De Novo duplication in Charcot-Marie-Tooth Type 1A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandich, P.; Bellone, E.; Ajmar, F.
1996-09-01
We read with interest the paper on {open_quotes}Prevalence and Origin of De Novo Duplications in Charcot-Marie-Tooth Disease Type 1A: First Report of a De Novo Duplication with a Maternal Origin,{close_quotes}. They reported their experience with 10 sporadic cases of Charcot-Marie-Tooth type 1A (CMT1A) in which it was demonstrated that the disease had arisen as the result of a de novo duplication. They analyzed the de novo-duplication families by using microsatellite markers and identified the parental origin of the duplication in eight cases. In one family the duplication was of maternal origin, whereas in the remaining seven cases it was ofmore » paternal origin. The authors concluded that their report was the first evidence of a de novo duplication of maternal origin, suggesting that this is not a phenomenon associated solely with male meiosis. 7 refs.« less
Djogbénou, Luc S.; Berthomieu, Arnaud; Makoundou, Patrick; Baba-Moussa, Lamine S.; Fiston-Lavier, Anna-Sophie; Belkhir, Khalid; Labbé, Pierrick; Weill, Mylène
2016-01-01
Gene copy-number variations are widespread in natural populations, but investigating their phenotypic consequences requires contemporary duplications under selection. Such duplications have been found at the ace-1 locus (encoding the organophosphate and carbamate insecticides’ target) in the mosquito Anopheles gambiae (the major malaria vector); recent studies have revealed their intriguing complexity, consistent with the involvement of various numbers and types (susceptible or resistant to insecticide) of copies. We used an integrative approach, from genome to phenotype level, to investigate the influence of duplication architecture and gene-dosage on mosquito fitness. We found that both heterogeneous (i.e., one susceptible and one resistant ace-1 copy) and homogeneous (i.e., identical resistant copies) duplications segregated in field populations. The number of copies in homogeneous duplications was variable and positively correlated with acetylcholinesterase activity and resistance level. Determining the genomic structure of the duplicated region revealed that, in both types of duplication, ace-1 and 11 other genes formed tandem 203kb amplicons. We developed a diagnostic test for duplications, which showed that ace-1 was amplified in all 173 resistant mosquitoes analyzed (field-collected in several African countries), in heterogeneous or homogeneous duplications. Each type was associated with different fitness trade-offs: heterogeneous duplications conferred an intermediate phenotype (lower resistance and fitness costs), whereas homogeneous duplications tended to increase both resistance and fitness cost, in a complex manner. The type of duplication selected seemed thus to depend on the intensity and distribution of selection pressures. This versatility of trade-offs available through gene duplication highlights the importance of large mutation events in adaptation to environmental variation. This impressive adaptability could have a major impact on vector control in Africa. PMID:27918584
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wise, C.A.; Davis, S.N.; Heju, Z.
1993-10-01
Charcot-Marie-Tooth disease (CMT) is the most common inherited peripheral neuropathy. One form of CMT, CMT type 1A, is characterized by uniformly decreased nerve conduction velocities, usually shows autosomal dominant inheritance, and is associated with a large submicroscopic duplication of the p11.2-p12 region of chromosome 17. A cohort of 75 unrelated patients diagnosed clinically with CMT and evaluated by electrophysiological methods were analyzed molecularly for the presence of the CMT1A DNA duplication. Three methodologies were used to assess the duplication: Measurement of dosage differences between RFLP alleles, analysis of polymorphic (GT)[sub n] repeats, and detection of a junction fragment by pulsed-fieldmore » gel electrophoresis. The CMT1A duplication was found in 68% of the 63 unrelated CMT patients with electrophysiological studies consistent with CMT type 1 (CMT1). The CMT1A duplication was detected as a de novo event in two CMT1 families. Twelve CMT patients who did not have decreased nerve conduction velocities consistent with a diagnosis of CMT type 2 (CMT2) were found not to have the CMT1A duplication. The most informative molecular method was the detection of the CMT1A duplication-specific junction fragment. Given the high frequency of the CMT1A duplication in CMT patients and the high frequency of new mutations, the authors conclude that a molecular test for the CMT1A DNA duplication is very useful in the differential diagnosis of patients with peripheral neuropathies. 61 refs., 4 figs.« less
Liu, Pengfei; Gelowani, Violet; Zhang, Feng; Drory, Vivian E.; Ben-Shachar, Shay; Roney, Erin; Medeiros, Adam C.; Moore, Rebecca J.; DiVincenzo, Christina; Burnette, William B.; Higgins, Joseph J.; Li, Jun; Orr-Urtreger, Avi; Lupski, James R.
2014-01-01
Copy-number variations cause genomic disorders. Triplications, unlike deletions and duplications, are poorly understood because of challenges in molecular identification, the choice of a proper model system for study, and awareness of their phenotypic consequences. We investigated the genomic disorder Charcot-Marie-Tooth disease type 1A (CMT1A), a dominant peripheral neuropathy caused by a 1.4 Mb recurrent duplication occurring by nonallelic homologous recombination. We identified CMT1A triplications in families in which the duplication segregates. The triplications arose de novo from maternally transmitted duplications and caused a more severe distal symmetric polyneuropathy phenotype. The recombination that generated the triplication occurred between sister chromatids on the duplication-bearing chromosome and could accompany gene conversions with the homologous chromosome. Diagnostic testing for CMT1A (n = 20,661 individuals) identified 13% (n = 2,752 individuals) with duplication and 0.024% (n = 5 individuals) with segmental tetrasomy, suggesting that triplications emerge from duplications at a rate as high as ∼1:550, which is more frequent than the rate of de novo duplication. We propose that individuals with duplications are predisposed to acquiring triplications and that the population prevalence of triplication is underascertained. PMID:24530202
Gallbladder Duplication: Evaluation, Treatment, and Classification
2010-02-01
2009; revised 16 December 2009; accepted 16 December 2009h o th 0 d Key words: Duplicate gallbladder; Hepatobiliary embryology ; Multiple gallbladders...anatomic variations [5]. These three types vary depending upon the embryologic development and occur in the same manner as duplicated gallbladders. Given... embryology and adds a third group that occurs when there is a combination of types 1 and 2 anatomy. The triple combined group occurs from a split in
Co-expression network analysis of duplicate genes in maize (Zea mays L.) reveals no subgenome bias.
Li, Lin; Briskine, Roman; Schaefer, Robert; Schnable, Patrick S; Myers, Chad L; Flagel, Lex E; Springer, Nathan M; Muehlbauer, Gary J
2016-11-04
Gene duplication is prevalent in many species and can result in coding and regulatory divergence. Gene duplications can be classified as whole genome duplication (WGD), tandem and inserted (non-syntenic). In maize, WGD resulted in the subgenomes maize1 and maize2, of which maize1 is considered the dominant subgenome. However, the landscape of co-expression network divergence of duplicate genes in maize is still largely uncharacterized. To address the consequence of gene duplication on co-expression network divergence, we developed a gene co-expression network from RNA-seq data derived from 64 different tissues/stages of the maize reference inbred-B73. WGD, tandem and inserted gene duplications exhibited distinct regulatory divergence. Inserted duplicate genes were more likely to be singletons in the co-expression networks, while WGD duplicate genes were likely to be co-expressed with other genes. Tandem duplicate genes were enriched in the co-expression pattern where co-expressed genes were nearly identical for the duplicates in the network. Older gene duplications exhibit more extensive co-expression variation than younger duplications. Overall, non-syntenic genes primarily from inserted duplications show more co-expression divergence. Also, such enlarged co-expression divergence is significantly related to duplication age. Moreover, subgenome dominance was not observed in the co-expression networks - maize1 and maize2 exhibit similar levels of intra subgenome correlations. Intriguingly, the level of inter subgenome co-expression was similar to the level of intra subgenome correlations, and genes from specific subgenomes were not likely to be the enriched in co-expression network modules and the hub genes were not predominantly from any specific subgenomes in maize. Our work provides a comprehensive analysis of maize co-expression network divergence for three different types of gene duplications and identifies potential relationships between duplication types, duplication ages and co-expression consequences.
Chen, Qingyu; Zobel, Justin; Verspoor, Karin
2017-01-01
GenBank, the EMBL European Nucleotide Archive and the DNA DataBank of Japan, known collectively as the International Nucleotide Sequence Database Collaboration or INSDC, are the three most significant nucleotide sequence databases. Their records are derived from laboratory work undertaken by different individuals, by different teams, with a range of technologies and assumptions and over a period of decades. As a consequence, they contain a great many duplicates, redundancies and inconsistencies, but neither the prevalence nor the characteristics of various types of duplicates have been rigorously assessed. Existing duplicate detection methods in bioinformatics only address specific duplicate types, with inconsistent assumptions; and the impact of duplicates in bioinformatics databases has not been carefully assessed, making it difficult to judge the value of such methods. Our goal is to assess the scale, kinds and impact of duplicates in bioinformatics databases, through a retrospective analysis of merged groups in INSDC databases. Our outcomes are threefold: (1) We analyse a benchmark dataset consisting of duplicates manually identified in INSDC-a dataset of 67 888 merged groups with 111 823 duplicate pairs across 21 organisms from INSDC databases - in terms of the prevalence, types and impacts of duplicates. (2) We categorize duplicates at both sequence and annotation level, with supporting quantitative statistics, showing that different organisms have different prevalence of distinct kinds of duplicate. (3) We show that the presence of duplicates has practical impact via a simple case study on duplicates, in terms of GC content and melting temperature. We demonstrate that duplicates not only introduce redundancy, but can lead to inconsistent results for certain tasks. Our findings lead to a better understanding of the problem of duplication in biological databases.Database URL: the merged records are available at https://cloudstor.aarnet.edu.au/plus/index.php/s/Xef2fvsebBEAv9w. © The Author(s) 2017. Published by Oxford University Press.
Chen, Qingyu; Zobel, Justin; Verspoor, Karin
2017-01-01
GenBank, the EMBL European Nucleotide Archive and the DNA DataBank of Japan, known collectively as the International Nucleotide Sequence Database Collaboration or INSDC, are the three most significant nucleotide sequence databases. Their records are derived from laboratory work undertaken by different individuals, by different teams, with a range of technologies and assumptions and over a period of decades. As a consequence, they contain a great many duplicates, redundancies and inconsistencies, but neither the prevalence nor the characteristics of various types of duplicates have been rigorously assessed. Existing duplicate detection methods in bioinformatics only address specific duplicate types, with inconsistent assumptions; and the impact of duplicates in bioinformatics databases has not been carefully assessed, making it difficult to judge the value of such methods. Our goal is to assess the scale, kinds and impact of duplicates in bioinformatics databases, through a retrospective analysis of merged groups in INSDC databases. Our outcomes are threefold: (1) We analyse a benchmark dataset consisting of duplicates manually identified in INSDC—a dataset of 67 888 merged groups with 111 823 duplicate pairs across 21 organisms from INSDC databases – in terms of the prevalence, types and impacts of duplicates. (2) We categorize duplicates at both sequence and annotation level, with supporting quantitative statistics, showing that different organisms have different prevalence of distinct kinds of duplicate. (3) We show that the presence of duplicates has practical impact via a simple case study on duplicates, in terms of GC content and melting temperature. We demonstrate that duplicates not only introduce redundancy, but can lead to inconsistent results for certain tasks. Our findings lead to a better understanding of the problem of duplication in biological databases. Database URL: the merged records are available at https://cloudstor.aarnet.edu.au/plus/index.php/s/Xef2fvsebBEAv9w PMID:28077566
Sullivan, James A.; Gray, John C.
2000-01-01
The pea lip1 (light-independent photomorphogenesis1) mutant shows many of the characteristics of light-grown development when grown in continuous darkness. To investigate the identity of LIP1, cDNAs encoding the pea homolog of COP1, a repressor of photomorphogenesis identified in Arabidopsis, were isolated from wild-type and lip1 pea seedlings. lip1 seedlings contained a wild-type COP1 transcript as well as a larger COP1′ transcript that contained an internal in-frame duplication of 894 bp. The COP1′ transcript segregated with the lip1 phenotype in F2 seedlings and could be translated in vitro to produce a protein of ∼100 kD. The COP1 gene in lip1 peas contained a 7.5-kb duplication, consisting of exons 1 to 7 of the wild-type sequence, located 2.5 kb upstream of a region of genomic DNA identical to the wild-type COP1 DNA sequence. Transcription and splicing of the mutant COP1 gene was predicted to produce the COP1′ transcript, whereas transcription from an internal promoter in the 2.5-kb region of DNA located between the duplicated regions of COP1 would produce the wild-type COP1 transcript. The presence of small quantities of wild-type COP1 transcripts may reduce the severity of the phenotype produced by the mutated COP1′ protein. The genomic DNA sequences of the COP1 gene from wild-type and lip1 peas and the cDNA sequences of COP1 and COP1′ transcripts have been submitted to the EMBL database under the EMBL accession numbers AJ276591, AJ276592, AJ289773, and AJ289774, respectively. PMID:11041887
An Insertional Translocation in Neurospora That Generates Duplications Heterozygous for Mating Type
Perkins, David D.
1972-01-01
In strain T(I→II)39311 a long interstitial segment is transposed from IL to IIR, where it is inserted in reversed order with respect to the centromere. In crosses of T x T essentially all asci have eight viable, black spores, and all progeny are phenotypically normal. When T(I→II)39311 is crossed by Normal sequence (N), the expected duplication class is viable while the corresponding deficiency is lethal; 44% of the asci have 8 Black (viable) spores and 0 White (inviable) spores, 41% have 4 Black: 4 White, and 10% have 6 Black: 2 White. These are the ascus types expected from normal centromere disjunction without crossing over (8B:0W and 4B:4W equally probable), and with crossing over between centromere and break point (6B:2W). On germination, 8B:0W asci give rise to only parental types—4 T and 4 N; 4B:4W asci usually give four duplication (Dup) progeny; and 6B:2W asci usually give 2 T, 2 N, 2 Dup. Thus one third of all viable, black ascospores contain duplications.—Recessive markers in the donor chromosome which contributes the translocated segment can be mapped by duplication coverage. Ratios of 2 Dominant: 1 Recessive vs. 1 Dominant: 2 Recessive distinguish location in or outside the transposed segment. Eleven loci including mating type have been shown to lie within the segment, and markers at four loci have been transferred into the segment by meiotic recombination. The frequency of marker transfer indicates that the inserted segment usually pairs with its homologue. Ascus types that would result from single exchanges within the insertion are infrequent, as expected if asci containing dicentric bridges usually do not survive.—Duplication ascospores germinate to produce distinctive inhibited colonies. Later these "escape" to grow like wild type, and genes that were initially heterozygous in the duplication segregate when escape occurs. As with duplications from pericentric inversion In(IL→IR)H4250 (Newmeyer and Taylor 1967), the initial inhibition is attributed to mating-type heterozygosity, and escape to a somatic event that makes mating type homoor hemizygous.—Twenty additional duplication-generating Neurospora rearrangements are listed and described briefly in an Appendix. PMID:17248574
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blair, I.P.; Nash, J.; Gordon, M.J.
1996-03-01
Charcot-Marie-Tooth disease (CMT) is the most common inherited peripheral neuropathy. Sporadic cases of CMT have been described since the earliest reports of the disease. The most frequent form of the disorder, CMT1A, is associated with a 1.5-Mb DNA duplication on chromosome 17p11.2, which segregates with the disease. In order to investigate the prevalence of de novo CMT1A duplications, this study examined 118 duplication-positive CMT1A families. In 10 of these families it was demonstrated that the disease had arisen as the result of a de novo mutation. By taking into account the ascertainment of families, it can be estimated that {>=}10%more » of autosomal dominant CMT1 families are due to de novo duplications. The CMT1A duplication is thought to be the product of unequal crossing over between parental chromosome 17 homologues during meiosis. Polymorphic markers from within the duplicated region were used to determine the parental origin of these de novo duplications in eight informative families. Seven were of paternal and one of maternal origin. This study represents the first report of a de novo duplication with a maternal origin and indicates that it is not a phenomenon associated solely with male meioses. Recombination fractions for the region duplicated in CMT1A are larger in females than in males. That suggests that oogenesis may be afforded greater protection from misalignment during synapsis, and/or that there may be lower activity of those factors or mechanisms that lead to unequal crossing over at the CMT1A locus. 41 refs., 2 figs.« less
Analysis of DuPont and Kodak duplicating films and chemistries in a Fultron spray processor
NASA Technical Reports Server (NTRS)
Weinstein, M. S.
1972-01-01
A test program was conducted with duPont duplicating film type SR 112 and SCOLOR developer and Kodak duplicating film types 2430, 2422, and FE 2628 (SO-467) and MX-641 developer to determine sensitometric and image quality characteristics of these materials when used with a fultron spray processor. The test results show that the SCOLOR developer foams excessively in the fultron processor when used with or without the addition of an antifoaming agent. The Kodak type FE 2628 film with MX-641 chemistry had the longest linear Log E range at a 1.0 gamma. Sensitometric curves and granularity traces for all film process combinations tested are included.
A study of the quality of duplicated radiographs.
Erales, F A; Manson-Hing, L R
1979-01-01
The resolution, contrast, and clinical appearance of radiographs and duplicate radiographs made with two types of duplicating film were compared. Duplicating conditions evaluated were type and shape of light, light-film distance, type of exposure surface, and developer temperature. Major observations were as follows: both Kodak and DuPont films produced clinically acceptable duplicates; Kodak film was faster; DuPont film responded better in incandescent photoflood light than Kodak film; clear glass with appropriate light-film distance was the best exposure surface.
Kuroda, Yukiko; Ohashi, Ikuko; Naruto, Takuya; Ida, Kazumi; Enomoto, Yumi; Saito, Toshiyuki; Nagai, Jun-Ichi; Kurosawa, Kenji
2018-03-09
Ehlers-Danlos syndrome classical type is a connective tissue disorder characterized by skin hyperextensibility, atrophic scarring, and joint hypermobility. The condition typically results from mutations in COL5A1 or COL5A2 leading to the functional haploinsufficiency. Here, we report of a 24-year-old male with mild intellectual disability, dysmorphic features, and a phenotype consistent with Ehlers-Danlos syndrome classical type. A copy number variant-calling algorithm from panel sequencing data identified the deletions exons 2-11 and duplications of exons 12-67 within COL5A1. Array comparative genomic hybridization confirmed a 94 kb deletion at 9q34.3 involving exons 2-11 of COL5A1, and a 3.4 Mb duplication at 9q34.3 involving exons 12-67 of COL5A1. © 2018 Japanese Teratology Society.
Sembongi, Hiroshi; Di Re, Miriam; Bokori-Brown, Monika; Holt, Ian J
2007-10-01
Rearrangements of mitochondrial DNA (mtDNA) are a well-recognized cause of human disease; deletions are more frequent, but duplications are more readily transmitted to offspring. In theory, partial duplications of mtDNA can be resolved to partially deleted and wild-type (WT) molecules, via homologous recombination. Therefore, the yeast CCE1 gene, encoding a Holliday junction resolvase, was introduced into cells carrying partially duplicated or partially triplicated mtDNA. Some cell lines carrying the CCE1 gene had substantial amounts of WT mtDNA suggesting that the enzyme can mediate intramolecular recombination in human mitochondria. However, high levels of expression of CCE1 frequently led to mtDNA loss, and so it is necessary to strictly regulate the expression of CCE1 in human cells to ensure the selection and maintenance of WT mtDNA.
Two patients with duplication of 17p11.2: The reciprocal of the Smith-Magenis syndrome deletion?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, A.; Phelan, M.C.; Rogers, R.C.
1996-05-17
J.M. and H.G. are two unrelated male patients with developmental delay. Cytogenetic analysis detected a duplication of 17p11.2 in both patients. The extent of the duplicated region was determined using single copy DNA probes: cen-D17S58-D17S29-D17S258-D17S71-D17S445-D17S122-tel. Four of the six markers, D17S29, D17S258, D17S71, and D17S445, were duplicated by dosage analysis. Fluorescent in situ hybridization (FISH) analysis of H.G., using cosmids for locus D17S29, confirmed the duplication in 17p11.2. Because the deletion that causes the Smith-Magenis syndrome involves the same region of 17p11.2 as the duplication in these patients, the mechanism may be similar to that proposed for the reciprocal deletion/more » duplication event observed in Hereditary Neuropathy with Liability to Pressure Palsies (HNPP) and Charcot-Marie-Tooth Type 1A disease (CMT1A). 30 refs., 3 figs., 1 tab.« less
The organization of repeating units in mitochondrial DNA from yeast petite mutants.
Bos, J L; Heyting, C; Van der Horst, G; Borst, P
1980-04-01
We have reinvestigated the linkage orientation of repeating units in mtDNAs of yeast ρ(-) petite mutants containing an inverted duplication. All five petite mtDNAs studied contain a continuous segment of wild-type mtDNA, part of which is duplicated and present in inverted form in the repeat. We show by restriction enzyme analysis that the non-duplicated segments between the inverted duplications are present in random orientation in all five petite mtDNAs. There is no segregation of sub-types with unique orientation. We attribute this to the high rate of intramolecular recombination between the inverted duplications. The results provide additional evidence for the high rate of recombination of yeast mtDNA even in haploid ρ(-) petite cells.We conclude that only two types of stable sequence organization exist in petite mtDNA: petites without an inverted duplication have repeats linked in straight head-to-tail arrangement (abcabc); petites with an inverted duplication have repeats in which the non-duplicated segments are present in random orientation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaffer, L.G.; Kennedy, G.M.; Spikes, A.S.
1997-03-31
Charcot-Marie-Tooth (CMT) disease type 1A is an inherited peripheral neuropathy characterized by slowly progressive distal muscle wasting and weakness, decreased nerve conduction velocities, and genetic linkage to 17p12. Most (>98%) CMT1A cases are caused by a DNA duplication of a 1.5-Mb region in 17p12 containing the PMP22 gene. The reciprocal product of the CMT1A duplication is a 1.5-Mb deletion which causes hereditary neuropathy with liability to pressure palsies (HNPP). The most informative current diagnostic testing requires pulsed-field gel electrophoresis to detect DNA rearrangement-specific junction fragments. We investigated the use of interphase FISH for the detection of duplications and deletions formore » these disorders in the clinical molecular cytogenetics laboratory. Established cell lines or blood specimens from 23 individuals with known molecular diagnoses and 10 controls were obtained and scored using a two-color FISH assay. At least 70%, of CMT1A cells displayed three signals consistent with duplications. Using this minimum expected percentile to make a CMT1A duplication diagnosis, all patients with CMT1A showed a range of 71-92% of cells displaying at least three signals. Of the HNPP cases, 88% of cells displayed only one hybridization signal, consistent with deletions. The PMP22 locus from normal control individuals displayed a duplication pattern in {approximately}9% of cells, interpreted as replication of this locus. The percentage of cells showing replication was significantly lower than in those cells displaying true duplications. We conclude that FISH can be reliably used to diagnose CMT1A and HNPP in the clinical cytogenetics laboratory and to readily distinguish the DNA rearrangements associated with these disorders from individuals without duplication or deletion of the PMP22 locus. 43 refs., 4 figs., 2 tabs.« less
Partial craniofacial duplication: a review of the literature and case report.
Costa, Melinda A; Borzabadi-Farahani, Ali; Lara-Sanchez, Pedro A; Schweitzer, Daniela; Jacobson, Lia; Clarke, Noreen; Hammoudeh, Jeffery; Urata, Mark M; Magee, William P
2014-06-01
Diprosopus (Greek; di-, "two" + prosopon, "face"), or craniofacial duplication, is a rare craniofacial anomaly referring to the complete duplication of facial structures. Partial craniofacial duplication describes a broad spectrum of congenital anomalies, including duplications of the oral cavity. This paper describes a 15 month-old female with a duplicated oral cavity, mandible, and maxilla. A Tessier type 7 cleft, midline meningocele, and duplicated hypophysis were also present. The preoperative evaluation, surgical approach, postoperative results, and a review of the literature are presented. The surgical approach was designed to preserve facial nerve innervation to the reconstructed cheek and mouth. The duplicated mandible and maxilla were excised and the remaining left maxilla was bone grafted. Soft tissue repair included closure of the Tessier type VII cleft. Craniofacial duplication remains a rare entity that is more common in females. The pathophysiology remains incompletely characterized, but is postulated to be due to duplication of the notochord, as well as duplication of mandibular growth centres. While diprosopus is a severe deformity often associated with anencephaly, patients with partial duplication typically benefit from surgical treatment. Managing craniofacial duplication requires a detailed preoperative evaluation as well as a comprehensive, staged treatment plan. Long-term follow up is needed appropriately to address ongoing craniofacial deformity. Published by Elsevier Ltd.
Adomako-Ankomah, Yaw; English, Elizabeth D.; Danielson, Jeffrey J.; Pernas, Lena F.; Parker, Michelle L.; Boulanger, Martin J.; Dubey, Jitender P.; Boyle, Jon P.
2016-01-01
In Toxoplasma gondii, an intracellular parasite of humans and other animals, host mitochondrial association (HMA) is driven by a gene family that encodes multiple mitochondrial association factor 1 (MAF1) proteins. However, the importance of MAF1 gene duplication in the evolution of HMA is not understood, nor is the impact of HMA on parasite biology. Here we used within- and between-species comparative analysis to determine that the MAF1 locus is duplicated in T. gondii and its nearest extant relative Hammondia hammondi, but not another close relative, Neospora caninum. Using cross-species complementation, we determined that the MAF1 locus harbors multiple distinct paralogs that differ in their ability to mediate HMA, and that only T. gondii and H. hammondi harbor HMA+ paralogs. Additionally, we found that exogenous expression of an HMA+ paralog in T. gondii strains that do not normally exhibit HMA provides a competitive advantage over their wild-type counterparts during a mouse infection. These data indicate that HMA likely evolved by neofunctionalization of a duplicate MAF1 copy in the common ancestor of T. gondii and H. hammondi, and that the neofunctionalized gene duplicate is selectively advantageous. PMID:26920761
Elucidation of the Molecular Mechanism Driving Duplication of the HIV-1 PTAP Late Domain.
Martins, Angelica N; Waheed, Abdul A; Ablan, Sherimay D; Huang, Wei; Newton, Alicia; Petropoulos, Christos J; Brindeiro, Rodrigo D M; Freed, Eric O
2016-01-15
HIV-1 uses cellular machinery to bud from infected cells. This cellular machinery is comprised of several multiprotein complexes known as endosomal sorting complexes required for transport (ESCRTs). A conserved late domain motif, Pro-Thr-Ala-Pro (PTAP), located in the p6 region of Gag (p6(Gag)), plays a central role in ESCRT recruitment to the site of virus budding. Previous studies have demonstrated that PTAP duplications are selected in HIV-1-infected patients during antiretroviral therapy; however, the consequences of these duplications for HIV-1 biology and drug resistance are unclear. To address these questions, we constructed viruses carrying a patient-derived PTAP duplication with and without drug resistance mutations in the viral protease. We evaluated the effect of the PTAP duplication on viral release efficiency, viral infectivity, replication capacity, drug susceptibility, and Gag processing. In the presence of protease inhibitors, we observed that the PTAP duplication in p6(Gag) significantly increased the infectivity and replication capacity of the virus compared to those of viruses bearing only resistance mutations in protease. Our biochemical analysis showed that the PTAP duplication, in combination with mutations in protease, enhances processing between the nucleocapsid and p6 domains of Gag, resulting in more complete Gag cleavage in the presence of protease inhibitors. These results demonstrate that duplication of the PTAP motif in p6(Gag) confers a selective advantage in viral replication by increasing Gag processing efficiency in the context of protease inhibitor treatment, thereby enhancing the drug resistance of the virus. These findings highlight the interconnected role of PTAP duplications and protease mutations in the development of resistance to antiretroviral therapy. Resistance to current drug therapy limits treatment options in many HIV-1-infected patients. Duplications in a Pro-Thr-Ala-Pro (PTAP) motif in the p6 domain of Gag are frequently observed in viruses derived from patients on protease inhibitor (PI) therapy. However, the reason that these duplications arise and their consequences for virus replication remain to be established. In this study, we examined the effect of PTAP duplication on PI resistance in the context of wild-type protease or protease bearing PI resistance mutations. We observe that PTAP duplication markedly enhances resistance to a panel of PIs. Biochemical analysis reveals that the PTAP duplication reverses a Gag processing defect imposed by the PI resistance mutations in the context of PI treatment. The results provide a long-sought explanation for why PTAP duplications arise in PI-treated patients. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Adomako-Ankomah, Yaw; English, Elizabeth D; Danielson, Jeffrey J; Pernas, Lena F; Parker, Michelle L; Boulanger, Martin J; Dubey, Jitender P; Boyle, Jon P
2016-05-01
In Toxoplasma gondii, an intracellular parasite of humans and other animals, host mitochondrial association (HMA) is driven by a gene family that encodes multiple mitochondrial association factor 1 (MAF1) proteins. However, the importance of MAF1 gene duplication in the evolution of HMA is not understood, nor is the impact of HMA on parasite biology. Here we used within- and between-species comparative analysis to determine that the MAF1 locus is duplicated in T. gondii and its nearest extant relative Hammondia hammondi, but not another close relative, Neospora caninum Using cross-species complementation, we determined that the MAF1 locus harbors multiple distinct paralogs that differ in their ability to mediate HMA, and that only T. gondii and H. hammondi harbor HMA(+) paralogs. Additionally, we found that exogenous expression of an HMA(+) paralog in T. gondii strains that do not normally exhibit HMA provides a competitive advantage over their wild-type counterparts during a mouse infection. These data indicate that HMA likely evolved by neofunctionalization of a duplicate MAF1 copy in the common ancestor of T. gondii and H. hammondi, and that the neofunctionalized gene duplicate is selectively advantageous. Copyright © 2016 by the Genetics Society of America.
Fraile-Ribot, Pablo A; Mulet, Xavier; Cabot, Gabriel; Del Barrio-Tofiño, Ester; Juan, Carlos; Pérez, José L; Oliver, Antonio
2017-09-01
Resistance development to novel cephalosporin-β-lactamase inhibitor combinations during ceftazidime treatment of a surgical infection by Pseudomonas aeruginosa was investigated. Both initial (97C2) and final (98G1) isolates belonged to the high-risk clone sequence type (ST) 235 and were resistant to carbapenems ( oprD ), fluoroquinolones (GyrA-T83I, ParC-S87L), and aminoglycosides ( aacA7/aacA8/aadA6 ). 98G1 also showed resistance to ceftazidime, ceftazidime-avibactam, and ceftolozane-tazobactam. Sequencing identified bla OXA-2 in 97C2, but 98G1 contained a 3-bp insertion leading to the duplication of the key residue D149 (designated OXA-539). Evaluation of PAO1 transformants producing cloned OXA-2 or OXA-539 confirmed that D149 duplication was the cause of resistance. Active surveillance of the emergence of resistance to these new valuable agents is warranted. Copyright © 2017 American Society for Microbiology.
Fraile-Ribot, Pablo A.; Mulet, Xavier; del Barrio-Tofiño, Ester; Juan, Carlos; Pérez, José L.
2017-01-01
ABSTRACT Resistance development to novel cephalosporin–β-lactamase inhibitor combinations during ceftazidime treatment of a surgical infection by Pseudomonas aeruginosa was investigated. Both initial (97C2) and final (98G1) isolates belonged to the high-risk clone sequence type (ST) 235 and were resistant to carbapenems (oprD), fluoroquinolones (GyrA-T83I, ParC-S87L), and aminoglycosides (aacA7/aacA8/aadA6). 98G1 also showed resistance to ceftazidime, ceftazidime-avibactam, and ceftolozane-tazobactam. Sequencing identified blaOXA-2 in 97C2, but 98G1 contained a 3-bp insertion leading to the duplication of the key residue D149 (designated OXA-539). Evaluation of PAO1 transformants producing cloned OXA-2 or OXA-539 confirmed that D149 duplication was the cause of resistance. Active surveillance of the emergence of resistance to these new valuable agents is warranted. PMID:28674059
Kouprina, Natalay; Noskov, Vladimir N.; Waterfall, Joshua J.; Walker, Robert L.; Meltzer, Paul S.; Topol, Eric J.; Larionov, Vladimir
2018-01-01
Tandem segmental duplications (SDs) greater than 10 kb are widespread in complex genomes. They provide material for gene divergence and evolutionary adaptation, while formation of specific de novo SDs is a hallmark of cancer and some human diseases. Most SDs map to distinct genomic regions termed ‘duplication blocks’. SDs organization within these blocks is often poorly characterized as they are mosaics of ancestral duplicons juxtaposed with younger duplicons arising from more recent duplication events. Structural and functional analysis of SDs is further hampered as long repetitive DNA structures are underrepresented in existing BAC and YAC libraries. We applied Transformation-Associated Recombination (TAR) cloning, a versatile technique for large DNA manipulation, to selectively isolate the coronary artery disease (CAD) interval sequence within the 9p21.3 chromosome locus from a patient with coronary artery disease and normal individuals. Four tandem head-to-tail duplicons, each ∼50 kb long, were recovered in the patient but not in normal individuals. Sequence analysis revealed that the repeats varied by 10-15 SNPs between each other and by 82 SNPs between the human genome sequence (version hg19). SNPs polymorphism within the junctions between repeats allowed two junction types to be distinguished, Type 1 and Type 2, which were found at a 2:1 ratio. The junction sequences contained an Alu element, a sequence previously shown to play a role in duplication. Knowledge of structural variation in the CAD interval from more patients could help link this locus to cardiovascular diseases susceptibility, and maybe relevant to other cases of regional amplification, including cancer. PMID:29632643
A limited role for gene duplications in the evolution of platypus venom.
Wong, Emily S W; Papenfuss, Anthony T; Whittington, Camilla M; Warren, Wesley C; Belov, Katherine
2012-01-01
Gene duplication followed by adaptive selection is believed to be the primary driver of venom evolution. However, to date, no studies have evaluated the importance of gene duplications for venom evolution using a genomic approach. The availability of a sequenced genome and a venom gland transcriptome for the enigmatic platypus provides a unique opportunity to explore the role that gene duplication plays in venom evolution. Here, we identify gene duplication events and correlate them with expressed transcripts in an in-season venom gland. Gene duplicates (1,508) were identified. These duplicated pairs (421), including genes that have undergone multiple rounds of gene duplications, were expressed in the venom gland. The majority of these genes are involved in metabolism and protein synthesis not toxin functions. Twelve secretory genes including serine proteases, metalloproteinases, and protease inhibitors likely to produce symptoms of envenomation such as vasodilation and pain were detected. Only 16 of 107 platypus genes with high similarity to known toxins evolved through gene duplication. Platypus venom C-type natriuretic peptides and nerve growth factor do not possess lineage-specific gene duplicates. Extensive duplications, believed to increase the potency of toxic content and promote toxin diversification, were not found. This is the first study to take a genome-wide approach in order to examine the impact of gene duplication on venom evolution. Our findings support the idea that adaptive selection acts on gene duplicates to drive the independent evolution and functional diversification of similar venom genes in venomous species. However, gene duplications alone do not explain the "venome" of the platypus. Other mechanisms, such as alternative splicing and mutation, may be important in venom innovation.
A Limited Role for Gene Duplications in the Evolution of Platypus Venom
Wong, Emily S. W.; Papenfuss, Anthony T.; Whittington, Camilla M.; Warren, Wesley C.; Belov, Katherine
2012-01-01
Gene duplication followed by adaptive selection is believed to be the primary driver of venom evolution. However, to date, no studies have evaluated the importance of gene duplications for venom evolution using a genomic approach. The availability of a sequenced genome and a venom gland transcriptome for the enigmatic platypus provides a unique opportunity to explore the role that gene duplication plays in venom evolution. Here, we identify gene duplication events and correlate them with expressed transcripts in an in-season venom gland. Gene duplicates (1,508) were identified. These duplicated pairs (421), including genes that have undergone multiple rounds of gene duplications, were expressed in the venom gland. The majority of these genes are involved in metabolism and protein synthesis not toxin functions. Twelve secretory genes including serine proteases, metalloproteinases, and protease inhibitors likely to produce symptoms of envenomation such as vasodilation and pain were detected. Only 16 of 107 platypus genes with high similarity to known toxins evolved through gene duplication. Platypus venom C-type natriuretic peptides and nerve growth factor do not possess lineage-specific gene duplicates. Extensive duplications, believed to increase the potency of toxic content and promote toxin diversification, were not found. This is the first study to take a genome-wide approach in order to examine the impact of gene duplication on venom evolution. Our findings support the idea that adaptive selection acts on gene duplicates to drive the independent evolution and functional diversification of similar venom genes in venomous species. However, gene duplications alone do not explain the “venome” of the platypus. Other mechanisms, such as alternative splicing and mutation, may be important in venom innovation. PMID:21816864
Le Guillou-Guillemette, Hélène; Pivert, Adeline; Bouthry, Elise; Henquell, Cécile; Petsaris, Odile; Ducancelle, Alexandra; Veillon, Pascal; Vallet, Sophie; Alain, Sophie; Thibault, Vincent; Abravanel, Florence; Rosenberg, Arielle A; André-Garnier, Elisabeth; Bour, Jean-Baptiste; Baazia, Yazid; Trimoulet, Pascale; André, Patrice; Gaudy-Graffin, Catherine; Bettinger, Dominique; Larrat, Sylvie; Signori-Schmuck, Anne; Saoudin, Hénia; Pozzetto, Bruno; Lagathu, Gisèle; Minjolle-Cha, Sophie; Stoll-Keller, Françoise; Pawlotsky, Jean-Michel; Izopet, Jacques; Payan, Christopher; Lunel-Fabiani, Françoise; Lemaire, Christophe
2017-01-01
The emergence of new strains in RNA viruses is mainly due to mutations or intra and inter-genotype homologous recombination. Non-homologous recombinations may be deleterious and are rarely detected. In previous studies, we identified HCV-1b strains bearing two tandemly repeated V3 regions in the NS5A gene without ORF disruption. This polymorphism may be associated with an unfavorable course of liver disease and possibly involved in liver carcinogenesis. Here we aimed at characterizing the origin of these mutant strains and identifying the evolutionary mechanism on which the V3 duplication relies. Direct sequencing of the entire NS5A and E1 genes was performed on 27 mutant strains. Quasispecies analyses in consecutive samples were also performed by cloning and sequencing the NS5A gene for all mutant and wild strains. We analyzed the mutant and wild-type sequence polymorphisms using Bayesian methods to infer the evolutionary history of and the molecular mechanism leading to the duplication-like event. Quasispecies were entirely composed of exclusively mutant or wild-type strains respectively. Mutant quasispecies were found to have been present since contamination and had persisted for at least 10 years. This V3 duplication-like event appears to have resulted from non-homologous recombination between HCV-1b wild-type strains around 100 years ago. The association between increased liver disease severity and these HCV-1b mutants may explain their persistence in chronically infected patients. These results emphasize the possible consequences of non-homologous recombination in the emergence and severity of new viral diseases.
Lu, Jianguo; Peatman, Eric; Tang, Haibao; Lewis, Joshua; Liu, Zhanjiang
2012-06-15
Gene duplication has had a major impact on genome evolution. Localized (or tandem) duplication resulting from unequal crossing over and whole genome duplication are believed to be the two dominant mechanisms contributing to vertebrate genome evolution. While much scrutiny has been directed toward discerning patterns indicative of whole-genome duplication events in teleost species, less attention has been paid to the continuous nature of gene duplications and their impact on the size, gene content, functional diversity, and overall architecture of teleost genomes. Here, using a Markov clustering algorithm directed approach we catalogue and analyze patterns of gene duplication in the four model teleost species with chromosomal coordinates: zebrafish, medaka, stickleback, and Tetraodon. Our analyses based on set size, duplication type, synonymous substitution rate (Ks), and gene ontology emphasize shared and lineage-specific patterns of genome evolution via gene duplication. Most strikingly, our analyses highlight the extraordinary duplication and retention rate of recent duplicates in zebrafish and their likely role in the structural and functional expansion of the zebrafish genome. We find that the zebrafish genome is remarkable in its large number of duplicated genes, small duplicate set size, biased Ks distribution toward minimal mutational divergence, and proportion of tandem and intra-chromosomal duplicates when compared with the other teleost model genomes. The observed gene duplication patterns have played significant roles in shaping the architecture of teleost genomes and appear to have contributed to the recent functional diversification and divergence of important physiological processes in zebrafish. We have analyzed gene duplication patterns and duplication types among the available teleost genomes and found that a large number of genes were tandemly and intrachromosomally duplicated, suggesting their origin of independent and continuous duplication. This is particularly true for the zebrafish genome. Further analysis of the duplicated gene sets indicated that a significant portion of duplicated genes in the zebrafish genome were of recent, lineage-specific duplication events. Most strikingly, a subset of duplicated genes is enriched among the recently duplicated genes involved in immune or sensory response pathways. Such findings demonstrated the significance of continuous gene duplication as well as that of whole genome duplication in the course of genome evolution.
Jiang, Wen-kai; Liu, Yun-long; Xia, En-hua; Gao, Li-zhi
2013-01-01
The evolution of genes and genomes after polyploidization has been the subject of extensive studies in evolutionary biology and plant sciences. While a significant number of duplicated genes are rapidly removed during a process called fractionation, which operates after the whole-genome duplication (WGD), another considerable number of genes are retained preferentially, leading to the phenomenon of biased gene retention. However, the evolutionary mechanisms underlying gene retention after WGD remain largely unknown. Through genome-wide analyses of sequence and functional data, we comprehensively investigated the relationships between gene features and the retention probability of duplicated genes after WGDs in six plant genomes, Arabidopsis (Arabidopsis thaliana), poplar (Populus trichocarpa), soybean (Glycine max), rice (Oryza sativa), sorghum (Sorghum bicolor), and maize (Zea mays). The results showed that multiple gene features were correlated with the probability of gene retention. Using a logistic regression model based on principal component analysis, we resolved evolutionary rate, structural complexity, and GC3 content as the three major contributors to gene retention. Cluster analysis of these features further classified retained genes into three distinct groups in terms of gene features and evolutionary behaviors. Type I genes are more prone to be selected by dosage balance; type II genes are possibly subject to subfunctionalization; and type III genes may serve as potential targets for neofunctionalization. This study highlights that gene features are able to act jointly as primary forces when determining the retention and evolution of WGD-derived duplicated genes in flowering plants. These findings thus may help to provide a resolution to the debate on different evolutionary models of gene fates after WGDs. PMID:23396833
Molecular evolution of GPCRs: GLP1/GLP1 receptors.
Hwang, Jong-Ik; Yun, Seongsik; Moon, Mi Jin; Park, Cho Rong; Seong, Jae Young
2014-06-01
Glucagon-like peptide 1 (GLP1) is an intestinal incretin that regulates glucose homeostasis through stimulation of insulin secretion from pancreatic β-cells and inhibits appetite by acting on the brain. Thus, it is a promising therapeutic agent for the treatment of type 2 diabetes mellitus and obesity. Studies using synteny and reconstructed ancestral chromosomes suggest that families for GLP1 and its receptor (GLP1R) have emerged through two rounds (2R) of whole genome duplication and local gene duplications before and after 2R. Exon duplications have also contributed to the expansion of the peptide family members. Specific changes in the amino acid sequence following exon/gene/genome duplications have established distinct yet related peptide and receptor families. These specific changes also confer selective interactions between GLP1 and GLP1R. In this review, we present a possible macro (genome level)- and micro (gene/exon level)-evolution mechanisms of GLP1 and GLP1R, which allows them to acquire selective interactions between this ligand-receptor pair. This information may provide critical insight for the development of potent therapeutic agents targeting GLP1R. © 2014 Society for Endocrinology.
Maroni, G.; Wise, J.; Young, J. E.; Otto, E.
1987-01-01
A search for duplications of the Drosophila melanogaster metallothionein gene (Mtn) yielded numerous examples of this type of chromosomal rearrangement. These duplications are distributed widely—we found them in samples from four continents, and they are functional—larvae carrying Mtn duplications produce more Mtn RNA and tolerate increased cadmium and copper concentrations. Six different duplication types were characterized by restriction-enzyme analyses using probes from the Mtn region. The restriction maps show that in four cases the sequences, ranging in size between 2.2 and 6.0 kb, are arranged as direct, tandem repeats; in two other cases, this basic pattern is modified by the insertion of a putative transposable element into one of the repeated units. Duplications of the D. melanogaster metallothionein gene such as those that we found in natural populations may represent early stages in the evolution of a gene family. PMID:2828157
De Toffol, Simona; Bellone, Emilia; Dulcetti, Francesca; Ruggeri, Anna Maria; Maggio, Pietro Paolo; Pulimeno, Maria Rosaria; Mandich, Paola; Maggi, Federico; Simoni, Giuseppe; Grati, Francesca Romana
2010-04-01
Charcot Marie Tooth (CMT) syndrome is the most common hereditary peripheral neuropathy, with an incidence of about 1 in 2500. The subtype 1A (CMT1A) is caused by a tandem duplication of a 1.5-Mb region encompassing the PMP22 gene. Conventional short tandem repeat (STR) analysis can reveal this imbalance if a triallelic pattern, defining with certainty the presence of duplication, is present. In case of duplication with a biallelic pattern, it can only indicate a semiquantitative dosage of the fluorescence intensity ratio of the two fragments. In this study we developed a quantitative fluorescence-PCR using seven highly informative STRs within the CMT1A critical region that successfully disclosed or excluded the presence of the pathogenic imbalance in a cohort of 60 samples including 40 DNAs from samples with the CMT1A duplication previously characterized with two different molecular approaches, and 20 diagnostic samples from 10 members of a five-generation pedigree segregating CMT1A, 8 unrelated cases and 2 prenatal samples. The application of the quantitative fluorescence-PCR using STRs located in the critical region could be a reliable method to evaluate the presence of the PMP22 duplication for the diagnosis and classification of hereditary neuropathies in asymptomatic subjects with a family history of inherited neuropathy, in prenatal samples in cases with one affected parent, and in unrelated patients with a sporadic demyelinating neuropathy with clinical features resembling CMT (i.e., pes cavus with hammer toes) or with conduction velocities in the range of CMT1A.
On face antimagic labeling of double duplication of graphs
NASA Astrophysics Data System (ADS)
Shobana, L.; Kuppan, R.
2018-04-01
A Labeling of a plane graph G is called d-antimagic if every numbers, the set of s-sided face weights is Ws={as,as+d,as+2d,...,as+(fs-1)d} for some integers as and d (as>0,d≥0),where fs is the number of s-sided faces. We allow differentsets ws of different s.In this paper, we proved the existence of face antimagic labeling of types (1,0,0),(1,0,1),(1,1,0),(0,1,1) and (1,1,1) of double duplication of all vertices by edges of a cycle graph Cn: n≥3 and a tree of order n.
Morabito, Rosa; Colonna, Michele R; Mormina, Enricomaria; Stagno d'Alcontres, Ferdinando; Salpietro, Vincenzo; Blandino, Alfredo; Longo, Marcello; Granata, Francesca
2014-12-01
Craniofacial duplication is a very rare malformation. The phenotype comprises a wide spectrum, ranging from partial duplication of few facial structures to complete dicephalus. We report the case of a newborn with an accessory oral cavity associated to duplication of the tongue and the mandible diagnosed by multi-row detector Computed Tomography, few days after her birth. Our case of partial craniofacial duplication can be considered as Type II of Gorlin classification or as an intermediate form between Type I and Type II of Sun classification. Our experience demonstrates that CT scan, using appropriate reconstruction algorithms, permits a detailed evaluation of the different structures in an anatomical region. Multi-row CT scan is also the more accurate diagnostic procedure for the pre-surgical evaluation of craniofacial malformations. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubota, Akira; Bainy, Afonso C.D.; Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, Florianopolis, SC 88040-900
2013-10-01
The cytochrome P450 (CYP) 2 gene family is the largest and most diverse CYP gene family in vertebrates. In zebrafish, we have identified 10 genes in a new subfamily, CYP2AA, which does not show orthology to any human or other mammalian CYP genes. Here we report evolutionary and structural relationships of the 10 CYP2AA genes and expression of the first two genes, CYP2AA1 and CYP2AA2. Parsimony reconstruction of the tandem duplication pattern for the CYP2AA cluster suggests that CYP2AA1, CYP2AA2 and CYP2AA3 likely arose in the earlier duplication events and thus are most diverged in function from the other CYP2AAs.more » On the other hand, CYP2AA8 and CYP2AA9 are genes that arose in the latest duplication event, implying functional similarity between these two CYPs. A molecular model of CYP2AA1 showing the sequence conservation across the CYP2AA cluster reveals that the regions with the highest variability within the cluster map onto CYP2AA1 near the substrate access channels, suggesting differing substrate specificities. Zebrafish CYP2AA1 transcript was expressed predominantly in the intestine, while CYP2AA2 was most highly expressed in the kidney, suggesting differing roles in physiology. In the liver CYP2AA2 expression but not that of CYP2AA1, was increased by 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) and, to a lesser extent, by phenobarbital (PB). In contrast, pregnenolone 16α-carbonitrile (PCN) increased CYP2AA1 expression, but not CYP2AA2 in the liver. The results identify a CYP2 subfamily in zebrafish that includes genes apparently induced by PB-type chemicals and PXR agonists, the first concrete in vivo evidence for a PB-type response in fish. - Highlights: • A tandemly duplicated cluster of ten CYP2AA genes was described in zebrafish. • Parsimony and duplication analyses suggest pathways to CYP2AA diversity. • Homology models reveal amino acid positions possibly related to functional diversity. • The CYP2AA locus does not share synteny with any CYP2 subfamily in mammals. • Induction of CYP2AA1 and CYP2AA2 indicates a phenobarbital-type response in fish.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rougher, H.; LeGuern, E. Gouider, R.
1996-03-01
Charcot-Marie-Tooth disease, characterized by distal muscle weakness and amyotrophy, decreased or absent tendon reflexes, and high arched feet, is the most common inherited peripheral neuropathy, with a prevalence of 1 in 2,500. Two types of CMT have been distinguished on the basis of nerve conduction velocities. CMT type 1 is the most frequent, with markedly slowed velocities ({<=}40 m/s) associated with hypertrophic onion bulb changes on nerve biopsy. Autosomal dominant CMT1 is genetically heterogeneous: CMT1A is caused by a 1.5-Mb duplication in 17p11.2 and, more rarely, by a point mutation in tha PMP22 (peripheral myelin protein, 22 kD) gene locatedmore » in the duplicated region; CMT1B results from mutations in the Po (peripheral myelin protein zero) gene in 1q22-23. Forty-five percent (7/16) of the published mutations associated with CMT1 occur in exon 3 of Po. In order to determine the cause of CMT1 in 20 unrelated patients without 17p11.2 duplications, mutations were sought in exon 3 of Po with three techniques: nonradioactive SSCP, automated sequencing, and PCR enzymatic restriction. 18 refs., 2 figs.« less
Y-type urethral duplication: an unusual variant of a rare anomaly.
Kumaravel, S; Senthilnathan, R; Sankkarabarathi, C; Bagdi, R K; Soundararajan, S; Prasad, N
2004-12-01
Urethral duplications are rare anomalies. We present a 3-year-old continent boy passing urine since birth per anus while voiding from penis. Micturating cystourethrogram, retrograde urethrogram and cystoscopy revealed a Y connection between the posterior urethra and anal canal. The accessory channel was excised by a perineal approach. Histopathology revealed that the tract was lined by transitional epithelium, proving that it was indeed a case of urethral duplication; hence, we suggest that all urethroanal fistulas are not variants of anorectal malformations. Certain of these fistulas should be considered as variants of Y-type urethral duplication even if the orthotopic urethra is normal.
Functional requirements driving the gene duplication in 12 Drosophila species.
Zhong, Yan; Jia, Yanxiao; Gao, Yang; Tian, Dacheng; Yang, Sihai; Zhang, Xiaohui
2013-08-15
Gene duplication supplies the raw materials for novel gene functions and many gene families arisen from duplication experience adaptive evolution. Most studies of young duplicates have focused on mammals, especially humans, whereas reports describing their genome-wide evolutionary patterns across the closely related Drosophila species are rare. The sequenced 12 Drosophila genomes provide the opportunity to address this issue. In our study, 3,647 young duplicate gene families were identified across the 12 Drosophila species and three types of expansions, species-specific, lineage-specific and complex expansions, were detected in these gene families. Our data showed that the species-specific young duplicate genes predominated (86.6%) over the other two types. Interestingly, many independent species-specific expansions in the same gene family have been observed in many species, even including 11 or 12 Drosophila species. Our data also showed that the functional bias observed in these young duplicate genes was mainly related to responses to environmental stimuli and biotic stresses. This study reveals the evolutionary patterns of young duplicates across 12 Drosophila species on a genomic scale. Our results suggest that convergent evolution acts on young duplicate genes after the species differentiation and adaptive evolution may play an important role in duplicate genes for adaption to ecological factors and environmental changes in Drosophila.
SHOX duplications found in some cases with type I Mayer-Rokitansky-Kuster-Hauser syndrome.
Gervasini, Cristina; Grati, Francesca Romana; Lalatta, Faustina; Tabano, Silvia; Gentilin, Barbara; Colapietro, Patrizia; De Toffol, Simona; Frontino, Giada; Motta, Francesca; Maitz, Silvia; Bernardini, Laura; Dallapiccola, Bruno; Fedele, Luigi; Larizza, Lidia; Miozzo, Monica
2010-10-01
The Mayer-Rokitansky-Küster-Hauser syndrome is defined as congenital aplasia of müllerian ducts derived structures in females with a normal female chromosomal and gonadal sex. Most cases with Mayer-Rokitansky-Küster-Hauser syndrome are sporadic, although familial cases have been reported. The genetic basis of Mayer-Rokitansky-Küster-Hauser syndrome is largely unknown and seems heterogeneous, and a small number of cases were found to have mutations in the WNT4 gene. The aim of this study was to identify possible recurrent submicroscopic imbalances in a cohort of familial and sporadic cases with Mayer-Rokitansky-Küster-Hauser syndrome. Multiplex ligation-dependent probe amplification was used to screen the subtelomeric sequences of all chromosomes in 30 patients with Mayer-Rokitansky-Küster-Hauser syndrome (sporadic, n = 27 and familial, n = 3). Segregation analysis and pyrosequencing were applied to validate the MLPA results in the informative family. Partial duplication of the Xpter pseudoautosomal region 1 containing the short stature homeobox (SHOX) gene was detected in five patients with Mayer-Rokitansky-Küster-Hauser syndrome (familial, n = 3 and sporadic, n = 2) and not in 53 healthy controls. The duplications were not overlapping, and SHOX was never entirely duplicated. Haplotyping in the informative family revealed that SHOX gene duplication was inherited from the unaffected father and was absent in two healthy sisters. Partial duplication of SHOX gene is found in some cases with both familial and sporadic Mayer-Rokitansky-Küster-Hauser type I syndrome.
Japanese neuropathy patients with peripheral myelin protein-22 gene aneuploidy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebo, R.V.; Li, L.Y.; Flandermeyer, R.R.
1994-09-01
Peripheral myelin protein (PMP-22) gene aneuploidy results in Charcot-Marie-Tooth disease Type 1A (CMT1A) and the Hereditary Neuropathy with Liability to Pressure Palsy (HNPP) in Japanese patients as well as Caucasian Americans. Charcot-Marie-Tooth disease (CMT), the most common genetic neuropathy, results when expression of one of at least seven genes is defective. CMT1A, about half of all CMT mutations, is usually associated with a duplication spanning the peripheral myelin protein-22 gene on distal chromosome band 17p11.2. Autosomal dominant HNPP (hereditary pressure and sensory neuropathy, HPSN) results from a deletion of the CMT1A gene region. Multicolor in situ hybridization with PMP-22 genemore » region probe characterized HNPP deletion reliably and detected all different size duplications reported previously. In summary, 72% of 28 Japanese CMT1 (HMSNI) patients tested had the CMT1A duplication, while none of the CMT2 (HMSNII) or CMT3 (HMSNIII) patients had a duplication. Three cases of HNPP were identified by deletion of the CMT1A gene region on chromosome 17p. HNPP and CMT1A have been reported to result simultaneously from the same unequal recombination event. The lower frequency of HNPP compared to CMT1A suggests that HNPP patients have a lower reproductive fitness than CMT1A patients. This result, along with a CMT1A duplication found in an Asian Indian family, demonstrates the broad geographic distribution and high frequency of PMP-22 gene aneuploidy.« less
Hu, Catherine; Lin, Siou-ying; Chi, Wen-tzu; Charng, Yee-yung
2012-02-01
The duplication and divergence of heat stress (HS) response genes might help plants adapt to varied HS conditions, but little is known on the topic. Here, we examined the evolution and function of Arabidopsis (Arabidopsis thaliana) mitochondrial GrpE (Mge) proteins. GrpE acts as a nucleotide-exchange factor in the Hsp70/DnaK chaperone machinery. Genomic data show that AtMge1 and AtMge2 arose from a recent whole-genome duplication event. Phylogenetic analysis indicated that duplication and preservation of Mges occurred independently in many plant species, which suggests a common tendency in the evolution of the genes. Intron retention contributed to the divergence of the protein structure of Mge paralogs in higher plants. In both Arabidopsis and tomato (Solanum lycopersicum), Mge1 is induced by ultraviolet B light and Mge2 is induced by heat, which suggests regulatory divergence of the genes. Consistently, AtMge2 but not AtMge1 is under the control of HsfA1, the master regulator of the HS response. Heterologous expression of AtMge2 but not AtMge1 in the temperature-sensitive Escherichia coli grpE mutant restored its growth at 43°C. Arabidopsis T-DNA knockout lines under different HS regimes revealed that Mge2 is specifically required for tolerating prolonged exposure to moderately high temperature, as compared with the need of the heat shock protein 101 and the HS-associated 32-kD protein for short-term extreme heat. Therefore, with duplication and subfunctionalization, one copy of the Arabidopsis Mge genes became specialized in a distinct type of HS. We provide direct evidence supporting the connection between gene duplication and adaptation to environmental stress.
NASA Astrophysics Data System (ADS)
Janssen, Ralf
2013-01-01
Abnormally developing embryos (ADEs) of the common pill millipede Glomeris marginata have been investigated by means of nuclear staining and mRNA in situ hybridization. It showed that all ADEs represent cases of Duplicitas posterior, which means that the posterior body pole is duplicated. The severity of the duplication ranges from duplicated posterior trunk segments in one specimen to an almost completely duplicated specimen that only shares the very anterior head region. Remarkably, none of the encountered ADEs represents a case of Duplicitas anterior (duplicated anterior pole) or a case of Duplicitas cruciata (cruciate duplication with two anterior and two posterior poles). This observation is discussed in the light of earlier reports on G. marginata ADEs that claim to have found these abnormalities. The lack of any other axial abnormality aside from D. posterior implies that early axis determination in G. marginata, and possibly myriapods in general, underlies the developmental mechanisms that prevent the formation of any other type of axial duplication. It is proposed that the formation of D. posterior-type embryos could be caused by the formation of two instead of only one posterior cumulus early during development.
On-top and side-to-side plasties for thumb polydactyly.
Al-Qattan, Noha M; Al-Qattan, Mohammad M
2017-01-01
"On-top" and "side-to-side" plasties are techniques used for treating thumb duplications in which one thumb is adequate proximally and the other thumb contains a better pulp and nail distally. The detailed functional results of these techniques have not been reported in the literature. We report on two cases. The first case had Wassel type VI duplication. The ulnar duplicate had a functioning interphalangeal joint and the radial duplicate had a functioning carpometacarpal joint. "On-top" plasty was done by putting the distal part of the ulnar duplicate on top of the proximal part of the radial duplicate. At 10 years after surgery, the outcome was excellent both cosmetically and functionally. In the second case (Wassel type VII with a zigzag deformity), the radial duplicate had a hypoplastic distal phalanx with no nail. The ulnar duplicate had a functioning interphalangeal joint and the radial duplicate had a functioning carpometacarpal joint. "Side-to-side" plasty was done by joining both thumbs side-to-side at the level of the proximal phalanx. At 3 years after surgery, the outcome we considered acceptable cosmetically and excellent functionally. We could not find similar cases in the literature with detailed long-term postoperative results. "On-top" and "side-to-side" plasties in the management of specific cases of thumb polydactyly obtain excellent functional results with excellent or acceptable cosmetic outcome. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Reviewing Large LAMA2 Deletions and Duplications in Congenital Muscular Dystrophy Patients.
Oliveira, Jorge; Gonçalves, Ana; Oliveira, Márcia E; Fineza, Isabel; Pavanello, Rita C M; Vainzof, Mariz; Bronze-da-Rocha, Elsa; Santos, Rosário; Sousa, Mário
2014-01-01
Congenital muscular dystrophy (CMD) type 1A (MDC1A) is caused by recessive mutations in laminin-α2 (LAMA2) gene. Laminin-211, a heterotrimeric glycoprotein that contains the α2 chain, is crucial for muscle stability establishing a bond between the sarcolemma and the extracellular matrix. More than 215 mutations are listed in the locus specific database (LSDB) for LAMA2 gene (May 2014). A limited number of large deletions/duplications have been reported in LAMA2. Our main objective was the identification of additional large rearrangements in LAMA2 found in CMD patients and a systematic review of cases in the literature and LSDB. In four of the fifty-two patients studied over the last 10 years, only one heterozygous mutation was identified, after sequencing and screening for a frequent LAMA2 deletion. Initial screening of large mutations was performed by multiplex ligation-dependent probe application (MLPA). Further characterization implied several techniques: long-range PCR, cDNA and Southern-blot analysis. Three novel large deletions in LAMA2 and the first pathogenic large duplication were successfully identified, allowing a definitive molecular diagnosis, carrier screening and prenatal diagnosis. A total of fifteen deletions and two duplications previously reported were also reviewed. Two possible mutational "hotspots" for deletions may exist, the first encompassing exons 3 and 4 and second in the 3' region (exons 56 to 65) of LAMA2. Our findings show that this type of mutation is fairly frequent (18.4% of mutated alleles) and is underestimated in the literature. It is important to include the screening of large deletions/duplications as part of the genetic diagnosis strategy.
The role of retrotransposons in gene family expansions: insights from the mouse Abp gene family.
Janoušek, Václav; Karn, Robert C; Laukaitis, Christina M
2013-05-29
Retrotransposons have been suggested to provide a substrate for non-allelic homologous recombination (NAHR) and thereby promote gene family expansion. Their precise role, however, is controversial. Here we ask whether retrotransposons contributed to the recent expansions of the Androgen-binding protein (Abp) gene families that occurred independently in the mouse and rat genomes. Using dot plot analysis, we found that the most recent duplication in the Abp region of the mouse genome is flanked by L1Md_T elements. Analysis of the sequence of these elements revealed breakpoints that are the relicts of the recombination that caused the duplication, confirming that the duplication arose as a result of NAHR using L1 elements as substrates. L1 and ERVII retrotransposons are considerably denser in the Abp regions than in one Mb flanking regions, while other repeat types are depleted in the Abp regions compared to flanking regions. L1 retrotransposons preferentially accumulated in the Abp gene regions after lineage separation and roughly followed the pattern of Abp gene expansion. By contrast, the proportion of shared vs. lineage-specific ERVII repeats in the Abp region resembles the rest of the genome. We confirmed the role of L1 repeats in Abp gene duplication with the identification of recombinant L1Md_T elements at the edges of the most recent mouse Abp gene duplication. High densities of L1 and ERVII repeats were found in the Abp gene region with abrupt transitions at the region boundaries, suggesting that their higher densities are tightly associated with Abp gene duplication. We observed that the major accumulation of L1 elements occurred after the split of the mouse and rat lineages and that there is a striking overlap between the timing of L1 accumulation and expansion of the Abp gene family in the mouse genome. Establishing a link between the accumulation of L1 elements and the expansion of the Abp gene family and identification of an NAHR-related breakpoint in the most recent duplication are the main contributions of our study.
The role of retrotransposons in gene family expansions: insights from the mouse Abp gene family
2013-01-01
Background Retrotransposons have been suggested to provide a substrate for non-allelic homologous recombination (NAHR) and thereby promote gene family expansion. Their precise role, however, is controversial. Here we ask whether retrotransposons contributed to the recent expansions of the Androgen-binding protein (Abp) gene families that occurred independently in the mouse and rat genomes. Results Using dot plot analysis, we found that the most recent duplication in the Abp region of the mouse genome is flanked by L1Md_T elements. Analysis of the sequence of these elements revealed breakpoints that are the relicts of the recombination that caused the duplication, confirming that the duplication arose as a result of NAHR using L1 elements as substrates. L1 and ERVII retrotransposons are considerably denser in the Abp regions than in one Mb flanking regions, while other repeat types are depleted in the Abp regions compared to flanking regions. L1 retrotransposons preferentially accumulated in the Abp gene regions after lineage separation and roughly followed the pattern of Abp gene expansion. By contrast, the proportion of shared vs. lineage-specific ERVII repeats in the Abp region resembles the rest of the genome. Conclusions We confirmed the role of L1 repeats in Abp gene duplication with the identification of recombinant L1Md_T elements at the edges of the most recent mouse Abp gene duplication. High densities of L1 and ERVII repeats were found in the Abp gene region with abrupt transitions at the region boundaries, suggesting that their higher densities are tightly associated with Abp gene duplication. We observed that the major accumulation of L1 elements occurred after the split of the mouse and rat lineages and that there is a striking overlap between the timing of L1 accumulation and expansion of the Abp gene family in the mouse genome. Establishing a link between the accumulation of L1 elements and the expansion of the Abp gene family and identification of an NAHR-related breakpoint in the most recent duplication are the main contributions of our study. PMID:23718880
Improving Open Access through Prior Learning Assessment
ERIC Educational Resources Information Center
Yin, Shuangxu; Kawachi, Paul
2013-01-01
This paper explores and presents new data on how to improve open access in distance education through using prior learning assessments. Broadly there are three types of prior learning assessment (PLAR): Type-1 for prospective students to be allowed to register for a course; Type-2 for current students to avoid duplicating work-load to gain…
Mims, Alice S; Mishra, Anjali; Orwick, Shelley; Blachly, James; Klisovic, Rebecca B; Garzon, Ramiro; Walker, Alison R; Devine, Steven M; Walsh, Katherine J; Vasu, Sumithira; Whitman, Susan; Marcucci, Guido; Jones, Daniel; Heerema, Nyla A; Lozanski, Gerard; Caligiuri, Michael A; Bloomfield, Clara D; Byrd, John C; Piekarz, Richard; Grever, Michael R; Blum, William
2018-06-01
KMT2A partial tandem duplication occurs in approximately 5-10% of patients with acute myeloid leukemia and is associated with adverse prognosis. KMT2A wild type is epigenetically silenced in KMT2A partial tandem duplication; re-expression can be induced with DNA methyltransferase and/or histone deacetylase inhibitors in vitro , sensitizing myeloid blasts to chemotherapy. We hypothesized that epigenetic silencing of KMT2A wildtype contributes to KMT2A partial tandem duplication-associated leukemogenesis and pharmacologic re-expression activates apoptotic mechanisms important for chemoresponse. We developed a regimen for this unique molecular subset, but due to relatively low frequency of KMT2A partial tandem duplication, this dose finding study was conducted in relapsed/refractory disease regardless of molecular subtype. Seventeen adults (< age 60) with relapsed/refractory acute myeloid leukemia were treated on study. Patients received decitabine 20 milligrams/meter 2 daily on days 1-10 and vorinostat 400 milligrams daily on days 5-10. Cytarabine was dose-escalated from 1.5 grams/meter 2 every 12 hours to 3 grams/meter 2 every 12 hours on days 12, 14 and 16. Two patients experienced dose limiting toxicities at dose level 1 due to prolonged myelosuppression. However, as both patients achieved complete remission after Day 42, the protocol was amended to adjust the definition of hematologic dose limiting toxicity. No further dose limiting toxicities were found. Six of 17 patients achieved complete remission including 2 of 4 patients with KMT2A partial tandem duplication. Combination therapy with decitabine, vorinostat and cytarabine was tolerated in younger relapsed/refractory acute myeloid leukemia and should be explored further focusing on the KMT2A partial tandem duplication subset. ( clinicaltrials.gov identifier 01130506 ). Copyright © 2018 Ferrata Storti Foundation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tassabehji, M.; Strachan, T.; Colley, A.
Type 1 neurofibromatosis (NF1), Watson syndrome (WS), and Noonan syndrome (NS) show some overlap in clinical manifestations. In addition, WS has been shown to be linked to markers flanking the NF1 locus and a deletion at the NF1 locus demonstrated in a WS patient. This suggests either that WS and NF1 are allelic or the phenotypes arise from mutations in very closely linked genes. Here the authors provide evidence for the former by demonstrating a mutation in the NF1 gene in a family with features of both WS and NS. The mutation is an almost perfect in-frame tandem duplication ofmore » 42 bases in exon 28 of the NF1 gene. Unlike the mutations previously described in classical NF1, which show a preponderance of null alleles, the mutation in this family would be expected to result in a mutant neurofibromin product. 31 refs., 2 figs.« less
Colón, Maritrini; Hernández, Fabiola; López, Karla; Quezada, Héctor; González, James; López, Geovani; Aranda, Cristina; González, Alicia
2011-01-01
Background Gene duplication is a key evolutionary mechanism providing material for the generation of genes with new or modified functions. The fate of duplicated gene copies has been amply discussed and several models have been put forward to account for duplicate conservation. The specialization model considers that duplication of a bifunctional ancestral gene could result in the preservation of both copies through subfunctionalization, resulting in the distribution of the two ancestral functions between the gene duplicates. Here we investigate whether the presumed bifunctional character displayed by the single branched chain amino acid aminotransferase present in K. lactis has been distributed in the two paralogous genes present in S. cerevisiae, and whether this conservation has impacted S. cerevisiae metabolism. Principal Findings Our results show that the KlBat1 orthologous BCAT is a bifunctional enzyme, which participates in the biosynthesis and catabolism of branched chain aminoacids (BCAAs). This dual role has been distributed in S. cerevisiae Bat1 and Bat2 paralogous proteins, supporting the specialization model posed to explain the evolution of gene duplications. BAT1 is highly expressed under biosynthetic conditions, while BAT2 expression is highest under catabolic conditions. Bat1 and Bat2 differential relocalization has favored their physiological function, since biosynthetic precursors are generated in the mitochondria (Bat1), while catabolic substrates are accumulated in the cytosol (Bat2). Under respiratory conditions, in the presence of ammonium and BCAAs the bat1Δ bat2Δ double mutant shows impaired growth, indicating that Bat1 and Bat2 could play redundant roles. In K. lactis wild type growth is independent of BCAA degradation, since a Klbat1Δ mutant grows under this condition. Conclusions Our study shows that BAT1 and BAT2 differential expression and subcellular relocalization has resulted in the distribution of the biosynthetic and catabolic roles of the ancestral BCAT in two isozymes improving BCAAs metabolism and constituting an adaptation to facultative metabolism. PMID:21267457
Hypospadiac Duplication of Anterior Urethra-a Rare Congenital Anomaly.
Goyal, Bhawana; Gupta, Suresh; Goyal, Parag
2017-02-01
Duplication of the urethra is a complex and rarely seen congenital anomaly with three anatomic variants: epispadiac (dorsal), hypospadiac (ventral), and Y-type. We report here a case of hypospadiac duplication of anterior urethra with dorsal blind ending urethra in a 9-year-old boy who presented with complaint of passing urine from the ventral aspect of penis.
[Anterior rectal duplication in adult patient: a case report].
Rodríguez-Cabrera, J; Villanueva-Sáenz, E; Bolaños-Badillo, L E
2009-01-01
To report a case of rectal duplication in the adult and make a literature review. The intestinal duplications are injuries of congenital origin that can exist from the base of the tongue to the anal verge, being the most frequent site at level of terminal ileum (22%) and at the rectal level in 5% To date approximately exist 80 reports in world-wide Literature generally in the pediatric population being little frequent in the adult age. Its presentation could be tubular or cystic. The recommended treatment is the surgical resection generally in block with coloanal anastomosis. A case review of rectal duplication in the adult and the conducted treatment. The case of a patient appears with diagnose of rectal duplication with tubular type,whose main symptom was constipation and fecal impactation. In the exploration was detect double rectal lumen (anterior and posterior) that it above initiates by of the anorectal ring with fibrous ulcer of fibrinoid aspect of 3 approx cm of length x 1 cm wide, at level of the septum that separates both rectal lumina. The rectal duplication is a rare pathology in the adult nevertheless is due to suspect before the existence of alterations in the mechanics of the defecation, rectal prolapse and rectal bleeding,the election treatment is a protectomy with colonic pouch in "J" and coloanal anastomosis.
Sas-4 proteins are required during basal body duplication in Paramecium
Gogendeau, Delphine; Hurbain, Ilse; Raposo, Graca; Cohen, Jean; Koll, France; Basto, Renata
2011-01-01
Centrioles and basal bodies are structurally related organelles composed of nine microtubule (MT) triplets. Studies performed in Caenorhabditis elegans embryos have shown that centriole duplication takes place in sequential way, in which different proteins are recruited in a specific order to assemble a procentriole. ZYG-1 initiates centriole duplication by triggering the recruitment of a complex of SAS-5 and SAS-6, which then recruits the final player, SAS-4, to allow the incorporation of MT singlets. It is thought that a similar mechanism (that also involves additional proteins) is present in other animal cells, but it remains to be investigated whether the same players and their ascribed functions are conserved during basal body duplication in cells that exclusively contain basal bodies. To investigate this question, we have used the multiciliated protist Paramecium tetraurelia. Here we show that in the absence of PtSas4, two types of defects in basal body duplication can be identified. In the majority of cases, the germinative disk and cartwheel, the first structures assembled during duplication, are not detected. In addition, if daughter basal bodies were formed, they invariably had defects in MT recruitment. Our results suggest that PtSas4 has a broader function than its animal orthologues. PMID:21289083
Jaeger, Emma; Leedham, Simon; Lewis, Annabelle; Segditsas, Stefania; Becker, Martin; Cuadrado, Pedro Rodenas; Davis, Hayley; Kaur, Kulvinder; Heinimann, Karl; Howarth, Kimberley; East, James; Taylor, Jenny; Thomas, Huw; Tomlinson, Ian
2012-05-06
Hereditary mixed polyposis syndrome (HMPS) is characterized by apparent autosomal dominant inheritance of multiple types of colorectal polyp, with colorectal carcinoma occurring in a high proportion of affected individuals. Here, we use genetic mapping, copy-number analysis, exclusion of mutations by high-throughput sequencing, gene expression analysis and functional assays to show that HMPS is caused by a duplication spanning the 3' end of the SCG5 gene and a region upstream of the GREM1 locus. This unusual mutation is associated with increased allele-specific GREM1 expression. Whereas GREM1 is expressed in intestinal subepithelial myofibroblasts in controls, GREM1 is predominantly expressed in the epithelium of the large bowel in individuals with HMPS. The HMPS duplication contains predicted enhancer elements; some of these interact with the GREM1 promoter and can drive gene expression in vitro. Increased GREM1 expression is predicted to cause reduced bone morphogenetic protein (BMP) pathway activity, a mechanism that also underlies tumorigenesis in juvenile polyposis of the large bowel.
Lagman, David; Callado-Pérez, Amalia; Franzén, Ilkin E.
2015-01-01
Gene duplications provide raw materials that can be selected for functional adaptations by evolutionary mechanisms. We describe here the results of 350 million years of evolution of three functionally related gene families: the alpha, beta and gamma subunits of transducins, the G protein involved in vision. Early vertebrate tetraploidisations resulted in separate transducin heterotrimers: gnat1/gnb1/gngt1 for rods, and gnat2/gnb3/gngt2 for cones. The teleost-specific tetraploidisation generated additional duplicates for gnb1, gnb3 and gngt2. We report here that the duplicates have undergone several types of subfunctionalisation or neofunctionalisation in the zebrafish. We have found that gnb1a and gnb1b are co-expressed at different levels in rods; gnb3a and gnb3b have undergone compartmentalisation restricting gnb3b to the dorsal and medial retina, however, gnb3a expression was detected only at very low levels in both larvae and adult retina; gngt2b expression is restricted to the dorsal and medial retina, whereas gngt2a is expressed ventrally. This dorsoventral distinction could be an adaptation to protect the lower part of the retina from intense light damage. The ontogenetic analysis shows earlier onset of expression in the pineal complex than in the retina, in accordance with its earlier maturation. Additionally, gnb1a but not gnb1b is expressed in the pineal complex, and gnb3b and gngt2b are transiently expressed in the pineal during ontogeny, thus showing partial temporal subfunctionalisation. These retina-pineal distinctions presumably reflect their distinct functional roles in vision and circadian rhythmicity. In summary, this study describes several functional differences between transducin gene duplicates resulting from the teleost-specific tetraploidisation. PMID:25806532
Hammad, Tariq A; Alastal, Yaseen; Khan, Muhammad Ali; Hammad, Mohammad; Alaradi, Osama; Nigam, Ankesh; Sodeman, Thomas C; Nawras, Ali
2015-10-01
We describe the diagnostic and therapeutic challenges of a type Va extrahepatic bile duct duplication coexistent with distally located hilar cholangiocarcinoma (Klatskin tumor). We present 2 cases that were diagnosed preoperatively and treated with a modified surgical technique of a combined pylorus-preserving Whipple procedure and hepaticojejunostomy.
Sagara, N; Kirikoshi, H; Terasaki, H; Yasuhiko, Y; Toda, G; Shiokawa, K; Katoh, M
2001-04-06
Frizzled-1 (FZD1)-FZD10 are seven-transmembrane-type WNT receptors, and SFRP1-SFRP5 are soluble-type WNT antagonists. These molecules are encoded by mutually distinct genes. We have previously isolated and characterized the 7.7-kb FZD4 mRNA, encoding a seven-transmembrane receptor with the extracellular cysteine-rich domain (CRD). Here, we have cloned and characterized FZD4S, a splicing variant of the FZD4 gene. FZD4S, corresponding to the 10.0-kb FZD4 mRNA, consisted of exon 1, intron 1, and exon 2 of the FZD4 gene. FZD4S encoded a soluble-type polypeptide with the N-terminal part of CRD, and was expressed in human fetal kidney. Injection of synthetic FZD4S mRNA into the ventral marginal zone of Xenopus embryos at the 4-cell stage did not induce axis duplication by itself, but augmented the axis duplication potential of coinjected Xwnt-8 mRNA. These results indicate that the FZD4 gene gives rise to soluble-type FZD4S as well as seven-transmembrane-type FZD4 due to alternative splicing, and strongly suggest that FZD4S plays a role as a positive regulator of the WNT signaling pathway. Copyright 2001 Academic Press.
Fabrication of read-only type triple-layered disc
NASA Astrophysics Data System (ADS)
Yang, Huei Wen; Jeng, Tzuan Ren; Yen, Wen Hsin; Chan, Rong Po; Shin, Kuo Ding; Huang, Der Ray
2003-06-01
The approach to increase optical recording density has become very popular research subject in these years. One direct and effective method is to increase the recording layer stack number. That is to say, to add one more recording layer can get one more recording capacity. In this paper, we will propose a new method for manufacturing read only type multi-layered disc. The process is described in the following. This first recorded data layer (called L0) still follows the traditional DVD disc manufacturing process. We obtain the polycarbonate substrate by replicating from Ni stamper. Then polycarbonate substrate is sputtered thin silicon film for semi-reflection layer. As for second layer (L1) and even more layer (Ln-1) producing, one special kind of duplication (called SKD) method is proposed. The duplication (or replication) source of second or nth recorded data is not only limited from Ni stamper. Even polycarbonate or PMMA substrate has recording data are also acceptable sources. At next step, the duplication source is deposited by thin gold film. Then we apply spin coating to bond the first layer (L0) substrate and second layer (L1) duplication source by choosing suitable UV curing glue. After being emitted by UV lamp for several seconds, we can easily separate the duplication source of second layer (L1) from (L0) substrate. Then we find the thin second data layer (L1) is replicated and stacks upon the first layer. On the same way, we sputter thin AgTi layer on the thin second data layer for another semi- reflective layer. By following the above manufacture step, we can produce more layers. In our experimental, we prepare triple layered read-only type disc. The total capacity is almost 12GB for one side of disc, and 24GB for two side of disc. The read-out intensity of laser from each data layer is expected to be similar. Thus we have designed particular reflectance and transmittance for each data layer by controlling the thickness of thin silicon film. We can verify our design by checking the focusing error signal in S-curve search of optical pickup head. The signal quality for each layer can be found from the signal eye pattern and jitter. For compatibility with present drive system, the requirement of the readout signal from each layer should be same as DVD or CD specification
Giorgio, Elisa; Rolyan, Harshvardhan; Kropp, Laura; Chakka, Anish Baswanth; Yatsenko, Svetlana; Gregorio, Eleonora Di; Lacerenza, Daniela; Vaula, Giovanna; Talarico, Flavia; Mandich, Paola; Toro, Camilo; Pierre, Eleonore Eymard; Labauge, Pierre; Capellari, Sabina; Cortelli, Pietro; Vairo, Filippo Pinto; Miguel, Diego; Stubbolo, Danielle; Marques, Lourenco Charles; Gahl, William; Boespflug-Tanguy, Odile; Melberg, Atle; Hassin-Baer, Sharon; Cohen, Oren S; Pjontek, Rastislav; Grau, Armin; Klopstock, Thomas; Fogel, Brent; Meijer, Inge; Rouleau, Guy; Bouchard, Jean-Pierre L; Ganapathiraju, Madhavi; Vanderver, Adeline; Dahl, Niklas; Hobson, Grace; Brusco, Alfredo; Brussino, Alessandro; Padiath, Quasar Saleem
2013-01-01
ABSTRACT Autosomal dominant leukodystrophy (ADLD) is an adult onset demyelinating disorder that is caused by duplications of the lamin B1 (LMNB1) gene. However, as only a few cases have been analyzed in detail, the mechanisms underlying LMNB1 duplications are unclear. We report the detailed molecular analysis of the largest collection of ADLD families studied, to date. We have identified the minimal duplicated region necessary for the disease, defined all the duplication junctions at the nucleotide level and identified the first inverted LMNB1 duplication. We have demonstrated that the duplications are not recurrent; patients with identical duplications share the same haplotype, likely inherited from a common founder and that the duplications originated from intrachromosomal events. The duplication junction sequences indicated that nonhomologous end joining or replication-based mechanisms such fork stalling and template switching or microhomology-mediated break induced repair are likely to be involved. LMNB1 expression was increased in patients’ fibroblasts both at mRNA and protein levels and the three LMNB1 alleles in ADLD patients show equal expression, suggesting that regulatory regions are maintained within the rearranged segment. These results have allowed us to elucidate duplication mechanisms and provide insights into allele-specific LMNB1 expression levels. PMID:23649844
A 1.5-Mb cosmid contig of the CMT1A duplication/HNPP deletion critical region in 17p11.2-p12
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murakami, Tatsufumi; Lupski, J.R.
