White dwarf models for type 1 supernovae and quiet supernovae, and presupernova evolution
NASA Technical Reports Server (NTRS)
Nomoto, K.
1980-01-01
Supernova mechanisms in accreting white dwarfs are considered with emphasis on deflagration as a plausible mechanism for producing Type I supernovae and electron captures to form quiet supernovae leaving neutron stars. These outcomes depend on accretion rate of helium, initial mass and composition of the white dwarf. The various types of hydrogen shell burning in the presupernova stage are also discussed.
The Distant Type Ia Supernova Rate
DOE R&D Accomplishments Database
Pain, R.; Fabbro, S.; Sullivan, M.; Ellis, R. S.; Aldering, G.; Astier, P.; Deustua, S. E.; Fruchter, A. S.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hardin, D.; Hook, I. M.; Howell, D. A.; Irwin, M. J.; Kim, A. G.; Kim, M. Y.; Knop, R. A.; Lee, J. C.; Perlmutter, S.; Ruiz-Lapuente, P.; Schahmaneche, K.; Schaefer, B.; Walton, N. A.
2002-05-28
We present a measurement of the rate of distant Type Ia supernovae derived using 4 large subsets of data from the Supernova Cosmology Project. Within this fiducial sample, which surveyed about 12 square degrees, thirty-eight supernovae were detected at redshifts 0.25--0.85. In a spatially flat cosmological model consistent with the results obtained by the Supernova Cosmology Project, we derive a rest-frame Type Ia supernova rate at a mean red shift z {approx_equal} 0.55 of 1.53 {sub -0.25}{sub -0.31}{sup 0.28}{sup 0.32} x 10{sup -4} h{sup 3} Mpc{sup -3} yr{sup -1} or 0.58{sub -0.09}{sub -0.09}{sup +0.10}{sup +0.10} h{sup 2} SNu(1 SNu = 1 supernova per century per 10{sup 10} L{sub B}sun), where the first uncertainty is statistical and the second includes systematic effects. The dependence of the rate on the assumed cosmological parameters is studied and the redshift dependence of the rate per unit comoving volume is contrasted with local estimates in the context of possible cosmic star formation histories and progenitor models.
Supernova Survey: An Intensive HST Survey for z>1 Type Ia Supernovae by Targeting Galaxy Clusters Survey new survey strategy to discover and study high redshift Type Ia supernovae (SNe Ia) using the Hubble improvement in the efficiency of finding SNe compared to an HST field survey and a factor of three improvement
The distant type Ia supernova rate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pain, R.; Fabbro, S.; Sullivan, M.
2002-05-20
We present a measurement of the rate of distant Type Ia supernovae derived using 4 large subsets of data from the Supernova Cosmology Project. Within this fiducial sample,which surveyed about 12 square degrees, thirty-eight supernovae were detected at redshifts 0.25--0.85. In a spatially flat cosmological model consistent with the results obtained by the Supernova Cosmology Project, we derive a rest-frame Type Ia supernova rate at a mean red shift z {approx_equal} 0.55 of 1.53 {sub -0.25}{sub -0.31}{sup 0.28}{sup 0.32} x 10{sup -4} h{sup 3} Mpc{sup -3} yr{sup -1} or 0.58{sub -0.09}{sub -0.09}{sup +0.10}{sup +0.10} h{sup 2} SNu(1 SNu = 1more » supernova per century per 10{sup 10} L{sub B}sun), where the first uncertainty is statistical and the second includes systematic effects. The dependence of the rate on the assumed cosmological parameters is studied and the redshift dependence of the rate per unit comoving volume is contrasted with local estimates in the context of possible cosmic star formation histories and progenitor models.« less
Cosmic Explosions in Three Dimensions
NASA Astrophysics Data System (ADS)
Höflich, Peter; Kumar, Pawan; Wheeler, J. Craig
2011-08-01
Introduction: 3-D Explosions: a meditation on rotation (and magnetic fields) J. C. Wheeler; Part I. Supernovae: Observations Today: 1. Supernova explosions: lessons from spectropolarimetry L. Wang; 2. Spectropolarimetric observations of Supernovae A. Filippenko and D. C. Leonard; 3. Observed and physical properties of type II plateau supernovae M. Hamuy; 4. SN1997B and the different types of Type Ic Supernovae A. Clocchiatti, B. Leibundgut, J. Spyromilio, S. Benetti, E. Cappelaro, M. Turatto and M. Phillips; 5. Near-infrared spectroscopy of stripped-envelope Supernovae C. L. Gerardy, R. A. Fesen, G. H. Marion, P. Hoeflich and J. C. Wheeler; 6. Morphology of Supernovae remnants R. Fesen; 7. The evolution of Supernova remnants in the winds of massive stars V. Dwarkadas; 8. Types for the galactic Supernovae B. E. Schaefer; Part II. Theory of Thermonuclear Supernovae: 9. Semi-steady burning evolutionary sequences for CAL 83 and CAL 87: supersoft X-ray binaries are Supernovae Ia progenitors S. Starrfield, F. X. Timmes, W. R. Hix, E. M. Sion, W. M. Sparks and S. Dwyer; 10. Type Ia Supernovae progenitors: effects of the spin-up of the white dwarfs S.-C. Yoon and N. Langer; 11. Terrestrial combustion: feedback to the stars E. S. Oran; 12. Non-spherical delayed detonations E. Livne; 13. Numerical simulations of Type Ia Supernovae: deflagrations and detonations V. N. Gamezo, A. M. Khokhlov and E. S. Oran; 14. Type Ia Supernovae: spectroscopic surprises D. Branch; 15. Aspherity effects in Supernovae P. Hoeflich, C. Gerardy and R. Quimby; 16. Broad light curve SneIa: asphericity or something else? A. Howell and P. Nugent; 17. Synthetic spectrum methods for 3-D SN models R. Thomas; 18. A hole in Ia' spectroscopic and polarimetric signatures of SN Ia asymmetry due to a companion star D. Kasen; 19. Hunting for the signatures of 3-D explosions with 1-D synthetic spectra E. Lentz, E. Baron and P. H. Hauschildt; 20. On the variation of the peak luminosity of Type Ia J. W. Truran, E. X. Timmes and E. F. Brown; Part III. Theory of Core Collapse Supernovae: 21. Rotation of core collapse progenitors: single and binary stars N. Langer; 22. Large scale convection and the convective Supernova mechanism S. Colgate and M. E. Herant; 23. Topics in core-collapse Supernova A. Burrows, C. D. Ott and C. Meakin; 24. MHD Supernova jets: the missing link D. Meier and M. Nakamura; 25. Effects of super strong magnetic fields in core collapse Supernovae I. S. Akiyama; 26. Non radial instability of stalled accretion shocks advective-acoustic cycle T. Foglizzo and P. Galletti; 27. Asymmetry effects in Hypernovae K. Maeda, K. Nomoto, J. Deng and P.A. Mazzali; 28. Turbulent MHD jet collimation and thermal driving P. T. Williams; Part IV. Magnetars, N-Stars, Pulsars: 29. Supernova remnants and pulsar wind nebulae R. Chevalier; 30. X-Ray signatures of Supernovae D. Swartz; 31. Asymmetric Supernovae and Neutron Star Kicks D. Lai and D. Q. Lamb; 32. Triggers of magnetar outbursts R. Duncan; 33. Turbulent MHD Jet Collimation and Thermal Driving P. Williams; 34. The interplay between nuclear electron capture and fluid dynamics in core collapse Supernovae W. R. Hix, O. E. B. Messer and A. Mezzacappa; Part V. Gamma-Ray Bursts: 35. GRB 021004 and Gamma-ray burst distances B. E. Schaefer; 36. Gamma-ray bursts as a laboratory for the study of Type Ic Supernovae D. Q. Lamb, T. Q. Donaghy and C. Graziani; 37. The diversity of cosmic explosions: Gamma-ray bursts and Type Ib/c Supernovae E. Berger; 38. A GRB simulation using 3D relativistic hydrodynamics J. Cannizo, N. Gehrels and E. T. Vishniac; 39. The first direct link in the Supernova/GRB connection: GRB 030329 and SN 2003dh T. Matheson; Part VI. Summary: 40. Three-dimensional explosions C. Wheeler.
Low-z Type Ia Supernova Calibration
NASA Astrophysics Data System (ADS)
Hamuy, Mario
The discovery of acceleration and dark energy in 1998 arguably constitutes one of the most revolutionary discoveries in astrophysics in recent years. This paradigm shift was possible thanks to one of the most traditional cosmological tests: the redshift-distance relation between galaxies. This discovery was based on a differential measurement of the expansion rate of the universe: the current one provided by nearby (low-z) type Ia supernovae and the one in the past measured from distant (high-z) supernovae. This paper focuses on the first part of this journey: the calibration of the type Ia supernova luminosities and the local expansion rate of the universe, which was made possible thanks to the introduction of digital CCD (charge-coupled device) digital photometry. The new technology permitted us in the early 1990s to convert supernovae as precise tools to measure extragalactic distances through two key surveys: (1) the "Tololo Supernova Program" which made possible the critical discovery of the "peak luminosity-decline rate" relation for type Ia supernovae, the key underlying idea today behind precise cosmology from supernovae, and (2) the Calán/Tololo project which provided the low - z type Ia supernova sample for the discovery of acceleration.
The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star.
Howell, D Andrew; Sullivan, Mark; Nugent, Peter E; Ellis, Richard S; Conley, Alexander J; Le Borgne, Damien; Carlberg, Raymond G; Guy, Julien; Balam, David; Basa, Stephane; Fouchez, Dominique; Hook, Isobel M; Hsiao, Eric Y; Neill, James D; Pain, Reynald; Perrett, Kathryn M; Pritchet, Christopher J
2006-09-21
The accelerating expansion of the Universe, and the need for dark energy, were inferred from observations of type Ia supernovae. There is a consensus that type Ia supernovae are thermonuclear explosions that destroy carbon-oxygen white dwarf stars that have accreted matter from a companion star, although the nature of this companion remains uncertain. These supernovae are thought to be reliable distance indicators because they have a standard amount of fuel and a uniform trigger: they are predicted to explode when the mass of the white dwarf nears the Chandrasekhar mass of 1.4 solar masses (M(o)). Here we show that the high-redshift supernova SNLS-03D3bb has an exceptionally high luminosity and low kinetic energy that both imply a super-Chandrasekhar-mass progenitor. Super-Chandrasekhar-mass supernovae should occur preferentially in a young stellar population, so this may provide an explanation for the observed trend that overluminous type Ia supernovae occur only in 'young' environments. As this supernova does not obey the relations that allow type Ia supernovae to be calibrated as standard candles, and as no counterparts have been found at low redshift, future cosmology studies will have to consider possible contamination from such events.
Probing Late-Stage Stellar Evolution through Robotic Follow-Up of Nearby Supernovae
NASA Astrophysics Data System (ADS)
Hosseinzadeh, Griffin
2018-01-01
Many of the remaining uncertainties in stellar evolution can be addressed through immediate and long-term photometry and spectroscopy of supernovae. The early light curves of thermonuclear supernovae can contain information about the nature of the binary companion to the exploding white dwarf. Spectra of core-collapse supernovae can reveal material lost by massive stars in their final months to years. Thanks to a revolution in technology—robotic telescopes, high-speed internet, machine learning—we can now routinely discover supernovae within days of explosion and obtain well-sampled follow-up data for months and years. Here I present three major results from the Global Supernova Project at Las Cumbres Observatory that take advantage of these technological advances. (1) SN 2017cbv is a Type Ia supernova discovered within a day of explosion. Early photometry shows a bump in the U-band relative to previously observed Type Ia light curves, possibly indicating the presence of a nondegenerate binary companion. (2) SN 2016bkv is a low-luminosity Type IIP supernova also caught very young. Narrow emission lines in the earliest spectra indicate interaction between the ejecta and a dense shell of circumstellar material, previously observed only in the brightest Type IIP supernovae. (3) Type Ibn supernovae are a rare class that interact with hydrogen-free circumstellar material. An analysis of the largest-yet sample of this class has found that their light curves are much more homogeneous and faster-evolving than their hydrogen-rich counterparts, Type IIn supernovae, but that their maximum-light spectra are more diverse.
NASA Technical Reports Server (NTRS)
Shklovskiy, I. S.
1980-01-01
The nature of type 1 supernovae (SN 1) is discussed through a comparison of observational evidence and theoretical perspectives relating to both type 1 and 2 supernovae. In particular two hypotheses relating to SN 1 phenomenon are examined: the first proposing that SN 1 are components of binary systems in which, at a comparatively late stage of evolution, overflow of the mass occurs; the second considers pre-SN 1 to be recently evolved stars with a mass greater than 1.4 solar mass (white dwarfs). In addition, an explanation of the reduced frequency of flares of SN 1 in spiral galaxies as related to that in elliptical galaxies is presented.
SN2005da: A Spectroscopic and Photometric Analysis of a Peculiar Type Ic Supernova
NASA Astrophysics Data System (ADS)
Williamson, Jacob
2017-12-01
Core collapse supernovae are an important class of objects in stellar evolution research as they are the final life stage of high mass stars. Supernovae in general are classified into several spectral types; this paper explores SN 2005da, classified as a Type Ic, meaning it lacks hydrogen and helium lines. The supernova was originally classified as a broad-lined Type Ic (Type Ic-BL), with expansion velocities near maximum light greater than or approximately equal to 15000 km/s. However, some of the elements present in the spectrum, namely carbon and oxygen, have narrower lines (FWHM approximately equal to 2300 km/s) than other elements, indicating an interaction with a previously ejected envelope. The supernova is also found to have a decay time, with a change in magnitude over 15 days following maximum light of about 1.4 magnitudes, that is significantly faster than typical Type Ic or Ic-BL. This is more akin to a rarer object type known as a Type Ibn, although it lacks the characteristic narrow helium lines of this type. Therefore, SN 2005da appears to be unlike known examples of Type Ic supernovae.
On relative supernova rates and nucleosynthesis roles
NASA Technical Reports Server (NTRS)
Arnett, W. David; Schramm, David N.; Truran, James W.
1988-01-01
It is shown that the Ni-56-Fe-56 observed in SN 1987A argues that core collapse supernovae may be responsible for more that 50 percent of the iron in the galaxy. Furthermore it is argued that the time averaged rate of thermonuclear driven Type I supernovae may be at least an order of magnitude lower than the average rate of core collapse supernovae. The present low rate of Type II supernovae (below their time averaged rate of approx. 1/10 yr) is either because the past rate was much higher because many core collapse supernovae are dim like SN 1987A. However, even in this latter case they are only an order of magnitude dimmer that normal Type II's due to the contribution of Ni-56 decay to the light curve.
NASA Astrophysics Data System (ADS)
Fischer, John Arthur
For 70 years, the physics community operated under the assumption that the expansion of the Universe must be slowing due to gravitational attraction. Then, in 1998, two teams of scientists used Type Ia supernovae to discover that cosmic expansion was actually acceler- ating due to a mysterious "dark energy." As a result, Type Ia supernovae have become the most cosmologically important transient events in the last 20 years, with a large amount of effort going into their discovery as well as understanding their progenitor systems. One such probe for understanding Type Ia supernovae is to use rate measurements to de- termine the time delay between star formation and supernova explosion. For the last 30 years, the discovery of individual Type Ia supernova events has been accelerating. How- ever, those discoveries were happening in time-domain surveys that probed only a portion of the redshift range where expansion was impacted by dark energy. The Dark Energy Survey (DES) is the first project in the "next generation" of time-domain surveys that will discovery thousands of Type Ia supernovae out to a redshift of 1.2 (where dark energy be- comes subdominant) and DES will have better systematic uncertainties over that redshift range than any survey to date. In order to gauge the discovery effectiveness of this survey, we will use the first season's 469 photometrically typed supernovee and compare it with simulations in order to update the full survey Type Ia projections from 3500 to 2250. We will then use 165 of the 469 supernovae out to a redshift of 0.6 to measure the supernovae rate both as a function of comoving volume and of the star formation rate as it evolves with redshift. We find the most statistically significant prompt fraction of any survey to date (with a 3.9? prompt fraction detection). We will also reinforce the already existing tension in the measurement of the delayed fraction between high (z > 1.2) and low red- shift rate measurements, where we find no significant evidence of a delayed fraction at all in our photometric sample.
Semi-supervised learning for photometric supernova classification
NASA Astrophysics Data System (ADS)
Richards, Joseph W.; Homrighausen, Darren; Freeman, Peter E.; Schafer, Chad M.; Poznanski, Dovi
2012-01-01
We present a semi-supervised method for photometric supernova typing. Our approach is to first use the non-linear dimension reduction technique diffusion map to detect structure in a data base of supernova light curves and subsequently employ random forest classification on a spectroscopically confirmed training set to learn a model that can predict the type of each newly observed supernova. We demonstrate that this is an effective method for supernova typing. As supernova numbers increase, our semi-supervised method efficiently utilizes this information to improve classification, a property not enjoyed by template-based methods. Applied to supernova data simulated by Kessler et al. to mimic those of the Dark Energy Survey, our methods achieve (cross-validated) 95 per cent Type Ia purity and 87 per cent Type Ia efficiency on the spectroscopic sample, but only 50 per cent Type Ia purity and 50 per cent efficiency on the photometric sample due to their spectroscopic follow-up strategy. To improve the performance on the photometric sample, we search for better spectroscopic follow-up procedures by studying the sensitivity of our machine-learned supernova classification on the specific strategy used to obtain training sets. With a fixed amount of spectroscopic follow-up time, we find that, despite collecting data on a smaller number of supernovae, deeper magnitude-limited spectroscopic surveys are better for producing training sets. For supernova Ia (II-P) typing, we obtain a 44 per cent (1 per cent) increase in purity to 72 per cent (87 per cent) and 30 per cent (162 per cent) increase in efficiency to 65 per cent (84 per cent) of the sample using a 25th (24.5th) magnitude-limited survey instead of the shallower spectroscopic sample used in the original simulations. When redshift information is available, we incorporate it into our analysis using a novel method of altering the diffusion map representation of the supernovae. Incorporating host redshifts leads to a 5 per cent improvement in Type Ia purity and 13 per cent improvement in Type Ia efficiency. A web service for the supernova classification method used in this paper can be found at .
The Search for Lensed Supernovae
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-01-01
Type Ia supernovae that have multiple images due to gravitational lensing can provide us with a wealth of information both about the supernovae themselves and about our surrounding universe. But how can we find these rare explosions?Clues from Multiple ImagesWhen light from a distant object passes by a massive foreground galaxy, the galaxys strong gravitational pull can bend the light, distorting our view of the backgroundobject. In severe cases, this process can cause multiple images of the distant object to appear in the foreground lensing galaxy.An illustration of gravitational lensing. Light from the distant supernova is bent as it passes through a giant elliptical galaxy in the foreground, causing multiple images of the supernova to appear to be hosted by the elliptical galaxy. [Adapted from image by NASA/ESA/A. Feild (STScI)]Observations of multiply-imaged Type Ia supernovae (explosions that occur when white dwarfs in binary systems exceed their maximum allowed mass) could answer a number of astronomical questions. Because Type Ia supernovae are standard candles, distant, lensed Type Ia supernovae can be used to extend the Hubble diagram to high redshifts. Furthermore, the lensing time delays from the multiply-imaged explosion can provide high-precision constraints on cosmological parameters.The catch? So far, weve only found one multiply-imaged Type Ia supernova: iPTF16geu, discovered late last year. Were going to need a lot more of them to develop a useful sample! So how do we identify themutiply-imaged Type Ias among the many billions of fleeting events discovered in current and future surveys of transients?Searching for AnomaliesAbsolute magnitudes for Type Ia supernovae in elliptical galaxies. None are expected to be above -20 in the B band, so if we calculate a magnitude for a Type Ia supernova thats larger than this, its probably not hosted by the galaxy we think it is! [Goldstein Nugent 2017]Two scientists from University of California, Berkeley and Lawrence Berkeley National Laboratory have a plan. In a recent publication, Daniel Goldstein and Peter Nugent propose the following clever procedure to apply to data from transient surveys:From the data, select only the supernova candidates that appear to be hosted by quiescent elliptical galaxies.Use the host galaxies photometric redshifts to calculate absolute magnitudes for the supernovae in this sample.Select from this only the supernovae above the maximum absolute magnitude expected for Type Ia supernovae.Supernovae selected in this way are likely tricking us: their apparent hosts are probably not their hosts at all! Instead, the supernova is likely behind the galaxy, and the galaxy is just lensing its light. Using this strategy therefore allows us to select supernova candidates that are most likely to be distant, gravitationally lensed Type Ia supernovae.Redshift distribution of the multiply-imaged Type Ia supernovae the authors estimate will be detectable by ZTF and LSST in their respective 3- and 10-year survey durations. [Goldstein Nugent 2017]A convenient aspect of Goldstein and Nugents technique is that we dont need to be able to resolve the lensed multiple images for discovery. This is useful, because ground-based optical surveys dont have the resolution to see the separate images yet theyll still be useful for discovering multiply-imaged supernovae.Future ProspectsHow useful? Goldstein and Nugent use Monte Carlo simulations to estimate how many multiply-imaged Type Ia supernovae will be discoverable with future survey projects. They find that theZwicky Transient Facility (ZTF), which will begin operating this year, should be able to find up to 10 using this technique in a 3-year search. The Large Synoptic Survey Telescope (LSST), which should start operating in 2022, will be able to find around 500 multiply-imaged Type Ia supernovae in a 10-year survey.CitationDaniel A. Goldstein and Peter E. Nugent 2017 ApJL 834 L5. doi:10.3847/2041-8213/834/1/L5
Type IIP supernova light curves affected by the acceleration of red supergiant winds
NASA Astrophysics Data System (ADS)
Moriya, Takashi J.; Förster, Francisco; Yoon, Sung-Chul; Gräfener, Götz; Blinnikov, Sergei I.
2018-05-01
We introduce the first synthetic light-curve model set of Type IIP supernovae exploded within circumstellar media in which the acceleration of the red supergiant winds is taken into account. Because wind acceleration makes the wind velocities near the progenitors low, the density of the immediate vicinity of the red supergiant supernova progenitors can be higher than that extrapolated by using a constant terminal wind velocity. Therefore, even if the mass-loss rate of the progenitor is relatively low, it can have a dense circumstellar medium at the immediate stellar vicinity and the early light curves of Type IIP supernovae are significantly affected by it. We adopt a simple β velocity law to formulate the wind acceleration. We provide bolometric and multicolour light curves of Type IIP supernovae exploding within such accelerated winds from the combinations of three progenitors, 12-16 M⊙; five β, 1-5; seven mass-loss rates, 10-5-10-2 M⊙ yr-1; and four explosion energies, (0.5-2) × 1051 erg. All the light-curve models are available at https://goo.gl/o5phYb. When the circumstellar density is sufficiently high, our models do not show a classical shock breakout as a consequence of the interaction with the dense and optically thick circumstellar media. Instead, they show a delayed `wind breakout', substantially affecting early light curves of Type IIP supernovae. We find that the mass-loss rates of the progenitors need to be 10-3-10-2 M⊙ yr-1 to explain typical rise times of 5-10 d in Type IIP supernovae assuming a dense circumstellar radius of 1015 cm.
Finding Distances to Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-03-01
Type Ia supernovae are known as standard candles due to their consistency, allowing us to measure distances based on their brightness. But what if these explosions arent quite as consistent as we thought? Due scientific diligence requires careful checks, so a recent study investigates whether the metallicity of a supernovas environment affects the peak luminosity of the explosion.Metallicity Dependence?Type Ia supernovae are incredibly powerful tools for determining distances in our universe. Because these supernovae are formed by white dwarfs that explode when they reach a uniform accreted mass, the supernova peak luminosity is thought to be very consistent. This consistency allows these supernovae to be used as standard candles to measure distances to their host galaxies.But what if that peak luminosity is affected by a factor that we havent taken into account? Theorists have proposed that the luminosities of Type Ia supernovae might depend on the metallicity of their environments with high-metallicity environments suppressing supernova luminosities. If this is true, then we could be systematically mis-measuring cosmological distances using these supernovae.Testing AbundancesSupernova brightnesses vs. the metallicity of their environments. Low-metallicity supernovae (blue shading) and high-metallicity supernovae (red shading) have an average magnitude difference of ~0.14. [Adapted from Moreno-Raya et al. 2016]A team led by Manuel Moreno-Raya, of the Center for Energy, Environment and Technology (CIEMAT) in Spain, has observed 28 Type Ia supernovae in an effort to test for such a metallicity dependence. These supernovae each have independent distance measurements (e.g., from Cepheids or the Tully-Fisher relation).Moreno-Raya and collaborators used spectra from the 4.2-m William Herschel Telescope to estimate oxygen abundances in the region where each of these supernovae exploded. They then used these measurements to determine if metallicity of the local region affects the luminosity of the supernova.Determining DistancesThe authors find that there are indeed differences in peak supernova luminosity based on metallicity of the local environment. Their observations support a trend in which more metal-rich galaxies host less luminous supernovae, whereas lower-metallicity galaxies host supernovae with greater luminosities consistent with theoretical predictions.This observational confirmation suggests that the metallicity of the progenitor may well play a role in peak supernova luminosity and, as a result, the distances at which we estimate they exploded. This systematic effect can, however, be easily corrected for in the distance-estimate procedure.As the number of known supernovae is expected to drastically increase with the start of future large surveys such as the Large Synoptic Survey Telescope (LSST) or the Dark Energy Survey (DES), supernova distance measurements will soon be dominated by systematic errors rather than statistical ones. Correctly accounting for effects such as this apparent metallicity-dependence of supernovae continues to be important for accurately determining distances using Type Ia supernovae as indicators.CitationManuel E. Moreno-Raya et al 2016 ApJ 818 L19. doi:10.3847/2041-8205/818/1/L19
Deep Recurrent Neural Networks for Supernovae Classification
NASA Astrophysics Data System (ADS)
Charnock, Tom; Moss, Adam
2017-03-01
We apply deep recurrent neural networks, which are capable of learning complex sequential information, to classify supernovae (code available at https://github.com/adammoss/supernovae). The observational time and filter fluxes are used as inputs to the network, but since the inputs are agnostic, additional data such as host galaxy information can also be included. Using the Supernovae Photometric Classification Challenge (SPCC) data, we find that deep networks are capable of learning about light curves, however the performance of the network is highly sensitive to the amount of training data. For a training size of 50% of the representational SPCC data set (around 104 supernovae) we obtain a type-Ia versus non-type-Ia classification accuracy of 94.7%, an area under the Receiver Operating Characteristic curve AUC of 0.986 and an SPCC figure-of-merit F 1 = 0.64. When using only the data for the early-epoch challenge defined by the SPCC, we achieve a classification accuracy of 93.1%, AUC of 0.977, and F 1 = 0.58, results almost as good as with the whole light curve. By employing bidirectional neural networks, we can acquire impressive classification results between supernovae types I, II and III at an accuracy of 90.4% and AUC of 0.974. We also apply a pre-trained model to obtain classification probabilities as a function of time and show that it can give early indications of supernovae type. Our method is competitive with existing algorithms and has applications for future large-scale photometric surveys.
Initial statistics from the Perth Automated Supernova Search
NASA Astrophysics Data System (ADS)
Williams, A. J.
1997-08-01
The Perth Automated Supernova Search uses the 61-cm PLAT (Perth Lowell Automated Telescope) at Perth Observatory, Western Australia. Since 1993 January 1, five confirmed supernovae have been found by the search. The analysis of the first three years of data is discussed, and preliminary results presented. We find a Type Ib/c rate of 0.43 +/- 0.43 SNu, and a Type IIP rate of 0.86 +/- 0.49 SNu, where SNu are 'supernova units'. These values are for a Hubble constant of 75 km per sec per Mpc.
The lowest-metallicity type II supernova from the highest-mass red supergiant progenitor
NASA Astrophysics Data System (ADS)
Anderson, J. P.; Dessart, L.; Gutiérrez, C. P.; Krühler, T.; Galbany, L.; Jerkstrand, A.; Smartt, S. J.; Contreras, C.; Morrell, N.; Phillips, M. M.; Stritzinger, M. D.; Hsiao, E. Y.; González-Gaitán, S.; Agliozzo, C.; Castellón, S.; Chambers, K. C.; Chen, T.-W.; Flewelling, H.; Gonzalez, C.; Hosseinzadeh, G.; Huber, M.; Fraser, M.; Inserra, C.; Kankare, E.; Mattila, S.; Magnier, E.; Maguire, K.; Lowe, T. B.; Sollerman, J.; Sullivan, M.; Young, D. R.; Valenti, S.
2018-05-01
Red supergiants have been confirmed as the progenitor stars of the majority of hydrogen-rich type II supernovae1. However, while such stars are observed with masses >25 M⊙ (ref. 2), detections of >18 M⊙ progenitors remain elusive1. Red supergiants are also expected to form at all metallicities, but discoveries of explosions from low-metallicity progenitors are scarce. Here, we report observations of the type II supernova, SN 2015bs, for which we infer a progenitor metallicity of ≤0.1 Z⊙ from comparison to photospheric-phase spectral models3, and a zero-age main-sequence mass of 17–25 M⊙ through comparison to nebular-phase spectral models4,5. SN 2015bs displays a normal ‘plateau’ light-curve morphology, and typical spectral properties, implying a red supergiant progenitor. This is the first example of such a high-mass progenitor for a ‘normal’ type II supernova, suggesting a link between high-mass red supergiant explosions and low-metallicity progenitors.
Investigating the Origin of the Supernova Remnant W49B
NASA Astrophysics Data System (ADS)
Crum, Ryan Matthew; Frank, Kari A.; Dwarkadas, Vikram; Burrows, David N.
2018-01-01
W49B is a Galactic supernova remnant whose origin is still debated. Is it the remains of an unusual asymmetric Type 1a supernova or of a jet-driven core collapse supernova? Using the X-ray analysis method, Smoothed Particle Inference (SPI), we dig deeper into understanding the complex properties of SNR W49B. We do this by characterizing the temperatures and abundance ratios throughout the remnant. We will compare the results with a wide variety of supernova nucleosynthesis models in order to constrain the mechanism behind this unusual supernova remnant.
Ages, chemistry, and type 1A supernovae: Clues to the formation of the galactic stellar halo
NASA Technical Reports Server (NTRS)
Smecker-Hane, Tammy A.; Wyse, Rosemary F. G.
1993-01-01
We endeavor to resolve two conflicting constraints on the duration of the formation of the Galactic stellar halo - 2-3 Gyr age differences in halo stars, and the time scale inferred from the observed constant values of chemical element abundance ratios characteristic of enrichment by Type II supernovae - by investigating the time scale for the onset of Type Ia supernovae (SNIa) in the currently favored progenitor model - mergers of carbon and oxygen white dwarfs (CO WDs).
Broad-line Type Ic supernova SN 2014ad
NASA Astrophysics Data System (ADS)
Sahu, D. K.; Anupama, G. C.; Chakradhari, N. K.; Srivastav, S.; Tanaka, Masaomi; Maeda, Keiichi; Nomoto, Ken'ichi
2018-04-01
We present optical and ultraviolet photometry and low-resolution optical spectroscopy of the broad-line Type Ic supernova SN 2014ad in the galaxy PGC 37625 (Mrk 1309), covering the evolution of the supernova during -5 to +87 d with respect to the date of maximum in the B band. A late-phase spectrum obtained at +340 d is also presented. With an absolute V-band magnitude at peak of MV = -18.86 ± 0.23 mag, SN 2014ad is fainter than supernovae associated with gamma ray bursts (GRBs), and brighter than most of the normal and broad-line Type Ic supernovae without an associated GRB. The spectral evolution indicates that the expansion velocity of the ejecta, as measured using the Si II line, is as high as ˜33 500 km s-1 around maximum, while during the post-maximum phase it settles at ˜15 000 km s-1. The expansion velocity of SN 2014ad is higher than that of all other well-observed broad-line Type Ic supernovae except for the GRB-associated SN 2010bh. The explosion parameters, determined by applying Arnett's analytical light-curve model to the observed bolometric light-curve, indicate that it was an energetic explosion with a kinetic energy of ˜(1 ± 0.3) × 1052 erg and a total ejected mass of ˜(3.3 ± 0.8) M⊙, and that ˜0.24 M⊙ of 56Ni was synthesized in the explosion. The metallicity of the host galaxy near the supernova region is estimated to be ˜0.5 Z⊙.
NASA Technical Reports Server (NTRS)
Mustel, E. R.
1979-01-01
The type 1 supernova discovered late in 1966 in NGC 3198 has broad minima in its spectrum break down into a number of significantly narrower absorption bands. The broad minima of tau, sigma and mu, which usually show no details in the spectra of type supernovas, contain a number of narrow absorption bands. The reality of most of these absorption bands is demonstrated by comparison of recordings of spectra of the supernova presented for two moments in time. These minima (particularly of tau and mu,) are a result of blending of several broad absorption bands. The minimum of tau should be a blend of intensive and very broad Fe absorption lines, in which the lower level is metastable. The wavelengths of these line are: 5169, 5198, 5235, 5276, 5317, 5363A.
An absence of ex-companion stars in the type Ia supernova remnant SNR 0509-67.5.
Schaefer, Bradley E; Pagnotta, Ashley
2012-01-11
A type Ia supernova is thought to begin with the explosion of a white dwarf star. The explosion could be triggered by the merger of two white dwarfs (a 'double-degenerate' origin), or by mass transfer from a companion star (the 'single-degenerate' path). The identity of the progenitor is still controversial; for example, a recent argument against the single-degenerate origin has been widely rejected. One way to distinguish between the double- and single-degenerate progenitors is to look at the centre of a known type Ia supernova remnant to see whether any former companion star is present. A likely ex-companion star for the progenitor of the supernova observed by Tycho Brahe has been identified, but that claim is still controversial. Here we report that the central region of the supernova remnant SNR 0509-67.5 (the site of a type Ia supernova 400 ± 50 years ago, based on its light echo) in the Large Magellanic Cloud contains no ex-companion star to a visual magnitude limit of 26.9 (an absolute magnitude of M(V) = +8.4) within a region of radius 1.43 arcseconds. (This corresponds to the 3σ maximum distance to which a companion could have been 'kicked' by the explosion.) This lack of any ex-companion star to deep limits rules out all published single-degenerate models for this supernova. The only remaining possibility is that the progenitor of this particular type Ia supernova was a double-degenerate system.
A faint type of supernova from a white dwarf with a helium-rich companion.
Perets, H B; Gal-Yam, A; Mazzali, P A; Arnett, D; Kagan, D; Filippenko, A V; Li, W; Arcavi, I; Cenko, S B; Fox, D B; Leonard, D C; Moon, D-S; Sand, D J; Soderberg, A M; Anderson, J P; James, P A; Foley, R J; Ganeshalingam, M; Ofek, E O; Bildsten, L; Nelemans, G; Shen, K J; Weinberg, N N; Metzger, B D; Piro, A L; Quataert, E; Kiewe, M; Poznanski, D
2010-05-20
Supernovae are thought to arise from two different physical processes. The cores of massive, short-lived stars undergo gravitational core collapse and typically eject a few solar masses during their explosion. These are thought to appear as type Ib/c and type II supernovae, and are associated with young stellar populations. In contrast, the thermonuclear detonation of a carbon-oxygen white dwarf, whose mass approaches the Chandrasekhar limit, is thought to produce type Ia supernovae. Such supernovae are observed in both young and old stellar environments. Here we report a faint type Ib supernova, SN 2005E, in the halo of the nearby isolated galaxy, NGC 1032. The 'old' environment near the supernova location, and the very low derived ejected mass ( approximately 0.3 solar masses), argue strongly against a core-collapse origin. Spectroscopic observations and analysis reveal high ejecta velocities, dominated by helium-burning products, probably excluding this as a subluminous or a regular type Ia supernova. We conclude that it arises from a low-mass, old progenitor, likely to have been a helium-accreting white dwarf in a binary. The ejecta contain more calcium than observed in other types of supernovae and probably large amounts of radioactive (44)Ti.
Supernova Fallback onto Magnetars and Propeller-powered Supernovae
NASA Astrophysics Data System (ADS)
Piro, Anthony L.; Ott, Christian D.
2011-08-01
We explore fallback accretion onto newly born magnetars during the supernova of massive stars. Strong magnetic fields (~1015 G) and short spin periods (~1-10 ms) have an important influence on how the magnetar interacts with the infalling material. At long spin periods, weak magnetic fields, and high accretion rates, sufficient material is accreted to form a black hole, as is commonly found for massive progenitor stars. When B <~ 5 × 1014 G, accretion causes the magnetar to spin sufficiently rapidly to deform triaxially and produces gravitational waves, but only for ≈50-200 s until it collapses to a black hole. Conversely, at short spin periods, strong magnetic fields, and low accretion rates, the magnetar is in the "propeller regime" and avoids becoming a black hole by expelling incoming material. This process spins down the magnetar, so that gravitational waves are only expected if the initial protoneutron star is spinning rapidly. Even when the magnetar survives, it accretes at least ≈0.3 M sun, so we expect magnetars born within these types of environments to be more massive than the 1.4 M sun typically associated with neutron stars. The propeller mechanism converts the ~1052 erg of spin energy in the magnetar into the kinetic energy of an outflow, which shock heats the outgoing supernova ejecta during the first ~10-30 s. For a small ~5 M sun hydrogen-poor envelope, this energy creates a brighter, faster evolving supernova with high ejecta velocities ~(1-3) × 104 km s-1 and may appear as a broad-lined Type Ib/c supernova. For a large >~ 10 M sun hydrogen-rich envelope, the result is a bright Type IIP supernova with a plateau luminosity of >~ 1043 erg s-1 lasting for a timescale of ~60-80 days.
NASA Astrophysics Data System (ADS)
Conley, A.; Goldhaber, G.; Wang, L.; Aldering, G.; Amanullah, R.; Commins, E. D.; Fadeyev, V.; Folatelli, G.; Garavini, G.; Gibbons, R.; Goobar, A.; Groom, D. E.; Hook, I.; Howell, D. A.; Kim, A. G.; Knop, R. A.; Kowalski, M.; Kuznetsova, N.; Lidman, C.; Nobili, S.; Nugent, P. E.; Pain, R.; Perlmutter, S.; Smith, E.; Spadafora, A. L.; Stanishev, V.; Strovink, M.; Thomas, R. C.; Wood-Vasey, W. M.; Supernova Cosmology Project
2006-06-01
We present measurements of Ωm and ΩΛ from a blind analysis of 21 high-redshift supernovae using a new technique (CMAGIC) for fitting the multicolor light curves of Type Ia supernovae, first introduced by Wang and coworkers. CMAGIC takes advantage of the remarkably simple behavior of Type Ia supernovae on color-magnitude diagrams and has several advantages over current techniques based on maximum magnitudes. Among these are a reduced sensitivity to host galaxy dust extinction, a shallower luminosity-width relation, and the relative simplicity of the fitting procedure. This allows us to provide a cross-check of previous supernova cosmology results, despite the fact that current data sets were not observed in a manner optimized for CMAGIC. We describe the details of our novel blindness procedure, which is designed to prevent experimenter bias. The data are broadly consistent with the picture of an accelerating universe and agree with a flat universe within 1.7 σ, including systematics. We also compare the CMAGIC results directly with those of a maximum magnitude fit to the same supernovae, finding that CMAGIC favors more acceleration at the 1.6 σ level, including systematics and the correlation between the two measurements. A fit for w assuming a flat universe yields a value that is consistent with a cosmological constant within 1.2 σ.
Shedding light on the Type Ia supernova extinction puzzle: dust location found
NASA Astrophysics Data System (ADS)
Bulla, M.; Goobar, A.; Dhawan, S.
2018-06-01
The colour evolution of reddened Type Ia supernovae can place strong constraints on the location of dust and help address the question of whether the observed extinction stems from the interstellar medium or from circumstellar material surrounding the progenitor. Here we analyse BV photometry of 48 reddened Type Ia supernovae from the literature and estimate the dust location from their B - V colour evolution. We find a time-variable colour excess E(B - V) for 15 supernovae in our sample and constrain dust to distances between 0.013 and 45 pc (4 × 1016 - 1020 cm). For the remaining supernovae, we obtain a constant E(B - V) evolution and place lower limits on the dust distance from the explosion. In all the 48 supernovae, the inferred dust location is compatible with an interstellar origin for the extinction. This is corroborated by the observation that supernovae with relatively nearby dust (≲ 1 pc) are located close to the center of their host galaxy, in high-density dusty regions where interactions between the supernova radiation and interstellar clouds close by are likely to occur. For supernovae showing time-variable E(B - V), we identify a potential preference for low RV values, unusually strong sodium absorption and blue-shifted and time-variable absorption features. Within the interstellar framework, this brings evidence to a proposed scenario where cloud-cloud collisions induced by the supernova radiation pressure can shift the grain size distribution to smaller values and enhance the abundance of sodium in the gaseous phase.
Discovery and Spectroscopic Classification of DLT18q/AT2018aoz as a young type Ia Supernova
NASA Astrophysics Data System (ADS)
Sand, D.; Valenti, S.; Wyatt, S.; Bostroem, K. A.; Reichart, D. E.; Haislip, J. B.; Kouprianov, V.
2018-04-01
We report the discovery and classification of DLT18q/AT 2018aoz. The supernova was found on 2018 April 02.1 (UT) at r 15.1 mag during the ongoing D < 40 Mpc (DLT40) supernova search, using data from the PROMPT5 0.41m telescope located at CTIO.
The cosmic gamma-ray background from Type Ia supernovae
NASA Technical Reports Server (NTRS)
The, Lih-Sin; Leising, Mark D.; Clayton, Donald D.
1993-01-01
We present an improved calculation of the cumulative gamma-ray spectrum of Type Ia supernovae during the history of the universe. We follow Clayton & Ward (1975) in using a few Friedmann models and two simple histories of the average galaxian nucleosynthesis rate, but we improve their calculation by modeling the gamma-ray scattering in detailed numerical models of SN Ia's. The results confirm that near 1 MeV the SN Ia background may dominate, and that it is potentially observable, with high scientific importance. A very accurate measurement of the cosmic background spectrum between 0.1 and 1.0 MeV may reveal the turn-on time and the evolution of the rate of Type Ia supernova nucleosynthesis in the universe.
The past, present and future supernova threat to Earth's biosphere
NASA Astrophysics Data System (ADS)
Beech, Martin
2011-12-01
A brief review of the threat posed to Earth's biosphere via near-by supernova detonations is presented. The expected radiation dosage, cosmic ray flux and expanding blast wave collision effects are considered, and it is argued that a typical supernova must be closer than ˜10-pc before any appreciable and potentially harmful atmosphere/biosphere effects are likely to occur. In contrast, the critical distance for Gamma-ray bursts is of order 1-kpc. In spite of the high energy effects potentially involved, the geological record provides no clear-cut evidence for any historic supernova induced mass extinctions and/or strong climate change episodes. This, however, is mostly a reflection of their being numerous possible (terrestrial and astronomical) forcing mechanisms acting upon the biosphere and the difficulty of distinguishing between competing scenarios. Key to resolving this situation, it is suggested, is the development of supernova specific extinction and climate change linked ecological models. Moving to the future, we estimate that over the remaining lifetime of the biosphere (˜2 Gyr) the Earth might experience 1 GRB and 20 supernova detonations within their respective harmful threat ranges. There are currently at least 12 potential pre-supernova systems within 1-kpc of the Sun. Of these systems IK Pegasi is the closest Type Ia pre-supernova candidate and Betelgeuse is the closest potential Type II supernova candidate. We review in some detail the past, present and future behavior of these two systems. Developing a detailed evolutionary model we find that IK Pegasi will likely not detonate until some 1.9 billion years hence, and that it affords absolutely no threat to Earth's biosphere. Betelgeuse is the closest, reasonably well understood, pre-supernova candidate to the Sun at the present epoch, and may undergo detonation any time within the next several million years. The stand-off distance of Betelgeuse at the time of its detonation is estimated to fall between 150 and 300-pc—again, affording no possible threat to Earth's biosphere. Temporally, the next most likely, close, potential Type Ic supernova to the Sun is the Wolf-Rayet star within the γ 2 Velorum binary system located at least 260-pc away. It is suggested that evidence relating to large-scale astroengineering projects might fruitfully be looked for in those regions located within 10 to 30-pc of any pre-supernova candidate system.
The mystery of a supposed massive star exploding in a brightest cluster galaxy
NASA Astrophysics Data System (ADS)
Hosseinzadeh, Griffin
2017-08-01
Most of the diversity of core-collapse supernovae results from late-stage mass loss by their progenitor stars. Supernovae that interact with circumstellar material (CSM) are a particularly good probe of these last stages of stellar evolution. Type Ibn supernovae are a rare and poorly understood class of hydrogen-poor explosions that show signs of interaction with helium-rich CSM. The leading hypothesis is that they are explosions of very massive Wolf-Rayet stars in which the supernova ejecta excites material previously lost by stellar winds. These massive stars have very short lifetimes, and therefore should only found in actively star-forming galaxies. However, PS1-12sk is a Type Ibn supernova found on the outskirts of a giant elliptical galaxy. As this is extraordinary unlikely, we propose to obtain deep UV images of the host environment of PS1-12sk in order to map nearby star formation and/or find a potential unseen star-forming host. If star formation is detected, its amount and location will provide deep insights into the progenitor picture for the poorly-understood Type Ibn class. If star formation is still not detected, these observations would challenge the well-accepted hypothesis that these are core-collapse supernovae at all.
The ASAS-SN bright supernova catalogue - III. 2016
NASA Astrophysics Data System (ADS)
Holoien, T. W.-S.; Brown, J. S.; Stanek, K. Z.; Kochanek, C. S.; Shappee, B. J.; Prieto, J. L.; Dong, Subo; Brimacombe, J.; Bishop, D. W.; Bose, S.; Beacom, J. F.; Bersier, D.; Chen, Ping; Chomiuk, L.; Falco, E.; Godoy-Rivera, D.; Morrell, N.; Pojmanski, G.; Shields, J. V.; Strader, J.; Stritzinger, M. D.; Thompson, Todd A.; Woźniak, P. R.; Bock, G.; Cacella, P.; Conseil, E.; Cruz, I.; Fernandez, J. M.; Kiyota, S.; Koff, R. A.; Krannich, G.; Marples, P.; Masi, G.; Monard, L. A. G.; Nicholls, B.; Nicolas, J.; Post, R. S.; Stone, G.; Wiethoff, W. S.
2017-11-01
This catalogue summarizes information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (mpeak ≤ 17), spectroscopically confirmed supernovae discovered in 2016. We then gather the near-infrared through ultraviolet magnitudes of all host galaxies and the offsets of the supernovae from the centres of their hosts from public data bases. We illustrate the results using a sample that now totals 668 supernovae discovered since 2014 May 1, including the supernovae from our previous catalogues, with type distributions closely matching those of the ideal magnitude limited sample from Li et al. This is the third of a series of yearly papers on bright supernovae and their hosts from the ASAS-SN team.
NASA Astrophysics Data System (ADS)
McCrum, M.; Smartt, S. J.; Rest, A.; Smith, K.; Kotak, R.; Rodney, S. A.; Young, D. R.; Chornock, R.; Berger, E.; Foley, R. J.; Fraser, M.; Wright, D.; Scolnic, D.; Tonry, J. L.; Urata, Y.; Huang, K.; Pastorello, A.; Botticella, M. T.; Valenti, S.; Mattila, S.; Kankare, E.; Farrow, D. J.; Huber, M. E.; Stubbs, C. W.; Kirshner, R. P.; Bresolin, F.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Jedicke, R.; Kaiser, N.; Magnier, E. A.; Metcalfe, N.; Morgan, J. S.; Price, P. A.; Sweeney, W.; Wainscoat, R. J.; Waters, C.
2015-04-01
The Pan-STARRS1 (PS1) survey has obtained imaging in five bands (griz yP1) over 10 Medium Deep Survey (MDS) fields covering a total of 70 square degrees. This paper describes the search for apparently hostless supernovae (SNe) within the first year of PS1 MDS data with an aim of discovering superluminous supernovae (SLSNe). A total of 249 hostless transients were discovered down to a limiting magnitude of MAB ˜ 23.5, of which 76 were classified as Type Ia supernovae (SNe Ia). There were 57 SNe with complete light curves that are likely core-collapse SNe (CCSNe) or type Ic SLSNe and 12 of these have had spectra taken. Of these 12 hostless, non-Type Ia SNe, 7 were SLSNe of type Ic at redshifts between 0.5 and 1.4. This illustrates that the discovery rate of type Ic SLSNe can be maximized by concentrating on hostless transients and removing normal SNe Ia. We present data for two possible SLSNe; PS1-10pm (z = 1.206) and PS1-10ahf (z = 1.1), and estimate the rate of type Ic SLSNe to be between 3^{+3}_{-2}× 10^{-5} and 8^{+2}_{-1}× 10^{-5} that of the CCSN rate within 0.3 ≤ z ≤ 1.4 by applying a Monte Carlo technique. The rate of slowly evolving, type Ic SLSNe (such as SN2007bi) is estimated as a factor of 10 lower than this range.
NASA Astrophysics Data System (ADS)
Fakhouri, Hannah Kathleen
In Part I we introduce the method and results of the Twin Supernova analysis. This novel approach to Type Ia supernova standardization is currently only possible with spectrophotometric timeseries observations from the Nearby Supernova Factory. As Chapters 1 through 4 will explore, we select an ideal subset of supernovae, find pairs whose features match well in flux at all wavelengths and times, and test their dispersion in brightness. The analysis is completed in a blinded fashion, ensuring that we are not tuning our results. What we find is that twin supernovae do indeed have a small brightness dispersion. Part II shows two additional analyses related to the standardization of Type Ia supernovae. In Chapter 5 we present a check on the results of Bailey et al. [2009]. Literature supernovae with spectra near maximum light were tested to see how well their magnitudes could be standardized using the flux ratio method of Bailey et al [2009]. Chapter 6 shows a study with data from the Nearby Supernova Factory. Using only the spectrophotometric observations near maximum light, we calculate monochromatic Hubble Diagram residuals for each supernova. Those residuals are then corrected using a flux ratio, similar to Bailey et al. [2009] to test the standardization possibilities using only near-maximum observations.
A Study of the Type II-Plateau Supernova SN 2014cx
NASA Astrophysics Data System (ADS)
Flatland, Kelsi; Leonard, Douglas Christopher; Williams, George Grant; Smith, Paul S.; Bilinski, Christopher; Dessart, Luc; Gonzalez, Luis; Hoffman, Jennifer L.; Huk, Leah; Milne, Peter; Smith, Nathan
2015-08-01
The type II-plateau (II-P) class of supernova is the most commonly observed type of core-collapse event, and yet the basic characteristics of this class are still being defined (e.g. Pejcha & Prieto 2015). Here we add to the growing sample of type II-P events with well-sampled data from observations of SN 2014cx. SN 2014cx was independently discovered on September 2, 2014 UT by Nakano et al. (2014; CBET 3963) and Holoien et al. (2014; ATEL 6436) in the nearby (d ~ 20.7 Mpc, Tully 1988) SBd galaxy NGC 337. It was classified as a young Type II supernova through spectra taken within a day of discovery at both optical (Nakano et al. 2014) and near-infrared (Morrell et al. 2014; ATEL 6442) wavelengths. Later (Andrews et al. 2015; ATEL 7084), it was photometrically determined to be specifically a type II-P supernova, indicating the core-collapse event of a progenitor that had a large hydrogen envelope (Pejcha & Prieto 2015). We initiated a photometric and spectropolarimetric campaign to follow SN 2014cx; over a five month period following the supernova's discovery, we obtained optical images using the 1-meter telescope at Mount Laguna Observatory as part of the MOunt LAguna SUpernova Survey (MOLASUS), and spectra as part of the SuperNova SpectroPOLarimetry project (SNSPOL). Here we present the initial analysis of the photometry and spectroscopy obtained as part of this campaign. We acknowledge support from NSF grants AST-1009571 and AST-1210311, under which part of this research was carried out.
A Study of the Type II-Plateau Supernova SN 2014cx
NASA Astrophysics Data System (ADS)
Flatland, Kelsi; Leonard, Douglas C.; Williams, Grant; Smith, Paul S.; Bilinski, Christopher; Gonzalez, Luis; Hoffman, Jennifer L.; Huk, Leah N.; Milne, Peter; Smith, Nathan; Supernova Spectropolarimetry Project
2016-06-01
The type II-plateau (II-P) class of supernova is the most commonly observed type of core-collapse event, and yet the basic characteristics of this class are still being defined (e.g. Pejcha & Prieto 2015). Here we add to the growing sample of type II-P events with well-sampled data from observations of SN 2014cx. SN 2014cx was independently discovered on September 2, 2014 UT by Nakano et al. (2014; CBET 3963) and Holoien et al. (2014; ATEL 6436) in the nearby (d ~ 20.7 Mpc, Tully 1988) SBd galaxy NGC 337. It was classified as a young Type II supernova through spectra taken within a day of discovery at both optical (Nakano et al. 2014) and near-infrared (Morrell et al. 2014; ATEL 6442) wavelengths. Later (Andrews et al. 2015; ATEL 7084), it was photometrically determined to be specifically a type II-P supernova, indicating the core-collapse event of a progenitor that had a large hydrogen envelope (Pejcha & Prieto 2015). We initiated a photometric and spectropolarimetric campaign to follow SN 2014cx; over a five month period following the supernova's discovery, we obtained optical images using the 1-meter telescope at Mount Laguna Observatory as part of the MOunt LAguna SUpernova Survey (MOLASUS), and spectra as part of the SuperNova SpectroPOLarimetry project (SNSPOL). Here we present the analysis of the photometry and spectroscopy obtained as part of this campaign. We acknowledge support from NSF grants AST-1009571 and AST-1210311, under which part of this research was carried out.
Estimating dust distances to Type Ia supernovae from colour excess time evolution
NASA Astrophysics Data System (ADS)
Bulla, M.; Goobar, A.; Amanullah, R.; Feindt, U.; Ferretti, R.
2018-01-01
We present a new technique to infer dust locations towards reddened Type Ia supernovae and to help discriminate between an interstellar and a circumstellar origin for the observed extinction. Using Monte Carlo simulations, we show that the time evolution of the light-curve shape and especially of the colour excess E(B - V) places strong constraints on the distance between dust and the supernova. We apply our approach to two highly reddened Type Ia supernovae for which dust distance estimates are available in the literature: SN 2006X and SN 2014J. For the former, we obtain a time-variable E(B - V) and from this derive a distance of 27.5^{+9.0}_{-4.9} or 22.1^{+6.0}_{-3.8} pc depending on whether dust properties typical of the Large Magellanic Cloud (LMC) or the Milky Way (MW) are used. For the latter, instead, we obtain a constant E(B - V) consistent with dust at distances larger than ∼50 and 38 pc for LMC- and MW-type dust, respectively. Values thus extracted are in excellent agreement with previous estimates for the two supernovae. Our findings suggest that dust responsible for the extinction towards these supernovae is likely to be located within interstellar clouds. We also discuss how other properties of reddened Type Ia supernovae - such as their peculiar extinction and polarization behaviour and the detection of variable, blue-shifted sodium features in some of these events - might be compatible with dust and gas at interstellar-scale distances.
A luminous, blue progenitor system for the type Iax supernova 2012Z
NASA Astrophysics Data System (ADS)
McCully, Curtis; Jha, Saurabh W.; Foley, Ryan J.; Bildsten, Lars; Fong, Wen-Fai; Kirshner, Robert P.; Marion, G. H.; Riess, Adam G.; Stritzinger, Maximilian D.
2014-08-01
Type Iax supernovae are stellar explosions that are spectroscopically similar to some type Ia supernovae at the time of maximum light emission, except with lower ejecta velocities. They are also distinguished by lower luminosities. At late times, their spectroscopic properties diverge from those of other supernovae, but their composition (dominated by iron-group and intermediate-mass elements) suggests a physical connection to normal type Ia supernovae. Supernovae of type Iax are not rare; they occur at a rate between 5 and 30 per cent of the normal type Ia rate. The leading models for type Iax supernovae are thermonuclear explosions of accreting carbon-oxygen white dwarfs that do not completely unbind the star, implying that they are `less successful' versions of normal type Ia supernovae, where complete stellar disruption is observed. Here we report the detection of the luminous, blue progenitor system of the type Iax SN 2012Z in deep pre-explosion imaging. The progenitor system's luminosity, colours, environment and similarity to the progenitor of the Galactic helium nova V445 Puppis suggest that SN 2012Z was the explosion of a white dwarf accreting material from a helium-star companion. Observations over the next few years, after SN 2012Z has faded, will either confirm this hypothesis or perhaps show that this supernova was actually the explosive death of a massive star.
A luminous, blue progenitor system for the type Iax supernova 2012Z.
McCully, Curtis; Jha, Saurabh W; Foley, Ryan J; Bildsten, Lars; Fong, Wen-fai; Kirshner, Robert P; Marion, G H; Riess, Adam G; Stritzinger, Maximilian D
2014-08-07
Type Iax supernovae are stellar explosions that are spectroscopically similar to some type Ia supernovae at the time of maximum light emission, except with lower ejecta velocities. They are also distinguished by lower luminosities. At late times, their spectroscopic properties diverge from those of other supernovae, but their composition (dominated by iron-group and intermediate-mass elements) suggests a physical connection to normal type Ia supernovae. Supernovae of type Iax are not rare; they occur at a rate between 5 and 30 per cent of the normal type Ia rate. The leading models for type Iax supernovae are thermonuclear explosions of accreting carbon-oxygen white dwarfs that do not completely unbind the star, implying that they are 'less successful' versions of normal type Ia supernovae, where complete stellar disruption is observed. Here we report the detection of the luminous, blue progenitor system of the type Iax SN 2012Z in deep pre-explosion imaging. The progenitor system's luminosity, colours, environment and similarity to the progenitor of the Galactic helium nova V445 Puppis suggest that SN 2012Z was the explosion of a white dwarf accreting material from a helium-star companion. Observations over the next few years, after SN 2012Z has faded, will either confirm this hypothesis or perhaps show that this supernova was actually the explosive death of a massive star.
NASA Astrophysics Data System (ADS)
Leibundgut, B.; Sullivan, M.
2018-03-01
The primary agent for Type Ia supernova cosmology is the uniformity of their appearance. We present the current status, achievements and uncertainties. The Hubble constant and the expansion history of the universe are key measurements provided by Type Ia supernovae. They were also instrumental in showing time dilation, which is a direct observational signature of expansion. Connections to explosion physics are made in the context of potential improvements of the quality of Type Ia supernovae as distance indicators. The coming years will see large efforts to use Type Ia supernovae to characterise dark energy.
The ASAS-SN bright supernova catalogue – III. 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holoien, T. W. -S.; Brown, J. S.; Stanek, K. Z.
In this catalogue we summarize information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (m peak ≤ 17), spectroscopically confirmed supernovae discovered in 2016. We then gather the near-infrared through ultraviolet magnitudes of all host galaxies and the offsets of the supernovae from the centres of their hosts from public data bases. We illustrate the results using a sample that now totals 668 supernovae discovered since 2014 May 1, including the supernovae from our previous catalogues, with type distributions closely matching those of the ideal magnitude limited sample from Li et al.more » This is then the third of a series of yearly papers on bright supernovae and their hosts from the ASAS-SN team.« less
The ASAS-SN bright supernova catalogue – III. 2016
Holoien, T. W. -S.; Brown, J. S.; Stanek, K. Z.; ...
2017-08-18
In this catalogue we summarize information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (m peak ≤ 17), spectroscopically confirmed supernovae discovered in 2016. We then gather the near-infrared through ultraviolet magnitudes of all host galaxies and the offsets of the supernovae from the centres of their hosts from public data bases. We illustrate the results using a sample that now totals 668 supernovae discovered since 2014 May 1, including the supernovae from our previous catalogues, with type distributions closely matching those of the ideal magnitude limited sample from Li et al.more » This is then the third of a series of yearly papers on bright supernovae and their hosts from the ASAS-SN team.« less
Spectroscopic Classification of ASASSN-15rm as a Type Ia Supernova
NASA Astrophysics Data System (ADS)
Zheng, W.; Halevi, G.; Shivvers, I.; Yuk, H.; Filippenko, A. V.
2015-10-01
We report that inspection of a CCD spectrum (range 350-1050 nm) of ASASSN-15rm (ATel #8192), obtained on Oct. 20.50 UT with the Shane 3-m reflector (+ Kast spectrograph) at Lick Observatory, shows that the object is a normal Type Ia supernova roughly 1 week past maximum brightness.
Simulating the detection and classification of high-redshift supernovae with HARMONI on the ELT
NASA Astrophysics Data System (ADS)
Bounissou, S.; Thatte, N.; Zieleniewski, S.; Houghton, R. C. W.; Tecza, M.; Hook, I.; Neichel, B.; Fusco, T.
2018-02-01
We present detailed simulations of integral field spectroscopic observations of a supernova in a host galaxy at z ˜ 3, as observed by the HARMONI spectrograph on the Extremely Large Telescope, asssisted by laser tomographic adaptive optics. The goal of the simulations, using the HSIM simulation tool, is to determine whether HARMONI can discern the supernova Type from spectral features in the supernova spectrum. We find that in a 3 hour observation, covering the near-infrared H and K bands, at a spectral resolving power of ˜3000, and using the 20×20 mas spaxel scale, we can classify supernova Type Ia and their redshift robustly up to 80 days past maximum light (20 days in the supernova rest frame). We show that HARMONI will provide spectra at z ˜ 3 that are of comparable (or better) quality to the best spectra we can currently obtain at z ˜ 1, thus allowing studies of cosmic expansion rates to be pushed to substantially higher redshifts.
Spectroscopic Classification of SN2016igr as a Normal Type Ia Supernova
NASA Astrophysics Data System (ADS)
Bostroem, K. A.; Valenti, S.; Tartaglia, L.
2016-12-01
We report that a CCD spectrum (range 350-1050 nm) of SN2016igr was obtained on Dec 1, 5.95 UT, with the 3-m Shane reflector (+Kast) at Lick Observatory. We classified the event via cross-correlation with a library of supernova spectra using the "SuperNova IDentification" code (SNID; Blondin & Tonry 2007, Ap.J.
An asymptotic-giant-branch star in the progenitor system of a type Ia supernova.
Hamuy, Mario; Phillips, M M; Suntzeff, Nicholas B; Maza, José; González, L E; Roth, Miguel; Krisciunas, Kevin; Morrell, Nidia; Green, E M; Persson, S E; McCarthy, P J
2003-08-07
Stars that explode as supernovae come in two main classes. A type Ia supernova is recognized by the absence of hydrogen and the presence of elements such as silicon and sulphur in its spectrum; this class of supernova is thought to produce the majority of iron-peak elements in the Universe. They are also used as precise 'standard candles' to measure the distances to galaxies. While there is general agreement that a type Ia supernova is produced by an exploding white dwarf star, no progenitor system has ever been directly observed. Significant effort has gone into searching for circumstellar material to help discriminate between the possible kinds of progenitor systems, but no such material has hitherto been found associated with a type Ia supernova. Here we report the presence of strong hydrogen emission associated with the type Ia supernova SN2002ic, indicating the presence of large amounts of circumstellar material. We infer from this that the progenitor system contained a massive asymptotic-giant-branch star that lost several solar masses of hydrogen-rich gas before the supernova explosion.
A solar-type star polluted by calcium-rich supernova ejecta inside the supernova remnant RCW 86
NASA Astrophysics Data System (ADS)
Gvaramadze, Vasilii V.; Langer, Norbert; Fossati, Luca; Bock, Douglas C.-J.; Castro, Norberto; Georgiev, Iskren Y.; Greiner, Jochen; Johnston, Simon; Rau, Arne; Tauris, Thomas M.
2017-06-01
When a massive star in a binary system explodes as a supernova, its companion star may be polluted with heavy elements from the supernova ejecta. Such pollution has been detected in a handful of post-supernova binaries 1 , but none of them is associated with a supernova remnant. We report the discovery of a binary G star strongly polluted with calcium and other elements at the position of the candidate neutron star [GV2003] N within the young galactic supernova remnant RCW 86. Our discovery suggests that the progenitor of the supernova that produced RCW 86 could have been a moving star, which exploded near the edge of its wind bubble and lost most of its initial mass because of common-envelope evolution shortly before core collapse, and that the supernova explosion might belong to the class of calcium-rich supernovae — faint and fast transients 2,3 , the origin of which is strongly debated 4-6 .
NASA Astrophysics Data System (ADS)
Milisavljevic, Dan; Margutti, Raffaella
2018-06-01
What makes a supernova truly "peculiar?" In this review we attempt to address this question by tracing the history of the use of "peculiar" as a descriptor of non-standard supernovae back to the original binary spectroscopic classification of Type I vs. Type II proposed by Minkowski (Publ. Astron. Soc. Pac., 53:224, 1941). A handful of noteworthy examples are highlighted to illustrate a general theme: classes of supernovae that were once thought to be peculiar are later seen as logical branches of standard events. This is not always the case, however, and we discuss ASASSN-15lh as an example of a transient with an origin that remains contentious. We remark on how late-time observations at all wavelengths (radio-through-X-ray) that probe 1) the kinematic and chemical properties of the supernova ejecta and 2) the progenitor star system's mass loss in the terminal phases preceding the explosion, have often been critical in understanding the nature of seemingly unusual events.
SUPERNOVA FALLBACK ONTO MAGNETARS AND PROPELLER-POWERED SUPERNOVAE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piro, Anthony L.; Ott, Christian D., E-mail: piro@caltech.edu, E-mail: cott@tapir.caltech.edu
2011-08-01
We explore fallback accretion onto newly born magnetars during the supernova of massive stars. Strong magnetic fields ({approx}10{sup 15} G) and short spin periods ({approx}1-10 ms) have an important influence on how the magnetar interacts with the infalling material. At long spin periods, weak magnetic fields, and high accretion rates, sufficient material is accreted to form a black hole, as is commonly found for massive progenitor stars. When B {approx}< 5 x 10{sup 14} G, accretion causes the magnetar to spin sufficiently rapidly to deform triaxially and produces gravitational waves, but only for {approx}50-200 s until it collapses to amore » black hole. Conversely, at short spin periods, strong magnetic fields, and low accretion rates, the magnetar is in the 'propeller regime' and avoids becoming a black hole by expelling incoming material. This process spins down the magnetar, so that gravitational waves are only expected if the initial protoneutron star is spinning rapidly. Even when the magnetar survives, it accretes at least {approx}0.3 M{sub sun}, so we expect magnetars born within these types of environments to be more massive than the 1.4 M{sub sun} typically associated with neutron stars. The propeller mechanism converts the {approx}10{sup 52} erg of spin energy in the magnetar into the kinetic energy of an outflow, which shock heats the outgoing supernova ejecta during the first {approx}10-30 s. For a small {approx}5 M{sub sun} hydrogen-poor envelope, this energy creates a brighter, faster evolving supernova with high ejecta velocities {approx}(1-3) x 10{sup 4} km s{sup -1} and may appear as a broad-lined Type Ib/c supernova. For a large {approx}> 10 M{sub sun} hydrogen-rich envelope, the result is a bright Type IIP supernova with a plateau luminosity of {approx}> 10{sup 43} erg s{sup -1} lasting for a timescale of {approx}60-80 days.« less
Study of the influence of Type Ia supernovae environment on the Hubble diagram
NASA Astrophysics Data System (ADS)
Henne, Vincent
2016-06-01
The observational cosmology with distant Type Ia supernovae as standard candles claims that the Universe is in accelerated expansion, caused by a large fraction of dark energy. In this report we investigated SNe Ia environment, studying the impact of the nature of their host galaxies and their distance to the host galactic center on the Hubble diagram fitting. The supernovae used in the analysis were extracted from Joint-Light-curves-Analysis compilation of high-redshift and nearby supernovae. The analysis are based on the empirical fact that SN Ia luminosities depend on their light curve shapes and colors. No conclusive correlation between SN Ia light curve parameters and galocentric distance were identified. Concerning the host morphology, we showed that the stretch parameter of Type Ia supernovae is correlated with the host galaxy type. The supernovae with lower stretch mainly exploded in elliptical and lenticular galaxies. The studies show that into old star population and low dust environment, supernovae are fainter. We did not find any significant correlation between Type Ia supernovae color and host morphology. We confirm that supernova properties depend on their environment and propose to incorporate a host galaxy term into the Hubble diagram fit in the future cosmological analysis.
The highly luminous Type Ibn supernova ASASSN-14ms
NASA Astrophysics Data System (ADS)
Vallely, P. J.; Prieto, J. L.; Stanek, K. Z.; Kochanek, C. S.; Sukhbold, T.; Bersier, D.; Brown, J. S.; Chen, P.; Dong, S.; Falco, E.; Berlind, P.; Calkins, M.; Koff, R. A.; Kiyota, S.; Brimacombe, J.; Shappee, B. J.; Holoien, T. W.-S.; Thompson, T. A.; Stritzinger, M. D.
2018-04-01
We present photometric and spectroscopic follow-up observations of the highly luminous Type Ibn supernova ASASSN-14ms, which was discovered on UT 2014-12-26.61 at mV ˜ 16.5. With a peak absolute V-band magnitude brighter than -20.5, a peak bolometric luminosity of 1.7 × 1044 erg s-1, and a total radiated energy of 2.1 × 1050 erg, ASASSN-14ms is one of the most luminous Type Ibn supernovae yet discovered. In simple models, the most likely power source for this event is a combination of the radioactive decay of 56Ni and 56Co at late times and the interaction of supernova ejecta with the progenitor's circumstellar medium at early times, although we cannot rule out the possibility of a magnetar-powered light curve. The presence of a dense circumstellar medium is indicated by the intermediate-width He I features in the spectra. The faint (mg ˜ 21.6) host galaxy SDSS J130408.52+521846.4 has an oxygen abundance below 12 + log (O/H) ≲ 8.3, a stellar mass of M* ˜ 2.6 × 108 M⊙, and a star formation rate of SFR ˜ 0.02 M⊙ yr-1.
Fermi Large Area Telescope Detection of Supernova Remnant RCW 86
NASA Astrophysics Data System (ADS)
Yuan, Qiang; Huang, Xiaoyuan; Liu, Siming; Zhang, Bing
2014-04-01
Using 5.4 yr Fermi Large Area Telescope data, we report the detection of GeV γ-ray emission from the shell-type supernova remnant RCW 86 (G315.4-2.3) with a significance of ~5.1σ. The data slightly favors an extended emission of this supernova remnant. The spectral index of RCW 86 is found to be very hard, Γ ~ 1.4, in the 0.4-300 GeV range. A one-zone leptonic model can well fit the multi-wavelength data from radio to very high energy γ-rays. The very hard GeV γ-ray spectrum and the inferred low gas density seem to disfavor a hadronic origin for the γ-rays. The γ-ray behavior of RCW 86 is very similar to several other TeV shell-type supernova remnants, e.g., RX J1713.7-3946, RX J0852.0-4622, SN 1006, and HESS J1731-347.
Solar abundance ratios of the iron-peak elements in the Perseus cluster
Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; ...
2017-11-13
The metal abundance of the hot plasma that permeates galaxy clusters represents the accumulation of heavy elements produced by billions of supernovae1. Therefore, X-ray spectroscopy of the intracluster medium provides an opportunity to investigate the nature of supernova explosions integrated over cosmic time. In particular, the abundance of the iron-peak elements (chromium, manganese, iron and nickel) is key to understanding how the progenitors of typical type Ia supernovae evolve and explode2–6. Recent X-ray studies of the intracluster medium found that the abundance ratios of these elements differ substantially from those seen in the Sun, suggesting differences between the nature ofmore » type Ia supernovae in the clusters and in the Milky Way. However, because the K-shell transition lines of chromium and manganese are weak and those of iron and nickel are very close in photon energy, highresolution spectroscopy is required for an accurate determination of the abundances of these elements. Here in this paper we report observations of the Perseus cluster, with statistically significant detections of the resonance emission from chromium, manganese and nickel. Our measurements, combined with the latest atomic models, reveal that these elements have near-solar abundance ratios with respect to iron, in contrast to previous claims. Comparison between our results and modern nucleosynthesis calculations disfavours the hypothesis that type Ia supernova progenitors are exclusively white dwarfs with masses well below the Chandrasekhar limit (about 1.4 times the mass of the Sun). The observed abundance pattern of the iron-peak elements can be explained by taking into account a combination of near- and sub-Chandrasekhar-mass type Ia supernova systems, adding to the mounting evidence that both progenitor types make a substantial contribution to cosmic chemical enrichment.« less
Solar abundance ratios of the iron-peak elements in the Perseus cluster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie
The metal abundance of the hot plasma that permeates galaxy clusters represents the accumulation of heavy elements produced by billions of supernovae1. Therefore, X-ray spectroscopy of the intracluster medium provides an opportunity to investigate the nature of supernova explosions integrated over cosmic time. In particular, the abundance of the iron-peak elements (chromium, manganese, iron and nickel) is key to understanding how the progenitors of typical type Ia supernovae evolve and explode2–6. Recent X-ray studies of the intracluster medium found that the abundance ratios of these elements differ substantially from those seen in the Sun, suggesting differences between the nature ofmore » type Ia supernovae in the clusters and in the Milky Way. However, because the K-shell transition lines of chromium and manganese are weak and those of iron and nickel are very close in photon energy, highresolution spectroscopy is required for an accurate determination of the abundances of these elements. Here in this paper we report observations of the Perseus cluster, with statistically significant detections of the resonance emission from chromium, manganese and nickel. Our measurements, combined with the latest atomic models, reveal that these elements have near-solar abundance ratios with respect to iron, in contrast to previous claims. Comparison between our results and modern nucleosynthesis calculations disfavours the hypothesis that type Ia supernova progenitors are exclusively white dwarfs with masses well below the Chandrasekhar limit (about 1.4 times the mass of the Sun). The observed abundance pattern of the iron-peak elements can be explained by taking into account a combination of near- and sub-Chandrasekhar-mass type Ia supernova systems, adding to the mounting evidence that both progenitor types make a substantial contribution to cosmic chemical enrichment.« less
The Progenitor of the New COMPTEL/ROSAT Supernova Remnant in Vela
NASA Technical Reports Server (NTRS)
Chen, Wan; Gehrels, Neil
1999-01-01
We show that (1) the newly discovered supernova remnant (SNR) GROJ0852-4642/RXJ0852.0-4622 was created by a core-collapse supernova of a massive star and (2) the same supernova event that produced the Ti-44 detected by COMPTEL from this source is probably also responsible for a large fraction of the observed Al-26 emission in the Vela region detected by the same instrument. The first conclusion is based on the fact that the remnant is currently expanding too slowly given its young age for it to be caused by a Type la supernova. If the current SNR shell expansion speed is greater than 3000 km/s, a 15 solar mass. Type II supernova with a moderate kinetic energy exploding at about 150 pc away is favored. If the SNR expansion speed is lower than 2000 km/s, as derived naively from X-ray data, a much more energetic supernova is required to have occurred at approximately 250 pc away in a dense environment at the edge of the Gum Nebula. This progenitor has a preferred ejecta mass of less than or equal to 10(Solar Mass), and therefore it is probably a Type Ib or Type Ic supernova. However, the required high ambient density of n(sub H) greater than or equal to 100 cu cm in this scenario is difficult to reconcile with the regional CO data. A combination of our estimates of the age/energetics of the new SNR and the almost perfect positional coincidence of the new SNR with the centroid of the COMPTEL Al-26 emission feature of the Vela region strongly favors a causal connection. If confirmed, this will be the first case in which both Ti-44 and Al-26 are detected from the same young SNR, and together they can be used to select preferred theoretical core-collapse supernova models.
Spectroscopic Classification of MASTER OT J110707.62-052244.0 as a Type Ia Supernova
NASA Astrophysics Data System (ADS)
Zheng, W.; Kim, M.; Shivvers, I.; Yuk, H.; Filippenko, A. V.
2015-11-01
We report that inspection of a CCD spectrum (range 350-1050 nm) of MASTER OT J110707.62-052244.0 (ATel #8236), obtained on Nov. 11.57 UT with the Shane 3-m reflector (+ Kast spectrograph) at Lick Observatory, shows that the object is a normal Type Ia supernova roughly 1 week past maximum brightness.
Type Ia supernovae: explosions and progenitors
NASA Astrophysics Data System (ADS)
Kerzendorf, Wolfgang Eitel
2011-08-01
Supernovae are the brightest explosions in the universe. Supernovae in our Galaxy, rare and happening only every few centuries, have probably been observed since the beginnings of mankind. At first they were interpreted as religious omens but in the last half millennium they have increasingly been used to study the cosmos and our place in it. Tycho Brahe deduced from his observations of the famous supernova in 1572, that the stars, in contrast to the widely believe Aristotelian doctrine, were not immutable. More than 400 years after Tycho made his paradigm changing discovery using SN 1572, and some 60 years after supernovae had been identified as distant dying stars, two teams changed the view of the world again using supernovae. The found that the Universe was accelerating in its expansion, a conclusion that could most easily be explained if more than 70% of the Universe was some previously un-identified form of matter now often referred to as `Dark Energy'. Beyond their prominent role as tools to gauge our place in the Universe, supernovae themselves have been studied well over the past 75 years. We now know that there are two main physical causes of these cataclysmic events. One of these channels is the collapse of the core of a massive star. The observationally motivated classes Type II, Type Ib and Type Ic have been attributed to these events. This thesis, however is dedicated to the second group of supernovae, the thermonuclear explosions of degenerate carbon and oxygen rich material and lacking hydrogen - called Type Ia supernovae (SNe Ia). White dwarf stars are formed at the end of a typical star's life when nuclear burning ceases in the core, the outer envelope is ejected, with the degenerate core typically cooling for eternity. Theory predicts that such stars will self ignite when close to 1.38 Msun (called the Chandrasekhar Mass). Most stars however leave white dwarfs with 0.6 Msun, and no star leaves a remnant as heavy as 1.38 M! sun, which suggests that they somehow need to acquire mass if they are to explode as SN Ia. Currently there are two major scenarios for this mass acquisition. In the favoured single degenerate scenario the white dwarf accretes matter from a companion star which is much younger in its evolutionary state. The less favoured double degenerate scenario sees the merger of two white dwarfs (with a total combined mass of more than 1.38 Msun). This thesis has tried to answer the question about the mass acquisition in two ways. First the single degenerate scenario predicts a surviving companion post-explosion. We undertook an observational campaign to find this companion in two ancient supernovae (SN 1572 and SN 1006). Secondly, we have extended an existing code to extract the elemental and energy yields of SNe Ia spectra by automating spectra fitting to specific SNe Ia. This type of analysis, in turn, help diagnose to which of the two major progenitor scenarios is right.
NASA Astrophysics Data System (ADS)
Shahbazian, R. K.; Borngen, F.
1984-09-01
A supernova near the galaxy Zw1 16.7+1.57, has been found on the maps of the Palomar Observatory. The eye estimation of photographic and red magnitudes gives: mpg = 18.3, mr = 18.6. The blue colour and the supposed luminosity (Mpg = -17.2) of the object suggest that it is of type II near the maximum.
Supernova Explosions Stay In Shape
NASA Astrophysics Data System (ADS)
2009-12-01
At a very early age, children learn how to classify objects according to their shape. Now, new research suggests studying the shape of the aftermath of supernovas may allow astronomers to do the same. A new study of images from NASA's Chandra X-ray Observatory on supernova remnants - the debris from exploded stars - shows that the symmetry of the remnants, or lack thereof, reveals how the star exploded. This is an important discovery because it shows that the remnants retain information about how the star exploded even though hundreds or thousands of years have passed. "It's almost like the supernova remnants have a 'memory' of the original explosion," said Laura Lopez of the University of California at Santa Cruz, who led the study. "This is the first time anyone has systematically compared the shape of these remnants in X-rays in this way." Astronomers sort supernovas into several categories, or "types", based on properties observed days after the explosion and which reflect very different physical mechanisms that cause stars to explode. But, since observed remnants of supernovas are leftover from explosions that occurred long ago, other methods are needed to accurately classify the original supernovas. Lopez and colleagues focused on the relatively young supernova remnants that exhibited strong X-ray emission from silicon ejected by the explosion so as to rule out the effects of interstellar matter surrounding the explosion. Their analysis showed that the X-ray images of the ejecta can be used to identify the way the star exploded. The team studied 17 supernova remnants both in the Milky Way galaxy and a neighboring galaxy, the Large Magellanic Cloud. For each of these remnants there is independent information about the type of supernova involved, based not on the shape of the remnant but, for example, on the elements observed in it. The researchers found that one type of supernova explosion - the so-called Type Ia - left behind relatively symmetric, circular remnants. This type of supernova is thought to be caused by a thermonuclear explosion of a white dwarf, and is often used by astronomers as "standard candles" for measuring cosmic distances. On the other hand, the remnants tied to the "core-collapse" supernova explosions were distinctly more asymmetric. This type of supernova occurs when a very massive, young star collapses onto itself and then explodes. "If we can link supernova remnants with the type of explosion", said co-author Enrico Ramirez-Ruiz, also of University of California, Santa Cruz, "then we can use that information in theoretical models to really help us nail down the details of how the supernovas went off." Models of core-collapse supernovas must include a way to reproduce the asymmetries measured in this work and models of Type Ia supernovas must produce the symmetric, circular remnants that have been observed. Out of the 17 supernova remnants sampled, ten were classified as the core-collapse variety, while the remaining seven of them were classified as Type Ia. One of these, a remnant known as SNR 0548-70.4, was a bit of an "oddball". This one was considered a Type Ia based on its chemical abundances, but Lopez finds it has the asymmetry of a core-collapse remnant. "We do have one mysterious object, but we think that is probably a Type Ia with an unusual orientation to our line of sight," said Lopez. "But we'll definitely be looking at that one again." While the supernova remnants in the Lopez sample were taken from the Milky Way and its close neighbor, it is possible this technique could be extended to remnants at even greater distances. For example, large, bright supernova remnants in the galaxy M33 could be included in future studies to determine the types of supernova that generated them. The paper describing these results appeared in the November 20 issue of The Astrophysical Journal Letters. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass. More information, including images and other multimedia, can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov
Detection of a Red Supergiant Progenitor Star of a Type II-Plateau Supernova
NASA Astrophysics Data System (ADS)
Smartt, Stephen J.; Maund, Justyn R.; Hendry, Margaret A.; Tout, Christopher A.; Gilmore, Gerard F.; Mattila, Seppo; Benn, Chris R.
2004-01-01
We present the discovery of a red supergiant star that exploded as supernova 2003gd in the nearby spiral galaxy M74. The Hubble Space Telescope (HST) and the Gemini Telescope imaged this galaxy 6 to 9 months before the supernova explosion, and subsequent HST images confirm the positional coincidence of the supernova with a single resolved star that is a red supergiant of 8+4
Supernovae and cosmology with future European facilities.
Hook, I M
2013-06-13
Prospects for future supernova surveys are discussed, focusing on the European Space Agency's Euclid mission and the European Extremely Large Telescope (E-ELT), both expected to be in operation around the turn of the decade. Euclid is a 1.2 m space survey telescope that will operate at visible and near-infrared wavelengths, and has the potential to find and obtain multi-band lightcurves for thousands of distant supernovae. The E-ELT is a planned, general-purpose ground-based, 40-m-class optical-infrared telescope with adaptive optics built in, which will be capable of obtaining spectra of type Ia supernovae to redshifts of at least four. The contribution to supernova cosmology with these facilities will be discussed in the context of other future supernova programmes such as those proposed for DES, JWST, LSST and WFIRST.
