van der Heijden, Martijn; Dikkers, Frederik G; Halmos, Gyorgy B
2015-12-01
Laryngomalacia is the most common cause of dyspnea and stridor in newborn infants. Laryngomalacia is a dynamic change of the upper airway based on abnormally pliable supraglottic structures, which causes upper airway obstruction. In the past, different classification systems have been introduced. Until now no classification system is widely accepted and applied. Our goal is to provide a simple and complete classification system based on systematic literature search and our experiences. Retrospective cohort study with literature review. All patients with laryngomalacia under the age of 5 at time of diagnosis were included. Photo and video documentation was used to confirm diagnosis and characteristics of dynamic airway change. Outcome was compared with available classification systems in literature. Eighty-five patients were included. In contrast to other classification systems, only three typical different dynamic changes have been identified in our series. Two existing classification systems covered 100% of our findings, but there was an unnecessary overlap between different types in most of the systems. Based on our finding, we propose a new a classification system for laryngomalacia, which is purely based on dynamic airway changes. The groningen laryngomalacia classification is a new, simplified classification system with three types, based on purely dynamic laryngeal changes, tested in a tertiary referral center: Type 1: inward collapse of arytenoids cartilages, Type 2: medial displacement of aryepiglottic folds, and Type 3: posterocaudal displacement of epiglottis against the posterior pharyngeal wall. © 2015 Wiley Periodicals, Inc.
A discrimlnant function approach to ecological site classification in northern New England
James M. Fincher; Marie-Louise Smith
1994-01-01
Describes one approach to ecologically based classification of upland forest community types of the White and Green Mountain physiographic regions. The classification approach is based on an intensive statistical analysis of the relationship between the communities and soil-site factors. Discriminant functions useful in distinguishing between types based on soil-site...
Grimsley, Jasmine M S; Gadziola, Marie A; Wenstrup, Jeffrey J
2012-01-01
Mouse pups vocalize at high rates when they are cold or isolated from the nest. The proportions of each syllable type produced carry information about disease state and are being used as behavioral markers for the internal state of animals. Manual classifications of these vocalizations identified 10 syllable types based on their spectro-temporal features. However, manual classification of mouse syllables is time consuming and vulnerable to experimenter bias. This study uses an automated cluster analysis to identify acoustically distinct syllable types produced by CBA/CaJ mouse pups, and then compares the results to prior manual classification methods. The cluster analysis identified two syllable types, based on their frequency bands, that have continuous frequency-time structure, and two syllable types featuring abrupt frequency transitions. Although cluster analysis computed fewer syllable types than manual classification, the clusters represented well the probability distributions of the acoustic features within syllables. These probability distributions indicate that some of the manually classified syllable types are not statistically distinct. The characteristics of the four classified clusters were used to generate a Microsoft Excel-based mouse syllable classifier that rapidly categorizes syllables, with over a 90% match, into the syllable types determined by cluster analysis.
Keith. Boggs
2000-01-01
A classification of community types, successional sequences, and landscapes is presented for the piedmont of the Copper River Delta. The classification was based on a sampling of 471 sites. A total of 75 community types, 42 successional sequences, and 6 landscapes are described. The classification of community types reflects the existing vegetation communities on the...
Standardizing Foot-Type Classification Using Arch Index Values
Weil, Rich; de Boer, Emily
2012-01-01
ABSTRACT Purpose: The lack of a reliable classification standard for foot type makes drawing conclusions from existing research and clinical decisions difficult, since different foot types may move and respond to treatment differently. The purpose of this study was to determine interrater agreement for foot-type classification based on photo-box-derived arch index values. Method: For this correlational study with two raters, a sample of 11 healthy volunteers with normal to obese body mass indices was recruited from both a community weight-loss programme and a programme in physical therapy. Arch index was calculated using AutoCAD software from footprint photographs obtained via mirrored photo-box. Classification as high-arched, normal, or low-arched foot type was based on arch index values. Reliability of the arch index was determined with intra-class correlations; agreement on foot-type classification was determined using quadratic weighted kappa (κw). Results: Average arch index was 0.215 for one tester and 0.219 for the second tester, with an overall range of 0.017 to 0.370. Both testers classified 6 feet as low-arched, 9 feet as normal, and 7 feet as high-arched. Interrater reliability for the arch index was ICC=0.90; interrater agreement for foot-type classification was κw=0.923. Conclusions: Classification of foot type based on arch index values derived from plantar footprint photographs obtained via mirrored photo-box showed excellent reliability in people with varying BMI. Foot-type classification may help clinicians and researchers subdivide sample populations to better differentiate mobility, gait, or treatment effects among foot types. PMID:23729964
Classification of forest land attributes using multi-source remotely sensed data
NASA Astrophysics Data System (ADS)
Pippuri, Inka; Suvanto, Aki; Maltamo, Matti; Korhonen, Kari T.; Pitkänen, Juho; Packalen, Petteri
2016-02-01
The aim of the study was to (1) examine the classification of forest land using airborne laser scanning (ALS) data, satellite images and sample plots of the Finnish National Forest Inventory (NFI) as training data and to (2) identify best performing metrics for classifying forest land attributes. Six different schemes of forest land classification were studied: land use/land cover (LU/LC) classification using both national classes and FAO (Food and Agricultural Organization of the United Nations) classes, main type, site type, peat land type and drainage status. Special interest was to test different ALS-based surface metrics in classification of forest land attributes. Field data consisted of 828 NFI plots collected in 2008-2012 in southern Finland and remotely sensed data was from summer 2010. Multinomial logistic regression was used as the classification method. Classification of LU/LC classes were highly accurate (kappa-values 0.90 and 0.91) but also the classification of site type, peat land type and drainage status succeeded moderately well (kappa-values 0.51, 0.69 and 0.52). ALS-based surface metrics were found to be the most important predictor variables in classification of LU/LC class, main type and drainage status. In best classification models of forest site types both spectral metrics from satellite data and point cloud metrics from ALS were used. In turn, in the classification of peat land types ALS point cloud metrics played the most important role. Results indicated that the prediction of site type and forest land category could be incorporated into stand level forest management inventory system in Finland.
NASA Astrophysics Data System (ADS)
Broderick, Ciaran; Fealy, Rowan
2013-04-01
Circulation type classifications (CTCs) compiled as part of the COST733 Action, entitled 'Harmonisation and Application of Weather Type Classifications for European Regions', are examined for their synoptic and climatological applicability to Ireland based on their ability to characterise surface temperature and precipitation. In all 16 different objective classification schemes, representative of four different methodological approaches to circulation typing (optimization algorithms, threshold based methods, eigenvector techniques and leader algorithms) are considered. Several statistical metrics which variously quantify the ability of CTCs to discretize daily data into well-defined homogeneous groups are used to evaluate and compare different approaches to synoptic typing. The records from 14 meteorological stations located across the island of Ireland are used in the study. The results indicate that while it was not possible to identify a single optimum classification or approach to circulation typing - conditional on the location and surface variables considered - a number of general assertions regarding the performance of different schemes can be made. The findings for surface temperature indicate that that those classifications based on predefined thresholds (e.g. Litynski, GrossWetterTypes and original Lamb Weather Type) perform well, as do the Kruizinga and Lund classification schemes. Similarly for precipitation predefined type classifications return high skill scores, as do those classifications derived using some optimization procedure (e.g. SANDRA, Self Organizing Maps and K-Means clustering). For both temperature and precipitation the results generally indicate that the classifications perform best for the winter season - reflecting the closer coupling between large-scale circulation and surface conditions during this period. In contrast to the findings for temperature, spatial patterns in the performance of classifications were more evident for precipitation. In the case of this variable those more westerly synoptic stations open to zonal airflow and less influenced by regional scale forcings generally exhibited a stronger link with large-scale circulation.
Diagnostic discrepancies in retinopathy of prematurity classification
Campbell, J. Peter; Ryan, Michael C.; Lore, Emily; Tian, Peng; Ostmo, Susan; Jonas, Karyn; Chan, R.V. Paul; Chiang, Michael F.
2016-01-01
Objective To identify the most common areas for discrepancy in retinopathy of prematurity (ROP) classification between experts. Design Prospective cohort study. Subjects, Participants, and/or Controls 281 infants were identified as part of a multi-center, prospective, ROP cohort study from 7 participating centers. Each site had participating ophthalmologists who provided the clinical classification after routine examination using binocular indirect ophthalmoscopy (BIO), and obtained wide-angle retinal images, which were independently classified by two study experts. Methods Wide-angle retinal images (RetCam; Clarity Medical Systems, Pleasanton, CA) were obtained from study subjects, and two experts evaluated each image using a secure web-based module. Image-based classifications for zone, stage, plus disease, overall disease category (no ROP, mild ROP, Type II or pre-plus, and Type I) were compared between the two experts, and to the clinical classification obtained by BIO. Main Outcome Measures Inter-expert image-based agreement and image-based vs. ophthalmoscopic diagnostic agreement using absolute agreement and weighted kappa statistic. Results 1553 study eye examinations from 281 infants were included in the study. Experts disagreed on the stage classification in 620/1553 (40%) of comparisons, plus disease classification (including pre-plus) in 287/1553 (18%), zone in 117/1553 (8%), and overall ROP category in 618/1553 (40%). However, agreement for presence vs. absence of type 1 disease was >95%. There were no differences between image-based and clinical classification except for zone III disease. Conclusions The most common area of discrepancy in ROP classification is stage, although inter-expert agreement for clinically-significant disease such as presence vs. absence of type 1 and type 2 disease is high. There were no differences between image-based grading and the clinical exam in the ability to detect clinically-significant disease. This study provides additional evidence that image-based classification of ROP reliably detects clinically significant levels of ROP with high accuracy compared to the clinical exam. PMID:27238376
[An object-based information extraction technology for dominant tree species group types].
Tian, Tian; Fan, Wen-yi; Lu, Wei; Xiao, Xiang
2015-06-01
Information extraction for dominant tree group types is difficult in remote sensing image classification, howevers, the object-oriented classification method using high spatial resolution remote sensing data is a new method to realize the accurate type information extraction. In this paper, taking the Jiangle Forest Farm in Fujian Province as the research area, based on the Quickbird image data in 2013, the object-oriented method was adopted to identify the farmland, shrub-herbaceous plant, young afforested land, Pinus massoniana, Cunninghamia lanceolata and broad-leave tree types. Three types of classification factors including spectral, texture, and different vegetation indices were used to establish a class hierarchy. According to the different levels, membership functions and the decision tree classification rules were adopted. The results showed that the method based on the object-oriented method by using texture, spectrum and the vegetation indices achieved the classification accuracy of 91.3%, which was increased by 5.7% compared with that by only using the texture and spectrum.
Forest habitat types of central Idaho
Robert Steele; Robert D. Pfister; Russell A. Ryker; Jay A. Kittams
1981-01-01
A land-classification system based upon potential natural vegetation is presented for the forests of central Idaho. It is based on reconnaissance sampling of about 800 stands. A hierarchical taxonomic classification of forest sites was developed using the habitat type concept. A total of eight climax series, 64 habitat types, and 55 additional phases of habitat types...
Forest habitat types of eastern Idaho-western Wyoming
Robert Steele; Stephen V. Cooper; David M. Ondov; David W. Roberts; Robert D. Pfister
1983-01-01
A land-classification system based upon potential natural vegetation is presented for the forests of central Idaho. It is based on reconnaissance sampling of about 980 stands. A hierarchical taxonomic classification of forest sites was developed using the habitat type concept. A total of six climax series, 58 habitat types, and 24 additional phases of habitat types are...
Yang, Xiaoyan; Chen, Longgao; Li, Yingkui; Xi, Wenjia; Chen, Longqian
2015-07-01
Land use/land cover (LULC) inventory provides an important dataset in regional planning and environmental assessment. To efficiently obtain the LULC inventory, we compared the LULC classifications based on single satellite imagery with a rule-based classification based on multi-seasonal imagery in Lianyungang City, a coastal city in China, using CBERS-02 (the 2nd China-Brazil Environmental Resource Satellites) images. The overall accuracies of the classification based on single imagery are 78.9, 82.8, and 82.0% in winter, early summer, and autumn, respectively. The rule-based classification improves the accuracy to 87.9% (kappa 0.85), suggesting that combining multi-seasonal images can considerably improve the classification accuracy over any single image-based classification. This method could also be used to analyze seasonal changes of LULC types, especially for those associated with tidal changes in coastal areas. The distribution and inventory of LULC types with an overall accuracy of 87.9% and a spatial resolution of 19.5 m can assist regional planning and environmental assessment efficiently in Lianyungang City. This rule-based classification provides a guidance to improve accuracy for coastal areas with distinct LULC temporal spectral features.
The distance function effect on k-nearest neighbor classification for medical datasets.
Hu, Li-Yu; Huang, Min-Wei; Ke, Shih-Wen; Tsai, Chih-Fong
2016-01-01
K-nearest neighbor (k-NN) classification is conventional non-parametric classifier, which has been used as the baseline classifier in many pattern classification problems. It is based on measuring the distances between the test data and each of the training data to decide the final classification output. Since the Euclidean distance function is the most widely used distance metric in k-NN, no study examines the classification performance of k-NN by different distance functions, especially for various medical domain problems. Therefore, the aim of this paper is to investigate whether the distance function can affect the k-NN performance over different medical datasets. Our experiments are based on three different types of medical datasets containing categorical, numerical, and mixed types of data and four different distance functions including Euclidean, cosine, Chi square, and Minkowsky are used during k-NN classification individually. The experimental results show that using the Chi square distance function is the best choice for the three different types of datasets. However, using the cosine and Euclidean (and Minkowsky) distance function perform the worst over the mixed type of datasets. In this paper, we demonstrate that the chosen distance function can affect the classification accuracy of the k-NN classifier. For the medical domain datasets including the categorical, numerical, and mixed types of data, K-NN based on the Chi square distance function performs the best.
An AERONET-Based Aerosol Classification Using the Mahalanobis Distance
NASA Technical Reports Server (NTRS)
Hamill, Patrick; Giordano, Marco; Ward, Carolyne; Giles, David; Holben, Brent
2016-01-01
We present an aerosol classification based on AERONET aerosol data from 1993 to 2012. We used the AERONET Level 2.0 almucantar aerosol retrieval products to define several reference aerosol clusters which are characteristic of the following general aerosol types: Urban-Industrial, Biomass Burning, Mixed Aerosol, Dust, and Maritime. The classification of a particular aerosol observation as one of these aerosol types is determined by its five-dimensional Mahalanobis distance to each reference cluster. We have calculated the fractional aerosol type distribution at 190 AERONET sites, as well as the monthly variation in aerosol type at those locations. The results are presented on a global map and individually in the supplementary material. Our aerosol typing is based on recognizing that different geographic regions exhibit characteristic aerosol types. To generate reference clusters we only keep data points that lie within a Mahalanobis distance of 2 from the centroid. Our aerosol characterization is based on the AERONET retrieved quantities, therefore it does not include low optical depth values. The analysis is based on point sources (the AERONET sites) rather than globally distributed values. The classifications obtained will be useful in interpreting aerosol retrievals from satellite borne instruments.
Automated classification of dolphin echolocation click types from the Gulf of Mexico.
Frasier, Kaitlin E; Roch, Marie A; Soldevilla, Melissa S; Wiggins, Sean M; Garrison, Lance P; Hildebrand, John A
2017-12-01
Delphinids produce large numbers of short duration, broadband echolocation clicks which may be useful for species classification in passive acoustic monitoring efforts. A challenge in echolocation click classification is to overcome the many sources of variability to recognize underlying patterns across many detections. An automated unsupervised network-based classification method was developed to simulate the approach a human analyst uses when categorizing click types: Clusters of similar clicks were identified by incorporating multiple click characteristics (spectral shape and inter-click interval distributions) to distinguish within-type from between-type variation, and identify distinct, persistent click types. Once click types were established, an algorithm for classifying novel detections using existing clusters was tested. The automated classification method was applied to a dataset of 52 million clicks detected across five monitoring sites over two years in the Gulf of Mexico (GOM). Seven distinct click types were identified, one of which is known to be associated with an acoustically identifiable delphinid (Risso's dolphin) and six of which are not yet identified. All types occurred at multiple monitoring locations, but the relative occurrence of types varied, particularly between continental shelf and slope locations. Automatically-identified click types from autonomous seafloor recorders without verifiable species identification were compared with clicks detected on sea-surface towed hydrophone arrays in the presence of visually identified delphinid species. These comparisons suggest potential species identities for the animals producing some echolocation click types. The network-based classification method presented here is effective for rapid, unsupervised delphinid click classification across large datasets in which the click types may not be known a priori.
Automated classification of dolphin echolocation click types from the Gulf of Mexico
Roch, Marie A.; Soldevilla, Melissa S.; Wiggins, Sean M.; Garrison, Lance P.; Hildebrand, John A.
2017-01-01
Delphinids produce large numbers of short duration, broadband echolocation clicks which may be useful for species classification in passive acoustic monitoring efforts. A challenge in echolocation click classification is to overcome the many sources of variability to recognize underlying patterns across many detections. An automated unsupervised network-based classification method was developed to simulate the approach a human analyst uses when categorizing click types: Clusters of similar clicks were identified by incorporating multiple click characteristics (spectral shape and inter-click interval distributions) to distinguish within-type from between-type variation, and identify distinct, persistent click types. Once click types were established, an algorithm for classifying novel detections using existing clusters was tested. The automated classification method was applied to a dataset of 52 million clicks detected across five monitoring sites over two years in the Gulf of Mexico (GOM). Seven distinct click types were identified, one of which is known to be associated with an acoustically identifiable delphinid (Risso’s dolphin) and six of which are not yet identified. All types occurred at multiple monitoring locations, but the relative occurrence of types varied, particularly between continental shelf and slope locations. Automatically-identified click types from autonomous seafloor recorders without verifiable species identification were compared with clicks detected on sea-surface towed hydrophone arrays in the presence of visually identified delphinid species. These comparisons suggest potential species identities for the animals producing some echolocation click types. The network-based classification method presented here is effective for rapid, unsupervised delphinid click classification across large datasets in which the click types may not be known a priori. PMID:29216184
Nationwide classification of forest types of India using remote sensing and GIS.
Reddy, C Sudhakar; Jha, C S; Diwakar, P G; Dadhwal, V K
2015-12-01
India, a mega-diverse country, possesses a wide range of climate and vegetation types along with a varied topography. The present study has classified forest types of India based on multi-season IRS Resourcesat-2 Advanced Wide Field Sensor (AWiFS) data. The study has characterized 29 land use/land cover classes including 14 forest types and seven scrub types. Hybrid classification approach has been used for the classification of forest types. The classification of vegetation has been carried out based on the ecological rule bases followed by Champion and Seth's (1968) scheme of forest types in India. The present classification scheme has been compared with the available global and national level land cover products. The natural vegetation cover was estimated to be 29.36% of total geographical area of India. The predominant forest types of India are tropical dry deciduous and tropical moist deciduous. Of the total forest cover, tropical dry deciduous forests occupy an area of 2,17,713 km(2) (34.80%) followed by 2,07,649 km(2) (33.19%) under tropical moist deciduous forests, 48,295 km(2) (7.72%) under tropical semi-evergreen forests and 47,192 km(2) (7.54%) under tropical wet evergreen forests. The study has brought out a comprehensive vegetation cover and forest type maps based on inputs critical in defining the various categories of vegetation and forest types. This spatially explicit database will be highly useful for the studies related to changes in various forest types, carbon stocks, climate-vegetation modeling and biogeochemical cycles.
