tissue sites into the peripheral blood during the initial weeks of therapy. To better characterize the dynamics of this redistribution phenomenon, we correlated serial lymphocyte counts with volumetric changes in lymph node and spleen sizes during ibrutinib therapy. Kinetic parameters were estimated by applying a mathematical model to the data. We found that during ibrutinib therapy, 1.7% ± 1.1% of blood CLL cells and 2.7% ± 0.99% of tissue CLL cells die per day. The fraction of the tissue CLL cells that was redistributed into the blood during therapy was estimated to be 23.3% ± 17% of the total tissue disease burden. These data indicate that the reduction of tissue disease burden by ibrutinib is due more to CLL cell death and less to egress from nodal compartments. © 2014 by The American Society of Hematology.

  4. A Hybrid Windkessel Model of Blood Flow in Arterial Tree Using Velocity Profile Method

    NASA Astrophysics Data System (ADS)

    Aboelkassem, Yasser; Virag, Zdravko

    2016-11-01

    For the study of pulsatile blood flow in the arterial system, we derived a coupled Windkessel-Womersley mathematical model. Initially, a 6-elements Windkessel model is proposed to describe the hemodynamics transport in terms of constant resistance, inductance and capacitance. This model can be seen as a two compartment model, in which the compartments are connected by a rigid pipe, modeled by one inductor and resistor. The first viscoelastic compartment models proximal part of the aorta, the second elastic compartment represents the rest of the arterial tree and aorta can be seen as the connection pipe. Although the proposed 6-elements lumped model was able to accurately reconstruct the aortic pressure, it can't be used to predict the axial velocity distribution in the aorta and the wall shear stress and consequently, proper time varying pressure drop. We then modified this lumped model by replacing the connection pipe circuit elements with a vessel having a radius R and a length L. The pulsatile flow motions in the vessel are resolved instantaneously along with the Windkessel like model enable not only accurate prediction of the aortic pressure but also wall shear stress and frictional pressure drop. The proposed hybrid model has been validated using several in-vivo aortic pressure and flow rate data acquired from different species such as, humans, dogs and pigs. The method accurately predicts the time variation of wall shear stress and frictional pressure drop. Institute for Computational Medicine, Dept. Biomedical Engineering.

  5. Stimulus-induced transitions between spike-wave discharges and spindles with the modulation of thalamic reticular nucleus.

    PubMed

    Fan, Denggui; Wang, Qingyun; Su, Jianzhong; Xi, Hongguang

    2017-12-01

    It is believed that thalamic reticular nucleus (TRN) controls spindles and spike-wave discharges (SWD) in seizure or sleeping processes. The dynamical mechanisms of spatiotemporal evolutions between these two types of activity, however, are not well understood. In light of this, we first use a single-compartment thalamocortical neural field model to investigate the effects of TRN on occurrence of SWD and its transition. Results show that the increasing inhibition from TRN to specific relay nuclei (SRN) can lead to the transition of system from SWD to slow-wave oscillation. Specially, it is shown that stimulations applied in the cortical neuronal populations can also initiate the SWD and slow-wave oscillation from the resting states under the typical inhibitory intensity from TRN to SRN. Then, we expand into a 3-compartment coupled thalamocortical model network in linear and circular structures, respectively, to explore the spatiotemporal evolutions of wave states in different compartments. The main results are: (i) for the open-ended model network, SWD induced by stimulus in the first compartment can be transformed into sleep-like slow UP-DOWN and spindle states as it propagates into the downstream compartments; (ii) for the close-ended model network, weak stimulations performed in the first compartment can result in the consistent experimentally observed spindle oscillations in all three compartments; in contrast, stronger periodic single-pulse stimulations applied in the first compartment can induce periodic transitions between SWD and spindle oscillations. Detailed investigations reveal that multi-attractor coexistence mechanism composed of SWD, spindles and background state underlies these state evolutions. What's more, in order to demonstrate the state evolution stability with respect to the topological structures of neural network, we further expand the 3-compartment coupled network into 10-compartment coupled one, with linear and circular structures, and nearest-neighbor (NN) coupled network as well as its realization of small-world (SW) topology via random rewiring, respectively. Interestingly, for the cases of linear and circular connetivities, qualitatively similar results were obtained in addition to the more irregularity of firings. However, SWD can be eventually transformed into the consistent low-amplitude oscillations for both NN and SW networks. In particular, SWD evolves into the slow spindling oscillations and background tonic oscillations within the NN and SW network, respectively. Our modeling and simulation studies highlight the effect of network topology in the evolutions of SWD and spindling oscillations, which provides new insights into the mechanisms of cortical seizures development.

  6. Mathematical Model for the Contribution of Individual Organs to Non-Zero Y-Intercepts in Single and Multi-Compartment Linear Models of Whole-Body Energy Expenditure

    PubMed Central

    Kaiyala, Karl J.

    2014-01-01

    Mathematical models for the dependence of energy expenditure (EE) on body mass and composition are essential tools in metabolic phenotyping. EE scales over broad ranges of body mass as a non-linear allometric function. When considered within restricted ranges of body mass, however, allometric EE curves exhibit ‘local linearity.’ Indeed, modern EE analysis makes extensive use of linear models. Such models typically involve one or two body mass compartments (e.g., fat free mass and fat mass). Importantly, linear EE models typically involve a non-zero (usually positive) y-intercept term of uncertain origin, a recurring theme in discussions of EE analysis and a source of confounding in traditional ratio-based EE normalization. Emerging linear model approaches quantify whole-body resting EE (REE) in terms of individual organ masses (e.g., liver, kidneys, heart, brain). Proponents of individual organ REE modeling hypothesize that multi-organ linear models may eliminate non-zero y-intercepts. This could have advantages in adjusting REE for body mass and composition. Studies reveal that individual organ REE is an allometric function of total body mass. I exploit first-order Taylor linearization of individual organ REEs to model the manner in which individual organs contribute to whole-body REE and to the non-zero y-intercept in linear REE models. The model predicts that REE analysis at the individual organ-tissue level will not eliminate intercept terms. I demonstrate that the parameters of a linear EE equation can be transformed into the parameters of the underlying ‘latent’ allometric equation. This permits estimates of the allometric scaling of EE in a diverse variety of physiological states that are not represented in the allometric EE literature but are well represented by published linear EE analyses. PMID:25068692

  7. Comparing models for perfluorooctanoic acid pharmacokinetics using Bayesian analysis.

    PubMed

    Wambaugh, John F; Barton, Hugh A; Setzer, R Woodrow

    2008-12-01

    Selecting the appropriate pharmacokinetic (PK) model given the available data is investigated for perfluorooctanoic acid (PFOA), which has been widely analyzed with an empirical, one-compartment model. This research examined the results of experiments [Kemper R. A., DuPont Haskell Laboratories, USEPA Administrative Record AR-226.1499 (2003)] that administered single oral or iv doses of PFOA to adult male and female rats. PFOA concentration was observed over time; in plasma for some animals and in fecal and urinary excretion for others. There were four rats per dose group, for a total of 36 males and 36 females. Assuming that the PK parameters for each individual within a gender were drawn from the same, biologically varying population, plasma and excretion data were jointly analyzed using a hierarchical framework to separate uncertainty due to measurement error from actual biological variability. Bayesian analysis using Markov Chain Monte Carlo (MCMC) provides tools to perform such an analysis as well as quantitative diagnostics to evaluate and discriminate between models. Starting from a one-compartment PK model with separate clearances to urine and feces, the model was incrementally expanded using Bayesian measures to assess if the expansion was supported by the data. PFOA excretion is sexually dimorphic in rats; male rats have bi-phasic elimination that is roughly 40 times slower than that of the females, which appear to have a single elimination phase. The male and female data were analyzed separately, keeping only the parameters describing the measurement process in common. For male rats, including excretion data initially decreased certainty in the one-compartment parameter estimates compared to an analysis using plasma data only. Allowing a third, unspecified clearance improved agreement and increased certainty when all the data was used, however a significant amount of eliminated PFOA was estimated to be missing from the excretion data. Adding an additional PK compartment reduced the unaccounted-for elimination to amounts comparable to the cage wash. For both sexes, an MCMC estimate of the appropriateness of a model for a given data type, the Deviance Information Criterion, indicated that this two-compartment model was better suited to describing PFOA PK. The median estimate was 142.1 +/- 37.6 ml/kg for the volume of the primary compartment and 1.24 +/- 1.1 ml/kg/h for the clearances of male rats and 166.4 +/- 46.8 ml/kg and 30.3 +/- 13.2 ml/kg/h, respectively for female rats. The estimates for the second compartment differed greatly with gender-volume 311.8 +/- 453.9 ml/kg with clearance 3.2 +/- 6.2 for males and 1400 +/- 2507.5 ml/kg and 4.3 +/- 2.2 ml/kg/h for females. The median estimated clearance was 12 +/- 6% to feces and 85 +/- 7% to urine for male rats and 8 +/- 6% and 77 +/- 9% for female rats. We conclude that the available data may support more models for PFOA PK beyond two-compartments and that the methods employed here will be generally useful for more complicated, including PBPK, models.

  8. Population pharmacokinetics of lyophilized recombinant glucagon-like peptide-1 receptor agonist (recombinant exendin-4, rE-4) in Chinese patients with type 2 diabetes mellitus
.

    PubMed

    Zang, Yan-Nan; Zhang, Min-Jie; Wang, Yi-Tong; Wang, Chen; Wang, Qian; Zheng, Qing-Shan; Ji, Li-Nong; Guo, Wei; Fang, Yi

    2017-08-01

    To investigate the population pharmacokinetics of lyophilized recombinant glucagon-like peptide-1 receptor agonist (rE-4) in Chinese patients with type 2 diabetes mellitus (T2DM) for plasma concentration estimation and individualized treatment. Twelve patients with T2DM were enrolled to receive subcutaneous injections of rE-4 at 5 µg twice daily for 84 days. Administration dosage was adjusted from 5 µg to 10 µg twice daily at day 29 in case of glycated albumin (GA) ≥ 17%. The population pharmacokinetic model was developed in the nonlinear mixed-effects modeling software NONMEM. The data were best described by a two-compartment model with first-order absorption and elimination. The outcome parameters were as follows: apparent clearance (CL/F) 6.67 L/h, apparent distribution volume of central compartment (Vc/F) 19.4 L, absorption rate constant (Ka) 1.39 h-1, apparent distribution volume of peripheral compartment (Vp/F) 22.6 L, intercompartmental clearance (Q/F) 1.28 L/h. The interindividual variabilities for CL/F, Vc/F, Ka, and Q/F were 64.4%, 57.7%, 45.5%, and 153.3%, respectively. The intra-individual variability of proportional error model was 41.7%. No covariate was screened out that showed significant influence on the model parameters. The established two-compartment model with first-order absorption and elimination successfully described the pharmacokinetic characteristics of rE-4 in Chinese patients with T2DM.
.

  9. Plutonium 238/239 Decorporation Model

    DTIC Science & Technology

    2014-10-01

    distribution in tissue compartments over time with and without treatment, excretion rates, and radiation doses to critical organs. Calculations from...kPa) pound- mass -foot2 (moment of inertia) 4.214 011 x E – 2 kilogram-meter2 (kg*m2) pound- mass /foot3 1.601 846 x E + 1 kilogram/m3 (kg/m3) rad...45 Figure 21. Acute Doses to Critical Organs from Pu-238 and Pu-239 Over 90 Days ................... 46 Figure 22. Doses

  10. Pharmacokinetic modeling of 4,4'-methylenedianiline released from reused polyurethane dialyzer potting materials.

    PubMed

    Do Luu, H M; Hutter, J C

    2000-01-01

    4, 4'-Methylenedianiline (MDA) is a hydrolysis degradation product that can be released from polyurethanes commonly used in medical device applications. MDA is mutagenic and carcinogenic in animals. In humans, it is hepatotoxic, a known contact and respiratory allergen, and a suspected carcinogen. A physiologically based pharmacokinetic (PBPK) model was developed to estimate the absorption, distribution, metabolism, and excretion of MDA in patients exposed to MDA leached from the potting materials of hemodialyzers. A worst-case reuse situation and a single use case were investigated. The PBPK model included five tissue compartments: liver, kidney, gastrointestinal tract, slowly perfused tissues, and richly perfused tissues. Physiological and chemical parameters of a healthy individual used in the model were obtained from the literature. The model was calibrated using previously published kinetic studies of IV administered doses of (14) C-MDA to rats. The model was validated using independent data published for MDA-exposed workers. The PBPK results indicated that dialysis patients who are exposed to MDA released from dialyzers (new or reused) could accumulate low levels of MDA and metabolites (total MDA) over time. Copyright 2000 John Wiley & Sons, Inc.

  11. The Effects of Androgens on Murine Cortical Bone Do Not Require AR or ERα Signaling in Osteoblasts and Osteoclasts

    PubMed Central

    Ucer, Serra; Iyer, Srividhya; Bartell, Shoshana M; Martin-Millan, Marta; Han, Li; Kim, Ha-Neui; Weinstein, Robert S; Jilka, Robert L; O’Brien, Charles A; Almeida, Maria; Manolagas, Stavros C

    2016-01-01

    In men, androgens are critical for the acquisition and maintenance of bone mass in both the cortical and cancellous bone compartment. Male mice with targeted deletion of the androgen receptor (AR) in mature osteoblasts or osteocytes have lower cancellous bone mass, but no cortical bone phenotype. We have investigated the possibility that the effects of androgens on the cortical compartment result from AR signaling in osteoprogenitors or cells of the osteoclast lineage; or via estrogen receptor alpha (ERα) signaling in either or both of these two cell types upon conversion of testosterone to estradiol. To this end, we generated mice with targeted deletion of an AR or an ERα allele in the mesenchymal (ARf/y;Prx1-Cre or ERαf/f;Osx1-Cre) or myeloid cell lineage (ARf/y; LysM-Cre or ERαf/f;LysM-Cre) and their descendants. Male ARf/y;Prx1-Cre mice exhibited decreased bone volume and trabecular number, and increased osteoclast number in the cancellous compartment. Moreover, they did not undergo the loss of cancellous bone volume and trabecular number caused by orchidectomy (ORX) in their littermate controls. In contrast, ARf/y;LysM-Cre, ERαf/f; Osx1-Cre, or ERαf/f;LysM-Cre mice had no cancellous bone phenotype at baseline and lost the same amount of cancellous bone as their controls following ORX. Most unexpectedly, adult males of all four models had no discernible cortical bone phenotype at baseline, and lost the same amount of cortical bone as their littermate controls after ORX. Recapitulation of the effects of ORX by AR deletion only in the ARf/y;Prx1-Cre mice indicates that the effects of androgens on cancellous bone result from AR signaling in osteoblasts—not on osteoclasts or via aromatization. The effects of androgens on cortical bone mass, on the other hand, do not require AR or ERα signaling in any cell type across the osteoblast or osteoclast differentiation lineage. Therefore, androgens must exert their effects indirectly by actions on some other cell type(s) or tissue(s). PMID:25704845

  12. Hydrodynamically-driven drug release during interstitial flow through hollow fibers implanted near lymphatics

    PubMed Central

    Dukhin, Stanislav S.; Labib, Mohamed E.

    2016-01-01

    Current drug delivery devices (DDD) are mainly based on the use of diffusion as the main transport process. Diffusion-driven processes can only achieve low release rate because diffusion is a slow process. This represents a serious obstacle in the realization of recent successes in the suppression of lymphatic metastasis and in the prevention of limb and organ transplant rejection. Surprisingly, it was overlooked that there is a more favorable drug release mode which can be achieved when a special DDD is implanted near lymphatics. This opportunity can be realized when the interstitial fluid flow penetrates a drug delivery device of proper design and allows such fluid to flow out of it. This design is based on hollow fibers loaded with drug and whose hydrodynamic permeability is much higher than that of the surrounding tissue. The latter is referred to as hollow fiber of high hydrodynamic permeability (HFHP). The interstitial flow easily penetrates the hollow fiber membrane as well as its lumen with a higher velocity than that in the adjacent tissue. The interstitial liquid stream entering the lumen becomes almost saturated with drug as it flows out of the HFHP. This is due to the drug powder dissolution in the lumens of HFHP which forms a strip of drug solution that crosses the interstitium and finally enters the lymphatics. This hydrodynamically-driven release (HDR) may exceed the concomitant diffusion-driven release (DDR) by one or even two orders of magnitude. The hydrodynamics of the two-compartment media is sufficient for developing the HDR theory which is detailed in this paper. Convective diffusion theory for two compartments (membrane of hollow fiber and adjacent tissue) is required for exact quantification when a small contribution of DDR to predominating HDR is present. Hence, modeling is important for HDR which would lead to establishing a new branch in physico-chemical hydrodynamics. The release rate achieved with the use of HFHP increases proportional to the number of hollow fibers in the fabric employed in drug delivery. Based on this contribution, it is now possible to simultaneously provide high release rates and long release durations, thus overcoming a fundamental limitation in drug delivery. Perhaps this breakthrough in long-term drug delivery has potential applications in targeting lymphatics and in treating cancer and cancer metastasis without causing the serious side effects of systemic drugs. PMID:28579697

  13. Three-dimensional whole-brain perfusion quantification using pseudo-continuous arterial spin labeling MRI at multiple post-labeling delays: accounting for both arterial transit time and impulse response function.

    PubMed

    Qin, Qin; Huang, Alan J; Hua, Jun; Desmond, John E; Stevens, Robert D; van Zijl, Peter C M

    2014-02-01

    Measurement of the cerebral blood flow (CBF) with whole-brain coverage is challenging in terms of both acquisition and quantitative analysis. In order to fit arterial spin labeling-based perfusion kinetic curves, an empirical three-parameter model which characterizes the effective impulse response function (IRF) is introduced, which allows the determination of CBF, the arterial transit time (ATT) and T(1,eff). The accuracy and precision of the proposed model were compared with those of more complicated models with four or five parameters through Monte Carlo simulations. Pseudo-continuous arterial spin labeling images were acquired on a clinical 3-T scanner in 10 normal volunteers using a three-dimensional multi-shot gradient and spin echo scheme at multiple post-labeling delays to sample the kinetic curves. Voxel-wise fitting was performed using the three-parameter model and other models that contain two, four or five unknown parameters. For the two-parameter model, T(1,eff) values close to tissue and blood were assumed separately. Standard statistical analysis was conducted to compare these fitting models in various brain regions. The fitted results indicated that: (i) the estimated CBF values using the two-parameter model show appreciable dependence on the assumed T(1,eff) values; (ii) the proposed three-parameter model achieves the optimal balance between the goodness of fit and model complexity when compared among the models with explicit IRF fitting; (iii) both the two-parameter model using fixed blood T1 values for T(1,eff) and the three-parameter model provide reasonable fitting results. Using the proposed three-parameter model, the estimated CBF (46 ± 14 mL/100 g/min) and ATT (1.4 ± 0.3 s) values averaged from different brain regions are close to the literature reports; the estimated T(1,eff) values (1.9 ± 0.4 s) are higher than the tissue T1 values, possibly reflecting a contribution from the microvascular arterial blood compartment. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Using an agent-based model to analyze the dynamic communication network of the immune response

    PubMed Central

    2011-01-01

    Background The immune system behaves like a complex, dynamic network with interacting elements including leukocytes, cytokines, and chemokines. While the immune system is broadly distributed, leukocytes must communicate effectively to respond to a pathological challenge. The Basic Immune Simulator 2010 contains agents representing leukocytes and tissue cells, signals representing cytokines, chemokines, and pathogens, and virtual spaces representing organ tissue, lymphoid tissue, and blood. Agents interact dynamically in the compartments in response to infection of the virtual tissue. Agent behavior is imposed by logical rules derived from the scientific literature. The model captured the agent-to-agent contact history, and from this the network topology and the interactions resulting in successful versus failed viral clearance were identified. This model served to integrate existing knowledge and allowed us to examine the immune response from a novel perspective directed at exploiting complex dynamics, ultimately for the design of therapeutic interventions. Results Analyzing the evolution of agent-agent interactions at incremental time points from identical initial conditions revealed novel features of immune communication associated with successful and failed outcomes. There were fewer contacts between agents for simulations ending in viral elimination (win) versus persistent infection (loss), due to the removal of infected agents. However, early cellular interactions preceded successful clearance of infection. Specifically, more Dendritic Agent interactions with TCell and BCell Agents, and more BCell Agent interactions with TCell Agents early in the simulation were associated with the immune win outcome. The Dendritic Agents greatly influenced the outcome, confirming them as hub agents of the immune network. In addition, unexpectedly high frequencies of Dendritic Agent-self interactions occurred in the lymphoid compartment late in the loss outcomes. Conclusions An agent-based model capturing several key aspects of complex system dynamics was used to study the emergent properties of the immune response to viral infection. Specific patterns of interactions between leukocyte agents occurring early in the response significantly improved outcome. More interactions at later stages correlated with persistent inflammation and infection. These simulation experiments highlight the importance of commonly overlooked aspects of the immune response and provide insight into these processes at a resolution level exceeding the capabilities of current laboratory technologies. PMID:21247471

  15. 46 CFR 171.017 - One and two compartment standards of flooding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false One and two compartment standards of flooding. 171.017... standards of flooding. (a) One compartment standard of flooding. A vessel is designed to a one compartment standard of flooding if the margin line is not submerged when the total buoyancy between each set of two...

  16. 46 CFR 171.017 - One and two compartment standards of flooding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false One and two compartment standards of flooding. 171.017... standards of flooding. (a) One compartment standard of flooding. A vessel is designed to a one compartment standard of flooding if the margin line is not submerged when the total buoyancy between each set of two...

  17. 46 CFR 171.017 - One and two compartment standards of flooding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false One and two compartment standards of flooding. 171.017... standards of flooding. (a) One compartment standard of flooding. A vessel is designed to a one compartment standard of flooding if the margin line is not submerged when the total buoyancy between each set of two...

  18. 46 CFR 171.017 - One and two compartment standards of flooding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false One and two compartment standards of flooding. 171.017... standards of flooding. (a) One compartment standard of flooding. A vessel is designed to a one compartment standard of flooding if the margin line is not submerged when the total buoyancy between each set of two...

  19. 46 CFR 171.017 - One and two compartment standards of flooding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false One and two compartment standards of flooding. 171.017... standards of flooding. (a) One compartment standard of flooding. A vessel is designed to a one compartment standard of flooding if the margin line is not submerged when the total buoyancy between each set of two...