1996-05-15
Charcot-Marie-Tooth disease type 1A (CMT1A) is associated with a 1.5-Mb tandem duplication in chromosome 17p11.2-p12, and hereditary neuropathy with liability to pressure palsies (HNPP) is associated with a 1.5-Mb deletion at this locus. Both diseases appear to result from an altered copy number of the peripheral myelin protein-22 gene, PMP22, which maps within the critical region. To identify additional genes and characterize chromosomal elements, a 1.5-Mb cosmid contig of the CMT1A duplication/HNPP deletion critical region was assembled using a yeast artificial chromosome (YAC)-based isolation and binning strategy. Whole YAC probes were used for screening a high-density arrayed chromosome 17-specific cosmidmore » library. Selected cosmids were spotted on dot blots and assigned to bins defined by YACs. This binning of cosmids facilitated the subsequent fingerprint analysis. The 1.5-Mb region was covered by 137 cosmids with a minimum overlap set of 52 cosmids assigned to 17 bins and 9 contigs. 20 refs., 2 figs.« less
AB020. Chromosome rearrangement in patients with 46,XY disorders of sex development
Vu, Dung Chi; Nguyen, Khanh Ngoc; Can, Ngoc Bich; Bui, Thao Phuong; Fukami, Maki
2017-01-01
Background Disorders of sex development (DSD) is defined by congenital conditions in which development of chromosomal, gonadal, or anatomical sex is atypical. Causative mutations have not been identified in more than 50% 46,XY DSD cases. We aimed to identify chromosomal rearrangement in the development of 46,XY DSD in Vietnamese patients. Methods Case series report including clinical presentations and data from array-based comparative genomic hybridization analysis for six genetic males with genital abnormalities combines with mental disability and other congenital anomalies. Results Heterozygous submicroscopic deletions and/or duplications were identified in six cases. A 7.2 Mb terminal deletion at chromosome 9 including deletion of DMRT1 gene and a 2.7 Mb terminal duplication at chromosome 17 were detected in case 1 that presented with prematurity, dysmorphism and ambiguous genitalia. A terminal deletion affects DMRT1-3 at 9p22-23 was identified in case 2 with ambiguous genitalia, mental disability and dysmorphism. An 18 Mb terminal duplication at chromosome 5 was detected in case 3 with DSD, growth retardation, microcephaly and dysmorphism, ptosis, ventricular septal defect and craniosynostosis. An interstitial deletion including deletions of WT1, PAX6, and PRRG4 genes at chromosome 11 was detected in case 4 with WAGR syndrome. A terminal duplication at chromosome 7 was detected in case 5 with DSD, severe hypospadias, small phallus size (1 cm at 3 years of age), and no testis found clinically. A 5 Mb terminal deletion at chromosome 4 and a 6 Mb terminal duplication of chromosome 16 were detected in case 6 with severe motor-mental retardation, microcephaly (head circumference −3.5 SD), micrognathia, and DSD. Conclusions The results indicate that chromosomal rearrangements constitute an important part of the molecular bases of 46,XY DSD and that submicroscopic deletions and/or duplication can lead to various types of 46,XY DSD combined with other congenital anomalies and/or mental disability.
Steele-Stallard, Heather B; Le Quesne Stabej, Polona; Lenassi, Eva; Luxon, Linda M; Claustres, Mireille; Roux, Anne-Francoise; Webster, Andrew R; Bitner-Glindzicz, Maria
2013-08-08
Usher Syndrome is the leading cause of inherited deaf-blindness. It is divided into three subtypes, of which the most common is Usher type 2, and the USH2A gene accounts for 75-80% of cases. Despite recent sequencing strategies, in our cohort a significant proportion of individuals with Usher type 2 have just one heterozygous disease-causing mutation in USH2A, or no convincing disease-causing mutations across nine Usher genes. The purpose of this study was to improve the molecular diagnosis in these families by screening USH2A for duplications, heterozygous deletions and a common pathogenic deep intronic variant USH2A: c.7595-2144A>G. Forty-nine Usher type 2 or atypical Usher families who had missing mutations (mono-allelic USH2A or no mutations following Sanger sequencing of nine Usher genes) were screened for duplications/deletions using the USH2A SALSA MLPA reagent kit (MRC-Holland). Identification of USH2A: c.7595-2144A>G was achieved by Sanger sequencing. Mutations were confirmed by a combination of reverse transcription PCR using RNA extracted from nasal epithelial cells or fibroblasts, and by array comparative genomic hybridisation with sequencing across the genomic breakpoints. Eight mutations were identified in 23 Usher type 2 families (35%) with one previously identified heterozygous disease-causing mutation in USH2A. These consisted of five heterozygous deletions, one duplication, and two heterozygous instances of the pathogenic variant USH2A: c.7595-2144A>G. No variants were found in the 15 Usher type 2 families with no previously identified disease-causing mutations. In 11 atypical families, none of whom had any previously identified convincing disease-causing mutations, the mutation USH2A: c.7595-2144A>G was identified in a heterozygous state in one family. All five deletions and the heterozygous duplication we report here are novel. This is the first time that a duplication in USH2A has been reported as a cause of Usher syndrome. We found that 8 of 23 (35%) of 'missing' mutations in Usher type 2 probands with only a single heterozygous USH2A mutation detected with Sanger sequencing could be attributed to deletions, duplications or a pathogenic deep intronic variant. Future mutation detection strategies and genetic counselling will need to take into account the prevalence of these types of mutations in order to provide a more comprehensive diagnostic service.
Mielczarek, M; Frąszczak, M; Giannico, R; Minozzi, G; Williams, John L; Wojdak-Maksymiec, K; Szyda, J
2017-07-01
Thirty-two whole genome DNA sequences of cows were analyzed to evaluate inter-individual variability in the distribution and length of copy number variations (CNV) and to functionally annotate CNV breakpoints. The total number of deletions per individual varied between 9,731 and 15,051, whereas the number of duplications was between 1,694 and 5,187. Most of the deletions (81%) and duplications (86%) were unique to a single cow. No relation between the pattern of variant sharing and a family relationship or disease status was found. The animal-averaged length of deletions was from 5,234 to 9,145 bp and the average length of duplications was between 7,254 and 8,843 bp. Highly significant inter-individual variation in length and number of CNV was detected for both deletions and duplications. The majority of deletion and duplication breakpoints were located in intergenic regions and introns, whereas fewer were identified in noncoding transcripts and splice regions. Only 1.35 and 0.79% of the deletion and duplication breakpoints were observed within coding regions. A gene with the highest number of deletion breakpoints codes for protein kinase cGMP-dependent type I, whereas the T-cell receptor α constant gene had the most duplication breakpoints. The functional annotation of genes with the largest incidence of deletion/duplication breakpoints identified 87/112 Kyoto Encyclopedia of Genes and Genomes pathways, but none of the pathways were significantly enriched or depleted with breakpoints. The analysis of Gene Ontology (GO) terms revealed that a cluster with the highest enrichment score among genes with many deletion breakpoints was represented by GO terms related to ion transport, whereas the GO term cluster mostly enriched among the genes with many duplication breakpoints was related to binding of macromolecules. Furthermore, when considering the number of deletion breakpoints per gene functional category, no significant differences were observed between the "housekeeping" and "strong selection" categories, but genes representing the "low selection pressure" group showed a significantly higher number of breakpoints. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Neonatal intestinal obstruction secondary to a small bowel duplication cyst
Puralingegowda, Anil Kumar; Mohanty, Pankaj Kumar; Razak, Abdul; Nagesh N, Karthik; Chandrayya, Ramachandra
2014-01-01
A 3-week-old neonate developed abdominal distension and vomiting which subsided after conservative management. However, there was a recurrence of symptoms for which a lower gastrointestinal tract contrast study was performed. The infant had a filling defect in the area of the transverse colon. A CT scan was performed, showing a duplication cyst arising from the small bowel and indenting the transverse colon. Resection of the duplication cyst and end-to-end anastomosis of the bowel was performed. The duplication cyst was of tubular type, and a sealed perforation was noted in the cyst wall. PMID:25006055
Virts, Elizabeth L; Jankowska, Anna; Mackay, Craig; Glaas, Marcel F; Wiek, Constanze; Kelich, Stephanie L; Lottmann, Nadine; Kennedy, Felicia M; Marchal, Christophe; Lehnert, Erik; Scharf, Rüdiger E; Dufour, Carlo; Lanciotti, Marina; Farruggia, Piero; Santoro, Alessandra; Savasan, Süreyya; Scheckenbach, Kathrin; Schipper, Jörg; Wagenmann, Martin; Lewis, Todd; Leffak, Michael; Farlow, Janice L; Foroud, Tatiana M; Honisch, Ellen; Niederacher, Dieter; Chakraborty, Sujata C; Vance, Gail H; Pruss, Dmitry; Timms, Kirsten M; Lanchbury, Jerry S; Alpi, Arno F; Hanenberg, Helmut
2015-09-15
Fanconi anemia (FA) is a rare inherited disorder clinically characterized by congenital malformations, progressive bone marrow failure and cancer susceptibility. At the cellular level, FA is associated with hypersensitivity to DNA-crosslinking genotoxins. Eight of 17 known FA genes assemble the FA E3 ligase complex, which catalyzes monoubiquitination of FANCD2 and is essential for replicative DNA crosslink repair. Here, we identify the first FA patient with biallelic germline mutations in the ubiquitin E2 conjugase UBE2T. Both mutations were aluY-mediated: a paternal deletion and maternal duplication of exons 2-6. These loss-of-function mutations in UBE2T induced a cellular phenotype similar to biallelic defects in early FA genes with the absence of FANCD2 monoubiquitination. The maternal duplication produced a mutant mRNA that could encode a functional protein but was degraded by nonsense-mediated mRNA decay. In the patient's hematopoietic stem cells, the maternal allele with the duplication of exons 2-6 spontaneously reverted to a wild-type allele by monoallelic recombination at the duplicated aluY repeat, thereby preventing bone marrow failure. Analysis of germline DNA of 814 normal individuals and 850 breast cancer patients for deletion or duplication of UBE2T exons 2-6 identified the deletion in only two controls, suggesting aluY-mediated recombinations within the UBE2T locus are rare and not associated with an increased breast cancer risk. Finally, a loss-of-function germline mutation in UBE2T was detected in a high-risk breast cancer patient with wild-type BRCA1/2. Cumulatively, we identified UBE2T as a bona fide FA gene (FANCT) that also may be a rare cancer susceptibility gene. © The Author 2015. Published by Oxford University Press.
Inoue, Takahiko; Yuo, Takahisa; Ohta, Takeshi; Hitomi, Eriko; Ichitani, Katsuyuki; Kawase, Makoto; Taketa, Shin; Fukunaga, Kenji
2015-08-01
Foxtail millet shows variation in positive phenol color reaction (Phr) and negative Phr in grains, but predominant accessions of this crop are negative reaction type, and the molecular genetic basis of the Phr reaction remains unresolved. In this article, we isolated polyphenol oxidase (PPO) gene responsible for Phr using genome sequence information and investigated molecular genetic basis of negative Phr and crop evolution of foxtail millet. First of all, we searched for PPO gene homologs in a foxtail millet genome database using a rice PPO gene as a query and successfully found three copies of the PPO gene. One of the PPO gene homologs on chromosome 7 showed the highest similarity with PPO genes expressed in hulls (grains) of other cereal species including rice, wheat, and barley and was designated as Si7PPO. Phr phenotypes and Si7PPO genotypes completely co-segregated in a segregating population. We also analyzed the genetic variation conferring negative Phr reaction. Of 480 accessions of the landraces investigated, 87 (18.1 %) showed positive Phr and 393 (81.9 %) showed negative Phr. In the 393 Phr negative accessions, three types of loss-of-function Si7PPO gene were predominant and independently found in various locations. One of them has an SNP in exon 1 resulting in a premature stop codon and was designated as stop codon type, another has an insertion of a transposon (Si7PPO-TE1) in intron 2 and was designated as TE1-insertion type, and the other has a 6-bp duplication in exon 3 resulting in the duplication of 2 amino acids and was designated as 6-bp duplication type. As a rare variant of the stop codon type, one accession additionally has an insertion of a transposon, Si7PPO-TE2, in intron 2 and was designated as "stop codon +TE2 insertion type". The geographical distribution of accessions with positive Phr and those with three major types of negative Phr was also investigated. Accessions with positive Phr were found in subtropical and tropical regions at frequencies of ca. 25-67 % and those with negative Phr were broadly found in Europe and Asia. The stop codon type was found in 285 accessions and was broadly distributed in Europe and Asia, whereas the TE-1 insertion type was found in 99 accessions from Europe and Asia but was not found in India. The 6-bp duplication type was found in only 8 accessions from Nansei Islands (Okinawa Prefecture) of Japan. We also analyzed Phr in the wild ancestor and concluded that the negative Phr type was likely to have originated after domestication of foxtail millet. It was also implied that negative Phr of foxtail millet arose by multiple independent loss of function of PPO gene through dispersal because of some advantages under some environmental conditions and human selection as in rice and barley.
NASA Technical Reports Server (NTRS)
Lockwood, H. E.
1975-01-01
A series of Earth Resources Aircraft Program data flights were made over an aerial test range in Arizona for the evaluation of large cameras. Specifically, both medium altitude and high altitude flights were made to test and evaluate a series of color as well as black-and-white films. Image degradation, inherent in duplication processing, was studied. Resolution losses resulting from resolution characteristics of the film types are given. Color duplicates, in general, are shown to be degraded more than black-and-white films because of the limitations imposed by available aerial color duplicating stock. Results indicate that a greater resolution loss may be expected when the original has higher resolution. Photographs of the duplications are shown.
[Genome-wide identification and analysis of WRKY transcription factors in Medicago truncatula].
Song, Hui; Nan, Zhibiao
2014-02-01
WRKY gene family plays important roles in plant by involving in transcriptional regulations during various physiologically processes such as development, metabolism and responses to biotic and abiotic stresses. WRKY genes have been identified in various plants. However, only few WRKY genes in Medicago truncatula have been identified with systematic analysis and comparison. In this study, we identified 93 WRKY genes through analyses of M. truncatula genome. These genes include 19 type-I genes, 49 type II genes and 13 type-III genes, and 12 non-regular type genes. All of these genes were characterized through analyses of gene duplication, chromosomal locations, structural diversity, conserved protein motifs and phylogenetic relations. The results showed that 11 times of gene duplication event occurred in WRKY gene family involving 24 genes. WRKY genes, containing 6 gene clusters, are unevenly distributed into chromosome 1 to 6, and there is the purifying selection pressure in WRKY group III genes.
De novo direct duplication of chromosome segment 22q11.2-q13.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujimoto, Atsuko; Lin, Ming S.
Lindsay et al. [1995] reported a case of de novo duplication of the segment 22q11-q12. Molecular cytogenetics studies showed that the segment includes the regions responsible for the {open_quotes}cat eye,{close_quotes} DiGeorge, and velo-cardio-facial syndrome, and extends distal to the breakpoint cluster region. The phenotype was milder than that of complete trisomy 22 and der(22)t(11;22) (q23;q11) syndrome and was similar in type and severity to that of {open_quotes}cat eye{close_quotes} syndrome (CES). They suggested that trisomy of gene(s) responsible for the CES might have a predominant phenotypic effect over other genes present in the region duplicated in their patient. 3 refs., 2more » figs.« less
Chu, J.C.
1958-09-23
An improved electrostatic memory system is de scribed fer a digital computer wherein a plarality of storage tubes are adapted to operate in either of two possible modes. According to the present irvention, duplicate storage tubes are provided fur each denominational order of the several binary digits. A single discriminator system is provided between corresponding duplicate tubes to determine the character of the infurmation stored in each. If either tube produces the selected type signal, corresponding to binazy "1" in the preferred embodiment, a "1" is regenerated in both tubes. In one mode of operation each bit of information is stored in two corresponding tubes, while in the other mode of operation each bit is stored in only one tube in the conventional manner.
van Paassen, Barbara W; van der Kooi, Anneke J; van Spaendonck-Zwarts, Karin Y; Verhamme, Camiel; Baas, Frank; de Visser, Marianne
2014-03-19
PMP22 related neuropathies comprise (1) PMP22 duplications leading to Charcot-Marie-Tooth disease type 1A (CMT1A), (2) PMP22 deletions, leading to Hereditary Neuropathy with liability to Pressure Palsies (HNPP), and (3) PMP22 point mutations, causing both phenotypes. Overall prevalence of CMT is usually reported as 1:2,500, epidemiological studies show that 20-64% of CMT patients carry the PMP22 duplication. The prevalence of HNPP is not well known. CMT1A usually presents in the first two decades with difficulty walking or running. Distal symmetrical muscle weakness and wasting and sensory loss is present, legs more frequently and more severely affected than arms. HNPP typically leads to episodic, painless, recurrent, focal motor and sensory peripheral neuropathy, preceded by minor compression on the affected nerve. Electrophysiological evaluation is needed to determine whether the polyneuropathy is demyelinating. Sonography of the nerves can be useful. Diagnosis is confirmed by finding respectively a PMP22 duplication, deletion or point mutation. Differential diagnosis includes other inherited neuropathies, and acquired polyneuropathies. The mode of inheritance is autosomal dominant and de novo mutations occur. Offspring of patients have a chance of 50% to inherit the mutation from their affected parent. Prenatal testing is possible; requests for prenatal testing are not common. Treatment is currently symptomatic and may include management by a rehabilitation physician, physiotherapist, occupational therapist and orthopaedic surgeon. Adult CMT1A patients show slow clinical progression of disease, which seems to reflect a process of normal ageing. Life expectancy is normal.
2014-01-01
PMP22 related neuropathies comprise (1) PMP22 duplications leading to Charcot-Marie-Tooth disease type 1A (CMT1A), (2) PMP22 deletions, leading to Hereditary Neuropathy with liability to Pressure Palsies (HNPP), and (3) PMP22 point mutations, causing both phenotypes. Overall prevalence of CMT is usually reported as 1:2,500, epidemiological studies show that 20-64% of CMT patients carry the PMP22 duplication. The prevalence of HNPP is not well known. CMT1A usually presents in the first two decades with difficulty walking or running. Distal symmetrical muscle weakness and wasting and sensory loss is present, legs more frequently and more severely affected than arms. HNPP typically leads to episodic, painless, recurrent, focal motor and sensory peripheral neuropathy, preceded by minor compression on the affected nerve. Electrophysiological evaluation is needed to determine whether the polyneuropathy is demyelinating. Sonography of the nerves can be useful. Diagnosis is confirmed by finding respectively a PMP22 duplication, deletion or point mutation. Differential diagnosis includes other inherited neuropathies, and acquired polyneuropathies. The mode of inheritance is autosomal dominant and de novo mutations occur. Offspring of patients have a chance of 50% to inherit the mutation from their affected parent. Prenatal testing is possible; requests for prenatal testing are not common. Treatment is currently symptomatic and may include management by a rehabilitation physician, physiotherapist, occupational therapist and orthopaedic surgeon. Adult CMT1A patients show slow clinical progression of disease, which seems to reflect a process of normal ageing. Life expectancy is normal. PMID:24646194
2014-01-01
Background CHEK2 is a multi-cancer susceptibility gene whose common germline mutations are known to contribute to the risk of developing breast and prostate cancer. Case presentation Here, we describe an Italian family with a high number of cases of breast cancer and other types of tumour subjected to the MLPA test to verify the presence of BRCA1, BRCA2 and CHEK2 deletions and duplications. We identified a new 23-kb duplication in the CHEK2 gene extending from intron 5 to 13 that was associated with breast cancer in the family. The presence and localisation of the alteration was confirmed by a second analysis by Next-Generation Sequencing. Conclusions This finding suggests that CHEK2 mutations are heterogeneous and that techniques other than sequencing, such as MLPA, are needed to identify CHEK2 mutations. It also indicates that CHEK2 rare variants, such as duplications, can confer a high susceptibility to cancer development and should thus be studied in depth as most of our knowledge of CHEK2 concerns common mutations. PMID:24986639
Tedaldi, Gianluca; Danesi, Rita; Zampiga, Valentina; Tebaldi, Michela; Bedei, Lucia; Zoli, Wainer; Amadori, Dino; Falcini, Fabio; Calistri, Daniele
2014-07-01
CHEK2 is a multi-cancer susceptibility gene whose common germline mutations are known to contribute to the risk of developing breast and prostate cancer. Here, we describe an Italian family with a high number of cases of breast cancer and other types of tumour subjected to the MLPA test to verify the presence of BRCA1, BRCA2 and CHEK2 deletions and duplications. We identified a new 23-kb duplication in the CHEK2 gene extending from intron 5 to 13 that was associated with breast cancer in the family. The presence and localisation of the alteration was confirmed by a second analysis by Next-Generation Sequencing. This finding suggests that CHEK2 mutations are heterogeneous and that techniques other than sequencing, such as MLPA, are needed to identify CHEK2 mutations. It also indicates that CHEK2 rare variants, such as duplications, can confer a high susceptibility to cancer development and should thus be studied in depth as most of our knowledge of CHEK2 concerns common mutations.
Auguste, Aurélie; Bessière, Laurianne; Todeschini, Anne-Laure; Caburet, Sandrine; Sarnacki, Sabine; Prat, Jaime; D'angelo, Emanuela; De La Grange, Pierre; Ariste, Olivier; Lemoine, Fréderic; Legois, Bérangère; Sultan, Charles; Zider, Alain; Galmiche, Louise; Kalfa, Nicolas; Veitia, Reiner A
2015-12-01
Juvenile granulosa cell tumors (JGCTs) of the ovary are pediatric neoplasms representing 5% of all granulosa cell tumors (GCTs). Most GCTs are of adult type (AGCTs) and bear a mutation in the FOXL2 gene. The molecular basis of JGCTs is poorly understood, although mutations in the GNAS gene have been reported. We have detected in-frame duplications within the oncogene AKT1 in >60% of the JGCTs studied. Here, to evaluate the functional impact of these duplications and the existence of potential co-driver alterations, we have sequenced the transcriptome of four JGCTs and compared them with control transcriptomes. A search for gene variants detected only private alterations probably unrelated with tumorigenesis, suggesting that tandem duplications are the best candidates to underlie tumor formation in the absence of GNAS alterations. We previously showed that the duplications were specific to JGCTs. However, the screening of eight AGCTs samples without FOXL2 mutation showed the existence of an AKT1 duplication in one case, also having a stromal luteoma. The analysis of RNA-Seq data pinpointed a series of differentially expressed genes, involved in cytokine and hormone signaling and cell division-related processes. Further analyses pointed to the existence of a possible dedifferentiation process and suggested that most of the transcriptomic dysregulation might be mediated by a limited set of transcription factors perturbed by AKT1 activation. Finally, we show that commercially available AKT inhibitors can modulate the in vitro activity of various mutated forms. These results shed light on the pathogenesis of JGCTs and provide therapeutic leads for a targeted treatment. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Katoh, M; Kirikoshi, H; Terasaki, H; Shiokawa, K
2001-12-21
Genetic alterations of WNT signaling molecules lead to carcinogenesis through activation of the beta-catenin-TCF signaling pathway. We have previously cloned and characterized WNT2B/WNT13 gene on human chromosome 1p13, which is homologous to proto-oncogene WNT2 on human chromosome 7q31. WNT2B1 and WNT2B2 mRNAs, generated from the WNT2B gene due to alternative splicing of the alternative promoter type, encode almost identical polypeptides with divergence in the N-terminal region. WNT2B2 mRNA rather than WNT2B1 mRNA is preferentially expressed in NT2 cells with the potential of neuronal differentiation. Here, we describe our investigations of expression of WNT2B mRNAs in various types of human primary cancer. Matched tumor/normal expression array analysis revealed that WNT2B mRNAs were significantly up-regulated in 2 of 8 cases of primary gastric cancer. WNT2B2 mRNA rather than WNT2B1 mRNA was found to be preferentially up-regulated in a case of primary gastric cancer (signet ring cell carcinoma). Function of WNT2B1 mRNA and that of WNT2B2 mRNA were investigated by using Xenopus axis duplication assay. Injection of synthetic WNT2B1 mRNA into the ventral marginal zone of fertilized Xenopus eggs at the 4-cell stage did not induce axis duplication. In contrast, ventral injection of synthetic WNT2B2 mRNA induced axis duplication in 90% of embryos (complete axis duplication, 24%). These results strongly suggest that WNT2B2 up-regulation in some cases of gastric cancer might lead to carcinogenesis through activation of the beta-catenin-TCF signaling pathway.
Code of Federal Regulations, 2010 CFR
2010-04-01
... HOSPITAL AND PERSONAL USE DEVICES General Provisions § 880.1 Scope. (a) This part sets forth the classification of general hospital and personal use devices intended for human use that are in commercial... duplicative listings, a general hospital and personal use device that has two or more types of uses (e.g...
Genome duplication and the evolution of conspecific pollen precedence.
Baldwin, Sarah J; Husband, Brian C
2011-07-07
Conspecific pollen precedence can be a strong reproductive barrier between polyploid and diploid species, but the role of genome multiplication in the evolution of this barrier has not been investigated. Here, we examine the direct effect of genome duplication on the evolution of pollen siring success in tetraploid Chamerion angustifolium. To separate the effects of genome duplication from selection after duplication, we compared pollen siring success of synthesized tetraploids (neotetraploids) with that of naturally occurring tetraploids by applying 2x, 4x (neo or established) or 2x + 4x pollen to diploid and tetraploid flowers. Seed set increased in diploids and decreased in both types of tetraploids as the proportion of pollen from diploid plants increased. Based on offspring ploidy from mixed-ploidy pollinations, pollen of the maternal ploidy always sired the majority of offspring but was strongest in established tetraploids and weakest in neotetraploids. Pollen from established tetraploids had significantly higher siring rates than neotetraploids when deposited on diploid (4x(est) = 47.2%, 4x(neo) = 27.1%) and on tetraploid recipients (4x(est) = 91.9%, 4x(neo) = 56.0%). Siring success of established tetraploids exceeded that of neotetraploids despite having similar pollen production per anther and pollen diameter. Our results suggest that, while pollen precedence can arise in association with the duplication event, the strength of polyploid siring success evolves after the duplication event.
44 CFR 1.8 - Regulations review.
Code of Federal Regulations, 2010 CFR
2010-10-01
... continued need for the rule; (2) The nature, type and number of complaints or comments received concerning... clarity; (4) The extent to which the rule overlaps, duplicates or conflicts with other Federal rules, and...
Diprosopus (partially duplicated head) associated with anencephaly: a case report.
al Muti Zaitoun, A; Chang, J; Booker, M
1999-01-01
Craniofacial duplication (diprosopus) is a rare form of conjoined twin. A 16 year old mother with a twin pregnancy delivered one normally formed baby boy and one diprosopus male. The malformed baby was 33 weeks of gestation with a single trunk, normal limbs and various degrees of facial duplication. Of the following structures there were two of each: noses, eyes, ears (and one dimple), mouths, tongues and, with bilateral central cleft lips and cleft palates. This was associated with holoprosencephaly and craniorachischisis. Internal organs showed no duplication. There were multiple congenital anomalies including diaphragmatic hernia, small lungs, two lobes of the right lung, ventricular septal defect, small adrenal gland and small left kidney with short ureter. The body also had a short neck, small chest cavities and kyphosis. X-ray revealed duplication of the vertebral column. The case presented here represents a type II of diprosopia of Rating (1933) and is the least common type reported. We also reviewed 22 recently reported cases of diprosopus. In addition to facial duplication, anencephaly, neural tube defect and cardiac malformations represent the more common congenital abnormalities associated with diprosopus. The pathogenesis of diprosopus is not well understood. Factors that play a role in diprosopus are probably similar to those factors (genetic, environmental and abnormal placental circulation) which affect monozoygotic twins as observed in this case report. Early ultrasonography diagnosis of diprosopus permits one to consider a vaginal therapeutic abortion.
Automated Data Base Implementation Requirements for the Avionics Planning Baseline - Army
1983-07-01
PJRQT PJRSG .... PRJR owns PJRQTR Item EFT A32 A26 In record EFR Item ESFT A36 A40 In record ESFR Item EQPOC ALCPOC A20 In record EQR Iten EPHONE LPHONE...USING EF DUPLICATES ARE NOT ALLOWED WITHIN EQSEG. EF TYPE CHARACTER 4. EFT TYPE CHARACTER 32. EG TYPE CHARACTER 4. RECORD NAME IS ESFR LOCATION MODE... ESFR MANDATORY AUTOMATIC LINKED TO OWNER ASCENDING KEY IS ESF DUPLICATES NOT SET SELECTION THRU LOCATION MODE OF OWNER. SET NAME IS ESEQ MODE CHAIN
[Partial facial duplication (a rare diprosopus): Case report and review of the literature].
Es-Seddiki, A; Rkain, M; Ayyad, A; Nkhili, H; Amrani, R; Benajiba, N
2015-12-01
Diprosopus, or partial facial duplication, is a very rare congenital abnormality. It is a rare form of conjoined twins. Partial facial duplication may be symmetric or not and may involve the nose, the maxilla, the mandible, the palate, the tongue and the mouth. A male newborn springing from inbred parents was admitted at his first day of life for facial deformity. He presented with hypertelorism, 2 eyes, a tendency to nose duplication (flatted large nose, 2 columellae, 2 lateral nostrils separated in the midline by a third deformed hole), two mouths and a duplicated maxilla. Laboratory tests were normal. The cranio-facial CT confirmed the maxillary duplication. This type of cranio-facial duplication is a rare entity with about 35 reported cases in the literature. Our patient was similar to a rare case of living diprosopus reported by Stiehm in 1972. Diprosopus is often associated with abnormalities of the gastrointestinal tract, the central nervous system, the cardiovascular and respiratory systems and with a high incidence of cleft lip and palate. Surgical treatment consists in the resection of the duplicated components. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Epilepsy and outcome in FOXG1-related disorders
Seltzer, Laurie E.; Ma, Mandy; Ahmed, Sohnee; Bertrand, Mary; Dobyns, William B.; Wheless, James; Paciorkowski, Alex R.
2014-01-01
Summary Objective FOXG1-related disorders are associated with severe intellectual disability, absent speech with autistic features, and epilepsy. Children with deletions or intragenic mutations of FOXG1 also have postnatal microcephaly, morphologic abnormalities of the corpus callosum, and choreiform movements. Duplications of 14q12 often present with infantile spasms, and have subsequent intellectual disability with autistic features. Long term epilepsy outcome and response to treatment has not been studied systematically in a well-described cohort of subjects with FOXG1-related disorders. We report on the epilepsy features and developmental outcome of 23 new subjects with deletions or intragenic mutations of FOXG1, and 7 subjects with duplications. Methods Subjects had either chromosomal microarray or FOXG1 gene sequencing performed as part of routine clinical care. Development and epilepsy follow-up data were collected from medical records from treating neurologists and through telephone parental interviews using standardized questionnaires. Results Epilepsy was diagnosed in 87% of the subjects with FOXG1-related disorders. The mean age of epilepsy diagnosis in FOXG1 duplications was significantly younger than those with deletions/intragenic mutations (p=0.0002). All of the duplication FOXG1 children with infantile spasms responded to hormonal therapy and only one required long-term anti-epileptic therapy. In contrast, more children with deletions/intragenic mutations required anti-epileptic drugs on follow-up (p<0.0005). All subjects with FOXG1-related disorders had neurodevelopmental disabilities after 3 years of age, regardless of the epilepsy type or intractability of seizures. All had impaired verbal language and social contact, and three duplication subjects were formally diagnosed with autism. Subjects with deletion/intragenic mutations however had significantly worse ambulation (p=0.04) and functional hand use (p<0.0005). Significance Epilepsy and developmental outcome characteristics allow clinicians to distinguish among the FOXG1-related disorders. Further genotype-phenotype studies of FOXG1 may help to elucidate why children develop different forms of developmental epilepsy. PMID:24836831
Gene Duplicability of Core Genes Is Highly Consistent across All Angiosperms.
Li, Zhen; Defoort, Jonas; Tasdighian, Setareh; Maere, Steven; Van de Peer, Yves; De Smet, Riet
2016-02-01
Gene duplication is an important mechanism for adding to genomic novelty. Hence, which genes undergo duplication and are preserved following duplication is an important question. It has been observed that gene duplicability, or the ability of genes to be retained following duplication, is a nonrandom process, with certain genes being more amenable to survive duplication events than others. Primarily, gene essentiality and the type of duplication (small-scale versus large-scale) have been shown in different species to influence the (long-term) survival of novel genes. However, an overarching view of "gene duplicability" is lacking, mainly due to the fact that previous studies usually focused on individual species and did not account for the influence of genomic context and the time of duplication. Here, we present a large-scale study in which we investigated duplicate retention for 9178 gene families shared between 37 flowering plant species, referred to as angiosperm core gene families. For most gene families, we observe a strikingly consistent pattern of gene duplicability across species, with gene families being either primarily single-copy or multicopy in all species. An intermediate class contains gene families that are often retained in duplicate for periods extending to tens of millions of years after whole-genome duplication, but ultimately appear to be largely restored to singleton status, suggesting that these genes may be dosage balance sensitive. The distinction between single-copy and multicopy gene families is reflected in their functional annotation, with single-copy genes being mainly involved in the maintenance of genome stability and organelle function and multicopy genes in signaling, transport, and metabolism. The intermediate class was overrepresented in regulatory genes, further suggesting that these represent putative dosage-balance-sensitive genes. © 2016 American Society of Plant Biologists. All rights reserved.
Myelodysplastic syndrome in an infant with constitutional pure duplication 1q41-qter.
Morokawa, Hirokazu; Kamiya, Motoko; Wakui, Keiko; Kobayashi, Mikiko; Kurata, Takashi; Matsuda, Kazuyuki; Kawamura, Rie; Kanno, Hiroyuki; Fukushima, Yoshimitsu; Nakazawa, Yozo; Kosho, Tomoki
2018-01-01
We report on a Japanese female infant as the fourth patient with the constitutional pure duplication 1q41-qter confirmed by chromosomal microarray and as the first who developed myelodysplastic syndrome (MDS) among those with the constitutional 1q duplication. Common clinical features of the constitutional pure duplication 1q41-qter include developmental delay, craniofacial characteristics, foot malformation, hypertrichosis, and respiratory insufficiency. The association between MDS and the duplication of the genes in the 1q41-qter region remains unknown.
Gene Duplicability of Core Genes Is Highly Consistent across All Angiosperms[OPEN
Li, Zhen; Van de Peer, Yves; De Smet, Riet
2016-01-01
Gene duplication is an important mechanism for adding to genomic novelty. Hence, which genes undergo duplication and are preserved following duplication is an important question. It has been observed that gene duplicability, or the ability of genes to be retained following duplication, is a nonrandom process, with certain genes being more amenable to survive duplication events than others. Primarily, gene essentiality and the type of duplication (small-scale versus large-scale) have been shown in different species to influence the (long-term) survival of novel genes. However, an overarching view of “gene duplicability” is lacking, mainly due to the fact that previous studies usually focused on individual species and did not account for the influence of genomic context and the time of duplication. Here, we present a large-scale study in which we investigated duplicate retention for 9178 gene families shared between 37 flowering plant species, referred to as angiosperm core gene families. For most gene families, we observe a strikingly consistent pattern of gene duplicability across species, with gene families being either primarily single-copy or multicopy in all species. An intermediate class contains gene families that are often retained in duplicate for periods extending to tens of millions of years after whole-genome duplication, but ultimately appear to be largely restored to singleton status, suggesting that these genes may be dosage balance sensitive. The distinction between single-copy and multicopy gene families is reflected in their functional annotation, with single-copy genes being mainly involved in the maintenance of genome stability and organelle function and multicopy genes in signaling, transport, and metabolism. The intermediate class was overrepresented in regulatory genes, further suggesting that these represent putative dosage-balance-sensitive genes. PMID:26744215
Maya Miles, Douglas; Peñate, Xenia; Sanmartín Olmo, Trinidad; Jourquin, Frederic; Muñoz Centeno, Maria Cruz; Mendoza, Manuel; Simon, Marie-Noelle; Chavez, Sebastian; Geli, Vincent
2018-03-27
Whole-genome duplications (WGDs) have played a central role in the evolution of genomes and constitute an important source of genome instability in cancer. Here, we show in Saccharomyces cerevisiae that abnormal accumulations of histones are sufficient to induce WGDs. Our results link these WGDs to a reduced incorporation of the histone variant H2A.Z to chromatin. Moreover, we show that high levels of histones promote Swe1 WEE1 stabilisation thereby triggering the phosphorylation and inhibition of Cdc28 CDK1 through a mechanism different of the canonical DNA damage response. Our results link high levels of histones to a specific type of genome instability that is quite frequently observed in cancer and uncovers a new mechanism that might be able to respond to high levels of histones. © 2018, Maya Miles et al.
Peñate, Xenia; Sanmartín Olmo, Trinidad; Jourquin, Frederic; Muñoz Centeno, Maria Cruz; Mendoza, Manuel; Simon, Marie-Noelle; Chavez, Sebastian
2018-01-01
Whole-genome duplications (WGDs) have played a central role in the evolution of genomes and constitute an important source of genome instability in cancer. Here, we show in Saccharomyces cerevisiae that abnormal accumulations of histones are sufficient to induce WGDs. Our results link these WGDs to a reduced incorporation of the histone variant H2A.Z to chromatin. Moreover, we show that high levels of histones promote Swe1WEE1 stabilisation thereby triggering the phosphorylation and inhibition of Cdc28CDK1 through a mechanism different of the canonical DNA damage response. Our results link high levels of histones to a specific type of genome instability that is quite frequently observed in cancer and uncovers a new mechanism that might be able to respond to high levels of histones. PMID:29580382
MLL duplication in a pediatric patient with B-cell lymphoblastic lymphoma.
Mater, David Van; Goodman, Barbara K; Wang, Endi; Gaca, Ana M; Wechsler, Daniel S
2012-04-01
Lymphoblastic lymphoma is the second most common type of non-Hodgkin lymphoma seen in children. Approximately, 90% of lymphoblastic lymphomas arise from T cells, with the remaining 10% being B-cell-lineage derived. Although T-cell lymphoblastic lymphoma most frequently occurs in the anterior mediastinum (thymus), B-cell lymphoblastic lymphoma (B-LBL) predominates in extranodal sites such as skin and bone. Here, we describe a pediatric B-LBL patient who presented with extensive abdominal involvement and whose lymphoma cells displayed segmental duplication of the mixed lineage leukemia (MLL) gene. MLL duplication/amplification has been described primarily in acute myeloid leukemia and myelodysplastic syndrome with no published reports of discrete MLL duplication/amplification events in B-LBL. The MLL gene duplication noted in this case may represent a novel mechanism for tumorigenesis in B-LBL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bathke, K.; Liehr. T.; Ekici, A.
1994-09-01
We tested 20 CMT 1 patients characterized according to the criteria of the European CMT consortium by Southern hybridization of MspI restricted genomic DNA with probes pVAW409R1, pVAW412Hec and pEW401HE. In 11 of the 20 CMT 1 cases (55%), we observed a duplication in 17q11.2; one patient had a dinucleotide insertion in exon 6 of the PO-gene (5%). One HNPP case had a typical 17p11.2 deletion. Analysis of CA-repeats was performed with primers RM11GT and Mfd41; SSCP-analysis of the PO, PMP22 and Cx32-genes is in progress. FISH was carried out with probe pVAW409R1. 125 interphase nuclei were analyzed for eachmore » proband by counting the signals per nucleus. Normal cells show a characteristic distribution of signals: 1 signal in 5.9% of nuclei, 2 in 86.3% and 3 in 7.8%. A duplication is indicated by a shift to 3 signals in more than approximately 60% and 2 in less than 25% of the nuclei. In contrast, the 17p11.2 deletion of the HNPP patient shifts to 82.4% of nuclei with a single hybridization signal versus 14.4% with 2 signals. We detected one case with significantly abnormal distribution of interphase nuclei hybridization signals compared to cultures of normal cells and to those with 17p11.2 duplication or deletion: 3.2% nuclei revealed 1 signal, 48.0% two signals and 48.8% 3 signals, indicating a pathogenic but moderate dosis increase compared to the throughout duplicated cases. FISH with probe pVAW409R1 is a versatile tool to detect the HNPP deletion both in interphase nuclei and in metaphase chromosomes. In CMT 1 disease interphase nuclei are required for FISH analysis due to the small duplication of 1.5 Mbp. In contrast to Southern techniques, FISH is able to detect genetic mosaicism.« less
Physical and transcriptional map in the CMT 1A region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chevillard, C.; Passage, E.; Cudrey, C.
1994-09-01
The Charcot-Marie-Tooth disease type 1A (CMT1A) has been mapped to the proximal short arm of chromosome 17. CMT1A is the most frequent of the motor and sensory peripheral neuropathies and is associated with a duplication of a 1.5 Mb fragment in proximal 17p12. Several groups have proposed that the gene coding for peripheral myelin protein-22 (PMP-22) as the candidate gene for CMT1A. We have recently published a {open_quote}MegaYAC{close_quote} contig of 6 Mb which covers the CMT1A critical region. In order to isolate new genes localized in this region, we used a {open_quote}physical trapping {close_quote} strategy derived from the direct cDNAmore » selection technique developed by Parimoo et al. This approach has allowed us to construct cDNA {open_quotes}minilibraries{close_quotes} using YAC DNA from the CMT1A region. One of the clones in these minilibraries has been mapped back to the CMT1A duplication. Other potentially interesting clones are in the process of further characterization. Furthermore, we have mapped several Genethon microsatellites in the 6 Mb YAC contig and some are located in the CMT1A duplicated region. These highly polymorphic markers should prove useful for diagnostic testing in CMT1A.« less
Calcium-activated potassium (BK) channels are encoded by duplicate slo1 genes in teleost fishes.
Rohmann, Kevin N; Deitcher, David L; Bass, Andrew H
2009-07-01
Calcium-activated, large conductance potassium (BK) channels in tetrapods are encoded by a single slo1 gene, which undergoes extensive alternative splicing. Alternative splicing generates a high level of functional diversity in BK channels that contributes to the wide range of frequencies electrically tuned by the inner ear hair cells of many tetrapods. To date, the role of BK channels in hearing among teleost fishes has not been investigated at the molecular level, although teleosts account for approximately half of all extant vertebrate species. We identified slo1 genes in teleost and nonteleost fishes using polymerase chain reaction and genetic sequence databases. In contrast to tetrapods, all teleosts examined were found to express duplicate slo1 genes in the central nervous system, whereas nonteleosts that diverged prior to the teleost whole-genome duplication event express a single slo1 gene. Phylogenetic analyses further revealed that whereas other slo1 duplicates were the result of a single duplication event, an independent duplication occurred in a basal teleost (Anguilla rostrata) following the slo1 duplication in teleosts. A third, independent slo1 duplication (autotetraploidization) occurred in salmonids. Comparison of teleost slo1 genomic sequences to their tetrapod orthologue revealed a reduced number of alternative splice sites in both slo1 co-orthologues. For the teleost Porichthys notatus, a focal study species that vocalizes with maximal spectral energy in the range electrically tuned by BK channels in the inner ear, peripheral tissues show the expression of either one (e.g., vocal muscle) or both (e.g., inner ear) slo1 paralogues with important implications for both auditory and vocal physiology. Additional loss of expression of one slo1 paralogue in nonneural tissues in P. notatus suggests that slo1 duplicates were retained via subfunctionalization. Together, the results predict that teleost fish achieve a diversity of BK channel subfunction via gene duplication, rather than increased alternative splicing as witnessed for the tetrapod and invertebrate orthologue.
Calcium-Activated Potassium (BK) Channels Are Encoded by Duplicate slo1 Genes in Teleost Fishes
Deitcher, David L.; Bass, Andrew H.
2009-01-01
Calcium-activated, large conductance potassium (BK) channels in tetrapods are encoded by a single slo1 gene, which undergoes extensive alternative splicing. Alternative splicing generates a high level of functional diversity in BK channels that contributes to the wide range of frequencies electrically tuned by the inner ear hair cells of many tetrapods. To date, the role of BK channels in hearing among teleost fishes has not been investigated at the molecular level, although teleosts account for approximately half of all extant vertebrate species. We identified slo1 genes in teleost and nonteleost fishes using polymerase chain reaction and genetic sequence databases. In contrast to tetrapods, all teleosts examined were found to express duplicate slo1 genes in the central nervous system, whereas nonteleosts that diverged prior to the teleost whole-genome duplication event express a single slo1 gene. Phylogenetic analyses further revealed that whereas other slo1 duplicates were the result of a single duplication event, an independent duplication occurred in a basal teleost (Anguilla rostrata) following the slo1 duplication in teleosts. A third, independent slo1 duplication (autotetraploidization) occurred in salmonids. Comparison of teleost slo1 genomic sequences to their tetrapod orthologue revealed a reduced number of alternative splice sites in both slo1 co-orthologues. For the teleost Porichthys notatus, a focal study species that vocalizes with maximal spectral energy in the range electrically tuned by BK channels in the inner ear, peripheral tissues show the expression of either one (e.g., vocal muscle) or both (e.g., inner ear) slo1 paralogues with important implications for both auditory and vocal physiology. Additional loss of expression of one slo1 paralogue in nonneural tissues in P. notatus suggests that slo1 duplicates were retained via subfunctionalization. Together, the results predict that teleost fish achieve a diversity of BK channel subfunction via gene duplication, rather than increased alternative splicing as witnessed for the tetrapod and invertebrate orthologue. PMID:19321796
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-12
... comment period on this information collection on September 5, 2012 (77 FR 54617). 1. Type of submission...: Individuals, companies, or organizations requesting document duplication. 7. An estimate of the number of...
Lopez-Sanchez, Maria-José; Sauvage, Elisabeth; Da Cunha, Violette; Clermont, Dominique; Ratsima Hariniaina, Elisoa; Gonzalez-Zorn, Bruno; Poyart, Claire; Rosinski-Chupin, Isabelle; Glaser, Philippe
2012-09-01
Clustered regularly interspaced short palindromic repeats (CRISPR) confer immunity against mobile genetic elements (MGEs) in prokaryotes. Streptococcus agalactiae, a leading cause of neonatal infections contains in its genome two CRISPR/Cas systems. We show that type 1-C CRISPR2 is present in few strains but type 2-A CRISPR1 is ubiquitous. Comparative sequence analysis of the CRISPR1 spacer content of 351 S. agalactiae strains revealed that it is extremely diverse due to the acquisition of new spacers, spacer duplications and spacer deletions that witness the dynamics of this system. The spacer content profile mirrors the S. agalactiae population structure. Transfer of a conjugative transposon targeted by CRISPR1 selected for spacer rearrangements, suggesting that deletions and duplications pre-exist in the population. The comparison of protospacers located within MGE or the core genome and protospacer-associated motif-shuffling demonstrated that the GG motif is sufficient to discriminate self and non-self and for spacer selection and integration. Strikingly more than 40% of the 949 different CRISPR1 spacers identified target MGEs found in S. agalactiae genomes. We thus propose that the S. agalactiae type II-A CRISPR1/Cas system modulates the cohabitation of the species with its mobilome, as such contributing to the diversity of MGEs in the population. © 2012 Blackwell Publishing Ltd.
Ren, Lin-Ling; Liu, Yan-Jing; Liu, Hai-Jing; Qian, Ting-Ting; Qi, Li-Wang; Wang, Xiao-Ru; Zeng, Qing-Yin
2014-01-01
Gene duplication is the primary source of new genes and novel functions. Over the course of evolution, many duplicate genes lose their function and are eventually removed by deletion. However, some duplicates have persisted and evolved diverse functions. A particular challenge is to understand how this diversity arises and whether positive selection plays a role. In this study, we reconstructed the evolutionary history of the class III peroxidase (PRX) genes from the Populus trichocarpa genome. PRXs are plant-specific enzymes that play important roles in cell wall metabolism and in response to biotic and abiotic stresses. We found that two large tandem-arrayed clusters of PRXs evolved from an ancestral cell wall type PRX to vacuole type, followed by tandem duplications and subsequent functional specification. Substitution models identified seven positively selected sites in the vacuole PRXs. These positively selected sites showed significant effects on the biochemical functions of the enzymes. We also found that positive selection acts more frequently on residues adjacent to, rather than directly at, a critical active site of the enzyme, and on flexible regions rather than on rigid structural elements of the protein. Our study provides new insights into the adaptive molecular evolution of plant enzyme families. PMID:24934172
Duplication in CHIT1 gene and the risk for Aspergillus lung disease in CF patients.
Livnat, Galit; Bar-Yoseph, Ronen; Mory, Adi; Dagan, Efrat; Elias, Nael; Gershoni, Ruth; Bentur, Lea
2014-01-01
Aspergillus often persists in the respiratory tract of patients with Cystic Fibrosis (CF) and may cause allergic broncho-pulmonary aspergillosis (ABPA). Chitinases are enzymes that digest the chitin polymer. Plants use chitinase as a defense mechanism against fungi. Chitotriosidase (CHIT1) is the major chitinase in human airways. Variation in the coding region with 24-bp duplication allele results in reduced CHIT1 activity. Recently, CHIT1 duplication heterozygocity was found in 6/6 patients with severe asthma and fungal sensitization (SAFS). Our aim was to evaluate the link between CHIT1 duplication in CF patients and the predisposition to Allergic broncho-pulmonary mycosis (ABPM) or persistent Aspergillus positive sputum (APS). CHIT1 duplication was assessed in three CF groups. Group 1: patients who had neither ABPM nor APS in the past (control group). Group 2: patients with persistent APS (≥2/year), without ABPA. Group 3: patients with current or past ABPM. Forty patients with CF were included in the analysis, CHIT1 duplication heterozygocity was found in 3/6 (50%) of the patients in the ABPM group, 3/12 (25%) in the APS group, and 7/22 (31.8%) in the control group (P > 0.05). Eleven patients carried W1282X mutation, 90.9% were negative for CHIT1 duplication, five of them were homozygous for W1282X; none of them had CHIT1 duplication or ABPM. CHIT1 duplication is not found in all CF patients with ABPM in contrast to patients with SAFS. These results suggest that CHIT1 duplication cannot be the sole explanation for Aspergillus positive sputum in CF patients. © 2013 Wiley Periodicals, Inc.
2010-01-01
Background The 8p23.1 duplication syndrome and copy number variation of the 8p23.1 defensin gene cluster are cytogenetically indistinguishable but distinct at the molecular level. To our knowledge, the 8p23.1 duplication syndrome has been described at prenatal diagnosis only once and we report our experience with four further apparent duplications ascertained at prenatal diagnosis. Methods Additional material at band 8p23.1 was detected using conventional G-banded cytogenetics in each case. Multiplex Ligation-dependent Probe Amplification (MLPA) or Fluorescence In Situ Hybridisation (FISH) were used depending on whether only DNA (Cases 1 and 4) or cytogenetic preparations (Cases 2 and 3) were available from the laboratory of origin. The extent of the duplication in Case 1 was retrospectively determined using array Comparative Genomic Hybridisation (array CGH). Results Three cases of 8p23.1 duplication syndrome were found (Cases 1 to 3). Two were de novo and continued to term and the third, a paternally transmitted duplication, was terminated because of a previous child with psychomotor delay and 8p23.1 duplication syndrome. Case 1 was ascertained with a hypoplastic left heart but the ventricular septal and interventricular defects, in Cases 2 and 3 respectively, were found after ascertainment for advanced maternal age. By contrast, case 4 was a maternally transmitted copy number variation of the defensin cluster with normal outcome. Conclusions Our data underline the need to differentiate 8p23.1 duplications from copy number variation of the defensin cluster using FISH, MLPA or array CGH. Cardiac defects were ascertained by ultrasound in only one of the three duplication 8p23.1 pregnancies but were visible in two of the three at 21 to 22 weeks gestation. Our results provide further evidence that both deletion and duplication of the GATA4 transcription factor can give rise to a variety of conotruncal heart defects with variable penetrance and expressivity. PMID:20167067
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenzetti, D.; Pandolfo, M.; Pareyson, D.
1995-01-01
Hereditary neuropathy with liability to pressure palsies (HNPP) is an autosomal dominant disorder characterized by recurrent mononeuropathies. A 1.5-Mb deletion in chromosome 17p11.2-p12 has been associated with HNPP. Duplication of the same 1.5-Mb region is known to be associated with Charcot-Marie-Tooth disease type 1 (CMT1A), a more severe peripheral neuropathy characterized by symmetrically slowed nerve conduction velocity (NCV). The CMT1A duplication and HNPP deletion appear to be the reciprocal products of a recombination event involving a repeat element (CMT1A-REP) that flanks the 1.5-Mb region involved in the duplication/deletion. Patients from nine unrelated Italian families who were diagnosed with HNPP onmore » the basis of clinical, electrophysiological, and histological evaluations were analyzed by molecular methods for DNA deletion on chromosome 17p. In all nine families, Southern analysis using a CMT1A-REP probe detected a reduced hybridization signal of a 6.0-kb EcoRI fragment mapping within the distal CMT1A-REP, indicating deletion of one copy of CMT1A-REP in these HNPP patients. Families were also typed with a polymorphic (CA){sub n} repeat and with RFLPs corresponding to loci D17S122, D17S125, and D17S61, which all map within the deleted region. Lack of allelic transmission from affected parent to affected offspring was observed in four informative families, providing an independent indication for deletion. Furthermore, pulsed-field gel electrophoresis analysis of SacII-digested genomic DNA detected junction fragments specific to the 1.5-Mb HNPP deletion in seven of nine Italian families included in this study. These findings suggest that a 1.5-Mb deletion on 17p11.2-p12 is the most common mutation associated with HNPP. 51 refs., 5 figs., 1 tab.« less
Case report of individual with cutaneous immunodeficiency and novel 1p36 duplication.
Hatter, Alyn D; Soler, David C; Curtis, Christine; Cooper, Kevin D; McCormick, Thomas S
2016-01-01
Crusted or Norwegian scabies is an infectious skin dermatopathology usually associated with an underlying immunodeficiency condition. It is caused when the mite Sarcoptes scabiei infects the skin, and the immune system is unable to control its spread, leading to a massive hyperinfestation with a simultaneous inflammatory and hyperkeratotic reaction. This is the first report of a novel 1p36 duplication associated with a recurrent infection of crusted scabies. We describe a 34-year-old patient with a cutaneous immunodeficiency characterized by recurrent crusted scabies infestation, diffuse tinea, and recurrent staphylococcal cellulitis, who we suspected had an undiagnosed syndrome. The patient also suffered from mental retardation, renal failure, and premature senescence. A cytogenetic fluorescence in situ hybridization analysis revealed a 9.34 Mb duplication within the short (p) arm of chromosome 1, precisely from 1p36.11 to 1p36.21, with an adjacent 193 kb copy gain entirely within 1p36.11. In addition, chromosome 4 had a 906 kb gain in 4p16.1 and chromosome 9 had a 81 kb copy gain in 9p24.3. Over 100 genes localized within these duplicated regions. Gene expression array revealed 82 genes whose expression changed >1.5-fold compared to a healthy age-matched skin control, but among them only the lipolytic enzyme arylacetamide deacetylase-like 3 was found within the duplicated 1p36 region of chromosome 1. Although genetic duplications in the 1p36 region have been previously described, our report describes a novel duplicative variant within the 1p36 region. The patient did not have a past history of immunosuppression but was afflicted by a recurrent case of crusted scabies, raising the possibility that the recurrent infection was associated with the 1p36 genetic duplication. To our knowledge, the specific duplicated sequence between 1p36.11 and p36.21 found in our patient has never been previously reported. We reviewed and compared the clinical, genotyping, and gene microarray results of our patient in order to characterize this novel 1p36 duplication syndrome, which might have contributed to the recurrent scabies infection in this patient.
Bertolini, Giovanna; Diana, Alessia; Cipone, Mario; Drigo, Michele; Caldin, Marco
2014-01-01
Caudal vena cava duplication has been rarely reported in small animals. The purpose of this retrospective study was to describe characteristics of duplicated caudal vena cava in a large group of dogs. Computed tomography (CT) and ultrasound databases from two hospitals were searched for canine reports having the diagnosis "double caudal vena cava." One observer reviewed CT images for 71 dogs and two observers reviewed ultrasound images for 21 dogs. In all CT cases, the duplication comprised two vessels that were bilaterally symmetrical and approximately the same calibre (similar to Type I complete duplication in humans). In all ultrasound cases, the duplicated caudal vena cava appeared as a distinct vessel running on the left side of the abdominal segment of the descending aorta and extending from the left common iliac vein to the left renal vein. The prevalence of caudal vena cava duplication was 0.46% for canine ultrasound studies and 2.08% for canine CT studies performed at these hospitals. Median body weight for affected dogs was significantly lower than that of unaffected dogs (P < 0.0001). Breeds with increased risk for duplicated caudal vena cava were Yorkshire Terrier (odds ratio [OR] = 6.41), Poodle (OR = 7.46), West Highland White Terrier (OR = 6.33), and Maltese (OR = 3.87). Presence of a duplicated caudal vena cava was significantly associated with presence of extrahepatic portosystemic shunt(s) (P < 0.004). While uncommon in dogs, caudal vena cava duplication should be differentiated from other vascular anomalies when planning surgeries and for avoiding misdiagnoses. © 2014 American College of Veterinary Radiology.
A yeast gene essential for regulation of spindle pole duplication.
Baum, P; Yip, C; Goetsch, L; Byers, B
1988-01-01
In eucaryotic cells, duplication of spindle poles must be coordinated with other cell cycle functions. We report here the identification in Saccharomyces cerevisiae of a temperature-sensitive lethal mutation, esp1, that deregulates spindle pole duplication. Mutant cells transferred to the nonpermissive temperature became unable to continue DNA synthesis and cell division but displayed repeated duplication of their spindle pole bodies. Although entry into this state after transient challenge by the nonpermissive temperature was largely lethal, rare survivors were recovered and found to have become increased in ploidy. If the mutant cells were held in G0 or G1 during exposure to the elevated temperature, they remained viable and maintained normal numbers of spindle poles. These results suggest dual regulation of spindle pole duplication, including a mechanism that promotes duplication as cells enter the division cycle and a negative regulatory mechanism, controlled by ESP1, that limits duplication to a single occurrence in each cell division cycle. Tetrad analysis has revealed that ESP1 resides at a previously undescribed locus on the right arm of chromosome VII. Images PMID:3072479
A Technical, User and Cost Comparison Study of Microfiche Duplicate Film Material. Final Report.
ERIC Educational Resources Information Center
Prevel, James J.
A technical, user and cost comparison study was undertaken to provide the Educational Resources Information Clearinghouse (ERIC) staff with data on silver halide, diazo, and vesicular type films for microfiche duplication. This information will allow ERIC to determine if diazo and/or vesicular films should be considered in producing ERIC duplicate…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenzetti, D.; Roa, B.B.; Abbas, N.E.
1994-09-01
Hereditary neuropathy with liability to pressure palsies (HNPP) is an autosomal dominant disorder characterized by recurrent mononeuropathies that was recently associated with a 1.5 Mb deletion in chromosome 17p11.2-p12. Duplication of the same region is known to be associated with Charcot-Marie-Tooth disease type 1A (CMT1A), a more severe peripheral neuropathy characterized by symmetrically slowed nerve conduction velocity. The CMT1A duplication and HNPP deletion are reciprocal recombination products involving a repeat element (CMT1A-REP) which flanks the 1.5 Mb region involved in the duplication/deletion. Patients from 9 unrelated HNPP Italian families were clinically, electrophysiologically and histologically evaluated. Families were typed with amore » polymorphic (CA){sub n} repeat and with RFLPs corresponding to loci D17S122, D17S125 and D17S61, which all map within the deleted region. Lack of allelic transmission from affected parent to affected offspring was observed in four informative families, suggesting the presence of deletion. Southern blot analysis of EcoRI digested genomic DNA from HNPP patients and control subjects was performed using a probe mapping within the CMT1A-REP elements. A reduced hybridization signal of a 6.0 kb EcoRI fragment, mapping within the distal CMT1A-REP, was observed in all HNPP patients suggesting the loss of one copy of this fragment in the HNPP-deleted chromosome. PFGE analysis of SacII digested genomic DNA from selected HNPP subjects showed the presence of a junction fragment which has previously been found in association with the 1.5 Mb HNPP deletion. Evidence for deletion could be demonstrated in all 9 families suggesting that the 17p11.2-p12 deletion is commonly associated with HNPP.« less
G-Quadruplexes in DNA Replication: A Problem or a Necessity?
Valton, Anne-Laure; Prioleau, Marie-Noëlle
2016-11-01
DNA replication is a highly regulated process that ensures the correct duplication of the genome at each cell cycle. A precise cell type-specific temporal program controls the duplication of complex vertebrate genomes in an orderly manner. This program is based on the regulation of both replication origin firing and replication fork progression. G-quadruplexes (G4s), DNA secondary structures displaying noncanonical Watson-Crick base pairing, have recently emerged as key controllers of genome duplication. Here we discuss the various means by which G4s affect this fundamental cellular process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Missense suppression in Coprinus lagopus associated wtih a chromosome duplication.
Lewis, D; Casselton, L A
1975-05-01
Amongst some 70 recessive suppressors of a met-I mutation in Coprinus lagopus, one unstable suppressor was identified. The unstable suppressor, designated sup-6plus, could be maintained on minimal medium, but was lost within 24h on minimal medium containing more than 1-7 p.p.m. DL-methionine or 0-75 p.p.m. L-methionine. Isolation of hyphal tips from the monokaryotic strain carrying sup-6plus yielded three types of colony: the unstable parental type, the stable met-I auxotroph and a stable prototroph which was slow-growing and inhibited by methionine in the growth medium. This stable sup-6plus type was recovered with difficulty by resolving dikaryons formed between the unstable sup-6plus strain and strains carring the wild-type allele of the suppressor gene. From sexual crosses, neither the unstable nor stable sup-6plus type segregated, only the met-I auxotrophic revertant. The unstable sup-6plus strain is thought to have an extra chromosome carrying the sup-6plus mutation. For vigorous growth the wild-type allele, sup-6, is indispensable and would be carried on the homologous chromosome. The selective pressures on different media account for loss of the duplicated chromosomes. The results are interpreted as missense suppression by a mutant of an indispensable tRNA.
Babbs, Christian; Stewart, Helen S; Williams, Louise J; Connell, Lyndsey; Goriely, Anne; Twigg, Stephen RF; Smith, Kim; Lester, Tracy; Wilkie, Andrew OM
2011-01-01
Familial hypertelorism, characterized by widely spaced eyes, classically shows autosomal dominant inheritance (Teebi type), but some pedigrees are compatible with X-linkage. No mechanism has been described previously, but clinical similarity has been noted to craniofrontonasal syndrome (CFNS), which is caused by mutations in the X-linked EFNB1 gene. Here we report a family in which females in three generations presented with hypertelorism, but lacked either craniosynostosis or a grooved nasal tip, excluding CFNS. DNA sequencing of EFNB1 was normal, but further analysis revealed a duplication of 937 kb including EFNB1 and two flanking genes: PJA1 and STARD8. We found that the X chromosome bearing the duplication produces ∼1.6-fold more EFNB1 transcript than the normal X chromosome and propose that, in the context of X-inactivation, this difference in expression level of EFNB1 results in abnormal cell sorting leading to hypertelorism. To support this hypothesis, we provide evidence from a mouse model carrying a targeted human EFNB1 cDNA, that abnormal cell sorting occurs in the cranial region. Hence, we propose that X-linked cases resembling Teebi hypertelorism may have a similar mechanism to CFNS, and that cellular mosaicism for different levels of ephrin-B1 (as well as simple presence/absence) leads to craniofacial abnormalities. Hum Mutat 32:1–9, 2011. © 2011 Wiley-Liss, Inc. PMID:21542058
Duplicate Record Elimination in Large Data Files.
1981-08-01
UNCLASSIFIJED CSTR -445 NL LmEE~hhE - I1.0 . 111112----5 1.~4 __112 ___IL25_ 1.4 111111.6 EI24 COMPUTER SCIENCES DEPARTMENT oUniversity of Wisconsin...we propose a combinatorial model for the use in the analysis of algorithms for duplicate elimination. We contend that this model can serve as a...duplicates in a multiset of records, knowing the size of the multiset and the number of distinct records in it. 3. Algorithms for Duplicate Elimination
Facial duplication: case, review, and embryogenesis.
Barr, M
1982-04-01
The craniofacial anatomy of an infant with facial duplication is described. There were four eyes, two noses, two maxillae, and one mandible. Anterior to the single pituitary the brain was duplicated and there was bilateral arhinencephaly. Portions of the brain were extruded into a large frontal encephalocele. Cases of symmetrical facial duplication reported in the literature range from two complete faces on a single head (diprosopus) to simple nasal duplication. The variety of patterns of duplication suggests that the doubling of facial components arises in several different ways: Forking of the notochord, duplication of the prosencephalon, duplication of the olfactory placodes, and duplication of maxillary and/or mandibular growth centers around the margins of the stomatodeal plate. Among reported cases, the female:male ratio is 2:1.
Case report of individual with cutaneous immunodeficiency and novel 1p36 duplication
Hatter, Alyn D; Soler, David C; Curtis, Christine; Cooper, Kevin D; McCormick, Thomas S
2016-01-01
Introduction Crusted or Norwegian scabies is an infectious skin dermatopathology usually associated with an underlying immunodeficiency condition. It is caused when the mite Sarcoptes scabiei infects the skin, and the immune system is unable to control its spread, leading to a massive hyperinfestation with a simultaneous inflammatory and hyperkeratotic reaction. This is the first report of a novel 1p36 duplication associated with a recurrent infection of crusted scabies. Case report We describe a 34-year-old patient with a cutaneous immunodeficiency characterized by recurrent crusted scabies infestation, diffuse tinea, and recurrent staphylococcal cellulitis, who we suspected had an undiagnosed syndrome. The patient also suffered from mental retardation, renal failure, and premature senescence. A cytogenetic fluorescence in situ hybridization analysis revealed a 9.34 Mb duplication within the short (p) arm of chromosome 1, precisely from 1p36.11 to 1p36.21, with an adjacent 193 kb copy gain entirely within 1p36.11. In addition, chromosome 4 had a 906 kb gain in 4p16.1 and chromosome 9 had a 81 kb copy gain in 9p24.3. Over 100 genes localized within these duplicated regions. Gene expression array revealed 82 genes whose expression changed >1.5-fold compared to a healthy age-matched skin control, but among them only the lipolytic enzyme arylacetamide deacetylase-like 3 was found within the duplicated 1p36 region of chromosome 1. Discussion Although genetic duplications in the 1p36 region have been previously described, our report describes a novel duplicative variant within the 1p36 region. The patient did not have a past history of immunosuppression but was afflicted by a recurrent case of crusted scabies, raising the possibility that the recurrent infection was associated with the 1p36 genetic duplication. Conclusion To our knowledge, the specific duplicated sequence between 1p36.11 and p36.21 found in our patient has never been previously reported. We reviewed and compared the clinical, genotyping, and gene microarray results of our patient in order to characterize this novel 1p36 duplication syndrome, which might have contributed to the recurrent scabies infection in this patient. PMID:26834495
Evolution of Gene Duplication in Plants1[OPEN
2016-01-01
Ancient duplication events and a high rate of retention of extant pairs of duplicate genes have contributed to an abundance of duplicate genes in plant genomes. These duplicates have contributed to the evolution of novel functions, such as the production of floral structures, induction of disease resistance, and adaptation to stress. Additionally, recent whole-genome duplications that have occurred in the lineages of several domesticated crop species, including wheat (Triticum aestivum), cotton (Gossypium hirsutum), and soybean (Glycine max), have contributed to important agronomic traits, such as grain quality, fruit shape, and flowering time. Therefore, understanding the mechanisms and impacts of gene duplication will be important to future studies of plants in general and of agronomically important crops in particular. In this review, we survey the current knowledge about gene duplication, including gene duplication mechanisms, the potential fates of duplicate genes, models explaining duplicate gene retention, the properties that distinguish duplicate from singleton genes, and the evolutionary impact of gene duplication. PMID:27288366
Code of Federal Regulations, 2010 CFR
2010-04-01
... classification of obstetrical and gynecological devices intended for human use that are in commercial... duplicative listings, an obstetrical and gynecological device that has two or more types of uses (e.g., used..., unless otherwise noted. (e) Guidance documents referenced in this part are available on the Internet at...
Isles, Anthony R.; Ingason, Andrés; Lowther, Chelsea; Gawlick, Micha; Stöber, Gerald; Potter, Harry; Georgieva, Lyudmila; Pizzo, Lucilla; Ozaki, Norio; Kushima, Itaru; Ikeda, Masashi; Iwata, Nakao; Levinson, Douglas F.; Gejman, Pablo V.; Shi, Jianxin; Sanders, Alan R.; Duan, Jubao; Sisodiya, Sanjay; Costain, Gregory; Degenhardt, Franziska; Giegling, Ina; Rujescu, Dan; Hreidarsson, Stefan J.; Saemundsen, Evald; Ahn, Joo Wook; Ogilvie, Caroline; Stefansson, Hreinn; Stefansson, Kari; O’Donovan, Michael C.; Owen, Michael J.; Bassett, Anne; Kirov, George
2016-01-01
Duplications at 15q11.2-q13.3 overlapping the Prader-Willi/Angelman syndrome (PWS/AS) region have been associated with developmental delay (DD), autism spectrum disorder (ASD) and schizophrenia (SZ). Due to presence of imprinted genes within the region, the parental origin of these duplications may be key to the pathogenicity. Duplications of maternal origin are associated with disease, whereas the pathogenicity of paternal ones is unclear. To clarify the role of maternal and paternal duplications, we conducted the largest and most detailed study to date of parental origin of 15q11.2-q13.3 interstitial duplications in DD, ASD and SZ cohorts. We show, for the first time, that paternal duplications lead to an increased risk of developing DD/ASD/multiple congenital anomalies (MCA), but do not appear to increase risk for SZ. The importance of the epigenetic status of 15q11.2-q13.3 duplications was further underlined by analysis of a number of families, in which the duplication was paternally derived in the mother, who was unaffected, whereas her offspring, who inherited a maternally derived duplication, suffered from psychotic illness. Interestingly, the most consistent clinical characteristics of SZ patients with 15q11.2-q13.3 duplications were learning or developmental problems, found in 76% of carriers. Despite their lower pathogenicity, paternal duplications are less frequent in the general population with a general population prevalence of 0.0033% compared to 0.0069% for maternal duplications. This may be due to lower fecundity of male carriers and differential survival of embryos, something echoed in the findings that both types of duplications are de novo in just over 50% of cases. Isodicentric chromosome 15 (idic15) or interstitial triplications were not observed in SZ patients or in controls. Overall, this study refines the distinct roles of maternal and paternal interstitial duplications at 15q11.2-q13.3, underlining the critical importance of maternally expressed imprinted genes in the contribution of Copy Number Variants (CNVs) at this interval to the incidence of psychotic illness. This work will have tangible benefits for patients with 15q11.2-q13.3 duplications by aiding genetic counseling. PMID:27153221
Isles, Anthony R; Ingason, Andrés; Lowther, Chelsea; Walters, James; Gawlick, Micha; Stöber, Gerald; Rees, Elliott; Martin, Joanna; Little, Rosie B; Potter, Harry; Georgieva, Lyudmila; Pizzo, Lucilla; Ozaki, Norio; Aleksic, Branko; Kushima, Itaru; Ikeda, Masashi; Iwata, Nakao; Levinson, Douglas F; Gejman, Pablo V; Shi, Jianxin; Sanders, Alan R; Duan, Jubao; Willis, Joseph; Sisodiya, Sanjay; Costain, Gregory; Werge, Thomas M; Degenhardt, Franziska; Giegling, Ina; Rujescu, Dan; Hreidarsson, Stefan J; Saemundsen, Evald; Ahn, Joo Wook; Ogilvie, Caroline; Girirajan, Santhosh D; Stefansson, Hreinn; Stefansson, Kari; O'Donovan, Michael C; Owen, Michael J; Bassett, Anne; Kirov, George
2016-05-01
Duplications at 15q11.2-q13.3 overlapping the Prader-Willi/Angelman syndrome (PWS/AS) region have been associated with developmental delay (DD), autism spectrum disorder (ASD) and schizophrenia (SZ). Due to presence of imprinted genes within the region, the parental origin of these duplications may be key to the pathogenicity. Duplications of maternal origin are associated with disease, whereas the pathogenicity of paternal ones is unclear. To clarify the role of maternal and paternal duplications, we conducted the largest and most detailed study to date of parental origin of 15q11.2-q13.3 interstitial duplications in DD, ASD and SZ cohorts. We show, for the first time, that paternal duplications lead to an increased risk of developing DD/ASD/multiple congenital anomalies (MCA), but do not appear to increase risk for SZ. The importance of the epigenetic status of 15q11.2-q13.3 duplications was further underlined by analysis of a number of families, in which the duplication was paternally derived in the mother, who was unaffected, whereas her offspring, who inherited a maternally derived duplication, suffered from psychotic illness. Interestingly, the most consistent clinical characteristics of SZ patients with 15q11.2-q13.3 duplications were learning or developmental problems, found in 76% of carriers. Despite their lower pathogenicity, paternal duplications are less frequent in the general population with a general population prevalence of 0.0033% compared to 0.0069% for maternal duplications. This may be due to lower fecundity of male carriers and differential survival of embryos, something echoed in the findings that both types of duplications are de novo in just over 50% of cases. Isodicentric chromosome 15 (idic15) or interstitial triplications were not observed in SZ patients or in controls. Overall, this study refines the distinct roles of maternal and paternal interstitial duplications at 15q11.2-q13.3, underlining the critical importance of maternally expressed imprinted genes in the contribution of Copy Number Variants (CNVs) at this interval to the incidence of psychotic illness. This work will have tangible benefits for patients with 15q11.2-q13.3 duplications by aiding genetic counseling.
Siggs, Owen M; Javadiyan, Shari; Sharma, Shiwani; Souzeau, Emmanuelle; Lower, Karen M; Taranath, Deepa A; Black, Jo; Pater, John; Willoughby, John G; Burdon, Kathryn P; Craig, Jamie E
2017-01-01
Congenital cataract is a rare but severe paediatric visual impediment, often caused by variants in one of several crystallin genes that produce the bulk of structural proteins in the lens. Here we describe a pedigree with autosomal dominant isolated congenital cataract and linkage to the crystallin gene cluster on chromosome 22. No rare single nucleotide variants or short indels were identified by exome sequencing, yet copy number variant analysis revealed a duplication spanning both CRYBB1 and CRYBA4. While the CRYBA4 duplication was complete, the CRYBB1 duplication was not, with the duplicated CRYBB1 product predicted to create a gain of function allele. This association suggests a new genetic mechanism for the development of isolated congenital cataract. PMID:28272538
Assogba, Benoît S; Djogbénou, Luc S; Milesi, Pascal; Berthomieu, Arnaud; Perez, Julie; Ayala, Diego; Chandre, Fabrice; Makoutodé, Michel; Labbé, Pierrick; Weill, Mylène
2015-10-05
Widespread resistance to pyrethroids threatens malaria control in Africa. Consequently, several countries switched to carbamates and organophophates insecticides for indoor residual spraying. However, a mutation in the ace-1 gene conferring resistance to these compounds (ace-1(R) allele), is already present. Furthermore, a duplicated allele (ace-1(D)) recently appeared; characterizing its selective advantage is mandatory to evaluate the threat. Our data revealed that a unique duplication event, pairing a susceptible and a resistant copy of the ace-1 gene spread through West Africa. Further investigations revealed that, while ace-1(D) confers less resistance than ace-1(R), the high fitness cost associated with ace-1(R) is almost completely suppressed by the duplication for all traits studied. ace-1 duplication thus represents a permanent heterozygote phenotype, selected, and thus spreading, due to the mosaic nature of mosquito control. It provides malaria mosquito with a new evolutionary path that could hamper resistance management.
Assogba, Benoît S.; Djogbénou, Luc S.; Milesi, Pascal; Berthomieu, Arnaud; Perez, Julie; Ayala, Diego; Chandre, Fabrice; Makoutodé, Michel; Labbé, Pierrick; Weill, Mylène
2015-01-01
Widespread resistance to pyrethroids threatens malaria control in Africa. Consequently, several countries switched to carbamates and organophophates insecticides for indoor residual spraying. However, a mutation in the ace-1 gene conferring resistance to these compounds (ace-1R allele), is already present. Furthermore, a duplicated allele (ace-1D) recently appeared; characterizing its selective advantage is mandatory to evaluate the threat. Our data revealed that a unique duplication event, pairing a susceptible and a resistant copy of the ace-1 gene spread through West Africa. Further investigations revealed that, while ace-1D confers less resistance than ace-1R, the high fitness cost associated with ace-1R is almost completely suppressed by the duplication for all traits studied. ace-1 duplication thus represents a permanent heterozygote phenotype, selected, and thus spreading, due to the mosaic nature of mosquito control. It provides malaria mosquito with a new evolutionary path that could hamper resistance management. PMID:26434951
Reconstitution of the R compound allele in maize.
Dooner, H K; Kermicle, J L
1974-10-01
The R(r):standard allele in maize, which conditions anthocyanin pigmentation in plant and seed tissues in the presence of appropriate complementary factors, is associated with a tandem duplication. The proximal member of the duplication carries P, the plant pigmenting determiner and the distal member member carries S, the seed pigmenting determiner. Derivatives from R(r) that have lost S function are designated r(r). They represent either losses of the distal member of the duplication (P derivatives) or mutations of S to s (P s). Derivatives that have lost P function are designated R(g), and represent either losses of the proximal member of the duplication (S derivatives) or mutations of P to p (p S).-All four possible types of r(r)/R(g) heterozygotes were tested for their capacity to yield R(r) reconstitution by crossing over. No R(r) derivatives were obtained from P/S heterozygotes, a result consistent with the view that P and S occupy corresponding positions in homologous chromosome segments. R(r) reconstitution was detected in both tandem duplication heterozygotes P s/S and P/p S, and was found to be about ten times more frequent in the latter. The ratio of R(r) reconstitution in the two heterozygotes is a function of position of the anthocyanin marker within the duplicated segment. The data from these heterozygotes allow one to measure the distance between P and S, that is to say, the genetic length of the duplicated segment. This distance was found to be 0.16 map units. The highest frequency of R(r) reconstitution was obtained from P s/p S heterozygotes, since direct pairing (see PDF) as well as the p//s type of displaced pairing have the potential to produce R(r) derivatives. One of the R(g) derivatives used in this study, R(g) (6), was found to back-mutate in some sublines to R(r). The basis for this instability remains unknown.
Use of ATC to describe duplicate medications in primary care prescriptions.
Lim, Chiao Mei; Aryani Md Yusof, Faridah; Selvarajah, Sharmini; Lim, Teck Onn
2011-10-01
We aimed to demonstrate the suitability of the Anatomical Therapeutic Chemical Classification (ATC) to describe duplicate drugs and duplicate drug classes in prescription data and describe the pattern of duplicates from public and private primary care clinics of Kuala Lumpur, Malaysia. We analyzed prescription data year 2005 from all 14 public clinics in Kuala Lumpur with 12,157 prescriptions, and a sample of 188 private clinics with 25,612 prescriptions. As ATC Level 5 code represents the molecule and Level 4 represents the pharmacological subgroup, we used repetitions of codes in the same prescription to describe duplicate drugs or duplicate drug classes and compared them between the public and private clinics. At Level 4 ATC, prescriptions with duplicates drug classes were 1.46% of all prescriptions in private and 0.04% in public clinics. At Level 5 ATC, prescriptions with duplicate drugs were 1.81% for private and 0.95% for public clinics. In private clinics at Level 5, 73.3% of prescriptions with duplicates involved systemic combination drugs; at Level 4, 40.3% involved systemic combination drugs. In the public sector at Level 5, 95.7% of prescriptions with duplicates involved topical products. Repetitions of the same ATC codes were mostly useful to describe duplicate medications; however, we recommend avoid using ATC codes for tropical products for this purpose due to ambiguity. Combination products were often involved in duplicate prescribing; redesign of these products might improve prescribing quality. Duplicates occurred more often in private clinics than public clinics in Malaysia.
GENE-dosage effects on fitness in recent adaptive duplications: ace-1 in the mosquito Culex pipiens.
Labbé, Pierrick; Milesi, Pascal; Yébakima, André; Pasteur, Nicole; Weill, Mylène; Lenormand, Thomas
2014-07-01
Gene duplications have long been advocated to contribute to the evolution of new functions. The role of selection in their early spread is more controversial. Unless duplications are favored for a direct benefit of increased expression, they are likely detrimental. In this article, we investigated the case of duplications favored because they combine already functionally divergent alleles. Their gene-dosage/fitness relations are poorly known because selection may operate on both overall expression and duplicates relative dosage. Using the well-documented case of Culex pipiens resistance to insecticides, we compared strains with various ace-1 allele combinations, including two duplicated alleles carrying both susceptible and resistant copies. The overall protein activity was nearly additive, but, surprisingly, fitness correlated better with the relative proportion of susceptible and resistant copies rather than any absolute measure of activity. Gene dosage is thus crucial, duplications stabilizing a "heterozygote" phenotype. It corroborates the view that these were favored because they fix a permanent heterosis, thereby solving the irreducible trade-off between resistance and synaptic transmission. Moreover, we showed that the contrasted successes of the two duplicated alleles in natural populations depend on genetic changes unrelated to ace-1, confirming the probable implication of recessive sublethal mutations linked to structural rearrangements in some duplications. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Rocket calibration of the Nimbus 6 solar constant measurements.