Differences in forest area classification based on tree tally from variable- and fixed-radius plots
David Azuma; Vicente J. Monleon
2011-01-01
In forest inventory, it is not enough to formulate a definition; it is also necessary to define the "measurement procedure." In the classification of forestland by dominant cover type, the measurement design (the plot) can affect the outcome of the classification. We present results of a simulation study comparing classification of the dominant cover type...
Coniferous forest habitat types of central and southern Utah
Andrew P. Youngblood; Ronald L. Mauk
1985-01-01
A land-classification system based upon potential natural vegetation is presented for the coniferous forests of central and southern Utah. It is based on reconnaissance sampling of about 720 stands. A hierarchical taxonomic classification of forest sites was developed using the habitat type concept. Seven climax series, 37 habitat types, and six additional phases of...
Forest habitat types of Montana
Robert D. Pfister; Bernard L. Kovalchik; Stephen F. Arno; Richard C. Presby
1977-01-01
A land-classification system based upon potential natural vegetation is presented for the forests of Montana. It is based on an intensive 4-year study and reconnaissance sampling of about 1,500 stands. A hierarchical classification of forest sites was developed using the habitat type concept. A total of 9 climax series, 64 habitat types, and 37 additional phases of...
A classification scheme for edge-localized modes based on their probability distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shabbir, A., E-mail: aqsa.shabbir@ugent.be; Max Planck Institute for Plasma Physics, D-85748 Garching; Hornung, G.
We present here an automated classification scheme which is particularly well suited to scenarios where the parameters have significant uncertainties or are stochastic quantities. To this end, the parameters are modeled with probability distributions in a metric space and classification is conducted using the notion of nearest neighbors. The presented framework is then applied to the classification of type I and type III edge-localized modes (ELMs) from a set of carbon-wall plasmas at JET. This provides a fast, standardized classification of ELM types which is expected to significantly reduce the effort of ELM experts in identifying ELM types. Further, themore » classification scheme is general and can be applied to various other plasma phenomena as well.« less
NASA Astrophysics Data System (ADS)
Fleig, Anne K.; Tallaksen, Lena M.; Hisdal, Hege; Stahl, Kerstin; Hannah, David M.
Classifications of weather and circulation patterns are often applied in research seeking to relate atmospheric state to surface environmental phenomena. However, numerous procedures have been applied to define the patterns, thus limiting comparability between studies. The COST733 Action “ Harmonisation and Applications of Weather Type Classifications for European regions” tests 73 different weather type classifications (WTC) and their associate weather types (WTs) and compares the WTCs’ utility for various applications. The objective of this study is to evaluate the potential of these WTCs for analysis of regional hydrological drought development in north-western Europe. Hydrological drought is defined in terms of a Regional Drought Area Index (RDAI), which is based on deficits derived from daily river flow series. RDAI series (1964-2001) were calculated for four homogeneous regions in Great Britain and two in Denmark. For each region, WTs associated with hydrological drought development were identified based on antecedent and concurrent WT-frequencies for major drought events. The utility of the different WTCs for the study of hydrological drought development was evaluated, and the influence of WTC attributes, i.e. input variables, number of defined WTs and general classification concept, on WTC performance was assessed. The objective Grosswetterlagen (OGWL), the objective Second-Generation Lamb Weather Type Classification (LWT2) with 18 WTs and two implementations of the objective Wetterlagenklassifikation (WLK; with 40 and 28 WTs) outperformed all other WTCs. In general, WTCs with more WTs (⩾27) were found to perform better than WTCs with less (⩽18) WTs. The influence of input variables was not consistent across the different classification procedures, and the performance of a WTC was determined primarily by the classification procedure itself. Overall, classification procedures following the relatively simple general classification concept of predefining WTs based on thresholds, performed better than those based on more sophisticated classification concepts such as deriving WTs by cluster analysis or artificial neural networks. In particular, PCA based WTCs with 9 WTs and automated WTCs with a high number of predefined WTs (subjectively and threshold based) performed well. It is suggested that the explicit consideration of the air flow characteristics of meridionality, zonality and cyclonicity in the definition of WTs is a useful feature for a WTC when analysing regional hydrological drought development.
Na, X D; Zang, S Y; Wu, C S; Li, W L
2015-11-01
Knowledge of the spatial extent of forested wetlands is essential to many studies including wetland functioning assessment, greenhouse gas flux estimation, and wildlife suitable habitat identification. For discriminating forested wetlands from their adjacent land cover types, researchers have resorted to image analysis techniques applied to numerous remotely sensed data. While with some success, there is still no consensus on the optimal approaches for mapping forested wetlands. To address this problem, we examined two machine learning approaches, random forest (RF) and K-nearest neighbor (KNN) algorithms, and applied these two approaches to the framework of pixel-based and object-based classifications. The RF and KNN algorithms were constructed using predictors derived from Landsat 8 imagery, Radarsat-2 advanced synthetic aperture radar (SAR), and topographical indices. The results show that the objected-based classifications performed better than per-pixel classifications using the same algorithm (RF) in terms of overall accuracy and the difference of their kappa coefficients are statistically significant (p<0.01). There were noticeably omissions for forested and herbaceous wetlands based on the per-pixel classifications using the RF algorithm. As for the object-based image analysis, there were also statistically significant differences (p<0.01) of Kappa coefficient between results performed based on RF and KNN algorithms. The object-based classification using RF provided a more visually adequate distribution of interested land cover types, while the object classifications based on the KNN algorithm showed noticeably commissions for forested wetlands and omissions for agriculture land. This research proves that the object-based classification with RF using optical, radar, and topographical data improved the mapping accuracy of land covers and provided a feasible approach to discriminate the forested wetlands from the other land cover types in forestry area.
Guillette, Lauren M; Farrell, Tara M; Hoeschele, Marisa; Sturdy, Christopher B
2010-01-01
Previous perceptual research with black-capped and mountain chickadees has demonstrated that these species treat each other's namesake chick-a-dee calls as belonging to separate, open-ended categories. Further, the terminal dee portion of the call has been implicated as the most prominent species marker. However, statistical classification using acoustic summary features suggests that all note-types contained within the chick-a-dee call should be sufficient for species classification. The current study seeks to better understand the note-type based mechanisms underlying species-based classification of the chick-a-dee call by black-capped and mountain chickadees. In two, complementary, operant discrimination experiments, both species were trained to discriminate the species of the signaler using either entire chick-a-dee calls, or individual note-types from chick-a-dee calls. In agreement with previous perceptual work we find that the D note had significant stimulus control over species-based discrimination. However, in line with statistical classifications, we find that all note-types carry species information. We discuss reasons why the most easily discriminated note-types are likely candidates to carry species-based cues.
NASA Astrophysics Data System (ADS)
Spellman, Greg
2017-05-01
A weather-type catalogue based on the Jenkinson and Collison method was developed for an area in south-west Russia for the period 1961-2010. Gridded sea level pressure data was obtained from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis. The resulting catalogue was analysed for frequency of individual types and groups of weather types to characterise long-term atmospheric circulation in this region. Overall, the most frequent type is anticyclonic (A) (23.3 %) followed by cyclonic (C) (11.9 %); however, there are some key seasonal patterns with westerly circulation being significantly more common in winter than summer. The utility of this synoptic classification is evaluated by modelling daily rainfall amounts. A low level of error is found using a simple model based on the prevailing weather type. Finally, characteristics of the circulation classification are compared to those for the original JC British Isles catalogue and a much more equal distribution of flow types is seen in the former classification.
NASA Astrophysics Data System (ADS)
Ma, L.; Zhou, M.; Li, C.
2017-09-01
In this study, a Random Forest (RF) based land covers classification method is presented to predict the types of land covers in Miyun area. The returned full-waveforms which were acquired by a LiteMapper 5600 airborne LiDAR system were processed, including waveform filtering, waveform decomposition and features extraction. The commonly used features that were distance, intensity, Full Width at Half Maximum (FWHM), skewness and kurtosis were extracted. These waveform features were used as attributes of training data for generating the RF prediction model. The RF prediction model was applied to predict the types of land covers in Miyun area as trees, buildings, farmland and ground. The classification results of these four types of land covers were obtained according to the ground truth information acquired from CCD image data of the same region. The RF classification results were compared with that of SVM method and show better results. The RF classification accuracy reached 89.73% and the classification Kappa was 0.8631.
Eschler, Anica; Rösler, Klaus; Rotter, Robert; Gradl, Georg; Mittlmeier, Thomas; Gierer, Philip
2014-09-01
The classification system of Rockwood and Young is a commonly used classification for acromioclavicular joint separations subdividing types I-VI. This classification hypothesizes specific lesions to anatomical structures (acromioclavicular and coracoclavicular ligaments, capsule, attached muscles) leading to the injury. In recent literature, our understanding for anatomical correlates leading to the radiological-based Rockwood classification is questioned. The goal of this experimental-based investigation was to approve the correlation between the anatomical injury pattern and the Rockwood classification. In four human cadavers (seven shoulders), the acromioclavicular and coracoclavicular ligaments were transected stepwise. Radiological correlates were recorded (Zanca view) with 15-kg longitudinal tension applied at the wrist. The resulting acromio- and coracoclavicular distances were measured. Radiographs after acromioclavicular ligament transection showed joint space enlargement (8.6 ± 0.3 vs. 3.1 ± 0.5 mm, p < 0.05) and no significant change in coracoclavicular distance (10.4 ± 0.9 vs. 10.0 ± 0.8 mm). According to the Rockwood classification only type I and II lesions occurred. After additional coracoclavicular ligament cut, the acromioclavicular joint space width increased to 16.7 ± 2.7 vs. 8.6 ± 0.3 mm, p < 0.05. The mean coracoclavicular distance increased to 20.6 ± 2.1 mm resulting in type III-V lesions concerning the Rockwood classification. Trauma with intact coracoclavicular ligaments did not result in acromioclavicular joint lesions higher than Rockwood type I and II. The clinical consequence for reconstruction of low-grade injuries might be a solely surgical approach for the acromioclavicular ligaments or conservative treatment. High-grade injuries were always based on additional structural damage to the coracoclavicular ligaments. Rockwood type V lesions occurred while muscle attachments were intact.
NASA Astrophysics Data System (ADS)
Lin, Y.; Chen, X.
2016-12-01
Land cover classification systems used in remote sensing image data have been developed to meet the needs for depicting land covers in scientific investigations and policy decisions. However, accuracy assessments of a spate of data sets demonstrate that compared with the real physiognomy, each of the thematic map of specific land cover classification system contains some unavoidable flaws and unintended deviation. This work proposes a web-based land cover classification system, an integrated prototype, based on an ontology model of various classification systems, each of which is assigned the same weight in the final determination of land cover type. Ontology, a formal explication of specific concepts and relations, is employed in this prototype to build up the connections among different systems to resolve the naming conflicts. The process is initialized by measuring semantic similarity between terminologies in the systems and the search key to produce certain set of satisfied classifications, and carries on through searching the predefined relations in concepts of all classification systems to generate classification maps with user-specified land cover type highlighted, based on probability calculated by votes from data sets with different classification system adopted. The present system is verified and validated by comparing the classification results with those most common systems. Due to full consideration and meaningful expression of each classification system using ontology and the convenience that the web brings with itself, this system, as a preliminary model, proposes a flexible and extensible architecture for classification system integration and data fusion, thereby providing a strong foundation for the future work.
Information extraction with object based support vector machines and vegetation indices
NASA Astrophysics Data System (ADS)
Ustuner, Mustafa; Abdikan, Saygin; Balik Sanli, Fusun
2016-07-01
Information extraction through remote sensing data is important for policy and decision makers as extracted information provide base layers for many application of real world. Classification of remotely sensed data is the one of the most common methods of extracting information however it is still a challenging issue because several factors are affecting the accuracy of the classification. Resolution of the imagery, number and homogeneity of land cover classes, purity of training data and characteristic of adopted classifiers are just some of these challenging factors. Object based image classification has some superiority than pixel based classification for high resolution images since it uses geometry and structure information besides spectral information. Vegetation indices are also commonly used for the classification process since it provides additional spectral information for vegetation, forestry and agricultural areas. In this study, the impacts of the Normalized Difference Vegetation Index (NDVI) and Normalized Difference Red Edge Index (NDRE) on the classification accuracy of RapidEye imagery were investigated. Object based Support Vector Machines were implemented for the classification of crop types for the study area located in Aegean region of Turkey. Results demonstrated that the incorporation of NDRE increase the classification accuracy from 79,96% to 86,80% as overall accuracy, however NDVI decrease the classification accuracy from 79,96% to 78,90%. Moreover it is proven than object based classification with RapidEye data give promising results for crop type mapping and analysis.
Vessel Classification in Cosmo-Skymed SAR Data Using Hierarchical Feature Selection
NASA Astrophysics Data System (ADS)
Makedonas, A.; Theoharatos, C.; Tsagaris, V.; Anastasopoulos, V.; Costicoglou, S.
2015-04-01
SAR based ship detection and classification are important elements of maritime monitoring applications. Recently, high-resolution SAR data have opened new possibilities to researchers for achieving improved classification results. In this work, a hierarchical vessel classification procedure is presented based on a robust feature extraction and selection scheme that utilizes scale, shape and texture features in a hierarchical way. Initially, different types of feature extraction algorithms are implemented in order to form the utilized feature pool, able to represent the structure, material, orientation and other vessel type characteristics. A two-stage hierarchical feature selection algorithm is utilized next in order to be able to discriminate effectively civilian vessels into three distinct types, in COSMO-SkyMed SAR images: cargos, small ships and tankers. In our analysis, scale and shape features are utilized in order to discriminate smaller types of vessels present in the available SAR data, or shape specific vessels. Then, the most informative texture and intensity features are incorporated in order to be able to better distinguish the civilian types with high accuracy. A feature selection procedure that utilizes heuristic measures based on features' statistical characteristics, followed by an exhaustive research with feature sets formed by the most qualified features is carried out, in order to discriminate the most appropriate combination of features for the final classification. In our analysis, five COSMO-SkyMed SAR data with 2.2m x 2.2m resolution were used to analyse the detailed characteristics of these types of ships. A total of 111 ships with available AIS data were used in the classification process. The experimental results show that this method has good performance in ship classification, with an overall accuracy reaching 83%. Further investigation of additional features and proper feature selection is currently in progress.
Cloud field classification based on textural features
NASA Technical Reports Server (NTRS)
Sengupta, Sailes Kumar
1989-01-01
An essential component in global climate research is accurate cloud cover and type determination. Of the two approaches to texture-based classification (statistical and textural), only the former is effective in the classification of natural scenes such as land, ocean, and atmosphere. In the statistical approach that was adopted, parameters characterizing the stochastic properties of the spatial distribution of grey levels in an image are estimated and then used as features for cloud classification. Two types of textural measures were used. One is based on the distribution of the grey level difference vector (GLDV), and the other on a set of textural features derived from the MaxMin cooccurrence matrix (MMCM). The GLDV method looks at the difference D of grey levels at pixels separated by a horizontal distance d and computes several statistics based on this distribution. These are then used as features in subsequent classification. The MaxMin tectural features on the other hand are based on the MMCM, a matrix whose (I,J)th entry give the relative frequency of occurrences of the grey level pair (I,J) that are consecutive and thresholded local extremes separated by a given pixel distance d. Textural measures are then computed based on this matrix in much the same manner as is done in texture computation using the grey level cooccurrence matrix. The database consists of 37 cloud field scenes from LANDSAT imagery using a near IR visible channel. The classification algorithm used is the well known Stepwise Discriminant Analysis. The overall accuracy was estimated by the percentage or correct classifications in each case. It turns out that both types of classifiers, at their best combination of features, and at any given spatial resolution give approximately the same classification accuracy. A neural network based classifier with a feed forward architecture and a back propagation training algorithm is used to increase the classification accuracy, using these two classes of features. Preliminary results based on the GLDV textural features alone look promising.
An unbalanced spectra classification method based on entropy
NASA Astrophysics Data System (ADS)
Liu, Zhong-bao; Zhao, Wen-juan
2017-05-01
How to solve the problem of distinguishing the minority spectra from the majority of the spectra is quite important in astronomy. In view of this, an unbalanced spectra classification method based on entropy (USCM) is proposed in this paper to deal with the unbalanced spectra classification problem. USCM greatly improves the performances of the traditional classifiers on distinguishing the minority spectra as it takes the data distribution into consideration in the process of classification. However, its time complexity is exponential with the training size, and therefore, it can only deal with the problem of small- and medium-scale classification. How to solve the large-scale classification problem is quite important to USCM. It can be easily obtained by mathematical computation that the dual form of USCM is equivalent to the minimum enclosing ball (MEB), and core vector machine (CVM) is introduced, USCM based on CVM is proposed to deal with the large-scale classification problem. Several comparative experiments on the 4 subclasses of K-type spectra, 3 subclasses of F-type spectra and 3 subclasses of G-type spectra from Sloan Digital Sky Survey (SDSS) verify USCM and USCM based on CVM perform better than kNN (k nearest neighbor) and SVM (support vector machine) in dealing with the problem of rare spectra mining respectively on the small- and medium-scale datasets and the large-scale datasets.
A statistical approach to root system classification.
Bodner, Gernot; Leitner, Daniel; Nakhforoosh, Alireza; Sobotik, Monika; Moder, Karl; Kaul, Hans-Peter
2013-01-01
Plant root systems have a key role in ecology and agronomy. In spite of fast increase in root studies, still there is no classification that allows distinguishing among distinctive characteristics within the diversity of rooting strategies. Our hypothesis is that a multivariate approach for "plant functional type" identification in ecology can be applied to the classification of root systems. The classification method presented is based on a data-defined statistical procedure without a priori decision on the classifiers. The study demonstrates that principal component based rooting types provide efficient and meaningful multi-trait classifiers. The classification method is exemplified with simulated root architectures and morphological field data. Simulated root architectures showed that morphological attributes with spatial distribution parameters capture most distinctive features within root system diversity. While developmental type (tap vs. shoot-borne systems) is a strong, but coarse classifier, topological traits provide the most detailed differentiation among distinctive groups. Adequacy of commonly available morphologic traits for classification is supported by field data. Rooting types emerging from measured data, mainly distinguished by diameter/weight and density dominated types. Similarity of root systems within distinctive groups was the joint result of phylogenetic relation and environmental as well as human selection pressure. We concluded that the data-define classification is appropriate for integration of knowledge obtained with different root measurement methods and at various scales. Currently root morphology is the most promising basis for classification due to widely used common measurement protocols. To capture details of root diversity efforts in architectural measurement techniques are essential.