  20. On the use of radiative surface temperature to estimate sensible heat flux over sparse shrubs in Nevada

    NASA Technical Reports Server (NTRS)

    Chehbouni, A.; Nichols, W. D.; Qi, J.; Njoku, E. G.; Kerr, Y. H.; Cabot, F.

    1994-01-01

    The accurate partitioning of available energy into sensible and latent heat flux is crucial to the understanding of surface atmosphere interactions. This issue is more complicated in arid and semi arid regions where the relative contribution to surface fluxes from the soil and vegetation may vary significantly throughout the day and throughout the season. A three component model to estimate sensible heat flux over heterogeneous surfaces is presented. The surface was represented with two adjacent compartments. The first compartment is made up of two components, shrubs and shaded soil, the second of open 'illuminated' soil. Data collected at two different sites in Nevada (U.S.) during the Summers of 1991 and 1992 were used to evaluate model performance. The results show that the present model is sufficiently general to yield satisfactory results for both sites.

  1. Compartment models of the diffusion MR signal in brain white matter: a taxonomy and comparison.

    PubMed

    Panagiotaki, Eleftheria; Schneider, Torben; Siow, Bernard; Hall, Matt G; Lythgoe, Mark F; Alexander, Daniel C

    2012-02-01

    This paper aims to identify the minimum requirements for an accurate model of the diffusion MR signal in white matter of the brain. We construct a taxonomy of multi-compartment models of white matter from combinations of simple models for the intra- and the extra-axonal spaces. We devise a new diffusion MRI protocol that provides measurements with a wide range of imaging parameters for diffusion sensitization both parallel and perpendicular to white matter fibres. We use the protocol to acquire data from two fixed rat brains, which allows us to fit, study and compare the different models. The study examines a total of 47 analytic models, including several well-used models from the literature, which we place within the taxonomy. The results show that models that incorporate intra-axonal restriction, such as ball and stick or CHARMED, generally explain the data better than those that do not, such as the DT or the biexponential models. However, three-compartment models which account for restriction parallel to the axons and incorporate pore size explain the measurements most accurately. The best fit comes from combining a full diffusion tensor (DT) model of the extra-axonal space with a cylindrical intra-axonal component of single radius and a third spherical compartment of non-zero radius. We also measure the stability of the non-zero radius intra-axonal models and find that single radius intra-axonal models are more stable than gamma distributed radii models with similar fitting performance. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. MR susceptibility imaging

    NASA Astrophysics Data System (ADS)

    Duyn, Jeff

    2013-04-01

    This work reviews recent developments in the use of magnetic susceptibility contrast for human MRI, with a focus on the study of brain anatomy. The increase in susceptibility contrast with modern high field scanners has led to novel applications and insights into the sources and mechanism contributing to this contrast in brain tissues. Dedicated experiments have demonstrated that in most of healthy brain, iron and myelin dominate tissue susceptibility variations, although their relative contribution varies substantially. Local variations in these compounds can affect both amplitude and frequency of the MRI signal. In white matter, the myelin sheath introduces an anisotropic susceptibility that has distinct effects on the water compartments inside the axons, between the myelin sheath, and the axonal space, and renders their signals dependent on the angle between the axon and the magnetic field. This offers opportunities to derive tissue properties specific to these cellular compartments.

  3. Classical Michaelis-Menten and system theory approach to modeling metabolite formation kinetics.

    PubMed

    Popović, Jovan

    2004-01-01

    When single doses of drug are administered and kinetics are linear, techniques, which are based on the compartment approach and the linear system theory approach, in modeling the formation of the metabolite from the parent drug are proposed. Unlike the purpose-specific compartment approach, the methodical, conceptual and computational uniformity in modeling various linear biomedical systems is the dominant characteristic of the linear system approach technology. Saturation of the metabolic reaction results in nonlinear kinetics according to the Michaelis-Menten equation. The two compartment open model with Michaelis-Menten elimination kinetics is theorethicaly basic when single doses of drug are administered. To simulate data or to fit real data using this model, one must resort to numerical integration. A biomathematical model for multiple dosage regimen calculations of nonlinear metabolic systems in steady-state and a working example with phenytoin are presented. High correlation between phenytoin steady-state serum levels calculated from individual Km and Vmax values in the 15 adult epileptic outpatients and the observed levels at the third adjustment of phenytoin daily dose (r=0.961, p<0.01) were found.

  4. An atlas of B-cell clonal distribution in the human body.

    PubMed

    Meng, Wenzhao; Zhang, Bochao; Schwartz, Gregory W; Rosenfeld, Aaron M; Ren, Daqiu; Thome, Joseph J C; Carpenter, Dustin J; Matsuoka, Nobuhide; Lerner, Harvey; Friedman, Amy L; Granot, Tomer; Farber, Donna L; Shlomchik, Mark J; Hershberg, Uri; Luning Prak, Eline T

    2017-09-01

    B-cell responses result in clonal expansion, and can occur in a variety of tissues. To define how B-cell clones are distributed in the body, we sequenced 933,427 B-cell clonal lineages and mapped them to eight different anatomic compartments in six human organ donors. We show that large B-cell clones partition into two broad networks-one spans the blood, bone marrow, spleen and lung, while the other is restricted to tissues within the gastrointestinal (GI) tract (jejunum, ileum and colon). Notably, GI tract clones display extensive sharing of sequence variants among different portions of the tract and have higher frequencies of somatic hypermutation, suggesting extensive and serial rounds of clonal expansion and selection. Our findings provide an anatomic atlas of B-cell clonal lineages, their properties and tissue connections. This resource serves as a foundation for studies of tissue-based immunity, including vaccine responses, infections, autoimmunity and cancer.

  5. Evidence from a Mouse Model That Epithelial Cell Migration and Mesenchymal-Epithelial Transition Contribute to Rapid Restoration of Uterine Tissue Integrity during Menstruation

    PubMed Central

    Cousins, Fiona L.; Murray, Alison; Esnal, Arantza; Gibson, Douglas A.; Critchley, Hilary O. D.; Saunders, Philippa T. K.

    2014-01-01

    Background In women dynamic changes in uterine tissue architecture occur during each menstrual cycle. Menses, characterised by the shedding of the upper functional layer of the endometrium, is the culmination of a cascade of irreversible changes in tissue function including stromal decidualisation, inflammation and production of degradative enzymes. The molecular mechanisms that contribute to the rapid restoration of tissue homeostasis at time of menses are poorly understood. Methodology A modified mouse model of menses was developed to focus on the events occurring within the uterine lining during endometrial shedding/repair. Decidualisation, vaginal bleeding, tissue architecture and cell proliferation were evaluated at 4, 8, 12, and 24 hours after progesterone (P4) withdrawal; mice received a single injection of bromodeoxyuridine (BrdU) 90 mins before culling. Expression of genes implicated in the regulation of mesenchymal to epithelial transition (MET) was determined using a RT2 PCR profiler array, qRTPCR and bioinformatic analysis. Principal Findings Mice exhibited vaginal bleeding between 4 and 12 hours after P4 withdrawal, concomitant with detachment of the decidualised cell mass from the basal portion of the endometrial lining. Immunostaining for BrdU and pan cytokeratin revealed evidence of epithelial cell proliferation and migration. Cells that appeared to be in transition from a mesenchymal to an epithelial cell identity were identified within the stromal compartment. Analysis of mRNAs encoding genes expressed exclusively in the epithelial or stromal compartments, or implicated in MET, revealed dynamic changes in expression, consistent with a role for reprogramming of mesenchymal cells so that they could contribute to re-epithelialisation. Conclusions/Significance These studies have provided novel insights into the cellular processes that contribute to re-epithelialisation post-menses implicating both epithelial cell migration and mesenchymal cell differentiation in restoration of an intact epithelial cell layer. These insights may inform development of new therapies to induce rapid healing in the endometrium and other tissues and offer hope to women who suffer from heavy menstrual bleeding. PMID:24466063

  6. Pharmacokinetic modeling of a gel-delivered dapivirine microbicide in humans.

    PubMed

    Halwes, Michael E; Steinbach-Rankins, Jill M; Frieboes, Hermann B

    2016-10-10

    Although a number of drugs have been developed for the treatment and prevention of human immunodeficiency virus (HIV) infection, it has proven difficult to optimize the drug and dosage parameters. The vaginal tissue, comprised of epithelial, stromal and blood compartments presents a complex system which challenges evaluation of drug kinetics solely through empirical effort. To provide insight into the underlying processes, mathematical modeling and computational simulation have been applied to the study of retroviral microbicide pharmacokinetics. Building upon previous pioneering work that modeled the delivery of Tenofovir (TFV) via topical delivery to the vaginal environment, here we computationally evaluate the performance of the retroviral inhibitor dapivirine released from a microbicide gel. We adapt the TFV model to simulate the multicompartmental diffusion and uptake of dapivirine into the blood plasma and vaginal compartments. The results show that dapivirine is expected to accumulate at the interface between the gel and epithelium compartments due to its hydrophobic characteristics. Hydrophobicity also results in decreased diffusivity, which may impact distribution by up to 2 orders of magnitude compared to TFV. Maximum concentrations of dapivirine in the epithelium, stroma, and blood were 9.9e7, 2.45e6, and 119pg/mL, respectively. This suggests that greater initial doses or longer time frames are required to obtain higher drug concentrations in the epithelium. These observations may have important ramifications if a specific time frame is required for efficacy, or if a minimum/maximum concentration is needed in the mucus, epithelium, or stroma based on combined efficacy and safety data. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Deep learning for tissue microarray image-based outcome prediction in patients with colorectal cancer

    NASA Astrophysics Data System (ADS)

    Bychkov, Dmitrii; Turkki, Riku; Haglund, Caj; Linder, Nina; Lundin, Johan

    2016-03-01

    Recent advances in computer vision enable increasingly accurate automated pattern classification. In the current study we evaluate whether a convolutional neural network (CNN) can be trained to predict disease outcome in patients with colorectal cancer based on images of tumor tissue microarray samples. We compare the prognostic accuracy of CNN features extracted from the whole, unsegmented tissue microarray spot image, with that of CNN features extracted from the epithelial and non-epithelial compartments, respectively. The prognostic accuracy of visually assessed histologic grade is used as a reference. The image data set consists of digitized hematoxylin-eosin (H and E) stained tissue microarray samples obtained from 180 patients with colorectal cancer. The patient samples represent a variety of histological grades, have data available on a series of clinicopathological variables including long-term outcome and ground truth annotations performed by experts. The CNN features extracted from images of the epithelial tissue compartment significantly predicted outcome (hazard ratio (HR) 2.08; CI95% 1.04-4.16; area under the curve (AUC) 0.66) in a test set of 60 patients, as compared to the CNN features extracted from unsegmented images (HR 1.67; CI95% 0.84-3.31, AUC 0.57) and visually assessed histologic grade (HR 1.96; CI95% 0.99-3.88, AUC 0.61). As a conclusion, a deep-learning classifier can be trained to predict outcome of colorectal cancer based on images of H and E stained tissue microarray samples and the CNN features extracted from the epithelial compartment only resulted in a prognostic discrimination comparable to that of visually determined histologic grade.

  8. Compartment-specific transcriptomics in a reef-building coral exposed to elevated temperatures

    PubMed Central

    Mayfield, Anderson B; Wang, Yu-Bin; Chen, Chii-Shiarng; Lin, Chung-Yen; Chen, Shu-Hwa

    2014-01-01

    Although rising ocean temperatures threaten scleractinian corals and the reefs they construct, certain reef corals can acclimate to elevated temperatures to which they are rarely exposed in situ. Specimens of the model Indo-Pacific reef coral Pocillopora damicornis collected from upwelling reefs of Southern Taiwan were previously found to have survived a 36-week exposure to 30°C, a temperature they encounter infrequently and one that can elicit the breakdown of the coral–dinoflagellate (genus Symbiodinium) endosymbiosis in many corals of the Pacific Ocean. To gain insight into the subcellular pathways utilized by both the coral hosts and their mutualistic Symbiodinium populations to acclimate to this temperature, mRNAs from both control (27°C) and high (30°C)-temperature samples were sequenced on an Illumina platform and assembled into a 236 435-contig transcriptome. These P. damicornis specimens were found to be ∼60% anthozoan and 40% microbe (Symbiodinium, other eukaryotic microbes, and bacteria), from an mRNA-perspective. Furthermore, a significantly higher proportion of genes from the Symbiodinium compartment were differentially expressed after two weeks of exposure. Specifically, at elevated temperatures, Symbiodinium populations residing within the coral gastrodermal tissues were more likely to up-regulate the expression of genes encoding proteins involved in metabolism than their coral hosts. Collectively, these transcriptome-scale data suggest that the two members of this endosymbiosis have distinct strategies for acclimating to elevated temperatures that are expected to characterize many of Earth's coral reefs in the coming decades. PMID:25354956

  9. Evaluation of Pharmacokinetic Assumptions Using a 443 ...

    EPA Pesticide Factsheets

    With the increasing availability of high-throughput and in vitro data for untested chemicals, there is a need for pharmacokinetic (PK) models for in vitro to in vivo extrapolation (IVIVE). Though some PBPK models have been created for individual compounds using in vivo data, we are now able to rapidly parameterize generic PBPK models using in vitro data to allow IVIVE for chemicals tested for bioactivity via high-throughput screening. However, these new models are expected to have limited accuracy due to their simplicity and generalization of assumptions. We evaluated the assumptions and performance of a generic PBPK model (R package “httk”) parameterized by a library of in vitro PK data for 443 chemicals. We evaluate and calibrate Schmitt’s method by comparing the predicted volume of distribution (Vd) and tissue partition coefficients to in vivo measurements. The partition coefficients are initially over predicted, likely due to overestimation of partitioning into phospholipids in tissues and the lack of lipid partitioning in the in vitro measurements of the fraction unbound in plasma. Correcting for phospholipids and plasma binding improved the predictive ability (R2 to 0.52 for partition coefficients and 0.32 for Vd). We lacked enough data to evaluate the accuracy of changing the model structure to include tissue blood volumes and/or separate compartments for richly/poorly perfused tissues, therefore we evaluated the impact of these changes on model

  10. Reinforcing properties of the substance P C-fragment analog DiMe-C7 in Carassius auratus.

    PubMed

    Mattioli, R; Coelho, J; Martins, A

    1996-04-01

    The aim of the present study was to investigate whether two substance P (SP) fragments have reinforcing effects in Carassius auratus when the fish were tested in a place-preference experimental model. Fish were placed in a 3-compartment box in which one compartment gives access to two others that are not connected. The time spent in each compartment was recorded for 10 min in order to determine which one was preferred. Twenty-four hours later the fish were given one of the following ip treatments: 1) group VEH (N = 12), injected with teleost saline, 2) group DiMe-C7 (N = 12), injected with 33 micrograms/kg DiMe-C7, and 3) group SP1-7 (N = 12), injected with 167 micrograms/kg SP1-7. Immediately after treatment the fish were kept for 30 min in the compartment that was the least preferred on the day before and this procedure was repeated for 3 days. On the fifth day the fish were retested for 10 min to determine the time spent in each compartment. Two-way analysis of variance with treatments and testing as factors indicated a main effect (P < 0.0025) as well as a testing effect (P < 0.009). The post-hoc Scheffé multiple comparison test indicated that only the DiMe-C7 group presented an increase in the time spent in the paired compartment after treatment. We suggest that the C-terminal fragment of SP has reinforcing effects in Carassius auratus.

  11. Electroencephalography (EEG) forward modeling via H(div) finite element sources with focal interpolation.

    PubMed

    Pursiainen, S; Vorwerk, J; Wolters, C H

    2016-12-21

    The goal of this study is to develop focal, accurate and robust finite element method (FEM) based approaches which can predict the electric potential on the surface of the computational domain given its structure and internal primary source current distribution. While conducting an EEG evaluation, the placement of source currents to the geometrically complex grey matter compartment is a challenging but necessary task to avoid forward errors attributable to tissue conductivity jumps. Here, this task is approached via a mathematically rigorous formulation, in which the current field is modeled via divergence conforming H(div) basis functions. Both linear and quadratic functions are used while the potential field is discretized via the standard linear Lagrangian (nodal) basis. The resulting model includes dipolar sources which are interpolated into a random set of positions and orientations utilizing two alternative approaches: the position based optimization (PBO) and the mean position/orientation (MPO) method. These results demonstrate that the present dipolar approach can reach or even surpass, at least in some respects, the accuracy of two classical reference methods, the partial integration (PI) and St. Venant (SV) approach which utilize monopolar loads instead of dipolar currents.

  12. Population Pharmacokinetic Model for Vancomycin Used in Open Heart Surgery: Model-Based Evaluation of Standard Dosing Regimens.

    PubMed

    Alqahtani, Saeed A; Alsultan, Abdullah S; Alqattan, Hussain M; Eldemerdash, Ahmed; Albacker, Turki B

    2018-04-23

    The purpose of this study was to investigate the population pharmacokinetics of vancomycin in patients undergoing open heart surgery. In this observational pharmacokinetic study, multiple blood samples were drawn over a 48-h period of intravenous vancomycin in patients who were undergoing open heart surgery. Blood samples were analysed using the Architect i4000SR Immunoassay Analyzer. Population pharmacokinetic models were developed using Monolix 4.4 software. Pharmacokinetic-pharmacodynamic (PK-PD) simulations were performed to explore the ability of different dosage regimens to achieve the pharmacodynamic targets. One-hundred and sixty-eight blood samples were analysed from 28 patients. The pharmacokinetics of vancomycin was best described by a two-compartment model with between-subject variability in CL, V of the central compartment, and V of the peripheral compartment. CL and central compartment V of vancomycin were related to CL CR , body weight, and albumin concentration. Dosing simulations showed that standard dosing regimens of 1 and 1.5 g failed to achieve the PK-PD target of AUC 0--24 /MIC > 400 for an MIC of 1 mg/L, while high weight-based dosing regimens were able to achieve the PK-PD target. In summary, administration of standard doses of 1 and 1.5 g of vancomycin two times daily provided inadequate antibiotic prophylaxis in patients undergoing open heart surgery. The same findings were obtained when 15 mg/kg and 20 mg/kg doses of vancomycin were administered. Achieving the PK-PD target required higher doses (25 mg/kg and 30 mg/kg) of vancomycin. Copyright © 2018 American Society for Microbiology.

  13. 18F-FLT uptake kinetics in head and neck squamous cell carcinoma: a PET imaging study.

    PubMed

    Liu, Dan; Chalkidou, Anastasia; Landau, David B; Marsden, Paul K; Fenwick, John D

    2014-04-01

    To analyze the kinetics of 3(')-deoxy-3(')-[F-18]-fluorothymidine (18F-FLT) uptake by head and neck squamous cell carcinomas and involved nodes imaged using positron emission tomography (PET). Two- and three-tissue compartment models were fitted to 12 tumor time-activity-curves (TACs) obtained for 6 structures (tumors or involved nodes) imaged in ten dynamic PET studies of 1 h duration, carried out for five patients. The ability of the models to describe the data was assessed using a runs test, the Akaike information criterion (AIC) and leave-one-out cross-validation. To generate parametric maps the models were also fitted to TACs of individual voxels. Correlations between maps of different parameters were characterized using Pearson'sr coefficient; in particular the phosphorylation rate-constants k3-2tiss and k5 of the two- and three-tissue models were studied alongside the flux parameters KFLT- 2tiss and KFLT of these models, and standardized uptake values (SUV). A methodology based on expectation-maximization clustering and the Bayesian information criterion ("EM-BIC clustering") was used to distil the information from noisy parametric images. Fits of two-tissue models 2C3K and 2C4K and three-tissue models 3C5K and 3C6K comprising three, four, five, and six rate-constants, respectively, pass the runs test for 4, 8, 10, and 11 of 12 tumor TACs. The three-tissue models have lower AIC and cross-validation scores for nine of the 12 tumors. Overall the 3C6K model has the lowest AIC and cross-validation scores and its fitted parameter values are of the same orders of magnitude as literature estimates. Maps of KFLT and KFLT- 2tiss are strongly correlated (r = 0.85) and also correlate closely with SUV maps (r = 0.72 for KFLT- 2tiss, 0.64 for KFLT). Phosphorylation rate-constant maps are moderately correlated with flux maps (r = 0.48 for k3-2tiss vs KFLT- 2tiss and r = 0.68 for k5 vs KFLT); however, neither phosphorylation rate-constant correlates significantly with SUV. EM-BIC clustering reduces the parametric maps to a small number of levels--on average 5.8, 3.5, 3.4, and 1.4 for KFLT- 2tiss, KFLT, k3-2tiss, and k5. This large simplification is potentially useful for radiotherapy dose-painting, but demonstrates the high noise in some maps. Statistical simulations show that voxel level noise degrades TACs generated from the 3C6K model sufficiently that the average AIC score, parameter bias, and total uncertainty of 2C4K model fits are similar to those of 3C6K fits, whereas at the whole tumor level the scores are lower for 3C6K fits. For the patients studied here, whole tumor FLT uptake time-courses are represented better overall by a three-tissue than by a two-tissue model. EM-BIC clustering simplifies noisy parametric maps, providing the best description of the underlying information they contain and is potentially useful for radiotherapy dose-painting. However, the clustering highlights the large degree of noise present in maps of the phosphorylation rate-constantsk5 and k3-2tiss, which are conceptually tightly linked to cellular proliferation. Methods must be found to make these maps more robust-either by constraining other model parameters or modifying dynamic imaging protocols. © 2014 American Association of Physicists in Medicine.