A common explosion mechanism for type Ia supernovae.
Mazzali, Paolo A; Röpke, Friedrich K; Benetti, Stefano; Hillebrandt, Wolfgang
2007-02-09
Type Ia supernovae, the thermonuclear explosions of white dwarf stars composed of carbon and oxygen, were instrumental as distance indicators in establishing the acceleration of the universe's expansion. However, the physics of the explosion are debated. Here we report a systematic spectral analysis of a large sample of well-observed type Ia supernovae. Mapping the velocity distribution of the main products of nuclear burning, we constrain theoretical scenarios. We find that all supernovae have low-velocity cores of stable iron-group elements. Outside this core, nickel-56 dominates the supernova ejecta. The outer extent of the iron-group material depends on the amount of nickel-56 and coincides with the inner extent of silicon, the principal product of incomplete burning. The outer extent of the bulk of silicon is similar in all supernovae, having an expansion velocity of approximately 11,000 kilometers per second and corresponding to a mass of slightly over one solar mass. This indicates that all the supernovae considered here burned similar masses and suggests that their progenitors had the same mass. Synthetic light-curve parameters and three-dimensional explosion simulations support this interpretation. A single explosion scenario, possibly a delayed detonation, may thus explain most type Ia supernovae.
Space Telescope Cluster Supernova Survey: II. The Type Ia Supernova Rate in High-Redshift Galaxy /abs/0809.1648 Constraining Dust and Color Variations of High-z SNe Using NICMOS on the Hubble Space /0804.4142 A New Determination of the High-Redshift Type Ia Supernova Rates with the Hubble Space Telescope
Light Curve and Spectral Evolution of Type IIb Supernovae
NASA Astrophysics Data System (ADS)
Gangopadhyay, Anjasha; Misra, Kuntal; Pastorello, Andrea; Sahu, Devendra Kumar; Singh, Mridweeka; Dastidar, raya; Anapuma, Gadiyara Chakrapani; Kumar, Brijesh; Pandey, Shashi Bhushan
2018-04-01
Stripped-Envelope Supernovae constitute the sub-class of core-collapse supernovae that strip off their outer hydrogen envelope due to high stellar winds or due to interaction with a binary companion where mass transfer occurs as a result of Roche lobe overflow. We present here the photometric and spectroscopic analysis of a member of this class : SN 2015as classified as a type IIb supernova. Light curve features are similar to those of SN 2011fu while spectroscopic features are quite similar to those of SN 2008ax and SN 2011dh. Early epoch spectra have been modelled with SYN++ which indicates a photospheric velocity of 8500 km sec-1 and temperature of 6500K. Spectroscopic lines show transitioning from H to He features confirming it to be a type IIb supernova. Prominent oxygen and calcium emission features are indicative of the asymmetry of the ejecta. We also estimate the signal to noise ratio of the 3.6m telescope data. This telescope is located at ARIES, Devasthal, Nainital at an altitude of 2450m. We also show the comparison plots of spectra taken with a 2m and 4m class telescopes to enlighten the importance of spectral features displayed by bigger diameter telescopes.
Classification of PSN J12015272-1852183 as a young type Ic SN
NASA Astrophysics Data System (ADS)
Harutyunyan, A.; Benetti, S.; Pastorello, A.; Cappellaro, E.; Tomasella, L.; Ochner, P.; Turatto, M.
2013-06-01
We report the spectroscopic classification (range 335-785 nm; resolution 1.5 nm) of PSN J12015272-1852183 discovered by the CHASE project on June 22.12 UT. The spectrogram obtained on June 23.88 UT with the TNG Telescope (+Dolores), shows that this is a type-Ic supernova. A good match is found with the type-Ic supernova 1994I (Millard et al 1999, ApJ 527, 746) at about six days before maximum light.
Very-high-energy gamma-ray observations of the Type Ia Supernova SN 2014J with the MAGIC telescopes
NASA Astrophysics Data System (ADS)
Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Arcaro, C.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Toyama, T.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, R.
2017-06-01
Context. In this work we present data from observations with the MAGIC telescopes of SN 2014J detected on January 21 2014, the closest Type Ia supernova since Imaging Air Cherenkov Telescopes started to operate. Aims: We aim to probe the possibility of very-high-energy (VHE; E ≥ 100 GeV) gamma rays produced in the early stages of Type Ia supernova explosions. Methods: We performed follow-up observations after this supernova (SN) explosion for five days, between January 27 and February 2 2014. We searched for gamma-ray signals in the energy range between 100 GeV and several TeV from the location of SN 2014J using data from a total of 5.5 h of observations. Prospects for observing gamma rays of hadronic origin from SN 2014J in the near future are also being addressed. Results: No significant excess was detected from the direction of SN 2014J. Upper limits at 95% confidence level on the integral flux, assuming a power-law spectrum, dF/dE ∝ E- Γ, with a spectral index of Γ = 2.6, for energies higher than 300 GeV and 700 GeV, are established at 1.3 × 10-12 and 4.1 × 10-13 photons cm-2 s-1, respectively. Conclusions: For the first time, upper limits on the VHE emission of a Type Ia supernova are established. The energy fraction isotropically emitted into TeV gamma rays during the first 10 days after the supernova explosion for energies greater than 300 GeV is limited to 10-6 of the total available energy budget ( 1051 erg). Within the assumed theoretical scenario, the MAGIC upper limits on the VHE emission suggest that SN 2014J will not be detectable in the future by any current or planned generation of Imaging Atmospheric Cherenkov Telescopes.
VLA radio upper limit on Type IIn Supernova 2008S
NASA Astrophysics Data System (ADS)
Chandra, Poonam; Soderberg, Alicia
2008-02-01
Poonam Chandra and Alicia Soderberg report on behalf of a larger collaboration: We observed type IIn supernova SN 2008S (CBET 1234) with the Very Large Array (VLA) on 2008, February 10.62 UT. We do not detect any radio emission at the supernova position (CBET 1234). The flux density at the supernova position is -62 +/- 36 uJy.
Polarisation Spectral Synthesis For Type Ia Supernova Explosion Models
NASA Astrophysics Data System (ADS)
Bulla, Mattia
2017-02-01
Despite their relevance across a broad range of astrophysical research topics, Type Ia supernova explosions are still poorly understood and answers to the questions of when, why and how these events are triggered remain unclear. In this respect, polarisation offers a unique opportunity to discriminate between the variety of possible scenarios. The observational evidence that Type Ia supernovae are associated with rather low polarisation signals (smaller than a few per cent) places strong constraints for models and calls for modest asphericities in the progenitor system and/or explosion mechanism.The goal of this thesis is to assess the validity of contemporary Type Ia supernova explosion models by testing whether their predicted polarisation signatures can account for the small signals usually observed. To this end, we have implemented and tested an innovative Monte Carlo scheme in the radiative transfer code artis. Compared to previous Monte Carlo approaches, this technique produces synthetic observables (light curves, flux and polarisation spectra) with a substantial reduction in the Monte Carlo noise and therefore in the required computing time. This improvement is particularly crucial for our study as we aim to extract very weak polarisation signals, comparable to those detected in Type Ia supernovae. We have also demonstrated the applicability of this method to other classes of supernovae via a preliminary study of the first spectropolarimetry observations of superluminous supernovae.Using this scheme, we have calculated synthetic spectropolarimetry for three multi-dimensional explosion models recently proposed as promising candidates to explain Type Ia supernovae. Our findings highlight the power of spectropolarimetry in testing and discriminating between different scenarios. While all the three models predict light curves and flux spectra that are similar to each others and reproduce those observed in Type Ia supernovae comparably well, polarisation does provide a clear distinction. In particular, we find that one model is too strongly asymmetric and produces polarisation levels that are too high and clearly inconsistent with those detected for the bulk of Type Ia supernovae. Polarisation signals - and their time evolution - extracted for the remaining two models are instead in good agreement with the currently available spectropolarimetry data. Providing a powerful way to connect hydrodynamic explosion models to observed data, the study presented in this thesis is an important step towards a better understanding of Type Ia supernovae from a synthesis of theory and observations.
NASA Technical Reports Server (NTRS)
Nomoto, K.
1981-01-01
As a plausible explosion model for a Type I supernova, the evolution of carbon-oxygen white dwarfs accreting helium in binary systems was investigated from the onset of accretion up to the point at which a thermonuclear explosion occurs. The relationship between the conditions in the binary system and the triggering mechanism for the supernova explosion is discussed, especially for the cases with relatively slow accretion rate. It is found that the growth of a helium zone on the carbon-oxygen core leads to a supernova explosion which is triggered either by the off-center helium detonation for slow and intermediate accretion rates or by the carbon deflagration for slow and rapid accretion rates. Both helium detonation and carbon deflagration are possible for the case of slow accretion, since in this case the initial mass of the white dwarf is an important parameter for determining the mode of ignition. Finally, various modes of building up the helium zone on the white dwarf, namely, direct transfer of helium from the companion star and the various types and strength of the hydrogen shell flashes are discussed in some detail.
Swift and LT UV and optical observations of type IIn superluminous supernova 2017gir
NASA Astrophysics Data System (ADS)
Cano, Zach; Kuin, Paul; Chandra, Poonam; Ashall, Chris; Malesani, Daniele; Pastorello, Andrea
2017-09-01
We observed the field of the type IIn superluminous supernova 2017gir (ATLAS17jsb, Tonry et al. 2017; Lyman et al. 2017, ATel 10674) with Swift via a target-of-opportunity for three epochs (6th, 16th and 19th of September, 2017) in the three UVOT UV filters (w1, m1, w2). The SN is clearly detected in all three filters, and it is seen that its brightness fades over this timescale.
Discovery of a Supernova Explosion at Half the Age of the Universe and its Cosmological Implications
DOE R&D Accomplishments Database
Perlmutter, S.; Aldering, G.; Della Valle, M.; Deustua, S.; Ellis, R. S.; Fabbro, S.; Fruchter, A.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hook, I. M.; Kim, A. G.; Kim, M. Y.; Knop, R. A.; Lidman, C.; McMahon, R. G.; Nugent, P.; Pain, R.; Panagia, N.; Pennypacker, C. R.; Ruiz-Lapuente, P.; Schaefer, B.; Walton, N.
1997-12-16
The ultimate fate of the universe, infinite expansion or a big crunch, can be determined by measuring the redshifts, apparent brightnesses, and intrinsic luminosities of very distant supernovae. Recent developments have provided tools that make such a program practicable: (1) Studies of relatively nearby Type la supernovae (SNe la) have shown that their intrinsic luminosities can be accurately determined; (2) New research techniques have made it possible to schedule the discovery and follow-up observations of distant supernovae, producing well over 50 very distant (z = 0.3-0.7) SNe Ia to date. These distant supernovae provide a record of changes in the expansion rate over the past several billion years. By making precise measurements of supernovae at still greater distances, and thus extending this expansion history back far enough in time, we can even distinguish the slowing caused by the gravitational attraction of the universe's mass density {Omega}{sub M} from the effect of a possibly inflationary pressure caused by a cosmological constant {Lambda}. We report here the first such measurements, with our discovery of a Type Ia supernova (SN 1997ap) at z = 0.83. Measurements at the Keck II 10-m telescope make this the most distant spectroscopically confirmed supernova. Over two months of photometry of SN 1997ap with the Hubble Space Telescope and ground-based telescopes, when combined with previous measurements of nearer SNe la, suggests that we may live in a low mass-density universe. Further supernovae at comparable distances are currently scheduled for ground and space-based observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Möller, A.; Ruhlmann-Kleider, V.; Leloup, C.
In the era of large astronomical surveys, photometric classification of supernovae (SNe) has become an important research field due to limited spectroscopic resources for candidate follow-up and classification. In this work, we present a method to photometrically classify type Ia supernovae based on machine learning with redshifts that are derived from the SN light-curves. This method is implemented on real data from the SNLS deferred pipeline, a purely photometric pipeline that identifies SNe Ia at high-redshifts (0.2 < z < 1.1). Our method consists of two stages: feature extraction (obtaining the SN redshift from photometry and estimating light-curve shape parameters)more » and machine learning classification. We study the performance of different algorithms such as Random Forest and Boosted Decision Trees. We evaluate the performance using SN simulations and real data from the first 3 years of the Supernova Legacy Survey (SNLS), which contains large spectroscopically and photometrically classified type Ia samples. Using the Area Under the Curve (AUC) metric, where perfect classification is given by 1, we find that our best-performing classifier (Extreme Gradient Boosting Decision Tree) has an AUC of 0.98.We show that it is possible to obtain a large photometrically selected type Ia SN sample with an estimated contamination of less than 5%. When applied to data from the first three years of SNLS, we obtain 529 events. We investigate the differences between classifying simulated SNe, and real SN survey data. In particular, we find that applying a thorough set of selection cuts to the SN sample is essential for good classification. This work demonstrates for the first time the feasibility of machine learning classification in a high- z SN survey with application to real SN data.« less
The first ten years of Swift supernovae
NASA Astrophysics Data System (ADS)
Brown, Peter J.; Roming, Peter W. A.; Milne, Peter A.
2015-09-01
The Swift Gamma Ray Burst Explorer has proven to be an incredible platform for studying the multiwavelength properties of supernova explosions. In its first ten years, Swift has observed over three hundred supernovae. The ultraviolet observations reveal a complex diversity of behavior across supernova types and classes. Even amongst the standard candle type Ia supernovae, ultraviolet observations reveal distinct groups. When the UVOT data is combined with higher redshift optical data, the relative populations of these groups appear to change with redshift. Among core-collapse supernovae, Swift discovered the shock breakout of two supernovae and the Swift data show a diversity in the cooling phase of the shock breakout of supernovae discovered from the ground and promptly followed up with Swift. Swift observations have resulted in an incredible dataset of UV and X-ray data for comparison with high-redshift supernova observations and theoretical models. Swift's supernova program has the potential to dramatically improve our understanding of stellar life and death as well as the history of our universe.
VLA radio upper limit on Type IIn Supernova 2007pk
NASA Astrophysics Data System (ADS)
Chandra, Poonam; Soderberg, Alicia
2007-11-01
Poonam Chandra and Alicia Soderberg report on behalf of a larger collaboration: We observed Type IIn supernova SN 2007pk (CBET 1129) with the VLA in 8.46 GHz band on 2007, November 12.20 UT, 1.89 days since discovery (CBET 1129). We do not detect radio emission from the SN position (CBET 1129). The flux density at the SN position is 11 +/-26 uJy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood-Vasey, W.Michael; Miknaitis, G.; Stubbs, C.W.
We present constraints on the dark energy equation-of-state parameter, w = P/({rho}c{sup 2}), using 60 Type Ia supernovae (SNe Ia) from the ESSENCE supernova survey. We derive a set of constraints on the nature of the dark energy assuming a flat Universe. By including constraints on ({Omega}{sub M}, w) from baryon acoustic oscillations, we obtain a value for a static equation-of-state parameter w = -1.05{sub -0.12}{sup +0.13} (stat 1{sigma}) {+-} 0.13 (sys) and {Omega}{sub M} = 0.274{sub -0.020}{sup +0.033} (stat 1{sigma}) with a best-fit {chi}{sup 2}/DoF of 0.96. These results are consistent with those reported by the Super-Nova Legacy Surveymore » in a similar program measuring supernova distances and redshifts. We evaluate sources of systematic error that afflict supernova observations and present Monte Carlo simulations that explore these effects. Currently, the largest systematic currently with the potential to affect our measurements is the treatment of extinction due to dust in the supernova host galaxies. Combining our set of ESSENCE SNe Ia with the SuperNova Legacy Survey SNe Ia, we obtain a joint constraint of w = -1.07{sub -0.09}{sup +0.09} (stat 1{sigma}) {+-} 0.13 (sys), {Omega}{sub M} = 0.267{sub -0.018}{sup +0.028} (stat 1{sigma}) with a best-fit {chi}{sup 2}/DoF of 0.91. The current SNe Ia data are fully consistent with a cosmological constant.« less
Kelly, Patrick L; Rodney, Steven A; Treu, Tommaso; Foley, Ryan J; Brammer, Gabriel; Schmidt, Kasper B; Zitrin, Adi; Sonnenfeld, Alessandro; Strolger, Louis-Gregory; Graur, Or; Filippenko, Alexei V; Jha, Saurabh W; Riess, Adam G; Bradac, Marusa; Weiner, Benjamin J; Scolnic, Daniel; Malkan, Matthew A; von der Linden, Anja; Trenti, Michele; Hjorth, Jens; Gavazzi, Raphael; Fontana, Adriano; Merten, Julian C; McCully, Curtis; Jones, Tucker; Postman, Marc; Dressler, Alan; Patel, Brandon; Cenko, S Bradley; Graham, Melissa L; Tucker, Bradley E
2015-03-06
In 1964, Refsdal hypothesized that a supernova whose light traversed multiple paths around a strong gravitational lens could be used to measure the rate of cosmic expansion. We report the discovery of such a system. In Hubble Space Telescope imaging, we have found four images of a single supernova forming an Einstein cross configuration around a redshift z = 0.54 elliptical galaxy in the MACS J1149.6+2223 cluster. The cluster's gravitational potential also creates multiple images of the z = 1.49 spiral supernova host galaxy, and a future appearance of the supernova elsewhere in the cluster field is expected. The magnifications and staggered arrivals of the supernova images probe the cosmic expansion rate, as well as the distribution of matter in the galaxy and cluster lenses. Copyright © 2015, American Association for the Advancement of Science.
Discovery of the Most Distant Supernovae and the Quest for {Omega}
DOE R&D Accomplishments Database
Goldhaber, G.; Perlmutter, S.; Gabi, S.; Goobar, A.; Kim, A.; Kim, M.; Pain, R.; Pennypacker, C.; Small, I.; Boyle, B.
1994-05-01
A search for cosmological supernovae has discovered a number of a type Ia supernovae. In particular, one at z = 0.458 is the most distant supernovae yet observed. There is strong evidence from measurements of nearby type Ia supernovae that they can be considered as "standard candles". The authors plan to use these supernovae to measure the deceleration in the general expansion of the universe. The aim of their experiment is to try and observe and measure about 30 such distant supernovae in order to obtain a measurement of the deceleration parameter q{sub o} which is related to {Omega}. Here {Omega} is the ratio of the density of the universe to the critical density, and they expect a measurement with an accuracy of about 30%.
iPTF16geu: A multiply imaged, gravitationally lensed type Ia supernova
Goobar, A.; Amanullah, R.; Kulkarni, S. R.; ...
2017-04-21
We report the discovery of a multiply imaged, gravitationally lensed type Ia supernova, iPTF16geu (SN 2016geu), at redshift z = 0.409. This phenomenon was identified because the light from the stellar explosion was magnified more than 50 times by the curvature of space around matter in an intervening galaxy.We used high-spatial-resolution observations to resolve four images of the lensed supernova, approximately 0.3 arc seconds from the center of the foreground galaxy. The observations probe a physical scale of ~1 kiloparsec, smaller than is typical in other studies of extragalactic gravitational lensing. The large magnification and symmetric image configuration imply closemore » alignment between the lines of sight to the supernova and to the lens. In conclusion, the relative magnifications of the four images provide evidence for substructures in the lensing galaxy.« less
iPTF16geu: A multiply imaged, gravitationally lensed type Ia supernova.
Goobar, A; Amanullah, R; Kulkarni, S R; Nugent, P E; Johansson, J; Steidel, C; Law, D; Mörtsell, E; Quimby, R; Blagorodnova, N; Brandeker, A; Cao, Y; Cooray, A; Ferretti, R; Fremling, C; Hangard, L; Kasliwal, M; Kupfer, T; Lunnan, R; Masci, F; Miller, A A; Nayyeri, H; Neill, J D; Ofek, E O; Papadogiannakis, S; Petrushevska, T; Ravi, V; Sollerman, J; Sullivan, M; Taddia, F; Walters, R; Wilson, D; Yan, L; Yaron, O
2017-04-21
We report the discovery of a multiply imaged, gravitationally lensed type Ia supernova, iPTF16geu (SN 2016geu), at redshift z = 0.409. This phenomenon was identified because the light from the stellar explosion was magnified more than 50 times by the curvature of space around matter in an intervening galaxy. We used high-spatial-resolution observations to resolve four images of the lensed supernova, approximately 0.3 arc seconds from the center of the foreground galaxy. The observations probe a physical scale of ~1 kiloparsec, smaller than is typical in other studies of extragalactic gravitational lensing. The large magnification and symmetric image configuration imply close alignment between the lines of sight to the supernova and to the lens. The relative magnifications of the four images provide evidence for substructures in the lensing galaxy. Copyright © 2017, American Association for the Advancement of Science.
Lensed Type Ia supernovae as probes of cluster mass models
SAO/NASA ADS Astronomy Abstract Service Title: Lensed Type Ia supernovae as probes of cluster mass Origin: OUP Astronomy Keywords: gravitational lensing: strong, supernovae: general, galaxies: clusters
HD271791: dynamical versus binary-supernova ejection scenario
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.
2009-05-01
The atmosphere of the extremely high-velocity (530-920kms-1) early B-type star HD271791 is enriched in α-process elements, which suggests that this star is a former secondary component of a massive tight binary system and that its surface was polluted by the nucleosynthetic products after the primary star exploded in a supernova. It was proposed that the (asymmetric) supernova explosion unbind the system and that the secondary star (HD271791) was released at its orbital velocity in the direction of Galactic rotation. In this Letter, we show that to explain the Galactic rest-frame velocity of HD271791 within the framework of the binary-supernova scenario, the stellar remnant of the supernova explosion (a <~10Msolar black hole) should receive an unrealistically large kick velocity of >=750-1200kms-1. We therefore consider the binary-supernova scenario as highly unlikely and instead propose that HD271791 attained its peculiar velocity in the course of a strong dynamical three- or four-body encounter in the dense core of the parent star cluster. Our proposal implies that by the moment of encounter HD271791 was a member of a massive post-supernova binary.
Solar abundance ratios of the iron-peak elements in the Perseus cluster.
2017-11-23
The metal abundance of the hot plasma that permeates galaxy clusters represents the accumulation of heavy elements produced by billions of supernovae. Therefore, X-ray spectroscopy of the intracluster medium provides an opportunity to investigate the nature of supernova explosions integrated over cosmic time. In particular, the abundance of the iron-peak elements (chromium, manganese, iron and nickel) is key to understanding how the progenitors of typical type Ia supernovae evolve and explode. Recent X-ray studies of the intracluster medium found that the abundance ratios of these elements differ substantially from those seen in the Sun, suggesting differences between the nature of type Ia supernovae in the clusters and in the Milky Way. However, because the K-shell transition lines of chromium and manganese are weak and those of iron and nickel are very close in photon energy, high-resolution spectroscopy is required for an accurate determination of the abundances of these elements. Here we report observations of the Perseus cluster, with statistically significant detections of the resonance emission from chromium, manganese and nickel. Our measurements, combined with the latest atomic models, reveal that these elements have near-solar abundance ratios with respect to iron, in contrast to previous claims. Comparison between our results and modern nucleosynthesis calculations disfavours the hypothesis that type Ia supernova progenitors are exclusively white dwarfs with masses well below the Chandrasekhar limit (about 1.4 times the mass of the Sun). The observed abundance pattern of the iron-peak elements can be explained by taking into account a combination of near- and sub-Chandrasekhar-mass type Ia supernova systems, adding to the mounting evidence that both progenitor types make a substantial contribution to cosmic chemical enrichment.
NASA Astrophysics Data System (ADS)
Kamble, Atish; Soderberg, Alicia M.; Chomiuk, Laura; Margutti, Raffaella; Medvedev, Mikhail; Milisavljevic, Dan; Chakraborti, Sayan; Chevalier, Roger; Chugai, Nikolai; Dittmann, Jason; Drout, Maria; Fransson, Claes; Nakar, Ehud; Sanders, Nathan
2014-12-01
We present extensive radio and X-ray observations of SN 2012au, an energetic, radio-luminous supernova of Type Ib that exhibits multi-wavelength properties bridging subsets of hydrogen-poor superluminous supernovae, hypernovae, and normal core-collapse supernovae. The observations closely follow models of synchrotron emission from a shock-heated circumburst medium that has a wind density profile (ρvpropr -2). We infer a sub-relativistic velocity for the shock wave v ≈ 0.2 c and a radius of r ≈ 1.4 × 1016cm at 25 days after the estimated date of explosion. For a wind velocity of 1000 km s-1, we determine the mass-loss rate of the progenitor to be \\dot{M} = 3.6 × 10-6 M⊙ yr-1, consistent with the estimates from X-ray observations. We estimate the total internal energy of the radio-emitting material to be E ≈ 1047 erg, which is intermediate to SN 1998bw and SN 2002ap. The evolution of the radio light curve of SN 2012au is in agreement with its interaction with a smoothly distributed circumburst medium and the absence of stellar shells ejected from previous outbursts out to r ≈ 1017 cm from the supernova site. We conclude that the bright radio emission from SN 2012au was not dissimilar from other core-collapse supernovae despite its extraordinary optical properties, and that the evolution of the SN 2012au progenitor star was relatively quiet, marked with a steady mass loss, during the final years preceding explosion.
"Type Ia Supernovae: Tools for Studying Dark Energy" Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woosley, Stan; Kasen, Dan
2017-05-10
Final technical report for project "Type Ia Supernovae: Tools for the Study of Dark Energy" awarded jointly to scientists at the University of California, Santa Cruz and Berkeley, for computer modeling, theory and data analysis relevant to the use of Type Ia supernovae as standard candles for cosmology.
The Fate of Exploding White Dwarfs
NASA Astrophysics Data System (ADS)
Fisher, Robert
2018-01-01
Type Ia supernovae play an important role as standardizable candles for cosmology, providing one of the most important probes into the nature of dark energy. Yet, the nature of the stellar progenitors which give rise to Type Ia supernovae remains elusive. For decades, the leading model explaining Type Ia supernovae properties consisted of a white dwarf accreting to near the Chandrasekhar mass, in the single-degenerate channel. More recently, a variety of lines of evidence point instead towards merging binary white dwarfs, in the double-degenerate channel, as the progenitors of most Type Ia supernovae. In this talk, I will focus upon recent advances at the interface between observation and theory which will help crack the Type Ia progenitor problem. In particular, I will present new insights obtained from recent multidimensional numerical simulations of both the double-degenerate and single-degenerate channels which I have undertaken with my students and collaborators. I will discuss how new models and observations will help elucidate the long-standing mystery of Type supernovae.
Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe.
Li, Weidong; Bloom, Joshua S; Podsiadlowski, Philipp; Miller, Adam A; Cenko, S Bradley; Jha, Saurabh W; Sullivan, Mark; Howell, D Andrew; Nugent, Peter E; Butler, Nathaniel R; Ofek, Eran O; Kasliwal, Mansi M; Richards, Joseph W; Stockton, Alan; Shih, Hsin-Yi; Bildsten, Lars; Shara, Michael M; Bibby, Joanne; Filippenko, Alexei V; Ganeshalingam, Mohan; Silverman, Jeffrey M; Kulkarni, S R; Law, Nicholas M; Poznanski, Dovi; Quimby, Robert M; McCully, Curtis; Patel, Brandon; Maguire, Kate; Shen, Ken J
2011-12-14
Type Ia supernovae are thought to result from a thermonuclear explosion of an accreting white dwarf in a binary system, but little is known of the precise nature of the companion star and the physical properties of the progenitor system. There are two classes of models: double-degenerate (involving two white dwarfs in a close binary system) and single-degenerate models. In the latter, the primary white dwarf accretes material from a secondary companion until conditions are such that carbon ignites, at a mass of 1.38 times the mass of the Sun. The type Ia supernova SN 2011fe was recently detected in a nearby galaxy. Here we report an analysis of archival images of the location of SN 2011fe. The luminosity of the progenitor system (especially the companion star) is 10-100 times fainter than previous limits on other type Ia supernova progenitor systems, allowing us to rule out luminous red giants and almost all helium stars as the mass-donating companion to the exploding white dwarf.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ezer, Cemile; Ercan, E. Nihal; Bulbul, Esra
2017-02-10
The spatial distribution of the metals residing in the intra-cluster medium (ICM) of galaxy clusters records all the information on a cluster’s nucleosynthesis and chemical enrichment history. We present measurements from a total of 1.2 Ms Suzaku XIS and 72 ks Chandra observations of the cool-core galaxy cluster Abell 3112 out to its virial radius (∼1470 kpc). We find that the ratio of the observed supernova type Ia explosions to the total supernova explosions has a uniform distribution at a level of 12%–16% out to the cluster’s virial radius. The observed fraction of type Ia supernova explosions is in agreementmore » with the corresponding fraction found in our Galaxy and the chemical enrichment of our Galaxy. The non-varying supernova enrichment suggests that the ICM in cluster outskirts was enriched by metals at an early stage before the cluster itself was formed during a period of intense star formation activity. Additionally, we find that the 2D delayed detonation model CDDT produce significantly worse fits to the X-ray spectra compared to simple 1D W7 models. This is due to the relative overestimate of Si, and the underestimate of Mg in these models with respect to the measured abundances.« less
A fast-evolving luminous transient discovered by K2/Kepler
NASA Astrophysics Data System (ADS)
Rest, A.; Garnavich, P. M.; Khatami, D.; Kasen, D.; Tucker, B. E.; Shaya, E. J.; Olling, R. P.; Mushotzky, R.; Zenteno, A.; Margheim, S.; Strampelli, G.; James, D.; Smith, R. C.; Förster, F.; Villar, V. A.
2018-04-01
For decades, optical time-domain searches have been tuned to find ordinary supernovae, which rise and fall in brightness over a period of weeks. Recently, supernova searches have improved their cadences and a handful of fast-evolving luminous transients have been identified1-5. These have peak luminosities comparable to type Ia supernovae, but rise to maximum in less than ten days and fade from view in less than one month. Here we present the most extreme example of this class of object thus far: KSN 2015K, with a rise time of only 2.2 days and a time above half-maximum of only 6.8 days. We show that, unlike type Ia supernovae, the light curve of KSN 2015K was not powered by the decay of radioactive elements. We further argue that it is unlikely that it was powered by continuing energy deposition from a central remnant (a magnetar or black hole). Using numerical radiation hydrodynamical models, we show that the light curve of KSN 2015K is well fitted by a model where the supernova runs into external material presumably expelled in a pre-supernova mass-loss episode. The rapid rise of KSN 2015K therefore probes the venting of photons when a hypersonic shock wave breaks out of a dense extended medium.
A relativistic type Ibc supernova without a detected gamma-ray burst.
Soderberg, A M; Chakraborti, S; Pignata, G; Chevalier, R A; Chandra, P; Ray, A; Wieringa, M H; Copete, A; Chaplin, V; Connaughton, V; Barthelmy, S D; Bietenholz, M F; Chugai, N; Stritzinger, M D; Hamuy, M; Fransson, C; Fox, O; Levesque, E M; Grindlay, J E; Challis, P; Foley, R J; Kirshner, R P; Milne, P A; Torres, M A P
2010-01-28
Long duration gamma-ray bursts (GRBs) mark the explosive death of some massive stars and are a rare sub-class of type Ibc supernovae. They are distinguished by the production of an energetic and collimated relativistic outflow powered by a central engine (an accreting black hole or neutron star). Observationally, this outflow is manifested in the pulse of gamma-rays and a long-lived radio afterglow. Until now, central-engine-driven supernovae have been discovered exclusively through their gamma-ray emission, yet it is expected that a larger population goes undetected because of limited satellite sensitivity or beaming of the collimated emission away from our line of sight. In this framework, the recovery of undetected GRBs may be possible through radio searches for type Ibc supernovae with relativistic outflows. Here we report the discovery of luminous radio emission from the seemingly ordinary type Ibc SN 2009bb, which requires a substantial relativistic outflow powered by a central engine. A comparison with our radio survey of type Ibc supernovae reveals that the fraction harbouring central engines is low, about one per cent, measured independently from, but consistent with, the inferred rate of nearby GRBs. Independently, a second mildly relativistic supernova has been reported.
Detection of the gravitational lens magnifying a type Ia supernova.
Quimby, Robert M; Oguri, Masamune; More, Anupreeta; More, Surhud; Moriya, Takashi J; Werner, Marcus C; Tanaka, Masayuki; Folatelli, Gaston; Bersten, Melina C; Maeda, Keiichi; Nomoto, Ken'ichi
2014-04-25
Objects of known brightness, like type Ia supernovae (SNIa), can be used to measure distances. If a massive object warps spacetime to form multiple images of a background SNIa, a direct test of cosmic expansion is also possible. However, these lensing events must first be distinguished from other rare phenomena. Recently, a supernova was found to shine much brighter than normal for its distance, which resulted in a debate: Was it a new type of superluminous supernova or a normal SNIa magnified by a hidden gravitational lens? Here, we report that a spectrum obtained after the supernova faded away shows the presence of a foreground galaxy-the first found to strongly magnify a SNIa. We discuss how more lensed SNIa can be found than previously predicted.
Constraining the Origin and Heating Mechanism of Dust in Type IIn Supernovae
NASA Astrophysics Data System (ADS)
Fox, Ori; Skrutskie, Michael; Filippenko, Alex
2012-12-01
More than any other supernova subclass, Type IIn supernovae tend to exhibit late-time (>1 year) infrared emission from warm dust. Identifying the origin and heating mechanism of the dust provides an important probe of the supernova explosion, circumstellar environment, and progenitor system. Yet mid-infrared observations, which span the peak of the thermal emission, are rare. Three years ago, we executed a warm Spitzer survey (P60122) that uncovered a unique sample of ten supernovae with unreported late-time infrared excesses, in some cases more than 5 years post-explosion. The data from this single epoch are most consistent with a pre-existing dust shell that is continuously heated by visible and/or X-ray emission generated by ongoing shock interaction. Furthermore, the lack of any detections beyond ~2000 days suggests the dust is destroyed once the forward shock overruns the pre-existing shell. The actual shell sizes remain unknown, however, since the derived blackbody radii offer only lower limits. Last year, we obtained second epoch observations of these ten re-discovered SNe IIn (plus the well-studied Type IIn SN 2010jl). The project aimed for non-detections to constrain the light-curve ``turn-off'' times and, thereby, the shell sizes and progenitor mass-loss models. Only two SNe (2005gn and 2008J), however, went undetected. The other nine SNe remain bright at mid-IR wavelengths, which means the dust shell radii are larger than expected. Here we propose continued monitoring of these nine SNe IIn to constrain the size of the circumstellar dust shell and characterize the supernova progenitor system. We can obtain all the necessary data in only 6.1 hours of observation.
The cosmic transparency measured with Type Ia supernovae: implications for intergalactic dust
NASA Astrophysics Data System (ADS)
Goobar, Ariel; Dhawan, Suhail; Scolnic, Daniel
2018-04-01
Observations of high-redshift Type Ia supernovae (SNe Ia) are used to study the cosmic transparency at optical wavelengths. Assuming a flat ΛCDM cosmological model based on BAO and CMB results, redshift dependent deviations of SN Ia distances are used to constrain mechanisms that would dim light. The analysis is based on the most recent Pantheon SN compilation, for which there is a 0.03± 0.01 {(stat)} mag discrepancy in the distant supernova distance moduli relative to the ΛCDM model anchored by supernovae at z < 0.05. While there are known systematic uncertainties that combined could explain the observed offset, here we entertain the possibility that the discrepancy may instead be explained by scattering of supernova light in the intergalactic medium (IGM). We focus on two effects: Compton scattering by free electrons and extinction by dust in the IGM. We find that if the discrepancy is due entirely to dimming by dust, the measurements can be modeled with a cosmic dust density Ω _IGM^dust = 8 \\cdot 10^{-5} (1+z)^{-1}, corresponding to an average attenuation of 2 . 10-5 mag Mpc-1 in V-band. Forthcoming SN Ia studies may provide a definitive measurement of the IGM dust properties, while still providing an unbiased estimate of cosmological parameters by introducing additional parameters in the global fits to the observations.
The cosmic transparency measured with Type Ia supernovae: implications for intergalactic dust
NASA Astrophysics Data System (ADS)
Goobar, Ariel; Dhawan, Suhail; Scolnic, Daniel
2018-06-01
Observations of high-redshift Type Ia supernovae (SNe Ia) are used to study the cosmic transparency at optical wavelengths. Assuming a flat Λ cold dark matter (ΛCDM) cosmological model based on baryon acoustic oscillations and cosmic microwave background measurements, redshift dependent deviations of SN Ia distances are used to constrain mechanisms that would dim light. The analysis is based on the most recent Pantheon SN compilation, for which there is a 0.03 ± 0.01 {({stat})} mag discrepancy in the distant supernova distance moduli relative to the ΛCDM model anchored by supernovae at z < 0.05. While there are known systematic uncertainties that combined could explain the observed offset, here we entertain the possibility that the discrepancy may instead be explained by scattering of supernova light in the intergalactic medium (IGM). We focus on two effects: Compton scattering by free electrons and extinction by dust in the IGM. We find that if the discrepancy is entirely due to dimming by dust, the measurements can be modelled with a cosmic dust density Ω _IGM^dust = 8 × 10^{-5} (1+z)^{-1}, corresponding to an average attenuation of 2 × 10-5 mag Mpc-1 in V band. Forthcoming SN Ia studies may provide a definitive measurement of the IGM dust properties, while still providing an unbiased estimate of cosmological parameters by introducing additional parameters in the global fits to the observations.
Toward an efficient Photometric Supernova Classifier
NASA Astrophysics Data System (ADS)
McClain, Bradley
2018-01-01
The Sloan Digital Sky Survey Supernova Survey (SDSS) discovered more than 1,000 Type Ia Supernovae, yet less than half of these have spectroscopic measurements. As wide-field imaging telescopes such as The Dark Energy Survey (DES) and the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) discover more supernovae, the need for accurate and computationally cheap photometric classifiers increases. My goal is to use a photometric classification algorithm based on Sncosmo, a python library for supernova cosmology analysis, to reclassify previously identified Hubble SN and other non-spectroscopically confirmed surveys. My results will be compared to other photometric classifiers such as PSNID and STARDUST. In the near future, I expect to have the algorithm validated with simulated data, optimized for efficiency, and applied with high performance computing to real data.
An asymmetric energetic type Ic supernova viewed off-axis, and a link to gamma ray bursts.
Mazzali, Paolo A; Kawabata, Koji S; Maeda, Keiichi; Nomoto, Ken'ichi; Filippenko, Alexei V; Ramirez-Ruiz, Enrico; Benetti, Stefano; Pian, Elena; Deng, Jinsong; Tominaga, Nozomu; Ohyama, Youichi; Iye, Masanori; Foley, Ryan J; Matheson, Thomas; Wang, Lifan; Gal-Yam, Avishay
2005-05-27
Type Ic supernovae, the explosions after the core collapse of massive stars that have previously lost their hydrogen and helium envelopes, are particularly interesting because of their link with long-duration gamma ray bursts. Although indications exist that these explosions are aspherical, direct evidence has been missing. Late-time observations of supernova SN 2003jd, a luminous type Ic supernova, provide such evidence. Recent Subaru and Keck spectra reveal double-peaked profiles in the nebular lines of neutral oxygen and magnesium. These profiles are different from those of known type Ic supernovae, with or without a gamma ray burst, and they can be understood if SN 2003jd was an aspherical axisymmetric explosion viewed from near the equatorial plane. If SN 2003jd was associated with a gamma ray burst, we missed the burst because it was pointing away from us.
VizieR Online Data Catalog: UBVRIz light curves of 51 Type II supernovae (Galbany+, 2016)
NASA Astrophysics Data System (ADS)
Galbany, L.; Hamuy, M.; Phillips, M. M.; Suntzeff, N. B.; Maza, J.; de Jaeger, T.; Moraga, T.; Gonzalez-Gaitan, S.; Krisciunas, K.; Morrell, N. I.; Thomas-Osip, J.; Krzeminski, W.; Gonzalez, L.; Antezana, R.; Wishnjewski, M.; McCarthy, P.; Anderson, J. P.; Gutierrez, C. P.; Stritzinger, M.; Folatelli, G.; Anguita, C.; Galaz, G.; Green, E. M.; Impey, C.; Kim, Y.-C.; Kirhakos, S.; Malkan, M. A.; Mulchaey, J. S.; Phillips, A. C.; Pizzella, A.; Prosser, C. F.; Schmidt, B. P.; Schommer, R. A.; Sherry, W.; Strolger, L.-G.; Wells, L. A.; Williger, G. M.
2016-08-01
This paper presents a sample of multi-band, visual-wavelength light curves of 51 type II supernovae (SNe II) observed from 1986 to 2003 in the course of four different surveys: the Cerro Tololo Supernova Survey, the Calan Tololo Supernova Program (C&T), the Supernova Optical and Infrared Survey (SOIRS), and the Carnegie Type II Supernovae Survey (CATS). Near-infrared photometry and optical spectroscopy of this set of SNe II will be published in two companion papers. A list of the SNe II used in this study is presented in Table1. The first object in our list is SN 1986L and it is the only SN observed with photoelectric techniques (by M.M.P and S.K., using the Cerro Tololo Inter-American Observatory (CTIO) 0.9m equipped with a photometer and B and V filters). The remaining SNe were observed using a variety of telescopes equipped with CCD detectors and UBV(RI)KCz filters (see Table5). The magnitudes for the photometric sequences of the 51 SNe II are listed in Table4. In every case, these sequences were derived from observations of Landolt standards (see Appendix D in Hamuy et al. 2001ApJ...558..615H for the definition of the z band and Stritzinger et al. 2002AJ....124.2100S for the description of the z-band standards). Table5 lists the resulting UBVRIz magnitudes for the 51 SNe. (3 data files).
Supernova Cosmology Inference with Probabilistic Photometric Redshifts (SCIPPR)
NASA Astrophysics Data System (ADS)
Peters, Christina; Malz, Alex; Hlozek, Renée
2018-01-01
The Bayesian Estimation Applied to Multiple Species (BEAMS) framework employs probabilistic supernova type classifications to do photometric SN cosmology. This work extends BEAMS to replace high-confidence spectroscopic redshifts with photometric redshift probability density functions, a capability that will be essential in the era the Large Synoptic Survey Telescope and other next-generation photometric surveys where it will not be possible to perform spectroscopic follow up on every SN. We present the Supernova Cosmology Inference with Probabilistic Photometric Redshifts (SCIPPR) Bayesian hierarchical model for constraining the cosmological parameters from photometric lightcurves and host galaxy photometry, which includes selection effects and is extensible to uncertainty in the redshift-dependent supernova type proportions. We create a pair of realistic mock catalogs of joint posteriors over supernova type, redshift, and distance modulus informed by photometric supernova lightcurves and over redshift from simulated host galaxy photometry. We perform inference under our model to obtain a joint posterior probability distribution over the cosmological parameters and compare our results with other methods, namely: a spectroscopic subset, a subset of high probability photometrically classified supernovae, and reducing the photometric redshift probability to a single measurement and error bar.
Type II supernovae as a significant source of interstellar dust.
Dunne, Loretta; Eales, Stephen; Ivison, Rob; Morgan, Haley; Edmunds, Mike
2003-07-17
Large amounts of dust (>10(8)M(o)) have recently been discovered in high-redshift quasars and galaxies corresponding to a time when the Universe was less than one-tenth of its present age. The stellar winds produced by stars in the late stages of their evolution (on the asymptotic giant branch of the Hertzsprung-Russell diagram) are thought to be the main source of dust in galaxies, but they cannot produce that dust on a short enough timescale (&<1 Gyr) to explain the results in the high-redshift galaxies. Supernova explosions of massive stars (type II) are also a potential source, with models predicting 0.2-4M(o) of dust. As massive stars evolve rapidly, on timescales of a few Myr, these supernovae could be responsible for the high-redshift dust. Observations of supernova remnants in the Milky Way, however, have hitherto revealed only 10(-7)-10(-3)M(o) each, which is insufficient to explain the high-redshift data. Here we report the detection of approximately 2-4M(o) of cold dust in the youngest known Galactic supernova remnant, Cassiopeia A. This observation implies that supernovae are at least as important as stellar winds in producing dust in our Galaxy and would have been the dominant source of dust at high redshifts.
UBVRIz LIGHT CURVES OF 51 TYPE II SUPERNOVAE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galbany, Lluis; Hamuy, Mario; Jaeger, Thomas de
We present a compilation of UBVRIz light curves of 51 type II supernovae discovered during the course of four different surveys during 1986–2003: the Cerro Tololo Supernova Survey, the Calán/Tololo Supernova Program (C and T), the Supernova Optical and Infrared Survey (SOIRS), and the Carnegie Type II Supernova Survey (CATS). The photometry is based on template-subtracted images to eliminate any potential host galaxy light contamination, and calibrated from foreground stars. This work presents these photometric data, studies the color evolution using different bands, and explores the relation between the magnitude at maximum brightness and the brightness decline parameter (s) frommore » maximum light through the end of the recombination phase. This parameter is found to be shallower for redder bands and appears to have the best correlation in the B band. In addition, it also correlates with the plateau duration, being shorter (longer) for larger (smaller) s values.« less
UBVRIz Light Curves of 51 Type II Supernovae
NASA Astrophysics Data System (ADS)
Galbany, Lluís; Hamuy, Mario; Phillips, Mark M.; Suntzeff, Nicholas B.; Maza, José; de Jaeger, Thomas; Moraga, Tania; González-Gaitán, Santiago; Krisciunas, Kevin; Morrell, Nidia I.; Thomas-Osip, Joanna; Krzeminski, Wojtek; González, Luis; Antezana, Roberto; Wishnjewski, Marina; McCarthy, Patrick; Anderson, Joseph P.; Gutiérrez, Claudia P.; Stritzinger, Maximilian; Folatelli, Gastón; Anguita, Claudio; Galaz, Gaspar; Green, Elisabeth M.; Impey, Chris; Kim, Yong-Cheol; Kirhakos, Sofia; Malkan, Mathew A.; Mulchaey, John S.; Phillips, Andrew C.; Pizzella, Alessandro; Prosser, Charles F.; Schmidt, Brian P.; Schommer, Robert A.; Sherry, William; Strolger, Louis-Gregory; Wells, Lisa A.; Williger, Gerard M.
2016-02-01
We present a compilation of UBVRIz light curves of 51 type II supernovae discovered during the course of four different surveys during 1986-2003: the Cerro Tololo Supernova Survey, the Calán/Tololo Supernova Program (C&T), the Supernova Optical and Infrared Survey (SOIRS), and the Carnegie Type II Supernova Survey (CATS). The photometry is based on template-subtracted images to eliminate any potential host galaxy light contamination, and calibrated from foreground stars. This work presents these photometric data, studies the color evolution using different bands, and explores the relation between the magnitude at maximum brightness and the brightness decline parameter (s) from maximum light through the end of the recombination phase. This parameter is found to be shallower for redder bands and appears to have the best correlation in the B band. In addition, it also correlates with the plateau duration, being shorter (longer) for larger (smaller) s values.
The shocking development of lithium (and boron) in supernovae
NASA Technical Reports Server (NTRS)
Dearborn, David S. P.; Schramm, David N.; Steigman, Gary; Truran, James
1989-01-01
It is shown that significant amounts of Li-7 and B-11 are produced in Type 2 supernovae. The synthesis of these rare elements occurs as the supernova shock traverses the base of the hydrogen envelope burning He-3 to masses 7 and 11 via alpha capture. The yields in this process are sufficient to account for the difference in lithium abundance observed between Pop 2 and Pop 1 stars. Since lithium (and boron) would, in this manner, be created in the same stars that produce the bulk of the heavy elements, the lithium abundance even in old Pop 1 stars would be high (as observed). The B-11 production may remedy the long-standing problem of the traditional spallation scenario to account for the observed isotopic ratio of boron. Observational consequences of this mechanism are discussed, including the evolution of lithium and boron isotope ratios in the Galaxy and the possible use of the boron yields to constrain the number of blue progenitor Type 2 supernovae.
SN 1991T - Gamma-Ray Observatory's first supernova?
NASA Technical Reports Server (NTRS)
Burrows, Adam; Shankar, Anurag; Van Riper, Kenneth A.
1991-01-01
Consideration is given to the explosion of the Type Ia supernova SN 1991T in the nearby galaxy NGC 4527 detected in gamma-ray lines by the recently launched GRO. The dominant gamma-line and continuum features of the new 'delayed detonation' model FDEFA1 are calculated and compared to those for standard deflagration models W7 and cdtg7. It is shown that there are many useful hard photon discriminants of the Type Ia explosion mechanism that can, in principle, be detected by the OSSE and COMPTEL instruments on the GRO. Either SN 1991T, if bright enough, or one of the several Type Ia supernovae expected to be within the GRO's range during its active life, may make it possible to settle the detonation/deflagration debate, verify the generic thermonuclear white dwarf model of Type Ia explosions, and calibrate the Type Ia B(max)/847 keV line flux ratio.
NASA Astrophysics Data System (ADS)
Hayden, Brian; Aldering, Gregory; Amanullah, Rahman; Barbary, Kyle; Bohringer, Hans; Boone, Kyle Robert; Brodwin, Mark; Cunha, Carlos; Currie, Miles; Deustua, Susana; Dixon, Samantha; Eisenhardt, Peter; Fassbender, Rene; Fruchter, Andrew; Gladders, Michael; Gonzalez, Anthony; Goobar, Ariel; Hildebrandt, Hendrik; Hilton, Matt; Hoekstra, Henk; Hook, Isobel; Huang, Xiaosheng; Huterer, Dragan; Jee, Myungkook James; Kim, Alex; Kowalski, Marek; Lidman, Chris; Linder, Eric; Luther, Kyle; Meyers, Joshua; Muzzin, Adam; Nordin, Jakob; Pain, Reynald; Perlmutter, Saul; Richard, Johan; Rosati, Piero; Rozo, Eduardo; Rubin, David; Ruiz-Lapuente, Pilar; Rykoff, Eli; Santos, Joana; Myers Saunders, Clare; Sofiatti, Caroline; Spadafora, Anthony L.; Stanford, Spencer; Stern, Daniel; Suzuki, Nao; Webb, Tracy; Wechsler, Risa; Williams, Steven; Willis, Jon; Wilson, Gillian; Yen, Mike
2018-01-01
The Supernova Cosmology Project has finished executing a large (174 orbits, cycles 22-23) Hubble Space Telescope program, which has measured ~30 type Ia Supernovae above z~1 in the highest-redshift, most massive galaxy clusters known to date. We present the status of the ongoing blinded cosmology analysis, demonstrating substantial improvement to the uncertainty on the Dark Energy density above z~1. Our extensive HST and ground-based campaign has already produced unique results; we have confirmed several of the highest redshift cluster members known to date, confirmed the redshift of one of the most massive galaxy clusters expected across the entire sky, and characterized one of the most extreme starburst environments yet known in a z~1.7 cluster. We have also discovered a lensed SN Ia at z=2.22 magnified by a factor of ~2.8, which is the highest spectroscopic redshift SN Ia currently known.
Slow-speed Supernovae from the Palomar Transient Factory: Two Channels
NASA Astrophysics Data System (ADS)
White, Christopher J.; Kasliwal, Mansi M.; Nugent, Peter E.; Gal-Yam, Avishay; Howell, D. Andrew; Sullivan, Mark; Goobar, Ariel; Piro, Anthony L.; Bloom, Joshua S.; Kulkarni, Shrinivas R.; Laher, Russ R.; Masci, Frank; Ofek, Eran O.; Surace, Jason; Ben-Ami, Sagi; Cao, Yi; Cenko, S. Bradley; Hook, Isobel M.; Jönsson, Jakob; Matheson, Thomas; Sternberg, Assaf; Quimby, Robert M.; Yaron, Ofer
2015-01-01
Since the discovery of the unusual prototype SN 2002cx, the eponymous class of Type I (hydrogen-poor) supernovae with low ejecta speeds has grown to include approximately two dozen members identified from several heterogeneous surveys, in some cases ambiguously. Here we present the results of a systematic study of 1077 Type I supernovae discovered by the Palomar Transient Factory, leading to nine new members of this peculiar class. Moreover, we find there are two distinct subclasses based on their spectroscopic, photometric, and host galaxy properties: "SN 2002cx-like" supernovae tend to be in later-type or more irregular hosts, have more varied and generally dimmer luminosities, have longer rise times, and lack a Ti II trough when compared to "SN 2002es-like" supernovae. None of our objects show helium, and we counter a previous claim of two such events. We also find that the occurrence rate of these transients relative to Type Ia supernovae is 5.6-3.8+22% (90% confidence), lower compared to earlier estimates. Combining our objects with the literature sample, we propose that these subclasses have two distinct physical origins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, M. L.; Pritchet, C. J.; Balam, D.
2010-02-15
We have combined the large SN Ia database of the Canada-France-Hawaii Telescope Supernova Legacy Survey and catalogs of galaxies with photometric redshifts, Very Large Array 1.4 GHz radio sources, and Spitzer infrared sources. We present eight SNe Ia in early-type host galaxies which have counterparts in the radio and infrared source catalogs. We find the SN Ia rate in subsets of radio and infrared early-type galaxies is {approx}1-5 times the rate in all early-type galaxies, and that any enhancement is always {approx}<2{sigma}. Rates in these subsets are consistent with predictions of the two-component 'A+B' SN Ia rate model. Since infraredmore » properties of radio SN Ia hosts indicate dust-obscured star formation, we incorporate infrared star formation rates into the 'A+B' model. We also show the properties of SNe Ia in radio and infrared galaxies suggest the hosts contain dust and support a continuum of delay time distributions (DTDs) for SNe Ia, although other DTDs cannot be ruled out based on our data.« less
An optical supernova associated with the X-ray flash XRF 060218.
Pian, E; Mazzali, P A; Masetti, N; Ferrero, P; Klose, S; Palazzi, E; Ramirez-Ruiz, E; Woosley, S E; Kouveliotou, C; Deng, J; Filippenko, A V; Foley, R J; Fynbo, J P U; Kann, D A; Li, W; Hjorth, J; Nomoto, K; Patat, F; Sauer, D N; Sollerman, J; Vreeswijk, P M; Guenther, E W; Levan, A; O'Brien, P; Tanvir, N R; Wijers, R A M J; Dumas, C; Hainaut, O; Wong, D S; Baade, D; Wang, L; Amati, L; Cappellaro, E; Castro-Tirado, A J; Ellison, S; Frontera, F; Fruchter, A S; Greiner, J; Kawabata, K; Ledoux, C; Maeda, K; Møller, P; Nicastro, L; Rol, E; Starling, R
2006-08-31
Long-duration gamma-ray bursts (GRBs) are associated with type Ic supernovae that are more luminous than average and that eject material at very high velocities. Less-luminous supernovae were not hitherto known to be associated with GRBs, and therefore GRB-supernovae were thought to be rare events. Whether X-ray flashes--analogues of GRBs, but with lower luminosities and fewer gamma-rays--can also be associated with supernovae, and whether they are intrinsically 'weak' events or typical GRBs viewed off the axis of the burst, is unclear. Here we report the optical discovery and follow-up observations of the type Ic supernova SN 2006aj associated with X-ray flash XRF 060218. Supernova 2006aj is intrinsically less luminous than the GRB-supernovae, but more luminous than many supernovae not accompanied by a GRB. The ejecta velocities derived from our spectra are intermediate between these two groups, which is consistent with the weakness of both the GRB output and the supernova radio flux. Our data, combined with radio and X-ray observations, suggest that XRF 060218 is an intrinsically weak and soft event, rather than a classical GRB observed off-axis. This extends the GRB-supernova connection to X-ray flashes and fainter supernovae, implying a common origin. Events such as XRF 060218 are probably more numerous than GRB-supernovae.
VLA radio upper limit on Type IIn Supernova 2007rt
NASA Astrophysics Data System (ADS)
Chandra, Poonam; Soderberg, Alicia
2008-01-01
Poonam Chandra and Alicia Soderberg report on behalf of a larger collaboration: We observed a Type IIn supernova SN 2007rt (CBET 1148) with the Very Large Array (VLA) in the 8.46 GHz band on 2008, January 12.55 UT. The observations were taken for total duration of one hour in the VLA B-configuration. We do not detect any radio emission at the supernova position (CBET 1148). The flux density at the supernova position is 9 ± 27 uJy.
Related Progenitor Models for Long-duration Gamma-Ray Bursts and Type Ic Superluminous Supernovae
NASA Astrophysics Data System (ADS)
Aguilera-Dena, David R.; Langer, Norbert; Moriya, Takashi J.; Schootemeijer, Abel
2018-05-01
We model the late evolution and mass loss history of rapidly rotating Wolf–Rayet stars in the mass range 5 M ⊙…100 M ⊙). We find that quasi-chemically homogeneously evolving single stars computed with enhanced mixing retain very little or no helium and are compatible with Type Ic supernovae. The more efficient removal of core angular momentum and the expected smaller compact object mass in our lower-mass models lead to core spins in the range suggested for magnetar-driven superluminous supernovae. Our higher-mass models retain larger specific core angular momenta, expected for long-duration gamma-ray bursts in the collapsar scenario. Due to the absence of a significant He envelope, the rapidly increasing neutrino emission after core helium exhaustion leads to an accelerated contraction of the whole star, inducing a strong spin-up and centrifugally driven mass loss at rates of up to {10}-2 {M}ȯ {yr}}-1 in the last years to decades before core collapse. Because the angular momentum transport in our lower-mass models enhances the envelope spin-up, they show the largest relative amounts of centrifugally enforced mass loss, i.e., up to 25% of the expected ejecta mass. Our most massive models evolve into the pulsational pair-instability regime. We would thus expect signatures of interaction with a C/O-rich circumstellar medium for Type Ic superluminous supernovae with ejecta masses below ∼10 M ⊙ as well as for the most massive engine-driven explosions with ejecta masses above ∼30 M ⊙. Signs of such interaction should be observable at early epochs of the supernova explosion; they may be related to bumps observed in the light curves of superluminous supernovae, or to the massive circumstellar CO-shell proposed for Type Ic superluminous supernova Gaia16apd.
A GLOBAL MODEL OF THE LIGHT CURVES AND EXPANSION VELOCITIES OF TYPE II-PLATEAU SUPERNOVAE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pejcha, Ondřej; Prieto, Jose L., E-mail: pejcha@astro.princeton.edu
2015-02-01
We present a new self-consistent and versatile method that derives photospheric radius and temperature variations of Type II-Plateau supernovae based on their expansion velocities and photometric measurements. We apply the method to a sample of 26 well-observed, nearby supernovae with published light curves and velocities. We simultaneously fit ∼230 velocity and ∼6800 mag measurements distributed over 21 photometric passbands spanning wavelengths from 0.19 to 2.2 μm. The light-curve differences among the Type II-Plateau supernovae are well modeled by assuming different rates of photospheric radius expansion, which we explain as different density profiles of the ejecta, and we argue that steeper density profiles resultmore » in flatter plateaus, if everything else remains unchanged. The steep luminosity decline of Type II-Linear supernovae is due to fast evolution of the photospheric temperature, which we verify with a successful fit of SN 1980K. Eliminating the need for theoretical supernova atmosphere models, we obtain self-consistent relative distances, reddenings, and nickel masses fully accounting for all internal model uncertainties and covariances. We use our global fit to estimate the time evolution of any missing band tailored specifically for each supernova, and we construct spectral energy distributions and bolometric light curves. We produce bolometric corrections for all filter combinations in our sample. We compare our model to the theoretical dilution factors and find good agreement for the B and V filters. Our results differ from the theory when the I, J, H, or K bands are included. We investigate the reddening law toward our supernovae and find reasonable agreement with standard R{sub V}∼3.1 reddening law in UBVRI bands. Results for other bands are inconclusive. We make our fitting code publicly available.« less
How supernovae became the basis of observational cosmology
NASA Astrophysics Data System (ADS)
Pruzhinskaya, Maria Victorovna; Lisakov, Sergey Mikhailovich
2016-12-01
This paper is dedicated to the discovery of one of the most important relationships in supernova cosmology - the relation between the peak luminosity of Type Ia supernovae and their luminosity decline rate after maximum light. The history of this relationship is quite long and interesting. The relationship was independently discovered by the American statistician and astronomer Bert Woodard Rust and the Soviet astronomer Yury Pavlovich Pskovskii in the 1970s. Using a limited sample of Type I supernovae they were able to show that the brighter the supernova is, the slower its luminosity declines after maximum. Only with the appearance of CCD cameras could Mark Phillips re-inspect this relationship on a new level of accuracy using a better sample of supernovae. His investigations confirmed the idea proposed earlier by Rust and Pskovskii.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamble, Atish; Soderberg, Alicia M.; Margutti, Raffaella
2014-12-10
We present extensive radio and X-ray observations of SN 2012au, an energetic, radio-luminous supernova of Type Ib that exhibits multi-wavelength properties bridging subsets of hydrogen-poor superluminous supernovae, hypernovae, and normal core-collapse supernovae. The observations closely follow models of synchrotron emission from a shock-heated circumburst medium that has a wind density profile (ρ∝r {sup –2}). We infer a sub-relativistic velocity for the shock wave v ≈ 0.2 c and a radius of r ≈ 1.4 × 10{sup 16}cm at 25 days after the estimated date of explosion. For a wind velocity of 1000 km s{sup –1}, we determine the mass-loss ratemore » of the progenitor to be M-dot =3.6×10{sup −6} M{sub ⊙} yr{sup −1}, consistent with the estimates from X-ray observations. We estimate the total internal energy of the radio-emitting material to be E ≈ 10{sup 47} erg, which is intermediate to SN 1998bw and SN 2002ap. The evolution of the radio light curve of SN 2012au is in agreement with its interaction with a smoothly distributed circumburst medium and the absence of stellar shells ejected from previous outbursts out to r ≈ 10{sup 17} cm from the supernova site. We conclude that the bright radio emission from SN 2012au was not dissimilar from other core-collapse supernovae despite its extraordinary optical properties, and that the evolution of the SN 2012au progenitor star was relatively quiet, marked with a steady mass loss, during the final years preceding explosion.« less
New developments in the mechanism for core-collapse supernovae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guidry, M.
1994-12-31
Recent results indicate that the standard type-2 supernova scenario in which the shock wave stagnates but is reenergized by neutrino heating fails to consistently produce supernova explosions having the required characteristics. The authors review the theory of convection and survey some recent calculations indicating the importance of convection operating on millisecond timescales in the protoneutron star. These calculations suggest that such convection is probably generic to the type-2 scenario, that this produces a violet overturn of material below the stalled shock, and that this overturn could lead to significant alterations in the neutrino luminosity and energy. This provides a mechanismmore » that could be effective in reenergizing the stalled shock and producing supernovae explosions having the quantitative characteristics demands by observations. This mechanism implies, in turn, that the convection cannot be adequately described by the 1-dimensional hydrodynamics employed in most simulations. Thus, a full understanding of the supernova mechanism and the resulting heavy element production is likely to require 3-dimensional relativistic hydrodynamics and a comprehensive description of neutrino transport. The prospects for implementing such calculations using a new generation of massively parallel supercomputers and modern scalable algorithms are discussed.« less
Supernova 2009kf: An Ultraviolet Bright Type IIP Supernova Discovered With Pan-Starrs 1 and Galex
2010-07-01
The 7 deg2 camera and 1.8 m aperture could allow IIP SNe to be used as cosmological probes at z ∼ 0.2 and the brightest events to be found out to z...ultraviolet (NUV). We discuss the implication of this rare SN for understanding the explosions and the use of Type IIP events for probing cosmology and...SFR at high redshifts. We adopt the cosmological parameters H0 = 70 km s−1 Mpc−1, ΩM = 0.3, ΩΛ = 0.7. 2. DISCOVERY AND OBSERVATIONAL DATA SN 2009kf
The Perth Automated Supernova Search
NASA Astrophysics Data System (ADS)
Williams, A. J.
1997-12-01
An automated search for supernovae in late spiral galaxies has been established at Perth Observatory, Western Australia. This automated search uses three low-cost PC-clone computers, a liquid nitrogen cooled CCD camera built locally, and a 61-cm telescope automated for the search. The images are all analysed automatically in real-time by routines in Perth Vista, the image processing system ported to the PC architecture for the search system. The telescope control software written for the project, Teljoy, maintains open-loop position accuracy better than 30" of arc after hundreds of jumps over an entire night. Total capital cost to establish and run this supernova search over the seven years of development and operation was around US$30,000. To date, the system has discovered a total of 6 confirmed supernovae, made an independent detection of a seventh, and detected one unconfirmed event assumed to be a supernova. The various software and hardware components of the search system are described in detail, the analysis of the first three years of data is discussed, and results presented. We find a Type Ib/c rate of 0.43 +/- 0.43 SNu, and a Type IIP rate of 0.86 +/- 0.49 SNu, where SNu are 'supernova units', expressed in supernovae per 10^10 solar blue luminosity galaxy per century. These values are for a Hubble constant of 75 km/s per Mpc, and scale as (H0/75)^2. The small number of discoveries has left large statistical uncertainties, but our strategy of frequent observations has reduced systematic errors - altering detection threshold or peak supernova luminosity by +/- 0.5 mag changes estimated rates by only around 20%. Similarly, adoption of different light curve templates for Type Ia and Type IIP supernovae has a minimal effect on the final statistics (2% and 4% change, respectively).
NASA Technical Reports Server (NTRS)
Hughes, John P.; Hayashi, Ichizo; Helfand, David; Hwang, Una; Itoh, Masayuki; Kirshner, Robert; Koyama, Katsuji; Markert, Thomas; Tsunemi, Hiroshi; Woo, Jonathan
1995-01-01
We present our first results from a study of the supernova remnants (SNRs) in the Large Magellanic Cloud (LMC) using data from ASCA. The three remnants we have analyzed to date, 0509-67.5, 0519-69.0, and N103B, are among the smallest, and presumably also the youngest, in the Cloud. The X-ray spectra of these SNRs show strong K alpha emission lines of silicon, sulfur, argon, and calcium with no evidence for corresponding lines of oxygen, neon, or magnesium. The dominant feature in the spectra is a broad blend of emission lines around 1 keV which we attribute to L-shell emission lines of iron. Model calculations (Nomoto, Thielemann, & Yokoi 1984) show that the major products of nucleosynthesis in Type Ia supernovae (SNs) are the elements from silicon to iron, as observed here. The calculated nucleosynthetic yields from Type Ib and II SNs are shown to be qualitatively inconsistent with the data. We conclude that the SNs which produced these remnants were of Type Ia. This finding also confirms earlier suggestions that the class of Balmer-dominated remnants arise from Type Ia SN explosions. Based on these early results from the LMC SNR sample, we find that roughly one-half of the SNRs produced in the LMC within the last approximately 1500 yr came from Type Ia SNs.
Is supernova 1987A a stripped asymptotic-branch giant in a binary system?
NASA Technical Reports Server (NTRS)
Joss, P. C.; Podsiadlowski, PH.; Hsu, J. J. L.; Rappaport, S.
1988-01-01
It is proposed that the progenitor of supernova 1987A was a previously undetected red star in orbit about a blue supergiant. The progenitor was the remnant of an asymptotic-branch giant that had lost most of its hydrogen-rich envelope to its blue companion by type C mass transfer. A detailed evolutionary model strongly supports the feasibility of this proposition. It is found that the original mass of the supernova precursor was 10-15 solar (unless a large fraction of the mass was ejected from the binary sytem), and its final mass, just before the supernova event, was 3-6 solar. The system remained bound, with a new orbital period of 3-10 yr and an eccentricity of 0.1-0.4. This picture can provide plausible qualitative explanations for several anomalies in the observational properties of this supernova.
Two classes of fast-declining Type Ia supernovae
NASA Astrophysics Data System (ADS)
Dhawan, Suhail; Leibundgut, B.; Spyromilio, J.; Blondin, S.
2017-06-01
We aim to characterise a sample of fast-declining Type Ia supernovae (SN Ia) using their bolometric and near-infrared (NIR) properties. Based on these properties, we find that fast-declining SN Ia separate into two categories based on their bolometric and NIR properties. The peak bolometric luminosity (Lmax), the phase of the first maximum relative to the optical, the NIR peak luminosity, and the occurrence of a second maximum in the NIR distinguish a group of very faint SN Ia. Fast-declining supernovae show a large range of peak bolometric luminosities (Lmax differing by up to a factor of 8). All fast-declining SN Ia with Lmax < 0.3× 1043 erg s-1 are spectroscopically classified as 91bg-like and show only a single NIR peak. SNe with Lmax > 0.5× 1043 erg s-1 appear to smoothly connect to normal SN Ia. The total ejecta mass (Mej) values for SNe with enough late time data are ≲1 M⊙, indicating a sub-Chandrasekhar mass progenitor for these SNe.
Detection of circumstellar material in a normal type Ia supernova.
Patat, F; Chandra, P; Chevalier, R; Justham, S; Podsiadlowski, Ph; Wolf, C; Gal-Yam, A; Pasquini, L; Crawford, I A; Mazzali, P A; Pauldrach, A W A; Nomoto, K; Benetti, S; Cappellaro, E; Elias-Rosa, N; Hillebrandt, W; Leonard, D C; Pastorello, A; Renzini, A; Sabbadin, F; Simon, J D; Turatto, M
2007-08-17
Type Ia supernovae are important cosmological distance indicators. Each of these bright supernovae supposedly results from the thermonuclear explosion of a white dwarf star that, after accreting material from a companion star, exceeds some mass limit, but the true nature of the progenitor star system remains controversial. Here we report the spectroscopic detection of circumstellar material in a normal type Ia supernova explosion. The expansion velocities, densities, and dimensions of the circumstellar envelope indicate that this material was ejected from the progenitor system. In particular, the relatively low expansion velocities suggest that the white dwarf was accreting material from a companion star that was in the red-giant phase at the time of the explosion.
NASA Astrophysics Data System (ADS)
Stephan, Thomas; Trappitsch, Reto; Davis, Andrew M.; Pellin, Michael J.; Rost, Detlef; Savina, Michael R.; Jadhav, Manavi; Kelly, Christopher H.; Gyngard, Frank; Hoppe, Peter; Dauphas, Nicolas
2018-01-01
We used CHILI, the Chicago Instrument for Laser Ionization, a new resonance ionization mass spectrometer developed for isotopic analysis of small samples, to analyze strontium, zirconium, and barium isotopes in 22 presolar silicon carbide grains. Twenty of the grains showed detectable strontium and barium, but none of the grains had enough zirconium to be detected with CHILI. Nine grains were excluded from further consideration since they showed very little signals (<1000 counts) for strontium as well as for barium. Among the 11 remaining grains, we found three X grains. The discovery of three supernova grains among only 22 grains was fortuitous, because only ∼1% of presolar silicon carbide grains are type X, but was confirmed by silicon isotopic measurements of grain residues with NanoSIMS. While one of the X grains showed strontium and barium isotope patterns expected for supernova grains, the two other supernova grains have 87Sr/86Sr < 0.5, values never observed in any natural sample before. From their silicon isotope ratios, the latter two grains can be classified as X2 grains, while the former grain belongs to the more common X1 group. The differences of these grains in strontium and barium isotopic composition constrain their individual formation conditions in Type II supernovae.
NASA Astrophysics Data System (ADS)
Baron, Edward
"Interacting supernovae" are poorly understood astronomical events with great potential for expanding our understanding of how stars evolve and die, and could provide important clues about the early formation of large-scale structures such as galaxies in the universe. Interacting supernovae occur when a star explodes within a dense cloud of material shed from the star in the course of its evolution. The resulting violent interaction between the expanding supernova explosion and the cloud of circumstellar material can lead to an enormously bright visual display --- indeed, many of the brightest supernovae ever recorded are thought to arise from circumstellar interaction. In order to understand the properties of the progenitor star and the details of the circumstellar interaction, there is a need for theoretical models of interacting supernovae. These simulated computer spectra can be directly compared to the spectra observed by telescopes. These models allow us to probe the physical circumstances that underlie the observations. The spectra of interacting supernovae are dominated by strong, narrow emission lines of light elements such as hydrogen and helium. These narrow lines give Type IIn supernovae their designation. Similarly, objects of Type Ian, Ibn, Icn, and IIn are somewhat distinct, but are all defined by the narrow emission lines that result from the interaction of their expanding envelopes with their surroundings. The photosphere in these supernovae is formed in the material accreted during the coasting phase, and most of the luminosity has its origin from the conversion of kinetic explosion energy into luminosity. Both thermonuclear (Type Ia) and core-collapse (Types Ib/Ic and II) supernovae may be the inner engine. In fact, several Type IIn supernovae at early times have later been classified as Type Ia, Type Ib/c, or Type II as their spectra reveal more details about the nature of the central explosion. As a result of the dominance of the interaction, models of interacting supernovae must take into account descriptions of the hydrodynamical, ionization, and light fronts: a full radiation-hydrodynamical problem. The low densities imply strong departures from thermodynamic equilibrium and, thus, demand a non-LTE treatment in the radiative transfer calculation. We propose a collaboration between the University of Oklahoma (OU) and Florida State University (FSU) to calculate hydrodynamical models, light curves, and NLTE spectra of circumstellar interacting supernovae. We will parameterize the explosion of a massive star, study the hydrodynamical impact onto a circumstellar medium and calculate light curves and spectra. Direct comparison with observed supernovae with give us detailed information on the progenitor star, its mass loss history, and the nature of binary stellar evolution. We will calculate explosion models for some of the stellar structures and the ongoing interaction with the circumstellar material using our radiation hydro code HYDRA and NLTE generalized model atmospheres code PHOENIX. We intend to focus on the physics of interacting supernovae, going beyond the regime where self-similar solutions and phenomenological approaches are valid. This will limit the parameter space that needs to be examined, while still allowing for direct comparison with observations. Since many interacting supernovae are extremely bright, they can be seen at the highest redshifts and are good probes of the darkages. These supernovae will be well observed by upcoming NASA mission JWST as well as ground based surveys such as LSST. The tools for this work are in place: FSU PI Peter Hoeflich has been developing and using the hydrodynamic code HYDRA for over two decades and PI Eddie Baron (OU) has been developing the generalized stellar atmosphere code PHOENIX over the same time period. Baron and Hoeflich have a good working relationship and have cross-compared our codes.
A hybrid type Ia supernova with an early flash triggered by helium-shell detonation
NASA Astrophysics Data System (ADS)
Jiang, Ji-An; Doi, Mamoru; Maeda, Keiichi; Shigeyama, Toshikazu; Nomoto, Ken'Ichi; Yasuda, Naoki; Jha, Saurabh W.; Tanaka, Masaomi; Morokuma, Tomoki; Tominaga, Nozomu; Ivezić, Željko; Ruiz-Lapuente, Pilar; Stritzinger, Maximilian D.; Mazzali, Paolo A.; Ashall, Christopher; Mould, Jeremy; Baade, Dietrich; Suzuki, Nao; Connolly, Andrew J.; Patat, Ferdinando; Wang, Lifan; Yoachim, Peter; Jones, David; Furusawa, Hisanori; Miyazaki, Satoshi
2017-10-01
Type Ia supernovae arise from the thermonuclear explosion of white-dwarf stars that have cores of carbon and oxygen. The uniformity of their light curves makes these supernovae powerful cosmological distance indicators, but there have long been debates about exactly how their explosion is triggered and what kind of companion stars are involved. For example, the recent detection of the early ultraviolet pulse of a peculiar, subluminous type Ia supernova has been claimed as evidence for an interaction between a red-giant or a main-sequence companion and ejecta from a white-dwarf explosion. Here we report observations of a prominent but red optical flash that appears about half a day after the explosion of a type Ia supernova. This supernova shows hybrid features of different supernova subclasses, namely a light curve that is typical of normal-brightness supernovae, but with strong titanium absorption, which is commonly seen in the spectra of subluminous ones. We argue that this early flash does not occur through previously suggested mechanisms such as the companion-ejecta interaction. Instead, our simulations show that it could occur through detonation of a thin helium shell either on a near-Chandrasekhar-mass white dwarf, or on a sub-Chandrasekhar-mass white dwarf merging with a less-massive white dwarf. Our finding provides evidence that one branch of previously proposed explosion models—the helium-ignition branch—does exist in nature, and that such a model may account for the explosions of white dwarfs in a mass range wider than previously supposed.
A hybrid type Ia supernova with an early flash triggered by helium-shell detonation.
Jiang, Ji-An; Doi, Mamoru; Maeda, Keiichi; Shigeyama, Toshikazu; Nomoto, Ken'ichi; Yasuda, Naoki; Jha, Saurabh W; Tanaka, Masaomi; Morokuma, Tomoki; Tominaga, Nozomu; Ivezić, Željko; Ruiz-Lapuente, Pilar; Stritzinger, Maximilian D; Mazzali, Paolo A; Ashall, Christopher; Mould, Jeremy; Baade, Dietrich; Suzuki, Nao; Connolly, Andrew J; Patat, Ferdinando; Wang, Lifan; Yoachim, Peter; Jones, David; Furusawa, Hisanori; Miyazaki, Satoshi
2017-10-04
Type Ia supernovae arise from the thermonuclear explosion of white-dwarf stars that have cores of carbon and oxygen. The uniformity of their light curves makes these supernovae powerful cosmological distance indicators, but there have long been debates about exactly how their explosion is triggered and what kind of companion stars are involved. For example, the recent detection of the early ultraviolet pulse of a peculiar, subluminous type Ia supernova has been claimed as evidence for an interaction between a red-giant or a main-sequence companion and ejecta from a white-dwarf explosion. Here we report observations of a prominent but red optical flash that appears about half a day after the explosion of a type Ia supernova. This supernova shows hybrid features of different supernova subclasses, namely a light curve that is typical of normal-brightness supernovae, but with strong titanium absorption, which is commonly seen in the spectra of subluminous ones. We argue that this early flash does not occur through previously suggested mechanisms such as the companion-ejecta interaction. Instead, our simulations show that it could occur through detonation of a thin helium shell either on a near-Chandrasekhar-mass white dwarf, or on a sub-Chandrasekhar-mass white dwarf merging with a less-massive white dwarf. Our finding provides evidence that one branch of previously proposed explosion models-the helium-ignition branch-does exist in nature, and that such a model may account for the explosions of white dwarfs in a mass range wider than previously supposed.
Isotropy of low redshift type Ia supernovae: A Bayesian analysis
NASA Astrophysics Data System (ADS)
Andrade, U.; Bengaly, C. A. P.; Alcaniz, J. S.; Santos, B.
2018-04-01
The standard cosmology strongly relies upon the cosmological principle, which consists on the hypotheses of large scale isotropy and homogeneity of the Universe. Testing these assumptions is, therefore, crucial to determining if there are deviations from the standard cosmological paradigm. In this paper, we use the latest type Ia supernova compilations, namely JLA and Union2.1 to test the cosmological isotropy at low redshift ranges (z <0.1 ). This is performed through a Bayesian selection analysis, in which we compare the standard, isotropic model, with another one including a dipole correction due to peculiar velocities. The full covariance matrix of SN distance uncertainties are taken into account. We find that the JLA sample favors the standard model, whilst the Union2.1 results are inconclusive, yet the constraints from both compilations are in agreement with previous analyses. We conclude that there is no evidence for a dipole anisotropy from nearby supernova compilations, albeit this test should be greatly improved with the much-improved data sets from upcoming cosmological surveys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conley, A.; Goldhaber, G.; Wang, L.
We present measurements of {Omega}{sub m} and {Omega}{sub {Lambda}} from a blind analysis of 21 high redshift supernovae using a new technique (CMAGIC) for fitting the multicolor lightcurves of Type Ia supernovae, first introduced in Wang et al. (2003). CMAGIC takes advantage of the remarkably simple behavior of Type Ia supernovae on color-magnitude diagrams, and has several advantages over current techniques based on maximum magnitudes. Among these are a reduced sensitivity to host galaxy dust extinction, a shallower luminosity-width relation, and the relative simplicity of the fitting procedure. This allows us to provide a cross check of previous supernova cosmologymore » results, despite the fact that current data sets were not observed in a manner optimized for CMAGIC. We describe the details of our novel blindness procedure, which is designed to prevent experimenter bias. The data are broadly consistent with the picture of an accelerating Universe, and agree with a at Universe within 1.7{sigma}, including systematics. We also compare the CMAGIC results directly with those of a maximum magnitude fit to the same SNe, finding that CMAGIC favors more acceleration at the 1.6{sigma} level, including systematics and the correlation between the two measurements. A fit for w assuming a at Universe yields a value which is consistent with a cosmological constant within 1.2{sigma}.« less
Confined dense circumstellar material surrounding a regular type II supernova
NASA Astrophysics Data System (ADS)
Yaron, O.; Perley, D. A.; Gal-Yam, A.; Groh, J. H.; Horesh, A.; Ofek, E. O.; Kulkarni, S. R.; Sollerman, J.; Fransson, C.; Rubin, A.; Szabo, P.; Sapir, N.; Taddia, F.; Cenko, S. B.; Valenti, S.; Arcavi, I.; Howell, D. A.; Kasliwal, M. M.; Vreeswijk, P. M.; Khazov, D.; Fox, O. D.; Cao, Y.; Gnat, O.; Kelly, P. L.; Nugent, P. E.; Filippenko, A. V.; Laher, R. R.; Wozniak, P. R.; Lee, W. H.; Rebbapragada, U. D.; Maguire, K.; Sullivan, M.; Soumagnac, M. T.
2017-02-01
With the advent of new wide-field, high-cadence optical transient surveys, our understanding of the diversity of core-collapse supernovae has grown tremendously in the last decade. However, the pre-supernova evolution of massive stars, which sets the physical backdrop to these violent events, is theoretically not well understood and difficult to probe observationally. Here we report the discovery of the supernova iPTF 13dqy = SN 2013fs a mere ~3 h after explosion. Our rapid follow-up observations, which include multiwavelength photometry and extremely early (beginning at ~6 h post-explosion) spectra, map the distribution of material in the immediate environment (<~1015 cm) of the exploding star and establish that it was surrounded by circumstellar material (CSM) that was ejected during the final ~1 yr prior to explosion at a high rate, around 10-3 solar masses per year. The complete disappearance of flash-ionized emission lines within the first several days requires that the dense CSM be confined to within <~1015 cm, consistent with radio non-detections at 70-100 days. The observations indicate that iPTF 13dqy was a regular type II supernova; thus, the finding that the probable red supergiant progenitor of this common explosion ejected material at a highly elevated rate just prior to its demise suggests that pre-supernova instabilities may be common among exploding massive stars.