Real-time classification of vehicles by type within infrared imagery
NASA Astrophysics Data System (ADS)
Kundegorski, Mikolaj E.; Akçay, Samet; Payen de La Garanderie, Grégoire; Breckon, Toby P.
2016-10-01
Real-time classification of vehicles into sub-category types poses a significant challenge within infra-red imagery due to the high levels of intra-class variation in thermal vehicle signatures caused by aspects of design, current operating duration and ambient thermal conditions. Despite these challenges, infra-red sensing offers significant generalized target object detection advantages in terms of all-weather operation and invariance to visual camouflage techniques. This work investigates the accuracy of a number of real-time object classification approaches for this task within the wider context of an existing initial object detection and tracking framework. Specifically we evaluate the use of traditional feature-driven bag of visual words and histogram of oriented gradient classification approaches against modern convolutional neural network architectures. Furthermore, we use classical photogrammetry, within the context of current target detection and classification techniques, as a means of approximating 3D target position within the scene based on this vehicle type classification. Based on photogrammetric estimation of target position, we then illustrate the use of regular Kalman filter based tracking operating on actual 3D vehicle trajectories. Results are presented using a conventional thermal-band infra-red (IR) sensor arrangement where targets are tracked over a range of evaluation scenarios.
The Influence of Tactile Perception on Classification of Bone Tissue at Dental Implant Insertion.
Linck, Gláucia Kelly Silva Barbosa; Ferreira, Geovane Miranda; De Oliveira, Rubelisa Cândido Gomes; Lindh, Christina; Leles, Cláudio Rodrigues; Ribeiro-Rotta, Rejane Faria
2016-06-01
Various ways of using the Lekholm and Zarb (L&Z) classification have added to the lack of scientific evidence of the effectiveness of this clinical method in the evaluation of implant treatment. The study aims to assess subjective jawbone classifications in patients referred for implant treatment, using L&Z classification with and without surgeon's hand perception at implant insertion. The association between bone type classifications and quantitative parameters of primary implant stability was also assessed. One hundred thirty-five implants were inserted using conventional loading protocol. Three surgeons classified bone quality at implant sites using two methods: one based on periapical and panoramic images (modified L&Z) and one based on the same images associated with the surgeon's tactile perception during drilling (original L&Z). Peak insertion torque and implant stability quotient (ISQ) were recorded. The modified and original L&Z were strongly correlated (rho = 0.79; p < .001); Wilcoxon signed-rank test showed no significant difference in the distribution of bone type classification between pairs using the two methods (p = .538). Spearman correlation tested the association between primary stability parameters and bone type classifications (-0.34 to -0.57 [p < .001]). Tactile surgical perception has a minor influence on rating of subjective bone type for dental implant treatment using the L&Z classification. © 2015 Wiley Periodicals, Inc.
Creating a classification of image types in the medical literature for visual categorization
NASA Astrophysics Data System (ADS)
Müller, Henning; Kalpathy-Cramer, Jayashree; Demner-Fushman, Dina; Antani, Sameer
2012-02-01
Content-based image retrieval (CBIR) from specialized collections has often been proposed for use in such areas as diagnostic aid, clinical decision support, and teaching. The visual retrieval from broad image collections such as teaching files, the medical literature or web images, by contrast, has not yet reached a high maturity level compared to textual information retrieval. Visual image classification into a relatively small number of classes (20-100) on the other hand, has shown to deliver good results in several benchmarks. It is, however, currently underused as a basic technology for retrieval tasks, for example, to limit the search space. Most classification schemes for medical images are focused on specific areas and consider mainly the medical image types (modalities), imaged anatomy, and view, and merge them into a single descriptor or classification hierarchy. Furthermore, they often ignore other important image types such as biological images, statistical figures, flowcharts, and diagrams that frequently occur in the biomedical literature. Most of the current classifications have also been created for radiology images, which are not the only types to be taken into account. With Open Access becoming increasingly widespread particularly in medicine, images from the biomedical literature are more easily available for use. Visual information from these images and knowledge that an image is of a specific type or medical modality could enrich retrieval. This enrichment is hampered by the lack of a commonly agreed image classification scheme. This paper presents a hierarchy for classification of biomedical illustrations with the goal of using it for visual classification and thus as a basis for retrieval. The proposed hierarchy is based on relevant parts of existing terminologies, such as the IRMA-code (Image Retrieval in Medical Applications), ad hoc classifications and hierarchies used in imageCLEF (Image retrieval task at the Cross-Language Evaluation Forum) and NLM's (National Library of Medicine) OpenI. Furtheron, mappings to NLM's MeSH (Medical Subject Headings), RSNA's RadLex (Radiological Society of North America, Radiology Lexicon), and the IRMA code are also attempted for relevant image types. Advantages derived from such hierarchical classification for medical image retrieval are being evaluated through benchmarks such as imageCLEF, and R&D systems such as NLM's OpenI. The goal is to extend this hierarchy progressively and (through adding image types occurring in the biomedical literature) to have a terminology for visual image classification based on image types distinguishable by visual means and occurring in the medical open access literature.
ERIC Educational Resources Information Center
Zwick, Rebecca; Lenaburg, Lubella
2009-01-01
In certain data analyses (e.g., multiple discriminant analysis and multinomial log-linear modeling), classification decisions are made based on the estimated posterior probabilities that individuals belong to each of several distinct categories. In the Bayesian network literature, this type of classification is often accomplished by assigning…
Combining High Spatial Resolution Optical and LIDAR Data for Object-Based Image Classification
NASA Astrophysics Data System (ADS)
Li, R.; Zhang, T.; Geng, R.; Wang, L.
2018-04-01
In order to classify high spatial resolution images more accurately, in this research, a hierarchical rule-based object-based classification framework was developed based on a high-resolution image with airborne Light Detection and Ranging (LiDAR) data. The eCognition software is employed to conduct the whole process. In detail, firstly, the FBSP optimizer (Fuzzy-based Segmentation Parameter) is used to obtain the optimal scale parameters for different land cover types. Then, using the segmented regions as basic units, the classification rules for various land cover types are established according to the spectral, morphological and texture features extracted from the optical images, and the height feature from LiDAR respectively. Thirdly, the object classification results are evaluated by using the confusion matrix, overall accuracy and Kappa coefficients. As a result, a method using the combination of an aerial image and the airborne Lidar data shows higher accuracy.
NASA Technical Reports Server (NTRS)
Maslanik, J. A.; Key, J.
1992-01-01
An expert system framework has been developed to classify sea ice types using satellite passive microwave data, an operational classification algorithm, spatial and temporal information, ice types estimated from a dynamic-thermodynamic model, output from a neural network that detects the onset of melt, and knowledge about season and region. The rule base imposes boundary conditions upon the ice classification, modifies parameters in the ice algorithm, determines a `confidence' measure for the classified data, and under certain conditions, replaces the algorithm output with model output. Results demonstrate the potential power of such a system for minimizing overall error in the classification and for providing non-expert data users with a means of assessing the usefulness of the classification results for their applications.
Pāhoehoe, `a`ā, and block lava: an illustrated history of the nomenclature
NASA Astrophysics Data System (ADS)
Harris, Andrew J. L.; Rowland, Scott K.; Villeneuve, Nicolas; Thordarson, Thor
2017-01-01
Lava flows occur worldwide, and throughout history, various cultures (and geologists) have described flows based on their surface textures. As a result, surface morphology-based nomenclature schemes have been proposed in most languages to aid in the classification and distinction of lava surface types. One of the first to be published was likely the nine-class, Italian-language description-based classification proposed by Mario Gemmellaro in 1858. By far, the most commonly used terms to describe lava surfaces today are not descriptive but, instead, are merely words, specifically the Hawaiian words `a`ā (rough brecciated basalt lava) and pāhoehoe (smooth glassy basalt lava), plus block lava (thick brecciated lavas that are typically more silicic than basalt). `A`ā and pāhoehoe were introduced into the Western geological vocabulary by American geologists working in Hawai`i during the 1800s. They and other nineteenth century geologists proposed formal lava-type classification schemes for scientific use, and most of them used the Hawaiian words. In 1933, Ruy Finch added the third lava type, block lava, to the classification scheme, with the tripartite system being formalized in 1953 by Gordon Macdonald. More recently, particularly since the 1980s and based largely on studies of lava flow interiors, a number of sub-types and transitional forms of all three major lava types have been defined. This paper reviews the early history of the development of the pāhoehoe, `a`ā, and block lava-naming system and presents a new descriptive classification so as to break out the three parental lava types into their many morphological sub-types.
Large-scale classification of traffic signs under real-world conditions
NASA Astrophysics Data System (ADS)
Hazelhoff, Lykele; Creusen, Ivo; van de Wouw, Dennis; de With, Peter H. N.
2012-02-01
Traffic sign inventories are important to governmental agencies as they facilitate evaluation of traffic sign locations and are beneficial for road and sign maintenance. These inventories can be created (semi-)automatically based on street-level panoramic images. In these images, object detection is employed to detect the signs in each image, followed by a classification stage to retrieve the specific sign type. Classification of traffic signs is a complicated matter, since sign types are very similar with only minor differences within the sign, a high number of different signs is involved and multiple distortions occur, including variations in capturing conditions, occlusions, viewpoints and sign deformations. Therefore, we propose a method for robust classification of traffic signs, based on the Bag of Words approach for generic object classification. We extend the approach with a flexible, modular codebook to model the specific features of each sign type independently, in order to emphasize at the inter-sign differences instead of the parts common for all sign types. Additionally, this allows us to model and label the present false detections. Furthermore, analysis of the classification output provides the unreliable results. This classification system has been extensively tested for three different sign classes, covering 60 different sign types in total. These three data sets contain the sign detection results on street-level panoramic images, extracted from a country-wide database. The introduction of the modular codebook shows a significant improvement for all three sets, where the system is able to classify about 98% of the reliable results correctly.
ERIC Educational Resources Information Center
Viernstein, Mary Cowan
Two methods are presented for extending Holland's occupational classification to include all occupations in the Dictionary of Occupational Titles (DOT). Holland's classification is based on a theory of personality types, with occupations in the classification organized into major categories (Realistic, Investigative, Artistic, Social,…
Youn, Su Hyun; Sim, Taeyong; Choi, Ahnryul; Song, Jinsung; Shin, Ki Young; Lee, Il Kwon; Heo, Hyun Mu; Lee, Daeweon; Mun, Joung Hwan
2015-06-01
Ultrasonic surgical units (USUs) have the advantage of minimizing tissue damage during surgeries that require tissue dissection by reducing problems such as coagulation and unwanted carbonization, but the disadvantage of requiring manual adjustment of power output according to the target tissue. In order to overcome this limitation, it is necessary to determine the properties of in vivo tissues automatically. We propose a multi-classifier that can accurately classify tissues based on the unique impedance of each tissue. For this purpose, a multi-classifier was built based on single classifiers with high classification rates, and the classification accuracy of the proposed model was compared with that of single classifiers for various electrode types (Type-I: 6 mm invasive; Type-II: 3 mm invasive; Type-III: surface). The sensitivity and positive predictive value (PPV) of the multi-classifier by cross checks were determined. According to the 10-fold cross validation results, the classification accuracy of the proposed model was significantly higher (p<0.05 or <0.01) than that of existing single classifiers for all electrode types. In particular, the classification accuracy of the proposed model was highest when the 3mm invasive electrode (Type-II) was used (sensitivity=97.33-100.00%; PPV=96.71-100.00%). The results of this study are an important contribution to achieving automatic optimal output power adjustment of USUs according to the properties of individual tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Bowell, E.; Chapman, C. R.; Gradie, J. C.; Zellner, B.; Morrison, D.
1978-01-01
A taxonomic system for asteroids is discussed which is based on seven directly observable parameters from polarimetry, spectrophotometry, radiometry, and UBV photometry. The classification scheme is entirely empirical and independent of specific mineralogical interpretations. Five broad classes (designated C, S, M, E, and R), as well as an 'unclassifiable' designation, are defined on the basis of observational data for 523 asteroids. Computer-generated type classifications and derived diameters are given for the 523 asteroids, and the application of the classification procedure is illustrated. Of the 523 asteroids classified, 190 are identified as C objects, 141 as S type, 13 as type M, three as type E, three as type R, 55 as unclassifiable, and 118 as ambiguous. The present taxonomic system is compared with several other asteroid classification systems.
A statistical approach to root system classification
Bodner, Gernot; Leitner, Daniel; Nakhforoosh, Alireza; Sobotik, Monika; Moder, Karl; Kaul, Hans-Peter
2013-01-01
Plant root systems have a key role in ecology and agronomy. In spite of fast increase in root studies, still there is no classification that allows distinguishing among distinctive characteristics within the diversity of rooting strategies. Our hypothesis is that a multivariate approach for “plant functional type” identification in ecology can be applied to the classification of root systems. The classification method presented is based on a data-defined statistical procedure without a priori decision on the classifiers. The study demonstrates that principal component based rooting types provide efficient and meaningful multi-trait classifiers. The classification method is exemplified with simulated root architectures and morphological field data. Simulated root architectures showed that morphological attributes with spatial distribution parameters capture most distinctive features within root system diversity. While developmental type (tap vs. shoot-borne systems) is a strong, but coarse classifier, topological traits provide the most detailed differentiation among distinctive groups. Adequacy of commonly available morphologic traits for classification is supported by field data. Rooting types emerging from measured data, mainly distinguished by diameter/weight and density dominated types. Similarity of root systems within distinctive groups was the joint result of phylogenetic relation and environmental as well as human selection pressure. We concluded that the data-define classification is appropriate for integration of knowledge obtained with different root measurement methods and at various scales. Currently root morphology is the most promising basis for classification due to widely used common measurement protocols. To capture details of root diversity efforts in architectural measurement techniques are essential. PMID:23914200
NASA Astrophysics Data System (ADS)
Hussain, M.; Chen, D.
2014-11-01
Buildings, the basic unit of an urban landscape, host most of its socio-economic activities and play an important role in the creation of urban land-use patterns. The spatial arrangement of different building types creates varied urban land-use clusters which can provide an insight to understand the relationships between social, economic, and living spaces. The classification of such urban clusters can help in policy-making and resource management. In many countries including the UK no national-level cadastral database containing information on individual building types exists in public domain. In this paper, we present a framework for inferring functional types of buildings based on the analysis of their form (e.g. geometrical properties, such as area and perimeter, layout) and spatial relationship from large topographic and address-based GIS database. Machine learning algorithms along with exploratory spatial analysis techniques are used to create the classification rules. The classification is extended to two further levels based on the functions (use) of buildings derived from address-based data. The developed methodology was applied to the Manchester metropolitan area using the Ordnance Survey's MasterMap®, a large-scale topographic and address-based data available for the UK.
A new classification and treatment protocol for gynecomastia.
Ratnam, B Venkata
2009-01-01
It is not uncommon to encounter patients who have undergone surgery for gynecomastia but who were not fully satisfied with the results. Although various approaches and techniques based on presurgical classification systems aimed at yielding the best possible surgical outcomes have been offered, standardized recommendation that is generally accepted by surgeons is lacking. The author reports on a new classification system and treatment protocol for the surgical treatment of gynecomastia. A system was developed that classifies patients into 3 types based on skin elasticity, presence of an inframammary fold (IMF), and mammary ptosis. Surgical excision of the breast mass was followed by a combination of destruction of the IMF, ultrasound-assisted lipoplasty (UAL) of the chest wall, ultrasound stimulation of the breast skin, and periareolar deepithelialization, depending on the gyneocomastia classification. This classification and the treatment protocol were applied to 30 patients, 13 to 60 years of age, between January 2005 and December 2007. Among these patients, 12 were classified as type 1, 6 as type 2, and 12 as type 3. Follow-up ranged from 3 to 18 months. Complications were common to all types of cases and techniques. They included 2 hematomas, 1 wound dehiscence, 5 cases of residual gynecomastia in those patients who underwent UAL alone, and 3 minor aesthetic problems near areolae. The proposed new classification and treatment protocol were found to help solve problems associated with surgical outcomes for all types of gynecomastia, although the issue of residual gynecomastia in patients undergoing UAL alone requires further study.
Austin, Peter C.; Tu, Jack V.; Ho, Jennifer E.; Levy, Daniel; Lee, Douglas S.
2014-01-01
Objective Physicians classify patients into those with or without a specific disease. Furthermore, there is often interest in classifying patients according to disease etiology or subtype. Classification trees are frequently used to classify patients according to the presence or absence of a disease. However, classification trees can suffer from limited accuracy. In the data-mining and machine learning literature, alternate classification schemes have been developed. These include bootstrap aggregation (bagging), boosting, random forests, and support vector machines. Study design and Setting We compared the performance of these classification methods with those of conventional classification trees to classify patients with heart failure according to the following sub-types: heart failure with preserved ejection fraction (HFPEF) vs. heart failure with reduced ejection fraction (HFREF). We also compared the ability of these methods to predict the probability of the presence of HFPEF with that of conventional logistic regression. Results We found that modern, flexible tree-based methods from the data mining literature offer substantial improvement in prediction and classification of heart failure sub-type compared to conventional classification and regression trees. However, conventional logistic regression had superior performance for predicting the probability of the presence of HFPEF compared to the methods proposed in the data mining literature. Conclusion The use of tree-based methods offers superior performance over conventional classification and regression trees for predicting and classifying heart failure subtypes in a population-based sample of patients from Ontario. However, these methods do not offer substantial improvements over logistic regression for predicting the presence of HFPEF. PMID:23384592
Three forms of immune myasthenia.
Agius, Mark A; Richman, David P; Fairclough, Robert H; Aarli, Johan; Gilhus, Nils Erik; Romi, Fredrik
2003-09-01
We propose a new classification for immune myasthenia based on antibody pattern. The types of immune myasthenia presently characterized by known antibody targets segregate into three groups: type 1, in which the muscle target is the acetylcholine receptor only; type 2, in which titin antibodies are present in addition to acetylcholine receptor antibodies; and type 3, in which muscle-specific kinase antibodies are present in the absence of acetylcholine receptor antibodies. The immune target is unknown in the patients with immune myasthenia not associated with these antibodies. This classification has advantages over the present classifications as regards homogeneity of groups, etiology, mechanism of disease, and prognosis.