  14. A Modified Tri-Exponential Model for Multi-b-value Diffusion-Weighted Imaging: A Method to Detect the Strictly Diffusion-Limited Compartment in Brain

    PubMed Central

    Zeng, Qiang; Shi, Feina; Zhang, Jianmin; Ling, Chenhan; Dong, Fei; Jiang, Biao

    2018-01-01

    Purpose: To present a new modified tri-exponential model for diffusion-weighted imaging (DWI) to detect the strictly diffusion-limited compartment, and to compare it with the conventional bi- and tri-exponential models. Methods: Multi-b-value diffusion-weighted imaging (DWI) with 17 b-values up to 8,000 s/mm2 were performed on six volunteers. The corrected Akaike information criterions (AICc) and squared predicted errors (SPE) were calculated to compare these three models. Results: The mean f0 values were ranging 11.9–18.7% in white matter ROIs and 1.2–2.7% in gray matter ROIs. In all white matter ROIs: the AICcs of the modified tri-exponential model were the lowest (p < 0.05 for five ROIs), indicating the new model has the best fit among these models; the SPEs of the bi-exponential model were the highest (p < 0.05), suggesting the bi-exponential model is unable to predict the signal intensity at ultra-high b-value. The mean ADCvery−slow values were extremely low in white matter (1–7 × 10−6 mm2/s), but not in gray matter (251–445 × 10−6 mm2/s), indicating that the conventional tri-exponential model fails to represent a special compartment. Conclusions: The strictly diffusion-limited compartment may be an important component in white matter. The new model fits better than the other two models, and may provide additional information. PMID:29535599

  15. Polyplex-microbubble hybrids for ultrasound-guided plasmid DNA delivery to solid tumors.

    PubMed

    Sirsi, Shashank R; Hernandez, Sonia L; Zielinski, Lukasz; Blomback, Henning; Koubaa, Adel; Synder, Milo; Homma, Shunichi; Kandel, Jessica J; Yamashiro, Darrell J; Borden, Mark A

    2012-01-30

    Microbubble ultrasound contrast agents are being developed as image-guided gene carriers for targeted delivery in vivo. In this study, novel polyplex-microbubbles were synthesized, characterized and evaluated for systemic circulation and tumor transfection. Branched polyethylenimine (PEI; 25 kDa) was modified with polyethylene glycol (PEG; 5 kDa), thiolated and covalently attached to maleimide groups on lipid-coated microbubbles. The PEI-microbubbles demonstrated increasingly positive surface charge and DNA loading capacity with increasing maleimide content. The in vivo ultrasound contrast persistence of PEI-microbubbles was measured in the healthy mouse kidney, and a two-compartment pharmacokinetic model accounting for free and adherent microbubbles was developed to describe the anomalous time-intensity curves. The model suggested that PEI loading dramatically reduced free circulation and increased nonspecific adhesion to the vasculature. However, DNA loading to form polyplex-microbubbles increased circulation in the bloodstream and decreased nonspecific adhesion. PEI-microbubbles coupled to a luciferase bioluminescence reporter plasmid DNA were shown to transfect tumors implanted in the mouse kidney. Site-specific delivery was achieved using ultrasound applied over the tumor area following bolus injection of the DNA/PEI-microbubbles. In vivo imaging showed over 10-fold higher bioluminescence from the tumor region compared to untreated tissue. Ex vivo analysis of excised tumors showed greater than 40-fold higher expression in tumor tissue than non-sonicated control (heart) tissue. These results suggest that the polyplex-microbubble platform offers improved control of DNA loading and packaging suitable for ultrasound-guided tissue transfection. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Cholesterol kinetic effects of dietary fat in CBA/J and C57BR/cdJ mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, J.; Kuan, Soniu; Seagrave, R.

    1990-02-26

    Small differences in dietary fats cause marked differences in cholesterol metabolism in different strains of mice. CBA/J mice adjust HMGCOA reductase activity and C57BR/cdJ mice change fecal excretion of cholesterol. Phenomenological compartmental modeling of movement of 4{sup 14}C-cholesterol in the two strains of mice fed 40 en % fat, P/S = 0.24 (SFA) or 30 en % fat, P/S = 1 (PUFA) was used to analyze rates of movement between serum, liver, heart, and carcass. The C57 mice had slower movement between all compartments than CBA. Residence times in tissues were longer in mice fed SFA than those fed PUFAmore » diet. The kinetic results are in agreement with the organ concentrations and enzyme activities measured.« less

  17. The Willow Microbiome Is Influenced by Soil Petroleum-Hydrocarbon Concentration with Plant Compartment-Specific Effects

    PubMed Central

    Tardif, Stacie; Yergeau, Étienne; Tremblay, Julien; Legendre, Pierre; Whyte, Lyle G.; Greer, Charles W.

    2016-01-01

    The interaction between plants and microorganisms, which is the driving force behind the decontamination of petroleum hydrocarbon (PHC) contamination in phytoremediation technology, is poorly understood. Here, we aimed at characterizing the variations between plant compartments in the microbiome of two willow cultivars growing in contaminated soils. A field experiment was set-up at a former petrochemical plant in Canada and after two growing seasons, bulk soil, rhizosphere soil, roots, and stems samples of two willow cultivars (Salix purpurea cv. FishCreek, and Salix miyabeana cv. SX67) growing at three PHC contamination concentrations were taken. DNA was extracted and bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) regions were amplified and sequenced using an Ion Torrent Personal Genome Machine (PGM). Following multivariate statistical analyses, the level of PHC-contamination appeared as the primary factor influencing the willow microbiome with compartment-specific effects, with significant differences between the responses of bacterial, and fungal communities. Increasing PHC contamination levels resulted in shifts in the microbiome composition, favoring putative hydrocarbon degraders, and microorganisms previously reported as associated with plant health. These shifts were less drastic in the rhizosphere, root, and stem tissues as compared to bulk soil, probably because the willows provided a more controlled environment, and thus, protected microbial communities against increasing contamination levels. Insights from this study will help to devise optimal plant microbiomes for increasing the efficiency of phytoremediation technology. PMID:27660624

  18. Isolating specific cell and tissue compartments from 3D images for quantitative regional distribution analysis using novel computer algorithms.

    PubMed

    Fenrich, Keith K; Zhao, Ethan Y; Wei, Yuan; Garg, Anirudh; Rose, P Ken

    2014-04-15

    Isolating specific cellular and tissue compartments from 3D image stacks for quantitative distribution analysis is crucial for understanding cellular and tissue physiology under normal and pathological conditions. Current approaches are limited because they are designed to map the distributions of synapses onto the dendrites of stained neurons and/or require specific proprietary software packages for their implementation. To overcome these obstacles, we developed algorithms to Grow and Shrink Volumes of Interest (GSVI) to isolate specific cellular and tissue compartments from 3D image stacks for quantitative analysis and incorporated these algorithms into a user-friendly computer program that is open source and downloadable at no cost. The GSVI algorithm was used to isolate perivascular regions in the cortex of live animals and cell membrane regions of stained spinal motoneurons in histological sections. We tracked the real-time, intravital biodistribution of injected fluorophores with sub-cellular resolution from the vascular lumen to the perivascular and parenchymal space following a vascular microlesion, and mapped the precise distributions of membrane-associated KCC2 and gephyrin immunolabeling in dendritic and somatic regions of spinal motoneurons. Compared to existing approaches, the GSVI approach is specifically designed for isolating perivascular regions and membrane-associated regions for quantitative analysis, is user-friendly, and free. The GSVI algorithm is useful to quantify regional differences of stained biomarkers (e.g., cell membrane-associated channels) in relation to cell functions, and the effects of therapeutic strategies on the redistributions of biomolecules, drugs, and cells in diseased or injured tissues. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Structural Design Strategies for Improved Small Overlap Crashworthiness Performance.

    PubMed

    Mueller, Becky C; Brethwaite, Andrew S; Zuby, David S; Nolan, Joseph M

    2014-11-01

    In 2012, the Insurance Institute for Highway Safety (IIHS) began a 64 km/h small overlap frontal crash test consumer information test program. Thirteen automakers already have redesigned models to improve test performance. One or more distinct strategies are evident in these redesigns: reinforcement of the occupant compartment, use of energy-absorbing fender structures, and the addition of engagement structures to induce vehicle lateral translation. Each strategy influences vehicle kinematics, posing additional challenges for the restraint systems. The objective of this two-part study was to examine how vehicles were modified to improve small overlap test performance and then to examine how these modifications affect dummy response and restraint system performance. Among eight models tested before and after design changes, occupant compartment intrusion reductions ranged from 6 cm to 45 cm, with the highest reductions observed in models with the largest number of modifications. All redesigns included additional occupant compartment reinforcement, one-third added structures to engage the barrier, and two modified a shotgun load path. Designs with engagement structures produced greater glance-off from the barrier and exhibited lower delta Vs but experienced more lateral outboard motion of the dummy. Designs with heavy reinforcement of the occupant compartment had higher vehicle accelerations and delta V. In three cases, these apparent trade-offs were not well addressed by concurrent changes in restraint systems and resulted in increased injury risk compared with the original tests. Among the 36 models tested after design changes, the extent of design changes correlated to structural performance. Half of the vehicles with the lowest intrusion levels incorporated aspects of all three design strategies. Vehicle kinematics and dummy and restraint system characteristics were similar to those observed in the before/after pairs. Different combinations of structural improvement strategies for improving small overlap test performance were found to be effective in reducing occupant compartment intrusion and improving dummy kinematics in the IIHS small overlap test with modest weight increase.

  20. Evaluation of an I-box wind tunnel model for assessment of behavioral responses of blow flies.

    PubMed

    Moophayak, Kittikhun; Sukontason, Kabkaew L; Kurahashi, Hiromu; Vogtsberger, Roy C; Sukontason, Kom

    2013-11-01

    The behavioral response of flies to olfactory cues remains the focus of many investigations, and wind tunnels have sometimes been employed for assessment of this variable in the laboratory. In this study, our aim was to design, construct, and operate a new model of I-box wind tunnel with improved efficacy, highlighting the use of a new wind tunnel model to investigate the behavioral response of the medically important blow fly, Chrysomya megacephala (Fabricius). The I-box dual-choice wind tunnel designed for this study consists of seven conjoined compartments that resulted in a linear apparatus with clear glass tunnel of 30 × 30 × 190 cm ended both sides with wooden "fan compartments" which are equipped with adjustable fans as wind source. The clear glass tunnel consisted of two "stimulus compartments" with either presence or absence (control) of bait; two "trap compartments" where flies were attracted and allowed to reside; and one central "release compartment" where flies were introduced. Wind tunnel experiments were carried out in a temperature-controlled room, with a room light as a light source and a room-ventilated fan as odor-remover from tunnel out. Evaluation of testing parameters revealed that the highest attractive index was achieved with the use of 300 g of 1-day tainted pork scrap (pork meat mixed with offal) as bait in wind tunnel settings wind speed of 0.58 m/s, during 1.00-5.00 PM with light intensity of 341.33 lux from vertical light and 135.93 lux from horizontal light for testing a group of 60 flies. In addition, no significant response of well-fed and 24 h staved flies to this bait under these conditions was found. Results of this study supported this new wind tunnel model as a suitable apparatus for investigation of behavioral response of blow flies to bait chemical cues in the laboratory.

  1. Use of population pharmacokinetic modeling and Monte Carlo simulation to capture individual animal variability in the prediction of flunixin withdrawal times in cattle.

    PubMed

    Wu, H; Baynes, R E; Leavens, T; Tell, L A; Riviere, J E

    2013-06-01

    The objective of this study was to develop a population pharmacokinetic (PK) model and predict tissue residues and the withdrawal interval (WDI) of flunixin in cattle. Data were pooled from published PK studies in which flunixin was administered through various dosage regimens to diverse populations of cattle. A set of liver data used to establish the regulatory label withdrawal time (WDT) also were used in this study. Compartmental models with first-order absorption and elimination were fitted to plasma and liver concentrations by a population PK modeling approach. Monte Carlo simulations were performed with the population mean and variabilities of PK parameters to predict liver concentrations of flunixin. The PK of flunixin was described best by a 3-compartment model with an extra liver compartment. The WDI estimated in this study with liver data only was the same as the label WDT. However, a longer WDI was estimated when both plasma and liver data were included in the population PK model. This study questions the use of small groups of healthy animals to determine WDTs for drugs intended for administration to large diverse populations. This may warrant a reevaluation of the current procedure for establishing WDT to prevent violative residues of flunixin. © 2012 Blackwell Publishing Ltd.

  2. A new theoretical model for transmembrane potential and ion currents induced in a spherical cell under low frequency electromagnetic field.

    PubMed

    Zheng, Yu; Gao, Yang; Chen, Ruijuan; Wang, Huiquan; Dong, Lei; Dou, Junrong

    2016-10-01

    Time-varying electromagnetic fields (EMF) can induce some physiological effects in neuronal tissues, which have been explored in many applications such as transcranial magnetic stimulation. Although transmembrane potentials and induced currents have already been the subjects of many theoretical studies, most previous works about this topic are mainly completed by utilizing Maxwell's equations, often by solving a Laplace equation. In previous studies, cells were often considered to be three-compartment models with different electroconductivities in different regions (three compartments are often intracellular regions, membrane, and extracellular regions). However, models like that did not take dynamic ion channels into consideration. Therefore, one cannot obtain concrete ionic current changes such as potassium current change or sodium current change by these models. The aim of the present work is to present a new and more detailed model for calculating transmembrane potentials and ionic currents induced by time-varying EMF. Equations used in the present paper originate from Nernst-Plank equations, which are ionic current-related equations. The main work is to calculate ionic current changes induced by EMF exposure, and then transmembrane potential changes are calculated with Hodgkin-Huxley model. Bioelectromagnetics. 37:481-492, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. On the applicability of [18F]FBPA to predict L-BPA concentration after amino acid preloading in HuH-7 liver tumor model and the implication for liver boron neutron capture therapy.

    PubMed

    Grunewald, Catrin; Sauberer, Michael; Filip, Thomas; Wanek, Thomas; Stanek, Johann; Mairinger, Severin; Rollet, Sofia; Kudejova, Petra; Langer, Oliver; Schütz, Christian; Blaickner, Matthias; Kuntner, Claudia

    2017-01-01

    In recent years extra-corporal application of boron neutron capture therapy (BNCT) was evaluated for liver primary tumors or liver metastases. A prerequisite for such a high-risk procedure is proof of preferential delivery and high uptake of a 10 B-pharmaceutical in liver malignancies. In this work we evaluated in a preclinical tumor model if [ 18 F]FBPA tissue distribution measured with PET is able to predict the tissue distribution of [ 10 B]L-BPA. Tumor bearing mice (hepatocellular carcinoma cell line, HuH-7) were either subject of a [ 18 F]FBPA-PET scan with subsequent measurement of radioactivity content in extracted organs using a gamma counter or injected with [ 10 B]L-BPA with tissue samples analyzed by prompt gamma activation analysis (PGAA) or quantitative neutron capture radiography (QNCR). The impact of L-tyrosine, L-DOPA and L-BPA preloading on the tissue distribution of [ 18 F]FBPA and [ 10 B]L-BPA was evaluated and the pharmacokinetics of [ 18 F]FBPA investigated by compartment modeling. We found a significant correlation between [ 18 F]FBPA and [ 10 B]L-BPA uptake in tumors and various organs as well as high accumulation levels in pancreas and kidneys as reported in previous studies. Tumor-to-liver ratios of [ 18 F]FBPA ranged from 1.2 to 1.5. Preloading did not increase the uptake of [ 18 F]FBPA or [ 10 B]L-BPA in any organ and compartment modeling showed no statistically significant differences in [ 18 F]FBPA tumor kinetics. [ 18 F]FBPA-PET predicts [ 10 B]L-BPA concentration after amino acid preloading in HuH-7 hepatocellular carcinoma models. Preloading had no effect on tumor uptake of [ 18 F]FBPA. Despite differences in chemical structure and administered dose [ 18 F]FBPA and [ 10 B]L-BPA demonstrate an equivalent biodistribution in a preclinical tumor model. IMPLICATIONS FOR PATIENT CARE: [ 18 F]FBPA-PET is suitable for treatment planning and dose calculations in BNCT applications for liver malignancies. However, alternative tracers with more favorable tumor-to-liver ratios should be investigated. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Advantages of a dual-tracer model over reference tissue models for binding potential measurement in tumors

    PubMed Central

    Tichauer, K M; Samkoe, K S; Klubben, W S; Hasan, T; Pogue, B W

    2012-01-01

    The quantification of tumor molecular expression in vivo could have a significant impact for informing and monitoring immerging targeted therapies in oncology. Molecular imaging of targeted tracers can be used to quantify receptor expression in the form of a binding potential (BP) if the arterial input curve or a surrogate of it is also measured. However, the assumptions of the most common approaches (reference tissue models) may not be valid for use in tumors. In this study, the validity of reference tissue models is investigated for use in tumors experimentally and in simulations. Three different tumor lines were grown subcutaneously in athymic mice and the mice were injected with a mixture of an epidermal growth factor receptor- (EGFR-) targeted fluorescent tracer and an untargeted fluorescent tracer. A one-compartment plasma input model demonstrated that the transport kinetics of both tracers were significantly different between tumors and all potential reference tissues, and using the reference tissue model resulted in a theoretical underestimation in BP of 50 ± 37%. On the other hand, the targeted and untargeted tracers demonstrated similar transport kinetics, allowing a dual-tracer approach to be employed to accurately estimate binding potential (with a theoretical error of 0.23 ± 9.07%). These findings highlight the potential for using a dual-tracer approach to quantify receptor expression in tumors with abnormal hemodynamics, possibly to inform the choice or progress of molecular cancer therapies. PMID:23022732

  5. Two compartment model of diazepam biotransformation in an organotypical culture of primary human hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acikgoez, Ali; Department of Surgery, Universitaet Leipzig, Liebig Str. 20, D-04103 Leipzig; Karim, Najibulla

    2009-01-15

    Drug biotransformation is one of the most important parameters of preclinical screening tests for the registration of new drug candidates. Conventional existing tests rely on nonhuman models which deliver an incomplete metabolic profile of drugs due to the lack of proper CYP450 expression as seen in human liver in vivo. In order to overcome this limitation, we used an organotypical model of human primary hepatocytes for the biotransformation of the drug diazepam with special reference to metabolites in both the cell matrix phase and supernatant and its interaction of three inducers (phenobarbital, dexamethasone, aroclor 1254) in different time responses (1,more » 2, 4, 8, 24 h). Phenobarbital showed the strongest inducing effect in generating desmethyldiazepam and induced up to a 150 fold increase in oxazepam-content which correlates with the increased availability of the precursor metabolites (temazepam and desmethyldiazepam). Aroclor 1254 and dexamethasone had the strongest inducing effect on temazepam and the second strongest on oxazepam. The strong and overlapping inductive role of phenobarbital strengthens the participation of CYP2B6 and CYP3A in diazepam N-demethylation and CYP3A in temazepam formation. Aroclor 1254 preferentially generated temazepam due to the interaction with CYP3A and potentially CYP2C19. In parallel we represented these data in the form of a mathematical model with two compartments explaining the dynamics of diazepam metabolism with the effect of these other inducers in human primary hepatocytes. The model consists of ten differential equations, with one for each concentration c{sub i,j} (i = diazepam, temazepam, desmethyldiazepam, oxazepam, other metabolites) and one for each compartment (j = cell matrix phase, supernatant), respectively. The parameters p{sub k} (k = 1, 2, 3, 4, 13) are rate constants describing the biotransformation of diazepam and its metabolites and the other parameters (k = 5, 6, 7, 8, 9, 10, 11, 12, 14, 15) explain the concentration changes in the two compartments.« less

  6. Advances in hepatic stem/progenitor cell biology

    PubMed Central

    Verhulst, Stefaan; Best, Jan; van Grunsven, Leo A.; Dollé, Laurent

    2015-01-01

    The liver is famous for its strong regenerative capacity, employing different modes of regeneration according to type and extent of injury. Mature liver cells are able to proliferate in order to replace the damaged tissue allowing the recovery of the parenchymal function. In more severe scenarios hepatocytes are believed to arise also from a facultative liver progenitor cell compartment. In human, severe acute liver failure and liver cirrhosis are also both important clinical targets in which regeneration is impaired, where the role of this stem cell compartment seems more convincing. In animal models, the current state of ambiguity regarding the identity and role of liver progenitor cells in liver physiology dampens the enthusiasm for the potential use of these cells in regenerative medicine. The aim of this review is to give the basics of liver progenitor cell biology and discuss recent results vis-à-vis their identity and contribution to liver regeneration. PMID:26600740

  7. In vitro activation of the neuro-transduction mechanism in sensitive organotypic human skin model.

    PubMed

    Martorina, Francesca; Casale, Costantino; Urciuolo, Francesco; Netti, Paolo A; Imparato, Giorgia

    2017-01-01

    Recent advances in tissue engineering have encouraged researchers to endeavor the production of fully functional three-dimensional (3D) thick human tissues in vitro. Here, we report the fabrication of a fully innervated human skin tissue in vitro that recapitulates and replicates skin sensory function. Previous attempts to innervate in vitro 3D skin models did not demonstrate an effective functionality of the nerve network. In our approach, we initially engineer functional human skin tissue based on fibroblast-generated dermis and differentiated epidermis; then, we promote rat dorsal root ganglion (DRG) neurons axon ingrowth in the de-novo developed tissue. Neurofilaments network infiltrates the entire native dermis extracellular matrix (ECM), as demonstrated by immunofluorescence and second harmonic generation (SHG) imaging. To prove sensing functionality of the tissue, we use topical applications of capsaicin, an agonist of transient receptor protein-vanilloid 1 (TRPV1) channel, and quantify calcium currents resulting from variations of Ca ++ concentration in DRG neurons innervating our model. Calcium currents generation demonstrates functional cross-talking between dermis and epidermis compartments. Moreover, through a computational fluid dynamic (CFD) analysis, we set fluid dynamic conditions for a non-planar skin equivalent growth, as proof of potential application in creating skin grafts tailored on-demand for in vivo wound shape. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Linking xylem water storage with anatomical parameters in five temperate tree species.

    PubMed

    Jupa, Radek; Plavcová, Lenka; Gloser, Vít; Jansen, Steven

    2016-06-01

    The release of water from storage compartments to the transpiration stream is an important functional mechanism that provides the buffering of sudden fluctuations in water potential. The ability of tissues to release water per change in water potential, referred to as hydraulic capacitance, is assumed to be associated with the anatomy of storage tissues. However, information about how specific anatomical parameters determine capacitance is limited. In this study, we measured sapwood capacitance (C) in terminal branches and roots of five temperate tree species (Fagus sylvatica L., Picea abies L., Quercus robur L., Robinia pseudoacacia L., Tilia cordata Mill.). Capacitance was calculated separately for water released mainly from capillary (CI; open vessels, tracheids, fibres, intercellular spaces and cracks) and elastic storage compartments (CII; living parenchyma cells), corresponding to two distinct phases of the moisture release curve. We found that C was generally higher in roots than branches, with CI being 3-11 times higher than CII Sapwood density and the ratio of dead to living xylem cells were most closely correlated with C In addition, the magnitude of CI was strongly correlated with fibre/tracheid lumen area, whereas CII was highly dependent on the thickness of axial parenchyma cell walls. Our results indicate that water released from capillary compartments predominates over water released from elastic storage in both branches and roots, suggesting the limited importance of parenchyma cells for water storage in juvenile xylem of temperate tree species. Contrary to intact organs, water released from open conduits in our small wood samples significantly increased CI at relatively high water potentials. Linking anatomical parameters with the hydraulic capacitance of a tissue contributes to a better understanding of water release mechanisms and their implications for plant hydraulics. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Physiologically based pharmacokinetic modelling of methotrexate and 6-mercaptopurine in adults and children. Part 2: 6-mercaptopurine and its interaction with methotrexate.