Duncan, C H; Harrison, R G; Hickey, J R; Kendall, J M; Thekaekara, M P; Willson, R C
1977-10-01
Total solar irradiance was observed simultaneously outside the earth's atmosphere by three types of absolute cavity radiometers and duplicates of four of the Nimbus 6 Earth Radiation Budget (ERB) solar channels in a June 1976 Sounding Rocket Experiment. The preliminary average solar constant result from the cavity radiometers is 1367 W m(-2) with an uncertainty of less than +/-0.5% in SI units. The duplicate ERB channel 3 on the rocket gave a value of 1389 W mm(-2) which agreed exactly with the Nimbus 6 ERB channel 3 measurement made simultaneously with the rocket flight. Therefore, Nimbus 6 ERB solar constant values should be reduced approximately 1.6% in order to convert the values to SI units.
Do Children Think that Duplicating the Body also Duplicates the Mind?
ERIC Educational Resources Information Center
Hood, Bruce; Gjersoe, Nathalia L.; Bloom, Paul
2012-01-01
Philosophers use hypothetical duplication scenarios to explore intuitions about personal identity. Here we examined 5- to 6-year-olds' intuitions about the physical properties and memories of a live hamster that is apparently duplicated by a machine. In Study 1, children thought that more of the original's physical properties than episodic…
Potier, M; Dutriaux, A; Orti, R; Groet, J; Gibelin, N; Karadima, G; Lutfalla, G; Lynn, A; Van Broeckhoven, C; Chakravarti, A; Petersen, M; Nizetic, D; Delabar, J; Rossier, J
1998-08-01
Physical mapping across a duplication can be a tour de force if the region is larger than the size of a bacterial clone. This was the case of the 170- to 275-kb duplication present on the long arm of chromosome 21 in normal human at 21q11.1 (proximal region) and at 21q22.1 (distal region), which we described previously. We have constructed sequence-ready contigs of the two copies of the duplication of which all the clones are genuine representatives of one copy or the other. This required the identification of four duplicon polymorphisms that are copy-specific and nonallelic variations in the sequence of the STSs. Thirteen STSs were mapped inside the duplicated region and 5 outside but close to the boundaries. Among these STSs 10 were end clones from YACs, PACs, or cosmids, and the average interval between two markers in the duplicated region was 16 kb. Eight PACs and cosmids showing minimal overlaps were selected in both copies of the duplication. Comparative sequence analysis along the duplication showed three single-basepair changes between the two copies over 659 bp sequenced (4 STSs), suggesting that the duplication is recent (less than 4 mya). Two CpG islands were located in the duplication, but no genes were identified after a 36-kb cosmid from the proximal copy of the duplication was sequenced. The homology of this chromosome 21 duplicated region with the pericentromeric regions of chromosomes 13, 2, and 18 suggests that the mechanism involved is probably similar to pericentromeric-directed mechanisms described in interchromosomal duplications. Copyright 1998 Academic Press.
Gene family size conservation is a good indicator of evolutionary rates.
Chen, Feng-Chi; Chen, Chiuan-Jung; Li, Wen-Hsiung; Chuang, Trees-Juen
2010-08-01
The evolution of duplicate genes has been a topic of broad interest. Here, we propose that the conservation of gene family size is a good indicator of the rate of sequence evolution and some other biological properties. By comparing the human-chimpanzee-macaque orthologous gene families with and without family size conservation, we demonstrate that genes with family size conservation evolve more slowly than those without family size conservation. Our results further demonstrate that both family expansion and contraction events may accelerate gene evolution, resulting in elevated evolutionary rates in the genes without family size conservation. In addition, we show that the duplicate genes with family size conservation evolve significantly more slowly than those without family size conservation. Interestingly, the median evolutionary rate of singletons falls in between those of the above two types of duplicate gene families. Our results thus suggest that the controversy on whether duplicate genes evolve more slowly than singletons can be resolved when family size conservation is taken into consideration. Furthermore, we also observe that duplicate genes with family size conservation have the highest level of gene expression/expression breadth, the highest proportion of essential genes, and the lowest gene compactness, followed by singletons and then by duplicate genes without family size conservation. Such a trend accords well with our observations of evolutionary rates. Our results thus point to the importance of family size conservation in the evolution of duplicate genes.
Sousa, Filipa L.; Shavit-Grievink, Liat; Allen, John F.; Martin, William F.
2013-01-01
An open question regarding the evolution of photosynthesis is how cyanobacteria came to possess the two reaction center (RC) types, Type I reaction center (RCI) and Type II reaction center (RCII). The two main competing theories in the foreground of current thinking on this issue are that either 1) RCI and RCII are related via lineage divergence among anoxygenic photosynthetic bacteria and became merged in cyanobacteria via an event of large-scale lateral gene transfer (also called "fusion" theories) or 2) the two RC types are related via gene duplication in an ancestral, anoxygenic but protocyanobacterial phototroph that possessed both RC types before making the transition to using water as an electron donor. To distinguish between these possibilities, we studied the evolution of the core (bacterio)chlorophyll biosynthetic pathway from protoporphyrin IX (Proto IX) up to (bacterio)chlorophyllide a. The results show no dichotomy of chlorophyll biosynthesis genes into RCI- and RCII-specific chlorophyll biosynthetic clades, thereby excluding models of fusion at the origin of cyanobacteria and supporting the selective-loss hypothesis. By considering the cofactor demands of the pathway and the source genes from which several steps in chlorophyll biosynthesis are derived, we infer that the cell that first synthesized chlorophyll was a cobalamin-dependent, heme-synthesizing, diazotrophic anaerobe. PMID:23258841
Sousa, Filipa L; Shavit-Grievink, Liat; Allen, John F; Martin, William F
2013-01-01
An open question regarding the evolution of photosynthesis is how cyanobacteria came to possess the two reaction center (RC) types, Type I reaction center (RCI) and Type II reaction center (RCII). The two main competing theories in the foreground of current thinking on this issue are that either 1) RCI and RCII are related via lineage divergence among anoxygenic photosynthetic bacteria and became merged in cyanobacteria via an event of large-scale lateral gene transfer (also called "fusion" theories) or 2) the two RC types are related via gene duplication in an ancestral, anoxygenic but protocyanobacterial phototroph that possessed both RC types before making the transition to using water as an electron donor. To distinguish between these possibilities, we studied the evolution of the core (bacterio)chlorophyll biosynthetic pathway from protoporphyrin IX (Proto IX) up to (bacterio)chlorophyllide a. The results show no dichotomy of chlorophyll biosynthesis genes into RCI- and RCII-specific chlorophyll biosynthetic clades, thereby excluding models of fusion at the origin of cyanobacteria and supporting the selective-loss hypothesis. By considering the cofactor demands of the pathway and the source genes from which several steps in chlorophyll biosynthesis are derived, we infer that the cell that first synthesized chlorophyll was a cobalamin-dependent, heme-synthesizing, diazotrophic anaerobe.
Asur, Rajalakshmi S; Kimble, Danielle C; Lach, Francis P; Jung, Moonjung; Donovan, Frank X; Kamat, Aparna; Noonan, Raymond J; Thomas, James W; Park, Morgan; Chines, Peter; Vlachos, Adrianna; Auerbach, Arleen D; Smogorzewska, Agata; Chandrasekharappa, Settara C
2018-01-01
Fanconi anemia (FA) is a rare disorder characterized by congenital malformations, progressive bone marrow failure, and predisposition to cancer. Patients harboring X-linked FANCB pathogenic variants usually present with severe congenital malformations resembling VACTERL syndrome with hydrocephalus. We employed the diepoxybutane (DEB) test for FA diagnosis, arrayCGH for detection of duplication, targeted capture and next-gen sequencing for defining the duplication breakpoint, PacBio sequencing of full-length FANCB aberrant transcript, FANCD2 ubiquitination and foci formation assays for the evaluation of FANCB protein function by viral transduction of FANCB-null cells with lentiviral FANCB WT and mutant expression constructs, and droplet digital PCR for quantitation of the duplication in the genomic DNA and cDNA. We describe here an FA-B patient with a mild phenotype. The DEB diagnostic test for FA revealed somatic mosaicism. We identified a 9154 bp intragenic duplication in FANCB, covering the first coding exon 3 and the flanking regions. A four bp homology (GTAG) present at both ends of the breakpoint is consistent with microhomology-mediated duplication mechanism. The duplicated allele gives rise to an aberrant transcript containing exon 3 duplication, predicted to introduce a stop codon in FANCB protein (p.A319*). Duplication levels in the peripheral blood DNA declined from 93% to 7.9% in the span of eleven years. Moreover, the patient fibroblasts have shown 8% of wild-type (WT) allele and his carrier mother showed higher than expected levels of WT allele (79% vs. 50%) in peripheral blood, suggesting that the duplication was highly unstable. Unlike sequence point variants, intragenic duplications are difficult to precisely define, accurately quantify, and may be very unstable, challenging the proper diagnosis. The reversion of genomic duplication to the WT allele results in somatic mosaicism and may explain the relatively milder phenotype displayed by the FA-B patient described here. © 2017 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.
The Viability of Merging Three Academic Libraries in Worcester.
ERIC Educational Resources Information Center
Kaser, David; Davis, Jinnie Y.
This study was undertaken to determine whether the libraries of Worcester Polytechnic Institute, the College of the Holy Cross, and Clark University should be merged. Four types of data were collected: (1) objective--quantitative analyses of faculty and student use of the libraries and collection duplication/triplication; (2) subjective--opinions…
Recurrent duplications of the annexin A1 gene (ANXA1) in autism spectrum disorders.
Correia, Catarina T; Conceição, Inês C; Oliveira, Bárbara; Coelho, Joana; Sousa, Inês; Sequeira, Ana F; Almeida, Joana; Café, Cátia; Duque, Frederico; Mouga, Susana; Roberts, Wendy; Gao, Kun; Lowe, Jennifer K; Thiruvahindrapuram, Bhooma; Walker, Susan; Marshall, Christian R; Pinto, Dalila; Nurnberger, John I; Scherer, Stephen W; Geschwind, Daniel H; Oliveira, Guiomar; Vicente, Astrid M
2014-04-10
Validating the potential pathogenicity of copy number variants (CNVs) identified in genome-wide studies of autism spectrum disorders (ASD) requires detailed assessment of case/control frequencies, inheritance patterns, clinical correlations, and functional impact. Here, we characterize a small recurrent duplication in the annexin A1 (ANXA1) gene, identified by the Autism Genome Project (AGP) study. From the AGP CNV genomic screen in 2,147 ASD individuals, we selected for characterization an ANXA1 gene duplication that was absent in 4,964 population-based controls. We further screened the duplication in a follow-up sample including 1,496 patients and 410 controls, and evaluated clinical correlations and family segregation. Sequencing of exonic/downstream ANXA1 regions was performed in 490 ASD patients for identification of additional variants. The ANXA1 duplication, overlapping the last four exons and 3'UTR region, had an overall prevalence of 11/3,643 (0.30%) in unrelated ASD patients but was not identified in 5,374 controls. Duplication carriers presented no distinctive clinical phenotype. Family analysis showed neuropsychiatric deficits and ASD traits in multiple relatives carrying the duplication, suggestive of a complex genetic inheritance. Sequencing of exonic regions and the 3'UTR identified 11 novel changes, but no obvious variants with clinical significance. We provide multilevel evidence for a role of ANXA1 in ASD etiology. Given its important role as mediator of glucocorticoid function in a wide variety of brain processes, including neuroprotection, apoptosis, and control of the neuroendocrine system, the results add ANXA1 to the growing list of rare candidate genetic etiological factors for ASD.
Benito-Sanz, S; Barroso, E; Heine-Suñer, D; Hisado-Oliva, A; Romanelli, V; Rosell, J; Aragones, A; Caimari, M; Argente, J; Ross, J L; Zinn, A R; Gracia, R; Lapunzina, P; Campos-Barros, A; Heath, K E
2011-02-01
Léri-Weill dyschondrosteosis (LWD) is a skeletal dysplasia characterized by disproportionate short stature and the Madelung deformity of the forearm. SHOX mutations and pseudoautosomal region 1 deletions encompassing SHOX or its enhancers have been identified in approximately 60% of LWD and approximately 15% of idiopathic short stature (ISS) individuals. Recently SHOX duplications have been described in LWD/ISS but also in individuals with other clinical manifestations, thus questioning their pathogenicity. The objective of the study was to investigate the pathogenicity of SHOX duplications in LWD and ISS. Multiplex ligation-dependent probe amplification is routinely used in our unit to analyze for SHOX/pseudoautosomal region 1 copy number changes in LWD/ISS referrals. Quantitative PCR, microsatellite marker, and fluorescence in situ hybridization analysis were undertaken to confirm all identified duplications. During the routine analysis of 122 LWD and 613 ISS referrals, a total of four complete and 10 partial SHOX duplications or multiple copy number (n > 3) as well as one duplication of the SHOX 5' flanking region were identified in nine LWD and six ISS cases. Partial SHOX duplications appeared to have a more deleterious effect on skeletal dysplasia and height gain than complete SHOX duplications. Importantly, no increase in SHOX copy number was identified in 340 individuals with normal stature or 104 overgrowth referrals. MLPA analysis of SHOX/PAR1 led to the identification of partial and complete SHOX duplications or multiple copies associated with LWD or ISS, suggesting that they may represent an additional class of mutations implicated in the molecular etiology of these clinical entities.
Duplicated growth hormone genes in a passerine bird, the jungle crow (Corvus macrorhynchos).
Arai, Natsumi; Iigo, Masayuki
2010-07-02
Molecular cloning, molecular phylogeny, gene structure and expression analyses of growth hormone (GH) were performed in a passerine bird, the jungle crow (Corvus macrorhynchos). Unexpectedly, duplicated GH cDNA and genes were identified and designated as GH1A and GH1B. In silico analyses identified the zebra finch orthologs. Both GH genes encode 217 amino acid residues and consist of five exons and four introns, spanning 5.2 kbp in GH1A and 4.2 kbp in GH1B. Predicted GH proteins of the jungle crow and zebra finch contain four conserved cysteine residues, suggesting duplicated GH genes are functional. Molecular phylogenetic analysis revealed that duplication of GH genes occur after divergence of the passerine lineage from the other avian orders as has been suggested from partial genomic DNA sequences of passerine GH genes. RT-PCR analyses confirmed expression of GH1A and GH1B in the pituitary gland. In addition, GH1A gene is expressed in all the tissues examined. However, expression of GH1B is confined to several brain areas and blood cells. These results indicate that the regulatory mechanisms of duplicated GH genes are different and that duplicated GH genes exert both endocrine and autocrine/paracrine functions. Copyright 2010 Elsevier Inc. All rights reserved.
Andersen, Erica F; Baldwin, Erin E; Ellingwood, Sara; Smith, Rosemarie; Lamb, Allen N
2014-07-01
Duplications involving terminal Xq28 are a known cause of intellectual disability (ID) in males and in females with unfavorable X-inactivation patterns. Within Xq28, functional disomy of MECP2 causes a severe ID syndrome, however the dosage sensitivity of other Xq28 duplicated genes is less certain. Duplications involving the int22h-1/int22h-2 LCR-flanked region in distal Xq28 have recently been linked to a novel ID-associated phenotype. While evidence for the dosage sensitivity of this region is emerging, the phenotypic contribution of individual genes within the int22h-1/int22h-2-flanked region has yet to be determined. We report a familial case of a novel 774 kb Xq28-qter duplication, detected by cytogenomic microarray analysis, that partially overlaps the int22h-1/int22h-2-flanked region. This duplication and a 570 kb Xpter-p22.33 loss within the pseudoautosomal region were identified in three siblings, one female and two males, who presented with developmental delays/intellectual disability, mild dysmorphic features and short stature. Although unconfirmed, these results are suggestive of maternal inheritance of a recombinant X. We compare our clinical findings to patients with int22h-1/int22h-2-mediated duplications and discuss the potential pathogenicity of genes within the duplicated region, including those within the shared region of overlap, RAB39B and CLIC2. © 2014 Wiley Periodicals, Inc.
N-terminal regions of Mps1 kinase determine functional bifurcation.
Araki, Yasuhiro; Gombos, Linda; Migueleti, Suellen P S; Sivashanmugam, Lavanya; Antony, Claude; Schiebel, Elmar
2010-04-05
Mps1 is a conserved kinase that in budding yeast functions in duplication of the spindle pole body (SPB), spindle checkpoint activation, and kinetochore biorientation. The identity of Mps1 targets and the subdomains that convey specificity remain largely unexplored. Using a novel combination of systematic deletion analysis and chemical biology, we identified two regions within the N terminus of Mps1 that are essential for either SPB duplication or kinetochore biorientation. Suppression analysis of the MPS1 mutants defective in SPB duplication and biochemical enrichment of Mps1 identified the essential SPB components Spc29 and the yeast centrin Cdc31 as Mps1 targets in SPB duplication. Our data suggest that phosphorylation of Spc29 by Mps1 in G1/S recruits the Mps2-Bbp1 complex to the newly formed SPB to facilitate its insertion into the nuclear envelope. Mps1 phosphorylation of Cdc31 at the conserved T110 residue controls substrate binding to Kar1 protein. These findings explain the multiple SPB duplication defects of mps1 mutants on a molecular level.
Falah, Nadia; Posey, Jennifer E; Thorson, Willa; Benke, Paul; Tekin, Mustafa; Tarshish, Brocha; Lupski, James R; Harel, Tamar
2017-04-01
Diagnosis of genetic syndromes may be difficult when specific components of a disorder manifest at a later age. We present a follow up of a previous report [Seeherunvong et al., (2004); AJMGA 127: 149-151], of an individual with 22q duplication and sex-reversal syndrome. The subject's phenotype evolved to include peripheral and central demyelination, Waardenburg syndrome type IV, and Hirschsprung disease (PCWH; MIM 609136). DNA microarray analysis defined the duplication at 22q11.2q13, including SOX10. Sequencing of the coding region of SOX10 did not reveal any mutations. Our data suggest that SOX10 duplication can cause disorders of sex development and PCWH, supporting the hypothesis that SOX10 toxic gain of function rather than dominant negative activity underlies PCWH. © 2017 Wiley Periodicals, Inc.
Falah, Nadia; Posey, Jennifer E.; Thorson, Willa; Benke, Paul; Tekin, Mustafa; Tarshish, Brocha; Lupski, James R; Harel, Tamar
2017-01-01
Diagnosis of genetic syndromes may be difficult when specific components of a disorder manifest at a later age. We present a follow up of a previous report [Seeherunvong et al., 2004; Ajmga 127: 149–151], of an individual with 22q duplication and sex-reversal syndrome. The subject’s phenotype evolved to include peripheral and central demyelination, Waardenburg syndrome type IV, and Hirschsprung disease (PCWH; MIM 609136). DNA microarray analysis defined the duplication at 22q11.2q13, including SOX10. Sequencing of the coding region of SOX10 did not reveal any mutations. Our data suggest that SOX10 duplication can cause disorders of sex development and PCWH, supporting the hypothesis that SOX10 toxic gain-of-function rather than dominant negative activity underlies PCWH. PMID:28328136
Alternative splicing and the evolution of phenotypic novelty.
Bush, Stephen J; Chen, Lu; Tovar-Corona, Jaime M; Urrutia, Araxi O
2017-02-05
Alternative splicing, a mechanism of post-transcriptional RNA processing whereby a single gene can encode multiple distinct transcripts, has been proposed to underlie morphological innovations in multicellular organisms. Genes with developmental functions are enriched for alternative splicing events, suggestive of a contribution of alternative splicing to developmental programmes. The role of alternative splicing as a source of transcript diversification has previously been compared to that of gene duplication, with the relationship between the two extensively explored. Alternative splicing is reduced following gene duplication with the retention of duplicate copies higher for genes which were alternatively spliced prior to duplication. Furthermore, and unlike the case for overall gene number, the proportion of alternatively spliced genes has also increased in line with the evolutionary diversification of cell types, suggesting alternative splicing may contribute to the complexity of developmental programmes. Together these observations suggest a prominent role for alternative splicing as a source of functional innovation. However, it is unknown whether the proliferation of alternative splicing events indeed reflects a functional expansion of the transcriptome or instead results from weaker selection acting on larger species, which tend to have a higher number of cell types and lower population sizes.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'. © 2016 The Author(s).
Alternative splicing and the evolution of phenotypic novelty
Bush, Stephen J.; Chen, Lu; Tovar-Corona, Jaime M.
2017-01-01
Alternative splicing, a mechanism of post-transcriptional RNA processing whereby a single gene can encode multiple distinct transcripts, has been proposed to underlie morphological innovations in multicellular organisms. Genes with developmental functions are enriched for alternative splicing events, suggestive of a contribution of alternative splicing to developmental programmes. The role of alternative splicing as a source of transcript diversification has previously been compared to that of gene duplication, with the relationship between the two extensively explored. Alternative splicing is reduced following gene duplication with the retention of duplicate copies higher for genes which were alternatively spliced prior to duplication. Furthermore, and unlike the case for overall gene number, the proportion of alternatively spliced genes has also increased in line with the evolutionary diversification of cell types, suggesting alternative splicing may contribute to the complexity of developmental programmes. Together these observations suggest a prominent role for alternative splicing as a source of functional innovation. However, it is unknown whether the proliferation of alternative splicing events indeed reflects a functional expansion of the transcriptome or instead results from weaker selection acting on larger species, which tend to have a higher number of cell types and lower population sizes. This article is part of the themed issue ‘Evo-devo in the genomics era, and the origins of morphological diversity’. PMID:27994117
Barbaro, Michela; Oscarson, Mikael; Schoumans, Jacqueline; Staaf, Johan; Ivarsson, Sten A; Wedell, Anna
2007-08-01
Testis development is a tightly regulated process that requires an efficient and coordinated spatiotemporal action of many factors, and it has been shown that several genes involved in gonadal development exert a dosage effect. Chromosomal imbalances have been reported in several patients presenting with gonadal dysgenesis as part of severe dysmorphic phenotypes. We screened for submicroscopic DNA copy number variations in two sisters with an apparent normal 46,XY karyotype and female external genitalia due to gonadal dysgenesis, and in which mutations in known candidate genes had been excluded. By high-resolution tiling bacterial artificial chromosome array comparative genome hybridization, a submicroscopic duplication at Xp21.2 containing DAX1 (NR0B1) was identified. Using fluorescence in situ hybridization, multiple ligation probe amplification, and PCR, the rearrangement was further characterized. This revealed a 637-kb tandem duplication that in addition to DAX1 includes the four MAGEB genes, the hypothetical gene CXorf21, GK, and part of the MAP3K7IP3 gene. Sequencing and analysis of the breakpoint boundaries and duplication junction suggest that the duplication originated through a coupled homologous and nonhomologous recombination process. This represents the first duplication on Xp21.2 identified in patients with isolated gonadal dysgenesis because all previously described XY subjects with Xp21 duplications presented with gonadal dysgenesis as part of a more complex phenotype, including mental retardation and/or malformations. Thus, our data support DAX1 as a dosage sensitive gene responsible for gonadal dysgenesis and highlight the importance of considering DAX1 locus duplications in the evaluation of all cases of 46,XY gonadal dysgenesis.
Tong, Ying; Zheng, Kang; Zhao, Shufang; Xiao, Guanxiu; Luo, Chen
2012-11-01
Recent studies demonstrated that sequence divergence in both transcriptional regulatory region and coding region contributes to the subfunctionalization of duplicate gene. However, whether sequence divergence in the 3'-untranslated region (3'-UTR) has an impact on the subfunctionalization of duplicate genes remains unclear. Here, we identified two diverging duplicate vsx1 (visual system homeobox-1) loci in goldfish, named vsx1A1 and vsx1A2. Phylogenetic analysis suggests that vsx1A1 and vsx1A2 may arise from a duplication of vsx1 after the separation of goldfish and zebrafish. Sequence comparison revealed that divergence in both transcriptional and translational regulatory regions is higher than divergence in the introns. vsx1A2 expresses during blastula and gastrula stages and in adult retina but silences from segmentation stage to hatching stage, vsx1A1 starts expression from segmentation onward. Comparing to that zebrafish vsx1 expresses in all the developmental stages and in the adult retina, it appears that goldfish vsx1A1 and vsx1A2 are under going to share the functions of ancestral vsx1. The different but overlapping temporal expression patterns of vsx1A1 and vsx1A2 suggest that sequence divergence in the promoter region of duplicate vsx1 is not sufficient for partitioning the functions of ancestral vsx1. By comparing vsx1A1 and vsx1A2 3'-UTR-linked green fluorescent protein gene expression patterns, we demonstrated that the 3'-UTR of vsx1A1 remains but the 3'-UTR of vsx1A2 has lost the capability of mediating bipolar cell specific expression during retina development. These results indicate that sequence divergence in the 3'-UTRs has a clear effect on subfunctionalization of the duplicate genes. © 2012 WILEY PERIODICALS, INC.
Pan, Deng; Zhang, Liqing
2007-01-01
Background The rate of gene duplication is an important parameter in the study of evolution, but the influence of gene conversion and technical problems have confounded previous attempts to provide a satisfying estimate. We propose a new strategy to estimate the rate that involves separate quantification of the rates of two different mechanisms of gene duplication and subsequent combination of the two rates, based on their respective contributions to the overall gene duplication rate. Results Previous estimates of gene duplication rates are based on small gene families. Therefore, to assess the applicability of this to families of all sizes, we looked at both two-copy gene families and the entire genome. We studied unequal crossover and retrotransposition, and found that these mechanisms of gene duplication are largely independent and account for a substantial amount of duplicated genes. Unequal crossover contributed more to duplications in the entire genome than retrotransposition did, but this contribution was significantly less in two-copy gene families, and duplicated genes arising from this mechanism are more likely to be retained. Combining rates of duplication using the two mechanisms, we estimated the overall rates to be from approximately 0.515 to 1.49 × 10-3 per gene per million years in human, and from approximately 1.23 to 4.23 × 10-3 in mouse. The rates estimated from two-copy gene families are always lower than those from the entire genome, and so it is not appropriate to use small families to estimate the rate for the entire genome. Conclusion We present a novel strategy for estimating gene duplication rates. Our results show that different mechanisms contribute differently to the evolution of small and large gene families. PMID:17683522
Detecting long tandem duplications in genomic sequences.
Audemard, Eric; Schiex, Thomas; Faraut, Thomas
2012-05-08
Detecting duplication segments within completely sequenced genomes provides valuable information to address genome evolution and in particular the important question of the emergence of novel functions. The usual approach to gene duplication detection, based on all-pairs protein gene comparisons, provides only a restricted view of duplication. In this paper, we introduce ReD Tandem, a software using a flow based chaining algorithm targeted at detecting tandem duplication arrays of moderate to longer length regions, with possibly locally weak similarities, directly at the DNA level. On the A. thaliana genome, using a reference set of tandem duplicated genes built using TAIR,(a) we show that ReD Tandem is able to predict a large fraction of recently duplicated genes (dS < 1) and that it is also able to predict tandem duplications involving non coding elements such as pseudo-genes or RNA genes. ReD Tandem allows to identify large tandem duplications without any annotation, leading to agnostic identification of tandem duplications. This approach nicely complements the usual protein gene based which ignores duplications involving non coding regions. It is however inherently restricted to relatively recent duplications. By recovering otherwise ignored events, ReD Tandem gives a more comprehensive view of existing evolutionary processes and may also allow to improve existing annotations.
Gu, Xun; Wang, Yufeng; Gu, Jianying
2002-06-01
The classical (two-round) hypothesis of vertebrate genome duplication proposes two successive whole-genome duplication(s) (polyploidizations) predating the origin of fishes, a view now being seriously challenged. As the debate largely concerns the relative merits of the 'big-bang mode' theory (large-scale duplication) and the 'continuous mode' theory (constant creation by small-scale duplications), we tested whether a significant proportion of paralogous genes in the contemporary human genome was indeed generated in the early stage of vertebrate evolution. After an extensive search of major databases, we dated 1,739 gene duplication events from the phylogenetic analysis of 749 vertebrate gene families. We found a pattern characterized by two waves (I, II) and an ancient component. Wave I represents a recent gene family expansion by tandem or segmental duplications, whereas wave II, a rapid paralogous gene increase in the early stage of vertebrate evolution, supports the idea of genome duplication(s) (the big-bang mode). Further analysis indicated that large- and small-scale gene duplications both make a significant contribution during the early stage of vertebrate evolution to build the current hierarchy of the human proteome.
The conversion of centrioles to centrosomes: essential coupling of duplication with segregation
Wang, Won-Jing; Soni, Rajesh Kumar; Uryu, Kunihiro
2011-01-01
Centrioles are self-reproducing organelles that form the core structure of centrosomes or microtubule-organizing centers (MTOCs). However, whether duplication and MTOC organization reflect innate activities of centrioles or activities acquired conditionally is unclear. In this paper, we show that newly formed full-length centrioles had no inherent capacity to duplicate or to organize pericentriolar material (PCM) but acquired both after mitosis through a Plk1-dependent modification that occurred in early mitosis. Modified centrioles initiated PCM recruitment in G1 and segregated equally in mitosis through association with spindle poles. Conversely, unmodified centrioles segregated randomly unless passively tethered to modified centrioles. Strikingly, duplication occurred only in centrioles that were both modified and disengaged, whereas unmodified centrioles, engaged or not, were “infertile,” indicating that engagement specifically blocks modified centrioles from reduplication. These two requirements, centriole modification and disengagement, fully exclude unlimited duplication in one cell cycle. We thus uncovered a Plk1-dependent mechanism whereby duplication and segregation are coupled to maintain centriole homeostasis. PMID:21576395
The conversion of centrioles to centrosomes: essential coupling of duplication with segregation.
Wang, Won-Jing; Soni, Rajesh Kumar; Uryu, Kunihiro; Tsou, Meng-Fu Bryan
2011-05-16
Centrioles are self-reproducing organelles that form the core structure of centrosomes or microtubule-organizing centers (MTOCs). However, whether duplication and MTOC organization reflect innate activities of centrioles or activities acquired conditionally is unclear. In this paper, we show that newly formed full-length centrioles had no inherent capacity to duplicate or to organize pericentriolar material (PCM) but acquired both after mitosis through a Plk1-dependent modification that occurred in early mitosis. Modified centrioles initiated PCM recruitment in G1 and segregated equally in mitosis through association with spindle poles. Conversely, unmodified centrioles segregated randomly unless passively tethered to modified centrioles. Strikingly, duplication occurred only in centrioles that were both modified and disengaged, whereas unmodified centrioles, engaged or not, were "infertile," indicating that engagement specifically blocks modified centrioles from reduplication. These two requirements, centriole modification and disengagement, fully exclude unlimited duplication in one cell cycle. We thus uncovered a Plk1-dependent mechanism whereby duplication and segregation are coupled to maintain centriole homeostasis.
Merlob, P; Kohn, G; Litwin, A; Nissenkorn, I; Katznelson, M B; Reisner, S H
1989-01-01
We describe a preterm female infant with multiple anomalies who has a duplication of a large part of 4q and partial deletion of chromosome 1q. Her karyotype was interpreted to be 46,XX,-1,+der(1),t(1;4) (q44;q23 or 24)mat. She is the first patient with an unbalanced translocation involving chromosomes 4 and 1. There is a substantial amount of concordance between the phenotypic features of this patient and those described in the context of partial deletion 1q. The extensive duplication of 4q has no dominant clinical effects in the present infant. These facts support the general concept of much more deleterious effects of deletions versus duplications in human species.
Performance of probabilistic method to detect duplicate individual case safety reports.
Tregunno, Philip Michael; Fink, Dorthe Bech; Fernandez-Fernandez, Cristina; Lázaro-Bengoa, Edurne; Norén, G Niklas
2014-04-01
Individual case reports of suspected harm from medicines are fundamental for signal detection in postmarketing surveillance. Their effective analysis requires reliable data and one challenge is report duplication. These are multiple unlinked records describing the same suspected adverse drug reaction (ADR) in a particular patient. They distort statistical screening and can mislead clinical assessment. Many organisations rely on rule-based detection, but probabilistic record matching is an alternative. The aim of this study was to evaluate probabilistic record matching for duplicate detection, and to characterise the main sources of duplicate reports within each data set. vigiMatch™, a published probabilistic record matching algorithm, was applied to the WHO global individual case safety reports database, VigiBase(®), for reports submitted between 2000 and 2010. Reported drugs, ADRs, patient age, sex, country of origin, and date of onset were considered in the matching. Suspected duplicates for the UK, Denmark, and Spain were reviewed and classified by the respective national centre. This included evaluation to determine whether confirmed duplicates had already been identified by in-house, rule-based screening. Furthermore, each confirmed duplicate was classified with respect to the likely source of duplication. For each country, the proportions of suspected duplicates classified as confirmed duplicates, likely duplicates, otherwise related, and unrelated were obtained. The proportions of confirmed or likely duplicates that were not previously known by the national organisation were determined, and variations in the rates of suspected duplicates across subsets of reports were characterised. Overall, 2.5 % of the reports with sufficient information to be evaluated by vigiMatch were classified as suspected duplicates. The rates for the three countries considered in this study were 1.4 % (UK), 1.0 % (Denmark), and 0.7 % (Spain). Higher rates of suspected duplicates were observed for literature reports (11 %) and reports with fatal outcome (5 %), whereas a lower rate was observed for reports from consumers and non-health professionals (0.5 %). The predictive value for confirmed or likely duplicates among reports flagged as suspected duplicates by vigiMatch ranged from 86 % for the UK, to 64 % for Denmark and 33 % for Spain. The proportions of confirmed duplicates that were previously unknown to national centres ranged from 89 % for Spain, to 60 % for the UK and 38 % for Denmark, despite in-house duplicate detection processes in routine use. The proportion of unrelated cases among suspected duplicates were below 10 % for each national centre in the study. Probabilistic record matching, as implemented in vigiMatch, achieved good predictive value for confirmed or likely duplicates in each data source. Most of the false positives corresponded to otherwise related reports; less than 10 % were altogether unrelated. A substantial proportion of the correctly identified duplicates had not previously been detected by national centre activity. On one hand, vigiMatch highlighted duplicates that had been missed by rule-based methods, and on the other hand its lower total number of suspected duplicates to review improved the accuracy of manual review.
Clayton-Smith, Jill; Walters, Sarah; Hobson, Emma; Burkitt-Wright, Emma; Smith, Rupert; Toutain, Annick; Amiel, Jeanne; Lyonnet, Stanislas; Mansour, Sahar; Fitzpatrick, David; Ciccone, Roberto; Ricca, Ivana; Zuffardi, Orsetta; Donnai, Dian
2009-01-01
Xq28 duplications encompassing MECP2 have been described in male patients with a severe neurodevelopmental disorder associated with hypotonia and spasticity, severe learning disability and recurrent pneumonia. We identified an Xq28 duplication in three families where several male patients had presented with intestinal pseudo-obstruction or bladder distension. The affected boys had similar dysmorphic facial appearances. Subsequently, we ascertained seven further families where the proband presented with similar features. We demonstrated duplications of the Xq28 region in five of these additional families. In addition to MECP2, these duplications encompassed several other genes already known to be associated with diseases including SLC6A8, L1CAM and Filamin A (FLNA). The two remaining families were shown to have intragenic duplications of FLNA only. We discuss which elements of the Xq28 duplication phenotype may be associated with the various genes in the duplication. We propose that duplication of FLNA may contribute to the bowel and bladder phenotype seen in these seven families. PMID:18854860
Hirota, Yukiko; Minami, Takaomi; Sato, Tomoyuki; Yokomizo, Akiko; Matsumoto, Auimi; Goto, Masahide; Jinbo, Eriko; Yamamgata, Takanori
2017-09-01
Xq25q26 duplication syndrome has been reported in individuals with clinical features such as short stature, intellectual disability, syndromic facial appearance, small hands and feet, and genital abnormalities. The symptoms are related to critical chromosome regions including Xq26.1-26.3. In this particular syndrome, no patient with congenital heart disease was previously reported. Here, we report a 6-year-old boy with typical symptoms of Xq25q26 duplication syndrome and double outlet right ventricle (DORV) with pulmonary atresia (PA). He had the common duplicated region of Xq25q26 duplication syndrome extending to the distal region including the MOSPD1 locus. MOSPD1 regulates transforming growth factor beta (TGFβ) 2,3 and may be responsible for cardiac development including DORV. In the patient's lymphocytes, mRNA expression of TGFβ2 was lower than control, and might cause DORV as it does in TGFβ2-deficient mice. Therefore, MOSPD1 is a possible candidate gene for DORV, probably in combination with GPC3. Further studies of the combined functions of MOSPD1 and GPC3 are needed, and identification of additional patients with MOSPD1 and GPC3 duplication should be pursued. © 2017 Wiley Periodicals, Inc.
Recurrent duplications of the annexin A1 gene (ANXA1) in autism spectrum disorders
2014-01-01
Background Validating the potential pathogenicity of copy number variants (CNVs) identified in genome-wide studies of autism spectrum disorders (ASD) requires detailed assessment of case/control frequencies, inheritance patterns, clinical correlations, and functional impact. Here, we characterize a small recurrent duplication in the annexin A1 (ANXA1) gene, identified by the Autism Genome Project (AGP) study. Methods From the AGP CNV genomic screen in 2,147 ASD individuals, we selected for characterization an ANXA1 gene duplication that was absent in 4,964 population-based controls. We further screened the duplication in a follow-up sample including 1,496 patients and 410 controls, and evaluated clinical correlations and family segregation. Sequencing of exonic/downstream ANXA1 regions was performed in 490 ASD patients for identification of additional variants. Results The ANXA1 duplication, overlapping the last four exons and 3’UTR region, had an overall prevalence of 11/3,643 (0.30%) in unrelated ASD patients but was not identified in 5,374 controls. Duplication carriers presented no distinctive clinical phenotype. Family analysis showed neuropsychiatric deficits and ASD traits in multiple relatives carrying the duplication, suggestive of a complex genetic inheritance. Sequencing of exonic regions and the 3’UTR identified 11 novel changes, but no obvious variants with clinical significance. Conclusions We provide multilevel evidence for a role of ANXA1 in ASD etiology. Given its important role as mediator of glucocorticoid function in a wide variety of brain processes, including neuroprotection, apoptosis, and control of the neuroendocrine system, the results add ANXA1 to the growing list of rare candidate genetic etiological factors for ASD. PMID:24720851
Myelin protein zero gene sequencing diagnoses Charcot-Marie-Tooth Type 1B disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Y.; Zhang, H.; Madrid, R.
1994-09-01
Charcot-Marie-Tooth disease (CMT), the most common genetic neuropathy, affects about 1 in 2600 people in Norway and is found worldwide. CMT Type 1 (CMT1) has slow nerve conduction with demyelinated Schwann cells. Autosomal dominant CMT Type 1B (CMT1B) results from mutations in the myelin protein zero gene which directs the synthesis of more than half of all Schwann cell protein. This gene was mapped to the chromosome 1q22-1q23.1 borderline by fluorescence in situ hybridization. The first 7 of 7 reported CMT1B mutations are unique. Thus the most effective means to identify CMT1B mutations in at-risk family members and fetuses ismore » to sequence the entire coding sequence in dominant or sporadic CMT patients without the CMT1A duplication. Of the 19 primers used in 16 pars to uniquely amplify the entire MPZ coding sequence, 6 primer pairs were used to amplify and sequence the 6 exons. The DyeDeoxy Terminator cycle sequencing method used with four different color fluorescent lables was superior to manual sequencing because it sequences more bases unambiguously from extracted genomic DNA samples within 24 hours. This protocol was used to test 28 CMT and Dejerine-Sottas patients without CMT1A gene duplication. Sequencing MPZ gene-specific amplified fragments identified 9 polymorphic sites within the 6 exons that encode the 248 amino acid MPZ protein. The large number of major CMT1B mutations identified by single strand sequencing are being verified by reverse strand sequencing and when possible, by restriction enzyme analysis. This protocol can be used to distringuish CMT1B patients from othre CMT phenotypes and to determine the CMT1B status of relatives both presymptomatically and prenatally.« less
Barbaro, Michela; Cook, Jackie; Lagerstedt-Robinson, Kristina; Wedell, Anna
2012-01-01
A 160 kb minimal common region in Xp21 has been determined as the cause of XY gonadal dysgenesis, if duplicated. The region contains the MAGEB genes and the NR0B1 gene; this is the candidate for gonadal dysgenesis if overexpressed. Most patients present gonadal dysgenesis within a more complex phenotype. However, few independent cases have recently been described presenting with isolated XY gonadal dysgenesis caused by relatively small NR0B1 locus duplications. We have identified another NR0B1 duplication in two sisters with isolated XY gonadal dysgenesis with an X-linked inheritance pattern. We performed X-inactivation studies in three fertile female carriers of three different small NR0B1 locus duplications identified by our group. The carrier mothers did not show obvious skewing of X-chromosome inactivation, suggesting that NR0B1 overexpression does not impair ovarian function. We furthermore emphasize the importance to investigate the NR0B1 locus also in patients with isolated XY gonadal dysgenesis. PMID:22518125
Design of the Detector II: A CMOS Gate Array for the Study of Concurrent Error Detection Techniques.
1987-07-01
detection schemes and temporary failures. The circuit consists- or of six different adders with concurrent error detection schemes . The error detection... schemes are - simple duplication, duplication with functional dual implementation, duplication with different &I [] .6implementations, two-rail encoding...THE SYSTEM. .. .... ...... ...... ...... 5 7. DESIGN OF CED SCHEMES .. ... ...... ...... ........ 7 7.1 Simple Duplication
Op den Camp, Rik H.M.; De Mita, Stéphane; Lillo, Alessandra; Cao, Qingqin; Limpens, Erik; Bisseling, Ton; Geurts, René
2011-01-01
Legumes host their Rhizobium spp. symbiont in novel root organs called nodules. Nodules originate from differentiated root cortical cells that dedifferentiate and subsequently form nodule primordia, a process controlled by cytokinin. A whole-genome duplication has occurred at the root of the legume Papilionoideae subfamily. We hypothesize that gene pairs originating from this duplication event and are conserved in distinct Papilionoideae lineages have evolved symbiotic functions. A phylogenetic strategy was applied to search for such gene pairs to identify novel regulators of nodulation, using the cytokinin phosphorelay pathway as a test case. In this way, two paralogous type-A cytokinin response regulators were identified that are involved in root nodule symbiosis. Response Regulator9 (MtRR9) and MtRR11 in medicago (Medicago truncatula) and an ortholog in lotus (Lotus japonicus) are rapidly induced upon Rhizobium spp. Nod factor signaling. Constitutive expression of MtRR9 results in arrested primordia that have emerged from cortical, endodermal, and pericycle cells. In legumes, lateral root primordia are not exclusively formed from pericycle cells but also require the involvement of the root cortical cell layer. Therefore, the MtRR9-induced foci of cell divisions show a strong resemblance to lateral root primordia, suggesting an ancestral function of MtRR9 in this process. Together, these findings provide a proof of principle for the applied phylogenetic strategy to identify genes with a symbiotic function in legumes. PMID:22034625
Lagman, David; Ocampo Daza, Daniel; Widmark, Jenny; Abalo, Xesús M; Sundström, Görel; Larhammar, Dan
2013-11-02
Vertebrate color vision is dependent on four major color opsin subtypes: RH2 (green opsin), SWS1 (ultraviolet opsin), SWS2 (blue opsin), and LWS (red opsin). Together with the dim-light receptor rhodopsin (RH1), these form the family of vertebrate visual opsins. Vertebrate genomes contain many multi-membered gene families that can largely be explained by the two rounds of whole genome duplication (WGD) in the vertebrate ancestor (2R) followed by a third round in the teleost ancestor (3R). Related chromosome regions resulting from WGD or block duplications are said to form a paralogon. We describe here a paralogon containing the genes for visual opsins, the G-protein alpha subunit families for transducin (GNAT) and adenylyl cyclase inhibition (GNAI), the oxytocin and vasopressin receptors (OT/VP-R), and the L-type voltage-gated calcium channels (CACNA1-L). Sequence-based phylogenies and analyses of conserved synteny show that the above-mentioned gene families, and many neighboring gene families, expanded in the early vertebrate WGDs. This allows us to deduce the following evolutionary scenario: The vertebrate ancestor had a chromosome containing the genes for two visual opsins, one GNAT, one GNAI, two OT/VP-Rs and one CACNA1-L gene. This chromosome was quadrupled in 2R. Subsequent gene losses resulted in a set of five visual opsin genes, three GNAT and GNAI genes, six OT/VP-R genes and four CACNA1-L genes. These regions were duplicated again in 3R resulting in additional teleost genes for some of the families. Major chromosomal rearrangements have taken place in the teleost genomes. By comparison with the corresponding chromosomal regions in the spotted gar, which diverged prior to 3R, we could time these rearrangements to post-3R. We present an extensive analysis of the paralogon housing the visual opsin, GNAT and GNAI, OT/VP-R, and CACNA1-L gene families. The combined data imply that the early vertebrate WGD events contributed to the evolution of vision and the other neuronal and neuroendocrine functions exerted by the proteins encoded by these gene families. In pouched lamprey all five visual opsin genes have previously been identified, suggesting that lampreys diverged from the jawed vertebrates after 2R.
17 CFR Appendix B to Part 145 - Schedule of Fees
Code of Federal Regulations, 2011 CFR
2011-04-01
... furnished to the requester. Fees apply to various types of requests as follows. (1) Commercial use request... search or review time. (3) Representative of the news media. Only duplication fees will be charged to any person actively gathering news for an entity that is organized and operated to publish or broadcast news...
Pathogenic role of mtDNA duplications in mitochondrial diseases associated with mtDNA deletions.
Odoardi, Francesca; Rana, Michele; Broccolini, Aldobrando; Mirabella, Massimiliano; Modoni, Anna; D'Amico, Adele; Papacci, Manuela; Tonali, Pietro; Servidei, Serenella; Silvestri, Gabriella
2003-04-30
We estimated the frequency of multiple mtDNA rearrangements by Southern blot in 32 patients affected by mitochondrial disorders associated with single deletions in order to assess genotype-phenotype correlations and elucidate the pathogenic significance of mtDNA duplications. Muscle in situ hybridization studies were performed in patients showing mtDNA duplications at Southern blot. We found multiple rearrangements in 12/32 (37.5%) patients; in particular, mtDNA duplications were detected in 4/4 Kearns-Sayre syndrome (KSS), in 1 Pearson's syndrome, in 1/3 encephalomyopathies with progressive external ophthalmoplegia (PEO), and in 2/23 PEO. In situ studies documented an exclusive accumulation of deleted mtDNAs in cytochrome c oxidase negative fibers of patients with mtDNA duplications. The presence of mtDNA duplications significantly correlated with onset of symptoms before age 15 and occurrence of clinical multisystem involvement. Analysis of biochemical data documented a predominant reduction of complex III in patients without duplications compared to patients with mtDNA duplications. Our data indicate that multiple mtDNA rearrangements are detectable in a considerable proportion of patients with single deletions and that mtDNA duplications do not cause any oxidative impairment. They more likely play a pathogenic role in the determination of clinical expression of mitochondrial diseases associated with single mtDNA deletions, possibly generating deleted mtDNAs in embryonic tissues by homologous recombination. Copyright 2003 Wiley-Liss, Inc.
Wang, Yaqiong; Ma, Hong
2015-09-01
Proteins often function as complexes, yet little is known about the evolution of dissimilar subunits of complexes. DNA-directed RNA polymerases (RNAPs) are multisubunit complexes, with distinct eukaryotic types for different classes of transcripts. In addition to Pol I-III, common in eukaryotes, plants have Pol IV and V for epigenetic regulation. Some RNAP subunits are specific to one type, whereas other subunits are shared by multiple types. We have conducted extensive phylogenetic and sequence analyses, and have placed RNAP gene duplication events in land plant history, thereby reconstructing the subunit compositions of the novel RNAPs during land plant evolution. We found that Pol IV/V have experienced step-wise duplication and diversification of various subunits, with increasingly distinctive subunit compositions. Also, lineage-specific duplications have further increased RNAP complexity with distinct copies in different plant families and varying divergence for subunits of different RNAPs. Further, the largest subunits of Pol IV/V probably originated from a gene fusion in the ancestral land plants. We propose a framework of plant RNAP evolution, providing an excellent model for protein complex evolution. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Frustration in the pattern formation of polysyllabic words
NASA Astrophysics Data System (ADS)
Hayata, Kazuya
2016-12-01
A novel frustrated system is given for the analysis of (m + 1)-syllabled vocal sounds for languages with the m-vowel system, where the varieties of vowels are assumed to be m (m > 2). The necessary and sufficient condition for observing the sound frustration is that the configuration of m vowels in an m-syllabled word has a preference for the ‘repulsive’ type, in which there is no duplication of an identical vowel. For languages that meet this requirement, no (m + 1)-syllabled word can in principle select the present type because at most m different vowels are available and consequently the duplicated use of an identical vowel is inevitable. For languages showing a preference for the ‘attractive’ type, where an identical vowel aggregates in a word, there arises no such conflict. In this paper, we first elucidate for Arabic with m = 3 how to deal with the conflicting situation, where a statistical approach based on the chi-square testing is employed. In addition to the conventional three-vowel system, analyses are made also for Russian, where a polysyllabic word contains both a stressed and an indeterminate vowel. Through the statistical analyses the selection scheme for quadrisyllabic configurations is found to be strongly dependent on the parts of speech as well as the gender of nouns. In order to emphasize the relevance to the sound model of binary oppositions, analyzed results of Greek verbs are also given.
Cecum duplication in a 14-year-old female. Case report.
Galván-Montaño, Alfonso; Guzmán-Martínez, Sonia; Lorenzana-Sandoval, Cuauhtémoc; Recinos-Carrera, Elio
2011-01-01
Duplications of the alimentary tract are a group of rare malformations occurring in about 1/5,000 live births. These may be either spherical or tubular and may communicate with the intestinal tract. Duplications of the cecum are very uncommon. A 14-year-old female was admitted to the emergency department with a 1-day history of abdominal pain, vomiting, constipation and abdominal distension. Abdominal examination revealed distension and tenderness around the umbilicus. Plain abdominal radiography showed dilated colon. The patient underwent surgical management with diagnosis of sigmoid volvulus. Laparotomy revealed spherical duplication from the cecum. Hemicolectomy was done and alimentary continuity was restored by end-to-end anastomosis. Pathological report was a spherical communicated duplication from the cecum (22 × 32 cm). Duplication of the cecum is extremely rare and is seen in 0.4% of duplications of the alimentary tract. The majority of cases (85%) are diagnosed before age 2 years. It is rare at 14 years of age. Diagnosis is difficult and volvulus, intussusception or appendicitis should be considered in the differential diagnosis. Ultrasonography and tomography are the imaging studies of choice. Plain abdominal x-ray is not specific. Resection of the duplication with restoration of alimentary continuity is the treatment of choice.
Yavaş, Gökhan; Koyutürk, Mehmet; Gould, Meetha P; McMahon, Sarah; LaFramboise, Thomas
2014-03-05
With the advent of paired-end high throughput sequencing, it is now possible to identify various types of structural variation on a genome-wide scale. Although many methods have been proposed for structural variation detection, most do not provide precise boundaries for identified variants. In this paper, we propose a new method, Distribution Based detection of Duplication Boundaries (DB2), for accurate detection of tandem duplication breakpoints, an important class of structural variation, with high precision and recall. Our computational experiments on simulated data show that DB2 outperforms state-of-the-art methods in terms of finding breakpoints of tandem duplications, with a higher positive predictive value (precision) in calling the duplications' presence. In particular, DB2's prediction of tandem duplications is correct 99% of the time even for very noisy data, while narrowing down the space of possible breakpoints within a margin of 15 to 20 bps on the average. Most of the existing methods provide boundaries in ranges that extend to hundreds of bases with lower precision values. Our method is also highly robust to varying properties of the sequencing library and to the sizes of the tandem duplications, as shown by its stable precision, recall and mean boundary mismatch performance. We demonstrate our method's efficacy using both simulated paired-end reads, and those generated from a melanoma sample and two ovarian cancer samples. Newly discovered tandem duplications are validated using PCR and Sanger sequencing. Our method, DB2, uses discordantly aligned reads, taking into account the distribution of fragment length to predict tandem duplications along with their breakpoints on a donor genome. The proposed method fine tunes the breakpoint calls by applying a novel probabilistic framework that incorporates the empirical fragment length distribution to score each feasible breakpoint. DB2 is implemented in Java programming language and is freely available at http://mendel.gene.cwru.edu/laframboiselab/software.php.
Emms, David M; Covshoff, Sarah; Hibberd, Julian M; Kelly, Steven
2016-07-01
C4 photosynthesis is considered one of the most remarkable examples of evolutionary convergence in eukaryotes. However, it is unknown whether the evolution of C4 photosynthesis required the evolution of new genes. Genome-wide gene-tree species-tree reconciliation of seven monocot species that span two origins of C4 photosynthesis revealed that there was significant parallelism in the duplication and retention of genes coincident with the evolution of C4 photosynthesis in these lineages. Specifically, 21 orthologous genes were duplicated and retained independently in parallel at both C4 origins. Analysis of this gene cohort revealed that the set of parallel duplicated and retained genes is enriched for genes that are preferentially expressed in bundle sheath cells, the cell type in which photosynthesis was activated during C4 evolution. Furthermore, functional analysis of the cohort of parallel duplicated genes identified SWEET-13 as a potential key transporter in the evolution of C4 photosynthesis in grasses, and provides new insight into the mechanism of phloem loading in these C4 species. C4 photosynthesis, gene duplication, gene families, parallel evolution. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Emms, David M.; Covshoff, Sarah; Hibberd, Julian M.; Kelly, Steven
2016-01-01
C4 photosynthesis is considered one of the most remarkable examples of evolutionary convergence in eukaryotes. However, it is unknown whether the evolution of C4 photosynthesis required the evolution of new genes. Genome-wide gene-tree species-tree reconciliation of seven monocot species that span two origins of C4 photosynthesis revealed that there was significant parallelism in the duplication and retention of genes coincident with the evolution of C4 photosynthesis in these lineages. Specifically, 21 orthologous genes were duplicated and retained independently in parallel at both C4 origins. Analysis of this gene cohort revealed that the set of parallel duplicated and retained genes is enriched for genes that are preferentially expressed in bundle sheath cells, the cell type in which photosynthesis was activated during C4 evolution. Furthermore, functional analysis of the cohort of parallel duplicated genes identified SWEET-13 as a potential key transporter in the evolution of C4 photosynthesis in grasses, and provides new insight into the mechanism of phloem loading in these C4 species. Key words: C4 photosynthesis, gene duplication, gene families, parallel evolution. PMID:27016024
Mlynarski, Elisabeth E; Sheridan, Molly B; Xie, Michael; Guo, Tingwei; Racedo, Silvia E; McDonald-McGinn, Donna M; Gai, Xiaowu; Chow, Eva W C; Vorstman, Jacob; Swillen, Ann; Devriendt, Koen; Breckpot, Jeroen; Digilio, Maria Cristina; Marino, Bruno; Dallapiccola, Bruno; Philip, Nicole; Simon, Tony J; Roberts, Amy E; Piotrowicz, Małgorzata; Bearden, Carrie E; Eliez, Stephan; Gothelf, Doron; Coleman, Karlene; Kates, Wendy R; Devoto, Marcella; Zackai, Elaine; Heine-Suñer, Damian; Shaikh, Tamim H; Bassett, Anne S; Goldmuntz, Elizabeth; Morrow, Bernice E; Emanuel, Beverly S
2015-05-07
The 22q11.2 deletion syndrome (22q11DS; velocardiofacial/DiGeorge syndrome; VCFS/DGS) is the most common microdeletion syndrome and the phenotypic presentation is highly variable. Approximately 65% of individuals with 22q11DS have a congenital heart defect (CHD), mostly of the conotruncal type, and/or an aortic arch defect. The etiology of this phenotypic variability is not currently known. We hypothesized that copy-number variants (CNVs) outside the 22q11.2 deleted region might increase the risk of being born with a CHD in this sensitized population. Genotyping with Affymetrix SNP Array 6.0 was performed on two groups of subjects with 22q11DS separated by time of ascertainment and processing. CNV analysis was completed on a total of 949 subjects (cohort 1, n = 562; cohort 2, n = 387), 603 with CHDs (cohort 1, n = 363; cohort 2, n = 240) and 346 with normal cardiac anatomy (cohort 1, n = 199; cohort 2, n = 147). Our analysis revealed that a duplication of SLC2A3 was the most frequent CNV identified in the first cohort. It was present in 18 subjects with CHDs and 1 subject without (p = 3.12 × 10(-3), two-tailed Fisher's exact test). In the second cohort, the SLC2A3 duplication was also significantly enriched in subjects with CHDs (p = 3.30 × 10(-2), two-tailed Fisher's exact test). The SLC2A3 duplication was the most frequent CNV detected and the only significant finding in our combined analysis (p = 2.68 × 10(-4), two-tailed Fisher's exact test), indicating that the SLC2A3 duplication might serve as a genetic modifier of CHDs and/or aortic arch anomalies in individuals with 22q11DS. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Radhakrishna, Uppala; Nath, Swapan K; McElreavey, Ken; Ratnamala, Uppala; Sun, Celi; Maiti, Amit K; Gagnebin, Maryline; Béna, Frédérique; Newkirk, Heather L; Sharp, Andrew J; Everman, David B; Murray, Jeffrey C; Schwartz, Charles E; Antonarakis, Stylianos E; Butler, Merlin G
2017-01-01
Background Omphalocele is a congenital birth defect characterised by the presence of internal organs located outside of the ventral abdominal wall. The purpose of this study was to identify the underlying genetic mechanisms of a large autosomal dominant Caucasian family with omphalocele. Methods and findings A genetic linkage study was conducted in a large family with an autosomal dominant transmission of an omphalocele using a genome-wide single nucleotide polymorphism (SNP) array. The analysis revealed significant evidence of linkage (non-parametric NPL = 6.93, p=0.0001; parametric logarithm of odds (LOD) = 2.70 under a fully penetrant dominant model) at chromosome band 1p31.3. Haplotype analysis narrowed the locus to a 2.74 Mb region between markers rs2886770 (63014807 bp) and rs1343981 (65757349 bp). Molecular characterisation of this interval using array comparative genomic hybridisation followed by quantitative microsphere hybridisation analysis revealed a 710 kb duplication located at 63.5–64.2 Mb. All affected individuals who had an omphalocele and shared the haplotype were positive for this duplicated region, while the duplication was absent from all normal individuals of this family. Multipoint linkage analysis using the duplication as a marker yielded a maximum LOD score of 3.2 at 1p31.3 under a dominant model. The 710 kb duplication at 1p31.3 band contains seven known genes including FOXD3, ALG6, ITGB3BP, KIAA1799, DLEU2L, PGM1, and the proximal portion of ROR1. Importantly, this duplication is absent from the database of genomic variants. Conclusions The present study suggests that development of an omphalocele in this family is controlled by overexpression of one or more genes in the duplicated region. To the authors’ knowledge, this is the first reported association of an inherited omphalocele condition with a chromosomal rearrangement. PMID:22499347
Sugimoto, Naohisa; Takakura, Yasuaki; Shiraki, Kentaro; Honda, Shinya; Takaya, Naoki; Hoshino, Takayuki; Nakamura, Akira
2013-01-01
To obtain a selection marker gene functional in a thermophilic bacterium, Thermus thermophilus, an in vivo-directed evolutionary strategy was conducted on a hygromycin B phosphotransferase gene (hyg) from Streptomyces hygroscopicus. The expression of wild-type hyg in T. thermophilus provided hygromycin B (HygB) resistance up to 60 °C. Through selection of mutants showing HygB resistance at higher temperatures, eight amino acid substitutions and the duplication of three amino acids were identified. A variant containing seven substitutions and the duplication (HYG10) showed HygB resistance at a highest temperature of 74 °C. Biochemical and biophysical analyses of recombinant HYG and HYG10 revealed that HYG10 was in fact thermostabilized. Modeling of the three-dimensional structure of HYG10 suggests the possible roles of the various substitutions and the duplication on thermostabilization, of which three substitutions and the duplication located at the enzyme surface suggested that these mutations made the enzyme more hydrophilic and provided increased stability in aqueous solution.
Calderon-Garcidueñas, Ana Laura; Mathon, Bertrand; Lévy, Pierre; Bertrand, Anne; Mokhtari, Karima; Samson, Véronique; Thuriès, Valérie; Lambrecq, Virginie; Nguyen, Vi-Huong Michel; Dupont, Sophie; Adam, Claude; Baulac, Michel; Clémenceau, Stéphane; Duyckaerts, Charles; Navarro, Vincent; Bielle, Franck
2018-02-24
Mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) is a heterogeneous syndrome. Surgery results in seizure freedom for most pharmacoresistant patients, but the epileptic and cognitive prognosis remains variable. The 2013 International League Against Epilepsy (ILAE) histopathological classification of hippocampal sclerosis (HS) has fostered research to understand MTLE-HS heterogeneity. We investigated the associations between histopathological features (ILAE types, hypertrophic CA4 neurons, granule cell layer alterations, CD34 immunopositive cells) and clinical features (presurgical history, postsurgical outcome) in a monocentric series of 247 MTLE-HS patients treated by surgery. NeuN, GFAP and CD34 immunostainings and a double independent pathological examination were performed. 186 samples were type 1, 47 type 2, 7 type 3 and 7 samples were gliosis only but no neuronal loss (noHS). In the type 1, hypertrophic CA4 neurons were associated with a worse postsurgical outcome and granule cell layer duplication was associated with generalized seizures and episodes of status epilepticus. In the type 2, granule cell layer duplication was associated with generalized seizures. CD34+ stellate cells were more frequent in the type 2, type 3 and in noHS. These cells had a Nestin and SOX2 positive, immature neural immunophenotype. Patients with nodules of CD34+ cells had more frequent dysmnesic auras. CD34+ stellate cells in scarce pattern were associated with higher ratio of normal MRI and of stereo-electroencephalographic studies. CD34+ cells were associated with a trend for a better postsurgical outcome. Among CD34+ cases, we proposed a new entity of BRAF V600E positive HS and we described three hippocampal multinodular and vacuolating neuronal tumors. To conclude, our data identified new clinicopathological associations with ILAE types. They showed the prognostic value of CA4 hypertrophic neurons. They highlighted CD34+ stellate cells and BRAF V600E as biomarkers to further decipher MTLE-HS heterogeneity. © 2018 International Society of Neuropathology.
X-linked Charcot-Marie-Tooth disease predominates in a cohort of multiethnic Malaysian patients.
Shahrizaila, Nortina; Samulong, Sarimah; Tey, Shelisa; Suan, Liaw Chiew; Meng, Lao Kah; Goh, Khean Jin; Ahmad-Annuar, Azlina
2014-02-01
Data regarding Charcot-Marie-Tooth disease is lacking in Southeast Asian populations. We investigated the frequency of the common genetic mutations in a multiethnic Malaysian cohort. Patients with features of Charcot-Marie-Tooth disease or hereditary liability to pressure palsies were investigated for PMP22 duplication, deletion, and point mutations and GJB1, MPZ, and MFN2 point mutations. Over a period of 3 years, we identified 25 index patients. A genetic diagnosis was reached in 60%. The most common were point mutations in GJB1, accounting for X-linked Charcot-Marie-Tooth disease (24% of the total patient population), followed by PMP22 duplication causing Charcot-Marie-Tooth disease type 1A (20%). We also discovered 2 novel GJB1 mutations, c.521C>T (Proline174Leucine) and c.220G>A (Valine74Methionine). X-linked Charcot-Marie-Tooth disease was found to predominate in our patient cohort. We also found a better phenotype/genotype correlation when applying a more recently recommended genetic approach to Charcot-Marie-Tooth disease. Copyright © 2013 Wiley Periodicals, Inc.
A rare FANCA gene variation as a breast cancer susceptibility allele in an Iranian population
Abbasi, Sakineh; Rasouli, Mina
2017-01-01
Fanconi Anemia (FA) is an autosomal recessive syndrome characterized by congenital abnormalities, progressive bone marrow failure and Fanconi anemia complementation group A (FANCA) is also a potential breast and ovarian cancer susceptibility gene. A novel allele with tandem duplication of 13 base pair sequence in promoter region was identified. To investigate whether the 13 base pair sequence of tandem duplication in promoter region of the FANCA gene is of high penetrance in patients with breast cancer and to determine if the presence of the duplicated allele was associated with an altered risk of breast cancer, the present study screened DNA in blood samples from 304 breast cancer patients and 295 normal individuals as controls. The duplication allele had a frequency of 35.4 and 21.2% in patients with breast cancer and normal controls, respectively. There was a significant increase in the frequency of the duplication allele in patients with familial breast cancer compared with controls (45.1%, P=0.001). Furthermore, the estimated risk of breast cancer in individuals with a homozygote [odds ratio (OR), 4.093; 95% confidence intervals (CI), 1.957–8.561] or heterozygote duplicated genotype (OR, 3.315; 95% CI, 1.996–5.506) was higher compared with the corresponding normal homozygote genotype. In conclusion, the present study indicated that the higher the frequency of the duplicated allele, the higher the risk of breast cancer. To the best of our knowledge, the present study is the first to report FANCA gene duplication in patients with breast cancer. PMID:28440412
A rare FANCA gene variation as a breast cancer susceptibility allele in an Iranian population.
Abbasi, Sakineh; Rasouli, Mina
2017-06-01
Fanconi Anemia (FA) is an autosomal recessive syndrome characterized by congenital abnormalities, progressive bone marrow failure and Fanconi anemia complementation group A (FANCA) is also a potential breast and ovarian cancer susceptibility gene. A novel allele with tandem duplication of 13 base pair sequence in promoter region was identified. To investigate whether the 13 base pair sequence of tandem duplication in promoter region of the FANCA gene is of high penetrance in patients with breast cancer and to determine if the presence of the duplicated allele was associated with an altered risk of breast cancer, the present study screened DNA in blood samples from 304 breast cancer patients and 295 normal individuals as controls. The duplication allele had a frequency of 35.4 and 21.2% in patients with breast cancer and normal controls, respectively. There was a significant increase in the frequency of the duplication allele in patients with familial breast cancer compared with controls (45.1%, P=0.001). Furthermore, the estimated risk of breast cancer in individuals with a homozygote [odds ratio (OR), 4.093; 95% confidence intervals (CI), 1.957‑8.561] or heterozygote duplicated genotype (OR, 3.315; 95% CI, 1.996‑5.506) was higher compared with the corresponding normal homozygote genotype. In conclusion, the present study indicated that the higher the frequency of the duplicated allele, the higher the risk of breast cancer. To the best of our knowledge, the present study is the first to report FANCA gene duplication in patients with breast cancer.
Medication-related clinical decision support alert overrides in inpatients.
Nanji, Karen C; Seger, Diane L; Slight, Sarah P; Amato, Mary G; Beeler, Patrick E; Her, Qoua L; Dalleur, Olivia; Eguale, Tewodros; Wong, Adrian; Silvers, Elizabeth R; Swerdloff, Michael; Hussain, Salman T; Maniam, Nivethietha; Fiskio, Julie M; Dykes, Patricia C; Bates, David W
2018-05-01
To define the types and numbers of inpatient clinical decision support alerts, measure the frequency with which they are overridden, and describe providers' reasons for overriding them and the appropriateness of those reasons. We conducted a cross-sectional study of medication-related clinical decision support alerts over a 3-year period at a 793-bed tertiary-care teaching institution. We measured the rate of alert overrides, the rate of overrides by alert type, the reasons cited for overrides, and the appropriateness of those reasons. Overall, 73.3% of patient allergy, drug-drug interaction, and duplicate drug alerts were overridden, though the rate of overrides varied by alert type (P < .0001). About 60% of overrides were appropriate, and that proportion also varied by alert type (P < .0001). Few overrides of renal- (2.2%) or age-based (26.4%) medication substitutions were appropriate, while most duplicate drug (98%), patient allergy (96.5%), and formulary substitution (82.5%) alerts were appropriate. Despite warnings of potential significant harm, certain categories of alert overrides were inappropriate >75% of the time. The vast majority of duplicate drug, patient allergy, and formulary substitution alerts were appropriate, suggesting that these categories of alerts might be good targets for refinement to reduce alert fatigue. Almost three-quarters of alerts were overridden, and 40% of the overrides were not appropriate. Future research should optimize alert types and frequencies to increase their clinical relevance, reducing alert fatigue so that important alerts are not inappropriately overridden.
Thompson, Claudia E; Freitas, Loreta B; Salzano, Francisco M
2018-01-01
Alcohol dehydrogenases belong to the large superfamily of medium-chain dehydrogenases/reductases, which occur throughout the biological world and are involved with many important metabolic routes. We considered the phylogeny of 190 ADH sequences of animals, fungi, and plants. Non-class III Caenorhabditis elegans ADHs were seen closely related to tetrameric fungal ADHs. ADH3 forms a sister group to amphibian, reptilian, avian and mammalian non-class III ADHs. In fishes, two main forms are identified: ADH1 and ADH3, whereas in amphibians there is a new ADH form (ADH8). ADH2 is found in Mammalia and Aves, and they formed a monophyletic group. Additionally, mammalian ADH4 seems to result from an ADH1 duplication, while in Fungi, ADH formed clusters based on types and genera. The plant ADH isoforms constitute a basal clade in relation to ADHs from animals. We identified amino acid residues responsible for functional divergence between ADH types in fungi, mammals, and fishes. In mammals, these differences occur mainly between ADH1/ADH4 and ADH3/ADH5, whereas functional divergence occurred in fungi between ADH1/ADH5, ADH5/ADH4, and ADH5/ADH3. In fishes, the forms also seem to be functionally divergent. The ADH family expansion exemplifies a neofunctionalization process where reiterative duplication events are related to new activities.
Art and authenticity: the importance of originals in judgments of value.
Newman, George E; Bloom, Paul
2012-08-01
Why are original artworks valued more than identical duplicates? The present studies explore 2 mechanisms underlying the special value of original artwork: the assessment of the art object as a unique creative act (performance) and the degree of physical contact with the original artist (contagion). Across 5 experiments, participants were exposed to hypothetical scenarios in which an original object was duplicated. The type of object varied across experiments (e.g., a painting vs. a piece of furniture) as did the circumstances surrounding the creation of the original object and the duplicate. Overall, the results support assessments of performance and contagion as key factors underlying the value of original artwork, and they are consistent with the conclusion that the discrepancy in value between original artworks and perfect duplicates derives from people's lay theories about the domain of art, rather than from associations with particular kinds of art or certain cases of forgery. (PsycINFO Database Record (c) 2012 APA, all rights reserved).
Health risk assessment of inorganic arsenic intake of Ronphibun residents via duplicate diet study.
Saipan, Piyawat; Ruangwises, Suthep
2009-06-01
To assess health risk from exposure to inorganic arsenic via duplicate portion sampling method in Ronphibun residents. A hundred and forty samples (140 subject-days) were collected from participants in Ronphibun sub-district. Inorganic arsenic in duplicate diet sample was determined by acid digestion and hydride generation-atomic absorption spectrometry. Deterministic risk assessment is referenced throughout the present paper using United States Environmental Protection Agency (U.S. EPA) guidelines. The average daily dose and lifetime average daily dose of inorganic arsenic via duplicate diet were 0.0021 mg/kg/d and 0.00084 mg/kg/d, respectively. The risk estimates in terms of hazard quotient was 6.98 and cancer risk was 1.26 x 10(-3). The results of deterministic risk characterization both hazard quotient and cancer risk from exposure inorganic arsenic in duplicate diets were greater than safety risk levels of hazard quotient (1) and cancer risk (1 x 10(-4)).
Carrigan, Matthew A.; Uryasev, Oleg; Davis, Ross P.; Zhai, LanMin; Hurley, Thomas D.; Benner, Steven A.
2012-01-01
Background Gene duplication is a source of molecular innovation throughout evolution. However, even with massive amounts of genome sequence data, correlating gene duplication with speciation and other events in natural history can be difficult. This is especially true in its most interesting cases, where rapid and multiple duplications are likely to reflect adaptation to rapidly changing environments and life styles. This may be so for Class I of alcohol dehydrogenases (ADH1s), where multiple duplications occurred in primate lineages in Old and New World monkeys (OWMs and NWMs) and hominoids. Methodology/Principal Findings To build a preferred model for the natural history of ADH1s, we determined the sequences of nine new ADH1 genes, finding for the first time multiple paralogs in various prosimians (lemurs, strepsirhines). Database mining then identified novel ADH1 paralogs in both macaque (an OWM) and marmoset (a NWM). These were used with the previously identified human paralogs to resolve controversies relating to dates of duplication and gene conversion in the ADH1 family. Central to these controversies are differences in the topologies of trees generated from exonic (coding) sequences and intronic sequences. Conclusions/Significance We provide evidence that gene conversions are the primary source of difference, using molecular clock dating of duplications and analyses of microinsertions and deletions (micro-indels). The tree topology inferred from intron sequences appear to more correctly represent the natural history of ADH1s, with the ADH1 paralogs in platyrrhines (NWMs) and catarrhines (OWMs and hominoids) having arisen by duplications shortly predating the divergence of OWMs and NWMs. We also conclude that paralogs in lemurs arose independently. Finally, we identify errors in database interpretation as the source of controversies concerning gene conversion. These analyses provide a model for the natural history of ADH1s that posits four ADH1 paralogs in the ancestor of Catarrhine and Platyrrhine primates, followed by the loss of an ADH1 paralog in the human lineage. PMID:22859968
Salaneck, Erik; Ardell, David H; Larson, Earl T; Larhammar, Dan
2003-08-01
It has been debated whether the increase in gene number during early vertebrate evolution was due to multiple independent gene duplications or synchronous duplications of many genes. We describe here the cloning of three neuropeptide Y (NPY) receptor genes belonging to the Y1 subfamily in the spiny dogfish, Squalus acanthias, a cartilaginous fish. The three genes are orthologs of the mammalian subtypes Y1, Y4, and Y6, which are located in paralogous gene regions on different chromosomes in mammals. Thus, these genes arose by duplications of a chromosome region before the radiation of gnathostomes (jawed vertebrates). Estimates of duplication times from linearized trees together with evidence from other gene families supports two rounds of chromosome duplications or tetraploidizations early in vertebrate evolution. The anatomical distribution of mRNA was determined by reverse-transcriptase PCR and was found to differ from mammals, suggesting differential functional diversification of the new gene copies during the radiation of the vertebrate classes.
De novo duplication of 17p13.1-p13.2 in a patient with intellectual disability and obesity.
Kuroda, Yukiko; Ohashi, Ikuko; Tominaga, Makiko; Saito, Toshiyuki; Nagai, Jun-Ichi; Ida, Kazumi; Naruto, Takuya; Masuno, Mitsuo; Kurosawa, Kenji
2014-06-01
17p13.1 Deletion encompassing TP53 has been described as a syndrome characterized by intellectual disability and dysmorphic features. Only one case with a 17p13.1 duplication encompassing TP53 has been reported in a patient with intellectual disability, seizures, obesity, and diabetes mellitus. Here, we present a patient with a 17p13.1 duplication who exhibited obesity and intellectual disability, similar to the previous report. The 9-year-old proposita was referred for the evaluation of intellectual disability and obesity. She also exhibited insulin resistance and liver dysfunction. She had wide palpebral fissures, upturned nostrils, a long mandible, short and slender fingers, and skin hyperpigmentation. Array comparative genomic hybridization (array CGH) detected a 3.2 Mb duplication of 17p13.1-p13.2 encompassing TP53, FXR2, NLGN2, and SLC2A4, which encodes the insulin-responsive glucose transporter 4 (GLUT4) associated with insulin-stimulated glucose uptake in adipocytes and muscle. We suggest that 17p13.1 duplication may represent a clinically recognizable condition characterized partially by a characteristic facial phenotype, developmental delay, and obesity. © 2014 Wiley Periodicals, Inc.
Infrastructure for Clinical Trials in Duchenne Dystrophy
2010-09-13
Diagnosis Review v1.0 No-Duplicate Inclusion/Exclusion v1.0 No-Duplicate Inclusion/Exclusion MRI v1.0 No-Duplicate Medication History v1.0 Yes Medical...and Surgical Events v1.0 Yes Laboratory Collection v1.0 Yes Cardiology v1.1 Yes Central Cardiology Read Yes Central MRI Read Yes Adverse Event...Developmental Delay: Family History? Yes No Unsure Yes No Unsure Hypotonia: Family History? Yes No Unsure Yes No Unsure Abnormal MRI : Family
Mps1 as a link between centrosomes and genomic instability.
Kasbek, Christopher; Yang, Ching-Hui; Fisk, Harold A
2009-10-01
Centrosomes are microtubule-organizing centers that must be precisely duplicated before mitosis. Centrosomes regulate mitotic spindle assembly, and the presence of excess centrosomes leads to the production of aberrant mitotic spindles which generate chromosome segregation errors. Many human tumors possess excess centrosomes that lead to the production of abnormal spindles in situ. In some tumors, these extra centrosomes appear before aneuploidy, suggesting that defects in centrosome duplication might promote genomic instability and tumorigenesis. The Mps1 protein kinase is required for centrosome duplication, and preventing the proteasome-dependent degradation of Mps1 at centrosomes increases its local concentration and causes the production of excess centrosomes during a prolonged S-phase. Here, we show that Mps1 degradation is misregulated in two tumor-derived cell lines, and that the failure to appropriately degrade Mps1 correlates with the ability of these cells to produce extra centrosomes during a prolonged S-phase. In the 21NT breast-tumor derived cell line, a mutant Mps1 protein that is normally constitutively degraded can accumulate at centrosomes and perturb centrosome duplication, suggesting that these cells have a defect in the mechanisms that target Mps1 to the proteasome. In contrast, the U2OS osteosarcoma cell line expresses a nondegradable form of Mps1, which we show causes the dose-dependent over duplication of centrioles even at very low levels of expression. Our data demonstrate that defects in Mps1 degradation can occur through multiple mechanisms, and suggest that Mps1 may provide a link between the control of centrosome duplication and genomic instability. (c) 2009 Wiley-Liss, Inc.
Lorin, Thibault; Brunet, Frédéric G.; Laudet, Vincent; Volff, Jean-Nicolas
2018-01-01
Vertebrate pigmentation is a highly diverse trait mainly determined by neural crest cell derivatives. It has been suggested that two rounds (1R/2R) of whole-genome duplications (WGDs) at the basis of vertebrates allowed changes in gene regulation associated with neural crest evolution. Subsequently, the teleost fish lineage experienced other WGDs, including the teleost-specific Ts3R before teleost radiation and the more recent Ss4R at the basis of salmonids. As the teleost lineage harbors the highest number of pigment cell types and pigmentation diversity in vertebrates, WGDs might have contributed to the evolution and diversification of the pigmentation gene repertoire in teleosts. We have compared the impact of the basal vertebrate 1R/2R duplications with that of the teleost-specific Ts3R and salmonid-specific Ss4R WGDs on 181 gene families containing genes involved in pigmentation. We show that pigmentation genes (PGs) have been globally more frequently retained as duplicates than other genes after Ts3R and Ss4R but not after the early 1R/2R. This is also true for non-pigmentary paralogs of PGs, suggesting that the function in pigmentation is not the sole key driver of gene retention after WGDs. On the long-term, specific categories of PGs have been repeatedly preferentially retained after ancient 1R/2R and Ts3R WGDs, possibly linked to the molecular nature of their proteins (e.g., DNA binding transcriptional regulators) and their central position in protein-protein interaction networks. Taken together, our results support a major role of WGDs in the diversification of the pigmentation gene repertoire in the teleost lineage, with a possible link with the diversity of pigment cell lineages observed in these animals compared to other vertebrates. PMID:29599177
Maciejowski, John; Ahn, James Hyungsoo; Cipriani, Patricia Giselle; Killian, Darrell J.; Chaudhary, Aisha L.; Lee, Ji Inn; Voutev, Roumen; Johnsen, Robert C.; Baillie, David L.; Gunsalus, Kristin C.; Fitch, David H. A.; Hubbard, E. Jane Albert
2005-01-01
We report molecular genetic studies of three genes involved in early germ-line proliferation in Caenorhabditis elegans that lend unexpected insight into a germ-line/soma functional separation of autosomal/X-linked duplicated gene pairs. In a genetic screen for germ-line proliferation-defective mutants, we identified mutations in rpl-11.1 (L11 protein of the large ribosomal subunit), pab-1 [a poly(A)-binding protein], and glp-3/eft-3 (an elongation factor 1-α homolog). All three are members of autosome/X gene pairs. Consistent with a germ-line-restricted function of rpl-11.1 and pab-1, mutations in these genes extend life span and cause gigantism. We further examined the RNAi phenotypes of the three sets of rpl genes (rpl-11, rpl-24, and rpl-25) and found that for the two rpl genes with autosomal/X-linked pairs (rpl-11 and rpl-25), zygotic germ-line function is carried by the autosomal copy. Available RNAi results for highly conserved autosomal/X-linked gene pairs suggest that other duplicated genes may follow a similar trend. The three rpl and the pab-1/2 duplications predate the divergence between C. elegans and C. briggsae, while the eft-3/4 duplication appears to have occurred in the lineage to C. elegans after it diverged from C. briggsae. The duplicated C. briggsae orthologs of the three C. elegans autosomal/X-linked gene pairs also display functional differences between paralogs. We present hypotheses for evolutionary mechanisms that may underlie germ-line/soma subfunctionalization of duplicated genes, taking into account the role of X chromosome silencing in the germ line and analogous mammalian phenomena. PMID:15687263
A local duplication of the Melanocortin receptor 1 locus in Astyanax
Gross, Joshua B.; Weagley, James; Stahl, Bethany A.; Ma, Li; Espinasa, Luis; McGaugh, Suzanne E.
2017-01-01
In this study, we report evidence of a novel duplication of Melanocortin receptor 1 (Mc1r) in the cavefish genome. This locus was discovered following the observation of excessive allelic diversity in a ~820 bp fragment of Mc1r amplified via degenerate PCR from a natural population of Astyanax aeneus fish from Guerrero, Mexico. The cavefish genome reveals the presence of two closely related Mc1r open reading frames separated by a 1.46 kb intergenic region. One open reading frame corresponds to the previously reported Mc1r receptor, and the other open reading frame (duplicate copy) is 975 bp in length, encoding a receptor of 325 amino acids. Sequence similarity analyses position both copies in the syntenic region of the single Mc1r locus in 16 representative craniate genomes spanning bony fish (including Astyanax) to mammals, suggesting we discovered tandem duplicates of this important gene. The two Mc1r copies share ~89% sequence similarity, and, within Astyanax, are more similar to one another compared to other melanocortin family members. Future studies will inform the precise functional significance of the duplicated Mc1r locus, and if this novel copy number variant may have adaptive significance for the Astyanax lineage. PMID:28738163
Duplicated facial nerve trunk with a first branchial cleft cyst.