NASA Astrophysics Data System (ADS)
Esteban, Pere; Beck, Christoph; Philipp, Andreas
2010-05-01
Using data associated with accidents or damages caused by snow avalanches over the eastern Pyrenees (Andorra and Catalonia) several atmospheric circulation type catalogues have been obtained. For this purpose, different circulation type classification methods based on Principal Component Analysis (T-mode and S-mode using the extreme scores) and on optimization procedures (Improved K-means and SANDRA) were applied . Considering the characteristics of the phenomena studied, not only single day circulation patterns were taken into account but also sequences of circulation types of varying length. Thus different classifications with different numbers of types and for different sequence lengths were obtained using the different classification methods. Simple between type variability, within type variability, and outlier detection procedures have been applied for selecting the best result concerning snow avalanches type classifications. Furthermore, days without occurrence of the hazards were also related to the avalanche centroids using pattern-correlations, facilitating the calculation of the anomalies between hazardous and no hazardous days, and also frequencies of occurrence of hazardous events for each circulation type. Finally, the catalogues statistically considered the best results are evaluated using the avalanche forecaster expert knowledge. Consistent explanation of snow avalanches occurrence by means of circulation sequences is obtained, but always considering results from classifications with different sequence length. This work has been developed in the framework of the COST Action 733 (Harmonisation and Applications of Weather Type Classifications for European regions).
Comparison Between Supervised and Unsupervised Classifications of Neuronal Cell Types: A Case Study
Guerra, Luis; McGarry, Laura M; Robles, Víctor; Bielza, Concha; Larrañaga, Pedro; Yuste, Rafael
2011-01-01
In the study of neural circuits, it becomes essential to discern the different neuronal cell types that build the circuit. Traditionally, neuronal cell types have been classified using qualitative descriptors. More recently, several attempts have been made to classify neurons quantitatively, using unsupervised clustering methods. While useful, these algorithms do not take advantage of previous information known to the investigator, which could improve the classification task. For neocortical GABAergic interneurons, the problem to discern among different cell types is particularly difficult and better methods are needed to perform objective classifications. Here we explore the use of supervised classification algorithms to classify neurons based on their morphological features, using a database of 128 pyramidal cells and 199 interneurons from mouse neocortex. To evaluate the performance of different algorithms we used, as a “benchmark,” the test to automatically distinguish between pyramidal cells and interneurons, defining “ground truth” by the presence or absence of an apical dendrite. We compared hierarchical clustering with a battery of different supervised classification algorithms, finding that supervised classifications outperformed hierarchical clustering. In addition, the selection of subsets of distinguishing features enhanced the classification accuracy for both sets of algorithms. The analysis of selected variables indicates that dendritic features were most useful to distinguish pyramidal cells from interneurons when compared with somatic and axonal morphological variables. We conclude that supervised classification algorithms are better matched to the general problem of distinguishing neuronal cell types when some information on these cell groups, in our case being pyramidal or interneuron, is known a priori. As a spin-off of this methodological study, we provide several methods to automatically distinguish neocortical pyramidal cells from interneurons, based on their morphologies. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 71: 71–82, 2011 PMID:21154911
NASA Astrophysics Data System (ADS)
Demuzere, Matthias; Kassomenos, P.; Philipp, A.
2011-08-01
In the framework of the COST733 Action "Harmonisation and Applications of Weather Types Classifications for European Regions" a new circulation type classification software (hereafter, referred to as cost733class software) is developed. The cost733class software contains a variety of (European) classification methods and is flexible towards choice of domain of interest, input variables, time step, number of circulation types, sequencing and (weighted) target variables. This work introduces the capabilities of the cost733class software in which the resulting circulation types (CTs) from various circulation type classifications (CTCs) are applied on observed summer surface ozone concentrations in Central Europe. Firstly, the main characteristics of the CTCs in terms of circulation pattern frequencies are addressed using the baseline COST733 catalogue (cat 2.0), at present the latest product of the new cost733class software. In a second step, the probabilistic Brier skill score is used to quantify the explanatory power of all classifications in terms of the maximum 8 hourly mean ozone concentrations exceeding the 120-μg/m3 threshold; this was based on ozone concentrations from 130 Central European measurement stations. Averaged evaluation results over all stations indicate generally higher performance of CTCs with a higher number of types. Within the subset of methodologies with a similar number of types, the results suggest that the use of CTCs based on optimisation algorithms are performing slightly better than those which are based on other algorithms (predefined thresholds, principal component analysis and leader algorithms). The results are further elaborated by exploring additional capabilities of the cost733class software. Sensitivity experiments are performed using different domain sizes, input variables, seasonally based classifications and multiple-day sequencing. As an illustration, CTCs which are also conditioned towards temperature with various weights are derived and tested similarly. All results exploit a physical interpretation by adapting the environment-to-circulation approach, providing more detailed information on specific synoptic conditions prevailing on days with high surface ozone concentrations. This research does not intend to bring forward a favourite classification methodology or construct a statistical ozone forecasting tool but should be seen as an introduction to the possibilities of the cost733class software. It this respect, the results presented here can provide a basic user support for the cost733class software and the development of a more user- or application-specific CTC approach.
Cluster Method Analysis of K. S. C. Image
NASA Technical Reports Server (NTRS)
Rodriguez, Joe, Jr.; Desai, M.
1997-01-01
Information obtained from satellite-based systems has moved to the forefront as a method in the identification of many land cover types. Identification of different land features through remote sensing is an effective tool for regional and global assessment of geometric characteristics. Classification data acquired from remote sensing images have a wide variety of applications. In particular, analysis of remote sensing images have special applications in the classification of various types of vegetation. Results obtained from classification studies of a particular area or region serve towards a greater understanding of what parameters (ecological, temporal, etc.) affect the region being analyzed. In this paper, we make a distinction between both types of classification approaches although, focus is given to the unsupervised classification method using 1987 Thematic Mapped (TM) images of Kennedy Space Center.
Slabbinck, Bram; Waegeman, Willem; Dawyndt, Peter; De Vos, Paul; De Baets, Bernard
2010-01-30
Machine learning techniques have shown to improve bacterial species classification based on fatty acid methyl ester (FAME) data. Nonetheless, FAME analysis has a limited resolution for discrimination of bacteria at the species level. In this paper, we approach the species classification problem from a taxonomic point of view. Such a taxonomy or tree is typically obtained by applying clustering algorithms on FAME data or on 16S rRNA gene data. The knowledge gained from the tree can then be used to evaluate FAME-based classifiers, resulting in a novel framework for bacterial species classification. In view of learning in a taxonomic framework, we consider two types of trees. First, a FAME tree is constructed with a supervised divisive clustering algorithm. Subsequently, based on 16S rRNA gene sequence analysis, phylogenetic trees are inferred by the NJ and UPGMA methods. In this second approach, the species classification problem is based on the combination of two different types of data. Herein, 16S rRNA gene sequence data is used for phylogenetic tree inference and the corresponding binary tree splits are learned based on FAME data. We call this learning approach 'phylogenetic learning'. Supervised Random Forest models are developed to train the classification tasks in a stratified cross-validation setting. In this way, better classification results are obtained for species that are typically hard to distinguish by a single or flat multi-class classification model. FAME-based bacterial species classification is successfully evaluated in a taxonomic framework. Although the proposed approach does not improve the overall accuracy compared to flat multi-class classification, it has some distinct advantages. First, it has better capabilities for distinguishing species on which flat multi-class classification fails. Secondly, the hierarchical classification structure allows to easily evaluate and visualize the resolution of FAME data for the discrimination of bacterial species. Summarized, by phylogenetic learning we are able to situate and evaluate FAME-based bacterial species classification in a more informative context.
2010-01-01
Background Machine learning techniques have shown to improve bacterial species classification based on fatty acid methyl ester (FAME) data. Nonetheless, FAME analysis has a limited resolution for discrimination of bacteria at the species level. In this paper, we approach the species classification problem from a taxonomic point of view. Such a taxonomy or tree is typically obtained by applying clustering algorithms on FAME data or on 16S rRNA gene data. The knowledge gained from the tree can then be used to evaluate FAME-based classifiers, resulting in a novel framework for bacterial species classification. Results In view of learning in a taxonomic framework, we consider two types of trees. First, a FAME tree is constructed with a supervised divisive clustering algorithm. Subsequently, based on 16S rRNA gene sequence analysis, phylogenetic trees are inferred by the NJ and UPGMA methods. In this second approach, the species classification problem is based on the combination of two different types of data. Herein, 16S rRNA gene sequence data is used for phylogenetic tree inference and the corresponding binary tree splits are learned based on FAME data. We call this learning approach 'phylogenetic learning'. Supervised Random Forest models are developed to train the classification tasks in a stratified cross-validation setting. In this way, better classification results are obtained for species that are typically hard to distinguish by a single or flat multi-class classification model. Conclusions FAME-based bacterial species classification is successfully evaluated in a taxonomic framework. Although the proposed approach does not improve the overall accuracy compared to flat multi-class classification, it has some distinct advantages. First, it has better capabilities for distinguishing species on which flat multi-class classification fails. Secondly, the hierarchical classification structure allows to easily evaluate and visualize the resolution of FAME data for the discrimination of bacterial species. Summarized, by phylogenetic learning we are able to situate and evaluate FAME-based bacterial species classification in a more informative context. PMID:20113515
A conceptual weather-type classification procedure for the Philadelphia, Pennsylvania, area
McCabe, Gregory J.
1990-01-01
A simple method of weather-type classification, based on a conceptual model of pressure systems that pass through the Philadelphia, Pennsylvania, area, has been developed. The only inputs required for the procedure are daily mean wind direction and cloud cover, which are used to index the relative position of pressure systems and fronts to Philadelphia.Daily mean wind-direction and cloud-cover data recorded at Philadelphia, Pennsylvania, from January 1954 through August 1988 were used to categorize daily weather conditions. The conceptual weather types reflect changes in daily air and dew-point temperatures, and changes in monthly mean temperature and monthly and annual precipitation. The weather-type classification produced by using the conceptual model was similar to a classification produced by using a multivariate statistical classification procedure. Even though the conceptual weather types are derived from a small amount of data, they appear to account for the variability of daily weather patterns sufficiently to describe distinct weather conditions for use in environmental analyses of weather-sensitive processes.
Convolutional neural network with transfer learning for rice type classification
NASA Astrophysics Data System (ADS)
Patel, Vaibhav Amit; Joshi, Manjunath V.
2018-04-01
Presently, rice type is identified manually by humans, which is time consuming and error prone. Therefore, there is a need to do this by machine which makes it faster with greater accuracy. This paper proposes a deep learning based method for classification of rice types. We propose two methods to classify the rice types. In the first method, we train a deep convolutional neural network (CNN) using the given segmented rice images. In the second method, we train a combination of a pretrained VGG16 network and the proposed method, while using transfer learning in which the weights of a pretrained network are used to achieve better accuracy. Our approach can also be used for classification of rice grain as broken or fine. We train a 5-class model for classifying rice types using 4000 training images and another 2- class model for the classification of broken and normal rice using 1600 training images. We observe that despite having distinct rice images, our architecture, pretrained on ImageNet data boosts classification accuracy significantly.
Toward functional classification of neuronal types.
Sharpee, Tatyana O
2014-09-17
How many types of neurons are there in the brain? This basic neuroscience question remains unsettled despite many decades of research. Classification schemes have been proposed based on anatomical, electrophysiological, or molecular properties. However, different schemes do not always agree with each other. This raises the question of whether one can classify neurons based on their function directly. For example, among sensory neurons, can a classification scheme be devised that is based on their role in encoding sensory stimuli? Here, theoretical arguments are outlined for how this can be achieved using information theory by looking at optimal numbers of cell types and paying attention to two key properties: correlations between inputs and noise in neural responses. This theoretical framework could help to map the hierarchical tree relating different neuronal classes within and across species. Copyright © 2014 Elsevier Inc. All rights reserved.
George R. Hoffman; Robert R. Alexander
1987-01-01
A vegetation classification based on concepts and methods developed by Daubenmire was used to identify 12 forest habitat types and one shrub habitat type in the Black Hills. Included were two habitat types in the Quercus macrocarpa series, seven in the Pinus ponderosa series, one in the Populus tremuloides series, two in the Picea glaucci series, and one in the...
Analysis and application of classification methods of complex carbonate reservoirs
NASA Astrophysics Data System (ADS)
Li, Xiongyan; Qin, Ruibao; Ping, Haitao; Wei, Dan; Liu, Xiaomei
2018-06-01
There are abundant carbonate reservoirs from the Cenozoic to Mesozoic era in the Middle East. Due to variation in sedimentary environment and diagenetic process of carbonate reservoirs, several porosity types coexist in carbonate reservoirs. As a result, because of the complex lithologies and pore types as well as the impact of microfractures, the pore structure is very complicated. Therefore, it is difficult to accurately calculate the reservoir parameters. In order to accurately evaluate carbonate reservoirs, based on the pore structure evaluation of carbonate reservoirs, the classification methods of carbonate reservoirs are analyzed based on capillary pressure curves and flow units. Based on the capillary pressure curves, although the carbonate reservoirs can be classified, the relationship between porosity and permeability after classification is not ideal. On the basis of the flow units, the high-precision functional relationship between porosity and permeability after classification can be established. Therefore, the carbonate reservoirs can be quantitatively evaluated based on the classification of flow units. In the dolomite reservoirs, the average absolute error of calculated permeability decreases from 15.13 to 7.44 mD. Similarly, the average absolute error of calculated permeability of limestone reservoirs is reduced from 20.33 to 7.37 mD. Only by accurately characterizing pore structures and classifying reservoir types, reservoir parameters could be calculated accurately. Therefore, characterizing pore structures and classifying reservoir types are very important to accurate evaluation of complex carbonate reservoirs in the Middle East.
Li, Zhao-Liang
2018-01-01
Few studies have examined hyperspectral remote-sensing image classification with type-II fuzzy sets. This paper addresses image classification based on a hyperspectral remote-sensing technique using an improved interval type-II fuzzy c-means (IT2FCM*) approach. In this study, in contrast to other traditional fuzzy c-means-based approaches, the IT2FCM* algorithm considers the ranking of interval numbers and the spectral uncertainty. The classification results based on a hyperspectral dataset using the FCM, IT2FCM, and the proposed improved IT2FCM* algorithms show that the IT2FCM* method plays the best performance according to the clustering accuracy. In this paper, in order to validate and demonstrate the separability of the IT2FCM*, four type-I fuzzy validity indexes are employed, and a comparative analysis of these fuzzy validity indexes also applied in FCM and IT2FCM methods are made. These four indexes are also applied into different spatial and spectral resolution datasets to analyze the effects of spectral and spatial scaling factors on the separability of FCM, IT2FCM, and IT2FCM* methods. The results of these validity indexes from the hyperspectral datasets show that the improved IT2FCM* algorithm have the best values among these three algorithms in general. The results demonstrate that the IT2FCM* exhibits good performance in hyperspectral remote-sensing image classification because of its ability to handle hyperspectral uncertainty. PMID:29373548
Chen, Min-Jie; Yang, Chi; Zheng, Ji-Si; Bai, Guo; Han, Zi-Xiang; Wang, Yi-Wen
2018-06-01
We sought to introduce our classification and reconstruction protocol for skull base erosions in the temporomandibular joint and skull base region. Patients with neoplasms in the temporomandibular joint and skull base region treated from January 2006 to March 2017 were reviewed. Skull base erosion was classified into 3 types according to the size of the defect. We included 33 patients, of whom 5 (15.2%) had type I defects (including 3 in whom free fat grafts were placed and 2 in whom deep temporal fascial fat flaps were placed). There were 8 patients (24.2%) with type II defects, all of whom received deep temporal fascial fat flaps. A total of 20 patients (60.6%) had type III defects, including 17 in whom autogenous bone grafts were placed, 1 in whom titanium mesh was placed, and 2 who received total alloplastic joints. The mean follow-up period was 50 months. All of the patients exhibited stable occlusion and good facial symmetry. No recurrence was noted. Our classification and reconstruction principles allowed reliable morpho-functional skull base reconstruction. Copyright © 2018 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Xiao Yong, Zhao; Xin, Ji Yong; Shuang Ying, Zuo
2018-03-01
In order to effectively classify the surrounding rock types of tunnels, a multi-factor tunnel surrounding rock classification method based on GPR and probability theory is proposed. Geological radar was used to identify the geology of the surrounding rock in front of the face and to evaluate the quality of the rock face. According to the previous survey data, the rock uniaxial compressive strength, integrity index, fissure and groundwater were selected for classification. The related theories combine them into a multi-factor classification method, and divide the surrounding rocks according to the great probability. Using this method to classify the surrounding rock of the Ma’anshan tunnel, the surrounding rock types obtained are basically the same as those of the actual surrounding rock, which proves that this method is a simple, efficient and practical rock classification method, which can be used for tunnel construction.
CT imaging-based determination and classification of anatomic variations of left gastric vein.
Wu, Yongyou; Chen, Guangqiang; Wu, Pengfei; Zhu, Jianbin; Peng, Wei; Xing, Chungen
2017-03-01
Precise determination and classification of left gastric vein (LGV) anatomy are helpful in planning for gastric surgery, in particular, for resection of gastric cancer. However, the anatomy of LGV is highly variable. A systematic classification of its variations is still to be proposed. We aimed to investigate the anatomical variations in LGV using CT imaging and develop a new nomenclature system. We reviewed CT images and tracked the course of LGV in 825 adults. The frequencies of common and variable LGV anatomical courses were recorded. Anatomic variations of LGV were proposed and classified into different types mainly based on its courses. The inflow sites of LGV into the portal system were also considered if common hepatic artery (CHA) or splenic artery (SA) could not be used as a frame of reference due to variations. Detailed anatomy and courses of LGV were depicted on CT images. Using CHA and SA as the frames of reference, the routes of LGV were divided into six types (i.e., PreS, RetroS, Mid, PreCH, RetroCH, and Supra). The inflow sites were classified into four types (i.e., PV, SV, PSV, and LPV). The new classification was mainly based on the courses of LGV, which was validated with MDCT in the 805 cases with an identifiable LGV, namely type I, RetroCH, 49.8 % (401/805); type II, PreS, 20.6 % (166/805); type III, Mid, 20.0 % (161/805); type IV, RetroS, 7.3 % (59/805); type V, Supra, 1.5 % (12/805); and type VI, PreCH, 0.7 % (6/805). Type VII, designated to the cases in which SA and CHA could not be used as frames of reference, was not observed in this series. Detailed depiction of the anatomy and courses of LGV on CT images allowed us to evaluate and develop a new classification and nomenclature system for the anatomical variations of LGV.
SVM-based tree-type neural networks as a critic in adaptive critic designs for control.
Deb, Alok Kanti; Jayadeva; Gopal, Madan; Chandra, Suresh
2007-07-01
In this paper, we use the approach of adaptive critic design (ACD) for control, specifically, the action-dependent heuristic dynamic programming (ADHDP) method. A least squares support vector machine (SVM) regressor has been used for generating the control actions, while an SVM-based tree-type neural network (NN) is used as the critic. After a failure occurs, the critic and action are retrained in tandem using the failure data. Failure data is binary classification data, where the number of failure states are very few as compared to the number of no-failure states. The difficulty of conventional multilayer feedforward NNs in learning this type of classification data has been overcome by using the SVM-based tree-type NN, which due to its feature to add neurons to learn misclassified data, has the capability to learn any binary classification data without a priori choice of the number of neurons or the structure of the network. The capability of the trained controller to handle unforeseen situations is demonstrated.