Type Ia supernova rate studies from the SDSS-II Supernova Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dilday, Benjamin
2008-08-01
The author presents new measurements of the type Ia SN rate from the SDSS-II Supernova Survey. The SDSS-II Supernova Survey was carried out during the Fall months (Sept.-Nov.) of 2005-2007 and discovered ~ 500 spectroscopically confirmed SNe Ia with densely sampled (once every ~ 4 days), multi-color light curves. Additionally, the SDSS-II Supernova Survey has discovered several hundred SNe Ia candidates with well-measured light curves, but without spectroscopic confirmation of type. This total, achieved in 9 months of observing, represents ~ 15-20% of the total SNe Ia discovered worldwide since 1885. The author describes some technical details of the SNmore » Survey observations and SN search algorithms that contributed to the extremely high-yield of discovered SNe and that are important as context for the SDSS-II Supernova Survey SN Ia rate measurements.« less
The VLT Measures the Shape of a Type Ia Supernova
NASA Astrophysics Data System (ADS)
2003-08-01
First Polarimetric Detection of Explosion Asymmetry has Cosmological Implications Summary An international team of astronomers [2] has performed new and very detailed observations of a supernova in a distant galaxy with the ESO Very Large Telescope (VLT) at the Paranal Observatory (Chile). They show for the first time that a particular type of supernova, caused by the explosion of a "white dwarf", a dense star with a mass around that of the Sun, is asymmetric during the initial phases of expansion . The significance of this observation is much larger than may seem at a first glance . This particular kind of supernova, designated "Type Ia", plays a very important role in the current attempts to map the Universe. It has for long been assumed that Type Ia supernovae all have the same intrinsic brightness , earning them a nickname as "standard candles". If so, differences in the observed brightness between individual supernovae of this type simply reflect their different distances. This, and the fact that the peak brightness of these supernovae rivals that of their parent galaxy, has allowed to measure distances of even very remote galaxies . Some apparent discrepancies that were recently found have led to the discovery of cosmic acceleration . However, this first clearcut observation of explosion asymmetry in a Type Ia supernova means that the exact brightness of such an object will depend on the angle from which it is seen. Since this angle is unknown for any particular supernova, this obviously introduces an amount of uncertainty into this kind of basic distance measurements in the Universe which must be taken into account in the future. Fortunately, the VLT data also show that if you wait a little - which in observational terms makes it possible to look deeper into the expanding fireball - then it becomes more spherical. Distance determinations of supernovae that are performed at this later stage will therefore be more accurate. PR Photo 24a/03 : Spiral galaxy NGC 1448 and SN 2001el (DSS and NTT/EMMI). PR Photo 24b/03 : Optical spectrum of SN 2001el and fractional polarisation (VLT/FORS) Supernova explosions and cosmic distances During Type Ia supernova events, remnants of stars with an initial mass of up to a few times that of the Sun (so-called "white dwarf stars") explode, leaving nothing behind but a rapidly expanding cloud of "stardust". Type Ia supernovae are apparently quite similar to one another. This provides them a very useful role as "standard candles" that can be used to measure cosmic distances. Their peak brightness rivals that of their parent galaxy, hence qualifying them as prime cosmic yardsticks. Astronomers have exploited this fortunate circumstance to study the expansion history of our Universe. They recently arrived at the fundamental conclusion that the Universe is expanding at an accelerating rate, cf. ESO PR 21/98, December 1998 (see also the Supernova Acceleration Probe web page). The explosion of a white dwarf star In the most widely accepted models of Type Ia supernovae the pre-explosion white dwarf star orbits a solar-like companion star, completing a revolution every few hours. Due to the close interaction, the companion star continuously loses mass, part of which is picked up (in astronomical terminology: "accreted") by the white dwarf. A white dwarf represents the penultimate stage of a solar-type star. The nuclear reactor in its core has run out of fuel a long time ago and is now inactive. However, at some point the mounting weight of the accumulating material will have increased the pressure inside the white dwarf so much that the nuclear ashes in there will ignite and start burning into even heavier elements. This process very quickly becomes uncontrolled and the entire star is blown to pieces in a dramatic event. An extremely hot fireball is seen that often outshines the host galaxy. The shape of the explosion Although all supernovae of Type Ia have quite similar properties, it has never been clear until now how similar such an event would appear to observers who view it from different directions. All eggs look similar and indistinguishable from each other when viewed from the same angle, but the side view (oval) is obviously different from the end view (round). And indeed, if Type Ia supernova explosions were asymmetric, they would shine with different brightness in different directions. Observations of different supernovae - seen under different angles - could therefore not be directly compared. Not knowing these angles, however, the astronomers would then infer incorrect distances and the precision of this fundamental method for gauging the structure of the Universe would be in question. Polarimetry to the rescue A simple calculation shows that even to the eagle eyes of the VLT Interferometer (VLTI), all supernovae at cosmological distances will appear as unresolved points of light; they are simply too far. But there is another way to determine the angle at which a particular supernova is viewed: polarimetry is the name of the trick! Polarimetry works as follows: light is composed of electromagnetic waves (or photons) which oscillate in certain directions (planes). Reflection or scattering of light favours certain orientations of the electric and magnetic fields over others. This is why polarising sunglasses can filter out the glint of sunlight reflecting off a pond. When light scatters through the expanding debris of a supernova, it retains information about the orientation of the scattering layers. If the supernova is spherically symmetric, all orientations will be present equally and will average out, so there will be no net polarisation . If, however, the gas shell is not round, a slight net polarisation will be imprinted on the light. " Even for quite noticable asymmetries, however, the polarisation is very small and barely exceeds the level of one percent ", says Dietrich Baade, ESO astronomer and a member of the team that performed the observations. " Measuring them requires an instrument that is very sensitive and very stable . " The VLT observation of SN 2001el in NGC 1448 ESO PR Photo 24a/03 ESO PR Photo 24a/03 [Preview - JPEG: 620 x 400 pix - 156k [Normal - JPEG: 1240 x 800 pix - 396k] ESO PR Photo 24b/03 ESO PR Photo 24b/03 [Preview - JPEG: 400 x 524 pix - 104k [Normal - JPEG: 800 x 1047 pix - 240k] Captions : PR Photo 24a/03 shows the spiral galaxy NGC 1448, as seen in an archive image from the Digital Sky Survey (Courtesy of STScI) and as seen close to the brightness maximum of the supernova using EMMI on the NTT. SN 2001el is marked by the arrow. The field measures 4.5 x 4.5 arcmin 2 ; North is up and east is right. PR Photo 24b/03 illustrates the optical spectrum of SN 2001el in NGC 1448 (upper panel). The middle and lower panels show the corresponding fractional polarisations. They measure the different numbers of photons oscillating in perpendicular directions; they are directly related to the geometry of the supernova. The shaded area indicates the spectral signatures of high-velocity matter in the expanding envelope. The measurement in faint and distant light sources of differences at a level of less than one percent is a considerable observational challenge. "However, the ESO Very Large Telescope (VLT) offers the precision, the light collecting power, as well as the specialized instrumentation required for such a demanding polarimetric observation" , explains Dietrich Baade . "But this project would not have been possible without the VLT being operated in service mode. It is indeed impossible to predict when a supernova will explode and we need to be ready all the time. Only service mode allows observations at short notice. Some years ago, it was a farsighted and courageous decision by ESO's directorate to put so much emphasis on Service Mode. And it was the team of competent and devoted ESO astronomers on Paranal who made this concept a practical success" , he adds. The astronomers [1] used the VLT multi-mode FORS1 instrument to observe SN 2001el , a Type Ia supernova that was discovered in September 2001 in the galaxy NGC 1448, cf. PR Photo 24a/03 at a distance of 60 million light-years. Observations obtained about a week before this supernova reached maximum brightness around October 2 revealed polarisation at levels of 0.2-0.3% ( PR Photo 24b/03 ). Near maximum light and up to two weeks thereafter, the polarisation was still measurable. Six weeks after maximum, the polarisation had dropped below detectability. This is the first time ever that a normal Type Ia supernova has been found to exhibit such clear-cut evidence of asymmetry . Looking deeper into the supernova Immediately following the supernova explosion, most of the expelled matter moves at velocities around 10,000 km/sec. During this expansion, the outermost layers become progressively more transparent. With time one can thus look deeper and deeper into the supernova. The polarisation measured in SN 2001el therefore provides evidence that the outermost parts of the supernova (which are first seen) are significantly asymmetric . Later, when the VLT observations "penetrate" deeper towards the heart of the supernova, the explosion geometry is increasingly more symmetric. If modeled in terms of a flattened spheroidal shape, the measured polarisation in SN 2001el implies a minor-to-major axis ratio of around 0.9 before maximum brightness is reached and a spherically symmetric geometry from about one week after this maximum and onward. Cosmological implications One of the key parameters on which Type Ia distance estimates are based is the optical brightness at maximum. The measured asphericity at this moment would introduce an absolute brightness uncertainty (dispersion) of about 10% if no correction were made for the viewing angle (which is not known). While Type Ia supernovae are by far the best standard candles for measuring cosmological distances, and hence for investigating the so-called dark energy, a small measurement uncertainty persists. " The asymmetry we have measured in SN 2001el is large enough to explain a large part of this intrinsic uncertainty ", says Lifan Wang, the leader of the team. " If all Type Ia supernovae are like this, it would account for a lot of the dispersion in brightness measurements. They may be even more uniform than we thought ." Reducing the dispersion in brightness measurements could of course also be attained by increasing significantly the number of supernovae we observe, but given that these measurements demand the largest and most expensive telescopes in the world, like the VLT, this is not the most efficient method. Thus, if the brightness measured a week or two after maximum was used instead, the sphericity would then have been restored and there would be no systematic errors from the unknown viewing angle. By this slight change in observational procedure, Type Ia supernovae could become even more reliable cosmic yardsticks. Theoretical implications The present detection of polarised spectral features strongly suggests that, to understand the underlying physics, the theoretical modelling of Type Ia supernovae events will have to be done in all three dimensions with more accuracy than is presently done. In fact, the available, highly complex hydrodynamic calculations have so far not been able to reproduce the structures exposed by SN 2001el. More information The results presented in this press release have been been described in a research paper in "Astrophysical Journal" ("Spectropolarimetry of SN 2001el in NGC 1448: Asphericity of a Normal Type Ia Supernova" by Lifan Wang and co-authors, Volume 591, p. 1110).
NASA Astrophysics Data System (ADS)
Guo, Rachel; Xie, Justin Long; Kirby, Evan N.
2017-01-01
Through the fusion of nucleons to produce elements heavier than hydrogen and helium, stellar nucleosynthesis produces most of the elements in the universe. Such is the case in a supernova explosion, which creates most of the elements on the periodic table—including iron-peak elements, atomic numbers 21 through 30—through nucleosynthesis and ejects them into the interstellar medium. In this study, we determine the best theoretical supernova model appropriate for the stars in the dwarf spheroidal galaxies Sculptor, Fornax, Ursa Minor, and Leo II by calculating the abundances of iron-peak elements in these stars. To determine iron-peak elemental abundances, we compare synthesized spectra with observed spectra from medium-resolution spectroscopy and determine the best-fitting spectrum by way of a chi-squared minimization. Through inspecting the relationship between the iron-peak element abundances and the abundance of iron itself and by comparing them to previously hypothesized supernova model theories, we discover that the near-Chandrasekhar mass “n1” model, as predicted by Seitenzahl et al., most accurately represents the trends and patterns within our data, presenting new insight into Type Ia supernovae mechanisms within the Milky Way and beyond.
The Carnegie Supernova Project: The Low-Redshift Survey
NASA Astrophysics Data System (ADS)
Hamuy, Mario; Folatelli, Gastón; Morrell, Nidia I.; Phillips, Mark M.; Suntzeff, Nicholas B.; Persson, S. E.; Roth, Miguel; Gonzalez, Sergio; Krzeminski, Wojtek; Contreras, Carlos; Freedman, Wendy L.; Murphy, D. C.; Madore, Barry F.; Wyatt, P.; Maza, José; Filippenko, Alexei V.; Li, Weidong; Pinto, P. A.
2006-01-01
Supernovae are essential to understanding the chemical evolution of the universe. Type Ia supernovae also provide the most powerful observational tool currently available for studying the expansion history of the universe and the nature of dark energy. Our basic knowledge of supernovae comes from the study of their photometric and spectroscopic properties. However, the presently available data sets of optical and near-infrared light curves of supernovae are rather small and/or heterogeneous, and employ photometric systems that are poorly characterized. Similarly, there are relatively few supernovae whose spectral evolution has been well sampled, both in wavelength and phase, with precise spectrophotometric observations. The low-redshift portion of the Carnegie Supernova Project (CSP) seeks to remedy this situation by providing photometry and spectrophotometry of a large sample of supernovae taken on telescope/filter/detector systems that are well understood and well characterized. During a 5 year program that began in 2004 September, we expect to obtain high-precision u'g'r'i'BVYJHKs light curves and optical spectrophotometry for about 250 supernovae of all types. In this paper we provide a detailed description of the CSP survey observing and data reduction methodology. In addition, we present preliminary photometry and spectra obtained for a few representative supernovae during the first observing campaign.
Hubble Finds Supernova Companion Star after Two Decades of Searching
2017-12-08
This is an artist's impression of supernova 1993J, an exploding star in the galaxy M81 whose light reached us 21 years ago. The supernova originated in a double-star system where one member was a massive star that exploded after siphoning most of its hydrogen envelope to its companion star. After two decades, astronomers have at last identified the blue helium-burning companion star, seen at the center of the expanding nebula of debris from the supernova. The Hubble Space Telescope identified the ultraviolet glow of the surviving companion embedded in the fading glow of the supernova. More info: Using NASA’s Hubble Space Telescope, astronomers have discovered a companion star to a rare type of supernova. The discovery confirms a long-held theory that the supernova, dubbed SN 1993J, occurred inside what is called a binary system, where two interacting stars caused a cosmic explosion. "This is like a crime scene, and we finally identified the robber," said Alex Filippenko, professor of astronomy at University of California (UC) at Berkeley. "The companion star stole a bunch of hydrogen before the primary star exploded." SN 1993J is an example of a Type IIb supernova, unusual stellar explosions that contains much less hydrogen than found in a typical supernova. Astronomers believe the companion star took most of the hydrogen surrounding the exploding main star and continued to burn as a super-hot helium star. “A binary system is likely required to lose the majority of the primary star’s hydrogen envelope prior to the explosion. The problem is that, to date, direct observations of the predicted binary companion star have been difficult to obtain since it is so faint relative to the supernova itself,” said lead researcher Ori Fox of UC Berkeley. Read more: 1.usa.gov/1Az5Qb9 Credit: NASA, ESA, G. Bacon (STScI) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
SALT spectroscopic classification of SN 2017erp as a type-Ia supernova well before maximum light
NASA Astrophysics Data System (ADS)
Jha, S. W.; Camacho, Y.; Dettman, K.; Pan, Y.-C.; Foley, R. J.; Rest, A.; Scolnic, D.; Skelton, R.
2017-06-01
We obtained SALT (+RSS) spectroscopy of SN 2017erp (discovered by K. Itagaki) on 2017 Jun 13.9 UT, covering the wavelength range 350-940 nm. Cross-correlation of the supernova spectrum with a template library using SNID (Blondin & Tonry 2007, ApJ, 666, 1024) shows SN 2017erp is a type-Ia supernova before maximum light.
Gamma ray constraints on the Galactic supernova rate
NASA Technical Reports Server (NTRS)
Hartmann, D.; The, L.-S.; Clayton, Donald D.; Leising, M.; Mathews, G.; Woosley, S. E.
1991-01-01
We perform Monte Carlo simulations of the expected gamma ray signatures of Galactic supernovae of all types to estimate the significance of the lack of a gamma ray signal due to supernovae occurring during the last millenium. Using recent estimates of the nuclear yields, we determine mean Galactic supernova rates consistent with the historic supernova record and the gamma ray limits. Another objective of these calculations of Galactic supernova histories is their application to surveys of diffuse Galactic gamma ray line emission.
Gamma ray constraints on the galactic supernova rate
NASA Technical Reports Server (NTRS)
Hartmann, D.; The, L.-S.; Clayton, D. D.; Leising, M.; Mathews, G.; Woosley, S. E.
1992-01-01
Monte Carlo simulations of the expected gamma-ray signatures of galactic supernovae of all types are performed in order to estimate the significance of the lack of a gamma-ray signal due to supernovae occurring during the last millenium. Using recent estimates of nuclear yields, we determine galactic supernova rates consistent with the historic supernova record and the gamma-ray limits. Another objective of these calculations of galactic supernova histories is their application to surveys of diffuse galactic gamma-ray line emission.
Highlight on Supernova Early Warning at Daya Bay
NASA Astrophysics Data System (ADS)
Wei, Hanyu
Providing an early warning of supernova burst neutrinos is of importance in studying both supernova dynamics and neutrino physics. The Daya Bay Reactor Neutrino Experiment, with a unique feature of multiple liquid scintillator detectors, is sensitive to the full energy spectrum of supernova burst electron-antineutrinos. By utilizing 8 Antineutrino Detectors (ADs) in the three different experimental halls which are about 1 km's apart from each other, we obtain a powerful and prompt rejection of muon spallation background than single-detector experiments with the same target volume. A dedicated trigger system embedded in the data acquisition system has been installed to allow the detection of a coincidence of neutrino signals of all ADs via an inverse beta-decay (IBD) within a 10-second window, thus providing a robust early warning of a supernova occurrence within the Milky Way. An 8-AD associated supernova trigger table has been established theoretically to tabulate the 8-AD event counts' coincidence vs. the trigger rate. As a result, a golden trigger threshold, i.e. with a false alarm rate < 1/3-months, can be set as low as 6 candidates among the 8 detectors, leading to a 100% detection probability for all 1987A type supernova bursts at the distance to the Milky Way center and a 96% detection probability to those at the edge of the Milky Way.
Luminous Supersoft X-Ray Sources as Progenitors of Type Ia Supernovae
NASA Technical Reports Server (NTRS)
DiStefano, R.
1996-01-01
In some luminous supersoft X-ray sources, hydrogen accretes onto the surface of a white dwarf at rates more-or-less compatible with steady nuclear burning. The white dwarfs in these systems therefore have a good chance to grow in mass. Here we review what is known about the rate of Type la supernovae that may be associated with SSSS. Observable consequences of the conjecture that SSSs can be progenitors of Type Ia supernovae are also discussed.
NASA Astrophysics Data System (ADS)
Truran, J. W., Jr.; Heger, A.
2003-12-01
Nucleosynthesis is the study of the nuclear processes responsible for the formation of the elements which constitute the baryonic matter of the Universe. The elements of which the Universe is composed indeed have a quite complicated nucleosynthesis history, which extends from the first three minutes of the Big Bang through to the present. Contemporary nucleosynthesis theory associates the production of certain elements/isotopes or groups of elements with a number of specific astrophysical settings, the most significant of which are: (i) the cosmological Big Bang, (ii) stars, and (iii) supernovae.Cosmological nucleosynthesis studies predict that the conditions characterizing the Big Bang are consistent with the synthesis only of the lightest elements: 1H, 2H, 3He, 4He, and 7Li (Burles et al., 2001; Cyburt et al., 2002). These contributions define the primordial compositions both of galaxies and of the first stars formed therein. Within galaxies, stars and supernovae play the dominant role both in synthesizing the elements from carbon to uranium and in returning heavy-element-enriched matter to the interstellar gas from which new stars are formed. The mass fraction of our solar system (formed ˜4.6 Gyr ago) in the form of heavy elements is ˜1.8%, and stars formed today in our galaxy can be a factor 2 or 3 more enriched (Edvardsson et al., 1993). It is the processes of nucleosynthesis operating in stars and supernovae that we will review in this chapter. We will confine our attention to three broad categories of stellar and supernova site with which specific nucleosynthesis products are understood to be identified: (i) intermediate mass stars, (ii) massive stars and associated type II supernovae, and (iii) type Ia supernovae. The first two of these sites are the straightforward consequence of the evolution of single stars, while type Ia supernovae are understood to result from binary stellar evolution.Stellar nucleosynthesis resulting from the evolution of single stars is a strong function of stellar mass (Woosley et al., 2002). Following phases of hydrogen and helium burning, all stars consist of a carbon-oxygen core. In the mass range of the so-called "intermediate mass" stars (1<˜M/M⊙<˜10), the temperatures realized in their degenerate cores never reach levels at which carbon ignition can occur. Substantial element production occurs in such stars during the asymptotic giant branch (AGB) phase of evolution, accompanied by significant mass loss, and they evolve to white dwarfs of carbon-oxygen (or, less commonly, oxygen-neon) composition. In contrast, the increased pressures that are experienced in the cores of stars of masses M>˜10M⊙ yield higher core temperatures that enable subsequent phases of carbon, neon, oxygen, and silicon burning to proceed. Collapse of an iron core devoid of further nuclear energy then gives rise to a type II supernova and the formation of a neutron star or black hole remnant (Heger et al., 2003). The ejecta of type IIs contain the ashes of nuclear burning of the entire life of the star, but are also modified by the explosion itself. They are the source of most material (by mass) heavier than helium.Observations reveal that binary stellar systems comprise roughly half of all stars in our galaxy. Single star evolution, as noted above, can leave in its wake compact stellar remnants: white dwarfs, neutron stars, and black holes. Indeed, we have evidence for the occurrence of all three types of condensed remnant in binaries. In close binary systems, mass transfer can take place from an evolving companion onto a compact object. This naturally gives rise to a variety of interesting phenomena: classical novae (involving hydrogen thermonuclear runaways in accreted shells on white dwarfs (Gehrz et al., 1998)), X-ray bursts (hydrogen/helium thermonuclear runaways on neutron stars (Strohmayer and Bildsten, 2003)), and X-ray binaries (accretion onto black holes). For some range of conditions, accretion onto carbon-oxygen white dwarfs will permit growth of the CO core to the Chandrasekhar limit MCh=1.4M⊙, and a thermonuclear runaway in to core leads to a type Ia supernova.In this chapter, we will review the characteristics of thermonuclear processing in the three environments we have identified: (i) intermediate-mass stars; (ii) massive stars and type II supernovae; and (iii) type Ia supernovae. This will be followed by a brief discussion of galactic chemical evolution, which illustrates how the contributions from each of these environments are first introduced into the interstellar media of galaxies. Reviews of nucleosynthesis processes include those by Arnett (1995), Trimble (1975), Truran (1984), Wallerstein et al. (1997), and Woosley et al. (2002). An overview of galactic chemical evolution is presented by Tinsley (1980).
2018-03-26
This frame from an animation shows a gigantic star exploding in a "core collapse" supernova. As atoms fuse inside the star, eventually the star can't support its own weight anymore. Gravity makes the star collapse on itself. Core collapse supernovae are called type Ib, Ic, or II depending on the chemical elements present. Stellar explosions forge and distribute materials that make up the world in which we live, and also hold clues to how fast the universe is expanding. By understanding supernovae, scientists can unlock mysteries that are key to what we are made of and the fate of our universe. But to get the full picture, scientists must observe supernovae from a variety of perspectives, especially in the first moments of the explosion. That's really difficult -- there's no telling when or where a supernova might happen next. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA22352
Constraining the Origin and Heating Mechanism of Dust in Type IIn Supernovae
NASA Astrophysics Data System (ADS)
Fox, Ori; Skrutskie, Michael; Chevalier, Roger; Moseley, Samuel Harvey
2011-05-01
More than any other supernova subclass, Type IIn supernovae tend to exhibit late-time (>100 days) infrared emission from warm dust. Identifying the origin and heating mechanism of the dust provides an important probe of the supernova explosion, circumstellar environment, and progenitor system. Yet mid-infrared observations, which span the peak of the thermal emission, are rare. Two years ago, we executed a warm Spitzer survey (P60122) of sixty-eight Type IIn events from the past ten years. The survey uncovered nine supernovae with unreported late-time infrared excesses, in some cases more than 5 years post-explosion. From this single epoch of data, and ground-based optical data, we have determined the likely origin of the mid-infrared emission to be pre-existing dust that is continuously heated by optical emission generated by ongoing circumstellar interaction between the forward shock and circumstellar medium. Furthermore, we noticed an emerging trend suggests these supernovae ``turn off'' at ~1000-2000 days post-discovery once the forward shock overruns the dust shell. Now is the ideal time to build upon this work with a second epoch of observations, which will be necessary to constrain our models. If we catch even a single supernova turning off between the first and second epochs of observation, we will be able to both measure the size of the circumstellar dust shell and characterize of the supernova progenitor system. We can obtain all the necessary data in only 9.3 hours of observation. Our team has extensive experience in infrared supernovae observations. We have already published two papers on one Type IIn supernovae (SN 2005ip) and authored two successful proposal for Spitzer observations of this subclass. This is an ideal application for the Spitzer warm mission, as the 3.6 and 4.5 micron bands span the peak of the thermal emission and provide the necessary constraints on the dust temperature, mass, and luminosity.
NASA Astrophysics Data System (ADS)
Hayden, Brian; Perlmutter, Saul; Boone, Kyle; Nordin, Jakob; Rubin, David; Lidman, Chris; Deustua, Susana E.; Fruchter, Andrew S.; Aldering, Greg Scott; Brodwin, Mark; Cunha, Carlos E.; Eisenhardt, Peter R.; Gonzalez, Anthony H.; Jee, James; Hildebrandt, Hendrik; Hoekstra, Henk; Santos, Joana; Stanford, S. Adam; Stern, Daniel; Fassbender, Rene; Richard, Johan; Rosati, Piero; Wechsler, Risa H.; Muzzin, Adam; Willis, Jon; Boehringer, Hans; Gladders, Michael; Goobar, Ariel; Amanullah, Rahman; Hook, Isobel; Huterer, Dragan; Huang, Xiaosheng; Kim, Alex G.; Kowalski, Marek; Linder, Eric; Pain, Reynald; Saunders, Clare; Suzuki, Nao; Barbary, Kyle H.; Rykoff, Eli S.; Meyers, Joshua; Spadafora, Anthony L.; Sofiatti, Caroline; Wilson, Gillian; Rozo, Eduardo; Hilton, Matt; Ruiz-Lapuente, Pilar; Luther, Kyle; Yen, Mike; Fagrelius, Parker; Dixon, Samantha; Williams, Steven
2017-01-01
The Supernova Cosmology Project has finished executing a large (174 orbits, cycles 22-23) Hubble Space Telescope program, which has measured ~30 type Ia Supernovae above z~1 in the highest-redshift, most massive galaxy clusters known to date. Our SN Ia sample closely matches our pre-survey predictions; this sample will improve the constraint by a factor of 3 on the Dark Energy equation of state above z~1, allowing an unprecedented probe of Dark Energy time variation. When combined with the improved cluster mass calibration from gravitational lensing provided by the deep WFC3-IR observations of the clusters, See Change will triple the Dark Energy Task Force Figure of Merit. With the primary observing campaign completed, we present the preliminary supernova sample and our path forward to the supernova cosmology results. We also compare the number of SNe Ia discovered in each cluster with our pre-survey expectations based on cluster mass and SFR estimates. Our extensive HST and ground-based campaign has already produced unique results; we have confirmed several of the highest redshift cluster members known to date, confirmed the redshift of one of the most massive galaxy clusters at z~1.2 expected across the entire sky, and characterized one of the most extreme starburst environments yet known in a z~1.7 cluster. We have also discovered a lensed SN Ia at z=2.22 magnified by a factor of ~2.7, which is the highest spectroscopic redshift SN Ia currently known.
Left Behind: A Bound Remnant from a White Dwarf Supernova?
NASA Astrophysics Data System (ADS)
Jha, Saurabh
2017-08-01
Type Ia supernovae (SN Ia) have enormous importance to cosmology and astrophysics, but their progenitors and explosion mechanisms are not understood in detail. Recently, observations and theoretical models have suggested that not all thermonuclear white-dwarf supernova explosions are normal SN Ia. In particular, type Iax supernovae (peculiar cousins to SN Ia), are thought to be exploding white dwarfs that are not completely disrupted, leaving behind a bound remnant. In deep and serendipitous HST pre-explosion data, we have discovered a luminous, blue progenitor system for the type Iax SN 2012Z in NGC 1309, which we interpret as a helium-star donor to the exploding white dwarf. HST observations of SN 2012Z in 2016, when the supernova light was expected to have faded away, still show a source at the location, as expected in our model where the pre-explosion flux was coming from the companion. However, the 2016 data also show a surprise: an excess flux compared to the progenitor system. Our proposed observations here will help unravel the mystery of that excess flux: is it from the bound ex-white dwarf remnant? Or is it from the shocked companion star that has been bombarded by supernova ejecta? Either of these possibilities would provide key new evidence as to the nature of these white dwarf supernovae.
A very luminous magnetar-powered supernova associated with an ultra-long γ-ray burst.
Greiner, Jochen; Mazzali, Paolo A; Kann, D Alexander; Krühler, Thomas; Pian, Elena; Prentice, Simon; Olivares E, Felipe; Rossi, Andrea; Klose, Sylvio; Taubenberger, Stefan; Knust, Fabian; Afonso, Paulo M J; Ashall, Chris; Bolmer, Jan; Delvaux, Corentin; Diehl, Roland; Elliott, Jonathan; Filgas, Robert; Fynbo, Johan P U; Graham, John F; Guelbenzu, Ana Nicuesa; Kobayashi, Shiho; Leloudas, Giorgos; Savaglio, Sandra; Schady, Patricia; Schmidl, Sebastian; Schweyer, Tassilo; Sudilovsky, Vladimir; Tanga, Mohit; Updike, Adria C; van Eerten, Hendrik; Varela, Karla
2015-07-09
A new class of ultra-long-duration (more than 10,000 seconds) γ-ray bursts has recently been suggested. They may originate in the explosion of stars with much larger radii than those producing normal long-duration γ-ray bursts or in the tidal disruption of a star. No clear supernova has yet been associated with an ultra-long-duration γ-ray burst. Here we report that a supernova (SN 2011kl) was associated with the ultra-long-duration γ-ray burst GRB 111209A, at a redshift z of 0.677. This supernova is more than three times more luminous than type Ic supernovae associated with long-duration γ-ray bursts, and its spectrum is distinctly different. The slope of the continuum resembles those of super-luminous supernovae, but extends further down into the rest-frame ultraviolet implying a low metal content. The light curve evolves much more rapidly than those of super-luminous supernovae. This combination of high luminosity and low metal-line opacity cannot be reconciled with typical type Ic supernovae, but can be reproduced by a model where extra energy is injected by a strongly magnetized neutron star (a magnetar), which has also been proposed as the explanation for super-luminous supernovae.
A review of direct numerical simulations of astrophysical detonations and their implications
Parete-Koon, Suzanne T.; Smith, Christopher R.; Papatheodore, Thomas L.; ...
2013-04-11
Multi-dimensional direct numerical simulations (DNS) of astrophysical detonations in degenerate matter have revealed that the nuclear burning is typically characterized by cellular structure caused by transverse instabilities in the detonation front. Type Ia supernova modelers often use one- dimensional DNS of detonations as inputs or constraints for their whole star simulations. While these one-dimensional studies are useful tools, the true nature of the detonation is multi-dimensional. The multi-dimensional structure of the burning influences the speed, stability, and the composition of the detonation and its burning products, and therefore, could have an impact on the spectra of Type Ia supernovae. Considerablemore » effort has been expended modeling Type Ia supernovae at densities above 1x10 7 g∙cm -3 where the complexities of turbulent burning dominate the flame propagation. However, most full star models turn the nuclear burning schemes off when the density falls below 1x10 7 g∙cm -3 and distributed burning begins. The deflagration to detonation transition (DDT) is believed to occur at just these densities and consequently they are the densities important for studying the properties of the subsequent detonation. In conclusion, this work reviews the status of DNS studies of detonations and their possible implications for Type Ia supernova models. It will cover the development of Detonation theory from the first simple Chapman-Jouguet (CJ) detonation models to the current models based on the time-dependent, compressible, reactive flow Euler equations of fluid dynamics.« less
3D Simulations of Supernova Remnants from Type Ia Supernova Models
NASA Astrophysics Data System (ADS)
Johnson, Heather; Reynolds, S. P.; Frohlich, C.; Blondin, J. M.
2014-01-01
Type Ia supernovae (SNe) originate from thermonuclear explosions of white dwarfs. A great deal is still unknown about the explosion mechanisms, particularly the degree of asymmetry. However, Type Ia supernova remnants (SNRs) can bear the imprint of asymmetry long after the explosion. A SNR of interest is G1.9+0.3, the youngest Galactic SNR, which demonstrates an unusual spatial distribution of elements in the ejecta. While its X-ray spectrum is dominated by synchrotron emission, spectral lines of highly ionized Si, S, and Fe are seen in a few locations, with Fe near the edge of the remnant and with strongly varying Fe/Si ratios. An asymmetric explosion within the white dwarf progenitor may be necessary to explain these unusual features of G1.9+0.3, in particular the shocked Fe at large radii. We use the VH-1 hydrodynamics code to evolve initial Type Ia explosion models in 1, 2, and 3 dimensions at an age of 100 seconds provided by other researchers to study asymmetry, the ignition properties, and the nucleosynthesis resulting from these explosions. We follow the evolution of these models interacting with a uniform external medium to a few hundred years in age. We find the abundance and location of ejecta elements from our models to be inconsistent with the observations of G1.9+0.3; while our models show asymmetric element distributions, we find no tendency for iron-group elements to be found beyond intermediate-mass elements, or for significant iron to be reverse-shocked at all at the age of G1.9+0.3. We compare the amounts of shocked iron-group and intermediate-mass elements as a function of time in the different models. Some new kind of explosion asymmetry may be required to explain G1.9+0.3. This work was performed as part of NC State University's Undergraduate Research in Computational Astrophysics (URCA) program, an REU program supported by the National Science Foundation through award AST-1032736.
PESSTO: The Public ESO Spectroscopic Survey of Transient Objects
NASA Astrophysics Data System (ADS)
Smartt, S. J.; Valenti, S.; Fraser, M.; Inserra, C.; Young, D. R.; Sullivan, M.; Benetti, S.; Gal-Yam, A.; Knapic, C.; Molinaro, M.; Pastorello, A.; Smareglia, R.; Smith, K. W.; Taubenberger, S.; Yaron, O.
2013-12-01
PESSTO, which began in April 2012 as one of two ESO public spectroscopic surveys, uses the EFOSC2 and SOFI instruments on the New Technology Telescope during ten nights a month for nine months of the year. Transients for PESSTO follow-up are provided by dedicated large-field 1-2-metre telescope imaging surveys. In its first year PESSTO classified 263 optical transients, publicly released the reduced spectra within 12 hours of the end of the night and identified 33 supernovae (SNe) for dedicated follow-up campaigns. Nine papers have been published or submitted on the topics of supernova progenitors, the origins of type ia SNe, the uncertain nature of faint optical transients and superluminous supernovae, and a definitive public dataset on a most intriguing supernova, the infamous SN2009ip.
The Progenitor of Tycho’s Supernova was Not Hot and Luminous
NASA Astrophysics Data System (ADS)
Ghavamian, Parviz; Woods, T. E.; Gilfanov, M.; Badenes, C.; T. E. Woods, C. Badenes, M. Gilfanov
2018-01-01
Canonical accretion models of Type Ia supernovae predict that a hot and luminous progenitor will ionize the surrounding gas out to a radius of ∼10–100 pc for ∼100,000 years after the explosion. Tycho’s supernova of 1572 was a Type Ia explosion which produced a remnant that is currently interacting with neutral gas in the form of Balmer-dominated shocks. From analysis of these shocks and photoionization calculations, we have placed stringent upper limits on the temperature and luminosity of the progenitor of Tycho’s supernova. Hot, luminous progenitors that would have produced a greater hydrogen ionization fraction than that measured at the current SNR radius (∼3 parsecs) can thus be excluded. This rules out steadily nuclear-burning white dwarfs (i..e, supersoft X-ray sources), as well as disk emission from a Chandrasekhar-mass white dwarf accreting 1E-8 solar masses per year (recurrent novae). The lack of a Stromgren sphere around Tycho’s SNR is consistent with a double degenerate explosion, although other more exotic scenarios may be possible.
A unified model of supernova driven by magnetic monopoles
NASA Astrophysics Data System (ADS)
Peng, Qiu-He; Liu, Jing-Jing; Chou, Chih-Kang
2017-12-01
In this paper, we first discuss a series of important but puzzling physical mechanisms concerning the energy source, various kinds of core collapsed supernovae explosion mechanisms during central gravitational collapse in astrophysics. We also discuss the puzzle of possible association of γ -ray burst with gravitational wave perturbation, the heat source for the molten interior of the core of the Earth and finally the puzzling problem of the cooling of white dwarfs. We then make use of the estimations for the space flux of magnetic monopoles (hereafter MMs) and nucleon decay induced by MMs (called the Rubakov-Callen (RC) effect) to obtain the luminosity due to the RC effect. In terms of the formula for this RC luminosity, we present a unified treatment for the heat source of the Earth's core, the energy source for the white dwarf interior, various kinds of core collapsed supernovae (Type II Supernova (SNII), Type Ib Supernova (SNIb), Type Ic Supernova (SNIc), Super luminous supernova (SLSN)), and the production mechanism for γ -ray burst. This unified model can also be used to reasonably explain the possible association of the short γ -ray burst detected by the Fermi γ -ray Burst Monitoring Satellite (GBM) with the LIGO gravitational wave event GW150914 in September 2015.
Supernovae, supernebulae, and nucleosynthesis
NASA Astrophysics Data System (ADS)
Wheeler, J. Craig; Harkness, Robert P.; Barkat, Zalman; Swartz, Douglas
1986-10-01
Supernova atmosphere calculations continue to show that variants of previously calculated carbon-deflagration models provide a good representation of the maximum light spectra of classical type Ia supernovae including the ultraviolet deficit. Careful consideration of the conditions leading to central thermonuclear runaway of degenerate carbon shows that runaway can, however, lead to detonation and direct conflict with observations. As witnessed by the spectra of type Ib supernovae, massive stars are expected to be the primary source of oxygen. Estimates of the absolute production of oxygen in massive stars suggest that if all stars more massive than ≡12 M_sun; explode as supernovae, oxygen would be overproduced in the solar neighborhood, an effect exacerbated by the recent increase in the reaction rate for 12C(α, γ)16O.
The Type Ia supernova 1989B in NGC 3627 (M66)
NASA Technical Reports Server (NTRS)
Wells, Lisa A.; Phillips, M. M.; Suntzeff, Nicholas B.; Heathcote, S. R.; Hamuy, Mario; Navarrete, M.; Fernandez, M.; Weller, W. G.; Schommer, R. A.; Kirshner, Robert P.
1994-01-01
We report extensive optical photometry and spectroscopy of the Type Ia supernova 1989B. Maximum light in B occurred approximately seven days after discovery on JD 2447565.3 +/- 1.0 (1989 February 7.8 +/- 1.0) at a magnitude of 12.34 +/- 0.05. The UBV light curves of this supernova were very similar to those of other well observed Type Ia events such as SN 1981B and SN 1980N. From a comparison of the UBVRIJHK photometry, we derive an extinction for SN 1989B of E(B-V) = 0.37 +/- 0.03 mags relative to the unobscured Type Ia SN 1980N. The properties of the dust responsible for the reddening of SN 1989B appear to have been similar to those of normal dust in the Milky Way. In particular, we find no evidence for an unusually low value of the ratio of the total to selective absorption. We derive a distance modulus of delta mu(sub 0) = -1.62 +/- 0.03 mag relative to the Type Ia SN 1980N. We present optical spectra which provide essentially continuous coverage of the spectral evolution of SN 1989B over the first month following B maximum. These data show the transition from the maximum-light spectrum, in which lines of elements such as Ca, Si, S, Mg, and O are most prominent, to the Fe-dominated spectrum observed a few weeks after maximum. This transition occurred quite smoothly over a two-week period following B maximum. Comparison of the spectra of SN 1989B with data for two other well observed Type Ia supernovae -- 1981B and 1986G -- reveals subtle differences in the relative strengths of the S II and Si II absorption lines at maximum light. However, these differences disappeared within a week or so after maximum with the onset of the Fe-dominated phase.
Spectroscopic classification of AT 2017cfd as a young Type Ia supernova
NASA Astrophysics Data System (ADS)
Vinko, J.; Wheeler, J. C.
2017-03-01
We report the spectroscopic observation of AT 2017cfd, a transient discovered by the Lick Observatory Supernova Search (LOSS) on 2017-03-16. A spectrum (range 3700-9300 Angstroms), taken with the new "Low Resolution Spectrograph-2" (LRS2) on the 10m Hobby-Eberly Telescope at McDonald Observatory by Steve Odewahn on 2017-03-18.16 UT, is similar to that of a Type Ia supernova before maximum light.
Time-resolved Polarimetry of the Superluminous SN 2015bn with the Nordic Optical Telescope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leloudas, Giorgos; Gal-Yam, Avishay; Maund, Justyn R.
2017-03-01
We present imaging polarimetry of the superluminous supernova SN 2015bn, obtained over nine epochs between −20 and +46 days with the Nordic Optical Telescope. This was a nearby, slowly evolving Type I superluminous supernova that has been studied extensively and for which two epochs of spectropolarimetry are also available. Based on field stars, we determine the interstellar polarization in the Galaxy to be negligible. The polarization of SN 2015bn shows a statistically significant increase during the last epochs, confirming previous findings. Our well-sampled imaging polarimetry series allows us to determine that this increase (from ∼0.54% to ≳1.10%) coincides in timemore » with rapid changes that took place in the optical spectrum. We conclude that the supernova underwent a “phase transition” at around +20 days, when the photospheric emission shifted from an outer layer, dominated by natal C and O, to a more aspherical inner core, dominated by freshly nucleosynthesized material. This two-layered model might account for the characteristic appearance and properties of Type I superluminous supernovae.« less
Stephan, Thomas; Trappitsch, Reto; Davis, Andrew M.; ...
2017-05-10
Here, we used CHILI, the Chicago Instrument for Laser Ionization, a new resonance ionization mass spectrometer developed for isotopic analysis of small samples, to analyze strontium, zirconium, and barium isotopes in 22 presolar silicon carbide grains. Twenty of the grains showed detectable strontium and barium, but none of the grains had enough zirconium to be detected with CHILI. Nine grains were excluded from further consideration since they showed very little signals (<1000 counts) for strontium as well as for barium. Among the 11 remaining grains, we found three X grains. The discovery of three supernova grains among only 22 grainsmore » was fortuitous, because only ~1% of presolar silicon carbide grains are type X, but was confirmed by silicon isotopic measurements of grain residues with NanoSIMS. And while one of the X grains showed strontium and barium isotope patterns expected for supernova grains, the two other supernova grains have 87Sr/86Sr < 0.5, values never observed in any natural sample before. From their silicon isotope ratios, the latter two grains can be classified as X2 grains, while the former grain belongs to the more common X1 group. The differences of these grains in strontium and barium isotopic composition constrain their individual formation conditions in Type II supernovae.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephan, Thomas; Trappitsch, Reto; Davis, Andrew M.
Here, we used CHILI, the Chicago Instrument for Laser Ionization, a new resonance ionization mass spectrometer developed for isotopic analysis of small samples, to analyze strontium, zirconium, and barium isotopes in 22 presolar silicon carbide grains. Twenty of the grains showed detectable strontium and barium, but none of the grains had enough zirconium to be detected with CHILI. Nine grains were excluded from further consideration since they showed very little signals (<1000 counts) for strontium as well as for barium. Among the 11 remaining grains, we found three X grains. The discovery of three supernova grains among only 22 grainsmore » was fortuitous, because only ~1% of presolar silicon carbide grains are type X, but was confirmed by silicon isotopic measurements of grain residues with NanoSIMS. And while one of the X grains showed strontium and barium isotope patterns expected for supernova grains, the two other supernova grains have 87Sr/86Sr < 0.5, values never observed in any natural sample before. From their silicon isotope ratios, the latter two grains can be classified as X2 grains, while the former grain belongs to the more common X1 group. The differences of these grains in strontium and barium isotopic composition constrain their individual formation conditions in Type II supernovae.« less
Radioactive models of type 1 supernovae
NASA Astrophysics Data System (ADS)
Schurmann, S. R.
1983-04-01
In recent years, considerable progress has been made toward understanding Type I supernovae within the context of radioactive energy input. Much effort has gone into determining the peak magnitude of the supernovae, particularly in the B-band, and its relation to the Hubble constant. If the distances inferred for Type I events are at all accurate, and/or the Hubble constant has a value near 50 km per s per Mpc, it is clear that models must reach a peak magnitude approximately -20 in order to be consistent. The present investigation is concerned with models which achieve peak magnitudes near this value and contain 0.8 solar mass of Ni-56. The B-band light curve declines much more rapidly after peak than the bolometric light curve. The mass and velocity of Ni-56 (at least for the A models) are within the region defined by Axelrod (1980) for configurations which produce acceptable spectra at late times. The models are consistent with the absence of a neutron star after the explosion. There remain, however, many difficult problems.
Radioactive models of type 1 supernovae
NASA Technical Reports Server (NTRS)
Schurmann, S. R.
1983-01-01
In recent years, considerable progress has been made toward understanding Type I supernovae within the context of radioactive energy input. Much effort has gone into determining the peak magnitude of the supernovae, particularly in the B-band, and its relation to the Hubble constant. If the distances inferred for Type I events are at all accurate, and/or the Hubble constant has a value near 50 km per s per Mpc, it is clear that models must reach a peak magnitude approximately -20 in order to be consistent. The present investigation is concerned with models which achieve peak magnitudes near this value and contain 0.8 solar mass of Ni-56. The B-band light curve declines much more rapidly after peak than the bolometric light curve. The mass and velocity of Ni-56 (at least for the A models) are within the region defined by Axelrod (1980) for configurations which produce acceptable spectra at late times. The models are consistent with the absence of a neutron star after the explosion. There remain, however, many difficult problems.
Fermi Large Area Telescope Detection Of The Young Supernova Remnant Tycho
Giordano, F.; Naumann-Godo, M.; Ballet, J.; ...
2011-12-07
After almost three years of data taking in sky survey mode, the Fermi -LAT has detected γ-ray emission toward the Tycho’s Supernova Remnant (SNR). The Tycho SNR is among the youngest remnants in the Galaxy, originating from a Type Ia Supernova in AD 1572. The γ-ray integral flux from 400 MeV up to 100 GeV has been measured to be (3.5±1.1stat±0.7syst)×10 -9 cm -2s -1 with a photon index of 2.3±0.2stat±0.1syst. A simple model consistent with TeV, X-ray and radio data is sufficient to explain the observed emission as originating from π 0-decays as a result of cosmicray acceleration andmore » interaction with the ambient medium.« less
OGLE-2014-SN-073 as a fallback accretion powered supernova
NASA Astrophysics Data System (ADS)
Moriya, Takashi J.; Terreran, Giacomo; Blinnikov, Sergei I.
2018-03-01
We investigate the possibility that the energetic Type II supernova OGLE-2014-SN-073 is powered by a fallback accretion following the failed explosion of a massive star. Taking massive hydrogen-rich supernova progenitor models, we estimate the fallback accretion rate and calculate the light-curve evolution of supernovae powered by the fallback accretion. We find that such fallback accretion powered models can reproduce the overall observational properties of OGLE-2014-SN-073. It may imply that some failed explosions could be observed as energetic supernovae like OGLE-2014-SN-073 instead of faint supernovae as previously proposed.
Nebular Phase Spectra of SNe Ia from the CSP2 Sample
NASA Astrophysics Data System (ADS)
Diamond, Tiara; Carnegie Supernova Project II
2018-06-01
We present a comparison of late-time spectra in the near-infrared for some of the Type Ia supernovae from the Carnegie Supernova Project II. Particular attention is paid to the shape and evolution of several emission features, including the [Fe II] line at 1.6440 μm. We put our findings in context of several explosion scenarios and progenitor systems.
Spectrum synthesis of the Type Ia supernovae SN 1992A and SN 1981B
NASA Technical Reports Server (NTRS)
Nugent, Peter; Baron, E.; Hauschildt, Peter H.; Branch, David
1995-01-01
We present non-local thermodynamic equilibrium (non-LTE) synthetic spectra for the Type Ia supernovae SN 1992A and SN 1981B, near maximum light. At this epoch both supernovae were observed from the UV through the optical. This wide spectral coverage is essential for determining the density structure of a SN Ia. Our fits are in good agreement with observation and provide some insight as to the differences between these supernovae. We also discuss the application of the expanding photosphere method to SNe Ia which gives a distance that is independent of those based on the decay of Ni-56 and Cepheid variable stars.
On the Possibility of Fast Radio Bursts from Inside Supernovae: The Case of SN 1986J
NASA Astrophysics Data System (ADS)
Bietenholz, Michael F.; Bartel, Norbert
2017-12-01
We discuss the possibility of obtaining fast radio bursts (FRBs) from the interior of supernovae, in particular SN 1986J. Young neutron stars are involved in many of the possible scenarios for the origin of FRBs, and it has been suggested that the high dispersion measures observed in FRBs might be produced by the ionized material in the ejecta of associated supernovae. Using VLA and VLBI measurements of the Type IIn SN 1986J, which has a central compact component not seen in other supernovae, we can directly observe for the first time radio signals, which originate in the interior of a young (∼30 year old) supernova. We show that at an age of 30 years, any FRB signal at ∼1 GHz would still be largely absorbed by the ejecta. By the time the ejecta have expanded so that a 1 GHz signal would be visible, the internal dispersion measure due to the SN ejecta would be below the values typically seen for FRBs. The high dispersion measures seen for the FRBs detected so far could of course be due to propagation through the intergalactic medium provided that the FRBs are at distances much larger than that of SN 1986J, which is 10 Mpc. We conclude that if FRBs originate in Type II SNe/SNRs, they would likely not become visible until 60 ∼ 200 years after the SN explosion.
Contreras, Carlos; Phillips, M. M.; Burns, Christopher R.; ...
2018-05-18
We present detailed ultraviolet, optical, and near-infrared light curves of the Type Ia supernova (SN) 2012fr, which exploded in the Fornax cluster member NGC 1365. These precise high-cadence light curves provide a dense coverage of the flux evolution from -12 to +140 days with respect to the epoch of B-band maximum (more » $${t}_{{B}_{\\max }}$$). Supplementary imaging at the earliest epochs reveals an initial slow and nearly linear rise in luminosity with a duration of ~2.5 days, followed by a faster rising phase that is well reproduced by an explosion model with a moderate amount of 56 Ni mixing in the ejecta. From our analysis of the light curves, we conclude that: (i) the explosion occurred < 22 hr before the first detection of the supernova, (ii) the rise time to peak bolometric (λ >1800) luminosity was 16.5 ± 0.6 days, (iii) the supernova suffered little or no host-galaxy dust reddening, (iv) the peak luminosity in both the optical and near-infrared was consistent with the bright end of normal Type Ia diversity, and (v) 0.60 ± 0.15 M ⊙ of 56Ni was synthesized in the explosion. Despite its normal luminosity, SN 2012fr displayed unusually prevalent high-velocity Ca ii and Si ii absorption features, and a nearly constant photospheric velocity of the Si ii λ6355 line at ~12,000 km s -1 that began ~5 days before $${t}_{{B}_{\\max }}$$. We also highlight some of the other peculiarities in the early phase photometry and the spectral evolution. SN 2012fr also adds to a growing number of Type Ia supernovae that are hosted by galaxies with direct Cepheid distance measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Contreras, Carlos; Phillips, M. M.; Burns, Christopher R.
We present detailed ultraviolet, optical, and near-infrared light curves of the Type Ia supernova (SN) 2012fr, which exploded in the Fornax cluster member NGC 1365. These precise high-cadence light curves provide a dense coverage of the flux evolution from -12 to +140 days with respect to the epoch of B-band maximum (more » $${t}_{{B}_{\\max }}$$). Supplementary imaging at the earliest epochs reveals an initial slow and nearly linear rise in luminosity with a duration of ~2.5 days, followed by a faster rising phase that is well reproduced by an explosion model with a moderate amount of 56 Ni mixing in the ejecta. From our analysis of the light curves, we conclude that: (i) the explosion occurred < 22 hr before the first detection of the supernova, (ii) the rise time to peak bolometric (λ >1800) luminosity was 16.5 ± 0.6 days, (iii) the supernova suffered little or no host-galaxy dust reddening, (iv) the peak luminosity in both the optical and near-infrared was consistent with the bright end of normal Type Ia diversity, and (v) 0.60 ± 0.15 M ⊙ of 56Ni was synthesized in the explosion. Despite its normal luminosity, SN 2012fr displayed unusually prevalent high-velocity Ca ii and Si ii absorption features, and a nearly constant photospheric velocity of the Si ii λ6355 line at ~12,000 km s -1 that began ~5 days before $${t}_{{B}_{\\max }}$$. We also highlight some of the other peculiarities in the early phase photometry and the spectral evolution. SN 2012fr also adds to a growing number of Type Ia supernovae that are hosted by galaxies with direct Cepheid distance measurements.« less
A Search for High-Energy Gamma-Rays from Supernova SN1987A.
NASA Astrophysics Data System (ADS)
Waldron, Liam Edwin
1992-01-01
The Australian Defence Force Academy (ADFA) balloon -borne gamma-ray astronomy telescope was flown successfully from Alice Springs Australia twice during 1987 and 1988 (flights 87-2-19 and 88-1-5) with the aim of measuring the gamma-ray flux, in the energy range 50 to 500 MeV, from Supernova SN1987A in the Large Magellanic Cloud. The two flights corresponded to day 55 and day 407 respectively of remnant evolution. The instrument was complemented by a hard X-ray proportional counter, designed and constructed by the Istituto di Astrofisica Spaziale, CNR, Frascati Italy, and sensitive to the 10 to 250 KeV energy range. In this thesis, an account is given of the physical processes responsible for the production of gamma-rays astrophysical environments and their relation to supernovae and cosmic-rays. A description is then given of the main features of the gamma-ray telescope and its principle of operation, the most important part of the telescope being a spark-chamber used to determine the direction of arrival of incident gamma-rays. Data obtained during each flight was recorded as spark-chamber tacks on photographic film. A detailed account of the methods of subsequent data reduction and analysis, as carried out by the author, are given. The principal results of this work were that 3-sigma upper limits to the gamma-ray flux from Supernova SN1987A of 2.2 times 10^ {-5} photons cm^{ -2} s^{-1} and 3.4 times 10^{-5} photons cm^{-2} s^ {-1} were obtained for days 55 and 407 of remnant evolution respectively, these limits being somewhat lower than previously reported in the literature from a preliminary analysis of the data. The above two upper limits are consistent with Supernova SN1987A being an atypical Type-II supernova. That is, the progenitor was a blue, rather than a red, supergiant. The limits are compared with theoretical predictions related to current models of gamma-ray emission from young Type -II supernovae.
Nucleosynthesis of Iron-Peak Elements in Type-Ia Supernovae
NASA Astrophysics Data System (ADS)
Leung, Shing-Chi; Nomoto, Ken'ichi
The observed features of typical Type Ia supernovae are well-modeled as the explosions of carbon-oxygen white dwarfs both near Chandrasekhar mass and sub-Chandrasekhar mass. However, observations in the last decade have shown that Type Ia supernovae exhibit a wide diversity, which implies models for wider range of parameters are necessary. Based on the hydrodynamics code we developed, we carry out a parameter study of Chandrasekhar mass models for Type Ia supernovae. We conduct a series of two-dimensional hydrodynamics simulations of the explosion phase using the turbulent flame model with the deflagration-detonation-transition (DDT). To reconstruct the nucleosynthesis history, we use the particle tracer scheme. We examine the role of model parameters by examining their influences on the final product of nucleosynthesis. The parameters include the initial density, metallicity, initial flame structure, detonation criteria and so on. We show that the observed chemical evolution of galaxies can help constrain these model parameters.
Supernova Ejecta in the Youngest Galactic Supernova Remnant G1.9+0.3
NASA Technical Reports Server (NTRS)
Borkowski, Kazimierz J.; Reynolds, Stephen P.; Hwang, Una; Green, David A.; Petre, Robert; Krishnamurthy, Kalyani; Willett, Rebecca
2013-01-01
G1.9+0.3 is the youngest known Galactic supernova remnant (SNR), with an estimated supernova (SN) explosion date of approximately 1900, and most likely located near the Galactic Center. Only the outermost ejecta layers with free-expansion velocities (is) approximately greater than 18,000 km s-1 have been shocked so far in this dynamically young, likely Type Ia SNR. A long (980 ks) Chandra observation in 2011 allowed spatially-resolved spectroscopy of heavy-element ejecta. We denoised Chandra data with the spatio-spectral method of Krishnamurthy et al., and used a wavelet based technique to spatially localize thermal emission produced by intermediate-mass elements (IMEs: Si and S) and iron. The spatial distribution of both IMEs and Fe is extremely asymmetric, with the strongest ejecta emission in the northern rim. Fe K alpha emission is particularly prominent there, and fits with thermal models indicate strongly oversolar Fe abundances. In a localized, outlying region in the northern rim, IMEs are less abundant than Fe, indicating that undiluted Fe-group elements (including 56Ni) with velocities greater than 18,000 km s-1 were ejected by this SN. But in the inner west rim, we find Si- and S-rich ejecta without any traces of Fe, so high-velocity products of O-burning were also ejected. G1.9+0.3 appears similar to energetic Type Ia SNe such as SN 2010jn where iron-group elements at such high free-expansion velocities have been recently detected. The pronounced asymmetry in the ejecta distribution and abundance inhomogeneities are best explained by a strongly asymmetric SN explosion, similar to those produced in some recent 3D delayed-detonation Type Ia models.
New Suspect Identified in Supernova Explosion
2014-06-04
Supernovas are often thought of as the tremendous explosions that mark the ends of massive stars' lives. While this is true, not all supernovas occur in this fashion. A common supernova class, called Type Ia, involves the detonation of white dwarfs -- small, dense stars that are already dead. New results from NASA's Spitzer Space Telescope have revealed a rare example of Type Ia explosion, in which a dead star "fed" off an aging star like a cosmic zombie, triggering a blast. The results help researchers piece together how these powerful and diverse events occur. "It's kind of like being a detective," said Brian Williams of NASA's Goddard Space Flight Center in Greenbelt, Maryland, lead author of a study submitted to the Astrophysical Journal. "We look for clues in the remains to try to figure out what happened, even though we weren't there to see it." Read more: 1.usa.gov/1i0PAaa NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Growing evidence that SNe Iax are not a one-parameter family. The case of PS1-12bwh
NASA Astrophysics Data System (ADS)
Magee, M. R.; Kotak, R.; Sim, S. A.; Wright, D.; Smartt, S. J.; Berger, E.; Chornock, R.; Foley, R. J.; Howell, D. A.; Kaiser, N.; Magnier, E. A.; Wainscoat, R.; Waters, C.
2017-05-01
In this study, we present observations of a type Iax supernova, PS1-12bwh, discovered during the Pan-STARRS1 3π-survey. Our analysis was driven by previously unseen pre-maximum, spectroscopic heterogeneity. While the light curve and post-maximum spectra of PS1-12bwh are virtually identical to those of the well-studied type Iax supernova, SN 2005hk, the -2 day spectrum of PS1-12bwh does not resemble SN 2005hk at a comparable epoch; instead, we found it to match a spectrum of SN 2005hk taken over a week earlier (-12 day). We are able to rule out the cause as being incorrect phasing, and argue that it is not consistent with orientation effects predicted by existing explosion simulations. To investigate the potential source of this difference, we performed radiative transfer modelling of both supernovae. We found that the pre-maximum spectrum of PS1-12bwh is well matched by a synthetic spectrum generated from a model with a lower density in the high velocity (≳6000 km s-1) ejecta than SN 2005hk. The observed differences between SN 2005hk and PS1-12bwh may therefore be attributed primarily to differences in the high velocity ejecta alone, while comparable densities for the lower velocity ejecta would explain the nearly identical post-maximum spectra. These two supernovae further highlight the diversity within the SNe Iax class, as well as the challenges in spectroscopically identifying and phasing these objects, especially at early epochs.
A compact circumstellar shell as the source of high-velocity features in SN 2011fe
NASA Astrophysics Data System (ADS)
Mulligan, Brian W.; Wheeler, J. Craig
2018-05-01
High-velocity features (HVFs), especially of Ca II, are frequently seen in Type Ia supernova observed prior to B-band maximum (Bmax). These HVFs evolve in velocity from more than 25 000 km s-1, in the days after first light, to about 18 000 km s-1 near Bmax. To recreate the evolution of the Ca II near-infrared triplet (CaNIR) HVFs in SN 2011fe, we consider the interaction between a model Type Ia supernova and compact circumstellar shells with masses between 0.003 and 0.012 M⊙. We fit the observed CaNIR feature using synthetic spectra generated from the models using SYN++. The CaNIR feature is better explained by the supernova model interacting with a shell than the model without a shell, with a shell of mass 0.005 M⊙ tending to be better fitting than the other shells. The evolution of the optical depth of CaNIR suggests that the ionization state of calcium within the ejecta and shell is not constant. We discuss the method used to measure the observed velocity of CaNIR and other features and conclude that HVFs or other components can be falsely identified. We briefly discuss the possible origin of the shells and the implications for the progenitor system of the supernova.
The Transition of a Type IIL Supernova into a Supernova Remnant: Late-time Observations of SN 2013by
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, C. S.; Fesen, R. A.; Milisavljevic, D.
2017-10-10
We present early-time Swift and Chandra X-ray data along with late-time optical and near-infrared observations of SN 2013by, a Type IIL supernova (SN) that occurred in the nearby spiral galaxy ESO 138−G10 ( D ∼ 14.8 Mpc). Optical and NIR photometry and spectroscopy follow the late-time evolution of the SN from days +89 to +457 post maximum brightness. The optical spectra and X-ray light curves are consistent with the picture of an SN having prolonged interaction with circumstellar material (CSM) that accelerates the transition from SN to supernova remnant (SNR). Specifically, we find SN 2013by’s H α profile exhibits significantmore » broadening (∼10,000 km s{sup −1}) on day +457, the likely consequence of high-velocity, H-rich material being excited by a reverse shock. A relatively flat X-ray light curve is observed that cannot be modeled using Inverse Compton scattering processes alone, but requires an additional energy source most likely originating from the SN-CSM interaction. In addition, we see the first overtone of CO emission near 2.3 μ m on day +152, signaling the formation of molecules and dust in the SN ejecta and is the first time CO has been detected in a Type IIL SN. We compare SN 2013by with Type IIP SNe, whose spectra show the rarely observed SN-to-SNR transition in varying degrees and conclude that Type IIL SNe may enter the remnant phase at earlier epochs than their Type IIP counterparts.« less
An upper limit on the contribution of accreting white dwarfs to the type Ia supernova rate.
Gilfanov, Marat; Bogdán, Akos
2010-02-18
There is wide agreement that type Ia supernovae (used as standard candles for cosmology) are associated with the thermonuclear explosions of white dwarf stars. The nuclear runaway that leads to the explosion could start in a white dwarf gradually accumulating matter from a companion star until it reaches the Chandrasekhar limit, or could be triggered by the merger of two white dwarfs in a compact binary system. The X-ray signatures of these two possible paths are very different. Whereas no strong electromagnetic emission is expected in the merger scenario until shortly before the supernova, the white dwarf accreting material from the normal star becomes a source of copious X-rays for about 10(7) years before the explosion. This offers a means of determining which path dominates. Here we report that the observed X-ray flux from six nearby elliptical galaxies and galaxy bulges is a factor of approximately 30-50 less than predicted in the accretion scenario, based upon an estimate of the supernova rate from their K-band luminosities. We conclude that no more than about five per cent of type Ia supernovae in early-type galaxies can be produced by white dwarfs in accreting binary systems, unless their progenitors are much younger than the bulk of the stellar population in these galaxies, or explosions of sub-Chandrasekhar white dwarfs make a significant contribution to the supernova rate.
Recent Progress on Supernova Remnants - Progenitors, Evolution, Cosmic-ray Acceleration
NASA Astrophysics Data System (ADS)
Bamba, A.
2017-10-01
Supernova remnants supplies heavy elements, kinetic and thermal energies, and cosmic rays, into the universe, and are the key sources to make the diversity of the universe. On the other hand, we do not know the fundamental issues of supernova remnants, such as (1) what their main progenitors are, (2) how they evolve into the realistic (non-uniform) interstellar space, and (3) which type of supernova remnants can accelerate cosmic rays to the knee energy. Recent X-ray studies with XMM-Newton, Chandra, Suzaku, NuSTAR, and Hitomi, progressed understandings of these issues, and found that each issue connect others tightly. In this paper, we will overview these progresses with focusing the above three topics, and discuss what we should do next.
NASA Astrophysics Data System (ADS)
Shukla, Hemant; Bonissent, Alain
2017-04-01
We present the parameterized simulation of an integral-field unit (IFU) slicer spectrograph and its applications in spectroscopic studies, namely, for probing dark energy with type Ia supernovae. The simulation suite is called the fast-slicer IFU simulator (FISim). The data flow of FISim realistically models the optics of the IFU along with the propagation effects, including cosmological, zodiacal, instrumentation and detector effects. FISim simulates the spectrum extraction by computing the error matrix on the extracted spectrum. The applications for Type Ia supernova spectroscopy are used to establish the efficacy of the simulator in exploring the wider parametric space, in order to optimize the science and mission requirements. The input spectral models utilize the observables such as the optical depth and velocity of the Si II absorption feature in the supernova spectrum as the measured parameters for various studies. Using FISim, we introduce a mechanism for preserving the complete state of a system, called the partial p/partial f matrix, which allows for compression, reconstruction and spectrum extraction, we introduce a novel and efficient method for spectrum extraction, called super-optimal spectrum extraction, and we conduct various studies such as the optimal point spread function, optimal resolution, parameter estimation, etc. We demonstrate that for space-based telescopes, the optimal resolution lies in the region near R ˜ 117 for read noise of 1 e- and 7 e- using a 400 km s-1 error threshold on the Si II velocity.
Nebular phase observations of the Type-Ib supernova iPTF13bvn favour a binary progenitor
NASA Astrophysics Data System (ADS)
Kuncarayakti, H.; Maeda, K.; Bersten, M. C.; Folatelli, G.; Morrell, N.; Hsiao, E. Y.; González-Gaitán, S.; Anderson, J. P.; Hamuy, M.; de Jaeger, T.; Gutiérrez, C. P.; Kawabata, K. S.
2015-07-01
Aims: We present and analyse late-time observations of the Type-Ib supernova with possible pre-supernova progenitor detection, iPTF13bvn, which were done ~300 days after the explosion. We discuss them in the context of constraints on the supernova's progenitor. Previous studies have proposed two possible natures for the progenitor of the supernova, i.e. a massive Wolf-Rayet star or a lower-mass star in a close binary system. Methods: Our observations show that the supernova has entered the nebular phase, with the spectrum dominated by Mg I]λλ4571, [O I]λλ6300, 6364, and [Ca II]λλ7291, 7324 emission lines. We measured the emission line fluxes to estimate the core oxygen mass and compared the [O I]/[Ca II] line ratio with other supernovae. Results.The core oxygen mass of the supernova progenitor was estimated to be ≲0.7 M⊙, which implies initial progenitor mass that does not exceed ~15-17 M⊙.Since the derived mass is too low for a single star to become a Wolf-Rayet star, this result lends more support to the binary nature of the progenitor star of iPTF13bvn. The comparison of [O I]/[Ca II] line ratio with other supernovae also shows that iPTF13bvn appears to be in close association with the lower mass progenitors of stripped-envelope and Type-II supernovae. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the US National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU); Chilean Telescope Time Allocation Committee proposal CN2014A-91.
Cobalt-56 γ-ray emission lines from the type Ia supernova 2014J.
Churazov, E; Sunyaev, R; Isern, J; Knödlseder, J; Jean, P; Lebrun, F; Chugai, N; Grebenev, S; Bravo, E; Sazonov, S; Renaud, M
2014-08-28
A type Ia supernova is thought to be a thermonuclear explosion of either a single carbon-oxygen white dwarf or a pair of merging white dwarfs. The explosion fuses a large amount of radioactive (56)Ni (refs 1-3). After the explosion, the decay chain from (56)Ni to (56)Co to (56)Fe generates γ-ray photons, which are reprocessed in the expanding ejecta and give rise to powerful optical emission. Here we report the detection of (56)Co lines at energies of 847 and 1,238 kiloelectronvolts and a γ-ray continuum in the 200-400 kiloelectronvolt band from the type Ia supernova 2014J in the nearby galaxy M82. The line fluxes suggest that about 0.6 ± 0.1 solar masses of radioactive (56)Ni were synthesized during the explosion. The line broadening gives a characteristic mass-weighted ejecta expansion velocity of 10,000 ± 3,000 kilometres per second. The observed γ-ray properties are in broad agreement with the canonical model of an explosion of a white dwarf just massive enough to be unstable to gravitational collapse, but do not exclude merger scenarios that fuse comparable amounts of (56)Ni.
Asymmetries in the bright and moderately extincted SN Ia ASASSN-14lp
NASA Astrophysics Data System (ADS)
Porter, Amber L.; Milne, Peter; Williams, Grant; Mauerhan, Jon; Leising, Mark D.; Smith, Paul S.
2017-01-01
Spectropolarimetry of supernovae, or measuring the polarization of their light as a function of wavelength, records the intricate details about the geometry of the explosion for each epoch obtained. The Type Ia supernova (SN Ia) ASASSN-14lp was the second brightest supernova in 2014 and suffers from a moderate amount of extinction (Shappee et al. 2016). We obtained spectropolarimetric observations spanning -9 to +150 days, relative to B-maximum, using the CCD Imaging/Spectropolarimeter (SPOL) on the 1.5-m Kuiper, 2.3-m Bok, and 6.5-m MMT telescopes and the Kast spectrograph on the 3-m Shane telescope at Lick Observatory. We investigate the evolution of the polarization intrinsic to the supernova which describes asymmetries in the ejecta of the explosion and comment on the extragalactic dust of the host galaxy, NGC 4666.
Kepler Supernova Remnant: A View from Hubble Space Telescope
2004-10-06
This image represents a view of NASA Kepler supernova remnant taken in X-rays, visible light, and infrared radiation, indicating that the bubble of gas that makes up the supernova remnant appears different in various types of light. http://photojournal.jpl.nasa.gov/catalog/PIA06909
VLA radio upper limit on a Type IIn SN 2008B
NASA Astrophysics Data System (ADS)
Chandra, Poonam; Soderberg, Alicia
2008-01-01
Poonam Chandra and Alicia Soderberg report on behalf of a larger collaboration: We observed a Type IIn supernova SN 2008B (CBET 1194) with the Very Large Array (VLA) in the 8.46 GHz band on 2008, January 23.5 UT. The observations were taken for total duration of one hour in the VLA B-configuration. We do not detect any radio emission at the supernova position (CBET 1194). The flux density at the supernova position is 60 ± 28 uJy.
Ultraviolet Spectroscopy of Supernovae: The First Two Years of Swift Observations
NASA Technical Reports Server (NTRS)
Immler, Stefan
2008-01-01
We present the entire sample of ultraviolet (1JV) spectra of supernovae (SNe) obtained with the Ultraviolet/Optical Telescope (UVOT) on board the Swift satellite during the first 2 years of observations (2005/2006). A total of 31 UV-grism and 22 V-grism spectra of 9 supernovae (SNe) have been collected. of which 6 are thermonuclear (type Ia) and 3 core collapse (type Ibc/II) SNe. All the spectra have been obtained during the photospheric phase. After a comparison of the spectra of our sample with those in the literature (SNe 1992A. 1990N and 1999em). we confirm some degree of diversity in the UV emission of Type Ia SNe and a greater homogeneity in the Type I1 Plateau SN sample. Signatures of interaction between the ejecta and the circumstellar environment have been found in the UV spectrum of SN 2006jc, the only SN Type Ib/c for which UVOT grism data are available. Currently, Swift LJVOT is the best suited instrument for early SN studies in the UV due to its fast response and flexible scheduling capabilities. However. in order to increase the quality of the data and significantly improve our understanding of the lJV properties of SNe and to fully maximize the scientific potential of UVOT grism observations. a larger investment in obsening time and longer exposures are needed.
False-color images from observations by the Supernova Cosmology Project of one of the two most dista
NASA Technical Reports Server (NTRS)
2002-01-01
TFalse-color images from observations by the Supernova Cosmology Project of one of the two most distant spectroscopically confirmed supernova. From the left: the first two images, from the Cerro Tololo Interamerican Observatory 4-meter telescope, show a small region of sky just before and just after the the appearance of a type-Ia supernova that exploded when the universe was about half its present age. The third image shows the same supernova as observed with the Hubble Space Telescope. This much sharper picture allows a much better measurement of the apparent brightness and hence the distance of this supernova. Because their intrinsic brightness is predictable, such supernovae help to determine the deceleration, and so the eventual fate, of the universe. Credit: Perlmutter et al., The Supernova Cosmology Project
Kepler Beyond Planets: Finding Exploding Stars (Type Ia Supernova from a White Dwarf Merger)
2018-03-26
This frame from an animation shows the merger of two white dwarfs. A white dwarf is an extremely dense remnant of a star that can no longer burn nuclear fuel at its core. This is another way that a "type Ia" supernova occurs. Stellar explosions forge and distribute materials that make up the world in which we live, and also hold clues to how fast the universe is expanding. By understanding supernovae, scientists can unlock mysteries that are key to what we are made of and the fate of our universe. But to get the full picture, scientists must observe supernovae from a variety of perspectives, especially in the first moments of the explosion. That's really difficult -- there's no telling when or where a supernova might happen next. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA22353
The binary progenitor of Tycho Brahe's 1572 supernova.
Ruiz-Lapuente, Pilar; Comeron, Fernando; Méndez, Javier; Canal, Ramon; Smartt, Stephen J; Filippenko, Alexei V; Kurucz, Robert L; Chornock, Ryan; Foley, Ryan J; Stanishev, Vallery; Ibata, Rodrigo
2004-10-28
The brightness of type Ia supernovae, and their homogeneity as a class, makes them powerful tools in cosmology, yet little is known about the progenitor systems of these explosions. They are thought to arise when a white dwarf accretes matter from a companion star, is compressed and undergoes a thermonuclear explosion. Unless the companion star is another white dwarf (in which case it should be destroyed by the mass-transfer process itself), it should survive and show distinguishing properties. Tycho's supernova is one of only two type Ia supernovae observed in our Galaxy, and so provides an opportunity to address observationally the identification of the surviving companion. Here we report a survey of the central region of its remnant, around the position of the explosion, which excludes red giants as the mass donor of the exploding white dwarf. We found a type G0-G2 star, similar to our Sun in surface temperature and luminosity (but lower surface gravity), moving at more than three times the mean velocity of the stars at that distance, which appears to be the surviving companion of the supernova.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saunders, C.; Aldering, G.; Aragon, C.
2015-02-10
We estimate systematic errors due to K-corrections in standard photometric analyses of high-redshift Type Ia supernovae. Errors due to K-correction occur when the spectral template model underlying the light curve fitter poorly represents the actual supernova spectral energy distribution, meaning that the distance modulus cannot be recovered accurately. In order to quantify this effect, synthetic photometry is performed on artificially redshifted spectrophotometric data from 119 low-redshift supernovae from the Nearby Supernova Factory, and the resulting light curves are fit with a conventional light curve fitter. We measure the variation in the standardized magnitude that would be fit for a givenmore » supernova if located at a range of redshifts and observed with various filter sets corresponding to current and future supernova surveys. We find significant variation in the measurements of the same supernovae placed at different redshifts regardless of filters used, which causes dispersion greater than ∼0.05 mag for measurements of photometry using the Sloan-like filters and a bias that corresponds to a 0.03 shift in w when applied to an outside data set. To test the result of a shift in supernova population or environment at higher redshifts, we repeat our calculations with the addition of a reweighting of the supernovae as a function of redshift and find that this strongly affects the results and would have repercussions for cosmology. We discuss possible methods to reduce the contribution of the K-correction bias and uncertainty.« less
Spectroscopic Classification of SN 2017ghm as a Type Ia Supernova
NASA Astrophysics Data System (ADS)
Vinko, J.; Wheeler, J. C.; Wang, X.; Li, W.; Li, Z.; Xiang, D.; Rui, L.; Lin, H.; Xu, Z.; Li, B.; Zhao, H.; Wang, L.; Tan, H.; Zhang, J.
2017-09-01
An optical spectrum (range 360-680 nm) of SN 2017ghm (=PTSS-17uyml), discovered by the PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/), was obtained with the new "Low Resolution Spectrograph-2" (LRS2) on the 10m Hobby-Eberly Telescope at McDonald Observatory by S. Rostopchin on 2017 Aug 31.17 UT. The spectrum is consistent with that of a heavily reddened Type Ia supernova (with Av > 2.3 mag) around maximum light.
Modeling the Evolution of Disk Galaxies. I. The Chemodynamical Method and the Galaxy Model
NASA Astrophysics Data System (ADS)
Samland, M.; Hensler, G.; Theis, Ch.
1997-02-01
Here we present our two-dimensional chemodynamical code CoDEx, which we developed for the purpose of modeling the evolution of galaxies in a self-consistent manner. The code solves the hydrodynamical and momentum equations for three stellar components and the multiphase interstellar medium (clouds and intercloud medium), including star formation, Type I and Type II supernovae, planetary nebulae, stellar winds, evaporation and condensation, drag, cloud collisions, heating and cooling, and stellar nucleosynthesis. These processes are treated simultaneously, coupling a large range in temporal and spatial scales, to account for feedback and self-regulation processes, which play an extraordinarily important role in the galactic evolution. The evolution of galaxies of different masses and angular momenta is followed through all stages from the initial protogalactic clouds until now. In this first paper we present a representative model of the Milky Way and compare it with observations. The capability of chemodynamical models is convincingly proved by the excellent agreement with various observations. In addition, well-known problems (the G-dwarf problem, the discrepancy between local effective yields, etc.), which so far could be only explained by artificial constraints, are also solved in the global scenario. Starting from a rotating protogalactic gas cloud in virial equilibrium, which collapses owing to dissipative cloud-cloud collisions, we can follow the galactic evolution in detail. Owing to the collapse, the gas density increases, stars are forming, and the first Type II supernovae explode. The collapse time is 1 order of magnitude longer than the dynamical free-fall time because of the energy release by Type II supernovae. The supernovae also drive hot metal-rich gas ejected from massive stars into the halo, and as a consequence, the clouds in the star-forming regions have lower metallicities than the clouds in the halo. The observed negative metallicity gradients do not form before t = 6 × 109 yr. These outward gas flows prevent any clear correlation between local star formation rate and enrichment and also prevent a unique age-metallicity relation. The situation, however, is even more complicated, because the mass return of intermediate-mass stars (Type I supernovae and planetary nebulae) is delayed depending on the type of precursor. Since our chemodynamical model includes all these processes, we can calculate, e.g., the [O/H] distribution of stars and find good agreement everywhere in bulge, disk, and halo. From the galactic oxygen to iron ratio, we can determine the supernovae ([II + Ib]/Ia) ratio for different types of Type Ia supernovae (such as carbon deflagration or sub-Chandrasekhar models) and find that the ratio should be in the range 1.0-3.8. The chemodynamical model also traces other chemical elements (e.g., N + C), density distributions, gas flows, velocity dispersions of the stars and clouds, star formation, planetary nebula rates, cloud collision, condensation and evaporation rates, and the cooling due to radiation. The chemodynamical treatment of galaxy evolution should be envisaged as a necessary development, which takes those processes into account that affect the dynamical, energetical, and chemical evolution.
SN 2015ba: a Type IIP supernova with a long plateau.
NASA Astrophysics Data System (ADS)
Dastidar, Raya; Misra, Kuntal; Hosseinzadeh, G.; Pastorello, A.; Pumo, M. L.; Valenti, S.; McCully, C.; Tomasella, L.; Arcavi, I.; Elias-Rosa, N.; Singh, Mridweeka; Gangopadhyay, Anjasha; Howell, D. A.; Morales-Garoffolo, Antonia; Zampieri, L.; Kumar, Brijesh; Turatto, M.; Benetti, S.; Tartaglia, L.; Ochner, P.; Sahu, D. K.; Anupama, G. C.; Pandey, S. B.
2018-06-01
We present optical photometry and spectroscopy from about a week after explosion to ˜272 d of an atypical Type IIP supernova, SN 2015ba, which exploded in the edge-on galaxy IC 1029. SN 2015ba is a luminous event with an absolute V-band magnitude of -17.1 ± 0.2 mag at 50 d since explosion and has a long plateau lasting for ˜123 d. The distance to the SN is estimated to be 34.8 ± 0.7 Mpc using the expanding photosphere and standard candle methods. High-velocity H Balmer components constant with time are observed in the late-plateau phase spectra of SN 2015ba, which suggests a possible role of circumstellar interaction at these phases. Both hydrodynamical and analytical modelling suggest a massive progenitor of SN 2015ba with a pre-explosion mass of 24-26 M⊙. However, the nebular spectra of SN 2015ba exhibit insignificant levels of oxygen, which is otherwise expected from a massive progenitor. This might be suggestive of the non-monotonical link between O-core masses and the zero-age main-sequence mass of pre-supernova stars and/or uncertainties in the mixing scenario in the ejecta of supernovae.
Fast evolving pair-instability supernovae
Kozyreva, Alexandra; Gilmer, Matthew; Hirschi, Raphael; ...
2016-10-06
With an increasing number of superluminous supernovae (SLSNe) discovered the ques- tion of their origin remains open and causes heated debates in the supernova commu- nity. Currently, there are three proposed mechanisms for SLSNe: (1) pair-instability supernovae (PISN), (2) magnetar-driven supernovae, and (3) models in which the su- pernova ejecta interacts with a circumstellar material ejected before the explosion. Based on current observations of SLSNe, the PISN origin has been disfavoured for a number of reasons. Many PISN models provide overly broad light curves and too reddened spectra, because of massive ejecta and a high amount of nickel. In themore » cur- rent study we re-examine PISN properties using progenitor models computed with the GENEC code. We calculate supernova explosions with FLASH and light curve evolu- tion with the radiation hydrodynamics code STELLA. We find that high-mass models (200 M⊙ and 250 M⊙) at relatively high metallicity (Z=0.001) do not retain hydro- gen in the outer layers and produce relatively fast evolving PISNe Type I and might be suitable to explain some SLSNe. We also investigate uncertainties in light curve modelling due to codes, opacities, the nickel-bubble effect and progenitor structure and composition.« less
NASA Technical Reports Server (NTRS)
Milisavljevic, D.; Margutti, R.; Parrent, J. T.; Soderberg, A. M.; Fesen, R. A.; Mazzali, P.; Maeda, K.; Sanders, N. E.; Cenko, S. B.; Silverman, J. M.
2014-01-01
We present ultraviolet, optical, and near-infrared observations of SN2012ap, a broad-lined Type Ic supernova in the galaxy NGC 1729 that produced a relativistic and rapidly decelerating outflow without a gamma-ray burst signature. Photometry and spectroscopy follow the flux evolution from -13 to +272 days past the B-band maximum of -17.4 +/- 0.5 mag. The spectra are dominated by Fe II, O I, and Ca II absorption lines at ejecta velocities of v approx. 20,000 km s(exp. -1) that change slowly over time. Other spectral absorption lines are consistent with contributions from photospheric He I, and hydrogen may also be present at higher velocities (v approx. greater than 27,000 km s(exp. -1)). We use these observations to estimate explosion properties and derive a total ejecta mass of 2.7 Solar mass, a kinetic energy of 1.0×1052 erg, and a (56)Ni mass of 0.1-0.2 Solar mass. Nebular spectra (t > 200 d) exhibit an asymmetric double-peaked [O I] lambda lambda 6300, 6364 emission profile that we associate with absorption in the supernova interior, although toroidal ejecta geometry is an alternative explanation. SN2012ap joins SN2009bb as another exceptional supernova that shows evidence for a central engine (e.g., black-hole accretion or magnetar) capable of launching a non-negligible portion of ejecta to relativistic velocities without a coincident gamma-ray burst detection. Defining attributes of their progenitor systems may be related to notable properties including above-average environmental metallicities of Z approx. greater than Solar Z, moderate to high levels of host-galaxy extinction (E(B -V ) > 0.4 mag), detection of high-velocity helium at early epochs, and a high relative flux ratio of [Ca II]/[O I] > 1 at nebular epochs. These events support the notion that jet activity at various energy scales may be present in a wide range of supernovae.