Hinson, Drew; Poteet, Perry; Bower, Charles
2014-03-01
First branchial cleft anomalies are rare and their various anatomical relationships to the facial nerve have been described. We encountered a 15-year-old female with a type II first branchial cleft cyst presenting as a right neck mass that we found during surgical excision to transverse two main facial nerve trunks. To our knowledge, this is the first reported case of a first branchial cleft anomaly in conjunction with a duplicated facial nerve trunk. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.
Kohmoto, Tomohiro; Okamoto, Nana; Naruto, Takuya; Murata, Chie; Ouchi, Yuya; Fujita, Naoko; Inagaki, Hidehito; Satomura, Shigeko; Okamoto, Nobuhiko; Saito, Masako; Masuda, Kiyoshi; Kurahashi, Hiroki; Imoto, Issei
2017-01-01
Complex genomic rearrangements (CGRs) consisting of interstitial triplications in conjunction with uniparental isodisomy (isoUPD) have rarely been reported in patients with multiple congenital anomalies (MCA)/intellectual disability (ID). One-ended DNA break repair coupled with microhomology-mediated break-induced replication (MMBIR) has been recently proposed as a possible mechanism giving rise to interstitial copy number gains and distal isoUPD, although only a few cases providing supportive evidence in human congenital diseases with MCA have been documented. Here, we report on the chromosomal microarray (CMA)-based identification of the first known case with concurrent interstitial duplication at 1q42.12-q42.2 and triplication at 1q42.2-q43 followed by isoUPD for the remainder of chromosome 1q (at 1q43-qter). In distal 1q duplication/triplication overlapping with 1q42.12-q43, variable clinical features have been reported, and our 25-year-old patient with MCA/ID presented with some of these frequently described features. Further analyses including the precise mapping of breakpoint junctions within the CGR in a sequence level suggested that the CGR found in association with isoUPD in our case is a triplication with flanking duplications, characterized as a triplication with a particularly long duplication-inverted triplication-duplication (DUP-TRP/INV-DUP) structure. Because microhomology was observed in both junctions between the triplicated region and the flanking duplicated regions, our case provides supportive evidence for recently proposed replication-based mechanisms, such as MMBIR, underlying the formation of CGRs + isoUPD implicated in chromosomal disorders. To the best of our knowledge, this is the first case of CGRs + isoUPD observed in 1q and having DUP-TRP/INV-DUP structure with a long proximal duplication, which supports MMBIR-based model for genomic rearrangements. Molecular cytogenetic analyses using CMA containing single-nucleotide polymorphism probes with further analyses of the breakpoint junctions are recommended in cases suspected of having complex chromosomal abnormalities based on discrepancies between clinical and conventional cytogenetic findings.
Pseudohypoparathyroidism type Ib associated with novel duplications in the GNAS locus.
Perez-Nanclares, Gustavo; Velayos, Teresa; Vela, Amaya; Muñoz-Torres, Manuel; Castaño, Luis
2015-01-01
Pseudohypoparathyroidism type 1b (PHP-Ib) is characterized by renal resistance to PTH (and, sometimes, a mild resistance to TSH) and absence of any features of Albright's hereditary osteodystrophy. Patients with PHP-Ib suffer of defects in the methylation pattern of the complex GNAS locus. PHP-Ib can be either sporadic or inherited in an autosomal dominant pattern. Whereas familial PHP-Ib is well characterized at the molecular level, the genetic cause of sporadic PHP-Ib cases remains elusive, although some molecular mechanisms have been associated with this subtype. The aim of the study was to investigate the molecular and imprinting defects in the GNAS locus in two unrelated patients with PHP-Ib. We have analyzed the GNAS locus by direct sequencing, Methylation-Specific Multiplex Ligation-dependent Probe Amplification, microsatellites, Quantitative Multiplex PCR of Short Fluorescent fragments and array-Comparative Genomic Hybridization studies in order to characterize two unrelated families with clinical features of PHP-Ib. We identified two duplications in the GNAS region in two patients with PHP-Ib: one of them, comprising ∼ 320 kb, occurred 'de novo' in the patient, whereas the other one, of ∼ 179 kb in length, was inherited from the maternal allele. In both cases, no other known genetic cause was observed. In this article, we describe the to-our-knowledge biggest duplications reported so far in the GNAS region. Both are associated to PHP-Ib, one of them occurring 'de novo' and the other one being maternally inherited.
A Phylogenomic Investigation of CYCLOIDEA-Like TCP Genes in the Leguminosae1
Citerne, Hélène L.; Luo, Da; Pennington, R. Toby; Coen, Enrico; Cronk, Quentin C.B.
2003-01-01
Numerous TCP genes (transcription factors with a TCP domain) occur in legumes. Genes of this class in Arabidopsis (TCP1) and snapdragon (Antirrhinum majus; CYCLOIDEA) have been shown to be asymmetrically expressed in developing floral primordia, and in snapdragon, they are required for floral zygomorphy (bilaterally symmetrical flowers). These genes are therefore particularly interesting in Leguminosae, a family that is thought to have evolved zygomorphy independently from other zygomorphic angiosperm lineages. Using a phylogenomic approach, we show that homologs of TCP1/CYCLOIDEA occur in legumes and may be divided into two main classes (LEGCYC group I and II), apparently the result of an early duplication, and each class is characterized by a typical amino acid signature in the TCP domain. Furthermore, group I genes in legumes may be divided into two subclasses (LEGCYC IA and IB), apparently the result of a duplication near the base of the papilionoid legumes or below. Most papilionoid legumes investigated have all three genes present (LEGCYC IA, IB, and II), inviting further work to investigate possible functional difference between the three types. However, within these three major gene groups, the precise relationships of the paralogs between species are difficult to determine probably because of a complex history of duplication and loss with lineage sorting or heterotachy (within-site rate variation) due to functional differentiation. The results illustrate both the potential and the difficulties of orthology determination in variable gene families, on which the phylogenomic approach to formulating hypotheses of function depends. PMID:12644657
Use of Diagnostic Imaging in the Evaluation of Gastrointestinal Tract Duplications
Laskowska, Katarzyna; Gałązka, Przemysław; Daniluk-Matraś, Irena; Leszczyński, Waldemar; Serafin, Zbigniew
2014-01-01
Summary Background Gastrointestinal tract duplication is a rare malformation associated with the presence of additional segment of the fetal gut. The aim of this study was to retrospectively review clinical features and imaging findings in intraoperatively confirmed cases of gastrointestinal tract duplication in children. Material/Methods The analysis included own material from the years 2002–2012. The analyzed group included 14 children, among them 8 boys and 6 girls. The youngest patient was diagnosed at the age of three weeks, and the oldest at 12 years of age. Results The duplication cysts were identified in the esophagus (n=2), stomach (n=5), duodenum (n=1), terminal ileum (n=5), and rectum (n=1). In four cases, the duplication coexisted with other anomalies, such as patent urachus, Meckel’s diverticulum, mesenteric cyst, and accessory pancreas. Clinical manifestation of gastrointestinal duplication cysts was variable, and some of them were detected accidently. Thin- or thick-walled cystic structures adjacent to the wall of neighboring gastrointestinal segment were documented on diagnostic imaging. Conclusions Ultrasound and computed tomography are the methods of choice in the evaluation of gastrointestinal duplication cysts. Apart from the diagnosis of the duplication cyst, an important issue is the detection of concomitant developmental pathologies, including pancreatic heterotopy. PMID:25114725
Chatterjee, Sayan; Mondal, Prabodh Chandra; Pandey, Shashi Bhushan; Achar, Arun
2014-10-01
An accessory penis is a very rare anomaly. Only five cases have been reported thus far to our knowledge. We present the case of a child aged 2 years and 10 months who had a penis-like structure (containing phallus and glans) attached to the right buttock. Associated anomalies were a non-communicating type of colonic duplication, a paramedian stenosed anal opening, a horse-shoe kidney, posterior urethral valves, scoliosis of the lumbo-sacral spine, polydactyly and equino-varus deformity of the right foot. As far as we can tell, this is the first report of an accessory penis associated with colonic duplication and other congenital anomalies. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
MECP2 duplications in six patients with complex sex chromosome rearrangements
Breman, Amy M; Ramocki, Melissa B; Kang, Sung-Hae L; Williams, Misti; Freedenberg, Debra; Patel, Ankita; Bader, Patricia I; Cheung, Sau Wai
2011-01-01
Duplications of the Xq28 chromosome region resulting in functional disomy are associated with a distinct clinical phenotype characterized by infantile hypotonia, severe developmental delay, progressive neurological impairment, absent speech, and proneness to infections. Increased expression of the dosage-sensitive MECP2 gene is considered responsible for the severe neurological impairments observed in affected individuals. Although cytogenetically visible duplications of Xq28 are well documented in the published literature, recent advances using array comparative genomic hybridization (CGH) led to the detection of an increasing number of microduplications spanning MECP2. In rare cases, duplication results from intrachromosomal rearrangement between the X and Y chromosomes. We report six cases with sex chromosome rearrangements involving duplication of MECP2. Cases 1–4 are unbalanced rearrangements between X and Y, resulting in MECP2 duplication. The additional Xq material was translocated to Yp in three cases (cases 1–3), and to the heterochromatic region of Yq12 in one case (case 4). Cases 5 and 6 were identified by array CGH to have a loss in copy number at Xp and a gain in copy number at Xq28 involving the MECP2 gene. In both cases, fluorescent in situ hybridization (FISH) analysis revealed a recombinant X chromosome containing the duplicated material from Xq28 on Xp, resulting from a maternal pericentric inversion. These cases add to a growing number of MECP2 duplications that have been detected by array CGH, while demonstrating the value of confirmatory chromosome and FISH studies for the localization of the duplicated material and the identification of complex rearrangements. PMID:21119712
Noguchi, Tadahide; Sugiyama, Tomoko; Sasaguri, Ken-Ichi; Ono, Shigeru; Maeda, Kosaku; Nishino, Hiroshi; Jinbu, Yoshinori; Mori, Yoshiyuki
2017-03-01
A 1-day-old male infant was referred to our department for evaluation of multiple malformations in his oral cavity. He was diagnosed duplication of the pituitary gland-plus syndrome with epignathus, cleft palate, duplication of the mandible, and a lobulated tongue. A thumb-sized mass lesion was visible on the hard palate. The duplicated mandible and lower lip was fused at the midline. The alveolar ridge was protruding through a wide-cleft soft palate involving the uvula. Further examination showed a lobulated tongue, which was seen behind the duplicated part of the mandible. Five days after birth, tracheotomy and epignathus resection were performed. At 7 months of age, the excess tissue of the duplicated mandible was resected at the area of adhesion on the lingual side, and the duplicated tongue and lip were reconstructed. A palatoplasty was performed at 20 months of age. Thereafter, the patient's progress was uneventful, with no abnormality in swallowing. No recurrence of epignathus has been observed during 2 years of follow-up.
Chen, Jie; Moinard, Magalie; Xu, Jianping; Wang, Shouxian; Foulongne-Oriol, Marie; Zhao, Ruilin; Hyde, Kevin D.; Callac, Philippe
2016-01-01
The internal transcribed spacer (ITS) region of the nuclear ribosomal RNA gene cluster is widely used in fungal taxonomy and phylogeographic studies. The medicinal and edible mushroom Agaricus subrufescens has a worldwide distribution with a high level of polymorphism in the ITS region. A previous analysis suggested notable ITS sequence heterogeneity within the wild French isolate CA487. The objective of this study was to investigate the pattern and potential mechanism of ITS sequence heterogeneity within this strain. Using PCR, cloning, and sequencing, we identified three types of ITS sequences, A, B, and C with a balanced distribution, which differed from each other at 13 polymorphic positions. The phylogenetic comparisons with samples from different continents revealed that the type C sequence was similar to those found in Oceanian and Asian specimens of A. subrufescens while types A and B sequences were close to those found in the Americas or in Europe. We further investigated the inheritance of these three ITS sequence types by analyzing their distribution among single-spore isolates from CA487. In this analysis, three co-dominant markers were used firstly to distinguish the homokaryotic offspring from the heterokaryotic offspring. The homokaryotic offspring were then analyzed for their ITS types. Our genetic analyses revealed that types A and B were two alleles segregating at one locus ITSI, while type C was not allelic with types A and B but was located at another unlinked locus ITSII. Furthermore, type C was present in only one of the two constitutive haploid nuclei (n) of the heterokaryotic (n+n) parent CA487. These data suggest that there was a relatively recent introduction of the type C sequence and a duplication of the ITS locus in this strain. Whether other genes were also transferred and duplicated and their impacts on genome structure and stability remain to be investigated. PMID:27228131
2011-01-01
Background Missense mutations in three different genes encoding amyloid-β precursor protein, presenilin 1 and presenilin 2 are recognized to cause familial early-onset Alzheimer disease. Also duplications of the amyloid precursor protein gene have been shown to cause the disease. At the Dept. of Geriatric Medicine, Karolinska University Hospital, Sweden, patients are referred for mutation screening for the identification of nucleotide variations and for determining copy-number of the APP locus. Methods We combined the method of microsatellite marker genotyping with a quantitative real-time PCR analysis to detect duplications in patients with Alzheimer disease. Results In 22 DNA samples from individuals diagnosed with clinical Alzheimer disease, we identified one patient carrying a duplication on chromosome 21 which included the APP locus. Further mapping of the chromosomal region by array-comparative genome hybridization showed that the duplication spanned a maximal region of 1.09 Mb. Conclusions This is the first report of an APP duplication in a Swedish Alzheimer patient and describes the use of quantitative real-time PCR as a tool for determining copy-number of the APP locus. PMID:22044463
Thonberg, Håkan; Fallström, Marie; Björkström, Jenny; Schoumans, Jacqueline; Nennesmo, Inger; Graff, Caroline
2011-11-01
Missense mutations in three different genes encoding amyloid-β precursor protein, presenilin 1 and presenilin 2 are recognized to cause familial early-onset Alzheimer disease. Also duplications of the amyloid precursor protein gene have been shown to cause the disease. At the Dept. of Geriatric Medicine, Karolinska University Hospital, Sweden, patients are referred for mutation screening for the identification of nucleotide variations and for determining copy-number of the APP locus. We combined the method of microsatellite marker genotyping with a quantitative real-time PCR analysis to detect duplications in patients with Alzheimer disease. In 22 DNA samples from individuals diagnosed with clinical Alzheimer disease, we identified one patient carrying a duplication on chromosome 21 which included the APP locus. Further mapping of the chromosomal region by array-comparative genome hybridization showed that the duplication spanned a maximal region of 1.09 Mb. This is the first report of an APP duplication in a Swedish Alzheimer patient and describes the use of quantitative real-time PCR as a tool for determining copy-number of the APP locus.
Lam, Desmond; Mizerski, Richard
2017-06-01
The objective of this study is to explore the gambling participations and game purchase duplication of light regular, heavy regular and pathological gamblers by applying the Duplication of Purchase Law. Current study uses data collected by the Australian Productivity Commission for eight different types of games. Key behavioral statistics on light regular, heavy regular, and pathological gamblers were computed and compared. The key finding is that pathological gambling, just like regular gambling, follows the Duplication of Purchase Law, which states that the dominant factor of purchase duplication between two brands is their market shares. This means that gambling between any two games at pathological level, like any regular consumer purchases, exhibits "law-like" regularity based on the pathological gamblers' participation rate of each game. Additionally, pathological gamblers tend to gamble more frequently across all games except lotteries and instant as well as make greater cross-purchases compared to heavy regular gamblers. A better understanding of the behavioral traits between regular (particularly heavy regular) and pathological gamblers can be useful to public policy makers and social marketers in order to more accurately identify such gamblers and better manage the negative impacts of gambling.
Emms, David M.; Covshoff, Sarah; Hibberd, Julian M.; ...
2016-03-24
C4 photosynthesis is considered one of the most remarkable examples of evolutionary convergence in eukaryotes. However, it is unknown whether the evolution of C4 photosynthesis required the evolution of new genes. Genome-wide gene-tree species-tree reconciliation of seven monocot species that span two origins of C4 photosynthesis revealed that there was significant parallelism in the duplication and retention of genes coincident with the evolution of C4 photosynthesis in these lineages. Specifically, 21 orthologous genes were duplicated and retained independently in parallel at both C4 origins. Analysis of this gene cohort revealed that the set of parallel duplicated and retained genes ismore » enriched for genes that are preferentially expressed in bundle sheath cells, the cell type in which photosynthesis was activated during C4 evolution. Moreover, functional analysis of the cohort of parallel duplicated genes identified SWEET-13 as a potential key transporter in the evolution of C4 photosynthesis in grasses, and provides new insight into the mechanism of phloem loading in these C4 species.« less
Novel partial duplication of EYA1 causes branchiootic syndrome in a large Brazilian family.
Dantas, Vitor G L; Freitas, Erika L; Della-Rosa, Valter A; Lezirovitz, Karina; de Moraes, Ana Maria S M; Ramos, Silvia B; Oiticica, Jeanne; Alves, Leandro U; Pearson, Peter L; Rosenberg, Carla; Mingroni-Netto, Regina C
2015-01-01
To identify novel genetic causes of syndromic hearing loss in Brazil. To map a candidate chromosomal region through linkage studies in an extensive Brazilian family and identify novel pathogenic variants using sequencing and array-CGH. Brazilian pedigree with individuals affected by BO syndrome characterized by deafness and malformations of outer, middle and inner ear, auricular and cervical fistulae, but no renal abnormalities. Whole genome microarray-SNP scanning on samples of 11 affected individuals detected a multipoint Lod score of 2.6 in the EYA1 gene region (chromosome 8). Sequencing of EYA1 in affected patients did not reveal pathogenic mutations. However, oligonucleotide-array-CGH detected a duplication of 71.8Kb involving exons 4 to 10 of EYA1 (heterozygous state). Real-time-PCR confirmed the duplication in fourteen of fifteen affected individuals and absence in 13 unaffected individuals. The exception involved a consanguineous parentage and was assumed to involve a different genetic mechanism. Our findings implicate this EYA1 partial duplication segregating with BO phenotype in a Brazilian pedigree and is the first description of a large duplication leading to the BOR/BO syndrome.
Sequence and Analysis of the Tomato JOINTLESS Locus1
Mao, Long; Begum, Dilara; Goff, Stephen A.; Wing, Rod A.
2001-01-01
A 119-kb bacterial artificial chromosome from the JOINTLESS locus on the tomato (Lycopersicon esculentum) chromosome 11 contained 15 putative genes. Repetitive sequences in this region include one copia-like LTR retrotransposon, 13 simple sequence repeats, three copies of a novel type III foldback transposon, and four putative short DNA repeats. Database searches showed that the foldback transposon and the short DNA repeats seemed to be associated preferably with genes. The predicted tomato genes were compared with the complete Arabidopsis genome. Eleven out of 15 tomato open reading frames were found to be colinear with segments on five Arabidopsis bacterial artificial chromosome/P1-derived artificial chromosome clones. The synteny patterns, however, did not reveal duplicated segments in Arabidopsis, where over half of the genome is duplicated. Our analysis indicated that the microsynteny between the tomato and Arabidopsis genomes was still conserved at a very small scale but was complicated by the large number of gene families in the Arabidopsis genome. PMID:11457984
Zimmer, Christoph T; Garrood, William T; Singh, Kumar Saurabh; Randall, Emma; Lueke, Bettina; Gutbrod, Oliver; Matthiesen, Svend; Kohler, Maxie; Nauen, Ralf; Davies, T G Emyr; Bass, Chris
2018-01-22
Gene duplication is a major source of genetic variation that has been shown to underpin the evolution of a wide range of adaptive traits [1, 2]. For example, duplication or amplification of genes encoding detoxification enzymes has been shown to play an important role in the evolution of insecticide resistance [3-5]. In this context, gene duplication performs an adaptive function as a result of its effects on gene dosage and not as a source of functional novelty [3, 6-8]. Here, we show that duplication and neofunctionalization of a cytochrome P450, CYP6ER1, led to the evolution of insecticide resistance in the brown planthopper. Considerable genetic variation was observed in the coding sequence of CYP6ER1 in populations of brown planthopper collected from across Asia, but just two sequence variants are highly overexpressed in resistant strains and metabolize imidacloprid. Both variants are characterized by profound amino-acid alterations in substrate recognition sites, and the introduction of these mutations into a susceptible P450 sequence is sufficient to confer resistance. CYP6ER1 is duplicated in resistant strains with individuals carrying paralogs with and without the gain-of-function mutations. Despite numerical parity in the genome, the susceptible and mutant copies exhibit marked asymmetry in their expression with the resistant paralogs overexpressed. In the primary resistance-conferring CYP6ER1 variant, this results from an extended region of novel sequence upstream of the gene that provides enhanced expression. Our findings illustrate the versatility of gene duplication in providing opportunities for functional and regulatory innovation during the evolution of an adaptive trait. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Genotype-phenotype characterization in 13 individuals with chromosome Xp11.22 duplications.
Grams, Sarah E; Argiropoulos, Bob; Lines, Matthew; Chakraborty, Pranesh; Mcgowan-Jordan, Jean; Geraghty, Michael T; Tsang, Marilyn; Eswara, Marthand; Tezcan, Kamer; Adams, Kelly L; Linck, Leesa; Himes, Patricia; Kostiner, Dana; Zand, Dina J; Stalker, Heather; Driscoll, Daniel J; Huang, Taosheng; Rosenfeld, Jill A; Li, Xu; Chen, Emily
2016-04-01
We report 13 new individuals with duplications in Xp11.22-p11.23. The index family has one male and two female members in three generations with mild-severe intellectual disability (ID), speech delay, dysmorphic features, early puberty, constipation, and/or hand and foot abnormalities. Affected individuals were found to have two small duplications in Xp11.22 at nucleotide position (hg19) 50,112,063-50,456,458 bp (distal) and 53,160,114-53,713,154 bp (proximal). Collectively, these two regions include 14 RefSeq genes, prompting collection of a larger cohort of patients, in an attempt to delineate critical genes associated with the observed phenotype. In total, we have collected data on nine individuals with duplications overlapping the distal duplication region containing SHROOM4 and DGKK and eight individuals overlapping the proximal region including HUWE1. Duplications of HUWE1 have been previously associated with non-syndromic ID. Our data, with previously published reports, suggest that duplications involving SHROOM4 and DGKK may represent a new syndromic X-linked ID critical region associated with mild to severe ID, speech delay +/- dysarthria, attention deficit disorder, precocious puberty, constipation, and motor delay. We frequently observed foot abnormalities, 5th finger clinodactyly, tapering fingers, constipation, and exercise intolerance in patients with duplications of these two genes. Regarding duplications including the proximal region, our observations agree with previous studies, which have found associations with intellectual disability. In addition, expressive language delay, failure to thrive, motor delay, and 5th finger clinodactyly were also frequently observed in patients with the proximal duplication. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emms, David M.; Covshoff, Sarah; Hibberd, Julian M.
C4 photosynthesis is considered one of the most remarkable examples of evolutionary convergence in eukaryotes. However, it is unknown whether the evolution of C4 photosynthesis required the evolution of new genes. Genome-wide gene-tree species-tree reconciliation of seven monocot species that span two origins of C4 photosynthesis revealed that there was significant parallelism in the duplication and retention of genes coincident with the evolution of C4 photosynthesis in these lineages. Specifically, 21 orthologous genes were duplicated and retained independently in parallel at both C4 origins. Analysis of this gene cohort revealed that the set of parallel duplicated and retained genes ismore » enriched for genes that are preferentially expressed in bundle sheath cells, the cell type in which photosynthesis was activated during C4 evolution. Moreover, functional analysis of the cohort of parallel duplicated genes identified SWEET-13 as a potential key transporter in the evolution of C4 photosynthesis in grasses, and provides new insight into the mechanism of phloem loading in these C4 species.« less
Regulation of the neuropathy-associated Pmp22 gene by a distal super-enhancer.
Pantera, Harrison; Moran, John J; Hung, Holly A; Pak, Evgenia; Dutra, Amalia; Svaren, John
2018-05-16
Peripheral nerve myelination is adversely affected in the most common form of the hereditary peripheral neuropathy called Charcot-Marie-Tooth Disease. This form, classified as CMT1A, is caused by a 1.4 Mb duplication on chromosome 17, which includes the abundantly expressed Schwann cell myelin gene, Peripheral Myelin Protein 22 (PMP22). This is one of the most common copy number variants causing neurological disease. Overexpression of Pmp22 in rodent models recapitulates several aspects of neuropathy, and reduction of Pmp22 in such models results in amelioration of the neuropathy phenotype. Recently we identified a potential super-enhancer approximately 90-130 kb upstream of the Pmp22 transcription start sites. This super-enhancer encompasses a cluster of individual enhancers that have the acetylated histone H3K27 active enhancer mark, and coincides with smaller duplications identified in patients with milder CMT1A-like symptoms, where the PMP22 coding region itself was not part of the duplication. In this study, we have utilized genome editing to create a deletion of this super-enhancer to determine its role in Pmp22 regulation. Our data show a significant decrease in Pmp22 transcript expression using allele-specific internal controls. Moreover, the P2 promoter of the Pmp22 gene, which is used in other cell types, is affected, but we find that the Schwann cell-specific P1 promoter is disproportionately more sensitive to loss of the super-enhancer. These data show for the first time the requirement of these upstream enhancers for full Pmp22 expression.
Antonini, Sylvie; Kim, Chong A; Sugayama, Sofia M; Vianna-Morgante, Angela M
2002-11-22
Two chromosome 3 short arm duplications identified through G-banding were further investigated using fluorescence in situ hybridization (FISH) and polymerase chain reaction (PCR) of microsatellite markers, aiming at mapping breakpoints and disclosing mechanisms of origin of these chromosome aberrations. Patient 1 was found to be a mosaic: a 3p12 --> 3p21 duplication was observed in most of his cells, and a normal cell line occurred with a frequency of about 3% in blood. In situ hybridization of chromosome 3 short- and long-arm libraries confirmed the short-arm duplication. Using FISH of short-arm sequences, the YAC 961_h_3 was shown to contain the proximal breakpoint (3p12.1 or 3p12.2), and the distal breakpoint was located between the YACs 729_c_3 and 806_h_2, which are adjacent in the WC 3.10 contig (3p21.1). In Patient 2, G-banding indicated a 3p21 --> 3p24 duplication, without mosaicism. In situ hybridization of chromosome 3 short- and long-arm libraries confirmed the duplication of short-arm sequences. FISH of chromosome 3 sequences showed that the YAC 749_a_7 spanned the proximal breakpoint (3p21.33). The distal breakpoint mapped to the interval between YACs 932_b_6 (3p24.3) and 909_b_6 (3p25). In both cases, microsatellite genotyping pointed to a rearrangement between paternal sister chromatids. Copyright 2002 Wiley-Liss, Inc.
Zeng, Lu; Kortschak, R Daniel; Raison, Joy M; Bertozzi, Terry; Adelson, David L
2018-01-01
Transposable Elements (TEs) are mobile DNA sequences that make up significant fractions of amniote genomes. However, they are difficult to detect and annotate ab initio because of their variable features, lengths and clade-specific variants. We have addressed this problem by refining and developing a Comprehensive ab initio Repeat Pipeline (CARP) to identify and cluster TEs and other repetitive sequences in genome assemblies. The pipeline begins with a pairwise alignment using krishna, a custom aligner. Single linkage clustering is then carried out to produce families of repetitive elements. Consensus sequences are then filtered for protein coding genes and then annotated using Repbase and a custom library of retrovirus and reverse transcriptase sequences. This process yields three types of family: fully annotated, partially annotated and unannotated. Fully annotated families reflect recently diverged/young known TEs present in Repbase. The remaining two types of families contain a mixture of novel TEs and segmental duplications. These can be resolved by aligning these consensus sequences back to the genome to assess copy number vs. length distribution. Our pipeline has three significant advantages compared to other methods for ab initio repeat identification: 1) we generate not only consensus sequences, but keep the genomic intervals for the original aligned sequences, allowing straightforward analysis of evolutionary dynamics, 2) consensus sequences represent low-divergence, recently/currently active TE families, 3) segmental duplications are annotated as a useful by-product. We have compared our ab initio repeat annotations for 7 genome assemblies to other methods and demonstrate that CARP compares favourably with RepeatModeler, the most widely used repeat annotation package.
Zeng, Lu; Kortschak, R. Daniel; Raison, Joy M.
2018-01-01
Transposable Elements (TEs) are mobile DNA sequences that make up significant fractions of amniote genomes. However, they are difficult to detect and annotate ab initio because of their variable features, lengths and clade-specific variants. We have addressed this problem by refining and developing a Comprehensive ab initio Repeat Pipeline (CARP) to identify and cluster TEs and other repetitive sequences in genome assemblies. The pipeline begins with a pairwise alignment using krishna, a custom aligner. Single linkage clustering is then carried out to produce families of repetitive elements. Consensus sequences are then filtered for protein coding genes and then annotated using Repbase and a custom library of retrovirus and reverse transcriptase sequences. This process yields three types of family: fully annotated, partially annotated and unannotated. Fully annotated families reflect recently diverged/young known TEs present in Repbase. The remaining two types of families contain a mixture of novel TEs and segmental duplications. These can be resolved by aligning these consensus sequences back to the genome to assess copy number vs. length distribution. Our pipeline has three significant advantages compared to other methods for ab initio repeat identification: 1) we generate not only consensus sequences, but keep the genomic intervals for the original aligned sequences, allowing straightforward analysis of evolutionary dynamics, 2) consensus sequences represent low-divergence, recently/currently active TE families, 3) segmental duplications are annotated as a useful by-product. We have compared our ab initio repeat annotations for 7 genome assemblies to other methods and demonstrate that CARP compares favourably with RepeatModeler, the most widely used repeat annotation package. PMID:29538441
Innes, Roger W; Ameline-Torregrosa, Carine; Ashfield, Tom; Cannon, Ethalinda; Cannon, Steven B; Chacko, Ben; Chen, Nicolas W G; Couloux, Arnaud; Dalwani, Anita; Denny, Roxanne; Deshpande, Shweta; Egan, Ashley N; Glover, Natasha; Hans, Christian S; Howell, Stacy; Ilut, Dan; Jackson, Scott; Lai, Hongshing; Mammadov, Jafar; Del Campo, Sara Martin; Metcalf, Michelle; Nguyen, Ashley; O'Bleness, Majesta; Pfeil, Bernard E; Podicheti, Ram; Ratnaparkhe, Milind B; Samain, Sylvie; Sanders, Iryna; Ségurens, Béatrice; Sévignac, Mireille; Sherman-Broyles, Sue; Thareau, Vincent; Tucker, Dominic M; Walling, Jason; Wawrzynski, Adam; Yi, Jing; Doyle, Jeff J; Geffroy, Valérie; Roe, Bruce A; Maroof, M A Saghai; Young, Nevin D
2008-12-01
The genomes of most, if not all, flowering plants have undergone whole genome duplication events during their evolution. The impact of such polyploidy events is poorly understood, as is the fate of most duplicated genes. We sequenced an approximately 1 million-bp region in soybean (Glycine max) centered on the Rpg1-b disease resistance gene and compared this region with a region duplicated 10 to 14 million years ago. These two regions were also compared with homologous regions in several related legume species (a second soybean genotype, Glycine tomentella, Phaseolus vulgaris, and Medicago truncatula), which enabled us to determine how each of the duplicated regions (homoeologues) in soybean has changed following polyploidy. The biggest change was in retroelement content, with homoeologue 2 having expanded to 3-fold the size of homoeologue 1. Despite this accumulation of retroelements, over 77% of the duplicated low-copy genes have been retained in the same order and appear to be functional. This finding contrasts with recent analyses of the maize (Zea mays) genome, in which only about one-third of duplicated genes appear to have been retained over a similar time period. Fluorescent in situ hybridization revealed that the homoeologue 2 region is located very near a centromere. Thus, pericentromeric localization, per se, does not result in a high rate of gene inactivation, despite greatly accelerated retrotransposon accumulation. In contrast to low-copy genes, nucleotide-binding-leucine-rich repeat disease resistance gene clusters have undergone dramatic species/homoeologue-specific duplications and losses, with some evidence for partitioning of subfamilies between homoeologues.
A data types profile suitable for use with ISO EN 13606.
Sun, Shanghua; Austin, Tony; Kalra, Dipak
2012-12-01
ISO EN 13606 is a five part International Standard specifying how Electronic Healthcare Record (EHR) information should be communicated between different EHR systems and repositories. Part 1 of the standard defines an information model for representing the EHR information itself, including the representation of types of data value. A later International Standard, ISO 21090:2010, defines a comprehensive set of models for data types needed by all health IT systems. This latter standard is vast, and duplicates some of the functions already handled by ISO EN 13606 part 1. A profile (sub-set) of ISO 21090 would therefore be expected to provide EHR system vendors with a more specially tailored set of data types to implement and avoid the risk of providing more than one modelling option for representing the information properties. This paper describes the process and design decisions made for developing a data types profile for EHR interoperability.
Biased exonization of transposed elements in duplicated genes: A lesson from the TIF-IA gene.
Amit, Maayan; Sela, Noa; Keren, Hadas; Melamed, Ze'ev; Muler, Inna; Shomron, Noam; Izraeli, Shai; Ast, Gil
2007-11-29
Gene duplication and exonization of intronic transposed elements are two mechanisms that enhance genomic diversity. We examined whether there is less selection against exonization of transposed elements in duplicated genes than in single-copy genes. Genome-wide analysis of exonization of transposed elements revealed a higher rate of exonization within duplicated genes relative to single-copy genes. The gene for TIF-IA, an RNA polymerase I transcription initiation factor, underwent a humanoid-specific triplication, all three copies of the gene are active transcriptionally, although only one copy retains the ability to generate the TIF-IA protein. Prior to TIF-IA triplication, an Alu element was inserted into the first intron. In one of the non-protein coding copies, this Alu is exonized. We identified a single point mutation leading to exonization in one of the gene duplicates. When this mutation was introduced into the TIF-IA coding copy, exonization was activated and the level of the protein-coding mRNA was reduced substantially. A very low level of exonization was detected in normal human cells. However, this exonization was abundant in most leukemia cell lines evaluated, although the genomic sequence is unchanged in these cancerous cells compared to normal cells. The definition of the Alu element within the TIF-IA gene as an exon is restricted to certain types of cancers; the element is not exonized in normal human cells. These results further our understanding of the delicate interplay between gene duplication and alternative splicing and of the molecular evolutionary mechanisms leading to genetic innovations. This implies the existence of purifying selection against exonization in single copy genes, with duplicate genes free from such constrains.
Biased exonization of transposed elements in duplicated genes: A lesson from the TIF-IA gene
Amit, Maayan; Sela, Noa; Keren, Hadas; Melamed, Ze'ev; Muler, Inna; Shomron, Noam; Izraeli, Shai; Ast, Gil
2007-01-01
Background Gene duplication and exonization of intronic transposed elements are two mechanisms that enhance genomic diversity. We examined whether there is less selection against exonization of transposed elements in duplicated genes than in single-copy genes. Results Genome-wide analysis of exonization of transposed elements revealed a higher rate of exonization within duplicated genes relative to single-copy genes. The gene for TIF-IA, an RNA polymerase I transcription initiation factor, underwent a humanoid-specific triplication, all three copies of the gene are active transcriptionally, although only one copy retains the ability to generate the TIF-IA protein. Prior to TIF-IA triplication, an Alu element was inserted into the first intron. In one of the non-protein coding copies, this Alu is exonized. We identified a single point mutation leading to exonization in one of the gene duplicates. When this mutation was introduced into the TIF-IA coding copy, exonization was activated and the level of the protein-coding mRNA was reduced substantially. A very low level of exonization was detected in normal human cells. However, this exonization was abundant in most leukemia cell lines evaluated, although the genomic sequence is unchanged in these cancerous cells compared to normal cells. Conclusion The definition of the Alu element within the TIF-IA gene as an exon is restricted to certain types of cancers; the element is not exonized in normal human cells. These results further our understanding of the delicate interplay between gene duplication and alternative splicing and of the molecular evolutionary mechanisms leading to genetic innovations. This implies the existence of purifying selection against exonization in single copy genes, with duplicate genes free from such constrains. PMID:18047649
Generation of Tandem Direct Duplications by Reversed-Ends Transposition of Maize Ac Elements
Peterson, Thomas
2013-01-01
Tandem direct duplications are a common feature of the genomes of eukaryotes ranging from yeast to human, where they comprise a significant fraction of copy number variations. The prevailing model for the formation of tandem direct duplications is non-allelic homologous recombination (NAHR). Here we report the isolation of a series of duplications and reciprocal deletions isolated de novo from a maize allele containing two Class II Ac/Ds transposons. The duplication/deletion structures suggest that they were generated by alternative transposition reactions involving the termini of two nearby transposable elements. The deletion/duplication breakpoint junctions contain 8 bp target site duplications characteristic of Ac/Ds transposition events, confirming their formation directly by an alternative transposition mechanism. Tandem direct duplications and reciprocal deletions were generated at a relatively high frequency (∼0.5 to 1%) in the materials examined here in which transposons are positioned nearby each other in appropriate orientation; frequencies would likely be much lower in other genotypes. To test whether this mechanism may have contributed to maize genome evolution, we analyzed sequences flanking Ac/Ds and other hAT family transposons and identified three small tandem direct duplications with the structural features predicted by the alternative transposition mechanism. Together these results show that some class II transposons are capable of directly inducing tandem sequence duplications, and that this activity has contributed to the evolution of the maize genome. PMID:23966872
Human-Specific Duplication and Mosaic Transcripts: The Recent Paralogous Structure of Chromosome 22
Bailey, Jeffrey A. ; Yavor, Amy M. ; Viggiano, Luigi ; Misceo, Doriana ; Horvath, Juliann E. ; Archidiacono, Nicoletta ; Schwartz, Stuart ; Rocchi, Mariano ; Eichler, Evan E.
2002-01-01
In recent decades, comparative chromosomal banding, chromosome painting, and gene-order studies have shown strong conservation of gross chromosome structure and gene order in mammals. However, findings from the human genome sequence suggest an unprecedented degree of recent (<35 million years ago) segmental duplication. This dynamism of segmental duplications has important implications in disease and evolution. Here we present a chromosome-wide view of the structure and evolution of the most highly homologous duplications (⩾1 kb and ⩾90%) on chromosome 22. Overall, 10.8% (3.7/33.8 Mb) of chromosome 22 is duplicated, with an average sequence identity of 95.4%. To organize the duplications into tractable units, intron-exon structure and well-defined duplication boundaries were used to define 78 duplicated modules (minimally shared evolutionary segments) with 157 copies on chromosome 22. Analysis of these modules provides evidence for the creation or modification of 11 novel transcripts. Comparative FISH analyses of human, chimpanzee, gorilla, orangutan, and macaque reveal qualitative and quantitative differences in the distribution of these duplications—consistent with their recent origin. Several duplications appear to be human specific, including a ∼400-kb duplication (99.4%–99.8% sequence identity) that transposed from chromosome 14 to the most proximal pericentromeric region of chromosome 22. Experimental and in silico data further support a pericentromeric gradient of duplications where the most recent duplications transpose adjacent to the centromere. Taken together, these data suggest that segmental duplications have been an ongoing process of primate genome evolution, contributing to recent gene innovation and the dynamic transformation of genome architecture within and among closely related species. PMID:11731936
PTAP motif duplication in the p6 Gag protein confers a replication advantage on HIV-1 subtype C.
Sharma, Shilpee; Arunachalam, Prabhu S; Menon, Malini; Ragupathy, Viswanath; Satya, Ravi Vijaya; Jebaraj, Joshua; Ganeshappa Aralaguppe, Shambhu; Rao, Chaitra; Pal, Sreshtha; Saravanan, Shanmugam; Murugavel, Kailapuri G; Balakrishnan, Pachamuthu; Solomon, Suniti; Hewlett, Indira; Ranga, Udaykumar
2018-05-17
HIV-1 subtype C (HIV-1C) may duplicate longer amino acid stretches in the p6 Gag protein, leading to the creation of an additional Pro-Thr/Ser-Ala-Pro (PTAP) motif necessary for viral packaging. However, the biological significance of a duplication of the PTAP motif for HIV-1 replication and pathogenesis has not been experimentally validated. In a longitudinal study of two different clinical cohorts of select HIV-1 seropositive, drug-naive individuals from India, we found that 8 of 50 of these individuals harbored a mixed infection of viral strains discordant for the PTAP duplication. Conventional and next-generation sequencing of six primary viral quasispecies at multiple time points disclosed that in a mixed infection, the viral strains containing the PTAP duplication dominated the infection. The dominance of the double-PTAP viral strains over a genetically similar single-PTAP viral clone was confirmed in viral proliferation and pairwise competition assays. Of note, in the proximity ligation assay, double-PTAP Gag proteins exhibited a significantly enhanced interaction with the host protein tumor susceptibility gene 101 (Tsg101). Moreover, Tsg101 overexpression resulted in a biphasic effect on HIV-1C proliferation - an enhanced effect at low concentration and an inhibitory effect only at higher concentrations - unlike a uniformly inhibitory effect on subtype B strains. In summary, our results indicate that the duplication of the PTAP motif in the p6 Gag protein enhances the replication fitness of HIV-1C by engaging the Tsg101 host protein with a higher affinity. Our results have implications for HIV-1 pathogenesis, especially of HIV-1C. Copyright © 2018, The American Society for Biochemistry and Molecular Biology.
Saccharomyces cerevisiae Msh2-Msh3 acts in repair of base-base mispairs.
Harrington, Jill M; Kolodner, Richard D
2007-09-01
DNA mismatch repair is thought to act through two subpathways involving the recognition of base-base and insertion/deletion mispairs by the Msh2-Msh6 heterodimer and the recognition of insertion/deletion mispairs by the Msh2-Msh3 heterodimer. Here, through genetic and biochemical approaches, we describe a previously unidentified role of the Msh2-Msh3 heterodimer in the recognition of base-base mispairs and the suppression of homology-mediated duplication and deletion mutations. Saccharomyces cerevisiae msh3 mutants did not show an increase in the rate of base substitution mutations by the CAN1 forward mutation assay compared to the rate for the wild type but did show an altered spectrum of base substitution mutations, including an increased accumulation of base pair changes from GC to CG and from AT to TA; msh3 mutants also accumulated homology-mediated duplication and deletion mutations. The mutation spectrum of mlh3 mutants paralleled that of msh3 mutants, suggesting that the Mlh1-Mlh3 heterodimer may also play a role in the repair of base-base mispairs and in the suppression of homology-mediated duplication and deletion mutations. Mispair binding analysis with purified Msh2-Msh3 and DNA substrates derived from CAN1 sequences found to be mutated in vivo demonstrated that Msh2-Msh3 exhibited robust binding to specific base-base mispairs that was consistent with functional mispair binding.
Saccharomyces cerevisiae Msh2-Msh3 Acts in Repair of Base-Base Mispairs▿ †
Harrington, Jill M.; Kolodner, Richard D.
2007-01-01
DNA mismatch repair is thought to act through two subpathways involving the recognition of base-base and insertion/deletion mispairs by the Msh2-Msh6 heterodimer and the recognition of insertion/deletion mispairs by the Msh2-Msh3 heterodimer. Here, through genetic and biochemical approaches, we describe a previously unidentified role of the Msh2-Msh3 heterodimer in the recognition of base-base mispairs and the suppression of homology-mediated duplication and deletion mutations. Saccharomyces cerevisiae msh3 mutants did not show an increase in the rate of base substitution mutations by the CAN1 forward mutation assay compared to the rate for the wild type but did show an altered spectrum of base substitution mutations, including an increased accumulation of base pair changes from GC to CG and from AT to TA; msh3 mutants also accumulated homology-mediated duplication and deletion mutations. The mutation spectrum of mlh3 mutants paralleled that of msh3 mutants, suggesting that the Mlh1-Mlh3 heterodimer may also play a role in the repair of base-base mispairs and in the suppression of homology-mediated duplication and deletion mutations. Mispair binding analysis with purified Msh2-Msh3 and DNA substrates derived from CAN1 sequences found to be mutated in vivo demonstrated that Msh2-Msh3 exhibited robust binding to specific base-base mispairs that was consistent with functional mispair binding. PMID:17636021
Kito, Keiji; Ito, Haruka; Nohara, Takehiro; Ohnishi, Mihoko; Ishibashi, Yuko; Takeda, Daisuke
2016-01-01
Omics analysis is a versatile approach for understanding the conservation and diversity of molecular systems across multiple taxa. In this study, we compared the proteome expression profiles of four yeast species (Saccharomyces cerevisiae, Saccharomyces mikatae, Kluyveromyces waltii, and Kluyveromyces lactis) grown on glucose- or glycerol-containing media. Conserved expression changes across all species were observed only for a small proportion of all proteins differentially expressed between the two growth conditions. Two Kluyveromyces species, both of which exhibited a high growth rate on glycerol, a nonfermentative carbon source, showed distinct species-specific expression profiles. In K. waltii grown on glycerol, proteins involved in the glyoxylate cycle and gluconeogenesis were expressed in high abundance. In K. lactis grown on glycerol, the expression of glycolytic and ethanol metabolic enzymes was unexpectedly low, whereas proteins involved in cytoplasmic translation, including ribosomal proteins and elongation factors, were highly expressed. These marked differences in the types of predominantly expressed proteins suggest that K. lactis optimizes the balance of proteome resource allocation between metabolism and protein synthesis giving priority to cellular growth. In S. cerevisiae, about 450 duplicate gene pairs were retained after whole-genome duplication. Intriguingly, we found that in the case of duplicates with conserved sequences, the total abundance of proteins encoded by a duplicate pair in S. cerevisiae was similar to that of protein encoded by nonduplicated ortholog in Kluyveromyces yeast. Given the frequency of haploinsufficiency, this observation suggests that conserved duplicate genes, even though minor cases of retained duplicates, do not exhibit a dosage effect in yeast, except for ribosomal proteins. Thus, comparative proteomic analyses across multiple species may reveal not only species-specific characteristics of metabolic processes under nonoptimal culture conditions but also provide valuable insights into intriguing biological principles, including the balance of proteome resource allocation and the role of gene duplication in evolutionary history. PMID:26560065
Kito, Keiji; Ito, Haruka; Nohara, Takehiro; Ohnishi, Mihoko; Ishibashi, Yuko; Takeda, Daisuke
2016-01-01
Omics analysis is a versatile approach for understanding the conservation and diversity of molecular systems across multiple taxa. In this study, we compared the proteome expression profiles of four yeast species (Saccharomyces cerevisiae, Saccharomyces mikatae, Kluyveromyces waltii, and Kluyveromyces lactis) grown on glucose- or glycerol-containing media. Conserved expression changes across all species were observed only for a small proportion of all proteins differentially expressed between the two growth conditions. Two Kluyveromyces species, both of which exhibited a high growth rate on glycerol, a nonfermentative carbon source, showed distinct species-specific expression profiles. In K. waltii grown on glycerol, proteins involved in the glyoxylate cycle and gluconeogenesis were expressed in high abundance. In K. lactis grown on glycerol, the expression of glycolytic and ethanol metabolic enzymes was unexpectedly low, whereas proteins involved in cytoplasmic translation, including ribosomal proteins and elongation factors, were highly expressed. These marked differences in the types of predominantly expressed proteins suggest that K. lactis optimizes the balance of proteome resource allocation between metabolism and protein synthesis giving priority to cellular growth. In S. cerevisiae, about 450 duplicate gene pairs were retained after whole-genome duplication. Intriguingly, we found that in the case of duplicates with conserved sequences, the total abundance of proteins encoded by a duplicate pair in S. cerevisiae was similar to that of protein encoded by nonduplicated ortholog in Kluyveromyces yeast. Given the frequency of haploinsufficiency, this observation suggests that conserved duplicate genes, even though minor cases of retained duplicates, do not exhibit a dosage effect in yeast, except for ribosomal proteins. Thus, comparative proteomic analyses across multiple species may reveal not only species-specific characteristics of metabolic processes under nonoptimal culture conditions but also provide valuable insights into intriguing biological principles, including the balance of proteome resource allocation and the role of gene duplication in evolutionary history. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Interstitial duplication of proximal 22q: Phenotypic overlap with cat eye syndrome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knoll, J.H.M.; Asamoah, A.; Wagstaff, J.
1995-01-16
We describe a child with downslanting palpebral fissures, preauricular malfunctions, congenital heart defect (total anomalous pulmonary venous return), unilateral absence of a kidney, and developmental delay with an apparent interstitial duplication of proximal 22q. Fluorescent in situ hybridization (FISH) analysis showed duplication of the IGLC locus, and C-banding of the duplicated region was negative. The duplication appears to involve 22q11.2-q12. Although the child has neither colobomas nor microphthalmia, he shows phenotypic overlap with with the cat eye syndrome, which is caused by a supernumerary bisatellited chromosome arising from inverted duplication of the short arm and proximal long arm of chromosomemore » 22. Further molecular studies of this patient should help to define the regions responsible for the manifestations of cat eye syndrome. 17 refs., 3 figs., 1 tab.« less
Mulle, Jennifer Gladys; Pulver, Ann E; McGrath, John A; Wolyniec, Paula S; Dodd, Anne F; Cutler, David J; Sebat, Jonathan; Malhotra, Dheeraj; Nestadt, Gerald; Conrad, Donald F; Hurles, Matthew; Barnes, Chris P; Ikeda, Masashi; Iwata, Nakao; Levinson, Douglas F; Gejman, Pablo V; Sanders, Alan R; Duan, Jubao; Mitchell, Adele A; Peter, Inga; Sklar, Pamela; O'Dushlaine, Colm T; Grozeva, Detelina; O'Donovan, Michael C; Owen, Michael J; Hultman, Christina M; Kähler, Anna K; Sullivan, Patrick F; Kirov, George; Warren, Stephen T
2014-03-01
Several copy number variants (CNVs) have been implicated as susceptibility factors for schizophrenia (SZ). Some of these same CNVs also increase risk for autism spectrum disorders, suggesting an etiologic overlap between these conditions. Recently, de novo duplications of a region on chromosome 7q11.23 were associated with autism spectrum disorders. The reciprocal deletion of this region causes Williams-Beuren syndrome. We assayed an Ashkenazi Jewish cohort of 554 SZ cases and 1014 controls for genome-wide CNV. An excess of large rare and de novo CNVs were observed, including a 1.4 Mb duplication on chromosome 7q11.23 identified in two unrelated patients. To test whether this 7q11.23 duplication is also associated with SZ, we obtained data for 14,387 SZ cases and 28,139 controls from seven additional studies with high-resolution genome-wide CNV detection. We performed a meta-analysis, correcting for study population of origin, to assess whether the duplication is associated with SZ. We found duplications at 7q11.23 in 11 of 14,387 SZ cases with only 1 in 28,139 control subjects (unadjusted odds ratio 21.52, 95% confidence interval: 3.13-922.6, p value 5.5 × 10(-5); adjusted odds ratio 10.8, 95% confidence interval: 1.46-79.62, p value .007). Of three SZ duplication carriers with detailed retrospective data, all showed social anxiety and language delay premorbid to SZ onset, consistent with both human studies and animal models of the 7q11.23 duplication. We have identified a new CNV associated with SZ. Reciprocal duplication of the Williams-Beuren syndrome deletion at chromosome 7q11.23 confers an approximately tenfold increase in risk for SZ. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Zheng, Chenfei; Nie, Liuwang; Wang, Jue; Zhou, Huaxing; Hou, Huazhen; Wang, Hao; Liu, Juanjuan
2013-01-01
Complete mitochondrial (mt) genome sequences with duplicate control regions (CRs) have been detected in various animal species. In Testudines, duplicate mtCRs have been reported in the mtDNA of the Asian big-headed turtle, Platysternon megacephalum, which has three living subspecies. However, the evolutionary pattern of these CRs remains unclear. In this study, we report the completed sequences of duplicate CRs from 20 individuals belonging to three subspecies of this turtle and discuss the micro-evolutionary analysis of the evolution of duplicate CRs. Genetic distances calculated with MEGA 4.1 using the complete duplicate CR sequences revealed that within turtle subspecies, genetic distances between orthologous copies from different individuals were 0.63% for CR1 and 1.2% for CR2app:addword:respectively, and the average distance between paralogous copies of CR1 and CR2 was 4.8%. Phylogenetic relationships were reconstructed from the CR sequences, excluding the variable number of tandem repeats (VNTRs) at the 3' end using three methods: neighbor-joining, maximum likelihood algorithm, and Bayesian inference. These data show that any two CRs within individuals were more genetically distant from orthologous genes in different individuals within the same subspecies. This suggests independent evolution of the two mtCRs within each P. megacephalum subspecies. Reconstruction of separate phylogenetic trees using different CR components (TAS, CD, CSB, and VNTRs) suggested the role of recombination in the evolution of duplicate CRs. Consequently, recombination events were detected using RDP software with break points at ≈290 bp and ≈1,080 bp. Based on these results, we hypothesize that duplicate CRs in P. megacephalum originated from heterological ancestral recombination of mtDNA. Subsequent recombination could have resulted in homogenization during independent evolutionary events, thus maintaining the functions of duplicate CRs in the mtDNA of P. megacephalum.
Zheng, Chenfei; Nie, Liuwang; Wang, Jue; Zhou, Huaxing; Hou, Huazhen; Wang, Hao; Liu, Juanjuan
2013-01-01
Complete mitochondrial (mt) genome sequences with duplicate control regions (CRs) have been detected in various animal species. In Testudines, duplicate mtCRs have been reported in the mtDNA of the Asian big-headed turtle, Platysternon megacephalum, which has three living subspecies. However, the evolutionary pattern of these CRs remains unclear. In this study, we report the completed sequences of duplicate CRs from 20 individuals belonging to three subspecies of this turtle and discuss the micro-evolutionary analysis of the evolution of duplicate CRs. Genetic distances calculated with MEGA 4.1 using the complete duplicate CR sequences revealed that within turtle subspecies, genetic distances between orthologous copies from different individuals were 0.63% for CR1 and 1.2% for CR2app:addword:respectively, and the average distance between paralogous copies of CR1 and CR2 was 4.8%. Phylogenetic relationships were reconstructed from the CR sequences, excluding the variable number of tandem repeats (VNTRs) at the 3′ end using three methods: neighbor-joining, maximum likelihood algorithm, and Bayesian inference. These data show that any two CRs within individuals were more genetically distant from orthologous genes in different individuals within the same subspecies. This suggests independent evolution of the two mtCRs within each P. megacephalum subspecies. Reconstruction of separate phylogenetic trees using different CR components (TAS, CD, CSB, and VNTRs) suggested the role of recombination in the evolution of duplicate CRs. Consequently, recombination events were detected using RDP software with break points at ≈290 bp and ≈1,080 bp. Based on these results, we hypothesize that duplicate CRs in P. megacephalum originated from heterological ancestral recombination of mtDNA. Subsequent recombination could have resulted in homogenization during independent evolutionary events, thus maintaining the functions of duplicate CRs in the mtDNA of P. megacephalum. PMID:24367563
Wentz, Elisabet; Vujic, Mihailo; Kärrstedt, Ewa-Lotta; Erlandsson, Anna; Gillberg, Christopher
2014-05-01
Autism spectrum disorder, severe behaviour problems and duplication of the Xq12 to Xq13 region have recently been described in three male relatives. To describe the psychiatric comorbidity and dysmorphic features, including craniosynostosis, of two male siblings with autism and duplication of the Xq13 to Xq21 region, and attempt to narrow down the number of duplicated genes proposed to be leading to global developmental delay and autism. We performed DNA sequencing of certain exons of the TWIST1 gene, the FGFR2 gene and the FGFR3 gene. We also performed microarray analysis of the DNA. In addition to autism, the two male siblings exhibited severe learning disability, self-injurious behaviour, temper tantrums and hyperactivity, and had no communicative language. Chromosomal analyses were normal. Neither of the two siblings showed mutations of the sequenced exons known to produce craniosynostosis. The microarray analysis detected an extra copy of a region on the long arm of chromosome X, chromosome band Xq13.1-q21.1. Comparison of our two cases with previously described patients allowed us to identify three genes predisposing for autism in the duplicated chromosomal region. Sagittal craniosynostosis is also a new finding linked to the duplication.
Ahmed, Anwar; Haider, Shakir H; Parveen, Shama; Arshad, Mohammed; Alsenaidy, Hytham A; Baaboud, Alawi Omar; Mobaireek, Khalid Fahad; AlSaadi, Muslim Mohammed; Alsenaidy, Abdulrahman M; Sullender, Wayne
2016-01-01
Respiratory syncytial virus (RSV) is an important viral pathogen of acute respiratory tract infection (ARI). Limited data are available on molecular epidemiology of RSV from Saudi Arabia. A total of 130 nasopharyngeal aspirates were collected from children less than 5 years of age with ARI symptoms attending the Emergency Department at King Khalid University Hospital and King Fahad Medical City, Riyadh, Saudi Arabia between October and December, 2014. RSV was identified in the 26% of the hospitalized children by reverse transcriptase PCR. Group A RSV (77%) predominated during the study as compared to group B RSV (23%). The phylogenetic analysis of 28 study strains clustered group A RSV in NA1 and ON1 genotypes and group B viruses in BA (BA9) genotype. Interestingly, 26% of the positive samples clustered in genotypes with duplication in the G protein gene (ON1 for group A and BA for group B). Both the genotypes showed enhanced O-linked glycosylation in the duplicated region, with 10 and 2 additional sites in ON1 and BA respectively. Selection pressure analysis revealed purifying selection in both the ON1 and BA genotypes. One codon each in the ON1 (position 274) and BA genotypes (position 219) were positively selected and had high entropy values indicating variations at these amino acid positions. This is the first report describing the presence of ON1 genotype and the first report on co-circulation of two different genotypes of RSV with duplication in the G protein gene from Saudi Arabia. The clinical implications of the simultaneous occurrence of genotypes with duplication in G protein gene in a given population especially in the concurrent infections should be investigated in future. Further, the ongoing surveillance of RSV in this region will reveal the evolutionary trajectory of these two genotypes with duplication in G protein gene from largest country in the Middle East.
Ahmed, Anwar; Haider, Shakir H.; Parveen, Shama; Arshad, Mohammed; Alsenaidy, Hytham A.; Baaboud, Alawi Omar; Mobaireek, Khalid Fahad; AlSaadi, Muslim Mohammed; Alsenaidy, Abdulrahman M.; Sullender, Wayne
2016-01-01
Respiratory syncytial virus (RSV) is an important viral pathogen of acute respiratory tract infection (ARI). Limited data are available on molecular epidemiology of RSV from Saudi Arabia. A total of 130 nasopharyngeal aspirates were collected from children less than 5 years of age with ARI symptoms attending the Emergency Department at King Khalid University Hospital and King Fahad Medical City, Riyadh, Saudi Arabia between October and December, 2014. RSV was identified in the 26% of the hospitalized children by reverse transcriptase PCR. Group A RSV (77%) predominated during the study as compared to group B RSV (23%). The phylogenetic analysis of 28 study strains clustered group A RSV in NA1 and ON1 genotypes and group B viruses in BA (BA9) genotype. Interestingly, 26% of the positive samples clustered in genotypes with duplication in the G protein gene (ON1 for group A and BA for group B). Both the genotypes showed enhanced O-linked glycosylation in the duplicated region, with 10 and 2 additional sites in ON1 and BA respectively. Selection pressure analysis revealed purifying selection in both the ON1 and BA genotypes. One codon each in the ON1 (position 274) and BA genotypes (position 219) were positively selected and had high entropy values indicating variations at these amino acid positions. This is the first report describing the presence of ON1 genotype and the first report on co-circulation of two different genotypes of RSV with duplication in the G protein gene from Saudi Arabia. The clinical implications of the simultaneous occurrence of genotypes with duplication in G protein gene in a given population especially in the concurrent infections should be investigated in future. Further, the ongoing surveillance of RSV in this region will reveal the evolutionary trajectory of these two genotypes with duplication in G protein gene from largest country in the Middle East. PMID:27835664
Jan, Iftikhar Ahmad; Al Nuaimi, Asma; Al Hamoudi, Basma; Al Naqbi, Khalid; Bilal, Mohammad
2016-02-01
Esophageal duplication cysts are rare congenital abnormalities of the foregut and may be associated with other conditions. Association of esophageal duplication with Gastro-Esophageal Reflux Disease (GERD) has not been reported in children. We are reporting a case of a 16 months baby who had antenatal diagnosis of diaphragmatic hernia. Postnatal CTchest, however, suggested a distal esophageal duplication cyst and a contrast esophagogram showed grade-IV GER. A thoracoscopy in another hospital excluded esophageal duplication at that time. Later, he presented with hematemesis in our department and was re-evaluated. Repeat CTconfirmed a persistent 2.5 x 1.3 cm cyst in distal esophagus. Upper GI endoscopy suggested grade-II esophagitis with a wide patent gastro-esophageal junction. The child was treated with left thoracotomy, excision of the duplication cyst and thoracic fundoplication. He had an uneventful post-operative recovery and is doing well at 6 months follow-up.
Evolution of complexity in the zebrafish synapse proteome
Bayés, Àlex; Collins, Mark O.; Reig-Viader, Rita; Gou, Gemma; Goulding, David; Izquierdo, Abril; Choudhary, Jyoti S.; Emes, Richard D.; Grant, Seth G. N.
2017-01-01
The proteome of human brain synapses is highly complex and is mutated in over 130 diseases. This complexity arose from two whole-genome duplications early in the vertebrate lineage. Zebrafish are used in modelling human diseases; however, its synapse proteome is uncharacterized, and whether the teleost-specific genome duplication (TSGD) influenced complexity is unknown. We report the characterization of the proteomes and ultrastructure of central synapses in zebrafish and analyse the importance of the TSGD. While the TSGD increases overall synapse proteome complexity, the postsynaptic density (PSD) proteome of zebrafish has lower complexity than mammals. A highly conserved set of ∼1,000 proteins is shared across vertebrates. PSD ultrastructural features are also conserved. Lineage-specific proteome differences indicate that vertebrate species evolved distinct synapse types and functions. The data sets are a resource for a wide range of studies and have important implications for the use of zebrafish in modelling human synaptic diseases. PMID:28252024
El Chehadeh, Salima; Faivre, Laurence; Mosca-Boidron, Anne-Laure; Malan, Valérie; Amiel, Jeanne; Nizon, Mathilde; Touraine, Renaud; Prieur, Fabienne; Pasquier, Laurent; Callier, Patrick; Lefebvre, Mathilde; Marle, Nathalie; Dubourg, Christèle; Julia, Sophie; Sarret, Catherine; Francannet, Christine; Laffargue, Fanny; Boespflug-Tanguy, Odile; David, Albert; Isidor, Bertrand; Le Caignec, Cédric; Vigneron, Jacqueline; Leheup, Bruno; Lambert, Laetitia; Philippe, Christophe; Cuisset, Jean-Marie; Andrieux, Joris; Plessis, Ghislaine; Toutain, Annick; Goldenberg, Alice; Cormier-Daire, Valérie; Rio, Marlène; Bonnefont, Jean-Paul; Thevenon, Julien; Echenne, Bernard; Journel, Hubert; Afenjar, Alexandra; Burglen, Lydie; Bienvenu, Thierry; Addor, Marie-Claude; Lebon, Sébastien; Martinet, Danièle; Baumann, Clarisse; Perrin, Laurence; Drunat, Séverine; Jouk, Pierre-Simon; Devillard, Françoise; Coutton, Charles; Lacombe, Didier; Delrue, Marie-Ange; Philip, Nicole; Moncla, Anne; Badens, Catherine; Perreton, Nathalie; Masurel, Alice; Thauvin-Robinet, Christel; Des Portes, Vincent; Guibaud, Laurent
2016-01-01
Xq28 duplications encompassing MECP2 have been described in male patients with a severe neurodevelopmental disorder associated with hypotonia and spasticity, severe learning disability, stereotyped movements, and recurrent pulmonary infections. We report on standardized brain magnetic resonance imaging (MRI) data of 30 affected patients carrying an Xq28 duplication involving MECP2 of various sizes (228 kb to 11.7 Mb). The aim of this study was to seek recurrent malformations and attempt to determine whether variations in imaging features could be explained by differences in the size of the duplications. We showed that 93% of patients had brain MRI abnormalities such as corpus callosum abnormalities (n = 20), reduced volume of the white matter (WM) (n = 12), ventricular dilatation (n = 9), abnormal increased hyperintensities on T2-weighted images involving posterior periventricular WM (n = 6), and vermis hypoplasia (n = 5). The occipitofrontal circumference varied considerably between >+2SD in five patients and <-2SD in four patients. Among the nine patients with dilatation of the lateral ventricles, six had a duplication involving L1CAM. The only patient harboring bilateral posterior subependymal nodular heterotopia also carried an FLNA gene duplication. We could not demonstrate a correlation between periventricular WM hyperintensities/delayed myelination and duplication of the IKBKG gene. We thus conclude that patients with an Xq28 duplication involving MECP2 share some similar but non-specific brain abnormalities. These imaging features, therefore, could not constitute a diagnostic clue. The genotype-phenotype correlation failed to demonstrate a relationship between the presence of nodular heterotopia, ventricular dilatation, WM abnormalities, and the presence of FLNA, L1CAM, or IKBKG, respectively, in the duplicated segment. © 2015 Wiley Periodicals, Inc.
Action-angle variables for the harmonic oscillator: Ambiguity spin × duplication spin
NASA Astrophysics Data System (ADS)
de Oliveira, César R.; Malta, Coraci P.
1984-07-01
The difficulties of obtaining for the harmonic oscillator a well-defined unitary transformation to action-angle variables were overcome by M. Moshinsky and T. H. Seligman ( Ann. Phys. (N.Y.)114 (1978), 243) through the introduction of a spinlike variable (ambiguity spin) from a classical point of view. The difficulty of defining a unitary phase operator for the harmonic oscillator was overcome by Roger G. Newton ( Ann. Phys. (N.Y.)124 (1980), 324) also through the introduction of a spinlike variable (named duplication spin by us) but within a quantum framework. Here the relation between the ambiguity spin and the duplication spin is investigated by introducing these two types of spins in the canonical transformation to action-angle variables. In this way both well-defined unitary transformation and phase operators were obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roa, B.B.; Warner, L.E.; Lupski, J.R.
1994-09-01
The MPZ gene that maps to chromosome 1q22q23 encodes myelin protein zero, which is the most abundant peripheral nerve myelin protein that functions as a homophilic adhesion molecule in myelin compaction. Association of the MPZ gene with the dysmyelinating peripheral neuropathies Charcot-Marie-Tooth disease type 1B (CMT1B) and the more severe Dejerine-Sottas syndrome (DSS) was previously demonstrated by MPZ mutations identified in CMT1B and in rare DSS patients. In this study, the coding region of the MPZ gene was screened for mutations in a cohort of 74 unrelated patients with either CMT type 1 or DSS who do not carry themore » most common CMT1-associated molecular lesion of a 1.5 Mb DNA duplication on 17p11.2-p12. Heteroduplex analysis detected base mismatches in ten patients that were distributed over three exons of MPZ. Direct sequencing of PCR-amplified genomic DNA identified a de novo MPZ mutation associated with CMT1B that predicts an Ile(135)Thr substitution. This finding further confirms the role of MPZ in the CMT1B disease process. In addition, two polymorphisms were identified within the Gly(200) and Ser(228) codons that do not alter the respective amino acid residues. A fourth base mismatch in MPZ exon 3 detected by heteroduplex analysis is currently being characterized by direct sequence determination. Previously, four unrelated patients in this same cohort were found to have unique point mutations in the coding region of the PMP22 gene. The collective findings on CMT1 point mutations could suggest that regulatory region mutations, and possibly mutations in CMT gene(s) apart from the MPZ, PMP22 and Cx32 genes identified thus far, may prove to be significant for a number of CMT1 cases that do not involve DNA duplication.« less
Drosophila Ana2 is a conserved centriole duplication factor
Stevens, Naomi R.; Dobbelaere, Jeroen; Brunk, Kathrin; Franz, Anna
2010-01-01
In Caenorhabditis elegans, five proteins are required for centriole duplication: SPD-2, ZYG-1, SAS-5, SAS-6, and SAS-4. Functional orthologues of all but SAS-5 have been found in other species. In Drosophila melanogaster and humans, Sak/Plk4, DSas-6/hSas-6, and DSas-4/CPAP—orthologues of ZYG-1, SAS-6, and SAS-4, respectively—are required for centriole duplication. Strikingly, all three fly proteins can induce the de novo formation of centriole-like structures when overexpressed in unfertilized eggs. Here, we find that of eight candidate duplication factors identified in cultured fly cells, only two, Ana2 and Asterless (Asl), share this ability. Asl is now known to be essential for centriole duplication in flies, but no equivalent protein has been found in worms. We show that Ana2 is the likely functional orthologue of SAS-5 and that it is also related to the vertebrate STIL/SIL protein family that has been linked to microcephaly in humans. We propose that members of the SAS-5/Ana2/STIL family of proteins are key conserved components of the centriole duplication machinery. PMID:20123993
Duplication of SOX9 associated with 46,XX ovotesticular disorder of sex development.
López-Hernández, Berenice; Méndez, Juan Pablo; Coral-Vázquez, Ramón Mauricio; Benítez-Granados, Jesús; Zenteno, Juan Carlos; Villegas-Ruiz, Vanessa; Calzada-León, Raúl; Soderlund, Daniela; Canto, Patricia
2018-04-04
The purpose of the present study was to investigate whether ten unrelated SRY-negative individuals with this sex differentiation disorder presented a double dose of SOX9 as the cause of their disease. Ten unrelated SRY-negative 46,XX ovotesticular disorder of sexual development (DSD) subjects were molecularly studied. Multiplex-ligation dependent probe amplification (MLPA) and quantitative real-time PCR analysis (qRT-PCR) for SOX9 were performed. The MLPA analysis demonstrated that one patient presented a heterozygous duplication of the entire SOX9 coding region (above 1.3 value of peak ratio), as well as at least a ~ 483 kb upstream duplication. Moreover, no duplication of other SOX9 probes was observed corresponding to the region between -1007 and -1500 kb upstream. A qRT-PCR analysis showed a duplication of at least -581 kb upstream and ~1.63 kb of the coding region that encompasses exon 3. The limits of the duplication were mapped approximately from ~71539762 to 72122741 of Chr17. No molecular abnormalities were found in the remaining nine patients. This study is thought to be the first report regarding a duplication of SOX9 that is associated with the presence of 46,XX ovotesticular DSD, encompassing at least -581 kb upstream, and the almost entire coding region of the gene. Copyright © 2018 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
10 CFR 9.39 - Search and duplication provided without charge.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Search and duplication provided without charge. 9.39... § 9.39 Search and duplication provided without charge. (a) The NRC will search for agency records... the news media. (b) The NRC will search for agency records requested under § 9.23(b) without charges...
10 CFR 9.39 - Search and duplication provided without charge.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Search and duplication provided without charge. 9.39... § 9.39 Search and duplication provided without charge. (a) The NRC will search for agency records... the news media. (b) The NRC will search for agency records requested under § 9.23(b) without charges...
10 CFR 9.39 - Search and duplication provided without charge.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Search and duplication provided without charge. 9.39... § 9.39 Search and duplication provided without charge. (a) The NRC will search for agency records... the news media. (b) The NRC will search for agency records requested under § 9.23(b) without charges...
10 CFR 9.39 - Search and duplication provided without charge.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Search and duplication provided without charge. 9.39... § 9.39 Search and duplication provided without charge. (a) The NRC will search for agency records... the news media. (b) The NRC will search for agency records requested under § 9.23(b) without charges...
Hypertelorism in Charcot-Marie-Tooth disease 1A from the common PMP22 duplication: A Case Report
Finsterer, Josef
2012-01-01
The 1.4Mb tandem-duplication in the PMP22 gene at 17p11.2 usually manifests as hereditary sensorimotor polyneuropathy with foot deformity, sensorineural hearing-loss, moderate developmental delay, and gait disturbance. Hypertelorism and marked phenotypic variability within a single family has not been reported. In a single family, the PMP22 tandem-duplication manifested as short stature, sensorimotor polyneuropathy, tremor, ataxia, sensorineural hearing-loss, and hypothyroidism in the 27 years-old index case, as mild facial dysmorphism, muscle cramps, tinnitus, intention tremor, bradydiadochokinesia, and sensorimotor polyneuropathy in the 31 year-old half-brother of the index-patient, and as sensorimotor polyneuropathy and foot-deformity in the father of the two. The half-brother additionally presented with hypertelorism, not previously reported in PMP22 tandem-duplication carriers. The presented cases show that the tandem-duplication 17p11.2 may present with marked intra-familial phenotype variability and that mild facial dysmorphism with stuck-out ears and hypertelorism may be a rare phenotypic feature of this mutation. The causal relation between facial dysmorphism and the PMP22 tandem-duplication, however, remains speculative. PMID:22496945
Assessing duplication and loss of APETALA1/FRUITFULL homologs in Ranunculales
Pabón-Mora, Natalia; Hidalgo, Oriane; Gleissberg, Stefan; Litt, Amy
2013-01-01
Gene duplication and loss provide raw material for evolutionary change within organismal lineages as functional diversification of gene copies provide a mechanism for phenotypic variation. Here we focus on the APETALA1/FRUITFULL MADS-box gene lineage evolution. AP1/FUL genes are angiosperm-specific and have undergone several duplications. By far the most significant one is the core-eudicot duplication resulting in the euAP1 and euFUL clades. Functional characterization of several euAP1 and euFUL genes has shown that both function in proper floral meristem identity, and axillary meristem repression. Independently, euAP1 genes function in floral meristem and sepal identity, whereas euFUL genes control phase transition, cauline leaf growth, compound leaf morphogenesis and fruit development. Significant functional variation has been detected in the function of pre-duplication basal-eudicot FUL-like genes, but the underlying mechanisms for change have not been identified. FUL-like genes in the Papaveraceae encode all functions reported for euAP1 and euFUL genes, whereas FUL-like genes in Aquilegia (Ranunculaceae) function in inflorescence development and leaf complexity, but not in flower or fruit development. Here we isolated FUL-like genes across the Ranunculales and used phylogenetic approaches to analyze their evolutionary history. We identified an early duplication resulting in the RanFL1 and RanFL2 clades. RanFL1 genes were present in all the families sampled and are mostly under strong negative selection in the MADS, I and K domains. RanFL2 genes were only identified from Eupteleaceae, Papaveraceae s.l., Menispermaceae and Ranunculaceae and show relaxed purifying selection at the I and K domains. We discuss how asymmetric sequence diversification, new motifs, differences in codon substitutions and likely protein-protein interactions resulting from this Ranunculiid-specific duplication can help explain the functional differences among basal-eudicot FUL-like genes. PMID:24062757
Defining the Effect of the 16p11.2 Duplication on Cognition, Behavior, and Medical Comorbidities
D’Angelo, Debra; Lebon, Sébastien; Chen, Qixuan; Martin-Brevet, Sandra; Snyder, LeeAnne Green; Hippolyte, Loyse; Hanson, Ellen; Maillard, Anne M.; Faucett, W. Andrew; Macé, Aurélien; Pain, Aurélie; Bernier, Raphael; Chawner, Samuel J. R. A.; David, Albert; Andrieux, Joris; Aylward, Elizabeth; Baujat, Genevieve; Caldeira, Ines; Conus, Philippe; Ferrari, Carrina; Forzano, Francesca; Gérard, Marion; Goin-Kochel, Robin P.; Grant, Ellen; Hunter, Jill V.; Isidor, Bertrand; Jacquette, Aurélia; Jønch, Aia E.; Keren, Boris; Lacombe, Didier; Caignec, Cédric Le; Martin, Christa Lese; Männik, Katrin; Metspalu, Andres; Mignot, Cyril; Mukherjee, Pratik; Owen, Michael J.; Passeggeri, Marzia; Rooryck-Thambo, Caroline; Rosenfeld, Jill A.; Spence, Sarah J.; Steinman, Kyle J.; Tjernagel, Jennifer; Van Haelst, Mieke; Shen, Yiping; Draganski, Bogdan; Sherr, Elliott H.; Ledbetter, David H.; van den Bree, Marianne B. M.; Beckmann, Jacques S.; Spiro, John E.; Reymond, Alexandre; Jacquemont, Sébastien; Chung, Wendy K.
2018-01-01
IMPORTANCE The 16p11.2 BP4-BP5 duplication is the copy number variant most frequently associated with autism spectrum disorder (ASD), schizophrenia, and comorbidities such as decreased body mass index (BMI). OBJECTIVES To characterize the effects of the 16p11.2 duplication on cognitive, behavioral, medical, and anthropometric traits and to understand the specificity of these effects by systematically comparing results in duplication carriers and reciprocal deletion carriers, who are also at risk for ASD. DESIGN, SETTING, AND PARTICIPANTS This international cohort study of 1006 study participants compared 270 duplication carriers with their 102 intrafamilial control individuals, 390 reciprocal deletion carriers, and 244 deletion controls from European and North American cohorts. Data were collected from August 1, 2010, to May 31, 2015 and analyzed from January 1 to August 14, 2015. Linear mixed models were used to estimate the effect of the duplication and deletion on clinical traits by comparison with noncarrier relatives. MAIN OUTCOMES AND MEASURES Findings on the Full-Scale IQ (FSIQ), Nonverbal IQ, and Verbal IQ; the presence of ASD or other DSM-IV diagnoses; BMI; head circumference; and medical data. RESULTS Among the 1006 study participants, the duplication was associated with a mean FSIQ score that was lower by 26.3 points between proband carriers and noncarrier relatives and a lower mean FSIQ score (16.2-11.4 points) in nonproband carriers. The mean overall effect of the deletion was similar (−22.1 points; P < .001). However, broad variation in FSIQ was found, with a 19.4- and 2.0-fold increase in the proportion of FSIQ scores that were very low (≤40) and higher than the mean (>100) compared with the deletion group (P < .001). Parental FSIQ predicted part of this variation (approximately 36.0% in hereditary probands). Although the frequency of ASD was similar in deletion and duplication proband carriers (16.0% and 20.0%, respectively), the FSIQ was significantly lower (by 26.3 points) in the duplication probands with ASD. There also were lower head circumference and BMI measurements among duplication carriers, which is consistent with the findings of previous studies. CONCLUSIONS AND RELEVANCE The mean effect of the duplication on cognition is similar to that of the reciprocal deletion, but the variance in the duplication is significantly higher, with severe and mild subgroups not observed with the deletion. These results suggest that additional genetic and familial factors contribute to this variability. Additional studies will be necessary to characterize the predictors of cognitive deficits. PMID:26629640
Defining the Effect of the 16p11.2 Duplication on Cognition, Behavior, and Medical Comorbidities.
D'Angelo, Debra; Lebon, Sébastien; Chen, Qixuan; Martin-Brevet, Sandra; Snyder, LeeAnne Green; Hippolyte, Loyse; Hanson, Ellen; Maillard, Anne M; Faucett, W Andrew; Macé, Aurélien; Pain, Aurélie; Bernier, Raphael; Chawner, Samuel J R A; David, Albert; Andrieux, Joris; Aylward, Elizabeth; Baujat, Genevieve; Caldeira, Ines; Conus, Philippe; Ferrari, Carrina; Forzano, Francesca; Gérard, Marion; Goin-Kochel, Robin P; Grant, Ellen; Hunter, Jill V; Isidor, Bertrand; Jacquette, Aurélia; Jønch, Aia E; Keren, Boris; Lacombe, Didier; Le Caignec, Cédric; Martin, Christa Lese; Männik, Katrin; Metspalu, Andres; Mignot, Cyril; Mukherjee, Pratik; Owen, Michael J; Passeggeri, Marzia; Rooryck-Thambo, Caroline; Rosenfeld, Jill A; Spence, Sarah J; Steinman, Kyle J; Tjernagel, Jennifer; Van Haelst, Mieke; Shen, Yiping; Draganski, Bogdan; Sherr, Elliott H; Ledbetter, David H; van den Bree, Marianne B M; Beckmann, Jacques S; Spiro, John E; Reymond, Alexandre; Jacquemont, Sébastien; Chung, Wendy K
2016-01-01
The 16p11.2 BP4-BP5 duplication is the copy number variant most frequently associated with autism spectrum disorder (ASD), schizophrenia, and comorbidities such as decreased body mass index (BMI). To characterize the effects of the 16p11.2 duplication on cognitive, behavioral, medical, and anthropometric traits and to understand the specificity of these effects by systematically comparing results in duplication carriers and reciprocal deletion carriers, who are also at risk for ASD. This international cohort study of 1006 study participants compared 270 duplication carriers with their 102 intrafamilial control individuals, 390 reciprocal deletion carriers, and 244 deletion controls from European and North American cohorts. Data were collected from August 1, 2010, to May 31, 2015 and analyzed from January 1 to August 14, 2015. Linear mixed models were used to estimate the effect of the duplication and deletion on clinical traits by comparison with noncarrier relatives. Findings on the Full-Scale IQ (FSIQ), Nonverbal IQ, and Verbal IQ; the presence of ASD or other DSM-IV diagnoses; BMI; head circumference; and medical data. Among the 1006 study participants, the duplication was associated with a mean FSIQ score that was lower by 26.3 points between proband carriers and noncarrier relatives and a lower mean FSIQ score (16.2-11.4 points) in nonproband carriers. The mean overall effect of the deletion was similar (-22.1 points; P < .001). However, broad variation in FSIQ was found, with a 19.4- and 2.0-fold increase in the proportion of FSIQ scores that were very low (≤40) and higher than the mean (>100) compared with the deletion group (P < .001). Parental FSIQ predicted part of this variation (approximately 36.0% in hereditary probands). Although the frequency of ASD was similar in deletion and duplication proband carriers (16.0% and 20.0%, respectively), the FSIQ was significantly lower (by 26.3 points) in the duplication probands with ASD. There also were lower head circumference and BMI measurements among duplication carriers, which is consistent with the findings of previous studies. The mean effect of the duplication on cognition is similar to that of the reciprocal deletion, but the variance in the duplication is significantly higher, with severe and mild subgroups not observed with the deletion. These results suggest that additional genetic and familial factors contribute to this variability. Additional studies will be necessary to characterize the predictors of cognitive deficits.