Delineation of marsh types from Corpus Christi Bay, Texas, to Perdido Bay, Alabama, in 2010
Enwright, Nicholas M.; Hartley, Stephen B.; Couvillion, Brady R.; Michael G. Brasher,; Jenneke M. Visser,; Michael K. Mitchell,; Bart M. Ballard,; Mark W. Parr,; Barry C. Wilson,
2015-07-23
This study incorporates about 9,800 ground reference locations collected via helicopter surveys in coastal wetland areas. Decision-tree analyses were used to classify emergent marsh vegetation types by using ground reference data from helicopter vegetation surveys and independent variables such as multitemporal satellite-based multispectral imagery from 2009 to 2011, bare-earth digital elevation models based on airborne light detection and ranging (lidar), alternative contemporary land cover classifications, and other spatially explicit variables. Image objects were created from 2010 National Agriculture Imagery Program color-infrared aerial photography. The final classification is a 10-meter raster dataset that was produced by using a majority filter to classify image objects according to the marsh vegetation type covering the majority of each image object. The classification is dated 2010 because the year is both the midpoint of the classified multitemporal satellite-based imagery (2009–11) and the date of the high-resolution airborne imagery that was used to develop image objects. The seamless classification produced through this work can be used to help develop and refine conservation efforts for priority natural resources.
2014-01-01
Background Left bundle branch block (LBBB) and right bundle branch block (RBBB) not only mask electrocardiogram (ECG) changes that reflect diseases but also indicate important underlying pathology. The timely detection of LBBB and RBBB is critical in the treatment of cardiac diseases. Inter-patient heartbeat classification is based on independent training and testing sets to construct and evaluate a heartbeat classification system. Therefore, a heartbeat classification system with a high performance evaluation possesses a strong predictive capability for unknown data. The aim of this study was to propose a method for inter-patient classification of heartbeats to accurately detect LBBB and RBBB from the normal beat (NORM). Methods This study proposed a heartbeat classification method through a combination of three different types of classifiers: a minimum distance classifier constructed between NORM and LBBB; a weighted linear discriminant classifier between NORM and RBBB based on Bayesian decision making using posterior probabilities; and a linear support vector machine (SVM) between LBBB and RBBB. Each classifier was used with matching features to obtain better classification performance. The final types of the test heartbeats were determined using a majority voting strategy through the combination of class labels from the three classifiers. The optimal parameters for the classifiers were selected using cross-validation on the training set. The effects of different lead configurations on the classification results were assessed, and the performance of these three classifiers was compared for the detection of each pair of heartbeat types. Results The study results showed that a two-lead configuration exhibited better classification results compared with a single-lead configuration. The construction of a classifier with good performance between each pair of heartbeat types significantly improved the heartbeat classification performance. The results showed a sensitivity of 91.4% and a positive predictive value of 37.3% for LBBB and a sensitivity of 92.8% and a positive predictive value of 88.8% for RBBB. Conclusions A multi-classifier ensemble method was proposed based on inter-patient data and demonstrated a satisfactory classification performance. This approach has the potential for application in clinical practice to distinguish LBBB and RBBB from NORM of unknown patients. PMID:24903422
Huang, Huifang; Liu, Jie; Zhu, Qiang; Wang, Ruiping; Hu, Guangshu
2014-06-05
Left bundle branch block (LBBB) and right bundle branch block (RBBB) not only mask electrocardiogram (ECG) changes that reflect diseases but also indicate important underlying pathology. The timely detection of LBBB and RBBB is critical in the treatment of cardiac diseases. Inter-patient heartbeat classification is based on independent training and testing sets to construct and evaluate a heartbeat classification system. Therefore, a heartbeat classification system with a high performance evaluation possesses a strong predictive capability for unknown data. The aim of this study was to propose a method for inter-patient classification of heartbeats to accurately detect LBBB and RBBB from the normal beat (NORM). This study proposed a heartbeat classification method through a combination of three different types of classifiers: a minimum distance classifier constructed between NORM and LBBB; a weighted linear discriminant classifier between NORM and RBBB based on Bayesian decision making using posterior probabilities; and a linear support vector machine (SVM) between LBBB and RBBB. Each classifier was used with matching features to obtain better classification performance. The final types of the test heartbeats were determined using a majority voting strategy through the combination of class labels from the three classifiers. The optimal parameters for the classifiers were selected using cross-validation on the training set. The effects of different lead configurations on the classification results were assessed, and the performance of these three classifiers was compared for the detection of each pair of heartbeat types. The study results showed that a two-lead configuration exhibited better classification results compared with a single-lead configuration. The construction of a classifier with good performance between each pair of heartbeat types significantly improved the heartbeat classification performance. The results showed a sensitivity of 91.4% and a positive predictive value of 37.3% for LBBB and a sensitivity of 92.8% and a positive predictive value of 88.8% for RBBB. A multi-classifier ensemble method was proposed based on inter-patient data and demonstrated a satisfactory classification performance. This approach has the potential for application in clinical practice to distinguish LBBB and RBBB from NORM of unknown patients.
Morphology classification of galaxies in CL 0939+4713 using a ground-based telescope image
NASA Technical Reports Server (NTRS)
Fukugita, M.; Doi, M.; Dressler, A.; Gunn, J. E.
1995-01-01
Morphological classification is studied for galaxies in cluster CL 0939+4712 at z = 0.407 using simple photometric parameters obtained from a ground-based telescope image with seeing of 1-2 arcseconds full width at half maximim (FWHM). By ploting the galaxies in a plane of the concentration parameter versus mean surface brightness, we find a good correlation between the location on the plane and galaxy colors, which are known to correlate with morphological types from a recent Hubble Space Telescope (HST) study. Using the present method, we expect a success rate of classification into early and late types of about 70% or possibly more.
Grassland and shrubland habitat types of western Montana
W. F. Mueggler; W. L. Stewart
1978-01-01
A classification system based upon potential natural vegetation is presented for the grasslands and shrublands of the mountainous western third of Montana. The classification was developed by analyzing data from 580 stands. Twenty-nine habitat types in 13 climax series are defined and a diagnostic key provided for field identification. Environment, vegetative...
Lu, Yingjie
2013-01-01
To facilitate patient involvement in online health community and obtain informative support and emotional support they need, a topic identification approach was proposed in this paper for identifying automatically topics of the health-related messages in online health community, thus assisting patients in reaching the most relevant messages for their queries efficiently. Feature-based classification framework was presented for automatic topic identification in our study. We first collected the messages related to some predefined topics in a online health community. Then we combined three different types of features, n-gram-based features, domain-specific features and sentiment features to build four feature sets for health-related text representation. Finally, three different text classification techniques, C4.5, Naïve Bayes and SVM were adopted to evaluate our topic classification model. By comparing different feature sets and different classification techniques, we found that n-gram-based features, domain-specific features and sentiment features were all considered to be effective in distinguishing different types of health-related topics. In addition, feature reduction technique based on information gain was also effective to improve the topic classification performance. In terms of classification techniques, SVM outperformed C4.5 and Naïve Bayes significantly. The experimental results demonstrated that the proposed approach could identify the topics of online health-related messages efficiently.
Fuzzy logic based on-line fault detection and classification in transmission line.
Adhikari, Shuma; Sinha, Nidul; Dorendrajit, Thingam
2016-01-01
This study presents fuzzy logic based online fault detection and classification of transmission line using Programmable Automation and Control technology based National Instrument Compact Reconfigurable i/o (CRIO) devices. The LabVIEW software combined with CRIO can perform real time data acquisition of transmission line. When fault occurs in the system current waveforms are distorted due to transients and their pattern changes according to the type of fault in the system. The three phase alternating current, zero sequence and positive sequence current data generated by LabVIEW through CRIO-9067 are processed directly for relaying. The result shows that proposed technique is capable of right tripping action and classification of type of fault at high speed therefore can be employed in practical application.
NASA Astrophysics Data System (ADS)
Zagouras, Athanassios; Argiriou, Athanassios A.; Flocas, Helena A.; Economou, George; Fotopoulos, Spiros
2012-11-01
Classification of weather maps at various isobaric levels as a methodological tool is used in several problems related to meteorology, climatology, atmospheric pollution and to other fields for many years. Initially the classification was performed manually. The criteria used by the person performing the classification are features of isobars or isopleths of geopotential height, depending on the type of maps to be classified. Although manual classifications integrate the perceptual experience and other unquantifiable qualities of the meteorology specialists involved, these are typically subjective and time consuming. Furthermore, during the last years different approaches of automated methods for atmospheric circulation classification have been proposed, which present automated and so-called objective classifications. In this paper a new method of atmospheric circulation classification of isobaric maps is presented. The method is based on graph theory. It starts with an intelligent prototype selection using an over-partitioning mode of fuzzy c-means (FCM) algorithm, proceeds to a graph formulation for the entire dataset and produces the clusters based on the contemporary dominant sets clustering method. Graph theory is a novel mathematical approach, allowing a more efficient representation of spatially correlated data, compared to the classical Euclidian space representation approaches, used in conventional classification methods. The method has been applied to the classification of 850 hPa atmospheric circulation over the Eastern Mediterranean. The evaluation of the automated methods is performed by statistical indexes; results indicate that the classification is adequately comparable with other state-of-the-art automated map classification methods, for a variable number of clusters.
Li, Zhaohua; Wang, Yuduo; Quan, Wenxiang; Wu, Tongning; Lv, Bin
2015-02-15
Based on near-infrared spectroscopy (NIRS), recent converging evidence has been observed that patients with schizophrenia exhibit abnormal functional activities in the prefrontal cortex during a verbal fluency task (VFT). Therefore, some studies have attempted to employ NIRS measurements to differentiate schizophrenia patients from healthy controls with different classification methods. However, no systematic evaluation was conducted to compare their respective classification performances on the same study population. In this study, we evaluated the classification performance of four classification methods (including linear discriminant analysis, k-nearest neighbors, Gaussian process classifier, and support vector machines) on an NIRS-aided schizophrenia diagnosis. We recruited a large sample of 120 schizophrenia patients and 120 healthy controls and measured the hemoglobin response in the prefrontal cortex during the VFT using a multichannel NIRS system. Features for classification were extracted from three types of NIRS data in each channel. We subsequently performed a principal component analysis (PCA) for feature selection prior to comparison of the different classification methods. We achieved a maximum accuracy of 85.83% and an overall mean accuracy of 83.37% using a PCA-based feature selection on oxygenated hemoglobin signals and support vector machine classifier. This is the first comprehensive evaluation of different classification methods for the diagnosis of schizophrenia based on different types of NIRS signals. Our results suggested that, using the appropriate classification method, NIRS has the potential capacity to be an effective objective biomarker for the diagnosis of schizophrenia. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cheng, Tao; Zhang, Jialong; Zheng, Xinyan; Yuan, Rujin
2018-03-01
The project of The First National Geographic Conditions Census developed by Chinese government has designed the data acquisition content and indexes, and has built corresponding classification system mainly based on the natural property of material. However, the unified standard for land cover classification system has not been formed; the production always needs converting to meet the actual needs. Therefore, it proposed a refined classification method based on multi source of remote sensing information fusion. It takes the third-level classes of forest land and grassland for example, and has collected the thematic data of Vegetation Map of China (1:1,000,000), attempts to develop refined classification utilizing raster spatial analysis model. Study area is selected, and refined classification is achieved by using the proposed method. The results show that land cover within study area is divided principally among 20 classes, from subtropical broad-leaved forest (31131) to grass-forb community type of low coverage grassland (41192); what's more, after 30 years in the study area, climatic factors, developmental rhythm characteristics and vegetation ecological geographical characteristics have not changed fundamentally, only part of the original vegetation types have changed in spatial distribution range or land cover types. Research shows that refined classification for the third-level classes of forest land and grassland could make the results take on both the natural attributes of the original and plant community ecology characteristics, which could meet the needs of some industry application, and has certain practical significance for promoting the product of The First National Geographic Conditions Census.
Towards a Science Base for Cybersecurity
2016-06-08
DD-MM-YYYY) 03-06-2016 2. REPORT TYPE Final Technical 3. DATES COVERED (From - To) Jun 2011 - Jun 2016 4. TITLE AND SUBTITLE Towards a...was developed to support re-classification of information as it is transformed by program execution. The theory was then the basis for a new type ...system, and that type system was retrofit into a programming language. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT
Fu, Chen; Zhang, Nevin Lianwen; Chen, Bao-Xin; Chen, Zhou Rong; Jin, Xiang Lan; Guo, Rong-Juan; Chen, Zhi-Gang; Zhang, Yun-Ling
2017-05-01
To treat patients with vascular mild cognitive impairment (VMCI) using traditional Chinese medicine (TCM), it is necessary to classify the patients into TCM syndrome types and to apply different treatments to different types. In this paper, we investigate how to properly carry out the classification for patients with VMCI aged 50 or above using a novel data-driven method known as latent tree analysis (LTA). A cross-sectional survey on VMCI was carried out in several regions in Northern China between February 2008 and February 2012 which resulted in a data set that involves 803 patients and 93 symptoms. LTA was performed on the data to reveal symptom co-occurrence patterns, and the patients were partitioned into clusters in multiple ways based on the patterns. The patient clusters were matched up with syndrome types, and population statistics of the clusters are used to quantify the syndrome types and to establish classification rules. Eight syndrome types are identified: Qi deficiency, Qi stagnation, Blood deficiency, Blood stasis, Phlegm-dampness, Fire-heat, Yang deficiency, and Yin deficiency. The prevalence and symptom occurrence characteristics of each syndrome type are determined. Quantitative classification rules are established for determining whether a patient belongs to each of the syndrome types. A solution for the TCM syndrome classification problem for patients with VMCI and aged 50 or above is established based on the LTA of unlabeled symptom survey data. The results can be used as a reference in clinic practice to improve the quality of syndrome differentiation and to reduce diagnosis variances across physicians. They can also be used for patient selection in research projects aimed at finding biomarkers for the syndrome types and in randomized control trials aimed at determining the efficacy of TCM treatments of VMCI.
Chen, Min-jie; Yang, Chi; Qiu, Ya-ting; Zhou, Qin; Huang, Dong; Shi, Hui-min
2014-09-01
The objectives of this study were to introduce the classification of osteochondroma of the mandibular condyle based on computed tomographic images and to present our treatment experiences. From January 2002 and December 2012, a total of 61 patients with condylar osteochondroma were treated in our division. Both clinical and radiologic aspects were reviewed. The average follow-up period was 24.3 months with a range of 6 to 120 months. Two types of condylar osteochondroma were presented: type 1 (protruding expansion) in 50 patients (82.0%) and type 2 (globular expansion) in 11 patients (18.0%). Type 1 condylar osteochondroma presented 5 forms: anterior/anteromedial (58%), posterior/posteromedial (6%), medial (16%), lateral (6%), and gigantic (14%). Local resection was performed on patients with type 1 condylar osteochondroma. Subtotal condylectomy/total condylectomy using costochondral graft reconstruction with/without orthognathic surgeries was performed on patients with type 2 condylar osteochondroma. During the follow-up period, tumor reformation, condyle absorption, and new deformity were not detected. The patients almost reattained facial symmetry. Preoperative classification based on computed tomographic images will help surgeons to choose the suitable surgical procedure to treat the condylar osteochondroma.
Using Landsat MSS data with soils information to identify wetland habitats
NASA Technical Reports Server (NTRS)
Ernst, C. L.; Hoffer, R. M.
1981-01-01
A previous study showed that certain fresh water wetland vegetation types can be spectrally separated when a maximum likelihood classification procedure is applied to Landsat spectral data. However, wetland and upland types which have similar vegetative life forms (e.g., upland hardwoods and hardwood swamps) are often confused because of spectral similarity. Therefore, the current investigation attempts to differentiate similar wetland and upland types by combining Landsat multispectral scanner (MSS) data with soils information. The Pigeon River area in northern Indiana used in the earlier study was also employed in this investigation. A layered classification algorithm which combined soils and spectral data was used to generate a wetland classification. The results of the spectral/soils wetland classification are compared to the previous classification that had been based on spectral data alone. The results indicate wetland habitat mapping can be improved by combining soils and other ancillary data with Landsat spectral data.
A review of supervised object-based land-cover image classification
NASA Astrophysics Data System (ADS)
Ma, Lei; Li, Manchun; Ma, Xiaoxue; Cheng, Liang; Du, Peijun; Liu, Yongxue
2017-08-01
Object-based image classification for land-cover mapping purposes using remote-sensing imagery has attracted significant attention in recent years. Numerous studies conducted over the past decade have investigated a broad array of sensors, feature selection, classifiers, and other factors of interest. However, these research results have not yet been synthesized to provide coherent guidance on the effect of different supervised object-based land-cover classification processes. In this study, we first construct a database with 28 fields using qualitative and quantitative information extracted from 254 experimental cases described in 173 scientific papers. Second, the results of the meta-analysis are reported, including general characteristics of the studies (e.g., the geographic range of relevant institutes, preferred journals) and the relationships between factors of interest (e.g., spatial resolution and study area or optimal segmentation scale, accuracy and number of targeted classes), especially with respect to the classification accuracy of different sensors, segmentation scale, training set size, supervised classifiers, and land-cover types. Third, useful data on supervised object-based image classification are determined from the meta-analysis. For example, we find that supervised object-based classification is currently experiencing rapid advances, while development of the fuzzy technique is limited in the object-based framework. Furthermore, spatial resolution correlates with the optimal segmentation scale and study area, and Random Forest (RF) shows the best performance in object-based classification. The area-based accuracy assessment method can obtain stable classification performance, and indicates a strong correlation between accuracy and training set size, while the accuracy of the point-based method is likely to be unstable due to mixed objects. In addition, the overall accuracy benefits from higher spatial resolution images (e.g., unmanned aerial vehicle) or agricultural sites where it also correlates with the number of targeted classes. More than 95.6% of studies involve an area less than 300 ha, and the spatial resolution of images is predominantly between 0 and 2 m. Furthermore, we identify some methods that may advance supervised object-based image classification. For example, deep learning and type-2 fuzzy techniques may further improve classification accuracy. Lastly, scientists are strongly encouraged to report results of uncertainty studies to further explore the effects of varied factors on supervised object-based image classification.
Comparison of Classification Methods for P300 Brain-Computer Interface on Disabled Subjects
Manyakov, Nikolay V.; Chumerin, Nikolay; Combaz, Adrien; Van Hulle, Marc M.