    PubMed

    Ogungbenro, Kayode; Aarons, Leon

    2014-04-01

    6-mercaptopurine (6-MP) is a purine antimetabolite and prodrug that undergoes extensive intracellular metabolism to produce thionucleotides, active metabolites which have cytotoxic and immunosuppressive properties. Combination therapies involving 6-MP and methotrexate have shown remarkable results in the cure of childhood acute lymphoblastic leukaemia (ALL) in the last 30 years. 6-MP undergoes very extensive intestinal and hepatic metabolism following oral dosing due to the activity of xanthine oxidase leading to very low and highly variable bioavailability and methotrexate has been demonstrated as an inhibitor of xanthine oxidase. Despite the success recorded in the use of 6-MP in ALL, there is still lack of effect and life threatening toxicity in some patients due to variability in the pharmacokinetics of 6-MP. Also, dose adjustment during treatment is still based on toxicity. The aim of the current work was to develop a mechanistic model that can be used to simulate trial outcomes and help to improve dose individualisation and dosage regimen optimisation. A physiological based pharmacokinetic model was proposed for 6-MP, this model has compartments for stomach, gut lumen, enterocyte, gut tissue, spleen, liver vascular, liver tissue, kidney vascular, kidney tissue, skin, bone marrow, thymus, muscle, rest of body and red blood cells. The model was based on the assumption of the same elimination pathways in adults and children. Parameters of the model include physiological parameters and drug-specific parameter which were obtained from the literature or estimated using plasma and red blood cell concentration data. Age-dependent changes in parameters were implemented for scaling and variability was also introduced on the parameters for prediction. Inhibition of 6-MP first-pass effect by methotrexate was implemented to predict observed clinical interaction between the two drugs. The model was developed successfully and plasma and red blood cell concentrations were adequately predicted both in terms of mean prediction and variability. The predicted interaction between 6-MP and methotrexate was slightly lower than the reported clinical interaction between the two drugs. The model can be used to predict plasma and tissue concentration in adults and children following oral and intravenous dosing and may ultimately help to improve treatment outcome in childhood ALL patients.

  10. Distribution and uptake dynamics of mercury in leaves of common deciduous tree species in Minnesota, U.S.A.

    Treesearch

    Aicam Laacouri; Edward A. Nater; Randall K. Kolka

    2013-01-01

    A sequential extraction technique for compartmentalizing mercury (Hg) in leaves was developed based on a water extraction of Hg from the leaf surface followed by a solvent extraction of the cuticle. The bulk of leaf Hg was found in the tissue compartment (90-96%) with lesser amounts in the surface and cuticle compartments. Total leaf concentrations of Hg varied among...

  11. Hydrophilic solute transport across the rat blood-brain barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucchesi, K.J.

    1987-01-01

    Brain capillary permeability-surface area products (PS) of hydrophilic solutes ranging in size from 180 to 5,500 Daltons were measured in rats according to the method of Ohno, Pettigrew and Rapoport. The distribution volume of 70 KD dextran at 10 minutes after i.v. injection was also measured to determine the residual volume of blood in brain tissue at the time of sacrifice. Small test solutes were injected in pairs in order to elucidate whether their transfer into the brain proceeds by diffusion through water- or lipid-filled channels or by vesicular transport. This issue was examined in rats whose blood-brain barrier (BBB)more » was presumed to be intact (untreated) and in rats that received intracarotid infusions to open the BBB (isosmotic salt (ISS) and hyperosmolar arabinose). Ohno PS values of {sup 3}H-inulin and {sup 14}C-L-glucose in untreated rats were found to decrease as the labelling time was lengthened. This was evidence that a rapidly equilibrating compartment exists between blood and brain that renders the Ohno two-compartment model inadequate for computing true transfer rate constants. When the data were reanalyzed using a multi-compartment graphical analysis, solutes with different molecular radii were found to enter the brain at approximately equal rates. Furthermore, unidirectional transport is likely to be initiated by solute adsorption to a glycocalyx coat on the luminal surface of brain capillary endothelium. Apparently, more inulin than L-glucose was adsorbed, which may account for its slightly faster transfer across the BBB. After rats were treated with intracarotid infusions of ISS or hyperosmolar arabinose, solute PS values were significantly increased, but the ratio of PS for each of the solute pairs approached that of their free-diffusion coefficients.« less

  12. Dynamics of tax evasion through an epidemic-like model

    NASA Astrophysics Data System (ADS)

    Brum, Rafael M.; Crokidakis, Nuno

    In this work, we study a model of tax evasion. We considered a fixed population divided in three compartments, namely honest tax payers, tax evaders and a third class between the mentioned two, which we call susceptibles to become evaders. The transitions among those compartments are ruled by probabilities, similarly to a model of epidemic spreading. These probabilities model social interactions among the individuals, as well as the government’s fiscalization. We simulate the model on fully-connected graphs, as well as on scale-free and random complex networks. For the fully-connected and random graph cases, we observe that the emergence of tax evaders in the population is associated with an active-absorbing nonequilibrium phase transition, that is absent in scale-free networks.

  13. Distribution and biokinetic analysis of 210Pb and 210Po in poultry due to ingestion of dicalcium phosphate.

    PubMed

    Casacuberta, N; Traversa, F L; Masqué, P; Garcia-Orellana, J; Anguita, M; Gasa, J; Garcia-Tenorio, R

    2010-09-15

    Dicalcium phosphate (DCP) is used as a calcium supplement for food producing animals (i.e., cattle, poultry and pig). When DCP is produced via wet acid digestion of the phosphate rock and depending on the acid used in the industrial process, the final product can result in enhanced (210)Pb and (210)Po specific activities (approximately 2000 Bq.kg(-1)). Both (210)Pb and (210)Po are of great interest because their contribution to the dose received by ingestion is potentially large. The aims of this work are to examine the accumulation of (210)Pb and (210)Po in chicken tissues during the first 42 days of life and to build a suitable single-compartment biokinetic model to understand the behavior of both radionuclides within the entire animal using the experimental results. Three commercial corn-soybean-based diets containing different amounts and sources of DCP were fed to broilers during a period of 42 days. The results show that diets containing enhanced concentrations of (210)Pb and (210)Po lead to larger specific accumulation in broiler tissues compared to the blank diet. Radionuclides do not accumulate homogeneously within the animal body: (210)Pb follows the calcium pathways to some extent and accumulates largely in bones, while (210)Po accumulates to a large extent in liver and kidneys. However, the total amount of radionuclide accumulation in tissues is small compared to the amounts excreted in feces. The single-compartment non-linear biokinetic model proposed here for (210)Pb and (210)Po in the whole animal takes into account the size evolution and is self-consistent in that no fitting parameterization of intake and excretions rates is required. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Population Pharmacokinetics and Exploratory Pharmacodynamics of Lorazepam in Pediatric Status Epilepticus.

    PubMed

    Gonzalez, Daniel; Chamberlain, James M; Guptill, Jeffrey T; Cohen-Wolkowiez, Michael; Harper, Barrie; Zhao, Jian; Capparelli, Edmund V

    2017-08-01

    Lorazepam is one of the preferred agents used for intravenous treatment of status epilepticus (SE). We combined data from two pediatric clinical trials to characterize the population pharmacokinetics of intravenous lorazepam in infants and children aged 3 months to 17 years with active SE or a history of SE. We developed a population pharmacokinetic model for lorazepam using the NONMEM software. We then assessed exploratory exposure-response relationships using the overall efficacy and safety study endpoints, and performed dosing simulations. A total of 145 patients contributed 439 pharmacokinetic samples. The median (range) age and dose were 5.4 years (0.3-17.8) and 0.10 mg/kg (0.02-0.18), respectively. A two-compartment pharmacokinetic model with allometric scaling described the data well. In addition to total body weight (WT), younger age was associated with slightly higher weight-normalized clearance (CL). The following relationships characterized the typical values for the central compartment volume (V1), CL, peripheral compartment volume (V2), and intercompartmental CL (Q), using individual subject WT (kg) and age (years): V1 (L) = 0.879*WT; CL (L/h) = 0.115*(Age/4.7) 0.133 *WT 0.75 ; V2 (L) = 0.542*V1; Q (L/h) = 1.45*WT 0.75 . No pharmacokinetic parameters were associated with clinical outcomes. Simulations suggest uniform pediatric dosing (0.1 mg/kg, to a maximum of 4 mg) can be used to achieve concentrations of 50-100 ng/mL in children with SE, which have been previously associated with effective seizure control. The population pharmacokinetics of lorazepam were successfully described using a sparse sampling approach and a two-compartment model in pediatric patients with active SE.

  15. γδ T cells in homeostasis and host defence of epithelial barrier tissues

    PubMed Central

    Nielsen, Morten M.; Witherden, Deborah A.; Havran, Wendy L.

    2018-01-01

    Epithelial surfaces line the body and provide a critical interface between the body and the external environment which is essential to maintaining the symbiotic relationship between the host and the microbiome. Tissue-resident epithelial γδ T cells represent a major T cell population in epithelia and are ideally positioned to perform barrier surveillance and aid in tissue homeostasis and repair. In this review we focus on the intraepithelial γδ compartment in the two largest epithelial tissues in the body, namely the epidermis and intestine, and provide a comprehensive overview of the crucial contributions of intraepithelial γδ cells at these sites to tissue integrity and repair, host homeostasis and host protection in the context of the symbiotic relationship with the microbiome and during pathogen clearance. Finally, we address epithelia-specific butyrophilin-like molecules and touch upon their emerging role in selectively shaping and regulating epidermal and intestinal γδ T cell repertoires. PMID:28920588

  16. A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting.

    PubMed

    Park, Ju Young; Choi, Jong-Cheol; Shim, Jin-Hyung; Lee, Jung-Seob; Park, Hyoungjun; Kim, Sung Won; Doh, Junsang; Cho, Dong-Woo

    2014-09-01

    Bioprinting is a promising technique for engineering composite tissues, such as osteochondral tissues. In this study, as a first step toward bioprinting-based osteochondral tissue regeneration, we systematically examined the behavior of chondrocytes and osteoblasts to hyaluronic acid (HA) and type I collagen (Col-1) hydrogels. First, we demonstrated that cells on hydrogels that were comprised of major native tissue extracellular matrix (ECM) components (i.e. chondrocytes on HA hydrogels and osteoblasts on Col-1 hydrogels) exhibited better proliferation and cell function than cells on non-native ECM hydrogels (i.e., chondrocytes on Col-1 hydrogels and osteoblasts on HA hydrogels). In addition, cells located near their native ECM hydrogels migrated towards them. Finally, we bioprinted three-dimensional (3D) osteochondral tissue-mimetic structures composed of two compartments, osteoblast-encapsulated Col-1 hydrogels and chondrocyte-encapsulated HA hydrogels, and found viability and functions of each cell type were well maintained within the 3D structures up to 14 days in vitro. These results suggest that with proper choice of hydrogel materials, bioprinting-based approaches can be successfully applied for osteochondral tissue regeneration.

  17. Biophysical properties and functional significance of stem water storage tissues in Neotropical savanna trees.

    Treesearch

    F.G. Scholz; S.J. Bucci; G. Goldstein; F.C. Meinzer; A.C. Franco; F. Miralles-Wilhelm

    2007-01-01

    Biophysical characteristics of sapwood and outer parenchyma water storage compartments were studied in stems of eight dominant Brazilian Cerrado tree species to assess the impact of differences in tissue capacitance on whole-plant water relations. Both the sapwood and outer parenchyma tissues played an important role in regulation of internal water deficits of Cerrado...

  18. Investigation of Particle Accumulation, Chemosensitivity and Thermosensitivity for Effective Solid Tumor Therapy Using Thermosensitive Liposomes and Hyperthermia.

    PubMed

    Lokerse, Wouter J M; Bolkestein, Michiel; Ten Hagen, Timo L M; de Jong, Marion; Eggermont, Alexander M M; Grüll, Holger; Koning, Gerben A

    2016-01-01

    Doxorubicin (Dox) loaded thermosensitive liposomes (TSLs) have shown promising results for hyperthermia-induced local drug delivery to solid tumors. Typically, the tumor is heated to hyperthermic temperatures (41-42 °C), which induced intravascular drug release from TSLs within the tumor tissue leading to high local drug concentrations (1-step delivery protocol). Next to providing a trigger for drug release, hyperthermia (HT) has been shown to be cytotoxic to tumor tissue, to enhance chemosensitivity and to increase particle extravasation from the vasculature into the tumor interstitial space. The latter can be exploited for a 2-step delivery protocol, where HT is applied prior to i.v. TSL injection to enhance tumor uptake, and after 4 hours waiting time for a second time to induce drug release. In this study, we compare the 1- and 2-step delivery protocols and investigate which factors are of importance for a therapeutic response. In murine B16 melanoma and BFS-1 sarcoma cell lines, HT induced an enhanced Dox uptake in 2D and 3D models, resulting in enhanced chemosensitivity. In vivo, therapeutic efficacy studies were performed for both tumor models, showing a therapeutic response for only the 1-step delivery protocol. SPECT/CT imaging allowed quantification of the liposomal accumulation in both tumor models at physiological temperatures and after a HT treatment. A simple two compartment model was used to derive respective rates for liposomal uptake, washout and retention, showing that the B16 model has a twofold higher liposomal uptake compared to the BFS-1 tumor. HT increases uptake and retention of liposomes in both tumors models by the same factor of 1.66 maintaining the absolute differences between the two models. Histology showed that HT induced apoptosis, blood vessel integrity and interstitial structures are important factors for TSL accumulation in the investigated tumor types. However, modeling data indicated that the intraliposomal Dox fraction did not reach therapeutic relevant concentrations in the tumor tissue in a 2-step delivery protocol due to the leaking of the drug from its liposomal carrier providing an explanation for the observed lack of efficacy.

  19. Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae

    PubMed Central

    Giraldo, Martha C.; Dagdas, Yasin F.; Gupta, Yogesh K.; Mentlak, Thomas A.; Yi, Mihwa; Martinez-Rocha, Ana Lilia; Saitoh, Hiromasa; Terauchi, Ryohei; Talbot, Nicholas J.; Valent, Barbara

    2013-01-01

    To cause plant diseases, pathogenic micro-organisms secrete effector proteins into host tissue to suppress immunity and support pathogen growth. Bacterial pathogens have evolved several distinct secretion systems to target effector proteins, but whether fungi, which cause the major diseases of most crop species, also require different secretory mechanisms is not known. Here we report that the rice blast fungus Magnaporthe oryzae possesses two distinct secretion systems to target effectors during plant infection. Cytoplasmic effectors, which are delivered into host cells, preferentially accumulate in the biotrophic interfacial complex, a novel plant membrane-rich structure associated with invasive hyphae. We show that the biotrophic interfacial complex is associated with a novel form of secretion involving exocyst components and the Sso1 t-SNARE. By contrast, effectors that are secreted from invasive hyphae into the extracellular compartment follow the conventional secretory pathway. We conclude that the blast fungus has evolved distinct secretion systems to facilitate tissue invasion. PMID:23774898

  20. Kinetic characteristic of phenanthrene sorption in aged soil amended with biochar

    NASA Astrophysics Data System (ADS)

    Kim, Chanyang; Kim, Yong-Seong; Hyun, Seunghun

    2015-04-01

    Biochar has been recently highlighted as an amendment that affects yield of the crops by increasing pH, cation exchange capacity and water retention, and reduces the lability of contaminants by increasing sorption capacity in the soil system. Biochar's physico-chemical properties, high CEC, surfaces containing abundant micropores and macropores, and various types of functional groups, play important roles in enhancing sorption capacity of contaminants. Aging through a natural weathering process might change physico-chemical properties of biochar amended in soils, which can affect the sorption behavior of contaminants. Thus, in this study, the sorption characteristics of phenanthrene (PHE) on biochar-amended soils were studied with various types of chars depending on aging time. To do this, 1) soil was amended with sludge waste char (SWC), wood char (WC), and municipal waste char (MWC) during 0, 6, and 12 month. Chars were applied to soil at 1% and 2.5% (w/w) ratio. 2) Several batch kinetic and equilibrium studies were conducted. One-compartment first order and two-compartment first order model apportioning the fraction of fast and slow sorbing were selected for kinetic models. Where, qt is PHE concentration in biochar-amended soils at each time t, qeis PHE concentration in biochar-amended soils at equilibrium. ff is fastly sorbing fraction and (1-ff) is slowly sorbing fraction. k is sorption rate constant from one-compartment first order model, k1 and k2 are sorption rate constant from two-compartment first order model, t is time (hr). The equilibrium sorption data were fitted with Fruendlich and Langmuir equation. 3) Change in physico-chemical properties of biochar-amended soils was investigated with aging time. Batch equilibrium sorption results suggested that sorbed amount of PHE on WC was greater than SWC and MWC. The more char contents added to soil, the greater sorption capacity of PHE. Sorption equilibrium was reached after 4 hours and equilibrium pH ranged from 6.5 to 8.0. Sorption capacity was reduced with aging time. From kinetic results, two-compartment first order model was more suitable than one-compartment first order model. Fast sorption site of biochar-amended soils dominated total sorption process (i.e., Fraction of fast sorption site ranged from 0.55 to 0.96). Reduced sorption capacity with aging time could be attributed to changes in physico-chemical properties of biochar-amended soils (e.g., reduced pores and increased hydrophilic carboxyl and carbonyl functional groups). Verification is FI-IR and SSA. It is assumed that biochar is a suitable material for PHE contaminated soil in order to reduce the lability of PHE. However, aging effects would lessen biochar benefit for reducing the sorption capacity of PHE by forming hydrophilic functional group and reducing pores.

  1. Antagonism and antibiotic resistance drive a species-specific plant microbiota differentiation in Echinacea spp.

    PubMed

    Maggini, Valentina; Miceli, Elisangela; Fagorzi, Camilla; Maida, Isabel; Fondi, Marco; Perrin, Elena; Mengoni, Alessio; Bogani, Patrizia; Chiellini, Carolina; Mocali, Stefano; Fabiani, Arturo; Decorosi, Francesca; Giovannetti, Luciana; Firenzuoli, Fabio; Fani, Renato

    2018-06-14

    A key factor in the study of plant-microbes interaction is the composition of plant microbiota, but little is known about the factors determining its functional and taxonomic organization. Here we investigated the possible forces driving the assemblage of bacterial endophytic and rhizospheric communities, isolated from two congeneric medicinal plants, Echinacea purpurea (L.) Moench and Echinacea angustifolia (DC) Heller, grown in the same soil, by analyzing bacterial strains (isolated from three different compartments, i.e. rhizospheric soil, roots, and stem/leaves) for phenotypic features such as antibiotic resistance, extracellular enzymatic activity, siderophore, and indole 3-acetic acid production, as well as cross antagonistic activities. Data obtained highlighted that bacteria from different plant compartments were characterized by specific antibiotic resistance phenotypes and antibiotic production, suggesting that the bacterial communities themselves could be responsible for structuring their own communities by the production of antimicrobial molecules selecting bacterial adaptive phenotypes for plant tissue colonization.

  2. A study of the sink effect by blood vessels in radiofrequency ablation.

    PubMed

    Zorbas, George; Samaras, Theodoros

    2015-02-01

    The objective of the current work was to study the sink effect in radiofrequency ablation (RFA) caused by a blood vessel located close to an electrode in a two-compartment numerical model, consisting of a spherical tumor embedded in healthy liver tissue. Several blood vessels of different sizes were studied at different distances from the electrode. It was found that when a straight blood vessel, cylindrical in shape, is located parallel to the electrode, the minimum distance for a drop of only 10% in the isothermal treatment volume above 50°C, compared to the model without the blood vessel, varies from 4.49 mm (for a vessel of 2mm in diameter) to 20.02 mm (for a vessel 20mm in diameter). The results can be used as a guideline to clinical practitioners, in order to quickly assess the potential impact of existing blood vessels on the resulting treatment volume. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. A whole-body mathematical model for intracranial pressure dynamics.

    PubMed

    Lakin, William D; Stevens, Scott A; Tranmer, Bruce I; Penar, Paul L

    2003-04-01

    Most attempts to study intracranial pressure using lumped-parameter models have adopted the classical "Kellie-Monro Doctrine," which considers the intracranial space to be a closed system that is confined within the nearly-rigid skull, conserves mass, and has equal inflow and outflow. The present work revokes this Doctrine and develops a mathematical model for the dynamics of intracranial pressures, volumes, and flows that embeds the intracranial system in extensive whole-body physiology. The new model consistently introduces compartments representing the tissues and vasculature of the extradural portions of the body, including both the thoracic region and the lower extremities. In addition to vascular connections, a spinal-subarachnoid cerebrospinal fluid (CSF) compartment bridges intracranial and extracranial physiology allowing explict buffering of intracranial pressure fluctuations by the spinal theca. The model contains cerebrovascular autoregulation, regulation of systemic vascular pressures by the sympathetic nervous system, regulation of CSF production in the choroid plexus, a lymphatic system, colloid osmotic pressure effects, and realistic descriptions of cardiac output. To validate the model in situations involving normal physiology, the model's response to a realistic pulsatile cardiac output is examined. A well-known experimentally-derived intracranial pressure-volume relationship is recovered by using the model to simulate CSF infusion tests, and the effect on cerebral blood flow of a change in body position is also examined. Cardiac arrest and hemorrhagic shock are simulated to demonstrate the predictive capabilities of the model in pathological conditions.

  4. Modelling the delay between pharmacokinetics and EEG effects of morphine in rats: binding kinetic versus effect compartment models.