On the progenitors of Type Ia supernovae
NASA Astrophysics Data System (ADS)
Livio, Mario; Mazzali, Paolo
2018-03-01
We review all the models proposed for the progenitor systems of Type Ia supernovae and discuss the strengths and weaknesses of each scenario when confronted with observations. We show that all scenarios encounter at least a few serious difficulties, if taken to represent a comprehensive model for the progenitors of all Type Ia supernovae (SNe Ia). Consequently, we tentatively conclude that there is probably more than one channel leading SNe Ia. While the single-degenerate scenario (in which a single white dwarf accretes mass from a normal stellar companion) has been studied in some detail, the other scenarios will need a similar level of scrutiny before any firm conclusions can be drawn.
Massive stars in their death throes.
Eldridge, John J
2008-12-13
The study of the stars that explode as supernovae used to be a forensic study, working backwards from the remnants of the star. This changed in 1987 when the first progenitor star was identified in pre-explosion images. Currently, there are eight detected progenitors with another 21 non-detections, for which only a limit on the pre-explosion luminosity can be placed. This new avenue of supernova research has led to many interesting conclusions, most importantly that the progenitors of the most common supernovae, type IIP, are red supergiants, as theory has long predicted. However, no progenitors have been detected thus far for the hydrogen-free type Ib/c supernovae, which, given the expected progenitors, is an unlikely result. Also, observations have begun to show evidence that luminous blue variables, which are among the most massive stars, may directly explode as supernovae. These results contradict the current stellar evolution theory. This suggests that we may need to update our understanding.
How high energy fluxes may affect Rayleigh–Taylor instability growth in young supernova remnants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuranz, Carolyn C.; Park, Hye -Sook; Huntington, Channing M.
Here, energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh–Taylor instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter, based on simple models and hydrodynamic simulations. Here we report experimental results from the National Ignition Facility to explore how large energy fluxes, which are present in supernovae, affect this structure. We observed a reduction in Rayleigh–Taylor growth. In analyzing the comparison with supernova SN1993J, a Type II supernova, we found that the energy fluxes produced by heat conduction appear to be larger thanmore » the radiative energy fluxes, and large enough to have dramatic consequences. No reported astrophysical simulations have included radiation and heat conduction self-consistently in modeling supernova remnants and these dynamics should be noted in the understanding of young supernova remnants.« less
How high energy fluxes may affect Rayleigh–Taylor instability growth in young supernova remnants
Kuranz, Carolyn C.; Park, Hye -Sook; Huntington, Channing M.; ...
2018-04-19
Here, energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh–Taylor instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter, based on simple models and hydrodynamic simulations. Here we report experimental results from the National Ignition Facility to explore how large energy fluxes, which are present in supernovae, affect this structure. We observed a reduction in Rayleigh–Taylor growth. In analyzing the comparison with supernova SN1993J, a Type II supernova, we found that the energy fluxes produced by heat conduction appear to be larger thanmore » the radiative energy fluxes, and large enough to have dramatic consequences. No reported astrophysical simulations have included radiation and heat conduction self-consistently in modeling supernova remnants and these dynamics should be noted in the understanding of young supernova remnants.« less
Barbary, K.; Aldering, G.; Amanullah, R.; ...
2011-12-28
Here we report a measurement of the Type Ia supernova (SN Ia) rate in galaxy clusters at 0.9 < z < 1.46 from the Hubble Space Telescope Cluster Supernova Survey. This is the first cluster SN Ia rate measurement with detected z > 0.9 SNe. Finding 8 ± 1 cluster SNe Ia, we determine an SN Ia rate of 0.50 +0.23 -0.19 (stat) +0.10 -0.09 (sys) h 2 70 SNuB (SNuB ≡ 10 -12 SNe L -1 ⊙,B yr -1). In units of stellar mass, this translates to 0.36 + 0.16 -0.13 (stat) +0.07 -0.06 (sys) h 2 70 SNuMmore » (SNuM ≡ 10 -12 SNe M –1 ⊙ yr –1). This represents a factor of ≈ 5 ± 2 increase over measurements of the cluster rate at z < 0.2. We parameterize the late-time SN Ia delay time distribution (DTD) with a power law: Ψ(t)∝t s . Under the approximation of a single-burst cluster formation redshift of zf = 3, our rate measurement in combination with lower-redshift cluster SN Ia rates constrains s = –1.41 +0.47 –0.40, consistent with measurements of the DTD in the field. This measurement is generally consistent with expectations for the "double degenerate" scenario and inconsistent with some models for the "single degenerate" scenario predicting a steeper DTD at large delay times. We check for environmental dependence and the influence of younger stellar populations by calculating the rate specifically in cluster red-sequence galaxies and in morphologically early-type galaxies, finding results similar to the full cluster rate. Finally, the upper limit of one hostless cluster SN Ia detected in the survey implies that the fraction of stars in the intra-cluster medium is less than 0.47 (95% confidence), consistent with measurements at lower redshifts.« less
NASA Astrophysics Data System (ADS)
Krisciunas, Kevin; Contreras, Carlos; Burns, Christopher R.; Phillips, M. M.; Stritzinger, Maximilian D.; Morrell, Nidia; Hamuy, Mario; Anais, Jorge; Boldt, Luis; Busta, Luis; Campillay, Abdo; Castellón, Sergio; Folatelli, Gastón; Freedman, Wendy L.; González, Consuelo; Hsiao, Eric Y.; Krzeminski, Wojtek; Persson, Sven Eric; Roth, Miguel; Salgado, Francisco; Serón, Jacqueline; Suntzeff, Nicholas B.; Torres, Simón; Filippenko, Alexei V.; Li, Weidong; Madore, Barry F.; DePoy, D. L.; Marshall, Jennifer L.; Rheault, Jean-Philippe; Villanueva, Steven
2017-11-01
We present final natural-system optical (ugriBV) and near-infrared (YJH) photometry of 134 supernovae (SNe) with probable white dwarf progenitors that were observed in 2004-2009 as part of the first stage of the Carnegie Supernova Project (CSP-I). The sample consists of 123 Type Ia SNe, 5 Type Iax SNe, 2 super-Chandrasekhar SN candidates, 2 Type Ia SNe interacting with circumstellar matter, and 2 SN 2006bt-like events. The redshifts of the objects range from z=0.0037 to 0.0835; the median redshift is 0.0241. For 120 (90%) of these SNe, near-infrared photometry was obtained. Average optical extinction coefficients and color terms are derived and demonstrated to be stable during the five CSP-I observing campaigns. Measurements of the CSP-I near-infrared bandpasses are also described, and near-infrared color terms are estimated through synthetic photometry of stellar atmosphere models. Optical and near-infrared magnitudes of local sequences of tertiary standard stars for each supernova are given, and a new calibration of Y-band magnitudes of the Persson et al. standards in the CSP-I natural system is presented.
NASA Astrophysics Data System (ADS)
1995-08-01
International Astronomer Team Witnesses Very Ancient Stellar Explosion A few months ago, a violent stellar explosion -- a supernova -- was discovered in an extremely distant galaxy by an international team of astronomers [1]. This is the very promising first result of a recently initiated, dedicated search for such objects. Subsequent spectral observations have shown this to be the most distant supernova ever observed. Although it is very faint, it has been possible to classify it as a supernova of Type Ia, a kind that is particularly well suited for cosmological distance determinations. A Very Efficient Supernova Search Programme The present discovery was made during the team's first observations with the 4-metre telescope at the Cerro Tololo Inter-American Observatory in Chile. This telescope is equipped with a wide-field camera at its prime focus that enables the simultaneous recording of the images of even very faint objects in a 15-arcminute field. Hundreds of distant galaxies are located in a field of this size and this observational method is therefore very well suited for a search of faint and transient supernovae in such galaxies. With a carefully planned observing sequence, it is possible to image up to 55 sky fields per night. A comparison with earlier exposures makes it possible to detect suddenly appearing supernovae as faint points of light near the galaxy in which the exploding star is located (the parent galaxy). A crucial feature of the new programme is the possibility to perform follow-up spectroscopic observations, whenever a new supernova is discovered. For this, the team has obtained access to several other large telescopes, including the ESO 3.5-metre New Technology Telescope (NTT), the 3.9-metre Anglo-Australian Telescope (AAT) and the Multi-Mirror Telescope (MMT) in Arizona, U.S.A.. The Spectrum of the Supernova The present supernova was first detected at Tololo on March 30, 1995. It was given the official designation SN 1995K, and its spectrum was observed a few nights later with the EMMI instrument at the ESO NTT at La Silla. Further direct images were taken with EMMI and also with the high-resolution NTT SUSI camera, three of which are shown on the photo with text accompanying this Press Release. The supernova is located only 1 arcsecond from the centre of the parent galaxy. As the supernova was very faint (its magnitude was about 22.7, or about 5 million times fainter than what can be seen with the unaided eye), an exposure of 2.5 hours was necessary to collect enough photons to allow a classification of its spectrum. Because of the very small angular distance, the light from the supernova was heavily contaminated with that of the parent galaxy, but the excellent angular resolution of the NTT optics made it possible to overcome this problem. It was also possible to measure the redshift [2] of the galaxy (and thereby of the supernova) as 0.478. This demonstrates that SN 1995K is the most distant supernova (indeed, the most distant star!) ever observed [3]. The spectrum clearly showed SN 1995K to be of Type Ia. This is evident by a comparison with that of a ``standard'' Type Ia supernova (SN 1989B), cf. the graph with explanatory text attached to this Press Release. When the redshift of SN 1995K is taken into account, the two spectra are very similar. The current belief is that supernovae of this type are due to the explosions of white dwarf stars in compact binary systems which are triggered by the successive accretion of stellar material from the other component. As the sequence of NTT images shows, SN 1995K quickly faded and in late May 1995, it could no longer be observed. The rate of change (the ``light-curve'') also closely matched that of a normal Type Ia supernova. Why Are Type Ia Supernovae So Important? While supernovae are important astrophysical objects by themselves, Type Ia supernovae are also of great interest to cosmologists. The main reason is that they provide independent information about the distances to galaxies and thereby about the expansion rate of the Universe. A simple way to determine the distance to a remote galaxy is by measuring its redshift, calculate its velocity from the redshift and divide this by the Hubble constant, H0. For instance, the measured redshift of the parent galaxy of SN 1995K (0.478) yields a velocity of 116,000 km/sec, somewhat more than one-third of the speed of light (300,000 km/sec). From the universal expansion rate, described by the Hubble constant (H0 = 20 km/sec per million lightyears as found by some studies), this velocity would indicate a distance to the supernova and its parent galaxy of about 5,800 million lightyears. The explosion of the supernova would thus have taken place 5,800 million years ago, i.e. about 1,000 million years before the solar system was formed. However, such a simple calculation works only for relatively ``nearby'' objects, perhaps out to some hundred million lightyears. When we look much further into space, we also look far back in time and it is not excluded that the universal expansion rate, i.e. the Hubble constant, may have been different at earlier epochs. This means that unless we know the change of the Hubble constant with time, we cannot determine reliable distances of distant galaxies from their measured redshifts and velocities. At the same time, knowledge about such change or lack of the same will provide unique information about the time elapsed since the Universe began to expand (the ``Big Bang''), that is, the age of the Universe and also its ultimate fate. The Deceleration Parameter q0 Cosmologists are therefore eager to determine not only the current expansion rate (i.e., the Hubble constant, H0) but also its possible change with time (known as the deceleration parameter, q0). Although a highly accurate value of H0 has still not become available, increasing attention is now given to the observational determination of the second parameter, cf. also the Appendix at the end of this Press Release. For such studies, independent, reliable distances to very distant objects are needed. This is exactly what may be obtained from careful observations of Type Ia supernovae and this is why they are so important for cosmology. It has been found that all supernovae of Type Ia radiate the same luminous energy at the moment of maximum light (within an uncertainty of 15 - 20 percent or less). If all such supernovae were located at the same distance, they would appear equally bright to us. This is of course not the case and the difference in observed brightness between individual Type Ia supernovae is therefore a direct measure of their relative distances. A supernova that is located at twice the distance of another will appear four times fainter. The distances to a few nearby objects of this type have now been measured, thus fixing the zero-point (that is, the absolute brightness of a Type Ia supernova [4]). At least in principle, this then allows to measure the accurate distances to all others, including SN 1995K. Towards a Measurement of q0 The crucial ingredients for the use of a high-redshift supernova like SN 1995K to measure the distance are its correct classification and the establishment of an accurate light-curve. The above method only works if we can be sure that it is of Type Ia and we can deduce the apparent brightness at maximum light. The current classification scheme of supernovae is based on spectra obtained near the maximum brightness of the event. For a meaningful and secure distance determination, it is therefore of paramount importance to classify the supernova by obtaining a spectrum. Since a supernova at redshift 0.4 reaches a peak brightness of about magnitude 22.3-23.3 (depending on the value of q0 [5]), this is not a simple task. It is also a major organisational problem to obtain the necessary, significant amount of observing time at large telescopes at short notice. Preliminary photometry indicates a peak (red) magnitude of SN 1995K of about 22.7, but the uncertainty of this value is still so large that this measurement alone cannot be used to determine the value of q0. This will require many more observations of supernovae at least as distant as the present one, a daunting task that may nevertheless be possible within this broad, international programme. It is estimated that a reliable measurement of q0 may become possible when about 20 Type Ia supernovae with accurate peak magnitudes have been measured. According to the discovery predictions, this could be possible within the next couple of years. In this connection, it is of some importance that for this investigation, it is in principle not necessary to know the correct value of the Hubble constant H0 in advance; q0 may still be determined by comparing the relative distance scale of distant supernovae with that of nearby ones. This research is described in more detail in a forthcoming article in the September 1995 issue of the ESO Messenger. Notes: [1] Brian P. Schmidt (Mount Stromlo and Siding Spring Observatories, Australia), Bruno Leibundgut, Jason Spyromilio, Jeremy Walsh (ESO), Mark M. Phillips, Nicholas B. Suntzeff, Mario Hamuy, Robert A. Schommer (Cerro Tololo Inter-American Observatory), Roberto Aviles (formerly Cerro Tololo Inter-American Observatory; now at ESO), Robert P. Kirshner, Adam Riess, Peter Challis, Peter Garnavich (Center for Astrophysics, Cambridge, Massachussetts, U.S.A.), Christopher Stubbs, Craig Hogan (University of Washington, Seattle, U.S.A.), Alan Dressler (Carnegie Observatories, U.S.A.) and Robin Ciardullo (Pennsylvania State University, U.S.A.) [2] In astronomy, the redshift denotes the fraction by which the lines in the spectrum of an object are shifted towards longer wavelengths. The observed redshift of a distant galaxy gives a direct estimate of the apparent recession velocity as caused by the universal expansion. Since the expansion rate increases with the distance, the velocity is itself a function (the Hubble relation) of the distance to the object. [3] A supernova at redshift 0.3 was found some years ago at ESO during an earlier search programme (Noergaard-Nielsen et al., Nature, Vol. 339, page 523, 1989) and before now the most distant known supernova was located in a galaxy at redshift 0.458 (Perlmutter et al., Astrophysical Journal, Vol. 440, Page L41, 1995) [4] For comparison, a Type Ia supernova at maximum brightness emits nearly 6,000 million times more light than the Sun. [5] The brighter the supernova at a given redshift is at maximum, the larger is q0. APPENDIX: Messages From the Deceleration Parameter q0 A determination of the deceleration parameter q0 by means of astronomical observations is important because it will allow us to choose between the various current theories of the evolution of the Universe, or at least to eliminate some of them as impossible. If the value turns of to be small, e.g. q0 ~ 0, then there has been only a small decrease (deceleration) of the universal expansion in the past. In this case, a galaxy's velocity does not change much with time and the actual distance is very nearly as indicated from the Hubble relation. Should, however, the value of q0 be significantly larger, then a galaxy's velocity would have been larger in the past than it is now. The velocity we now measure would therefore be ``too high'' (since it refers to the time the light was emitted from the galaxy), and the distance obtained by dividing with the Hubble constant will be too large. The value of q0 is proportional to the total amount of matter in the Universe. A measurement of q0 will establish limits for the amount of ``missing matter'', i.e. the ``invisible'' matter which cannot be directly observed with current observational techniques and which is believed to be the dominant mass component. If q0 is near 0, the expansion of the Universe will continue unabated (the Universe is ``open''). If, however, q0 is larger than 0.5, then the expansion will ultimately stop and be followed by a future contraction (the Universe is ``closed''). How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.
PSN J11290437+1714095 is a Type Ia supernova (91T-like) near maximum light
NASA Astrophysics Data System (ADS)
Childress, M.; Owen, C.; Scalzo, R.; Yuan, F.; Schmidt, B.; Tucker, B.
2013-12-01
We report spectroscopic classification of PSN J11290437+1714095 with the Wide Field Spectrograph (WiFeS - Dopita et al., 2007, ApSS, 310, 255) on the ANU 2.3m telescope at Siding Spring Observatory, NSW Australia, using the B3000/R3000 gratings (3500-9800 A, 1 A resolution). PSN J11290437+1714095 was discovered by TAROT on 2013 Dec 11.09 at mag 15.9 in UGC 6483. A 20 minute spectrum of the SN on 2013 Dec 12.72 shows this to be a Type Ia supernova of the SN 1991T subclass near maximum light.
Pan, Y. -C.; Foley, R. J.; Smith, M.; ...
2017-06-13
We present the Dark Energy Survey (DES) discovery of DES15E2mlf, the most distant superluminous supernova (SLSN) spectroscopically con rmed to date. The light curves and Gemini spectroscopy of DES15E2mlf indicate that it is a Type I superluminous supernova (SLSN-I) at z = 1:861 (a lookback time of 10 Gyr) and peaking at MAB = -22:3 0:1 mag. Given the high redshift, our data probe the rest-frame ultraviolet (1400{3500 A) properties of the SN, nding velocity of the Ciii feature changes by 5600kms -1 over 14 days around maximum light. We nd the host galaxy of DES15E2mlf has a stellar massmore » of 3:5+3:6 -2:4 109 M , which is more massive than the typical SLSN-I host galaxy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Y. -C.; Foley, R. J.; Smith, M.
We present the Dark Energy Survey (DES) discovery of DES15E2mlf, the most distant superluminous supernova (SLSN) spectroscopically con rmed to date. The light curves and Gemini spectroscopy of DES15E2mlf indicate that it is a Type I superluminous supernova (SLSN-I) at z = 1:861 (a lookback time of 10 Gyr) and peaking at MAB = -22:3 0:1 mag. Given the high redshift, our data probe the rest-frame ultraviolet (1400{3500 A) properties of the SN, nding velocity of the Ciii feature changes by 5600kms -1 over 14 days around maximum light. We nd the host galaxy of DES15E2mlf has a stellar massmore » of 3:5+3:6 -2:4 109 M , which is more massive than the typical SLSN-I host galaxy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, William J.; Raskin, Cody; Owen, J. Michael
2016-12-10
Here we present three-dimensional high-resolution simulations of Type Ia supernova in the presence of a non-degenerate companion. We find that the presence of a nearby companion leaves a long-lived hole in the supernova ejecta. In particular, we aim to study the long-term evolution of this hole as the supernova ejecta interacts with the surrounding interstellar medium (ISM). Using estimates for the X-ray emission, we find that the hole generated by the companion remains for many centuries after the interaction between the ejecta and the ISM. We also show that the hole is discernible over a wide range of viewing anglesmore » and companion masses.« less
Ultra-Bright Optical Transients Are Linked With Type Ic Supernovae
2010-11-20
Station, Flagstaff, AZ 86001, USA Received 2010 August 16; accepted 2010 September 9; published 2010 October 25 ABSTRACT Recent searches by unbiased...wide-field surveys have uncovered a group of extremely luminous optical transients. The initial discoveries of SN 2005ap by the Texas Supernova Search ...supernova searches (e.g., the Texas Supernova Search ) or all-sky surveys, such as the Panoramic Survey Telescope & Rapid Response System (Pan-STARRS), the
zBEAMS: a unified solution for supernova cosmology with redshift uncertainties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, Ethan; Lochner, Michelle; Bassett, Bruce A.
Supernova cosmology without spectra will be an important component of future surveys such as LSST. This lack of supernova spectra results in uncertainty in the redshifts which, if ignored, leads to significantly biased estimates of cosmological parameters. Here we present a hierarchical Bayesian formalism— zBEAMS—that addresses this problem by marginalising over the unknown or uncertain supernova redshifts to produce unbiased cosmological estimates that are competitive with supernova data with spectroscopically confirmed redshifts. zBEAMS provides a unified treatment of both photometric redshifts and host galaxy misidentification (occurring due to chance galaxy alignments or faint hosts), effectively correcting the inevitable contamination inmore » the Hubble diagram. Like its predecessor BEAMS, our formalism also takes care of non-Ia supernova contamination by marginalising over the unknown supernova type. We illustrate this technique with simulations of supernovae with photometric redshifts and host galaxy misidentification. A novel feature of the photometric redshift case is the important role played by the redshift distribution of the supernovae.« less
NASA Astrophysics Data System (ADS)
Pan, Y.-C.; Foley, R. J.; Smith, M.; Galbany, L.; D'Andrea, C. B.; González-Gaitán, S.; Jarvis, M. J.; Kessler, R.; Kovacs, E.; Lidman, C. Nichol, R. C.; Papadopoulos, A.; Sako, M.; Sullivan, M.; Abbott, T. M. C.; Abdalla, F. B.; Annis, J.; Bechtol, K.; Benoit-Lévy, A.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Cunha, C. E.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Doel, P.; Eifler, T. F.; Finley, D. A.; Flaugher, B.; Frieman, J.; García-Bellido, J.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; James, D. J.; Kim, A. G.; Krause, E.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; Martini, P.; Miquel, R.; Nugent, P.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Thomas, R. C.; Walker, A. R.; DES Collaboration
2017-10-01
We present the Dark Energy Survey (DES) discovery of DES15E2mlf, the most distant superluminous supernova (SLSN) spectroscopically confirmed to date. The light curves and Gemini spectroscopy of DES15E2mlf indicate that it is a Type I superluminous supernova (SLSN-I) at z = 1.861 (a lookback time of ˜10 Gyr) and peaking at MAB = -22.3 ± 0.1 mag. Given the high redshift, our data probe the rest-frame ultraviolet (1400-3500 Å) properties of the SN, finding velocity of the C III feature changes by ˜5600 km s- 1 over 14 d around maximum light. We find the host galaxy of DES15E2mlf has a stellar mass of 3.5^{+3.6}_{-2.4} × 109 M⊙, which is more massive than the typical SLSN-I host galaxy.
Supernova Explosions, Nucleosynthesis, and Cosmic Chemical Evolution
NASA Astrophysics Data System (ADS)
Truran, James W.
2006-08-01
The Universe emerged from its first three minutes with a composition consisting of hydrogen, deuterium, 3He, 4He, and 7Li. These isotopes constitute the primordial compositions of galaxies. Within galaxies, the synthesis of heavier elements from carbon through uranium is understood to occur during the normal evolution of stars and in supernova explosions of Types I and II. This history is written in the compositions of the stars and gas in our Milky Way Galaxy and other galaxies. The contributions both from massive stars (M>10 Msolar) and associated Type II supernovae and from Type Ia (thermonuclear) supernovae are particularly noteworthy. We review both the nuclear processes by which this occurs and the compositions of the stellar components of our Galaxy as a function of time which reflect these nucleosynthesis processes. We then discuss how such observations inform us of the nature of the earliest stellar populations and of the abundance history of the Cosmos.
NASA's Chandra Reveals Origin of Key Cosmic Explosions
NASA Astrophysics Data System (ADS)
2010-02-01
WASHINGTON -- New findings from NASA's Chandra X-ray Observatory have provided a major advance in understanding a type of supernova critical for studying the dark energy that astronomers think pervades the universe. The results show mergers of two dense stellar remnants are the likely cause of many of the supernovae that have been used to measure the accelerated expansion of the universe. These supernovae, called Type Ia, serve as cosmic mile markers to measure expansion of the universe because they can be seen at large distances, and they follow a reliable pattern of brightness. However, until now, scientists have been unsure what actually causes the explosions. "These are such critical objects in understanding the universe," said Marat Gilfanov of the Max Planck Institute for Astrophysics in Germany and lead author of the study that appears in the Feb. 18 edition of the journal Nature. "It was a major embarrassment that we did not know how they worked. Now we are beginning to understand what lights the fuse of these explosions." Most scientists agree a Type Ia supernova occurs when a white dwarf star -- a collapsed remnant of an elderly star -- exceeds its weight limit, becomes unstable and explodes. Scientists have identified two main possibilities for pushing the white dwarf over the edge: two white dwarfs merging or accretion, a process in which the white dwarf pulls material from a sun-like companion star until it exceeds its weight limit. "Our results suggest the supernovae in the galaxies we studied almost all come from two white dwarfs merging," said co-author Akos Bogdan, also of Max Planck. "This is probably not what many astronomers would expect." The difference between these two scenarios may have implications for how these supernovae can be used as "standard candles" -- objects of a known brightness -- to track vast cosmic distances. Because white dwarfs can come in a range of masses, the merger of two could result in explosions that vary somewhat in brightness. Because these two scenarios would generate different amounts of X-ray emission, Gilfanov and Bogdan used Chandra to observe five nearby elliptical galaxies and the central region of the Andromeda galaxy. A Type 1a supernova caused by accreting material produces significant X- ray emission prior to the explosion. A supernova from a merger of two white dwarfs, on the other hand, would create significantly less X-ray emission than the accretion scenario. The scientists found the observed X-ray emission was a factor of 30 to 50 times smaller than expected from the accretion scenario, effectively ruling it out. This implies that white dwarf mergers dominate in these galaxies. An open question remains whether these white dwarf mergers are the primary catalyst for Type Ia supernovae in spiral galaxies. Further studies are required to know if supernovae in spiral galaxies are caused by mergers or a mixture of the two processes. Another intriguing consequence of this result is that a pair of white dwarfs is relatively hard to spot, even with the best telescopes. "To many astrophysicists, the merger scenario seemed to be less likely because too few double-white-dwarf systems appeared to exist," said Gilfanov. "Now this path to supernovae will have to be investigated in more detail." In addition to the X-rays observed with Chandra, other data critical for this result came from NASA's Spitzer Space Telescope and the ground-based, infrared Two Micron All Sky Survey. The infrared brightness of the galaxies allowed the team to estimate how many supernovae should occur. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass. More information, including images and other multimedia, can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov
NASA Technical Reports Server (NTRS)
Boisseau, John R.; Wheeler, J. Craig
1991-01-01
Observational data are presented in support of the hypothesis that background galaxy contamination is present in the photometric data of Ia supernovae and that this effect can account for the observed dispersion in the light curve speeds of most of Ia supernovae. The implication is that the observed dispersion in beta is artificial and that most of Ia supernovae have nearly homogeneous light curves. The result supports the notion that Ia supernovae are good standard candles.
-Chuan Pan, Companions in Type Ia SNe Remnants 2015-03 Daniel Kasen, Type Ia SNe Models 2014-06 Marisa March, DES Supernovae 2014-06 David Chamulak, Supernova Explosion Models 2011-04 Gene Byrd 2010-04 Liz
Astronomy in Denver: The polarization evolution of the luminous Type Ib SN 2012au
NASA Astrophysics Data System (ADS)
Hoffman, Jennifer L.; DeKlotz, Sophia; Cooper, Kevin; Slay, Hannah; Williams, George Grant; Supernova Spectropolarimetry Project (SNSPOL)
2018-06-01
We present an analysis of the spectropolarimetric behavior of the Type Ib SN 2012au over the first 315 days of its evolution. Our data were obtained by the Supernova Spectropolarimetry Project using the CCD Imaging/Spectropolarimeter (SPOL) at the 61" Kuiper, the 90" Bok, and the 6.5-m MMT telescopes. SN 2012au was a very energetic, luminous, and slowly evolving event that may represent an intermediate case between normal core-collapse supernovae and the enigmatic superluminous supernovae. Strong, time-variable line polarization signatures, particularly in the He Il λ5876 line, support previous hypotheses of an asymmetric explosion and allow us to trace detailed structures within the supernova ejecta as they change over time. We compare the polarimetric evolution of the continuum and emission lines in SN 2012au and compare its behavior with that of other bright and polarimetrically variable supernovae.
Calculating Galactic Distances Through Supernova Light Curve Analysis (Abstract)
NASA Astrophysics Data System (ADS)
Glanzer, J.
2018-06-01
(Abstract only) The purpose of this project is to experimentally determine the distance to the galaxy M101 by using data that were taken on the type Ia supernova SN 2011fe at the Paul P. Feder Observatory. Type Ia supernovae are useful for determining distances in astronomy because they all have roughly the same luminosity at the peak of their outburst. Comparing the apparent magnitude to the absolute magnitude allows a measurement of the distance. The absolute magnitude is estimated in two ways: using an empirical relationship from the literature between the rate of decline and the absolute magnitude, and using sncosmo, a PYTHON package used for supernova light curve analysis that fits model light curves to the photometric data.
The Type IIP SN 2005ay: An Extensive Study From UltraViolet To Near-IR
NASA Astrophysics Data System (ADS)
Bufano, F. M.; Turatto, M.; Zampieri, L.; Gal-Yam, A.
2006-08-01
Several supernova types are thought to explode via the gravitational collapse of the core of massive stars at the end of their lifetimes. The great observational diversity has not been fully understood even if it clearly involves the progenitor masses and configurations at the time of explosion. These Supernovae, called Core Collapse Supernovae (CC SNe), are expected to dominate the counts of SNe observed at high redshifts and to be the only observable probe of the first generation stars (Pop III). Recently indicated as reliable distance indicators (Hamuy 02, Pastorello `03), CC SNe are objects of great interest but significantly less studied in comparison with the Termonuclear ones. With the aim to understand better the reasons of the heterogeneous behaviour , we have started an extensive study of the properties of SN II with different observational features (luminosity, velocity, etc..). Here we present the last results on our first observed target, SN2005ay, a Type IIP supernova observed in an extended way from the Ultraviolet wavelengths, provided by the GALEX , to the Optical and near-IR , obtained with IISP (Italian Intensive Supernova Program).
Supernova 2010ev: A reddened high velocity gradient type Ia supernova
NASA Astrophysics Data System (ADS)
Gutiérrez, Claudia P.; González-Gaitán, Santiago; Folatelli, Gastón; Pignata, Giuliano; Anderson, Joseph P.; Hamuy, Mario; Morrell, Nidia; Stritzinger, Maximilian; Taubenberger, Stefan; Bufano, Filomena; Olivares E., Felipe; Haislip, Joshua B.; Reichart, Daniel E.
2016-05-01
Aims: We present and study the spectroscopic and photometric evolution of the type Ia supernova (SN Ia) 2010ev. Methods: We obtain and analyze multiband optical light curves and optical/near-infrared spectroscopy at low and medium resolution spanning -7 days to +300 days from the B-band maximum. Results: A photometric analysis shows that SN 2010ev is a SN Ia of normal brightness with a light-curve shape of Δm15(B) = 1.12 ± 0.02 and a stretch s = 0.94 ± 0.01 suffering significant reddening. From photometric and spectroscopic analysis, we deduce a color excess of E(B - V) = 0.25 ± 0.05 and a reddening law of Rv = 1.54 ± 0.65. Spectroscopically, SN 2010ev belongs to the broad-line SN Ia group, showing stronger than average Si IIλ6355 absorption features. We also find that SN 2010ev is a high velocity gradient SN with v˙Si = 164 ± 7 km s-1 d-1. The photometric and spectral comparison with other supernovae shows that SN 2010ev has similar colors and velocities to SN 2002bo and SN 2002dj. The analysis of the nebular spectra indicates that the [Fe II]λ7155 and [Ni II]λ7378 lines are redshifted, as expected for a high velocity gradient supernova. All these common intrinsic and extrinsic properties of the high velocity gradient (HVG) group are different from the low velocity gradient (LVG) normal SN Ia population and suggest significant variety in SN Ia explosions. This paper includes data gathered with the Du Pont Telescope at Las Campanas Observatory, Chile; and the Gemini Observatory, Cerro Pachon, Chile (Gemini Program GS-2010A-Q-14). Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (ESO Programme 085.D-0577).
Gravitational lensing statistics of amplified supernovae
NASA Technical Reports Server (NTRS)
Linder, Eric V.; Wagoner, Robert V.; Schneider, P.
1988-01-01
Amplification statistics of gravitationally lensed supernovae can provide a valuable probe of the lensing matter in the universe. A general probability distribution for amplification by compact objects is derived which allows calculation of the lensed fraction of supernovae at or greater than an amplification A and at or less than an apparent magnitude. Comparison of the computed fractions with future results from ongoing supernova searches can lead to determination of the mass density of compact dark matter components with masses greater than about 0.001 solar mass, while the time-dependent amplification (and polarization) of the expanding supernovae constrain the individual masses. Type II supernovae are found to give the largest fraction for deep surveys, and the optimum flux-limited search is found to be at approximately 23d magnitude, if evolution of the supernova rate is neglected.
Hubble Solves Mystery on Source of Supernova in Nearby Galaxy
2017-12-08
NASA image release January 11, 2012 Using NASA's Hubble Space Telescope, astronomers have solved a longstanding mystery on the type of star, or so-called progenitor, that caused a supernova in a nearby galaxy. The finding yields new observational data for pinpointing one of several scenarios that could trigger such outbursts. Based on previous observations from ground-based telescopes, astronomers knew that a kind of supernova called a Type Ia created a remnant named SNR 0509-67.5, which lies 170,000 light-years away in the Large Magellanic Cloud galaxy. The type of system that leads to this kind of supernova explosion has long been a high importance problem with various proposed solutions but no decisive answer. All these solutions involve a white dwarf star that somehow increases in mass to the highest limit. Astronomers failed to find any companion star near the center of the remnant, and this rules out all but one solution, so the only remaining possibility is that this one Type Ia supernova came from a pair of white dwarfs in close orbit. To read more go to: www.nasa.gov/mission_pages/hubble/science/supernova-sourc... Image Credit: NASA, ESA, CXC, SAO, the Hubble Heritage Team (STScI/AURA), and J. Hughes (Rutgers University) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
SN 2016esw: a luminous Type II supernova observed within the first day after the explosion
NASA Astrophysics Data System (ADS)
de Jaeger, Thomas; Galbany, Lluis; Gutiérrez, Claudia P.; Filippenko, Alexei V.; Zheng, WeiKang; Brink, Thomas G.; Foley, Ryan J.; Sánchez, Sebastian F.; Channa, Sanyum; de Kouchkovsky, Maxime; Halevi, Goni; Kilpatrick, Charles D.; Kumar, Sahana; Molloy, Jeffrey; Pan, Yen-Chen; Ross, Timothy W.; Shivvers, Isaac; Siebert, Matthew R.; Stahl, Benjamin; Stegman, Samantha; Yunus, Sameen
2018-05-01
We present photometry, spectroscopy, and host-galaxy integral-field spectroscopy of the Type II supernova (SN) 2016esw in CGCG 229-009 from the first day after the explosion up to 120 days. Its light-curve shape is similar to that of a typical SN II; however, SN 2016esw is near the high-luminosity end of the SN II distribution, with a peak of M^maxV=-18.36 mag. The V-band light curve exhibits a long recombination phase for a SN II (similar to the long-lived plateau of SN 2004et). Considering the well-known relation between the luminosity and the plateau decline rate, SN 2016esw should have a V-band slope of ˜2.10 mag (100 days)-1; however, SN 2016esw has a substantially flatter plateau with a slope of 1.01 ± 0.26 mag (100 days)-1, perhaps indicating that interacting Type II supernovae are not useful for cosmology. At 19.5 days post-explosion, the spectrum presents a boxy Hα emission line with flat absorption profiles, suggesting interaction between the ejecta and circumstellar matter. Finally, based on the spectral properties, SN 2016esw shows similarities with the luminous and interacting SN 2007pk at early epochs, particularly in terms of observable line features and their evolution.
A novel explosive process is required for the gamma-ray burst GRB 060614.
Gal-Yam, A; Fox, D B; Price, P A; Ofek, E O; Davis, M R; Leonard, D C; Soderberg, A M; Schmidt, B P; Lewis, K M; Peterson, B A; Kulkarni, S R; Berger, E; Cenko, S B; Sari, R; Sharon, K; Frail, D; Moon, D-S; Brown, P J; Cucchiara, A; Harrison, F; Piran, T; Persson, S E; McCarthy, P J; Penprase, B E; Chevalier, R A; MacFadyen, A I
2006-12-21
Over the past decade, our physical understanding of gamma-ray bursts (GRBs) has progressed rapidly, thanks to the discovery and observation of their long-lived afterglow emission. Long-duration (> 2 s) GRBs are associated with the explosive deaths of massive stars ('collapsars', ref. 1), which produce accompanying supernovae; the short-duration (< or = 2 s) GRBs have a different origin, which has been argued to be the merger of two compact objects. Here we report optical observations of GRB 060614 (duration approximately 100 s, ref. 10) that rule out the presence of an associated supernova. This would seem to require a new explosive process: either a massive collapsar that powers a GRB without any associated supernova, or a new type of 'engine', as long-lived as the collapsar but without a massive star. We also show that the properties of the host galaxy (redshift z = 0.125) distinguish it from other long-duration GRB hosts and suggest that an entirely new type of GRB progenitor may be required.
NASA Astrophysics Data System (ADS)
Bartel, N.
2009-08-01
We review VLBI observations of supernovae over the last quarter century and discuss the prospect of imaging future supernovae with space VLBI in the context of VSOP-2. From thousands of discovered supernovae, most of them at cosmological distances, ˜50 have been detected at radio wavelengths, most of them in relatively nearby galaxies. All of the radio supernovae are Type II or Ib/c, which originate from the explosion of massive progenitor stars. Of these, 12 were observed with VLBI and four of them, SN 1979C, SN 1986J, SN 1993J, and SN 1987A, could be imaged in detail, the former three with VLBI. In addition, supernovae or young supernova remnants were discovered at radio wavelengths in highly dust-obscured galaxies, such as M82, Arp 299, and Arp 220, and some of them could also be imaged in detail. Four of the supernovae so far observed were sufficiently bright to be detectable with VSOP-2. With VSOP-2 the expansion of supernovae can be monitored and investigated with unsurpassed angular resolution, starting as early as the time of the supernova's transition from its opaque to transparent stage. Such studies can reveal, in a movie, the aftermath of a supernova explosion shortly after shock break out.
Creation of a Unified Set of Core-Collapse Supernovae for Training of Photometric Classifiers
NASA Astrophysics Data System (ADS)
D'Arcy Kenworthy, William; Scolnic, Daniel; Kessler, Richard
2017-01-01
One of the key tasks for future supernova cosmology analyses is to photometrically distinguish type Ia supernovae (SNe) from their core collapse (CC) counterparts. In order to train programs for this purpose, it is necessary to train on a large number of core-collapse SNe. However, there are only a handful used for current programs. We plan to use the large amount of CC lightcurves available on the Open Supernova Catalog (OSC). Since this data is scraped from many different surveys, it is given in a number of photometric systems with different calibration and filters. We therefore created a program to fit smooth lightcurves (as a function of time) to photometric observations of arbitrary SNe. The Supercal method is then used to translate the smoothed lightcurves to a single photometric system. We can thus compile a training set of 782 supernovae, of which 127 are not type Ia. These smoothed lightcurves are also being contributed upstream to the OSC as derived data.
Supernovae in Early-Type Galaxies: Directly Connecting Age and Metallicity with Type Ia Luminosity
NASA Astrophysics Data System (ADS)
Gallagher, Joseph S.; Garnavich, Peter M.; Caldwell, Nelson; Kirshner, Robert P.; Jha, Saurabh W.; Li, Weidong; Ganeshalingam, Mohan; Filippenko, Alexei V.
2008-10-01
We have obtained optical spectra of 29 early-type (E/S0) galaxies that hosted Type Ia supernovae (SNe Ia). We have measured absorption-line strengths and compared them to a grid of models to extract the relations between the supernova properties and the luminosity-weighted age/composition of the host galaxies. Such a direct measurement is a marked improvement over existing analyses that tend to rely on general correlations between the properties of stellar populations and morphology. We find a strong correlation suggesting that SNe Ia in galaxies whose populations have a characteristic age greater than 5 Gyr are ~1 mag fainter at Vmax than those found in galaxies with younger populations. We find that SN Ia distance residuals in the Hubble diagram are correlated with host-galaxy metal abundance with higher iron abundance galaxies hosting less-luminous supernovae. We thus conclude that the time since progenitor formation primarily determines the radioactive Ni production while progenitor metal abundance has a weaker influence on peak luminosity, but one not fully corrected by light-curve shape and color fitters. This result, particularly the secondary dependence on metallicity, has significant implications for the determination of the equation-of-state parameter, w = P/(ρ c2) , and could impact planning for future dark-energy missions such as JDEM. Assuming no selection effects in discovering SNe Ia in local early-type galaxies, we find a higher specific SN Ia rate in E/S0 galaxies with ages below 3 Gyr than in older hosts. The higher rate and brighter luminosities seen in the youngest E/S0 hosts may be a result of recent star formation and represents a tail of the "prompt" SN Ia progenitors.
NASA Astrophysics Data System (ADS)
Contreras, Carlos; Phillips, M. M.; Burns, Christopher R.; Piro, Anthony L.; Shappee, B. J.; Stritzinger, Maximilian D.; Baltay, C.; Brown, Peter J.; Conseil, Emmanuel; Klotz, Alain; Nugent, Peter E.; Turpin, Damien; Parker, Stu; Rabinowitz, D.; Hsiao, Eric Y.; Morrell, Nidia; Campillay, Abdo; Castellón, Sergio; Corco, Carlos; González, Consuelo; Krisciunas, Kevin; Serón, Jacqueline; Tucker, Brad E.; Walker, E. S.; Baron, E.; Cain, C.; Childress, Michael J.; Folatelli, Gastón; Freedman, Wendy L.; Hamuy, Mario; Hoeflich, P.; Persson, S. E.; Scalzo, Richard; Schmidt, Brian; Suntzeff, Nicholas B.
2018-05-01
We present detailed ultraviolet, optical, and near-infrared light curves of the Type Ia supernova (SN) 2012fr, which exploded in the Fornax cluster member NGC 1365. These precise high-cadence light curves provide a dense coverage of the flux evolution from ‑12 to +140 days with respect to the epoch of B-band maximum ({t}{B\\max }). Supplementary imaging at the earliest epochs reveals an initial slow and nearly linear rise in luminosity with a duration of ∼2.5 days, followed by a faster rising phase that is well reproduced by an explosion model with a moderate amount of 56Ni mixing in the ejecta. From our analysis of the light curves, we conclude that: (i) the explosion occurred <22 hr before the first detection of the supernova, (ii) the rise time to peak bolometric (λ > 1800 Å) luminosity was 16.5 ± 0.6 days, (iii) the supernova suffered little or no host-galaxy dust reddening, (iv) the peak luminosity in both the optical and near-infrared was consistent with the bright end of normal Type Ia diversity, and (v) 0.60 ± 0.15 M ⊙ of 56Ni was synthesized in the explosion. Despite its normal luminosity, SN 2012fr displayed unusually prevalent high-velocity Ca II and Si II absorption features, and a nearly constant photospheric velocity of the Si II λ6355 line at ∼12,000 {km} {{{s}}}-1 that began ∼5 days before {t}{B\\max }. We also highlight some of the other peculiarities in the early phase photometry and the spectral evolution. SN 2012fr also adds to a growing number of Type Ia supernovae that are hosted by galaxies with direct Cepheid distance measurements. This paper includes data gathered with the 6.5 m Magellan Baade Telescope, located at Las Campanas Observatory, Chile.
The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miknaitis, Gajus; Pignata, G.; Rest, A.
We describe the implementation and optimization of the ESSENCE supernova survey, which we have undertaken to measure the equation of state parameter of the dark energy. We present a method for optimizing the survey exposure times and cadence to maximize our sensitivity to the dark energy equation of state parameter w = P/{rho}c{sup 2} for a given fixed amount of telescope time. For our survey on the CTIO 4m telescope, measuring the luminosity distances and redshifts for supernovae at modest redshifts (z {approx} 0.5 {+-} 0.2) is optimal for determining w. We describe the data analysis pipeline based on usingmore » reliable and robust image subtraction to find supernovae automatically and in near real-time. Since making cosmological inferences with supernovae relies crucially on accurate measurement of their brightnesses, we describe our efforts to establish a thorough calibration of the CTIO 4m natural photometric system. In its first four years, ESSENCE has discovered and spectroscopically confirmed 102 type Ia SNe, at redshifts from 0.10 to 0.78, identified through an impartial, effective methodology for spectroscopic classification and redshift determination. We present the resulting light curves for the all type Ia supernovae found by ESSENCE and used in our measurement of w, presented in Wood-Vasey et al. (2007).« less
Ultraviolet Detection of the Binary Companion to the Type IIb SN 2001ig
NASA Astrophysics Data System (ADS)
Ryder, Stuart D.; Van Dyk, Schuyler D.; Fox, Ori D.; Zapartas, Emmanouil; de Mink, Selma E.; Smith, Nathan; Brunsden, Emily; Azalee Bostroem, K.; Filippenko, Alexei V.; Shivvers, Isaac; Zheng, WeiKang
2018-03-01
We present HST/WFC3 ultraviolet imaging in the F275W and F336W bands of the Type IIb SN 2001ig at an age of more than 14 years. A clear point source is detected at the site of the explosion, with m F275W = 25.39 ± 0.10 and m F336W = 25.88 ± 0.13 mag. Despite weak constraints on both the distance to the host galaxy NGC 7424 and the line-of-sight reddening to the supernova, this source matches the characteristics of an early B-type main-sequence star with 19,000 < T eff < 22,000 K and {log}({L}bol}/{L}ȯ )=3.92+/- 0.14. A BPASS v2.1 binary evolution model, with primary and secondary masses of 13 M ⊙ and 9 M ⊙, respectively, is found to simultaneously resemble, in the Hertzsprung–Russell diagram, both the observed location of this surviving companion, and the primary star evolutionary endpoints for other Type IIb supernovae. This same model exhibits highly variable late-stage mass loss, as expected from the behavior of the radio light curves. A Gemini/GMOS optical spectrum at an age of 6 years reveals a narrow He II λ4686 emission line, indicative of continuing interaction with a dense circumstellar medium at large radii from the progenitor. We review our findings on SN 2001ig in the context of binary evolution channels for stripped-envelope supernovae. Owing to the uncrowded nature of its environment in the ultraviolet, this study of SN 2001ig represents one of the cleanest detections to date of a surviving binary companion to a Type IIb supernova.
Confined dense circumstellar material surrounding a regular type II supernova
Yaron, O.; Perley, D. A.; Gal-Yam, A.; ...
2017-02-13
With the advent of new wide-field, high-cadence optical transient surveys, our understanding of the diversity of core-collapse supernovae has grown tremendously in the last decade. However, the pre-supernova evolution of massive stars, that sets the physical backdrop to these violent events, is theoretically not well understood and difficult to probe observationally. Here we report the discovery of the supernova iPTF 13dqy = SN 2013fs a mere ~3 hr after explosion. Our rapid follow-up observations, which include multiwavelength photometry and extremely early (beginning at ~6 hr post-explosion) spectra, map the distribution of material in the immediate environment (≲ 10 15 cm)more » of the exploding star and establish that it was surrounded by circumstellar material (CSM) that was ejected during the final ~1 yr prior to explosion at a high rate, around 10 -3 solar masses per year. The complete disappearance of flash-ionised emission lines within the first several days requires that the dense CSM be confined to within ≲10 15 cm, consistent with radio non-detections at 70–100 days. The observations indicate that iPTF 13dqy was a regular Type II SN; thus, the finding that the probable red supergiant (RSG) progenitor of this common explosion ejected material at a highly elevated rate just prior to its demise suggests that pre-supernova instabilities may be common among exploding massive stars.« less
Cosmological parameter extraction and biases from type Ia supernova magnitude evolution
NASA Astrophysics Data System (ADS)
Linden, S.; Virey, J.-M.; Tilquin, A.
2009-11-01
We study different one-parametric models of type Ia supernova magnitude evolution on cosmic time scales. Constraints on cosmological and supernova evolution parameters are obtained by combined fits on the actual data coming from supernovae, the cosmic microwave background, and baryonic acoustic oscillations. We find that the best-fit values imply supernova magnitude evolution such that high-redshift supernovae appear some percent brighter than would be expected in a standard cosmos with a dark energy component. However, the errors on the evolution parameters are of the same order, and data are consistent with nonevolving magnitudes at the 1σ level, except for special cases. We simulate a future data scenario where SN magnitude evolution is allowed for, and neglect the possibility of such an evolution in the fit. We find the fiducial models for which the wrong model assumption of nonevolving SN magnitude is not detectable, and for which biases on the fitted cosmological parameters are introduced at the same time. Of the cosmological parameters, the overall mass density ΩM has the strongest chances to be biased due to the wrong model assumption. Whereas early-epoch models with a magnitude offset Δ m˜ z2 show up to be not too dangerous when neglected in the fitting procedure, late epoch models with Δ m˜√{z} have high chances of undetectably biasing the fit results. Centre de Physique Théorique is UMR 6207 - “Unité Mixte de Recherche” of CNRS and of the Universities “de Provence”, “de la Mediterranée”, and “du Sud Toulon-Var” - Laboratory affiliated with FRUMAM (FR2291).
Search for Type Ia supernova NUV-optical subclasses
NASA Astrophysics Data System (ADS)
Cinabro, David; Scolnic, Daniel; Kessler, Richard; Li, Ashley; Miller, Jake
2017-04-01
In response to a recently reported observation of evidence for two classes of Type Ia supernovae (SNe Ia) distinguished by their brightness in the rest-frame near-ultraviolet (NUV), we search for the phenomenon in publicly available light-curve data. We use the SNANA supernova analysis package to simulate SN Ia light curves in the Sloan Digital Sky Survey (SDSS) Supernova Search and the Supernova Legacy Survey (SNLS) with a model of two distinct ultraviolet classes of SNe Ia and a conventional model with a single broad distribution of SN-Ia ultraviolet brightnesses. We compare simulated distributions of rest-frame colours with these two models to those observed in 158 SNe Ia in the SDSS and SNLS data. The SNLS sample of 99 SNe Ia is in clearly better agreement with a model with one class of SN Ia light curves and shows no evidence for distinct NUV sub-classes. The SDSS sample of 59 SNe Ia with poorer colour resolution does not distinguish between the two models.
Nearby Type Ia Supernova Follow-up at the Thacher Observatory
NASA Astrophysics Data System (ADS)
Swift, Jonathan; O'Neill, Katie; Kilpatrick, Charles; Foley, Ryan
2018-06-01
Type Ia supernovae (SN Ia) provide an effective way to study the expansion of the universe through analyses of their photometry and spectroscopy. The interpretation of high-redshift SN Ia is dependent on accurate characterization of nearby, low-redshift targets. To help build up samples of nearby SN Ia, the Thacher Observatory has begun a photometric follow-up program in 4 photometric bands. Here we present the observations and analysis of multi-band photometry for several recent supernovae as well as FLOYDS spectra from the Las Cumbres Observatory.
Measuring the velocity field from type Ia supernovae in an LSST-like sky survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odderskov, Io; Hannestad, Steen, E-mail: isho07@phys.au.dk, E-mail: sth@phys.au.dk
2017-01-01
In a few years, the Large Synoptic Survey Telescope will vastly increase the number of type Ia supernovae observed in the local universe. This will allow for a precise mapping of the velocity field and, since the source of peculiar velocities is variations in the density field, cosmological parameters related to the matter distribution can subsequently be extracted from the velocity power spectrum. One way to quantify this is through the angular power spectrum of radial peculiar velocities on spheres at different redshifts. We investigate how well this observable can be measured, despite the problems caused by areas with nomore » information. To obtain a realistic distribution of supernovae, we create mock supernova catalogs by using a semi-analytical code for galaxy formation on the merger trees extracted from N-body simulations. We measure the cosmic variance in the velocity power spectrum by repeating the procedure many times for differently located observers, and vary several aspects of the analysis, such as the observer environment, to see how this affects the measurements. Our results confirm the findings from earlier studies regarding the precision with which the angular velocity power spectrum can be determined in the near future. This level of precision has been found to imply, that the angular velocity power spectrum from type Ia supernovae is competitive in its potential to measure parameters such as σ{sub 8}. This makes the peculiar velocity power spectrum from type Ia supernovae a promising new observable, which deserves further attention.« less
The Foundation Supernova Survey: motivation, design, implementation, and first data release
NASA Astrophysics Data System (ADS)
Foley, Ryan J.; Scolnic, Daniel; Rest, Armin; Jha, S. W.; Pan, Y.-C.; Riess, A. G.; Challis, P.; Chambers, K. C.; Coulter, D. A.; Dettman, K. G.; Foley, M. M.; Fox, O. D.; Huber, M. E.; Jones, D. O.; Kilpatrick, C. D.; Kirshner, R. P.; Schultz, A. S. B.; Siebert, M. R.; Flewelling, H. A.; Gibson, B.; Magnier, E. A.; Miller, J. A.; Primak, N.; Smartt, S. J.; Smith, K. W.; Wainscoat, R. J.; Waters, C.; Willman, M.
2018-03-01
The Foundation Supernova Survey aims to provide a large, high-fidelity, homogeneous, and precisely calibrated low-redshift Type Ia supernova (SN Ia) sample for cosmology. The calibration of the current low-redshift SN sample is the largest component of systematic uncertainties for SN cosmology, and new data are necessary to make progress. We present the motivation, survey design, observation strategy, implementation, and first results for the Foundation Supernova Survey. We are using the Pan-STARRS telescope to obtain photometry for up to 800 SNe Ia at z ≲ 0.1. This strategy has several unique advantages: (1) the Pan-STARRS system is a superbly calibrated telescopic system, (2) Pan-STARRS has observed 3/4 of the sky in grizyP1 making future template observations unnecessary, (3) we have a well-tested data-reduction pipeline, and (4) we have observed ˜3000 high-redshift SNe Ia on this system. Here, we present our initial sample of 225 SN Ia grizP1 light curves, of which 180 pass all criteria for inclusion in a cosmological sample. The Foundation Supernova Survey already contains more cosmologically useful SNe Ia than all other published low-redshift SN Ia samples combined. We expect that the systematic uncertainties for the Foundation Supernova Sample will be two to three times smaller than other low-redshift samples. We find that our cosmologically useful sample has an intrinsic scatter of 0.111 mag, smaller than other low-redshift samples. We perform detailed simulations showing that simply replacing the current low-redshift SN Ia sample with an equally sized Foundation sample will improve the precision on the dark energy equation-of-state parameter by 35 per cent, and the dark energy figure of merit by 72 per cent.
NASA Technical Reports Server (NTRS)
Wheeler, J. Craig
1992-01-01
Spectral calculations show that a model based on the thermonuclear explosion of a degenerate carbon/oxygen white dwarf provides excellent agreement with observations of Type Ia supernovae. Identification of suitable evolutionary progenitors remains a severe problem. General problems with estimation of supernova rates are outlined and the origin of Type Ia supernovae from double degenerate systems are discussed in the context of new rates of explosion per H band luminosity, the lack of observed candidates, and the likely presence of H in the vicinity of some SN Ia events. Re-examination of the problems of triggering Type Ia by accretion of hydrogen from a companion shows that there may be an avenue involving cataclysmic variables, especially if extreme hibernation occurs. Novae may channel accreting white dwarfs to a unique locus in accretion rate/mass space. Systems that undergo secular evolution to higher mass transfer rates could lead to just the conditions necessary for a Type Ia explosion. Tests involving fluorescence or absorption in a surrounding circumstellar medium and the detection of hydrogen stripped from a companion, which should appear at low velocity inside the white dwarf ejecta, are suggested. Possible observational confirmation of the former is described.
Supernova shock breakout from a red supergiant.
Schawinski, Kevin; Justham, Stephen; Wolf, Christian; Podsiadlowski, Philipp; Sullivan, Mark; Steenbrugge, Katrien C; Bell, Tony; Röser, Hermann-Josef; Walker, Emma S; Astier, Pierre; Balam, Dave; Balland, Christophe; Carlberg, Ray; Conley, Alex; Fouchez, Dominique; Guy, Julien; Hardin, Delphine; Hook, Isobel; Howell, D Andrew; Pain, Reynald; Perrett, Kathy; Pritchet, Chris; Regnault, Nicolas; Yi, Sukyoung K
2008-07-11
Massive stars undergo a violent death when the supply of nuclear fuel in their cores is exhausted, resulting in a catastrophic "core-collapse" supernova. Such events are usually only detected at least a few days after the star has exploded. Observations of the supernova SNLS-04D2dc with the Galaxy Evolution Explorer space telescope reveal a radiative precursor from the supernova shock before the shock reached the surface of the star and show the initial expansion of the star at the beginning of the explosion. Theoretical models of the ultraviolet light curve confirm that the progenitor was a red supergiant, as expected for this type of supernova. These observations provide a way to probe the physics of core-collapse supernovae and the internal structures of their progenitor stars.
Atomic and molecular supernovae
NASA Technical Reports Server (NTRS)
Liu, Weihong
1997-01-01
Atomic and molecular physics of supernovae is discussed with an emphasis on the importance of detailed treatments of the critical atomic and molecular processes with the best available atomic and molecular data. The observations of molecules in SN 1987A are interpreted through a combination of spectral and chemical modelings, leading to strong constraints on the mixing and nucleosynthesis of the supernova. The non-equilibrium chemistry is used to argue that carbon dust can form in the oxygen-rich clumps where the efficient molecular cooling makes the nucleation of dust grains possible. For Type Ia supernovae, the analyses of their nebular spectra lead to strong constraints on the supernova explosion models.
Gamma-ray transfer and energy deposition in supernovae
NASA Technical Reports Server (NTRS)
Swartz, Douglas A.; Sutherland, Peter G.; Harkness, Robert P.
1995-01-01
Solutions to the energy-independent (gray) radiative transfer equations are compared to results of Monte Carlo simulations of the Ni-56 and Co-56 decay gamma-ray energy deposition in supernovae. The comparison shows that an effective, purely absorptive, gray opacity, kappa(sub gamma) approximately (0. 06 +/- 0.01)Y(sub e) sq cm/g, where Y is the total number of electrons per baryon, accurately describes the interaction of gamma-rays with the cool supernova gas and the local gamma-ray energy deposition within the gas. The nature of the gamma-ray interaction process (dominated by Compton scattering in the relativistic regime) creates a weak dependence of kappa(sub gamma) on the optical thickness of the (spherically symmetric) supernova atmosphere: The maximum value of kappa(sub gamma) applies during optically thick conditions when individual gamma-rays undergo multiple scattering encounters and the lower bound is reached at the phase characterized by a total Thomson optical depth to the center of the atmosphere tau(sub e) approximately less than 1. Gamma-ray deposition for Type Ia supernova models to within 10% for the epoch from maximum light to t = 1200 days. Our results quantitatively confirm that the quick and efficient solution to the gray transfer problem provides an accurate representation of gamma-ray energy deposition for a broad range of supernova conditions.
A GRB and Broad-lined Type Ic Supernova from a Single Central Engine
NASA Astrophysics Data System (ADS)
Barnes, Jennifer; Duffell, Paul C.; Liu, Yuqian; Modjaz, Maryam; Bianco, Federica B.; Kasen, Daniel; MacFadyen, Andrew I.
2018-06-01
Unusually high velocities (≳0.1c) and correspondingly high kinetic energies have been observed in a subset of Type Ic supernovae (so-called “broad-lined Ic” supernovae; SNe Ic-BL), prompting a search for a central engine model capable of generating such energetic explosions. A clue to the explosion mechanism may lie in the fact that all supernovae that accompany long-duration gamma-ray bursts (GRBs) belong to the SN Ic-BL class. Using a combination of two-dimensional relativistic hydrodynamics and radiation transport calculations, we demonstrate that the central engine responsible for long GRBs can also trigger an SN Ic-BL. We find that a reasonable GRB engine injected into a stripped Wolf–Rayet progenitor produces a relativistic jet with energy ∼1051 erg, as well as an SN whose synthetic light curves and spectra are fully consistent with observed SNe Ic-BL during the photospheric phase. As a result of the jet’s asymmetric energy injection, the SN spectra and light curves depend on viewing angle. The impact of viewing angle on the spectrum is particularly pronounced at early times, while the viewing-angle dependence for the light curves (∼10% variation in bolometric luminosity) persists throughout the photospheric phase.
NASA Astrophysics Data System (ADS)
Neunteufel, P.; Yoon, S.-C.; Langer, N.
2017-06-01
Context. Based mostly on stellar models that do not include rotation, CO white dwarfs that accrete helium at rates of about 10-8M⊙/ yr have been put forward as candidate progenitors for a number of transient astrophysical phenomena, including Type Ia supernovae and the peculiar and fainter Type Iax supernovae. Aims: Here we study the impact of accretion-induced spin-up including the subsequent magnetic field generation, angular momentum transport, and viscous heating on the white dwarf evolution up to the point of helium ignition. Methods: We resolve the structure of the helium accreting white dwarf models with a one-dimensional Langrangian hydrodynamic code, modified to include rotational and magnetic effects, in 315 model sequences adopting different mass-transfer rates (10-8-10-7M⊙/ yr), and initial white dwarf masses (0.54-1.10 M⊙) and luminosities (0.01-1 L⊙). Results: We find magnetic angular momentum transport, which leads to quasi-solid-body rotation, profoundly impacts the evolution of the white dwarf models, and the helium ignition conditions. Our rotating lower mass (0.54 and 0.82 M⊙) models accrete up to 50% more mass up to ignition than the non-rotating case, while it is the opposite for our more massive models. Furthermore, we find that rotation leads to helium ignition densities that are up to ten times smaller, except for the lowest adopted initial white dwarf mass. Ignition densities on the order of 106 g/cm3 are only found for the lowest accretion rates and for large amounts of accreted helium (≳0.4M⊙). However, correspondingly massive donor stars would transfer mass at much higher rates. We therefore expect explosive He-shell burning to mostly occur as deflagrations and at Ṁ > 2 × 10-8M⊙/ yr, regardless of white dwarf mass. Conclusions: Our results imply that helium accretion onto CO white dwarfs at the considered rates is unlikely to lead to the explosion of the CO core or to classical Type Ia supernovae, but may instead produce events that belong to the recently identified classes of faint and fast hydrogen-free supernovae.
Hubble Monitors Supernova In Nearby Galaxy M82
2014-02-26
This is a Hubble Space Telescope composite image of a supernova explosion designated SN 2014J in the galaxy M82. At a distance of approximately 11.5 million light-years from Earth it is the closest supernova of its type discovered in the past few decades. The explosion is categorized as a Type Ia supernova, which is theorized to be triggered in binary systems consisting of a white dwarf and another star — which could be a second white dwarf, a star like our sun, or a giant star. Astronomers using a ground-based telescope discovered the explosion on January 21, 2014. This Hubble photograph was taken on January 31, as the supernova approached its peak brightness. The Hubble data are expected to help astronomers refine distance measurements to Type Ia supernovae. In addition, the observations could yield insights into what kind of stars were involved in the explosion. Hubble’s ultraviolet-light sensitivity will allow astronomers to probe the environment around the site of the supernova explosion and in the interstellar medium of the host galaxy. Because of their consistent peak brightness, Type Ia supernovae are among the best tools to measure distances in the universe. They were fundamental to the 1998 discovery of the mysterious acceleration of the expanding universe. A hypothesized repulsive force, called dark energy, is thought to cause the acceleration. Among the other major NASA space-based observatories used in the M82 viewing campaign are Spitzer Space Telescope, Chandra X-ray Observatory, Nuclear Spectroscopic Telescope Array (NuSTAR), Fermi Gamma-ray Space Telescope, Swift Gamma Ray Burst Explorer, and the Stratospheric Observatory for Infrared Astronomy (SOFIA). Image Credit: NASA, ESA, A. Goobar (Stockholm University), and the Hubble Heritage Team (STScI/AURA) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Manganese in Dwarf Galaxies as a Probe of Type Ia Supernovae
NASA Astrophysics Data System (ADS)
De Los Reyes, Mithi; Kirby, Evan N.
2018-06-01
Despite the importance of thermonuclear or Type Ia supernovae (SNe) as standard candles in astrophysics, the physical mechanisms behind Type Ia SNe are still poorly constrained. Theoretically, the nucleosynthetic yields from Type Ia SNe can distinguish among different models of Type Ia explosions. For example, neutron-rich elements such as manganese (Mn) are sensitive probes of the physics of Type Ia SNe because their abundances are correlated to the density of the progenitor white dwarf. Since dwarf galaxies' chemical evolution is dominated by Type Ia SNe at late times, Type Ia nucleosynthetic yields can be indirectly inferred from stellar abundances in dwarf galaxies. However, previous measurements of Mn in dwarf galaxies are too incomplete to draw definitive conclusions on the Type Ia explosion mechanism. In this work, we therefore use medium-resolution stellar spectroscopy from Keck/DEIMOS to measure Mn abundances in red giants in several Milky Way satellite galaxies. We report average Type Ia Mn yields computed from these abundances, and we discuss the implications for Type Ia supernova physics.
Acquiring information about neutrino parameters by detecting supernova neutrinos
NASA Astrophysics Data System (ADS)
Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin
2010-08-01
We consider the supernova shock effects, the Mikheyev-Smirnov-Wolfenstein effects, the collective effects, and the Earth matter effects in the detection of type II supernova neutrinos on the Earth. It is found that the event number of supernova neutrinos depends on the neutrino mass hierarchy, the neutrino mixing angle θ13, and neutrino masses. Therefore, we propose possible methods to identify the mass hierarchy and acquire information about θ13 and neutrino masses by detecting supernova neutrinos. We apply these methods to some current neutrino experiments.
NASA Astrophysics Data System (ADS)
Marion, G. H.; Brown, Peter J.; Vinkó, Jozsef; Silverman, Jeffrey M.; Sand, David J.; Challis, Peter; Kirshner, Robert P.; Wheeler, J. Craig; Berlind, Perry; Brown, Warren R.; Calkins, Michael L.; Camacho, Yssavo; Dhungana, Govinda; Foley, Ryan J.; Friedman, Andrew S.; Graham, Melissa L.; Howell, D. Andrew; Hsiao, Eric Y.; Irwin, Jonathan M.; Jha, Saurabh W.; Kehoe, Robert; Macri, Lucas M.; Maeda, Keiichi; Mandel, Kaisey; McCully, Curtis; Pandya, Viraj; Rines, Kenneth J.; Wilhelmy, Steven; Zheng, Weikang
2016-04-01
We report evidence for excess blue light from the Type Ia supernova (Sn Ia) SN 2012cg at 15 and 16 days before maximum B-band brightness. The emission is consistent with predictions for the impact of the supernova on a non-degenerate binary companion. This is the first evidence for emission from a companion to a normal SN Ia. Sixteen days before maximum light, the B-V color of SN 2012cg is 0.2 mag bluer than for other normal SN Ia. At later times, this supernova has a typical SN Ia light curve, with extinction-corrected {M}B=-19.62+/- 0.02 mag and {{Δ }}{m}15(B)=0.86+/- 0.02. Our data set is extensive, with photometry in seven filters from five independent sources. Early spectra also show the effects of blue light, and high-velocity features are observed at early times. Near maximum, the spectra are normal with a silicon velocity vSi = -10,500 km s-1. Comparing the early data with models by Kasen favors a main-sequence companion of about six solar masses. It is possible that many other SN Ia have main-sequence companions that have eluded detection because the emission from the impact is fleeting and faint.
NASA Astrophysics Data System (ADS)
Seitenzahl, Ivo R.; Vogt, Frédéric P. A.; Terry, Jason P.; Ghavamian, Parviz; Dopita, Michael A.; Ruiter, Ashley J.; Sukhbold, Tuguldur
2018-02-01
We study the optical emission from heavy element ejecta in the oxygen-rich young supernova remnant 1E 0102.2–7219 (1E 0102) in the Small Magellanic Cloud. We have used the Multi-Unit Spectroscopic Explorer optical integral field spectrograph at the Very Large Telescope on Cerro Paranal and the wide field spectrograph (WiFeS) at the ANU 2.3 m telescope at Siding Spring Observatory to obtain deep observations of 1E 0102. Our observations cover the entire extent of the remnant from below 3500 Å to 9350 Å. Our observations unambiguously reveal the presence of fast-moving ejecta emitting in [S II], [S III], [Ar III], and [Cl II]. The sulfur-rich ejecta appear more asymmetrically distributed compared to oxygen or neon, a product of carbon burning. In addition to the forbidden line emission from products of oxygen burning (S, Ar, Cl), we have also discovered Hα and Hβ emission from several knots of low surface brightness, fast-moving ejecta. The presence of fast-moving hydrogen points toward a progenitor that had not entirely shed its hydrogen envelope prior to the supernova. The explosion that gave rise to 1E 0102 is therefore commensurate with a Type IIb supernova.
Consistency among distance measurements: transparency, BAO scale and accelerated expansion
NASA Astrophysics Data System (ADS)
Avgoustidis, Anastasios; Verde, Licia; Jimenez, Raul
2009-06-01
We explore consistency among different distance measures, including Supernovae Type Ia data, measurements of the Hubble parameter, and determination of the Baryon acoustic oscillation scale. We present new constraints on the cosmic transparency combining H(z) data together with the latest Supernovae Type Ia data compilation. This combination, in the context of a flat ΛCDM model, improves current constraints by nearly an order of magnitude although the constraints presented here are parametric rather than non-parametric. We re-examine the recently reported tension between the Baryon acoustic oscillation scale and Supernovae data in light of possible deviations from transparency, concluding that the source of the discrepancy may most likely be found among systematic effects of the modelling of the low redshift data or a simple ~ 2-σ statistical fluke, rather than in exotic physics. Finally, we attempt to draw model-independent conclusions about the recent accelerated expansion, determining the acceleration redshift to be zacc = 0.35+0.20-0.13 (1-σ).
PSN J02455988-0734270 in NGC 1084 is a young type II-P SN
NASA Astrophysics Data System (ADS)
Childress, M.; Scalzo, R.; Yuan, F.; Schmidt, B.
2012-08-01
We report the spectroscopic classification of the optical transient PSN J02455988-0734270 in NGC 1084 (disc. 2012-08-11.039 by B. Monard) based on an optical spectrum taken with the Wide Field Spectrograph (WiFeS - Dopita et al., 2007, ApSS, 310, 255) on the ANU 2.3m telescope at Siding Spring Observatory, NSW Australia, using the B3000/R3000 gratings (3600-10000, 1A resolution). The transient spectrum was compared to supernova spectral templates using SNID (Blondin & Tonry, 2007, ApJ, 666, 1024) indicating it to be a supernova of type II-P at a very young age, perhaps only a few days after explosion.
Possible Progenitor of Special Supernova Type Detected
NASA Astrophysics Data System (ADS)
2008-04-01
Using data from NASA's Chandra X-ray Observatory, scientists have reported the possible detection of a binary star system that was later destroyed in a supernova explosion. The new method they used provides great future promise for finding the detailed origin of these important cosmic events. In an article appearing in the February 14th issue of the journal Nature, Rasmus Voss of the Max Planck Institute for Extraterrestrial Physics in Germany and Gijs Nelemans of Radboud University in the Netherlands searched Chandra images for evidence of a much sought after, but as yet unobserved binary system - one that was about to go supernova. Near the position of a recently detected supernova, they discovered an object in Chandra images taken more than four years before the explosion. Optical image of SN 2007on Optical image of SN 2007on The supernova, known as SN 2007on, was identified as a Type Ia supernova. Astronomers generally agree that Type Ia supernovas are produced by the explosion of a white dwarf star in a binary star system. However, the exact configuration and trigger for the explosion is unclear. Is the explosion caused by a collision between two white dwarfs, or because a white dwarf became unstable by pulling too much material off a companion star? Answering such questions is a high priority because Type Ia supernovas are major sources of iron in the Universe. Also, because of their nearly uniform intrinsic brightness, Type Ia supernova are used as important tools by scientists to study the nature of dark energy and other cosmological issues. People Who Read This Also Read... Oldest Known Objects Are Surprisingly Immature Black Holes Have Simple Feeding Habits Discovery of Most Recent Supernova in Our Galaxy Geriatric Pulsar Still Kicking "Right now these supernovas are used as black boxes to measure distances and derive the rate of expansion of the universe," said Nelemans. "What we're trying to do is look inside the box." If the supernova explosion is caused by material being pulled off a companion star onto the white dwarf, fusion of this material on the surface of the star should heat the star and produce a strong source of X-radiation prior to the explosion. Once the supernova explosion occurs, the white dwarf is expected to be completely destroyed and then would be undetectable in X-rays. In the merger scenario, the intensity of X-ray emission prior to the explosion is expected to be much weaker. Based on the detection of a fairly strong X-ray source at approximately the position of SN 2007on 4 years before the explosion, Voss and Nelemans conclude that the data support the scenario where matter is pulled off a companion star. The small number of X-ray sources in the field implies that there is only a small chance of an unrelated source being so close by coincidence. Also, the X-ray source has similar properties to those expected for fusion on a white dwarf, unlike most X-ray sources in the sky. However, in follow-up studies, Voss, Nelemans and colleagues Gijs Roelofs (Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass.) and Cees Bassa (McGill University, Canada) used higher-quality optical images to better determine the supernova's position. This work, which is not yet published, shows a small, but significant difference in the measured positions of the supernova and the X-ray source, suggesting the source may not be the progenitor. Follow-up Chandra observations hint that the X-ray object has disappeared, but further observations are needed to finally decide whether the source was the progenitor or not. The team is also applying this new method to other supernovas and has high hopes that they will eventually succeed in identifying the elusive cause of at least some of these explosions. "We're very excited about opening up a new way of studying supernovas, even though we're not sure that we've seen this particular stellar bomb before it exploded," said Gijs Roelofs. "We're very confident that we'll learn a lot more about these important supernovas in the future." Voss agrees that, even if the X-ray source is not found to be the progenitor of SN 2007on, the hunt is worth the effort. "Finding the progenitor to one of these Type Ia supernovas is a great chase in astronomy right now," he said. "These supernovas are great tools for studying dark energy, but if we knew more about how they form they might become even better tools." Rasmus Voss receives support from the Excellence Cluster Universe in Garching, Germany. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass
Late formation of silicon carbide in type II supernovae
Liu, Nan; Nittler, Larry R.; Alexander, Conel M. O’D.; Wang, Jianhua
2018-01-01
We have found that individual presolar silicon carbide (SiC) dust grains from supernovae show a positive correlation between 49Ti and 28Si excesses, which is attributed to the radioactive decay of the short-lived (t½ = 330 days) 49V to 49Ti in the inner highly 28Si-rich Si/S zone. The 49V-49Ti chronometer shows that these supernova SiC dust grains formed at least 2 years after their parent stars exploded. This result supports recent dust condensation calculations that predict a delayed formation of carbonaceous and SiC grains in supernovae. The astronomical observation of continuous buildup of dust in supernovae over several years can, therefore, be interpreted as a growing addition of C-rich dust to the dust reservoir in supernovae. PMID:29376119
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, S.; Aldering, G.; Antilogus, P.
The use of Type Ia supernovae as distance indicators led to the discovery of the accelerating expansion of the universe a decade ago. Now that large second generation surveys have significantly increased the size and quality of the high-redshift sample, the cosmological constraints are limited by the currently available sample of ~50 cosmologically useful nearby supernovae. The Nearby Supernova Factory addresses this problem by discovering nearby supernovae and observing their spectrophotometric time development. Our data sample includes over 2400 spectra from spectral timeseries of 185 supernovae. This talk presents results from a portion of this sample including a Hubble diagrammore » (relative distance vs. redshift) and a description of some analyses using this rich dataset.« less
Detailed spectral and morphological analysis of the shell type supernova remnant RCW 86
NASA Astrophysics Data System (ADS)
H.E.S.S. Collaboration; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E. O.; Backes, M.; Balzer, A.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Carr, J.; Casanova, S.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Grudzińska, M.; Hadasch, D.; Häffner, S.; Hahn, J.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lohse, T.; Lopatin, A.; Lorentz, M.; Lu, C.-C.; Lui, R.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morå, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niemiec, J.; Oakes, L.; Odaka, H.; Öttl, S.; Ohm, S.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reichardt, I.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seyffert, A. S.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Valerius, K.; van der Walt, J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; Weidinger, M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Żywucka, N.
2018-04-01
Aim. We aim for an understanding of the morphological and spectral properties of the supernova remnant RCW 86 and for insights into the production mechanism leading to the RCW 86 very high-energy γ-ray emission. Methods: We analyzed High Energy Spectroscopic System (H.E.S.S.) data that had increased sensitivity compared to the observations presented in the RCW 86 H.E.S.S. discovery publication. Studies of the morphological correlation between the 0.5-1 keV X-ray band, the 2-5 keV X-ray band, radio, and γ-ray emissions have been performed as well as broadband modeling of the spectral energy distribution with two different emission models. Results: We present the first conclusive evidence that the TeV γ-ray emission region is shell-like based on our morphological studies. The comparison with 2-5 keV X-ray data reveals a correlation with the 0.4-50 TeV γ-ray emission. The spectrum of RCW 86 is best described by a power law with an exponential cutoff at Ecut = (3.5 ± 1.2stat) TeV and a spectral index of Γ ≈ 1.6 ± 0.2. A static leptonic one-zone model adequately describes the measured spectral energy distribution of RCW 86, with the resultant total kinetic energy of the electrons above 1 GeV being equivalent to 0.1% of the initial kinetic energy of a Type Ia supernova explosion (1051 erg). When using a hadronic model, a magnetic field of B ≈ 100 μG is needed to represent the measured data. Although this is comparable to formerly published estimates, a standard E-2 spectrum for the proton distribution cannot describe the γ-ray data. Instead, a spectral index of Γp ≈ 1.7 would be required, which implies that ˜7 × 1049/ncm-3 has been transferred into high-energy protons with the effective density ncm-3 = n/1 cm-3. This is about 10% of the kinetic energy of a typical Type Ia supernova under the assumption of a density of 1 cm-3.
Supernova Dust at Sub-micrometer Scales
NASA Astrophysics Data System (ADS)
Nittler, Larry; Stroud, R. M.
2006-06-01
Meteorites contain nanometer to micrometer stardust grains, which formed in pre-solar generations of stars and exhibit large isotopic anomalies that reflect the nuclear processes that occurred in their individual parent stars [1]. Supernovae of Type II have been identified as the sources of much of the stardust, including grains of SiC, Si3N4, graphite and Mg2SiO4. Although, the isotopic compositions of many elements in these grains point unambiguously to supernova nucleosynthesis processes [2], the data require extensive and heterogeneous mixing of disparate nuclear burning zones. A recent study found that individual 200 nm TiC sub-grains within a 12 micron supernova graphite grain have uniform Ti isotopic composition but a range of O isotopic ratios [3]. New microanalysis techniques allow us to correlate the physical microstructures of supernova grains with isotopic composition, e.g., SiC and Si3N4, providing a sub-micron view of condensation processes in supernova ejecta. Results on two SiC grains indicate that micron-sized SiC grains from supernovae consist of assemblages of smaller crystallites with some evidence of radiation and/or shock processing. This is in strong contrast to SiC grains from AGB stars, which are typically single euhedral crystals [4]. The Si, C and N isotopic compositions of the grains are highly uniform, in contrast to the model of [5], which predicts strong isotopic gradients in supernova-derived SiC grains.This work is supported by NASA.[1] Clayton D. D. and Nittler L. R. (2004) ARAA, 42, 39-78.[2] Nittler L. R., et al. (1996) ApJ, 462, L31-34.[3] Stadermann F. J., et al. (2005) GCA, 69, 177-188.[4] Daulton T. L., et al. (2002) Science, 296, 1852-1855.[5] Deneault E. A.-N., et al. (2003) ApJ, 594, 312-325.
Neutral Hydrogen Radio Propperties of ASAS-SN Supernovae Hosts
NASA Astrophysics Data System (ADS)
Ross, Timothy W.; Salter, Chris; Ghosh, Tapasi; Minchin, Robert; Jones, Kristen; All-Sky Automated Survey for Supernovae (ASAS-SN)
2018-01-01
We compiled properties of the galaxies containing recent supernovae. The galaxies were observed in the Hydrogen 21-cm region using the Arecibo 305-m Radio Telescope, and the supernovae were found by the All-Sky Automated Survey for Supernovae (ASAS-SN) project. We were able to detect the neutral hydrogen hyperfine transition in 50 new galaxies to date, and retrieved information on 52 host galaxies with previous detections. Including archival detections, the detection rates of Type CC SNe was 96.9%, that of Type Ia was 76.3%, while no Tidal Disruption Events (TDEs) had detections. In all we calculated the integrated HI flux of 102 host galaxies in the Arecibo sky. With the integrated HI flux we calculated mass values. The median HI mass, log [MHI/(h‑2C M⊙)], with h =.73, for all SN host galaxies was 9.47±0.02, with the median for Type Ia hosts being 9.55±0.02 and the median for Type CC being 9.30±0.02.
Modeling Type IIn Supernovae: Understanding How Shock Development Effects Light Curves Properties
NASA Astrophysics Data System (ADS)
De La Rosa, Janie
2016-06-01
Type IIn supernovae are produced when massive stars experience dramatic mass loss phases caused by opacity edges or violent explosions. Violent mass ejections occur quite often just prior to the collapse of the star. If the final episode happens just before collapse, the outward ejecta is sufficiently dense to alter the supernova light-curve, both by absorbing the initial supernova light and producing emission when the supernova shock hits the ejecta. Initially, the ejecta is driven by shock progating through the interior of the star, and eventually expands through the circumstellar medium, forming a cold dense shell. As the shock wave approaches the shell, there is an increase in UV and optical radiation at the location of the shock breakout. We have developed a suite of simple semi-analytical models in order to understand the relationship between our observations and the properties of the expanding SN ejecta. When we compare Type IIn observations to a set of modeled SNe, we begin to see the influence of initial explosion conditions on early UV light curve properties such as peak luminosities and decay rate.The fast rise and decay corresponds to the models representing a photosphere moving through the envelope, while the modeled light curves with a slower rise and decay rate are powered by 56Ni decay. However, in both of these cases, models that matched the luminosity were unable to match the low radii from the blackbody models. The effect of shock heating as the supernova material blasts through the circumstellar material can drastically alter the temperature and position of the photosphere. The new set of models redefine the initial modeling conditions to incorporate an outer shell-like structure, and include late-time shock heating from shocks produced as the supernova ejecta travels through the inhomogeneous circumstellar medium.
The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-masswhite dwarf star
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howell, D.Andrew; Sullivan, Mark; Nugent, Peter E.
2006-02-01
The acceleration of the expansion of the universe, and theneed for Dark Energy, were inferred from the observations of Type Iasupernovae (SNe Ia) 1;2. There is consensus that SNeIa are thermonuclearexplosions that destroy carbon-oxygen white dwarf stars that accretematter from a companion star3, although the nature of this companionremains uncertain. SNe Ia are thought to be reliable distance indicatorsbecause they have a standard amount of fuel and a uniform trigger theyare predicted to explode when the mass of the white dwarf nears theChandrasekhar mass 4 - 1.4 solar masses. Here we show that the highredshift supernova SNLS-03D3bb has an exceptionallymore » high luminosity andlow kinetic energy that both imply a super-Chandrasekhar mass progenitor.Super-Chandrasekhar mass SNeIa shouldpreferentially occur in a youngstellar population, so this may provide an explanation for the observedtrend that overluminous SNe Ia only occur in young environments5;6. Sincethis supernova does not obey the relations that allow them to becalibrated as standard candles, and since no counterparts have been foundat low redshift, future cosmology studies will have to considercontamination from such events.« less
A giant outburst two years before the core-collapse of a massive star.