2011-01-01
We report on tests with a mind typing paradigm based on a P300 brain-computer interface (BCI) on a group of amyotrophic lateral sclerosis (ALS), middle cerebral artery (MCA) stroke, and subarachnoid hemorrhage (SAH) patients, suffering from motor and speech disabilities. We investigate the achieved typing accuracy given the individual patient's disorder, and how it correlates with the type of classifier used. We considered 7 types of classifiers, linear as well as nonlinear ones, and found that, overall, one type of linear classifier yielded a higher classification accuracy. In addition to the selection of the classifier, we also suggest and discuss a number of recommendations to be considered when building a P300-based typing system for disabled subjects. PMID:21941530
NASA Astrophysics Data System (ADS)
Goetz-Weiss, L. R.; Herzfeld, U. C.; Trantow, T.; Hunke, E. C.; Maslanik, J. A.; Crocker, R. I.
2016-12-01
An important problem in model-data comparison is the identification of parameters that can be extracted from observational data as well as used in numerical models, which are typically based on idealized physical processes. Here, we present a suite of approaches to characterization and classification of sea ice and land ice types, properties and provinces based on several types of remote-sensing data. Applications will be given to not only illustrate the approach, but employ it in model evaluation and understanding of physical processes. (1) In a geostatistical characterization, spatial sea-ice properties in the Chukchi and Beaufort Sea and in Elsoon Lagoon are derived from analysis of RADARSAT and ERS-2 SAR data. (2) The analysis is taken further by utilizing multi-parameter feature vectors as inputs for unsupervised and supervised statistical classification, which facilitates classification of different sea-ice types. (3) Characteristic sea-ice parameters, as resultant from the classification, can then be applied in model evaluation, as demonstrated for the ridging scheme of the Los Alamos sea ice model, CICE, using high-resolution altimeter and image data collected from unmanned aircraft over Fram Strait during the Characterization of Arctic Sea Ice Experiment (CASIE). The characteristic parameters chosen in this application are directly related to deformation processes, which also underly the ridging scheme. (4) The method that is capable of the most complex classification tasks is the connectionist-geostatistical classification method. This approach has been developed to identify currently up to 18 different crevasse types in order to map progression of the surge through the complex Bering-Bagley Glacier System, Alaska, in 2011-2014. The analysis utilizes airborne altimeter data and video image data and satellite image data. Results of the crevasse classification are compare to fracture modeling and found to match.
Fully Convolutional Networks for Ground Classification from LIDAR Point Clouds
NASA Astrophysics Data System (ADS)
Rizaldy, A.; Persello, C.; Gevaert, C. M.; Oude Elberink, S. J.
2018-05-01
Deep Learning has been massively used for image classification in recent years. The use of deep learning for ground classification from LIDAR point clouds has also been recently studied. However, point clouds need to be converted into an image in order to use Convolutional Neural Networks (CNNs). In state-of-the-art techniques, this conversion is slow because each point is converted into a separate image. This approach leads to highly redundant computation during conversion and classification. The goal of this study is to design a more efficient data conversion and ground classification. This goal is achieved by first converting the whole point cloud into a single image. The classification is then performed by a Fully Convolutional Network (FCN), a modified version of CNN designed for pixel-wise image classification. The proposed method is significantly faster than state-of-the-art techniques. On the ISPRS Filter Test dataset, it is 78 times faster for conversion and 16 times faster for classification. Our experimental analysis on the same dataset shows that the proposed method results in 5.22 % of total error, 4.10 % of type I error, and 15.07 % of type II error. Compared to the previous CNN-based technique and LAStools software, the proposed method reduces the total error and type I error (while type II error is slightly higher). The method was also tested on a very high point density LIDAR point clouds resulting in 4.02 % of total error, 2.15 % of type I error and 6.14 % of type II error.
NASA Astrophysics Data System (ADS)
Sukawattanavijit, Chanika; Srestasathiern, Panu
2017-10-01
Land Use and Land Cover (LULC) information are significant to observe and evaluate environmental change. LULC classification applying remotely sensed data is a technique popularly employed on a global and local dimension particularly, in urban areas which have diverse land cover types. These are essential components of the urban terrain and ecosystem. In the present, object-based image analysis (OBIA) is becoming widely popular for land cover classification using the high-resolution image. COSMO-SkyMed SAR data was fused with THAICHOTE (namely, THEOS: Thailand Earth Observation Satellite) optical data for land cover classification using object-based. This paper indicates a comparison between object-based and pixel-based approaches in image fusion. The per-pixel method, support vector machines (SVM) was implemented to the fused image based on Principal Component Analysis (PCA). For the objectbased classification was applied to the fused images to separate land cover classes by using nearest neighbor (NN) classifier. Finally, the accuracy assessment was employed by comparing with the classification of land cover mapping generated from fused image dataset and THAICHOTE image. The object-based data fused COSMO-SkyMed with THAICHOTE images demonstrated the best classification accuracies, well over 85%. As the results, an object-based data fusion provides higher land cover classification accuracy than per-pixel data fusion.
Breaking the Cost Barrier in Automatic Classification.
ERIC Educational Resources Information Center
Doyle, L. B.
A low-cost automatic classification method is reported that uses computer time in proportion to NlogN, where N is the number of information items and the base is a parameter, some barriers besides cost are treated briefly in the opening section, including types of intellectual resistance to the idea of doing classification by content-word…
NASA Astrophysics Data System (ADS)
Tamimi, E.; Ebadi, H.; Kiani, A.
2017-09-01
Automatic building detection from High Spatial Resolution (HSR) images is one of the most important issues in Remote Sensing (RS). Due to the limited number of spectral bands in HSR images, using other features will lead to improve accuracy. By adding these features, the presence probability of dependent features will be increased, which leads to accuracy reduction. In addition, some parameters should be determined in Support Vector Machine (SVM) classification. Therefore, it is necessary to simultaneously determine classification parameters and select independent features according to image type. Optimization algorithm is an efficient method to solve this problem. On the other hand, pixel-based classification faces several challenges such as producing salt-paper results and high computational time in high dimensional data. Hence, in this paper, a novel method is proposed to optimize object-based SVM classification by applying continuous Ant Colony Optimization (ACO) algorithm. The advantages of the proposed method are relatively high automation level, independency of image scene and type, post processing reduction for building edge reconstruction and accuracy improvement. The proposed method was evaluated by pixel-based SVM and Random Forest (RF) classification in terms of accuracy. In comparison with optimized pixel-based SVM classification, the results showed that the proposed method improved quality factor and overall accuracy by 17% and 10%, respectively. Also, in the proposed method, Kappa coefficient was improved by 6% rather than RF classification. Time processing of the proposed method was relatively low because of unit of image analysis (image object). These showed the superiority of the proposed method in terms of time and accuracy.
Cloud Type Classification (cldtype) Value-Added Product
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flynn, Donna; Shi, Yan; Lim, K-S
The Cloud Type (cldtype) value-added product (VAP) provides an automated cloud type classification based on macrophysical quantities derived from vertically pointing lidar and radar. Up to 10 layers of clouds are classified into seven cloud types based on predetermined and site-specific thresholds of cloud top, base and thickness. Examples of thresholds for selected U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility sites are provided in Tables 1 and 2. Inputs for the cldtype VAP include lidar and radar cloud boundaries obtained from the Active Remotely Sensed Cloud Location (ARSCL) and Surface Meteorological Systems (MET) data. Rainmore » rates from MET are used to determine when radar signal attenuation precludes accurate cloud detection. Temporal resolution and vertical resolution for cldtype are 1 minute and 30 m respectively and match the resolution of ARSCL. The cldtype classification is an initial step for further categorization of clouds. It was developed for use by the Shallow Cumulus VAP to identify potential periods of interest to the LASSO model and is intended to find clouds of interest for a variety of users.« less
Use of mutation profiles to refine the classification of endometrial carcinomas
Cheang, Maggie CU; Wiegand, Kimberly; Senz, Janine; Tone, Alicia; Yang, Winnie; Prentice, Leah; Tse, Kane; Zeng, Thomas; McDonald, Helen; Schmidt, Amy P.; Mutch, David G.; McAlpine, Jessica N; Hirst, Martin; Shah, Sohrab P; Lee, Cheng-Han; Goodfellow, Paul J; Gilks, C. Blake; Huntsman, David G
2014-01-01
The classification of endometrial carcinomas is based on pathological assessment of tumour cell type; the different cell types (endometrioid, serous, carcinosarcoma, mixed, and clear cell) are associated with distinct molecular alterations. This current classification system for high-grade subtypes, in particular the distinction between high-grade endometrioid (EEC-3) and serous carcinomas (ESC), is limited in its reproducibility and prognostic abilities. Therefore, a search for specific molecular classifiers to improve endometrial carcinoma subclassification is warranted. We performed target enrichment sequencing on 393 endometrial carcinomas from two large cohorts, sequencing exons from the following 9 genes; ARID1A, PPP2R1A, PTEN, PIK3CA, KRAS, CTNNB1, TP53, BRAF and PPP2R5C. Based on this gene panel each endometrial carcinoma subtype shows a distinct mutation profile. EEC-3s have significantly different frequencies of PTEN and TP53 mutations when compared to low-grade endometrioid carcinomas. ESCs and EEC-3s are distinct subtypes with significantly different frequencies of mutations in PTEN, ARID1A, PPP2R1A, TP53, and CTNNB1. From the mutation profiles we were able to identify subtype outliers, i.e. cases diagnosed morphologically as one subtype but with a mutation profile suggestive of a different subtype. Careful review of these diagnostically challenging cases suggested that the original morphological classification was incorrect in most instances. The molecular profile of carcinosarcomas suggests two distinct mutation profiles for these tumours; endometrioid-type (PTEN, PIK3CA, ARID1A, KRAS mutations), and serous-type (TP53 and PPP2R1A mutations). While this nine gene panel does not allow for a purely molecularly based classification of endometrial carcinoma, it may prove useful as an adjunct to morphological classification and serve as an aid in the classification of problematic cases. If used in practice, it may lead to improved diagnostic reproducibility and may also serve to stratify patients for targeted therapeutics. PMID:22653804
River reach classification for the Greater Mekong Region at high spatial resolution
NASA Astrophysics Data System (ADS)
Ouellet Dallaire, C.; Lehner, B.
2014-12-01
River classifications have been used in river health and ecological assessments as coarse proxies to represent aquatic biodiversity when comprehensive biological and/or species data is unavailable. Currently there are no river classifications or biological data available in a consistent format for the extent of the Greater Mekong Region (GMR; including the Irrawaddy, the Salween, the Chao Praya, the Mekong and the Red River basins). The current project proposes a new river habitat classification for the region, facilitated by the HydroSHEDS (HYDROlogical SHuttle Elevation Derivatives at multiple Scales) database at 500m pixel resolution. The classification project is based on the Global River Classification framework relying on the creation of multiple sub-classifications based on different disciplines. The resulting classes from the sub-classification are later combined into final classes to create a holistic river reach classification. For the GMR, a final habitat classification was created based on three sub-classifications: a hydrological sub-classification based only on discharge indices (river size and flow variability); a physio-climatic sub-classification based on large scale indices of climate and elevation (biomes, ecoregions and elevation); and a geomorphological sub-classification based on local morphology (presence of floodplains, reach gradient and sand transport). Key variables and thresholds were identified in collaboration with local experts to ensure that regional knowledge was included. The final classification is composed 54 unique final classes based on 3 sub-classifications with less than 15 classes each. The resulting classifications are driven by abiotic variables and do not include biological data, but they represent a state-of-the art product based on best available data (mostly global data). The most common river habitat type is the "dry broadleaf, low gradient, very small river". These classifications could be applied in a wide range of hydro-ecological assessments and useful for a variety of stakeholders such as NGO, governments and researchers.
NASA Astrophysics Data System (ADS)
Gao, Yan; Marpu, Prashanth; Morales Manila, Luis M.
2014-11-01
This paper assesses the suitability of 8-band Worldview-2 (WV2) satellite data and object-based random forest algorithm for the classification of avocado growth stages in Mexico. We tested both pixel-based with minimum distance (MD) and maximum likelihood (MLC) and object-based with Random Forest (RF) algorithm for this task. Training samples and verification data were selected by visual interpreting the WV2 images for seven thematic classes: fully grown, middle stage, and early stage of avocado crops, bare land, two types of natural forests, and water body. To examine the contribution of the four new spectral bands of WV2 sensor, all the tested classifications were carried out with and without the four new spectral bands. Classification accuracy assessment results show that object-based classification with RF algorithm obtained higher overall higher accuracy (93.06%) than pixel-based MD (69.37%) and MLC (64.03%) method. For both pixel-based and object-based methods, the classifications with the four new spectral bands (overall accuracy obtained higher accuracy than those without: overall accuracy of object-based RF classification with vs without: 93.06% vs 83.59%, pixel-based MD: 69.37% vs 67.2%, pixel-based MLC: 64.03% vs 36.05%, suggesting that the four new spectral bands in WV2 sensor contributed to the increase of the classification accuracy.
Working Boards in Tertiary Education: Lessons from Three Case Studies. Professional File. Number 25
ERIC Educational Resources Information Center
Lang, Daniel W.
2005-01-01
There are a number of studies that classify governing boards into different types. Some classifications are based on management form. Some are based on the form in which authority is exercised. Some are based on the form of institution that the board serves. Most of these classifications include "working boards," but few offer a clear…
Object-oriented crop mapping and monitoring using multi-temporal polarimetric RADARSAT-2 data
NASA Astrophysics Data System (ADS)
Jiao, Xianfeng; Kovacs, John M.; Shang, Jiali; McNairn, Heather; Walters, Dan; Ma, Baoluo; Geng, Xiaoyuan
2014-10-01
The aim of this paper is to assess the accuracy of an object-oriented classification of polarimetric Synthetic Aperture Radar (PolSAR) data to map and monitor crops using 19 RADARSAT-2 fine beam polarimetric (FQ) images of an agricultural area in North-eastern Ontario, Canada. Polarimetric images and field data were acquired during the 2011 and 2012 growing seasons. The classification and field data collection focused on the main crop types grown in the region, which include: wheat, oat, soybean, canola and forage. The polarimetric parameters were extracted with PolSAR analysis using both the Cloude-Pottier and Freeman-Durden decompositions. The object-oriented classification, with a single date of PolSAR data, was able to classify all five crop types with an accuracy of 95% and Kappa of 0.93; a 6% improvement in comparison with linear-polarization only classification. However, the time of acquisition is crucial. The larger biomass crops of canola and soybean were most accurately mapped, whereas the identification of oat and wheat were more variable. The multi-temporal data using the Cloude-Pottier decomposition parameters provided the best classification accuracy compared to the linear polarizations and the Freeman-Durden decomposition parameters. In general, the object-oriented classifications were able to accurately map crop types by reducing the noise inherent in the SAR data. Furthermore, using the crop classification maps we were able to monitor crop growth stage based on a trend analysis of the radar response. Based on field data from canola crops, there was a strong relationship between the phenological growth stage based on the BBCH scale, and the HV backscatter and entropy.
Multiple-Primitives Hierarchical Classification of Airborne Laser Scanning Data in Urban Areas
NASA Astrophysics Data System (ADS)
Ni, H.; Lin, X. G.; Zhang, J. X.
2017-09-01
A hierarchical classification method for Airborne Laser Scanning (ALS) data of urban areas is proposed in this paper. This method is composed of three stages among which three types of primitives are utilized, i.e., smooth surface, rough surface, and individual point. In the first stage, the input ALS data is divided into smooth surfaces and rough surfaces by employing a step-wise point cloud segmentation method. In the second stage, classification based on smooth surfaces and rough surfaces is performed. Points in the smooth surfaces are first classified into ground and buildings based on semantic rules. Next, features of rough surfaces are extracted. Then, points in rough surfaces are classified into vegetation and vehicles based on the derived features and Random Forests (RF). In the third stage, point-based features are extracted for the ground points, and then, an individual point classification procedure is performed to classify the ground points into bare land, artificial ground and greenbelt. Moreover, the shortages of the existing studies are analyzed, and experiments show that the proposed method overcomes these shortages and handles more types of objects.
A new classification scheme of plastic wastes based upon recycling labels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Özkan, Kemal, E-mail: kozkan@ogu.edu.tr; Ergin, Semih, E-mail: sergin@ogu.edu.tr; Işık, Şahin, E-mail: sahini@ogu.edu.tr
Highlights: • PET, HPDE or PP types of plastics are considered. • An automated classification of plastic bottles based on the feature extraction and classification methods is performed. • The decision mechanism consists of PCA, Kernel PCA, FLDA, SVD and Laplacian Eigenmaps methods. • SVM is selected to achieve the classification task and majority voting technique is used. - Abstract: Since recycling of materials is widely assumed to be environmentally and economically beneficial, reliable sorting and processing of waste packaging materials such as plastics is very important for recycling with high efficiency. An automated system that can quickly categorize thesemore » materials is certainly needed for obtaining maximum classification while maintaining high throughput. In this paper, first of all, the photographs of the plastic bottles have been taken and several preprocessing steps were carried out. The first preprocessing step is to extract the plastic area of a bottle from the background. Then, the morphological image operations are implemented. These operations are edge detection, noise removal, hole removing, image enhancement, and image segmentation. These morphological operations can be generally defined in terms of the combinations of erosion and dilation. The effect of bottle color as well as label are eliminated using these operations. Secondly, the pixel-wise intensity values of the plastic bottle images have been used together with the most popular subspace and statistical feature extraction methods to construct the feature vectors in this study. Only three types of plastics are considered due to higher existence ratio of them than the other plastic types in the world. The decision mechanism consists of five different feature extraction methods including as Principal Component Analysis (PCA), Kernel PCA (KPCA), Fisher’s Linear Discriminant Analysis (FLDA), Singular Value Decomposition (SVD) and Laplacian Eigenmaps (LEMAP) and uses a simple experimental setup with a camera and homogenous backlighting. Due to the giving global solution for a classification problem, Support Vector Machine (SVM) is selected to achieve the classification task and majority voting technique is used as the decision mechanism. This technique equally weights each classification result and assigns the given plastic object to the class that the most classification results agree on. The proposed classification scheme provides high accuracy rate, and also it is able to run in real-time applications. It can automatically classify the plastic bottle types with approximately 90% recognition accuracy. Besides this, the proposed methodology yields approximately 96% classification rate for the separation of PET or non-PET plastic types. It also gives 92% accuracy for the categorization of non-PET plastic types into HPDE or PP.« less
The Effects of Institutional Classification and Gender on Faculty Inclusion of Syllabus Components
ERIC Educational Resources Information Center
Doolittle, Peter E.; Lusk, Danielle L.
2007-01-01
The purpose of this research was to explore the effects that gender and institutional classification have on the inclusion of syllabus components. Course syllabi (N = 350) written by men and women from seven types of institutions, based on Carnegie classification, were sampled and evaluated for the presence of 26 syllabus components. The gender…
New insights into the classification and nomenclature of cortical GABAergic interneurons.