Hirschfeldova, Katerina; Solc, Roman
2017-09-05
The effect of heterozygous duplications of SHOX and associated elements on Lėri-Weill dyschondrosteosis (LWD) and idiopathic short stature (ISS) development is less distinct when compared to reciprocal deletions. The aim of our study was to compare frequency and distribution of duplications within SHOX and associated elements between population sample and LWD (ISS) patients. A preliminary analysis conducted on Czech population sample of 250 individuals compared to our previously reported sample of 352 ISS/LWD Czech patients indicated that rather than the difference in frequency of duplications it is the difference in their distribution. Particularly, there was an increased frequency of duplications residing to the CNE-9 enhancer in our LWD/ISS sample. To see whether the obtained data are consistent across published studies we made a literature survey to get published cases with SHOX or associated elements duplication and formed the merged LWD, the merged ISS, and the merged population samples. Relative frequency of particular region duplication in each of those merged samples were calculated. There was a significant difference in the relative frequency of CNE-9 enhancer duplications (11 vs. 3) and complete SHOX (exon1-6b) duplications (4 vs. 24) (p-value 0.0139 and p-value 0.000014, respectively) between the merged LWD sample and the merged population sample. We thus propose that partial SHOX duplications and small duplications encompassing CNE-9 enhancer could be highly penetrant alleles associated with ISS and LWD development. Copyright © 2017 Elsevier B.V. All rights reserved.
Le, Thong Minh; Le, Quy Van Chanh; Truong, Dung Minh; Lee, Hye-Jeong; Choi, Min-Kyeung; Cho, Hyesun; Chung, Hak-Jae; Kim, Jin-Hoi; Do, Jeong-Tae; Song, Hyuk; Park, Chankyu
2017-01-01
Several β2-microglobulin (B2M) -bound protein complexes undertake key roles in various immune system pathways, including the neonatal Fc receptor (FcRn), cluster of differentiation 1 (CD1) protein, non-classical major histocompatibility complex (MHC), and well-known MHC class I molecules. Therefore, the duplication of B2M may lead to an increase in the biological competence of organisms to the environment. Based on the pig genome assembly SSC10.2, a segmental duplication of ~45.5 kb, encoding the entire B2M protein, was identified in pig chromosome 1. Through experimental validation, we confirmed the functional duplication of the B2M gene with a completely identical coding sequence between two copies in pigs. Considering the importance of B2M in the immune system, we performed the phylogenetic analysis of B2M duplication in ten mammalian species, confirming the presence of B2M duplication in cetartioldactyls, like cattle, sheep, goats, pigs and whales, but non-cetartiodactyl species, like mice, cats, dogs, horses, and humans. The density of long interspersed nuclear element (LINE) at the edges of duplicated blocks (39 to 66%) was found to be 2 to 3-fold higher than the average (20.12%) of the pig genome, suggesting its role in the duplication event. The B2M mRNA expression level in pigs was 12.71 and 7.57 times (2-ΔΔCt values) higher than humans and mice, respectively. However, we were unable to experimentally demonstrate the difference in the level of B2M protein because species specific anti-B2M antibodies are not available. We reported, for the first time, the functional duplication of the B2M gene in animals. The identification of partially remaining duplicated B2M sequences in the genomes of only cetartiodactyls indicates that the event was lineage specific. B2M duplication could be beneficial to the immune system of pigs by increasing the availability of MHC class I light chain protein, B2M, to complex with the proteins encoded by the relatively large number of MHC class I heavy chain genes in pigs. Further studies are necessary to address the biological meaning of increased expression of B2M.
North Carolina macular dystrophy (MCDR1) caused by a novel tandem duplication of the PRDM13 gene
Sullivan, Lori S.; Wheaton, Dianna K.; Locke, Kirsten G.; Jones, Kaylie D.; Koboldt, Daniel C.; Fulton, Robert S.; Wilson, Richard K.; Blanton, Susan H.; Birch, David G.; Daiger, Stephen P.
2016-01-01
Purpose To identify the underlying cause of disease in a large family with North Carolina macular dystrophy (NCMD). Methods A large four-generation family (RFS355) with an autosomal dominant form of NCMD was ascertained. Family members underwent comprehensive visual function evaluations. Blood or saliva from six affected family members and three unaffected spouses was collected and DNA tested for linkage to the MCDR1 locus on chromosome 6q12. Three affected family members and two unaffected spouses underwent whole exome sequencing (WES) and subsequently, custom capture of the linkage region followed by next-generation sequencing (NGS). Standard PCR and dideoxy sequencing were used to further characterize the mutation. Results Of the 12 eyes examined in six affected individuals, all but two had Gass grade 3 macular degeneration features. Large central excavation of the retinal and choroid layers, referred to as a macular caldera, was seen in an age-independent manner in the grade 3 eyes. The calderas are unique to affected individuals with MCDR1. Genome-wide linkage mapping and haplotype analysis of markers from the chromosome 6q region were consistent with linkage to the MCDR1 locus. Whole exome sequencing and custom-capture NGS failed to reveal any rare coding variants segregating with the phenotype. Analysis of the custom-capture NGS sequencing data for copy number variants uncovered a tandem duplication of approximately 60 kb on chromosome 6q. This region contains two genes, CCNC and PRDM13. The duplication creates a partial copy of CCNC and a complete copy of PRDM13. The duplication was found in all affected members of the family and is not present in any unaffected members. The duplication was not seen in 200 ethnically matched normal chromosomes. Conclusions The cause of disease in the original family with MCDR1 and several others has been recently reported to be dysregulation of the PRDM13 gene, caused by either single base substitutions in a DNase 1 hypersensitive site upstream of the CCNC and PRDM13 genes or a tandem duplication of the PRDM13 gene. The duplication found in the RFS355 family is distinct from the previously reported duplication and provides additional support that dysregulation of PRDM13, not CCNC, is the cause of NCMD mapped to the MCDR1 locus. PMID:27777503
North Carolina macular dystrophy (MCDR1) caused by a novel tandem duplication of the PRDM13 gene.
Bowne, Sara J; Sullivan, Lori S; Wheaton, Dianna K; Locke, Kirsten G; Jones, Kaylie D; Koboldt, Daniel C; Fulton, Robert S; Wilson, Richard K; Blanton, Susan H; Birch, David G; Daiger, Stephen P
2016-01-01
To identify the underlying cause of disease in a large family with North Carolina macular dystrophy (NCMD). A large four-generation family (RFS355) with an autosomal dominant form of NCMD was ascertained. Family members underwent comprehensive visual function evaluations. Blood or saliva from six affected family members and three unaffected spouses was collected and DNA tested for linkage to the MCDR1 locus on chromosome 6q12. Three affected family members and two unaffected spouses underwent whole exome sequencing (WES) and subsequently, custom capture of the linkage region followed by next-generation sequencing (NGS). Standard PCR and dideoxy sequencing were used to further characterize the mutation. Of the 12 eyes examined in six affected individuals, all but two had Gass grade 3 macular degeneration features. Large central excavation of the retinal and choroid layers, referred to as a macular caldera, was seen in an age-independent manner in the grade 3 eyes. The calderas are unique to affected individuals with MCDR1. Genome-wide linkage mapping and haplotype analysis of markers from the chromosome 6q region were consistent with linkage to the MCDR1 locus. Whole exome sequencing and custom-capture NGS failed to reveal any rare coding variants segregating with the phenotype. Analysis of the custom-capture NGS sequencing data for copy number variants uncovered a tandem duplication of approximately 60 kb on chromosome 6q. This region contains two genes, CCNC and PRDM13 . The duplication creates a partial copy of CCNC and a complete copy of PRDM13 . The duplication was found in all affected members of the family and is not present in any unaffected members. The duplication was not seen in 200 ethnically matched normal chromosomes. The cause of disease in the original family with MCDR1 and several others has been recently reported to be dysregulation of the PRDM13 gene, caused by either single base substitutions in a DNase 1 hypersensitive site upstream of the CCNC and PRDM13 genes or a tandem duplication of the PRDM13 gene. The duplication found in the RFS355 family is distinct from the previously reported duplication and provides additional support that dysregulation of PRDM13 , not CCNC , is the cause of NCMD mapped to the MCDR1 locus.
Thomas, N Simon; Harvey, John F; Bunyan, David J; Rankin, Julia; Grigelioniene, Giedre; Bruno, Damien L; Tan, Tiong Y; Tomkins, Susan; Hastings, Robert
2009-07-01
Deletions of the SHOX gene are well documented and cause disproportionate short stature and variable skeletal abnormalities. In contrast interstitial SHOX duplications limited to PAR1 appear to be very rare and the clinical significance of the only case report in the literature is unclear. Mapping of this duplication has now shown that it includes the entire SHOX gene but little flanking sequence and so will not encompass any of the long-range enhancers required for SHOX transcription. We now describe the clinical and molecular characterization of three additional cases. The duplications all included the SHOX coding sequence but varied in the amount of flanking sequence involved. The probands were ascertained for a variety of reasons: hypotonia and features of Asperger syndrome, Leri-Weill dyschondrosteosis (LWD), and a family history of cleft palate. However, the presence of a duplication did not correlate with any of these features or with evidence of skeletal abnormality. Remarkably, the proband with LWD had inherited both a SHOX deletion and a duplication. The effect of the duplications on stature was variable: height appeared to be elevated in some carriers, particularly in those with the largest duplications, but was still within the normal range. SHOX duplications are likely to be under ascertained and more cases need to be identified and characterized in detail in order to accurately determine their phenotypic consequences.
Evolution and functional divergence of NLRP genes in mammalian reproductive systems
2009-01-01
Background NLRPs (Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing Proteins) are members of NLR (Nod-like receptors) protein family. Recent researches have shown that NLRP genes play important roles in both mammalian innate immune system and reproductive system. Several of NLRP genes were shown to be specifically expressed in the oocyte in mammals. The aim of the present work was to study how these genes evolved and diverged after their duplication, as well as whether natural selection played a role during their evolution. Results By using in silico methods, we have evaluated the evolution and functional divergence of NLRP genes, in particular of mouse reproduction-related Nlrp genes. We found that (1) major NLRP genes have been duplicated before the divergence of mammals, with certain lineage-specific duplications in primates (NLRP7 and 11) and in rodents (Nlrp1, 4 and 9 duplicates); (2) tandem duplication events gave rise to a mammalian reproduction-related NLRP cluster including NLRP2, 4, 5, 7, 8, 9, 11, 13 and 14 genes; (3) the function of mammalian oocyte-specific NLRP genes (NLRP4, 5, 9 and 14) might have diverged during gene evolution; (4) recent segmental duplications concerning Nlrp4 copies and vomeronasal 1 receptor encoding genes (V1r) have been undertaken in the mouse; and (5) duplicates of Nlrp4 and 9 in the mouse might have been subjected to adaptive evolution. Conclusion In conclusion, this study brings us novel information on the evolution of mammalian reproduction-related NLRPs. On the one hand, NLRP genes duplicated and functionally diversified in mammalian reproductive systems (such as NLRP4, 5, 9 and 14). On the other hand, during evolution, different lineages adapted to develop their own NLRP genes, particularly in reproductive function (such as the specific expansion of Nlrp4 and Nlrp9 in the mouse). PMID:19682372
Plk1 relieves centriole block to reduplication by promoting daughter centriole maturation
Shukla, Anil; Kong, Dong; Sharma, Meena; Magidson, Valentin; Loncarek, Jadranka
2015-01-01
Centrosome overduplication promotes mitotic abnormalities, invasion and tumorigenesis. Cells regulate the number of centrosomes by limiting centriole duplication to once per cell cycle. The orthogonal orientation between a mother and a daughter centriole, established at the time of centriole duplication, is thought to block further duplication of the mother centriole. Loss of orthogonal orientation (disengagement) between two centrioles during anaphase is considered a licensing event for the next round of centriole duplication. Disengagement requires the activity of Polo-like kinase 1 (Plk1), but how Plk1 drives this process is not clear. Here we employ correlative live/electron microscopy and demonstrate that Plk1 induces maturation and distancing of the daughter centriole, allowing reduplication of the mother centriole even if the original daughter centriole is still orthogonal to it. We find that mother centrioles can undergo reduplication when original daughter centrioles are only ∼80 nm apart, which is the distance centrioles normally reach during prophase. PMID:26293378
Molecular mapping of the Edwards syndrome phenotype to two noncontiguous regions on chromosome 18
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boghosian-Sell, L.; Mewar, R.; Harrison, W.
1994-09-01
In an effort to identify regions on chromosome 18 that may be critical in the appearance of the Edwards syndrome phenotype, the authors have analyzed six patients with partial duplication of chromosome 18. Four of the patients have duplications involving the distal half of 18q (18q21.1-qter) and are very mildly affected. The remaining two patients have most of 18q (18q12.1-qter) duplicated, are severely affected, and have been diagnosed with Edwards syndrome. The authors have employed FISH, using DNA probes from a chromosome 18-specific library, for the precise determination of the duplicated material in each of these patients. The clinical featuresmore » and the extent of the chromosomal duplication in these patients were compared with four previously reported partial trisomy 18 patients, to identify regions of chromosome 18 that may be responsible for certain clinical features of trisomy 18. The comparative analysis confirmed that there is no single region on 18q that is sufficient to produce the trisomy 18 phenotype and identified two regions on 18q that may work in conjunction to produce the Edwards syndrome phenotype. In addition, correlative analysis indicates that duplication of 18q12.3-q22.1 may be associated with more severe mental retardation in trisomy 18 individuals. 25 refs., 3 figs., 1 tab.« less
Bekpen, Cemalettin; Künzel, Sven; Xie, Chen; Eaaswarkhanth, Muthukrishnan; Lin, Yen-Lung; Gokcumen, Omer; Akdis, Cezmi A; Tautz, Diethard
2017-03-06
Segmental duplications are an abundant source for novel gene functions and evolutionary adaptations. This mechanism of generating novelty was very active during the evolution of primates particularly in the human lineage. Here, we characterize the evolution and function of the SPATA31 gene family (former designation FAM75A), which was previously shown to be among the gene families with the strongest signal of positive selection in hominoids. The mouse homologue for this gene family is a single copy gene expressed during spermatogenesis. We show that in primates, the SPATA31 gene duplicated into SPATA31A and SPATA31C types and broadened the expression into many tissues. Each type became further segmentally duplicated in the line towards humans with the largest number of full-length copies found for SPATA31A in humans. Copy number estimates of SPATA31A based on digital PCR show an average of 7.5 with a range of 5-11 copies per diploid genome among human individuals. The primate SPATA31 genes also acquired new protein domains that suggest an involvement in UV response and DNA repair. We generated antibodies and show that the protein is re-localized from the nucleolus to the whole nucleus upon UV-irradiation suggesting a UV damage response. We used CRISPR/Cas mediated mutagenesis to knockout copies of the gene in human primary fibroblast cells. We find that cell lines with reduced functional copies as well as naturally occurring low copy number HFF cells show enhanced sensitivity towards UV-irradiation. The acquisition of new SPATA31 protein functions and its broadening of expression may be related to the evolution of the diurnal life style in primates that required a higher UV tolerance. The increased segmental duplications in hominoids as well as its fast evolution suggest the acquisition of further specific functions particularly in humans.
Holmblat, Barbara; Jégouic, Sophie; Muslin, Claire; Blondel, Bruno; Joffret, Marie-Line; Delpeyroux, Francis
2014-08-05
Most of the circulating vaccine-derived polioviruses (cVDPVs) implicated in poliomyelitis outbreaks in Madagascar have been shown to be recombinants between the type 2 poliovirus (PV) strain of the oral polio vaccine (Sabin 2) and another species C human enterovirus (HEV-C), such as type 17 coxsackie A virus (CA17) in particular. We studied intertypic genetic exchanges between PV and non-PV HEV-C by developing a recombination model, making it possible to rescue defective type 2 PV RNA genomes with a short deletion at the 3' end by the cotransfection of cells with defective or infectious CA17 RNAs. We isolated over 200 different PV/CA17 recombinants, using murine cells expressing the human PV receptor (PVR) and selecting viruses with PV capsids. We found some homologous (H) recombinants and, mostly, nonhomologous (NH) recombinants presenting duplications of parental sequences preferentially located in the regions encoding proteins 2A, 2B, and 3A. Short duplications appeared to be stable, whereas longer duplications were excised during passaging in cultured cells or after multiplication in PVR-transgenic mice, generating H recombinants with diverse sites of recombination. This suggests that NH recombination events may be a transient, intermediate step in the generation and selection of the fittest H recombinants. In addition to the classical copy-choice mechanism of recombination thought to generate mostly H recombinants, there may also be a modular mechanism of recombination, involving NH recombinant precursors, shaping the genomes of recombinant enteroviruses and other picornaviruses. Importance: The multiplication of circulating vaccine-derived polioviruses (cVDPVs) in poorly immunized human populations can render these viruses pathogenic, causing poliomyelitis outbreaks. Most cVDPVs are intertypic recombinants between a poliovirus (PV) strain and another human enterovirus, such as type 17 coxsackie A viruses (CA17). For further studies of the genetic exchanges between PV and CA17, we have developed a model of recombination, making it possible to rescue defective PV RNA genomes with a short deletion by cotransfecting cells with the defective PV genome and CA17 genomic RNA. Numerous recombinants were found, including homologous PV/CA17 recombinants, but mostly nonhomologous recombinants presenting duplications of parental sequences preferentially located in particular regions. Long duplications were excised by passages in cultured cells or in mice, generating diverse homologous recombinants. Recombination leading to nonhomologous recombinants, which evolve into homologous recombinants, may therefore be seen as a model of genetic plasticity in enteroviruses and, possibly, in other RNA viruses. Copyright © 2014 Holmblat et al.
ERIC Educational Resources Information Center
Hepburn, Larry; Shin, Masako
This document, one of eight in a multi-cultural competency-based vocational/technical curricula series, is on clerical occupations. This program is designed to run 36 weeks and cover 10 instructional areas: beginning typing, typing I, typing II, duplicating, receptionist activities, general office procedures, operation of electronic calculator,…
Developing and Using Ada Parts in Real-Time Embedded Applications
1990-04-27
ARCHTECTURAL DESIGN Guideline #3-a: Avoid duplication of data types packages. Guideline #3-b: Minimize variant proliferation. Concentrate on developing a...of SOFTWARE REUSE DEVELOPING and USING ADA PARTS in RTE APPUCATIONS ARCHTECTURAL DESIGN Table 5-10 illustrates the use of this more strongly data typed
Law, Sheran Hiu Wan; Redelings, Benjamin David; Kullman, Seth William
2012-01-15
The availability of multiple teleost (bony fish) genomes is providing unprecedented opportunities to understand the diversity and function of gene duplication events using comparative genomics. Here we examine multiple paralogous genes of γ-glutamyl transferase (GGT) in several distantly related teleost species including medaka, stickleback, green spotted pufferfish, fugu, and zebrafish. Through mining genome databases, we have identified multiple GGT orthologs. Duplicate (paralogous) GGT sequences for GGT1 (GGT1 a and b), GGTL1 (GGTL1 a and b), and GGTL3 (GGTL3 a and b) were identified for each species. Phylogenetic analysis suggests that GGTs are ancient proteins conserved across most metazoan phyla and those paralogous GGTs in teleosts likely arose from the serial 3R genome duplication events. A third GGTL1 gene (GGTL1c) was found in green spotted pufferfish; however, this gene is not present in medaka, stickleback, or fugu. Similarly, one or both paralogs of GGTL3 appear to have been lost in green spotted pufferfish, fugu, and zebrafish. Syntenic relationships were highly maintained between duplicated teleost chromosomes, among teleosts and across ray-finned (Actinopterygii) and lobe-finned (Sarcopterygii) species. To assess subfunction partitioning, six medaka GGT genes were cloned and assessed for developmental and tissue-specific expression. On the basis of these data, we propose a modification of the "duplication-degeneration-complementation" model of subfunction partitioning where quantitative differences rather than absolute differences in gene expression are observed between gene paralogs. Our results demonstrate that multiple GGT genes have been retained within teleost genomes. Questions remain, however, regarding the functional roles of multiple GGTs in these species. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.
Embryonic duplications in sheep.
Dennis, S M
1975-02-01
Twenty-seven embryonic duplications were examined during a 3-year investigation into the causes of perinatal lamb mortality. Twenty of the 27 were anomalous twins with 19 being conjoined (diplopagus 9 and heteropagus 10). The various duplications were: haloacardius acephalus 1, diprosopus 2, dicephalus 2, dipypus 3, diprosopus dipygus 1, syncephalus dipygus 1, pygopagus parasiticus 1, heteropagus dipygus 3, melodidymus 6, polyury 4, penile duplication 2, and bilateral otognathia 1. Four lambs were living and the time of death of the others was: parturient 8, and post-parturient 15. Average dry weight of the lambs was 3.35 kg (range 1.59 to 5.45 kg). Breed distribution was: Merino 77.8%, Crossbred 14.8%, Dorset Horn 3.7%, and Corriedale 3.7%. The caudal region was involved in 10 of the conjoined twins (52.6%), anterior region in 7 (36.9%), and both anterior and caudal regions in 2 (10.5%). Associated defects were present in 70.4% of the 27 lambs, the most common being atresia ani.
The detection of large deletions or duplications in genomic DNA.
Armour, J A L; Barton, D E; Cockburn, D J; Taylor, G R
2002-11-01
While methods for the detection of point mutations and small insertions or deletions in genomic DNA are well established, the detection of larger (>100 bp) genomic duplications or deletions can be more difficult. Most mutation scanning methods use PCR as a first step, but the subsequent analyses are usually qualitative rather than quantitative. Gene dosage methods based on PCR need to be quantitative (i.e., they should report molar quantities of starting material) or semi-quantitative (i.e., they should report gene dosage relative to an internal standard). Without some sort of quantitation, heterozygous deletions and duplications may be overlooked and therefore be under-ascertained. Gene dosage methods provide the additional benefit of reporting allele drop-out in the PCR. This could impact on SNP surveys, where large-scale genotyping may miss null alleles. Here we review recent developments in techniques for the detection of this type of mutation and compare their relative strengths and weaknesses. We emphasize that comprehensive mutation analysis should include scanning for large insertions and deletions and duplications. Copyright 2002 Wiley-Liss, Inc.
Gustaf: Detecting and correctly classifying SVs in the NGS twilight zone.
Trappe, Kathrin; Emde, Anne-Katrin; Ehrlich, Hans-Christian; Reinert, Knut
2014-12-15
The landscape of structural variation (SV) including complex duplication and translocation patterns is far from resolved. SV detection tools usually exhibit low agreement, are often geared toward certain types or size ranges of variation and struggle to correctly classify the type and exact size of SVs. We present Gustaf (Generic mUlti-SpliT Alignment Finder), a sound generic multi-split SV detection tool that detects and classifies deletions, inversions, dispersed duplications and translocations of ≥ 30 bp. Our approach is based on a generic multi-split alignment strategy that can identify SV breakpoints with base pair resolution. We show that Gustaf correctly identifies SVs, especially in the range from 30 to 100 bp, which we call the next-generation sequencing (NGS) twilight zone of SVs, as well as larger SVs >500 bp. Gustaf performs better than similar tools in our benchmark and is furthermore able to correctly identify size and location of dispersed duplications and translocations, which otherwise might be wrongly classified, for example, as large deletions. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
10 CFR 7.21 - Cost of duplication of documents.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Cost of duplication of documents. 7.21 Section 7.21 Energy NUCLEAR REGULATORY COMMISSION ADVISORY COMMITTEES § 7.21 Cost of duplication of documents. Copies of the records, reports, transcripts, minutes, appendices, working papers, drafts, studies, agenda, or other...
10 CFR 7.21 - Cost of duplication of documents.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Cost of duplication of documents. 7.21 Section 7.21 Energy NUCLEAR REGULATORY COMMISSION ADVISORY COMMITTEES § 7.21 Cost of duplication of documents. Copies of the records, reports, transcripts, minutes, appendices, working papers, drafts, studies, agenda, or other...
10 CFR 7.21 - Cost of duplication of documents.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Cost of duplication of documents. 7.21 Section 7.21 Energy NUCLEAR REGULATORY COMMISSION ADVISORY COMMITTEES § 7.21 Cost of duplication of documents. Copies of the records, reports, transcripts, minutes, appendices, working papers, drafts, studies, agenda, or other...
10 CFR 7.21 - Cost of duplication of documents.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Cost of duplication of documents. 7.21 Section 7.21 Energy NUCLEAR REGULATORY COMMISSION ADVISORY COMMITTEES § 7.21 Cost of duplication of documents. Copies of the records, reports, transcripts, minutes, appendices, working papers, drafts, studies, agenda, or other...
10 CFR 7.21 - Cost of duplication of documents.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Cost of duplication of documents. 7.21 Section 7.21 Energy NUCLEAR REGULATORY COMMISSION ADVISORY COMMITTEES § 7.21 Cost of duplication of documents. Copies of the records, reports, transcripts, minutes, appendices, working papers, drafts, studies, agenda, or other...
Schwarte, Sandra; Tiedemann, Ralph
2011-06-01
Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase; EC 4.1.1.39), the most abundant protein in nature, catalyzes the assimilation of CO(2) (worldwide about 10(11) t each year) by carboxylation of ribulose-1,5-bisphosphate. It is a hexadecamer consisting of eight large and eight small subunits. Although the Rubisco large subunit (rbcL) is encoded by a single gene on the multicopy chloroplast genome, the Rubisco small subunits (rbcS) are encoded by a family of nuclear genes. In Arabidopsis thaliana, the rbcS gene family comprises four members, that is, rbcS-1a, rbcS-1b, rbcS-2b, and rbcS-3b. We sequenced all Rubisco genes in 26 worldwide distributed A. thaliana accessions. In three of these accessions, we detected a gene duplication/loss event, where rbcS-1b was lost and substituted by a duplicate of rbcS-2b (called rbcS-2b*). By screening 74 additional accessions using a specific polymerase chain reaction assay, we detected five additional accessions with this duplication/loss event. In summary, we found the gene duplication/loss in 8 of 100 A. thaliana accessions, namely, Bch, Bu, Bur, Cvi, Fei, Lm, Sha, and Sorbo. We sequenced an about 1-kb promoter region for all Rubisco genes as well. This analysis revealed that the gene duplication/loss event was associated with promoter alterations (two insertions of 450 and 850 bp, one deletion of 730 bp) in rbcS-2b and a promoter deletion (2.3 kb) in rbcS-2b* in all eight affected accessions. The substitution of rbcS-1b by a duplicate of rbcS-2b (i.e., rbcS-2b*) might be caused by gene conversion. All four Rubisco genes evolve under purifying selection, as expected for central genes of the highly conserved photosystem of green plants. We inferred a single positive selected site, a tyrosine to aspartic acid substitution at position 72 in rbcS-1b. Exactly the same substitution compromises carboxylase activity in the cyanobacterium Anacystis nidulans. In A. thaliana, this substitution is associated with an inferred recombination. Functional implications of the substitution remain to be evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leana-Cox, J.; Wulfsberg, E.; Raffel, L.J.
Fluorescence in situ hybridization (FISH) with chromosome-specific DNA libraries was performed on samples from eight patients with de novo chromosomal duplications. In five cases, the clinical phenotype and/or cytogenetic evaluations suggested a likely origin of the duplicated material. In the remaining three cases, careful examination of the GTG-banding pattern indicated multiple possible origins; hybridization with more than one chromosome-specific library was performed on two of these cases. In all cases, FISH conclusively identified the chromosomal origin of the duplicated material. In addition, the hybridization pattern was useful in quantitatively delineating the duplication in two cases. 21 refs., 2 figs., 1more » tab.« less
Familial 4.3 Mb duplication of 21q22 sheds new light on the Down syndrome critical region
Ronan, Anne; Fagan, Kerry; Christie, Louise; Conroy, Jeffrey; Nowak, Norma J; Turner, Gillian
2007-01-01
A 4.3 Mb duplication of chromosome 21 bands q22.13–q22.2 was diagnosed by interphase fluorescent in‐situ hybridisation (FISH) in a 31‐week gestational age baby with cystic hygroma and hydrops; the duplication was later found in the mother and in her 8‐year‐old daughter by the same method and confirmed by array comparative genomic hybridisation (aCGH). All had the facial gestalt of Down syndrome (DS). This is the smallest accurately defined duplication of chromosome 21 reported with a DS phenotype. The duplication encompasses the gene DYRK1 but not DSCR1 or DSCAM, all of which have previously been implicated in the causation of DS. Previous karyotype analysis and telomere screening of the mother, and karyotype analysis and metaphase FISH of a chorionic villus sample, had all failed to reveal the duplication. The findings in this family add to the identification and delineation of a “critical region” for the DS phenotype on chromosome 21. Cryptic chromosomal abnormalities can be missed on a routine karyotype for investigation of abnormal prenatal ultrasound findings, lending support to the use of aCGH analysis in this setting. PMID:17237124
2012-01-01
Background Gene duplication and the subsequent divergence in function of the resulting paralogs via subfunctionalization and/or neofunctionalization is hypothesized to have played a major role in the evolution of plant form. The LEAFY HULL STERILE1 (LHS1) SEPALLATA (SEP) genes have been linked with the origin and diversification of the grass spikelet, but it is uncertain 1) when the duplication event that produced the LHS1 clade and its paralogous lineage Oryza sativa MADS5 (OSM5) occurred, and 2) how changes in gene structure and/or expression might have contributed to subfunctionalization and/or neofunctionalization in the two lineages. Methods Phylogenetic relationships among 84 SEP genes were estimated using Bayesian methods. RNA expression patterns were inferred using in situ hybridization. The patterns of protein sequence and RNA expression evolution were reconstructed using maximum parsimony (MP) and maximum likelihood (ML) methods, respectively. Results Phylogenetic analyses mapped the LHS1/OSM5 duplication event to the base of the grass family. MP character reconstructions estimated a change from cytosine to thymine in the first codon position of the first amino acid after the Zea mays MADS3 (ZMM3) domain converted a glutamine to a stop codon in the OSM5 ancestor following the LHS1/OSM5 duplication event. RNA expression analyses of OSM5 co-orthologs in Avena sativa, Chasmanthium latifolium, Hordeum vulgare, Pennisetum glaucum, and Sorghum bicolor followed by ML reconstructions of these data and previously published analyses estimated a complex pattern of gain and loss of LHS1 and OSM5 expression in different floral organs and different flowers within the spikelet or inflorescence. Conclusions Previous authors have reported that rice OSM5 and LHS1 proteins have different interaction partners indicating that the truncation of OSM5 following the LHS1/OSM5 duplication event has resulted in both partitioned and potentially novel gene functions. The complex pattern of OSM5 and LHS1 expression evolution is not consistent with a simple subfunctionalization model following the gene duplication event, but there is evidence of recent partitioning of OSM5 and LHS1 expression within different floral organs of A. sativa, C. latifolium, P. glaucum and S. bicolor, and between the upper and lower florets of the two-flowered maize spikelet. PMID:22340849
Comparing Medline citations using modified N-grams
Nawab, Rao Muhammad Adeel; Stevenson, Mark; Clough, Paul
2014-01-01
Objective We aim to identify duplicate pairs of Medline citations, particularly when the documents are not identical but contain similar information. Materials and methods Duplicate pairs of citations are identified by comparing word n-grams in pairs of documents. N-grams are modified using two approaches which take account of the fact that the document may have been altered. These are: (1) deletion, an item in the n-gram is removed; and (2) substitution, an item in the n-gram is substituted with a similar term obtained from the Unified Medical Language System Metathesaurus. N-grams are also weighted using a score derived from a language model. Evaluation is carried out using a set of 520 Medline citation pairs, including a set of 260 manually verified duplicate pairs obtained from the Deja Vu database. Results The approach accurately detects duplicate Medline document pairs with an F1 measure score of 0.99. Allowing for word deletions and substitution improves performance. The best results are obtained by combining scores for n-grams of length 1–5 words. Discussion Results show that the detection of duplicate Medline citations can be improved by modifying n-grams and that high performance can also be obtained using only unigrams (F1=0.959), particularly when allowing for substitutions of alternative phrases. PMID:23715801
Comparing Medline citations using modified N-grams.
Nawab, Rao Muhammad Adeel; Stevenson, Mark; Clough, Paul
2014-01-01
We aim to identify duplicate pairs of Medline citations, particularly when the documents are not identical but contain similar information. Duplicate pairs of citations are identified by comparing word n-grams in pairs of documents. N-grams are modified using two approaches which take account of the fact that the document may have been altered. These are: (1) deletion, an item in the n-gram is removed; and (2) substitution, an item in the n-gram is substituted with a similar term obtained from the Unified Medical Language System Metathesaurus. N-grams are also weighted using a score derived from a language model. Evaluation is carried out using a set of 520 Medline citation pairs, including a set of 260 manually verified duplicate pairs obtained from the Deja Vu database. The approach accurately detects duplicate Medline document pairs with an F1 measure score of 0.99. Allowing for word deletions and substitution improves performance. The best results are obtained by combining scores for n-grams of length 1-5 words. Results show that the detection of duplicate Medline citations can be improved by modifying n-grams and that high performance can also be obtained using only unigrams (F1=0.959), particularly when allowing for substitutions of alternative phrases.
Asterless Licenses Daughter Centrioles to Duplicate for the First Time in Drosophila Embryos
Novak, Zsofia A.; Conduit, Paul T.; Wainman, Alan; Raff, Jordan W.
2014-01-01
Summary Centrioles form centrosomes and cilia, and defects in any of these three organelles are associated with human disease [1]. Centrioles duplicate once per cell cycle, when a mother centriole assembles an adjacent daughter during S phase. Daughter centrioles cannot support the assembly of another daughter until they mature into mothers during the next cell cycle [2–5]. The molecular nature of this daughter-to-mother transition remains mysterious. Pioneering studies in C. elegans identified a set of core proteins essential for centriole duplication [6–12], and a similar set have now been identified in other species [10, 13–18]. The protein kinase ZYG-1/Sak/Plk4 recruits the inner centriole cartwheel components SAS-6 and SAS-5/Ana2/STIL, which then recruit SAS-4/CPAP, which in turn helps assemble the outer centriole microtubules [19, 20]. In flies and humans, the Asterless/Cep152 protein interacts with Sak/Plk4 and Sas-4/CPAP and is required for centriole duplication, although its precise role in the assembly pathway is unclear [21–24]. Here, we show that Asl is not incorporated into daughter centrioles as they assemble during S phase but is only incorporated once mother and daughter separate at the end of mitosis. The initial incorporation of Asterless (Asl) is irreversible, requires DSas-4, and, crucially, is essential for daughter centrioles to mature into mothers that can support centriole duplication. We therefore propose a “dual-licensing” model of centriole duplication, in which Asl incorporation provides a permanent primary license to allow new centrioles to duplicate for the first time, while centriole disengagement provides a reduplication license to allow mother centrioles to duplicate again. PMID:24835456
Asterless licenses daughter centrioles to duplicate for the first time in Drosophila embryos.
Novak, Zsofia A; Conduit, Paul T; Wainman, Alan; Raff, Jordan W
2014-06-02
Centrioles form centrosomes and cilia, and defects in any of these three organelles are associated with human disease [1]. Centrioles duplicate once per cell cycle, when a mother centriole assembles an adjacent daughter during S phase. Daughter centrioles cannot support the assembly of another daughter until they mature into mothers during the next cell cycle [2-5]. The molecular nature of this daughter-to-mother transition remains mysterious. Pioneering studies in C. elegans identified a set of core proteins essential for centriole duplication [6-12], and a similar set have now been identified in other species [10, 13-18]. The protein kinase ZYG-1/Sak/Plk4 recruits the inner centriole cartwheel components SAS-6 and SAS-5/Ana2/STIL, which then recruit SAS-4/CPAP, which in turn helps assemble the outer centriole microtubules [19, 20]. In flies and humans, the Asterless/Cep152 protein interacts with Sak/Plk4 and Sas-4/CPAP and is required for centriole duplication, although its precise role in the assembly pathway is unclear [21-24]. Here, we show that Asl is not incorporated into daughter centrioles as they assemble during S phase but is only incorporated once mother and daughter separate at the end of mitosis. The initial incorporation of Asterless (Asl) is irreversible, requires DSas-4, and, crucially, is essential for daughter centrioles to mature into mothers that can support centriole duplication. We therefore propose a "dual-licensing" model of centriole duplication, in which Asl incorporation provides a permanent primary license to allow new centrioles to duplicate for the first time, while centriole disengagement provides a reduplication license to allow mother centrioles to duplicate again. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
A conserved segmental duplication within ELA.
Brinkmeyer-Langford, C L; Murphy, W J; Childers, C P; Skow, L C
2010-12-01
The assembled genomic sequence of the horse major histocompatibility complex (MHC) (equine lymphocyte antigen, ELA) is very similar to the homologous human HLA, with the notable exception of a large segmental duplication at the boundary of ELA class I and class III that is absent in HLA. The segmental duplication consists of a ∼ 710 kb region of at least 11 repeated blocks: 10 blocks each contain an MHC class I-like sequence and the helicase domain portion of a BAT1-like sequence, and the remaining unit contains the full-length BAT1 gene. Similar genomic features were found in other Perissodactyls, indicating an ancient origin, which is consistent with phylogenetic analyses. Reverse-transcriptase PCR (RT-PCR) of mRNA from peripheral white blood cells of healthy and chronically or acutely infected horses detected transcription from predicted open reading frames in several of the duplicated blocks. This duplication is not present in the sequenced MHCs of most other mammals, although a similar feature at the same relative position is present in the feline MHC (FLA). Striking sequence conservation throughout Perissodactyl evolution is consistent with a functional role for at least some of the genes included within this segmental duplication. © 2010 The Authors, Journal compilation © 2010 Stichting International Foundation for Animal Genetics.
A graph-theoretic approach for inparalog detection.
Tremblay-Savard, Olivier; Swenson, Krister M
2012-01-01
Understanding the history of a gene family that evolves through duplication, speciation, and loss is a fundamental problem in comparative genomics. Features such as function, position, and structural similarity between genes are intimately connected to this history; relationships between genes such as orthology (genes related through a speciation event) or paralogy (genes related through a duplication event) are usually correlated with these features. For example, recent work has shown that in human and mouse there is a strong connection between function and inparalogs, the paralogs that were created since the speciation event separating the human and mouse lineages. Methods exist for detecting inparalogs that either use information from only two species, or consider a set of species but rely on clustering methods. In this paper we present a graph-theoretic approach for finding lower bounds on the number of inparalogs for a given set of species; we pose an edge covering problem on the similarity graph and give an efficient 2/3-approximation as well as a faster heuristic. Since the physical position of inparalogs corresponding to recent speciations is not likely to have changed since the duplication, we also use our predictions to estimate the types of duplications that have occurred in some vertebrates and drosophila.
Mastretta-Yanes, Alicia; Zamudio, Sergio; Jorgensen, Tove H.; Arrigo, Nils; Alvarez, Nadir; Piñero, Daniel; Emerson, Brent C.
2014-01-01
Gene duplication leads to paralogy, which complicates the de novo assembly of genotyping-by-sequencing (GBS) data. The issue of paralogous genes is exacerbated in plants, because they are particularly prone to gene duplication events. Paralogs are normally filtered from GBS data before undertaking population genomics or phylogenetic analyses. However, gene duplication plays an important role in the functional diversification of genes and it can also lead to the formation of postzygotic barriers. Using populations and closely related species of a tropical mountain shrub, we examine 1) the genomic differentiation produced by putative orthologs, and 2) the distribution of recent gene duplication among lineages and geography. We find high differentiation among populations from isolated mountain peaks and species-level differentiation within what is morphologically described as a single species. The inferred distribution of paralogs among populations is congruent with taxonomy and shows that GBS could be used to examine recent gene duplication as a source of genomic differentiation of nonmodel species. PMID:25223767
Fanelli, Daniele; Costas, Rodrigo; Fang, Ferric C; Casadevall, Arturo; Bik, Elisabeth M
2018-02-19
It is commonly hypothesized that scientists are more likely to engage in data falsification and fabrication when they are subject to pressures to publish, when they are not restrained by forms of social control, when they work in countries lacking policies to tackle scientific misconduct, and when they are male. Evidence to test these hypotheses, however, is inconclusive due to the difficulties of obtaining unbiased data. Here we report a pre-registered test of these four hypotheses, conducted on papers that were identified in a previous study as containing problematic image duplications through a systematic screening of the journal PLoS ONE. Image duplications were classified into three categories based on their complexity, with category 1 being most likely to reflect unintentional error and category 3 being most likely to reflect intentional fabrication. We tested multiple parameters connected to the hypotheses above with a matched-control paradigm, by collecting two controls for each paper containing duplications. Category 1 duplications were mostly not associated with any of the parameters tested, as was predicted based on the assumption that these duplications were mostly not due to misconduct. Categories 2 and 3, however, exhibited numerous statistically significant associations. Results of univariable and multivariable analyses support the hypotheses that academic culture, peer control, cash-based publication incentives and national misconduct policies might affect scientific integrity. No clear support was found for the "pressures to publish" hypothesis. Female authors were found to be equally likely to publish duplicated images compared to males. Country-level parameters generally exhibited stronger effects than individual-level parameters, because developing countries were significantly more likely to produce problematic image duplications. This suggests that promoting good research practices in all countries should be a priority for the international research integrity agenda.
Whole-genome copy number variation analysis in anophthalmia and microphthalmia.
Schilter, K F; Reis, L M; Schneider, A; Bardakjian, T M; Abdul-Rahman, O; Kozel, B A; Zimmerman, H H; Broeckel, U; Semina, E V
2013-11-01
Anophthalmia/microphthalmia (A/M) represent severe developmental ocular malformations. Currently, mutations in known genes explain less than 40% of A/M cases. We performed whole-genome copy number variation analysis in 60 patients affected with isolated or syndromic A/M. Pathogenic deletions of 3q26 (SOX2) were identified in four independent patients with syndromic microphthalmia. Other variants of interest included regions with a known role in human disease (likely pathogenic) as well as novel rearrangements (uncertain significance). A 2.2-Mb duplication of 3q29 in a patient with non-syndromic anophthalmia and an 877-kb duplication of 11p13 (PAX6) and a 1.4-Mb deletion of 17q11.2 (NF1) in two independent probands with syndromic microphthalmia and other ocular defects were identified; while ocular anomalies have been previously associated with 3q29 duplications, PAX6 duplications, and NF1 mutations in some cases, the ocular phenotypes observed here are more severe than previously reported. Three novel regions of possible interest included a 2q14.2 duplication which cosegregated with microphthalmia/microcornea and congenital cataracts in one family, and 2q21 and 15q26 duplications in two additional cases; each of these regions contains genes that are active during vertebrate ocular development. Overall, this study identified causative copy number mutations and regions with a possible role in ocular disease in 17% of A/M cases. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Ohtani, Haruka; Morimoto, Takuya; Beppu, Kenji; Kataoka, Ikuo
2018-01-01
Dioecy, the presence of male and female flowers on distinct individuals, has evolved independently in multiple plant lineages, and the genes involved in this differential development are just starting to be uncovered in a few species. Here, we used genomic approaches to investigate this pathway in kiwifruits (genus Actinidia). Genome-wide cataloging of male-specific subsequences, combined with transcriptome analysis, led to the identification of a type-C cytokinin response regulator as a potential sex determinant gene in this genus. Functional transgenic analyses in two model systems, Arabidopsis thaliana and Nicotiana tabacum, indicated that this gene acts as a dominant suppressor of carpel development, prompting us to name it Shy Girl (SyGI). Evolutionary analyses in a panel of Actinidia species revealed that SyGI is located in the Y-specific region of the genome and probably arose from a lineage-specific gene duplication. Comparisons with the duplicated autosomal counterpart, and with orthologs from other angiosperms, suggest that the SyGI-specific duplication and subsequent evolution of cis-elements may have played a key role in the acquisition of separate sexes in this species. PMID:29626069
Huang, Xue-shuang; Zhu, Bao; Jiang, Hai-ou; Wu, Su-fan; Zhang, Zai-qi; Xiao, Lin; Yi, Li-lan; Zhang, Jian-xiang
2013-04-01
We reported a 2-year-old boy with developmental delay, mild mental retardation, and severe craniofacial malformation, including facial asymmetry with hypoplasia of the left zygoma, maxilla, and mandible, and left anophthalmia and anotia. A genome-wide screen revealed a 1.38 Mb duplication on chromosome 1q31.1, which was absent in his parents and 27 healthy controls. The duplication region contains two Refseq genes, PLA2G4A and C1orf99, which have not been reported to be implicated in craniofacial malformation. Functional studies of these genes and additional clinical analysis are necessary to elucidate the pathogenesis of craniofacial malformation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Whole-genome copy number variation analysis in anophthalmia and microphthalmia
Schilter, Kala F.; Reis, Linda M.; Schneider, Adele; Bardakjian, Tanya M.; Abdul-Rahman, Omar; Kozel, Beth A.; Zimmerman, Holly H.; Broeckel, Ulrich; Semina, Elena V.
2014-01-01
Anophthalmia and microphthalmia (A/M) represent severe developmental ocular malformations. Currently, mutations in known genes explain less than 40% of A/M cases. We performed whole genome copy number variation analysis in sixty patients affected with isolated or syndromic A/M. Pathogenic deletions of 3q26 (SOX2) were identified in four independent patients with syndromic microphthalmia. Other variants of interest included regions with a known role in human disease (likely pathogenic) as well as novel rearrangements (uncertain significance). A 2.2-Mb duplication of 3q29 in a patient with nonsyndromic anophthalmia and an 877-kb duplication of 11p13 (PAX6) and a 1.4-Mb deletion of 17q11.2 (NF1) in two independent probands with syndromic microphthalmia and other ocular defects were identified; while ocular anomalies have been previously associated with 3q29 duplications, PAX6 duplications, and NF1 mutations in some cases, the ocular phenotypes observed here are more severe than previously reported. Three novel regions of possible interest included a 2q14.2 duplication which cosegregated with microphthalmia/microcornea and congenital cataracts in one family, and 2q21 and 15q26 duplications in two additional cases; each of these regions contains genes that are active during vertebrate ocular development. Overall, this study identified causative copy number mutations and regions with a possible role in ocular disease in 17% of A/M cases. PMID:23701296
A specific collagen type II gene (COL2A1) mutation presenting as spondyloperipheral dysplasia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zabel, B.; Hilbert, K.; Spranger, J.
1996-05-03
We report on a patient with a skeletal dysplasia characterized by short stature, spondylo-epiphyseal involvement, and brachydactyly E-like changes. This condition has been described as spondyloperipheral dysplasia and the few published cases suggest autosomal dominant inheritance with considerable clinical variability. We found our sporadic case to be due to a collagen type II defect resulting from a specific COL2A1 mutation. This mutation is the first to be located at the C-terminal outside the helical domain of COL2A1. A frameshift as consequence of a 5 bp duplication in exon 51 leads to a stop codon. The resulting truncated C-propeptide region seemsmore » to affect helix formation and produces changes of chondrocyte morphology, collagen type II fibril structure and cartilage matrix composition. Our case with its distinct phenotype adds another chondrodysplasia to the clinical spectrum of type II collagenopathies. 16 refs., 4 figs.« less
Laios, Eleftheria; Drogari, Euridiki
2006-12-01
Three mutations in the low density lipoprotein receptor (LDLR) gene account for 49% of familial hypercholesterolemia (FH) cases in Greece. We used the microelectronic array technology of the NanoChip Molecular Biology Workstation to develop a multiplex method to analyze these single-nucleotide polymorphisms (SNPs). Primer pairs amplified the region encompassing each SNP. The biotinylated PCR amplicon was electronically addressed to streptavidin-coated microarray sites. Allele-specific fluorescently labeled oligonucleotide reporters were designed and used for detection of wild-type and SNP sequences. Genotypes were compared to PCR-restriction fragment length polymorphism (PCR-RFLP). We developed three monoplex assays (1 SNP/site) and an optimized multiplex assay (3SNPs/site). We performed 92 Greece II, 100 Genoa, and 98 Afrikaner-2 NanoChip monoplex assays (addressed to duplicate sites and analyzed separately). Of the 580 monoplex genotypings (290 samples), 579 agreed with RFLP. Duplicate sites of one sample were not in agreement with each other. Of the 580 multiplex genotypings, 576 agreed with the monoplex results. Duplicate sites of three samples were not in agreement with each other, indicating requirement for repetition upon which discrepancies were resolved. The multiplex assay detects common LDLR mutations in Greek FH patients and can be extended to accommodate additional mutations.
Wang, Tiehui; Johansson, Petronella; Abós, Beatriz; Holt, Amy; Tafalla, Carolina; Jiang, Youshen; Wang, Alex; Xu, Qiaoqing; Qi, Zhitao; Huang, Wenshu; Costa, Maria M.; Diaz-Rosales, Patricia; Holland, Jason W.; Secombes, Christopher J.
2016-01-01
IL-4 and IL-13 are closely related canonical type-2 cytokines in mammals and have overlapping bioactivities via shared receptors. They are frequently activated together as part of the same immune response and are the signature cytokines produced by T-helper (Th)2 cells and type-2 innate lymphoid cells (ILC2), mediating immunity against extracellular pathogens. Little is known about the origin of type-2 responses, and whether they were an essential component of the early adaptive immune system that gave a fitness advantage by limiting collateral damage caused by metazoan parasites. Two evolutionary related type-2 cytokines, IL-4/13A and IL-4/13B, have been identified recently in several teleost fish that likely arose by duplication of an ancestral IL-4/13 gene as a consequence of a whole genome duplication event that occurred at the base of this lineage. However, studies of their comparative expression levels are largely missing and bioactivity analysis has been limited to IL-4/13A in zebrafish. Through interrogation of the recently released salmonid genomes, species in which an additional whole genome duplication event has occurred, four genomic IL-4/13 loci have been identified leading to the cloning of three active genes, IL-4/13A, IL-4/13B1 and IL-4/13B2, in both rainbow trout and Atlantic salmon. Comparative expression analysis by real-time PCR in rainbow trout revealed that the IL-4/13A expression is broad and high constitutively but less responsive to pathogen-associated molecular patterns (PAMPs) and pathogen challenge. In contrast, the expression of IL-4/13B1 and IL-4/13B2 is low constitutively but is highly induced by viral haemorrhagic septicaemia virus (VHSH) infection and during proliferative kidney disease (PKD) in vivo, and by formalin-killed bacteria, PAMPs, the T cell mitogen PHA, and the T-cell cytokines IL-2 and IL-21 in vitro. Moreover, bioactive recombinant cytokines of both IL-4/13A and B were produced and found to have shared but also distinct bioactivities. Both cytokines rapidly induce the gene expression of antimicrobial peptides and acute phase proteins, providing an effector mechanism of fish type-2 cytokines in immunity. They are anti-inflammatory via up-regulation of IL-10 and down-regulation of IL-1β and IFN-γ. They modulate the expression of cellular markers of T cells, macrophages and B cells, the receptors of IFN-γ, the IL-6 cytokine family and their own potential receptors, suggesting multiple target cells and important roles of fish type-2 cytokines in the piscine cytokine network. Furthermore both cytokines increased the number of IgM secreting B cells but had no effects on the proliferation of IgM+ B cells in vitro. Taken as a whole, fish IL-4/13A may provide a basal level of type-2 immunity whilst IL-4/13B, when activated, provides an enhanced type-2 immunity, which may have an important role in specific cell-mediated immunity. To our knowledge this is the first in-depth analysis of the expression, modulation and bioactivities of type-2 cytokines in the same fish species, and in any early vertebrate. It contributes to a broader understanding of the evolution of type-2 immunity in vertebrates, and establishes a framework for further studies and manipulation of type-2 cytokines in fish. PMID:26870894
Moey, Ching; Hinze, Susan J; Brueton, Louise; Morton, Jenny; McMullan, Dominic J; Kamien, Benjamin; Barnett, Christopher P; Brunetti-Pierri, Nicola; Nicholl, Jillian; Gecz, Jozef; Shoubridge, Cheryl
2016-01-01
Copy number variations are a common cause of intellectual disability (ID). Determining the contribution of copy number variants (CNVs), particularly gains, to disease remains challenging. Here, we report four males with ID with sub-microscopic duplications at Xp11.2 and review the few cases with overlapping duplications reported to date. We established the extent of the duplicated regions in each case encompassing a minimum of three known disease genes TSPYL2, KDM5C and IQSEC2 with one case also duplicating the known disease gene HUWE1. Patients with a duplication encompassing TSPYL2, KDM5C and IQSEC2 without gains of nearby SMC1A and HUWE1 genes have not been reported thus far. All cases presented with ID and significant deficits of speech development. Some patients also manifested behavioral disturbances such as hyperactivity and attention-deficit/hyperactivity disorder. Lymphoblastic cell lines from patients show markedly elevated levels of TSPYL2, KDM5C and SMC1A, transcripts consistent with the extent of their CNVs. The duplicated region in our patients contains several genes known to escape X-inactivation, including KDM5C, IQSEC2 and SMC1A. In silico analysis of expression data in selected gene expression omnibus series indicates that dosage of these genes, especially IQSEC2, is similar in males and females despite the fact they escape from X-inactivation in females. Taken together, the data suggest that gains in Xp11.22 including IQSEC2 cause ID and are associated with hyperactivity and attention-deficit/hyperactivity disorder, and are likely to be dosage-sensitive in males. PMID:26059843
Moey, Ching; Hinze, Susan J; Brueton, Louise; Morton, Jenny; McMullan, Dominic J; Kamien, Benjamin; Barnett, Christopher P; Brunetti-Pierri, Nicola; Nicholl, Jillian; Gecz, Jozef; Shoubridge, Cheryl
2016-03-01
Copy number variations are a common cause of intellectual disability (ID). Determining the contribution of copy number variants (CNVs), particularly gains, to disease remains challenging. Here, we report four males with ID with sub-microscopic duplications at Xp11.2 and review the few cases with overlapping duplications reported to date. We established the extent of the duplicated regions in each case encompassing a minimum of three known disease genes TSPYL2, KDM5C and IQSEC2 with one case also duplicating the known disease gene HUWE1. Patients with a duplication encompassing TSPYL2, KDM5C and IQSEC2 without gains of nearby SMC1A and HUWE1 genes have not been reported thus far. All cases presented with ID and significant deficits of speech development. Some patients also manifested behavioral disturbances such as hyperactivity and attention-deficit/hyperactivity disorder. Lymphoblastic cell lines from patients show markedly elevated levels of TSPYL2, KDM5C and SMC1A, transcripts consistent with the extent of their CNVs. The duplicated region in our patients contains several genes known to escape X-inactivation, including KDM5C, IQSEC2 and SMC1A. In silico analysis of expression data in selected gene expression omnibus series indicates that dosage of these genes, especially IQSEC2, is similar in males and females despite the fact they escape from X-inactivation in females. Taken together, the data suggest that gains in Xp11.22 including IQSEC2 cause ID and are associated with hyperactivity and attention-deficit/hyperactivity disorder, and are likely to be dosage-sensitive in males.
Barker, Elizabeth I; Ashton, Neil W
2016-03-01
The Physcomitrella pseudochromosomal genome assembly revealed previously invisible synteny enabling realisation of the full potential of shared synteny as a tool for probing evolution of this plant's MADS-box gene family. Assembly of the sequenced genome of Physcomitrella patens into 27 mega-scaffolds (pseudochromosomes) has confirmed the major predictions of our earlier model of expansion of the MADS-box gene family in the Physcomitrella lineage. Additionally, microsynteny has been conserved in the immediate vicinity of some recent duplicates of MADS-box genes. However, comparison of non-syntenic MIKC MADS-box genes and neighbouring genes indicates that chromosomal rearrangements and/or sequence degeneration have destroyed shared synteny over longer distances (macrosynteny) around MADS-box genes despite subsets comprising two or three MIKC genes having remained syntenic. In contrast, half of the type I MADS-box genes have been transposed creating new syntenic relations with MIKC genes. This implies that conservation of ancient ancestral synteny of MIKC genes and of more recently acquired synteny of type I and MIKC genes may be selectively advantageous. Our revised model predicts the birth rate of MIKC genes in Physcomitrella is higher than that of type I genes. However, this difference is attributable to an early tandem duplication and an early segmental duplication of MIKC genes prior to the two polyploidisations that account for most of the expansion of the MADS-box gene family in Physcomitrella. Furthermore, this early segmental duplication spawned two chromosomal lineages: one with a MIKC (C) gene, belonging to the PPM2 clade, in close proximity to one or a pair of MIKC* genes and another with a MIKC (C) gene, belonging to the PpMADS-S clade, characterised by greater separation from syntenic MIKC* genes. Our model has evolutionary implications for the Physcomitrella karyotype.
Ancient and Recent Duplications Support Functional Diversity of Daphnia Opsins.
Brandon, Christopher S; Greenwold, Matthew J; Dudycha, Jeffry L
2017-01-01
Daphnia pulex has the largest known family of opsins, genes critical for photoreception and vision in animals. This diversity may be functionally redundant, arising from recent processes, or ancient duplications may have been preserved due to distinct functions and independent contributions to fitness. We analyzed opsins in D. pulex and its distant congener Daphnia magna. We identified 48 opsins in the D. pulex genome and 32 in D. magna. We inferred the complement of opsins in the last common ancestor of all Daphnia and evaluated the history of opsin duplication and loss. We further analyzed sequence variation to assess possible functional diversification among Daphnia opsins. Much of the opsin expansion occurred before the D. pulex-D. magna split more than 145 Mya, and both Daphnia lineages preserved most ancient opsins. More recent expansion occurred in pteropsins and long-wavelength visual opsins in both species, particularly D. pulex. Recent duplications were not random: the same ancestral genes duplicated independently in each modern species. Most ancient and some recent duplications involved differentiation at residues known to influence spectral tuning of visual opsins. Arthropsins show evidence of gene conversion between tandemly arrayed paralogs in functionally important domains. Intron-exon gene structure was generally conserved within clades inferred from sequences, although pteropsins showed substantial intron size variation. Overall, our analyses support the hypotheses that diverse opsins are maintained due to diverse functional roles in photoreception and vision, that functional diversification is both ancient and recent, and that multiple evolutionary processes have influenced different types of opsins.
Takahashi, Yoshimitsu; Ishizaki, Tatsuro; Nakayama, Takeo; Kawachi, Ichiro
2016-03-01
Duplicative prescriptions refer to situations in which patients receive medications for the same condition from two or more sources. Health officials in Japan have expressed concern about medical "waste" resulting from this practices. We sought to conduct descriptive analysis of duplicative prescriptions using social network analysis and to report their prevalence across ages. We analyzed a health insurance claims database including 1.24 million people from December 2012. Through social network analysis, we examined the duplicative prescription networks, representing each medical facility as nodes, and individual prescriptions for patients as edges. The prevalence of duplicative prescription for any drug class was strongly correlated with its frequency of prescription (r=0.90). Among patients aged 0-19, cough and colds drugs showed the highest prevalence of duplicative prescriptions (10.8%). Among people aged 65 and over, antihypertensive drugs had the highest frequency of prescriptions, but the prevalence of duplicative prescriptions was low (0.2-0.3%). Social network analysis revealed clusters of facilities connected via duplicative prescriptions, e.g., psychotropic drugs showed clustering due to a few patients receiving drugs from 10 or more facilities. Overall, the prevalence of duplicative prescriptions was quite low - less than 10% - although the extent of the problem varied by drug class and age group. Our approach illustrates the potential utility of using a social network approach to understand these practices. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Meira, L B; Fonseca, M B; Averbeck, D; Schenberg, A C; Henriques, J A
1992-11-01
Spontaneous mitotic recombination was examined in the haploid pso4-1 mutant of Saccharomyces cerevisiae and in the corresponding wild-type strain. Using a genetic system involving a duplication of the his4 gene it was shown that the pso4-1 mutation decreases at least fourfold the spontaneous rate of mitotic recombination. The frequency of spontaneous recombination was reduced tenfold in pso4-1 strains, as previously observed in the rad52-1 mutant. However, whereas the rad52-1 mutation specifically reduces gene conversion, the pso4-1 mutation reduces both gene conversion and reciprocal recombination. Induced mitotic recombination was also studied in pso4-1 mutant and wild-type strains after treatment with 8-methoxypsoralen plus UVA and 254 nm UV irradiation. Consistent with previous results, the pso4-1 mutation was found strongly to affect recombination induction.
Beaujard, M-P; Jouannic, J-M; Bessières, B; Borie, C; Martin-Luis, I; Fallet-Bianco, C; Portnoï, M-F
2005-06-01
To present the prenatal diagnosis of a de novo terminal inversion duplication of the short arm of chromosome 4 and a review of the literature. An amniocentesis for chromosome analysis was performed at 33 weeks' gestation because ultrasound examination showed a female fetus with multiple abnormalities consisting of severe intrauterine growth retardation, microcephaly, a cleft lip and renal hypoplasia. Cytogenetic analysis and FISH studies of the cultured amniocytes revealed a de novo terminal inversion duplication of the short arm of chromosome 4 characterized by a duplication of 4p14-p16.1 chromosome region concomitant with a terminal deletion 4p16.1-pter. The karyotype was thus: 46,XX, inv dup del (4)(:p14-->p16.1::p16.1-->qter). The parents opted to terminate the pregnancy. Fetopathological examination showed dysmorphic features and abnormalities consistent with a Wolf-Hirschhorn syndrome (WHS) diagnosis, clinical manifestations of partial 4p trisomy being mild. Although relatively rare, inverted duplications have been reported repeatedly in an increasing number of chromosomes. Only two previous cases with de novo inv dup del (4p) and one with tandem dup 4p have been reported, all of them associated with a 4pter deletion. We report the first case diagnosed prenatally. Breakpoints are variable, resulting in different abnormal phenotype. In our case, clinical manifestations resulted in a WHS phenotype.
Toloza-Villalobos, Jessica; Arroyo, José Ignacio; Opazo, Juan C
2015-01-01
The circadian clock is a central oscillator that coordinates endogenous rhythms. Members of six gene families underlie the metabolic machinery of this system. Although this machinery appears to correspond to a highly conserved genetic system in metazoans, it has been recognized that vertebrates possess a more diverse gene inventory than that of non-vertebrates. This difference could have originated in the two successive rounds of whole-genome duplications that took place in the common ancestor of the group. Teleost fish underwent an extra event of whole-genome duplication, which is thought to have provided an abundance of raw genetic material for the biological innovations that facilitated the radiation of the group. In this study, we assessed the relative contributions of whole-genome duplication and small-scale gene duplication to generate the repertoire of genes associated with the circadian clock of teleost fish. To achieve this goal, we annotated genes from six gene families associated with the circadian clock in eight teleost fish species, and we reconstructed their evolutionary history by inferring phylogenetic relationships. Our comparative analysis indicated that teleost species possess a variable repertoire of genes related to the circadian clock gene families and that the actual diversity of these genes has been shaped by a variety of phenomena, such as the complete deletion of ohnologs, the differential retention of genes, and lineage-specific gene duplications. From a functional perspective, the subfunctionalization of two ohnolog genes (PER1a and PER1b) in zebrafish highlights the power of whole-genome duplications to generate biological diversity.
Neuroblastoma in a boy with MCA/MR syndrome, deletion 11q, and duplication 12q
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koiffmann, C.P.; Vianna-Morgante, A.M.; Wajntal, A.
Deletion 11q23{r_arrow}qter and duplication 12q23{r_arrow}qter are described in a boy with neuroblastoma, multiple congenital anomalies, and mental retardation. The patient has clinical manifestations of 11q deletion and 12q duplication syndromes. The possible involvement of the segment 11q23{r_arrow}24 in the cause of the neuroblastoma is discussed. 18 refs., 2 figs., 1 tab.
Burnside, Rachel D; Pasion, Romela; Mikhail, Fady M; Carroll, Andrew J; Robin, Nathaniel H; Youngs, Erin L; Gadi, Inder K; Keitges, Elizabeth; Jaswaney, Vikram L; Papenhausen, Peter R; Potluri, Venkateswara R; Risheg, Hiba; Rush, Brooke; Smith, Janice L; Schwartz, Stuart; Tepperberg, James H; Butler, Merlin G
2011-10-01
The proximal long arm of chromosome 15 has segmental duplications located at breakpoints BP1-BP5 that mediate the generation of NAHR-related microdeletions and microduplications. The classical Prader-Willi/Angelman syndrome deletion is flanked by either of the proximal BP1 or BP2 breakpoints and the distal BP3 breakpoint. The larger Type I deletions are flanked by BP1 and BP3 in both Prader-Willi and Angelman syndrome subjects. Those with this deletion are reported to have a more severe phenotype than individuals with either Type II deletions (BP2-BP3) or uniparental disomy 15. The BP1-BP2 region spans approximately 500 kb and contains four evolutionarily conserved genes that are not imprinted. Reports of mutations or disturbed expression of these genes appear to impact behavioral and neurological function in affected individuals. Recently, reports of deletions and duplications flanked by BP1 and BP2 suggest an association with speech and motor delays, behavioral problems, seizures, and autism. We present a large cohort of subjects with copy number alteration of BP1 to BP2 with common phenotypic features. These include autism, developmental delay, motor and language delays, and behavioral problems, which were present in both cytogenetic groups. Parental studies demonstrated phenotypically normal carriers in several instances, and mildly affected carriers in others, complicating phenotypic association and/or causality. Possible explanations for these results include reduced penetrance, altered gene dosage on a particular genetic background, or a susceptibility region as reported for other areas of the genome implicated in autism and behavior disturbances.
Application of array-comparative genomic hybridization in tetralogy of Fallot
Liu, Lin; Wang, Hong-Dan; Cui, Cun-Ying; Wu, Dong; Li, Tao; Fan, Tai-Bing; Peng, Bang-Tian; Zhang, Lian-Zhong; Wang, Cheng-Zeng
2016-01-01
Abstract To explore the underlying pathogenesis and provide references for genetic counseling and prenatal gene diagnosis, we analyzed the chromosome karyotypes and genome-wide copy number variations (CNVs) in 86 patients with tetralogy of Fallot (TOF) by G-banding karyotype analysis and array-comparative genomic hybridization (aCGH), respectively. And then quantitative polymerase chain reaction was used to validate these candidate CNVs. Based on their different properties, CNVs were categorized into benign CNVs, suspiciously pathogenic CNVs, and indefinite CNVs. Data analysis was based on public databases such as UCSC, DECIPHER, DGV, ISCA, and OMIM. The karyotype was normal in all the 86 patients with TOF. CNVs were detected in 11 patients by aCGH and quantitative polymerase chain reaction. Patient no. 0001, 0010, and 0029 had 2.52-Mb deletion in the chromosome 22q11.21 region; patient no. 0008 had both 595- and 428-kb duplications, respectively, in 12p12.3p12.2 and 14q23.2q23.3 regions; patient no. 0009 had 1.46-Mb duplication in the 1q21.1q21.2 region; patient no. 0016 had 513-kb duplication in the 1q42.13 region; patient no. 0024 had 292-kb duplication in the 16q11.2 region; patient no. 0026 had 270-kb duplication in the 16q24.1 region; patient no. 0028 had 222-kb deletion in the 7q31.1 region; patient no. 0033 had 1.73-Mb duplication in the 17q12 region; and patient no. 0061 had 5.79-Mb deletion in the 1p36.33p36.31 region. aCGH can accurately detect CNVs in the patients with TOF. This is conducive to genetic counseling and prenatal diagnosis for TOF and provides a new clue and theoretical basis for exploring the pathogenesis of congenital heart disease. PMID:27930557
Application of array-comparative genomic hybridization in tetralogy of Fallot.
Liu, Lin; Wang, Hong-Dan; Cui, Cun-Ying; Wu, Dong; Li, Tao; Fan, Tai-Bing; Peng, Bang-Tian; Zhang, Lian-Zhong; Wang, Cheng-Zeng
2016-12-01
To explore the underlying pathogenesis and provide references for genetic counseling and prenatal gene diagnosis, we analyzed the chromosome karyotypes and genome-wide copy number variations (CNVs) in 86 patients with tetralogy of Fallot (TOF) by G-banding karyotype analysis and array-comparative genomic hybridization (aCGH), respectively. And then quantitative polymerase chain reaction was used to validate these candidate CNVs. Based on their different properties, CNVs were categorized into benign CNVs, suspiciously pathogenic CNVs, and indefinite CNVs. Data analysis was based on public databases such as UCSC, DECIPHER, DGV, ISCA, and OMIM.The karyotype was normal in all the 86 patients with TOF. CNVs were detected in 11 patients by aCGH and quantitative polymerase chain reaction. Patient no. 0001, 0010, and 0029 had 2.52-Mb deletion in the chromosome 22q11.21 region; patient no. 0008 had both 595- and 428-kb duplications, respectively, in 12p12.3p12.2 and 14q23.2q23.3 regions; patient no. 0009 had 1.46-Mb duplication in the 1q21.1q21.2 region; patient no. 0016 had 513-kb duplication in the 1q42.13 region; patient no. 0024 had 292-kb duplication in the 16q11.2 region; patient no. 0026 had 270-kb duplication in the 16q24.1 region; patient no. 0028 had 222-kb deletion in the 7q31.1 region; patient no. 0033 had 1.73-Mb duplication in the 17q12 region; and patient no. 0061 had 5.79-Mb deletion in the 1p36.33p36.31 region.aCGH can accurately detect CNVs in the patients with TOF. This is conducive to genetic counseling and prenatal diagnosis for TOF and provides a new clue and theoretical basis for exploring the pathogenesis of congenital heart disease.
Ajmal, Wajya; Khan, Hiba; Abbasi, Amir Ali
2014-12-01
Understanding the genetic mechanisms underlying the organismal complexity and origin of novelties during vertebrate history is one of the central goals of evolutionary biology. Ohno (1970) was the first to postulate that whole genome duplications (WGD) have played a vital role in the evolution of new gene functions: permitting an increase in morphological, physiological and anatomical complexity during early vertebrate history. Here, we analyze the evolutionary history of human FGFR-bearing paralogon (human autosome 4/5/8/10) by the phylogenetic analysis of multigene families with triplicate and quadruplicate distribution on these chromosomes. Our results categorized the histories of 21 families into discrete co-duplicated groups. Genes of a particular co-duplicated group exhibit identical evolutionary history and have duplicated in concert with each other, whereas genes belonging to different groups have dissimilar histories and have not duplicated concurrently. Taken together with our previously published data, we submit that there is sufficient empirical evidence to disprove the 1R/2R hypothesis and to support the general prediction that vertebrate genome evolved by relatively small-scale, regional duplication events that spread across the history of life. Copyright © 2014 Elsevier Inc. All rights reserved.
Vengalil, Seena; Preethish-Kumar, Veeramani; Polavarapu, Kiran; Mahadevappa, Manjunath; Sekar, Deepha; Purushottam, Meera; Thomas, Priya Treesa; Nashi, Saraswathi; Nalini, Atchayaram
2017-01-01
Studies of cases of Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) confirmed by multiplex ligation-dependent probe amplification (MLPA) have determined the clinical characteristics, genotype, and relations between the reading frame and phenotype for different countries. This is the first such study from India. A retrospective genotype-phenotype analysis of 317 MLPA-confirmed patients with DMD or BMD who visited the neuromuscular clinic of a quaternary referral center in southern India. The 317 patients comprised 279 cases of DMD (88%), 32 of BMD (10.1%), and 6 of intermediate phenotype (1.9%). Deletions accounted for 91.8% of cases, with duplications causing the remaining 8.2%. There were 254 cases of DMD (91%) with deletions and 25 (9%) due to duplications, and 31 cases (96.8%) of BMD with deletions and 1 (3.2%) due to duplication. All six cases of intermediate type were due to deletions. The most-common mutation was a single-exon deletion. Deletions of six or fewer exons constituted 68.8% of cases. The deletion of exon 50 was the most common. The reading-frame rule held in 90% of DMD and 94% of BMD cases. A tendency toward a lower IQ and earlier wheelchair dependence was observed with distal exon deletions, though a significant correlation was not found. The reading-frame rule held in 90% to 94% of children, which is consistent with reports from other parts of the world. However, testing by MLPA is a limitation, and advanced sequencing methods including analysis of the structure of mutant dystrophin is needed for more-accurate assessments of the genotype-phenotype correlation.
Delziovo, Carmem Regina; Bolsoni, Carolina Carvalho; Lindner, Sheila Rubia; Coelho, Elza Berger Salema
2018-02-01
to describe the quality of records on cases of sexual violence against women, reported in the Information System for Notifiable Diseases (Sinan), in Santa Catarina State, Brazil, from 2008 to 2013. normative assessment with data from records of sexual violence cases against women (≥10 years old); data quality was described according to the dimensions 'non-duplicity' (acceptable when >95%), 'completeness' (good when >75%), and 'consistency' (excellent when >90.0%) of information. 2,010 cases of sexual violence against women were studied, after the exclusion of four duplicate records; the percentage of non-duplicity was 99.9% (acceptable); of completeness was 93.3% (good) and of consistency was 98.9% (excellent). the results presented point out the usefulness of Sinan as a source of information for the surveillance of sexual violence against women and for planning actions to tackle this type of aggression.
Contu, L; Carcassi, C; Dausset, J
1989-01-01
The C4 and 21-OH loci of the class III HLA have been studied by specific DNA probes and the restriction enzyme Taq 1 in 24 unrelated Sardinian individuals selected from completely HLA-typed families. All 24 individuals had the HLA extended haplotype A30,Cw5,B18, BfF1,DR3,DRw52,DQw2, named "Sardinian" in the present paper because of its frequency of 15% in the Sardinian population. Eighteen of these were homozygous for the entire haplotype, and six were heterozygous at the A locus and blank (or homozygous) at all the other loci. In all completely homozygous cells and in four heterozygous cells at the A locus, the restriction fragments of the 21-OHA (3.2 kb) and C4B (5.8 kb or 5.4 kb) genes were absent, and the fragments of the C4A (7.0 kb) and 21-OHB (3.7 kb) genes were present. It is suggested that the "Sardinian" haplotype is an ancestral haplotype without duplication of the C4 and 21-OH genes, practically always identical in its structure, also in unrelated individuals. The diversity of this haplotype in the class III region (about 30 kb less) may be at least partially responsible for its misalignment with most haplotypes, which have duplicated C4 and 21-OH genes, and therefore also for its decreased probability to recombine. This can help explain its high stability and frequency in the Sardinian population. The same conclusion can be suggested for the Caucasian extended haplotype A1,B8,DR3 that always seems to lack the C4A and 21-OHA genes.
Barber, John C K; Hall, Victoria; Maloney, Viv K; Huang, Shuwen; Roberts, Angharad M; Brady, Angela F; Foulds, Nicki; Bewes, Beverley; Volleth, Marianne; Liehr, Thomas; Mehnert, Karl; Bateman, Mark; White, Helen
2013-01-01
Chromosome 16 contains multiple copy number variations (CNVs) that predispose to genomic disorders. Here, we differentiate pathogenic duplications of 16p11.2–p12.2 from microscopically similar euchromatic variants of 16p11.2. Patient 1 was a girl of 18 with autism, moderate intellectual disability, behavioural difficulties, dysmorphic features and a 7.71-Mb (megabase pair) duplication (16:21 521 005–29 233 146). Patient 2 had a 7.81-Mb duplication (16:21 382 561–29 191 527), speech delay and obsessional behaviour as a boy and, as an adult, short stature, macrocephaly and mild dysmorphism. The duplications contain 65 coding genes of which Polo-like kinase 1 (PLK1) has the highest likelihood of being haploinsufficient and, by implication, a triplosensitive gene. An additional 1.11-Mb CNV of 10q11.21 in Patient 1 was a possible modifier containing the G-protein-regulated inducer of neurite growth 2 (GPRIN2) gene. In contrast, the euchromatic variants in Patients 3 and 4 were amplifications from a 945-kb region containing non-functional immunoglobulin heavy chain (IGHV), hect domain pseudogene (HERC2P4) and TP53-inducible target gene 3 (TP53TG3) loci in proximal 16p11.2 (16:31 953 353–32 898 635). Paralogous pyrosequencing gave a total copy number of 3–8 in controls and 8 to >10 in Patients 3 and 4. The 16p11.2–p12.2 duplication syndrome is a recurrent genomic disorder with a variable phenotype including developmental delay, dysmorphic features, mild to severe intellectual disability, autism, obsessive or stereotyped behaviour, short stature and anomalies of the hands and fingers. It is important to differentiate pathogenic 16p11.2–p12.2 duplications from harmless, microscopically similar euchromatic variants of proximal 16p11.2, especially at prenatal diagnosis. PMID:22828807
Evolution of the Rax family of developmental transcription factors in vertebrates.
Orquera, Daniela P; de Souza, Flávio S J
2017-04-01
Rax proteins comprise a small family of paired-type, homeodomain-containing transcription factors with essential functions in eye and forebrain development. While invertebrates possess only one Rax gene, vertebrates can have several Rax paralogue genes, but the evolutionary history of the members of the family has not been studied in detail. Here, we present a thorough analysis of the evolutionary relationships between vertebrate Rax genes and proteins available in diverse genomic databases. Phylogenetic and synteny analyses indicate that Rax genes went through a duplication in an ancestor of all jawed vertebrates (Gnathostomata), giving rise to the ancestral vertebrate Rax1 and Rax2 genes. This duplication event is likely related to the proposed polyploidisations that occurred during early vertebrate evolution. Subsequent genome-wide duplications in the lineage of ray-finned fish (Actinopterygii) originated new Rax2 paralogues in the genomes of teleosts. In the lobe-finned fish lineage (Sarcopterygii), the N-terminal octapeptide domain of Rax2 was lost in a common ancestor of tetrapods, giving rise to a shorter version of Rax2 in this lineage. Within placental mammals, the Rax2 gene was lost altogether in an ancestor of rodents and lagomorphs (Glires). Finally, we discuss the scientific literature in the light of Rax gene evolution and propose new avenues of research on the function of this important family of transcriptional regulators. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Muthamilarasan, Mehanathan; Bonthala, Venkata Suresh; Mishra, Awdhesh Kumar; Khandelwal, Rohit; Khan, Yusuf; Roy, Riti; Prasad, Manoj
2014-09-01
C2H2 type of zinc finger transcription factors (TFs) play crucial roles in plant stress response and hormone signal transduction. Hence considering its importance, genome-wide investigation and characterization of C2H2 zinc finger proteins were performed in Arabidopsis, rice and poplar but no such study was conducted in foxtail millet which is a C4 Panicoid model crop well known for its abiotic stress tolerance. The present study identified 124 C2H2-type zinc finger TFs in foxtail millet (SiC2H2) and physically mapped them onto the genome. The gene duplication analysis revealed that SiC2H2s primarily expanded in the genome through tandem duplication. The phylogenetic tree classified these TFs into five groups (I-V). Further, miRNAs targeting SiC2H2 transcripts in foxtail millet were identified. Heat map demonstrated differential and tissue-specific expression patterns of these SiC2H2 genes. Comparative physical mapping between foxtail millet SiC2H2 genes and its orthologs of sorghum, maize and rice revealed the evolutionary relationships of C2H2 type of zinc finger TFs. The duplication and divergence data provided novel insight into the evolutionary aspects of these TFs in foxtail millet and related grass species. Expression profiling of candidate SiC2H2 genes in response to salinity, dehydration and cold stress showed differential expression pattern of these genes at different time points of stresses.
Rubio, Miguel Ángel; Napolitano, Mauro; Ochoa de Alda, Jesús A G; Santamaría-Gómez, Javier; Patterson, Carl J; Foster, Andrew W; Bru-Martínez, Roque; Robinson, Nigel J; Luque, Ignacio
2015-11-16
Aminoacyl-tRNA synthetases (aaRSs) play a key role in deciphering the genetic message by producing charged tRNAs and are equipped with proofreading mechanisms to ensure correct pairing of tRNAs with their cognate amino acid. Duplicated aaRSs are very frequent in Nature, with 25,913 cases observed in 26,837 genomes. The oligomeric nature of many aaRSs raises the question of how the functioning and oligomerization of duplicated enzymes is organized. We characterized this issue in a model prokaryotic organism that expresses two different threonyl-tRNA synthetases, responsible for Thr-tRNA(Thr) synthesis: one accurate and constitutively expressed (T1) and another (T2) with impaired proofreading activity that also generates mischarged Ser-tRNA(Thr). Low zinc promotes dissociation of dimeric T1 into monomers deprived of aminoacylation activity and simultaneous induction of T2, which is active for aminoacylation under low zinc. T2 either forms homodimers or heterodimerizes with T1 subunits that provide essential proofreading activity in trans. These findings evidence that in organisms with duplicated genes, cells can orchestrate the assemblage of aaRSs oligomers that meet the necessities of the cell in each situation. We propose that controlled oligomerization of duplicated aaRSs is an adaptive mechanism that can potentially be expanded to the plethora of organisms with duplicated oligomeric aaRSs. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Exonic duplication CNV of NDRG1 associated with autosomal-recessive HMSN-Lom/CMT4D.
Okamoto, Yuji; Goksungur, Meryem Tuba; Pehlivan, Davut; Beck, Christine R; Gonzaga-Jauregui, Claudia; Muzny, Donna M; Atik, Mehmed M; Carvalho, Claudia M B; Matur, Zeliha; Bayraktar, Serife; Boone, Philip M; Akyuz, Kaya; Gibbs, Richard A; Battaloglu, Esra; Parman, Yesim; Lupski, James R
2014-05-01
Copy-number variations as a mutational mechanism contribute significantly to human disease. Approximately one-half of the patients with Charcot-Marie-Tooth (CMT) disease have a 1.4 Mb duplication copy-number variation as the cause of their neuropathy. However, non-CMT1A neuropathy patients rarely have causative copy-number variations, and to date, autosomal-recessive disease has not been associated with copy-number variation as a mutational mechanism. We performed Agilent 8 × 60 K array comparative genomic hybridization on DNA from 12 recessive Turkish families with CMT disease. Additional molecular studies were conducted to detect breakpoint junctions and to evaluate gene expression levels in a family in which we detected an intragenic duplication copy-number variation. We detected an ~6.25 kb homozygous intragenic duplication in NDRG1, a gene known to be causative for recessive HMSNL/CMT4D, in three individuals from a Turkish family with CMT neuropathy. Further studies showed that this intragenic copy-number variation resulted in a homozygous duplication of exons 6-8 that caused decreased mRNA expression of NDRG1. Exon-focused high-resolution array comparative genomic hybridization enables the detection of copy-number variation carrier states in recessive genes, particularly small copy-number variations encompassing or disrupting single genes. In families for whom a molecular diagnosis has not been elucidated by conventional clinical assays, an assessment for copy-number variations in known CMT genes might be considered.