    PubMed

    de Witte, Wilhelmus E A; Rottschäfer, Vivi; Danhof, Meindert; van der Graaf, Piet H; Peletier, Lambertus A; de Lange, Elizabeth C M

    2018-05-18

    Drug-target binding kinetics (as determined by association and dissociation rate constants, k on and k off ) can be an important determinant of the kinetics of drug action. However, the effect compartment model is used most frequently instead of a target binding model to describe hysteresis. Here we investigate when the drug-target binding model should be used in lieu of the effect compartment model. The utility of the effect compartment (EC), the target binding kinetics (TB) and the combined effect compartment-target binding kinetics (EC-TB) model were tested on either plasma (EC PL , TB PL and EC-TB PL ) or brain extracellular fluid (ECF) (EC ECF , TB ECF and EC-TB ECF ) morphine concentrations and EEG amplitude in rats. It was also analyzed when a significant shift in the time to maximal target occupancy (Tmax TO ) with increasing dose, the discriminating feature between the TB and EC model, occurs in the TB model. All TB models assumed a linear relationship between target occupancy and drug effect on the EEG amplitude. All three model types performed similarly in describing the morphine pharmacodynamics data, although the EC model provided the best statistical result. The analysis of the shift in Tmax TO (∆Tmax TO ) as a result of increasing dose revealed that ∆Tmax TO is decreasing towards zero if the k off is much smaller than the elimination rate constant or if the target concentration is larger than the initial morphine concentration. The results for the morphine PKPD modelling and the analysis of ∆Tmax TO indicate that the EC and TB models do not necessarily lead to different drug effect versus time curves for different doses if a delay between drug concentrations and drug effect (hysteresis) is described. Drawing mechanistic conclusions from successfully fitting one of these two models should therefore be avoided. Since the TB model can be informed by in vitro measurements of k on and k off , a target binding model should be considered more often for mechanistic modelling purposes.

  5. Progeroid syndromes: models for stem cell aging?

    PubMed

    Bellantuono, I; Sanguinetti, G; Keith, W N

    2012-02-01

    Stem cells are responsible for tissue repair and maintenance and it is assumed that changes observed in the stem cell compartment with age underlie the concomitant decline in tissue function. Studies in murine models have highlighted the importance of intrinsic changes occurring in stem cells with age. They have also drawn the attention to other factors, such as changes in the local or systemic environment as the primary cause of stem cell dysfunction. Whilst knowledge in murine models has been advancing rapidly there has been little translation of these data to human aging. This is most likely due to the difficulties of testing the regenerative capacity of human stem cells in vivo and to substantial differences in the aging phenotype within humans. Here we summarize evidence to show how progeroid syndromes, integrated with other models, can be valuable tools in addressing questions about the role of stem cell aging in human degenerative diseases of older age and the molecular pathways involved.

  6. Development of a population pharmacokinetic model to predict brain distribution and dopamine D2 receptor occupancy of raclopride in non-anesthetized rat.

    PubMed

    Wong, Yin Cheong; Ilkova, Trayana; van Wijk, Rob C; Hartman, Robin; de Lange, Elizabeth C M

    2018-01-01

    Raclopride is a selective antagonist of the dopamine D2 receptor. It is one of the most frequently used in vivo D2 tracers (at low doses) for assessing drug-induced receptor occupancy (RO) in animals and humans. It is also commonly used as a pharmacological blocker (at high doses) to occupy the available D2 receptors and antagonize the action of dopamine or drugs on D2 in preclinical studies. The aims of this study were to comprehensively evaluate its pharmacokinetic (PK) profiles in different brain compartments and to establish a PK-RO model that could predict the brain distribution and RO of raclopride in the freely moving rat using a LC-MS based approach. Rats (n=24) received a 10-min IV infusion of non-radiolabeled raclopride (1.61μmol/kg, i.e. 0.56mg/kg). Plasma and the brain tissues of striatum (with high density of D2 receptors) and cerebellum (with negligible amount of D2 receptors) were collected. Additional microdialysis experiments were performed in some rats (n=7) to measure the free drug concentration in the extracellular fluid of the striatum and cerebellum. Raclopride concentrations in all samples were analyzed by LC-MS. A population PK-RO model was constructed in NONMEM to describe the concentration-time profiles in the unbound plasma, brain extracellular fluid and brain tissue compartments and to estimate the RO based on raclopride-D2 receptor binding kinetics. In plasma raclopride showed a rapid distribution phase followed by a slower elimination phase. The striatum tissue concentrations were consistently higher than that of cerebellum tissue throughout the whole experimental period (10-h) due to higher non-specific tissue binding and D2 receptor binding in the striatum. Model-based simulations accurately predicted the literature data on rat plasma PK, brain tissue PK and D2 RO at different time points after intravenous or subcutaneous administration of raclopride at tracer dose (RO <10%), sub-pharmacological dose (RO 10%-30%) and pharmacological dose (RO >30%). For the first time a predictive model that could describe the quantitative in vivo relationship between dose, PK and D2 RO of raclopride in non-anesthetized rat was established. The PK-RO model could facilitate the selection of optimal dose and dosing time when raclopride is used as tracer or as pharmacological blocker in various rat studies. The LC-MS based approach, which doses and quantifies a non-radiolabeled tracer, could be useful in evaluating the systemic disposition and brain kinetics of tracers. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Coupled effect of chemotaxis and growth on microbial distributions in organic-amended aquifer sediments: Observations from laboratory and field studies

    USGS Publications Warehouse

    Wang, M.; Ford, R.M.; Harvey, R.W.

    2008-01-01

    The inter-relationship of growth and chemotactic response exhibited by two common soil-inhabiting bacteria was investigated to determine its impact on bacterial migration. Filter-chambers were used to simulate aquifer sediments characterized by vertical gradients of organic contaminants in both artificial groundwater flow systems in the laboratory and within the screened intervals of observation wells in a sandy aquifer. A labile model contaminant (acetate) was added to the top compartments of the three-part chambers, whereas bacteria with a demonstrated propensity to grow on and chemotactically respond to acetate were introduced to the lower compartments, The motility and chemotactic response of Pseudomonas putida F1 resulted in 40 to 110% greater abundances in the upper compartments and concomitant 22 to 70% depletions in the lower compartments relative to the nonchemotactic controls over 2 days. Bacteria were in greatest abundance within the sand plug that separated the upper and lower compartments where sharp acetate gradients induced a strong chemotactic response. This observation was consistent with predictions from a mathematical model. In agreement with the laboratory results, the down-well filter-chamber incubations with Pseudomonas stutzeri in the aquifer indicated that 91% fewer bacteria resided in the lower compartment than the control experiment without acetate at 15 h. The combination of chemotaxis and growth greatly accelerated the migration of bacteria toward and subsequent abundance at the higher acetate concentration. ?? 2008 American Chemical Society.

  8. Mercury in the pelagic food web of Lake Champlain.

    PubMed

    Miller, Eric K; Chen, Celia; Kamman, Neil; Shanley, James; Chalmers, Ann; Jackson, Brian; Taylor, Vivien; Smeltzer, Eric; Stangel, Pete; Shambaugh, Angela

    2012-04-01

    Lake Champlain continues to experience mercury contamination resulting in public advisories to limit human consumption of top trophic level fish such as walleye. Prior research suggested that mercury levels in biota could be modified by differences in ecosystem productivity as well as mercury loadings. We investigated relationships between mercury in different trophic levels in Lake Champlain. We measured inorganic and methyl mercury in water, seston, and two size fractions of zooplankton from 13 sites representing a range of nutrient loading conditions and productivity. Biomass varied significantly across lake segments in all measured ecosystem compartments in response to significant differences in nutrient levels. Local environmental factors such as alkalinity influenced the partitioning of mercury between water and seston. Mercury incorporation into biota was influenced by the biomass and mercury content of different ecosystem strata. Pelagic fish tissue mercury was a function of fish length and the size of the mercury pool associated with large zooplankton. We used these observations to parameterize a model of mercury transfers in the Lake Champlain food web that accounts for ecosystem productivity effects. Simulations using the mercury trophic transfer model suggest that reductions of 25-75% in summertime dissolved eplimnetic total mercury will likely allow fish tissue mercury concentrations to drop to the target level of 0.3 μg g(-1) in a 40-cm fish in all lake segments. Changes in nutrient loading and ecosystem productivity in eutrophic segments may delay any response to reduced dissolved mercury and may result in increases in fish tissue mercury.

  9. Serotonin 2A receptor agonist binding in the human brain with [11C]Cimbi-36

    PubMed Central

    Ettrup, Anders; da Cunha-Bang, Sophie; McMahon, Brenda; Lehel, Szabolcs; Dyssegaard, Agnete; Skibsted, Anine W; Jørgensen, Louise M; Hansen, Martin; Baandrup, Anders O; Bache, Søren; Svarer, Claus; Kristensen, Jesper L; Gillings, Nic; Madsen, Jacob; Knudsen, Gitte M

    2014-01-01

    [11C]Cimbi-36 was recently developed as a selective serotonin 2A (5-HT2A) receptor agonist radioligand for positron emission tomography (PET) brain imaging. Such an agonist PET radioligand may provide a novel, and more functional, measure of the serotonergic system and agonist binding is more likely than antagonist binding to reflect 5-HT levels in vivo. Here, we show data from a first-in-human clinical trial with [11C]Cimbi-36. In 29 healthy volunteers, we found high brain uptake and distribution according to 5-HT2A receptors with [11C]Cimbi-36 PET. The two-tissue compartment model using arterial input measurements provided the most optimal quantification of cerebral [11C]Cimbi-36 binding. Reference tissue modeling was feasible as it induced a negative but predictable bias in [11C]Cimbi-36 PET outcome measures. In five subjects, pretreatment with the 5-HT2A receptor antagonist ketanserin before a second PET scan significantly decreased [11C]Cimbi-36 binding in all cortical regions with no effects in cerebellum. These results confirm that [11C]Cimbi-36 binding is selective for 5-HT2A receptors in the cerebral cortex and that cerebellum is an appropriate reference tissue for quantification of 5-HT2A receptors in the human brain. Thus, we here describe [11C]Cimbi-36 as the first agonist PET radioligand to successfully image and quantify 5-HT2A receptors in the human brain. PMID:24780897

  10. An investigation into the effects of temporal resolution on hepatic dynamic contrast-enhanced MRI in volunteers and in patients with hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Gill, Andrew B.; Black, Richard T.; Bowden, David J.; Priest, Andrew N.; Graves, Martin J.; Lomas, David J.

    2014-06-01

    This study investigated the effect of temporal resolution on the dual-input pharmacokinetic (PK) modelling of dynamic contrast-enhanced MRI (DCE-MRI) data from normal volunteer livers and from patients with hepatocellular carcinoma. Eleven volunteers and five patients were examined at 3 T. Two sections, one optimized for the vascular input functions (VIF) and one for the tissue, were imaged within a single heart-beat (HB) using a saturation-recovery fast gradient echo sequence. The data was analysed using a dual-input single-compartment PK model. The VIFs and/or uptake curves were then temporally sub-sampled (at interval ▵t = [2-20] s) before being subject to the same PK analysis. Statistical comparisons of tumour and normal tissue PK parameter values using a 5% significance level gave rise to the same study results when temporally sub-sampling the VIFs to HB < ▵t <4 s. However, sub-sampling to ▵t > 4 s did adversely affect the statistical comparisons. Temporal sub-sampling of just the liver/tumour tissue uptake curves at ▵t ≤ 20 s, whilst using high temporal resolution VIFs, did not substantially affect PK parameter statistical comparisons. In conclusion, there is no practical advantage to be gained from acquiring very high temporal resolution hepatic DCE-MRI data. Instead the high temporal resolution could be usefully traded for increased spatial resolution or SNR.

  11. Mercury in the Pelagic Food Web of Lake Champlain

    PubMed Central

    Chen, Celia; Kamman, Neil; Shanley, James; Chalmers, Ann; Jackson, Brian; Taylor, Vivien; Smeltzer, Eric; Stangel, Pete; Shambaugh, Angela

    2013-01-01

    Lake Champlain continues to experience mercury contamination resulting in public advisories to limit human consumption of top trophic level fish such as walleye. Prior research suggested that mercury levels in biota could be modified by differences in ecosystem productivity as well as mercury loadings. We investigated relationships between mercury in different trophic levels in Lake Champlain. We measured inorganic and methyl mercury in water, seston, and two size fractions of zooplankton from 13 sites representing a range of nutrient loading conditions and productivity. Biomass varied significantly across lake segments in all measured ecosystem compartments in response to significant differences in nutrient levels. Local environmental factors such as alkalinity influenced the partitioning of mercury between water and seston. Mercury incorporation into biota was influenced by the biomass and mercury content of different ecosystem strata. Pelagic fish tissue mercury was a function of fish length and the size of the mercury pool associated with large zooplankton. We used these observations to parameterize a model of mercury transfers in the Lake Champlain food web that accounts for ecosystem productivity effects. Simulations using the mercury trophic transfer model suggest that reductions of 25 to 75% in summertime dissolved eplimnetic total mercury will likely allow fish tissue mercury concentrations to drop to the target level of 0.3 µg g−1 in a 40-cm fish in all lake segments. Changes in nutrient loading and ecosystem productivity in eutrophic segments may delay any response to reduced dissolved mercury and may result in increases in fish tissue mercury. PMID:22193540

  12. MELiSSA third compartment: Nitrosomonas europaea and Nitrobacter winogradskyi axenic cultures in bioreactors

    NASA Astrophysics Data System (ADS)

    Cruvellier, Nelly; Lasseur, Christophe; Poughon, Laurent; Creuly, Catherine; Dussap, Gilles

    Nitrogen is a key element for the life and its balance on Earth is regulated by the nitrogen cycle. This loop includes several steps among which nitrification that permits the transformation of the ammonium into nitrate. The MELiSSA loop is an artificial ecosystem designed for life support systems (LSS). It is based on the carbon and nitrogen cycles and the recycling of the non-edible part of the higher plants and the waste produced by the crew. In this order, all the wastes are collected in the first compartment to degrade them into organic acids and CO2. These compounds are joining the second compartment which is a photoheterotrophic compartment where at the outlet an organic-free medium containing ammonium is produced. This solution will be the substrate of the third compartment where nitrification is done. This compartment has to oxidize the ammonium into nitrate, and this biological reaction needs two steps. In the MELiSSA loop, the nitrification is carried out by two bacteria: Nitrosomonas europaea ATCC® 19718™ which is oxidizing ammonia into nitrite and Nitrobacter winogradskyi ATCC® 25391™ which is producing nitrate from nitrite in the third compartment. These two bacteria are growing in axenic conditions on a fixed bed bioreactor filled with Biostyr® beads. The nitrogen compounds are controlled by Ionic Chromatography and colorimetric titration for each sample. The work presented here deals with the culture of both bacteria in pure cultures and mixed cultures in stirred and aerated bioreactors of different volumes. The first aim of our work is the characterization of the bacteria growth in bioreactors and in the nitrifying fixed-bed column. The experimental results confirm that the growth is slow; the maximal growth rate in suspended cultures is 0.054h-1 for Nitrosomonas europaea and 0.022h-1 for Nitrobacter winogradskyi. Mixed cultures are difficult to control and operate but one could be done for more than 500 hours. The characterization of the bacteria will be used to calibrate the nitrification model which will be the basis of the control model for managing the nitrification process in the MELiSSA loop. The experimental results highlighted the use of online measurement of base addition and oxygen consumption as possible parameters for the control of the nitrification process. Keywords: Nitrosomonas europaea, Nitrobacter winogradskyi, MELiSSA, bioreactor

  13. Diffusion heterogeneity tensor MRI (?-Dti): mathematics and initial applications in spinal cord regeneration after trauma - biomed 2009.

    PubMed

    Ellington, Benjamin M; Schmit, Brian D; Gourab, Krishnaj; Sieber-Blum, Maya; Hu, Yao F; Schmainda, Kathleen M

    2009-01-01

    Diffusion weighted magnetic resonance imaging (DWI) is a powerful tool for evaluation of microstructural anomalies in numerous central nervous system pathologies. Diffusion tensor imaging (DTI) allows for the magnitude and direction of water self diffusion to be estimated by sampling the apparent diffusion coefficient (ADC) in various directions. Clinical DWI and DTI performed at a single level of diffusion weighting, however, does not allow for multiple diffusion compartments to be elicited. Furthermore, assumptions made regarding the precise number of diffusion compartments intrinsic to the tissue of interest have resulted in a lack of consensus between investigations. To overcome these challenges, a stretched-exponential model of diffusion was applied to examine the diffusion coefficient and "heterogeneity index" within highly compartmentalized brain tumors. The purpose of the current study is to expand on the stretched-exponential model of diffusion to include directionality of both diffusion heterogeneity and apparent diffusion coefficient. This study develops the mathematics of this new technique along with an initial application in quantifying spinal cord regeneration following acute injection of epidermal neural crest stem cell (EPI-NCSC) grafts.

  14. Transport of fluid and solutes in the body I. Formulation of a mathematical model.

    PubMed

    Gyenge, C C; Bowen, B D; Reed, R K; Bert, J L

    1999-09-01

    A compartmental model of short-term whole body fluid, protein, and ion distribution and transport is formulated. The model comprises four compartments: a vascular and an interstitial compartment, each with an embedded cellular compartment. The present paper discusses the assumptions on which the model is based and describes the equations that make up the model. Fluid and protein transport parameters from a previously validated model as well as ionic exchange parameters from the literature or from statistical estimation [see companion paper: C. C. Gyenge, B. D. Bowen, R. K. Reed, and J. L. Bert. Am. J. Physiol. 277 (Heart Circ. Physiol. 46): H1228-H1240, 1999] are used in formulating the model. The dynamic model has the ability to simulate 1) transport across the capillary membrane of fluid, proteins, and small ions and their distribution between the vascular and interstitial compartments; 2) the changes in extracellular osmolarity; 3) the distribution and transport of water and ions associated with each of the cellular compartments; 4) the cellular transmembrane potential; and 5) the changes of volume in the four fluid compartments. The validation and testing of the proposed model against available experimental data are presented in the companion paper.

  15. Angiographic and volumetric effects of mammalian target of rapamycin inhibitors on angiomyolipomas in tuberous sclerosis

    PubMed Central

    Sheth, Rahul A; Feldman, Adam S; Paul, Elahna; Thiele, Elizabeth A; Walker, T Gregory

    2016-01-01

    AIM: To investigate the angiographic and volumetric effects of mammalian target of rapamycin (mTOR) inhibitors on angiomyolipomas (AMLs) in a case series of patients with tuberous sclerosis complex. METHODS: All patients who underwent catheter angiography prior to and following mTOR inhibitor therapy (n = 3) were evaluated. All cross-sectional imaging studies were analyzed with three-dimensional volumetrics, and tumor volume curves for all three tissue compartments (soft tissue, vascular, and fat) were generated. Segmentation analysis tools were used to automatically create a region of interest (ROI) circumscribing the AML. On magnetic resonance images, the “fat only” map calculated from the in- and opposed-phase gradient recalled echo sequences was used to quantify fat volume within tumors. Tumor vascularity was measured by applying a thresholding tool within the ROI on post-contrast subtraction images. On computed tomography images, volume histogram analysis of Hounsfield unit was performed to quantify tumor tissue composition. The angiography procedures were also reviewed, and tumor vascularity based on pre-embolization angiography was characterized in a semi-quantitative manner. RESULTS: Patient 1 presented at the age of 15 with a 6.8 cm right lower pole AML and a 4.0 cm right upper pole AML. Embolization was performed of both tumors, and after a few years of size control, the tumors began to grow, and the patient was initiated on mTOR inhibitor therapy. There was an immediate reduction in the size of both lesions. The patient then underwent repeat embolization and discontinuation of mTOR inhibition, after which point there was a substantial regrowth in both tumors across all tissue compartments. Patient 2 presented at the age of 18 with a right renal AML. Following a brief period of tumor reduction after embolization, she was initiated on mTOR inhibitor therapy, with successful reduction in tumor size across all tissue compartments. As with patient 1, however, there was immediate rebound growth following discontinuation of inhibitor therapy, without sustained control despite repeat embolization. patient 3 presented at the age of 5 with a left renal AML and underwent two embolization procedures without lasting effect prior to starting mTOR inhibition. As with patients 1 and 2, following discontinuation of therapy, there was immediate rebound growth of the tumor. Repeat embolization, however, was notable for a substantial reduction in intratumoral aneurysms and vascularity. CONCLUSION: AML volume reduction as well as post-treatment rebound growth due to mTOR inhibitors involves all three tissue components of the tumor. PMID:27027863

  16. Statistical Exposé of a Multiple-Compartment Anaerobic Reactor Treating Domestic Wastewater.

    PubMed

    Pfluger, Andrew R; Hahn, Martha J; Hering, Amanda S; Munakata-Marr, Junko; Figueroa, Linda

    2018-06-01

      Mainstream anaerobic treatment of domestic wastewater is a promising energy-generating treatment strategy; however, such reactors operated in colder regions are not well characterized. Performance data from a pilot-scale, multiple-compartment anaerobic reactor taken over 786 days were subjected to comprehensive statistical analyses. Results suggest that chemical oxygen demand (COD) was a poor proxy for organics in anaerobic systems as oxygen demand from dissolved inorganic material, dissolved methane, and colloidal material influence dissolved and particulate COD measurements. Additionally, univariate and functional boxplots were useful in visualizing variability in contaminant concentrations and identifying statistical outliers. Further, significantly different dissolved organic removal and methane production was observed between operational years, suggesting that anaerobic reactor systems may not achieve steady-state performance within one year. Last, modeling multiple-compartment reactor systems will require data collected over at least two years to capture seasonal variations of the major anaerobic microbial functions occurring within each reactor compartment.

  17. Brain tissue segmentation based on DTI data

    PubMed Central

    Liu, Tianming; Li, Hai; Wong, Kelvin; Tarokh, Ashley; Guo, Lei; Wong, Stephen T.C.

    2008-01-01

    We present a method for automated brain tissue segmentation based on the multi-channel fusion of diffusion tensor imaging (DTI) data. The method is motivated by the evidence that independent tissue segmentation based on DTI parametric images provides complementary information of tissue contrast to the tissue segmentation based on structural MRI data. This has important applications in defining accurate tissue maps when fusing structural data with diffusion data. In the absence of structural data, tissue segmentation based on DTI data provides an alternative means to obtain brain tissue segmentation. Our approach to the tissue segmentation based on DTI data is to classify the brain into two compartments by utilizing the tissue contrast existing in a single channel. Specifically, because the apparent diffusion coefficient (ADC) values in the cerebrospinal fluid (CSF) are more than twice that of gray matter (GM) and white matter (WM), we use ADC images to distinguish CSF and non-CSF tissues. Additionally, fractional anisotropy (FA) images are used to separate WM from non-WM tissues, as highly directional white matter structures have much larger fractional anisotropy values. Moreover, other channels to separate tissue are explored, such as eigenvalues of the tensor, relative anisotropy (RA), and volume ratio (VR). We developed an approach based on the Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm that combines these two-class maps to obtain a complete tissue segmentation map of CSF, GM, and WM. Evaluations are provided to demonstrate the performance of our approach. Experimental results of applying this approach to brain tissue segmentation and deformable registration of DTI data and spoiled gradient-echo (SPGR) data are also provided. PMID:17804258

  18. Permeability-diffusivity modeling vs. fractional anisotropy on white matter integrity assessment and application in schizophrenia.