Pastorello, A; Smartt, S J; Mattila, S; Eldridge, J J; Young, D; Itagaki, K; Yamaoka, H; Navasardyan, H; Valenti, S; Patat, F; Agnoletto, I; Augusteijn, T; Benetti, S; Cappellaro, E; Boles, T; Bonnet-Bidaud, J-M; Botticella, M T; Bufano, F; Cao, C; Deng, J; Dennefeld, M; Elias-Rosa, N; Harutyunyan, A; Keenan, F P; Iijima, T; Lorenzi, V; Mazzali, P A; Meng, X; Nakano, S; Nielsen, T B; Smoker, J V; Stanishev, V; Turatto, M; Xu, D; Zampieri, L
2007-06-14
The death of massive stars produces a variety of supernovae, which are linked to the structure of the exploding stars. The detection of several precursor stars of type II supernovae has been reported (see, for example, ref. 3), but we do not yet have direct information on the progenitors of the hydrogen-deficient type Ib and Ic supernovae. Here we report that the peculiar type Ib supernova SN 2006jc is spatially coincident with a bright optical transient that occurred in 2004. Spectroscopic and photometric monitoring of the supernova leads us to suggest that the progenitor was a carbon-oxygen Wolf-Rayet star embedded within a helium-rich circumstellar medium. There are different possible explanations for this pre-explosion transient. It appears similar to the giant outbursts of luminous blue variable stars (LBVs) of 60-100 solar masses, but the progenitor of SN 2006jc was helium- and hydrogen-deficient (unlike LBVs). An LBV-like outburst of a Wolf-Rayet star could be invoked, but this would be the first observational evidence of such a phenomenon. Alternatively, a massive binary system composed of an LBV that erupted in 2004, and a Wolf-Rayet star exploding as SN 2006jc, could explain the observations.
Type Ia supernovae, standardizable candles, and gravity
NASA Astrophysics Data System (ADS)
Wright, Bill S.; Li, Baojiu
2018-04-01
Type Ia supernovae (SNe Ia) are generally accepted to act as standardizable candles, and their use in cosmology led to the first confirmation of the as yet unexplained accelerated cosmic expansion. Many of the theoretical models to explain the cosmic acceleration assume modifications to Einsteinian general relativity which accelerate the expansion, but the question of whether such modifications also affect the ability of SNe Ia to be standardizable candles has rarely been addressed. This paper is an attempt to answer this question. For this we adopt a semianalytical model to calculate SNe Ia light curves in non-standard gravity. We use this model to show that the average rescaled intrinsic peak luminosity—a quantity that is assumed to be constant with redshift in standard analyses of Type Ia supernova (SN Ia) cosmology data—depends on the strength of gravity in the supernova's local environment because the latter determines the Chandrasekhar mass—the mass of the SN Ia's white dwarf progenitor right before the explosion. This means that SNe Ia are no longer standardizable candles in scenarios where the strength of gravity evolves over time, and therefore the cosmology implied by the existing SN Ia data will be different when analysed in the context of such models. As an example, we show that the observational SN Ia cosmology data can be fitted with both a model where (ΩM,ΩΛ)=(0.62 ,0.38 ) and Newton's constant G varies as G (z )=G0(1 +z )-1/4 and the standard model where (ΩM,ΩΛ)=(0.3 ,0.7 ) and G is constant, when the Universe is assumed to be flat.
After the Explosion: Investigating Supernova Sites
2015-03-26
A new study analyzes several sites where dead stars once exploded. The explosions, called Type Ia supernovae, occurred within galaxies, six of which are shown in these images from the Sloan Digital Sky Survey.
Nucleosynthesis by Type Ia Supernova for different Metallicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohkubo, Takuya; Umeda, Hideyuki; Nomoto, Ken'ichi
2006-07-12
We calculate nucleosynthesis by type Ia supernova for various metallicity. We adopt two typical hydrodynamical models, carbon deflagration and delayed detonation. The two main points of this research are to see that (1)how the ejected mass of 56Ni changes and (2)how abundance of each element (especially Fe-group elements) is influenced by varying metallicity. We find that (1)56Ni mass changes about 15% in the range of Z = 0.001 - 0.05 and insufficient to explain all of the observed variety of SNe Ia peak luminosity, and (2)[Mn/Fe] and [Ni/Fe] show fairy dependence on metallicity (especially for delayed detonation model) while [Cr/Fe]more » or [{alpha}/Fe] do not.« less
The peculiar type II supernova 1993J in M81: Transition to the nebular phase
NASA Technical Reports Server (NTRS)
Filippenko, Alexei V.; Matheson, Thomas; Barth, Aaron J.
1994-01-01
We present optical spectra of the bright, peculiar Type II supernova 1993J in M81 spanning the first 14 months of its existence, revealing its transition to the nebular phase. Unlike the case in normal Type II supernovae, during the first 2-10 months the H-alpha emission line gradually becomes less prominent relative to other features such as (O I) lambda lambda 6300, 6364 and (Ca II) lambda lambda 7291, 7324, as we had predicted based on early-time (tau less than or approximately equal to 2 months) spectra. The nebular spectrum resembles those of the Type Ib/Ic supernovae 1985F and 1987M, although weak H-alpha emission is easily visible even at late times in SN 1993J. At tau = 8 months a close similarity is found with the spectrum of SN 1987K, the only other Type II supernova known to have undergone such a metamorphosis. The emission lines are considerably broader than those of normal Type II supernovae at comparable phases, consistent with the progenitor having lost a majority of its hydrogen envelope prior to exploding. Consequently, there is now little doubt that Type Ib, and probably Type Ic, supernovae result from core collapse in stripped, massive stars; models of the chemical evolution of galaxies in which these subtypes are ascribed to exploding white dwarfs must be appropriately modified. Although all of the emission lines in spectra of SN 1993J fade roughly exponentially for a considerable time, the fading of H-alpha begins to slow down at tau approximately = 8 months, and in the interval tau = 10-14 months its flux is constant, or even slightly rising in the wings of the line. This behavior, together with the box-like shape and great breadth (full width at half maximum (FWHM) approximately = 17 000 km/s) of the line profile, suggests that the H-alpha emission is being produced by the high-velocity outer layer of hydrogen ejecta interacting with circumstellar gas released by the progenitor prior to its explosion. A similar phenomenon has previously been seen at later phases in several Type II supernovae, most notably SN 1980K. Bumps (FWHM approximately = 1000 km/s, amplitude approximately = 20%) in the H-alpha profile are probably indicative of Rayleigh-Taylor instabilities in the cool gas behind the reverse shock. A very narrow component (unresolved, FWHM less than or approximately equal to 200 km/s) of H-alpha at the symmetric velocity of SN 1993J may instead be produced by a superposed H II region, or perhaps by recombination in a large circumstellar shell or ring that was ionized during the first few hours after outburst. In the near future the spectrum of SN 1993J should become increasingly dominated by broad H-alpha emission.
Spectroscopic Classification of PSN J07051005+2102327: a Type Ia Supernova
NASA Astrophysics Data System (ADS)
Shivvers, I.; Yuk, H.; Filippenko, A. V.; U, V.
2015-11-01
We report that inspection of a low signal-to-noise ratio CCD spectrum (range 350-1050 nm) of PSN J07051005+2102327 (CBAT TOCP), obtained on Nov. 17.46 UT with the Shane 3-m reflector (+ Kast spectrograph) at Lick Observatory, shows that the object is a normal Type Ia supernova within a few days of maximum brightness.
NASA Astrophysics Data System (ADS)
Mandel, Kaisey; Kirshner, R. P.; Narayan, G.; Wood-Vasey, W. M.; Friedman, A. S.; Hicken, M.
2010-01-01
I have constructed a comprehensive statistical model for Type Ia supernova light curves spanning optical through near infrared data simultaneously. The near infrared light curves are found to be excellent standard candles (sigma(MH) = 0.11 +/- 0.03 mag) that are less vulnerable to systematic error from dust extinction, a major confounding factor for cosmological studies. A hierarchical statistical framework incorporates coherently multiple sources of randomness and uncertainty, including photometric error, intrinsic supernova light curve variations and correlations, dust extinction and reddening, peculiar velocity dispersion and distances, for probabilistic inference with Type Ia SN light curves. Inferences are drawn from the full probability density over individual supernovae and the SN Ia and dust populations, conditioned on a dataset of SN Ia light curves and redshifts. To compute probabilistic inferences with hierarchical models, I have developed BayeSN, a Markov Chain Monte Carlo algorithm based on Gibbs sampling. This code explores and samples the global probability density of parameters describing individual supernovae and the population. I have applied this hierarchical model to optical and near infrared data of over 100 nearby Type Ia SN from PAIRITEL, the CfA3 sample, and the literature. Using this statistical model, I find that SN with optical and NIR data have a smaller residual scatter in the Hubble diagram than SN with only optical data. The continued study of Type Ia SN in the near infrared will be important for improving their utility as precise and accurate cosmological distance indicators.
p-Process Nucleosynthesis inside Supernova-driven Supercritical Accretion Disks
NASA Astrophysics Data System (ADS)
Fujimoto, Shin-ichirou; Hashimoto, Masa-aki; Koike, Osamu; Arai, Kenzo; Matsuba, Ryuichi
2003-03-01
We investigate p-process nucleosynthesis in a supercritical accretion disk around a compact object of 1.4 Msolar, using the self-similar solution of an optically thick advection-dominated flow. Supercritical accretion is expected to occur in a supernova with fallback material accreting onto a newborn compact object. It is found that an appreciable number of p-nuclei are synthesized via the p-process in supernova-driven supercritical accretion disks (SSADs) when the accretion rate m=Mc2/(16LEdd)>105, where LEdd is the Eddington luminosity. Abundance profiles of p-nuclei ejected from SSADs have features similar to those of the oxygen/neon layers in Type II supernovae when the abundance of the fallback gas far from the compact object is that of the oxygen/neon layers in the progenitor. The overall abundance profile is in agreement with that of the solar system. Some p-nuclei, such as Mo, Ru, Sn, and La, are underproduced in the SSADs as in Type II supernovae. If the fallback gas is mixed with a small fraction of protons through Rayleigh-Taylor instability during the explosion, significant amounts of 92Mo are produced inside the SSADs. Isotopes 96Ru and 138La are also produced when the fallback gas contains abundant protons, although the overall abundance profile of p-nuclei is rather different from that of the solar system. The p-process nucleosynthesis in SSADs contributes to the chemical evolution of p-nuclei, in particular 92Mo, if several percent of the fallback matter are ejected via jets and/or winds.
Supernova Photometric Lightcurve Classification
NASA Astrophysics Data System (ADS)
Zaidi, Tayeb; Narayan, Gautham
2016-01-01
This is a preliminary report on photometric supernova classification. We first explore the properties of supernova light curves, and attempt to restructure the unevenly sampled and sparse data from assorted datasets to allow for processing and classification. The data was primarily drawn from the Dark Energy Survey (DES) simulated data, created for the Supernova Photometric Classification Challenge. This poster shows a method for producing a non-parametric representation of the light curve data, and applying a Random Forest classifier algorithm to distinguish between supernovae types. We examine the impact of Principal Component Analysis to reduce the dimensionality of the dataset, for future classification work. The classification code will be used in a stage of the ANTARES pipeline, created for use on the Large Synoptic Survey Telescope alert data and other wide-field surveys. The final figure-of-merit for the DES data in the r band was 60% for binary classification (Type I vs II).Zaidi was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).
A Wolf-Rayet-Like Progenitor of SN 2013cu from Spectral Observations of a Stellar Wind
NASA Technical Reports Server (NTRS)
Gal-Yam, Avishay; Arcavi, I.; Ofek, E. O.; Ben-Ami, S.; Cenko, S. B.; Kasliwal, M. M.; Cao, Y.; Yaron, O.; Tal, D.; Silverman, J. M.;
2014-01-01
The explosive fate of massive Wolf-Rayet stars (WRSs) is a key open question in stellar physics. An appealing option is that hydrogen- deficient WRSs are the progenitors of some hydrogen-poor supernova explosions of types IIb, Ib and Ic. A blue object, having luminosity and colours consistent with those of some WRSs, has recently been identified in pre-explosion images at the location of a supernova of type Ib, but has not yet been conclusively determined to have been the progenitor. Similar work has so far only resulted in non-detections. Comparison of early photometric observations of type Ic supernovae with theoretical models suggests that the progenitor stars had radii of less than 10(exp 12) centimetres, as expected for some WRSs. The signature of WRSs, their emission line spectra, cannot be probed by such studies. Here we report the detection of strong emission lines in a spectrum of type IIb supernova 2013cu (iPTF13ast) obtained approximately 15.5 hours after explosion (by 'flash spectroscopy', which captures the effects of the supernova explosion shock breakout flash on material surrounding the progenitor star).We identify Wolf-Rayet-like wind signatures, suggesting a progenitor of the WN(h) subclass (those WRSs with winds dominated by helium and nitrogen, with traces of hydrogen). The extent of this dense wind may indicate increased mass loss from the progenitor shortly before its explosion, consistent with recent theoretical predictions.
Marginal evidence for cosmic acceleration from Type Ia supernovae
NASA Astrophysics Data System (ADS)
Nielsen, J. T.; Guffanti, A.; Sarkar, S.
2016-10-01
The ‘standard’ model of cosmology is founded on the basis that the expansion rate of the universe is accelerating at present — as was inferred originally from the Hubble diagram of Type Ia supernovae. There exists now a much bigger database of supernovae so we can perform rigorous statistical tests to check whether these ‘standardisable candles’ indeed indicate cosmic acceleration. Taking account of the empirical procedure by which corrections are made to their absolute magnitudes to allow for the varying shape of the light curve and extinction by dust, we find, rather surprisingly, that the data are still quite consistent with a constant rate of expansion.
Marginal evidence for cosmic acceleration from Type Ia supernovae
Nielsen, J. T.; Guffanti, A.; Sarkar, S.
2016-01-01
The ‘standard’ model of cosmology is founded on the basis that the expansion rate of the universe is accelerating at present — as was inferred originally from the Hubble diagram of Type Ia supernovae. There exists now a much bigger database of supernovae so we can perform rigorous statistical tests to check whether these ‘standardisable candles’ indeed indicate cosmic acceleration. Taking account of the empirical procedure by which corrections are made to their absolute magnitudes to allow for the varying shape of the light curve and extinction by dust, we find, rather surprisingly, that the data are still quite consistent with a constant rate of expansion. PMID:27767125
Positron Survival in Type II Supernovae
1989-05-01
the fewer number of decays depositing energy within the supernova. The rate of this cooling is unknown because it is uncertain whether a pulsar was...details of the radial mixing may yield more precise results but they should not negate my final result. 50 0. LO ’) C u -4S Cu CdU in~~ in0oi 4l cu CV (U...START OF SHELL LO ***.**A***.. for (z=0; z< 14.5; z=z+1.O) ttl= 0; inikdazsity = shell(z]lOI; dshlsum - shejzllhJ/51; fprinzf(point.* Shell numbe
DOE R&D Accomplishments Database
Astier, P.; Guy, J.; Regnault, N.; Pain, R.; Aubourg, E.; Balam, D.; Basa, S.; Carlberg, R. G.; Fabbro, S.; Fouchez, D.; Hook, I. M.; Howell, D. A.; Lafoux, H.; Neill, J. D.; Palanque-Delabrouille, N.; Perrett, K.; Pritchet, C. J.; Rich, J.; Sullivan, M.; Taillet, R.; Aldering, G.; Antilogus, P.; Arsenijevic, V.; Balland, C.; Baumont, S.; Bronder, J.; Courtois, H.; Ellis, R. S.; Filiol, M.; Goncalves, A. C.; Goobar, A.; Guide, D.; Hardin, D.; Lusset, V.; Lidman, C.; McMahon, R.; Mouchet, M.; Mourao, A.; Perlmutter, S.; Ripoche, P.; Tao, C.; Walton, N.
2005-10-14
We present distance measurements to 71 high redshift type Ia supernovae discovered during the first year of the 5-year Supernova Legacy Survey (SNLS). These events were detected and their multi-color light-curves measured using the MegaPrime/MegaCam instrument at the Canada-France-Hawaii Telescope (CFHT), by repeatedly imaging four one-square degree fields in four bands. Follow-up spectroscopy was performed at the VLT, Gemini and Keck telescopes to confirm the nature of the supernovae and to measure their redshift. With this data set, we have built a Hubble diagram extending to z = 1, with all distance measurements involving at least two bands. Systematic uncertainties are evaluated making use of the multiband photometry obtained at CFHT. Cosmological fits to this first year SNLS Hubble diagram give the following results: {Omega}{sub M} = 0.263 {+-} 0.042 (stat) {+-} 0.032 (sys) for a flat {Lambda}CDM model; and w = -1.023 {+-} 0.090 (stat) {+-} 0.054 (sys) for a flat cosmology with constant equation of state w when combined with the constraint from the recent Sloan Digital Sky Survey measurement of baryon acoustic oscillations.
NASA Astrophysics Data System (ADS)
Graur, Or; SDF SN Team
2012-01-01
The Type Ia supernova (SN Ia) rate, when compared to the cosmic star formation history (SFH), can be used to derive the delay-time distribution (DTD; the hypothetical SN Ia rate versus time following a brief burst of star formation) of SNe Ia, which can distinguish among progenitor models. We present the results of a supernova (SN) survey in the Subaru Deep Field (SDF). Over a period of 3 years, we have observed the SDF on four independent epochs with Suprime-Cam on the Subaru 8.2-m telescope, with two nights of exposure per epoch, in the R, i'and z‧ bands. We have discovered 150 SNe out to redshift z≈ 2. Our final sample includes 28 SNe Ia in the range 1.0 < z < 1.5 and 10 in the range 1.5 < z < 2.0. As our survey is largely insensitive to core-collapse SNe (CC SNe) at z > 1, most of the events found in this range are likely SNe Ia. Based on this sample, we find that the SN Ia rate evolution levels off at 1.0 < z < 2.0, but shows no sign of declining. Combining our SN Ia rate measurements and those from the literature, and comparing to a wide range of possible SFHs, the best-fitting DTD (with a reduced χ2= 0.7) is a power law of the form &Psi(t) ∝tβ, with index β=-1.1 ± 0.1 (statistical) ±0.17 (systematic). By combining the contribution from CC SNe, based on the wide range of SFHs, with that from SNe Ia, calculated with the best-fitting DTD, we predict that the mean present-day cosmic iron abundance is in the range ZFe= (0.09-0.37) ZFe, ⊙.
Design, characterization, and sensitivity of the supernova trigger system at Daya Bay
NASA Astrophysics Data System (ADS)
Wei, Hanyu; Lebanowski, Logan; Li, Fei; Wang, Zhe; Chen, Shaomin
2016-02-01
Providing an early warning of galactic supernova explosions from neutrino signals is important in studying supernova dynamics and neutrino physics. A dedicated supernova trigger system has been designed and installed in the data acquisition system at Daya Bay and integrated into the worldwide Supernova Early Warning System (SNEWS). Daya Bay's unique feature of eight identically-designed detectors deployed in three separate experimental halls makes the trigger system naturally robust against cosmogenic backgrounds, enabling a prompt analysis of online triggers and a tight control of the false-alert rate. The trigger system is estimated to be fully sensitive to 1987A-type supernova bursts throughout most of the Milky Way. The significant gain in sensitivity of the eight-detector configuration over a mass-equivalent single detector is also estimated. The experience of this online trigger system is applicable to future projects with spatially distributed detectors.
NASA Astrophysics Data System (ADS)
Botyánszki, János; Kasen, Daniel; Plewa, Tomasz
2018-01-01
The classic single-degenerate model for the progenitors of Type Ia supernova (SN Ia) predicts that the supernova ejecta should be enriched with solar-like abundance material stripped from the companion star. Spectroscopic observations of normal SNe Ia at late times, however, have not resulted in definite detection of hydrogen. In this Letter, we study line formation in SNe Ia at nebular times using non-LTE spectral modeling. We present, for the first time, multidimensional radiative transfer calculations of SNe Ia with stripped material mixed in the ejecta core, based on hydrodynamical simulations of ejecta–companion interaction. We find that interaction models with main-sequence companions produce significant Hα emission at late times, ruling out these types of binaries being viable progenitors of SNe Ia. We also predict significant He I line emission at optical and near-infrared wavelengths for both hydrogen-rich or helium-rich material, providing an additional observational probe of stripped ejecta. We produce models with reduced stripped masses and find a more stringent mass limit of M st ≲ 1 × 10‑4 M ⊙ of stripped companion material for SN 2011fe.
VizieR Online Data Catalog: Berkeley supernova Ia program. II. (Silverman+, 2012)
NASA Astrophysics Data System (ADS)
Silverman, J. M.; Kong, J. J.; Filippenko, A. V.
2013-08-01
In this second paper in a series, we present measurements of spectral features of 432 low-redshift (z<0.1) optical spectra of 261 Type Ia supernovae (SNe Ia) within 20d of maximum brightness. The data were obtained from 1989 to the end of 2008 as part of the Berkeley Supernova Ia Program (BSNIP) and are presented in BSNIP I by Silverman et al. (J/MNRAS/425/1789). We describe in detail our method of automated, robust spectral feature definition and measurement which expands upon similar previous studies. Using this procedure, we attempt to measure expansion velocities, pseudo-equivalent widths (pEWs), spectral feature depths and fluxes at the centre and endpoints of each of nine major spectral feature complexes. (10 data files).
Supernova Cosmology Without Spectroscopy
NASA Astrophysics Data System (ADS)
Johnson, Elizabeth; Scolnic, Daniel; Kessler, Rick; Rykoff, Eli; Rozo, Eduardo
2018-01-01
Present and future supernovae (SN) surveys face several challenges: the ability to acquire redshifts of either the SN or its host galaxy, the ability to classify a SN without a spectrum, and unknown relations between SN luminosity and host galaxy type. We present here a new approach that addresses these challenges. From the large sample of SNe discovered and measured by the Dark Energy Survey (DES), we cull the sample to only supernovae (SNe) located in luminous red galaxies (LRGs). For these galaxies, photometric redshift estimates are expected to be accurate to a standard deviation of 0.02x(1+z). In addition, only Type Ia Supernovae are expected to exist in these galaxies, thereby providing a pure SNIa sample. Furthermore, we can combine this high-redshift sample with a low-redshift SN sample of only SNe located in LRGs, thereby producing a sample that is less sensitive to host galaxy relations because the host galaxy demographic is consistent across the redshift range. We find that the current DES sample has ~250 SNe in LRGs, a similar amount to current SNIa samples used to measure cosmological parameters. We present our method to produce a photometric-only Hubble diagram and measure cosmological parameters. Finally, we discuss systematic uncertainties from this approach, and forecast constraints from this method for LSST, which should have a sample roughly 200 times as large.
The Shape of Superluminous Supernovae
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-11-01
What causes the tremendous explosions of superluminous supernovae? New observations reveal the geometry of one such explosion, SN 2015bn, providing clues as to its source.A New Class of ExplosionsImage of a type Ia supernova in the galaxy NGC 4526. [NASA/ESA]Supernovae are powerful explosions that can briefly outshine the galaxies that host them. There are several different classifications of supernovae, each with a different physical source such as thermonuclear instability in a white dwarf, caused by accretion of too much mass, or the exhaustion of fuel in the core of a massive star, leading to the cores collapse and expulsion of its outer layers.In recent years, however, weve detected another type of supernovae, referred to as superluminous supernovae. These particularly energetic explosions last longer months instead of weeks and are brighter at their peaks than normal supernovae by factors of tens to hundreds.The physical cause of these unusual explosions is still a topic of debate. Recently, however, a team of scientists led by Cosimo Inserra (Queens University Belfast) has obtained new observations of a superluminous supernova that might help address this question.The flux and the polarization level (black lines) along the dominant axis of SN 2015bn, 24 days before peak flux (left) and 28 days after peak flux (right). Blue lines show the authors best-fitting model. [Inserra et al. 2016]Probing GeometryInserra and collaborators obtained two sets of observations of SN 2015bn one roughly a month before and one a month after the superluminous supernovas peak brightness using a spectrograph on the Very Large Telescope in Chile. These observations mark the first spectropolarimetric data for a superluminous supernova.Spectropolarimetry is the practice of obtaining information about the polarization of radiation from an objects spectrum. Polarization carries information about broken spatial symmetries in the object: only if the object is perfectly symmetric can it emit an unpolarized spectrum. Otherwise, the polarization of an objects spectrum reveals information about its geometry.Modeling EjectaThe authors best model of the geometry of SN 2015bn 24 days before (top) and 28 days after (bottom) peak flux. The model consists of two ellipsoidal layers of ejecta material. [Inserra et al. 2016]Based on their observations, Inserra and collaborators find that SN 2015bn is not spherically symmetric but it does appear to be axisymmetric around a single dominant axis. They also find that the polarization level of the object changes both with wavelength and over time.To explain these dependencies, the authors produce a simple toy model of SN 2015bn. In the best-fitting model, the supernova has a two-layered ellipsoidal or bipolar geometry. The inner region becomes more and more aspherical as time passes.What does this model tell us about the physical cause of this superluminous supernova? Inserra and collaborators argue that the axisymmetric shape favors a core-collapse explosion. A central inner engine of a spinning magnetar (a highly magnetized neutron star) or black hole then remains at the center of this explosion, pumping energy into it and causing the increase of the inner asymmetry over time.The authors caution that their models are very preliminary but these observations should drive future, more detailed modeling, as well as further spectropolarimetric observations of future nearby superluminous supernovae. With luck, we will soon better understand what drives these unusual explosions.CitationC. Inserra et al 2016 ApJ 831 79. doi:10.3847/0004-637X/831/1/79
THE HOST GALAXY OF THE SUPER-LUMINOUS SN 2010gx AND LIMITS ON EXPLOSIVE {sup 56}Ni PRODUCTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ting-Wan; Smartt, Stephen J.; Kotak, Rubina
2013-02-01
Super-luminous supernovae have a tendency to occur in faint host galaxies which are likely to have low mass and low metallicity. While these extremely luminous explosions have been observed from z = 0.1 to 1.55, the closest explosions allow more detailed investigations of their host galaxies. We present a detailed analysis of the host galaxy of SN 2010gx (z = 0.23), one of the best studied super-luminous type Ic supernovae. The host is a dwarf galaxy (M{sub g} = -17.42 {+-} 0.17) with a high specific star formation rate. It has a remarkably low metallicity of 12 + log (O/H)more » = 7.5 {+-} 0.1 dex as determined from the detection of the [O III] {lambda}4363 line. This is the first reliable metallicity determination of a super-luminous stripped-envelope supernova host. We collected deep multi-epoch imaging with Gemini + GMOS between 240 and 560 days after explosion to search for any sign of radioactive {sup 56}Ni, which might provide further insights on the explosion mechanism and the progenitor's nature. We reach griz magnitudes of m{sub AB} {approx} 26, but do not detect SN 2010gx at these epochs. The limit implies that any {sup 56}Ni production was similar to or below that of SN 1998bw (a luminous type Ic SN that produced around 0.4 M{sub Sun} of {sup 56}Ni). The low volumetric rates of these supernovae ({approx}10{sup -4} of the core-collapse population) could be qualitatively matched if the explosion mechanism requires a combination of low-metallicity (below 0.2 Z{sub Sun }), high progenitor mass (>60 M{sub Sun }) and high rotation rate (fastest 10% of rotators).« less
Supernova Light Curves and Spectra from Two Different Codes: Supernu and Phoenix
NASA Astrophysics Data System (ADS)
Van Rossum, Daniel R; Wollaeger, Ryan T
2014-08-01
The observed similarities between light curve shapes from Type Ia supernovae, and in particular the correlation of light curve shape and brightness, have been actively studied for more than two decades. In recent years, hydronamic simulations of white dwarf explosions have advanced greatly, and multiple mechanisms that could potentially produce Type Ia supernovae have been explored in detail. The question which of the proposed mechanisms is (or are) possibly realized in nature remains challenging to answer, but detailed synthetic light curves and spectra from explosion simulations are very helpful and important guidelines towards answering this question.We present results from a newly developed radiation transport code, Supernu. Supernu solves the supernova radiation transfer problem uses a novel technique based on a hybrid between Implicit Monte Carlo and Discrete Diffusion Monte Carlo. This technique enhances the efficiency with respect to traditional implicit monte carlo codes and thus lends itself perfectly for multi-dimensional simulations. We show direct comparisons of light curves and spectra from Type Ia simulations with Supernu versus the legacy Phoenix code.
X-Ray Measured Dynamics of Tycho's Supernova Remnant
NASA Technical Reports Server (NTRS)
Katsuda, Satoru; Petre, Robert; Hughes, John; Hwang, Una; Yamaguchi, Hiroya; Hayato, Asami; Mori, Koji; Tsunemi, Hiroshi
2010-01-01
We present X-ray proper-motion measurements of the forward shock and reverse-shocked ejecta in Tycho's supernova remnant, based on three sets of archival Chandra data taken in 2000, 2003, and 2007. We find that the proper motion of the edge of the remnant (i.e., the forward shock and protruding ejecta knots) varies from 0.''20 yr-1 (expansion index m = 0.33, where R = tm ) to 0.''40 yr-1 (m = 0.65) with azimuthal angle in 2000-2007 measurements, and 0.''14 yr-1 (m = 0.26) to 0.''40 yr-1 (m = 0.65) in 2003-2007 measurements. The azimuthal variation of the proper motion and the average expansion index of [approx]0.5 are consistent with those derived from radio observations. We also find proper motion and expansion index of the reverse-shocked ejecta to be 0.''21-0.''31 yr-1 and 0.43-0.64, respectively. From a comparison of the measured m-value with Type Ia supernova evolutionary models, we find a pre-shock ambient density around the remnant of [less, similar]0.2 cm-3.
Early Radio and X-Ray Observations of the Youngest Nearby Type Ia Supernova PTF 11kly (SN 2011fe)
NASA Technical Reports Server (NTRS)
Horesh, Assaf; Kulkarni, S. R.; Fox, Derek B.; Carpenter, John; Kasliwal, Mansi M.; Ofek, Eran O.; Quimby, Robert; Gal-Yam, Avishay; Cenko, S. Bradley; deBruyn, A. G.;
2012-01-01
On August 24 (UT) the Palomar Transient Factory (PTF) discovered PTF11kly (SN 2011fe), the youngest and most nearby type Ia supernova (SN Ia) in decades. We followed this event up in the radio (centimeter and millimeter bands) and X-ray bands, starting about a day after the estimated explosion time. We present our analysis of the radio and X-ray observations, yielding the tightest constraints yet placed on the pre-explosion mass-loss rate from the progenitor system of this supernova. We find a robust limit of M(raised dot) less than or equal to 10(exp -8) (w /100 kilometers per second ) solar mass yr(exp -1) from sensitive X-ray non-detections, as well as a similar limit from radio data, which depends, however, on assumptions about microphysical parameters. We discuss our results in the context of single-degenerate models for SNe Ia and find that our observations modestly disfavor symbiotic progenitor models involving a red giant donor, but cannot constrain systems accreting from main sequence or sub-giant stars, including the popular supersoft channel. In view of the proximity of PTF11kly and the sensitivity of our prompt observations we would have to wait for a long time (decade or longer) in order to more meaningfully probe the circumstellar matter of Ia supernovae.
VizieR Online Data Catalog: Swift-UVOT obs. analysis of 29 SNe Ia (Brown+, 2017)
NASA Astrophysics Data System (ADS)
Brown, P. J.; Landez, N. J.; Milne, P. A.; Stritzinger, M. D.
2017-10-01
Swift/UVOT has observed over 500 SNe of all types in its 12 years of operation (see Brown+ 2015JHEAp...7..111B for a review of the first 10yrs). Most of the observations use six UV and optical filters. All photometry comes from the Swift Optical/Ultraviolet Supernova Archive (SOUSA; Brown+ 2014Ap&SS.354...89B) and is available at the Swift SN website and the Open Supernova Archive (Guillochon+ 2017ApJ...835...64G). (1 data file).
A Search for High-Energy Gamma Rays from Supernova 1987A
NASA Astrophysics Data System (ADS)
Waldron, Liam Edwin
1993-01-01
The Australian Defense Force Academy (ADFA) balloon-borne gamma-ray astronomy telescope was flown successfully from Alice Springs, Australia, twice during 1987 and 1988 (Flights 87-2-19 and 88-1-5) with the aim of measuring the gamma-ray flux, in the energy range 50-500 MeV, from Supernova 1987A in the Large Magellanic Cloud. The two flights correspond to day 55 and 407, respectively, of remnant evolution. The instrument was complemented by a hard X-ray proportional counter, designed and constructed by the Istituto di Astrofisica Spaziale, CNR, Frascati, Italy, and sensitive to the 10-250 keV energy range. In this thesis, an account is given of the physical processes responsible for the production of gamma rays in astrophysical environments and their relation to supernovae and cosmic rays. A description is then given of main features of the gamma-ray telescope and its principles of operation, the most important part of the telescope being a spark chamber used to determine the direction of arrival of incident gamma rays. Data obtained during each flight were recorded as spark-chamber tracks on the photographic film. A detailed account of the methods of subsequent data reduction and analysis, as carried out by the author, is given. The principal results of this work were that 3-sigma upper limits to the gamma-ray flux from SN 1987A of 2.2 and 3.4 X 10^-5 photons cm^-2s^-1 were obtained for days 55 and 407 of remnant evolution, respectively, these limits being somewhat lower than previously reported in the literature from a preliminary analysis of the data. The above two upper limits are consistent with SN 1987A being an atypical Type II supernova. That is, the progenitor was a blue, rather than a red, supergiant. The limits are compared with theoretical predictions related to current models of gamma-ray emission from young Type II supernovae. (SECTION: Dissertation Abstracts)
Type Ia supernova Hubble residuals and host-galaxy properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, A. G.; Aldering, G.; Aragon, C.
2014-03-20
Kim et al. introduced a new methodology for determining peak-brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spectrophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is 0.013 ± 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at <<1σ, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement of the Hubble residual step with the host massmore » is 0.045 ± 0.026 mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch parameters: steps at >2σ significance are found in SALT2 Hubble residuals in samples split by the values of their K13 x(1) and x(2) light-curve parameters. x(1) affects the light-curve width and color around peak (similar to the Δm {sub 15} and stretch parameters), and x(2) affects colors, the near-UV light-curve width, and the light-curve decline 20-30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN Ia diversity arising from progenitor stellar evolution.« less
A Model-independent Photometric Redshift Estimator for Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Wang, Yun
2007-01-01
The use of Type Ia supernovae (SNe Ia) as cosmological standard candles is fundamental in modern observational cosmology. In this Letter, we derive a simple empirical photometric redshift estimator for SNe Ia using a training set of SNe Ia with multiband (griz) light curves and spectroscopic redshifts obtained by the Supernova Legacy Survey (SNLS). This estimator is analytical and model-independent it does not use spectral templates. We use all the available SNe Ia from SNLS with near-maximum photometry in griz (a total of 40 SNe Ia) to train and test our photometric redshift estimator. The difference between the estimated redshifts zphot and the spectroscopic redshifts zspec, (zphot-zspec)/(1+zspec), has rms dispersions of 0.031 for 20 SNe Ia used in the training set, and 0.050 for 20 SNe Ia not used in the training set. The dispersion is of the same order of magnitude as the flux uncertainties at peak brightness for the SNe Ia. There are no outliers. This photometric redshift estimator should significantly enhance the ability of observers to accurately target high-redshift SNe Ia for spectroscopy in ongoing surveys. It will also dramatically boost the cosmological impact of very large future supernova surveys, such as those planned for the Advanced Liquid-mirror Probe for Astrophysics, Cosmology, and Asteroids (ALPACA) and the Large Synoptic Survey Telescope (LSST).
NASA Astrophysics Data System (ADS)
Huber, Mark; Scolnic, D.; Riess, A. G.; Tonry, J. L.; Rodney, S. A.; Rest, A.; Stubbs, C. W.
2010-01-01
The extensive application of the SuperNovAe Cross-Correlation (SNACC) filters developed by Scolnic et al. (2009) for follow-up identification and redshift of type Ia supernovae in current and upcoming supernovae surveys will itself produce a unique imaging survey. We will present a collection of simulated and actual sources from the initial observing run using the new 4-band SNACC filters with Suprime-Cam on the Subaru telescope to explore the extra potential of this unique data set.
Modeling the binary circumstellar medium of Type IIb/L/n supernova progenitors
NASA Astrophysics Data System (ADS)
Kolb, Christopher; Blondin, John; Borkowski, Kazik; Reynolds, Stephen
2018-01-01
Circumstellar interaction in close binary systems can produce a highly asymmetric environment, particularly for systems with a mass outflow velocity comparable to the binary orbital speed. This asymmetric circumstellar medium (CSM) becomes visible after a supernova explosion, when SN radiation illuminates the gas and when SN ejecta collide with the CSM. We aim to better understand the development of this asymmetric CSM, particularly for binary systems containing a red supergiant progenitor, and to study its impact on supernova morphology. To achieve this, we model the asymmetric wind and subsequent supernova explosion in full 3D hydrodynamics using the shock-capturing hydro code VH-1 on a spherical yin-yang grid. Wind interaction is computed in a frame co-rotating with the binary system, and gas is accelerated using a radiation pressure-driven wind model where optical depth of the radiative force is dependent on azimuthally-averaged gas density. We present characterization of our asymmetric wind density distribution model by fitting a polar-to-equatorial density contrast function to free parameters such as binary separation distance, primary mass loss rate, and binary mass ratio.
The Evolution of the Type Ia Supernova Luminosity Function
NASA Astrophysics Data System (ADS)
Shen, Ken J.; Toonen, Silvia; Graur, Or
2017-12-01
Type Ia supernovae (SNe Ia) exhibit a wide diversity of peak luminosities and light curve shapes: the faintest SNe Ia are 10 times less luminous and evolve more rapidly than the brightest SNe Ia. Their differing characteristics also extend to their stellar age distributions, with fainter SNe Ia preferentially occurring in old stellar populations and vice versa. In this Letter, we quantify this SN Ia luminosity–stellar age connection using data from the Lick Observatory Supernova Search (LOSS). Our binary population synthesis calculations agree qualitatively with the observed trend in the > 1 {Gyr} old populations probed by LOSS if the majority of SNe Ia arise from prompt detonations of sub-Chandrasekhar-mass white dwarfs (WDs) in double WD systems. Under appropriate assumptions, we show that double WD systems with less massive primaries, which yield fainter SNe Ia, interact and explode at older ages than those with more massive primaries. We find that prompt detonations in double WD systems are capable of reproducing the observed evolution of the SN Ia luminosity function, a constraint that any SN Ia progenitor scenario must confront.
On the cosmic ray spectrum from type II supernovae expanding in their red giant presupernova wind
NASA Astrophysics Data System (ADS)
Cardillo, Martina; Amato, Elena; Blasi, Pasquale
2015-09-01
While from the energetic point of view supernova remnants are viable sources of Galactic cosmic rays (CRs), the issue of whether they can accelerate protons up to a few PeV remains unsolved. Here we discuss particle acceleration at the forward shock of supernovae, and discuss the possibility that the current of escaping particles may excite a non-resonant instability that in turn leads to the formation of resonant modes that confine particles close to the shock, thereby increasing the maximum energy. This mechanism is at work throughout the expansion of the supernova explosion, from the ejecta dominated (ED) phase to the Sedov-Taylor (ST) phase. The transition from one stage to the other reflects in a break in the spectrum of injected particles. Because of their higher explosion rate, we focus our work on type II SNe expanding in the slow, dense wind, produced by the red super-giant progenitor stars. When the explosion occurs in such winds, the transition between the ED and the ST phase is likely to take place within a few tens of years. The highest energies are reached at even earlier times, when, however, a small fraction of the mass of ejecta has been processed. As a result, the spectrum of accelerated particles shows a break in the slope, at an energy that is the maximum energy (EM) achieved at the beginning of the ST phase. Above this characteristic energy, the spectrum becomes steeper but remains a power law rather than developing an exponential cutoff. An exponential cut is eventually present at much higher energies but it does not have a phenomenological relevance. We show that for parameters typical of type II supernovae, EM for protons can easily reach values in the PeV range, confirming that type II SNRs are the best candidate sources for CRs at the knee. From the point of view of implications of this scenario on the measured particle spectra, we have tried to fit KASCADE-Grande, ARGO -YBJ and YAC1-Tibet Array data with our model but we could not find any combination of the parameters that could explain all data sets. Indeed the recent measurement of the proton and helium spectra in the knee region, with the ARGO-YBJ and YAC1-Tibet Array, has made the situation very confused. These measurements suggest that the knee in the light component is at ∼ 650 TeV, appreciably below the knee in the overall spectrum. On one hand this finding would resolve the problem of reaching very high energies in supernovae, but on the other it would open a critical issue in the transition region between Galactic and extragalactic CRs.
High-Redshift SNe with Subaru and HST
NASA Astrophysics Data System (ADS)
Rubin, David; Suzuki, Nao; Regnault, Nicolas; Aldering, Gregory; Amanullah, Rahman; Antilogus, Pierre; Astier, Pierre; Barbary, Kyle; Betoule, Marc; Boone, Kyle Robert; Currie, Miles; Deustua, Susana; Doi, Mamoru; Fruchter, Andrew; Goobar, Ariel; Hayden, Brian; Hazenberg, Francois; Hook, Isobel; Huang, Xiaosheng; Jiang, Jian; Kato, Takahiro; Kim, Alex; Kowalski, Marek; Lidman, Chris; Linder, Eric; Maeda, Keiichi; Morokuma, Tomoki; Nordin, Jakob; Pain, Reynald; Perlmutter, Saul; Ruiz-Lapuente, Pilar; Sako, Masao; Myers Saunders, Clare; Spadafora, Anthony L.; Tanaka, Masaomi; Tominaga, Nozomu; Yasuda, Naoki; Yoshida, Naoki
2018-01-01
High-redshift type Ia supernovae are crucial for constraining any time variation in dark energy. Here, we present the first discoveries and light curves from the SUbaru Supernovae with Hubble Infrared (SUSHI) program, which combines high-redshift SN discoveries from the Subaru Strategic Program (SSP, as well as other Subaru time) with HST WFC3 IR followup. This program efficiently uses the wide field and high collecting area of Subaru Hyper Suprime-Cam for optical light curves, but still obtains a precision NIR color. We are on track to double the number of well-measured SNe Ia at z > 1.1, triggering on 23 SNe Ia in our first season.
Panchromatic Observations of SN2011dh Point to a Compact Progenitor Star
NASA Technical Reports Server (NTRS)
Soderberg, A. M.; Margutti, R.; Zauerer, B. A.; Krauss, M.; Katz, B.; Chomiuk, L.; Dittmann, J. A.; Nakar, E.; Sakamoto, T.; Kawai, N.;
2011-01-01
We report the discovery and detailed monitoring of X-ray emission associated with the Type IIb SN2011dh using data from the Swift and Chandra satellites, placing it among the best studied X-ray supernovae to date. We further present millimeter and radio data obtained with the SMA, CARMA, and EVLA during the first three weeks after explosion. Combining these observations with early optical photometry, we show that the panchromatic dataset is well-described by non-thermal synchrotron emission (radio/mm) with inverse Compton scattering (X-ray) of a thermal population of optical photons. We derive the properties of the shockwave and the circumstellar environment and find a time-averaged shock velocity of v approximately equals 0.1c and a progenitor mass loss rate of M-dot approximately equals 6 X 10 (exp 5) Solar M/ yr (wind velocity, v(sub w) = 1000 km/s). We show that these properties are consistent with the sub-class of Type IIb supernovae characterized by compact progenitors (Type cIIb) and dissimilar from those with extended progenitors (Type eIIb). Furthermore, we consider the early optical emission in the context of a cooling envelope model to estimate a progenitor radius of R(sub star) approximately equals 10(exp 11) cm, in line with the expectations for a Type cIIb supernova. Together, these diagnostics suggest that the putative yellow supergiant progenitor star identified in archival HST observations is instead a binary companion or unrelated to the supernova. Finally, we searched for the high energy shock breakout pulse using X-ray and gamma-ray observations obtained during the purported explosion date range. Based on the compact radius of the progenitor, we estimate that the shock breakout pulse was detectable with current instruments but likely missed due to their limited temporal/ spatial coverage. Future all-sky missions will regularly detect shock breakout emission from compact SN progenitors enabling prompt follow-up observations of the shockwave with the EVLA and ALMA.
NASA Astrophysics Data System (ADS)
Thielemann, Friedrich-Karl; Isern, Jordi; Perego, Albino; von Ballmoos, Peter
2018-04-01
We present the status and open problems of nucleosynthesis in supernova explosions of both types, responsible for the production of the intermediate mass, Fe-group and heavier elements (with the exception of the main s-process). Constraints from observations can be provided through individual supernovae (SNe) or their remnants (e.g. via spectra and gamma-rays of decaying unstable isotopes) and through surface abundances of stars which witness the composition of the interstellar gas at their formation. With a changing fraction of elements heavier than He in these stars (known as metallicity) the evolution of the nucleosynthesis in galaxies over time can be determined. A complementary way, related to gamma-rays from radioactive decays, is the observation of positrons released in β+-decays, as e.g. from ^{26}Al, ^{44}Ti, ^{56,57}Ni and possibly further isotopes of their decay chains (in competition with the production of e+e- pairs in acceleration shocks from SN remnants, pulsars, magnetars or even of particle physics origin). We discuss (a) the role of the core-collapse supernova explosion mechanism for the composition of intermediate mass, Fe-group (and heavier?) ejecta, (b) the transition from neutron stars to black holes as the final result of the collapse of massive stars, and the relation of the latter to supernovae, faint supernovae, and gamma-ray bursts/hypernovae, (c) Type Ia supernovae and their nucleosynthesis (e.g. addressing the ^{55}Mn puzzle), plus (d) further constraints from galactic evolution, γ-ray and positron observations. This is complemented by the role of rare magneto-rotational supernovae (related to magnetars) in comparison with the nucleosynthesis of compact binary mergers, especially with respect to forming the heaviest r-process elements in galactic evolution.
Constraining the Final Fates of Massive Stars by Oxygen and Iron Enrichment History in the Galaxy
NASA Astrophysics Data System (ADS)
Suzuki, Akihiro; Maeda, Keiichi
2018-01-01
Recent observational studies of core-collapse supernovae suggest that only stars with zero-age main-sequence masses smaller than 16–18 {M}ȯ explode when they are red supergiants, producing Type IIP supernovae. This may imply that more massive stars produce other types of supernovae or they simply collapse to black holes without giving rise to bright supernovae. This failed supernova hypothesis can lead to significantly inefficient oxygen production because oxygen abundantly produced in inner layers of massive stars with zero-age main-sequence masses around 20–30 {M}ȯ might not be ejected into the surrounding interstellar space. We first assume an unspecified population of oxygen injection events related to massive stars and obtain a model-independent constraint on how much oxygen should be released in a single event and how frequently such events should happen. We further carry out one-box galactic chemical enrichment calculations with different mass ranges of massive stars exploding as core-collapse supernovae. Our results suggest that the model assuming that all massive stars with 9–100 {M}ȯ explode as core-collapse supernovae is still most appropriate in explaining the solar abundances of oxygen and iron and their enrichment history in the Galaxy. The oxygen mass in the Galaxy is not explained when assuming that only massive stars with zero-age main-sequence masses in the range of 9–17 {M}ȯ contribute to the galactic oxygen enrichment. This finding implies that a good fraction of stars more massive than 17 {M}ȯ should eject their oxygen layers in either supernova explosions or some other mass-loss processes.
AMEGO as a supernova alarm: alert, probe and diagnosis of Type Ia explosions
NASA Astrophysics Data System (ADS)
McEnery, Julie E.; Wang, Xilu
2017-08-01
A Type Ia supernova (SNIa) could go entirely unnoticed in the Milky Way and nearby starburst galaxies, due to the large optical and near-IR extinction in the dusty environment, low radio and X-ray luminosities, and a weak neutrino signal. But the recent SN2014J confirms that Type Ia supernovae emit γ-ray lines from 56Ni → 56Co → 56Fe radioactive decay, spanning 158 keV to 2.6 MeV. The Galaxy and nearby starbursts are optically thin to γ-rays, so the supernova line flux will suffer negligible extinction. The All-Sky Medium Energy Gamma-ray Observatory (AMEGO) will monitor the entire sky every 3 hours from ~200 keV to >10 GeV. Most of the SNIa gamma-ray lines are squarely within the AMEGO energy range. Thus AMEGO will be an ideal SNIa monitor and early warning system. We will show that the supernova signal is expected to emerge as distinct from the AMEGO background within days after the explosion in the SN2014J shell model. The early stage observations of SNIa will allow us to explore the progenitor types and the nucleosynthesis of SNIa. Moreover, with the excellent line sensitivity, AMEGO will be able to detect the SNIa at a rate of a few events per year and will obtain enough gamma-ray observations over the mission lifetimes (~10 SNIa) to sample the SNIa. The high SNIa detection rate will also enable the precise measurement of the 56Ni mass generated during the Type Ia explosion, which will help us test the cosmic distance calibration and probe the cosmic acceleration.
An earlier explosion date for the Crab Nebula supernova
NASA Astrophysics Data System (ADS)
Abt, Helmut A.; Fountain, John W.
2018-04-01
The Chinese first reported the Crab Nebula supernova on 1054 July 5. Ecclesiastical documents from the near east reported it in April and May of 1054. More than 33 petroglyphs made by Native Americans in the US and Mexico are consistent with sightings both before and after conjunction with the Sun on 1054 May 27. We found a petroglyph showing the new star close to Venus and the Moon, which occurred on 1054 April 12 and April 13, respectively. Collins et al., using the four historical dates, derived a light curve that is like that of a Type Ia supernova. The only remaining problem with this identification is that this supernova was near maximum light for 85 d, which is unlike the behavior of any known supernova.
Spectroscopic classification of supernova SN 2018Z by NUTS (NOT Un-biased Transient Survey)
NASA Astrophysics Data System (ADS)
Kuncarayakti, H.; Mattila, S.; Kotak, R.; Harmanen, J.; Reynolds, T.; Pastorello, A.; Benetti, S.; Stritzinger, M.; Onori, F.; Somero, A.; Kangas, T.; Lundqvist, P.; Taddia, F.; Ergon, M.
2018-01-01
The NOT Unbiased Transient Survey (NUTS; ATel #8992) collaboration reports the spectroscopic classification of supernova SN 2018Z in host galaxy SDSS J231809.76+212553.5 The observations were performed with the 2.56 m Nordic Optical Telescope equipped with ALFOSC (range 350-950 nm; resolution 1.6 nm) on 2018-01-09.9 UT. Survey Name | IAU Name | Discovery (UT) | Discovery mag | Observation (UT) | Redshift | Type | Phase | Notes PS18ao | SN 2018Z | 2018-01-01.2 | 19.96 | 2018-01-09.9 | 0.102 | Ia | post-maximum? | (1) (1) Redshift was derived from the SN and host absorption features.
Collapsar γ-ray bursts: how the luminosity function dictates the duration distribution
NASA Astrophysics Data System (ADS)
Petropoulou, Maria; Barniol Duran, Rodolfo; Giannios, Dimitrios
2017-12-01
Jets in long-duration γ-ray bursts (GRBs) have to drill through the collapsing star in order to break out of it and produce the γ-ray signal while the central engine is still active. If the breakout time is shorter for more powerful engines, then the jet-collapsar interaction acts as a filter of less luminous jets. We show that the observed broken power-law GRB luminosity function is a natural outcome of this process. For a theoretically motivated breakout time that scales with jet luminosity as L-χ with χ ∼ 1/3-1/2, we show that the shape of the γ-ray duration distribution can be uniquely determined by the GRB luminosity function and matches the observed one. This analysis has also interesting implications about the supernova-central engine connection. We show that not only successful jets can deposit sufficient energy in the stellar envelope to power the GRB-associated supernovae, but also failed jets may operate in all Type Ib/c supernovae.
The Early Detection and Follow-up of the Highly Obscured Type II Supernova 2016ija/DLT16am
NASA Astrophysics Data System (ADS)
Tartaglia, L.; Sand, D. J.; Valenti, S.; Wyatt, S.; Anderson, J. P.; Arcavi, I.; Ashall, C.; Botticella, M. T.; Cartier, R.; Chen, T.-W.; Cikota, A.; Coulter, D.; Della Valle, M.; Foley, R. J.; Gal-Yam, A.; Galbany, L.; Gall, C.; Haislip, J. B.; Harmanen, J.; Hosseinzadeh, G.; Howell, D. A.; Hsiao, E. Y.; Inserra, C.; Jha, S. W.; Kankare, E.; Kilpatrick, C. D.; Kouprianov, V. V.; Kuncarayakti, H.; Maccarone, T. J.; Maguire, K.; Mattila, S.; Mazzali, P. A.; McCully, C.; Melandri, A.; Morrell, N.; Phillips, M. M.; Pignata, G.; Piro, A. L.; Prentice, S.; Reichart, D. E.; Rojas-Bravo, C.; Smartt, S. J.; Smith, K. W.; Sollerman, J.; Stritzinger, M. D.; Sullivan, M.; Taddia, F.; Young, D. R.
2018-01-01
We present our analysis of the Type II supernova DLT16am (SN 2016ija). The object was discovered during the ongoing D< 40 {Mpc} (DLT40) one-day cadence supernova search at r∼ 20.1 {mag} in the “edge-on” nearby (D=20.0+/- 4.0 {Mpc}) galaxy NGC 1532. The subsequent prompt and high-cadenced spectroscopic and photometric follow-up revealed a highly extinguished transient, with E(B-V)=1.95+/- 0.15 {mag}, consistent with a standard extinction law with R V = 3.1 and a bright ({M}V=-18.48+/- 0.77 {mag}) absolute peak magnitude. A comparison of the photometric features with those of large samples of SNe II reveals a fast rise for the derived luminosity and a relatively short plateau phase, with a slope of {S}50V=0.84+/- 0.04 {mag}/50 {days}, consistent with the photometric properties typical of those of fast-declining SNe II. Despite the large uncertainties on the distance and the extinction in the direction of DLT16am, the measured photospheric expansion velocity and the derived absolute V-band magnitude at ∼ 50 {days} after the explosion match the existing luminosity–velocity relation for SNe II. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.
A population of highly energetic transient events in the centres of active galaxies
NASA Astrophysics Data System (ADS)
Kankare, E.; Kotak, R.; Mattila, S.; Lundqvist, P.; Ward, M. J.; Fraser, M.; Lawrence, A.; Smartt, S. J.; Meikle, W. P. S.; Bruce, A.; Harmanen, J.; Hutton, S. J.; Inserra, C.; Kangas, T.; Pastorello, A.; Reynolds, T.; Romero-Cañizales, C.; Smith, K. W.; Valenti, S.; Chambers, K. C.; Hodapp, K. W.; Huber, M. E.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E. A.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.
2017-12-01
Recent all-sky surveys have led to the discovery of new types of transients. These include stars disrupted by the central supermassive black hole, and supernovae that are 10-100 times more energetic than typical ones. However, the nature of even more energetic transients that apparently occur in the innermost regions of their host galaxies is hotly debated1-3. Here we report the discovery of the most energetic of these to date: PS1-10adi, with a total radiated energy of 2.3 × 1052 erg. The slow evolution of its light curve and persistently narrow spectral lines over ˜ 3 yr are inconsistent with known types of recurring black hole variability. The observed properties imply powering by shock interaction between expanding material and large quantities of surrounding dense matter. Plausible sources of this expanding material are a star that has been tidally disrupted by the central black hole, or a supernova. Both could satisfy the energy budget. For the former, we would be forced to invoke a new and hitherto unseen variant of a tidally disrupted star, while a supernova origin relies principally on environmental effects resulting from its nuclear location. Remarkably, we also discover that PS1-10adi is not an isolated case. We therefore surmise that this new population of transients has previously been overlooked due to incorrect association with underlying central black hole activity.
NASA Astrophysics Data System (ADS)
Villarroel, Beatriz; Nyholm, Anders; Karlsson, Torgny; Comerón, Sébastien; Korn, Andreas J.; Sollerman, Jesper; Zackrisson, Erik
2017-03-01
Active galactic nuclei (AGNs) are extremely powerful cosmic objects, driven by accretion of hot gas upon super-massive black holes. The zoo of AGN classes is divided into two major groups, with Type-1 AGNs displaying broad Balmer emission lines and Type-2 narrow ones. For a long time it was believed that a Type-2 AGN is a Type-1 AGN viewed through a dusty kiloparsec-sized torus, but an emerging body of observations suggests more than just the viewing angle matters. Here we report significant differences in supernova (SN) counts and classes in the first study to date of SNe near Type-1 and Type-2 AGN host galaxies, using data from the intermediate Palomar Transient Factory, the Sloan Digital Sky Survey Data Release 7, and Galaxy Zoo. We detect many more SNe in Type-2 AGN hosts (size of effect ˜5.1σ) compared to Type-1 hosts, which shows that the two classes of AGN are located inside host galaxies with different properties. In addition, Type-1 and Type-2 AGNs that are dominated by star formation according to Wide-field Infrared Survey Explorer colors {m}W1-{m}W2< 0.5 and are matched in 22 μm absolute magnitude differ by a factor of ten in L[O III] λ5007 luminosity, suggesting that when residing in similar types of host galaxies Type-1 AGNs are much more luminous. Our results demonstrate two more factors that play an important role in completing the current picture: the age of stellar populations and the AGN luminosity. This has immediate consequences for understanding the many AGN classes and galaxy evolution.
Dust in a Type Ia Supernova Progenitor: Spitzer Spectroscopy of Kepler's Supernova Remnant
NASA Technical Reports Server (NTRS)
Williams, Brian J.; Borkowski, Kazimierz; Reynolds, Stephen P.; Ghavamian, Parviz; Blair, William P.; Long, Knox S.; Sankrit, Ravi
2012-01-01
Characterization of the relatively poorly-understood progenitor systems of Type Ia supernovae is of great importance in astrophysics, particularly given the important cosmological role that these supernovae play. Kepler's Supernova Remnant, the result of a Type Ia supernova, shows evidence for an interaction with a dense circumstellar medium (CSM), suggesting a single-degenerate progenitor system. We present 7.5-38 micron IR spectra of the remnant, obtained with the Spitzer Space Telescope, dominated by emission from warm dust. Broad spectral features at 10 and 18 micron, consistent with various silicate particles, are seen throughout. These silicates were likely formed in the stellar outflow from the progenitor system during the AGB stage of evolution, and imply an oxygen-rich chemistry. In addition to silicate dust, a second component, possibly carbonaceous dust, is necessary to account for the short-wavelength IRS and IRAC data. This could imply a mixed chemistry in the atmosphere of the progenitor system. However, non-spherical metallic iron inclusions within silicate grains provide an alternative solution. Models of collisionally-heated dust emission from fast shocks (> 1000 km/s) propagating into the CSM can reproduce the majority of the emission associated with non-radiative filaments, where dust temperatures are approx 80-100 K, but fail to account for the highest temperatures detected, in excess of 150 K. We find that slower shocks (a few hundred km/s) into moderate density material (n(sub o) approx 50-100 / cubic cm) are the only viable source of heating for this hottest dust. We confirm the finding of an overall density gradient, with densities in the north being an order of magnitude greater than those in the south.
Radiation Transport in Type IA Supernovae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eastman, R
1999-11-16
It has been said more than once that the critical link between explosion models and observations is the ability to accurately simulate cooling and radiation transport in the expanding ejecta of Type Ia supernovae. It is perhaps frustrating to some of the theorists who study explosion mechanisms, and to some of the observers too, that more definitive conclusions have not been reached about the agreement, or lack thereof, between various Type Ia supernova models and the data. Although claims of superlative accuracy in transport simulations are sometimes made, I will argue here that there are outstanding issues of critical importancemore » and in need of addressing before radiation transport calculations are accurate enough to discriminate between subtly different explosion models.« less
Electron-capture supernovae of super-asymptotic giant branch stars and the Crab supernova 1054
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nomoto, Ken'ichi; Tominaga, Nozomu; Blinnikov, Sergei I.
2014-05-02
An electron-capture supernova (ECSN) is a core-collapse supernova explosion of a super-asymptotic giant branch (SAGB) star with a main-sequence mass M{sub Ms} ∼ 7 - 9.5M{sub ⊙}. The explosion takes place in accordance with core bounce and subsequent neutrino heating and is a unique example successfully produced by first-principle simulations. This allows us to derive a first self-consistent multicolor light curves of a core-collapse supernova. Adopting the explosion properties derived by the first-principle simulation, i.e., the low explosion energy of 1.5 × 10{sup 50} erg and the small {sup 56}Ni mass of 2.5 × 10{sup −3} M{sub ⊙}, we performmore » a multigroup radiation hydrodynamics calculation of ECSNe and present multicolor light curves of ECSNe of SAGB stars with various envelope mass and hydrogen abundance. We demonstrate that a shock breakout has peak luminosity of L ∼ 2 × 10{sup 44} erg s{sup −1} and can evaporate circumstellar dust up to R ∼ 10{sup 17} cm for a case of carbon dust, that plateau luminosity and plateau duration of ECSNe are L ∼ 10{sup 42} erg s{sup −1} and {sup t} ∼ 60 - 100 days, respectively, and that a plateau is followed by a tail with a luminosity drop by ∼ 4 mag. The ECSN shows a bright and short plateau that is as bright as typical Type II plateau supernovae, and a faint tail that might be influenced by spin-down luminosity of a newborn pulsar. Furthermore, the theoretical models are compared with ECSN candidates: SN 1054 and SN 2008S. We find that SN 1054 shares the characteristics of the ECSNe. For SN 2008S, we find that its faint plateau requires a ECSN model with a significantly low explosion energy of E ∼ 10{sup 48} erg.« less
A blinded determination of H0 from low-redshift Type Ia supernovae, calibrated by Cepheid variables
NASA Astrophysics Data System (ADS)
Zhang, Bonnie R.; Childress, Michael J.; Davis, Tamara M.; Karpenka, Natallia V.; Lidman, Chris; Schmidt, Brian P.; Smith, Mathew
2017-10-01
Presently, a >3σ tension exists between values of the Hubble constant H0 derived from analysis of fluctuations in the cosmic microwave background by Planck, and local measurements of the expansion using calibrators of Type Ia supernovae (SNe Ia). We perform a blinded re-analysis of Riess et al. (2011) to measure H0 from low-redshift SNe Ia, calibrated by Cepheid variables and geometric distances including to NGC 4258. This paper is a demonstration of techniques to be applied to the Riess et al. (2016) data. Our end-to-end analysis starts from available Harvard -Smithsonian Center for Astrophysics (CfA3) and Lick Observatory Supernova Search (LOSS) photometries, providing an independent validation of Riess et al. (2011). We obscure the value of H0 throughout our analysis and the first stage of the referee process, because calibration of SNe Ia requires a series of often subtle choices, and the potential for results to be affected by human bias is significant. Our analysis departs from that of Riess et al. (2011) by incorporating the covariance matrix method adopted in Supernova Legacy Survey and Joint Lightcurve Analysis to quantify SN Ia systematics, and by including a simultaneous fit of all SN Ia and Cepheid data. We find H_0 = 72.5 ± 3.1 ({stat}) ± 0.77 ({sys}) km s-1 Mpc-1with a three-galaxy (NGC 4258+LMC+MW) anchor. The relative uncertainties are 4.3 per cent statistical, 1.1 per cent systematic, and 4.4 per cent total, larger than in Riess et al. (2011) (3.3 per cent total) and the Efstathiou (2014) re-analysis (3.4 per cent total). Our error budget for H0 is dominated by statistical errors due to the small size of the SN sample, whilst the systematic contribution is dominated by variation in the Cepheid fits, and for the SNe Ia, uncertainties in the host galaxy mass dependence and Malmquist bias.
Observational Constraints on the Unified Dark-Energy Dark-Matter Model
NASA Astrophysics Data System (ADS)
Wu, Pu-Xun; Yu, Hong-Wei
2007-03-01
We investigate the constraints on a generalized Chaplygin gas (GCG) model using the gold sample type-Ia supernovae (Sne Ia) data, the new Supernova Legacy Survey (SNLS) Sne Ia data and the size of baryonic acoustic oscillation peak found in Sloan Digital Sky Survey (SDSS). In a spatially flat universe case we obtain, at a 95.4% confidence level, As = 0.76-0.07+0.07 and α = 0.028-0.238+0.322. Our results are consistent with the ΛCDM model (α = 0), but rule out the standard Chaplygin gas model (α = 1).
VizieR Online Data Catalog: Redshifts of 65 CANDELS supernovae (Rodney+, 2014)
NASA Astrophysics Data System (ADS)
Rodney, S. A.; Riess, A. G.; Strolger, L.-G.; Dahlen, T.; Graur, O.; Casertano, S.; Dickinson, M. E.; Ferguson, H. C.; Garnavich, P.; Hayden, B.; Jha, S. W.; Jones, D. O.; Kirshner, R. P.; Koekemoer, A. M.; McCully, C.; Mobasher, B.; Patel, B.; Weiner, B. J.; Cenko, S. B.; Clubb, K. I.; Cooper, M.; Filippenko, A. V.; Frederiksen, T. F.; Hjorth, J.; Leibundgut, B.; Matheson, T.; Nayyeri, H.; Penner, K.; Trump, J.; Silverman, J. M.; U, V.; Azalee Bostroem, K.; Challis, P.; Rajan, A.; Wolff, S.; Faber, S. M.; Grogin, N. A.; Kocevski, D.
2015-01-01
In this paper we present a measurement of the Type Ia supernova explosion rate as a function of redshift (SNR(z)) from a sample of 65 supernovae discovered in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) supernova program. This supernova survey is a joint operation of two Hubble Space Telescope (HST) Multi-Cycle Treasury (MCT) programs: CANDELS (PIs: Faber and Ferguson; Grogin et al., 2011ApJS..197...35G; Koekemoer et al., 2011ApJS..197...36K), and the Cluster Lensing and Supernovae search with Hubble (CLASH; PI: Postman; Postman et al. 2012, cat. J/ApJS/199/25). The supernova discovery and follow-up for both programs were allocated to the HST MCT supernova program (PI: Riess). The results presented here are based on the full five fields and ~0.25deg2 of the CANDELS program, observed from 2010 to 2013. A companion paper presents the SN Ia rates from the CLASH sample (Graur et al., 2014ApJ...783...28G). A composite analysis that combines the CANDELS+CLASH supernova sample and revisits past HST surveys will be presented in a future paper. The three-year CANDELS program was designed to probe galaxy evolution out to z~8 with deep infrared and optical imaging of five well-studied extragalactic fields: GOODS-S, GOODS-N (the Great Observatories Origins Deep Survey South and North; Giavalisco et al. 2004, cat. II/261), COSMOS (the Cosmic Evolution Survey, Scoville et al., 2007ApJS..172....1S; Koekemoer et al., 2007ApJS..172..196K), UDS (the UKIDSS Ultra Deep Survey; Lawrence et al. 2007, cat. II/314; Cirasuolo et al., 2007MNRAS.380..585C), EGS (the Extended Groth Strip; Davis et al. 2007, cat. III/248). As described fully in Grogin et al. (2011ApJS..197...35G), the CANDELS program includes both "wide" and "deep" fields. The wide component of CANDELS comprises the COSMOS, UDS, and EGS fields, plus one-third of the GOODS-S field and one half of the GOODS-N field--a total survey area of 730 arcmin2. The "deep" component of CANDELS came from the central 67arcmin2 of each of the GOODS-S and GOODS-N fields. The CANDELS fields analyzed in this work are described in Table 1. (6 data files).
Chemical Enrichment History Of Abell 3112 Galaxy Cluster Out To The Virial Radius
NASA Astrophysics Data System (ADS)
Ezer, C.; Bulbul, E.; Ercan, E.; Smith, R.; Bautz, M.; Loewenstein, M.; McDonald, M.; Miller, E.
2017-10-01
The deep potential well of the galaxy clusters confines all metals produced via supernova explosions within the intra-cluster medium (ICM). The radial distributions of these metals along the ICM are direct records of the metal enrichment history. In this work, we investigate the chemical enrichment history of Abell 3112 galaxy cluster from cluster's core to out to radius R_{200} (˜ 1470 kpc) by analyzing a deep 1.2 Ms Suzaku observations with overlapping 72 ks Chandra observations. The fraction of supernova explosions enriching the ICM is obtained by fitting the X-ray spectra with a robust snapec model implemented in XSPEC. The ratio of supernova type Ia explosions to the core collapse supernova explosions is found in the range 0.12 - 0.16 and uniformly distributed out to R_{200}. The uniform spatial distribution of supernova enrichment indicates an early metal enrichment between the epoch of z ˜ 2 - 3. We also observe that W7, CDD, and WDD SN Ia models equally better explain the highest signal-to-noise region compared to 2D delayed detonation model CDDT. We further report the first time temperature (3.37 ± 0.77 keV) and metallicity (0.22 ± 0.08 Z_{⊙}) measurements of this archetypal cluster at its virial radius.
Rates and delay times of Type Ia supernovae in the helium-enriched main-sequence donor scenario
NASA Astrophysics Data System (ADS)
Liu, Zheng-Wei; Stancliffe, Richard J.
2018-04-01
The nature of the progenitors of Type Ia supernovae (SNe Ia) remains a mystery. Comparing theoretical rates and delay-time distributions of SNe Ia with those inferred observationally can constrain their progenitor models. In this work, taking thermohaline mixing into account in the helium-enriched main-sequence (HEMS) donor scenario, we address rates and delay times of SNe Ia in this channel by combining the results of self-consistent binary evolution calculations with population synthesis models. We find that the Galactic SN Ia rate from the HEMS donor scenario is around 0.6-1.2 × 10-3 yr-1, which is about 30 per cent of the observed rate. Delay times of SNe Ia in this scenario cover a wide range of 0.1-1.0 Gyr. We also present the pre-explosion properties of companion stars in the HEMS donor scenario, which will be helpful for placing constraints on SN Ia progenitors through analysing their pre-explosion images.
Model Independent Determination of Electron Fraction for Individual SNIa
NASA Astrophysics Data System (ADS)
De, Soma; Timmes, F.; Hawley, W.; Chamulak, D.; Athanassiadou, T.; Jack, D.; Calder, A.; Brown, E.; Townsley, D.
2013-01-01
Ye of individual supernova Type Ia at the time of explosion by using the silicon, sulfur, and calcium features from single epoch and multi-epoch spectra near maximum light. Most one-dimensional Chandrasekhar mass models of supernova Type Ia in the single-degenerate scenario produce their intermediate-mass elements in a burn to quasi-nuclear statistical equilibrium between the mass shells 0.8 and 1.1 M. We find a near linear dependence of the intermediate-mass element nuclear yields on the white dwarf’s initial metallicity from such SNe Ia explosion models, and the effect this dependence has on synthetic spectra near maximum light. We demonstrate that these metallicity signatures are only due to material achieving the necessary thermodynamic conditions. In addition, we find that global abundance of silicon is insensitive to change in metallicity but sulfur and calcium abundances change significantly
Search for gamma ray lines from supernovae and supernova remnants
NASA Technical Reports Server (NTRS)
Chupp, E. L.; Forrest, D. J.; Suri, A. N.; Adams, R.; Tsai, C.
1974-01-01
A gamma ray monitor with a NaI crystal shielded with a cup-shaped CsI cover was contained in the rotating wheel compartment of the OSO-7 spacecraft for measuring the gamma ray spectra from 0.3 to 10 MeV in search for gamma ray lines from a possible remnant in the Gum Nebula and the apparent Type I supernovae in NGC5253. A brief analysis of data yielded no positive indications for X-rays, gamma ray lines, or continuum from these sources.
Evidence from stable isotopes and 10Be for solar system formation triggered by a low-mass supernova
Banerjee, Projjwal; Qian, Yong-Zhong; Heger, Alexander; Haxton, W C
2016-01-01
About 4.6 billion years ago, some event disturbed a cloud of gas and dust, triggering the gravitational collapse that led to the formation of the solar system. A core-collapse supernova, whose shock wave is capable of compressing such a cloud, is an obvious candidate for the initiating event. This hypothesis can be tested because supernovae also produce telltale patterns of short-lived radionuclides, which would be preserved today as isotopic anomalies. Previous studies of the forensic evidence have been inconclusive, finding a pattern of isotopes differing from that produced in conventional supernova models. Here we argue that these difficulties either do not arise or are mitigated if the initiating supernova was a special type, low in mass and explosion energy. Key to our conclusion is the demonstration that short-lived 10Be can be readily synthesized in such supernovae by neutrino interactions, while anomalies in stable isotopes are suppressed. PMID:27873999
Evidence from stable isotopes and 10Be for solar system formation triggered by a low-mass supernova
Banerjee, Projjwal; Qian, Yong -Zhong; Heger, Alexander; ...
2016-11-22
About 4.6 billion years ago, some event disturbed a cloud of gas and dust, triggering the gravitational collapse that led to the formation of the solar system. A core-collapse supernova, whose shock wave is capable of compressing such a cloud, is an obvious candidate for the initiating event. This hypothesis can be tested because supernovae also produce telltale patterns of short-lived radionuclides, which would be preserved today as isotopic anomalies. Previous studies of the forensic evidence have been inconclusive, finding a pattern of isotopes differing from that produced in conventional supernova models. Here we argue that these difficulties either domore » not arise or are mitigated if the initiating supernova was a special type, low in mass and explosion energy. Key to our conclusion is the demonstration that short-lived 10Be can be readily synthesized in such supernovae by neutrino interactions, while anomalies in stable isotopes are suppressed.« less
Evidence from stable isotopes and 10Be for solar system formation triggered by a low-mass supernova
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Projjwal; Qian, Yong -Zhong; Heger, Alexander
About 4.6 billion years ago, some event disturbed a cloud of gas and dust, triggering the gravitational collapse that led to the formation of the solar system. A core-collapse supernova, whose shock wave is capable of compressing such a cloud, is an obvious candidate for the initiating event. This hypothesis can be tested because supernovae also produce telltale patterns of short-lived radionuclides, which would be preserved today as isotopic anomalies. Previous studies of the forensic evidence have been inconclusive, finding a pattern of isotopes differing from that produced in conventional supernova models. Here we argue that these difficulties either domore » not arise or are mitigated if the initiating supernova was a special type, low in mass and explosion energy. Key to our conclusion is the demonstration that short-lived 10Be can be readily synthesized in such supernovae by neutrino interactions, while anomalies in stable isotopes are suppressed.« less
Bolometric Light Curves of Peculiar Type II-P Supernovae
NASA Astrophysics Data System (ADS)
Lusk, Jeremy A.; Baron, E.
2017-04-01
We examine the bolometric light curves of five Type II-P supernovae (SNe 1998A, 2000cb, 2006V, 2006au, and 2009E), which are thought to originate from blue supergiant progenitors like that of SN 1987A, using a new python package named SuperBoL. With this code, we calculate SNe light curves using three different common techniques common from the literature: the quasi-bolometric method, which integrates the observed photometry, the direct integration method, which additionally corrects for unobserved flux in the UV and IR, and the bolometric correction method, which uses correlations between observed colors and V-band bolometric corrections. We present here the light curves calculated by SuperBoL, along with previously published light curves, as well as peak luminosities and 56Ni yields. We find that the direct integration and bolometric correction light curves largely agree with previously published light curves, but with what we believe to be more robust error calculations, with 0.2≲ δ {L}{bol}/{L}{bol}≲ 0.5. Peak luminosities and 56Ni masses are similarly comparable to previous work. SN 2000cb remains an unusual member of this sub-group, owing to the faster rise and flatter plateau than the other supernovae in the sample. Initial comparisons with the NLTE atmosphere code PHOENIX show that the direct integration technique reproduces the luminosity of a model supernova spectrum to ˜5% when given synthetic photometry of the spectrum as input. Our code is publicly available. The ability to produce bolometric light curves from observed sets of broadband light curves should be helpful in the interpretation of other types of supernovae, particularly those that are not well characterized, such as extremely luminous supernovae and faint fast objects.
Binary progenitors of supernovae
NASA Astrophysics Data System (ADS)
Trimble, V.
1984-12-01
Among the massive stars that are expected to produce Type II, hydrogen-rich supernovae, the presence of a close companion can increase the main sequence mass needed to yield a collapsing core. In addition, due to mass transfer from the primary to the secondary, the companion enhances the stripping of the stellar hydrogen envelope produced by single star winds and thereby makes it harder for the star to give rise to a typical SN II light curve. Among the less massive stars that may be the basis for Type I, hydrogen-free supernovae, a close companion could be an innocent bystander to carbon detonation/deflagration in the primary. It may alternatively be a vital participant which transfers material to a white dwarf primary and drives it to explosive conditions.
NASA Technical Reports Server (NTRS)
Yamaguchi, Hiroya; Badenes, Carles; Foster, Adam R.; Bravo, Eduardo; Williams, Brian J.; Maeda, Keiichi; Nobukawa, Masayoshi; Eriksen, Kristoffer A.; Brickhouse, Nancy S.; Petre, Robert;
2015-01-01
Despite decades of intense efforts, many fundamental aspects of Type Ia supernovae (SNe Ia) remain elusive. One of the major open questions is whether the mass of an exploding white dwarf (WD) is close to the Chandrasekhar limit. Here, we report the detection of strong K-shell emission from stable Fe-peak elements in the Suzaku X-ray spectrum of the Type Ia supernova remnant (SNR) 3C 397. The high Ni/Fe and Mn/Fe mass ratios - (0.11-0.24 and 0.018-0.033, respectively) in the hot plasma component that dominates the K-shell emission lines indicate a degree of neutronization in the supernova ejecta that can only be achieved by electron capture in the dense cores of exploding WDs with a near-Chandrasekhar mass. This suggests a single-degenerate origin for 3C 397, since Chandrasekhar mass progenitors are expected naturally if the WD accretes mass slowly from a companion. Together with other results supporting the double-degenerate scenario, our work adds to the mounting evidence that both progenitor channels make a significant contribution to the SN Ia rate in star-forming galaxies.
The surviving companions in type Ia supernova remnants
NASA Astrophysics Data System (ADS)
Chen, Li-Qing; Meng, Xiang-Cun; Han, Zhan-Wen
2017-08-01
The single-degenerate (SD) model is one of the most popular progenitor models of type Ia supernovae (SNe Ia), in which the companion star can survive after an SN Ia explosion and show peculiar properties. Therefore, searching for the surviving companion in type Ia supernova remnants (SNRs) is a potential method to verify the SD model. In the SN 1604 remnant (Kepler’s SNR), although Chandra X-ray observation suggests that the progenitor is most likely a WD+AGB system, a the surviving companion has not been found. One possible reason is rapid rotation of the white dwarf (WD), causing explosion of the WD to be delayed for a spin-down timescale, and then the companion evolved into a WD before the supernova explosion, so the companion is too dim to be detected. We aim to verify this possible explanation by carrying out binary evolution calculations. In this paper, we use Eggleton’s stellar evolution code to calculate the evolution of binaries consisting of a WD+red giant (RG). We assume that the rapidly rotating WD can continuously increase its mass when its mass exceeds the Chandrasekhar mass limit ({M}{{Ch}}=1.378 {M}⊙ ) until the mass-transfer rate decreases to be lower than a critical value. Eventually, we obtain the final masses of a WD in the range 1.378 M ⊙ to 2.707 M ⊙. We also show that if the spin-down time is less than 106 yr, the companion star will be very bright and easily observed; but if the spin-down time is as long as ˜ 107 yr, the luminosities of the surviving companion would be lower than the detection limit. Our simulation provides guidance in hunting for the surviving companion stars in SNRs, and the fact that no surviving companion has been found in Kepler’s SNR may not be definite evidence disfavoring the SD origin of Kepler’s SN.
30 Dor B - A supernova remnant in a star formation region
NASA Technical Reports Server (NTRS)
Chu, You-Hua; Kennicutt, Robert C., Jr.; Schommer, Robert A.; Laff, Joshua
1992-01-01
The supernova remnant 30 Dor B is embedded in an H II region around the OB association LH 99, and has been suggested to be a Crab-type remnant. To determine the spatial extent and kinematic properties of this supernova remnant, long-slit echelle observations were obtained in the H-alpha and forbidden N II lines, along with imaging Fabry-Perot observations in the H-alpha line. It is found that 30 Dor B is partially obscured by a dark cloud with which the supernova remnant also interacts. The size of 30 Dor B is much larger than previously thought, making it much older than the Crab Nebula. If the progenitor of the supernova was formed coevally with LH 99, then it would have been more massive than the O3 members of the OB association.
Classification of ASASSN-16ct as a Type Ia supernova near maximum
NASA Astrophysics Data System (ADS)
Piascik, A. S.; Steele, I. A.
2016-03-01
We conducted a spectroscopic observation of transient ASASSN-16ct (AT 2016aud) at 2016-03-10T04:38:37 UT. This transient was identified in ATel #8796 by the All Sky Automated Survey for SuperNovae (ASAS-SN).
Models for Supernovae and Gamma-Ray Bursts
NASA Astrophysics Data System (ADS)
Woosley, Stan
Supernovae and gamma-ray bursts are the brightest stellar mass explosions in the universe. As such, they serve as cosmic beacons for probing cosmic structure and diagnosing the properties of stars and the universe when it was young. They also produce black holes and neutron stars, interesting in themselves as laboratories where exotic physics comes into play, and they make the elements from which life arises. Consequently, supernovae and gamma-ray bursts are subject to intense study by many NASA missions. We propose focused studies in five areas of supernova research that are directly relevant to NASA's missions, especially SWIFT, HST, JWST, and planning for WFIRST. Our specific topics are a) models for Type Ia supernovae; b) extreme supernovae and first supernovae; c) magnetar-powered supernovae; d) ultra-long duration gamma-ray bursts; and e) shock breakout in supernovae. These phenomena all have in common their importance to NASA missions and the fact that they can be studied using similar tools - computer codes that do radiation hydrodynamics. Our two principal codes, KEPLER (one-dimension) and CASTRO (one to three dimensions), have been honed to the task by years of supernova modeling, and have some unique capabilities. Type Ia supernovae have long been of interest to NASA, but their importance has increased lately because of their utility in determining cosmic distances and because a string of recent observational breakthroughs has severely limited their progenitors. Responding to these developments, we propose to focus on a class of model we have previously neglected, the merger of two white dwarfs. The mergers will be studied with KEPLER and CASTRO in one and two dimensions, and the spectra and light curves determined. The library of model results will be useful in interpreting the results of present NASA missions and planning new ones. A second important area of investigation will be the study of first generation stars and the supernovae that they produce. These stars may have been born more massive than nowadays, and certainly died more massive if mass loss depends upon metallicity. We will explore the bright signal from shock breakout in these stars, a signal that should be detectable even after traversing almost all the universe. We will also study a particular class of ultra-luminous supernovae resulting from the collisions of shells ejected by repeated thermonuclear explosions in very massive stars, the so called ``pulsational pair instability supernovae''. Shock break out will also be studied in more nearby stars using the large library of supernova models we have computed over the years. And we will study the effects that the black holes and neutron stars have on the light emitted by the supernovae that made them. If the outer layers of the star that made the black hole rotate too fast to fall straight into the hole, a long duration (minutes to days) gamma-ray burst can result. If the neutron star has an exceptionally strong magnetic field and rotates rapidly, it may contribute to the supernova light curve. In some cases the supernova would be ultraluminous. Finding compelling evidence for either of these effects would have important implications for how supernovae and gamma-ray bursts work. We are seeking support for one month's summer salary for the PI and full time support for a graduate student. The student is already at UCSC and working on similar projects.