Faundes, Víctor; Santa María, Lorena; Morales, Paulina; Curotto, Bianca; Parraguez, María M
2016-10-01
Chromosome 7q11.23 duplication syndrome is a well-recognised syndrome which involves the duplication of the same genes located in the Williams-Beuren critical region. However, in 2010, 4 patients were reported with a microduplication only in the HIP1 and YWHAG genes. We refer to this as a distal 7q11.23 duplication (dup7q11.23D). Here, we report the fifth de novo patient with dup7q11.23D, whose symptoms may be explained by YWHAG overexpression as was demonstrated recently in mice and obese patients. Finally, further studies will be necessary to delineate this emerging microduplication syndrome.
The sea lamprey meiotic map improves resolution of ancient vertebrate genome duplications.
Smith, Jeramiah J; Keinath, Melissa C
2015-08-01
It is generally accepted that many genes present in vertebrate genomes owe their origin to two whole-genome duplications that occurred deep in the ancestry of the vertebrate lineage. However, details regarding the timing and outcome of these duplications are not well resolved. We present high-density meiotic and comparative genomic maps for the sea lamprey (Petromyzon marinus), a representative of an ancient lineage that diverged from all other vertebrates ∼550 million years ago. Linkage analyses yielded a total of 95 linkage groups, similar to the estimated number of germline chromosomes (1n ∼ 99), spanning a total of 5570.25 cM. Comparative mapping data yield strong support for the hypothesis that a single whole-genome duplication occurred in the basal vertebrate lineage, but do not strongly support a hypothetical second event. Rather, these comparative maps reveal several evolutionarily independent segmental duplications occurring over the last 600+ million years of chordate evolution. This refined history of vertebrate genome duplication should permit more precise investigations of vertebrate evolution. © 2015 Smith and Keinath; Published by Cold Spring Harbor Laboratory Press.
NASA Technical Reports Server (NTRS)
Tuey, Richard C.; Moore, Fred W.; Ryan, Christine A.
1995-01-01
The report is presented in four sections: The Introduction describes the duplicating configuration under evaluation and the Background contains a chronological description of the evaluation segmented by phases 1 and 2. This section includes the evaluation schedule, printing and duplicating requirements, storage and communication requirements, electronic publishing system configuration, existing processes and proposed processes, billing rates, costs and productivity analysis, and the return on investment based upon the data gathered to date. The third section contains the phase 1 comparative cost and productivity analysis. This analysis demonstrated that LaRC should proceed with a 90-day evaluation of the DocuTech and follow with a phase 2 cycle to actually demonstrate that the proposed system would meet the needs of LaRC's printing and duplicating requirements, benchmark results, cost comparisons, benchmark observations, and recommendations. These are documented after the recommendations.
Mastretta-Yanes, Alicia; Zamudio, Sergio; Jorgensen, Tove H; Arrigo, Nils; Alvarez, Nadir; Piñero, Daniel; Emerson, Brent C
2014-09-14
Gene duplication leads to paralogy, which complicates the de novo assembly of genotyping-by-sequencing (GBS) data. The issue of paralogous genes is exacerbated in plants, because they are particularly prone to gene duplication events. Paralogs are normally filtered from GBS data before undertaking population genomics or phylogenetic analyses. However, gene duplication plays an important role in the functional diversification of genes and it can also lead to the formation of postzygotic barriers. Using populations and closely related species of a tropical mountain shrub, we examine 1) the genomic differentiation produced by putative orthologs, and 2) the distribution of recent gene duplication among lineages and geography. We find high differentiation among populations from isolated mountain peaks and species-level differentiation within what is morphologically described as a single species. The inferred distribution of paralogs among populations is congruent with taxonomy and shows that GBS could be used to examine recent gene duplication as a source of genomic differentiation of nonmodel species. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Duplicate document detection in DocBrowse
NASA Astrophysics Data System (ADS)
Chalana, Vikram; Bruce, Andrew G.; Nguyen, Thien
1998-04-01
Duplicate documents are frequently found in large databases of digital documents, such as those found in digital libraries or in the government declassification effort. Efficient duplicate document detection is important not only to allow querying for similar documents, but also to filter out redundant information in large document databases. We have designed three different algorithm to identify duplicate documents. The first algorithm is based on features extracted from the textual content of a document, the second algorithm is based on wavelet features extracted from the document image itself, and the third algorithm is a combination of the first two. These algorithms are integrated within the DocBrowse system for information retrieval from document images which is currently under development at MathSoft. DocBrowse supports duplicate document detection by allowing (1) automatic filtering to hide duplicate documents, and (2) ad hoc querying for similar or duplicate documents. We have tested the duplicate document detection algorithms on 171 documents and found that text-based method has an average 11-point precision of 97.7 percent while the image-based method has an average 11- point precision of 98.9 percent. However, in general, the text-based method performs better when the document contains enough high-quality machine printed text while the image- based method performs better when the document contains little or no quality machine readable text.
Christensen, Kris A; Davidson, William S
2017-01-01
Salmonids (e.g. Atlantic salmon, Pacific salmon, and trouts) have a long legacy of genome duplication. In addition to three ancient genome duplications that all teleosts are thought to share, salmonids have had one additional genome duplication. We explored a methodology for untangling these duplications from each other to better understand them in Atlantic salmon. In this methodology, homeologous regions (paralogous/duplicated genomic regions originating from a whole genome duplication) from the most recent genome duplication were assumed to have duplicated genes at greater density and have greater sequence similarity. This assumption was used to differentiate duplicated gene pairs in Atlantic salmon that are either from the most recent genome duplication or from earlier duplications. From a comparison with multiple vertebrate species, it is clear that Atlantic salmon have retained more duplicated genes from ancient genome duplications than other vertebrates--often at higher density in the genome and containing fewer synonymous mutations. It may be that polysomic inheritance is the mechanism responsible for maintaining ancient gene duplicates in salmonids. Polysomic inheritance (when multiple chromosomes pair during meiosis) is thought to be relatively common in salmonids compared to other vertebrate species. These findings illuminate how genome duplications may not only increase the number of duplicated genes, but may also be involved in the maintenance of them from previous genome duplications as well.
Sorting cancer karyotypes using double-cut-and-joins, duplications and deletions.
Zeira, Ron; Shamir, Ron
2018-05-03
Problems of genome rearrangement are central in both evolution and cancer research. Most genome rearrangement models assume that the genome contains a single copy of each gene and the only changes in the genome are structural, i.e., reordering of segments. In contrast, tumor genomes also undergo numerical changes such as deletions and duplications, and thus the number of copies of genes varies. Dealing with unequal gene content is a very challenging task, addressed by few algorithms to date. More realistic models are needed to help trace genome evolution during tumorigenesis. Here we present a model for the evolution of genomes with multiple gene copies using the operation types double-cut-and-joins, duplications and deletions. The events supported by the model are reversals, translocations, tandem duplications, segmental deletions, and chromosomal amplifications and deletions, covering most types of structural and numerical changes observed in tumor samples. Our goal is to find a series of operations of minimum length that transform one karyotype into the other. We show that the problem is NP-hard and give an integer linear programming formulation that solves the problem exactly under some mild assumptions. We test our method on simulated genomes and on ovarian cancer genomes. Our study advances the state of the art in two ways: It allows a broader set of operations than extant models, thus being more realistic, and it is the first study attempting to reconstruct the full sequence of structural and numerical events during cancer evolution. Code and data are available in https://github.com/Shamir-Lab/Sorting-Cancer-Karyotypes. ronzeira@post.tau.ac.il, rshamir@tau.ac.il. Supplementary data are available at Bioinformatics online.
The same molecular mechanism at the maternal meiosis I produces mono- and dicentric 8p duplications.
Floridia, G.; Piantanida, M.; Minelli, A.; Dellavecchia, C.; Bonaglia, C.; Rossi, E.; Gimelli, G.; Croci, G.; Franchi, F.; Gilgenkrantz, S.; Grammatico, P.; Dalprá, L.; Wood, S.; Danesino, C.; Zuffardi, O.
1996-01-01
We studied 16 cases of 8p duplications, with a karyotype 46,XX or XY,dup(8p), associated with mental retardation, facial dysmorphisms, and brain defects. We demonstrate that these 8p rearrangements can be either dicentric (6 cases) with the second centromere at the tip of the short arm or monocentric (10 cases). The distal 8p23 region, from D8S349 to the telomere, including the defensin 1 locus, is deleted in all the cases. The region spanning from D8S252 to D8S265, at the proximal 8p23 region, is present in single copy, and the remaining part of the abnormal 8 short arm is duplicated in the dicentric cases and partially duplicated in the monocentric ones. The distal edge of the duplication always spans up to D8S552 (8p23.1), while its proximal edge includes the centromere in the dicentric cases and varies from case to case in the monocentric ones. The analysis of DNA polymorphisms indicates that the rearrangement is consistently of maternal origin. In the deleted region, only paternal alleles were present in the patient. In the duplicated region, besides one paternal allele, some loci showed two different maternal alleles, while others, which were duplicated by FISH analysis, showed only one maternal allele. We hypothesize that, at maternal meiosis I, there was abnormal pairing of chromosomes 8 followed by anomalous crossover at the regions delimited by D8S552 and D8S35 and by D8S252 and D8S349, which presumably contain inverted repeated sequences. The resulting dicentric chromosome, 8qter-8p23.1(D8S552)::8p23.1-(D8S35)-8q ter, due to the presence of two centromeres, breaks at anaphase I, generating an inverted duplicated 8p, dicentric if the breakage occurs at the centromere or monocentric if it occurs between centromeres. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8644743
An effective detection algorithm for region duplication forgery in digital images
NASA Astrophysics Data System (ADS)
Yavuz, Fatih; Bal, Abdullah; Cukur, Huseyin
2016-04-01
Powerful image editing tools are very common and easy to use these days. This situation may cause some forgeries by adding or removing some information on the digital images. In order to detect these types of forgeries such as region duplication, we present an effective algorithm based on fixed-size block computation and discrete wavelet transform (DWT). In this approach, the original image is divided into fixed-size blocks, and then wavelet transform is applied for dimension reduction. Each block is processed by Fourier Transform and represented by circle regions. Four features are extracted from each block. Finally, the feature vectors are lexicographically sorted, and duplicated image blocks are detected according to comparison metric results. The experimental results show that the proposed algorithm presents computational efficiency due to fixed-size circle block architecture.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-27
... (Types of Orders) is being amended to delete the duplicate definition of ``Minimum Quantity Orders'' in... the term ``Good-Till-Cancelled Order (GTC Order).'' The addition of these two order types qualify for non- controversial treatment as there is nothing new or novel with respect to these types of orders...
The Evolutionary Fates of a Large Segmental Duplication in Mouse
Morgan, Andrew P.; Holt, J. Matthew; McMullan, Rachel C.; Bell, Timothy A.; Clayshulte, Amelia M.-F.; Didion, John P.; Yadgary, Liran; Thybert, David; Odom, Duncan T.; Flicek, Paul; McMillan, Leonard; de Villena, Fernando Pardo-Manuel
2016-01-01
Gene duplication and loss are major sources of genetic polymorphism in populations, and are important forces shaping the evolution of genome content and organization. We have reconstructed the origin and history of a 127-kbp segmental duplication, R2d, in the house mouse (Mus musculus). R2d contains a single protein-coding gene, Cwc22. De novo assembly of both the ancestral (R2d1) and the derived (R2d2) copies reveals that they have been subject to nonallelic gene conversion events spanning tens of kilobases. R2d2 is also a hotspot for structural variation: its diploid copy number ranges from zero in the mouse reference genome to >80 in wild mice sampled from around the globe. Hemizygosity for high copy-number alleles of R2d2 is associated in cis with meiotic drive; suppression of meiotic crossovers; and copy-number instability, with a mutation rate in excess of 1 per 100 transmissions in some laboratory populations. Our results provide a striking example of allelic diversity generated by duplication and demonstrate the value of de novo assembly in a phylogenetic context for understanding the mutational processes affecting duplicate genes. PMID:27371833
Kang, Sung-Hwan; Atallah, Osama O; Sun, Yong-Duo; Folimonova, Svetlana Y
2018-01-15
Viruses from the family Closteroviridae show an example of intra-genome duplications of more than one gene. In addition to the hallmark coat protein gene duplication, several members possess a tandem duplication of papain-like leader proteases. In this study, we demonstrate that domains encoding the L1 and L2 proteases in the Citrus tristeza virus genome underwent a significant functional divergence at the RNA and protein levels. We show that the L1 protease is crucial for viral accumulation and establishment of initial infection, whereas its coding region is vital for virus transport. On the other hand, the second protease is indispensable for virus infection of its natural citrus host, suggesting that L2 has evolved an important adaptive function that mediates virus interaction with the woody host. Copyright © 2017 Elsevier Inc. All rights reserved.
2010-01-01
Background Salmonids are one of the most intensely studied fish, in part due to their economic and environmental importance, and in part due to a recent whole genome duplication in the common ancestor of salmonids. This duplication greatly impacts species diversification, functional specialization, and adaptation. Extensive new genomic resources have recently become available for Atlantic salmon (Salmo salar), but documentation of allelic versus duplicate reference genes remains a major uncertainty in the complete characterization of its genome and its evolution. Results From existing expressed sequence tag (EST) resources and three new full-length cDNA libraries, 9,057 reference quality full-length gene insert clones were identified for Atlantic salmon. A further 1,365 reference full-length clones were annotated from 29,221 northern pike (Esox lucius) ESTs. Pairwise dN/dS comparisons within each of 408 sets of duplicated salmon genes using northern pike as a diploid out-group show asymmetric relaxation of selection on salmon duplicates. Conclusions 9,057 full-length reference genes were characterized in S. salar and can be used to identify alleles and gene family members. Comparisons of duplicated genes show that while purifying selection is the predominant force acting on both duplicates, consistent with retention of functionality in both copies, some relaxation of pressure on gene duplicates can be identified. In addition, there is evidence that evolution has acted asymmetrically on paralogs, allowing one of the pair to diverge at a faster rate. PMID:20433749
Major COL4A5 gene rearrangements in patients with juvenile type Alport syndrome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renieri, A.; Galli, L.; Bruttini, M.
1995-11-20
Mutations in the COL4A5 gene, which encodes the {alpha}5 chain of type IV collagen, are found in a large fraction of patients with X-linked Alport syndrome. The recently discovered COL4A6, tightly linked and highly homologous to COL4A5, represents a second candidate gene for Alport syndrome. We analyzed 177 Italian Alport syndrome families by Southern blotting using cDNA probes from both COL4A5 and COL4A6. Nine unrelated families, accounting for 5% of the cases, were found to have a rearrangement in COL4A5. No rearrangements were found in COL4A6, with the exception of a deletion encompassing the 5{prime} ends of both COL4A5 andmore » COL4A6 genes in a patient with Alport syndrome and leiomyomatosis. COL4A5 rearrangements were all intragenic and included 1 duplication and 7 deletions. Polymerase chain reaction (PCR) analysis was carried out to characterize deletion and duplication boundaries and to predict the resulting protein abnormality. The two smallest deletions involved a single exon (exons 17 and 40, respectively), while the largest ones spanned exons 1 to 36. The clinical phenotype of patients in whom a rearrangement in COL4A5 was detected was severe, with progression to end-stage renal failure in juvenile age and hypoacusis occurring in most cases. These data have some important implications in the diagnosis of patients with Alport syndrome. 34 refs., 3 figs., 1 tab.« less
Orsomucoid: A new variant and additional duplicated ORM1 gene in Qatari population
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sebetan, I.M.; Alali, K.A.; Alzaman, A.
1994-09-01
A new genetically determined ORM2 variant and additional duplicated ORM1 gene were observed in Qatari population using isoelectric focusing in ultra thin layer polyacrylamide gels. The studied population samples indicate occurence of six ORM1 alleles and three ORM2 ones. A simple reliable method for separation of orsomucoid variations with comparison of different reported methods will be presented.
38 CFR 10.1 - Issuance of duplicate adjusted service certificate without bond.
Code of Federal Regulations, 2013 CFR
2013-07-01
... issued pursuant to the provisions of section 501 of the World War Adjusted Compensation Act, without bad... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Issuance of duplicate adjusted service certificate without bond. 10.1 Section 10.1 Pensions, Bonuses, and Veterans' Relief...
38 CFR 10.1 - Issuance of duplicate adjusted service certificate without bond.
Code of Federal Regulations, 2014 CFR
2014-07-01
... issued pursuant to the provisions of section 501 of the World War Adjusted Compensation Act, without bad... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Issuance of duplicate adjusted service certificate without bond. 10.1 Section 10.1 Pensions, Bonuses, and Veterans' Relief...
38 CFR 10.1 - Issuance of duplicate adjusted service certificate without bond.
Code of Federal Regulations, 2010 CFR
2010-07-01
... issued pursuant to the provisions of section 501 of the World War Adjusted Compensation Act, without bad... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Issuance of duplicate adjusted service certificate without bond. 10.1 Section 10.1 Pensions, Bonuses, and Veterans' Relief...
38 CFR 10.1 - Issuance of duplicate adjusted service certificate without bond.
Code of Federal Regulations, 2012 CFR
2012-07-01
... issued pursuant to the provisions of section 501 of the World War Adjusted Compensation Act, without bad... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Issuance of duplicate adjusted service certificate without bond. 10.1 Section 10.1 Pensions, Bonuses, and Veterans' Relief...
38 CFR 10.1 - Issuance of duplicate adjusted service certificate without bond.
Code of Federal Regulations, 2011 CFR
2011-07-01
... issued pursuant to the provisions of section 501 of the World War Adjusted Compensation Act, without bad... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Issuance of duplicate adjusted service certificate without bond. 10.1 Section 10.1 Pensions, Bonuses, and Veterans' Relief...
26 CFR 1.362-4 - Limitations on built-in loss duplication.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 26 Internal Revenue 4 2010-04-01 2010-04-01 false Limitations on built-in loss duplication. 1.362-4 Section 1.362-4 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Effects on Corporation § 1.362-4 Limitations on built-in loss...
Szamalek, Justyna M; Goidts, Violaine; Cooper, David N; Hameister, Horst; Kehrer-Sawatzki, Hildegard
2006-08-01
The human and chimpanzee genomes are distinguishable in terms of ten gross karyotypic differences including nine pericentric inversions and a chromosomal fusion. Seven of these large pericentric inversions are chimpanzee-specific whereas two of them, involving human chromosomes 1 and 18, were fixed in the human lineage after the divergence of humans and chimpanzees. We have performed detailed molecular and computational characterization of the breakpoint regions of the human-specific inversion of chromosome 1. FISH analysis and sequence comparisons together revealed that the pericentromeric region of HSA 1 contains numerous segmental duplications that display a high degree of sequence similarity between both chromosomal arms. Detailed analysis of these regions has allowed us to refine the p-arm breakpoint region to a 154.2 kb interval at 1p11.2 and the q-arm breakpoint region to a 562.6 kb interval at 1q21.1. Both breakpoint regions contain human-specific segmental duplications arranged in inverted orientation. We therefore propose that the pericentric inversion of HSA 1 was mediated by intra-chromosomal non-homologous recombination between these highly homologous segmental duplications that had themselves arisen only recently in the human lineage by duplicative transposition.
Copy-Number Gains of HUWE1 Due to Replication- and Recombination-Based Rearrangements
Froyen, Guy; Belet, Stefanie; Martinez, Francisco; Santos-Rebouças, Cíntia Barros; Declercq, Matthias; Verbeeck, Jelle; Donckers, Lene; Berland, Siren; Mayo, Sonia; Rosello, Monica; Pimentel, Márcia Mattos Gonçalves; Fintelman-Rodrigues, Natalia; Hovland, Randi; Rodrigues dos Santos, Suely; Raymond, F. Lucy; Bose, Tulika; Corbett, Mark A.; Sheffield, Leslie; van Ravenswaaij-Arts, Conny M.A.; Dijkhuizen, Trijnie; Coutton, Charles; Satre, Veronique; Siu, Victoria; Marynen, Peter
2012-01-01
We previously reported on nonrecurrent overlapping duplications at Xp11.22 in individuals with nonsyndromic intellectual disability (ID) harboring HSD17B10, HUWE1, and the microRNAs miR-98 and let-7f-2 in the smallest region of overlap. Here, we describe six additional individuals with nonsyndromic ID and overlapping microduplications that segregate in the families. High-resolution mapping of the 12 copy-number gains reduced the minimal duplicated region to the HUWE1 locus only. Consequently, increased mRNA levels were detected for HUWE1, but not HSD17B10. Marker and SNP analysis, together with identification of two de novo events, suggested a paternally derived intrachromosomal duplication event. In four independent families, we report on a polymorphic 70 kb recurrent copy-number gain, which harbors part of HUWE1 (exon 28 to 3′ untranslated region), including miR-98 and let-7f-2. Our findings thus demonstrate that HUWE1 is the only remaining dosage-sensitive gene associated with the ID phenotype. Junction and in silico analysis of breakpoint regions demonstrated simple microhomology-mediated rearrangements suggestive of replication-based duplication events. Intriguingly, in a single family, the duplication was generated through nonallelic homologous recombination (NAHR) with the use of HUWE1-flanking imperfect low-copy repeats, which drive this infrequent NAHR event. The recurrent partial HUWE1 copy-number gain was also generated through NAHR, but here, the homologous sequences used were identified as TcMAR-Tigger DNA elements, a template that has not yet been reported for NAHR. In summary, we showed that an increased dosage of HUWE1 causes nonsyndromic ID and demonstrated that the Xp11.22 region is prone to recombination- and replication-based rearrangements. PMID:22840365
De novo interstitial tandem duplication of chromosome 4(q21-q28)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Navarro, E.G.; Ramon, F.J.H.; Jimenez, R.D.
1996-03-29
We describe a girl with a previously unreported de novo duplication of chromosome 4q involving segment q21-q28. Clinical manifestations included growth and psychomotor retardation, facial asymmetry, hypotelorism, epicanthic folds, mongoloid slant of palpebral fissures, apparently low-set auricles, high nasal bridge, long philtrum, small mouth, short neck, low-set thumbs, and bilateral club foot. This phenotype is compared with that of previously reported cases of duplication 4q. 12 refs., 3 figs., 1 tab.
Role of Rad23 and Dsk2 in Nucleotide Excision Repair and Spindle Pole Body Duplication
2006-03-01
AD Award Number: W81XWH-05-1-0310 TITLE: Role of Rad23 and Dsk2 in Nucleotide Excision Repair and Spindle Pole Body Duplication PRINCIPAL...Feb 2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Role of Rad23 and Dsk2 in Nucleotide Excision Repair and Spindle Pole Body Duplication Sb. GRANT...Degradation, Cell Cycle, Spindle Pole Body 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON OF ABSTRACT OF
Dworschak, G C; Crétolle, C; Hilger, A; Engels, H; Korsch, E; Reutter, H; Ludwig, M
2017-05-01
Partial duplications of the long arm of chromosome 3, dup(3q), are a rare but well-described condition, sharing features of Cornelia de Lange syndrome. Around two thirds of cases are derived from unbalanced translocations, whereas pure dup(3q) have rarely been reported. Here, we provide an extensive review of the literature on dup(3q). This search revealed several patients with caudal malformations and anomalies, suggesting that caudal malformations or anomalies represent an inherent phenotypic feature of dup(3q). In this context, we report a patient with a pure de novo duplication 3q26.32-q27.2. The patient had the clinical diagnosis of Currarino syndrome (CS) (characterized by the triad of sacral anomalies, anorectal malformations and a presacral mass) and additional features, frequently detected in patients with a dup(3q). Mutations within the MNX1 gene were found to be causative in CS but no MNX1 mutation could be detected in our patient. Our comprehensive search for candidate genes located in the critical region of the duplication 3q syndrome, 3q26.3-q27, revealed a so far neglected phenotypic overlap of dup(3q) and the Pierpont syndrome, associated with a mutation of the TBL1XR1 gene on 3q26.32. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Roles of CDK and DDK in Genome Duplication and Maintenance: Meiotic Singularities.
Gómez-Escoda, Blanca; Wu, Pei-Yun Jenny
2017-03-20
Cells reproduce using two types of divisions: mitosis, which generates two daughter cells each with the same genomic content as the mother cell, and meiosis, which reduces the number of chromosomes of the parent cell by half and gives rise to four gametes. The mechanisms that promote the proper progression of the mitotic and meiotic cycles are highly conserved and controlled. They require the activities of two types of serine-threonine kinases, the cyclin-dependent kinases (CDKs) and the Dbf4-dependent kinase (DDK). CDK and DDK are essential for genome duplication and maintenance in both mitotic and meiotic divisions. In this review, we aim to highlight how these kinases cooperate to orchestrate diverse processes during cellular reproduction, focusing on meiosis-specific adaptions of their regulation and functions in DNA metabolism.
Cizmecioglu, Onur; Warnke, Silke; Arnold, Marc; Duensing, Stefan; Hoffmann, Ingrid
2008-11-15
In mammalian cells, the centrosome consists of a pair of centrioles and amorphous pericentriolar material. The centrosome duplicates once per cell cycle. Polo like kinases (Plks) perform crucial functions in cell cycle progression and during mitosis. The polo-like kinase-2, Plk2, is activated near the G(1)/S phase transition, and plays an important role in the reproduction of centrosomes. In this study, we show that the polo-box of Plk2 is required both for association to the centrosome and centriole duplication. Mutation of critical sites in the Plk2 polo-box prevents centrosomal localization and impairs centriole duplication. Plk2 is localized to centrosomes during early G(1) phase where it only associates to the mother centriole and then distributes equally to both mother and daughter centrioles at the onset of S phase. Furthermore, our results imply that Plk2 mediated centriole duplication is dependent on Plk4 function. In addition, we find that siRNA-mediated downregulation of Plk2 leads to the formation of abnormal mitotic spindles confirming that Plk2 may have a function in the reproduction of centrioles.
Holmblat, Barbara; Jégouic, Sophie; Muslin, Claire; Blondel, Bruno; Joffret, Marie-Line
2014-01-01
ABSTRACT Most of the circulating vaccine-derived polioviruses (cVDPVs) implicated in poliomyelitis outbreaks in Madagascar have been shown to be recombinants between the type 2 poliovirus (PV) strain of the oral polio vaccine (Sabin 2) and another species C human enterovirus (HEV-C), such as type 17 coxsackie A virus (CA17) in particular. We studied intertypic genetic exchanges between PV and non-PV HEV-C by developing a recombination model, making it possible to rescue defective type 2 PV RNA genomes with a short deletion at the 3′ end by the cotransfection of cells with defective or infectious CA17 RNAs. We isolated over 200 different PV/CA17 recombinants, using murine cells expressing the human PV receptor (PVR) and selecting viruses with PV capsids. We found some homologous (H) recombinants and, mostly, nonhomologous (NH) recombinants presenting duplications of parental sequences preferentially located in the regions encoding proteins 2A, 2B, and 3A. Short duplications appeared to be stable, whereas longer duplications were excised during passaging in cultured cells or after multiplication in PVR-transgenic mice, generating H recombinants with diverse sites of recombination. This suggests that NH recombination events may be a transient, intermediate step in the generation and selection of the fittest H recombinants. In addition to the classical copy-choice mechanism of recombination thought to generate mostly H recombinants, there may also be a modular mechanism of recombination, involving NH recombinant precursors, shaping the genomes of recombinant enteroviruses and other picornaviruses. PMID:25096874
Towards Linking Anonymous Authorship in Casual Sexual Encounter Ads
Fries, Jason A.; Segre, Alberto M.; Polgreen, Philip M.
2013-01-01
Objective This paper constructs an authorship-linked collection or corpus of anonymous, sex-seeking ads found on the classifieds website Craigslist. This corpus is then used to validate an authorship attribution approach based on identifying near duplicate text in ad clusters, providing insight into how often anonymous individuals post sex-seeking ads and where they meet for encounters. Introduction The increasing use of the Internet to arrange sexual encounters presents challenges to public health agencies formulating STD interventions, particularly in the context of anonymous encounters. These encounters complicate or break traditional interventions. In previous work [1], we examined a corpus of anonymous personal ads seeking sexual encounters from the classifieds website Craigslist and presented a way of linking multiple ads posted across time to a single author. The key observation of our approach is that some ads are simply reposts of older ads, often updated with only minor textual changes. Under the presumption that these ads, when not spam, originate from the same author, we can use efficient near-duplicate detection techniques to cluster ads within some threshold similarity. Linking ads in this way allows us to preserve the anonymity of authors while still extracting useful information on the frequency with which authors post ads, as well as the geographic regions in which they seek encounters. While this process detects many clusters, the lack of a true corpus of authorship-linked ads makes it difficult to validate and tune the parameters of our system. Fortunately, many ad authors provide an obfuscated telephone number in ad text (e.g., 867–5309 becomes 8sixseven5three oh nine) to bypass Craigslist filters, which prohibit including phone numbers in personal ads. By matching phone numbers of this type across all ads, we can create a corpus of ad clusters known to be written by a single author. This authorship corpus can then be used to evaluate and tune our existing near-duplicate detection system, and in the future identify features for more robust authorship attribution techniques. Methods From 7-1-2009 until 7-1-2011, RSS feeds were collected daily for 8 personal ad categories from 414 sites across the United States, for a total of 67 million ads. To create an anonymous, author-linked corpus, we used a regular expression to identify obfuscated phone numbers in ad text. We measure the ability of near-duplicate detection to link clusters in two ways: 1) detecting all ads in a cluster; and 2) correctly detecting a subset of ads within a single cluster. Ads incorrectly assigned to more than 1 cluster are considered false positives. All results are reported in terms of precision, recall, and F-scores (common information retrieval metrics) across cluster size, expressed as number of ads. Results 652,014 ads contained phone numbers, producing a total of 46,079 authorship-linked ad clusters. For detecting all ads within a cluster, precision ranged from 0.05 to 0.0 and recall from 0.02 to 0.0 for all cluster sizes. For detecting partial clusters, see Figure 1. Conclusions We find that near-duplicate detection alone is insufficient to detect all ads within a cluster. However, we do find that the process can, with high precision and low recall, detect a subset of ads associated with a single author. This follows the intuition that an author’s total set of ads is itself comprised of multiple self-similar subsets. While a near-duplicate detection approach can correctly identify subsets of ads linked to a single author, this process alone cannot attribute multiple clusters to a single author. Future work will explore leveraging additional linguistic features to improve author attribution. (Top) Evaluations for partial cluster detection using the near-duplicate identification approach to linking anonymous authorship in Craigslist ads and (bottom) the distribution of ad cluster sizes.
Chen, Y; Solursh, M
1995-10-01
The Msx-1 gene (formerly known as Hox-7) is a member of a discrete subclass of homeobox-containing genes. Examination of the expression pattern of Msx-1 in murine and avian embryos suggests that this gene may be involved in the regionalization of the medio-lateral axis during earlier development. We have examined the possible functions of Xenopus Msx-1 during early Xenopus embryonic development by overexpression of the Msx-1 gene. Overexpression of Msx-1 causes a left-right mirror-image duplication of primary axial structures, including notochord, neural tube, somites, suckers, and foregut. The embryonic developing heart is also mirror-image duplicated, including looping directions and polarity. These results indicate that Msx-1 may be involved in the mesoderm formation as well as left-right patterning in the early Xenopus embryonic development.
Differential Effects of Positive and Negative Reinforcement on Two Psychoanalytic Character Types
ERIC Educational Resources Information Center
Cooperman, Marc; Child, Irvin L.
1971-01-01
The present study attempted to duplicate earlier findings and to investigate the effects of mechanical as well as personal reinforcement. However, the acquisition and extinction differences between oral and anal scoring types reported in the earlier studies were not obtained with either personal or mechanical reinforcement. (Author)
Devillard, Françoise; Guinchat, Vincent; Moreno-De-Luca, Daniel; Tabet, Anne-Claude; Gruchy, Nicolas; Guillem, Pascale; Nguyen Morel, Marie-Ange; Leporrier, Nathalie; Leboyer, Marion; Jouk, Pierre-Simon; Lespinasse, James; Betancur, Catalina
2010-09-01
We describe a patient with autism and a paracentric inversion of chromosome 2q14.2q37.3, with a concurrent duplication of the proximal breakpoint at 2q14.1q14.2 and a deletion of the distal breakpoint at 2q37.3. The abnormality was derived from his mother with a balanced paracentric inversion. The inversion in the child appeared to be cytogenetically balanced but subtelomere FISH revealed a cryptic deletion at the 2q37.3 breakpoint. High-resolution single nucleotide polymorphism array confirmed the presence of a 3.5 Mb deletion that extended to the telomere, and showed a 4.2 Mb duplication at 2q14.1q14.2. FISH studies using a 2q14.2 probe showed that the duplicated segment was located at the telomeric end of chromosome 2q. This recombinant probably resulted from breakage of a dicentric chromosome. The child had autism, mental retardation, speech and language delay, hyperactivity, growth retardation with growth hormone deficiency, insulin-dependent diabetes, and mild facial dysmorphism. Most of these features have been previously described in individuals with simple terminal deletion of 2q37. Pure duplications of the proximal chromosome 2q are rare and no specific syndrome has been defined yet, so the contribution of the 2q14.1q14.2 duplication to the phenotype of the patient is unknown. These findings underscore the need to explore apparently balanced chromosomal rearrangements inherited from a phenotypically normal parent in subjects with autism and/or developmental delay. In addition, they provide further evidence indicating that chromosome 2q terminal deletions are among the most frequently reported cytogenetic abnormalities in individuals with autism.
Congenital hyperinsulinism and Poland syndrome in association with 10p13-14 duplication.
Giri, Dinesh; Patil, Prashant; Hart, Rachel; Didi, Mohammed; Senniappan, Senthil
2017-01-01
Poland syndrome (PS) is a rare congenital condition, affecting 1 in 30 000 live births worldwide, characterised by a unilateral absence of the sternal head of the pectoralis major and ipsilateral symbrachydactyly occasionally associated with abnormalities of musculoskeletal structures. A baby girl, born at 40 weeks' gestation with birth weight of 3.33 kg (-0.55 SDS) had typical phenotypical features of PS. She had recurrent hypoglycaemic episodes early in life requiring high concentration of glucose and glucagon infusion. The diagnosis of congenital hyperinsulinism (CHI) was biochemically confirmed by inappropriately high plasma concentrations of insulin and C-peptide and low plasma free fatty acids and β-hydroxyl butyrate concentrations during hypoglycaemia. Sequencing of ABCC8 , KCNJ11 and HNF4A did not show any pathogenic mutation. Microarray analysis revealed a novel duplication in the short arm of chromosome 10 at 10p13-14 region. This is the first reported case of CHI in association with PS and 10p duplication. We hypothesise that the HK1 located on the chromosome 10 encoding hexokinase-1 is possibly linked to the pathophysiology of CHI. Congenital hyperinsulinism (CHI) is known to be associated with various syndromes.This is the first reported association of CHI and Poland syndrome (PS) with duplication in 10p13-14.A potential underlying genetic link between 10p13-14 duplication, PS and CHI is a possibility.
Redundancy for electric motors in spacecraft applications
NASA Technical Reports Server (NTRS)
Smith, Robert J.; Flew, Alastair R.
1986-01-01
The parts of electric motors which should be duplicated in order to provide maximum reliability in spacecraft application are identified. Various common types of redundancy are described. The advantages and disadvantages of each are noted. The principal types are illustrated by reference to specific examples. For each example, constructional details, basic performance data and failure modes are described, together with a discussion of the suitability of particular redundancy techniques to motor types.
Fukushige, Tetsunari; Goszczynski, Barbara; Tian, Helen; McGhee, James D
2003-10-01
We describe the elt-4 gene from the nematode Caenorhabditis elegans. elt-4 is predicted to encode a very small (72 residues, 8.1 kD) GATA-type zinc finger transcription factor. The elt-4 gene is located approximately 5 kb upstream of the C. elegans elt-2 gene, which also encodes a GATA-type transcription factor; the zinc finger DNA-binding domains are highly conserved (24/25 residues) between the two proteins. The elt-2 gene is expressed only in the intestine and is essential for normal intestinal development. This article explores whether elt-4 also has a role in intestinal development. Reporter fusions to the elt-4 promoter or reporter insertions into the elt-4 coding regions show that elt-4 is indeed expressed in the intestine, beginning at the 1.5-fold stage of embryogenesis and continuing into adulthood. elt-4 reporter fusions are also expressed in nine cells of the posterior pharynx. Ectopic expression of elt-4 cDNA within the embryo does not cause detectable ectopic expression of biochemical markers of gut differentiation; furthermore, ectopic elt-4 expression neither inhibits nor enhances the ectopic marker expression caused by ectopic elt-2 expression. A deletion allele of elt-4 was isolated but no obvious phenotype could be detected, either in the gut or elsewhere; brood sizes, hatching efficiencies, and growth rates were indistinguishable from wild type. We found no evidence that elt-4 provided backup functions for elt-2. We used microarray analysis to search for genes that might be differentially expressed between L1 larvae of the elt-4 deletion strain and wild-type worms. Paired hybridizations were repeated seven times, allowing us to conclude, with some confidence, that no candidate target transcript could be identified as significantly up- or downregulated by loss of elt-4 function. In vitro binding experiments could not detect specific binding of ELT-4 protein to candidate binding sites (double-stranded oligonucleotides containing single or multiple WGATAR sequences); ELT-4 protein neither enhanced nor inhibited the strong sequence-specific binding of the ELT-2 protein. Whereas ELT-2 protein is a strong transcriptional activator in yeast, ELT-4 protein has no such activity under similar conditions, nor does it influence the transcriptional activity of coexpressed ELT-2 protein. Although an elt-2 homolog was easily identified in the genomic sequence of the related nematode C. briggsae, no elt-4 homolog could be identified. Analysis of the changes in silent third codon positions within the DNA-binding domains indicates that elt-4 arose as a duplication of elt-2, some 25-55 MYA. Thus, elt-4 has survived far longer than the average duplicated gene in C. elegans, even though no obvious biological function could be detected. elt-4 provides an interesting example of a tandemly duplicated gene that may originally have been the same size as elt-2 but has gradually been whittled down to its present size of little more than a zinc finger. Although elt-4 must confer (or must have conferred) some selective advantage to C. elegans, we suggest that its ultimate evolutionary fate will be disappearance from the C. elegans genome.
Neumann, Pavel; Pavlíková, Zuzana; Koblížková, Andrea; Fuková, Iva; Jedličková, Veronika; Novák, Petr; Macas, Jiří
2015-01-01
In most eukaryotes, centromere is determined by the presence of the centromere-specific histone variant CenH3. Two types of chromosome morphology are generally recognized with respect to centromere organization. Monocentric chromosomes possess a single CenH3-containing domain in primary constriction, whereas holocentric chromosomes lack the primary constriction and display dispersed distribution of CenH3. Recently, metapolycentric chromosomes have been reported in Pisum sativum, representing an intermediate type of centromere organization characterized by multiple CenH3-containing domains distributed across large parts of chromosomes that still form a single constriction. In this work, we show that this type of centromere is also found in other Pisum and closely related Lathyrus species, whereas Vicia and Lens genera, which belong to the same legume tribe Fabeae, possess only monocentric chromosomes. We observed extensive variability in the size of primary constriction and the arrangement of CenH3 domains both between and within individual Pisum and Lathyrus species, with no obvious correlation to genome or chromosome size. Search for CenH3 gene sequences revealed two paralogous variants, CenH3-1 and CenH3-2, which originated from a duplication event in the common ancestor of Fabeae species. The CenH3-1 gene was subsequently lost or silenced in the lineage leading to Vicia and Lens, whereas both genes are retained in Pisum and Lathyrus. Both of these genes appear to have evolved under purifying selection and produce functional CenH3 proteins which are fully colocalized. The findings described here provide the first evidence for a highly dynamic centromere structure within a group of closely related species, challenging previous concepts of centromere evolution. PMID:25771197
[MR cholangiopancreatography in choledochal cysts].
Frampas, E; Moussaly, F; Léauté, F; Heloury, Y; Le Neel, J C; Dupas, B
1999-12-01
To assess the value of MR cholangiopancreatography (MRCP) in the diagnosis and preoperative evaluation of choledochal cysts. Five patients (aged between 6 days and 28 years) were investigated by MRCP, referred for ultrasonographic detection of a bile duct dilatation or a cystic structure, of antenatal diagnosis (1 case), for jaundice or abdominal pain (3 cases) or in late follow-up of a choledochal cyst surgery. Two endoscopic-ultrasonographic studies were performed. The five patients underwent surgery without preoperative biliary cholangiography. MRCP was performed using a HASTE sequence in frontal, oblique, axial planes (1,5 Tesla MR unit). MRCP allowed to confirm choledochal cyst, helps to specify the anatomical type (2 type I, 3 type II), detects choledocholithiasis (3 cases). Anatomic correlation was perfect. MRCP allowed to exclude gastrointestinal duplication. Anomalous junction of the pancreaticobiliary duct was found in one case. MRCP diagnoses choledochal cysts, specifies type, helps surgery and can avoid endoscopic retrograde cholangiography or endoscopic sonographic examinations especially for children. It may find an anomalous junction of the pancreaticobiliary duct.
Ballif, Blake C.; Theisen, Aaron; Rosenfeld, Jill A.; Traylor, Ryan N.; Gastier-Foster, Julie; Thrush, Devon Lamb; Astbury, Caroline; Bartholomew, Dennis; McBride, Kim L.; Pyatt, Robert E.; Shane, Kate; Smith, Wendy E.; Banks, Valerie; Gallentine, William B.; Brock, Pamela; Rudd, M. Katharine; Adam, Margaret P.; Keene, Julia A.; Phillips, John A.; Pfotenhauer, Jean P.; Gowans, Gordon C.; Stankiewicz, Pawel; Bejjani, Bassem A.; Shaffer, Lisa G.
2010-01-01
Segmental duplications, which comprise ∼5%–10% of the human genome, are known to mediate medically relevant deletions, duplications, and inversions through nonallelic homologous recombination (NAHR) and have been suggested to be hot spots in chromosome evolution and human genomic instability. We report seven individuals with microdeletions at 17q23.1q23.2, identified by microarray-based comparative genomic hybridization (aCGH). Six of the seven deletions are ∼2.2 Mb in size and flanked by large segmental duplications of >98% sequence identity and in the same orientation. One of the deletions is ∼2.8 Mb in size and is flanked on the distal side by a segmental duplication, whereas the proximal breakpoint falls between segmental duplications. These characteristics suggest that NAHR mediated six out of seven of these rearrangements. These individuals have common features, including mild to moderate developmental delay (particularly speech delay), microcephaly, postnatal growth retardation, heart defects, and hand, foot, and limb abnormalities. Although all individuals had at least mild dysmorphic facial features, there was no characteristic constellation of features that would elicit clinical suspicion of a specific disorder. The identification of common clinical features suggests that microdeletions at 17q23.1q23.2 constitute a novel syndrome. Furthermore, the inclusion in the minimal deletion region of TBX2 and TBX4, transcription factors belonging to a family of genes implicated in a variety of developmental pathways including those of heart and limb, suggests that these genes may play an important role in the phenotype of this emerging syndrome. PMID:20206336
Sarvetnick, Nora; Fox, Howard S.; Mann, Elizabeth; Mains, Paul E.; Elliott, Rosemary W.; Silver, Lee M.
1986-01-01
We have investigated the structure and properties of a chromosomal product recovered from a rare recombination event between a t haplotype and a wild-type form of mouse chromosome 17. Our embryological and molecular studies indicate that this chromosome (twLub2 ) is characterized by both a deletion and duplication of adjacent genetic material. The deletion appears to be responsible for a dominant lethal maternal effect and a recessive embryonic lethality. The duplication provides an explanation for the twLub2 suppression of the dominant T locus phenotype. A reanalysis of previously described results with another chromosome 17 variant called TtOrl indicates a structure for this chromosome that is reciprocal to that observed for twLub2. We have postulated the existence of an inversion over the proximal portion of all complete t haplotypes in order to explain the generation of the partial t haplotypes t wLub2 and TtOrl. This proximal inversion and the previously described distal inversion are sufficient to account for all of the recombination properties that are characteristic of complete t haplotypes. The structures determined for twLub2 and TtOrl indicate that rare recombination can occur between nonequivalent genomic sequences within the inverted proximal t region when wild-type and t chromosomes are paired in a linear, nonhomologous configuration. PMID:3732789
Al-Ruqaie, Ibrahim M
2007-10-01
A Laboratory experiment was used to evaluate the effect of extruded leftover food as an alternate source of fish diet to Nile tilapia (Oreochromis niloticus, 76.75 +/- 1.27 g). Three experimental diets were used. Two extruded leftover food types [with minerals and vitamins (type-1) and without (type-2) were used to prepare two experimental treatments in duplicate as compared to a commercial tilapia diet (ARASCO) as a control. The final body weight and Specific Growth Rate (SGR) were not affected by different types of leftover feed. Whereas, the Feed Conversion Ratio (FCR) and the Protein Efficiency Ratio (PER) were significantly affected by the different feeds. The highest significant values of FCR was shown for fish fed with extruded leftover feed without premix, while Nile tilapia fed with control diet recorded the highest values of PER. The present study showed that the extruded leftover food could be used to prepare least cost diet for Nile tilapia.
'Laminopathies': A wide spectrum of human diseases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worman, Howard J.; Bonne, Gisele; Universite Pierre et Marie Curie-Paris 6, Faculte de medecine, Paris F-75013
2007-06-10
Mutations in genes encoding the intermediate filament nuclear lamins and associated proteins cause a wide spectrum of diseases sometimes called 'laminopathies.' Diseases caused by mutations in LMNA encoding A-type lamins include autosomal dominant Emery-Dreifuss muscular dystrophy and related myopathies, Dunnigan-type familial partial lipodystrophy, Charcot-Marie-Tooth disease type 2B1 and developmental and accelerated aging disorders. Duplication in LMNB1 encoding lamin B1 causes autosomal dominant leukodystrophy and mutations in LMNB2 encoding lamin B2 are associated with acquired partial lipodystrophy. Disorders caused by mutations in genes encoding lamin-associated integral inner nuclear membrane proteins include X-linked Emery-Dreifuss muscular dystrophy, sclerosing bone dysplasias, HEM/Greenberg skeletal dysplasiamore » and Pelger-Huet anomaly. While mutations and clinical phenotypes of 'laminopathies' have been carefully described, data explaining pathogenic mechanisms are only emerging. Future investigations will likely identify new 'laminopathies' and a combination of basic and clinical research will lead to a better understanding of pathophysiology and the development of therapies.« less
Lloveras, Elisabet; Vendrell, Teresa; Fernández, Asunción; Castells, Neus; Cueto, Ana; del Campo, Miguel; Hernando, Cristina; Villa, Olaya; Plaja, Alberto
2014-01-01
Very few cases of constitutional interstitial deletions of the proximal short arm of chromosome 3 have been reported; however, the proximal 3p deletion is emerging as a clinically recognizable syndrome. We present an intrachromosomal insertion of 3p12.3p14.1 in a phenotypic normal man (46,XY,ins(3)(p25p12.3p14.1)) which is responsible for the unbalanced karyotype in 2 affected offspring, one with a 3p12.3p14.1 interstitial deletion and the other with a reciprocal duplication. The exceptionality of these 2 reciprocal recombinants contributes to a better definition of the proximal 3p deletion syndrome and its duplication counterpart.
Y-chromosome polymorphism: Possible largest Y chromosome in man?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murthy, D.S.K.; Al-Awadi, S.A.; Bastaki, L.
The role of variations (inversions/deletion or duplication) in the heterochromatin in gonadal development and function, reproductive fitness, and malignant disease has been extensively studied. However, the causal-relationship of large Y (Yqh+) and repeated fetal loss has not been established unequivocally. An Arab couple (?Bedouin origin) with a history of repeated abortions were investigated. Karyotype analysis of the husband showed a very large Y chromosome, confirmed by GTG-, QFQ- and CBG-banding techniques. C-banding showed discontinuous distribution of the heterochromatin blocks separated by pale bands. The origin of the large heterochromatin segment could be due to tandem duplication of the Yq regionmore » or translocation (Yq:Yq). No other relatives (males) of the propositus have been available for investigation. Polymorphism of the Y chromosome could be attributed to evolutionary changes from an ancestral type, either by deletion or duplication of the heterochromatin segment. More detailed studies on isolated, aboriginal/tribal human populations will enable us to better understand the significance of the Y chromosome polymorphism.« less
USDA-ARS?s Scientific Manuscript database
The ADIPOQ gene of cattle, is located in the vicinity of the quantitative trait locus (QTL) wich effects marbling, the rib eye muscle area and fat thickness on BTA1. In our study, a novel variable duplication (NW_003103812.1:g.9232067_9232133 dup) in the bovine ADIPOQ promoter region was identified ...
DeMarini, D M; Shelton, M L; Abu-Shakra, A; Szakmary, A; Levine, J G
1998-01-01
To characterize the hisD3052 -1 frameshift allele of Salmonella typhimurium, we analyzed approximately 6000 spontaneous revertants (rev) for a 2-base deletion hotspot within the sequence (CG)4, and we sequenced approximately 500 nonhotspot rev. The reversion target is a minimum of 76 bases (nucleotides 843-918) that code for amino acids within a nonconserved region of the histidinol dehydrogenase protein. Only 0.4-3.9% were true rev. Of the following classes, 182 unique second-site mutations were identified: hotspot, complex frameshifts requiring DeltauvrB + pKM101 (TA98-specific) or not (concerted), 1-base insertions, duplications, and nonhotspot deletions. The percentages of hotspot mutations were 13.8% in TA1978 (wild type), 24.5% in UTH8413 (pKM101), 31.6% in TA1538 (DeltauvrB), and 41.0% in TA98 (DeltauvrB, pKM101). The DeltauvrB allele decreased by three times the mutant frequency (MF, rev/10(8) survivors) of duplications and increased by about two times the MF of deletions. Separately, the DeltauvrB allele or pKM101 plasmid increased by two to three times the MF of hotspot mutations; combined, they increased this MF by five times. The percentage of 1-base insertions was not influenced by either DeltauvrB or pKM101. Hotspot deletions and TA98-specific complex frameshifts are inducible by some mutagens; concerted complex frameshifts and 1-base insertions are not; and there is little evidence for mutagen-induced duplications and nonhotspot deletions. Except for the base substitutions in TA98-specific complex frameshifts, all spontaneous mutations of the hisD3052 allele are likely templated. The mechanisms may involve (1) the potential of direct and inverted repeats to undergo slippage and misalignment and to form quasi-palindromes and (2) the interaction of these sequences with DNA replication and repair proteins. PMID:9584083
29 CFR Appendix A to Part 2201 - Schedule of Fees
Code of Federal Regulations, 2011 CFR
2011-07-01
... IMPLEMENTING THE FREEDOM OF INFORMATION ACT Pt. 2201, App. A Appendix A to Part 2201—Schedule of Fees Type of... and above) 76 Duplication cost per page 0.25 Computer printout copying fee 0.40 Searches of...
Preformed cell structure and cell heredity
2008-01-01
This review will first recall the phenomena of “cortical inheritance” observed and genetically demonstrated in Paramecium 40 years ago, and later in other ciliates (Tetrahymena, Oxytricha, Paraurostyla), and will analyze the deduced concept of “cytotaxis” or “structural memory.” The significance of these phenomena, all related (but not strictly restricted) to the properties of ciliary basal bodies and their mode of duplication, will be interpreted in the light of present knowledge on the mechanism and control of basal body/centriole duplication. Then other phenomena described in a variety of organisms will be analyzed or mentioned which show the relevance of the concept of cytotaxis to other cellular processes, mainly (1) cytoskeleton assembly and organization with examples on ciliates, trypanosome, mammalian cells and plants, and (2) transmission of polarities with examples on yeast, trypanosome and metazoa. Finally, I will discuss some aspects of this particular type of non-DNA inheritance: (1) why so few documented examples if structural memory is a basic parameter in cell heredity, and (2) how are these phenomena (which all rely on protein/protein interactions, and imply a formatting role of preexisting proteinic complexes on neo-formed proteins and their assembly) related to prions? PMID:19164887
Carelle-Calmels, Nadège; Girard-Lemaire, Françoise; Guérin, Eric; Bieth, Eric; Rudolf, Gabrielle; Biancalana, Valérie; Pecheur, Hélène; Demil, Houria; Schneider, Thierry; de Saint-Martin, Anne; Caron, Olivier; Legrain, Michèle; Gaston, Valérie; Flori, Elisabeth
2008-01-01
Cytogenetically detectable elongation of the 15q proximal region can be associated with Prader-Willi/Angelman critical region interstitial duplications or with inherited juxtacentromeric euchromatic variants. The first category has been reported in association with developmental delay and autistic disorders. These pathogenic recurrent duplications are more frequently of maternal origin and originate from unequal meiotic crossovers between chromosome 15 low-copy repeats. 15q juxtacentromeric euchromatic variants reflect polymorphic copy number variations of segments containing pseudogenes and usually segregate without apparent phenotypic consequence. Pathogenic relevant 15q11-q13 duplications are not distinguishable from the innocuous euchromatic variants with conventional cytogenetic methods. We report cytogenetic and molecular studies of a patient with hypotonia, developmental delay and epilepsy, carrying, on the same chromosome 15, both a de novo 15q11-q13 interstitial duplication and an inherited 15q juxtacentromeric amplification from maternal origin. The duplication, initially suspected by fluorescent in situ hybridization (FISH), has been confirmed by molecular studies. The 15q juxtacentromeric region amplification, which segregates in the family for at least three generations, has been confirmed by FISH using BAC probes overlapping the NF1 and GABRA5 pseudogenes. This report emphasizes the importance to distinguish proximal 15q polymorphic variants from clinically significant duplications. In any patient with inherited 15q proximal variant but unexplained developmental delay suggesting 15q11-q13 pathology, a pathogenic rearrangement has to be searched with adapted strategies, in order to detect deletions as well as duplications of this region.
Hayward, Catherine P M; Liang, Minggao; Tasneem, Subia; Soomro, Asim; Waye, John S; Paterson, Andrew D; Rivard, Georges E; Wilson, Michael D
2017-01-01
Quebec Platelet disorder (QPD) is a unique bleeding disorder that markedly increases urokinase plasminogen activator (uPA) in megakaryocytes and platelets but not in plasma or urine. The cause is tandem duplication of a 78 kb region of chromosome 10 containing PLAU (the uPA gene) and C10orf55, a gene of unknown function. QPD increases uPA in platelets and megakaryocytes >100 fold, far more than expected for a gene duplication. To investigate the tissue-specific effect that PLAU duplication has on gene expression and transcript structure in QPD, we tested if QPD leads to: 1) overexpression of normal or unique PLAU transcripts; 2) increased uPA in leukocytes; 3) altered levels of C10orf55 mRNA and/or protein in megakaryocytes and leukocytes; and 4) global changes in megakaryocyte gene expression. Primary cells and cultured megakaryocytes from donors were prepared for quantitative reverse polymerase chain reaction analyses, RNA-seq and protein expression analyses. Rapidly isolated blood leukocytes from QPD subjects showed only a 3.9 fold increase in PLAU transcript levels, in keeping with the normal to minimally increased uPA in affinity purified, QPD leukocytes. All subjects had more uPA in granulocytes than monocytes and minimal uPA in lymphocytes. QPD leukocytes expressed PLAU alleles in proportions consistent with an extra copy of PLAU on the disease chromosome, unlike QPD megakaryocytes. QPD PLAU transcripts were consistent with reference gene models, with a much higher proportion of reads originating from the disease chromosome in megakaryocytes than granulocytes. QPD and control megakaryocytes contained minimal reads for C10orf55, and C10orf55 protein was not increased in QPD megakaryocytes or platelets. Finally, our QPD megakaryocyte transcriptome analysis revealed a global down regulation of the interferon type 1 pathway. We suggest that the low endogenous levels of uPA in blood are actively regulated, and that the regulatory mechanisms are disrupted in QPD in a megakaryocyte-specific manner.
Soomro, Asim; Waye, John S.; Paterson, Andrew D.; Rivard, Georges E.; Wilson, Michael D.
2017-01-01
Quebec Platelet disorder (QPD) is a unique bleeding disorder that markedly increases urokinase plasminogen activator (uPA) in megakaryocytes and platelets but not in plasma or urine. The cause is tandem duplication of a 78 kb region of chromosome 10 containing PLAU (the uPA gene) and C10orf55, a gene of unknown function. QPD increases uPA in platelets and megakaryocytes >100 fold, far more than expected for a gene duplication. To investigate the tissue-specific effect that PLAU duplication has on gene expression and transcript structure in QPD, we tested if QPD leads to: 1) overexpression of normal or unique PLAU transcripts; 2) increased uPA in leukocytes; 3) altered levels of C10orf55 mRNA and/or protein in megakaryocytes and leukocytes; and 4) global changes in megakaryocyte gene expression. Primary cells and cultured megakaryocytes from donors were prepared for quantitative reverse polymerase chain reaction analyses, RNA-seq and protein expression analyses. Rapidly isolated blood leukocytes from QPD subjects showed only a 3.9 fold increase in PLAU transcript levels, in keeping with the normal to minimally increased uPA in affinity purified, QPD leukocytes. All subjects had more uPA in granulocytes than monocytes and minimal uPA in lymphocytes. QPD leukocytes expressed PLAU alleles in proportions consistent with an extra copy of PLAU on the disease chromosome, unlike QPD megakaryocytes. QPD PLAU transcripts were consistent with reference gene models, with a much higher proportion of reads originating from the disease chromosome in megakaryocytes than granulocytes. QPD and control megakaryocytes contained minimal reads for C10orf55, and C10orf55 protein was not increased in QPD megakaryocytes or platelets. Finally, our QPD megakaryocyte transcriptome analysis revealed a global down regulation of the interferon type 1 pathway. We suggest that the low endogenous levels of uPA in blood are actively regulated, and that the regulatory mechanisms are disrupted in QPD in a megakaryocyte-specific manner. PMID:28301587
Interstitial duplication 8q22-q24: Report of a case proven by FISH with mapped cosmid probes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wakui, Keiko; Ohashi, Hirofumi; Yamagishi, Akira
We report on a 6-month-old malformed female infant with a de novo interstitial duplication of an 8q22-q24 segment. She had an excess dark-band on the 8q distal region by GTG-banded chromosome analysis, which was likely to be 8q23. We performed FISH analysis using cosmid probes mapped to 8q23 and proved that the patient had an 8q duplication including the 8q23 region. 20 refs., 2 figs., 1 tab.
ERIC Educational Resources Information Center
Sagan, Dorion; Margulis, Lynn
1985-01-01
Discusses the work of evolutionary biologists in determining how sexual reproduction arose. Topics explored include the nature of sex, bacterial sex, meiotic sex, and asexual reproduction. A diagram (which can be used as a duplicating master) illustrating types of bacterial sex is included. (DH)
Chantot-Bastaraud, S; Ravel, C; Berthaut, I; McElreavey, K; Bouchard, P; Mandelbaum, J; Siffroi, J P
2007-01-01
No phenotypic effect is observed in most inversion heterozygotes. However, reproductive risks may occur in the form of infertility, spontaneous abortions or chromosomally unbalanced children as a consequence of meiotic recombination between inverted and non-inverted chromosomes. An odd number of crossovers within the inverted segment results in gametes bearing recombinant chromosomes with a duplication of the region outside of the inversion segment of one arm and a deletion of the terminal segment of the other arm [dup(p)/del(q) and del(p)/dup(q)]. Using fluorescence in-situ hybridization (FISH), the chromosome segregation of a pericentric inversion of chromosome 1 was studied in spermatozoa of a inv(1)(p22q42) heterozygous carrier. Three-colour FISH was performed on sperm samples using a probe mixture consisting of chromosome 1p telomere-specific probe, chromosome 1q telomere-specific probe and chromosome 18 centromere-specific alpha satellite DNA probe. The frequency of the non-recombinant product was 80.1%. The frequencies of the two types of recombinants carrying a duplication of the short arm and a deletion of the long arm, and vice versa, were respectively 7.6 and 7.2%, and these frequencies were not statistically significant from the expected ratio of 1:1. Sperm-FISH allows the further understanding of segregation patterns and their effect on reproductive failure and allows an accurate genetic counselling.
Pyloric duplications: review and case study.
Cooper, S; Abrams, R S; Carbaugh, R A
1995-12-01
Gastric duplications are unusual congenital anomalies that often require surgical treatment. Pyloric duplications are particularly rare; few are reported in the English literature. This article reviews the literature on pyloric duplications and describes a pyloric duplication associated with hypertrophic pyloric stenosis in a 5-week-old child and a duplication that recurred 7 years later.
The Evolutionary History of Sarco(endo)plasmic Calcium ATPase (SERCA)
Altshuler, Ianina; Vaillant, James J.; Xu, Sen; Cristescu, Melania E.
2012-01-01
Investigating the phylogenetic relationships within physiologically essential gene families across a broad range of taxa can reveal the key gene duplication events underlying their family expansion and is thus important to functional genomics studies. P-Type II ATPases represent a large family of ATP powered transporters that move ions across cellular membranes and includes Na+/K+ transporters, H+/K+ transporters, and plasma membrane Ca2+ pumps. Here, we examine the evolutionary history of one such transporter, the Sarco(endo)plasmic reticulum calcium ATPase (SERCA), which maintains calcium homeostasis in the cell by actively pumping Ca2+ into the sarco(endo)plasmic reticulum. Our protein-based phylogenetic analyses across Eukaryotes revealed two monophyletic clades of SERCA proteins, one containing animals, fungi, and plants, and the other consisting of plants and protists. Our analyses suggest that the three known SERCA proteins in vertebrates arose through two major gene duplication events after the divergence from tunicates, but before the separation of fishes and tetrapods. In plants, we recovered two SERCA clades, one being the sister group to Metazoa and the other to Apicomplexa clade, suggesting an ancient duplication in an early eukaryotic ancestor, followed by subsequent loss of one copy in Opisthokonta, the other in protists, and retention of both in plants. We also report relatively recent and independent gene duplication events within invertebrate taxa including tunicates and the leech Helobdella robusta. Thus, it appears that both ancient and recent gene duplication events have played an important role in the evolution of this ubiquitous gene family across the eukaryotic domain. PMID:23285113
The evolutionary history of sarco(endo)plasmic calcium ATPase (SERCA).
Altshuler, Ianina; Vaillant, James J; Xu, Sen; Cristescu, Melania E
2012-01-01
Investigating the phylogenetic relationships within physiologically essential gene families across a broad range of taxa can reveal the key gene duplication events underlying their family expansion and is thus important to functional genomics studies. P-Type II ATPases represent a large family of ATP powered transporters that move ions across cellular membranes and includes Na(+)/K(+) transporters, H(+)/K(+) transporters, and plasma membrane Ca(2+) pumps. Here, we examine the evolutionary history of one such transporter, the Sarco(endo)plasmic reticulum calcium ATPase (SERCA), which maintains calcium homeostasis in the cell by actively pumping Ca(2+) into the sarco(endo)plasmic reticulum. Our protein-based phylogenetic analyses across Eukaryotes revealed two monophyletic clades of SERCA proteins, one containing animals, fungi, and plants, and the other consisting of plants and protists. Our analyses suggest that the three known SERCA proteins in vertebrates arose through two major gene duplication events after the divergence from tunicates, but before the separation of fishes and tetrapods. In plants, we recovered two SERCA clades, one being the sister group to Metazoa and the other to Apicomplexa clade, suggesting an ancient duplication in an early eukaryotic ancestor, followed by subsequent loss of one copy in Opisthokonta, the other in protists, and retention of both in plants. We also report relatively recent and independent gene duplication events within invertebrate taxa including tunicates and the leech Helobdella robusta. Thus, it appears that both ancient and recent gene duplication events have played an important role in the evolution of this ubiquitous gene family across the eukaryotic domain.
Wang, Yupeng; Ficklin, Stephen P; Wang, Xiyin; Feltus, F Alex; Paterson, Andrew H
2016-01-01
Different modes of gene duplication including whole-genome duplication (WGD), and tandem, proximal and dispersed duplications are widespread in angiosperm genomes. Small-scale, stochastic gene relocations and transposed gene duplications are widely accepted to be the primary mechanisms for the creation of dispersed duplicates. However, here we show that most surviving ancient dispersed duplicates in core eudicots originated from large-scale gene relocations within a narrow window of time following a genome triplication (γ) event that occurred in the stem lineage of core eudicots. We name these surviving ancient dispersed duplicates as relocated γ duplicates. In Arabidopsis thaliana, relocated γ, WGD and single-gene duplicates have distinct features with regard to gene functions, essentiality, and protein interactions. Relative to γ duplicates, relocated γ duplicates have higher non-synonymous substitution rates, but comparable levels of expression and regulation divergence. Thus, relocated γ duplicates should be distinguished from WGD and single-gene duplicates for evolutionary investigations. Our results suggest large-scale gene relocations following the γ event were associated with the diversification of core eudicots.
Wang, Yupeng; Ficklin, Stephen P.; Wang, Xiyin; Feltus, F. Alex; Paterson, Andrew H.
2016-01-01
Different modes of gene duplication including whole-genome duplication (WGD), and tandem, proximal and dispersed duplications are widespread in angiosperm genomes. Small-scale, stochastic gene relocations and transposed gene duplications are widely accepted to be the primary mechanisms for the creation of dispersed duplicates. However, here we show that most surviving ancient dispersed duplicates in core eudicots originated from large-scale gene relocations within a narrow window of time following a genome triplication (γ) event that occurred in the stem lineage of core eudicots. We name these surviving ancient dispersed duplicates as relocated γ duplicates. In Arabidopsis thaliana, relocated γ, WGD and single-gene duplicates have distinct features with regard to gene functions, essentiality, and protein interactions. Relative to γ duplicates, relocated γ duplicates have higher non-synonymous substitution rates, but comparable levels of expression and regulation divergence. Thus, relocated γ duplicates should be distinguished from WGD and single-gene duplicates for evolutionary investigations. Our results suggest large-scale gene relocations following the γ event were associated with the diversification of core eudicots. PMID:27195960
Evolution of Gene Duplication in Plants.
Panchy, Nicholas; Lehti-Shiu, Melissa; Shiu, Shin-Han
2016-08-01
Ancient duplication events and a high rate of retention of extant pairs of duplicate genes have contributed to an abundance of duplicate genes in plant genomes. These duplicates have contributed to the evolution of novel functions, such as the production of floral structures, induction of disease resistance, and adaptation to stress. Additionally, recent whole-genome duplications that have occurred in the lineages of several domesticated crop species, including wheat (Triticum aestivum), cotton (Gossypium hirsutum), and soybean (Glycine max), have contributed to important agronomic traits, such as grain quality, fruit shape, and flowering time. Therefore, understanding the mechanisms and impacts of gene duplication will be important to future studies of plants in general and of agronomically important crops in particular. In this review, we survey the current knowledge about gene duplication, including gene duplication mechanisms, the potential fates of duplicate genes, models explaining duplicate gene retention, the properties that distinguish duplicate from singleton genes, and the evolutionary impact of gene duplication. © 2016 American Society of Plant Biologists. All Rights Reserved.
A computational method for estimating the PCR duplication rate in DNA and RNA-seq experiments.
Bansal, Vikas
2017-03-14
PCR amplification is an important step in the preparation of DNA sequencing libraries prior to high-throughput sequencing. PCR amplification introduces redundant reads in the sequence data and estimating the PCR duplication rate is important to assess the frequency of such reads. Existing computational methods do not distinguish PCR duplicates from "natural" read duplicates that represent independent DNA fragments and therefore, over-estimate the PCR duplication rate for DNA-seq and RNA-seq experiments. In this paper, we present a computational method to estimate the average PCR duplication rate of high-throughput sequence datasets that accounts for natural read duplicates by leveraging heterozygous variants in an individual genome. Analysis of simulated data and exome sequence data from the 1000 Genomes project demonstrated that our method can accurately estimate the PCR duplication rate on paired-end as well as single-end read datasets which contain a high proportion of natural read duplicates. Further, analysis of exome datasets prepared using the Nextera library preparation method indicated that 45-50% of read duplicates correspond to natural read duplicates likely due to fragmentation bias. Finally, analysis of RNA-seq datasets from individuals in the 1000 Genomes project demonstrated that 70-95% of read duplicates observed in such datasets correspond to natural duplicates sampled from genes with high expression and identified outlier samples with a 2-fold greater PCR duplication rate than other samples. The method described here is a useful tool for estimating the PCR duplication rate of high-throughput sequence datasets and for assessing the fraction of read duplicates that correspond to natural read duplicates. An implementation of the method is available at https://github.com/vibansal/PCRduplicates .
Du, Jianchang; Tian, Zhixi; Sui, Yi; Zhao, Meixia; Song, Qijian; Cannon, Steven B.; Cregan, Perry; Ma, Jianxin
2012-01-01
The evolutionary forces that govern the divergence and retention of duplicated genes in polyploids are poorly understood. In this study, we first investigated the rates of nonsynonymous substitution (Ka) and the rates of synonymous substitution (Ks) for a nearly complete set of genes in the paleopolyploid soybean (Glycine max) by comparing the orthologs between soybean and its progenitor species Glycine soja and then compared the patterns of gene divergence and expression between pericentromeric regions and chromosomal arms in different gene categories. Our results reveal strong associations between duplication status and Ka and gene expression levels and overall low Ks and low levels of gene expression in pericentromeric regions. It is theorized that deleterious mutations can easily accumulate in recombination-suppressed regions, because of Hill-Robertson effects. Intriguingly, the genes in pericentromeric regions—the cold spots for meiotic recombination in soybean—showed significantly lower Ka and higher levels of expression than their homoeologs in chromosomal arms. This asymmetric evolution of two members of individual whole genome duplication (WGD)-derived gene pairs, echoing the biased accumulation of singletons in pericentromeric regions, suggests that distinct genomic features between the two distinct chromatin types are important determinants shaping the patterns of divergence and retention of WGD-derived genes. PMID:22227891
Fares, Mario A; Sabater-Muñoz, Beatriz; Toft, Christina
2017-05-01
Gene duplication generates new genetic material, which has been shown to lead to major innovations in unicellular and multicellular organisms. A whole-genome duplication occurred in the ancestor of Saccharomyces yeast species but 92% of duplicates returned to single-copy genes shortly after duplication. The persisting duplicated genes in Saccharomyces led to the origin of major metabolic innovations, which have been the source of the unique biotechnological capabilities in the Baker's yeast Saccharomyces cerevisiae. What factors have determined the fate of duplicated genes remains unknown. Here, we report the first demonstration that the local genome mutation and transcription rates determine the fate of duplicates. We show, for the first time, a preferential location of duplicated genes in the mutational and transcriptional hotspots of S. cerevisiae genome. The mechanism of duplication matters, with whole-genome duplicates exhibiting different preservation trends compared to small-scale duplicates. Genome mutational and transcriptional hotspots are rich in duplicates with large repetitive promoter elements. Saccharomyces cerevisiae shows more tolerance to deleterious mutations in duplicates with repetitive promoter elements, which in turn exhibit higher transcriptional plasticity against environmental perturbations. Our data demonstrate that the genome traps duplicates through the accelerated regulatory and functional divergence of their gene copies providing a source of novel adaptations in yeast. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Gudi, Radhika; Zou, Chaozhong; Dhar, Jayeeta; Gao, Qingshen; Vasu, Chenthamarakshan
2014-05-30
Centriole duplication is the process by which two new daughter centrioles are generated from the proximal end of preexisting mother centrioles. Accurate centriole duplication is important for many cellular and physiological events, including cell division and ciliogenesis. Centrosomal protein 4.1-associated protein (CPAP), centrosomal protein of 152 kDa (CEP152), and centrobin are known to be essential for centriole duplication. However, the precise mechanism by which they contribute to centriole duplication is not known. In this study, we show that centrobin interacts with CEP152 and CPAP, and the centrobin-CPAP interaction is critical for centriole duplication. Although depletion of centrobin from cells did not have an effect on the centriolar levels of CEP152, it caused the disappearance of CPAP from both the preexisting and newly formed centrioles. Moreover, exogenous expression of the CPAP-binding fragment of centrobin also caused the disappearance of CPAP from both the preexisting and newly synthesized centrioles, possibly in a dominant negative manner, thereby inhibiting centriole duplication and the PLK4 overexpression-mediated centrosome amplification. Interestingly, exogenous overexpression of CPAP in the centrobin-depleted cells did not restore CPAP localization to the centrioles. However, restoration of centrobin expression in the centrobin-depleted cells led to the reappearance of centriolar CPAP. Hence, we conclude that centrobin-CPAP interaction is critical for the recruitment of CPAP to procentrioles to promote the elongation of daughter centrioles and for the persistence of CPAP on preexisting mother centrioles. Our study indicates that regulation of CPAP levels on the centrioles by centrobin is critical for preserving the normal size, shape, and number of centrioles in the cell. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Gudi, Radhika; Zou, Chaozhong; Dhar, Jayeeta; Gao, Qingshen; Vasu, Chenthamarakshan
2014-01-01
Centriole duplication is the process by which two new daughter centrioles are generated from the proximal end of preexisting mother centrioles. Accurate centriole duplication is important for many cellular and physiological events, including cell division and ciliogenesis. Centrosomal protein 4.1-associated protein (CPAP), centrosomal protein of 152 kDa (CEP152), and centrobin are known to be essential for centriole duplication. However, the precise mechanism by which they contribute to centriole duplication is not known. In this study, we show that centrobin interacts with CEP152 and CPAP, and the centrobin-CPAP interaction is critical for centriole duplication. Although depletion of centrobin from cells did not have an effect on the centriolar levels of CEP152, it caused the disappearance of CPAP from both the preexisting and newly formed centrioles. Moreover, exogenous expression of the CPAP-binding fragment of centrobin also caused the disappearance of CPAP from both the preexisting and newly synthesized centrioles, possibly in a dominant negative manner, thereby inhibiting centriole duplication and the PLK4 overexpression-mediated centrosome amplification. Interestingly, exogenous overexpression of CPAP in the centrobin-depleted cells did not restore CPAP localization to the centrioles. However, restoration of centrobin expression in the centrobin-depleted cells led to the reappearance of centriolar CPAP. Hence, we conclude that centrobin-CPAP interaction is critical for the recruitment of CPAP to procentrioles to promote the elongation of daughter centrioles and for the persistence of CPAP on preexisting mother centrioles. Our study indicates that regulation of CPAP levels on the centrioles by centrobin is critical for preserving the normal size, shape, and number of centrioles in the cell. PMID:24700465
Borlot, Felippe; Regan, Brigid M; Bassett, Anne S; Stavropoulos, D James; Andrade, Danielle M
2017-11-01
Copy number variation (CNV) is an important cause of neuropsychiatric disorders. Little is known about the role of CNV in adults with epilepsy and intellectual disability. To evaluate the prevalence of pathogenic CNVs and identify possible candidate CNVs and genes in patients with epilepsy and intellectual disability. In this cross-sectional study, genome-wide microarray was used to evaluate a cohort of 143 adults with unexplained childhood-onset epilepsy and intellectual disability who were recruited from the Toronto Western Hospital epilepsy outpatient clinic from January 1, 2012, through December 31, 2014. The inclusion criteria were (1) pediatric seizure onset with ongoing seizure activity in adulthood, (2) intellectual disability of any degree, and (3) no structural brain abnormalities or metabolic conditions that could explain the seizures. DNA screening was performed using genome-wide microarray platforms. Pathogenicity of CNVs was assessed based on the American College of Medical Genetics guidelines. The Residual Variation Intolerance Score was used to evaluate genes within the identified CNVs that could play a role in each patient's phenotype. Of the 2335 patients, 143 probands were investigated (mean [SD] age, 24.6 [10.8] years; 69 male and 74 female). Twenty-three probands (16.1%) and 4 affected relatives (2.8%) (mean [SD] age, 24.1 [6.1] years; 11 male and 16 female) presented with pathogenic or likely pathogenic CNVs (0.08-18.9 Mb). Five of the 23 probands with positive results (21.7%) had more than 1 CNV reported. Parental testing revealed de novo CNVs in 11 (47.8%), with CNVs inherited from a parent in 4 probands (17.4%). Sixteen of 23 probands (69.6%) presented with previously cataloged human genetic disorders and/or defined CNV hot spots in epilepsy. Eight nonrecurrent rare CNVs that overlapped 1 or more genes associated with intellectual disability, autism, and/or epilepsy were identified: 2p16.1-p15 duplication, 6p25.3-p25.1 duplication, 8p23.3p23.1 deletion, 9p24.3-p23 deletion, 10q11.22-q11.23 duplication, 12p13.33-13.2 duplication, 13q34 deletion, and 16p13.2 duplication. Five genes are of particular interest given their potential pathogenicity in the corresponding phenotypes and least tolerability to variation: ABAT, KIAA2022, COL4A1, CACNA1C, and SMARCA2. ABAT duplication was associated with Lennox-Gastaut syndrome and KIAA2022 deletion with Jeavons syndrome. The high prevalence of pathogenic CNVs in this study highlights the importance of microarray analysis in adults with unexplained childhood-onset epilepsy and intellectual disability. Additional studies and comparison with similar cases are required to evaluate the effects of deletions and duplications that overlap specific genes.
Discriminating the reaction types of plant type III polyketide synthases
Shimizu, Yugo; Ogata, Hiroyuki; Goto, Susumu
2017-01-01
Abstract Motivation: Functional prediction of paralogs is challenging in bioinformatics because of rapid functional diversification after gene duplication events combined with parallel acquisitions of similar functions by different paralogs. Plant type III polyketide synthases (PKSs), producing various secondary metabolites, represent a paralogous family that has undergone gene duplication and functional alteration. Currently, there is no computational method available for the functional prediction of type III PKSs. Results: We developed a plant type III PKS reaction predictor, pPAP, based on the recently proposed classification of type III PKSs. pPAP combines two kinds of similarity measures: one calculated by profile hidden Markov models (pHMMs) built from functionally and structurally important partial sequence regions, and the other based on mutual information between residue positions. pPAP targets PKSs acting on ring-type starter substrates, and classifies their functions into four reaction types. The pHMM approach discriminated two reaction types with high accuracy (97.5%, 39/40), but its accuracy decreased when discriminating three reaction types (87.8%, 43/49). When combined with a correlation-based approach, all 49 PKSs were correctly discriminated, and pPAP was still highly accurate (91.4%, 64/70) even after adding other reaction types. These results suggest pPAP, which is based on linear discriminant analyses of similarity measures, is effective for plant type III PKS function prediction. Availability and Implementation: pPAP is freely available at ftp://ftp.genome.jp/pub/tools/ppap/ Contact: goto@kuicr.kyoto-u.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28334262
Adaptive Evolution and Divergence of SERPINB3: A Young Duplicate in Great Apes
Gomes, Sílvia; Marques, Patrícia I.; Matthiesen, Rune; Seixas, Susana
2014-01-01
A series of duplication events led to an expansion of clade B Serine Protease Inhibitors (SERPIN), currently displaying a large repertoire of functions in vertebrates. Accordingly, the recent duplicates SERPINB3 and B4 located in human 18q21.3 SERPIN cluster control the activity of different cysteine and serine proteases, respectively. Here, we aim to assess SERPINB3 and B4 coevolution with their target proteases in order to understand the evolutionary forces shaping the accelerated divergence of these duplicates. Phylogenetic analysis of primate sequences placed the duplication event in a Hominoidae ancestor (∼30 Mya) and the emergence of SERPINB3 in Homininae (∼9 Mya). We detected evidence of strong positive selection throughout SERPINB4/B3 primate tree and target proteases, cathepsin L2 (CTSL2) and G (CTSG) and chymase (CMA1). Specifically, in the Homininae clade a perfect match was observed between the adaptive evolution of SERPINB3 and cathepsin S (CTSS) and most of sites under positive selection were located at the inhibitor/protease interface. Altogether our results seem to favour a coevolution hypothesis for SERPINB3, CTSS and CTSL2 and for SERPINB4 and CTSG and CMA1. A scenario of an accelerated evolution driven by host-pathogen interactions is also possible since SERPINB3/B4 are potent inhibitors of exogenous proteases, released by infectious agents. Finally, similar patterns of expression and the sharing of many regulatory motifs suggest neofunctionalization as the best fitted model of the functional divergence of SERPINB3 and B4 duplicates. PMID:25133778
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witt, D.R.; Jenkins, L.; Pinheiro, S.
1994-09-01
A 36-year-old woman underwent amniocentesis for advanced maternal age. The fetal karyotype had an extra dark staining G band on the long arm of chromosome 11 with no other identifiable abnormalities. FISH studies using a chromosome 11 paint probe confirmed the origin of the extra band. The abnormality was identified as a partial duplication of 11q: 46,XX dir dup (11)(q13.5q21) or (q21q23.1). The specific duplicated band could not be identified with certainty. Detailed fetal sonograms were normal. Family studies revealed the identical duplication in the mother but normal karyotypes in both maternal grandparents. The mother had strabismus and a shortmore » tongue frenulum which required surgical correction. Menses occurred late in adolescence and complete development of secondary sexual characteristics was delayed until adulthood. An infertility evaluation revealed duplication of the uterus, cervix, and vagina. An evaluation for metorrhagia identified a pituitary adenoma which was resected. Her intelligence was normal. To our knowledge this is the first report of a heritable direct duplication of 11q. It is possible that one or more gene in the duplicated segment played a causal role in the pathophysiology of the patient`s anomalies through a disturbance of the so-called {open_quotes}midline developmental field{close_quotes}. Alternatively, the cytogenetic findings could be unrelated to the malformations. Rare instances of partial gain or loss of specific late-replicating heterochromatic regions without phenotypic effect have been reported. This region of 11q is also relatively late-replicating. This is consistent with previous reports suggesting a paucity of expressed genes in this 11q region. Molecular studies of the duplication are underway to determine the specific location and extent of duplication. Phenotypic evaluation of the patient`s baby will also be reported.« less
CNS sites cooperate to detect duplicate subjects with a clinical trial subject registry.