DeFelipe, Javier; López-Cruz, Pedro L; Benavides-Piccione, Ruth; Bielza, Concha; Larrañaga, Pedro; Anderson, Stewart; Burkhalter, Andreas; Cauli, Bruno; Fairén, Alfonso; Feldmeyer, Dirk; Fishell, Gord; Fitzpatrick, David; Freund, Tamás F; González-Burgos, Guillermo; Hestrin, Shaul; Hill, Sean; Hof, Patrick R; Huang, Josh; Jones, Edward G; Kawaguchi, Yasuo; Kisvárday, Zoltán; Kubota, Yoshiyuki; Lewis, David A; Marín, Oscar; Markram, Henry; McBain, Chris J; Meyer, Hanno S; Monyer, Hannah; Nelson, Sacha B; Rockland, Kathleen; Rossier, Jean; Rubenstein, John L R; Rudy, Bernardo; Scanziani, Massimo; Shepherd, Gordon M; Sherwood, Chet C; Staiger, Jochen F; Tamás, Gábor; Thomson, Alex; Wang, Yun; Yuste, Rafael; Ascoli, Giorgio A
2013-03-01
A systematic classification and accepted nomenclature of neuron types is much needed but is currently lacking. This article describes a possible taxonomical solution for classifying GABAergic interneurons of the cerebral cortex based on a novel, web-based interactive system that allows experts to classify neurons with pre-determined criteria. Using Bayesian analysis and clustering algorithms on the resulting data, we investigated the suitability of several anatomical terms and neuron names for cortical GABAergic interneurons. Moreover, we show that supervised classification models could automatically categorize interneurons in agreement with experts' assignments. These results demonstrate a practical and objective approach to the naming, characterization and classification of neurons based on community consensus.
New insights into the classification and nomenclature of cortical GABAergic interneurons
DeFelipe, Javier; López-Cruz, Pedro L.; Benavides-Piccione, Ruth; Bielza, Concha; Larrañaga, Pedro; Anderson, Stewart; Burkhalter, Andreas; Cauli, Bruno; Fairén, Alfonso; Feldmeyer, Dirk; Fishell, Gord; Fitzpatrick, David; Freund, Tamás F.; González-Burgos, Guillermo; Hestrin, Shaul; Hill, Sean; Hof, Patrick R.; Huang, Josh; Jones, Edward G.; Kawaguchi, Yasuo; Kisvárday, Zoltán; Kubota, Yoshiyuki; Lewis, David A.; Marín, Oscar; Markram, Henry; McBain, Chris J.; Meyer, Hanno S.; Monyer, Hannah; Nelson, Sacha B.; Rockland, Kathleen; Rossier, Jean; Rubenstein, John L. R.; Rudy, Bernardo; Scanziani, Massimo; Shepherd, Gordon M.; Sherwood, Chet C.; Staiger, Jochen F.; Tamás, Gábor; Thomson, Alex; Wang, Yun; Yuste, Rafael; Ascoli, Giorgio A.
2013-01-01
A systematic classification and accepted nomenclature of neuron types is much needed but is currently lacking. This article describes a possible taxonomical solution for classifying GABAergic interneurons of the cerebral cortex based on a novel, web-based interactive system that allows experts to classify neurons with pre-determined criteria. Using Bayesian analysis and clustering algorithms on the resulting data, we investigated the suitability of several anatomical terms and neuron names for cortical GABAergic interneurons. Moreover, we show that supervised classification models could automatically categorize interneurons in agreement with experts’ assignments. These results demonstrate a practical and objective approach to the naming, characterization and classification of neurons based on community consensus. PMID:23385869
Reverse Shoulder Arthroplasty Prosthesis Design Classification System.
Routman, Howard D; Flurin, Pierre-Henri; Wright, Thomas W; Zuckerman, Joseph D; Hamilton, Matthew A; Roche, Christopher P
2015-12-01
Multiple different reverse total shoulder arthroplasty (rTSA) prosthesis designs are available in the global marketplace for surgeons to perform this growing procedure. Subtle differences in rTSA prosthesis design parameters have been shown to have significant biomechanical impact and clinical consequences. We propose an rTSA prosthesis design classification system to objectively identify and categorize different designs based upon their specific glenoid and humeral prosthetic characteristics for the purpose of standardizing nomenclature that will help the orthopaedic surgeon determine which combination of design configurations best suit a given clinical scenario. The impact of each prosthesis classification type on shoulder muscle length and deltoid wrapping are also described to illustrate how each prosthesis classification type impacts these biomechanical parameters.
NASA Astrophysics Data System (ADS)
Äijälä, Mikko; Heikkinen, Liine; Fröhlich, Roman; Canonaco, Francesco; Prévôt, André S. H.; Junninen, Heikki; Petäjä, Tuukka; Kulmala, Markku; Worsnop, Douglas; Ehn, Mikael
2017-03-01
Mass spectrometric measurements commonly yield data on hundreds of variables over thousands of points in time. Refining and synthesizing this raw data into chemical information necessitates the use of advanced, statistics-based data analytical techniques. In the field of analytical aerosol chemistry, statistical, dimensionality reductive methods have become widespread in the last decade, yet comparable advanced chemometric techniques for data classification and identification remain marginal. Here we present an example of combining data dimensionality reduction (factorization) with exploratory classification (clustering), and show that the results cannot only reproduce and corroborate earlier findings, but also complement and broaden our current perspectives on aerosol chemical classification. We find that applying positive matrix factorization to extract spectral characteristics of the organic component of air pollution plumes, together with an unsupervised clustering algorithm, k-means+ + , for classification, reproduces classical organic aerosol speciation schemes. Applying appropriately chosen metrics for spectral dissimilarity along with optimized data weighting, the source-specific pollution characteristics can be statistically resolved even for spectrally very similar aerosol types, such as different combustion-related anthropogenic aerosol species and atmospheric aerosols with similar degree of oxidation. In addition to the typical oxidation level and source-driven aerosol classification, we were also able to classify and characterize outlier groups that would likely be disregarded in a more conventional analysis. Evaluating solution quality for the classification also provides means to assess the performance of mass spectral similarity metrics and optimize weighting for mass spectral variables. This facilitates algorithm-based evaluation of aerosol spectra, which may prove invaluable for future development of automatic methods for spectra identification and classification. Robust, statistics-based results and data visualizations also provide important clues to a human analyst on the existence and chemical interpretation of data structures. Applying these methods to a test set of data, aerosol mass spectrometric data of organic aerosol from a boreal forest site, yielded five to seven different recurring pollution types from various sources, including traffic, cooking, biomass burning and nearby sawmills. Additionally, three distinct, minor pollution types were discovered and identified as amine-dominated aerosols.
Object-based land-cover classification for metropolitan Phoenix, Arizona, using aerial photography
NASA Astrophysics Data System (ADS)
Li, Xiaoxiao; Myint, Soe W.; Zhang, Yujia; Galletti, Chritopher; Zhang, Xiaoxiang; Turner, Billie L.
2014-12-01
Detailed land-cover mapping is essential for a range of research issues addressed by the sustainability and land system sciences and planning. This study uses an object-based approach to create a 1 m land-cover classification map of the expansive Phoenix metropolitan area through the use of high spatial resolution aerial photography from National Agricultural Imagery Program. It employs an expert knowledge decision rule set and incorporates the cadastral GIS vector layer as auxiliary data. The classification rule was established on a hierarchical image object network, and the properties of parcels in the vector layer were used to establish land cover types. Image segmentations were initially utilized to separate the aerial photos into parcel sized objects, and were further used for detailed land type identification within the parcels. Characteristics of image objects from contextual and geometrical aspects were used in the decision rule set to reduce the spectral limitation of the four-band aerial photography. Classification results include 12 land-cover classes and subclasses that may be assessed from the sub-parcel to the landscape scales, facilitating examination of scale dynamics. The proposed object-based classification method provides robust results, uses minimal and readily available ancillary data, and reduces computational time.
Diversity of mire massif types in the boreal zone of European Russia
NASA Astrophysics Data System (ADS)
Kuznetsov, O. L.
2018-03-01
In Russia, mire massif type is the principal structural unit for descriptions of the diversity of regional mire ecosystems of various ranks, vegetation mapping, and decision-making on the use of mires. The classification of mire massifs is based on various criteria and indicators. The botanical-geographical classification of mire massifs of the boreal zone of European Russia is four-tiered, and includes 22 types gathered in groups, subgroups and three classes. For most of the types their characteristic associations and diagnostic species are stated.
Korucu, M Kemal; Kaplan, Özgür; Büyük, Osman; Güllü, M Kemal
2016-10-01
In this study, we investigate the usability of sound recognition for source separation of packaging wastes in reverse vending machines (RVMs). For this purpose, an experimental setup equipped with a sound recording mechanism was prepared. Packaging waste sounds generated by three physical impacts such as free falling, pneumatic hitting and hydraulic crushing were separately recorded using two different microphones. To classify the waste types and sizes based on sound features of the wastes, a support vector machine (SVM) and a hidden Markov model (HMM) based sound classification systems were developed. In the basic experimental setup in which only free falling impact type was considered, SVM and HMM systems provided 100% classification accuracy for both microphones. In the expanded experimental setup which includes all three impact types, material type classification accuracies were 96.5% for dynamic microphone and 97.7% for condenser microphone. When both the material type and the size of the wastes were classified, the accuracy was 88.6% for the microphones. The modeling studies indicated that hydraulic crushing impact type recordings were very noisy for an effective sound recognition application. In the detailed analysis of the recognition errors, it was observed that most of the errors occurred in the hitting impact type. According to the experimental results, it can be said that the proposed novel approach for the separation of packaging wastes could provide a high classification performance for RVMs. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Blurred Line between Form and Process: A Comparison of Stream Channel Classification Frameworks
Kasprak, Alan; Hough-Snee, Nate
2016-01-01
Stream classification provides a means to understand the diversity and distribution of channels and floodplains that occur across a landscape while identifying links between geomorphic form and process. Accordingly, stream classification is frequently employed as a watershed planning, management, and restoration tool. At the same time, there has been intense debate and criticism of particular frameworks, on the grounds that these frameworks classify stream reaches based largely on their physical form, rather than direct measurements of their component hydrogeomorphic processes. Despite this debate surrounding stream classifications, and their ongoing use in watershed management, direct comparisons of channel classification frameworks are rare. Here we implement four stream classification frameworks and explore the degree to which each make inferences about hydrogeomorphic process from channel form within the Middle Fork John Day Basin, a watershed of high conservation interest within the Columbia River Basin, U.S.A. We compare the results of the River Styles Framework, Natural Channel Classification, Rosgen Classification System, and a channel form-based statistical classification at 33 field-monitored sites. We found that the four frameworks consistently classified reach types into similar groups based on each reach or segment’s dominant hydrogeomorphic elements. Where classified channel types diverged, differences could be attributed to the (a) spatial scale of input data used, (b) the requisite metrics and their order in completing a framework’s decision tree and/or, (c) whether the framework attempts to classify current or historic channel form. Divergence in framework agreement was also observed at reaches where channel planform was decoupled from valley setting. Overall, the relative agreement between frameworks indicates that criticism of individual classifications for their use of form in grouping stream channels may be overstated. These form-based criticisms may also ignore the geomorphic tenet that channel form reflects formative hydrogeomorphic processes across a given landscape. PMID:26982076
Kim, Jeong Tae; Kim, Youn Hwan; Ghanem, Ali M
2015-11-01
Complex defects present structural and functional challenges to reconstructive surgeons. When compared to multiple free flaps or staged reconstruction, the use of chimeric flaps to reconstruct such defects have many advantages such as reduced number of operative procedures and donor site morbidity as well as preservation of recipient vessels. With increased popularity of perforator flaps, chimeric flaps' harvest and design has benefited from 'perforator concept' towards more versatile and better reconstruction solutions. This article discusses perforator based chimeric flaps and presents a practice based classification system that incorporates the perforator flap concept into "Perforator Chimerism". The authors analyzed a variety of chimeric patterns used in 31 consecutive cases to present illustrative case series and their new classification system. Accordingly, chimeric flaps are classified into four types. Type I: Classical Chimerism, Type II: Anastomotic Chimerism, Type III: Perforator Chimerism and Type IV Mixed Chimerism. Types I on specific source vessel anatomy whilst Type II requires microvascular anastomosis to create the chimeric reconstructive solution. Type III chimeric flaps utilizes the perforator concept to raise two components of tissues without microvascular anastomosis between them. Type IV chimeric flaps are mixed type flaps comprising any combination of Types I to III. Incorporation of the perforator concept in planning and designing chimeric flaps has allowed safe, effective and aesthetically superior reconstruction of complex defects. The new classification system aids reconstructive surgeons and trainees to understand chimeric flaps design, facilitating effective incorporation of this important reconstructive technique into the armamentarium of the reconstruction toolbox. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Yong Wang; Shanta Parajuli; Callie Schweitzer; Glendon Smalley; Dawn Lemke; Wubishet Tadesse; Xiongwen Chen
2010-01-01
Forest cover classifications focus on the overall growth form (physiognomy) of the community, dominant vegetation, and species composition of the existing forest. Accurately classifying the forest cover type is important for forest inventory and silviculture. We compared classification accuracy based on Landsat Enhanced Thematic Mapper Plus (Landsat ETM+) and Satellite...
Harmouche, Rola; Subbanna, Nagesh K; Collins, D Louis; Arnold, Douglas L; Arbel, Tal
2015-05-01
In this paper, a fully automatic probabilistic method for multiple sclerosis (MS) lesion classification is presented, whereby the posterior probability density function over healthy tissues and two types of lesions (T1-hypointense and T2-hyperintense) is generated at every voxel. During training, the system explicitly models the spatial variability of the intensity distributions throughout the brain by first segmenting it into distinct anatomical regions and then building regional likelihood distributions for each tissue class based on multimodal magnetic resonance image (MRI) intensities. Local class smoothness is ensured by incorporating neighboring voxel information in the prior probability through Markov random fields. The system is tested on two datasets from real multisite clinical trials consisting of multimodal MRIs from a total of 100 patients with MS. Lesion classification results based on the framework are compared with and without the regional information, as well as with other state-of-the-art methods against the labels from expert manual raters. The metrics for comparison include Dice overlap, sensitivity, and positive predictive rates for both voxel and lesion classifications. Statistically significant improvements in Dice values ( ), for voxel-based and lesion-based sensitivity values ( ), and positive predictive rates ( and respectively) are shown when the proposed method is compared to the method without regional information, and to a widely used method [1]. This holds particularly true in the posterior fossa, an area where classification is very challenging. The proposed method allows us to provide clinicians with accurate tissue labels for T1-hypointense and T2-hyperintense lesions, two types of lesions that differ in appearance and clinical ramifications, and with a confidence level in the classification, which helps clinicians assess the classification results.
DOT National Transportation Integrated Search
1980-02-01
The report describes the development of an AGT classification structure. Five classes are defined based on three system characteristics: service type, minimum travelling unit capacity, and maximum operating velocity. The five classes defined are: Per...
Sub-pixel image classification for forest types in East Texas
NASA Astrophysics Data System (ADS)
Westbrook, Joey
Sub-pixel classification is the extraction of information about the proportion of individual materials of interest within a pixel. Landcover classification at the sub-pixel scale provides more discrimination than traditional per-pixel multispectral classifiers for pixels where the material of interest is mixed with other materials. It allows for the un-mixing of pixels to show the proportion of each material of interest. The materials of interest for this study are pine, hardwood, mixed forest and non-forest. The goal of this project was to perform a sub-pixel classification, which allows a pixel to have multiple labels, and compare the result to a traditional supervised classification, which allows a pixel to have only one label. The satellite image used was a Landsat 5 Thematic Mapper (TM) scene of the Stephen F. Austin Experimental Forest in Nacogdoches County, Texas and the four cover type classes are pine, hardwood, mixed forest and non-forest. Once classified, a multi-layer raster datasets was created that comprised four raster layers where each layer showed the percentage of that cover type within the pixel area. Percentage cover type maps were then produced and the accuracy of each was assessed using a fuzzy error matrix for the sub-pixel classifications, and the results were compared to the supervised classification in which a traditional error matrix was used. The overall accuracy of the sub-pixel classification using the aerial photo for both training and reference data had the highest (65% overall) out of the three sub-pixel classifications. This was understandable because the analyst can visually observe the cover types actually on the ground for training data and reference data, whereas using the FIA (Forest Inventory and Analysis) plot data, the analyst must assume that an entire pixel contains the exact percentage of a cover type found in a plot. An increase in accuracy was found after reclassifying each sub-pixel classification from nine classes with 10 percent interval each to five classes with 20 percent interval each. When compared to the supervised classification which has a satisfactory overall accuracy of 90%, none of the sub-pixel classification achieved the same level. However, since traditional per-pixel classifiers assign only one label to pixels throughout the landscape while sub-pixel classifications assign multiple labels to each pixel, the traditional 85% accuracy of acceptance for pixel-based classifications should not apply to sub-pixel classifications. More research is needed in order to define the level of accuracy that is deemed acceptable for sub-pixel classifications.
Classification of Strawberry Fruit Shape by Machine Learning
NASA Astrophysics Data System (ADS)
Ishikawa, T.; Hayashi, A.; Nagamatsu, S.; Kyutoku, Y.; Dan, I.; Wada, T.; Oku, K.; Saeki, Y.; Uto, T.; Tanabata, T.; Isobe, S.; Kochi, N.
2018-05-01
Shape is one of the most important traits of agricultural products due to its relationships with the quality, quantity, and value of the products. For strawberries, the nine types of fruit shape were defined and classified by humans based on the sampler patterns of the nine types. In this study, we tested the classification of strawberry shapes by machine learning in order to increase the accuracy of the classification, and we introduce the concept of computerization into this field. Four types of descriptors were extracted from the digital images of strawberries: (1) the Measured Values (MVs) including the length of the contour line, the area, the fruit length and width, and the fruit width/length ratio; (2) the Ellipse Similarity Index (ESI); (3) Elliptic Fourier Descriptors (EFDs), and (4) Chain Code Subtraction (CCS). We used these descriptors for the classification test along with the random forest approach, and eight of the nine shape types were classified with combinations of MVs + CCS + EFDs. CCS is a descriptor that adds human knowledge to the chain codes, and it showed higher robustness in classification than the other descriptors. Our results suggest machine learning's high ability to classify fruit shapes accurately. We will attempt to increase the classification accuracy and apply the machine learning methods to other plant species.
Personality Types and Learners' Interaction in Web-Based Threaded Discussion
ERIC Educational Resources Information Center
Lee, JeongMin; Lee, Youngmin
2006-01-01
This study examined the effects of group composition based on the learners' personality types as measured by the Myers-Briggs type indicator as they interacted in threaded discussions. Three groups comprised introverts, extroverts, and mixed introvert-extrovert classifications. Ninety-six participants were divided into 24 groups of 4 participants…
DeepGene: an advanced cancer type classifier based on deep learning and somatic point mutations.