A surge of light at the birth of a supernova.
Bersten, M C; Folatelli, G; García, F; Van Dyk, S D; Benvenuto, O G; Orellana, M; Buso, V; Sánchez, J L; Tanaka, M; Maeda, K; Filippenko, A V; Zheng, W; Brink, T G; Cenko, S B; de Jaeger, T; Kumar, S; Moriya, T J; Nomoto, K; Perley, D A; Shivvers, I; Smith, N
2018-02-21
It is difficult to establish the properties of massive stars that explode as supernovae. The electromagnetic emission during the first minutes to hours after the emergence of the shock from the stellar surface conveys important information about the final evolution and structure of the exploding star. However, the unpredictable nature of supernova events hinders the detection of this brief initial phase. Here we report the serendipitous discovery of a newly born, normal type IIb supernova (SN 2016gkg), which reveals a rapid brightening at optical wavelengths of about 40 magnitudes per day. The very frequent sampling of the observations allowed us to study in detail the outermost structure of the progenitor of the supernova and the physics of the emergence of the shock. We develop hydrodynamical models of the explosion that naturally account for the complete evolution of the supernova over distinct phases regulated by different physical processes. This result suggests that it is appropriate to decouple the treatment of the shock propagation from the unknown mechanism that triggers the explosion.
A surge of light at the birth of a supernova
NASA Astrophysics Data System (ADS)
Bersten, M. C.; Folatelli, G.; García, F.; van Dyk, S. D.; Benvenuto, O. G.; Orellana, M.; Buso, V.; Sánchez, J. L.; Tanaka, M.; Maeda, K.; Filippenko, A. V.; Zheng, W.; Brink, T. G.; Cenko, S. B.; de Jaeger, T.; Kumar, S.; Moriya, T. J.; Nomoto, K.; Perley, D. A.; Shivvers, I.; Smith, N.
2018-02-01
It is difficult to establish the properties of massive stars that explode as supernovae. The electromagnetic emission during the first minutes to hours after the emergence of the shock from the stellar surface conveys important information about the final evolution and structure of the exploding star. However, the unpredictable nature of supernova events hinders the detection of this brief initial phase. Here we report the serendipitous discovery of a newly born, normal type IIb supernova (SN 2016gkg), which reveals a rapid brightening at optical wavelengths of about 40 magnitudes per day. The very frequent sampling of the observations allowed us to study in detail the outermost structure of the progenitor of the supernova and the physics of the emergence of the shock. We develop hydrodynamical models of the explosion that naturally account for the complete evolution of the supernova over distinct phases regulated by different physical processes. This result suggests that it is appropriate to decouple the treatment of the shock propagation from the unknown mechanism that triggers the explosion.
Search for neutrinos from core-collapse supernova from the global network of detectors
NASA Astrophysics Data System (ADS)
Habig, Alec; Snews working Group
2010-01-01
The Supernova Early Warning System (SNEWS) is a cooperative effort between the world's neutrino detection experiments to spread the news that a star in our galaxy has just experienced a core-collapse event and is about to become a Type II Supernova. This project exploits the ~hours time difference between neutrinos promptly escaping the nascent supernova and photons which originate when the shock wave breaks through the stellar photosphere, to give the world a chance to get ready to observe such an exciting event at the earliest possible time. A coincidence trigger between experiments is used to eliminate potential local false alarms, allowing a rapid, automated alert.
Spectroscopic Classification of AT2016fij as a Normal Type Ia Supernova
NASA Astrophysics Data System (ADS)
Shivvers, I.; Yuk, H.; Kelly, P.; Stahl, B.; Filippenko, A. V.
2016-09-01
We report that a CCD spectrum (range 350-1050 nm) of AT2016fij was obtained on Aug. 27.5 UT with the 3-m Shane reflector (+Kast) at Lick Observatory. We classified the event via cross-correlation with a library of supernova spectra using the "SuperNova IDentification" code (SNID; Blondin & Tonry 2007, Ap.J. 666, 1024) including the updated templates of Silverman et al. (2012, MNRAS, 425, 1789) and Liu & Modjaz (2014, arXiv:1405.1437).
NASA Technical Reports Server (NTRS)
Graur, O.; Rodney, S. A.; Maoz, D.; Riess, A. G.; Jha, S. W.; Postman, M.; Dahlen, T.; Holoien, T. W.-S.; McCully, C.; Patel, B.;
2014-01-01
We present the supernova (SN) sample and Type-Ia SN (SN Ia) rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope (HST), we have imaged 25 galaxy-cluster fields and parallel fields of non-cluster galaxies. We report a sample of 27 SNe discovered in the parallel fields. Of these SNe, approximately 13 are classified as SN Ia candidates, including four SN Ia candidates at redshifts z greater than 1.2.We measure volumetric SN Ia rates to redshift 1.8 and add the first upper limit on the SN Ia rate in the range z greater than 1.8 and less than 2.4. The results are consistent with the rates measured by the HST/ GOODS and Subaru Deep Field SN surveys.We model these results together with previous measurements at z less than 1 from the literature. The best-fitting SN Ia delay-time distribution (DTD; the distribution of times that elapse between a short burst of star formation and subsequent SN Ia explosions) is a power law with an index of 1.00 (+0.06(0.09))/(-0.06(0.10)) (statistical) (+0.12/-0.08) (systematic), where the statistical uncertainty is a result of the 68% and 95% (in parentheses) statistical uncertainties reported for the various SN Ia rates (from this work and from the literature), and the systematic uncertainty reflects the range of possible cosmic star-formation histories. We also test DTD models produced by an assortment of published binary population synthesis (BPS) simulations. The shapes of all BPS double-degenerate DTDs are consistent with the volumetric SN Ia measurements, when the DTD models are scaled up by factors of 3-9. In contrast, all BPS single-degenerate DTDs are ruled out by the measurements at greater than 99% significance level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graur, O.; Rodney, S. A.; Riess, A. G.
2014-03-01
We present the supernova (SN) sample and Type-Ia SN (SN Ia) rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope (HST), we have imaged 25 galaxy-cluster fields and parallel fields of non-cluster galaxies. We report a sample of 27 SNe discovered in the parallel fields. Of these SNe, ∼13 are classified as SN Ia candidates, including four SN Ia candidates at redshifts z > 1.2. We measure volumetric SN Ia rates to redshift 1.8 and add the first upper limit onmore » the SN Ia rate in the range 1.8 < z < 2.4. The results are consistent with the rates measured by the HST/GOODS and Subaru Deep Field SN surveys. We model these results together with previous measurements at z < 1 from the literature. The best-fitting SN Ia delay-time distribution (DTD; the distribution of times that elapse between a short burst of star formation and subsequent SN Ia explosions) is a power law with an index of −1.00{sub −0.06(0.10)}{sup +0.06(0.09)} (statistical){sub −0.08}{sup +0.12} (systematic), where the statistical uncertainty is a result of the 68% and 95% (in parentheses) statistical uncertainties reported for the various SN Ia rates (from this work and from the literature), and the systematic uncertainty reflects the range of possible cosmic star-formation histories. We also test DTD models produced by an assortment of published binary population synthesis (BPS) simulations. The shapes of all BPS double-degenerate DTDs are consistent with the volumetric SN Ia measurements, when the DTD models are scaled up by factors of 3-9. In contrast, all BPS single-degenerate DTDs are ruled out by the measurements at >99% significance level.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulchaey, John S.; Kollmeier, Juna A.; Kasliwal, Mansi M., E-mail: mulchaey@obs.carnegiescience.edu
X-ray measurements suggest that the abundance of calcium in the intracluster medium is higher than can be explained using favored models for core-collapse and Type Ia supernovae alone. We investigate whether the ''calcium conundrum'' in the intracluster medium can be alleviated by including a contribution from the recently discovered subclass of supernovae known as calcium-rich gap transients. Although the calcium-rich gap transients make up only a small fraction of all supernovae events, we find that their high calcium yields are sufficient to reproduce the X-ray measurements found for nearby rich clusters. We find the χ{sup 2} goodness-of-fit metric improves frommore » 84 to 2 by including this new class. Moreover, calcium-rich supernovae preferentially occur in the outskirts of galaxies making it easier for the nucleosynthesis products of these events to be incorporated in the intracluster medium via ram-pressure stripping. The discovery of calcium-rich gap transients in clusters and groups far from any individual galaxy suggests that supernovae associated with intracluster stars may play an important role in enriching the intracluster medium. Calcium-rich gap transients may also help explain anomalous calcium abundances in many other astrophysical systems including individual stars in the Milky Way, the halos of nearby galaxies, and the circumgalactic medium. Our work highlights the importance of considering the diversity of supernovae types and corresponding yields when modeling the abundance of the intracluster medium and other gas reservoirs.« less
Discovery, Progenitor and Early Evolution of a Stripped Envelope Supernova iPTF13bvn
NASA Astrophysics Data System (ADS)
Cao, Yi; Kasliwal, Mansi M.; Arcavi, Iair; Horesh, Assaf; Hancock, Paul; Valenti, Stefano; Cenko, S. Bradley; Kulkarni, S. R.; Gal-Yam, Avishay; Gorbikov, Evgeny; Ofek, Eran O.; Sand, David; Yaron, Ofer; Graham, Melissa; Silverman, Jeffrey M.; Wheeler, J. Craig; Marion, G. H.; Walker, Emma S.; Mazzali, Paolo; Howell, D. Andrew; Li, K. L.; Kong, A. K. H.; Bloom, Joshua S.; Nugent, Peter E.; Surace, Jason; Masci, Frank; Carpenter, John; Degenaar, Nathalie; Gelino, Christopher R.
2013-09-01
The intermediate Palomar Transient Factory reports our discovery of a young supernova, iPTF13bvn, in the nearby galaxy, NGC 5806 (22.5 Mpc). Our spectral sequence in the optical and infrared suggests a Type Ib classification. We identify a blue progenitor candidate in deep pre-explosion imaging within a 2σ error circle of 80 mas (8.7 pc). The candidate has an MB luminosity of -5.52 ± 0.39 mag and a B - I color of 0.25 ± 0.25 mag. If confirmed by future observations, this would be the first direct detection for a progenitor of a Type Ib. Fitting a power law to the early light curve, we find an extrapolated explosion date around 0.6 days before our first detection. We see no evidence of shock cooling. The pre-explosion detection limits constrain the radius of the progenitor to be smaller than a few solar radii. iPTF13bvn is also detected in centimeter and millimeter wavelengths. Fitting a synchrotron self-absorption model to our radio data, we find a mass-loading parameter of 1.3×1012 g cm-1. Assuming a wind velocity of 103 km s-1, we derive a progenitor mass-loss rate of 3 × 10-5 M ⊙ yr-1. Our observations, taken as a whole, are consistent with a Wolf-Rayet progenitor of the supernova iPTF13bvn.
Bolometric Lightcurves of Peculiar Type II-P Supernovae
NASA Astrophysics Data System (ADS)
Lusk, Jeremy A.; Baron, Edward A.
2017-01-01
We examine the bolometric lightcurves of five Type II-P supernovae (SNe 1998A, 2000cb, 2006V, 2006au and 2009E) which are thought to originate from blue supergiant progenitors using a new python package named SuperBoL. With this code, we calculate SNe lightcurves using three different techniques common in the literature: the quasi-bolometric method, which integrates the observed photometry, the direct integration method, which additionally corrects for unobserved flux in the UV and IR, and the bolometric correction method, which uses correlations between observed colors and V-band bolometric corrections. We present here the lightcurves calculated by SuperBoL along with previously published lightcurves, as well as peak luminosities and 56Ni yields. We find that the direct integration and bolometric correction lightcurves largely agree with previously published lightcurves, but with what we believe to be more robust error calculations, with 0.2 ≤ δL/L ≤ 0.5. Peak luminosities and 56Ni masses are similarly comparable to previous work. SN 2000cb remains an unusual member of this sub-group, owing to the faster rise and flatter plateau than the other supernovae in the sample. Initial comparisons with the NLTE atmosphere code PHOENIX show that the direct integration technique reproduces the luminosity of a model supernova spectrum to ˜5% when given synthetic photometry of the spectrum as input. Our code is publicly available. The ability to produce bolometric lightcurves from observed sets of broad-band light curves should be helpful in the interpretation of other types of supernovae, particularly those that are not well characterized, such as extremely luminous supernovae and faint fast objects.
The Supernova Spectropolarimetry (SNSPOL) Project; Probing the Geometry of Supernova Explosions
NASA Astrophysics Data System (ADS)
Williams, George Grant; Leonard, Douglas; Smith, Nathan; Smith, Paul; Milne, Peter; Hoffman, Jennifer L.; Bilinski, Christopher
2018-01-01
In recent years, evidence has grown that most supernovae exhibit departures from spherical symmetry. These results, together with full three-dimensional modeling, are exposing the possibility that asymmetries are not simply an observable feature of some supernovae, but may, in fact, be a necessity of the explosion mechanism itself. However, with the exception of SN 1987A, a supernova photosphere cannot be resolved through direct imaging from ground or space. Only the powerful technique of polarimetry can directly probe asymmetries on those spatial scales. Spectropolarimetry enhances the power of this technique by revealing wavelength-dependent variations that may result from differences in the geometrical distributions of the various ionic species. Multi-epoch observations over several months can be used to follow the evolution of these asymmetries as a supernova evolves and its photosphere recedes through the ejecta. The Supernova Spectropolarimetry (SNSPOL) Project aims to study the predominance and characteristics of asymmetries in all types of supernovae by decoding their complex, time-dependent polarimetric behavior. This is accomplished through multi-epoch observations using the CCD Imaging/Spectropolarimeter (SPOL) on the 61” Kuiper, the 90” Bok, and the 6.5-m MMT telescopes. During the past six years, the SNSPOL Project has observed more than 95 supernovae, approximately 2/3 of which have been observed at multiple epochs. Here we present a summary of the project, its current status, and a few selected results.
Spectroscopic classification of ASASSN-17je (=AT 2017ffq) as a Type II Supernova
NASA Astrophysics Data System (ADS)
Rodriguez, Osmar; Prieto, J. L.
2017-07-01
We obtained an optical spectrum (450-760nm) of ASASSN-17je/AT2017ffq (ATel #10571) on 2017 July 15.19 UT with GMOS, mounted on Gemini-South. Using the SNID code (Blondin & Tonry, 2007, ApJ, 666, 1024) we find a good match with a Type II supernova at z=0.014, consistent with the redshift of its host galaxy 2MASX J17401447-5825586.
See Change: Classifying single observation transients from HST using SNCosmo
NASA Astrophysics Data System (ADS)
Sofiatti Nunes, Caroline; Perlmutter, Saul; Nordin, Jakob; Rubin, David; Lidman, Chris; Deustua, Susana E.; Fruchter, Andrew S.; Aldering, Greg Scott; Brodwin, Mark; Cunha, Carlos E.; Eisenhardt, Peter R.; Gonzalez, Anthony H.; Jee, Myungkook J.; Hildebrandt, Hendrik; Hoekstra, Henk; Santos, Joana; Stanford, S. Adam; Stern, Dana R.; Fassbender, Rene; Richard, Johan; Rosati, Piero; Wechsler, Risa H.; Muzzin, Adam; Willis, Jon; Boehringer, Hans; Gladders, Michael; Goobar, Ariel; Amanullah, Rahman; Hook, Isobel; Huterer, Dragan; Huang, Jiasheng; Kim, Alex G.; Kowalski, Marek; Linder, Eric; Pain, Reynald; Saunders, Clare; Suzuki, Nao; Barbary, Kyle H.; Rykoff, Eli S.; Meyers, Joshua; Spadafora, Anthony L.; Hayden, Brian; Wilson, Gillian; Rozo, Eduardo; Hilton, Matt; Dixon, Samantha; Yen, Mike
2016-01-01
The Supernova Cosmology Project (SCP) is executing "See Change", a large HST program to look for possible variation in dark energy using supernovae at z>1. As part of the survey, we often must make time-critical follow-up decisions based on multicolor detection at a single epoch. We demonstrate the use of the SNCosmo software package to obtain simulated fluxes in the HST filters for type Ia and core-collapse supernovae at various redshifts. These simulations allow us to compare photometric data from HST with the distribution of the simulated SNe through methods such as Random Forest, a learning method for classification, and Gaussian Kernel Estimation. The results help us make informed decisions about triggered follow up using HST and ground based observatories to provide time-critical information needed about transients. Examples of this technique applied in the context of See Change are shown.
Late-time Flattening of Type Ia Supernova Light Curves: Constraints from SN 2014J in M82
NASA Astrophysics Data System (ADS)
Yang, Yi; Wang, Lifan; Baade, Dietrich; Brown, Peter. J.; Cikota, Aleksandar; Cracraft, Misty; Höflich, Peter A.; Maund, Justyn R.; Patat, Ferdinando; Sparks, William B.; Spyromilio, Jason; Stevance, Heloise F.; Wang, Xiaofeng; Wheeler, J. Craig
2018-01-01
The very nearby Type Ia supernova 2014J in M82 offers a rare opportunity to study the physics of thermonuclear supernovae at extremely late phases (≳800 days). Using the Hubble Space Telescope, we obtained 6 epochs of high-precision photometry for SN 2014J from 277 days to 1181 days past the B-band maximum light. The reprocessing of electrons and X-rays emitted by the radioactive decay chain {}57{Co}\\to {}57{Fe} is needed to explain the significant flattening of both the F606W-band and the pseudo-bolometric light curves. The flattening confirms previous predictions that the late-time evolution of type Ia supernova luminosities requires additional energy input from the decay of 57Co. By assuming the F606W-band luminosity scales with the bolometric luminosity at ∼500 days after the B-band maximum light, a mass ratio {}57{Ni}{/}56{Ni}∼ {0.065}-0.004+0.005 is required. This mass ratio is roughly ∼3 times the solar ratio and favors a progenitor white dwarf with a mass near the Chandrasekhar limit. A similar fit using the constructed pseudo-bolometric luminosity gives a mass ratio {}57{Ni}{/}56{Ni}∼ {0.066}-0.008+0.009. Astrometric tests based on the multi-epoch HST ACS/WFC images reveal no significant circumstellar light echoes in between 0.3 and 100 pc from the supernova.
Metcalf, R Benton; Silk, Joseph
2007-02-16
We use the distribution, and particularly the skewness, of high redshift type Ia supernovae brightnesses relative to the low redshift sample to constrain the density of macroscopic compact objects (MCOs) in the Universe. The supernova data favor dark matter made of microscopic particles (such as the lightest supersymmetric partner) over MCOs with masses between 10(-2)Mo and 10(10)Mo at 89% confidence. Future data will greatly improve this limit. Combined with other constraints, MCOs larger than one-tenth the mass of Earth (approximately 10(-7)Mo) can be eliminated as the sole constituent of dark matter.
Spectroscopic Classification of SN 2018nt as a Reddened Type Ia Supernova
NASA Astrophysics Data System (ADS)
Vinko, J.; Szeged, U.; Wheeler, J. C.
2018-02-01
An optical spectrum (range 360-700 nm) of SN 2018nt (K2 C16-0043), was obtained with the "Low Resolution Spectrograph-2" (LRS2) on the 10m Hobby-Eberly Telescope at McDonald Observatory by S. Odewahn on 2018 Feb 05.20 UT. The spectrum is consistent with that of a heavily reddened Type Ia supernova (with Av > 2 mag) about 3 weeks after maximum light.
A new supernova light curve modeling program
NASA Astrophysics Data System (ADS)
Jäger, Zoltán; Nagy, Andrea P.; Biro, Barna I.; Vinkó, József
2017-12-01
Supernovae are extremely energetic explosions that highlight the violent deaths of various types of stars. Studying such cosmic explosions may be important because of several reasons. Supernovae play a key role in cosmic nucleosynthesis processes, and they are also the anchors of methods of measuring extragalactic distances. Several exotic physical processes take place in the expanding ejecta produced by the explosion. We have developed a fast and simple semi-analytical code to model the the light curve of core collapse supernovae. This allows the determination of their most important basic physical parameters, like the the radius of the progenitor star, the mass of the ejected envelope, the mass of the radioactive nickel synthesized during the explosion, among others.
Type Ia supernovae as standard candles
NASA Technical Reports Server (NTRS)
Branch, David; Miller, Douglas L.
1993-01-01
The distribution of absolute blue magnitudes among Type Ia supernovae (SNs Ia) is studied. Supernovae were used with well determined apparent magnitudes at maximum light and parent galaxies with relative distances determined by the Tully-Fisher or Dn - sigma techniques. The mean absolute blue magnitude is given and the observational dispersion is only sigma(MB) 0.36, comparable to the expected combined errors in distance, apparent magnitude, and extinction. The mean (B-V) color at maximum light is 0.03 +/- 0.04, with a dispersion sigma(B-V) = 0.20. The Cepheid-based distance to IC 4182, the parent galaxy of the normal and unextinguished Type Ia SN 1937C, leads to a Hubble constant of H(0) + 51 +/- 12 km/s Mpc. The existence of a few SNs Ia that appear to have been reddened and dimmed by dust in their parent galaxies does not seriously compromise the use of SNs Ia as distance indicators.
A TYPE Ia SUPERNOVA AT REDSHIFT 1.55 IN HUBBLE SPACE TELESCOPE INFRARED OBSERVATIONS FROM CANDELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodney, Steven A.; Riess, Adam G.; Jones, David O.
2012-02-10
We report the discovery of a Type Ia supernova (SN Ia) at redshift z = 1.55 with the infrared detector of the Wide Field Camera 3 (WFC3-IR) on the Hubble Space Telescope (HST). This object was discovered in CANDELS imaging data of the Hubble Ultra Deep Field and followed as part of the CANDELS+CLASH Supernova project, comprising the SN search components from those two HST multi-cycle treasury programs. This is the highest redshift SN Ia with direct spectroscopic evidence for classification. It is also the first SN Ia at z > 1 found and followed in the infrared, providing amore » full light curve in rest-frame optical bands. The classification and redshift are securely defined from a combination of multi-band and multi-epoch photometry of the SN, ground-based spectroscopy of the host galaxy, and WFC3-IR grism spectroscopy of both the SN and host. This object is the first of a projected sample at z > 1.5 that will be discovered by the CANDELS and CLASH programs. The full CANDELS+CLASH SN Ia sample will enable unique tests for evolutionary effects that could arise due to differences in SN Ia progenitor systems as a function of redshift. This high-z sample will also allow measurement of the SN Ia rate out to z Almost-Equal-To 2, providing a complementary constraint on SN Ia progenitor models.« less
NASA Astrophysics Data System (ADS)
Nittler, Larry R.; O’D. Alexander, Conel M.; Liu, Nan; Wang, Jianhua
2018-04-01
We report the identification of 19 presolar oxide grains from the Orgueil CI meteorite with substantial enrichments in 54Cr, with 54Cr/52Cr ratios ranging from 1.2 to 56 times the solar value. The most enriched grains also exhibit enrichments at mass-50, most likely due in part to 50Ti, but close-to-normal or depleted 53Cr/52Cr ratios. There is a strong inverse relationship between 54Cr enrichment and grain size; the most extreme grains are all <80 nm in diameter. Comparison of the isotopic data with predictions of nucleosynthesis calculations indicate that these grains most likely originated in either rare, high-density Type Ia supernovae (SN Ia), or in electron-capture supernovae (ECSN), which may occur as the end stage of evolution for stars of mass 8–10 M ⊙. This is the first evidence for preserved presolar grains from either type of supernova. An ECSN origin is attractive, as these likely occur much more frequently than high-density SN Ia, and their evolutionary timescales (∼20 Myr) are comparable to those of molecular clouds. Self-pollution of the Sun’s parent cloud from an ECSN may explain the heterogeneous distribution of n-rich isotopic anomalies in planetary materials, including a recently reported dichotomy in Mo isotopes in the solar system. The stellar origins of three grains with solar 54Cr/52Cr, but anomalies in 50Cr or 53Cr, as well as of a grain enriched in 57Fe, are unclear.
A Search for a Surviving White Dwarf Companion in SN 1006
NASA Astrophysics Data System (ADS)
Kerzendorf, W. E.; Strampelli, G.; Shen, K. J.; Schwab, J.; Pakmor, R.; Do, T.; Buchner, J.; Rest, A.
2018-05-01
Multiple channels have been proposed to produce Type Ia supernovae, with many scenarios suggesting that the exploding white dwarf accretes from a binary companion pre-explosion. In almost all cases, theory suggests that this companion will survive. However, no such companion has been unambiguously identified in ancient supernova remnants - possibly falsifying the accretion scenario. Existing surveys, however, have only looked for stars as faint as ≈0.1L⊙ and thus might have missed a surviving white dwarf companion. In this work, we present very deep DECAM imaging (u, g, r, z) of the Type Ia supernova remnant SN 1006 specifically to search for a potential surviving white dwarf companion. We find no object that is consistent with a relatively young cooling white dwarf within the inner half of the SN 1006 remnant. We find that if there is a companion white dwarf, it must be redder than the standard white dwarf cooling track, or it must have formed long ago and cooled undisturbed for >108 yr. We conclude that our findings are consistent with the complete destruction of the secondary (such as in a merger) or an anomalously red or very dim surviving companion white dwarf.
NASA Technical Reports Server (NTRS)
Walker, E. S.; Mazzali, P. A.; Pian, E.; Hurley, K.; Arcavi, I.; Cenko, S. B.; Gal-Yam, A.; Horesh, A.; Kasliwal, M.; Poznanski, D.;
2014-01-01
We present optical photometry and spectroscopy of the broad-lined Type Ic supernova (SN Ic-BL) PTF10qts, which was discovered as part of the Palomar Transient Factory. The supernova was located in a dwarf galaxy of magnitude r = 21.1 at a redshift z = 0.0907.We find that the R-band light curve is a poor proxy for bolometric data and use photometric and spectroscopic data to construct and constrain the bolometric light curve. The derived bolometric magnitude at maximum light is Mbol = -18.51 +/- 0.2 mag, comparable to that of SN1998bw (Mbol = -18.7 mag) which was associated with a gamma-ray burst (GRB). PTF10qts is one of the most luminous SN Ic-BL observed without an accompanying GRB. We estimate the physical parameters of the explosion using data from our programme of follow-up observations, finding that it produced a larger mass of radioactive nickel compared to other SNeIc-BL with similar inferred ejecta masses and kinetic energies. The progenitor of the event was likely a approximately 20 solar mass star.
The Influence of Host Galaxies in Type Ia Supernova Cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uddin, Syed A.; Mould, Jeremy; Lidman, Chris
We use a sample of 1338 spectroscopically confirmed and photometrically classified Type Ia supernovae (SNe Ia) sourced from Carnegie Supernova Project, Center for Astrophysics Supernova Survey, Sloan Digital Sky Survey-II, and SuperNova Legacy Survey SN samples to examine the relationships between SNe Ia and the galaxies that host them. Our results provide confirmation with improved statistical significance that SNe Ia, after standardization, are on average more luminous in massive hosts (significance >5 σ ), and decline more rapidly in massive hosts (significance >9 σ ) and in hosts with low specific star formation rates (significance >8 σ ). We studymore » the variation of these relationships with redshift and detect no evolution. We split SNe Ia into pairs of subsets that are based on the properties of the hosts and fit cosmological models to each subset. Including both systematic and statistical uncertainties, we do not find any significant shift in the best-fit cosmological parameters between the subsets. Among different SN Ia subsets, we find that SNe Ia in hosts with high specific star formation rates have the least intrinsic scatter ( σ {sub int} = 0.08 ± 0.01) in luminosity after standardization.« less
The Influence of Host Galaxies in Type Ia Supernova Cosmology
NASA Astrophysics Data System (ADS)
Uddin, Syed A.; Mould, Jeremy; Lidman, Chris; Ruhlmann-Kleider, Vanina; Zhang, Bonnie R.
2017-10-01
We use a sample of 1338 spectroscopically confirmed and photometrically classified Type Ia supernovae (SNe Ia) sourced from Carnegie Supernova Project, Center for Astrophysics Supernova Survey, Sloan Digital Sky Survey-II, and SuperNova Legacy Survey SN samples to examine the relationships between SNe Ia and the galaxies that host them. Our results provide confirmation with improved statistical significance that SNe Ia, after standardization, are on average more luminous in massive hosts (significance >5σ), and decline more rapidly in massive hosts (significance >9σ) and in hosts with low specific star formation rates (significance >8σ). We study the variation of these relationships with redshift and detect no evolution. We split SNe Ia into pairs of subsets that are based on the properties of the hosts and fit cosmological models to each subset. Including both systematic and statistical uncertainties, we do not find any significant shift in the best-fit cosmological parameters between the subsets. Among different SN Ia subsets, we find that SNe Ia in hosts with high specific star formation rates have the least intrinsic scatter (σ int = 0.08 ± 0.01) in luminosity after standardization.
Radio Observations of the Type IIP Supernova 20017eaw
NASA Astrophysics Data System (ADS)
Stockdale, Christopher; Perez-Torres, Miguel; Argo, Megan; Ryder, Stuart D.; Panagia, Nino; Van Dyk, Schuyler; Bauer, Franz Erik; Roming, Peter; Marcaide, Jon; Pooley, Dave; Lien, Amy; Sramek, Richard A.
2018-01-01
We present the results of radio observations of the type IIP Supernova 2017eaw using the Very Large Array and the eMERLIN radio telescopes at centimeter wavelengths. SN 2017eaw is a rare type IIP that did not show prompt radio emission after initial explosion. We will present our analysis of the current data and discuss the implications for the pre-explosion evolution of the progenitor star of SN 20017eaw. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities.
NASA Astrophysics Data System (ADS)
Mathews, Grant J.; Hidaka, Jun; Kajino, Toshitaka; Suzuki, Jyutaro
2014-08-01
Direct measurements of the core collapse supernova rate (R SN) in the redshift range 0 <= z <= 1 appear to be about a factor of two smaller than the rate inferred from the measured cosmic massive star formation rate (SFR). This discrepancy would imply that about one-half of the massive stars that have been born in the local observed comoving volume did not explode as luminous supernovae. In this work, we explore the possibility that one could clarify the source of this "supernova rate problem" by detecting the energy spectrum of supernova relic neutrinos with a next generation 106 ton water Čerenkov detector like Hyper-Kamiokande. First, we re-examine the supernova rate problem. We make a conservative alternative compilation of the measured SFR data over the redshift range 0 <=z <= 7. We show that by only including published SFR data for which the dust obscuration has been directly determined, the ratio of the observed massive SFR to the observed supernova rate R SN has large uncertainties {\\sim }1.8^{+1.6}_{-0.6} and is statistically consistent with no supernova rate problem. If we further consider that a significant fraction of massive stars will end their lives as faint ONeMg SNe or as failed SNe leading to a black hole remnant, then the ratio reduces to {\\sim }1.1^{+1.0}_{-0.4} and the rate problem is essentially solved. We next examine the prospects for detecting this solution to the supernova rate problem. We first study the sources of uncertainty involved in the theoretical estimates of the neutrino detection rate and analyze whether the spectrum of relic neutrinos can be used to independently identify the existence of a supernova rate problem and its source. We consider an ensemble of published and unpublished core collapse supernova simulation models to estimate the uncertainties in the anticipated neutrino luminosities and temperatures. We illustrate how the spectrum of detector events might be used to establish the average neutrino temperature and constrain SN models. We also consider supernova ν-process nucleosynthesis to deduce constraints on the temperature of the various neutrino flavors. We study the effects of neutrino oscillations on the detected neutrino energy spectrum and also show that one might distinguish the equation of state (EoS) as well as the cause of the possible missing luminous supernovae from the detection of supernova relic neutrinos. We also analyze a possible enhanced contribution from failed supernovae leading to a black hole remnant as a solution to the supernova rate problem. We conclude that indeed it might be possible (though difficult) to measure the neutrino temperature, neutrino oscillations, and the EoS and confirm this source of missing luminous supernovae by the detection of the spectrum of relic neutrinos.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathews, Grant J.; Hidaka, Jun; Kajino, Toshitaka
2014-08-01
Direct measurements of the core collapse supernova rate (R{sub SN}) in the redshift range 0 ≤ z ≤ 1 appear to be about a factor of two smaller than the rate inferred from the measured cosmic massive star formation rate (SFR). This discrepancy would imply that about one-half of the massive stars that have been born in the local observed comoving volume did not explode as luminous supernovae. In this work, we explore the possibility that one could clarify the source of this 'supernova rate problem' by detecting the energy spectrum of supernova relic neutrinos with a next generation 10{supmore » 6} ton water Čerenkov detector like Hyper-Kamiokande. First, we re-examine the supernova rate problem. We make a conservative alternative compilation of the measured SFR data over the redshift range 0 ≤z ≤ 7. We show that by only including published SFR data for which the dust obscuration has been directly determined, the ratio of the observed massive SFR to the observed supernova rate R{sub SN} has large uncertainties ∼1.8{sub −0.6}{sup +1.6} and is statistically consistent with no supernova rate problem. If we further consider that a significant fraction of massive stars will end their lives as faint ONeMg SNe or as failed SNe leading to a black hole remnant, then the ratio reduces to ∼1.1{sub −0.4}{sup +1.0} and the rate problem is essentially solved. We next examine the prospects for detecting this solution to the supernova rate problem. We first study the sources of uncertainty involved in the theoretical estimates of the neutrino detection rate and analyze whether the spectrum of relic neutrinos can be used to independently identify the existence of a supernova rate problem and its source. We consider an ensemble of published and unpublished core collapse supernova simulation models to estimate the uncertainties in the anticipated neutrino luminosities and temperatures. We illustrate how the spectrum of detector events might be used to establish the average neutrino temperature and constrain SN models. We also consider supernova ν-process nucleosynthesis to deduce constraints on the temperature of the various neutrino flavors. We study the effects of neutrino oscillations on the detected neutrino energy spectrum and also show that one might distinguish the equation of state (EoS) as well as the cause of the possible missing luminous supernovae from the detection of supernova relic neutrinos. We also analyze a possible enhanced contribution from failed supernovae leading to a black hole remnant as a solution to the supernova rate problem. We conclude that indeed it might be possible (though difficult) to measure the neutrino temperature, neutrino oscillations, and the EoS and confirm this source of missing luminous supernovae by the detection of the spectrum of relic neutrinos.« less
Supernova progenitors, their variability and the Type IIP Supernova ASASSN-16fq in M66
NASA Astrophysics Data System (ADS)
Kochanek, C. S.; Fraser, M.; Adams, S. M.; Sukhbold, T.; Prieto, J. L.; Müller, T.; Bock, G.; Brown, J. S.; Dong, Subo; Holoien, T. W.-S.; Khan, R.; Shappee, B. J.; Stanek, K. Z.
2017-05-01
We identify a pre-explosion counterpart to the nearby Type IIP supernova ASASSN-16fq (SN 2016cok) in archival Hubble Space Telescope data. The source appears to be a blend of several stars that prevents obtaining accurate photometry. However, with reasonable assumptions about the stellar temperature and extinction, the progenitor almost certainly had an initial mass M* ≲ 17 M⊙, and was most likely in the mass range of M* = 8-12 M⊙. Observations once ASASSN-16fq has faded will have no difficulty accurately determining the properties of the progenitor. In 8 yr of Large Binocular Telescope (LBT) data, no significant progenitor variability is detected to rms limits of roughly 0.03 mag. Of the six nearby supernova (SN) with constraints on the low-level variability, SN 1987A, SN 1993J, SN 2008cn, SN 2011dh, SN 2013ej and ASASSN-16fq, only the slowly fading progenitor of SN 2011dh showed clear evidence of variability. Excluding SN 1987A, the 90 per cent confidence limit implied by these sources on the number of outbursts over the last decade before the SN that last longer than 0.1 yr (full width at half-maximum) and are brighter than MR < -8 mag is approximately Nout ≲ 3. Our continuing LBT monitoring programme will steadily improve constraints on pre-SN progenitor variability at amplitudes far lower than achievable by SN surveys.
SESNPCA: Principal Component Analysis Applied to Stripped-Envelope Core-Collapse Supernovae
NASA Astrophysics Data System (ADS)
Williamson, Marc; Bianco, Federica; Modjaz, Maryam
2018-01-01
In the new era of time-domain astronomy, it will become increasingly important to have rigorous, data driven models for classifying transients, including supernovae (SNe). We present the first application of principal component analysis (PCA) to stripped-envelope core-collapse supernovae (SESNe). Previous studies of SNe types Ib, IIb, Ic, and broad-line Ic (Ic-BL) focus only on specific spectral features, while our PCA algorithm uses all of the information contained in each spectrum. We use one of the largest compiled datasets of SESNe, containing over 150 SNe, each with spectra taken at multiple phases. Our work focuses on 49 SNe with spectra taken 15 ± 5 days after maximum V-band light where better distinctions can be made between SNe type Ib and Ic spectra. We find that spectra of SNe type IIb and Ic-BL are separable from the other types in PCA space, indicating that PCA is a promising option for developing a purely data driven model for SESNe classification.
Neutrino signal from pair-instability supernovae
NASA Astrophysics Data System (ADS)
Wright, Warren P.; Gilmer, Matthew S.; Fröhlich, Carla; Kneller, James P.
2017-11-01
A very massive star with a carbon-oxygen core in the range of 64M ⊙
An Investigation Of The Metallicity Dependence Of The Sn Type Ii Mn Production
NASA Astrophysics Data System (ADS)
Kim, Yeunjin; Sobeck, J.; Frohlich, C.; Truran, J.
2010-01-01
Element abundance trends over the history of our Galaxy serve as important guides in establishing relative contributions from supernovae of Types Ia and II. In particular, spectroscopic studies have revealed a deficiency of manganese (Mn) relative to the abundances of neighboring iron-peak nuclei in metal-poor stars. However, more recent analyses of the observational data have found a constant Mn/Fe abundance ratio over a wide range of metallicity and hence, contradict these previous findings. In this project, we will study the nucleosynthetic yields of Type II supernovae as a function of metallicity by parameterizing the initial properties of the shock. We will compare our results with the two distinct manganese abundance trends identified above. Once we study the metallicity dependency of Type II yields as reflected in observations at lower metallicities, we will explore the constraints this imposes on Type Ia supernova contributions to Mn in different stellar and galactic populations. We acknowledge the financial support by the National Science Foundation for the Frontier Center Joint Institute for Nuclear Astrophysics (JINA). C.F. acknowledges an Enrico Fermi Fellowship.
Supernova SN 2011fe from an exploding carbon-oxygen white dwarf star.
Nugent, Peter E; Sullivan, Mark; Cenko, S Bradley; Thomas, Rollin C; Kasen, Daniel; Howell, D Andrew; Bersier, David; Bloom, Joshua S; Kulkarni, S R; Kandrashoff, Michael T; Filippenko, Alexei V; Silverman, Jeffrey M; Marcy, Geoffrey W; Howard, Andrew W; Isaacson, Howard T; Maguire, Kate; Suzuki, Nao; Tarlton, James E; Pan, Yen-Chen; Bildsten, Lars; Fulton, Benjamin J; Parrent, Jerod T; Sand, David; Podsiadlowski, Philipp; Bianco, Federica B; Dilday, Benjamin; Graham, Melissa L; Lyman, Joe; James, Phil; Kasliwal, Mansi M; Law, Nicholas M; Quimby, Robert M; Hook, Isobel M; Walker, Emma S; Mazzali, Paolo; Pian, Elena; Ofek, Eran O; Gal-Yam, Avishay; Poznanski, Dovi
2011-12-14
Type Ia supernovae have been used empirically as 'standard candles' to demonstrate the acceleration of the expansion of the Universe even though fundamental details, such as the nature of their progenitor systems and how the stars explode, remain a mystery. There is consensus that a white dwarf star explodes after accreting matter in a binary system, but the secondary body could be anything from a main-sequence star to a red giant, or even another white dwarf. This uncertainty stems from the fact that no recent type Ia supernova has been discovered close enough to Earth to detect the stars before explosion. Here we report early observations of supernova SN 2011fe in the galaxy M101 at a distance from Earth of 6.4 megaparsecs. We find that the exploding star was probably a carbon-oxygen white dwarf, and from the lack of an early shock we conclude that the companion was probably a main-sequence star. Early spectroscopy shows high-velocity oxygen that slows rapidly, on a timescale of hours, and extensive mixing of newly synthesized intermediate-mass elements in the outermost layers of the supernova. A companion paper uses pre-explosion images to rule out luminous red giants and most helium stars as companions to the progenitor.
Unusual Supernovae and Alternative Power Sources
NASA Astrophysics Data System (ADS)
Kasen, Daniel
Recent observations have revealed a diverse class of peculiar supernovae, among them transients that are extremely luminous and unusually dim, or that evolve remarkably rapidly or slowly over time. The light curves of some of these events cannot be powered by ordinary energy sources such as the decay of radioactive isotopes. This chapter begins with a brief description of certain types of unusual supernovae and then reviews the basic physics of supernova light curves, deriving in a pedagogical way the analytic scalings that characterize the peak brightness and duration. After illustrating that ordinary power sources cannot explain all of the observed events, we turn to theoretical ideas involving less common mechanisms, such as energy injection from a long-lived central engine (a rapidly rotating magnetar or an accreting black hole). We conclude by speculating how alternative power sources may be manifest in observations of the assorted classes of peculiar supernovae.
Kepler Supernova Remnant: A View from Chandra X-Ray Observatory
2004-10-06
The images indicate that the bubble of gas that makes up the supernova remnant appears different in various types of light. Chandra reveals the hottest gas [colored blue and colored green], which radiates in X-rays. http://photojournal.jpl.nasa.gov/catalog/PIA06908
Spectroscopic classification of AT 2017byx as a Type Ia Supernova
NASA Astrophysics Data System (ADS)
Vinko, J.; Wheeler, J. C.; Sarneczky, K.; Szakats, R.; Szalai, T.; Szekely, P.; HETDEX Collaboration
2017-05-01
During the commissioning phase of the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) survey we observed AT 2017byx (ATLAS17bla, PS17bve) at R.A.=14:17:48.36 Dec.=+52:41:54.6 with the Visible Integral-field Replicable Unit Spectrograph (VIRUS) at McDonald Observatory on 2017-04-28.2 UT. The spectrum (range between 3500 and 5500 Angstroms) indicates that AT 2017byx is a Type Ia supernova.
NASA Astrophysics Data System (ADS)
Bravo, Eduardo; Martínez-Pinedo, Gabriel
2012-05-01
Background: Type Ia supernovae contribute significantly to the nucleosynthesis of many Fe-group and intermediate-mass elements. However, the robustness of nucleosynthesis obtained via models of this class of explosions has not been studied in depth until now.Purpose: We explore the sensitivity of the nucleosynthesis resulting from thermonuclear explosions of massive white dwarfs with respect to uncertainties in nuclear reaction rates. We put particular emphasis on indentifying the individual reactions rates that most strongly affect the isotopic products of these supernovae.Method: We have adopted a standard one-dimensional delayed detonation model of the explosion of a Chandrasekhar-mass white dwarf and have postprocessed the thermodynamic trajectories of every mass shell with a nucleosynthetic code to obtain the chemical composition of the ejected matter. We have considered increases (decreases) by a factor of 10 on the rates of 1196 nuclear reactions (simultaneously with their inverse reactions), repeating the nucleosynthesis calculations after modification of each reaction rate pair. We have computed as well hydrodynamic models for different rates of the fusion reactions of 12C and of 16O. From the calculations we have selected the reactions that have the largest impact on the supernova yields, and we have computed again the nucleosynthesis using two or three alternative prescriptions for their rates, taken from the JINA REACLIB database. For the three reactions with the largest sensitivity we have analyzed as well the temperature ranges where a modification of their rates has the strongest effect on nucleosynthesis.Results: The nucleosynthesis resulting from the type Ia supernova models is quite robust with respect to variations of nuclear reaction rates, with the exception of the reaction of fusion of two 12C nuclei. The energy of the explosion changes by less than ˜4% when the rates of the reactions 12C+12C or 16O+16O are multiplied by a factor of ×10 or ×0.1. The changes in the nucleosynthesis owing to the modification of the rates of these fusion reactions are also quite modest; for instance, no species with a mass fraction larger than 0.02 experiences a variation of its yield larger than a factor of 2. We provide the sensitivity of the yields of the most abundant species with respect to the rates of the most intense reactions with protons, neutrons, and α. In general, the yields of Fe-group nuclei are more robust than the yields of intermediate-mass elements. Among the species with yields larger than 10-8M⊙, 35S has the largest sensitivity to the nuclear reaction rates. It is remarkable that the reactions involving elements with Z>22 have a tiny influence on the supernova nucleosynthesis. Among the charged-particle reactions, the most influential on supernova nucleosynthesis are 30Si+p⇄31P+γ, 20Ne+α⇄24Mg+γ, and 24Mg+α⇄27Al+p. The temperatures at which a modification of their rate has a larger impact are in the range 2≲T≲4 GK.Conclusions: The explosion model (i.e., the assumed conditions and propagation of the flame) chiefly determines the element production of type Ia supernovae and derived quantities such as their luminosity, while the nuclear reaction rates used in the simulations have a small influence on the kinetic energy and final chemical composition of the ejecta. Our results show that the uncertainty in individual thermonuclear reaction rates cannot account for discrepancies of a factor of 2 between isotopic ratios in type Ia supernovae and those in the solar system, especially within the Fe group.
A magnetar model for the hydrogen-rich super-luminous supernova iPTF14hls
NASA Astrophysics Data System (ADS)
Dessart, Luc
2018-02-01
Transient surveys have recently revealed the existence of H-rich super-luminous supernovae (SLSN; e.g., iPTF14hls, OGLE-SN14-073) that are characterized by an exceptionally high time-integrated bolometric luminosity, a sustained blue optical color, and Doppler-broadened H I lines at all times. Here, I investigate the effect that a magnetar (with an initial rotational energy of 4 × 1050 erg and field strength of 7 × 1013 G) would have on the properties of a typical Type II supernova (SN) ejecta (mass of 13.35 M⊙, kinetic energy of 1.32 × 1051 erg, 0.077 M⊙ of 56Ni) produced by the terminal explosion of an H-rich blue supergiant star. I present a non-local thermodynamic equilibrium time-dependent radiative transfer simulation of the resulting photometric and spectroscopic evolution from 1 d until 600 d after explosion. With the magnetar power, the model luminosity and brightness are enhanced, the ejecta is hotter and more ionized everywhere, and the spectrum formation region is much more extended. This magnetar-powered SN ejecta reproduces most of the observed properties of SLSN iPTF14hls, including the sustained brightness of ‑18 mag in the R band, the blue optical color, and the broad H I lines for 600 d. The non-extreme magnetar properties, combined with the standard Type II SN ejecta properties, offer an interesting alternative to the pair-unstable super-massive star model recently proposed, which involves a highly energetic and super-massive ejecta. Hence, such Type II SLSNe may differ from standard Type II SNe exclusively through the influence of a magnetar.
NASA Astrophysics Data System (ADS)
Moriya, Takashi J.; Mazzali, Paolo A.; Tominaga, Nozomu; Hachinger, Stephan; Blinnikov, Sergei I.; Tauris, Thomas M.; Takahashi, Koh; Tanaka, Masaomi; Langer, Norbert; Podsiadlowski, Philipp
2017-04-01
We investigate light-curve and spectral properties of ultrastripped core-collapse supernovae. Ultrastripped supernovae are the explosions of heavily stripped massive stars that lost their envelopes via binary interactions with a compact companion star. They eject only ˜0.1 M⊙ and may be the main way to form double neutron-star systems that eventually merge emitting strong gravitational waves. We follow the evolution of an ultrastripped supernova progenitor until iron core collapse and perform explosive nucleosynthesis calculations. We then synthesize light curves and spectra of ultrastripped supernovae using the nucleosynthesis results and present their expected properties. Ultrastripped supernovae synthesize ˜0.01 M⊙ of radioactive 56Ni, and their typical peak luminosity is around 1042 erg s-1 or -16 mag. Their typical rise time is 5-10 d. Comparing synthesized and observed spectra, we find that SN 2005ek, some of the so-called calcium-rich gap transients, and SN 2010X may be related to ultrastripped supernovae. If these supernovae are actually ultrastripped supernovae, their event rate is expected to be about 1 per cent of core-collapse supernovae. Comparing the double neutron-star merger rate obtained by future gravitational-wave observations and the ultrastripped supernova rate obtained by optical transient surveys identified with our synthesized light-curve and spectral models, we will be able to judge whether ultrastripped supernovae are actually a major contributor to the binary neutron-star population and provide constraints on binary stellar evolution.
Cosmic rays from supernovae and comments on the Vela X pre-supernova
NASA Technical Reports Server (NTRS)
Cameron, A. G. W.
1971-01-01
A possible history of the production of elements in the galaxy is presented, based on assumptions about the end points of stellar evolution and of the general evolution of the galaxy. A wide range of quantities involving the relative abundances of nucleosynthesis products observed in the solar system, and various galactic quantities such as the current rate of supernova production and the present gas content of the galaxy, were considered. These assumptions were utilized in a computer program in which the gas content of the galaxy is gradually turned into stars. The stars are continually enriched in the products of nucleosynthesis as they approach the ends of their evolutionary lifetimes. It is suggested that supernova explosions are associated with the mass range of about 4-8 solar masses. Possible theories on the type of stellar explosive event represented by the Vela supernova are discussed.
Exploring the optical behaviour of a Type Iax supernova SN 2014dt
NASA Astrophysics Data System (ADS)
Singh, Mridweeka; Misra, Kuntal; Sahu, D. K.; Dastidar, Raya; Gangopadhyay, Anjasha; Bose, Subhash; Srivastav, Shubham; Anupama, G. C.; Chakradhari, N. K.; Kumar, Brajesh; Kumar, Brijesh; Pandey, S. B.
2018-02-01
We present optical photometric (up to ˜410 d since Bmax) and spectroscopic (up to ˜157 d since Bmax) observations of a Type Iax supernova (SN) 2014dt located in M61. SN 2014dt is one of the brightest and closest (D ˜ 20 Mpc) discovered Type Iax SN. It best matches the light-curve evolution of SN 2005hk and reaches a peak magnitude of MB ˜ -18.13 ± 0.04 mag with Δm15 ˜ 1.35 ± 0.06 mag. The early spectra of SN 2014dt are similar to other Type Iax SNe, whereas the nebular spectrum at 157 d is dominated by narrow emission features with less blending as compared to SNe 2008ge and 2012Z. The ejecta velocities are between 5000 and 1000 km s-1, which also confirms the low-energy budget of Type Iax SN 2014dt compared to normal Type Ia SNe. Using the peak bolometric luminosity of SN 2005hk, we estimate the 56Ni mass of ˜0.14 M⊙. The striking similarity between SN 2014dt and SN 2005hk implies that a comparable amount of 56Ni would have been synthesized in the explosion of SN 2014dt.
NASA Astrophysics Data System (ADS)
Nagataki, Shigehiro
1999-01-01
We have tried to reproduce the solar system abundances using the nucleosynthesis products of Type Ia and Type II supernovae. In particular, we examined the effects of axisymmetrically deformed explosions in Type II supernovae. 44Ca and 47,48Ti are enhanced considerably in axisymmetrically deformed explosion models because of the active alpha-rich freezeout. The enhancement of nuclei around A=45 is a welcome result since it solves the problem of the nuclei shortage. Moreover, 59Co, 63,65Cu, and 66Zn are enhanced enough to reproduce the solar system abundances. The enhancement of Cu and Zn means the possibility that these nuclei, which have been said to be produced by the slow process, can be synthesized fairly well during the explosive nucleosynthesis. To discuss their origin quantitatively, the position of the mass cut is a very important parameter that is very difficult to determine numerically at present. We also stress that an axisymmetrically deformed explosion of Type II supernovae of the degree that is considered in this analysis is not excluded by the results of calculations of explosive nucleosynthesis, that is, the nucleosynthesis products are not extremely disturbed and the solar system abundances can be reproduced fairly well by the axisymmetrically deformed explosion models. This conclusion will be good for the theory of core collapse including the rotation of an iron core, magnetic field, and axisymmetrically modified neutrino radiation from a rotating protoneutron star, which possibly can cause an axisymmetrically deformed explosion.
An updated Type II supernova Hubble diagram
NASA Astrophysics Data System (ADS)
Gall, E. E. E.; Kotak, R.; Leibundgut, B.; Taubenberger, S.; Hillebrandt, W.; Kromer, M.; Burgett, W. S.; Chambers, K.; Flewelling, H.; Huber, M. E.; Kaiser, N.; Kudritzki, R. P.; Magnier, E. A.; Metcalfe, N.; Smith, K.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.
2018-03-01
We present photometry and spectroscopy of nine Type II-P/L supernovae (SNe) with redshifts in the 0.045 ≲ z ≲ 0.335 range, with a view to re-examining their utility as distance indicators. Specifically, we apply the expanding photosphere method (EPM) and the standardized candle method (SCM) to each target, and find that both methods yield distances that are in reasonable agreement with each other. The current record-holder for the highest-redshift spectroscopically confirmed supernova (SN) II-P is PS1-13bni (z = 0.335-0.012+0.009), and illustrates the promise of Type II SNe as cosmological tools. We updated existing EPM and SCM Hubble diagrams by adding our sample to those previously published. Within the context of Type II SN distance measuring techniques, we investigated two related questions. First, we explored the possibility of utilising spectral lines other than the traditionally used Fe IIλ5169 to infer the photospheric velocity of SN ejecta. Using local well-observed objects, we derive an epoch-dependent relation between the strong Balmer line and Fe IIλ5169 velocities that is applicable 30 to 40 days post-explosion. Motivated in part by the continuum of key observables such as rise time and decline rates exhibited from II-P to II-L SNe, we assessed the possibility of using Hubble-flow Type II-L SNe as distance indicators. These yield similar distances as the Type II-P SNe. Although these initial results are encouraging, a significantly larger sample of SNe II-L would be required to draw definitive conclusions. Tables A.1, A.3, A.5, A.7, A.9, A.11, A.13, A.15 and A.17 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A25
Core collapse supernovae from blue supergiant progenitors : The evolutionary history of SN 1987A
NASA Astrophysics Data System (ADS)
Menon, Athira
2015-08-01
SN 1987A is historically one of the most remarkable supernova explosions to be seen from Earth. Due to the proximity of its location in the LMC, it remains the most well-studied object outside the solar system. It was also the only supernova whose progenitor was observed prior to its explosion.SN 1987A however, was a unique and enigmatic core collapse supernova. It was the first Type II supernova to have been observed to have exploded while its progenitor was a blue supergiant (BSG). Until then Type II supernovae were expected to originate from explosions of red supergiants (RSGs). A spectacular triple-ring nebula structure, rich in helium and nitrogen, was observed around the remnant, indicating a recent RSG phase before becoming a BSG. Even today it is not entirely understood what the evolutionary history may have been to cause a BSG to explode. The most commonly accepted hypothesis for its origin is the merger of a massive binary star system.An evolutionary scenario for such a binary system, was proposed by Podsiadlowski (1992) (P92). Through SPH simulations of the merger and the stellar evolution of the post-merger remnant, Ivanova & Podsiadlowski (2002) and (2003) (I&M) could successfully obtain the RSG to BSG transition of the progenitor.The aim of the present work is to produce the evolutionary history of the progenitor of SN 1987A and its explosion. We construct our models based on the results of P92 and I&M. Here, the secondary (less massive) star is accreted on the primary, while being simultaneously mixed in its envelope over a period of 100 years. The merged star is evolved until the onset of core collapse. For this work we use the 1-dimensional, implicit, hydrodynamical stellar evolution code, KEPLER. A large parameter space is explored, consisting of primary (16-20 Ms) and secondary masses (5-8 Ms), mixing boundaries, and accreting timescales. Those models whose end states match the observed properties of the progenitor of SN 1987A are exploded. The nuclear yields and light curve of the explosion are then compared with the observed data of SN 1987A.
Hierarchical Models for Type Ia Supernova Light Curves in the Optical and Near Infrared
NASA Astrophysics Data System (ADS)
Mandel, Kaisey; Narayan, G.; Kirshner, R. P.
2011-01-01
I have constructed a comprehensive statistical model for Type Ia supernova optical and near infrared light curves. Since the near infrared light curves are excellent standard candles and are less sensitive to dust extinction and reddening, the combination of near infrared and optical data better constrains the host galaxy extinction and improves the precision of distance predictions to SN Ia. A hierarchical probabilistic model coherently accounts for multiple random and uncertain effects, including photometric error, intrinsic supernova light curve variations and correlations across phase and wavelength, dust extinction and reddening, peculiar velocity dispersion and distances. An improved BayeSN MCMC code is implemented for computing probabilistic inferences for individual supernovae and the SN Ia and host galaxy dust populations. I use this hierarchical model to analyze nearby Type Ia supernovae with optical and near infared data from the PAIRITEL, CfA3, and CSP samples and the literature. Using cross-validation to test the robustness of the model predictions, I find that the rms Hubble diagram scatter of predicted distance moduli is 0.11 mag for SN with optical and near infrared data versus 0.15 mag for SN with only optical data. Accounting for the dispersion expected from random peculiar velocities, the rms intrinsic prediction error is 0.08-0.10 mag for SN with both optical and near infrared light curves. I discuss results for the inferred intrinsic correlation structures of the optical-NIR SN Ia light curves and the host galaxy dust distribution captured by the hierarchical model. The continued observation and analysis of Type Ia SN in the optical and near infrared is important for improving their utility as precise and accurate cosmological distance indicators.
Dark Matter Ignition of Type Ia Supernovae.
Bramante, Joseph
2015-10-02
Recent studies of low redshift type Ia supernovae (SN Ia) indicate that half explode from less than Chandrasekhar mass white dwarfs, implying ignition must proceed from something besides the canonical criticality of Chandrasekhar mass SN Ia progenitors. We show that 1-100 PeV mass asymmetric dark matter, with imminently detectable nucleon scattering interactions, can accumulate to the point of self-gravitation in a white dwarf and collapse, shedding gravitational potential energy by scattering off nuclei, thereby heating the white dwarf and igniting the flame front that precedes SN Ia. We combine data on SN Ia masses with data on the ages of SN Ia-adjacent stars. This combination reveals a 2.8σ inverse correlation between SN Ia masses and ignition ages, which could result from increased capture of dark matter in 1.4 vs 1.1 solar mass white dwarfs. Future studies of SN Ia in galactic centers will provide additional tests of dark-matter-induced type Ia ignition. Remarkably, both bosonic and fermionic SN Ia-igniting dark matter also resolve the missing pulsar problem by forming black holes in ≳10 Myr old pulsars at the center of the Milky Way.
Hubble snap a beautiful supernova explosion some 160,000 light-years from Earth
2017-12-08
Of all the varieties of exploding stars, the ones called Type Ia are perhaps the most intriguing. Their predictable brightness lets astronomers measure the expansion of the universe, which led to the discovery of dark energy. Yet the cause of these supernovae remains a mystery. Do they happen when two white dwarf stars collide? Or does a single white dwarf gorge on gases stolen from a companion star until bursting? If the second theory is true, the normal star should survive. Astronomers used NASA's Hubble Space Telescope to search the gauzy remains of a Type Ia supernova in a neighboring galaxy called the Large Magellanic Cloud. They found a sun-like star that showed signs of being associated with the supernova. Further investigations will be needed to learn if this star is truly the culprit behind a white dwarf's fiery demise. This image, taken with NASA's Hubble Space Telescope, shows the supernova remnant SNR 0509-68.7, also known as N103B. It is located 160,000 light-years from Earth in a neighboring galaxy called the Large Magellanic Cloud. N103B resulted from a Type Ia supernova, whose cause remains a mystery. One possibility would leave behind a stellar survivor, and astronomers have identified a possible candidate. The actual supernova remnant is the irregular shaped dust cloud, at the upper center of the image. The gas in the lower half of the image and the dense concentration of stars in the lower left are the outskirts of the star cluster NGC 1850. The Hubble image combines visible and near-infrared light taken by the Wide Field Camera 3 in June 2014. Credit: NASA, ESA and H.-Y. Chu (Academia Sinica, Taipei) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Neutrinos from type Ia supernovae: The gravitationally confined detonation scenario
NASA Astrophysics Data System (ADS)
Wright, Warren P.; Kneller, James P.; Ohlmann, Sebastian T.; Röpke, Friedrich K.; Scholberg, Kate; Seitenzahl, Ivo R.
2017-02-01
Despite their use as cosmological distance indicators and their importance in the chemical evolution of galaxies, the unequivocal identification of the progenitor systems and explosion mechanism of normal type Ia supernovae (SNe Ia) remains elusive. The leading hypothesis is that such a supernova is a thermonuclear explosion of a carbon-oxygen white dwarf, but the exact explosion mechanism is still a matter of debate. Observation of a galactic SN Ia would be of immense value in answering the many open questions related to these events. One potentially useful source of information about the explosion mechanism and progenitor is the neutrino signal because the neutrinos from the different mechanisms possess distinct spectra as a function of time and energy. In this paper, we compute the expected neutrino signal from a gravitationally confined detonation (GCD) explosion scenario for a SN Ia and show how the flux at Earth contains features in time and energy unique to this scenario. We then calculate the expected event rates in the Super-K, Hyper-K, JUNO, DUNE, and IceCube detectors and find both Hyper-K and IceCube will see a few events for a GCD supernova at 1 kpc or closer, while Super-K, JUNO, and DUNE will see events if the supernova is closer than ˜0.3 kpc . The distance and detector criteria needed to resolve the time and spectral features arising from the explosion mechanism, neutrino production, and neutrino oscillation processes are also discussed. The neutrino signal from the GCD is then compared with the signal from a deflagration-to-detonation transition (DDT) explosion model computed previously. We find the overall event rate is the most discriminating feature between the two scenarios followed by the event rate time structure. Using the event rate in the Hyper-K detector alone, the DDT can be distinguished from the GCD at 2 σ if the distance to the supernova is less than 2.3 kpc for a normal mass ordering and 3.6 kpc for an inverted ordering.
Infrared light curves of type Ia supernovae
Phillips, M. M.; Krisciunas, K.; Suntzeff, N. B.; ...
2003-10-02
This article provides a progress report on a collaborative program at the Las Campanas and Cerro Tololo Observatories to observe the near-IR light curves of Type Ia supernovae. We discuss how the morphologies of the JHK light curves change as a function of the decline rate parameter Δm 15 (B). Evidence is presented which indicates that the absolute magnitudes in the H band have little or no dependence on the decline rate, suggesting that SNe Ia may be nearly perfect cosmological standard candles in the near-IR. A preliminary Hubble diagram in the H band is presented and compared with amore » similar diagram in V for the same objects. Finally, observations of two peculiar supernovae, 1999ac and 2001ay, are briefly discussed.« less
Investigating the Nature of Dark Energy using Type Ia Supernovae with WFIRST-AFTA Space Mission
NASA Astrophysics Data System (ADS)
Perlmutter, Saul
Scientifically, the WFIRST supernova program is unique: it makes possible a dark energy measurement that no other space mission or ground-based project is addressing, a measurement that will set the standard in determining the expansion history of the universe continuously from low to high redshifts (0.1 < z < 1.7). In the context of the WFIRST Science Definition Team several participants in this proposal have developed a first version of a supernova program, described in the WFIRST SDT Report. While this program was judged to be a robust one, and the estimates of the sensitivity to the cosmological parameters were felt to be reliable, due to limitations of time the analysis was clearly limited in depth on a number of issues. The objective of this proposal is to further develop this program. Technically this is the WFIRST measurement that arguably requires the most advanced project development, since it requires near-real-time analysis and follow-up with WFIRST, and since it is using the IFU spectrograph in the WFI package, the IFU being the WFIRST instrument that does not yet have a completely consistent set of specifications in the design iteration of the SDT report. In this proposal for the WFIRST Scientific Investigation Team, focused primarily on the supernova dark energy measurements, we address these crucial technical needs by bringing the larger supernova community's expertise on the science elements together with a smaller focused team that can produce the specific deliverables. Thus the objectives of this 5 year proposal are the following: 1. Development of scientific performance requirements for the study of Dark Energy using Type Ia supernovae 2. Design an observing strategy using the Wide Field Instrument (WFI) and the Integral Field Spectrometer Unit (IFU) 3. Development of science data analysis techniques and data analysis software 4. Development of ground and space calibration requirements and estimating realistic correlated errors, both statistical and systematic 5. Development of simulations and data challenges to validate the above 6. Development of complete plans in coordination with WFIRST project, for all aspects of science simulations, precursor observations, ground calibration, observational needs, data processing, anciliary data collection/incorporation, analysis, dissemination and documentation of the proposed science investigation. The 5 year program also intends to provide the following deliverables: 1. Documentation describing detailed scientific performance requirements 2. Documentation describing a design of an observing program 3. Documentation of science data analysis techniques 4. Simulations and data challenges to validate the above items 5. Algorithms used to perform processing of science data to serve as a basis for the WFIRST pipeline To achieve these objectives the plan is to set up a Supernova Project Office, seven Supernova Working Groups, and two Supernova Software Deliverables Teams. During the recent years of work with the Science Definition Team, it has been clear that the WFIRST Project Office requires a continuous series of scientific answers to the stream of design and requirements questions that arise in the development of the mission. One of the highest priorities of the Supernova Project Office will be to coordinate with the WFIRST Project Office and be the one-stop-shopping source of answers to such questions. The second topic of this proposal is Weak Lensing (WL). The intrinsic broad wavelength coverage and excellent flux calibration of the IFU spectra will provide an important training for the photometric redshift measurements, beyond what is possible from the ground, required for the WL survey. At this time the IFU design details are not fully developed, and our studies will ensure that the WL photo-z requirements are folded into a realistic final IFU design.
Standardizing Type Ia supernovae optical brightness using near-infrared rebrightening time
NASA Astrophysics Data System (ADS)
Shariff, H.; Dhawan, S.; Jiao, X.; Leibundgut, B.; Trotta, R.; van Dyk, D. A.
2016-12-01
Accurate standardization of Type Ia supernovae (SNIa) is instrumental to the usage of SNIa as distance indicators. We analyse a homogeneous sample of 22 low-z SNIa, observed by the Carnegie Supernova Project in the optical and near-infrared (NIR). We study the time of the second peak in the J band, t2, as an alternative standardization parameter of SNIa peak optical brightness, as measured by the standard SALT2 parameter mB. We use BAHAMAS, a Bayesian hierarchical model for SNIa cosmology, to estimate the residual scatter in the Hubble diagram. We find that in the absence of a colour correction, t2 is a better standardization parameter compared to stretch: t2 has a 1σ posterior interval for the Hubble residual scatter of σΔμ = {0.250, 0.257} mag, compared to σΔμ = {0.280, 0.287} mag when stretch (x1) alone is used. We demonstrate that when employed together with a colour correction, t2 and stretch lead to similar residual scatter. Using colour, stretch and t2 jointly as standardization parameters does not result in any further reduction in scatter, suggesting that t2 carries redundant information with respect to stretch and colour. With a much larger SNIa NIR sample at higher redshift in the future, t2 could be a useful quantity to perform robustness checks of the standardization procedure.
How Bright Can Supernovae Get?
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-04-01
Supernovae enormous explosions associated with the end of a stars life come in a variety of types with different origins. A new study has examined how the brightest supernovae in the Universe are produced, and what limits might be set on their brightness.Ultra-Luminous ObservationsRecent observations have revealed many ultra-luminous supernovae, which haveenergies that challenge our abilities to explain them usingcurrent supernova models. An especially extreme example is the 2015 discovery of the supernova ASASSN-15lh, which shone with a peak luminosity of ~2*1045 erg/s, nearly a trillion times brighter than the Sun. ASASSN-15lh radiated a whopping ~2*1052 erg in the first four months after its detection.How could a supernova that bright be produced? To explore the answer to that question, Tuguldur Sukhbold and Stan Woosley at University of California, Santa Cruz, have examined the different sources that could produce supernovae and calculated upper limits on the potential luminosities ofeach of these supernova varieties.Explosive ModelsSukhbold and Woosley explore multiple different models for core-collapse supernova explosions, including:Prompt explosionA stars core collapses and immediately explodes.Pair instabilityElectron/positron pair production at a massive stars center leads to core collapse. For high masses, radioactivity can contribute to delayed energy output.Colliding shellsPreviously expelled shells of material around a star collide after the initial explosion, providing additional energy release.MagnetarThe collapsing star forms a magnetar a rapidly rotating neutron star with an incredibly strong magnetic field at its core, which then dumps energy into the supernova ejecta, further brightening the explosion.They then apply these models to different types of stars.Setting the LimitThe authors show that the light curve of ASASSN-15lh (plotted in orange) can be described by a model (black curve) in which a magnetar with an initial spin period of 0.7 ms and a magnetic field of 2*1013 Gauss deposits energy into ~12 solar masses of ejecta. Click for a closerlook! [Adapted from SukhboldWoosley 2016]The authors find that the maximum luminosity that can be produced by these different supernova models ranges between 5*1043 and 2*1046 erg/s, with total radiated energies of 3*1050 to 4*1052 erg. This places the upper limit on the brightness of a supernova at about 5 trillion times the luminosity of the Sun.The calculations performed by Sukhbold and Woosley confirm that, of the options they explore, the least luminous events are produced by prompt explosions. The brightest events possible are powered by the rotational energy of a newly born magnetar at the heart of the explosion.The energies of observed ultra-luminous supernovae are (just barely) containedwithin the bounds of the mechanisms explored here. This is even true of the extreme ASASSN-15lh which, based on the authors calculations, was almost certainly powered by an embedded magnetar. If we were to observe a supernova more than twice as bright as ASASSN-15lh, however, it would be nearly impossible to explain with current models.CitationTuguldur Sukhbold and S. E. Woosley 2016 ApJ 820 L38. doi:10.3847/2041-8205/820/2/L38
Neronov, Andrii
2017-11-10
Cosmic rays could be produced via shock acceleration powered by supernovae. The supernova hypothesis implies that each supernova injects, on average, some 10^{50} erg in cosmic rays, while the shock acceleration model predicts a power law cosmic ray spectrum with the slope close to 2. Verification of these predictions requires measurement of the spectrum and power of cosmic ray injection from supernova population(s). Here, we obtain such measurements based on γ-ray observation of the Constellation III region of the Large Magellanic Cloud. We show that γ-ray emission from this young star formation region originates from cosmic rays injected by approximately two thousand supernovae, rather than by a massive star wind powered by a superbubble predating supernova activity. Cosmic ray injection power is found to be (1.1_{-0.2}^{+0.5})×10^{50} erg/supernova (for the estimated interstellar medium density 0.3 cm^{-3}). The spectrum is a power law with slope 2.09_{-0.07}^{+0.06}. This agrees with the model of particle acceleration at supernova shocks and provides a direct proof of the supernova origin of cosmic rays.
SN 2014C: VLBI images of a supernova interacting with a circumstellar shell
NASA Astrophysics Data System (ADS)
Bietenholz, Michael F.; Kamble, Atish; Margutti, Raffaella; Milisavljevic, Danny; Soderberg, Alicia
2018-04-01
We report on very long baseline interferometry (VLBI) measurements of supernova 2014C at several epochs between t = 384 and 1057 d after the explosion. SN 2014C was an unusual supernova that initially had Type Ib optical spectrum, but after t = 130 d it developed a Type IIn spectrum with prominent Hα lines, suggesting the onset of strong circumstellar interaction. Our first VLBI observation was at t = 384 d, and we find that the outer radius of SN 2014C was (6.40 ± 0.26) × 1016 cm (for a distance of 15.1 Mpc), implying an average expansion velocity of 19 300 ± 790 km s-1 up to that time. At our last epoch, SN 2014C was moderately resolved and shows an approximately circular outline but with an enhancement of the brightness on the W side. The outer radius of the radio emission at t = 1057 d is (14.9 ± 0.6) × 1016 cm. We find that the expansion between t = 384 and 1057 d is well described by a constant velocity expansion with v = 13 600 ± 650 km s-1. SN 2014C had clearly been substantially decelerated by t = 384 d. Our measurements are compatible with a scenario where the expanding shock impacted upon a shell of dense circumstellar material during the first year, as suggested by the observations at other wavelengths, but had progressed through the dense shell by the time of the VLBI observations.
NORMAL TYPE Ia SUPERNOVAE FROM VIOLENT MERGERS OF WHITE DWARF BINARIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pakmor, R.; Kromer, M.; Taubenberger, S.
2012-03-15
One of the most important questions regarding the progenitor systems of Type Ia supernovae (SNe Ia) is whether mergers of two white dwarfs can lead to explosions that reproduce observations of normal events. Here we present a fully three-dimensional simulation of a violent merger of two carbon-oxygen white dwarfs with masses of 0.9 M{sub Sun} and 1.1 M{sub Sun} combining very high resolution and exact initial conditions. A well-tested combination of codes is used to study the system. We start with the dynamical inspiral phase and follow the subsequent thermonuclear explosion under the plausible assumption that a detonation forms inmore » the process of merging. We then perform detailed nucleosynthesis calculations and radiative transfer simulations to predict synthetic observables from the homologously expanding supernova ejecta. We find that synthetic color light curves of our merger, which produces about 0.62 M{sub Sun} of {sup 56}Ni, show good agreement with those observed for normal SNe Ia in all wave bands from U to K. Line velocities in synthetic spectra around maximum light also agree well with observations. We conclude that violent mergers of massive white dwarfs can closely resemble normal SNe Ia. Therefore, depending on the number of such massive systems available these mergers may contribute at least a small fraction to the observed population of normal SNe Ia.« less
MASTER OT J014638.27+041324.4 is a Young Type IIP Supernova
NASA Astrophysics Data System (ADS)
Zheng, W.; Kelly, P. L.; Clubb, K. I.; Filippenko, A. V.
2013-12-01
We report that a CCD spectrum (range 350-1000 nm) of MASTER OT J014638.27+041324.4 (Shurpakov et al., ATel #5630) was obtained on Dec 6.5 UT with the Shane 3-m reflector (+Kast spectrograph) at Lick Observatory. The spectrum shows a blue continuum and weak, broad hydrogen Balmer lines having P-Cyg profiles, indicating that the object is a young Type IIP supernova. Weak He I 587.6 nm is also present.
Spectroscopic classification of AT 2018adg as a Type Ic supernova
NASA Astrophysics Data System (ADS)
Williams, S. C.; Nordin, J.; Hook, I. M.
2018-03-01
We obtained a spectrum of the transient AT 2018adg (see TNS) with the SPRAT spectrograph (resolution R 350; Piascik et al. 2014) on the 2-m Liverpool Telescope (LT; Steele et al. 2004) on 2018 Mar 11.13 UT. The spectrum is consistent with AT 2018adg being a Type Ic supernova around peak brightness, at a redshift of z 0.02 to 0.03, in agreement with the host galaxy redshift of z = 0.022 (da Costa et al. 1998).
A cosmology-independent calibration of type Ia supernovae data
NASA Astrophysics Data System (ADS)
Hauret, C.; Magain, P.; Biernaux, J.
2018-06-01
Recently, the common methodology used to transform type Ia supernovae (SNe Ia) into genuine standard candles has been suffering criticism. Indeed, it assumes a particular cosmological model (namely the flat ΛCDM) to calibrate the standardisation corrections parameters, i.e. the dependency of the supernova peak absolute magnitude on its colour, post-maximum decline rate and host galaxy mass. As a result, this assumption could make the data compliant to the assumed cosmology and thus nullify all works previously conducted on model comparison. In this work, we verify the viability of these hypotheses by developing a cosmology-independent approach to standardise SNe Ia data from the recent JLA compilation. Our resulting corrections turn out to be very close to the ΛCDM-based corrections. Therefore, even if a ΛCDM-based calibration is questionable from a theoretical point of view, the potential compliance of SNe Ia data does not happen in practice for the JLA compilation. Previous works of model comparison based on these data do not have to be called into question. However, as this cosmology-independent standardisation method has the same degree of complexity than the model-dependent one, it is worth using it in future works, especially if smaller samples are considered, such as the superluminous type Ic supernovae.
Yamaguchi, Hiroya; Badenes, Carles; Foster, Adam R.; ...
2015-03-12
Despite decades of intense efforts, many fundamental aspects of Type Ia supernovae (SNe Ia) remain elusive. One of the major open questions is whether the mass of an exploding white dwarf (WD) is close to the Chandrasekhar limit. Here, we report the detection of strong K-shell emission from stable Fe-peak elements in the Suzaku X-ray spectrum of the Type Ia supernova remnant (SNR) 3C 397. The high Ni/Fe and Mn/Fe mass ratios (0.11–0.24 and 0.018–0.033, respectively) in the hot plasma component that dominates the K-shell emission lines indicate a degree of neutronization in the supernova ejecta that can only bemore » achieved by electron capture in the dense cores of exploding WDs with a near-Chandrasekhar mass. This suggests a single-degenerate origin for 3C 397, since Chandrasekhar mass progenitors are expected naturally if the WD accretes mass slowly from a companion. Altogether with other results supporting the double-degenerate scenario, our work adds to the mounting evidence that both progenitor channels make a significant contribution to the SN Ia rate in star-forming galaxies.« less
SN 2013ab: a normal Type IIP supernova in NGC 5669
NASA Astrophysics Data System (ADS)
Bose, Subhash; Valenti, Stefano; Misra, Kuntal; Pumo, Maria Letizia; Zampieri, Luca; Sand, David; Kumar, Brijesh; Pastorello, Andrea; Sutaria, Firoza; Maccarone, Thomas J.; Kumar, Brajesh; Graham, M. L.; Howell, D. Andrew; Ochner, Paolo; Chandola, H. C.; Pandey, Shashi B.
2015-07-01
We present densely sampled ultraviolet/optical photometric and low-resolution optical spectroscopic observations of the Type IIP supernova 2013ab in the nearby (˜24 Mpc) galaxy NGC 5669, from 2 to 190 d after explosion. Continuous photometric observations, with the cadence of typically a day to one week, were acquired with the 1-2 m class telescopes in the Las Cumbres Observatory Global Telescope network, ARIES telescopes in India and various other telescopes around the globe. The light curve and spectra suggest that the supernova (SN) is a normal Type IIP event with a plateau duration of ˜80 d with mid-plateau absolute visual magnitude of -16.7, although with a steeper decline during the plateau (0.92 mag 100 d-1 in V band) relative to other archetypal SNe of similar brightness. The velocity profile of SN 2013ab shows striking resemblance with those of SNe 1999em and 2012aw. Following the Rabinak & Waxman prescription, the initial temperature evolution of the SN emission allows us to estimate the progenitor radius to be ˜800 R⊙, indicating that the SN originated from a red supergiant star. The distance to the SN host galaxy is estimated to be 24.3 Mpc from expanding photosphere method. From our observations, we estimate that 0.064 M⊙ of 56Ni was synthesized in the explosion. General relativistic, radiation hydrodynamical modelling of the SN infers an explosion energy of 0.35 × 1051 erg, a progenitor mass (at the time of explosion) of ˜9 M⊙ and an initial radius of ˜600 R⊙.
Action Replay of Powerful Stellar Explosion
NASA Astrophysics Data System (ADS)
2008-03-01
Astronomers have made the best ever determination of the power of a supernova explosion that was visible from Earth long ago. By observing the remnant of a supernova and a light echo from the initial outburst, they have established the validity of a powerful new method for studying supernovas. Using data from NASA's Chandra X-ray Observatory, ESA's XMM-Newton Observatory, and the Gemini Observatory, two teams of researchers studied the supernova remnant and the supernova light echo that are located in the Large Magellanic Cloud (LMC), a small galaxy about 160,000 light years from Earth. They concluded that the supernova occurred about 400 years ago (in Earth’s time frame), and was unusually bright and energetic. X-ray Image of SNR 0509-67.5 X-ray Image of SNR 0509-67.5 This result is the first time two methods - X-ray observations of a supernova remnant and optical observations of the expanding light echoes from the explosion - have both been used to estimate the energy of a supernova explosion. Up until now, scientists had only made such an estimate using the light seen soon after a star exploded, or using remnants that are several hundred years old, but not from both. "People didn't have advanced telescopes to study supernovas when they went off hundreds of years ago," said Armin Rest of Harvard University, who led the light echo observations using Gemini. "But we've done the next best thing by looking around the site of the explosion and constructing an action replay of it." People Who Read This Also Read... Milky Way's Super-efficient Particle Accelerators Caught in The Act Oldest Known Objects Are Surprisingly Immature Discovery of Most Recent Supernova in Our Galaxy NASA Unveils Cosmic Images Book in Braille for Blind Readers In 2004, scientists used Chandra to determine that a supernova remnant, known as SNR 0509-67.5 in the LMC, was a so-called Type Ia supernova, caused by a white dwarf star in a binary system that reaches a critical mass and explodes. In the new optical study, an estimate of the explosion's energy came from studying an echo of the original light of the explosion. Just as sound bounces off walls of a canyon, so too can light waves create an echo by bouncing off dust clouds in space. The light from these echoes travels a longer path than the light that travels straight toward us, and so can be seen hundreds of years after the supernova itself. First seen by the Cerro-Tololo Inter-American Observatory in Chile, the light echoes were observed in greater detail by Gemini Observatory in Chile. The optical spectra of the light echo were used to confirm that the supernova was a Type Ia and to unambiguously determine the particular class of explosion and therefore its energy. The Chandra data, along with XMM data obtained in 2000, were then independently used to calculate the amount of energy involved in the original explosion, using an analysis of the supernova remnant and state-of-the-art explosion models. Their conclusion confirmed the results from the optical data, namely that the explosion was an especially energetic and bright variety of Type Ia supernova. This agreement provides strong evidence that the detailed explosion models are accurate. "Having these two methods agree lets us breathe a sigh of relief," said Carlos Badenes of Princeton University who led the Chandra and XMM study. "It looks like we're on the right track with trying to understand these big explosions. Their stellar debris really can retain a memory of what created them hundreds of years earlier." Both methods estimated a similar time since the explosion of about 400 years. An extra constraint on the age comes from the lack of recorded historical evidence for a recent supernova in the LMC. Because this star appears in the Southern Hemisphere, it likely would have been seen by navigators who noted similarly bright celestial events if it had occurred less than about 400 years ago. Because Type Ia supernovas have nearly uniform intrinsic brightness, they are used as important tools by scientists to study the expansion of the universe and the nature of dark energy. "It's crucial to know that the basic assumptions about these explosions are correct, so they're not used just as black-boxes to measure distances," said Badenes. This work is also being extended to other supernova remnants and light echoes. "This is the first case where the conclusions that are drawn from the supernova remnant about the original explosion can be directly tested by looking at the original event itself," said Rest. "We'll be able to learn a lot about supernovas in our own galaxy by using this technique." These results appear in two recently accepted papers in The Astrophysical Journal. The first discusses the spectrum obtained by Gemini, led by Rest. The second, with Badenes as first author, details the Chandra and XMM observations of SNR 0509-67.5. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.
Why Are Peculiar Type Ia Supernovae More Likely to Show the Signature of a Single-degenerate Model?
NASA Astrophysics Data System (ADS)
Meng, Xiang-Cun; Han, Zhan-Wen
2018-03-01
Although type Ia supernovae (SNe Ia) are very useful in many astrophysical fields, their exact progenitor nature is still unclear. A basic method to distinguish the different progenitor models is to search the signal from the single-degenerate (SD) model, e.g., the signal for the existence of a nondegenerate companion before or after supernova explosion. Observationally, some SNe Ia show such signals, while the others do not. Here, we propose a universal model to explain these observations based on the spin-up/spin-down model, in which a white dwarf (WD) will experience a spin-down phase before supernova explosion, and the spin-down timescale is determined by its initial mass, i.e., the more massive the initial WD, the shorter the spin-down timescale and then the more likely the SN Ia is to show the SD signature. Therefore, our model predicts that the SNe Ia from hybrid carbon–oxygen–neon WDs are more likely to show the SD signature observationally, as some peculiar SNe Ia showed.