Shiovitz, Thomas M; Wilcox, Charles S; Gevorgyan, Lilit; Shawkat, Adnan
2013-02-01
To report the results of the first 1,132 subjects in a pilot project where local central nervous system trial sites collaborated in the use of a subject database to identify potential duplicate subjects. Central nervous system sites in Los Angeles and Orange County, California, were contacted by the lead author to seek participation in the project. CTSdatabase, a central nervous system-focused trial subject registry, was utilized to track potential subjects at pre-screen. Subjects signed an institutional review board-approved authorization prior to participation, and site staff entered their identifiers by accessing a website. Sites were prompted to communicate with each other or with the database administrator when a match occurred between a newly entered subject and a subject already in the database. Between October 30, 2011, and August 31, 2012, 1,132 subjects were entered at nine central nervous system sites. Subjects continue to be entered, and more sites are anticipated to begin participation by the time of publication. Initially, there were concerns at a few sites over patient acceptance, financial implications, and/or legal and privacy issues, but these were eventually overcome. Patient acceptance was estimated to be above 95 percent. Duplicate Subjects (those that matched several key identifiers with subjects at different sites) made up 7.78 percent of the sample and Certain Duplicates (matching identifiers with a greater than 1 in 10 million likelihood of occurring by chance in the general population) accounted for 3.45 percent of pre-screens entered into the database. Many of these certain duplicates were not consented for studies because of the information provided by the registry. The use of a clinical trial subject registry and cooperation between central nervous system trial sites can reduce the number of duplicate and professional subjects entering clinical trials. To be fully effective, a trial subject database could be integrated into protocols across pharmaceutical companies, thereby mandating site participation and increasing the likelihood that duplicate subjects will be removed before they enter (and negatively affect) clinical trials.
Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms.
Chen, Bin; Zhong, Daibin; Monteiro, Antónia
2006-06-17
HSP90 proteins are essential molecular chaperones involved in signal transduction, cell cycle control, stress management, and folding, degradation, and transport of proteins. HSP90 proteins have been found in a variety of organisms suggesting that they are ancient and conserved. In this study we investigate the nuclear genomes of 32 species across all kingdoms of organisms, and all sequences available in GenBank, and address the diversity, evolution, gene structure, conservation and nomenclature of the HSP90 family of genes across all organisms. Twelve new genes and a new type HSP90C2 were identified. The chromosomal location, exon splicing, and prediction of whether they are functional copies were documented, as well as the amino acid length and molecular mass of their polypeptides. The conserved regions across all protein sequences, and signature sequences in each subfamily were determined, and a standardized nomenclature system for this gene family is presented. The proeukaryote HSP90 homologue, HTPG, exists in most Bacteria species but not in Archaea, and it evolved into three lineages (Groups A, B and C) via two gene duplication events. None of the organellar-localized HSP90s were derived from endosymbionts of early eukaryotes. Mitochondrial TRAP and endoplasmic reticulum HSP90B separately originated from the ancestors of HTPG Group A in Firmicutes-like organisms very early in the formation of the eukaryotic cell. TRAP is monophyletic and present in all Animalia and some Protista species, while HSP90B is paraphyletic and present in all eukaryotes with the exception of some Fungi species, which appear to have lost it. Both HSP90C (chloroplast HSP90C1 and location-undetermined SP90C2) and cytosolic HSP90A are monophyletic, and originated from HSP90B by independent gene duplications. HSP90C exists only in Plantae, and was duplicated into HSP90C1 and HSP90C2 isoforms in higher plants. HSP90A occurs across all eukaryotes, and duplicated into HSP90AA and HSP90AB in vertebrates. Diplomonadida was identified as the most basal organism in the eukaryote lineage. The present study presents the first comparative genomic study and evolutionary analysis of the HSP90 family of genes across all kingdoms of organisms. HSP90 family members underwent multiple duplications and also subsequent losses during their evolution. This study established an overall framework of information for the family of genes, which may facilitate and stimulate the study of this gene family across all organisms.
Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms
Chen, Bin; Zhong, Daibin; Monteiro, Antónia
2006-01-01
Background HSP90 proteins are essential molecular chaperones involved in signal transduction, cell cycle control, stress management, and folding, degradation, and transport of proteins. HSP90 proteins have been found in a variety of organisms suggesting that they are ancient and conserved. In this study we investigate the nuclear genomes of 32 species across all kingdoms of organisms, and all sequences available in GenBank, and address the diversity, evolution, gene structure, conservation and nomenclature of the HSP90 family of genes across all organisms. Results Twelve new genes and a new type HSP90C2 were identified. The chromosomal location, exon splicing, and prediction of whether they are functional copies were documented, as well as the amino acid length and molecular mass of their polypeptides. The conserved regions across all protein sequences, and signature sequences in each subfamily were determined, and a standardized nomenclature system for this gene family is presented. The proeukaryote HSP90 homologue, HTPG, exists in most Bacteria species but not in Archaea, and it evolved into three lineages (Groups A, B and C) via two gene duplication events. None of the organellar-localized HSP90s were derived from endosymbionts of early eukaryotes. Mitochondrial TRAP and endoplasmic reticulum HSP90B separately originated from the ancestors of HTPG Group A in Firmicutes-like organisms very early in the formation of the eukaryotic cell. TRAP is monophyletic and present in all Animalia and some Protista species, while HSP90B is paraphyletic and present in all eukaryotes with the exception of some Fungi species, which appear to have lost it. Both HSP90C (chloroplast HSP90C1 and location-undetermined SP90C2) and cytosolic HSP90A are monophyletic, and originated from HSP90B by independent gene duplications. HSP90C exists only in Plantae, and was duplicated into HSP90C1 and HSP90C2 isoforms in higher plants. HSP90A occurs across all eukaryotes, and duplicated into HSP90AA and HSP90AB in vertebrates. Diplomonadida was identified as the most basal organism in the eukaryote lineage. Conclusion The present study presents the first comparative genomic study and evolutionary analysis of the HSP90 family of genes across all kingdoms of organisms. HSP90 family members underwent multiple duplications and also subsequent losses during their evolution. This study established an overall framework of information for the family of genes, which may facilitate and stimulate the study of this gene family across all organisms. PMID:16780600
Divergence and evolution of cotton bHLH proteins from diploid to allotetraploid.
Liu, Bingliang; Guan, Xueying; Liang, Wenhua; Chen, Jiedan; Fang, Lei; Hu, Yan; Guo, Wangzhen; Rong, Junkang; Xu, Guohua; Zhang, Tianzhen
2018-02-23
Polyploidy is considered a major driving force in genome expansion, yielding duplicated genes whose expression may be conserved or divergence as a consequence of polyploidization. We compared the genome sequences of tetraploid cotton (Gossypium hirsutum) and its two diploid progenitors, G. arboreum and G. raimondii, and found that the bHLH genes were conserved over the polyploidization. Oppositely, the expression of the homeolgous gene pairs was diversified. The biased homeologous proportion for bHLH family is significantly higher (64.6%) than the genome wide homeologous expression bias (40%). Compared with cacao (T. cacao), orthologous genes only accounted for a small proportion (41.7%) of whole cotton bHLHs family. The further Ks analysis indicated that bHLH genes underwent at least two distinct episodes of whole genome duplication: a recent duplication (1.0-60.0 million years ago, MYA, 0.005 < Ks < 0.312) and an old duplication (> 60.0 MYA, 0.312 < Ks < 3.0). The old duplication event might have played a key role in the expansion of the bHLH family. Both recent and old duplicated pairs (68.8%) showed a divergent expression profile, indicating specialized functions. The expression diversification of the duplicated genes suggested it might be a universal feature of the long-term evolution of cotton. Overview of cotton bHLH proteins indicated a conserved and divergent evolution from diploids to allotetraploid. Our results provided an excellent example for studying the long-term evolution of polyploidy.
Kurtas, Nehir; Arrigoni, Filippo; Errichiello, Edoardo; Zucca, Claudio; Maghini, Cristina; D’Angelo, Maria Grazia; Beri, Silvana; Giorda, Roberto; Bertuzzo, Sara; Delledonne, Massimo; Xumerle, Luciano; Rossato, Marzia; Zuffardi, Orsetta; Bonaglia, Maria Clara
2018-01-01
Introduction Phelan-McDermid syndrome (PMS) is caused by SHANK3 haploinsufficiency. Its wide phenotypic variation is attributed partly to the type and size of 22q13 genomic lesion (deletion, unbalanced translocation, ring chromosome), partly to additional undefined factors. We investigated a child with severe global neurodevelopmental delay (NDD) compatible with her distal 22q13 deletion, complicated by bilateral perisylvian polymicrogyria (BPP) and urticarial rashes, unreported in PMS. Methods Following the cytogenetic and array-comparative genomic hybridization (CGH) detection of a r(22) with SHANK3 deletion and two upstream duplications, whole-genome sequencing (WGS) in blood and whole-exome sequencing (WES) in blood and saliva were performed to highlight potential chromothripsis/chromoanagenesis events and any possible BPP-associated variants, even in low-level mosaicism. Results WGS confirmed the deletion and highlighted inversion and displaced order of eight fragments, three of them duplicated. The microhomology-mediated insertion of partial Alu-elements at one breakpoint junction disrupted the topological associating domain joining NFAM1 to the transcriptional coregulator TCF20. WES failed to detect BPP-associated variants. Conclusions Although we were unable to highlight the molecular basis of BPP, our data suggest that SHANK3 haploinsufficiency and TCF20 misregulation, both associated with intellectual disability, contributed to the patient’s NDD, while NFAM1 interruption likely caused her skin rashes, as previously reported. We provide the first example of chromoanasynthesis in a constitutional ring chromosome and reinforce the growing evidence that chromosomal rearrangements may be more complex than estimated by conventional diagnostic approaches and affect the phenotype by global alteration of the topological chromatin organisation rather than simply by deletion or duplication of dosage-sensitive genes. PMID:29378768
Kongchum, Pawapol; Palti, Yniv; Hallerman, Eric M; Hulata, Gideon; David, Lior
2010-08-01
Single nucleotide polymorphisms (SNPs) in immune response genes have been reported as markers for susceptibility to infectious diseases in human and livestock. A disease caused by cyprinid herpesvirus 3 (CyHV-3) is highly contagious and virulent in common carp (Cyprinus carpio). With the aim to develop molecular tools for breeding CyHV-3-resistant carp, we have amplified and sequenced 11 candidate genes for viral disease resistance including TLR2, TLR3, TLR4ba, TLR7, TLR9, TLR21, TLR22, MyD88, TRAF6, type I IFN and IL-1beta. For each gene, we initially cloned and sequenced PCR amplicons from 8 to 12 fish (2-3 fish per strain) from the SNP discovery panel. We then identified and evaluated putative SNPs for their polymorphisms in the SNP discovery panel and validated their usefulness for linkage analysis in a full-sib family using the SNaPshot method. Our sequencing results and phylogenetic analyses suggested that TLR3, TLR7 and MyD88 genes are duplicated in the common carp genome. We, therefore, developed locus-specific PCR primers and SNP genotyping assays for the duplicated loci. A total of 48 SNP markers were developed from PCR fragments of the 13 loci (7 single-locus and 3 duplicated genes). Thirty-nine markers were polymorphic with estimated minor allele frequencies of more than 0.1. The utility of the SNP markers was evaluated in one full-sib family and revealed that 20 markers from 9 loci segregated in a disomic and Mendelian pattern and would be useful for linkage analysis. Published by Elsevier Ltd.
Congenital hyperinsulinism and Poland syndrome in association with 10p13–14 duplication
Giri, Dinesh; Patil, Prashant; Hart, Rachel; Didi, Mohammed
2017-01-01
Summary Poland syndrome (PS) is a rare congenital condition, affecting 1 in 30 000 live births worldwide, characterised by a unilateral absence of the sternal head of the pectoralis major and ipsilateral symbrachydactyly occasionally associated with abnormalities of musculoskeletal structures. A baby girl, born at 40 weeks’ gestation with birth weight of 3.33 kg (−0.55 SDS) had typical phenotypical features of PS. She had recurrent hypoglycaemic episodes early in life requiring high concentration of glucose and glucagon infusion. The diagnosis of congenital hyperinsulinism (CHI) was biochemically confirmed by inappropriately high plasma concentrations of insulin and C-peptide and low plasma free fatty acids and β-hydroxyl butyrate concentrations during hypoglycaemia. Sequencing of ABCC8, KCNJ11 and HNF4A did not show any pathogenic mutation. Microarray analysis revealed a novel duplication in the short arm of chromosome 10 at 10p13–14 region. This is the first reported case of CHI in association with PS and 10p duplication. We hypothesise that the HK1 located on the chromosome 10 encoding hexokinase-1 is possibly linked to the pathophysiology of CHI. Learning points: Congenital hyperinsulinism (CHI) is known to be associated with various syndromes. This is the first reported association of CHI and Poland syndrome (PS) with duplication in 10p13–14. A potential underlying genetic link between 10p13–14 duplication, PS and CHI is a possibility. PMID:28458900
Unique Temporal Expression of Triplicated Long-Wavelength Opsins in Developing Butterfly Eyes
Arikawa, Kentaro; Iwanaga, Tomoyuki; Wakakuwa, Motohiro; Kinoshita, Michiyo
2017-01-01
Following gene duplication events, the expression patterns of the resulting gene copies can often diverge both spatially and temporally. Here we report on gene duplicates that are expressed in distinct but overlapping patterns, and which exhibit temporally divergent expression. Butterflies have sophisticated color vision and spectrally complex eyes, typically with three types of heterogeneous ommatidia. The eyes of the butterfly Papilio xuthus express two green- and one red-absorbing visual pigment, which came about via gene duplication events, in addition to one ultraviolet (UV)- and one blue-absorbing visual pigment. We localized mRNAs encoding opsins of these visual pigments in developing eye disks throughout the pupal stage. The mRNAs of the UV and blue opsin are expressed early in pupal development (pd), specifying the type of the ommatidium in which they appear. Red sensitive photoreceptors first express a green opsin mRNA, which is replaced later by the red opsin mRNA. Broadband photoreceptors (that coexpress the green and red opsins) first express the green opsin mRNA, later change to red opsin mRNA and finally re-express the green opsin mRNA in addition to the red mRNA. Such a unique temporal and spatial expression pattern of opsin mRNAs may reflect the evolution of visual pigments and provide clues toward understanding how the spectrally complex eyes of butterflies evolved. PMID:29238294
NASA Technical Reports Server (NTRS)
Tuey, Richard C.; Lane, Robert; Hart, Susan V.
1995-01-01
The NASA Scientific and Technical Information Office was assigned the responsibility to continue with the expansion of the NASAwide networked electronic duplicating effort by including the Goddard Space Flight Center (GSFC) as an additional node to the existing configuration of networked electronic duplicating systems within NASA. The subject of this report is the evaluation of a networked electronic duplicating system which meets the duplicating requirements and expands electronic publishing capabilities without increasing current operating costs. This report continues the evaluation reported in 'NASA Electronic Publishing System - Electronic Printing and Duplicating Evaluation Report' (NASA TM-106242) and 'NASA Electronic Publishing System - Stage 1 Evaluation Report' (NASA TM-106510). This report differs from the previous reports through the inclusion of an external networked desktop editing, archival, and publishing functionality which did not exist with the previous networked electronic duplicating system. Additionally, a two-phase approach to the evaluation was undertaken; the first was a paper study justifying a 90-day, on-site evaluation, and the second phase was to validate, during the 90-day evaluation, the cost benefits and productivity increases that could be achieved in an operational mode. A benchmark of the functionality of the networked electronic publishing system and external networked desktop editing, archival, and publishing system was performed under a simulated daily production environment. This report can be used to guide others in determining the most cost effective duplicating/publishing alternative through the use of cost/benefit analysis and return on investment techniques. A treatise on the use of these techniques can be found by referring to 'NASA Electronic Publishing System -Cost/Benefit Methodology' (NASA TM-106662).
Cridland, Julie M; Thornton, Kevin R
2010-01-13
Several recent studies have focused on the evolution of recently duplicated genes in Drosophila. Currently, however, little is known about the evolutionary forces acting upon duplications that are segregating in natural populations. We used a high-throughput, paired-end sequencing platform (Illumina) to identify structural variants in a population sample of African D. melanogaster. Polymerase chain reaction and sequencing confirmation of duplications detected by multiple, independent paired-ends showed that paired-end sequencing reliably uncovered the break points of structural rearrangements and allowed us to identify a number of tandem duplications segregating within a natural population. Our confirmation experiments show that rates of confirmation are very high, even at modest coverage. Our results also compare well with previous studies using microarrays (Emerson J, Cardoso-Moreira M, Borevitz JO, Long M. 2008. Natural selection shapes genome wide patterns of copy-number polymorphism in Drosophila melanogaster. Science. 320:1629-1631. and Dopman EB, Hartl DL. 2007. A portrait of copy-number polymorphism in Drosophila melanogaster. Proc Natl Acad Sci U S A. 104:19920-19925.), which both gives us confidence in the results of this study as well as confirms previous microarray results.We were also able to identify whole-gene duplications, such as a novel duplication of Or22a, an olfactory receptor, and identify copy-number differences in genes previously known to be under positive selection, like Cyp6g1, which confers resistance to dichlorodiphenyltrichloroethane. Several "hot spots" of duplications were detected in this study, which indicate that particular regions of the genome may be more prone to generating duplications. Finally, population frequency analysis of confirmed events also showed an excess of rare variants in our population, which indicates that duplications segregating in the population may be deleterious and ultimately destined to be lost from the population.
Patel, Shrinil; Cheema, Anmol; Karawadia, Tejas; Carson, Michael
2018-01-01
Duplication of the inferior vena cava (DIVC) is an uncommon embryological anatomic phenomenon. We report a 63-year-old woman with extensive right leg deep vein thrombosis who required an IVC filter due to contraindications for anticoagulation, but was found to have DIVC which required the placement of two IVC filters with good result. This report will review and summarise past reports of DIVC management to provide a guide for future clinicians, and review the embryological development, diagnosis and IVC filter placement options as they are based on the type of anatomic malformation encountered. PMID:29866665
Tripathi, Rajiv K; Goel, Ridhi; Kumari, Sweta; Dahuja, Anil
2017-03-01
SQUAMOSA Promoter-Binding Protein-Like (SPL) genes form a major family of plant-specific transcription factors and play an important role in plant growth and development. In this study, we report the identification of 41 SPL genes (GmSPLs) in the soybean genome. Phylogenetic analysis revealed that these genes were divided into five groups (groups 1-5). Further, exon/intron structure and motif composition revealed that the GmSPL genes are conserved within their same group. The N-terminal zinc finger 1 (Zn1) of the SBP domain was a CCCH (Cys3His1) and the C terminus zinc finger 2 (Zn2) was a CCHC (Cys2HisCys) type. The 41 GmSPL genes were distributed unevenly on 17 of the 20 chromosomes, with tandem and segmental duplication events. We found that segmental duplication has made an important contribution to soybean SPL gene family expansion. The Ka/Ks ratios revealed that the duplicated GmSPL genes evolved under the effect of purifying selection. In addition, 17 of the 41 GmSPLs were found as targets of miR156; these might be involved in their posttranscriptional regulation through miR156. Importantly, RLM-RACE analysis confirmed the GmmiR156-mediated cleavage of GmSPL2a transcript in 2-4 mm stage of soybean seed. Alternative splicing events in 9 GmSPLs were detected which produces transcripts and proteins of different lengths that may modulate protein signaling, binding, localization, stability, and other properties. Expression analysis of the soybean SPL genes in various tissues and different developmental stages of seed suggested distinct spatiotemporal patterns. Differences in the expression patterns of miR156-targeted and miR156-non-targeted soybean SPL genes suggest that miR156 plays key functions in soybean development. Our results provide an important foundation for further uncovering the crucial roles of GmSPLs in the development of soybean and other biological processes.
Hannes, F D; Sharp, A J; Mefford, H C; de Ravel, T; Ruivenkamp, C A; Breuning, M H; Fryns, J-P; Devriendt, K; Van Buggenhout, G; Vogels, A; Stewart, H; Hennekam, R C; Cooper, G M; Regan, R; Knight, S J L; Eichler, E E; Vermeesch, J R
2009-01-01
Background: Genomic disorders are often caused by non-allelic homologous recombination between segmental duplications. Chromosome 16 is especially rich in a chromosome-specific low copy repeat, termed LCR16. Methods and Results: A bacterial artificial chromosome (BAC) array comparative genome hybridisation (CGH) screen of 1027 patients with mental retardation and/or multiple congenital anomalies (MR/MCA) was performed. The BAC array CGH screen identified five patients with deletions and five with apparently reciprocal duplications of 16p13 covering 1.65 Mb, including 15 RefSeq genes. In addition, three atypical rearrangements overlapping or flanking this region were found. Fine mapping by high-resolution oligonucleotide arrays suggests that these deletions and duplications result from non-allelic homologous recombination (NAHR) between distinct LCR16 subunits with >99% sequence identity. Deletions and duplications were either de novo or inherited from unaffected parents. To determine whether these imbalances are associated with the MR/MCA phenotype or whether they might be benign variants, a population of 2014 normal controls was screened. The absence of deletions in the control population showed that 16p13.11 deletions are significantly associated with MR/MCA (p = 0.0048). Despite phenotypic variability, common features were identified: three patients with deletions presented with MR, microcephaly and epilepsy (two of these had also short stature), and two other deletion carriers ascertained prenatally presented with cleft lip and midline defects. In contrast to its previous association with autism, the duplication seems to be a common variant in the population (5/1682, 0.29%). Conclusion: These findings indicate that deletions inherited from clinically normal parents are likely to be causal for the patients’ phenotype whereas the role of duplications (de novo or inherited) in the phenotype remains uncertain. This difference in knowledge regarding the clinical relevance of the deletion and the duplication causes a paradigm shift in (cyto)genetic counselling. PMID:18550696
Phylogenetic analysis of the “ECE” (CYC/TB1) clade reveals duplications predating the core eudicots
Howarth, Dianella G.; Donoghue, Michael J.
2006-01-01
Flower symmetry is of special interest in understanding angiosperm evolution and ecology. Evidence from the Antirrhineae (snapdragon and relatives) indicates that several TCP gene-family transcription factors, especially CYCLOIDEA (CYC) and DICHOTOMA (DICH), play a role in specifying dorsal identity in the corolla and androecium of monosymmetric (bilateral) flowers. Studies of rosid and asterid angiosperms suggest that orthologous TCP genes may be important in dorsal identity, but there has been no broad phylogenetic context to determine copy number or orthology. Here, we compare published data from rosids and asterids with newly collected data from ranunculids, caryophyllids, Saxifragales, and Asterales to ascertain the phylogenetic placement of major duplications in the “ECE” (CYC/TB1) clade of TCP transcription factors. Bayesian analyses indicate that there are three major copies of “CYC” in the ECE clade, and that duplications leading to these copies predate the core eudicots. CYC1 contains no subsequent duplications and may not be expressed in floral tissue. CYC3 exhibits similar patterns of duplication to CYC2 in several groups. Using RT-PCR, we show that, in flowers of Lonicera morrowii (Caprifoliaceae), DipsCYC2B is expressed in the four dorsal petals and not in the ventral petal. DipsCYC3B is expressed in flower and petal primordia, possibly most strongly in the ventral petal. PMID:16754863
Cai, Guiqing; Edelmann, Lisa; Goldsmith, Juliet E; Cohen, Ninette; Nakamine, Alisa; Reichert, Jennifer G; Hoffman, Ellen J; Zurawiecki, Danielle M; Silverman, Jeremy M; Hollander, Eric; Soorya, Latha; Anagnostou, Evdokia; Betancur, Catalina; Buxbaum, Joseph D
2008-01-01
Background It has previously been shown that specific microdeletions and microduplications, many of which also associated with cognitive impairment (CI), can present with autism spectrum disorders (ASDs). Multiplex ligation-dependent probe amplification (MLPA) represents an efficient method to screen for such recurrent microdeletions and microduplications. Methods In the current study, a total of 279 unrelated subjects ascertained for ASDs were screened for genomic disorders associated with CI using MLPA. Fluorescence in situ hybridization (FISH), quantitative polymerase chain reaction (Q-PCR) and/or direct DNA sequencing were used to validate potential microdeletions and microduplications. Methylation-sensitive MLPA was used to characterize individuals with duplications in the Prader-Willi/Angelman (PWA) region. Results MLPA showed two subjects with typical ASD-associated interstitial duplications of the 15q11-q13 PWA region of maternal origin. Two additional subjects showed smaller, de novo duplications of the PWA region that had not been previously characterized. Genes in these two novel duplications include GABRB3 and ATP10A in one case, and MKRN3, MAGEL2 and NDN in the other. In addition, two subjects showed duplications of the 22q11/DiGeorge syndrome region. One individual was found to carry a 12 kb deletion in one copy of the ASPA gene on 17p13, which when mutated in both alleles leads to Canavan disease. Two subjects showed partial duplication of the TM4SF2 gene on Xp11.4, previously implicated in X-linked non-specific mental retardation, but in our subsequent analyses such variants were also found in controls. A partial duplication in the ASMT gene, located in the pseudoautosomal region 1 (PAR1) of the sex chromosomes and previously suggested to be involved in ASD susceptibility, was observed in 6–7% of the cases but in only 2% of controls (P = 0.003). Conclusion MLPA proves to be an efficient method to screen for chromosomal abnormalities. We identified duplications in 15q11-q13 and in 22q11, including new de novo small duplications, as likely contributing to ASD in the current sample by increasing liability and/or exacerbating symptoms. Our data indicate that duplications in TM4SF2 are not associated with the phenotype given their presence in controls. The results in PAR1/PAR2 are the first large-scale studies of gene dosage in these regions, and the findings at the ASMT locus indicate that further studies of the duplication of the ASMT gene are needed in order to gain insight into its potential involvement in ASD. Our studies also identify some limitations of MLPA, where single base changes in probe binding sequences alter results. In summary, our studies indicate that MLPA, with a focus on accepted medical genetic conditions, may be an inexpensive method for detection of microdeletions and microduplications in ASD patients for purposes of genetic counselling if MLPA-identified deletions are validated by additional methods. PMID:18925931
Benítez-Burraco, Antonio; Barcos-Martínez, Montserrat; Espejo-Portero, Isabel; Jiménez-Romero, Salud
2017-01-01
The 15q11.2 BP1-BP2 region is found duplicated or deleted in people with cognitive, language, and behavioral impairment. We report on a family (a father and 3 male twin siblings) that presents with a duplication of the 15q11.2 BP1-BP2 region and a variable phenotype: the father and the fraternal twin are normal carriers, whereas the monozygotic twins exhibit severe language and cognitive delay as well as behavioral disturbances. The genes located within the duplicated region are involved in brain development and function, and some of them are related to language processing. The probands' phenotype may result from changes in the expression level of some of these genes important for cognitive development. PMID:28588435
Partial USH2A deletions contribute to Usher syndrome in Denmark.
Dad, Shzeena; Rendtorff, Nanna D; Kann, Erik; Albrechtsen, Anders; Mehrjouy, Mana M; Bak, Mads; Tommerup, Niels; Tranebjærg, Lisbeth; Rosenberg, Thomas; Jensen, Hanne; Møller, Lisbeth B
2015-12-01
Usher syndrome is an autosomal recessive disorder characterized by congenital hearing impairment, progressive visual loss owing to retinitis pigmentosa and in some cases vestibular dysfunction. Usher syndrome is divided into three subtypes, USH1, USH2 and USH3. Twelve loci and eleven genes have so far been identified. Duplications and deletions in PCDH15 and USH2A that lead to USH1 and USH2, respectively, have previously been identified in patients from United Kingdom, Spain and Italy. In this study, we investigate the proportion of exon deletions and duplications in PCDH15 and USH2A in 20 USH1 and 30 USH2 patients from Denmark using multiplex ligation-dependent probe amplification (MLPA). Two heterozygous deletions were identified in USH2A, but no deletions or duplications were identified in PCDH15. Next-generation mate-pair sequencing was used to identify the exact breakpoints of the two deletions identified in USH2A. Our results suggest that USH2 is caused by USH2A exon deletions in a small fraction of the patients, whereas deletions or duplications in PCDH15 might be rare in Danish Usher patients.
Diprosopus conjoined twins: radiologic, autoptic, and histologic study of a case.
D'Armiento, Maria; Falleti, Jessica; Maruotti, Giuseppe Maria; Martinelli, Pasquale
2010-01-01
Conjoined twins are a rare and intriguing nature's phenomena; diprosopus or craniofacial duplication is the rarest with a reported incidence of 1 case in 180,000-15 million births. We present a radiologic, autoptic, and histologic study of a 37-week-old male diprosopus twin in a dichorionic pregnancy of a 26-old-year woman. Diprosopus malformation is part of duplication involving face and cranium like janiceps and dicephalus. Our case also shows partial duplication of the stomach with ectopic pancreas. Most studies are required to understand the exact mechanism of this malformation.
Goya, Stephanie; Valinotto, Laura E; Tittarelli, Estefania; Rojo, Gabriel L; Nabaes Jodar, Mercedes S; Greninger, Alexander L; Zaiat, Jonathan J; Marti, Marcelo A; Mistchenko, Alicia S; Viegas, Mariana
2018-01-01
Over the last decade, the number of viral genome sequences deposited in available databases has grown exponentially. However, sequencing methodology vary widely and many published works have relied on viral enrichment by viral culture or nucleic acid amplification with specific primers rather than through unbiased techniques such as metagenomics. The genome of RNA viruses is highly variable and these enrichment methodologies may be difficult to achieve or may bias the results. In order to obtain genomic sequences of human respiratory syncytial virus (HRSV) from positive nasopharyngeal aspirates diverse methodologies were evaluated and compared. A total of 29 nearly complete and complete viral genomes were obtained. The best performance was achieved with a DNase I treatment to the RNA directly extracted from the nasopharyngeal aspirate (NPA), sequence-independent single-primer amplification (SISPA) and library preparation performed with Nextera XT DNA Library Prep Kit with manual normalization. An average of 633,789 and 1,674,845 filtered reads per library were obtained with MiSeq and NextSeq 500 platforms, respectively. The higher output of NextSeq 500 was accompanied by the increasing of duplicated reads percentage generated during SISPA (from an average of 1.5% duplicated viral reads in MiSeq to an average of 74% in NextSeq 500). HRSV genome recovery was not affected by the presence or absence of duplicated reads but the computational demand during the analysis was increased. Considering that only samples with viral load ≥ E+06 copies/ml NPA were tested, no correlation between sample viral loads and number of total filtered reads was observed, nor with the mapped viral reads. The HRSV genomes showed a mean coverage of 98.46% with the best methodology. In addition, genomes of human metapneumovirus (HMPV), human rhinovirus (HRV) and human parainfluenza virus types 1-3 (HPIV1-3) were also obtained with the selected optimal methodology.
Mosaic: a position-effect variegation eye-color mutant in the mosquito Anopheles gambiae.
Benedict, M Q; McNitt, L M; Cornel, A J; Collins, F H
2000-01-01
The Mosaic (Mos) mutation, isolated in the F1 of 60Co-irradiated mosquitoes, confers variegated eye color to third and fourth instar larvae, pupae, and adults of the mosquito Anopheles gambiae. Mos is recessive in wild pink eye (p+) individuals, but is dominant and confers areas of wild-type pigment in mutant pink eye backgrounds. Mos is located 14.4 cM from pink eye on the X chromosome and is associated with a duplication of division 2B euchromatin that has been inserted into division 6 heterochromatin. Various combinations of Mos, pink eye alleles, and the autosomal mutation red eye were produced. In all cases, the darker pigmented regions of the eye in Mos individuals show the phenotypic interactions expected if the phenotype of those regions is due to expression of a p+ allele. Expression of Mos is suppressed by rearing larvae at 32 degrees C relative to 22 degrees C. All of these characteristics are consistent with Mos being a duplicated wild copy of the pink eye gene undergoing position-effect variegation.
Poussier, Stéphane; Thoquet, Philippe; Trigalet-Demery, Danièle; Barthet, Séverine; Meyer, Damien; Arlat, Matthieu; Trigalet, André
2003-08-01
Ralstonia solanacearum is a plant pathogenic bacterium that undergoes a spontaneous phenotypic conversion (PC) from a wild-type pathogenic to a non-pathogenic form. PC is often associated with mutations in phcA, which is a key virulence regulatory gene. Until now, reversion to the wild-type pathogenic form has not been observed for PC variants and the biological significance of PC has been questioned. In this study, we characterized various alterations in phcA (eight IS element insertions, three tandem duplications, seven deletions and a base substitution) in 19 PC mutants from the model strain GMI1000. In five of these variants, reversion to the pathogenic form was observed in planta, while no reversion was ever noticed in vitro whatever culture media used. However, reversion was observed for a 64 bp tandem duplication in vitro in the presence of tomato root exudate. This is the first report showing a complete cycle of phenotypic conversion/reversion in a plant pathogenic bacterium.
Partial duplication of chromosome 19 associated with syndromic duane retraction syndrome.
Abu-Amero, Khaled K; Kondkar, Altaf A; Al Otaibi, Abdullah; Alorainy, Ibrahim A; Khan, Arif O; Hellani, Ali M; Oystreck, Darren T; Bosley, Thomas M
2015-03-01
To evaluate possible monogenic and chromosomal anomalies in a patient with unilateral Duane retraction syndrome, modest dysmorphism, cerebral white matter abnormalities, and normal cognitive function. Performing high-resolution array comparative genomic hybridization (array CGH) and sequencing of HOXA1, KIF21A, SALL4, and CHN1 genes. The proband had unilateral Duane retraction syndrome (DRS) type III on the right with low-set ears, prominent forehead, clinodactyly, and a history of frequent infections during early childhood. Motor development and cognitive function were normal. Parents were not related, and no other family member was similarly affected. MRI revealed multiple small areas of high signal on T2 weighted images in cerebral white matter oriented along white matter tracts. Sequencing of HOXA1, KIF21A, SALL4, and CHN1 did not reveal any mutation(s). Array CGH showed a 95 Kb de novo duplication on chromosome 19q13.4 encompassing four killer cell immunoglobulin-like receptor (KIR) genes. Conclusions. KIR genes have not previously been linked to a developmental syndrome, although they are known to be expressed in the human brain and brainstem and to be associated with certain infections and autoimmune diseases, including some affecting the nervous system. DRS and brain neuroimaging abnormalities may imply a central and peripheral oligodendrocyte abnormality related in some fashion to an immunomodulatory disturbance.
The early stages of duplicate gene evolution
Moore, Richard C.; Purugganan, Michael D.
2003-01-01
Gene duplications are one of the primary driving forces in the evolution of genomes and genetic systems. Gene duplicates account for 8–20% of the genes in eukaryotic genomes, and the rates of gene duplication are estimated at between 0.2% and 2% per gene per million years. Duplicate genes are believed to be a major mechanism for the establishment of new gene functions and the generation of evolutionary novelty, yet very little is known about the early stages of the evolution of duplicated gene pairs. It is unclear, for example, to what extent selection, rather than neutral genetic drift, drives the fixation and early evolution of duplicate loci. Analysis of recently duplicated genes in the Arabidopsis thaliana genome reveals significantly reduced species-wide levels of nucleotide polymorphisms in the progenitor and/or duplicate gene copies, suggesting that selective sweeps accompany the initial stages of the evolution of these duplicated gene pairs. Our results support recent theoretical work that indicates that fates of duplicate gene pairs may be determined in the initial phases of duplicate gene evolution and that positive selection plays a prominent role in the evolutionary dynamics of the very early histories of duplicate nuclear genes. PMID:14671323
Preston, Jill C; Jorgensen, Stacy A; Jha, Suryatapa G
2014-01-01
Flowering time is strictly controlled by a combination of internal and external signals that match seed set with favorable environmental conditions. In the model plant species Arabidopsis thaliana (Brassicaceae), many of the genes underlying development and evolution of flowering have been discovered. However, much remains unknown about how conserved the flowering gene networks are in plants with different growth habits, gene duplication histories, and distributions. Here we functionally characterize three homologs of the flowering gene Suppressor Of Overexpression of Constans 1 (SOC1) in the short-lived perennial Petunia hybrida (petunia, Solanaceae). Similar to A. thaliana soc1 mutants, co-silencing of duplicated petunia SOC1-like genes results in late flowering. This phenotype is most severe when all three SOC1-like genes are silenced. Furthermore, expression levels of the SOC1-like genes Unshaven (UNS) and Floral Binding Protein 21 (FBP21), but not FBP28, are positively correlated with developmental age. In contrast to A. thaliana, petunia SOC1-like gene expression did not increase with longer photoperiods, and FBP28 transcripts were actually more abundant under short days. Despite evidence of functional redundancy, differential spatio-temporal expression data suggest that SOC1-like genes might fine-tune petunia flowering in response to photoperiod and developmental stage. This likely resulted from modification of SOC1-like gene regulatory elements following recent duplication, and is a possible mechanism to ensure flowering under both inductive and non-inductive photoperiods.
Preston, Jill C.; Jorgensen, Stacy A.; Jha, Suryatapa G.
2014-01-01
Flowering time is strictly controlled by a combination of internal and external signals that match seed set with favorable environmental conditions. In the model plant species Arabidopsis thaliana (Brassicaceae), many of the genes underlying development and evolution of flowering have been discovered. However, much remains unknown about how conserved the flowering gene networks are in plants with different growth habits, gene duplication histories, and distributions. Here we functionally characterize three homologs of the flowering gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) in the short-lived perennial Petunia hybrida (petunia, Solanaceae). Similar to A. thaliana soc1 mutants, co-silencing of duplicated petunia SOC1-like genes results in late flowering. This phenotype is most severe when all three SOC1-like genes are silenced. Furthermore, expression levels of the SOC1-like genes UNSHAVEN (UNS) and FLORAL BINDING PROTEIN 21 (FBP21), but not FBP28, are positively correlated with developmental age. In contrast to A. thaliana, petunia SOC1-like gene expression did not increase with longer photoperiods, and FBP28 transcripts were actually more abundant under short days. Despite evidence of functional redundancy, differential spatio-temporal expression data suggest that SOC1-like genes might fine-tune petunia flowering in response to photoperiod and developmental stage. This likely resulted from modification of SOC1-like gene regulatory elements following recent duplication, and is a possible mechanism to ensure flowering under both inductive and non-inductive photoperiods. PMID:24787903
Rawat, Manmeet; Vijay, Sonam; Gupta, Yash; Tiwari, Pramod Kumar; Sharma, Arun
2013-01-01
Plasmepsin V (PM-V) have functionally conserved orthologues across the Plasmodium genus who's binding and antigenic processing at the PEXEL motifs for export about 200-300 essential proteins is important for the virulence and viability of the causative Plasmodium species. This study was undertaken to determine P. vivax plasmepsin V Ind (PvPM-V-Ind) PEXEL motif export pathway for pathogenicity-related proteins/antigens export thereby altering plasmodium exportome during erythrocytic stages. We identify and characterize Plasmodium vivax plasmepsin-V-Ind (mutant) gene by cloning, sequence analysis, in silico bioinformatic protocols and structural modeling predictions based on docking studies on binding capacity with PEXEL motifs processing in terms of binding and accessibility of export proteins. Cloning and sequence analysis for genetic diversity demonstrates PvPM-V-Ind (mutant) gene is highly conserved among all isolates from different geographical regions of India. Imperfect duplicate insertion types of mutations (SVSE from 246-249 AA and SLSE from 266-269 AA) were identified among all Indian isolates in comparison to P.vivax Sal-1 (PvPM-V-Sal 1) isolate. In silico bioinformatics interaction studies of PEXEL peptide and active enzyme reveal that PvPM-V-Ind (mutant) is only active in endoplasmic reticulum lumen and membrane embedding is essential for activation of plasmepsin V. Structural modeling predictions based on docking studies with PEXEL motif show significant variation in substrate protein binding of these imperfect mutations with data mined PEXEL sequences. The predicted variation in the docking score and interacting amino acids of PvPM-V-Ind (mutant) proteins with PEXEL and lopinavir suggests a modulation in the activity of PvPM-V in terms of binding and accessibility at these sites. Our functional modeled validation of PvPM-V-Ind (mutant) imperfect duplicate insertions with data mined PEXEL sequences leading to altered binding and substrate accessibility of the enzyme makes it a plausible target to investigate export mechanisms for in silico virtual screening and novel pharmacophore designing.
Rawat, Manmeet; Vijay, Sonam; Gupta, Yash; Tiwari, Pramod Kumar; Sharma, Arun
2013-01-01
Introduction Plasmepsin V (PM-V) have functionally conserved orthologues across the Plasmodium genus who's binding and antigenic processing at the PEXEL motifs for export about 200–300 essential proteins is important for the virulence and viability of the causative Plasmodium species. This study was undertaken to determine P. vivax plasmepsin V Ind (PvPM-V-Ind) PEXEL motif export pathway for pathogenicity-related proteins/antigens export thereby altering plasmodium exportome during erythrocytic stages. Method We identify and characterize Plasmodium vivax plasmepsin-V-Ind (mutant) gene by cloning, sequence analysis, in silico bioinformatic protocols and structural modeling predictions based on docking studies on binding capacity with PEXEL motifs processing in terms of binding and accessibility of export proteins. Results Cloning and sequence analysis for genetic diversity demonstrates PvPM-V-Ind (mutant) gene is highly conserved among all isolates from different geographical regions of India. Imperfect duplicate insertion types of mutations (SVSE from 246–249 AA and SLSE from 266–269 AA) were identified among all Indian isolates in comparison to P.vivax Sal-1 (PvPM-V-Sal 1) isolate. In silico bioinformatics interaction studies of PEXEL peptide and active enzyme reveal that PvPM-V-Ind (mutant) is only active in endoplasmic reticulum lumen and membrane embedding is essential for activation of plasmepsin V. Structural modeling predictions based on docking studies with PEXEL motif show significant variation in substrate protein binding of these imperfect mutations with data mined PEXEL sequences. The predicted variation in the docking score and interacting amino acids of PvPM-V-Ind (mutant) proteins with PEXEL and lopinavir suggests a modulation in the activity of PvPM-V in terms of binding and accessibility at these sites. Conclusion/Significance Our functional modeled validation of PvPM-V-Ind (mutant) imperfect duplicate insertions with data mined PEXEL sequences leading to altered binding and substrate accessibility of the enzyme makes it a plausible target to investigate export mechanisms for in silico virtual screening and novel pharmacophore designing. PMID:23555891
Drabova, Jana; Trkova, Marie; Hancarova, Miroslava; Novotna, Drahuse; Hejtmankova, Michaela; Havlovicova, Marketa; Sedlacek, Zdenek
2014-01-01
Inversions are balanced structural chromosome rearrangements, which can influence gene expression and the risk of unbalanced chromosome constitution in offspring. Many examples of inversion polymorphisms exist in human, affecting both heterochromatic regions and euchromatin. We describe a novel, 15 Mb long paracentric inversion, inv(21)(q21.1q22.11), affecting more than a third of human 21q. Despite of its length, the inversion cannot be detected using karyotyping due to similar band patterns on the normal and inverted chromosomes, and is therefore likely to escape attention. Its identification was aided by the repeated observation of the same pair of 150 kb long duplications present in cis on chromosome 21 in three Czech families subjected to microarray analysis. The finding prompted us to hypothesise that this co-occurrence of two remote duplications could be associated with an inversion of the intervening segment, and this speculation turned out to be right. The inversion was confirmed in a series of FISH experiments which also showed that the second copy of each of the duplications was always located at the opposite end of the inversion. The presence of the same pair of duplications in additional individuals reported in public databases indicates that the inversion may also be present in other populations. Three out of the total of about 4000 chromosomes 21 examined in our sample carried the duplications and were inverted, corresponding to carrier frequency of about 1/660. Although the breakpoints affect protein-coding genes, the occurrence of the inversion in normal parents and siblings of our patients and the occurrence of the duplications in unaffected controls in databases indicate that this rare variant is rather non-pathogenic. The inverted segment carried an identical shared haplotype in the three families studied. The haplotypes, however, diverged very rapidly in the flanking regions, possibly pointing to an ancient founder event at the origin of the inversion. The identification of inv(21)(q21.1q22.11) supports the notion that paracentric inversions are the most common form of chromosomal variation and that some of them may still remain undetected.
Song, Xiaowei; Wang, Yajun; Tang, Yezhong
2013-01-01
As one of the most conserved genes in vertebrates, FoxP2 is widely involved in a number of important physiological and developmental processes. We systematically studied the evolutionary history and functional adaptations of FoxP2 in teleosts. The duplicated FoxP2 genes (FoxP2a and FoxP2b), which were identified in teleosts using synteny and paralogon analysis on genome databases of eight organisms, were probably generated in the teleost-specific whole genome duplication event. A credible classification with FoxP2, FoxP2a and FoxP2b in phylogenetic reconstructions confirmed the teleost-specific FoxP2 duplication. The unavailability of FoxP2b in Danio rerio suggests that the gene was deleted through nonfunctionalization of the redundant copy after the Otocephala-Euteleostei split. Heterogeneity in evolutionary rates among clusters consisting of FoxP2 in Sarcopterygii (Cluster 1), FoxP2a in Teleostei (Cluster 2) and FoxP2b in Teleostei (Cluster 3), particularly between Clusters 2 and 3, reveals asymmetric functional divergence after the gene duplication. Hierarchical cluster analyses of hydrophobicity profiles demonstrated significant structural divergence among the three clusters with verification of subsequent stepwise discriminant analysis, in which FoxP2 of Leucoraja erinacea and Lepisosteus oculatus were classified into Cluster 1, whereas FoxP2b of Salmo salar was grouped into Cluster 2 rather than Cluster 3. The simulated thermodynamic stability variations of the forkhead box domain (monomer and homodimer) showed remarkable divergence in FoxP2, FoxP2a and FoxP2b clusters. Relaxed purifying selection and positive Darwinian selection probably were complementary driving forces for the accelerated evolution of FoxP2 in ray-finned fishes, especially for the adaptive evolution of FoxP2a and FoxP2b in teleosts subsequent to the teleost-specific gene duplication.
Song, Xiaowei; Wang, Yajun; Tang, Yezhong
2013-01-01
As one of the most conserved genes in vertebrates, FoxP2 is widely involved in a number of important physiological and developmental processes. We systematically studied the evolutionary history and functional adaptations of FoxP2 in teleosts. The duplicated FoxP2 genes (FoxP2a and FoxP2b), which were identified in teleosts using synteny and paralogon analysis on genome databases of eight organisms, were probably generated in the teleost-specific whole genome duplication event. A credible classification with FoxP2, FoxP2a and FoxP2b in phylogenetic reconstructions confirmed the teleost-specific FoxP2 duplication. The unavailability of FoxP2b in Danio rerio suggests that the gene was deleted through nonfunctionalization of the redundant copy after the Otocephala-Euteleostei split. Heterogeneity in evolutionary rates among clusters consisting of FoxP2 in Sarcopterygii (Cluster 1), FoxP2a in Teleostei (Cluster 2) and FoxP2b in Teleostei (Cluster 3), particularly between Clusters 2 and 3, reveals asymmetric functional divergence after the gene duplication. Hierarchical cluster analyses of hydrophobicity profiles demonstrated significant structural divergence among the three clusters with verification of subsequent stepwise discriminant analysis, in which FoxP2 of Leucoraja erinacea and Lepisosteus oculatus were classified into Cluster 1, whereas FoxP2b of Salmo salar was grouped into Cluster 2 rather than Cluster 3. The simulated thermodynamic stability variations of the forkhead box domain (monomer and homodimer) showed remarkable divergence in FoxP2, FoxP2a and FoxP2b clusters. Relaxed purifying selection and positive Darwinian selection probably were complementary driving forces for the accelerated evolution of FoxP2 in ray-finned fishes, especially for the adaptive evolution of FoxP2a and FoxP2b in teleosts subsequent to the teleost-specific gene duplication. PMID:24349554
Liang, Liyang; Xie, Yingjun; Shen, Yiping; Yin, Qibin; Yuan, Haiming
2016-01-01
Proximal 4p deletion syndrome is a relatively rare genetic condition characterized by dysmorphic facial features, limb anomalies, minor congenital heart defects, hypogonadism, cafe-au-lait spots, developmental delay, tall and thin habitus, and intellectual disability. At present, over 20 cases of this syndrome have been published. However, duplication of the same region in proximal 4p has never been reported. Here, we describe a 2-year-5-month-old boy with severe congenital heart defects, limb anomalies, hypogonadism, distinctive facial features, pre- and postnatal developmental delay, and mild cognitive impairments. A de novo 4.5-Mb interstitial duplication at 4p15.2p15.1 was detected by chromosomal microarray analysis. Next-generation sequencing was employed and confirmed the duplication, but revealed no additional pathogenic variants. Several candidate genes in this interval responsible for the complex clinical phenotype were identified, such as RBPJ, STIM2, CCKAR, and LGI2. The results suggest a novel contiguous gene duplication syndrome. © 2016 S. Karger AG, Basel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lodes, M.J.; Merlin, G.; DeVos, T.
1995-12-01
This report investigates the duplication of two LD1 genes into the rRNA locus and the resultant transcription by RNA polymerase I, which has a faster transcription rate than that of RNA polymerase II. This was conducted using a 2.2-Mb chromosome in Leishmania donovani. 55 refs., 6 figs.
1983-07-01
July 1983 Washington DC 20472 1s. NUMBER OP PAGES 287 14. MONITORING AGENCY NAME A AODRESSý./ dif.erent from Controlling Office) IS. SECURITY CLASS... controlling parameter used in the design of the upgrading scheme. However, the flat plate test indicated that more concern should be directed to punching shear...and type of structure. Very little duplication of experiments for control purposes has been performed. SUGGESTED RESEARCH After some thirty years of
Zadesenets, Kira S.; Ershov, Nikita I.; Berezikov, Eugene; Rubtsov, Nikolay B.
2017-01-01
The free-living flatworm Macrostomum lignano is a hidden tetraploid. Its genome was formed by a recent whole genome duplication followed by chromosome fusions. Its karyotype (2n = 8) consists of a pair of large chromosomes (MLI1), which contain regions of all other chromosomes, and three pairs of small metacentric chromosomes. Comparison of MLI1 with metacentrics was performed by painting with microdissected DNA probes and fluorescent in situ hybridization of unique DNA fragments. Regions of MLI1 homologous to small metacentrics appeared to be contiguous. Besides the loss of DNA repeat clusters (pericentromeric and telomeric repeats and the 5S rDNA cluster) from MLI1, the difference between small metacentrics MLI2 and MLI4 and regions homologous to them in MLI1 were revealed. Abnormal karyotypes found in the inbred DV1/10 subline were analyzed, and structurally rearranged chromosomes were described with the painting technique, suggesting the mechanism of their origin. The revealed chromosomal rearrangements generate additional diversity, opening the way toward massive loss of duplicated genes from a duplicated genome. Our findings suggest that the karyotype of M. lignano is in the early stage of genome diploidization after whole genome duplication, and further studies on M. lignano and closely related species can address many questions about karyotype evolution in animals. PMID:29084138
Ma, Jiale; Pan, Zihao; Huang, Jinhu; Sun, Min; Lu, Chengping; Yao, Huochun
2017-01-01
ABSTRACT The type VI secretion system (T6SS) is a widespread molecular weapon deployed by many bacterial species to target eukaryotic host cells or rival bacteria. Using a dynamic injection mechanism, diverse effectors can be delivered by T6SS directly into recipient cells. Here, we report a new family of T6SS effectors encoded by extended Hcps carrying diverse toxin domains. Bioinformatic analyses revealed that these Hcps with C-terminal extension toxins, designated as Hcp-ET, exist widely in the Enterobacteriaceae. To verify our findings, Hcp-ET1 was tested for its antibacterial effect, and showed effective inhibition of target cell growth via the predicted HNH-DNase activity by T6SS-dependent delivery. Further studies showed that Hcp-ET2 mediated interbacterial antagonism via a Tle1 phospholipase (encoded by DUF2235 domain) activity. Notably, comprehensive analyses of protein homology and genomic neighborhoods revealed that Hcp-ET3–4 is fused with 2 toxin domains (Pyocin S3 and Colicin-DNase) C-terminally, and its encoding gene is followed 3 duplications of the cognate immunity genes. However, some bacteria encode a separated hcp-et3 and an orphan et4 (et4O1) genes caused by a termination-codon mutation in the fusion region between Pyocin S3 and Colicin-DNase encoding fragments. Our results demonstrated that both of these toxins had antibacterial effects. Further, all duplications of the cognate immunity protein contributed to neutralize the DNase toxicity of Pyocin S3 and Colicin, which has not been reported previously. In conclusion, we propose that Hcp-ET proteins are polymorphic T6SS effectors, and thus present a novel encoding pattern of T6SS effectors. PMID:28060574
40 CFR 63.11094 - What are my recordkeeping requirements?
Code of Federal Regulations, 2014 CFR
2014-07-01
...)(1) of this section is an exact duplicate image of the original paper record with certifying... section is an exact duplicate image of the original paper record with certifying signatures. (ii) The... approval to use a vapor processing system or monitor an operating parameter other than those specified in...
40 CFR 63.11094 - What are my recordkeeping requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
...)(1) of this section is an exact duplicate image of the original paper record with certifying... section is an exact duplicate image of the original paper record with certifying signatures. (ii) The... approval to use a vapor processing system or monitor an operating parameter other than those specified in...
40 CFR 63.11094 - What are my recordkeeping requirements?
Code of Federal Regulations, 2011 CFR
2011-07-01
...)(1) of this section is an exact duplicate image of the original paper record with certifying... section is an exact duplicate image of the original paper record with certifying signatures. (ii) The... approval to use a vapor processing system or monitor an operating parameter other than those specified in...
40 CFR 63.11094 - What are my recordkeeping requirements?
Code of Federal Regulations, 2013 CFR
2013-07-01
...)(1) of this section is an exact duplicate image of the original paper record with certifying... section is an exact duplicate image of the original paper record with certifying signatures. (ii) The... approval to use a vapor processing system or monitor an operating parameter other than those specified in...
Rowbotham, R F; Ruegg, P L
2016-06-01
The objective of this observational study was to determine the association of exposure to selected bedding types with incidence of subclinical (SM) and clinical mastitis (CM) in primiparous Holstein dairy cows housed in identical pens at a single facility. At parturition, primiparous cows were randomly assigned to pens containing freestalls with 1 of 4 bedding materials: (1) deep-bedded new sand (NES, n=27 cows), (2) deep-bedded recycled sand (RS, n=25 cows), (3) deep-bedded manure solids (DBMS, n=31 cows), and (4) shallow-bedded manure solids over foam-core mattresses (SBMS, n=26 cows). For 12mo, somatic cell counts of quarter milk samples were determined every 28d and duplicate quarter milk samples were collected for microbiological analysis from all quarters with SM (defined as somatic cell count >200,000 cells/mL). During this period, duplicate quarter milk samples were also collected for microbial analysis from all cases of CM. For an additional 16mo, cases of CM were recorded; however, no samples were collected. Quarter days at risk (62,980) were distributed among bedding types and most quarters were enrolled for >150d. Of 135 cases of SM, 63% resulted in nonsignificant growth and 87% of recovered pathogens (n=33) were identified as coagulase-negative staphylococci. The distribution of etiologies of pathogens recovered from cases of SM was associated with bedding type. Coagulase-negative staphylococci were recovered from 12, 38, 11, and 46% of quarters with SM from cows in pens containing NES, RS, DBMS, and SBMS, respectively. A result of nonsignificant growth was obtained for 81, 59, 89, and 46% of quarters with SM from cows in pens containing NES, RS, DBMS, and SBMS, respectively. Quarters of primiparous cows bedded with NES tended to have greater survival time to incidence of CM than quarters of primiparous cows bedded with RS or DBMS. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Preston, Jill C.; Kellogg, Elizabeth A.
2006-01-01
Gene duplication is an important mechanism for the generation of evolutionary novelty. Paralogous genes that are not silenced may evolve new functions (neofunctionalization) that will alter the developmental outcome of preexisting genetic pathways, partition ancestral functions (subfunctionalization) into divergent developmental modules, or function redundantly. Functional divergence can occur by changes in the spatio-temporal patterns of gene expression and/or by changes in the activities of their protein products. We reconstructed the evolutionary history of two paralogous monocot MADS-box transcription factors, FUL1 and FUL2, and determined the evolution of sequence and gene expression in grass AP1/FUL-like genes. Monocot AP1/FUL-like genes duplicated at the base of Poaceae and codon substitutions occurred under relaxed selection mostly along the branch leading to FUL2. Following the duplication, FUL1 was apparently lost from early diverging taxa, a pattern consistent with major changes in grass floral morphology. Overlapping gene expression patterns in leaves and spikelets indicate that FUL1 and FUL2 probably share some redundant functions, but that FUL2 may have become temporally restricted under partial subfunctionalization to particular stages of floret development. These data have allowed us to reconstruct the history of AP1/FUL-like genes in Poaceae and to hypothesize a role for this gene duplication in the evolution of the grass spikelet. PMID:16816429
Prenatal and accurate perinatal diagnosis of type 2 H or ductular duplicate gallbladder.
Maggi, Umberto; Farris, Giorgio; Carnevali, Alessandra; Borzani, Irene; Clerici, Paola; Agosti, Massimo; Rossi, Giorgio; Leva, Ernesto
2018-02-07
Double gallbladder is a rare biliary anomaly. Perinatal diagnosis of the disorder has been reported in only 6 cases, and in 5 of them the diagnosis was based on ultrasound imaging only. However, the ultrasound technique alone does not provide a sufficiently precise description of cystic ducts and biliary anatomy, an information that is crucial for a correct classification and for a possible future surgery. At 21 weeks of gestational age of an uneventful pregnancy in a 38 year old primipara mother, a routine ultrasound screening detected a biliary anomaly in the fetus suggestive of a double gallbladder. A neonatal abdominal ultrasonography performed on postnatal day 2 confirmed the diagnosis. On day 12 the newborn underwent a Magnetic Resonance Cholangiopancreatography (MRCP) that clearly characterized the anatomy of the anomaly: both gallbladders had their own cystic duct and both had a separate insertion in the main biliary duct. We report a case of early prenatal suspected duplicate gallbladder that was confirmed by a neonatal precise diagnosis of a Type 2, H or ductular duplicate gallbladder, using for the first time 3D images of Magnetic resonance cholangiopancreatography in a newborn. An accurate anatomical diagnosis is mandatory in patients undergoing a possible future cholecystectomy, to avoid surgical complications or reoperations. Therefore, in case of a perinatal suspicion of a double gallbladder, neonates should undergo a Magnetic resonance cholangiopancreatography. A review of the Literature about this variant is included.
2013-01-01
Background Recombinant chromosome 4, a rare constitutional rearrangement arising from pericentric inversion, comprises a duplicated segment of 4p13~p15→4pter and a deleted segment of 4q35→4qter. To date, 10 cases of recombinant chromosome 4 have been reported. Result We describe the second case in which array-CGH was used to characterize recombinant chromosome 4 syndrome. The patient was a one-year old boy with consistent clinical features. Conventional cytogenetics and FISH documented a recombinant chromosome 4, derived from a paternal pericentric inversion, leading to partial trisomy 4p and partial monosomy of 4q. Array-CGH, performed to further characterize the rearranged chromosome 4 and delineate the breakpoints, documented a small (4.36 Mb) 4q35.1 terminal deletion and a large (23.81 Mb) 4p15.1 terminal duplication. Genotype-phenotype analysis of 10 previously reported cases and the present case indicated relatively consistent clinical features and breakpoints. This consistency was more evident in our case and another characterized by array-CGH, where both showed the common breakpoints of p15.1 and q35.1. A genotype-phenotype correlation study between rec(4), dup(4p), and del(4q) syndromes revealed that urogenital and cardiac defects are probably due to the deletion of 4q whereas the other clinical features are likely due to 4p duplication. Conclusion Our findings support that the clinical features of patients with rec(4) are relatively consistent and specific to the regions of duplication or deletion. Recombinant chromosome 4 syndrome thus appears to be a discrete entity that can be suspected on the basis of clinical features or specific deleted and duplicated chromosomal regions. PMID:23639048
Hemmat, Morteza; Hemmat, Omid; Anguiano, Arturo; Boyar, Fatih Z; El Naggar, Mohammed; Wang, Jia-Chi; Wang, Borris T; Sahoo, Trilochan; Owen, Renius; Haddadin, Mary
2013-05-02
Recombinant chromosome 4, a rare constitutional rearrangement arising from pericentric inversion, comprises a duplicated segment of 4p13~p15→4pter and a deleted segment of 4q35→4qter. To date, 10 cases of recombinant chromosome 4 have been reported. We describe the second case in which array-CGH was used to characterize recombinant chromosome 4 syndrome. The patient was a one-year old boy with consistent clinical features. Conventional cytogenetics and FISH documented a recombinant chromosome 4, derived from a paternal pericentric inversion, leading to partial trisomy 4p and partial monosomy of 4q. Array-CGH, performed to further characterize the rearranged chromosome 4 and delineate the breakpoints, documented a small (4.36 Mb) 4q35.1 terminal deletion and a large (23.81 Mb) 4p15.1 terminal duplication. Genotype-phenotype analysis of 10 previously reported cases and the present case indicated relatively consistent clinical features and breakpoints. This consistency was more evident in our case and another characterized by array-CGH, where both showed the common breakpoints of p15.1 and q35.1. A genotype-phenotype correlation study between rec(4), dup(4p), and del(4q) syndromes revealed that urogenital and cardiac defects are probably due to the deletion of 4q whereas the other clinical features are likely due to 4p duplication. Our findings support that the clinical features of patients with rec(4) are relatively consistent and specific to the regions of duplication or deletion. Recombinant chromosome 4 syndrome thus appears to be a discrete entity that can be suspected on the basis of clinical features or specific deleted and duplicated chromosomal regions.
Marandel, Lucie; Seiliez, Iban; Véron, Vincent; Skiba-Cassy, Sandrine; Panserat, Stéphane
2015-07-01
The rainbow trout (Oncorhynchus mykiss) is considered to be a strictly carnivorous fish species that is metabolically adapted for high catabolism of proteins and low utilization of dietary carbohydrates. This species consequently has a "glucose-intolerant" phenotype manifested by persistent hyperglycemia when fed a high-carbohydrate diet. Gluconeogenesis in adult fish is also poorly, if ever, regulated by carbohydrates, suggesting that this metabolic pathway is involved in this specific phenotype. In this study, we hypothesized that the fate of duplicated genes after the salmonid-specific 4th whole genome duplication (Ss4R) may have led to adaptive innovation and that their study might provide new elements to enhance our understanding of gluconeogenesis and poor dietary carbohydrate use in this species. Our evolutionary analysis of gluconeogenic genes revealed that pck1, pck2, fbp1a, and g6pca were retained as singletons after Ss4r, while g6pcb1, g6pcb2, and fbp1b ohnolog pairs were maintained. For all genes, duplication may have led to sub- or neofunctionalization. Expression profiles suggest that the gluconeogenesis pathway remained active in trout fed a no-carbohydrate diet. When trout were fed a high-carbohydrate diet (30%), most of the gluconeogenic genes were non- or downregulated, except for g6pbc2 ohnologs, whose RNA levels were surprisingly increased. This study demonstrates that Ss4R in trout involved adaptive innovation via gene duplication and via the outcome of the resulting ohnologs. Indeed, maintenance of ohnologous g6pcb2 pair may contribute in a significant way to the glucose-intolerant phenotype of trout and may partially explain its poor use of dietary carbohydrates. Copyright © 2015 the American Physiological Society.
Targeted tandem duplication of a large chromosomal segment in Aspergillus oryzae.
Takahashi, Tadashi; Sato, Atsushi; Ogawa, Masahiro; Hanya, Yoshiki; Oguma, Tetsuya
2014-08-01
We describe here the first successful construction of a targeted tandem duplication of a large chromosomal segment in Aspergillus oryzae. The targeted tandem chromosomal duplication was achieved by using strains that had a 5'-deleted pyrG upstream of the region targeted for tandem chromosomal duplication and a 3'-deleted pyrG downstream of the target region. Consequently,strains bearing a 210-kb targeted tandem chromosomal duplication near the centromeric region of chromosome 8 and strains bearing a targeted tandem chromosomal duplication of a 700-kb region of chromosome 2 were successfully constructed. The strains bearing the tandem chromosomal duplication were efficiently obtained from the regenerated protoplast of the parental strains. However, the generation of the chromosomal duplication did not depend on the introduction of double-stranded breaks(DSBs) by I-SceI. The chromosomal duplications of these strains were stably maintained after five generations of culture under nonselective conditions. The strains bearing the tandem chromosomal duplication in the 700-kb region of chromosome 2 showed highly increased protease activity in solid-state culture, indicating that the duplication of large chromosomal segments could be a useful new breeding technology and gene analysis method.
Evolutionary history of the enolase gene family.
Tracy, M R; Hedges, S B
2000-12-23
The enzyme enolase [EC 4.2.1.11] is found in all organisms, with vertebrates exhibiting tissue-specific isozymes encoded by three genes: alpha (alpha), beta (beta), and gamma (gamma) enolase. Limited taxonomic sampling of enolase has obscured the timing of gene duplication events. To help clarify the evolutionary history of the gene family, cDNAs were sequenced from six taxa representing major lineages of vertebrates: Chiloscyllium punctatum (shark), Amia calva (bowfin), Salmo trutta (trout), Latimeria chalumnae (coelacanth), Lepidosiren paradoxa (South American lungfish), and Neoceratodus forsteri (Australian lungfish). Phylogenetic analysis of all enolase and related gene sequences revealed an early gene duplication event prior to the last common ancestor of living organisms. Several distantly related archaebacterial sequences were designated as 'enolase-2', whereas all other enolase sequences were designated 'enolase-1'. Two of the three isozymes of enolase-1, alpha- and beta-enolase, were discovered in actinopterygian, sarcopterygian, and chondrichthian fishes. Phylogenetic analysis of vertebrate enolases revealed that the two gene duplications leading to the three isozymes of enolase-1 occurred subsequent to the divergence of living agnathans, near the Proterozoic/Phanerozoic boundary (approximately 550Mya). Two copies of enolase, designated alpha(1) and alpha(2), were found in the trout and are presumed to be the result of a genome duplication event.
Wang, Bin; Diao, Yutao; Liu, Qiji; An, Hongqiang; Ma, Ruiping; Jiang, Guosheng; Lai, Nannan; Li, Ziwei; Zhu, Xiaoxiao; Zhao, Lin; Guo, Qiang; Zhang, Zhen; Sun, Rong; Li, Xia
2016-12-06
Preaxial polydactyly (PPD) is inherited in an autosomal dominant fashion and characterized by the presence of one or more supernumerary digits on the thumb side. It had been identified that point mutation or genomic duplications of the long-range limb-specific cis-regulator - zone of polarizing activity regulatory sequence (ZRS) cause PPD or other limb deformities such as syndactyly type IV (SD4) and Triphalangeal thumb-polysyndactyly syndrome (TPTPS). Most previously reported cases involved with no more than one extra finger; however, the role of the point mutation or genomic duplications of ZRS in the case of more than one redundant finger polydactyly remains unclear. In this article, we reported a family case of more than one redundant finger polydactyly on the thumb side for bilateral hands with a pedigree chart of the family. Results of quantitative PCR (qPCR) and sequence analysis suggested that the relative copy number (RCN) of ZRS but not point mutation (including insertion and deletion) was involved in all affected individuals.
Obser, T; Ledford-Kraemer, M; Oyen, F; Brehm, M A; Denis, C V; Marschalek, R; Montgomery, R R; Sadler, J E; Schneppenheim, S; Budde, U; Schneppenheim, R
2016-09-01
Essentials Von Willebrand disease IIC Miami features high von Willebrand factor (VWF) with reduced function. We aimed to identify and characterize the elusive underlying mutation in the original family. An inframe duplication of VWF exons 9-10 was identified and characterized. The mutation causes a defect in VWF multimerization and decreased VWF clearance from the circulation. Background A variant of von Willebrand disease (VWD) type 2A, phenotype IIC (VWD2AIIC), is characterized by recessive inheritance, low von Willebrand factor antigen (VWF:Ag), lack of VWF high-molecular-weight multimers, absence of VWF proteolytic fragments and mutations in the VWF propeptide. A family with dominantly inherited VWD2AIIC but markedly elevated VWF:Ag of > 2 U L(-1) was described as VWD type IIC Miami (VWD2AIIC-Miami) in 1993; however, the molecular defect remained elusive. Objectives To identify the molecular mechanism underlying the phenotype of the original VWD2AIIC-Miami. Patients and Methods We studied the original family with VWD2AIIC-Miami phenotypically and by genotyping. The identified mutation was recombinantly expressed and characterized by standard techniques, confocal imaging and in a mouse model, respectively. Results By Multiplex ligation-dependent probe amplification we identified an in-frame duplication of VWF exons 9-10 (c.998_1156dup; p.Glu333_385dup) in all patients. Recombinant mutant (rm)VWF only presented as a dimer. Co-expressed with wild-type VWF, the multimer pattern was indistinguishable from patients' plasma VWF. Immunofluorescence studies indicated retention of rmVWF in unusually large intracellular granules in the endoplasmic reticulum. ADAMTS-13 proteolysis of rmVWF under denaturing conditions was normal; however, an aberrant proteolytic fragment was apparent. A decreased ratio of VWF propeptide to VWF:Ag and a 1-desamino-8-d-arginine vasopressin (DDAVP) test in one patient indicated delayed VWF clearance, which was supported by clearance data after infusion of rmVWF into VWF(-/-) mice. Conclusion The unique phenotype of VWD2 type IIC-Miami results from dominant impairment of multimer assembly, an aberrant structure of mutant mature VWF and reduced clearance in vivo. © 2016 International Society on Thrombosis and Haemostasis.
Gupta, Aayush; Sharma, Yugal; Deo, Kirti; Vellarikkal, Shamsudheen; Jayarajan, Rijith; Dixit, Vishal; Verma, Ankit; Scaria, Vinod; Sivasubbu, Sridhar
2015-01-01
Lamellar ichthyosis (LI), considered an autosomal recessive monogenic genodermatosis, has an incidence of approximately 1 in 250,000. Usually associated with mutations in the transglutaminase gene ( TGM1), mutations in six other genes have, less frequently, been shown to be causative. Two siblings, born in a collodion membrane, presented with fish like scales all over the body. Karyotyping revealed duplication of the chromosome arm on 22q12+ in the father and two siblings. Whole exome sequencing revealed a homozygous p.Gly218Ser variation in TGM1; a variation reported earlier in an isolated Finnish population in association with autosomal recessive non-syndromic ichthyosis. This concurrence of a potentially benign 22q12+ duplication and LI, both rare individually, is reported here likely for the first time. PMID:26594337
Paterson, Andrew H; Chapman, Brad A; Kissinger, Jessica C; Bowers, John E; Feltus, Frank A; Estill, James C
2006-11-01
Genome duplication is potentially a good source of new genes, but such genes take time to evolve. We have found a group of "duplication-resistant" genes, which have undergone convergent restoration to singleton status following several independent genome duplications. Restoration of duplication-resistant genes to singleton status could be important to long-term survival of a polyploid lineage. Angiosperms show more frequent polyploidization and a higher degree of duplicate gene preservation than other paleopolyploids, making them well-suited to further study of duplication-resistant genes.
Chapman, Brad A; Bowers, John E; Feltus, Frank A; Paterson, Andrew H
2006-02-21
Genome duplication followed by massive gene loss has permanently shaped the genomes of many higher eukaryotes, particularly angiosperms. It has long been believed that a primary advantage of genome duplication is the opportunity for the evolution of genes with new functions by modification of duplicated genes. If so, then patterns of genetic diversity among strains within taxa might reveal footprints of selection that are consistent with this advantage. Contrary to classical predictions that duplicated genes may be relatively free to acquire unique functionality, we find among both Arabidopsis ecotypes and Oryza subspecies that SNPs encode less radical amino acid changes in genes for which there exists a duplicated copy at a "paleologous" locus than in "singleton" genes. Preferential retention of duplicated genes encoding long complex proteins and their unexpectedly slow divergence (perhaps because of homogenization) suggest that a primary advantage of retaining duplicated paleologs may be the buffering of crucial functions. Functional buffering and functional divergence may represent extremes in the spectrum of duplicated gene fates. Functional buffering may be especially important during "genomic turmoil" immediately after genome duplication but continues to act approximately 60 million years later, and its gradual deterioration may contribute cyclicality to genome duplication in some lineages.
Chapman, Brad A.; Bowers, John E.; Feltus, Frank A.; Paterson, Andrew H.
2006-01-01
Genome duplication followed by massive gene loss has permanently shaped the genomes of many higher eukaryotes, particularly angiosperms. It has long been believed that a primary advantage of genome duplication is the opportunity for the evolution of genes with new functions by modification of duplicated genes. If so, then patterns of genetic diversity among strains within taxa might reveal footprints of selection that are consistent with this advantage. Contrary to classical predictions that duplicated genes may be relatively free to acquire unique functionality, we find among both Arabidopsis ecotypes and Oryza subspecies that SNPs encode less radical amino acid changes in genes for which there exists a duplicated copy at a “paleologous” locus than in “singleton” genes. Preferential retention of duplicated genes encoding long complex proteins and their unexpectedly slow divergence (perhaps because of homogenization) suggest that a primary advantage of retaining duplicated paleologs may be the buffering of crucial functions. Functional buffering and functional divergence may represent extremes in the spectrum of duplicated gene fates. Functional buffering may be especially important during “genomic turmoil” immediately after genome duplication but continues to act ≈60 million years later, and its gradual deterioration may contribute cyclicality to genome duplication in some lineages. PMID:16467140
Gene duplication and the evolution of phenotypic diversity in insect societies.
Chau, Linh M; Goodisman, Michael A D
2017-12-01
Gene duplication is an important evolutionary process thought to facilitate the evolution of phenotypic diversity. We investigated if gene duplication was associated with the evolution of phenotypic differences in a highly social insect, the honeybee Apis mellifera. We hypothesized that the genetic redundancy provided by gene duplication could promote the evolution of social and sexual phenotypes associated with advanced societies. We found a positive correlation between sociality and rate of gene duplications across the Apoidea, indicating that gene duplication may be associated with sociality. We also discovered that genes showing biased expression between A. mellifera alternative phenotypes tended to be found more frequently than expected among duplicated genes than singletons. Moreover, duplicated genes had higher levels of caste-, sex-, behavior-, and tissue-biased expression compared to singletons, as expected if gene duplication facilitated phenotypic differentiation. We also found that duplicated genes were maintained in the A. mellifera genome through the processes of conservation, neofunctionalization, and specialization, but not subfunctionalization. Overall, we conclude that gene duplication may have facilitated the evolution of social and sexual phenotypes, as well as tissue differentiation. Thus this study further supports the idea that gene duplication allows species to evolve an increased range of phenotypic diversity. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Lin, Jin-Hung; Cheng, Shou-Hsia
2018-08-01
Taiwan's single health insurer introduced a medication record exchange platform, the PharmaCloud program, in 2013. This study aimed to evaluate the effects of the medication record inquiry rate on medication duplication among patients with diabetes. A retrospective pre-post design with a comparison group was conducted using nationwide health insurance claim data of diabetic patients from 2013 to 2014. Patients whose medication record inquiry rate fell within the upper 25th percentile were classified as the high-inquiry group, and the others as the low-inquiry group. The dependent variables were the likelihood of receiving duplicated medication and the overlapped medication days of the study subjects. Generalized estimation equations with difference-in-difference analysis were calculated to examine the net effect of the PharmaCloud inquiry rate for a matched sub-sample. In total, 106,508 patients with diabetes were randomly selected. From 2013 to 2014, the medication duplication rate was reduced 7.76 percentile (54.12%-46.36%) for the high-inquiry group and 9.58 percentile (63.72%-54.14%) for the low-inquiry group; the average medication overlap periods were shortened 4.36 days (8.49-4.13) and 6.29 days (11.28-4.99), respectively. The regression models showed patients in the high-inquiry group were more likely to receive duplicated medication (OR = 1.11, 95% C.I. = 1.07-1.16) and with longer overlapped days (7.53%, P = 0.0081) after the program. The medication record sharing program has reduced medication duplication among diabetes patients. However, higher inquiry rate did not lead to greater reduction in medication duplication; the overall effect might be due to enhanced internal control via prescription alert system in hospitals rather physician's review of the records. Copyright © 2018 Elsevier B.V. All rights reserved.
2013-01-01
Background Microsporidian Nosema bombycis has received much attention because the pébrine disease of domesticated silkworms results in great economic losses in the silkworm industry. So far, no effective treatment could be found for pébrine. Compared to other known Nosema parasites, N. bombycis can unusually parasitize a broad range of hosts. To gain some insights into the underlying genetic mechanism of pathological ability and host range expansion in this parasite, a comparative genomic approach is conducted. The genome of two Nosema parasites, N. bombycis and N. antheraeae (an obligatory parasite to undomesticated silkworms Antheraea pernyi), were sequenced and compared with their distantly related species, N. ceranae (an obligatory parasite to honey bees). Results Our comparative genomics analysis show that the N. bombycis genome has greatly expanded due to the following three molecular mechanisms: 1) the proliferation of host-derived transposable elements, 2) the acquisition of many horizontally transferred genes from bacteria, and 3) the production of abundnant gene duplications. To our knowledge, duplicated genes derived not only from small-scale events (e.g., tandem duplications) but also from large-scale events (e.g., segmental duplications) have never been seen so abundant in any reported microsporidia genomes. Our relative dating analysis further indicated that these duplication events have arisen recently over very short evolutionary time. Furthermore, several duplicated genes involving in the cytotoxic metabolic pathway were found to undergo positive selection, suggestive of the role of duplicated genes on the adaptive evolution of pathogenic ability. Conclusions Genome expansion is rarely considered as the evolutionary outcome acting on those highly reduced and compact parasitic microsporidian genomes. This study, for the first time, demonstrates that the parasitic genomes can expand, instead of shrink, through several common molecular mechanisms such as gene duplication, horizontal gene transfer, and transposable element expansion. We also showed that the duplicated genes can serve as raw materials for evolutionary innovations possibly contributing to the increase of pathologenic ability. Based on our research, we propose that duplicated genes of N. bombycis should be treated as primary targets for treatment designs against pébrine. PMID:23496955
Cep152 interacts with Plk4 and is required for centriole duplication
Hatch, Emily M.; Kulukian, Anita; Holland, Andrew J.; Cleveland, Don W.
2010-01-01
Centrioles are microtubule-based structures that organize the centrosome and nucleate cilia. Centrioles duplicate once per cell cycle, and duplication requires Plk4, a member of the Polo-like kinase family; however, the mechanism linking Plk4 activity and centriole formation is unknown. In this study, we show in human and frog cells that Plk4 interacts with the centrosome protein Cep152, the orthologue of Drosophila melanogaster Asterless. The interaction requires the N-terminal 217 residues of Cep152 and the crypto Polo-box of Plk4. Cep152 and Plk4 colocalize at the centriole throughout the cell cycle. Overexpression of Cep152 (1–217) mislocalizes Plk4, but both Cep152 and Plk4 are able to localize to the centriole independently of the other. Depletion of Cep152 prevents both normal centriole duplication and Plk4-induced centriole amplification and results in a failure to localize Sas6 to the centriole, an early step in duplication. Cep152 can be phosphorylated by Plk4 in vitro, suggesting that Cep152 acts with Plk4 to initiate centriole formation. PMID:21059850
FGFR1 tyrosine kinase domain duplication in pilocytic astrocytoma with anaplasia
Ballester, Leomar Y.; Penas-Prado, Marta; Leeds, Norman E.; Huse, Jason T.; Fuller, Gregory N.
2018-01-01
We report the case of a 27-yr-old male with visual field loss who had a 4.9-cm complex cystic mass in the right occipital lobe. Histologic examination showed pilocytic astrocytoma (PA) with anaplasia, and molecular characterization revealed FGFR1 duplication with additional variants of unknown significance in several genes (ARID1A, ARID1B, CHEK2, EPHA5, and MLL2). This is one of only a very few reported cases of anaplastic PA with characterization of molecular alterations. PMID:29610389
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-13
... memberships in more than one SRO (``common members''). Such regulatory duplication would add unnecessary expenses for common members and their SROs. \\3\\ 15 U.S.C. 78s(g)(1). \\4\\ 15 U.S.C. 78q(d). \\5\\ 15 U.S.C... examinations and regulatory duplication.\\7\\ With respect to a common member, Section 17(d)(1) authorizes the...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-01
... memberships in more than one SRO (``common members''). Such regulatory duplication would add unnecessary expenses for common members and their SROs. \\3\\ 15 U.S.C. 78s(g)(1). \\4\\ 15 U.S.C. 78q(d). \\5\\ 15 U.S.C... examinations and regulatory duplication.\\7\\ With respect to a common member, Section 17(d)(1) authorizes the...
The Prevalence of Inappropriate Image Duplication in Biomedical Research Publications
Casadevall, Arturo; Fang, Ferric C.
2016-01-01
ABSTRACT Inaccurate data in scientific papers can result from honest error or intentional falsification. This study attempted to determine the percentage of published papers that contain inappropriate image duplication, a specific type of inaccurate data. The images from a total of 20,621 papers published in 40 scientific journals from 1995 to 2014 were visually screened. Overall, 3.8% of published papers contained problematic figures, with at least half exhibiting features suggestive of deliberate manipulation. The prevalence of papers with problematic images has risen markedly during the past decade. Additional papers written by authors of papers with problematic images had an increased likelihood of containing problematic images as well. As this analysis focused only on one type of data, it is likely that the actual prevalence of inaccurate data in the published literature is higher. The marked variation in the frequency of problematic images among journals suggests that journal practices, such as prepublication image screening, influence the quality of the scientific literature. PMID:27273827
Incidence of Data Duplications in a Randomly Selected Pool of Life Science Publications.