    PubMed

    Kochunov, P; Chiappelli, J; Hong, L E

    2013-01-01

    Diffusion tensor imaging (DTI) assumes a single pool of anisotropically diffusing water to calculate fractional anisotropy (FA) and is commonly used to ascertain white matter (WM) deficits in schizophrenia. At higher b-values, diffusion-signal decay becomes bi-exponential, suggesting the presence of two, unrestricted and restricted, water pools. Theoretical work suggests that semi-permeable cellular membrane rather than the presence of two physical compartments is the cause. The permeability-diffusivity (PD) parameters measured from bi-exponential modeling may offer advantages, over traditional DTI-FA, in identifying WM deficits in schizophrenia. Imaging was performed in N = 26/26 patients/controls (age = 20-61 years, average age = 40.5 ± 12.6). Imaging consisted of fifteen b-shells: b = 250-3800 s/mm(2) with 30 directions/shell, covering seven slices of mid-sagittal corpus callosum (CC) at 1.7 × 1.7 × 4.6 mm. 64-direction DTI was also collected. Permeability-diffusivity-index (PDI), the ratio of restricted to unrestricted apparent diffusion coefficients, and the fraction of unrestricted compartment (Mu) were calculated for CC and cingulate gray matter (GM). FA values for CC were calculated using tract-based-spatial-statistics. Patients had significantly reduced PDI in CC (p ≅ 10(- 4)) and cingulate GM (p = 0.002), while differences in CC FA were modest (p ≅ .03). There was no group-related difference in Mu. Additional theoretical-modeling analysis suggested that reduced PDI in patients may be caused by reduced cross-membrane water molecule exchanges. PDI measurements for cerebral WM and GM yielded more robust patient-control differences than DTI-FA. Theoretical work offers an explanation that patient-control PDI differences should implicate abnormal active membrane permeability. This would implicate abnormal activities in ion-channels that use water as substrate for ion exchange, in cerebral tissues of schizophrenia patients.

  19. The impact of pH inhomogeneities on CHO cell physiology and fed-batch process performance - two-compartment scale-down modelling and intracellular pH excursion.

    PubMed

    Brunner, Matthias; Braun, Philipp; Doppler, Philipp; Posch, Christoph; Behrens, Dirk; Herwig, Christoph; Fricke, Jens

    2017-07-01

    Due to high mixing times and base addition from top of the vessel, pH inhomogeneities are most likely to occur during large-scale mammalian processes. The goal of this study was to set-up a scale-down model of a 10-12 m 3 stirred tank bioreactor and to investigate the effect of pH perturbations on CHO cell physiology and process performance. Short-term changes in extracellular pH are hypothesized to affect intracellular pH and thus cell physiology. Therefore, batch fermentations, including pH shifts to 9.0 and 7.8, in regular one-compartment systems are conducted. The short-term adaption of the cells intracellular pH are showed an immediate increase due to elevated extracellular pH. With this basis of fundamental knowledge, a two-compartment system is established which is capable of simulating defined pH inhomogeneities. In contrast to state-of-the-art literature, the scale-down model is included parameters (e.g. volume of the inhomogeneous zone) as they might occur during large-scale processes. pH inhomogeneity studies in the two-compartment system are performed with simulation of temporary pH zones of pH 9.0. The specific growth rate especially during the exponential growth phase is strongly affected resulting in a decreased maximum viable cell density and final product titer. The gathered results indicate that even short-term exposure of cells to elevated pH values during large-scale processes can affect cell physiology and overall process performance. In particular, it could be shown for the first time that pH perturbations, which might occur during the early process phase, have to be considered in scale-down models of mammalian processes. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Inflammasome, Inflammation, and Tissue Homeostasis.

    PubMed

    Rathinam, Vijay A K; Chan, Francis Ka-Ming

    2018-03-01

    Organismal fitness demands proper response to neutralize the threat from infection or injury. At the mammalian intestinal epithelium barrier, the inflammasome coordinates an elaborate tissue repair response marked by the induction of antimicrobial peptides, wound-healing cytokines, and reparative proliferation of epithelial stem cells. The inflammasome in myeloid and intestinal epithelial compartments exerts these effects in part through maintenance of a healthy microbiota. Disease-associated mutations and elevated expression of certain inflammasome sensors have been identified. In many cases, inhibition of inflammasome activity has dramatic effects on disease outcome in mouse models of experimental colitis. Here, we discuss recent studies on the role of distinct inflammasome sensors in intestinal homeostasis and how this knowledge may be translated into a therapeutic setting. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Functional outcome of tibial fracture with acute compartment syndrome and correlation to deep posterior compartment pressure.

    PubMed

    Goyal, Saumitra; Naik, Monappa A; Tripathy, Sujit Kumar; Rao, Sharath K

    2017-05-18

    To measure single baseline deep posterior compartment pressure in tibial fracture complicated by acute compartment syndrome (ACS) and to correlate it with functional outcome. Thirty-two tibial fractures with ACS were evaluated clinically and the deep posterior compartment pressure was measured. Urgent fasciotomy was needed in 30 patients. Definite surgical fixation was performed either primarily or once fasciotomy wound was healthy. The patients were followed up at 3 mo, 6 mo and one year. At one year, the functional outcome [lower extremity functional scale (LEFS)] and complications were assessed. Three limbs were amputated. In remaining 29 patients, the average times for clinical and radiological union were 25.2 ± 10.9 wk (10 to 54 wk) and 23.8 ± 9.2 wk (12 to 52 wk) respectively. Nine patients had delayed union and 2 had nonunion who needed bone grafting to augment healing. Most common complaint at follow up was ankle stiffness (76%) that caused difficulty in walking, running and squatting. Of 21 patients who had paralysis at diagnosis, 13 (62%) did not recover and additional five patients developed paralysis at follow-up. On LEFS evaluation, there were 14 patients (48.3%) with severe disability, 10 patients (34.5%) with moderate disability and 5 patients (17.2%) with minimal disability. The mean pressures in patients with minimal disability, moderate disability and severe disability were 37.8, 48.4 and 58.79 mmHg respectively ( P < 0.001). ACS in tibial fractures causes severe functional disability in majority of patients. These patients are prone for delayed union and nonunion; however, long term disability is mainly because of severe soft tissue contracture. Intra-compartmental pressure (ICP) correlates with functional disability; patients with relatively high ICP are prone for poor functional outcome.

  2. Validation of a Radiography-Based Quantification Designed to Longitudinally Monitor Soft Tissue Calcification in Skeletal Muscle.

    PubMed

    Moore, Stephanie N; Hawley, Gregory D; Smith, Emily N; Mignemi, Nicholas A; Ihejirika, Rivka C; Yuasa, Masato; Cates, Justin M M; Liu, Xulei; Schoenecker, Jonathan G

    2016-01-01

    Soft tissue calcification, including both dystrophic calcification and heterotopic ossification, may occur following injury. These lesions have variable fates as they are either resorbed or persist. Persistent soft tissue calcification may result in chronic inflammation and/or loss of function of that soft tissue. The molecular mechanisms that result in the development and maturation of calcifications are uncertain. As a result, directed therapies that prevent or resorb soft tissue calcifications remain largely unsuccessful. Animal models of post-traumatic soft tissue calcification that allow for cost-effective, serial analysis of an individual animal over time are necessary to derive and test novel therapies. We have determined that a cardiotoxin-induced injury of the muscles in the posterior compartment of the lower extremity represents a useful model in which soft tissue calcification develops remote from adjacent bones, thereby allowing for serial analysis by plain radiography. The purpose of the study was to design and validate a method for quantifying soft tissue calcifications in mice longitudinally using plain radiographic techniques and an ordinal scoring system. Muscle injury was induced by injecting cardiotoxin into the posterior compartment of the lower extremity in mice susceptible to developing soft tissue calcification. Seven days following injury, radiographs were obtained under anesthesia. Multiple researchers applied methods designed to standardize post-image processing of digital radiographs (N = 4) and quantify soft tissue calcification (N = 6) in these images using an ordinal scoring system. Inter- and intra-observer agreement for both post-image processing and the scoring system used was assessed using weighted kappa statistics. Soft tissue calcification quantifications by the ordinal scale were compared to mineral volume measurements (threshold 450.7mgHA/cm3) determined by μCT. Finally, sample-size calculations necessary to discriminate between a 25%, 50%, 75%, and 100% difference in STiCSS score 7 days following burn/CTX induced muscle injury were determined. Precision analysis demonstrated substantial to good agreement for both post-image processing (κ = 0.73 to 0.90) and scoring (κ = 0.88 to 0.93), with low inter- and intra-observer variability. Additionally, there was a strong correlation in quantification of soft tissue calcification between the ordinal system and by mineral volume quantification by μCT (Spearman r = 0.83 to 0.89). The ordinal scoring system reliably quantified soft tissue calcification in a burn/CTX-induced soft tissue calcification model compared to non-injured controls (Mann-Whitney rank test: P = 0.0002, ***). Sample size calculations revealed that 6 mice per group would be required to detect a 50% difference in STiCSS score with a power of 0.8. Finally, the STiCSS was demonstrated to reliably quantify soft tissue calcification [dystrophic calcification and heterotopic ossification] by radiographic analysis, independent of the histopathological state of the mineralization. Radiographic analysis can discriminate muscle injury-induced soft tissue calcification from adjacent bone and follow its clinical course over time without requiring the sacrifice of the animal. While the STiCSS cannot identify the specific type of soft tissue calcification present, it is still a useful and valid method by which to quantify the degree of soft tissue calcification. This methodology allows for longitudinal measurements of soft tissue calcification in a single animal, which is relatively less expensive, less time-consuming, and exposes the animal to less radiation than in vivo μCT. Therefore, this high-throughput, longitudinal analytic method for quantifying soft tissue calcification is a viable alternative for the study of soft tissue calcification.

  3. Validation of a Radiography-Based Quantification Designed to Longitudinally Monitor Soft Tissue Calcification in Skeletal Muscle

    PubMed Central

    Moore, Stephanie N.; Hawley, Gregory D.; Smith, Emily N.; Mignemi, Nicholas A.; Ihejirika, Rivka C.; Yuasa, Masato; Cates, Justin M. M.; Liu, Xulei; Schoenecker, Jonathan G.

    2016-01-01

    Introduction Soft tissue calcification, including both dystrophic calcification and heterotopic ossification, may occur following injury. These lesions have variable fates as they are either resorbed or persist. Persistent soft tissue calcification may result in chronic inflammation and/or loss of function of that soft tissue. The molecular mechanisms that result in the development and maturation of calcifications are uncertain. As a result, directed therapies that prevent or resorb soft tissue calcifications remain largely unsuccessful. Animal models of post-traumatic soft tissue calcification that allow for cost-effective, serial analysis of an individual animal over time are necessary to derive and test novel therapies. We have determined that a cardiotoxin-induced injury of the muscles in the posterior compartment of the lower extremity represents a useful model in which soft tissue calcification develops remote from adjacent bones, thereby allowing for serial analysis by plain radiography. The purpose of the study was to design and validate a method for quantifying soft tissue calcifications in mice longitudinally using plain radiographic techniques and an ordinal scoring system. Methods Muscle injury was induced by injecting cardiotoxin into the posterior compartment of the lower extremity in mice susceptible to developing soft tissue calcification. Seven days following injury, radiographs were obtained under anesthesia. Multiple researchers applied methods designed to standardize post-image processing of digital radiographs (N = 4) and quantify soft tissue calcification (N = 6) in these images using an ordinal scoring system. Inter- and intra-observer agreement for both post-image processing and the scoring system used was assessed using weighted kappa statistics. Soft tissue calcification quantifications by the ordinal scale were compared to mineral volume measurements (threshold 450.7mgHA/cm3) determined by μCT. Finally, sample-size calculations necessary to discriminate between a 25%, 50%, 75%, and 100% difference in STiCSS score 7 days following burn/CTX induced muscle injury were determined. Results Precision analysis demonstrated substantial to good agreement for both post-image processing (κ = 0.73 to 0.90) and scoring (κ = 0.88 to 0.93), with low inter- and intra-observer variability. Additionally, there was a strong correlation in quantification of soft tissue calcification between the ordinal system and by mineral volume quantification by μCT (Spearman r = 0.83 to 0.89). The ordinal scoring system reliably quantified soft tissue calcification in a burn/CTX-induced soft tissue calcification model compared to non-injured controls (Mann-Whitney rank test: P = 0.0002, ***). Sample size calculations revealed that 6 mice per group would be required to detect a 50% difference in STiCSS score with a power of 0.8. Finally, the STiCSS was demonstrated to reliably quantify soft tissue calcification [dystrophic calcification and heterotopic ossification] by radiographic analysis, independent of the histopathological state of the mineralization. Conclusions Radiographic analysis can discriminate muscle injury-induced soft tissue calcification from adjacent bone and follow its clinical course over time without requiring the sacrifice of the animal. While the STiCSS cannot identify the specific type of soft tissue calcification present, it is still a useful and valid method by which to quantify the degree of soft tissue calcification. This methodology allows for longitudinal measurements of soft tissue calcification in a single animal, which is relatively less expensive, less time-consuming, and exposes the animal to less radiation than in vivo μCT. Therefore, this high-throughput, longitudinal analytic method for quantifying soft tissue calcification is a viable alternative for the study of soft tissue calcification. PMID:27438007

  4. A general multiple-compartment model for the transport of trace elements through animals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assimakopoulos, P.A.; Ioannides, K.G.; Pakou, A.A.

    1991-08-01

    Multiple-compartment models employed in the analysis of trace element transport in animals are often based on linear differential equations which relate the rate of change of contaminant (or contaminant concentration) in each compartment to the amount of contaminant (or contaminant concentration) in every other compartment in the system. This has the serious disadvantage of mixing intrinsic physiological properties with the geometry of the animal. The basic equations on which the model presented here is developed are derived from the actual physical process under way and are capable of separating intrinsic physiological properties from geometry. It is thus expected that ratemore » coefficients determined through this model will be applicable to a wider category of physiologically similar animals. A specific application of the model for the study of contamination of sheep--or indeed for any ruminant--is presented, and the temporal evolution of contaminant concentration in the various compartments of the animal is calculated. The application of this model to a system of compartments with changing geometry is also presented.« less

  5. Population Pharmacokinetics and Dosing Regimen Optimization of Meropenem in Cerebrospinal Fluid and Plasma in Patients with Meningitis after Neurosurgery

    PubMed Central

    Lu, Cheng; Zhang, Yuyi; Chen, Mingyu; Zhong, Ping; Chen, Yuancheng; Yu, Jicheng; Wu, Xiaojie; Wu, Jufang

    2016-01-01

    Meropenem is used to manage postneurosurgical meningitis, but its population pharmacokinetics (PPK) in plasma and cerebrospinal fluid (CSF) in this patient group are not well-known. Our aims were to (i) characterize meropenem PPK in plasma and CSF and (ii) recommend favorable dosing regimens in postneurosurgical meningitis patients. Eighty-two patients were enrolled to receive meropenem infusions of 2 g every 8 h (q8h), 1 g q8h, or 1 g q6h for at least 3 days. Serial blood and CSF samples were collected, and concentrations were determined and analyzed via population modeling. Probabilities of target attainment (PTA) were predicted via Monte Carlo simulations, using the target of unbound meropenem concentrations above the MICs for at least 40% of dosing intervals in plasma and at least of 50% or 100% of dosing intervals in CSF. A two-compartment model plus another CSF compartment best described the data. The central, intercentral/peripheral, and intercentral/CSF compartment clearances were 22.2 liters/h, 1.79 liters/h, and 0.01 liter/h, respectively. Distribution volumes of the central and peripheral compartments were 17.9 liters and 3.84 liters, respectively. The CSF compartment volume was fixed at 0.13 liter, with its clearance calculated by the observed drainage amount. The multiplier for the transfer from the central to the CSF compartment was 0.172. Simulation results show that the PTAs increase as infusion is prolonged and as the daily CSF drainage volume decreases. A 4-hour infusion of 2 g q8h with CSF drainage of less than 150 ml/day, which provides a PTA of >90% for MICs of ≤8 mg/liter in blood and of ≤0.5 mg/liter or 0.25 mg/liter in CSF, is recommended. (This study has been registered at ClinicalTrials.gov under identifier NCT02506686.) PMID:27572392

  6. In vivo metabolism and partitioning of 6-[18F]fluoro-L-meta-tyrosine in whole blood: a unified compartment model

    NASA Astrophysics Data System (ADS)

    Asselin, Marie-Claude; Wahl, Lindi M.; Cunningham, Vincent J.; Amano, Shigeko; Nahmias, Claude

    2002-06-01

    Physiological quantification of dynamic PET data requires the determination of an input function, preferably from plasma. A compartmental model relating a parent radiotracer, its radiolabelled metabolites and their exchange between plasma and erythrocytes is presented. This model allows for the time course of radioactivity measured in whole blood to be transformed into the time course of the radiotracer in plasma. The utility of this approach is illustrated with blood data collected on 30 human subjects injected with 6-[18F]fluoro-L-meta-tyrosine (FmT), a pre-synaptic dopaminergic radiotracer. A three-compartment four-parameter model is shown to yield significantly better fits to the blood data than related lower and higher order models. This model is found to be robust to measurement noise, and yet sensitive to metabolic changes induced by pretreatment with carbidopa. For FmT, the between-subject variations are shown to be small enough to warrant the use of a population-based correction;; tissue time-activity curves were simulated to verify that this correction does not significantly affect the precision and accuracy of the derived rate constants. The unified blood model can be adapted for radiotracers other than FmT as long as the blood partition ratio of the parent radiotracer differs from that of its metabolites and/or the rate at which they equilibrate between plasma and erythrocytes is different.

  7. Cell proliferation in normal epidermis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinstein, G.D.; McCullough, J.L.; Ross, P.

    1984-06-01

    A detailed examination of cell proliferation kinetics in normal human epidermis is presented. Using tritiated thymidine with autoradiographic techniques, proliferative and differentiated cell kinetics are defined and interrelated. The proliferative compartment of normal epidermis has a cell cycle duration (Tc) of 311 h derived from 3 components: the germinative labeling index (LI), the duration of DNA synthesis (ts), and the growth fraction (GF). The germinative LI is 2.7% +/- 1.2 and ts is 14 h, the latter obtained from a composite fraction of labeled mitoses curve obtained from 11 normal subjects. The GF obtained from the literature and from humanmore » skin xenografts to nude mice is estimated to be 60%. Normal-appearing epidermis from patients with psoriasis appears to have a higher proliferation rate. The mean LI is 4.2% +/- 0.9, approximately 50% greater than in normal epidermis. Absolute cell kinetic values for this tissue, however, cannot yet be calculated for lack of other information on ts and GF. A kinetic model for epidermal cell renewal in normal epidermis is described that interrelates the rate of birth/entry, transit, and/or loss of keratinocytes in the 3 epidermal compartments: proliferative, viable differentiated (stratum malpighii), and stratum corneum. Expected kinetic homeostasis in the epidermis is confirmed by the very similar ''turnover'' rates in each of the compartments that are, respectively, 1246, 1417, and 1490 cells/day/mm2 surface area. The mean epidermal turnover time of the entire tissue is 39 days. The Tc of 311 h in normal cells in 8-fold longer than the psoriatic Tc of 36 h and is necessary for understanding the hyperproliferative pathophysiologic process in psoriasis.« less

  8. Patterning cellular compartments within TRACER cultures using sacrificial gelatin printing.

    PubMed

    Xu, Bin; Rodenhizer, Darren; Lakhani, Shakir; Zhang, Xiaoshu; Soleas, John P; Ailles, Laurie; McGuigan, Alison P

    2016-09-15

    In the past decade, it has been well recognised that the tumour microenvironment contains microenvironmental components such as hypoxia that significantly influence tumour cell behaviours such, invasiveness and therapy resistance, all of which provide new targets for studying cancer biology and developing anticancer therapeutics. In response, a large number of two-dimensional and three-dimensional (3D) in vitro tumour models have been developed to recapitulate different aspects of the tumour microenvironment and enable the study of related biological questions. While more complex models enable new biological insight, such models often involve time-consuming and complex fabrication or analysis processes, which limit their adoption by the broader cancer biology community. To address this, we recently reported the development of a new platform that enables easy assembly and analysis of 3D tumour cultures, the tissue roll for analysis of cellular environment response (TRACER). The TRACER platform enables recapitulation of many spatial aspects of the tumour microenvironment to ask a variety of questions, however its original design contains only one cell type. In contrast tumours in vivo often contain a neoplastic and stromal compartment. To expand the types of questions the TRACER system is useful for asking, here we present a strategy to pattern distinct cell type domains into TRACER layers using a custom-built gelatin-dispensing pen. The pen allows deposition of a temporary gelatin barrier into the TRACER scaffold to define domain boundaries between cell populations. The gelatin can be melted away after cell seeding to allow interaction of cell populations from adjacent domains. Our device offers a simple strategy to generate complex multi-cell type tumour cultures for analysis of fundamental biology and drug development applications.

  9. Effect of gradient pulse duration on MRI estimation of the diffusional kurtosis for a two-compartment exchange model

    NASA Astrophysics Data System (ADS)

    Jensen, Jens H.; Helpern, Joseph A.

    2011-06-01

    Hardware constraints typically require the use of extended gradient pulse durations for clinical applications of diffusion-weighted magnetic resonance imaging (DW-MRI), which can potentially influence the estimation of diffusion metrics. Prior studies have examined this effect for the apparent diffusion coefficient. This study employs a two-compartment exchange model in order to assess the gradient pulse duration sensitivity of the apparent diffusional kurtosis (ADK), a quantitative index of diffusional non-Gaussianity. An analytic expression is derived and numerically evaluated for parameter ranges relevant to DW-MRI of brain. It is found that the ADK differs from the true diffusional kurtosis by at most a few percent. This suggests that ADK estimates for brain may be robust with respect to changes in pulse gradient duration.