Elemental gas-phase abundances of intermediate redshift type Ia supernova star-forming host galaxies
NASA Astrophysics Data System (ADS)
Moreno-Raya, M. E.; Galbany, L.; López-Sánchez, Á. R.; Mollá, M.; González-Gaitán, S.; Vílchez, J. M.; Carnero, A.
2018-05-01
The maximum luminosity of type Ia supernovae (SNe Ia) depends on the oxygen abundance of the regions of the host galaxies, where they explode. This metallicity dependence reduces the dispersion in the Hubble diagram (HD) when included with the traditional two-parameter calibration of SN Ia light-curve parameters and absolute magnitude. In this work, we use empirical calibrations to carefully estimate the oxygen abundance of galaxies hosting SNe Ia from the SDSS-II/SN (Sloan Digital Sky Survey-II Supernova) survey at intermediate redshift by measuring their emission-line intensities. We also derive electronic temperature with the direct method for a small fraction of objects for consistency. We find a trend of decreasing oxygen abundance with increasing redshift for the most massive galaxies. Moreover, we study the dependence of the HD residuals (HR) with galaxy oxygen abundance obtaining a correlation in line with those found in other works. In particular, the HR versus oxygen abundance shows a slope of -0.186 ± 0.123 mag dex-1 (1.52σ) in good agreement with theoretical expectations. This implies smaller distance modulii after corrections for SNe Ia in metal-rich galaxies. Based on our previous results on local SNe Ia, we propose this dependence to be due to the lower luminosity of the SNe Ia produced in more metal-rich environments.
The Carnegie Supernova Project: Intrinsic colors of type Ia supernovae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, Christopher R.; Persson, S. E.; Freedman, Wendy L.
2014-07-01
We present an updated analysis of the intrinsic colors of Type Ia supernova (SNe Ia) using the latest data release of the Carnegie Supernova Project. We introduce a new light-curve parameter very similar to stretch that is better suited for fast-declining events, and find that these peculiar types can be seen as extensions to the population of 'normal' SNe Ia. With a larger number of objects, an updated fit to the Lira relation is presented along with evidence for a dependence on the late-time slope of the B – V light-curves with stretch and color. Using the full wavelength rangemore » from u to H band, we place constraints on the reddening law for the sample as a whole and also for individual events/hosts based solely on the observed colors. The photometric data continue to favor low values of R{sub V} , though with large variations from event to event, indicating an intrinsic distribution. We confirm the findings of other groups that there appears to be a correlation between the derived reddening law, R{sub V} , and the color excess, E(B – V), such that larger E(B – V) tends to favor lower R{sub V} . The intrinsic u-band colors show a relatively large scatter that cannot be explained by variations in R{sub V} or by the Goobar power-law for circumstellar dust, but rather is correlated with spectroscopic features of the supernova and is therefore likely due to metallicity effects.« less
NASA Astrophysics Data System (ADS)
Folatelli, G.
Supernovae are very relevant astrophysical objects because they indicate the violent end of certain stars and because they alter the interstellar medium. But most importantly, they have become an extremely useful tool for measuring cosmological distances. Based on highly precise distances to type Ia supernovae it was possible to find out that the expansion of the universe is currently accelerated. This led to introducing the concept of ``dark energy'' as a dominant and yet unknown component of the cosmos. In this article we will describe the method of distance measurements that leads to the determination of cosmological parameters. We will briefly review the current status of the field with emphasis on the importance of improving our knowledge about the physical nature of supernovae. FULL TEXT IN SPANISH
GRB 161219B/SN 2016jca: A low-redshift gamma-ray burst supernova powered by radioactive heating
NASA Astrophysics Data System (ADS)
Cano, Z.; Izzo, L.; de Ugarte Postigo, A.; Thöne, C. C.; Krühler, T.; Heintz, K. E.; Malesani, D.; Geier, S.; Fuentes, C.; Chen, T.-W.; Covino, S.; D'Elia, V.; Fynbo, J. P. U.; Goldoni, P.; Gomboc, A.; Hjorth, J.; Jakobsson, P.; Kann, D. A.; Milvang-Jensen, B.; Pugliese, G.; Sánchez-Ramírez, R.; Schulze, S.; Sollerman, J.; Tanvir, N. R.; Wiersema, K.
2017-09-01
Since the first discovery of a broad-lined type Ic supernova (SN) with a long-duration gamma-ray burst (GRB) in 1998, fewer than fifty GRB-supernovae (SNe) have been discovered. The intermediate-luminosity Swift GRB 161219B and its associated supernova SN 2016jca, which occurred at a redshift of z = 0.1475, represents only the seventh GRB-SN to have been discovered within 1 Gpc, and hence provides an excellent opportunity to investigate the observational and physical properties of these very elusive and rare type of SN. As such, we present optical to near-infrared photometry and optical spectroscopy of GRB 161219B and SN 2016jca, spanning the first three months since its discovery. GRB 161219B exploded in the disk of an edge-on spiral galaxy at a projected distance of 3.4 kpc from the galactic centre. GRB 161219B itself is an outlier in the Ep,I - Eγ,iso plane, while SN 2016jca had a rest-frame, peak absolute V-band magnitude of MV = - 19.0 ± 0.1, which it reached after 12.3 ± 0.7 rest-frame days. We find that the bolometric properties of SN 2016jca are inconsistent with being powered solely by a magnetar central engine, and demonstrate that it was likely powered exclusively by energy deposited by the radioactive decay of nickel and cobalt into their daughter products, which were nucleosynthesised when its progenitor underwent core collapse. We find that 0.22 ± 0.08M⊙ of nickel is required to reproducethe peak luminosity of SN 2016jca, and we constrain an ejecta mass of 5.8 ± 0.3M⊙ and a kinetic energy of 5.1 ± 0.8 × 1052 erg. Finally, we report on a chromatic, pre-maximum bump in the g-band light curve, and discuss its possible origin.
NASA Astrophysics Data System (ADS)
Follin, B.; Knox, L.
2018-07-01
Recent determination of the Hubble constant via Cepheid-calibrated supernovae by Riess et al.find ˜3σ tension with inferences based on cosmic microwave background (CMB) temperature and polarization measurements from Planck. This tension could be an indication of inadequacies in the concordance Λcold dark matter model. Here, we investigate the possibility that the discrepancy could instead be due to systematic bias or uncertainty in the Cepheid calibration step of the distance ladder measurement by Riess et al. We consider variations in total-to-selective extinction of Cepheid flux as a function of line of sight, hidden structure in the period-luminosity relationship, and potentially different intrinsic colour distributions of Cepheids as a function of host galaxy. Considering all potential sources of error, our final determination of H0 = 73.3 ± 1.7 km s-1Mpc-1 (not including systematic errors from the treatment of geometric distances or Type Ia supernovae) shows remarkable robustness and agreement with Riess et al. We conclude systematics from the modelling of Cepheid photometry, including Cepheid selection criteria, cannot explain the observed tension between Cepheid-variable and CMB-based inferences of the Hubble constant. Considering a `model-independent' approach to relating Cepheids in galaxies with known distances to Cepheids in galaxies hosting a Type Ia supernova and finding agreement with the Riess et al. result, we conclude no generalization of the model relating anchor and host Cepheid magnitude measurements can introduce significant bias in the H0 inference.
Blue supergiant progenitors from binary mergers for SN 1987A and other Type II-peculiar supernovae
NASA Astrophysics Data System (ADS)
Menon, Athira; Heger, Alexander
2017-11-01
We present results of a systematic and detailed stellar evolution study of binary mergers for blue supergiant (BSG) progenitors of Type II supernovae, particularly for SN 1987A. We are able to reproduce nearly all observational aspects of the progenitor of SN 1987A, Sk -69 °202, such as its position in the HR diagram, the enrichment of helium and nitrogen in the triple-ring nebula and its lifetime before its explosion. We build our evolutionary model based on the merger model of Podsiadlowski et al. (1992), Podsiadlowski et al. (2007) and empirically explore an initial parameter consisting of primary masses, secondary masses and different depths up to which the secondary penetrates the He core during the merger. The evolution of the post-merger star is continued until just before iron-core collapse. Of the 84 pre-supernova models (16 M⊙ - 23 M⊙) computed, the majority of the pre-supernova models are compact, hot BSGs with effective temperature >12 kK and 30 R⊙ - 70 R⊙ of which six match nearly all the observational properties of Sk -69 °202.
Light curves of 213 Type Ia supernovae from the Essence survey
Narayan, G.; Rest, A.; Tucker, B. E.; ...
2016-05-06
The ESSENCE survey discovered 213 Type Ia supernovae at redshiftsmore » $$0.1\\lt z\\lt 0.81$$ between 2002 and 2008. We present their R- and I-band photometry, measured from images obtained using the MOSAIC II camera at the CTIO Blanco, along with rapid-response spectroscopy for each object. We use our spectroscopic follow-up observations to determine an accurate, quantitative classification, and precise redshift. Through an extensive calibration program we have improved the precision of the CTIO Blanco natural photometric system. We use several empirical metrics to measure our internal photometric consistency and our absolute calibration of the survey. Here, we assess the effect of various potential sources of systematic bias on our measured fluxes, and estimate the dominant term in the systematic error budget from the photometric calibration on our absolute fluxes is ~1%.« less
Light curves of 213 Type Ia supernovae from the Essence survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayan, G.; Rest, A.; Tucker, B. E.
The ESSENCE survey discovered 213 Type Ia supernovae at redshiftsmore » $$0.1\\lt z\\lt 0.81$$ between 2002 and 2008. We present their R- and I-band photometry, measured from images obtained using the MOSAIC II camera at the CTIO Blanco, along with rapid-response spectroscopy for each object. We use our spectroscopic follow-up observations to determine an accurate, quantitative classification, and precise redshift. Through an extensive calibration program we have improved the precision of the CTIO Blanco natural photometric system. We use several empirical metrics to measure our internal photometric consistency and our absolute calibration of the survey. Here, we assess the effect of various potential sources of systematic bias on our measured fluxes, and estimate the dominant term in the systematic error budget from the photometric calibration on our absolute fluxes is ~1%.« less
EVIDENCE FOR A COMPACT WOLF-RAYET PROGENITOR FOR THE TYPE Ic SUPERNOVA PTF 10vgv
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corsi, A.; Ofek, E. O.; Gal-Yam, A.
We present the discovery of PTF 10vgv, a Type Ic supernova (SN) detected by the Palomar Transient Factory, using the Palomar 48 inch telescope (P48). R-band observations of the PTF 10vgv field with P48 probe the SN emission from its very early phases (about two weeks before R-band maximum) and set limits on its flux in the week prior to the discovery. Our sensitive upper limits and early detections constrain the post-shock-breakout luminosity of this event. Via comparison to numerical (analytical) models, we derive an upper-limit of R {approx}< 4.5 R{sub Sun} (R {approx}< 1 R{sub Sun }) on themore » radius of the progenitor star, a direct indication in favor of a compact Wolf-Rayet star. Applying a similar analysis to the historical observations of SN 1994I yields R {approx}< 1/4 R{sub Sun} for the progenitor radius of this SN.« less
TIME VARIATION OF AV AND RV FOR TYPE Ia SUPERNOVAE BEHIND INTERSTELLAR DUST
NASA Astrophysics Data System (ADS)
Huang, Xiaosheng; Biederman, M.; Herger, B.; Aldering, G. S.
2014-01-01
TIME VARIATION OF AV AND RV FOR TYPE Ia SUPERNOVAE BEHIND NON-UNIFORM INTERSTELLAR DUST ABSTRACT We investigate the time variation of the visual extinction, AV, and the total-to-selective extinction ratio, RV, resulting from interstellar dust in front of an expanding photospheric disk of a type Ia supernova (SN Ia). We simulate interstellar dust clouds according to a power law power spectrum and produce extinction maps that either follow a pseudo-Gaussian distribution or a lognormal distribution. The RV maps are produced through a correlation between AV and RV. With maps of AV and RV generated in each case (pseudo-Gaussian and lognormal), we then compute the effective AV and RV for a SN as its photospheric disk expands behind the dust screen. We find for a small percentage of SNe the AV and RV values can vary by a large factor from day to day in the first 40 days after explosion.
Walter Baade, Fritz Zwicky, and Rudolph Minkowski's Early Supernova Research, 1927 - 1973
NASA Astrophysics Data System (ADS)
Osterbrock, D. E.
1999-12-01
Long before he ``discovered" the two stellar populations, Walter Baade was a pioneer in research on supernovae and their remnants. In 1927, while still in Germany, Baade emphasized what he called ``Hauptnovae" (chief novae) as highly luminous, potential distance indicators. He joined the Mount Wilson staff in 1931, bringing the ``secret" of the Schmidt camera with him, and encouraged Fritz Zwicky to carry out a supernova search with one at Palomar. Baade and Zwicky used the term ``supernova" in their 1933 joint paper. Zwicky began a systematic search in 1936, and Baade followed up with the 100-in reflector to derive light curves. He confirmed that Tycho's ``nova" of 1572 and the Crab nebula had been supernovae in our Galaxy. Baade advised N. U. Mayall, at Lick, on his spectroscopic study of the Crab nebula. In 1933, after Hitler came to power, Rudolph Minkowski had to leave Germany. Baade managed to get him a Mount Wilson staff position. Minkowski then did the spectroscopic observations of supernovae, beginning in 1937. Within a few years he and Baade were able to distinguish type I and II supernovae. Baade's further work on supernovae included historical research in Latin, Italian, and German, as well as filter photography. He searched hard for a remnant of SN 1885 in M 31, but never succeeded in finding it. After World War II the Crab nebula was found to be a strong radio source, and Baade and Minkowski used the 200-in to identify other supernova remnants, beginning with Cas A. Baade collaborated closely with Jan Oort and his student, Lo Woltjer, in their studies of the Crab nebula. After Baade retired in 1958, Minkowski continued supernova research for more than a decade; one of his favorite objects was the expanding Cygnus Loop.
Nucleosynthesis in Thermonuclear Supernovae
NASA Astrophysics Data System (ADS)
Seitenzahl, Ivo Rolf; Townsley, Dean M.
The explosion energy of thermonuclear (type Ia) supernovae is derived from the difference in nuclear binding energy liberated in the explosive fusion of light "fuel" nuclei, predominantly carbon and oxygen, into more tightly bound nuclear "ash" dominated by iron and silicon group elements. The very same explosive thermonuclear fusion event is also one of the major processes contributing to the nucleosynthesis of the heavy elements, in particular the iron-group elements. For example, most of the iron and manganese in the sun and its planetary system were produced in thermonuclear supernovae. Here, we review the physics of explosive thermonuclear burning in carbon-oxygen white dwarf material and the methodologies utilized in calculating predicted nucleosynthesis from hydrodynamic explosion models. While the dominant explosion scenario remains unclear, many aspects of the nuclear combustion and nucleosynthesis are common to all models and must occur in some form in order to produce the observed yields. We summarize the predicted nucleosynthetic yields for existing explosion models, placing particular emphasis on characteristic differences in the nucleosynthetic signatures of the different suggested scenarios leading to type Ia supernovae. Following this, we discuss how these signatures compare with observations of several individual supernovae, remnants, and the composition of material in our galaxy and galaxy clusters.
Shappee, B. J.; Piro, A. L.; Holoien, T. W. -S.; ...
2016-07-27
On 2014 December 9.61, the All-sky Automated Survey for SuperNovae (ASAS-SN or "Assassin") discovered ASASSN-14lp just ~2 days after first light using a global array of 14 cm diameter telescopes. ASASSN-14lp went on to become a bright supernova (V = 11.94 mag), second only to SN 2014J for the year. We present prediscovery photometry (with a detection less than a day after first light) and ultraviolet through near-infrared photometric and spectroscopic data covering the rise and fall of ASASSN-14lp for more than 100 days. We find that ASASSN-14lp had a broad light curve (more » $${\\rm{\\Delta }}{m}_{15}(B)=0.80\\pm 0.05$$), a B-band maximum at 2457015.82 ± 0.03, a rise time of $${16.94}_{-0.10}^{+0.11}$$ days, and moderate host-galaxy extinction ($$E{(B-V)}_{\\mathrm{host}}=0.33\\pm 0.06$$). Using ASASSN-14lp, we derive a distance modulus for NGC 4666 of $$\\mu =30.8\\pm 0.2$$, corresponding to a distance of 14.7 ± 1.5 Mpc. However, adding ASASSN-14lp to the calibrating sample of Type Ia supernovae still requires an independent distance to the host galaxy. Lastly, using our early-time photometric and spectroscopic observations, we rule out red giant secondaries and, assuming a favorable viewing angle and explosion time, any nondegenerate companion larger than 0.34 $${R}_{\\odot }$$.« less
Neutrinos from type Ia supernovae: The deflagration-to-detonation transition scenario
Wright, Warren P.; Nagaraj, Gautam; Kneller, James P.; ...
2016-07-19
It has long been recognized that the neutrinos detected from the next core-collapse supernova in the Galaxy have the potential to reveal important information about the dynamics of the explosion and the nucleosynthesis conditions as well as allowing us to probe the properties of the neutrino itself. The neutrinos emitted from thermonuclear—type Ia—supernovae also possess the same potential, although these supernovae are dimmer neutrino sources. For the first time, we calculate the time, energy, line of sight, and neutrino-flavor-dependent features of the neutrino signal expected from a three-dimensional delayed-detonation explosion simulation, where a deflagration-to-detonation transition triggers the complete disruption ofmore » a near-Chandrasekhar mass carbon-oxygen white dwarf. We also calculate the neutrino flavor evolution along eight lines of sight through the simulation as a function of time and energy using an exact three-flavor transformation code. We identify a characteristic spectral peak at ˜10 MeV as a signature of electron captures on copper. This peak is a potentially distinguishing feature of explosion models since it reflects the nucleosynthesis conditions early in the explosion. We simulate the event rates in the Super-K, Hyper-K, JUNO, and DUNE neutrino detectors with the SNOwGLoBES event rate calculation software and also compute the IceCube signal. Hyper-K will be able to detect neutrinos from our model out to a distance of ˜10 kpc. Here, at 1 kpc, JUNO, Super-K, and DUNE would register a few events while IceCube and Hyper-K would register several tens of events.« less
Measuring the Hubble constant with Type Ia supernovae as near-infrared standard candles
NASA Astrophysics Data System (ADS)
Dhawan, Suhail; Jha, Saurabh W.; Leibundgut, Bruno
2018-01-01
The most precise local measurements of H0 rely on observations of Type Ia supernovae (SNe Ia) coupled with Cepheid distances to SN Ia host galaxies. Recent results have shown tension comparing H0 to the value inferred from CMB observations assuming ΛCDM, making it important to check for potential systematic uncertainties in either approach. To date, precise local H0 measurements have used SN Ia distances based on optical photometry, with corrections for light curve shape and colour. Here, we analyse SNe Ia as standard candles in the near-infrared (NIR), where luminosity variations in the supernovae and extinction by dust are both reduced relative to the optical. From a combined fit to 9 nearby calibrator SNe with host Cepheid distances from Riess et al. (2016) and 27 SNe in the Hubble flow, we estimate the absolute peak J magnitude MJ = -18.524 ± 0.041 mag and H0 = 72.8 ± 1.6 (statistical) ±2.7 (systematic) km s-1 Mpc-1. The 2.2% statistical uncertainty demonstrates that the NIR provides a compelling avenue to measuring SN Ia distances, and for our sample the intrinsic (unmodeled) peak J magnitude scatter is just 0.10 mag, even without light curve shape or colour corrections. Our results do not vary significantly with different sample selection criteria, though photometric calibration in the NIR may be a dominant systematic uncertainty. Our findings suggest that tension in the competing H0 distance ladders is likely not a result of supernova systematics that could be expected to vary between optical and NIR wavelengths, like dust extinction. We anticipate further improvements in H0 with a larger calibrator sample of SNe Ia with Cepheid distances, more Hubble flow SNe Ia with NIR light curves, and better use of the full NIR photometric data set beyond simply the peak J-band magnitude.
Astronomers Find Rare Beast by New Means
NASA Astrophysics Data System (ADS)
2010-01-01
For the first time, astronomers have found a supernova explosion with properties similar to a gamma-ray burst, but without seeing any gamma rays from it. The discovery, using the National Science Foundation's Very Large Array (VLA) radio telescope, promises, the scientists say, to point the way toward locating many more examples of these mysterious explosions. "We think that radio observations will soon be a more powerful tool for finding this kind of supernova in the nearby Universe than gamma-ray satellites," said Alicia Soderberg, of the Harvard-Smithsonian Center for Astrophysics. The telltale clue came when the radio observations showed material expelled from the supernova explosion, dubbed SN2009bb, at speeds approaching that of light. This characterized the supernova, first seen last March, as the type thought to produce one kind of gamma-ray burst. "It is remarkable that very low-energy radiation, radio waves, can signal a very high-energy event," said Roger Chevalier of the University of Virginia. When the nuclear fusion reactions at the cores of very massive stars no longer can provide the energy needed to hold the core up against the weight of the rest of the star, the core collapses catastrophically into a superdense neutron star or black hole. The rest of the star's material is blasted into space in a supernova explosion. For the past decade or so, astronomers have identified one particular type of such a "core-collapse supernova" as the cause of one kind of gamma-ray burst. Not all supernovae of this type, however, produce gamma-ray bursts. "Only about one out of a hundred do this," according to Soderberg. In the more-common type of such a supernova, the explosion blasts the star's material outward in a roughly-spherical pattern at speeds that, while fast, are only about 3 percent of the speed of light. In the supernovae that produce gamma-ray bursts, some, but not all, of the ejected material is accelerated to nearly the speed of light. The superfast speeds in these rare blasts, astronomers say, are caused by an "engine" in the center of the supernova explosion that resembles a scaled-down version of a quasar. Material falling toward the core enters a swirling disk surrounding the new neutron star or black hole. This accretion disk produces jets of material boosted at tremendous speeds from the poles of the disk. "This is the only way we know that a supernova explosion could accelerate material to such speeds," Soderberg said. Until now, no such "engine-driven" supernova had been found any way other than by detecting gamma rays emitted by it. "Discovering such a supernova by observing its radio emission, rather than through gamma rays, is a breakthrough. With the new capabilities of the Expanded VLA coming soon, we believe we'll find more in the future through radio observations than with gamma-ray satellites," Soderberg said. Why didn't anyone see gamma rays from this explosion? "We know that the gamma-ray emission is beamed in such blasts, and this one may have been pointed away from Earth and thus not seen," Soderberg said. In that case, finding such blasts through radio observations will allow scientists to discover a much larger percentage of them in the future. "Another possibility," Soderberg adds, "is that the gamma rays were 'smothered' as they tried to escape the star. This is perhaps the more exciting possibility since it implies that we can find and identify engine-driven supernovae that lack detectable gamma rays and thus go unseen by gamma-ray satellites." One important question the scientists hope to answer is just what causes the difference between the "ordinary" and the "engine-driven" core-collapse supernovae. "There must be some rare physical property that separates the stars that produce the 'engine-driven' blasts from their more-normal cousins," Soderberg said. "We'd like to find out what that property is." One popular idea is that such stars have an unusually low concentration of elements heavier than hydrogen. However, Soderberg points out, that does not seem to be the case for this supernova. Soderberg and Chevalier worked with Alak Ray and Sayan Chakrabarti of the Tata Institute of Fundamental Research in India; Poonam Chandra of the Royal Military College of Canada; and a large group of collaborators at the Harvard-Smithsonian Center for Astrophysics. The scientists reported their findings in the January 28 issue of the journal Nature.
Surprisingly high-pressure shocks in the supernova remnant IC 443
NASA Technical Reports Server (NTRS)
Moorhouse, A.; Brand, P. W. J. L.; Geballe, T. R.; Burton, M. G.
1991-01-01
The intensities of several lines of molecular hydrogen have been measured from two regions of the supernova-remnant/molecular-cloud shock in IC 443. The lines measured have upper-state energies ranging from 7000 K to 23,000 K. Their relative intensities differ in the two regions, but are consistent with those predicted from the post-shock regions of simple jump-type shocks of different pressure. The pressures so derived are far higher than the pressure in the supernova remnant itself, and a possible reason for this discrepancy is discussed.
X-ray study of the supernova remnant G337.2-0.7
NASA Astrophysics Data System (ADS)
Takata, Akihiro; Nobukawa, Masayoshi; Uchida, Hiroyuki; Tsuru, Takeshi Go; Tanaka, Takaaki; Koyama, Katsuji
2016-06-01
This paper reports on the Suzaku result of the Galactic supernova remnant (SNR) G337.2-0.7. The X-ray spectrum is well explained by three components in ionizing phase. One is a plasma with a low temperature kT = 0.70_{-0.03}^{+0.02}keV, solar abundances, and an ionization parameter n_et = 5.7^{+0.7}_{-0.4}× 10^{11}s cm-3. The second is a middle-temperature plasma with kT = 1.54^{+0.13}_{-0.02}keV and high metal abundances in a highly ionized state of n_et = 3.6^{+0.2}_{-0.5}× 10^{11}s cm-3, and the third is a high-temperature plasma with kT = 3.1^{+0.2}_{-0.1}keV and high metal abundances in a low-ionized state of n_et=2.1^{+0.4}_{-0.2}× 10^{10}s cm-3. The high metal-abundance plasmas are likely to be of an ejecta origin, while the solar abundance plasma would be of an interstellar-gas origin. The abundance pattern and mass of the ejecta confirm that G337.2-0.7 is a remnant of a Type Ia supernova (SN). The derived Fe mass of ejecta MFe = 0.025-0.039 M⊙ is far smaller than that expected from any Type Ia model, suggesting that most Fe has not yet been heated by the reverse shock. The ejecta has enhanced distribution in the northeastern region compared to the central region, and therefore the SN explosion or SNR evolution would be asymmetric.
Type Ia Supernova Intrinsic Magnitude Dispersion and the Fitting of Cosmological Parameters
NASA Astrophysics Data System (ADS)
Kim, A. G.
2011-02-01
I present an analysis for fitting cosmological parameters from a Hubble diagram of a standard candle with unknown intrinsic magnitude dispersion. The dispersion is determined from the data, simultaneously with the cosmological parameters. This contrasts with the strategies used to date. The advantages of the presented analysis are that it is done in a single fit (it is not iterative), it provides a statistically founded and unbiased estimate of the intrinsic dispersion, and its cosmological-parameter uncertainties account for the intrinsic-dispersion uncertainty. Applied to Type Ia supernovae, my strategy provides a statistical measure to test for subtypes and assess the significance of any magnitude corrections applied to the calibrated candle. Parameter bias and differences between likelihood distributions produced by the presented and currently used fitters are negligibly small for existing and projected supernova data sets.
Spectroscopic Classification of SN 2018bq (=ASASSN-18ac) as a Type Ia Supernova
NASA Astrophysics Data System (ADS)
Lin, Han; Xiang, Danfeng; Rui, Liming; Wang, Xiaofeng; Xiao, Feng; Ren, Juanjuan; Zhang, Tianmeng; Zhang, Jujia
2018-01-01
We obtained an optical spectrum (range 510-860 nm) of SN 2018bq(=ASASSN-18ac), discovered by All Sky Automated Survey for Supernova(ASAS-SN), on UT 09.81 2018 with the 2.16-m telescope (+BFOSC) at Xinglong Station of National Astronomical Observatories of China (NAOC).
Pulsar Wind Bubble Blowout from a Supernova
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blondin, John M.; Chevalier, Roger A., E-mail: blondin@ncsu.edu
For pulsars born in supernovae, the expansion of the shocked pulsar wind nebula is initially in the freely expanding ejecta of the supernova. While the nebula is in the inner flat part of the ejecta density profile, the swept-up, accelerating shell is subject to the Rayleigh–Taylor instability. We carried out two- and three-dimensional simulations showing that the instability gives rise to filamentary structure during this initial phase but does not greatly change the dynamics of the expanding shell. The flow is effectively self-similar. If the shell is powered into the outer steep part of the density profile, the shell ismore » subject to a robust Rayleigh–Taylor instability in which the shell is fragmented and the shocked pulsar wind breaks out through the shell. The flow is not self-similar in this phase. For a wind nebula to reach this phase requires that the deposited pulsar energy be greater than the supernova energy, or that the initial pulsar period be in the ms range for a typical 10{sup 51} erg supernova. These conditions are satisfied by some magnetar models for Type I superluminous supernovae. We also consider the Crab Nebula, which may be associated with a low energy supernova for which this scenario applies.« less
Gas Removal in the Ursa Minor Galaxy: Linking Hydrodynamics and Chemical Evolution Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caproni, Anderson; Lanfranchi, Gustavo Amaral; Baio, Gabriel Henrique Campos
2017-04-01
We present results from a non-cosmological, three-dimensional hydrodynamical simulation of the gas in the dwarf spheroidal galaxy Ursa Minor. Assuming an initial baryonic-to-dark-matter ratio derived from the cosmic microwave background radiation, we evolved the galactic gas distribution over 3 Gyr, taking into account the effects of the types Ia and II supernovae. For the first time, we used in our simulation the instantaneous supernovae rates derived from a chemical evolution model applied to spectroscopic observational data of Ursa Minor. We show that the amount of gas that is lost in this process is variable with time and radius, being themore » highest rates observed during the initial 600 Myr in our simulation. Our results indicate that types Ia and II supernovae must be essential drivers of the gas loss in Ursa Minor galaxy (and probably in other similar dwarf galaxies), but it is ultimately the combination of galactic winds powered by these supernovae and environmental effects (e.g., ram-pressure stripping) that results in the complete removal of the gas content.« less
Confronting Alternative Cosmological Models with the Highest-Redshift Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Shafer, Daniel; Scolnic, Daniel; Riess, Adam
2018-01-01
High-redshift Type Ia supernovae (SNe Ia) from the HST CANDELS and CLASH programs significantly extend the Hubble diagram with 7 SNe at z > 1.5 suitable for cosmology, including one at z = 2.3. This unique leverage helps us distinguish "alternative" cosmological models from the standard Lambda-CDM model. Analyzing the Pantheon SN compilation, which includes these high-z SNe, we employ model comparison statistics to quantify the extent to which several proposed alternative expansion histories (e.g., empty universe, power law expansion, timescape cosmology) are disfavored even with SN Ia data alone. Using mock data, we demonstrate that some likelihood analyses used in the literature to support these models are sensitive to unrealistic assumptions and are therefore unsuitable for analysis of realistic SN Ia data.
Bonanza: An extremely large dust grain from a supernova
NASA Astrophysics Data System (ADS)
Gyngard, Frank; Jadhav, Manavi; Nittler, Larry R.; Stroud, Rhonda M.; Zinner, Ernst
2018-01-01
We report the morphology, microstructure, and isotopic composition of the largest SiC stardust grain known to have condensed from a supernova. The 25-μm diameter grain, termed Bonanza, was found in an acid-resistant residue of the Murchison meteorite. Grains of such large size have neither been observed around supernovae nor predicted to form in stellar environments. The large size of Bonanza has allowed the measurement of the isotopic composition of more elements in it than any other previous presolar grain, including: Li, B, C, N, Mg, Al, Si, S, Ca, Ti, Fe, and Ni. Bonanza exhibits large isotopic anomalies in the elements C, N, Mg, Si, Ca, Ti, Fe, and Ni typical of an astrophysical origin in ejecta of a Type II core-collapse supernova and comparable to those previously observed for other presolar SiC grains of type X. Additionally, we extracted multiple focused ion beam lift-out sections from different regions of the grain. Our transmission electron microscopy demonstrates that the crystalline order varies at the micrometer scale, and includes rare, higher order polytype domains (e.g., 15 R). Analyses with STEM-EDS show Bonanza contains a heterogeneous distribution of subgrains with sizes ranging from <10 nm to >100 nm of Ti(N, C); Fe, Ni-rich grains with variable Fe:Ni; and (Al, Mg)N. Bonanza also has the highest ever inferred initial 26Al/27Al ratio, consistent with its supernova origin. This unique grain affords us the largest expanse of data, both microstructurally and isotopically, to compare with detailed calculations of nucleosynthesis and dust condensation in supernovae.
NASA Astrophysics Data System (ADS)
Wang, Xilu; Fields, Brian D.; Lien, Amy Y.
2017-01-01
A Galactic SNIa event could go entirely unnoticed due to the large optical and near-IR extinction in the Milky Way plane, low radio and X-ray luminosities, and a weak neutrino signal. But the recent SN2014J confirms that Type Ia supernovae emit nuclear γ- ray lines, from the 56Ni → 56Co → 56Fe radioactive decay. The energy released in these decays powers the SNIa UVOIR light curve at times after ~1 week, leading to an exponential decline. Importantly for Swift and Fermi, these decays are accompanied by γ-ray line emission, with distinct series of lines for both the 56Ni and 56Co decays, spanning 158 keV to 2.6 MeV. These lines are squarely within the Fermi/GBM energy range, and the 56Ni 158 keV line is detectable by Swift/BAT. The Galaxy is optically thin to γ-rays, so the supernova line flux will suffer negligible extinction. Both GBM and BAT have continuous and nearly all-sky coverage. Thus GBM and BAT are ideal Galactic SNIa monitors and early warning systems. We will illustrate expected GBM and BAT light curves and spectra, based on our model for SNIa γ-ray emission and transfer. We show that the supernova signal emerges as distinct from the GBM background within days after the explosion in the SN2014J shell model. Therefore, if a Galactic SNIa were to explode, there are two possibilities of confirming and sounding the alert: 1) Swift/BAT discovers the SNIa first and localizes it within arcminutes; 2) Fermi/GBM finds the SNIa first and localizes it to within ~1 degree, using the Earth occultation technique, followed up by BAT to localize it within arcminutes. After the alert of either BAT or GBM, Swift localizes it to take spectra in optical, UV, soft and hard X-rays simultaneously with both XRT and UVOT instruments.
Kepler Beyond Planets: Finding Exploding Stars (Type Felt Supernova)
2018-03-26
This frame from an animation shows a kind of stellar explosion called a Fast-Evolving Luminous Transient. In this case, a giant star "burps" out a shell of gas and dust about a year before exploding. Most of the energy from the supernova turns into light when it hits this previously ejected material, resulting in a short, but brilliant burst of radiation. Stellar explosions forge and distribute materials that make up the world in which we live, and also hold clues to how fast the universe is expanding. By understanding supernovae, scientists can unlock mysteries that are key to what we are made of and the fate of our universe. But to get the full picture, scientists must observe supernovae from a variety of perspectives, especially in the first moments of the explosion. That's really difficult -- there's no telling when or where a supernova might happen next. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA22351
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozova, Viktoriya; Renzo, Mathieu; Ott, Christian D.
We present the SuperNova Explosion Code (SNEC), an open-source Lagrangian code for the hydrodynamics and equilibrium-diffusion radiation transport in the expanding envelopes of supernovae. Given a model of a progenitor star, an explosion energy, and an amount and distribution of radioactive nickel, SNEC generates the bolometric light curve, as well as the light curves in different broad bands assuming blackbody emission. As a first application of SNEC, we consider the explosions of a grid of 15 M{sub ⊙} (at zero-age main sequence, ZAMS) stars whose hydrogen envelopes are stripped to different extents and at different points in their evolution. Themore » resulting light curves exhibit plateaus with durations of ∼20–100 days if ≳1.5–2 M{sub ⊙} of hydrogen-rich material is left and no plateau if less hydrogen-rich material is left. If these shorter plateau lengths are not seen for SNe IIP in nature, it suggests that, at least for ZAMS masses ≲20 M{sub ⊙}, hydrogen mass loss occurs as an all or nothing process. This perhaps points to the important role binary interactions play in generating the observed mass-stripped supernovae (i.e., Type Ib/c events). These light curves are also unlike what is typically seen for SNe IIL, arguing that simply varying the amount of mass loss cannot explain these events. The most stripped models begin to show double-peaked light curves similar to what is often seen for SNe IIb, confirming previous work that these supernovae can come from progenitors that have a small amount of hydrogen and a radius of ∼500 R{sub ⊙}.« less
CAN STELLAR MIXING EXPLAIN THE LACK OF TYPE Ib SUPERNOVAE IN LONG-DURATION GAMMA-RAY BURSTS?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frey, Lucille H.; Fryer, Chris L.; Young, Patrick A.
2013-08-10
The discovery of supernovae associated with long-duration gamma-ray burst observations is primary evidence that the progenitors of these outbursts are massive stars. One of the principle mysteries in understanding these progenitors has been the fact that all of these gamma-ray-burst-associated supernovae are Type Ic supernovae with no evidence of helium in the stellar atmosphere. Many studies have focused on whether or not this helium is simply hidden from spectral analyses. In this Letter, we show results from recent stellar models using new convection algorithms based on our current understanding of stellar mixing. We demonstrate that enhanced convection may lead tomore » severe depletion of stellar helium layers, suggesting that the helium is not observed simply because it is not in the star. We also present light curves and spectra of these compact helium-depleted stars compared to models with more conventional helium layers.« less
The SILCC project - III. Regulation of star formation and outflows by stellar winds and supernovae
NASA Astrophysics Data System (ADS)
Gatto, Andrea; Walch, Stefanie; Naab, Thorsten; Girichidis, Philipp; Wünsch, Richard; Glover, Simon C. O.; Klessen, Ralf S.; Clark, Paul C.; Peters, Thomas; Derigs, Dominik; Baczynski, Christian; Puls, Joachim
2017-04-01
We study the impact of stellar winds and supernovae on the multiphase interstellar medium using three-dimensional hydrodynamical simulations carried out with FLASH. The selected galactic disc region has a size of (500 pc)2 × ±5 kpc and a gas surface density of 10 M⊙ pc-2. The simulations include an external stellar potential and gas self-gravity, radiative cooling and diffuse heating, sink particles representing star clusters, stellar winds from these clusters that combine the winds from individual massive stars by following their evolution tracks, and subsequent supernova explosions. Dust and gas (self-) shielding is followed to compute the chemical state of the gas with a chemical network. We find that stellar winds can regulate star (cluster) formation. Since the winds suppress the accretion of fresh gas soon after the cluster has formed, they lead to clusters that have lower average masses (102-104.3 M⊙) and form on shorter time-scales (10-3-10 Myr). In particular, we find an anticorrelation of cluster mass and accretion time-scale. Without winds, the star clusters easily grow to larger masses for ˜5 Myr until the first supernova explodes. Overall, the most massive stars provide the most wind energy input, while objects beginning their evolution as B-type stars contribute most of the supernova energy input. A significant outflow from the disc (mass loading ≳1 at 1 kpc) can be launched by thermal gas pressure if more than 50 per cent of the volume near the disc mid-plane can be heated to T > 3 × 105 K. Stellar winds alone cannot create a hot volume-filling phase. The models that are in best agreement with observed star formation rates drive either no outflows or weak outflows.
Stellar survivor from explosion in 1572 AD
NASA Astrophysics Data System (ADS)
2004-10-01
hi-res Size hi-res: 1051 kb Credits: NASA/ESA, CXO and P. Ruiz-Lapuente (University of Barcelona) Tycho's Supernova, SN 1572A These images show the location of a suspected runaway companion star to a titanic supernova explosion witnessed in the year 1572 by the Danish astronomer Tycho Brahe and other astronomers of that era. This discovery provides the first direct evidence supporting the long-held belief that Type Ia supernovae come from binary star systems containing a normal star and a burned-out white dwarf star. When the dwarf ultimately explodes by being overfueled by the companion star, the companion is slung away from the demised star. The Hubble Space Telescope played a key role by precisely measuring the surviving star's motion against the sky background. Right: A Hubble Space Telescope Wide Field Planetary Camera 2 image of a small section of sky containing the candidate star. The star is like our Sun except several thousand million years older. It is moving through space at three times the speed of the other stars in its neighbourhood. Hubble's sharp view allowed for a measurement of the star's motion, based on images taken in 1999 and 2003. The image consists of a single greyscale Hubble exposure colourised with the help of data from Digitized Sky Survey 2. Left: The Hubble view is superimposed on this wide-field view of the region enveloped by the expanding bubble of the supernova explosion; the bubble and candidate star are at approximately the same distance, 10 000 light-years. The star is noticeably offset from the geometric centre of the bubble. The colours in the Chandra X-Ray image of the hot bubble show different X-ray energies, with red, green and blue representing low, medium and high energies, respectively. (The image is cut off at the bottom because the southernmost region of the remnant fell outside the field of view of the Chandra camera.) hi-res Size hi-res: 1059 kb Credits: NASA/ESA and P. Ruiz-Lapuente (University of Barcelona) The 'runaway' star in Tycho's supernova A Hubble Space Telescope Wide Field Planetary Camera 2 image of a small section of sky containing a suspected runaway companion star to a massive supernova explosion witnessed in the year 1572 by the Danish astronomer Tycho Brahe. The star, just left of centre in this image, is like our Sun except several thousand million years older. It is moving through space at three times the speed of the other stars in its neighbourhood. Hubble's sharp view allowed for a measurement of the star's motion, based on images taken in 1999 and 2003. The image consists of a single greyscale Hubble exposure colourised with the help of data from Digitized Sky Survey 2. hi-res Size hi-res: 400 kb Credits: NASA/ESA, CXO and P. Ruiz-Lapuente (University of Barcelona) Tycho's Supernova, SN 1572A This is a wide-field view of the region around Tycho's Supernova showing the expanding bubble of the supernova explosion. The colours in this Chandra X-Ray image of the hot bubble show different X-ray energies, with red, green and blue representing low, medium and high energies, respectively. (The image is cut off at the bottom because the southernmost region of the remnant fell outside the field of view of the Chandra camera.) hi-res Size hi-res: 2605 kb Credits: NASA/ESA, Digitized Survey 2 and P. Ruiz-Lapuente (University of Barcelona) Area of sky to find Tycho's Supernova, SN 1572A This area, two degrees across, is centred on the area where the famous Tycho's Supernova, also known as SN 1572A, exploded in 1572. The region lies in the constellation of Cassiopeia in the northern sky. The image was composed from two exposure from the Digitized Survey 2. The red exposure is shown in blue and the infrared in red. In this optical and near-infrared image the supernova remnant itself is not visible. A new discovery provides the first direct evidence supporting the long-held belief that Type Ia supernovae originate in binary star systems that contain a normal star and a burned-out 'white dwarf' star. The normal star spills material onto the dwarf, eventually triggering an explosion. The results of this research, led by Pilar Ruiz-Lapuente of the University of Barcelona, Spain, are published in the 28 October issue of the British science journal Nature. "There was no previous evidence pointing to any specific kind of companion star out of the many that had been proposed. Here we have identified a clear path: the feeding star is similar to our sun, but slightly older," said Ruiz-Lapuente. "The high speed of the star called our attention to it," she added. Type Ia supernovae are used to measure the history of the expansion rate of the Universe and so are fundamental in helping astronomers understand the behaviour of 'dark energy', an unknown force that is accelerating the expansion of the Universe. Finding evidence to confirm the theory as to how Type Ia supernovae explode is critical to assuring astronomers that the objects can be better understood as reliable calibrators of the expansion of space. Although today's astronomers are looking at this event 432 years too late, they were still able to see a star rushing away from the location of the explosion (which is now enveloped in a vast bubble of hot gas called 'Tycho's Supernova Remnant'). The runaway star and its surroundings have been studied with a variety of telescopes for the past seven years. The NASA/ESA Hubble Space Telescope played a key role in the process by measuring the star's motion against the sky background precisely. The star is breaking the speed limit for that particular region of the Milky Way Galaxy by moving three times faster than the surrounding stars. When the system was disrupted by the white dwarf's explosion, the companion star went hurtling off into space, like a stone thrown by a sling, retaining the velocity of its orbital motion. However there are alternative explanations for this motion. It could be falling into the region from the galactic halo that surrounds the Milky Way's disk at a high velocity. But spectra obtained with the 4.2-metre William Herschel Telescope in La Palma and the 10-metre WM Keck telescopes in Hawaii show that the star has the high heavy-element content typical of stars that dwell in the Milky Way's disk, not the halo. The star found by the Ruiz-Lapuente team is an aging version of our own Sun. The star has begun to expand in diameter as it progresses toward a 'red giant' phase (the end stage of a Sun-like star's lifetime). The star turns out to fit the profile of those in one of the proposed supernova conjectures. In Type Ia supernova binary systems, the more massive star of the pair will age faster and eventually becomes a white dwarf star. When the slower-evolving companion star subsequently ages to the point where it begins to balloon in size, it spills hydrogen onto the dwarf. The hydrogen accumulates, gradually fusing into heavier elements until it reaches a critical and precise mass threshold, called the 'Chandrasekhar limit', where it explodes like a massive nuclear fusion bomb. The energy output of this explosion is so well known that it can be used as a standard candle for measuring vast astronomical distances (an astronomical 'standard candle' is any type of luminous object whose intrinsic power is so accurately determined that it can be used to make distance measurements based on the rate the light dims over astronomical distances). "Among the various systems containing white dwarfs that receive material from a solar-mass companion, some are believed to be viable progenitors of Type Ia supernovae, on theoretical grounds. A system called U Scorpii has a white dwarf and a star similar to the one found here. These results would confirm that such binaries will end up in an explosion like the one observed by Tycho Brahe, but that would occur several hundreds of thousands of years from now," says Ruiz-Lapuente. An alternative theory of Type Ia supernovae is that two white dwarfs orbit each other, gradually losing energy through the emission of gravitational radiation ('gravity waves'). As they lose energy, they spiral in toward each other and eventually merge, resulting in a white dwarf whose mass reaches the Chandrasekhar limit, and explodes. "Tycho's supernova does not appear to have been produced by this mechanism, since a probable surviving companion has been found," says Alex Filippenko of the University of California at Berkeley, a co-author on this research. He says that, nevertheless, it is still possible there are two different evolutionary paths to Type Ia supernovae. On 11 November 1572, Tycho Brahe noticed a star in the constellation Cassiopeia that was as bright as the planet Jupiter (which was in the night sky in Pisces). No such star had ever been observed at this location before. It soon equalled Venus in brightness (which was at -4.5 magnitude in the predawn sky). For about two weeks the star could be seen in daylight. At the end of November it began to fade and change colour, from bright white to yellow and orange to faint reddish light, finally fading away from visibility in March 1574, having been visible to the naked eye for about 16 months. Tycho's meticulous record of the brightening and dimming of the supernova now allows astronomers to identify its 'light signature' as that of a Type Ia supernova. Tycho Brahe's supernova was very important in that it helped 16th century astronomers abandon the idea of the immutability of the heavens. At the present time, Type Ia supernovae remain key players in the newest cosmological discoveries. To learn more about them and their explosion mechanism, and to make them even more useful as 'cosmological probes', a current Hubble Space Telescope project led by Filippenko is studying a sample of supernovae in other galaxies at the very time they explode.
Model independent constraints on transition redshift
NASA Astrophysics Data System (ADS)
Jesus, J. F.; Holanda, R. F. L.; Pereira, S. H.
2018-05-01
This paper aims to put constraints on the transition redshift zt, which determines the onset of cosmic acceleration, in cosmological-model independent frameworks. In order to perform our analyses, we consider a flat universe and assume a parametrization for the comoving distance DC(z) up to third degree on z, a second degree parametrization for the Hubble parameter H(z) and a linear parametrization for the deceleration parameter q(z). For each case, we show that type Ia supernovae and H(z) data complement each other on the parameter space and tighter constrains for the transition redshift are obtained. By combining the type Ia supernovae observations and Hubble parameter measurements it is possible to constrain the values of zt, for each approach, as 0.806± 0.094, 0.870± 0.063 and 0.973± 0.058 at 1σ c.l., respectively. Then, such approaches provide cosmological-model independent estimates for this parameter.
NASA Technical Reports Server (NTRS)
Aprile, Elena
1994-01-01
An instrument is described which will provide a direct image of gamma-ray line or continuum sources in the energy range 300 keV to 10 MeV. The use of this instrument to study the celestial distribution of the (exp 26)Al isotope by observing the 1.809 MeV deexcitation gamma-ray line is illustrated. The source location accuracy is 2' or better. The imaging telescope is a liquid xenon time projection chamber coupled with a coded aperture mask (LXe-CAT). This instrument will confirm and extend the COMPTEL observations from the Compton Gamma-Ray Observatory (CGRO) with an improved capability for identifying the actual Galactic source or sources of (exp 26)Al, which are currently not known with certainty. sources currently under consideration include red giants on the asymptotic giant branch (AGB), novae, Type 1b or Type 2 supernovae, Wolf-Rayet stars and cosmic-rays interacting in molecular clouds. The instrument could also identify a local source of the celestial 1.809 MeV gamma-ray line, such as a recent nearby supernova.
The Infrared Hubble Diagram of Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Krisciunas, Kevin
Photometry of Type Ia supernovae reveals that these objects are standardizable candles in optical passbands - the peak luminosities are related to the rate of decline after maximum light. In the near-infrared bands, there is essentially a characteristic brightness at maximum light for each photometric band. Thus, in the near-infrared they are better than standardizable candles; they are essentially standard candles. Their absolute magnitudes are known to ±0.15 magnitude or better. The infrared observations have the extra advantage that interstellar extinction by dust along the line of sight is a factor of 3-10 smaller than in the optical B- and V -bands. The size of any systematic errors in the infrared extinction corrections typically become smaller than the photometric errors of the observations. Thus, we can obtain distances to the hosts of Type Ia supernovae to ±8 % or better. This is particularly useful for extragalactic astronomy and precise measurements of the dark energy component of the universe.
The Farthest Supernova Yet for Measuring Cosmic History | Berkeley Lab
expansion of the universe differently in different eras. With SN SCP-0401, we have the first example of a eventual confirmation of Supernova SCP-0401. (Photo NASA) The problem was solved when a different grism more official-sounding designation, SCP-0401. "To be able to directly compare different Type Ia
NASA Astrophysics Data System (ADS)
Lawrence, Stephen S.; Hyder, Ali; Sugerman, Ben; Crotts, Arlin P. S.
2017-06-01
We report on our ongoing use of Hubble Space Telescope (HST) imaging to monitor the scattered light echoes of recent heavily-extincted supernovae in two nearby, albeit unusual, galaxies.Supernova 2014J was a highly-reddened Type Ia supernova that erupted in the nearby irregular star-forming galaxy M 82 in 2014 January. It was discovered to have light echo by Crotts (2016) in early epoch HST imaging and has been further described by Yang, et al. (2017) based on HST imaging through late 2014. Our ongoing monitoring in the WFC3 F438W, F555W, and F814W filters shows that, consistent with Crotts (2106) and Yang, et al. (2017), throughout 2015 and 2016 the main light echo arc expanded through a dust complex located approximately 230 pc in the foreground of the supernova. This main light echo has, however, faded dramatically in our most recent HST imaging from 2017 March. The supernova itself has also faded to undetectable levels by 2017 March.Supernova 2016adj is a highly-reddened core-collapse supernova that erupted inside the unusual dust lane of the nearby giant elliptical galaxy Centaurus A (NGC 5128) in 2016 February. It was discovered to have a light echo by Sugerman & Lawrence (2016) in early epoch HST imaging in 2016 April. Our ongoing monitoring in the WFC3 F438W, F547M, and F814W filters shows a slightly elliptical series of light echo arc segments hosted by a tilted dust complex ranging approximately 150--225 pc in the foreground of the supernova. The supernova itself has also faded to undetectable levels by 2017 April.References: Crotts, A. P. S., ApJL, 804, L37 (2016); Yang et al., ApJ, 834, 60 (2017); Sugerman, B. and Lawrence, S., ATel #8890 (2016).
Early Emission from Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Rabinak, Itay; Livne, Eli; Waxman, Eli
2012-09-01
A unique feature of deflagration-to-detonation (DDT) white dwarf explosion models of supernovae of type Ia is the presence of a strong shock wave propagating through the outer envelope. We consider the early emission expected in such models, which is produced by the expanding shock-heated outer part of the ejecta and precedes the emission driven by radioactive decay. We expand on earlier analyses by considering the modification of the pre-detonation density profile by the weak shocks generated during the deflagration phase, the time evolution of the opacity, and the deviation of the post-shock equation of state from that obtained for radiation pressure domination. A simple analytic model is presented and shown to provide an acceptable approximation to the results of one-dimensional numerical DDT simulations. Our analysis predicts a ~103 s long UV/optical flash with a luminosity of ~1 to ~3 × 1039 erg s-1. Lower luminosity corresponds to faster (turbulent) deflagration velocity. The luminosity of the UV flash is predicted to be strongly suppressed at t > t drop ~ 1 hr due to the deviation from pure radiation domination.
The Rate of Core Collapse Supernovae to Redshift 2.5 from the CANDELS and CLASH Supernova Surveys
NASA Astrophysics Data System (ADS)
Strolger, Louis-Gregory; Dahlen, Tomas; Rodney, Steven A.; Graur, Or; Riess, Adam G.; McCully, Curtis; Ravindranath, Swara; Mobasher, Bahram; Shahady, A. Kristin
2015-11-01
The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey and Cluster Lensing And Supernova survey with Hubble multi-cycle treasury programs with the Hubble Space Telescope (HST) have provided new opportunities to probe the rate of core-collapse supernovae (CCSNe) at high redshift, now extending to z≈ 2.5. Here we use a sample of approximately 44 CCSNe to determine volumetric rates, RCC, in six redshift bins in the range 0.1\\lt z\\lt 2.5. Together with rates from our previous HST program, and rates from the literature, we trace a more complete history of {R}{CC}(z), with {R}{CC}=0.72+/- 0.06 yr-1 Mpc-3 10-4{h}703 at z\\lt 0.08, and increasing to {3.7}-1.6+3.1 yr-1 Mpc-3 10-4{h}703 to z≈ 2.0. The statistical precision in each bin is several factors better than than the systematic error, with significant contributions from host extinction, and average peak absolute magnitudes of the assumed luminosity functions for CCSN types. Assuming negligible time delays from stellar formation to explosion, we find these composite CCSN rates to be in excellent agreement with cosmic star formation rate density (SFRs) derived largely from dust-corrected rest-frame UV emission, with a scaling factor of k=0.0091+/- 0.0017 {M}⊙ -1, and inconsistent (to \\gt 95% confidence) with SFRs from IR luminous galaxies, or with SFR models that include simple evolution in the initial mass function over time. This scaling factor is expected if the fraction of the IMF contributing to CCSN progenitors is in the 8-50 M⊙ range. It is not supportive, however, of an upper mass limit for progenitors at \\lt 20 {M}⊙ .
On the induced gravitational collapse scenario of gamma-ray bursts associated with supernovae
Becerra, L.; Bianco, C. L.; Fryer, C. L.; ...
2016-12-10
Following the induced gravitational collapse (IGC) paradigm of gamma-ray bursts (GRBs) associated with type Ib/c supernovae, we present numerical simulations of the explosion of a carbon–oxygen (CO) core in a binary system with a neutron-star (NS) companion. The supernova ejecta trigger a hypercritical accretion process onto the NS thanks to a copious neutrino emission and the trapping of photons within the accretion flow. We show that temperatures of 1–10 MeV develop near the NS surface, hence electron–positron annihilation into neutrinos becomes the main cooling channel leading to accretion rates of 10–9–more » $${10}^{-1}\\,{M}_{\\odot }$$ s–1 and neutrino luminosities of 10 43–10 52 erg s –1 (the shorter the orbital period the higher the accretion rate). We estimate the maximum orbital period, $${P}_{\\max },$$ as a function of the NS initial mass, up to which the NS companion can reach by hypercritical accretion the critical mass for gravitational collapse leading to black hole formation. We then estimate the effects of the accreting and orbiting NS companion onto a novel geometry of the supernova ejecta density profile. We present the results of a $$1.4\\times {10}^{7}$$ particle simulation which show that the NS induces accentuated asymmetries in the ejecta density around the orbital plane. We elaborate on the observables associated with the above features of the IGC process. We apply this framework to specific GRBs: we find that X-ray flashes (XRFs) and binary-driven hypernovae are produced in binaries with $$P\\gt {P}_{\\max }$$ and $$P\\lt {P}_{\\max },$$ respectively. As a result, we analyze in detail the case of XRF 060218.« less
NASA Astrophysics Data System (ADS)
Mukherjee, S.; Salazar, L.; Mittelstaedt, J.; Valdez, O.
2017-11-01
Supernovae in our universe are potential sources of gravitational waves (GW) that could be detected in a network of GW detectors like LIGO and Virgo. Core-collapse supernovae are rare, but the associated gravitational radiation is likely to carry profuse information about the underlying processes driving the supernovae. Calculations based on analytic models predict GW energies within the detection range of the Advanced LIGO detectors, out to tens of Mpc for certain types of signals e.g. coalescing binary neutron stars. For supernovae however, the corresponding distances are much less. Thus, methods that can improve the sensitivity of searches for GW signals from supernovae are desirable, especially in the advanced detector era. Several methods have been proposed based on various likelihood-based regulators that work on data from a network of detectors to detect burst-like signals (as is the case for signals from supernovae) from potential GW sources. To address this problem, we have developed an analysis pipeline based on a method of noise reduction known as the harmonic regeneration noise reduction (HRNR) algorithm. To demonstrate the method, sixteen supernova waveforms from the Murphy et al. 2009 catalog have been used in presence of LIGO science data. A comparative analysis is presented to show detection statistics for a standard network analysis as commonly used in GW pipelines and the same by implementing the new method in conjunction with the network. The result shows significant improvement in detection statistics.
On the Induced Gravitational Collapse Scenario of Gamma-ray Bursts Associated with Supernovae
NASA Astrophysics Data System (ADS)
Becerra, L.; Bianco, C. L.; Fryer, C. L.; Rueda, J. A.; Ruffini, R.
2016-12-01
Following the induced gravitational collapse (IGC) paradigm of gamma-ray bursts (GRBs) associated with type Ib/c supernovae, we present numerical simulations of the explosion of a carbon-oxygen (CO) core in a binary system with a neutron-star (NS) companion. The supernova ejecta trigger a hypercritical accretion process onto the NS thanks to a copious neutrino emission and the trapping of photons within the accretion flow. We show that temperatures of 1-10 MeV develop near the NS surface, hence electron-positron annihilation into neutrinos becomes the main cooling channel leading to accretion rates of 10-9-{10}-1 {M}⊙ s-1 and neutrino luminosities of 1043-1052 erg s-1 (the shorter the orbital period the higher the accretion rate). We estimate the maximum orbital period, {P}\\max , as a function of the NS initial mass, up to which the NS companion can reach by hypercritical accretion the critical mass for gravitational collapse leading to black hole formation. We then estimate the effects of the accreting and orbiting NS companion onto a novel geometry of the supernova ejecta density profile. We present the results of a 1.4× {10}7 particle simulation which show that the NS induces accentuated asymmetries in the ejecta density around the orbital plane. We elaborate on the observables associated with the above features of the IGC process. We apply this framework to specific GRBs: we find that X-ray flashes (XRFs) and binary-driven hypernovae are produced in binaries with P\\gt {P}\\max and P\\lt {P}\\max , respectively. We analyze in detail the case of XRF 060218.
NEAR-INFRARED SPECTROSCOPY OF THE TYPE IIn SN 2010jl: EVIDENCE FOR HIGH VELOCITY EJECTA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borish, H. Jacob; Huang, Chenliang; Chevalier, Roger A.
2015-03-01
The Type IIn supernova SN 2010jl was relatively nearby and luminous, allowing detailed studies of the near-infrared (NIR) emission. We present 1-2.4 μm spectroscopy over the age range of 36-565 days from the earliest detection of the supernova. On day 36, the H lines show an unresolved narrow emission component along with a symmetric broad component that can be modeled as the result of electron scattering by a thermal distribution of electrons. Over the next hundreds of days, the broad components of the H lines shift to the blue by 700 km s{sup –1}, as is also observed in optical lines.more » The narrow lines do not show a shift, indicating they originate in a different region. He I λ10830 and λ20587 lines both show an asymmetric broad emission component, with a shoulder on the blue side that varies in prominence and velocity from –5500 km s{sup –1} on day 108 to –4000 km s{sup –1} on day 219. This component may be associated with the higher velocity flow indicated by X-ray observations of the supernova. The absence of the feature in the H lines suggests that this is from a He-rich ejecta flow. The He I λ10830 feature has a narrow P Cygni line, with absorption extending to ∼100 km s{sup –1} and strengthening over the first 200 days, and an emission component which weakens with time. At day 403, the continuum emission becomes dominated by a blackbody spectrum with a temperature of ∼1900 K, suggestive of dust emission.« less
Identification of the central compact object in the young supernova remnant 1E 0102.2-7219
NASA Astrophysics Data System (ADS)
Vogt, Frédéric P. A.; Bartlett, Elizabeth S.; Seitenzahl, Ivo R.; Dopita, Michael A.; Ghavamian, Parviz; Ruiter, Ashley J.; Terry, Jason P.
2018-04-01
Oxygen-rich young supernova remnants1 are valuable objects for probing the outcome of nucleosynthetic processes in massive stars, as well as the physics of supernova explosions. Observed within a few thousand years after the supernova explosion2, these systems contain fast-moving oxygen-rich and hydrogen-poor filaments visible at optical wavelengths: fragments of the progenitor's interior expelled at a few thousand kilometres per second during the supernova explosion. Here we report the identification of the compact object in the supernova remnant 1E 0102.2-7219 in reprocessed Chandra X-ray Observatory data, enabled by the discovery of a ring-shaped structure visible primarily in optical recombination lines of Ne i and O i. The optical ring has a radius of (2.10 ± 0.35)″ ≡ (0.63 ± 0.11) pc, and is expanding at a velocity of 90 .5-30+40 km s-1. It surrounds an X-ray point source with an intrinsic X-ray luminosity Li (1.2-2.0 keV) = (1.4 ± 0.2) × 1033 erg s-1. The energy distribution of the source indicates that this object is an isolated neutron star: a central compact object akin to those present in the Cas A3-5 and Pup A6 supernova remnants, and the first of its kind to be identified outside of our Galaxy.
Identification of the central compact object in the young supernova remnant 1E 0102.2-7219
NASA Astrophysics Data System (ADS)
Vogt, Frédéric P. A.; Bartlett, Elizabeth S.; Seitenzahl, Ivo R.; Dopita, Michael A.; Ghavamian, Parviz; Ruiter, Ashley J.; Terry, Jason P.
2018-06-01
Oxygen-rich young supernova remnants1 are valuable objects for probing the outcome of nucleosynthetic processes in massive stars, as well as the physics of supernova explosions. Observed within a few thousand years after the supernova explosion2, these systems contain fast-moving oxygen-rich and hydrogen-poor filaments visible at optical wavelengths: fragments of the progenitor's interior expelled at a few thousand kilometres per second during the supernova explosion. Here we report the identification of the compact object in the supernova remnant 1E 0102.2-7219 in reprocessed Chandra X-ray Observatory data, enabled by the discovery of a ring-shaped structure visible primarily in optical recombination lines of Ne i and O i. The optical ring has a radius of (2.10 ± 0.35)″ ≡ (0.63 ± 0.11) pc, and is expanding at a velocity of 90 .5-30+40 km s-1. It surrounds an X-ray point source with an intrinsic X-ray luminosity Li (1.2-2.0 keV) = (1.4 ± 0.2) × 1033 erg s-1. The energy distribution of the source indicates that this object is an isolated neutron star: a central compact object akin to those present in the Cas A3-5 and Pup A6 supernova remnants, and the first of its kind to be identified outside of our Galaxy.
CSM interaction and dust formation in SN 2010jl .
NASA Astrophysics Data System (ADS)
Krafton, K.; Clayton, G. C.
The origin of dust in galaxies >1 Gyr old has remained an unsolved mystery for over a decade. One proposed solution is dust produced by core collapse supernovae (CCSNe). Theorists have shown that 0.1-1 M⊙ of dust must be produced per supernova for this to work as an explanation for the dust in young galaxies. SN 1987A has produced ˜1 M⊙ of dust since its detonation. However, most supernovae have been found to only produce 10-4 - 10-2 M⊙ of dust. The energetic type IIn SN 2010jl is located in UGC 5189, in a dense shell of CSM. As dust condenses in the SN ejecta, we see, (1) a sudden decrease in continuum brightness in the visible due to increased dust extinction, (2) the development of an infrared excess in the SN light curve arising from dust grains absorbing high-energy photons and re-emitting them in the infrared, and (3) the development of asymmetric, blue-shifted emission-line profiles, caused by dust forming in the ejecta, and preferentially extinguishing redshifted emission. A dense circumstellar material (CSM) may increase the dust production by supernovae. We observe signs of strong interaction between the SN ejecta and a dense CSM in SN 2010jl. SN 2010jl has been a source of much debate in the CCSN community, particularly over when and how much dust it formed. The light curve shows strong signs of dust formation after 260 days. Arguments over these subjects have been based on the evolution of the light curve and spectra. We present new optical and IR photometry, as well as optical spectroscopy, of SN 2010jl over 2000 days. We estimate dust masses using the DAMOCLES and MOCASSIN radiative transfer codes.
An Analysis of the Peculiar Type IIn Supernova 1995N
NASA Astrophysics Data System (ADS)
Baird, M. D.; Garnavich, P. M.; Schlegel, E. M.; Challis, P. M.; Kirshner, R. P.
1998-12-01
SN 1995N is a peculiar type IIn supernova. Spectroscopic and photometric data for this analysis were gathered between May 10, 1995 (two days after discovery) and July 18, 1998. A total of twenty two photometric images and eight spectra were obtained at the FLWO and MMTO. The photometric data show a broad maximum at R=17.0 occurred in late October, 1995, followed by a very slow decline at a rate of 2.39 millimag-day(-1) for R and 1.37 millimag-day(-1) for V. The R decay rate corresponds to a half life of 315 days, which is much longer than that of (56) Co. The spectra show broad hydrogen (1500 km/s FWHM) and oxygen (10000 km/s FWZI) emission features along with many unresolved emission lines. Some of the more interesting narrow lines identified correspond to high ionization states for iron such as Fe VII and Fe X which indicate temperatures as high as 10(6) degrees K. These high ionization states, the X-ray detection by Lewin et al. (1996, IAUC 6445) and the slow photometric decay suggest that SN 1995N is powered by a shock propagating through a dense circumstellar environment. From the earliest observations the energy output appears dominated by the interaction and not by radioactivity, implying that the progenitor exploded well before the discovery of SN 1995N. The situation may be similar to SN 1987A, where the rise in emission from a circumstellar interaction is only now beginning and is expected to peak some 15 years after the supernova explosion.
Supernova 2011at = PSN J09285756-1448206 in MCG -02-24-27
NASA Astrophysics Data System (ADS)
Waagen, Elizabeth O.
2011-03-01
Announces the discovery of SN 2011at = PSN J09285756-1448206 in MCG -02-24-27 by Lou Cox, Jack Newton, and Tim Puckett (Ellijay, GA, in the course of the Puckett Observatory Supernova Search) on 2011 March 10.214 UT at unfiltered CCD magnitude 14.5. Spectra obtained March 11.81 UT with the Swift satellite (+UVOT) by F. Bufano (Istituto Nazionale di Astrofisica (INAF), Osservatorio Astronomico di Catania), S. Benetti (INAF, Osservatorio Astronomico di Padova), and A. Pastorello (Queen's University, Belfast, et al.); and on March 12 UT with the F. L. Whipple Observatory 1.5-m telescope (+FAST) by M. Calkins (reported by G. H. Marion, Harvard-Smithsonian Center for Astrophysics (CfA), on behalf of the CfA Supernova Group) show SN 2011at to be a type-Ia supernova a few days before/around maximum. The object was designated PSN J09285756-1448206 when posted on the Central Bureau's Transient Objects Confirmation Page (TOCP) webpage. Initially announced in CBET 2676 (Daniel W. ! E. Green, ed.). Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details.
Probing r-Process Production of Nuclei Beyond 209Bi with Gamma Rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Y.-Z.; Vogel, P.; Wasserburg, G. J.
We estimate gamma-ray fluxes due to the decay of nuclei beyond 209Bi from a supernova or a supernova remnant assuming that the r-process occurs in supernovae. We find that a detector with a sensitivity of {approx}10-7 {gamma} cm-2 s-1 at energies from {approx}40 keV to {approx}3 MeV may detect fluxes due to the decay of 226Ra, 229Th, 241Am, 243Am, 249Cf, and 251Cf in the newly discovered supernova remnant near Vela. In addition, such a detector may detect fluxes due to the decay of 227Ac and 228Ra produced in a future supernova at a distance of {approx}1 kpc. Because nuclei withmore » mass numbers A>209 are produced solely by the r-process, such detections are the best proof for a supernova r-process site. Further, they provide the most direct information on yields of progenitor nuclei with A>209 at r-process freeze-out. Finally, detection of fluxes due to the decay of r-process nuclei over a range of masses from a supernova or a supernova remnant provides the opportunity to compare yields in a single supernova event with the solar r-process abundance pattern. (c) (c) 1999. The American Astronomical Society.« less
Discovery and Follow-up Observations of the Young Type Ia Supernova 2016coj
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, WeiKang; Filippenko, Alexei V.; Mauerhan, Jon
The Type Ia supernova (SN Ia) 2016coj in NGC 4125 (redshift z = 0.00452 ± 0.00006) was discovered by the Lick Observatory Supernova Search 4.9 days after the fitted first-light time (FFLT; 11.1 days before B-band maximum). Our first detection (prediscovery) is merely 0.6 ± 0.5 days after the FFLT, making SN 2016coj one of the earliest known detections of an SN Ia. A spectrum was taken only 3.7 hr after discovery (5.0 days after the FFLT) and classified as a normal SN Ia. In this study, we performed high-quality photometry, low- and high-resolution spectroscopy, and spectropolarimetry, finding that SNmore » 2016coj is a spectroscopically normal SN Ia, but the velocity of Si ii λ6355 around peak brightness (~12,600 kms -1) is a bit higher than that of typical normal SNe. The Si ii λ6355 velocity evolution can be well fit by a broken-power-law function for up to a month after the FFLT. SN 2016coj has a normal peak luminosity (M B≈ -18.9 ± 0.2 mag), and it reaches a B-band maximum ~16.0 days after the FFLT. We estimate there to be low host-galaxy extinction based on the absence of Na i D absorption lines in our low- and high-resolution spectra. Finally, the spectropolarimetric data exhibit weak polarization in the continuum, but the Si ii line polarization is quite strong (~0.9% ± 0.1%) at peak brightness.« less
Discovery and Follow-up Observations of the Young Type Ia Supernova 2016coj
NASA Astrophysics Data System (ADS)
Zheng, WeiKang; Filippenko, Alexei V.; Mauerhan, Jon; Graham, Melissa L.; Yuk, Heechan; Hosseinzadeh, Griffin; Silverman, Jeffrey M.; Rui, Liming; Arbour, Ron; Foley, Ryan J.; Abolfathi, Bela; Abramson, Louis E.; Arcavi, Iair; Barth, Aaron J.; Bennert, Vardha N.; Brandel, Andrew P.; Cooper, Michael C.; Cosens, Maren; Fillingham, Sean P.; Fulton, Benjamin J.; Halevi, Goni; Howell, D. Andrew; Hsyu, Tiffany; Kelly, Patrick L.; Kumar, Sahana; Li, Linyi; Li, Wenxiong; Malkan, Matthew A.; Manzano-King, Christina; McCully, Curtis; Nugent, Peter E.; Pan, Yen-Chen; Pei, Liuyi; Scott, Bryan; Sexton, Remington Oliver; Shivvers, Isaac; Stahl, Benjamin; Treu, Tommaso; Valenti, Stefano; Vogler, H. Alexander; Walsh, Jonelle L.; Wang, Xiaofeng
2017-05-01
The Type Ia supernova (SN Ia) 2016coj in NGC 4125 (redshift z = 0.00452 ± 0.00006) was discovered by the Lick Observatory Supernova Search 4.9 days after the fitted first-light time (FFLT; 11.1 days before B-band maximum). Our first detection (prediscovery) is merely 0.6 ± 0.5 days after the FFLT, making SN 2016coj one of the earliest known detections of an SN Ia. A spectrum was taken only 3.7 hr after discovery (5.0 days after the FFLT) and classified as a normal SN Ia. We performed high-quality photometry, low- and high-resolution spectroscopy, and spectropolarimetry, finding that SN 2016coj is a spectroscopically normal SN Ia, but the velocity of Si II λ6355 around peak brightness (˜12,600 {km} {{{s}}}-1) is a bit higher than that of typical normal SNe. The Si II λ6355 velocity evolution can be well fit by a broken-power-law function for up to a month after the FFLT. SN 2016coj has a normal peak luminosity ({M}B≈ -18.9+/- 0.2 mag), and it reaches a B-band maximum ˜16.0 days after the FFLT. We estimate there to be low host-galaxy extinction based on the absence of Na I D absorption lines in our low- and high-resolution spectra. The spectropolarimetric data exhibit weak polarization in the continuum, but the Si II line polarization is quite strong (˜0.9% ± 0.1%) at peak brightness.
Constraints on Janus Cosmological model from recent observations of supernovae type Ia
NASA Astrophysics Data System (ADS)
D'Agostini, G.; Petit, J. P.
2018-07-01
From our exact solution of the Janus Cosmological equation we derive the relation of the predicted magnitude of distant sources versus their red shift. The comparison, through this one free parameter model, to the available data from 740 distant supernovae shows an excellent fit.
NASA Technical Reports Server (NTRS)
Milisavljevic, Dan; Margutti, Raffaella; Crabtree, Kyle N.; Foster, Jonathan B.; Soderberg, Alicia M.; Fesen, Robert A.; Parrent, Jerod T.; Sanders, Nathan E.; Drout, Maria R.; Kamble, Atish;
2014-01-01
The diffuse interstellar bands (DIBs) are absorption features observed in optical and near-infrared spectra that are thought to be associated with carbon-rich polyatomic molecules in interstellar gas. However, because the central wavelengths of these bands do not correspond with electronic transitions of any known atomic or molecular species, their nature has remained uncertain since their discovery almost a century ago. Here we report on unusually strong DIBs in optical spectra of the broad- lined Type Ic supernova SN2012ap that exhibit changes in equivalent width over short (. 30 days) timescales. The 4428 A and 6283 A DIB features get weaker with time, whereas the 5780 A feature shows a marginal increase. These nonuniform changes suggest that the supernova is interacting with a nearby source of the DIBs and that the DIB carriers possess high ionization potentials, such as small cations or charged fullerenes. We conclude that moderate-resolution spectra of supernovae with DIB absorptions obtained within weeks of outburst could reveal unique information about the mass-loss environment of their progenitor systems and provide new constraints on the properties of DIB carriers.
NASA Astrophysics Data System (ADS)
Imamura, James
2008-05-01
Type II Supernovae are produced by the collapse of the cores of massive stars at the ends of their nuclear lifetimes. The basic picture for the outburst mechanism of Type II Supernova explosions is rather secure with only the details of the shock generation and the outburst uncertain. However, broad issues remain concerning our understanding of Type II Supernovae when the less studied, but more general case of rotating and/or magnetic progenitor stars is considered. That rotation and magnetic fields may play large roles in core collapse has been suggested for almost 40 years dating from the discovery that pulsars, the remnants of Type II Supernovae, are strongly magnetic, rapidly rotating neutron stars. This fact has been further reinforced by the discovery of the class of neutron stars with ultra-strong magnetic fields known as Magnetars. The role that rotation plays in core collapse can be appreciated by noting that stable, stationary, degenerate equilibrium configurations are possible only for stars with central density ρc 10^4-10^9 g cm-3 (white dwarf densities) and ρc 10^14-10^15 g cm-3 (neutron star densities). Nonrotating objects with ρc between that of white dwarfs (typical of the densities of the precollapse cores of Type II Supernovae) and neutron stars are unstable to radial collapse because of the low effective γ of their equations-of-state (EOS) (see Shapiro & & Teukolsky 1983). Stars at intermediate ρc may be stabilized against collapse by rapid rotation. This possibility gives rise to what were coined fizzlers by Gold (1974) to describe fizzled core collapses of massive rotating stars through formation of rotation-supported stars with densities intermediate between those of the white dwarf-like precollapse core and a neutron star. Interest in fizzlers waned in the 1980s when it was showed that, although fizzlers could exist, they only occupied a small part of the precollapse core parameter space for cold equations-of-state (EOS). Interest in fizzlers was revived in the late 1990s when it was found that fizzlers could form under a wider range of conditions than had been suggested if hot dense EOSs were considered. Observationally, interest in fizzlers was also driven by the recognition that fizzlers could lead to the generation of gravitational wave emission in Type II Supernovae, emission potentially observable by LIGO, the Laser Interferometer Gravitational Wave Observatory), and other gravitational wave observatories, and that fizzlers could perhaps play roles in the γ-ray burster phenomenon and the formation of strange stars. We review the properties of fizzlers and consider their applications to LIGO, strange stars, and Magnetars.
Light-curve and spectral properties of ultra-stripped core-collapse supernovae
NASA Astrophysics Data System (ADS)
Moriya, Takashi J.
2017-11-01
We discuss light-curve and spectral properties of ultra-stripped core-collapse supernovae. Ultra-stripped supernovae are supernovae with ejecta masses of only ~0.1M ⊙ whose progenitors lose their envelopes due to binary interactions with their compact companion stars. We follow the evolution of an ultra-stripped supernova progenitor until core collapse and perform explosive nucleosynthesis calculations. We then synthesize light curves and spectra of ultra-stripped supernovae based on the nucleosynthesis results. We show that ultra-stripped supernovae synthesize ~0.01M ⊙ of the radioactive 56Ni, and their typical peak luminosity is around 1042 erg s-1 or -16 mag. Their typical rise time is 5 - 10 days. By comparing synthesized and observed spectra, we find that SN 2005ek and some of so-called calcium-rich gap transients like PTF10iuv may be related to ultra-stripped supernovae.
A New Method to Constrain Supernova Fractions Using X-ray Observations of Clusters of Galaxies
NASA Technical Reports Server (NTRS)
Bulbul, Esra; Smith, Randall K.; Loewenstein, Michael
2012-01-01
Supernova (SN) explosions enrich the intracluster medium (ICM) both by creating and dispersing metals. We introduce a method to measure the number of SNe and relative contribution of Type Ia supernovae (SNe Ia) and core-collapse supernovae (SNe cc) by directly fitting X-ray spectral observations. The method has been implemented as an XSPEC model called snapec. snapec utilizes a single-temperature thermal plasma code (apec) to model the spectral emission based on metal abundances calculated using the latest SN yields from SN Ia and SN cc explosion models. This approach provides a self-consistent single set of uncertainties on the total number of SN explosions and relative fraction of SN types in the ICM over the cluster lifetime by directly allowing these parameters to be determined by SN yields provided by simulations. We apply our approach to XMM-Newton European Photon Imaging Camera (EPIC), Reflection Grating Spectrometer (RGS), and 200 ks simulated Astro-H observations of a cooling flow cluster, A3112.We find that various sets of SN yields present in the literature produce an acceptable fit to the EPIC and RGS spectra of A3112. We infer that 30.3% plus or minus 5.4% to 37.1% plus or minus 7.1% of the total SN explosions are SNe Ia, and the total number of SN explosions required to create the observed metals is in the range of (1.06 plus or minus 0.34) x 10(exp 9), to (1.28 plus or minus 0.43) x 10(exp 9), fromsnapec fits to RGS spectra. These values may be compared to the enrichment expected based on well-established empirically measured SN rates per star formed. The proportions of SNe Ia and SNe cc inferred to have enriched the ICM in the inner 52 kiloparsecs of A3112 is consistent with these specific rates, if one applies a correction for the metals locked up in stars. At the same time, the inferred level of SN enrichment corresponds to a star-to-gas mass ratio that is several times greater than the 10% estimated globally for clusters in the A3112 mass range.
Constraining a Possible Variation of G with Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Mould, Jeremy; Uddin, Syed A.
2014-03-01
Astrophysical cosmology constrains the variation of Newton's Constant in a manner complementary to laboratory experiments, such as the celebrated lunar laser ranging campaign. Supernova cosmology is an example of the former and has attained campaign status, following planning by a Dark Energy Task Force in 2005. In this paper, we employ the full SNIa data set to the end of 2013 to set a limit on G variation. In our approach, we adopt the standard candle delineation of the redshift distance relation. We set an upper limit on its rate of change
Using PS1 and Type Ia Supernovae To Make Most Precise Measurement of Dark Energy To Date
NASA Astrophysics Data System (ADS)
Scolnic, Daniel; Pan-STARRS
2018-01-01
I will review recent results that present optical light curves, redshifts, and classifications for 361 spectroscopically confirmed Type Ia supernovae (SNeIa) discovered by the Pan-STARRS1 (PS1) Medium Deep Survey. I will go over improvements to the PS1 SN photometry, astrometry and calibration that reduce the systematic uncertainties in the PS1 SN Ia distances. We combined distances of PS1 SNe with distance estimates of SNIa from SDSS, SNLS, various low-z and HST samples to form the largest combined sample of SN Ia consisting of a total of ~1050 SN Ia ranging from 0.01 < z < 2.3, which we call the ‘Pantheon Sample’. Photometric calibration uncertainties have long dominated the systematic error budget of every major analysis of cosmological parameters with SNIa. Using the PS1 relative calibration, we have reduced these calibration systematics to the point where they are similar in magnitude to the other major sources of known systematic uncertainties: the nature of the intrinsic scatter of SNIa and modeling of selection effects. I will present measurements of dark energy which are now the most precise measurements of dark energy to date.
Supernova 2010as: The Lowest-velocity Member of a Family of Flat-velocity Type IIb Supernovae
NASA Astrophysics Data System (ADS)
Folatelli, Gastón; Bersten, Melina C.; Kuncarayakti, Hanindyo; Olivares Estay, Felipe; Anderson, Joseph P.; Holmbo, Simon; Maeda, Keiichi; Morrell, Nidia; Nomoto, Ken'ichi; Pignata, Giuliano; Stritzinger, Maximilian; Contreras, Carlos; Förster, Francisco; Hamuy, Mario; Phillips, Mark M.; Prieto, José Luis; Valenti, Stefano; Afonso, Paulo; Altenmüller, Konrad; Elliott, Jonny; Greiner, Jochen; Updike, Adria; Haislip, Joshua B.; LaCluyze, Aaron P.; Moore, Justin P.; Reichart, Daniel E.
2014-09-01
We present extensive optical and near-infrared photometric and spectroscopic observations of the stripped-envelope supernova SN 2010as. Spectroscopic peculiarities such as initially weak helium features and low expansion velocities with a nearly flat evolution place this object in the small family of events previously identified as transitional Type Ib/c supernovae (SNe). There is ubiquitous evidence of hydrogen, albeit weak, in this family of SNe, indicating that they are in fact a peculiar kind of Type IIb SNe that we name "flat-velocity Type IIb. The flat-velocity evolution—which occurs at different levels between 6000 and 8000 km s-1 for different SNe—suggests the presence of a dense shell in the ejecta. Despite the spectroscopic similarities, these objects show surprisingly diverse luminosities. We discuss the possible physical or geometrical unification picture for such diversity. Using archival Hubble Space Telescope images, we associate SN 2010as with a massive cluster and derive a progenitor age of ≈6 Myr, assuming a single star-formation burst, which is compatible with a Wolf-Rayet progenitor. Our hydrodynamical modeling, on the contrary, indicates that the pre-explosion mass was relatively low, ≈4 M ⊙. The seeming contradiction between a young age and low pre-SN mass may be solved by a massive interacting binary progenitor. This paper includes data gathered with the following facilities in Chile: the 6.5 m Magellan Telescopes located at Las Campanas Observatory, the Gemini Observatory, Cerro Pachón (Gemini Program GS-2008B-Q-56), and the European Organisation for Astronomical Research in the Southern Hemisphere (ESO Programmes 076.A-0156, 078.D-0048, 080.A-0516, and 082.A-0526). We have also used data from the ESO Science Archive Facility under request number gfolatelli74580 and from the NASA/ESA Hubble Space Telescope, obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA), and the Canadian Astronomy Data Centre (CADC/NRC/CSA).