Oksvold, Morten P
2016-04-01
Since the solution to many public health problems depends on research, it is critical for the progress and well-being for the patients that we can trust the scientific literature. Misconduct and poor laboratory practice in science threatens the scientific progress, leads to loss of productivity and increased healthcare costs, and endangers lives of patients. Data duplication may represent one of challenges related to these problems. In order to estimate the frequency of data duplication in life science literature, a systematic screen through 120 original scientific articles published in three different cancer related journals [journal impact factor (IF) <5, 5-10 and >20] was completed. The study revealed a surprisingly high proportion of articles containing data duplication. For the IF < 5 and IF > 20 journals, 25% of the articles were found to contain data duplications. The IF 5-10 journal showed a comparable proportion (22.5%). The proportion of articles containing duplicated data was comparable between the three journals and no significant correlation to journal IF was found. The editorial offices representing the journals included in this study and the individual authors of the detected articles were contacted to clarify the individual cases. The editorial offices did not reply and only 1 out of 29 cases were apparently clarified by the authors, although no supporting data was supplied. This study questions the reliability of life science literature, it illustrates that data duplications are widespread and independent of journal impact factor and call for a reform of the current peer review and retraction process of scientific publishing.
TECHNIQUES OF TAPE PREPARATION AND DUPLICATION, WITH SUGGESTIONS FOR A LANGUAGE LABORATORY.
ERIC Educational Resources Information Center
Kansas State Dept. of Public Instruction, Topeka.
PART ONE OF THIS BULLETIN PROVIDES HELP IN THE TWO CRITICAL AREAS OF MASTER TAPE PREPARATION AND DUPLICATION. SUPPLEMENTED BY NUMEROUS PHOTOGRAPHS AND DIAGRAMS OF EQUIPMENT AND DUPLICATION TECHNIQUES, THE BULLETIN DESCRIBES MASTER PROGRAM DUPLICATION USING LANGUAGE LABORATORY EQUIPMENT, A PROFESSIONAL MASS DUPLICATOR, A TAPE RECORDER, A RECORD…
Li, Qi; Zhang, Ning; Zhang, Liangsheng; Ma, Hong
2015-04-01
Rhomboid proteins are intramembrane serine proteases that are involved in a plethora of biological functions, but the evolutionary history of the rhomboid gene family is not clear. We performed a comprehensive molecular evolutionary analysis of the rhomboid gene family and also investigated the organization and sequence features of plant rhomboids in different subfamilies. Our results showed that eukaryotic rhomboids could be divided into five subfamilies (RhoA-RhoD and PARL). Most orthology groups appeared to be conserved only as single or low-copy genes in all lineages in RhoB-RhoD and PARL, whereas RhoA genes underwent several duplication events, resulting in multiple gene copies. These duplication events were due to whole genome duplications in plants and animals and the duplicates might have experienced functional divergence. We also identified a novel group of plant rhomboid (RhoB1) that might have lost their enzymatic activity; their existence suggests that they might have evolved new mechanisms. Plant and animal rhomboids have similar evolutionary patterns. In addition, there are mutations affecting key active sites in RBL8, RBL9 and one of the Brassicaceae PARL duplicates. This study delineates a possible evolutionary scheme for intramembrane proteins and illustrates distinct fates and a mechanism of evolution of gene duplicates. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Ramkissoon, Lori A.; Horowitz, Peleg M.; Craig, Justin M.; Ramkissoon, Shakti H.; Rich, Benjamin E.; Schumacher, Steven E.; McKenna, Aaron; Lawrence, Michael S.; Bergthold, Guillaume; Brastianos, Priscilla K.; Tabak, Barbara; Ducar, Matthew D.; Van Hummelen, Paul; MacConaill, Laura E.; Pouissant-Young, Tina; Cho, Yoon-Jae; Taha, Hala; Mahmoud, Madeha; Bowers, Daniel C.; Margraf, Linda; Tabori, Uri; Hawkins, Cynthia; Packer, Roger J.; Hill, D. Ashley; Pomeroy, Scott L.; Eberhart, Charles G.; Dunn, Ian F.; Goumnerova, Liliana; Getz, Gad; Chan, Jennifer A.; Santagata, Sandro; Hahn, William C.; Stiles, Charles D.; Ligon, Azra H.; Kieran, Mark W.; Beroukhim, Rameen; Ligon, Keith L.
2013-01-01
Pediatric low-grade gliomas (PLGGs) are among the most common solid tumors in children but, apart from BRAF kinase mutations or duplications in specific subclasses, few genetic driver events are known. Diffuse PLGGs comprise a set of uncommon subtypes that exhibit invasive growth and are therefore especially challenging clinically. We performed high-resolution copy-number analysis on 44 formalin-fixed, paraffin-embedded diffuse PLGGs to identify recurrent alterations. Diffuse PLGGs exhibited fewer such alterations than adult low-grade gliomas, but we identified several significantly recurrent events. The most significant event, 8q13.1 gain, was observed in 28% of diffuse astrocytoma grade IIs and resulted in partial duplication of the transcription factor MYBL1 with truncation of its C-terminal negative-regulatory domain. A similar recurrent deletion-truncation breakpoint was identified in two angiocentric gliomas in the related gene v-myb avian myeloblastosis viral oncogene homolog (MYB) on 6q23.3. Whole-genome sequencing of a MYBL1-rearranged diffuse astrocytoma grade II demonstrated MYBL1 tandem duplication and few other events. Truncated MYBL1 transcripts identified in this tumor induced anchorage-independent growth in 3T3 cells and tumor formation in nude mice. Truncated transcripts were also expressed in two additional tumors with MYBL1 partial duplication. Our results define clinically relevant molecular subclasses of diffuse PLGGs and highlight a potential role for the MYB family in the biology of low-grade gliomas. PMID:23633565
7 CFR 701.11 - Prohibition on duplicate payments.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Duplicate payments. Participants are not eligible to receive funding under the ECP for land on which the participant has or will receive funding under: (1) The Wetland Reserve Program (WRP) provided for in 7 CFR..., or, in effect, a higher rate of cost share than is allowed under this part. (b) Refund. Participants...
47 CFR 76.92 - Cable network non-duplication; extent of protection.
Code of Federal Regulations, 2013 CFR
2013-10-01
... within the geographic zone for a network program, the network non-duplication rights to which are held by... follows: (1) First, all television broadcast stations within whose specified zone the community of the... within whose secondary zone the community of the community unit is located, in whole or in part. (c) For...
47 CFR 76.92 - Cable network non-duplication; extent of protection.
Code of Federal Regulations, 2012 CFR
2012-10-01
... within the geographic zone for a network program, the network non-duplication rights to which are held by... follows: (1) First, all television broadcast stations within whose specified zone the community of the... within whose secondary zone the community of the community unit is located, in whole or in part. (c) For...
47 CFR 76.92 - Cable network non-duplication; extent of protection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... within the geographic zone for a network program, the network non-duplication rights to which are held by... follows: (1) First, all television broadcast stations within whose specified zone the community of the... within whose secondary zone the community of the community unit is located, in whole or in part. (c) For...
Restriction of Equine Infectious Anemia Virus by Equine APOBEC3 Cytidine Deaminases ▿ †
Zielonka, Jörg; Bravo, Ignacio G.; Marino, Daniela; Conrad, Elea; Perković, Mario; Battenberg, Marion; Cichutek, Klaus; Münk, Carsten
2009-01-01
The mammalian APOBEC3 (A3) proteins comprise a multigene family of cytidine deaminases that act as potent inhibitors of retroviruses and retrotransposons. The A3 locus on the chromosome 28 of the horse genome contains multiple A3 genes: two copies of A3Z1, five copies of A3Z2, and a single copy of A3Z3, indicating a complex evolution of multiple gene duplications. We have cloned and analyzed for expression the different equine A3 genes and examined as well the subcellular distribution of the corresponding proteins. Additionally, we have tested the functional antiretroviral activity of the equine and of several of the human and nonprimate A3 proteins against the Equine infectious anemia virus (EIAV), the Simian immunodeficiency virus (SIV), and the Adeno-associated virus type 2 (AAV-2). Hematopoietic cells of horses express at least five different A3s: A3Z1b, A3Z2a-Z2b, A3Z2c-Z2d, A3Z2e, and A3Z3, whereas circulating macrophages, the natural target of EIAV, express only part of the A3 repertoire. The five A3Z2 tandem copies arose after three consecutive, recent duplication events in the horse lineage, after the split between Equidae and Carnivora. The duplicated genes show different antiviral activities against different viruses: equine A3Z3 and A3Z2c-Z2d are potent inhibitors of EIAV while equine A3Z1b, A3Z2a-Z2b, A3Z2e showed only weak anti-EIAV activity. Equine A3Z1b and A3Z3 restricted AAV and all equine A3s, except A3Z1b, inhibited SIV. We hypothesize that the horse A3 genes are undergoing a process of subfunctionalization in their respective viral specificities, which might provide the evolutionary advantage for keeping five copies of the original gene. PMID:19458006
Gene and domain duplication in the chordate Otx gene family: insights from amphioxus Otx.
Williams, N A; Holland, P W
1998-05-01
We report the genomic organization and deduced protein sequence of a cephalochordate member of the Otx homeobox gene family (AmphiOtx) and show its probable single-copy state in the genome. We also present molecular phylogenetic analysis indicating that there was single ancestral Otx gene in the first chordates which was duplicated in the vertebrate lineage after it had split from the lineage leading to the cephalochordates. Duplication of a C-terminal protein domain has occurred specifically in the vertebrate lineage, strengthening the case for a single Otx gene in an ancestral chordate whose gene structure has been retained in an extant cephalochordate. Comparative analysis of protein sequences and published gene expression patterns suggest that the ancestral chordate Otx gene had roles in patterning the anterior mesendoderm and central nervous system. These roles were elaborated following Otx gene duplication in vertebrates, accompanied by regulatory and structural divergence, particularly of Otx1 descendant genes.
2008-01-01
Background The arginine vasopressin V1a receptor (V1aR) modulates social cognition and behavior in a wide variety of species. Variation in a repetitive microsatellite element in the 5' flanking region of the V1aR gene (AVPR1A) in rodents has been associated with variation in brain V1aR expression and in social behavior. In humans, the 5' flanking region of AVPR1A contains a tandem duplication of two ~350 bp, microsatellite-containing elements located approximately 3.5 kb upstream of the transcription start site. The first block, referred to as DupA, contains a polymorphic (GT)25 microsatellite; the second block, DupB, has a complex (CT)4-(TT)-(CT)8-(GT)24 polymorphic motif, known as RS3. Polymorphisms in RS3 have been associated with variation in sociobehavioral traits in humans, including autism spectrum disorders. Thus, evolution of these regions may have contributed to variation in social behavior in primates. We examined the structure of these regions in six ape, six monkey, and one prosimian species. Results Both tandem repeat blocks are present upstream of the AVPR1A coding region in five of the ape species we investigated, while monkeys have only one copy of this region. As in humans, the microsatellites within DupA and DupB are polymorphic in many primate species. Furthermore, both single (lacking DupB) and duplicated alleles (containing both DupA and DupB) are present in chimpanzee (Pan troglodytes) populations with allele frequencies of 0.795 and 0.205 for the single and duplicated alleles, respectively, based on the analysis of 47 wild-caught individuals. Finally, a phylogenetic reconstruction suggests two alternate evolutionary histories for this locus. Conclusion There is no obvious relationship between the presence of the RS3 duplication and social organization in primates. However, polymorphisms identified in some species may be useful in future genetic association studies. In particular, the presence of both single and duplicated alleles in chimpanzees provides a unique opportunity to assess the functional role of this duplication in contributing to variation in social behavior in primates. While our initial studies show no signs of directional selection on this locus in chimps, pharmacological and genetic association studies support a potential role for this region in influencing V1aR expression and social behavior. PMID:18573213
Donaldson, Zoe R; Kondrashov, Fyodor A; Putnam, Andrea; Bai, Yaohui; Stoinski, Tara L; Hammock, Elizabeth A D; Young, Larry J
2008-06-23
The arginine vasopressin V1a receptor (V1aR) modulates social cognition and behavior in a wide variety of species. Variation in a repetitive microsatellite element in the 5' flanking region of the V1aR gene (AVPR1A) in rodents has been associated with variation in brain V1aR expression and in social behavior. In humans, the 5' flanking region of AVPR1A contains a tandem duplication of two approximately 350 bp, microsatellite-containing elements located approximately 3.5 kb upstream of the transcription start site. The first block, referred to as DupA, contains a polymorphic (GT)25 microsatellite; the second block, DupB, has a complex (CT)4-(TT)-(CT)8-(GT)24 polymorphic motif, known as RS3. Polymorphisms in RS3 have been associated with variation in sociobehavioral traits in humans, including autism spectrum disorders. Thus, evolution of these regions may have contributed to variation in social behavior in primates. We examined the structure of these regions in six ape, six monkey, and one prosimian species. Both tandem repeat blocks are present upstream of the AVPR1A coding region in five of the ape species we investigated, while monkeys have only one copy of this region. As in humans, the microsatellites within DupA and DupB are polymorphic in many primate species. Furthermore, both single (lacking DupB) and duplicated alleles (containing both DupA and DupB) are present in chimpanzee (Pan troglodytes) populations with allele frequencies of 0.795 and 0.205 for the single and duplicated alleles, respectively, based on the analysis of 47 wild-caught individuals. Finally, a phylogenetic reconstruction suggests two alternate evolutionary histories for this locus. There is no obvious relationship between the presence of the RS3 duplication and social organization in primates. However, polymorphisms identified in some species may be useful in future genetic association studies. In particular, the presence of both single and duplicated alleles in chimpanzees provides a unique opportunity to assess the functional role of this duplication in contributing to variation in social behavior in primates. While our initial studies show no signs of directional selection on this locus in chimps, pharmacological and genetic association studies support a potential role for this region in influencing V1aR expression and social behavior.
Williams, Nigel M; Franke, Barbara; Mick, Eric; Anney, Richard J L; Freitag, Christine M; Gill, Michael; Thapar, Anita; O'Donovan, Michael C; Owen, Michael J; Holmans, Peter; Kent, Lindsey; Middleton, Frank; Zhang-James, Yanli; Liu, Lu; Meyer, Jobst; Nguyen, Thuy Trang; Romanos, Jasmin; Romanos, Marcel; Seitz, Christiane; Renner, Tobias J; Walitza, Susanne; Warnke, Andreas; Palmason, Haukur; Buitelaar, Jan; Rommelse, Nanda; Vasquez, Alejandro Arias; Hawi, Ziarih; Langley, Kate; Sergeant, Joseph; Steinhausen, Hans-Christoph; Roeyers, Herbert; Biederman, Joseph; Zaharieva, Irina; Hakonarson, Hakon; Elia, Josephine; Lionel, Anath C; Crosbie, Jennifer; Marshall, Christian R; Schachar, Russell; Scherer, Stephen W; Todorov, Alexandre; Smalley, Susan L; Loo, Sandra; Nelson, Stanley; Shtir, Corina; Asherson, Philip; Reif, Andreas; Lesch, Klaus-Peter; Faraone, Stephen V
2012-02-01
Attention deficit hyperactivity disorder (ADHD) is a common, highly heritable psychiatric disorder. Because of its multifactorial etiology, however, identifying the genes involved has been difficult. The authors followed up on recent findings suggesting that rare copy number variants (CNVs) may be important for ADHD etiology. The authors performed a genome-wide analysis of large, rare CNVs (<1% population frequency) in children with ADHD (N=896) and comparison subjects (N=2,455) from the IMAGE II Consortium. The authors observed 1,562 individually rare CNVs >100 kb in size, which segregated into 912 independent loci. Overall, the rate of rare CNVs >100 kb was 1.15 times higher in ADHD case subjects relative to comparison subjects, with duplications spanning known genes showing a 1.2-fold enrichment. In accordance with a previous study, rare CNVs >500 kb showed the greatest enrichment (1.28-fold). CNVs identified in ADHD case subjects were significantly enriched for loci implicated in autism and in schizophrenia. Duplications spanning the CHRNA7 gene at chromosome 15q13.3 were associated with ADHD in single-locus analysis. This finding was consistently replicated in an additional 2,242 ADHD case subjects and 8,552 comparison subjects from four independent cohorts from the United Kingdom, the United States, and Canada. Presence of the duplication at 15q13.3 appeared to be associated with comorbid conduct disorder. These findings support the enrichment of large, rare CNVs in ADHD and implicate duplications at 15q13.3 as a novel risk factor for ADHD. With a frequency of 0.6% in the populations investigated and a relatively large effect size (odds ratio=2.22, 95% confidence interval=1.5–3.6), this locus could be an important contributor to ADHD etiology.
Franke, Barbara; Mick, Eric; Anney, Richard J.L.; Freitag, Christine M.; Gill, Michael; Thapar, Anita; O'Donovan, Michael C.; Owen, Michael J.; Holmans, Peter; Kent, Lindsey; Middleton, Frank; Zhang-James, Yanli; Liu, Lu; Meyer, Jobst; Nguyen, Thuy Trang; Romanos, Jasmin; Romanos, Marcel; Seitz, Christiane; Renner, Tobias J.; Walitza, Susanne; Warnke, Andreas; Palmason, Haukur; Buitelaar, Jan; Rommelse, Nanda; Vasquez, Alejandro Arias; Hawi, Ziarih; Langley, Kate; Sergeant, Joseph; Steinhausen, Hans-Christoph; Roeyers, Herbert; Biederman, Joseph; Zaharieva, Irina; Hakonarson, Hakon; Elia, Josephine; Lionel, Anath C.; Crosbie, Jennifer; Marshall, Christian R.; Schachar, Russell; Scherer, Stephen W.; Todorov, Alexandre; Smalley, Susan L.; Loo, Sandra; Nelson, Stanley; Shtir, Corina; Asherson, Philip; Reif, Andreas; Lesch, Klaus-Peter
2012-01-01
Objective: Attention deficit hyperactivity disorder (ADHD) is a common, highly heritable psychiatric disorder. Because of its multifactorial etiology, however, identifying the genes involved has been difficult. The authors followed up on recent findings suggesting that rare copy number variants (CNVs) may be important for ADHD etiology. Method: The authors performed a genome-wide analysis of large, rare CNVs (<1% population frequency) in children with ADHD (N=896) and comparison subjects (N=2,455) from the IMAGE II Consortium. Results: The authors observed 1,562 individually rare CNVs >100 kb in size, which segregated into 912 independent loci. Overall, the rate of rare CNVs >100 kb was 1.15 times higher in ADHD case subjects relative to comparison subjects, with duplications spanning known genes showing a 1.2-fold enrichment. In accordance with a previous study, rare CNVs >500 kb showed the greatest enrichment (1.28-fold). CNVs identified in ADHD case subjects were significantly enriched for loci implicated in autism and in schizophrenia. Duplications spanning the CHRNA7 gene at chromosome 15q13.3 were associated with ADHD in single-locus analysis. This finding was consistently replicated in an additional 2,242 ADHD case subjects and 8,552 comparison subjects from four independent cohorts from the United Kingdom, the United States, and Canada. Presence of the duplication at 15q13.3 appeared to be associated with comorbid conduct disorder. Conclusions: These findings support the enrichment of large, rare CNVs in ADHD and implicate duplications at 15q13.3 as a novel risk factor for ADHD. With a frequency of 0.6% in the populations investigated and a relatively large effect size (odds ratio=2.22, 95% confidence interval=1.5–3.6), this locus could be an important contributor to ADHD etiology. PMID:22420048
Martinez, A L A; Araújo, J S P; Ragassi, C F; Buso, G S C; Reifschneider, F J B
2017-07-06
Capsicum peppers are native to the Americas, with Brazil being a significant diversity center. Capsicum baccatum accessions at Instituto Federal (IF) Goiano represent a portion of the species genetic resources from central Brazil. We aimed to characterize a C. baccatum working collection comprising 27 accessions and 3 commercial cultivars using morphological traits and molecular markers to describe its genetic and morphological variability and verify the occurrence of duplicates. This set included 1 C. baccatum var. praetermissum and 29 C. baccatum var. pendulum with potential for use in breeding programs. Twenty-two morphological descriptors, 57 inter-simple sequence repeat, and 34 random amplified polymorphic DNA markers were used. Genetic distance was calculated through the Jaccard similarity index and genetic variability through cluster analysis using the unweighted pair group method with arithmetic mean, resulting in dendrograms for both morphological analysis and molecular analysis. Genetic variability was found among C. baccatum var. pendulum accessions, and the distinction between the two C. baccatum varieties was evident in both the morphological and molecular analyses. The 29 C. baccatum var. pendulum genotypes clustered in four groups according to fruit type in the morphological analysis. They formed seven groups in the molecular analysis, without a clear correspondence with morphology. No duplicates were found. The results describe the genetic and morphological variability, provide a detailed characterization of genotypes, and discard the possibility of duplicates within the IF Goiano C. baccatum L. collection. This study will foment the use of this germplasm collection in C. baccatum breeding programs.
Niemüller, Daniel; Reimann, Andreas; Ober, Dietrich
2012-01-01
Homospermidine synthase (HSS) is the first specific enzyme in pyrrolizidine alkaloid (PA) biosynthesis, a pathway involved in the plant’s chemical defense. HSS has been shown to be recruited repeatedly by duplication of a gene involved in primary metabolism. Within the lineage of the Boraginales, only one gene duplication event gave rise to HSS. Here, we demonstrate that the tissue-specific expression of HSS in three boraginaceous species, Heliotropium indicum, Symphytum officinale, and Cynoglossum officinale, is unique with respect to plant organ, tissue, and cell type. Within H. indicum, HSS is expressed exclusively in nonspecialized cells of the lower epidermis of young leaves and shoots. In S. officinale, HSS expression has been detected in the cells of the root endodermis and in leaves directly underneath developing inflorescences. In young roots of C. officinale, HSS is detected only in cells of the endodermis, but in a later developmental stage, additionally in the pericycle. The individual expression patterns are compared with those within the Senecioneae lineage (Asteraceae), where HSS expression is reproducibly found in specific cells of the endodermis and the adjacent cortex parenchyma of the roots. The individual expression patterns within the Boraginales species are discussed as being a requirement for the successful recruitment of HSS after gene duplication. The diversity of HSS expression within this lineage adds a further facet to the already diverse patterns of expression that have been observed for HSS in other PA-producing plant lineages, making this PA-specific enzyme one of the most diverse expressed proteins described in the literature. PMID:22566491
Pace, John K; Sen, Shurjo K; Batzer, Mark A; Feschotte, Cédric
2009-05-01
DNA double-strand breaks (DSBs) are a common form of cellular damage that can lead to cell death if not repaired promptly. Experimental systems have shown that DSB repair in eukaryotic cells is often imperfect and may result in the insertion of extra chromosomal DNA or the duplication of existing DNA at the breakpoint. These events are thought to be a source of genomic instability and human diseases, but it is unclear whether they have contributed significantly to genome evolution. Here we developed an innovative computational pipeline that takes advantage of the repetitive structure of genomes to detect repair-mediated duplication events (RDs) that occurred in the germline and created insertions of at least 50 bp of genomic DNA. Using this pipeline we identified over 1,000 probable RDs in the human genome. Of these, 824 were intra-chromosomal, closely linked duplications of up to 619 bp bearing the hallmarks of the synthesis-dependent strand-annealing repair pathway. This mechanism has duplicated hundreds of sequences predicted to be functional in the human genome, including exons, UTRs, intron splice sites and transcription factor binding sites. Dating of the duplication events using comparative genomics and experimental validation revealed that the mechanism has operated continuously but with decreasing intensity throughout primate evolution. The mechanism has produced species-specific duplications in all primate species surveyed and is contributing to genomic variation among humans. Finally, we show that RDs have also occurred, albeit at a lower frequency, in non-primate mammals and other vertebrates, indicating that this mechanism has been an important force shaping vertebrate genome evolution.
Chromosome I duplications in Caenorhabditis elegans
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKim, K.S.; Rose, A.M.
1990-01-01
We have isolated and characterized 76 duplications of chromosome I in the genome of Caenorhabditis elegans. The region studied is the 20 map unit left half of the chromosome. Sixty-two duplications were induced with gamma radiation and 14 arose spontaneously. The latter class was apparently the result of spontaneous breaks within the parental duplication. The majority of duplications behave as if they are free. Three duplications are attached to identifiable sequences from other chromosomes. The duplication breakpoints have been mapped by complementation analysis relative to genes on chromosome I. Nineteen duplication breakpoints and seven deficiency breakpoints divide the left halfmore » of the chromosome into 24 regions. We have studied the relationship between duplication size and segregational stability. While size is an important determinant of mitotic stability, it is not the only one. We observed clear exceptions to a size-stability correlation. In addition to size, duplication stability may be influenced by specific sequences or chromosome structure. The majority of the duplications were stable enough to be powerful tools for gene mapping. Therefore the duplications described here will be useful in the genetic characterization of chromosome I and the techniques we have developed can be adapted to other regions of the genome.« less
Autism in Two Females with Duplications Involving Xp11.22-p11.23
ERIC Educational Resources Information Center
Edens, Anna C.; Lyons, Michael J.; Duron, Reyna M.; DuPont, Barbara R.; Holden, Kenton R.
2011-01-01
We present two phenotypically similar females with Xp duplication who have autism and epilepsy. Case 1 is a 14-year-old Honduran female with autism and medically refractory complex partial, secondarily generalized epilepsy. Case 2 is a 3-year-old Austrian female with autism and medically refractory complex partial epilepsy. Both patients also…
Molecular Evolution and Expansion Analysis of the NAC Transcription Factor in Zea mays
Fan, Kai; Wang, Ming; Miao, Ying; Ni, Mi; Bibi, Noreen; Yuan, Shuna; Li, Feng; Wang, Xuede
2014-01-01
NAC (NAM, ATAF1, 2 and CUC2) family is a plant-specific transcription factor and it controls various plant developmental processes. In the current study, 124 NAC members were identified in Zea mays and were phylogenetically clustered into 13 distinct subfamilies. The whole genome duplication (WGD), especially an additional WGD event, may lead to expanding ZmNAC members. Different subfamily has different expansion rate, and NAC subfamily preference was found during the expansion in maize. Moreover, the duplication events might occur after the divergence of the lineages of Z. mays and S. italica, and segmental duplication seemed to be the dominant pattern for the gene duplication in maize. Furthermore, the expansion of ZmNAC members may be also related to gain and loss of introns. Besides, the restriction of functional divergence was discovered after most of the gene duplication events. These results could provide novel insights into molecular evolution and expansion analysis of NAC family in maize, and advance the NAC researches in other plants, especially polyploid plants. PMID:25369196
Renneville, Aline; Boissel, Nicolas; Gachard, Nathalie; Naguib, Dina; Bastard, Christian; de Botton, Stéphane; Nibourel, Olivier; Pautas, Cécile; Reman, Oumedaly; Thomas, Xavier; Gardin, Claude; Terré, Christine; Castaigne, Sylvie; Preudhomme, Claude; Dombret, Hervé
2009-05-21
Mutations of the CCAAT/enhancer binding protein alpha (CEBPA) gene have been associated with a favorable outcome in patients with acute myeloid leukemia (AML), but mainly in those with a normal karyotype. Here, we analyzed the impact of associated cytogenetic abnormalities or bad-prognosis fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) in 53 patients with CEBPA(+) de novo AML treated in the Acute Leukemia French Association trials. We found that only those with a normal karyotype and no FLT3-ITD displayed the expected favorable outcome. In this context, relapse-free, disease-free, and overall survival were significantly longer than in corresponding patients without the CEBPA mutation (P = .035, .016, and .047, respectively). This was not observed in the context of an abnormal karyotype or associated FLT3-ITD. Furthermore, after adjustment on age, trial, and mutation type, these features were independently predictive of shorter overall survival in the subset of patients with CEBPA(+) AML (multivariate hazard ratio = 2.7; 95% confidence interval, 1.08-6.7; and 2.9; 95% confidence interval, 1.01-8.2; with P = .034 and .05, for abnormal karyotype and FLT3-ITD, respectively).
Keating, Glenda; Bliwise, Donald L; Saini, Prabhjyot; Rye, David B; Trotti, Lynn Marie
2017-09-01
The hypothalamic peptide hypocretin 1 (orexin A) may be assayed in cerebrospinal fluid to diagnose narcolepsy type 1. This testing is not commercially available, and factors contributing to assay variability have not previously been comprehensively explored. In the present study, cerebrospinal fluid hypocretin concentrations were determined in duplicate in 155 patient samples, across a range of sleep disorders. Intra-assay variability of these measures was analyzed. Inter-assay correlation between samples tested at Emory and at Stanford was high (r = 0.79, p < 0.0001). Intra-assay correlation between samples tested in duplicate in our center was also high (r = 0.88, p < 0.0001); intra-assay variability, expressed as the difference between values as a percentage of the higher value, was low at 9.4% (SD = 7.9%). Although both time the sample spent in the freezer (r = 0.16, p = 0.04) and age of the kit used for assay (t = 3.64, p = 0.0004) were significant predictors of intra-kit variability in univariate analyses, only age of kit was significant in multivariate linear regression (F = 4.93, p = 0.03). Age of radioimmunoassay kit affects intra-kit variability of measured hypocretin values, such that kits closer to expiration exhibit significantly more variability.
Clues to evolution of the SERA multigene family in 18 Plasmodium species.
Arisue, Nobuko; Kawai, Satoru; Hirai, Makoto; Palacpac, Nirianne M Q; Jia, Mozhi; Kaneko, Akira; Tanabe, Kazuyuki; Horii, Toshihiro
2011-03-15
SERA gene sequences were newly determined from 11 primate Plasmodium species including two human parasites, P. ovale and P. malariae, and the evolutionary history of SERA genes was analyzed together with 7 known species. All have one each of Group I to III cysteine-type SERA genes and varying number of Group IV serine-type SERA genes in tandem cluster. Notably, Group IV SERA genes were ascertained in all mammalian parasite lineages; and in two primate parasite lineages gene events such as duplication, truncation, fragmentation and gene loss occurred at high frequency in a manner that mimics the birth-and-death evolution model. Transcription profile of individual SERA genes varied greatly among rodent and monkey parasites. Results support the lineage-specific evolution of the Plasmodium SERA gene family. These findings provide further impetus for studies that could clarify/provide proof-of-concept that duplications of SERA genes were associated with the parasites' expansion of host range and the evolutionary conundrums of multigene families in Plasmodium.
Intake of radioactive materials as assessed by the duplicate diet method in Fukushima.
Sato, Osamu; Nonaka, Shunkichi; Tada, Jun Ichiro
2013-12-01
A large quantity of radioactive materials was released from Reactor-II of the Fukushima Daiichi Nuclear Power Plant (F-1 NPP). People living in the area affected by the release are concerned about internal exposures from the daily intakes of contaminated foodstuffs. In order to assess whether the people should be concerned, Co-op Fukushima (Consumer Co-operative in Fukushima Prefecture) conducted a broad survey of radiocaesium in daily meals for which local inhabitants voluntarily provided a set of duplicate meals. Analyses by the duplicate diet method were conducted from November 2011 to March 2012 and from June 2012 to September 2012, each covering 100 families throughout the prefecture. Among the 200 meals thus analysed, 12 were found to have (134)Cs and/or (137)Cs concentrations exceeding 1 Bq kg(-1). Even with the largest radiocaesium value in our survey, daily consumption of such meals throughout a year gave an annual committed effective dose that did not exceed 0.1 mSv.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-04
... in more than one SRO (``common members''). Such regulatory duplication would add unnecessary expenses for common members and their SROs. \\3\\ 15 U.S.C. 78s(g)(1). \\4\\ 15 U.S.C. 78q(d). \\5\\ 15 U.S.C. 78s(g... examinations and regulatory duplication.\\7\\ With respect to a common member, Section 17(d)(1) authorizes the...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-11
... in more than one SRO (``common members''). Such regulatory duplication would add unnecessary expenses for common members and their SROs. \\3\\ 15 U.S.C. 78s(g)(1). \\4\\ 15 U.S.C. 78q(d). \\5\\ 15 U.S.C. 78s(g... examinations and regulatory duplication.\\7\\ With respect to a common member, Section 17(d)(1) authorizes the...
Korablev, Alexei N; Serova, Irina A; Serov, Oleg L
2017-12-28
Copy Number Variation (CNV) of the human CNTN6 gene (encoding the contactin-6 protein), caused by deletions or duplications, is responsible for severe neurodevelopmental impairments, often in combination with facial dysmorphias. Conversely, deleterious point mutations of this gene do not show any clinical phenotypes. The aim of this study is to generate mice carrying large deletions, duplications and inversions involving the Cntn6 gene as a new experimental model to study CNV of the human CNTN6 locus. To generate large chromosomal rearrangements on mouse chromosome 6, we applied CRISPR/Cas9 technology in zygotes. Two guide RNAs (gRNAs) (flanking a DNA fragment of 1137 Mb) together with Cas9 mRNA and single-stranded DNA oligonucleotides (ssODN) were microinjected into the cytoplasm of 599 zygotes of F1 (C57BL x CBA) mice, and 256 of them were transplanted into oviducts of CD-1 females. As a result, we observed the birth of 41 viable F0 offspring. Genotyping of these mice was performed by PCR analysis and sequencing of PCR products. Among the 41 F0 offspring, we identified seven mice with deletions, two animals carrying duplications of the gene and four carrying inversions. Interestingly, two F0 offspring had both deletions and duplications. It is important to note that while three of seven deletion carriers showed expected sequences at the new joint sites, in another three, we identified an absence of 1-10 nucleotides at the CRISPR/Cas9 cut sites, and in one animal, 103 bp were missing, presumably due to error-prone non-homologous end joining. In addition, we detected the absence of 5 and 13 nucleotides at these sites in two F0 duplication carriers. Similar sequence changes at CRISPR/Cas9 cut sites were observed at the right and left boundaries of inversions. Thus, megabase-scale deletions, duplications and inversions were identified in 11 F0 offspring among 41 analyzed, i.e., approximately 25% efficiency. All genetically modified F0 offspring were viable and able to transmit these large chromosomal rearrangements to the next generation. Using CRISPR/Cas9 technology, we created mice carrying megabase-scale deletions, duplications, and inversions involving the full-sized Cntn6 gene. These mice became founders of new mouse lines, which may be more appropriate experimental models of CNV in the human 3p26.3 region than Сntn6 knockout mice.
Kiely, Aoife P; Ling, Helen; Asi, Yasmine T; Kara, Eleanna; Proukakis, Christos; Schapira, Anthony H; Morris, Huw R; Roberts, Helen C; Lubbe, Steven; Limousin, Patricia; Lewis, Patrick A; Lees, Andrew J; Quinn, Niall; Hardy, John; Love, Seth; Revesz, Tamas; Houlden, Henry; Holton, Janice L
2015-08-27
We and others have described the neurodegenerative disorder caused by G51D SNCA mutation which shares characteristics of Parkinson's disease (PD) and multiple system atrophy (MSA). The objective of this investigation was to extend the description of the clinical and neuropathological hallmarks of G51D mutant SNCA-associated disease by the study of two additional cases from a further G51D SNCA kindred and to compare the features of this group with a SNCA duplication case and a H50Q SNCA mutation case. All three G51D patients were clinically characterised by parkinsonism, dementia, visual hallucinations, autonomic dysfunction and pyramidal signs with variable age at disease onset and levodopa response. The H50Q SNCA mutation case had a clinical picture that mimicked late-onset idiopathic PD with a good and sustained levodopa response. The SNCA duplication case presented with a clinical phenotype of frontotemporal dementia with marked behavioural changes, pyramidal signs, postural hypotension and transiently levodopa responsive parkinsonism. Detailed post-mortem neuropathological analysis was performed in all cases. All three G51D cases had abundant α-synuclein pathology with characteristics of both PD and MSA. These included widespread cortical and subcortical neuronal α-synuclein inclusions together with small numbers of inclusions resembling glial cytoplasmic inclusions (GCIs) in oligodendrocytes. In contrast the H50Q and SNCA duplication cases, had α-synuclein pathology resembling idiopathic PD without GCIs. Phosphorylated α-synuclein was present in all inclusions types in G51D cases but was more restricted in SNCA duplication and H50Q mutation. Inclusions were also immunoreactive for the 5G4 antibody indicating their highly aggregated and likely fibrillar state. Our characterisation of the clinical and neuropathological features of the present small series of G51D SNCA mutation cases should aid the recognition of this clinico-pathological entity. The neuropathological features of these cases consistently share characteristics of PD and MSA and are distinct from PD patients carrying the H50Q or SNCA duplication.
Collaboration, Technology, and Outsourcing Initiatives in Higher Education: A Literature Review.
ERIC Educational Resources Information Center
Kaganoff, Tessa
This report presents a sector-wide review of three types of cost-containment initiatives. The first, collaboration, allows for the sharing of resources, facilitates joint purchasing agreements, reduces duplication of services, and expands personal and professional contacts, but requires time to develop institutional relationships. The second,…
Duplication of 17(p11.2p11.2) in a male child with autism and severe language delay.
Nakamine, Alisa; Ouchanov, Leonid; Jiménez, Patricia; Manghi, Elina R; Esquivel, Marcela; Monge, Silvia; Fallas, Marietha; Burton, Barbara K; Szomju, Barbara; Elsea, Sarah H; Marshall, Christian R; Scherer, Stephen W; McInnes, L Alison
2008-03-01
Duplications of 17(p11.2p11.2) have been associated with various behavioral manifestations including attention deficits, obsessive-compulsive symptoms, autistic traits, and language delay. We are conducting a genetic study of autism and are screening all cases for submicroscopic chromosomal abnormalities, in addition to standard karyotyping, and fragile X testing. Using array-based comparative genomic hybridization analysis of data from the Affymetrix GeneChip(R) Human Mapping Array set, we detected a duplication of approximately 3.3 Mb on chromosome 17p11.2 in a male child with autism and severe expressive language delay. The duplication was confirmed by measuring the copy number of genomic DNA using quantitative polymerase chain reaction. Gene expression analyses revealed increased expression of three candidate genes for the Smith-Magenis neurobehavioral phenotype, RAI1, DRG2, and RASD1, in transformed lymphocytes from Case 81A, suggesting gene dosage effects. Our results add to a growing body of evidence suggesting that duplications of 17(p11.2p11.2) result in language delay as well as autism and related phenotypes. As Smith-Magenis syndrome is also associated with language delay, a gene involved in acquisition of language may lie within this interval. Whether a parent of origin effect, gender of the case, the presence of allelic variation, or changes in expression of genes outside the breakpoints influence the resultant phenotype remains to be determined. (c) 2007 Wiley-Liss, Inc.
The purpose of this SOP is to provide a uniform procedure for the collection of a complete (all meals, snacks, and beverages), one-day (24 hour) duplicate diet sample from the primary respondent. Participants will keep a duplicate portion of all food consumed in a 24 hour period...
The purpose of this SOP is to provide a uniform procedure for the collection of a complete (all meals, snacks, and beverages), one-day (24 hour) duplicate diet sample from the primary respondent. Participants will keep a duplicate portion of all food consumed in a 24 hour period...
Itokawa, K; Komagata, O; Kasai, S; Kawada, H; Mwatele, C; Dida, G O; Njenga, S M; Mwandawiro, C; Tomita, T
2013-09-01
Insecticide resistance develops as a genetic factor (allele) conferring lower susceptibility to insecticides proliferates within a target insect population under strong positive selection. Intriguingly, a resistance allele pre-existing in a population often bears a series of further adaptive allelic variants through new mutations. This phenomenon occasionally results in replacement of the predominating resistance allele by fitter new derivatives, and consequently, development of greater resistance at the population level. The overexpression of the cytochrome P450 gene CYP9M10 is associated with pyrethroid resistance in the southern house mosquito Culex quinquefasciatus. Previously, we have found two genealogically related overexpressing CYP9M10 haplotypes, which differ in gene copy number (duplicated and non-duplicated). The duplicated haplotype was derived from the non-duplicated overproducer probably recently. In the present study, we investigated allelic series of CYP9M10 involved in three C. quinquefasciatus laboratory colonies recently collected from three different localities. Duplicated and non-duplicated overproducing haplotypes coexisted in African and Asian colonies indicating a global distribution of both haplotype lineages. The duplicated haplotypes both in the Asian and African colonies were associated with higher expression levels and stronger resistance than non-duplicated overproducing haplotypes. There were slight variation in expression level among the non-duplicated overproducing haplotypes. The nucleotide sequences in coding and upstream regions among members of this group also showed a little diversity. Non-duplicated overproducing haplotypes with relatively higher expression were genealogically closer to the duplicated haplotypes than the other non-duplicated overproducing haplotypes, suggesting multiple cis-acting mutations before duplication.
Farashi, Samaneh; Faramarzi Garous, Negin; Zeinali, Fatemeh; Vakili, Shadi; Ashki, Mehri; Imanian, Hashem; Najmabadi, Hossein; Azarkeivan, Azita; Tamaddoni, Ahmad
2015-01-01
α-Thalassemia (α-thal) is a common genetic disorder in Iran and many parts of the world. Genetic defects in the α-globin gene cluster can result in α-thal that may develop into a clinical phenotype varying from almost asymptomatic to a lethal hemolytic anemia. Loss of one functional α gene, indicated as heterozygous α(+)-thal, shows minor hematological abnormalities. Homozygosity for α(+)- or heterozygosity for α(0)-thal have more severe hematological abnormalities due to a markedly reduced α chain output. At the molecular level, the absence of three α-globin genes resulting from the compound heterozygous state for α(0)- and α(+)-thal, lead to Hb H disease. Here we present a 21 nucleotide (nt) duplication consisting of six amino acids and 3 bp of intronic sequence at the exon-intron boundary, in both the α-globin genes, detected by direct DNA sequencing. This duplication was identified in three patients originating from two different Iranian ethnic groups and one Arab during more than 12 years. The clinical presentation of these individuals varies widely from a mild asymptomatic anemia (heterozygote in α1-globin gene) to a severely anemic state, diagnosed as an Hb H individual requiring blood transfusion (duplication on the α2-globin gene in combination with the - -(MED) double α-globin gene deletion). The third individual, who was homozygous for this nt duplication on the α1-globin gene, showed severe hypochromic microcytic anemia and splenomegaly. In the last decade, numerous α-globin mutations have demonstrated the necessity of prenatal diagnosis (PND) for α-thal, and this study has contributed another mutation as important enough that needs to be considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furforo, L.; Rittler, M.; Slavutsky, I.R.
We report on a girl with developmental delay, macrocephaly, facial asymmetry, small downturned palpebral fissures, high and narrow palate, micrognathia, short neck, a heart defect, and unilateral renal agenesis. Cytogenetic analysis showed a proximal tandem duplication of the long arm of chromosome one (1q12{r_arrow}q21.3). This abnormality was suggested by G-and C-banding but it was specifically characterized by fluorescent in situ hybridization (FISH). Clinical findings in our patient are compared with those of the literature in an attempt to delineate the phenotype in patients with proximal 1q duplication. 12 refs., 4 figs., 1 tab.
Both mechanism and age of duplications contribute to biased gene retention patterns in plants.
Rody, Hugo V S; Baute, Gregory J; Rieseberg, Loren H; Oliveira, Luiz O
2017-01-06
All extant seed plants are successful paleopolyploids, whose genomes carry duplicate genes that have survived repeated episodes of diploidization. However, the survival of gene duplicates is biased with respect to gene function and mechanism of duplication. Transcription factors, in particular, are reported to be preferentially retained following whole-genome duplications (WGDs), but disproportionately lost when duplicated by tandem events. An explanation for this pattern is provided by the Gene Balance Hypothesis (GBH), which posits that duplicates of highly connected genes are retained following WGDs to maintain optimal stoichiometry among gene products; but such connected gene duplicates are disfavored following tandem duplications. We used genomic data from 25 taxonomically diverse plant species to investigate the roles of duplication mechanism, gene function, and age of duplication in the retention of duplicate genes. Enrichment analyses were conducted to identify Gene Ontology (GO) functional categories that were overrepresented in either WGD or tandem duplications, or across ranges of divergence times. Tandem paralogs were much younger, on average, than WGD paralogs and the most frequently overrepresented GO categories were not shared between tandem and WGD paralogs. Transcription factors were overrepresented among ancient paralogs regardless of mechanism of origin or presence of a WGD. Also, in many cases, there was no bias toward transcription factor retention following recent WGDs. Both the fixation and the retention of duplicated genes in plant genomes are context-dependent events. The strong bias toward ancient transcription factor duplicates can be reconciled with the GBH if selection for optimal stoichiometry among gene products is strongest following the earliest polyploidization events and becomes increasingly relaxed as gene families expand.
Książkiewicz, Michał; Rychel, Sandra; Nelson, Matthew N; Wyrwa, Katarzyna; Naganowska, Barbara; Wolko, Bogdan
2016-10-21
The Arabidopsis FLOWERING LOCUS T (FT) gene, a member of the phosphatidylethanolamine binding protein (PEBP) family, is a major controller of flowering in response to photoperiod, vernalization and light quality. In legumes, FT evolved into three, functionally diversified clades, FTa, FTb and FTc. A milestone achievement in narrow-leafed lupin (Lupinus angustifolius L.) domestication was the loss of vernalization responsiveness at the Ku locus. Recently, one of two existing L. angustifolius homologs of FTc, LanFTc1, was revealed to be the gene underlying Ku. It is the first recorded involvement of an FTc homologue in vernalization. The evolutionary basis of this phenomenon in lupin has not yet been deciphered. Bacterial artificial chromosome (BAC) clones carrying LanFTc1 and LanFTc2 genes were localized in different mitotic chromosomes and constituted sequence-specific landmarks for linkage groups NLL-10 and NLL-17. BAC-derived superscaffolds containing LanFTc genes revealed clear microsyntenic patterns to genome sequences of nine legume species. Superscaffold-1 carrying LanFTc1 aligned to regions encoding one or more FT-like genes whereas superscaffold-2 mapped to a region lacking such a homolog. Comparative mapping of the L. angustifolius genome assembly anchored to linkage map localized superscaffold-1 in the middle of a 15 cM conserved, collinear region. In contrast, superscaffold-2 was found at the edge of a 20 cM syntenic block containing highly disrupted collinearity at the LanFTc2 locus. 118 PEBP-family full-length homologs were identified in 10 legume genomes. Bayesian phylogenetic inference provided novel evidence supporting the hypothesis that whole-genome and tandem duplications contributed to expansion of PEBP-family genes in legumes. Duplicated genes were subjected to strong purifying selection. Promoter analysis of FT genes revealed no statistically significant sequence similarity between duplicated copies; only RE-alpha and CCAAT-box motifs were found at conserved positions and orientations. Numerous lineage-specific duplications occurred during the evolution of legume PEBP-family genes. Whole-genome duplications resulted in the origin of subclades FTa, FTb and FTc and in the multiplication of FTa and FTb copy number. LanFTc1 is located in the region conserved among all main lineages of Papilionoideae. LanFTc1 is a direct descendant of ancestral FTc, whereas LanFTc2 appeared by subsequent duplication.
Prathepha, Preecha
2007-01-15
Thailand and Lao PDR are the country's rich rice diversity. To contribute a significant knowledge for development new rice varieties, a collection of 142 black rice (Oryza sativa) accessions were determined for variation of physico-chemical properties, Wx microsatellite allele, Wx allele and chloroplast DNA type. The results showed that amylose content of black rice accessions were ranged from 1.9 to 6.8%. All of the alkali disintegration types (high, intermediate and low) was observed in these rice with average of 1.75 on the 1-3 digestibility scale. The unique Wx microsatellite allele (CT)17 was found in these samples and all black rice strains carried Wx(b) allele. In addition, all black rice accessions were found the duplication of the 23 bp sequence motif in the exon 2 of the wx gene. This evidence is a common phenomenon in glutinous rice. Based on two growing condition for black rice, rainfed lowland and rainfed upland, chloroplast DNA type was distinct from each other. All rice strains from rainfed lowland was deletion plastotype, but all other rainfed upland strains were non-deletion types.
Evolution of the duplicated intracellular lipid-binding protein genes of teleost fishes.
Venkatachalam, Ananda B; Parmar, Manoj B; Wright, Jonathan M
2017-08-01
Increasing organismal complexity during the evolution of life has been attributed to the duplication of genes and entire genomes. More recently, theoretical models have been proposed that postulate the fate of duplicated genes, among them the duplication-degeneration-complementation (DDC) model. In the DDC model, the common fate of a duplicated gene is lost from the genome owing to nonfunctionalization. Duplicated genes are retained in the genome either by subfunctionalization, where the functions of the ancestral gene are sub-divided between the sister duplicate genes, or by neofunctionalization, where one of the duplicate genes acquires a new function. Both processes occur either by loss or gain of regulatory elements in the promoters of duplicated genes. Here, we review the genomic organization, evolution, and transcriptional regulation of the multigene family of intracellular lipid-binding protein (iLBP) genes from teleost fishes. Teleost fishes possess many copies of iLBP genes owing to a whole genome duplication (WGD) early in the teleost fish radiation. Moreover, the retention of duplicated iLBP genes is substantially higher than the retention of all other genes duplicated in the teleost genome. The fatty acid-binding protein genes, a subfamily of the iLBP multigene family in zebrafish, are differentially regulated by peroxisome proliferator-activated receptor (PPAR) isoforms, which may account for the retention of iLBP genes in the zebrafish genome by the process of subfunctionalization of cis-acting regulatory elements in iLBP gene promoters.
Code of Federal Regulations, 2010 CFR
2010-10-01
... as— (i) Program emphasis on the number or type of providers to be served; or (ii) Changes in data... delivery of intermediary services; (7) Duplication in the availability of intermediaries; (8) Conflict of...
Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas.
Zhang, Jinghui; Wu, Gang; Miller, Claudia P; Tatevossian, Ruth G; Dalton, James D; Tang, Bo; Orisme, Wilda; Punchihewa, Chandanamali; Parker, Matthew; Qaddoumi, Ibrahim; Boop, Fredrick A; Lu, Charles; Kandoth, Cyriac; Ding, Li; Lee, Ryan; Huether, Robert; Chen, Xiang; Hedlund, Erin; Nagahawatte, Panduka; Rusch, Michael; Boggs, Kristy; Cheng, Jinjun; Becksfort, Jared; Ma, Jing; Song, Guangchun; Li, Yongjin; Wei, Lei; Wang, Jianmin; Shurtleff, Sheila; Easton, John; Zhao, David; Fulton, Robert S; Fulton, Lucinda L; Dooling, David J; Vadodaria, Bhavin; Mulder, Heather L; Tang, Chunlao; Ochoa, Kerri; Mullighan, Charles G; Gajjar, Amar; Kriwacki, Richard; Sheer, Denise; Gilbertson, Richard J; Mardis, Elaine R; Wilson, Richard K; Downing, James R; Baker, Suzanne J; Ellison, David W
2013-06-01
The most common pediatric brain tumors are low-grade gliomas (LGGs). We used whole-genome sequencing to identify multiple new genetic alterations involving BRAF, RAF1, FGFR1, MYB, MYBL1 and genes with histone-related functions, including H3F3A and ATRX, in 39 LGGs and low-grade glioneuronal tumors (LGGNTs). Only a single non-silent somatic alteration was detected in 24 of 39 (62%) tumors. Intragenic duplications of the portion of FGFR1 encoding the tyrosine kinase domain (TKD) and rearrangements of MYB were recurrent and mutually exclusive in 53% of grade II diffuse LGGs. Transplantation of Trp53-null neonatal astrocytes expressing FGFR1 with the duplication involving the TKD into the brains of nude mice generated high-grade astrocytomas with short latency and 100% penetrance. FGFR1 with the duplication induced FGFR1 autophosphorylation and upregulation of the MAPK/ERK and PI3K pathways, which could be blocked by specific inhibitors. Focusing on the therapeutically challenging diffuse LGGs, our study of 151 tumors has discovered genetic alterations and potential therapeutic targets across the entire range of pediatric LGGs and LGGNTs.
Sanzol, Javier
2010-05-14
Gene duplication is central to genome evolution. In plants, genes can be duplicated through small-scale events and large-scale duplications often involving polyploidy. The apple belongs to the subtribe Pyrinae (Rosaceae), a diverse lineage that originated via allopolyploidization. Both small-scale duplications and polyploidy may have been important mechanisms shaping the genome of this species. This study evaluates the gene duplication and polyploidy history of the apple by characterizing duplicated genes in this species using EST data. Overall, 68% of the apple genes were clustered into families with a mean copy-number of 4.6. Analysis of the age distribution of gene duplications supported a continuous mode of small-scale duplications, plus two episodes of large-scale duplicates of vastly different ages. The youngest was consistent with the polyploid origin of the Pyrinae 37-48 MYBP, whereas the older may be related to gamma-triplication; an ancient hexapolyploidization previously characterized in the four sequenced eurosid genomes and basal to the eurosid-asterid divergence. Duplicated genes were studied for functional diversification with an emphasis on young paralogs; those originated during or after the formation of the Pyrinae lineage. Unequal assignment of single-copy genes and gene families to Gene Ontology categories suggested functional bias in the pattern of gene retention of paralogs. Young paralogs related to signal transduction, metabolism, and energy pathways have been preferentially retained. Non-random retention of duplicated genes seems to have mediated the expansion of gene families, some of which may have substantially increased their members after the origin of the Pyrinae. The joint analysis of over-duplicated functional categories and phylogenies, allowed evaluation of the role of both polyploidy and small-scale duplications during this process. Finally, gene expression analysis indicated that 82% of duplicated genes, including 80% of young paralogs, showed uncorrelated expression profiles, suggesting extensive subfunctionalization and a role of gene duplication in the acquisition of novel patterns of gene expression. This study reports a genome-wide analysis of the mode of gene duplication in the apple, and provides evidence for its role in genome functional diversification by characterising three major processes: selective retention of paralogs, amplification of gene families, and changes in gene expression.
Patiño Mayer, Jan; Bettolli, Marcos
2014-01-01
Alimentary tract duplications are rare congenital lesions normally diagnosed in newborns and children that can occur anywhere from the mouth to the anus and have a reported incidence of approximately 1 in 4500 life births. Symptoms and clinical presentation vary greatly. The presentation varies according to age and location. The treatment finally is surgical; total resection when possible should be the aim of the intervention. In pediatric surgery minimally invasive surgical procedures became more and more important over the last decades. In consequence the operative procedure on alimentary tract duplications changed in this manner. We review on case reports and clinical reports on minimally invasive surgery in the treatment of alimentary tract duplications, determine the importance of minimally invasive techniques in the treatment of this rare entity and rule out that further studies in the field should be performed. PMID:25339813
Genomic and transcriptomic approaches to study immunology in cyprinids: What is next?
Petit, Jules; David, Lior; Dirks, Ron; Wiegertjes, Geert F
2017-10-01
Accelerated by the introduction of Next-Generation Sequencing (NGS), a number of genomes of cyprinid fish species have been drafted, leading to a highly valuable collective resource of comparative genome information on cyprinids (Cyprinidae). In addition, NGS-based transcriptome analyses of different developmental stages, organs, or cell types, increasingly contribute to the understanding of complex physiological processes, including immune responses. Cyprinids are a highly interesting family because they comprise one of the most-diversified families of teleosts and because of their variation in ploidy level, with diploid, triploid, tetraploid, hexaploid and sometimes even octoploid species. The wealth of data obtained from NGS technologies provides both challenges and opportunities for immunological research, which will be discussed here. Correct interpretation of ploidy effects on immune responses requires knowledge of the degree of functional divergence between duplicated genes, which can differ even between closely-related cyprinid fish species. We summarize NGS-based progress in analysing immune responses and discuss the importance of respecting the presence of (multiple) duplicated gene sequences when performing transcriptome analyses for detailed understanding of complex physiological processes. Progressively, advances in NGS technology are providing workable methods to further elucidate the implications of gene duplication events and functional divergence of duplicates genes and proteins involved in immune responses in cyprinids. We conclude with discussing how future applications of NGS technologies and analysis methods could enhance immunological research and understanding. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
FGFR1 tyrosine kinase domain duplication in pilocytic astrocytoma with anaplasia.
Ballester, Leomar Y; Penas-Prado, Marta; Leeds, Norman E; Huse, Jason T; Fuller, Gregory N
2018-04-01
We report the case of a 27-yr-old male with visual field loss who had a 4.9-cm complex cystic mass in the right occipital lobe. Histologic examination showed pilocytic astrocytoma (PA) with anaplasia, and molecular characterization revealed FGFR1 duplication with additional variants of unknown significance in several genes ( ARID1A, ARID1B, CHEK2, EPHA5, and MLL2 ). This is one of only a very few reported cases of anaplastic PA with characterization of molecular alterations. © 2018 Ballester et al.; Published by Cold Spring Harbor Laboratory Press.
Leveraging long sequencing reads to investigate R-gene clustering and variation in sugar beet
USDA-ARS?s Scientific Manuscript database
Host-pathogen interactions are of prime importance to modern agriculture. Plants utilize various types of resistance genes to mitigate pathogen damage. Identification of the specific gene responsible for a specific resistance can be difficult due to duplication and clustering within R-gene families....
Negotiated Interaction in the L2 Classroom
ERIC Educational Resources Information Center
Eckerth, Johannes
2009-01-01
The present paper reports on an approximate replication of Foster's (1998) study on the negotiation of meaning. Foster investigated the interactional adjustments produced by L2 English learners working on different types of language learning tasks in a classroom setting. The replication study duplicates the methods of data collection and data…
1975-06-01
defined as being rlppable to marginally rippable by Caterpillar Tractor Company. A cheap, fast seismic refraction survey could verify that this is an...Ore RIPPABLE MARGINAL NGN RIPPABLE Figure 4. Rippability ranges for typical rock types - D9G caterpillar (from performance manual
Arya, Preeti; Kumar, Gulshan; Acharya, Vishal; Singh, Anil K.
2014-01-01
Nucleotide binding site leucine-rich repeats (NBS-LRR) disease resistance proteins play an important role in plant defense against pathogen attack. A number of recent studies have been carried out to identify and characterize NBS-LRR gene families in many important plant species. In this study, we identified NBS-LRR gene family comprising of 1015 NBS-LRRs using highly stringent computational methods. These NBS-LRRs were characterized on the basis of conserved protein motifs, gene duplication events, chromosomal locations, phylogenetic relationships and digital gene expression analysis. Surprisingly, equal distribution of Toll/interleukin-1 receptor (TIR) and coiled coil (CC) (1∶1) was detected in apple while the unequal distribution was reported in majority of all other known plant genome studies. Prediction of gene duplication events intriguingly revealed that not only tandem duplication but also segmental duplication may equally be responsible for the expansion of the apple NBS-LRR gene family. Gene expression profiling using expressed sequence tags database of apple and quantitative real-time PCR (qRT-PCR) revealed the expression of these genes in wide range of tissues and disease conditions, respectively. Taken together, this study will provide a blueprint for future efforts towards improvement of disease resistance in apple. PMID:25232838
Duplication 12q24----qter in an infant with Dandy-Walker syndrome.
MacDonald, E A; Holden, J J
1985-04-01
A boy with the Dandy-Walker syndrome associated with multiple congenital abnormalities is described. Chromosomal analyses revealed an abnormal chromosome 21, inherited from his father who had a balanced translocation involving chromosomes 12 and 21: rcp(12;21)(q24.1;q22.1). The clinical features of this patient are compared with published descriptions for duplication 12q24----qter and a review of the literature pertaining to chromosomal anomalies found in other patients with the Dandy-Walker syndrome is presented.
Neumann, Pavel; Pavlíková, Zuzana; Koblížková, Andrea; Fuková, Iva; Jedličková, Veronika; Novák, Petr; Macas, Jiří
2015-07-01
In most eukaryotes, centromere is determined by the presence of the centromere-specific histone variant CenH3. Two types of chromosome morphology are generally recognized with respect to centromere organization. Monocentric chromosomes possess a single CenH3-containing domain in primary constriction, whereas holocentric chromosomes lack the primary constriction and display dispersed distribution of CenH3. Recently, metapolycentric chromosomes have been reported in Pisum sativum, representing an intermediate type of centromere organization characterized by multiple CenH3-containing domains distributed across large parts of chromosomes that still form a single constriction. In this work, we show that this type of centromere is also found in other Pisum and closely related Lathyrus species, whereas Vicia and Lens genera, which belong to the same legume tribe Fabeae, possess only monocentric chromosomes. We observed extensive variability in the size of primary constriction and the arrangement of CenH3 domains both between and within individual Pisum and Lathyrus species, with no obvious correlation to genome or chromosome size. Search for CenH3 gene sequences revealed two paralogous variants, CenH3-1 and CenH3-2, which originated from a duplication event in the common ancestor of Fabeae species. The CenH3-1 gene was subsequently lost or silenced in the lineage leading to Vicia and Lens, whereas both genes are retained in Pisum and Lathyrus. Both of these genes appear to have evolved under purifying selection and produce functional CenH3 proteins which are fully colocalized. The findings described here provide the first evidence for a highly dynamic centromere structure within a group of closely related species, challenging previous concepts of centromere evolution. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Molecular evolution of a chordate specific family of G protein-coupled receptors
2011-01-01
Background Chordate evolution is a history of innovations that is marked by physical and behavioral specializations, which led to the development of a variety of forms from a single ancestral group. Among other important characteristics, vertebrates obtained a well developed brain, anterior sensory structures, a closed circulatory system and gills or lungs as blood oxygenation systems. The duplication of pre-existing genes had profound evolutionary implications for the developmental complexity in vertebrates, since mutations modifying the function of a duplicated protein can lead to novel functions, improving the evolutionary success. Results We analyzed here the evolution of the GPRC5 family of G protein-coupled receptors by comprehensive similarity searches and found that the receptors are only present in chordates and that the size of the receptor family expanded, likely due to genome duplication events in the early history of vertebrate evolution. We propose that a single GPRC5 receptor coding gene originated in a stem chordate ancestor and gave rise by duplication events to a gene family comprising three receptor types (GPRC5A-C) in vertebrates, and a fourth homologue present only in mammals (GPRC5D). Additional duplications of GPRC5B and GPRC5C sequences occurred in teleost fishes. The finding that the expression patterns of the receptors are evolutionarily conserved indicates an important biological function of these receptors. Moreover, we found that expression of GPRC5B is regulated by vitamin A in vivo, confirming previous findings that linked receptor expression to retinoic acid levels in tumor cell lines and strengthening the link between the receptor expression and the development of a complex nervous system in chordates, known to be dependent on retinoic acid signaling. Conclusions GPRC5 receptors, a class of G protein-coupled receptors with unique sequence characteristics, may represent a molecular novelty that helped non-chordates to become chordates. PMID:21827690
Marlétaz, Ferdinand; Maeso, Ignacio; Faas, Laura; Isaacs, Harry V; Holland, Peter W H
2015-08-01
The functional consequences of whole genome duplications in vertebrate evolution are not fully understood. It remains unclear, for instance, why paralogues were retained in some gene families but extensively lost in others. Cdx homeobox genes encode conserved transcription factors controlling posterior development across diverse bilaterians. These genes are part of the ParaHox gene cluster. Multiple Cdx copies were retained after genome duplication, raising questions about how functional divergence, overlap, and redundancy respectively contributed to their retention and evolutionary fate. We examined the degree of regulatory and functional overlap between the three vertebrate Cdx genes using single and triple morpholino knock-down in Xenopus tropicalis followed by RNA-seq. We found that one paralogue, Cdx4, has a much stronger effect on gene expression than the others, including a strong regulatory effect on FGF and Wnt genes. Functional annotation revealed distinct and overlapping roles and subtly different temporal windows of action for each gene. The data also reveal a colinear-like effect of Cdx genes on Hox genes, with repression of Hox paralogy groups 1 and 2, and activation increasing from Hox group 5 to 11. We also highlight cases in which duplicated genes regulate distinct paralogous targets revealing pathway elaboration after whole genome duplication. Despite shared core pathways, Cdx paralogues have acquired distinct regulatory roles during development. This implies that the degree of functional overlap between paralogues is relatively low and that gene expression pattern alone should be used with caution when investigating the functional evolution of duplicated genes. We therefore suggest that developmental programmes were extensively rewired after whole genome duplication in the early evolution of vertebrates.
Segmental duplications and evolutionary plasticity at tumor chromosome break-prone regions
Darai-Ramqvist, Eva; Sandlund, Agneta; Müller, Stefan; Klein, George; Imreh, Stefan; Kost-Alimova, Maria
2008-01-01
We have previously found that the borders of evolutionarily conserved chromosomal regions often coincide with tumor-associated deletion breakpoints within human 3p12-p22. Moreover, a detailed analysis of a frequently deleted region at 3p21.3 (CER1) showed associations between tumor breaks and gene duplications. We now report on the analysis of 54 chromosome 3 breaks by multipoint FISH (mpFISH) in 10 carcinoma-derived cell lines. The centromeric region was broken in five lines. In lines with highly complex karyotypes, breaks were clustered near known fragile sites, FRA3B, FRA3C, and FRA3D (three lines), and in two other regions: 3p12.3-p13 (∼75 Mb position) and 3q21.3-q22.1 (∼130 Mb position) (six lines). All locations are shown based on NCBI Build 36.1 human genome sequence. The last two regions participated in three of four chromosome 3 inversions during primate evolution. Regions at 75, 127, and 131 Mb positions carry a large (∼250 kb) segmental duplication (tumor break-prone segmental duplication [TBSD]). TBSD homologous sequences were found at 15 sites on different chromosomes. They were located within bands frequently involved in carcinoma-associated breaks. Thirteen of them have been involved in inversions during primate evolution; 10 were reused by breaks during mammalian evolution; 14 showed copy number polymorphism in man. TBSD sites showed an increase in satellite repeats, retrotransposed sequences, and other segmental duplications. We propose that the instability of these sites stems from specific organization of the chromosomal region, associated with location at a boundary between different CG-content isochores and with the presence of TBSDs and “instability elements,” including satellite repeats and retroviral sequences. PMID:18230801
Segmental duplications and evolutionary plasticity at tumor chromosome break-prone regions.
Darai-Ramqvist, Eva; Sandlund, Agneta; Müller, Stefan; Klein, George; Imreh, Stefan; Kost-Alimova, Maria
2008-03-01
We have previously found that the borders of evolutionarily conserved chromosomal regions often coincide with tumor-associated deletion breakpoints within human 3p12-p22. Moreover, a detailed analysis of a frequently deleted region at 3p21.3 (CER1) showed associations between tumor breaks and gene duplications. We now report on the analysis of 54 chromosome 3 breaks by multipoint FISH (mpFISH) in 10 carcinoma-derived cell lines. The centromeric region was broken in five lines. In lines with highly complex karyotypes, breaks were clustered near known fragile sites, FRA3B, FRA3C, and FRA3D (three lines), and in two other regions: 3p12.3-p13 ( approximately 75 Mb position) and 3q21.3-q22.1 ( approximately 130 Mb position) (six lines). All locations are shown based on NCBI Build 36.1 human genome sequence. The last two regions participated in three of four chromosome 3 inversions during primate evolution. Regions at 75, 127, and 131 Mb positions carry a large ( approximately 250 kb) segmental duplication (tumor break-prone segmental duplication [TBSD]). TBSD homologous sequences were found at 15 sites on different chromosomes. They were located within bands frequently involved in carcinoma-associated breaks. Thirteen of them have been involved in inversions during primate evolution; 10 were reused by breaks during mammalian evolution; 14 showed copy number polymorphism in man. TBSD sites showed an increase in satellite repeats, retrotransposed sequences, and other segmental duplications. We propose that the instability of these sites stems from specific organization of the chromosomal region, associated with location at a boundary between different CG-content isochores and with the presence of TBSDs and "instability elements," including satellite repeats and retroviral sequences.
Genome-wide identification and evolution of the PIN-FORMED (PIN) gene family in Glycine max.
Liu, Yuan; Wei, Haichao
2017-07-01
Soybean (Glycine max) is one of the most important crop plants. Wild and cultivated soybean varieties have significant differences worth further investigation, such as plant morphology, seed size, and seed coat development; these characters may be related to auxin biology. The PIN gene family encodes essential transport proteins in cell-to-cell auxin transport, but little research on soybean PIN genes (GmPIN genes) has been done, especially with respect to the evolution and differences between wild and cultivated soybean. In this study, we retrieved 23 GmPIN genes from the latest updated G. max genome database; six GmPIN protein sequences were changed compared with the previous database. Based on the Plant Genome Duplication Database, 18 GmPIN genes have been involved in segment duplication. Three pairs of GmPIN genes arose after the second soybean genome duplication, and six occurred after the first genome duplication. The duplicated GmPIN genes retained similar expression patterns. All the duplicated GmPIN genes experienced purifying selection (K a /K s < 1) to prevent accumulation of non-synonymous mutations and thus remained more similar. In addition, we also focused on the artificial selection of the soybean PIN genes. Five artificially selected GmPIN genes were identified by comparing the genome sequence of 17 wild and 14 cultivated soybean varieties. Our research provides useful and comprehensive basic information for understanding GmPIN genes.
49 CFR 24.3 - No duplication of payments.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 1 2010-10-01 2010-10-01 false No duplication of payments. 24.3 Section 24.3 Transportation Office of the Secretary of Transportation UNIFORM RELOCATION ASSISTANCE AND REAL PROPERTY... law, or insurance proceeds which is determined by the Agency to have the same purpose and effect as...
31 CFR 1.7 - Fees for services.
Code of Federal Regulations, 2011 CFR
2011-07-01
... direct costs of searching for, reviewing, and duplicating the records sought. Commercial use requesters are not entitled to two hours of free search time or 100 free pages of duplication of documents... searching for and reviewing records even if there is ultimately no disclosure of records, or no records are...
31 CFR 1.7 - Fees for services.
Code of Federal Regulations, 2014 CFR
2014-07-01
... direct costs of searching for, reviewing, and duplicating the records sought. Commercial use requesters are not entitled to two hours of free search time or 100 free pages of duplication of documents... searching for and reviewing records even if there is ultimately no disclosure of records, or no records are...
31 CFR 1.7 - Fees for services.
Code of Federal Regulations, 2012 CFR
2012-07-01
... direct costs of searching for, reviewing, and duplicating the records sought. Commercial use requesters are not entitled to two hours of free search time or 100 free pages of duplication of documents... searching for and reviewing records even if there is ultimately no disclosure of records, or no records are...
40 CFR 25.13 - Coordination and non-duplication.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Coordination and non-duplication. 25.13 Section 25.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL PUBLIC PARTICIPATION IN PROGRAMS UNDER THE RESOURCE CONSERVATION AND RECOVERY ACT, THE SAFE DRINKING WATER ACT, AND THE CLEAN WATER...
40 CFR 25.13 - Coordination and non-duplication.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Coordination and non-duplication. 25.13 Section 25.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL PUBLIC PARTICIPATION IN PROGRAMS UNDER THE RESOURCE CONSERVATION AND RECOVERY ACT, THE SAFE DRINKING WATER ACT, AND THE CLEAN WATER...
40 CFR 60.505 - Reporting and recordkeeping.
Code of Federal Regulations, 2012 CFR
2012-07-01
... of each monthly leak inspection required under § 60.502(j) shall be kept on file at the terminal for...)(1) of this section is an exact duplicate image of the original paper record with certifying...) of this section is an exact duplicate image of the original paper record with certifying signatures...
40 CFR 60.505 - Reporting and recordkeeping.
Code of Federal Regulations, 2014 CFR
2014-07-01
... of each monthly leak inspection required under § 60.502(j) shall be kept on file at the terminal for...)(1) of this section is an exact duplicate image of the original paper record with certifying...) of this section is an exact duplicate image of the original paper record with certifying signatures...
40 CFR 60.505 - Reporting and recordkeeping.
Code of Federal Regulations, 2013 CFR
2013-07-01
... of each monthly leak inspection required under § 60.502(j) shall be kept on file at the terminal for...)(1) of this section is an exact duplicate image of the original paper record with certifying...) of this section is an exact duplicate image of the original paper record with certifying signatures...
40 CFR 60.505 - Reporting and recordkeeping.
Code of Federal Regulations, 2011 CFR
2011-07-01
... of each monthly leak inspection required under § 60.502(j) shall be kept on file at the terminal for...)(1) of this section is an exact duplicate image of the original paper record with certifying...) of this section is an exact duplicate image of the original paper record with certifying signatures...
Wilson, Thomas E; Arlt, Martin F; Park, So Hae; Rajendran, Sountharia; Paulsen, Michelle; Ljungman, Mats; Glover, Thomas W
2015-02-01
Copy number variants (CNVs) resulting from genomic deletions and duplications and common fragile sites (CFSs) seen as breaks on metaphase chromosomes are distinct forms of structural chromosome instability precipitated by replication inhibition. Although they share a common induction mechanism, it is not known how CNVs and CFSs are related or why some genomic loci are much more prone to their occurrence. Here we compare large sets of de novo CNVs and CFSs in several experimental cell systems to each other and to overlapping genomic features. We first show that CNV hotpots and CFSs occurred at the same human loci within a given cultured cell line. Bru-seq nascent RNA sequencing further demonstrated that although genomic regions with low CNV frequencies were enriched in transcribed genes, the CNV hotpots that matched CFSs specifically corresponded to the largest active transcription units in both human and mouse cells. Consistently, active transcription units >1 Mb were robust cell-type-specific predictors of induced CNV hotspots and CFS loci. Unlike most transcribed genes, these very large transcription units replicated late and organized deletion and duplication CNVs into their transcribed and flanking regions, respectively, supporting a role for transcription in replication-dependent lesion formation. These results indicate that active large transcription units drive extreme locus- and cell-type-specific genomic instability under replication stress, resulting in both CNVs and CFSs as different manifestations of perturbed replication dynamics. © 2015 Wilson et al.; Published by Cold Spring Harbor Laboratory Press.
Park, So Hae; Rajendran, Sountharia; Paulsen, Michelle; Ljungman, Mats; Glover, Thomas W.
2015-01-01
Copy number variants (CNVs) resulting from genomic deletions and duplications and common fragile sites (CFSs) seen as breaks on metaphase chromosomes are distinct forms of structural chromosome instability precipitated by replication inhibition. Although they share a common induction mechanism, it is not known how CNVs and CFSs are related or why some genomic loci are much more prone to their occurrence. Here we compare large sets of de novo CNVs and CFSs in several experimental cell systems to each other and to overlapping genomic features. We first show that CNV hotpots and CFSs occurred at the same human loci within a given cultured cell line. Bru-seq nascent RNA sequencing further demonstrated that although genomic regions with low CNV frequencies were enriched in transcribed genes, the CNV hotpots that matched CFSs specifically corresponded to the largest active transcription units in both human and mouse cells. Consistently, active transcription units >1 Mb were robust cell-type-specific predictors of induced CNV hotspots and CFS loci. Unlike most transcribed genes, these very large transcription units replicated late and organized deletion and duplication CNVs into their transcribed and flanking regions, respectively, supporting a role for transcription in replication-dependent lesion formation. These results indicate that active large transcription units drive extreme locus- and cell-type-specific genomic instability under replication stress, resulting in both CNVs and CFSs as different manifestations of perturbed replication dynamics. PMID:25373142
Roux, Julien; Liu, Jialin; Robinson-Rechavi, Marc
2017-01-01
Abstract The evolutionary history of vertebrates is marked by three ancient whole-genome duplications: two successive rounds in the ancestor of vertebrates, and a third one specific to teleost fishes. Biased loss of most duplicates enriched the genome for specific genes, such as slow evolving genes, but this selective retention process is not well understood. To understand what drives the long-term preservation of duplicate genes, we characterized duplicated genes in terms of their expression patterns. We used a new method of expression enrichment analysis, TopAnat, applied to in situ hybridization data from thousands of genes from zebrafish and mouse. We showed that the presence of expression in the nervous system is a good predictor of a higher rate of retention of duplicate genes after whole-genome duplication. Further analyses suggest that purifying selection against the toxic effects of misfolded or misinteracting proteins, which is particularly strong in nonrenewing neural tissues, likely constrains the evolution of coding sequences of nervous system genes, leading indirectly to the preservation of duplicate genes after whole-genome duplication. Whole-genome duplications thus greatly contributed to the expansion of the toolkit of genes available for the evolution of profound novelties of the nervous system at the base of the vertebrate radiation. PMID:28981708
Zhang, Guo-Qiang; Xu, Qing; Bian, Chao; Tsai, Wen-Chieh; Yeh, Chuan-Ming; Liu, Ke-Wei; Yoshida, Kouki; Zhang, Liang-Sheng; Chang, Song-Bin; Chen, Fei; Shi, Yu; Su, Yong-Yu; Zhang, Yong-Qiang; Chen, Li-Jun; Yin, Yayi; Lin, Min; Huang, Huixia; Deng, Hua; Wang, Zhi-Wen; Zhu, Shi-Lin; Zhao, Xiang; Deng, Cao; Niu, Shan-Ce; Huang, Jie; Wang, Meina; Liu, Guo-Hui; Yang, Hai-Jun; Xiao, Xin-Ju; Hsiao, Yu-Yun; Wu, Wan-Lin; Chen, You-Yi; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Luo, Yi-Bo; Van de Peer, Yves; Liu, Zhong-Jian
2016-01-01
Orchids make up about 10% of all seed plant species, have great economical value, and are of specific scientific interest because of their renowned flowers and ecological adaptations. Here, we report the first draft genome sequence of a lithophytic orchid, Dendrobium catenatum. We predict 28,910 protein-coding genes, and find evidence of a whole genome duplication shared with Phalaenopsis. We observed the expansion of many resistance-related genes, suggesting a powerful immune system responsible for adaptation to a wide range of ecological niches. We also discovered extensive duplication of genes involved in glucomannan synthase activities, likely related to the synthesis of medicinal polysaccharides. Expansion of MADS-box gene clades ANR1, StMADS11, and MIKC*, involved in the regulation of development and growth, suggests that these expansions are associated with the astonishing diversity of plant architecture in the genus Dendrobium. On the contrary, members of the type I MADS box gene family are missing, which might explain the loss of the endospermous seed. The findings reported here will be important for future studies into polysaccharide synthesis, adaptations to diverse environments and flower architecture of Orchidaceae. PMID:26754549
Zhang, Guo-Qiang; Xu, Qing; Bian, Chao; Tsai, Wen-Chieh; Yeh, Chuan-Ming; Liu, Ke-Wei; Yoshida, Kouki; Zhang, Liang-Sheng; Chang, Song-Bin; Chen, Fei; Shi, Yu; Su, Yong-Yu; Zhang, Yong-Qiang; Chen, Li-Jun; Yin, Yayi; Lin, Min; Huang, Huixia; Deng, Hua; Wang, Zhi-Wen; Zhu, Shi-Lin; Zhao, Xiang; Deng, Cao; Niu, Shan-Ce; Huang, Jie; Wang, Meina; Liu, Guo-Hui; Yang, Hai-Jun; Xiao, Xin-Ju; Hsiao, Yu-Yun; Wu, Wan-Lin; Chen, You-Yi; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Luo, Yi-Bo; Van de Peer, Yves; Liu, Zhong-Jian
2016-01-12
Orchids make up about 10% of all seed plant species, have great economical value, and are of specific scientific interest because of their renowned flowers and ecological adaptations. Here, we report the first draft genome sequence of a lithophytic orchid, Dendrobium catenatum. We predict 28,910 protein-coding genes, and find evidence of a whole genome duplication shared with Phalaenopsis. We observed the expansion of many resistance-related genes, suggesting a powerful immune system responsible for adaptation to a wide range of ecological niches. We also discovered extensive duplication of genes involved in glucomannan synthase activities, likely related to the synthesis of medicinal polysaccharides. Expansion of MADS-box gene clades ANR1, StMADS11, and MIKC(*), involved in the regulation of development and growth, suggests that these expansions are associated with the astonishing diversity of plant architecture in the genus Dendrobium. On the contrary, members of the type I MADS box gene family are missing, which might explain the loss of the endospermous seed. The findings reported here will be important for future studies into polysaccharide synthesis, adaptations to diverse environments and flower architecture of Orchidaceae.
Molecular evolution of the HoxA cluster in the three major gnathostome lineages
Chiu, Chi-hua; Amemiya, Chris; Dewar, Ken; Kim, Chang-Bae; Ruddle, Frank H.; Wagner, Günter P.
2002-01-01
The duplication of Hox clusters and their maintenance in a lineage has a prominent but little understood role in chordate evolution. Here we examined how Hox cluster duplication may influence changes in cluster architecture and patterns of noncoding sequence evolution. We sequenced the entire duplicated HoxAa and HoxAb clusters of zebrafish (Danio rerio) and extended the 5′ (posterior) part of the HoxM (HoxA-like) cluster of horn shark (Heterodontus francisci) containing the hoxa11 and hoxa13 orthologs as well as intergenic and flanking noncoding sequences. The duplicated HoxA clusters in zebrafish each house considerably fewer genes and are dramatically shorter than the single HoxA clusters of human and horn shark. We compared the intergenic sequences of the HoxA clusters of human, horn shark, zebrafish (Aa, Ab), and striped bass and found extensive conservation of noncoding sequence motifs, i.e., phylogenetic footprints, between the human and horn shark, representing two of the three gnathostome lineages. These are putative cis-regulatory elements that may play a role in the regulation of the ancestral HoxA cluster. In contrast, homologous regions of the duplicated HoxAa and HoxAb clusters of zebrafish and the HoxA cluster of striped bass revealed a striking loss of conservation of these putative cis-regulatory sequences in the 3′ (anterior) segment of the cluster, where zebrafish only retains single representatives of group 1, 3, 4, and 5 (HoxAa) and group 2 (HoxAb) genes and in the 5′ part of the clusters, where zebrafish retains two copies of the group 13, 11, and 9 genes, i.e., AbdB-like genes. In analyzing patterns of cis-sequence evolution in the 5′ part of the clusters, we explicitly looked for evidence of complementary loss of conserved noncoding sequences, as predicted by the duplication-degeneration-complementation model in which genetic redundancy after gene duplication is resolved because of the fixation of complementary degenerative mutations. Our data did not yield evidence supporting this prediction. We conclude that changes in the pattern of cis-sequence conservation after Hox cluster duplication are more consistent with being the outcome of adaptive modification rather than passive mechanisms that erode redundancy created by the duplication event. These results support the view that genome duplications may provide a mechanism whereby master control genes undergo radical modifications conducive to major alterations in body plan. Such genomic revolutions may contribute significantly to the evolutionary process. PMID:11943847