  10. Direct reconstruction in CT-analogous pharmacokinetic diffuse fluorescence tomography: two-dimensional simulative and experimental validations

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Zhang, Yanqi; Zhang, Limin; Li, Jiao; Zhou, Zhongxing; Zhao, Huijuan; Gao, Feng

    2016-04-01

    We present a generalized strategy for direct reconstruction in pharmacokinetic diffuse fluorescence tomography (DFT) with CT-analogous scanning mode, which can accomplish one-step reconstruction of the indocyanine-green pharmacokinetic-rate images within in vivo small animals by incorporating the compartmental kinetic model into an adaptive extended Kalman filtering scheme and using an instantaneous sampling dataset. This scheme, compared with the established indirect and direct methods, eliminates the interim error of the DFT inversion and relaxes the expensive requirement of the instrument for obtaining highly time-resolved date-sets of complete 360 deg projections. The scheme is validated by two-dimensional simulations for the two-compartment model and pilot phantom experiments for the one-compartment model, suggesting that the proposed method can estimate the compartmental concentrations and the pharmacokinetic-rates simultaneously with a fair quantitative and localization accuracy, and is well suitable for cost-effective and dense-sampling instrumentation based on the highly-sensitive photon counting technique.

  11. Geometric properties-dependent neural synchrony modulated by extracellular subthreshold electric field

    NASA Astrophysics Data System (ADS)

    Wei, Xile; Si, Kaili; Yi, Guosheng; Wang, Jiang; Lu, Meili

    2016-07-01

    In this paper, we use a reduced two-compartment neuron model to investigate the interaction between extracellular subthreshold electric field and synchrony in small world networks. It is observed that network synchronization is closely related to the strength of electric field and geometric properties of the two-compartment model. Specifically, increasing the electric field induces a gradual improvement in network synchrony, while increasing the geometric factor results in an abrupt decrease in synchronization of network. In addition, increasing electric field can make the network become synchronous from asynchronous when the geometric parameter is set to a given value. Furthermore, it is demonstrated that network synchrony can also be affected by the firing frequency and dynamical bifurcation feature of single neuron. These results highlight the effect of weak field on network synchrony from the view of biophysical model, which may contribute to further understanding the effect of electric field on network activity.

  12. Adder bite: an uncommon cause of compartment syndrome in northern hemisphere

    PubMed Central

    2010-01-01

    Snakebite envenomation is an uncommon condition in the northern hemisphere, but requires high vigilance with regard to both the systemic effects of the venom and the locoregional impact on the soft tissues. Bites from the adder, Vipera Berus, may have serious clinical consequences due to systemic effects. A case of a 44-year-old man is reported. The patient was bitten in the right hand. He developed fasciotomy-requiring compartment syndrome of the upper limb. Recognition of this most seldom complication of an adder bite is vital to save the limb. We recommend that the classical signs and symptoms of compartment syndrome serve as indication for surgical decompression. PMID:20854675

  13. A review of technical aspects of T1-weighted dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in human brain tumors.

    PubMed

    Bergamino, M; Bonzano, L; Levrero, F; Mancardi, G L; Roccatagliata, L

    2014-09-01

    In the last few years, several imaging methods, such as magnetic resonance imaging (MRI) and computed tomography, have been used to investigate the degree of blood-brain barrier (BBB) permeability in patients with neurological diseases including multiple sclerosis, ischemic stroke, and brain tumors. One promising MRI method for assessing the BBB permeability of patients with neurological diseases in vivo is T1-weighted dynamic contrast-enhanced (DCE)-MRI. Here we review the technical issues involved in DCE-MRI in the study of human brain tumors. In the first part of this paper, theoretical models for the DCE-MRI analysis will be described, including the Toft-Kety models, the adiabatic approximation to the tissue homogeneity model and the two-compartment exchange model. These models can be used to estimate important kinetic parameters related to BBB permeability. In the second part of this paper, details of the data acquisition, issues related to the arterial input function, and procedures for DCE-MRI image analysis are illustrated. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  14. Krogh-cylinder and infinite-domain models for washout of an inert diffusible solute from tissue.

    PubMed

    Secomb, Timothy W

    2015-01-01

    Models based on the Krogh-cylinder concept are developed to analyze the washout from tissue by blood flow of an inert diffusible solute that permeates blood vessel walls. During the late phase of washout, the outflowing solute concentration decays exponentially with time. This washout decay rate is predicted for a range of conditions. A single capillary is assumed to lie on the axis of a cylindrical tissue region. In the classic "Krogh-cylinder" approach, a no-flux boundary condition is applied on the outside of the cylinder. An alternative "infinite-domain" approach is proposed that allows for solute exchange across the boundary, but with zero net exchange. Both models are analyzed, using finite-element and analytical methods. The washout decay rate depends on blood flow rate, tissue diffusivity and vessel permeability of solute, and assumed boundary conditions. At low blood flow rates, the washout rate can exceed the value for a single well-mixed compartment. The infinite-domain approach predicts slower washout decay rates than the Krogh-cylinder approach. The infinite-domain approach overcomes a significant limitation of the Krogh-cylinder approach, while retaining its simplicity. It provides a basis for developing methods to deduce transport properties of inert solutes from observations of washout decay rates. © 2014 John Wiley & Sons Ltd.

  15. Simulation of Changes in Diffusion Related to Different Pathologies at Cellular Level After Traumatic Brain Injury

    PubMed Central

    Lin, Mu; He, Hongjian; Schifitto, Giovanni; Zhong, Jianhui

    2016-01-01

    Purpose The goal of the current study was to investigate tissue pathology at the cellular level in traumatic brain injury (TBI) as revealed by Monte Carlo simulation of diffusion tensor imaging (DTI)-derived parameters and elucidate the possible sources of conflicting findings of DTI abnormalities as reported in the TBI literature. Methods A model with three compartments separated by permeable membranes was employed to represent the diffusion environment of water molecules in brain white matter. The dynamic diffusion process was simulated with a Monte Carlo method using adjustable parameters of intra-axonal diffusivity, axon separation, glial cell volume fraction, and myelin sheath permeability. The effects of tissue pathology on DTI parameters were investigated by adjusting the parameters of the model corresponding to different stages of brain injury. Results The results suggest that the model is appropriate and the DTI-derived parameters simulate the predominant cellular pathology after TBI. Our results further indicate that when edema is not prevalent, axial and radial diffusivity have better sensitivity to axonal injury and demyelination than other DTI parameters. Conclusion DTI is a promising biomarker to detect and stage tissue injury after TBI. The observed inconsistencies among previous studies are likely due to scanning at different stages of tissue injury after TBI. PMID:26256558

  16. Uptake and distribution of the abused inhalant 1,1-difluoroethane in the rat.

    PubMed

    Avella, Joseph; Kunaparaju, Naveen; Kumar, Sunil; Lehrer, Michael; Zito, S William; Barletta, Michael

    2010-09-01

    1,1-Difluoroethane (DFE) is a halogenated hydrocarbon used as a propellant in products designed for dusting electronic equipment and air brush painting. When abused, inhaled DFE produces intoxication and loss of muscular coordination. To investigate DFE toxicokinetics, groups (n = 3) of Sprague-Dawley rats were exposed to 30 s of 20 L/min DFE. The experimental model was designed to mimic exposure during abuse, a protocol which has not been conducted. Tissue collection (blood, brain, heart, liver, and kidney) occurred at 0, 10, 20, 30, 45, 60, 120, 240, 480, and 900 s. Average peak DFE levels were blood 352, brain 519, heart 338, liver 187, and kidney 364 mg/L or mg/kg. The total percent uptake of the administered dose was 4.0%. Uptake into individual compartments was 2.72, 0.38, 0.15, 0.41, and 0.32% for blood, brain, heart, liver, and kidney, respectively. All animals showed signs of intoxication within 20 s manifested as lethargy, prostration and loss of righting reflex. Marked intoxication continued for about 4 min when DFE averaged 21 mg/L in blood and 17 mg/kg in brain. Between 4 and 8 min, animals continued to show signs of sedation as evidenced by reduced aggression and excitement during handling. No discernable intoxication was evident after 8 min and blood and brain levels had fallen to 10 and 6 mg/L or kg, respectively. Plots of concentration (log) versus time were consistent with a two compartment model. Initial distribution was rapid with average half life (t((1/2))) during the alpha phase of 9 s for blood, 18 s for brain and 27 s in cardiac tissue. During beta slope elimination average t((1/2)) was 86 s in blood, 110 s in brain and 168 s in heart. Late elimination half lives were longer with blood gamma = 240 s, brain gamma = 340 s, and heart gamma = 231 s. Following acute exposure the Vd = 0.06 L, beta = 0.48 min(-1), AUC = 409.8 mg.min L(-1), and CL from blood was 0.03 L min(-1). The calculated toxicokinetic data may underestimate these parameters if DFE is abused chronically due to continued uptake into lowly perfused tissues with repeated dosing.

  17. Skin aging by glycation: lessons from the reconstructed skin model.

    PubMed

    Pageon, Hervé; Zucchi, Hélène; Rousset, Françoise; Monnier, Vincent M; Asselineau, Daniel

    2014-01-01

    Aging is the result of several mechanisms which operate simultaneously. Among them, glycation is of particular interest because it is a reaction which affects slowly renewing tissues and macromolecules with elevated half-life, like the dermis, a skin compartment highly affected by aging. Glycation produces crosslinks between macromolecules thereby providing an explanation for the increased age-related stiffness of the skin. Glycation products, also called AGEs (advanced glycation end products), accumulate primarily in extracellular matrix molecules like collagen or elastin. In order to reproduce this phenomenon in vitro we have created a model of reconstructed skin modified by glycation of the collagen used to fabricate the dermal compartment. This system allowed us to uncover biological modifications of dermal markers, and more surprisingly epidermal markers, as well as an increase of metalloproteinases responsible for degradation of the dermal matrix. Consequently, the imbalance between synthesis and degradation that results from glycation, may contribute to skin aging, as shown in this model. Moreover these modifications were shown to be prevented by the addition of aminoguanidine, a well-known inhibitor of glycation. Using this experimental approach our results taken together stress the importance and possibly central role of glycation in skin aging and the usefulness of the reconstructed skin as a model of physiological aging.

  18. Tissue perfusion during normovolemic hemodilution investigated by a hydraulic model of the cardiovascular system.

    PubMed

    Mirhashemi, S; Messmer, K; Intaglietta, M

    1987-01-01

    Normovolemic hemodilution on a whole body basis is studied by means of a steady flow, hydraulic analogue simulation of the cardiovascular system, based on the Casson's model and current hemodynamic and rheological data. The vasculature is divided into serially connected compartments whose hydraulic resistance is characterized by the average diameter, length, number of vessels, and the corresponding rheological properties of blood formulated by Dintenfass (1971) and Lipowsky et al. (1980). This model computes the pressure distributions in all compartments, where the calculated venous pressure modulates the cardiac function according to the Starling mechanism for cardiac performance. The alterations of flow induced by the action of the heart are added to the effects due to changes in peripheral vascular resistance as a result of hematocrit variation. This model shows that when the response of heart to the changes of venous pressure is impaired, the maximum oxygen carrying capacity occurs at 40% hematocrit (H) where it is 1% higher than normal hematocrit (H = 44%). The normal cardiac response to the changes of venous pressure, causes the maximum oxygen carrying capacity to occur at 32% H where it is 12% greater than that at normal hematocrit. Mean arteriolar pressure and capillary pressure increase while venular pressure is slightly reduced during normovolemic hemodilution.

  19. Reprint of: A numerical modelling of gas exchange mechanisms between air and turbulent water with an aquarium chemical reaction

    NASA Astrophysics Data System (ADS)

    Nagaosa, Ryuichi S.

    2014-08-01

    This paper proposes a new numerical modelling to examine environmental chemodynamics of a gaseous material exchanged between the air and turbulent water phases across a gas-liquid interface, followed by an aquarium chemical reaction. This study uses an extended concept of a two-compartment model, and assumes two physicochemical substeps to approximate the gas exchange processes. The first substep is the gas-liquid equilibrium between the air and water phases, A(g)⇌A(aq), with Henry's law constant H. The second is a first-order irreversible chemical reaction in turbulent water, A(aq)+H2O→B(aq)+H+ with a chemical reaction rate κA. A direct numerical simulation (DNS) technique has been employed to obtain details of the gas exchange mechanisms and the chemical reaction in the water compartment, while zero velocity and uniform concentration of A is considered in the air compartment. The study uses the different Schmidt numbers between 1 and 8, and six nondimensional chemical reaction rates between 10(≈0) to 101 at a fixed Reynolds number. It focuses on the effects of the Schmidt number and the chemical reaction rate on fundamental mechanisms of the gas exchange processes across the interface.

  20. Quantitative CT imaging for adipose tissue analysis in mouse model of obesity

    NASA Astrophysics Data System (ADS)

    Marchadier, A.; Vidal, C.; Tafani, J.-P.; Ordureau, S.; Lédée, R.; Léger, C.

    2011-03-01

    In obese humans CT imaging is a validated method for follow up studies of adipose tissue distribution and quantification of visceral and subcutaneous fat. Equivalent methods in murine models of obesity are still lacking. Current small animal micro-CT involves long-term X-ray exposure precluding longitudinal studies. We have overcome this limitation by using a human medical CT which allows very fast 3D imaging (2 sec) and minimal radiation exposure. This work presents novel methods fitted to in vivo investigations of mice model of obesity, allowing (i) automated detection of adipose tissue in abdominal regions of interest, (ii) quantification of visceral and subcutaneous fat. For each mouse, 1000 slices (100μm thickness, 160 μm resolution) were acquired in 2 sec using a Toshiba medical CT (135 kV, 400mAs). A Gaussian mixture model of the Hounsfield curve of 2D slices was computed with the Expectation Maximization algorithm. Identification of each Gaussian part allowed the automatic classification of adipose tissue voxels. The abdominal region of interest (umbilical) was automatically detected as the slice showing the highest ratio of the Gaussian proportion between adipose and lean tissues. Segmentation of visceral and subcutaneous fat compartments was achieved with 2D 1/2 level set methods. Our results show that the application of human clinical CT to mice is a promising approach for the study of obesity, allowing valuable comparison between species using the same imaging materials and software analysis.

  1. Compartment-specific transcriptomics in a reef-building coral exposed to elevated temperatures.

    PubMed

    Mayfield, Anderson B; Wang, Yu-Bin; Chen, Chii-Shiarng; Lin, Chung-Yen; Chen, Shu-Hwa

    2014-12-01

    Although rising ocean temperatures threaten scleractinian corals and the reefs they construct, certain reef corals can acclimate to elevated temperatures to which they are rarely exposed in situ. Specimens of the model Indo-Pacific reef coral Pocillopora damicornis collected from upwelling reefs of Southern Taiwan were previously found to have survived a 36-week exposure to 30°C, a temperature they encounter infrequently and one that can elicit the breakdown of the coral-dinoflagellate (genus Symbiodinium) endosymbiosis in many corals of the Pacific Ocean. To gain insight into the subcellular pathways utilized by both the coral hosts and their mutualistic Symbiodinium populations to acclimate to this temperature, mRNAs from both control (27°C) and high (30°C)-temperature samples were sequenced on an Illumina platform and assembled into a 236 435-contig transcriptome. These P. damicornis specimens were found to be ~60% anthozoan and 40% microbe (Symbiodinium, other eukaryotic microbes, and bacteria), from an mRNA-perspective. Furthermore, a significantly higher proportion of genes from the Symbiodinium compartment were differentially expressed after two weeks of exposure. Specifically, at elevated temperatures, Symbiodinium populations residing within the coral gastrodermal tissues were more likely to up-regulate the expression of genes encoding proteins involved in metabolism than their coral hosts. Collectively, these transcriptome-scale data suggest that the two members of this endosymbiosis have distinct strategies for acclimating to elevated temperatures that are expected to characterize many of Earth's coral reefs in the coming decades. © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  2. Topographical investigation of changes in depth-wise proteoglycan distribution in rabbit femoral articular cartilage at 4 weeks after transection of the anterior cruciate ligament.

    PubMed

    Arokoski, Mikko E A; Tiitu, Virpi; Jurvelin, Jukka S; Korhonen, Rami K; Fick, James M

    2015-09-01

    In this study, we explore topographical changes in proteoglycan distribution from femoral condylar cartilage in early osteoarthritis, acquired from both the lateral and medial condyles of anterior cruciate ligament transected (ACLT) and contralateral (CNTRL) rabbit knee joints, at 4 weeks post operation. Four sites across the cartilage surface in a parasagittal plane were defined across tissue sections taken from femoral condyles, and proteoglycan (PG) content was quantified using digital densitometry. The greatest depth-wise change in PG content due to an ACLT (compared to the CNTRL group) was observed anteriorly (site C) from the most weight-bearing location within the lateral compartment. In the medial compartment, the greatest change was observed in the most weight-bearing location (site B). The depth-wise changes in PG content were observed up to 48% and 28% depth from the tissue surface at these aforementioned sites, respectively (p < 0.05). The smallest depth-wise change in PG content was observed posteriorly (site A) from the most weight-bearing location within both femoral condyles (up to 20% and up to 5% depth from the tissue surface at lateral and medial compartments, respectively). This study gives further insight into how early cartilage deterioration progresses across the parasagittal plane of the femoral condyle. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  3. Prognostic impact of a compartment-specific angiogenic marker profile in patients with pancreatic cancer.

    PubMed

    Kahlert, Christoph; Fiala, Maria; Musso, Gabriel; Halama, Niels; Keim, Sophia; Mazzone, Massimiliano; Lasitschka, Felix; Pecqueux, Mathieu; Klupp, Fee; Schmidt, Thomas; Rahbari, Nuh; Schölch, Sebastian; Pilarsky, Christian; Ulrich, Alexis; Schneider, Martin; Weitz, Juergen; Koch, Moritz

    2014-12-30

    Pancreatic cancer consists of a heterogenous bulk of tumor cells and stroma cells which contribute to tumor progression by releasing angiogenic factors. Those factors can be detected as circulating serum factors. We performed a compartment-specific analysis of tumor-derived and stroma-derived angiogenic factors to identify biomarkers and molecular targets for the treatment of pancreatic cancer. Kryo-frozen tissue from primary ductal adenocarcinomas (n = 51) was laser-microdissected to isolate tumor and stroma tissue. Expression of 17 angiogenic factors (angiopoietin-2, follistatin, GCSF, HGF, interleukin-8, leptin, PDGF-BB, PECAM-1, VEGF, matrix metalloproteinase -1, -2, -3, -7, -9, -10, -12, and -13) was analyzed using a multiplex elisa assay for tissue-derived proteins and corresponding serum. Our study reveals a compartment-specific expression profile for several angiogenic factors and matrix metalloproteinases. ROC analysis of corresponding serum samples reveals MMP-7 and MMP-12 as strong classifiers for the diagnosis of patients with pancreatic cancer vs. healthy control donors. High expression of tumor-derived PDGF-BB and MMP-1 correlates with prolonged survival in univariate and multivariate analysis. In conclusion, a distinct expression patterns for angiogenic cytokines and MMPs in pancreatic cancer and surrounding stroma may implicate them as novel targets for cancer treatment. Tumor-derived PDGF-BB and MMP-1 are significant and independent prognostic markers for poor survival.

  4. Dynamic model for the tissue concentration and oxygen saturation of hemoglobin in relation to blood volume, flow velocity, and oxygen consumption: Implications for functional neuroimaging and coherent hemodynamics spectroscopy (CHS).

    PubMed

    Fantini, Sergio

    2014-01-15

    This article presents a dynamic model that quantifies the temporal evolution of the concentration and oxygen saturation of hemoglobin in tissue, as determined by time-varying hemodynamic and metabolic parameters: blood volume, flow velocity, and oxygen consumption. This multi-compartment model determines separate contributions from arterioles, capillaries, and venules that comprise the tissue microvasculature, and treats them as a complete network, without making assumptions on the details of the architecture and morphology of the microvascular bed. A key parameter in the model is the effective blood transit time through the capillaries and its associated probability of oxygen release from hemoglobin to tissue, as described by a rate constant for oxygen diffusion. The solution of the model in the time domain predicts the signals measured by hemodynamic-based neuroimaging techniques such as functional near-infrared spectroscopy (fNIRS) and functional magnetic resonance imaging (fMRI) in response to brain activation. In the frequency domain, the model yields an analytical solution based on a phasor representation that provides a framework for quantitative spectroscopy of coherent hemodynamic oscillations. I term this novel technique coherent hemodynamics spectroscopy (CHS), and this article describes how it can be used for the assessment of cerebral autoregulation and the study of hemodynamic oscillations resulting from a variety of periodic physiological challenges, brain activation protocols, or physical maneuvers. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Dynamic model for the tissue concentration and oxygen saturation of hemoglobin in relation to blood volume, flow velocity, and oxygen consumption: Implications for functional neuroimaging and coherent hemodynamics spectroscopy (CHS)

    PubMed Central

    Fantini, Sergio

    2013-01-01

    This article presents a dynamic model that quantifies the temporal evolution of the concentration and oxygen saturation of hemoglobin in tissue, as determined by time-varying hemodynamic and metabolic parameters: blood volume, flow velocity, and oxygen consumption. This multi-compartment model determines separate contributions from arterioles, capillaries, and venules that comprise the tissue microvasculature, and treats them as a complete network, without making assumptions on the details of the architecture and morphology of the microvascular bed. A key parameter in the model is the effective blood transit time through the capillaries and its associated probability of oxygen release from hemoglobin to tissue, as described by a rate constant for oxygen diffusion. The solution of the model in the time domain predicts the signals measured by hemodynamic-based neuroimaging techniques such as functional near-infrared spectroscopy (fNIRS) and functional magnetic resonance imaging (fMRI) in response to brain activation. In the frequency domain, the model yields an analytical solution based on a phasor representation that provides a framework for quantitative spectroscopy of coherent hemodynamic oscillations. I term this novel technique coherent hemodynamics spectroscopy (CHS), and this article describes how it can be used for the assessment of cerebral autoregulation and the study of hemodynamic oscillations resulting from a variety of periodic physiological challenges, brain activation protocols, or physical maneuvers. PMID:23583744

  6. Mesenchymal Stem Cells in the Musculoskeletal System: From Animal Models to Human Tissue Regeneration?

    PubMed

    Čamernik, Klemen; Barlič, Ariana; Drobnič, Matej; Marc, Janja; Jeras, Matjaž; Zupan, Janja

    2018-06-01

    The musculoskeletal system includes tissues that have remarkable regenerative capabilities. Bone and muscle sustain micro-damage throughout the lifetime, yet they continue to provide the body with the support that is needed for everyday activities. Our current understanding is that the regenerative capacity of the musculoskeletal system can be attributed to the mesenchymal stem/ stromal cells (MSCs) that reside within its different anatomical compartments. These MSCs can replenish various tissues with progenitor cells to form functional cells, such as osteoblasts, chondrocytes, myocytes, and others. However, with aging and in certain disorders of the musculoskeletal system such as osteoarthritis or osteoporosis, this regenerative capacity of MSCs appears to be lost or diverted for the production of other non-functional cell types, such as adipocytes and fibroblasts. In this review, we shed light on the tissue sources and subpopulations of MSCs in the musculoskeletal system that have been identified in animal models, discuss the mechanisms of their anti-inflammatory action as a prerequisite for their tissue regeneration and their current applications in regenerative medicine. While providing up-to-date evidence of the role of MSCs in different musculoskeletal pathologies, in particular in osteoporosis and osteoarthritis, we share some thoughts on their potential as diagnostic markers in musculoskeletal health and disease.