Swift X-Ray Upper Limits on Type Ia Supernova Environments
NASA Technical Reports Server (NTRS)
Russell, B. R.; Immler, S.
2012-01-01
We have considered 53 Type Ia supernovae (SNe Ia) observed by the Swift X-Ray Telescope. None of the SNe Ia are individually detected at any time or in stacked images. Using these data and assuming that the SNe Ia are a homogeneous class of objects, we have calculated upper limits to the X-ray luminosity (0.2-10 keV) and mass-loss rate of L(sub 0.2-10) < 1.7 X 10(exp 38) erg/s and M(dot) < l.l X 10(exp -6) solar M/ yr x (V(sub w))/(10 km/s), respectively. The results exclude massive or evolved stars as the companion objects in SN Ia progenitor systems, but allow the possibility of main sequence or small stars, along with double degenerate systems consisting of two white dwarfs, consistent with results obtained at other wavelengths (e.g., UV, radio) in other studies.
Takanashi, N.; Doi, M.; Yasuda, N.; ...
2016-12-06
We have analyzed multi-band light curves of 328 intermediate redshift (0.05 <= z < 0.24) type Ia supernovae (SNe Ia) observed by the Sloan Digital Sky Survey-II Supernova Survey (SDSS-II SN Survey). The multi-band light curves were parameterized by using the Multi-band Stretch Method, which can simply parameterize light curve shapes and peak brightness without dust extinction models. We found that most of the SNe Ia which appeared in red host galaxies (u - r > 2.5) don't have a broad light curve width and the SNe Ia which appeared in blue host galaxies (u - r < 2.0) havemore » a variety of light curve widths. The Kolmogorov-Smirnov test shows that the colour distribution of SNe Ia appeared in red / blue host galaxies is different (significance level of 99.9%). We also investigate the extinction law of host galaxy dust. As a result, we find the value of Rv derived from SNe Ia with medium light curve width is consistent with the standard Galactic value. On the other hand, the value of Rv derived from SNe Ia that appeared in red host galaxies becomes significantly smaller. Furthermore, these results indicate that there may be two types of SNe Ia with different intrinsic colours, and they are obscured by host galaxy dust with two different properties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takanashi, N.; Doi, M.; Yasuda, N.
We have analyzed multi-band light curves of 328 intermediate redshift (0.05 <= z < 0.24) type Ia supernovae (SNe Ia) observed by the Sloan Digital Sky Survey-II Supernova Survey (SDSS-II SN Survey). The multi-band light curves were parameterized by using the Multi-band Stretch Method, which can simply parameterize light curve shapes and peak brightness without dust extinction models. We found that most of the SNe Ia which appeared in red host galaxies (u - r > 2.5) don't have a broad light curve width and the SNe Ia which appeared in blue host galaxies (u - r < 2.0) havemore » a variety of light curve widths. The Kolmogorov-Smirnov test shows that the colour distribution of SNe Ia appeared in red / blue host galaxies is different (significance level of 99.9%). We also investigate the extinction law of host galaxy dust. As a result, we find the value of Rv derived from SNe Ia with medium light curve width is consistent with the standard Galactic value. On the other hand, the value of Rv derived from SNe Ia that appeared in red host galaxies becomes significantly smaller. Furthermore, these results indicate that there may be two types of SNe Ia with different intrinsic colours, and they are obscured by host galaxy dust with two different properties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, R.C.; Aldering, G.; Antilogus, P.
2006-10-12
We present four spectra of the Type Ia supernova SN Ia 2006Dextending from -7 to +13 days with respect to B-band maximum. The spectrainclude the strongest signature of unburned material at photosphericvelocities observed in a SN Ia to date. The earliest spectrum exhibits CII absorption features below 14,000 km/s, including a distinctive C IIlambda 6580 absorption feature. The carbon signatures dissipate as the SNapproaches peak brightness. In addition to discussing implications ofphotospheric-velocity carbon for white dwarf explosion models, we outlinesome factors that may influence the frequency of its detection before andaround peak brightness. Two effects are explored in this regard,includingmore » depopulation of the C II optical levels by non-LTE effects, andline-of-sight effects resulting from a clumpy distribution of unburnedmaterial with low volume-filling factor.« less
Direct Measurement of the Supernova Rate in Starburst Galaxies
NASA Technical Reports Server (NTRS)
Bregman, Jesse D.; Temi, Pasquale; Rank, David; DeVincenzi, Donald L. (Technical Monitor)
1999-01-01
Supernovae play a key role in the dynamics, structure, and chemical evolution of galaxies. The massive stars that end their lives as supernovae live for short times. Many are still associated with dusty star formation regions when they explode, making them difficult to observe at visible wavelengths. In active star forming regions (galactic nuclei and starburst regions), dust extintion is especially severe. Thus, determining the supernova rate in the active star forming regions of galaxies, where the supernova rate can be one or two orders of magnitude higher than the average, has proven to be difficult. From observations of SN1987A, we know that the [NiII] 6.63 micron emission line was the strongest line in the infrared spectrum for a period of a year and a half after the explosion. Since dust extintion is much less at 6.63 pm than at visible wavelengths (A(sub 6.63)/A(sub V) = 0.025), the NiII line can be used as a sensitive probe for the detection of recent supernovae. We have observed a sample of starburst galaxies at 6.63 micron using ISOCAM to search for the NiII emission line characteristic of recent supernovae. We did not detect any NiII line emission brighter than a 5sigma limit of 5 mJy. We can set upper limits to the supernova rate in our sample, scaled to the rate in M82, of less than 0.3 per year at the 90% confidence level using Bayesian methods. Assuming that a supernova would have a NiII with the same luminosity as observed in SN1987A, we find less than 0.09 and 0.15 per year at the 50% and 67% confidence levels. These rates are somewhat less if a more normal type II supernovae has a NiII line luminosity greater than the line in SN1987A.
NASA Astrophysics Data System (ADS)
Zapartas, E.; de Mink, S. E.; Izzard, R. G.; Yoon, S.-C.; Badenes, C.; Götberg, Y.; de Koter, A.; Neijssel, C. J.; Renzo, M.; Schootemeijer, A.; Shrotriya, T. S.
2017-05-01
Most massive stars, the progenitors of core-collapse supernovae, are in close binary systems and may interact with their companion through mass transfer or merging. We undertake a population synthesis study to compute the delay-time distribution of core-collapse supernovae, that is, the supernova rate versus time following a starburst, taking into account binary interactions. We test the systematic robustness of our results by running various simulations to account for the uncertainties in our standard assumptions. We find that a significant fraction, %, of core-collapse supernovae are "late", that is, they occur 50-200 Myr after birth, when all massive single stars have already exploded. These late events originate predominantly from binary systems with at least one, or, in most cases, with both stars initially being of intermediate mass (4-8 M⊙). The main evolutionary channels that contribute often involve either the merging of the initially more massive primary star with its companion or the engulfment of the remaining core of the primary by the expanding secondary that has accreted mass at an earlier evolutionary stage. Also, the total number of core-collapse supernovae increases by % because of binarity for the same initial stellar mass. The high rate implies that we should have already observed such late core-collapse supernovae, but have not recognized them as such. We argue that φ Persei is a likely progenitor and that eccentric neutron star - white dwarf systems are likely descendants. Late events can help explain the discrepancy in the delay-time distributions derived from supernova remnants in the Magellanic Clouds and extragalactic type Ia events, lowering the contribution of prompt Ia events. We discuss ways to test these predictions and speculate on the implications for supernova feedback in simulations of galaxy evolution.
Supernova 2011fe in M101 (NGC 5457) = PSN J14030581+5416254
NASA Astrophysics Data System (ADS)
Waagen, Elizabeth O.
2011-08-01
The discovery is reported of Supernova 2011fe in NGC 5457 = PSN J14030581+5416254 by the Type Ia supernova science working group of the Palomar Transient Factory, Peter Nugent et al., on 2011 Aug. 24 UT at magnitude 17.2 (g-band, calibrated with respect to the USNO catalog. (Credit for an independent discovery by Mathew Marulla and Tavi Grenier was later rescinded by D. Green, Gentral Bureau for Astronomical Telegrams.) A spectrum obtained on 2011 Aug. 24 UT indicates that SN 2011fe is probably a Type Ia supernova at a very early phase. SN 2011fe was initially announced in ATEL #3581 (Peter Nugent et al.), AAVSO Special Notice #250 (Matthew Templeton), and Central Bureau for Astronomical Telegrams (CBAT) Electronic Telegram 2792 (Daniel W. E. Green, ed.). According to Green, the object was designated PSN J14030581+5416254 when posted on the CBAT Transient Objects Confirmation Page (TOCP) webpage. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details, observations, and links to images.
Optical and Infrared Photometry of SN 2005df
NASA Astrophysics Data System (ADS)
Krisciunas, Kevin; Suntzeff, Nicholas B.; Espinoza, Juan; Gonzalez, David; Miranda, Alberto; Sanhueza, Pedro
2017-12-01
We present optical BVRI and near-infrared YJHK_s photometry of the normal Type Ia supernova 2005df, obtained with the CTIO 1.3-m and 0.9-m telescopes. The B- and V-band photometry, S-corrected to the filter prescriptions of Bessell(1990), matches the corresponding photometry from the ANU published by Milne et al. (2010). The R-band photometry from CTIO and ANU matches well without any corrections. A combination of V-band and near-IR photometry shows that SN 2005df is unreddened in its host galaxy. Spectropolarimetry of this supernova was obtained with the VLT, and the distance to the host galaxy is being determined from observations of Cepheids using the Hubble Space Telescope.
Observed Type II supernova colours from the Carnegie Supernova Project-I
NASA Astrophysics Data System (ADS)
de Jaeger, T.; Anderson, J. P.; Galbany, L.; González-Gaitán, S.; Hamuy, M.; Phillips, M. M.; Stritzinger, M. D.; Contreras, C.; Folatelli, G.; Gutiérrez, C. P.; Hsiao, E. Y.; Morrell, N.; Suntzeff, N. B.; Dessart, L.; Filippenko, A. V.
2018-06-01
We present a study of observed Type II supernova (SN II) colours using optical/near-infrared photometric data from the Carnegie Supernovae Project-I. We analyse four colours (B - V, u - g, g - r, and g - Y) and find that SN II colour curves can be described by two linear regimes during the photospheric phase. The first (s1, colour) is steeper and has a median duration of ˜40 d. The second, shallower slope (s2, colour) lasts until the end of the `plateau' (˜80 d). The two slopes correlate in the sense that steeper initial colour curves also imply steeper colour curves at later phases. As suggested by recent studies, SNe II form a continuous population of objects from the colour point of view as well. We investigate correlations between the observed colours and a range of photometric and spectroscopic parameters including the absolute magnitude, the V-band light-curve slopes, and metal-line strengths. We find that less luminous SNe II appear redder, a trend that we argue is not driven by uncorrected host-galaxy reddening. While there is significant dispersion, we find evidence that redder SNe II (mainly at early epochs) display stronger metal-line equivalent widths. Host-galaxy reddening does not appear to be a dominant parameter, neither driving observed trends nor dominating the dispersion in observed colours. Intrinsic SN II colours are most probably dominated by photospheric temperature differences, with progenitor metallicity possibly playing a minor role. Such temperature differences could be related to differences in progenitor radius, together with the presence or absence of circumstellar material close to the progenitor stars.
Combined ultraviolet studies of astronomical source
NASA Technical Reports Server (NTRS)
Dupress, A. K.; Baliunas, S. L.; Blair, W. P.; Hartmann, L. W.; Huchra, J. P.; Raymond, J. C.; Smith, G. H.; Soderblom, D. R.
1985-01-01
As part of its Ultraviolet Studies of Astronomical Sources the Smithsonian Astrophysical Observatory for the period 1 Feb. 1985 to 31 July 1985 observed the following: the Cygnus Loop; oxygen-rich supernova remnants in 1E0102-72; the Large Magellanic Cloud supernova remnants; P Cygni profiles in dwarf novae; soft X-ray photoionization of interstellar gas; spectral variations in AM Her stars; the mass of Feige 24; atmospheric inhomogeneities in Lambda Andromedae and FF Aquarii; photometric and spectroscopic observation of Capella; Alpha Orionis; metal deficient giant stars; M 67 giants; high-velocity winds from giant stars; accretion disk parameters in cataclysmic variables; chromospheric emission of late-type dwarfs in visual binaries; chromospheres and transient regions of stars in the Ursa Major group; and low-metallicity blue galaxies.
Studying Electron-Capture on ^64Zn in Supernovae with the (t,^3He) Charge-Exchange Reaction
NASA Astrophysics Data System (ADS)
Hitt, G. W.; Austin, Sam M.; Bazin, D.; Gade, A.; Guess, C. J.; Galaviz-Redondo, D.; Shimbara, Y.; Tur, C.; Zegers, R. G. T.; Horoi, M.; Howard, M. E.; Smith, E. E.
2008-10-01
A secondary, 115 MeV/u triton beam has been developed at NSCL for use in (t,^3He) charge-exchange(CE) reaction studies. This (n,p)-type CE reaction is useful for extracting the full Gamow-Teller (GT) response of the nucleus, overcoming Q-value restrictions present in conventional beta-decay studies. The strength (B(GT)) in ^64Cu has been determined from the absolute cross section measurement of ^64Zn(t,^3He) near zero-degrees, exploiting an empirical proportionality between cross section and B(GT). The detailed features of the B(GT) distribution in a nucleus has an important impact on electron-capture (EC) rates in Type Ia and Core-Collapse supernovae. The measured B(GT) in ^64Cu is directly compared with the results of modern shell model interactions which are used to calculate the GT contribution to EC on nuclei in supernova simulations.
Explaining the Supernova Data Without Accelerating Expansion
NASA Astrophysics Data System (ADS)
Stuckey, W. M.; McDevitt, T. J.; Silberstein, M.
2012-10-01
The 2011 Nobel Prize in Physics was awarded "for the discovery of the accelerating expansion of the universe through observations of distant supernovae." However, it is not the case that the type Ia supernova data necessitates accelerating expansion. Since we do not have a successful theory of quantum gravity, we should not assume general relativity (GR) will survive unification intact, especially on cosmological scales where tests are scarce. We provide a simple example of how GR cosmology may be modified to produce a decelerating Einstein-de Sitter cosmology (EdS) that accounts for the Union2 Compilation data as well as the accelerating ΛCDM (EdS plus a cosmological constant).
Mapping Calcium Rich Ejecta in Two Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Fesen, Robert
2016-10-01
Type Ia supernovae (SNe Ia) are thermonuclear explosions of white dwarfs (WDs) in close binary systems with either a non-degenerate or WD companion. SN Ia explosion computations are quite challenging, involving a complex interplay of turbulent hydrodynamics, nuclear burning, conduction, radiative transfer in iron-group rich material and possibly magnetic fields leading to significant uncertainties. Several key questions about expansion asymmetries and the overall characteristics of SNe Ia could be resolved if one could obtain direct observations of the internal kinematics and elemental distributions of young SN Ia remnants.We propose to use WFC3/UVIS to obtain images of the normal Type Ia supernova remnant 0519-69.0 and the overluminous Type Ia supernova remnant 0509-67.5 in the LMC. The Ca II on-band F390M filter and off-band F336W and FQ422M filters will be used to determine the spatial extent and density distributions of the Ca-rich ejecta via resonance line absorption. Differences in the observed on and off band Ca II fluxes for LMC stars located behind these young 400 - 600 yr old remnants will yield calcium column density estimates for multiple lines-of-sight within these remnants. These results will be compared to the calcium distribution seen in SN 1885, a subluminous SN Ia in M31, already imaged by HST.The resulting calcium density distribution maps for both a normal and overluminous SN Ia events will provide powerful insights regarding the structure and kinematics of calcium-rich ejecta in three different type Ia subclass events, and unique empirical data with which to test current SN Ia explosion models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calcino, Josh; Davis, Tamara, E-mail: j.calcino@uq.edu.au, E-mail: tamarad@physics.uq.edu.au
Recent papers have shown that a small systematic redshift shift (Δ z ∼ 10{sup −5}) in measurements of type Ia supernovae can cause a significant bias (∼1%) in the recovery of cosmological parameters. Such a redshift shift could be caused, for example, by a gravitational redshift due to the density of our local environment. The sensitivity of supernova data to redshift shifts means supernovae make excellent probes of inhomogeneities. We therefore invert the analysis, and try to diagnose the nature of our local gravitational environment by fitting for Δ z as an extra free parameter alongside the usual cosmological parameters.more » Using the Joint Light-curve SN Ia dataset we find the best fit includes a systematic redshift shift of Δ z = (2.6{sup +2.7}{sub −2.8}) × 10{sup −4}. This is a larger shift than would be expected due to gravitational redshifts in a standard Λ-Cold Dark Matter universe (though still consistent with zero), and would correspond to a monopole Doppler shift of about 100 km s{sup −1} moving away from the Milky-Way. However, since most supernova measurements are made to a redshift precision of no better than 10{sup −3}, it is possible that a systematic error smaller than the statistical error remains in the data and is responsible for the shift; or that it is an insignificant statistical fluctuation. We find that when Δ z is included as a free parameter while fitting to the JLA SN Ia data, the constraints on the matter density shifts to Ω {sub m} = 0.313{sup +0.042}{sub −0.040}, bringing it into better agreement with the CMB cosmological parameter constraints from Planck. A positive Δ z ∼ 2.6×10{sup −4} would also cause us to overestimate the supernova measurement of Hubble's constant by Δ H {sub 0} ∼ 1 kms{sup −1}Mpc{sup −1}. However this overestimation should diminish as one increases the low-redshift cutoff, and this is not seen in the most recent data.« less
NASA Astrophysics Data System (ADS)
McKinnon, Darren; Gull, T. R.; Madura, T.
2014-01-01
A major puzzle in the studies of supernovae is the pseudo-supernova, or the near-supernovae state. It has been found to precede, in timespans ranging from months to years, a number of recently-detected distant supernovae. One explanation of these systems is that a member of a massive binary underwent a near-supernova event shortly before the actual supernova phenomenon. Luckily, we have a nearby massive binary, Eta Carinae, that provides an astrophysical laboratory of a near-analog. The massive, highly-eccentric, colliding-wind binary star system survived a non-terminal stellar explosion in the 1800's, leaving behind the incredible bipolar, 10"x20" Homunculus nebula. Today, the interaction of the binary stellar winds 1") is resolvable by the Space Telescope Imaging Spectrograph (STIS) aboard the Hubble Space Telescope (HST). Using HST/STIS, several three-dimensional (3D) data cubes (2D spatial, 1D velocity) have been obtained at selected phases during Eta Carinae's 5.54-year orbital cycle. The data cubes were collected by mapping the central 1-2" at 0.05" intervals with a 52"x0.1" aperture. Selected forbidden lines, that form in the colliding wind regions, provide information on electron density of the shocked regions, the ionization by the hot secondary companion of the primary wind and how these regions change with orbital phase. By applying various analysis techniques to these data cubes, we can compare and measure temporal changes due to the interactions between the two massive winds. The observations, when compared to current 3D hydrodynamic models, provide insight on Eta Carinae's recent mass-loss history, important for determining the current and future states of this likely nearby supernova progenitor.
NASA Astrophysics Data System (ADS)
Hoscheit, Benjamin L.; Barger, Amy J.
2017-06-01
There is substantial and growing observational evidence from the normalized luminosity density in the near-infrared that the local universe may be under-dense on scales of several hundred Megaparsecs. Our objective is to test whether a void described by a parameterization of the observational data is compatible with the latest data on supernovae type Ia and the linear kinematic Sunyaev-Zel'dovich (kSZ) effect. Our study is based on the large local void radial profile observed by Keenan, Barger, and Cowie (KBC) and a theoretical void description based on the Lemaître-Tolman-Bondi model with a nonzero cosmological constant (Lambda-LTB). We find consistency with the measured luminosity distance-redshift relation on radial scales relevant to the KBC void through a comparison with low-redshift supernovae type Ia from the `Supercal' dataset over the redshift range 0.01 < z < 0.10. We also find that previous linear kSZ constraints, as well as new ones from the South Pole Telescope, are fully compatible with the existence of the KBC void.
A critique of supernova data analysis in cosmology
NASA Astrophysics Data System (ADS)
Gopal Vishwakarma, Ram; Narlikar, Jayant V.
2010-12-01
Observational astronomy has shown significant growth over the last decade and has made important contributions to cosmology. A major paradigm shift in cosmology was brought about by observations of Type Ia supernovae. The notion that the universe is accelerating has led to several theoretical challenges. Unfortunately, although high-quality supernovae data-sets are being produced, their statistical analysis leaves much to be desired. Instead of using the data to directly test the model, several studies seem to concentrate on assuming the model to be correct and limiting themselves to estimating model parameters and internal errors. As shown here, the important purpose of testing a cosmological theory is thereby vitiated.
OzDES multifibre spectroscopy for the Dark Energy Survey: Three year results and first data release
Childress, M. J.; Lidman, C.; Davis, T. M.; ...
2017-07-26
We present results for the first three years of OzDES, a six-year programme to obtain redshifts for objects in the Dark Energy Survey (DES) supernova fields using the 2dF fibre positioner and AAOmega spectrograph on the Anglo-Australian Telescope. OzDES is a multi-object spectroscopic survey targeting multiple types of targets at multiple epochs over a multi-year baseline, and is one of the first multi-object spectroscopic surveys to dynamically include transients into the target list soon after their discovery. At the end of three years, OzDES has spectroscopically confirmed almost 100 supernovae, and has measured redshifts for 17,000 objects, including the redshiftsmore » of 2,566 supernova hosts. We examine how our ability to measure redshifts for targets of various types depends on signal-to-noise, magnitude, and exposure time, finding that our redshift success rate increases significantly at a signal-to-noise of 2 to 3 per 1-Angstrom bin. We also find that the change in signal-to-noise with exposure time closely matches the Poisson limit for stacked exposures as long as 10 hours. We use these results to predict the redshift yield of the full OzDES survey, as well as the potential yields of future surveys on other facilities such as the 4m Multi-Object Spectroscopic Telescope (4MOST), the Subaru Prime Focus Spectrograph (PFS), and the Maunakea Spectroscopic Explorer (MSE). This work marks the first OzDES data release, comprising 14,693 redshifts. OzDES is on target to obtain over a yield of approximately 5,700 supernova host-galaxy redshifts.« less
OzDES multifibre spectroscopy for the Dark Energy Survey: Three year results and first data release
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childress, M. J.; Lidman, C.; Davis, T. M.
We present results for the first three years of OzDES, a six-year programme to obtain redshifts for objects in the Dark Energy Survey (DES) supernova fields using the 2dF fibre positioner and AAOmega spectrograph on the Anglo-Australian Telescope. OzDES is a multi-object spectroscopic survey targeting multiple types of targets at multiple epochs over a multi-year baseline, and is one of the first multi-object spectroscopic surveys to dynamically include transients into the target list soon after their discovery. At the end of three years, OzDES has spectroscopically confirmed almost 100 supernovae, and has measured redshifts for 17,000 objects, including the redshiftsmore » of 2,566 supernova hosts. We examine how our ability to measure redshifts for targets of various types depends on signal-to-noise, magnitude, and exposure time, finding that our redshift success rate increases significantly at a signal-to-noise of 2 to 3 per 1-Angstrom bin. We also find that the change in signal-to-noise with exposure time closely matches the Poisson limit for stacked exposures as long as 10 hours. We use these results to predict the redshift yield of the full OzDES survey, as well as the potential yields of future surveys on other facilities such as the 4m Multi-Object Spectroscopic Telescope (4MOST), the Subaru Prime Focus Spectrograph (PFS), and the Maunakea Spectroscopic Explorer (MSE). This work marks the first OzDES data release, comprising 14,693 redshifts. OzDES is on target to obtain over a yield of approximately 5,700 supernova host-galaxy redshifts.« less
OzDES multifibre spectroscopy for the Dark Energy Survey: 3-yr results and first data release
NASA Astrophysics Data System (ADS)
Childress, M. J.; Lidman, C.; Davis, T. M.; Tucker, B. E.; Asorey, J.; Yuan, F.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Banerji, M.; Benoit-Lévy, A.; Bernard, S. R.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Carollo, D.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Cunha, C. E.; da Costa, L. N.; D'Andrea, C. B.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Foley, R. J.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Glazebrook, K.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gupta, R. R.; Gutierrez, G.; Hinton, S. R.; Hoormann, J. K.; James, D. J.; Kessler, R.; Kim, A. G.; King, A. L.; Kovacs, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lagattuta, D. J.; Lewis, G. F.; Li, T. S.; Lima, M.; Lin, H.; Macaulay, E.; Maia, M. A. G.; Marriner, J.; March, M.; Marshall, J. L.; Martini, P.; McMahon, R. G.; Menanteau, F.; Miquel, R.; Moller, A.; Morganson, E.; Mould, J.; Mudd, D.; Muthukrishna, D.; Nichol, R. C.; Nord, B.; Ogando, R. L. C.; Ostrovski, F.; Parkinson, D.; Plazas, A. A.; Reed, S. L.; Reil, K.; Romer, A. K.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Scolnic, D.; Sevilla-Noarbe, I.; Seymour, N.; Sharp, R.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Sommer, N. E.; Spinka, H.; Suchyta, E.; Sullivan, M.; Swanson, M. E. C.; Tarle, G.; Uddin, S. A.; Walker, A. R.; Wester, W.; Zhang, B. R.
2017-11-01
We present results for the first three years of OzDES, a six year programme to obtain redshifts for objects in the Dark Energy Survey (DES) supernova fields using the 2dF fibre positioner and AAOmega spectrograph on the Anglo-Australian Telescope. OzDES is a multi-object spectroscopic survey targeting multiple types of targets at multiple epochs over a multiyear baseline and is one of the first multi-object spectroscopic surveys to dynamically include transients into the target list soon after their discovery. At the end of three years, OzDES has spectroscopically confirmed almost 100 supernovae, and has measured redshifts for 17 000 objects, including the redshifts of 2566 supernova hosts. We examine how our ability to measure redshifts for targets of various types depends on signal-to-noise ratio (S/N), magnitude and exposure time, finding that our redshift success rate increases significantly at a S/N of 2-3 per 1-Å bin. We also find that the change in S/N with exposure time closely matches the Poisson limit for stacked exposures as long as 10 h. We use these results to predict the redshift yield of the full OzDES survey, as well as the potential yields of future surveys on other facilities such as (i.e. the 4-m Multi-Object Spectroscopic Telescope, the Subaru Prime Focus Spectrograph and the Maunakea Spectroscopic Explorer). This work marks the first OzDES data release, comprising 14 693 redshifts. OzDES is on target to obtain over 30 000 redshifts over the 6-yr duration of the survey, including a yield of approximately 5700 supernova host-galaxy redshifts.
NASA Astrophysics Data System (ADS)
Zhang, Jujia; Tan, Hanjie; Li, Wenxiong; Li, Bin; Li, Zhitong; Wang, Xiaofeng; Xu, Zhijian; Zhao, Haibin; Wang, Lifan
2018-06-01
We obtained an optical spectrum (range 350-890 nm) of PTSS-18fdb (AT 2018cni), discovered by the PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/), on UT 2018 June 17.7 with the Li-Jiang 2.4 m telescope (LJT+YFOSC) at Li-Jiang Observatory of Yunnan Observatories.
Spectroscopic classification of PTSS-18ecg (SN 2018bhb) as a type Ia supernova around maximum
NASA Astrophysics Data System (ADS)
Zhang, Jujia; Ding, Xu; Wang, Xiaofeng; Li, Wenxiong; Li, Bin; Xu, Zhijian; Tan, Hanjie; Zhao, Haibin; Wang, Lifan; Li, Zhitong
2018-05-01
We obtained an optical spectrum (range 350-890 nm) of PTSS-18ecg (SN 2018bhb), discovered by the PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/), on UT 2018 May 10.7 with the Li-Jiang 2.4 m telescope (LJT+YFOSC) at Li-Jiang Observatory of Yunnan Observatories.
Abundances of presolar graphite and SiC from supernovae and AGB stars in the Murchison meteorite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amari, Sachiko; Zinner, Ernst; Gallino, Roberto
2014-05-02
Pesolar graphite grains exhibit a range of densities (1.65 – 2.20 g/cm{sup 3}). We investigated abundances of presolar graphite grains formed in supernovae and in asymptotic giant branch (AGB) stars in the four density fractions KE3, KFA1, KFB1 and KFC1 extracted from the Murchison meteorite to probe dust productions in these stellar sources. Seventy-six and 50% of the grains in the low-density fractions KE3 and KFA1, respectively, are supernova grains, while only 7.2% and 0.9% of the grains in the high-density fractions KFB1 and KFC1 have a supernova origin. Grains of AGB star origin are concentrated in the high-density fractionsmore » KFB1 and KFC1. From the C isotopic distributions of these fractions and the presence of s-process Kr with {sup 86}Kr/{sup 82}Kr = 4.43±0.46 in KFC1, we estimate that 76% and 80% of the grains in KFB1 and KFC1, respectively, formed in AGB stars. From the abundance of graphite grains in the Murchison meteorite, 0.88 ppm, the abundances of graphite from supernovae and AGB stars are 0.24 ppm and 0.44 ppm, respectively: the abundances of graphite in supernovae and AGB stars are comparable. In contrast, it has been known that 1% of SiC grains formed in supernovae and 95% formed in AGB stars in meteorites. Since the abundance of SiC grains is 5.85 ppm in the Murchison meteorite, the abundances of SiC from supernovae and AGB stars are 0.063 ppm and 5.6 ppm, respectively: the dominant source of SiC grains is AGB stars. Since SiC grains are harder and likely to survive better in space than graphite grains, the abundance of supernova graphite grains, which is higher than that of supernova SiC grains, indicates that supernovae proficiently produce graphite grains. Graphite grains from AGB stars are, in contrast, less abundant that SiC grains from AGB stars (0.44 ppm vs. 5.6 ppm). It is difficult to derive firm conclusions for graphite and SiC formation in AGB stars due to the difference in susceptibility to grain destruction. Metallicity of the parent AGB stars of graphite grains is much lower than that of SiC grains and the difference in metallicity might also have affected to the difference in the abundances in the Murchison meteorite.« less
Pakmor, Rüdiger; Kromer, Markus; Röpke, Friedrich K; Sim, Stuart A; Ruiter, Ashley J; Hillebrandt, Wolfgang
2010-01-07
Type Ia supernovae are thought to result from thermonuclear explosions of carbon-oxygen white dwarf stars. Existing models generally explain the observed properties, with the exception of the sub-luminous 1991bg-like supernovae. It has long been suspected that the merger of two white dwarfs could give rise to a type Ia event, but hitherto simulations have failed to produce an explosion. Here we report a simulation of the merger of two equal-mass white dwarfs that leads to a sub-luminous explosion, although at the expense of requiring a single common-envelope phase, and component masses of approximately 0.9M[symbol: see text]. The light curve is too broad, but the synthesized spectra, red colour and low expansion velocities are all close to what is observed for sub-luminous 1991bg-like events. Although the mass ratios can be slightly less than one and still produce a sub-luminous event, the masses have to be in the range 0.83M[symbol: see text] to 0.9M[symbol: see text].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandel, Kaisey S.; Kirshner, Robert P.; Foley, Ryan J., E-mail: kmandel@cfa.harvard.edu
2014-12-20
We investigate the statistical dependence of the peak intrinsic colors of Type Ia supernovae (SNe Ia) on their expansion velocities at maximum light, measured from the Si II λ6355 spectral feature. We construct a new hierarchical Bayesian regression model, accounting for the random effects of intrinsic scatter, measurement error, and reddening by host galaxy dust, and implement a Gibbs sampler and deviance information criteria to estimate the correlation. The method is applied to the apparent colors from BVRI light curves and Si II velocity data for 79 nearby SNe Ia. The apparent color distributions of high-velocity (HV) and normal velocitymore » (NV) supernovae exhibit significant discrepancies for B – V and B – R, but not other colors. Hence, they are likely due to intrinsic color differences originating in the B band, rather than dust reddening. The mean intrinsic B – V and B – R color differences between HV and NV groups are 0.06 ± 0.02 and 0.09 ± 0.02 mag, respectively. A linear model finds significant slopes of –0.021 ± 0.006 and –0.030 ± 0.009 mag (10{sup 3} km s{sup –1}){sup –1} for intrinsic B – V and B – R colors versus velocity, respectively. Because the ejecta velocity distribution is skewed toward high velocities, these effects imply non-Gaussian intrinsic color distributions with skewness up to +0.3. Accounting for the intrinsic-color-velocity correlation results in corrections to A{sub V} extinction estimates as large as –0.12 mag for HV SNe Ia and +0.06 mag for NV events. Velocity measurements from SN Ia spectra have the potential to diminish systematic errors from the confounding of intrinsic colors and dust reddening affecting supernova distances.« less
NASA Astrophysics Data System (ADS)
Pignatari, Marco; Hoppe, Peter; Trappitsch, Reto; Fryer, Chris; Timmes, F. X.; Herwig, Falk; Hirschi, Raphael
2018-01-01
Carbon-rich presolar grains are found in primitive meteorites, with isotopic measurements to date suggesting a core-collapse supernovae origin site for some of them. This holds for about 1-2% of presolar silicon carbide (SiC) grains, so-called Type X and C grains, and about 30% of presolar graphite grains. Presolar SiC grains of Type X show anomalous isotopic signatures for several elements heavier than iron compared to the solar abundances: most notably for strontium, zirconium, molybdenum, ruthenium and barium. We study the nucleosynthesis of zirconium and molybdenum isotopes in the He-shell of three core-collapse supernovae models of 15, 20 and 25 M⊙ with solar metallicity, and compare the results to measurements of presolar grains. We find the stellar models show a large scatter of isotopic abundances for zirconium and molybdenum, but the mass averaged abundances are qualitatively similar to the measurements. We find all models show an excess of 96Zr relative to the measurements, but the model abundances are affected by the fractionation between Sr and Zr since a large contribution to 90Zr is due to the radiogenic decay of 90Sr. Some supernova models show excesses of 95,97Mo and depletion of 96Mo relative to solar. The mass averaged distribution from these models shows an excess of 100Mo, but this may be alleviated by very recent neutron-capture cross section measurements. We encourage future explorations to assess the impact of the uncertainties in key neutron-capture reaction rates that lie along the n-process path.
NASA Astrophysics Data System (ADS)
Russell, Brock Richard
X-ray astrophysics provides a great many opportunities to study astronomical structures with large energies or high temperatures. This dissertation will describe two such applications: the use of Swift X-ray Telescope (XRT) data to analyze the interaction between a supernova shock and the circumstellar medium, and the use of a straightforward computer simulation to model the dynamics of intracluster gas in clusters of galaxies and constrain the thermal conduction coefficient. Stars emit stellar wind at varying rates throughout their lifetimes. This wind populates the circumstellar medium (CSM) with gas. When the supernova explodes, the shock wave propogates outward through this CSM and heats it to X-ray emitting temperatures. By analyzing X-ray observations of the immediate post-supernova environment, we are able to determine whether any significant CSM is present. By stacking a large number of Swift observations of SNe Ia, we increase the sensitivity. We find no X-rays, with an upper limit of 1.7 x 1038 erg s-1 and a 3 sigma upper limit on the mass loss rate of progenitor systems 1.1 x 10-6 solar masses per year x (vw)/(10 km s -1). This low upper limit precludes a massive progenitor as the binary companion in the supernova progenitor system, unless that star is in Roche lobe overflow. The hot Intracluster Medium (ICM) is composed of tenuous gas which is gravitationally-bound to the cluster of galaxies. This gas is not initially of uniform temperature, and experiences thermal conduction while maintaining hydrostatic equilibrium. However, magnetic field lines present in the ionized gas inhibit the full thermal conduction. In this dissertation, we present the results of a new one-dimensional simulation that models this conduction (and includes cooling while maintaining hydrostatic equilibrium). By comparing the results of this model with the observed gas temperature profiles and recent accurate constraints on the scatter of the gas fraction, we are able to constrain the thermal conductivity. Our results suggest that conduction factors are not higher than 10% of full Spitzer conduction for hot, relaxed clusters.
SN2018cnf (ASASSN-18mr) is a type IIn supernova with an outburst in 2015 (PS15dkt)
NASA Astrophysics Data System (ADS)
Prentice, S. J.; Maguire, K.; Pastorello, A.; Tomasella, L.; Reguitti, A.; Morales-Garoffolo, A.; Geier, S.; Smith, K. W.; Wright, D.; Smartt, S. J.; Huber, M.; Chambers, K. C.; Flewelling, H.; Willman, M.; Schultz, A.; Lowe, T.; Magnier, E.; Waters, C.; Wainscoat, R. J.
2018-06-01
ASASSN-18mr (TNS #19408) is a g=17.7 mag transient in the host galaxy 2MASX J23393156-0308565, at a distance of 96 Mpc (z=0.023763) discovered by the All Sky Automated Survey for SuperNovae (ASAS-SN, Holoien, et al. 2017, MNRAS, 464, 2672) on 2018-06-14.
Analyses in Support of the WFIRST Supernova Survey
NASA Astrophysics Data System (ADS)
Rubin, David; Aldering, Greg Scott; Charles, Baltay; Barbary, Kyle H.; Currie, Miles; Deustua, Susana E.; Fagrelius, Parker; Dosovitz Fox, Ori; Fruchter, Andrew S.; Law, David R.; Perlmutter, Saul; Pontoppidan, Klaus; Rabinowitz, David L.; Sako, Masao
2017-01-01
The Wide-Field Infrared Survey Telescope (WFIRST) is a future optical-NIR space telescope with science spanning astrophysics and cosmology. The combination of wide-field IR imaging and optical-NIR integral-field spectroscopy enables a SN cosmology experiment with excellent systematics control. The Science Definition Team (SDT) presented a first concept of such a survey with 2700 SNe to z=1.7. We make several key improvements to the SDT analysis, including a significantly improved exposure-time calculator, evaluations of host-galaxy background light, supernova typing simulations, all combined with spectrophotometric cosmology analysis built on a Bayesian hierarchal model. Our work will be useful for deriving accurate cosmological forecasts, optimizing the survey, and the evaluation of calibration, resolution, and stability requirements.
On a connection between supernova occurrence and tidal interaction in early type galaxies
NASA Technical Reports Server (NTRS)
Kochhar, R. K.
1990-01-01
There are three types of supernovae: two subtypes SNIa and Ib; and SNII. Late type galaxies produce all types of SN, whereas early types (E, SO, and non-Magellanic irregulars IO) have hosted only SNIa. The recently identified SNIb, like SNII, have massive stars as their progenitors. Reviving Oemler and Tinsley's (1979) suggestion that SNIa also come from short-lived stars, the author asserts that they need not occur in all early-type galaxies. SNIa occur only in those galaxies that have access to gas and can form stars in their main body. (SN in nuclear regions are a different matter altogether). In this model, SNIa are not associated with typical stellar population of E/SOs but with regions of localized star formation. Note that data on SNIa from spirals is already consistent with this model.
NASA Astrophysics Data System (ADS)
Guy, J.; Sullivan, M.; Conley, A.; Regnault, N.; Astier, P.; Balland, C.; Basa, S.; Carlberg, R. G.; Fouchez, D.; Hardin, D.; Hook, I. M.; Howell, D. A.; Pain, R.; Palanque-Delabrouille, N.; Perrett, K. M.; Pritchet, C. J.; Rich, J.; Ruhlmann-Kleider, V.; Balam, D.; Baumont, S.; Ellis, R. S.; Fabbro, S.; Fakhouri, H. K.; Fourmanoit, N.; González-Gaitán, S.; Graham, M. L.; Hsiao, E.; Kronborg, T.; Lidman, C.; Mourao, A. M.; Perlmutter, S.; Ripoche, P.; Suzuki, N.; Walker, E. S.
2010-11-01
Aims: We present photometric properties and distance measurements of 252 high redshift Type Ia supernovae (0.15 < z < 1.1) discovered during the first three years of the Supernova Legacy Survey (SNLS). These events were detected and their multi-colour light curves measured using the MegaPrime/MegaCam instrument at the Canada-France-Hawaii Telescope (CFHT), by repeatedly imaging four one-square degree fields in four bands. Follow-up spectroscopy was performed at the VLT, Gemini and Keck telescopes to confirm the nature of the supernovae and to measure their redshifts. Methods: Systematic uncertainties arising from light curve modeling are studied, making use of two techniques to derive the peak magnitude, shape and colour of the supernovae, and taking advantage of a precise calibration of the SNLS fields. Results: A flat ΛCDM cosmological fit to 231 SNLS high redshift type Ia supernovae alone gives Ω_M = 0.211 ± 0.034(stat) ± 0.069(sys). The dominant systematic uncertainty comes from uncertainties in the photometric calibration. Systematic uncertainties from light curve fitters come next with a total contribution of ±0.026 on Ω_M. No clear evidence is found for a possible evolution of the slope (β) of the colour-luminosity relation with redshift. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. Based on observations obtained at the European Southern Observatory using the Very Large Telescope on the Cerro Paranal (ESO Large Programme 171.A-0486 & 176.A-0589). Based on observations (programs GS-2003B-Q-8, GN-2003B-Q-9, GS-2004A-Q-11, GN-2004A-Q-19, GS-2004B-Q-31, GN-2004B-Q-16, GS-2005A-Q-11, GN-2005A-Q-11, GS-2005B-Q-6, GN-2005B-Q-7, GN-2006A-Q-7, GN-2006B-Q-10) obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil) and CONICET (Argentina). Based on observations obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. Mark Sullivan acknowledges support from the Royal Society.Table 9 is available in electronic form at http://aanda.org and at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/523/A7. Tables 10 and 11 are only available in electronic form at the CDS
The SkyMapper Transient Survey
NASA Astrophysics Data System (ADS)
Scalzo, R. A.; Yuan, F.; Childress, M. J.; Möller, A.; Schmidt, B. P.; Tucker, B. E.; Zhang, B. R.; Onken, C. A.; Wolf, C.; Astier, P.; Betoule, M.; Regnault, N.
2017-07-01
The SkyMapper 1.3 m telescope at Siding Spring Observatory has now begun regular operations. Alongside the Southern Sky Survey, a comprehensive digital survey of the entire southern sky, SkyMapper will carry out a search for supernovae and other transients. The search strategy, covering a total footprint area of 2 000 deg2 with a cadence of ⩽5 d, is optimised for discovery and follow-up of low-redshift type Ia supernovae to constrain cosmic expansion and peculiar velocities. We describe the search operations and infrastructure, including a parallelised software pipeline to discover variable objects in difference imaging; simulations of the performance of the survey over its lifetime; public access to discovered transients; and some first results from the Science Verification data.
The Diffuse Gamma-Ray Background from Type Ia Supernovae
NASA Technical Reports Server (NTRS)
Lien, Amy; Fields, Brian D.
2012-01-01
The origin of the diffuse extragalactic gamma-ray background (EGB) has been intensively studied but remains unsettled. Current popular source candidates include unresolved star-forming galaxies, starburst galaxies, and blazars. In this paper we calculate the EGB contribution from the interactions of cosmic rays accelerated by Type Ia supernovae, extending earlier work which only included core-collapse supernovae. We consider Type Ia events in star-forming galaxies, but also in quiescent galaxies that lack star formation. In the case of star-forming galaxies, consistently including Type Ia events makes little change to the star-forming EGB prediction, so long as both supernova types have the same cosmic-ray acceleration efficiencies in star-forming galaxies. Thus our updated EGB estimate continues to show that star-forming galaxies can represent a substantial portion of the signal measured by Fermi. In the case of quiescent galaxies, conversely, we find a wide range of possibilities for the EGB contribution. The dominant uncertainty we investigated comes from the mass in hot gas in these objects, which provides targets for cosmic rays: total gas masses are as yet poorly known, particularly at larger radii. Additionally, the EGB estimation is very sensitive to the cosmic-ray acceleration efficiency and confinement, especially in quiescent galaxies. In the most optimistic allowed scenarios, quiescent galaxies can be an important source of the EGB. In this case, star-forming galaxies and quiescent galaxies together will dominate the EGB and leave little room for other contributions. If other sources, such as blazars, are found to have important contributions to the EGB, then either the gas mass or cosmic-ray content of quiescent galaxies must be significantly lower than in their star-forming counterparts. In any case, improved Fermi EGB measurements will provide important constraints on hot gas and cosmic rays in quiescent galaxies.
Red supergiants as supernova progenitors
NASA Astrophysics Data System (ADS)
Davies, Ben
2017-09-01
It is now well-established from pre-explosion imaging that red supergiants (RSGs) are the direct progenitors of Type-IIP supernovae. These images have been used to infer the physical properties of the exploding stars, yielding some surprising results. In particular, the differences between the observed and predicted mass spectrum has provided a challenge to our view of stellar evolutionary theory. However, turning what is typically a small number of pre-explosion photometric points into the physical quantities of stellar luminosity and mass requires a number of assumptions about the spectral appearance of RSGs, as well as their evolution in the last few years of life. Here I will review what we know about RSGs, with a few recent updates on how they look and how their appearance changes as they approach supernova. This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.
Red supergiants as supernova progenitors.
Davies, Ben
2017-10-28
It is now well-established from pre-explosion imaging that red supergiants (RSGs) are the direct progenitors of Type-IIP supernovae. These images have been used to infer the physical properties of the exploding stars, yielding some surprising results. In particular, the differences between the observed and predicted mass spectrum has provided a challenge to our view of stellar evolutionary theory. However, turning what is typically a small number of pre-explosion photometric points into the physical quantities of stellar luminosity and mass requires a number of assumptions about the spectral appearance of RSGs, as well as their evolution in the last few years of life. Here I will review what we know about RSGs, with a few recent updates on how they look and how their appearance changes as they approach supernova.This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'. © 2017 The Author(s).
Predicted continuum spectra of type II supernovae - LTE results
NASA Technical Reports Server (NTRS)
Shaviv, G.; Wehrse, R.; Wagoner, R. V.
1985-01-01
The continuum spectral energy distribution of the flux emerging from type II supernovae is calculated from quasi-static radiative transfer through a power-law density gradient, assuming radiative equilibrium and LTE. It is found that the Balmer jump disappears at high effective temperatures and low densities, while the spectrum resembles that of a dilute blackbody but is flatter with a sharper cutoff at the short-wavelength end. A significant UV excess is found in all models calculated. The calculation should be considered exploratory because of significant effects which are anticipated to arise from departure from LTE.
The many sides of RCW 86: a Type Ia supernova remnant evolving in its progenitor's wind bubble
NASA Astrophysics Data System (ADS)
Broersen, Sjors; Chiotellis, Alexandros; Vink, Jacco; Bamba, Aya
2014-07-01
We present the results of a detailed investigation of the Galactic supernova remnant RCW 86 using the XMM-Newton X-ray telescope. RCW 86 is the probable remnant of SN 185 A.D., a supernova that likely exploded inside a wind-blown cavity. We use the XMM-Newton Reflection Grating Spectrometer to derive precise temperatures and ionization ages of the plasma, which are an indication of the interaction history of the remnant with the presumed cavity. We find that the spectra are well fitted by two non-equilibrium ionization models, which enables us to constrain the properties of the ejecta and interstellar matter plasma. Furthermore, we performed a principal component analysis on EPIC MOS and pn data to find regions with particular spectral properties. We present evidence that the shocked ejecta, emitting Fe K and Si line emission, are confined to a shell of approximately 2 pc width with an oblate spheroidal morphology. Using detailed hydrodynamical simulations, we show that general dynamical and emission properties at different portions of the remnant can be well reproduced by a Type Ia supernova that exploded in a non-spherically symmetric wind-blown cavity. We also show that this cavity can be created using general wind properties for a single degenerate system. Our data and simulations provide further evidence that RCW 86 is indeed the remnant of SN 185, and is the likely result of a Type Ia explosion of single degenerate origin.
Bolometric Luminosities of Peculiar Type II-P Supernovae: Observational and Theoretical Approaches
NASA Astrophysics Data System (ADS)
Lusk, Jeremy Alexander
2018-01-01
In the three decades since the explosion of SN 1987A, only a handful of other supernovae have been detected which are also thought to originate from blue supergiant progenitors. In this study, we use the five best observed of these supernovae (SNe 1998A, 2000cb, 2006V, 2006au, and 2009E) to examine the bolometric properties of the class through observations and theoretical models. Several techniques for taking photometric observations and inferring bolometric luminosities have been used in the literature. Our newly-improved python package SuperBoL implements many of these techniques. The challenge remains that the true bolometric luminosity of the supernova cannot be directly observed. We must turn to theoretical models in order to examine the validity of the different observationally-based techniques. In this work, we make use of the NLTE generalized atmosphere code PHOENIX to produce synthetic spectra of known luminosity which match the observed supernova spectra. Synthetic photometry of these models is then used as input to SuperBoL to test the different observationally-based bolometric luminosity techniques.
Slow-Speed Supernovae from the Palomar Transient Factory: Two Channels
NASA Technical Reports Server (NTRS)
White, Christopher J.; Kasliwal, Mansi M.; Nugent, Peter E.; Gal-Yam, Avishay; Howell, D. Andrew; Sullivan, Mark; Goobar, Ariel; Piro, Anthony L.; Kulkarni, Shrinivas R.; Bloom, Joshua S.;
2014-01-01
Since the discovery of the unusual prototype SN 2002cx, the eponymous class of low-velocity, hydrogen-poor supernovae has grown to include at most another two dozen members identified from several heterogeneous surveys, in some cases ambiguously. Here we present the results of a systematic study of 1077 hydrogen-poor supernovae discovered by the Palomar Transient Factory, leading to nine new members of this peculiar class. Moreover we find there are two distinct subclasses based on their spectroscopic, photometric, and host galaxy properties: The "SN 2002cx-like" supernovae tend to be in later-type or more irregular hosts, have more varied and generally dimmer luminosities, have longer rise times, and lack a Ti II trough when compared to the \\SN 2002es-like" supernovae. None of our objects show helium, and we counter a previous claim of two such events. We also find that these transients comprise 5.6+17 -3:7% (90% confidence) of all SNe Ia, lower compared to earlier estimates. Combining our objects with the literature sample, we propose that these subclasses have two distinct physical origins.
Tachyon cosmology, supernovae data, and the big brake singularity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keresztes, Z.; Gergely, L. A.; Gorini, V.
2009-04-15
We compare the existing observational data on type Ia supernovae with the evolutions of the Universe predicted by a one-parameter family of tachyon models which we have introduced recently [Phys. Rev. D 69, 123512 (2004)]. Among the set of the trajectories of the model which are compatible with the data there is a consistent subset for which the Universe ends up in a new type of soft cosmological singularity dubbed big brake. This opens up yet another scenario for the future history of the Universe besides the one predicted by the standard {lambda}CDM model.
Science & Technology Review September/October 2008
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bearinger, J P
2008-07-21
This issue has the following articles: (1) Answering Scientists Most Audacious Questions--Commentary by Dona Crawford; (2) Testing the Accuracy of the Supernova Yardstick--High-resolution simulations are advancing understanding of Type Ia supernovae to help uncover the mysteries of dark energy; (3) Developing New Drugs and Personalized Medical Treatment--Accelerator mass spectrometry is emerging as an essential tool for assessing the effects of drugs in humans; (4) Triage in a Patch--A painless skin patch and accompanying detector can quickly indicate human exposure to biological pathogens, chemicals, explosives, or radiation; and (5) Smoothing Out Defects for Extreme Ultraviolet Lithography--A process for smoothing mask defectsmore » helps move extreme ultraviolet lithography one step closer to creating smaller, more powerful computer chips.« less
What We Know About Dark Energy From Supernovae
Filippenko, Alex
2018-01-24
The measured distances of type Ia (white dwarf) supernovae as a function of redshift (z) have shown that the expansion of the Universe is currently accelerating, probably due to the presence of dark energy (X) having a negative pressure. Combining all of the data with existing results from large-scale structure surveys, we find a best fit for Omega M and Omega X of 0.28 and 0.72 (respectively), in excellent agreement with the values derived independently from WMAP measurements of the cosmic microwave background radiation. Thus far, the best-fit value for the dark energy equation-of-state parameter is -1, and its first derivative is consistent with zero, suggesting that the dark energy may indeed be Einstein's cosmological constant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, M. M.; Morrell, Nidia; Hsiao, E. Y.
High-dispersion observations of the Na I D λλ5890, 5896 and K I λλ7665, 7699 interstellar lines, and the diffuse interstellar band at 5780 Å in the spectra of 32 Type Ia supernovae are used as an independent means of probing dust extinction. We show that the dust extinction of the objects where the diffuse interstellar band at 5780 Å is detected is consistent with the visual extinction derived from the supernova colors. This strongly suggests that the dust producing the extinction is predominantly located in the interstellar medium of the host galaxies and not in circumstellar material associated with themore » progenitor system. One quarter of the supernovae display anomalously large Na I column densities in comparison to the amount of dust extinction derived from their colors. Remarkably, all of the cases of unusually strong Na I D absorption correspond to 'Blueshifted' profiles in the classification scheme of Sternberg et al. This coincidence suggests that outflowing circumstellar gas is responsible for at least some of the cases of anomalously large Na I column densities. Two supernovae with unusually strong Na I D absorption showed essentially normal K I column densities for the dust extinction implied by their colors, but this does not appear to be a universal characteristic. Overall, we find the most accurate predictor of individual supernova extinction to be the equivalent width of the diffuse interstellar band at 5780 Å, and provide an empirical relation for its use. Finally, we identify ways of producing significant enhancements of the Na abundance of circumstellar material in both the single-degenerate and double-degenerate scenarios for the progenitor system.« less
NASA Astrophysics Data System (ADS)
Graur, O.; Poznanski, D.; Maoz, D.; Yasuda, N.; Totani, T.; Fukugita, M.; Filippenko, A. V.; Foley, R. J.; Silverman, J. M.; Gal-Yam, A.; Horesh, A.; Jannuzi, B. T.
2011-10-01
The Type Ia supernova (SN Ia) rate, when compared to the cosmic star formation history (SFH), can be used to derive the delay-time distribution (DTD; the hypothetical SN Ia rate versus time following a brief burst of star formation) of SNe Ia, which can distinguish among progenitor models. We present the results of a supernova (SN) survey in the Subaru Deep Field (SDF). Over a period of 3 years, we have observed the SDF on four independent epochs with Suprime-Cam on the Subaru 8.2-m telescope, with two nights of exposure per epoch, in the R, i'and z' bands. We have discovered 150 SNe out to redshift z≈ 2. Using 11 photometric bands from the observer-frame far-ultraviolet to the near-infrared, we derive photometric redshifts for the SN host galaxies (for 24 we also have spectroscopic redshifts). This information is combined with the SN photometry to determine the type and redshift distribution of the SN sample. Our final sample includes 28 SNe Ia in the range 1.0 < z < 1.5 and 10 in the range 1.5 < z < 2.0. As our survey is largely insensitive to core-collapse SNe (CC SNe) at z > 1, most of the events found in this range are likely SNe Ia. Our SN Ia rate measurements are consistent with those derived from the Hubble Space Telescope (HST) Great Observatories Origins Deep Survey (GOODS) sample, but the overall uncertainty of our 1.5 < z < 2.0 measurement is a factor of 2 smaller, of 35-50 per cent. Based on this sample, we find that the SN Ia rate evolution levels off at 1.0 < z < 2.0, but shows no sign of declining. Combining our SN Ia rate measurements and those from the literature, and comparing to a wide range of possible SFHs, the best-fitting DTD (with a reduced χ2= 0.7) is a power law of the form Ψ(t) ∝tβ, with index β=-1.1 ± 0.1 (statistical) ±0.17 (systematic). This result is consistent with other recent DTD measurements at various redshifts and environments, and is in agreement with a generic prediction of the double-degenerate progenitor scenario for SNe Ia. Most single-degenerate models predict different DTDs. By combining the contribution from CC SNe, based on the wide range of SFHs, with that from SNe Ia, calculated with the best-fitting DTD, we predict that the mean present-day cosmic iron abundance is in the range ZFe= (0.09-0.37) ZFe, ⊙. We further predict that the high-z SN searches now beginning with HST will discover 2-11 SNe Ia at z > 2.
OGLE-IV Real-Time Transient Search
NASA Astrophysics Data System (ADS)
Wyrzykowski, Ł.; Kostrzewa-Rutkowska, Z.; Kozłowski, S.; Udalski, A.; Poleski, R.; Skowron, J.; Blagorodnova, N.; Kubiak, M.; Szymański, M. K.; Pietrzyński, G.; Soszyński, I.; Ulaczyk, K.; Pietrukowicz, P.; Mróz, P.
2014-09-01
We present the design and first results of a real-time search for transients within the 650 sq. deg. area around the Magellanic Clouds, conducted as part of the OGLE-IV project and aimed at detecting supernovae, novae and other events. The average sampling of about four days from September to May, yielded a detection of 238 transients in 2012/2013 and 2013/2014 seasons. The superb photometric and astrometric quality of the OGLE data allows for numerous applications of the discovered transients. We use this sample to prepare and train a Machine Learning-based automated classifier for early light curves, which distinguishes major classes of transients with more than 80% of correct answers. Spectroscopically classified 49 supernovae Type Ia are used to construct a Hubble Diagram with statistical scatter of about 0.3 mag and fill the least populated region of the redshifts range in the Union sample. We investigate the influence of host galaxy environments on supernovae statistics and find the mean host extinction of AI=0.19±0.10 mag and AV=0.39±0.21 mag based on a subsample of supernovae Type Ia. We show that the positional accuracy of the survey is of the order of 0.5 pixels (0.13'') and that the OGLE-IV Transient Detection System is capable of detecting transients within the nuclei of galaxies. We present a few interesting cases of nuclear transients of unknown type. All data on the OGLE transients are made publicly available to the astronomical community via the OGLE website.
Neutron Stars in Supernova Remnants and Beyond
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.
We discuss a concept of off-centred cavity supernova explosion as applied to neutron star/supernova remnant associations and show how this concept could be used to preclude the anti-humane decapitating the Duck (G5.4-1.2 + G5.27-0.9) and dismembering the Swan (Cygnus Loop), as well as to search for a stellar remnant associated with the supernova remnant RCW86.
NASA Astrophysics Data System (ADS)
Kato, Chinami; Nagakura, Hiroki; Furusawa, Shun; Takahashi, Koh; Umeda, Hideyuki; Yoshida, Takashi; Ishidoshiro, Koji; Yamada, Shoichi
2017-10-01
This paper is a sequel to our 2015 paper, Kato et al., which calculated the luminosities and spectra of electron-type anti-neutrinos ({\\bar{ν }}e) from the progenitors of core-collapse supernovae. Expecting that the capability to detect electron-type neutrinos ({ν }e) will increase dramatically with the emergence of liquid-argon detectors such as DUNE, we broaden the scope in this study to include all flavors of neutrinos emitted from the pre-bounce phase. We pick up three progenitor models of electron capture supernovae (ECSNe) and iron-core collapse supernovae (FeCCSNe). We find that the number luminosities reach ˜1057 s-1 and ˜1053 s-1 at maximum for {ν }e and {\\bar{ν }}e, respectively. We also estimate the numbers of detection events at terrestrial neutrino detectors including DUNE, taking flavor oscillations into account and assuming the distance to the progenitors to be 200 pc. It is demonstrated that {\\bar{ν }}e from the ECSN progenitor will be undetected at almost all detectors, whereas we will be able to observe ≳15,900 {ν }e at DUNE for the inverted mass hierarchy. From the FeCCSN progenitors, the number of {\\bar{ν }}e events will be largest for JUNO, 200-900 {\\bar{ν }}e, depending on the mass hierarchy, whereas the number of {ν }e events at DUNE is ≳ 2100 for the inverted mass hierarchy. These results imply that the detection of {\\bar{ν }}e is useful to distinguish progenitors of FeCCSNe from those of ECSNe, while {ν }e will provide us with detailed information on the collapse phase regardless of the type and mass of the progenitor.
No hot and luminous progenitor for Tycho's supernova
NASA Astrophysics Data System (ADS)
Woods, T. E.; Ghavamian, P.; Badenes, C.; Gilfanov, M.
2017-11-01
Type Ia supernovae have proven vital to our understanding of cosmology, both as standard candles and for their role in galactic chemical evolution; however, their origin remains uncertain. The canonical accretion model implies a hot and luminous progenitor that would ionize the surrounding gas out to a radius of 10-100 pc for 100,000 years after the explosion. Here, we report stringent upper limits on the temperature and luminosity of the progenitor of Tycho's supernova (SN 1572), determined using the remnant itself as a probe of its environment. Hot, luminous progenitors that would have produced a greater hydrogen ionization fraction than that measured at the radius of the present remnant ( 3 pc) can thus be excluded. This conclusively rules out steadily nuclear-burning white dwarfs (supersoft X-ray sources), as well as disk emission from a Chandrasekhar-mass white dwarf accreting approximately greater than 10-8 M⊙ yr-1 (recurrent novae; M⊙ is equal to one solar mass). The lack of a surrounding Strömgren sphere is consistent with the merger of a double white dwarf binary, although other more exotic scenarios may be possible.
Cosmic-Ray Lithium Production at the Nova Eruptions Followed by a Type Ia Supernova
NASA Astrophysics Data System (ADS)
Kawanaka, Norita; Yanagita, Shohei
2018-01-01
Recent measurements of cosmic-ray (CR) light nuclei by AMS-02 have shown that there is an unexpected component of CR lithium whose spectral index is harder than that expected from the secondary production scenario. We propose the nearby type Ia supernova following a nova eruption as the origin of lithium nuclei in the CRs. By fitting the data of CR protons, helium, and lithium fluxes provided by AMS-02 with our theoretical model we show that this scenario is consistent with the observations. The observational tests that can check our hypothesis are briefly discussed.
The quest for blue supergiants : The evolution of the progenitor of SN 1987A
NASA Astrophysics Data System (ADS)
Menon, Athira; Heger, Alexander
2015-08-01
SN 1987A is historically one of the most remarkable supernova explosions to be seen from Earth. Due to the proximity of its location in the LMC, it remains the most well-studied object outside the solar system. It was also the only supernova whose progenitor was observed prior to its explosion.SN 1987A however, was a unique and enigmatic core collapse supernova. It was the first Type II supernova to have been observed to have exploded while its progenitor was a blue supergiant (BSG). Until then Type II supernovae were expected to originate from explosions of red supergiants (RSGs). A spectacular triple-ring nebula structure, rich in helium and nitrogen, was observed around the remnant, indicating a recent RSG phase before becoming a BSG. Even today it is not entirely understood what the evolutionary history may have been to cause a BSG to explode. The most commonly accepted hypothesis for its origin is the merger of a massive binary star system.An evolutionary scenario for such a binary system, was proposed by Podsiadlowski (1992) (P92). Through SPH simulations of the merger and the stellar evolution of the post-merger remnant, Ivanova & Podsiadlowski (2002) and (2003) (I&M) could successfully obtain the RSG to BSG transition of the progenitor.The aim of the present work is to produce the evolutionary history of the progenitor of SN 1987A and its explosion. We construct our models based on the results of P92 and I&M. Here, the secondary (less massive) star is accreted on the primary, while being simultaneously mixed in its envelope over a period of 100 years. The merged star is evolved until the onset of core collapse. For this work we use the 1-dimensional, implicit, hydrodynamical stellar evolution code, KEPLER. A large parameter space is explored, consisting of primary (16-20 Ms) and secondary masses (5-8 Ms), mixing boundaries, and accreting timescales. Those models whose end states match the observed properties of the progenitor of SN 1987A are exploded. The nuclear yields and light curve of the explosion are then compared with the observed data of SN 1987A.
The Sloan Digital Sky Survey-II: Photometry and Supernova Ia Light Curves from the 2005 Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holtzman, Jon A.; /New Mexico State U.; Marriner, John
2010-08-26
We present ugriz light curves for 146 spectroscopically confirmed or spectroscopically probable Type Ia supernovae from the 2005 season of the SDSS-II Supernova survey. The light curves have been constructed using a photometric technique that we call scene modeling, which is described in detail here; the major feature is that supernova brightnesses are extracted from a stack of images without spatial resampling or convolution of the image data. This procedure produces accurate photometry along with accurate estimates of the statistical uncertainty, and can be used to derive photometry taken with multiple telescopes. We discuss various tests of this technique thatmore » demonstrate its capabilities. We also describe the methodology used for the calibration of the photometry, and present calibrated magnitudes and fluxes for all of the spectroscopic SNe Ia from the 2005 season.« less
Characterizing Dark Energy Through Supernovae
NASA Astrophysics Data System (ADS)
Davis, Tamara M.; Parkinson, David
Type Ia supernovae are a powerful cosmological probe that gave the first strong evidence that the expansion of the universe is accelerating. Here we provide an overview of how supernovae can go further to reveal information about what is causing the acceleration, be it dark energy or some modification to our laws of gravity. We first review the methods of statistical inference that are commonly used, making a point of separating parameter estimation from model selection. We then summarize the many different approaches used to explain or test the acceleration, including parametric models (like the standard model, ΛCDM), nonparametric models, dark fluid models such as quintessence, and extensions to standard gravity. Finally, we also show how supernova data can be used beyond the Hubble diagram, to give information on gravitational lensing and peculiar velocities that can be used to distinguish between models that predict the same expansion history.
The Untimely Demise of SN 2008S
NASA Astrophysics Data System (ADS)
Sugerman, Ben; Benge, Ashlee; Cosgrove, Andrew; Snyder, Kayla
2016-01-01
Supernova (SN) 2008S in the "Fireworks Galaxy" (NGC 6946) has been enigmatic ever since its initial outburst was discovered in Feb 1, 2008. Initially classified a Type IIn due to early spectral features, it's subsequent spectral and photometric behavior over the first ~200 days led to two divergent explanations for the event. Citing photometric behavior atypical for any known explosion mechanisms, some have concluded this was "supernova imposter," such as a giant eruption in a massive Luminous Blue Variable star. Others report that its evolution was in fact consistent with the faintest Type-IIP SNe, which combined with the discovery of an intermediate-mass progenitor in mid-IR imaging, led to the conclusion that it was an electron-capture SN. Using a combination of ground-based, Hubble Space Telescope optical and near-infrared, and Spitzer Space Telescope mid-infrared imaging, we have traced the optical-through-infrared evolution of the SN from outburst to disappearance by 2014. We show that the limited intermediate-time optical data are consistent with radioactive 56-Co decay, however there are not enough late-time observations to assert with confidence whether or not the light curve supports a supernova hypothesis. We also show that the mid-infrared source identified as the progenitor is still present after the disappearance of the SN, suggesting either that this source is unrelated to the progenitor, or that the progenitor has returned to its pre-outburst state.
Supernova Collisions with the Heliosphere
NASA Astrophysics Data System (ADS)
Fields, Brian D.; Athanassiadou, Themis; Johnson, Scott R.
2008-05-01
Nearby supernova explosions—within a few tens of pc of the solar system—have become a subject of intense scrutiny, due to the discovery of live undersea 60Fe from an event 2.8 Myr ago. A key open question concerns the delivery of supernova ejecta to the Earth, in particular penetration of the heliosphere by the supernova remnant (SNR). We present the first systematic numerical hydrodynamical study of the interaction between a supernova blast and the solar wind. Our simulations explore dynamic pressure regimes that are factors >=10 above those in other studies of the heliosphere under exotic conditions, for supernovae exploding at a range of distances through different interstellar environments, and interacting with solar winds of varying strengths. Our results are qualitatively consistent with the structure of the contemporary heliosphere modeled by previous work, but compressed to within the inner solar system. We demonstrate that key characteristics of the resulting heliospheric structure follow simple scaling laws that can be understood in terms of pressure-balance arguments, and which are in agreement with previous work. Our models show that a 10 pc supernova event, incident on a solar-wind outflow with the mean observed properties, compresses the heliopause to just beyond 1 AU. We also demonstrate scenarios where the supernova remnant compresses the heliopause to within 1 AU, in which cases supernova material will be directly deposited on Earth. Since 8 pc marks the nominal "kill radius" for severe biosphere damage, any extinction-level events should have left terrestrial deposits of supernova debris. We conclude with a brief discussion of the effect of our approximations and the impact of additional physics.
NASA Astrophysics Data System (ADS)
Smith, Nathan; Li, Weidong; Foley, Ryan J.; Wheeler, J. Craig; Pooley, David; Chornock, Ryan; Filippenko, Alexei V.; Silverman, Jeffrey M.; Quimby, Robert; Bloom, Joshua S.; Hansen, Charles
2007-09-01
We report the discovery and early observations of the peculiar Type IIn supernova (SN) 2006gy in NGC 1260. With a peak visual magnitude of about -22, it is the most luminous supernova ever recorded. Its very slow rise to maximum took ~70 days, and it stayed brighter than -21 mag for about 100 days. It is not yet clear what powers the enormous luminosity and the total radiated energy of ~1051 erg, but we argue that any known mechanism-thermal emission, circumstellar interaction, or 56Ni decay-requires a very massive progenitor star. The circumstellar interaction hypothesis would require truly exceptional conditions around the star, which, in the decades before its death, must have experienced a luminous blue variable (LBV) eruption like the 19th century eruption of η Carinae. However, this scenario fails to explain the weak and unabsorbed soft X-rays detected by Chandra. Radioactive decay of 56Ni may be a less objectionable hypothesis, but it would imply a large Ni mass of ~22 Msolar, requiring SN 2006gy to have been a pair-instability supernova where the star's core was obliterated. While this is still uncertain, SN 2006gy is the first supernova for which we have good reason to suspect a pair-instability explosion. Based on a number of lines of evidence, we eliminate the hypothesis that SN 2006gy was a ``Type IIa'' event, that is, a white dwarf exploding inside a hydrogen envelope. Instead, we propose that the progenitor was a very massive evolved object like η Carinae that, contrary to expectations, failed to shed its hydrogen envelope. SN 2006gy implies that some of the most massive stars can explode prematurely during the LBV phase, never becoming Wolf-Rayet stars. SN 2006gy also suggests that they can create brilliant supernovae instead of experiencing ignominious deaths through direct collapse to a black hole. If such a fate is common among the most massive stars, then observable supernovae from Population III stars in the early universe will be more numerous than previously believed.
Pre-supernova outbursts via wave heating in massive stars - II. Hydrogen-poor stars
NASA Astrophysics Data System (ADS)
Fuller, Jim; Ro, Stephen
2018-05-01
Pre-supernova (SN) outbursts from massive stars may be driven by hydrodynamical wave energy emerging from the core of the progenitor star during late nuclear-burning phases. Here, we examine the effects of wave heating in stars containing little or no hydrogen, i.e. progenitors of Type IIb/Ib SNe. Because there is no massive hydrogen envelope, wave energy is thermalized near the stellar surface where the overlying atmospheric mass is small but the optical depth is large. Wave energy can thus unbind this material, driving an optically thick, super-Eddington wind. Using 1D hydrodynamic MESA simulations of ˜5 M⊙ He stars, we find that wave heating can drive pre-SN outbursts composed of a dense wind whose mass-loss rate can exceed ˜0.1 M⊙ yr-1. The wind terminal velocities are a few 100 km s-1, and outburst luminosities can reach ˜106 L⊙. Wave-driven outbursts may be linked with observed or inferred pre-SN outbursts of Type Ibn/transitional/transformational SNe, and pre-SN wave-driven mass loss is a good candidate to produce these types of SNe. However, we also show that non-linear wave breaking in the core of the star may prevent such outbursts in stars with thick convective helium-burning shells. Hence, only a limited subset of SN progenitors is likely to experience wave-driven pre-SN outbursts.
NASA Astrophysics Data System (ADS)
Vincenzo, F.; Matteucci, F.; Spitoni, E.
2017-04-01
We present a theoretical method for solving the chemical evolution of galaxies by assuming an instantaneous recycling approximation for chemical elements restored by massive stars and the delay time distribution formalism for delayed chemical enrichment by Type Ia Supernovae. The galaxy gas mass assembly history, together with the assumed stellar yields and initial mass function, represents the starting point of this method. We derive a simple and general equation, which closely relates the Laplace transforms of the galaxy gas accretion history and star formation history, which can be used to simplify the problem of retrieving these quantities in the galaxy evolution models assuming a linear Schmidt-Kennicutt law. We find that - once the galaxy star formation history has been reconstructed from our assumptions - the differential equation for the evolution of the chemical element X can be suitably solved with classical methods. We apply our model to reproduce the [O/Fe] and [Si/Fe] versus [Fe/H] chemical abundance patterns as observed at the solar neighbourhood by assuming a decaying exponential infall rate of gas and different delay time distributions for Type Ia Supernovae; we also explore the effect of assuming a non-linear Schmidt-Kennicutt law, with the index of the power law being k = 1.4. Although approximate, we conclude that our model with the single-degenerate scenario for Type Ia Supernovae provides the best agreement with the observed set of data. Our method can be used by other complementary galaxy stellar population synthesis models to predict also the chemical evolution of galaxies.
NASA Astrophysics Data System (ADS)
Xu, Lixin
2012-06-01
In this paper, the holographic dark energy model, where the future event horizon is taken as an IR cutoff, is confronted by using currently available cosmic observational data sets which include type Ia supernovae, baryon acoustic oscillation, and cosmic microwave background radiation from full information of WMAP 7-yr data. Via the Markov chain Monte Carlo method, we obtain the values of model parameter c=0.696-0.0737-0.132-0.190+0.0736+0.159+0.264 with 1, 2, 3σ regions. Therefore, one can conclude that at at least 3σ level the future Universe will be dominated by phantom-like dark energy. It is not consistent with positive energy condition, however this condition must be satisfied to derive the holographic bound. It implies that the current cosmic observational data points disfavor the holographic dark energy model.
Asiago spectroscopic classification of PSN J02051332+0606084 as Type Ib/c supernova
NASA Astrophysics Data System (ADS)
Tartaglia, L.; Elias-Rosa, N.; Benetti, S.; Cappellaro, E.; Tomasella, L.; Ochner, P.; Pastorello, A.; Terreran, G.; Turatto, M.
2015-09-01
The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic classification of PSN J02051332+0606084. Informations on this transient are also available from the "Bright Supernova" website (http://www.rochesterastronomy.org/snimages/), and the CBAT Transient Object Followup Reports (http://www.cbat.eps.harvard.edu/index.html).
Minkowski, Rudolph Leo Bernhard (1895-1976)
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
Born in Strassburg, Germany, worked on atomic spectroscopy at Hamburg and had to flee the Nazi persecution, joined WALTER BAADE on the Mount Wilson Observatory staff, where he began to apply spectroscopy to astronomy. He investigated nebulae, including supernova remnants, especially the Crab nebula. He classified supernovae into Types I and II, leading to their identification as two similar implo...
iPTF Discoveries of Recent Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Papadogiannakis, S.; Taddia, F.; Petrushevska, T.; Ferretti, R.; Fremling, C.; Karamehmetoglu, E.; Nyholm, A.; Roy, R.; Hangard, L.; Vreeswijk, P.; Horesh, A.; Manulis, I.; Rubin, A.; Yaron, O.; Leloudas, G.; Khazov, D.; Soumagnac, M.; Knezevic, S.; Johansson, J.; Nir, G.; Cao, Y.; Blagorodnova, N.; Kulkarni, S.
2016-05-01
The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Type Ia SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artefacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).
iPTF Discoveries of Recent Type Ia Supernova
NASA Astrophysics Data System (ADS)
Petrushevska, T.; Ferretti, R.; Fremling, C.; Hangard, L.; Karamehmetoglu, E.; Nyholm, A.; Papadogiannakis, S.; Roy, R.; Horesh, A.; Khazov, D.; Knezevic, S.; Johansson, J.; Leloudas, G.; Manulis, I.; Rubin, A.; Soumagnac, M.; Vreeswijk, P.; Yaron, O.; Bilgi, P.; Cao, Y.; Duggan, G.; Lunnan, R.; Andreoni, I.
2015-10-01
The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Type Ia SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).
iPTF Discoveries of Recent Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Papadogiannakis, S.; Taddia, F.; Ferretti, R.; Fremling, C.; Karamehmetoglu, E.; Petrushevska, T.; Nyholm, A.; Roy, R.; Hangard, L.; Vreeswijk, P.; Horesh, A.; Manulis, I.; Rubin, A.; Yaron, O.; Leloudas, G.; Khazov, D.; Soumagnac, M.; Knezevic, S.; Johansson, J.; Lunnan, R.; Blagorodnova, N.; Cao, Y.; Cenk, S. B.
2016-01-01
The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Type Ia SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).
iPTF Discoveries of Recent Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Ferretti, R.; Fremling, C.; Hangard, L.; Karamehmetoglu, E.; Nyholm, A.; Papadogiannakis, S.; Petrushevska, T.; Roy, R.; Taddia, F.; Horesh, A.; Khazov, D.; Knezevic, S.; Leloudas, G.; Manulis, I.; Rubin, A.; Soumagnac, M.; Vreeswijk, P.; Yaron, O.; Cao, Y.; Duggan, G.; Lunnan, R.; Blagorodnova, N.
2015-11-01
The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Type Ia SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).
iPTF Discovery of Recent Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Hangard, L.; Ferretti, R.; Fremling, C.; Karamehmetoglu, E.; Nyholm, A.; Papadogiannakis, S.; Petrushevska, T.; Roy, R.; Bar, I.; Horesh, A.; Johansson, J.; Khazov, D.; Knezevic, S.; Leloudas, G.; Manulis, I.; Rubin, A.; Soumagnac, M.; Vreeswijk, P.; Yaron, O.; Cao, Y.; Kulkarni, S.; Lunnan, R.; Ravi, V.; Vedantham, H. K.; Yan, L.
2016-04-01
The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Type Ia SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).
iPTF Discoveries of Recent Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Petrushevska, T.; Ferretti, R.; Fremling, C.; Hangard, L.; Karamehmetoglu, E.; Nyholm, A.; Papadogiannakis, S.; Roy, R.; Horesh, A.; Khazov, D.; Knezevic, S.; Johansson, J.; Leloudas, G.; Manulis, I.; Rubin, A.; Soumagnac, M.; Vreeswijk, P.; Yaron, O.; Bilgi, P.; Cao, Y.; Duggan, G.; Lunnan, R.
2016-02-01
The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Type Ia SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).
iPTF Discovery of Recent Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Hangard, L.; Taddia, F.; Ferretti, R.; Papadogiannakis, S.; Petrushevska, T.; Fremling, C.; Karamehmetoglu, E.; Nyholm, A.; Roy, R.; Horesh, A.; Khazov, D.; Knezevic, S.; Johansson, J.; Leloudas, G.; Manulis, I.; Rubin, A.; Soumagnac, M.; Vreeswijk, P.; Yaron, O.; Bar, I.; Lunnan, R.; Cenk, S. B.
2016-02-01
The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Type Ia SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).
iPTF Discoveries of Recent Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Papadogiannakis, S.; Fremling, C.; Hangard, L.; Karamehmetoglu, E.; Nyholm, A.; Ferretti, R.; Petrushevska, T.; Roy, R.; Taddia, F.; Bar, I.; Horesh, A.; Johansson, J.; Knezevic, S.; Leloudas, G.; Manulis, I.; Nir, G.; Rubin, A.; Soumagnac, M.; Vreeswijk, P.; Yaron, O.; Arcavi, I.; Howell, D. A.; McCully, C.; Hosseinzadeh, G.; Valenti, S.; Blagorodnova, N.; Cao, Y.; Duggan, G.; Ravi, V.; Lunnan, R.
2016-03-01
The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Type Ia SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).
iPTF discoveries of recent type Ia supernovae
NASA Astrophysics Data System (ADS)
Papadogiannakis, S.; Ferretti, R.; Fremling, C.; Hangard, L.; Karamehmetoglu, E.; Nyholm, A.; Petrushevska, T.; Roy, R.; De Cia, A.; Vreeswijk, P.; Horesh, A.; Manulis, I.; Sagiv, I.; Rubin, A.; Yaron, O.; Leloudas, G.; Khazov, D.; Soumagnac, M.; Knezevic, S.; Cenko, S. B.; Capone, J.; Bartakk, M.
2015-09-01
The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Type Ia SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).
iPTF Discovery of Recent Type Ia Supernova
NASA Astrophysics Data System (ADS)
Hangard, L.; Petrushevska, T.; Papadogiannakis, S.; Ferretti, R.; Fremling, C.; Karamehmetoglu, E.; Nyholm, A.; Roy, R.; Horesh, A.; Khazov, D.; Knezevic, S.; Johansson, J.; Leloudas, G.; Manulis, I.; Rubin, A.; Soumagnac, M.; Vreeswijk, P.; Yaron, O.; Kasliwal, M.
2015-10-01
The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Type Ia SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).
iPTF Discoveries of Recent Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Petrushevska, T.; Ferretti, R.; Fremling, C.; Hangard, L.; Karamehmetoglu, E.; Nyholm, A.; Papadogiannakis, S.; Roy, R.; Horesh, A.; Khazov, D.; Knezevic, S.; Johansson, J.; Leloudas, G.; Manulis, I.; Rubin, A.; Soumagnac, M.; Vreeswijk, P.; Yaron, O.; Bilgi, P.; Cao, Y.; Duggan, G.; Lunnan, R.; Neill, J. D.; Walters, R.
2016-04-01
The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Type Ia SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).
iPTF Discoveries of Recent Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Papadogiannakis, S.; Taddia, F.; Petrushevska, T.; Fremling, C.; Hangard, L.; Johansson, J.; Karamehmetoglu, E.; Migotto, K.; Nyholm, A.; Roy, R.; Ben-Ami, S.; De Cia, A.; Dzigan, Y.; Horesh, A.; Khazov, D.; Soumagnac, M.; Manulis, I.; Rubin, A.; Sagiv, I.; Vreeswijk, P.; Yaron, O.; Bond, H.; Bilgi, P.; Cao, Y.; Duggan, G.
2015-03-01
The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Type Ia SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).
iPTF Discovery of Recent Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Hangard, L.; Ferretti, R.; Papadogiannakis, S.; Petrushevska, T.; Fremling, C.; Karamehmetoglu, E.; Nyholm, A.; Roy, R.; Horesh, A.; Khazov, D.; Knezevic, S.; Johansson, J.; Leloudas, G.; Manulis, I.; Rubin, A.; Soumagnac, M.; Vreeswijk, P.; Yaron, O.; Cook, D.
2015-12-01
The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Type Ia SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).
iPTF Discoveries of Recent Type Ia Supernova
NASA Astrophysics Data System (ADS)
Petrushevska, T.; Ferretti, R.; Fremling, C.; Hangard, L.; Karamehmetoglu, E.; Nyholm, A.; Papadogiannakis, S.; Roy, R.; Horesh, A.; Khazov, D.; Knezevic, S.; Johansson, J.; Leloudas, G.; Manulis, I.; Rubin, A.; Soumagnac, M.; Vreeswijk, P.; Yaron, O.; Bilgi, P.; Cao, Y.; Duggan, G.; Lunnan, R.; Jencson, J.
2015-11-01
The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Type Ia SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).