  7. Effect of alternate energy substrates on mammalian brain metabolism during ischemic events.

    PubMed

    Koppaka, S S; Puchowicz; LaManna, J C; Gatica, J E

    2008-01-01

    Regulation of brain metabolism and cerebral blood flow involves complex control systems with several interacting variables at both cellular and organ levels. Quantitative understanding of the spatially and temporally heterogeneous brain control mechanisms during internal and external stimuli requires the development and validation of a computational (mathematical) model of metabolic processes in brain. This paper describes a computational model of cellular metabolism in blood-perfused brain tissue, which considers the astrocyte-neuron lactate-shuttle (ANLS) hypothesis. The model structure consists of neurons, astrocytes, extra-cellular space, and a surrounding capillary network. Each cell is further compartmentalized into cytosol and mitochondria. Inter-compartment interaction is accounted in the form of passive and carrier-mediated transport. Our model was validated against experimental data reported by Crumrine and LaManna, who studied the effect of ischemia and its recovery on various intra-cellular tissue substrates under standard diet conditions. The effect of ketone bodies on brain metabolism was also examined under ischemic conditions following cardiac resuscitation through our model simulations. The influence of ketone bodies on lactate dynamics on mammalian brain following ischemia is studied incorporating experimental data.

  8. Preliminary physiologically based pharmacokinetic models for benzo[a]pyrene and dibenzo[def,p]chrysene in rodents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowell, Susan Ritger, E-mail: Susan.crowell@pnnl.gov; Amin, Shantu G.; Anderson, Kim A.

    2011-12-15

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants generated as byproducts of natural and anthropogenic combustion processes. Despite significant public health concern, physiologically based pharmacokinetic (PBPK) modeling efforts for PAHs have so far been limited to naphthalene, plus simpler PK models for pyrene, nitropyrene, and benzo[a]pyrene (B[a]P). The dearth of published models is due in part to the high lipophilicity, low volatility, and myriad metabolic pathways for PAHs, all of which present analytical and experimental challenges. Our research efforts have focused upon experimental approaches and initial development of PBPK models for the prototypic PAH, B[a]P, and the more potent, albeitmore » less studied transplacental carcinogen, dibenzo[def,p]chrysene (DBC). For both compounds, model compartments included arterial and venous blood, flow limited lung, liver, richly perfused and poorly perfused tissues, diffusion limited fat, and a two compartment theoretical gut (for oral exposures). Hepatic and pulmonary metabolism was described for both compounds, as were fractional binding in blood and fecal clearance. Partition coefficients for parent PAH along with their diol and tetraol metabolites were estimated using published algorithms and verified experimentally for the hydroxylated metabolites. The preliminary PBPK models were able to describe many, but not all, of the available data sets, comprising multiple routes of exposure (oral, intravenous) and nominal doses spanning several orders of magnitude. Supported by Award Number P42 ES016465 from the National Institute of Environmental Health Sciences. -- Highlights: Black-Right-Pointing-Pointer We present PBPK models for benzo[a]pyrene (B[a]P) and dibenzo[def,p]chrysene (DBC). Black-Right-Pointing-Pointer B[a]P model accurately predicts data from multiple sources over a wide dose range. Black-Right-Pointing-Pointer DBC model was based on the B[a]P model as less chemical specific data is available. Black-Right-Pointing-Pointer DBC model accurately predicted preliminary pharmacokinetic data. Black-Right-Pointing-Pointer DBC model underscored data gaps on metabolism, binding and pharmacokinetics.« less

  9. A Model for the Estimation of Hepatic Insulin Extraction After a Meal.

    PubMed

    Piccinini, Francesca; Dalla Man, Chiara; Vella, Adrian; Cobelli, Claudio

    2016-09-01

    Quantitative assessment of hepatic insulin extraction (HE) after an oral glucose challenge, e.g., a meal, is important to understand the regulation of carbohydrate metabolism. The aim of the current study is to develop a model of system for estimating HE. Nine different models, of increasing complexity, were tested on data of 204 normal subjects, who underwent a mixed meal tolerance test, with frequent measurement of plasma glucose, insulin, and C-peptide concentrations. All these models included a two-compartment model of C-peptide kinetics, an insulin secretion model, a compartmental model of insulin kinetics (with number of compartments ranging from one to three), and different HE descriptions, depending on plasma glucose and insulin. Model performances were compared on the basis of data fit, precision of parameter estimates, and parsimony criteria. The three-compartment model of insulin kinetics, coupled with HE depending on glucose concentration, showed the best fit and a good ability to precisely estimate the parameters. In addition, the model calculates basal and total indices of HE ( HE b and HE tot , respectively), and provides an index of HE sensitivity to glucose ( S G HE ). A new physiologically based HE model has been developed, which allows an improved quantitative description of glucose regulation. The use of the new model provides an in-depth description of insulin kinetics, thus enabling a better understanding of a given subject's metabolic state.

  10. Estimation of Rapidly Exchangeable Cellular Thyroxine from the Plasma Disappearance Curves of Simultaneously Administered Thyroxine-131I and Albumin-125I*

    PubMed Central

    Oppenheimer, Jack H.; Bernstein, Gerald; Hasen, Julian

    1967-01-01

    A mathematical analysis of the plasma disappearance curves of simultaneously injected thyroxine-131I and albumin-125I allows the development of simple formulas for estimating the pool size and transfer kinetics of rapidly exchangeable intracellular thyroxine in man. Evidence is presented that the early distribution kinetics of albumin-125I can be used to represent the expansion of the thyroxine-131I-plasma protein complex into the extracellular compartment. Calculations indicate that approximately 37% of total body extrathyroidal thyroxine is within such exchangeable tissue stores. The average cellular clearance of thyroxine is 42.7 ml per minute, a value far in excess of the metabolic clearance of this hormone. Results of external measurements over the hepatic area and studies involving hepatic biopsies indicate that the liver is an important but probably not the exclusive component of the intracellular compartment. The partition of thyroxine between cellular and extracellular compartments is determined by the balance of tissue and plasma protein binding factors. The fractional transfer constants are inversely related to the strength of binding of each compartment and directly proportional to the permeability characteristic of the hypothetical membrane separating compartments. Appropriate numerical values for these factors are assigned. An increased fractional entrance of thyroxine-131I into the cellular compartment was noted in a patient with congenital decrease in the maximal binding capacity of thyroxine-binding globulin and in three patients after the infusion of 5,5-diphenylhydantoin. Decreased intracellular space and impaired permeability characteristics were observed in five patients with hepatic disease. Studies of the rate of entrance of thyroxine-131I and albumin-125I into the pleural effusion of a patient with congestive heart failure suggested that transcapillary passage of thyroxine independent of its binding protein is not a predominant factor in the total distribution kinetics of thyroxine-131I. The thesis is advanced that the distribution of thyroxine, both within the extracellular compartment and between the extracellular and intracellular compartments, is accomplished largely by the carrier protein and the direct transfer of thyroxine from one binding site to another. The concept of free thyroxine is reassessed in terms of this formulation. PMID:4960936

  11. Revisiting the anatomy and biomechanics of the anconeus muscle and its role in elbow stability.

    PubMed

    Pereira, Barry P

    2013-07-01

    Recent studies have designated the anconeus muscle as an option for use as a pedicled flap for covering soft tissue defects about the elbow, with reported minimal risk of morbidity. This has raised the question as to the importance of the anconeus muscle and as to whether this is truly an accessory muscle that can be sacrificed, or whether the anconeus muscle significantly contributes to elbow and forearm stability? This study revisits the anatomy and biomechanics of the anconeus muscle and aims to investigate the neuromuscular compartments of the anconeus muscle and to determine the changes in the muscle length, fibre length and moment arm over a range of elbow flexion angles for each compartment. An anatomical study on 8 human cadavers (51-77 years of age) was done and a 2-dimensional kinematic elbow model developed to determine changes in the muscle length and moment arm of the muscle related to changes in elbow flexion angles. The muscle was modelled with two possible lines of action, one along the posterior and another on the anterior edge of the muscle as they had different muscle fibre lengths (posterior: average of 32 mm, anterior: average of 20 mm). The anterior edge also had an aponeurosis which was 70% of its length. From 0 to 120° elbow flexion, the length of the posterior and anterior edges increased with a maximum change recorded at 90° elbow flexion (31.7±1.0 mm and 65.3±1.4 mm, respectively). The moment arm is 14-mm at 0° flexion, but between the posterior and anterior edges it decreases at different rates with increasing elbow flexion angle. Beyond 80°, the anterior edge behaves as an elbow flexor, while the posterior edge remains an elbow extensor. The study demonstrates that the anconeus muscle has two neuromuscular compartments each with distinct intramuscular innervations and muscle fibre lengths. The posterior and deep aspect of the muscle functions as an elbow extensor decreasing in influence with increasing elbow flexion angle. The anterior superficial aspect which is adjacent and parallel to the lateral collateral ligaments, would most likely work in unison to provide constraint to the posterolateral stability of the elbow. Copyright © 2012. Published by Elsevier GmbH.

  12. Tracking of cell nuclei for assessment of in vitro uptake kinetics in ultrasound-mediated drug delivery using fibered confocal fluorescence microscopy.

    PubMed

    Derieppe, Marc; de Senneville, Baudouin Denis; Kuijf, Hugo; Moonen, Chrit; Bos, Clemens

    2014-10-01

    Previously, we demonstrated the feasibility to monitor ultrasound-mediated uptake of a cell-impermeable model drug in real time with fibered confocal fluorescence microscopy. Here, we present a complete post-processing methodology, which corrects for cell displacements, to improve the accuracy of pharmacokinetic parameter estimation. Nucleus detection was performed based on the radial symmetry transform algorithm. Cell tracking used an iterative closest point approach. Pharmacokinetic parameters were calculated by fitting a two-compartment model to the time-intensity curves of individual cells. Cells were tracked successfully, improving time-intensity curve accuracy and pharmacokinetic parameter estimation. With tracking, 93 % of the 370 nuclei showed a fluorescence signal variation that was well-described by a two-compartment model. In addition, parameter distributions were narrower, thus increasing precision. Dedicated image analysis was implemented and enabled studying ultrasound-mediated model drug uptake kinetics in hundreds of cells per experiment, using fiber-based confocal fluorescence microscopy.

  13. Change rates and prevalence of a dichotomous variable: simulations and applications.

    PubMed

    Brinks, Ralph; Landwehr, Sandra

    2015-01-01

    A common modelling approach in public health and epidemiology divides the population under study into compartments containing persons that share the same status. Here we consider a three-state model with the compartments: A, B and Dead. States A and B may be the states of any dichotomous variable, for example, Healthy and Ill, respectively. The transitions between the states are described by change rates, which depend on calendar time and on age. So far, a rigorous mathematical calculation of the prevalence of property B has been difficult, which has limited the use of the model in epidemiology and public health. We develop a partial differential equation (PDE) that simplifies the use of the three-state model. To demonstrate the validity of the PDE, it is applied to two simulation studies, one about a hypothetical chronic disease and one about dementia in Germany. In two further applications, the PDE may provide insights into smoking behaviour of males in Germany and the knowledge about the ovulatory cycle in Egyptian women.

  14. Estimating changes in mean body temperature for humans during exercise using core and skin temperatures is inaccurate even with a correction factor.

    PubMed

    Jay, Ollie; Reardon, Francis D; Webb, Paul; Ducharme, Michel B; Ramsay, Tim; Nettlefold, Lindsay; Kenny, Glen P

    2007-08-01

    Changes in mean body temperature (DeltaT(b)) estimated by the traditional two-compartment model of "core" and "shell" temperatures and an adjusted two-compartment model incorporating a correction factor were compared with values derived by whole body calorimetry. Sixty participants (31 men, 29 women) cycled at 40% of peak O(2) consumption for 60 or 90 min in the Snellen calorimeter at 24 or 30 degrees C. The core compartment was represented by esophageal, rectal (T(re)), and aural canal temperature, and the shell compartment was represented by a 12-point mean skin temperature (T(sk)). Using T(re) and conventional core-to-shell weightings (X) of 0.66, 0.79, and 0.90, mean DeltaT(b) estimation error (with 95% confidence interval limits in parentheses) for the traditional model was -95.2% (-83.0, -107.3) to -76.6% (-72.8, -80.5) after 10 min and -47.2% (-40.9, -53.5) to -22.6% (-14.5, -30.7) after 90 min. Using T(re), X = 0.80, and a correction factor (X(0)) of 0.40, mean DeltaT(b) estimation error for the adjusted model was +9.5% (+16.9, +2.1) to -0.3% (+11.9, -12.5) after 10 min and +15.0% (+27.2, +2.8) to -13.7% (-4.2, -23.3) after 90 min. Quadratic analyses of calorimetry DeltaT(b) data was subsequently used to derive best-fitting values of X for both models and X(0) for the adjusted model for each measure of core temperature. The most accurate model at any time point or condition only accounted for 20% of the variation observed in DeltaT(b) for the traditional model and 56% for the adjusted model. In conclusion, throughout exercise the estimation of DeltaT(b) using any measure of core temperature together with mean skin temperature irrespective of weighting is inaccurate even with a correction factor customized for the specific conditions.

  15. Heterogeneity and Developmental Connections between Cell Types Inhabiting Teeth

    PubMed Central

    Krivanek, Jan; Adameyko, Igor; Fried, Kaj

    2017-01-01

    Every tissue is composed of multiple cell types that are developmentally, evolutionary and functionally integrated into the unit we call an organ. Teeth, our organs for biting and mastication, are complex and made of many different cell types connected or disconnected in terms of their ontogeny. In general, epithelial and mesenchymal compartments represent the major framework of tooth formation. Thus, they give rise to the two most important matrix–producing populations: ameloblasts generating enamel and odontoblasts producing dentin. However, the real picture is far from this quite simplified view. Diverse pulp cells, the immune system, the vascular system, the innervation and cells organizing the dental follicle all interact, and jointly participate in transforming lifeless matrix into a functional organ that can sense and protect itself. Here we outline the heterogeneity of cell types that inhabit the tooth, and also provide a life history of the major populations. The mouse model system has been indispensable not only for the studies of cell lineages and heterogeneity, but also for the investigation of dental stem cells and tooth patterning during development. Finally, we briefly discuss the evolutionary aspects of cell type diversity and dental tissue integration. PMID:28638345

  16. Arginine Decarboxylase Is Localized in Chloroplasts.

    PubMed Central

    Borrell, A.; Culianez-Macia, F. A.; Altabella, T.; Besford, R. T.; Flores, D.; Tiburcio, A. F.

    1995-01-01

    Plants, unlike animals, can use either ornithine decarboxylase or arginine decarboxylase (ADC) to produce the polyamine precursor putrescine. Lack of knowledge of the exact cellular and subcellular location of these enzymes has been one of the main obstacles to our understanding of the biological role of polyamines in plants. We have generated polyclonal antibodies to oat (Avena sativa L.) ADC to study the spatial distribution and subcellular localization of ADC protein in different oat tissues. By immunoblotting and immunocytochemistry, we show that ADC is organ specific. By cell fractionation and immunoblotting, we show that ADC is localized in chloroplasts associated with the thylakoid membrane. The results also show that increased levels of ADC protein are correlated with high levels of ADC activity and putrescine in osmotically stressed oat leaves. A model of compartmentalization for the arginine pathway and putrescine biosynthesis in active photosynthetic tissues has been proposed. In the context of endosymbiote-driven metabolic evolution in plants, the location of ADC in the chloroplast compartment may have major evolutionary significance, since it explains (a) why plants can use two alternative pathways for putrescine biosynthesis and (b) why animals do not possess ADC. PMID:12228631

  17. Physiologically Based Pharmacokinetic Modeling of Therapeutic Proteins.

    PubMed

    Wong, Harvey; Chow, Timothy W

    2017-09-01

    Biologics or therapeutic proteins are becoming increasingly important as treatments for disease. The most common class of biologics are monoclonal antibodies (mAbs). Recently, there has been an increase in the use of physiologically based pharmacokinetic (PBPK) modeling in the pharmaceutical industry in drug development. We review PBPK models for therapeutic proteins with an emphasis on mAbs. Due to their size and similarity to endogenous antibodies, there are distinct differences between PBPK models for small molecules and mAbs. The high-level organization of a typical mAb PBPK model consists of a whole-body PBPK model with organ compartments interconnected by both blood and lymph flows. The whole-body PBPK model is coupled with tissue-level submodels used to describe key mechanisms governing mAb disposition including tissue efflux via the lymphatic system, elimination by catabolism, protection from catabolism binding to the neonatal Fc (FcRn) receptor, and nonlinear binding to specific pharmacological targets of interest. The use of PBPK modeling in the development of therapeutic proteins is still in its infancy. Further application of PBPK modeling for therapeutic proteins will help to define its developing role in drug discovery and development. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. Electroremediation of PCB contaminated soil combined with iron nanoparticles: Effect of the soil type.

    PubMed

    Gomes, Helena I; Dias-Ferreira, Celia; Ottosen, Lisbeth M; Ribeiro, Alexandra B

    2015-07-01

    Polychlorinated biphenyls (PCB) are carcinogenic and persistent organic pollutants that accumulate in soils and sediments. Currently, there is no cost-effective and sustainable remediation technology for these contaminants. In this work, a new combination of electrodialytic remediation and zero valent iron particles in a two-compartment cell is tested and compared to a more conventional combination of electrokinetic remediation and nZVI in a three-compartment cell. In the new two-compartment cell, the soil is suspended and stirred simultaneously with the addition of zero valent iron nanoparticles. Remediation experiments are made with two different historically PCB contaminated soils, which differ in both soil composition and contamination source. Soil 1 is a mix of soils with spills of transformer oils, while Soil 2 is a superficial soil from a decommissioned school where PCB were used as windows sealants. Saponin, a natural surfactant, was also tested to increase the PCB desorption from soils and enhance dechlorination. Remediation of Soil 1 (with highest pH, carbonate content, organic matter and PCB concentrations) obtained the maximum 83% and 60% PCB removal with the two-compartment and the three-compartment cell, respectively. The highest removal with Soil 2 were 58% and 45%, in the two-compartment and the three-compartment cell, respectively, in the experiments without direct current. The pH of the soil suspension in the two-compartment treatment appears to be a determining factor for the PCB dechlorination, and this cell allowed a uniform distribution of the nanoparticles in the soil, while there was iron accumulation in the injection reservoir in the three-compartment cell. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Compartment syndrome after total knee arthroplasty: regarding a clinical case☆

    PubMed Central

    Pinheiro, Ana Alexandra da Costa; Marques, Pedro Miguel Dantas Costa; Sá, Pedro Miguel Gomes; Oliveira, Carolina Fernandes; da Silva, Bruno Pombo Ferreira; de Sousa, Cristina Maria Varino

    2015-01-01

    Although compartment syndrome is a rare complication of total knee arthroplasty, it is one of the most devastating complications. It is defined as a situation of increased pressure within a closed osteofascial space that impairs the circulation and the functioning of the tissues inside this space, thereby leading to ischemia and tissue dysfunction. Here, a clinical case of a patient who was followed up in orthopedic outpatient consultations due to right gonarthrosis is presented. The patient had a history of arthroscopic meniscectomy and presented knee flexion of 10° before the operation, which consisted of total arthroplasty of the right knee. The operation seemed to be free from intercurrences, but the patient evolved with compartment syndrome of the ipsilateral leg after the operation. Since compartment syndrome is a true surgical emergency, early recognition and treatment of this condition through fasciotomy is crucial in order to avoid amputation, limb dysfunction, kidney failure and death. However, it may be difficult to make the diagnosis and cases may not be recognized if the cause of compartment syndrome is unusual or if the patient is under epidural analgesia and/or peripheral nerve block, which thus camouflages the main warning sign, i.e. disproportional pain. In addition, edema of the limb that underwent the intervention is common after total knee arthroplasty operations. This study presents a review of the literature and signals that the possible rarity of cases is probably due to failure to recognize this condition in a timely manner and to placing these patients in other diagnostic groups that are less likely, such as neuropraxia caused by using a tourniquet or peripheral nerve injury. PMID:26401507

  20. Dipole estimation errors due to not incorporating anisotropic conductivities in realistic head models for EEG source analysis

    NASA Astrophysics Data System (ADS)

    Hallez, Hans; Staelens, Steven; Lemahieu, Ignace

    2009-10-01

    EEG source analysis is a valuable tool for brain functionality research and for diagnosing neurological disorders, such as epilepsy. It requires a geometrical representation of the human head or a head model, which is often modeled as an isotropic conductor. However, it is known that some brain tissues, such as the skull or white matter, have an anisotropic conductivity. Many studies reported that the anisotropic conductivities have an influence on the calculated electrode potentials. However, few studies have assessed the influence of anisotropic conductivities on the dipole estimations. In this study, we want to determine the dipole estimation errors due to not taking into account the anisotropic conductivities of the skull and/or brain tissues. Therefore, head models are constructed with the same geometry, but with an anisotropically conducting skull and/or brain tissue compartment. These head models are used in simulation studies where the dipole location and orientation error is calculated due to neglecting anisotropic conductivities of the skull and brain tissue. Results show that not taking into account the anisotropic conductivities of the skull yields a dipole location error between 2 and 25 mm, with an average of 10 mm. When the anisotropic conductivities of the brain tissues are neglected, the dipole location error ranges between 0 and 5 mm. In this case, the average dipole location error was 2.3 mm. In all simulations, the dipole orientation error was smaller than 10°. We can conclude that the anisotropic conductivities of the skull have to be incorporated to improve the accuracy of EEG source analysis. The results of the simulation, as presented here, also suggest that incorporation of the anisotropic conductivities of brain tissues is not necessary. However, more studies are needed to confirm these suggestions.

Top