Yuan, Yuchen; Shi, Yi; Li, Changyang; Kim, Jinman; Cai, Weidong; Han, Zeguang; Feng, David Dagan
2016-12-23
With the developments of DNA sequencing technology, large amounts of sequencing data have become available in recent years and provide unprecedented opportunities for advanced association studies between somatic point mutations and cancer types/subtypes, which may contribute to more accurate somatic point mutation based cancer classification (SMCC). However in existing SMCC methods, issues like high data sparsity, small volume of sample size, and the application of simple linear classifiers, are major obstacles in improving the classification performance. To address the obstacles in existing SMCC studies, we propose DeepGene, an advanced deep neural network (DNN) based classifier, that consists of three steps: firstly, the clustered gene filtering (CGF) concentrates the gene data by mutation occurrence frequency, filtering out the majority of irrelevant genes; secondly, the indexed sparsity reduction (ISR) converts the gene data into indexes of its non-zero elements, thereby significantly suppressing the impact of data sparsity; finally, the data after CGF and ISR is fed into a DNN classifier, which extracts high-level features for accurate classification. Experimental results on our curated TCGA-DeepGene dataset, which is a reformulated subset of the TCGA dataset containing 12 selected types of cancer, show that CGF, ISR and DNN all contribute in improving the overall classification performance. We further compare DeepGene with three widely adopted classifiers and demonstrate that DeepGene has at least 24% performance improvement in terms of testing accuracy. Based on deep learning and somatic point mutation data, we devise DeepGene, an advanced cancer type classifier, which addresses the obstacles in existing SMCC studies. Experiments indicate that DeepGene outperforms three widely adopted existing classifiers, which is mainly attributed to its deep learning module that is able to extract the high level features between combinatorial somatic point mutations and cancer types.
Empirical Analysis and Automated Classification of Security Bug Reports
NASA Technical Reports Server (NTRS)
Tyo, Jacob P.
2016-01-01
With the ever expanding amount of sensitive data being placed into computer systems, the need for effective cybersecurity is of utmost importance. However, there is a shortage of detailed empirical studies of security vulnerabilities from which cybersecurity metrics and best practices could be determined. This thesis has two main research goals: (1) to explore the distribution and characteristics of security vulnerabilities based on the information provided in bug tracking systems and (2) to develop data analytics approaches for automatic classification of bug reports as security or non-security related. This work is based on using three NASA datasets as case studies. The empirical analysis showed that the majority of software vulnerabilities belong only to a small number of types. Addressing these types of vulnerabilities will consequently lead to cost efficient improvement of software security. Since this analysis requires labeling of each bug report in the bug tracking system, we explored using machine learning to automate the classification of each bug report as a security or non-security related (two-class classification), as well as each security related bug report as specific security type (multiclass classification). In addition to using supervised machine learning algorithms, a novel unsupervised machine learning approach is proposed. An ac- curacy of 92%, recall of 96%, precision of 92%, probability of false alarm of 4%, F-Score of 81% and G-Score of 90% were the best results achieved during two-class classification. Furthermore, an accuracy of 80%, recall of 80%, precision of 94%, and F-score of 85% were the best results achieved during multiclass classification.
Pozzi-Mucelli, R; Pozzi-Mucelli, R; Pagnan, L; Dalla Palma, L
1994-12-01
The introduction of therapies other than conventional surgery of hepatocellular carcinoma (HCC) requires an accurate pathologic classification, which is important because it is well known that HCC may have multicentric growth. The Liver Cancer Study Group of Japan has proposed a classification dividing HCCs into three macroscopic forms from the pathologic point of view: nodular, massive and infiltrating HCCs. The nodular type is subdivided into four types: single nodular type, single nodular type with surrounding proliferation, multinodular fused type and multinodular type. Forty-six HCC patients were examined with Lipiodol Computed Tomography (LCT) to investigate the agreement between pathologic and imaging findings. LCT proved to be in close agreement with pathologic findings. Sixteen cases were classified as type I (single nodular type), 8 as type II (single nodular type with limited foci), 1 as type III (multinodular fused type), 18 as type IV (multiple nodular type with diffuse foci) and 3 cases as type V (massive form). No cases of infiltrative forms were observed in our series. Based on LCT findings, the capabilities of digital subtraction angiography (DSA) were studied in the pathologic classification of HCCs. DSA exhibited some limitations in the pathologic classification of HCCs in 5 of 16 patients with type I lesions. In these cases DSA suggested false-positive diagnoses because of regenerative nodules in cirrhotic liver in 3 cases and of daughter nodules (not confirmed at LCT) in 2 cases. In 7 of 8 patients with type II HCCs, DSA failed to show the daughter nodules surrounding the main nodule. In the 18 patients with multiple distant nodules (type IV), DSA was less sensitive in defining nodule number and site. In the massive form, the information obtained with LCT and DSA was comparable. In conclusion, LCT should be considered a basic examination in the study of HCC extent. Based on LCT findings, the most appropriate treatment can be selected, be it surgery, alcohol injection, or intraarterial chemoembolization.
Delineation of marsh types and marsh-type change in coastal Louisiana for 2007 and 2013
Hartley, Stephen B.; Couvillion, Brady R.; Enwright, Nicholas M.
2017-05-30
The Bureau of Ocean Energy Management researchers often require detailed information regarding emergent marsh vegetation types (such as fresh, intermediate, brackish, and saline) for modeling habitat capacities and mitigation. In response, the U.S. Geological Survey in cooperation with the Bureau of Ocean Energy Management produced a detailed change classification of emergent marsh vegetation types in coastal Louisiana from 2007 and 2013. This study incorporates two existing vegetation surveys and independent variables such as Landsat Thematic Mapper multispectral satellite imagery, high-resolution airborne imagery from 2007 and 2013, bare-earth digital elevation models based on airborne light detection and ranging, alternative contemporary land-cover classifications, and other spatially explicit variables. An image classification based on image objects was created from 2007 and 2013 National Agriculture Imagery Program color-infrared aerial photography. The final products consisted of two 10-meter raster datasets. Each image object from the 2007 and 2013 spatial datasets was assigned a vegetation classification by using a simple majority filter. In addition to those spatial datasets, we also conducted a change analysis between the datasets to produce a 10-meter change raster product. This analysis identified how much change has taken place and where change has occurred. The spatial data products show dynamic areas where marsh loss is occurring or where marsh type is changing. This information can be used to assist and advance conservation efforts for priority natural resources.
Lauren classification and individualized chemotherapy in gastric cancer.
Ma, Junli; Shen, Hong; Kapesa, Linda; Zeng, Shan
2016-05-01
Gastric cancer is one of the most common malignancies worldwide. During the last 50 years, the histological classification of gastric carcinoma has been largely based on Lauren's criteria, in which gastric cancer is classified into two major histological subtypes, namely intestinal type and diffuse type adenocarcinoma. This classification was introduced in 1965, and remains currently widely accepted and employed, since it constitutes a simple and robust classification approach. The two histological subtypes of gastric cancer proposed by the Lauren classification exhibit a number of distinct clinical and molecular characteristics, including histogenesis, cell differentiation, epidemiology, etiology, carcinogenesis, biological behaviors and prognosis. Gastric cancer exhibits varied sensitivity to chemotherapy drugs and significant heterogeneity; therefore, the disease may be a target for individualized therapy. The Lauren classification may provide the basis for individualized treatment for advanced gastric cancer, which is increasingly gaining attention in the scientific field. However, few studies have investigated individualized treatment that is guided by pathological classification. The aim of the current review is to analyze the two major histological subtypes of gastric cancer, as proposed by the Lauren classification, and to discuss the implications of this for personalized chemotherapy.
Lossless Compression of Classification-Map Data
NASA Technical Reports Server (NTRS)
Hua, Xie; Klimesh, Matthew
2009-01-01
A lossless image-data-compression algorithm intended specifically for application to classification-map data is based on prediction, context modeling, and entropy coding. The algorithm was formulated, in consideration of the differences between classification maps and ordinary images of natural scenes, so as to be capable of compressing classification- map data more effectively than do general-purpose image-data-compression algorithms. Classification maps are typically generated from remote-sensing images acquired by instruments aboard aircraft (see figure) and spacecraft. A classification map is a synthetic image that summarizes information derived from one or more original remote-sensing image(s) of a scene. The value assigned to each pixel in such a map is the index of a class that represents some type of content deduced from the original image data for example, a type of vegetation, a mineral, or a body of water at the corresponding location in the scene. When classification maps are generated onboard the aircraft or spacecraft, it is desirable to compress the classification-map data in order to reduce the volume of data that must be transmitted to a ground station.
A Machine Learning-based Method for Question Type Classification in Biomedical Question Answering.
Sarrouti, Mourad; Ouatik El Alaoui, Said
2017-05-18
Biomedical question type classification is one of the important components of an automatic biomedical question answering system. The performance of the latter depends directly on the performance of its biomedical question type classification system, which consists of assigning a category to each question in order to determine the appropriate answer extraction algorithm. This study aims to automatically classify biomedical questions into one of the four categories: (1) yes/no, (2) factoid, (3) list, and (4) summary. In this paper, we propose a biomedical question type classification method based on machine learning approaches to automatically assign a category to a biomedical question. First, we extract features from biomedical questions using the proposed handcrafted lexico-syntactic patterns. Then, we feed these features for machine-learning algorithms. Finally, the class label is predicted using the trained classifiers. Experimental evaluations performed on large standard annotated datasets of biomedical questions, provided by the BioASQ challenge, demonstrated that our method exhibits significant improved performance when compared to four baseline systems. The proposed method achieves a roughly 10-point increase over the best baseline in terms of accuracy. Moreover, the obtained results show that using handcrafted lexico-syntactic patterns as features' provider of support vector machine (SVM) lead to the highest accuracy of 89.40 %. The proposed method can automatically classify BioASQ questions into one of the four categories: yes/no, factoid, list, and summary. Furthermore, the results demonstrated that our method produced the best classification performance compared to four baseline systems.
van Wingerden, Jan J; Ubbink, Dirk T; van der Horst, Chantal M A M; de Mol, Bas A J M
2014-11-23
Early recognition and, where possible, avoidance of risk factors that contribute to the development of poststernotomy mediastinitis (PSM) form the basis for successful prevention. Once the presence of PSM is diagnosed, the known risk factors have been shown to have limited influence on management decisions. Evidence-based knowledge on treatment decisions, which include the extent and type of surgical intervention (other than debridement), timing and others is available but has not yet been incorporated into a classification on management decisions regarding PSM. Ours is a first attempt at developing a classification system for management of PSM, taking the various evidence-based reconstructive options into consideration. The classification is simple to introduce (there are four Types) and relies on the careful establishment of two variables (sternal stability and sternal bone viability and stock) prior to deciding on the best available reconstructive option. It should allow better insight into why treatment decisions fail or have to be altered and will allow better comparison of treatment outcomes between various institutions.
Decision Tree Repository and Rule Set Based Mingjiang River Estuarine Wetlands Classifaction
NASA Astrophysics Data System (ADS)
Zhang, W.; Li, X.; Xiao, W.
2018-05-01
The increasing urbanization and industrialization have led to wetland losses in estuarine area of Mingjiang River over past three decades. There has been increasing attention given to produce wetland inventories using remote sensing and GIS technology. Due to inconsistency training site and training sample, traditionally pixel-based image classification methods can't achieve a comparable result within different organizations. Meanwhile, object-oriented image classification technique shows grate potential to solve this problem and Landsat moderate resolution remote sensing images are widely used to fulfill this requirement. Firstly, the standardized atmospheric correct, spectrally high fidelity texture feature enhancement was conducted before implementing the object-oriented wetland classification method in eCognition. Secondly, we performed the multi-scale segmentation procedure, taking the scale, hue, shape, compactness and smoothness of the image into account to get the appropriate parameters, using the top and down region merge algorithm from single pixel level, the optimal texture segmentation scale for different types of features is confirmed. Then, the segmented object is used as the classification unit to calculate the spectral information such as Mean value, Maximum value, Minimum value, Brightness value and the Normalized value. The Area, length, Tightness and the Shape rule of the image object Spatial features and texture features such as Mean, Variance and Entropy of image objects are used as classification features of training samples. Based on the reference images and the sampling points of on-the-spot investigation, typical training samples are selected uniformly and randomly for each type of ground objects. The spectral, texture and spatial characteristics of each type of feature in each feature layer corresponding to the range of values are used to create the decision tree repository. Finally, with the help of high resolution reference images, the random sampling method is used to conduct the field investigation, achieve an overall accuracy of 90.31 %, and the Kappa coefficient is 0.88. The classification method based on decision tree threshold values and rule set developed by the repository, outperforms the results obtained from the traditional methodology. Our decision tree repository and rule set based object-oriented classification technique was an effective method for producing comparable and consistency wetlands data set.
Suzuki, Y; Matsumoto, K
2000-05-01
Classification of variations of the superficial middle cerebral vein (SMCV) remains ambiguous. We propose a new classification system based on embryologic development for preoperative examination. Three-dimensional CT angiography was used to evaluate 500 SMCVs (in 250 patients). The outflow vessels from the SMCV were classified into seven types on the basis of embryologic development. The 3D CT angiograms in axial stereoscopic and oblique views and multiple intensity projection images were evaluated by the same neurosurgeon on two occasions. Inconsistent interpretations were regarded as equivocal. Three-dimensional CT angiography clearly depicted the SMCV running along the lesser wing or the middle cranial fossa. However, the outflow vessel could not be confirmed as the sphenoparietal, cavernous, or emissary type in 39 (8%) of the sides. SMCVs running in the middle cranial fossa to join the transverse sinus or superior petrosal sinus were accurately identified. SMCVs were present in 456 sides: 62% entered the sphenoparietal sinus or the cavernous sinus and 12% joined the emissary vein. Nine vessels were the superior petrosal type, 10 the basal type, 12 the squamosal type, and 44 the undeveloped type. Three-dimensional CT angiography can depict the vessels and their anatomic relationship to the bone structure, allowing identification of the SMCV variant in individual patients. Preoperative planning for skull base surgery requires such information to reduce the invasiveness of the procedure. With the use of our classification system, 3D CT angiography can provide exact and practical information concerning the SMCV.
Comparison of GOES Cloud Classification Algorithms Employing Explicit and Implicit Physics
NASA Technical Reports Server (NTRS)
Bankert, Richard L.; Mitrescu, Cristian; Miller, Steven D.; Wade, Robert H.
2009-01-01
Cloud-type classification based on multispectral satellite imagery data has been widely researched and demonstrated to be useful for distinguishing a variety of classes using a wide range of methods. The research described here is a comparison of the classifier output from two very different algorithms applied to Geostationary Operational Environmental Satellite (GOES) data over the course of one year. The first algorithm employs spectral channel thresholding and additional physically based tests. The second algorithm was developed through a supervised learning method with characteristic features of expertly labeled image samples used as training data for a 1-nearest-neighbor classification. The latter's ability to identify classes is also based in physics, but those relationships are embedded implicitly within the algorithm. A pixel-to-pixel comparison analysis was done for hourly daytime scenes within a region in the northeastern Pacific Ocean. Considerable agreement was found in this analysis, with many of the mismatches or disagreements providing insight to the strengths and limitations of each classifier. Depending upon user needs, a rule-based or other postprocessing system that combines the output from the two algorithms could provide the most reliable cloud-type classification.
GMM-based speaker age and gender classification in Czech and Slovak
NASA Astrophysics Data System (ADS)
Přibil, Jiří; Přibilová, Anna; Matoušek, Jindřich
2017-01-01
The paper describes an experiment with using the Gaussian mixture models (GMM) for automatic classification of the speaker age and gender. It analyses and compares the influence of different number of mixtures and different types of speech features used for GMM gender/age classification. Dependence of the computational complexity on the number of used mixtures is also analysed. Finally, the GMM classification accuracy is compared with the output of the conventional listening tests. The results of these objective and subjective evaluations are in correspondence.
NASA Astrophysics Data System (ADS)
Linek, M.; Jungmann, M.; Berlage, T.; Clauser, C.
2005-12-01
Within the Ocean Drilling Program (ODP), image logging tools have been routinely deployed such as the Formation MicroScanner (FMS) or the Resistivity-At-Bit (RAB) tools. Both logging methods are based on resistivity measurements at the borehole wall and therefore are sensitive to conductivity contrasts, which are mapped in color scale images. These images are commonly used to study the structure of the sedimentary rocks and the oceanic crust (petrologic fabric, fractures, veins, etc.). So far, mapping of lithology from electrical images is purely based on visual inspection and subjective interpretation. We apply digital image analysis on electrical borehole wall images in order to develop a method, which augments objective rock identification. We focus on supervised textural pattern recognition which studies the spatial gray level distribution with respect to certain rock types. FMS image intervals of rock classes known from core data are taken in order to train textural characteristics for each class. A so-called gray level co-occurrence matrix is computed by counting the occurrence of a pair of gray levels that are a certain distant apart. Once the matrix for an image interval is computed, we calculate the image contrast, homogeneity, energy, and entropy. We assign characteristic textural features to different rock types by reducing the image information into a small set of descriptive features. Once a discriminating set of texture features for each rock type is found, we are able to discriminate the entire FMS images regarding the trained rock type classification. A rock classification based on texture features enables quantitative lithology mapping and is characterized by a high repeatability, in contrast to a purely visual subjective image interpretation. We show examples for the rock classification between breccias, pillows, massive units, and horizontally bedded tuffs based on ODP image data.
The Soil Series in Soil Classifications of the United States
NASA Astrophysics Data System (ADS)
Indorante, Samuel; Beaudette, Dylan; Brevik, Eric C.
2014-05-01
Organized national soil survey began in the United States in 1899, with soil types as the units being mapped. The soil series concept was introduced into the U.S. soil survey in 1903 as a way to relate soils being mapped in one area to the soils of other areas. The original concept of a soil series was all soil types formed in the same parent materials that were of the same geologic age. However, within about 15 years soil series became the primary units being mapped in U.S. soil survey. Soil types became subdivisions of soil series, with the subdivisions based on changes in texture. As the soil series became the primary mapping unit the concept of what a soil series was also changed. Instead of being based on parent materials and geologic age, the soil series of the 1920s was based on the morphology and composition of the soil profile. Another major change in the concept of soil series occurred when U.S. Soil Taxonomy was released in 1975. Under Soil Taxonomy, the soil series subdivisions were based on the uses the soils might be put to, particularly their agricultural uses (Simonson, 1997). While the concept of the soil series has changed over the years, the term soil series has been the longest-lived term in U.S. soil classification. It has appeared in every official classification system used by the U.S. soil survey (Brevik and Hartemink, 2013). The first classification system was put together by Milton Whitney in 1909 and had soil series at its second lowest level, with soil type at the lowest level. The second classification system used by the U.S. soil survey was developed by C.F. Marbut, H.H. Bennett, J.E. Lapham, and M.H. Lapham in 1913. It had soil series at the second highest level, with soil classes and soil types at more detailed levels. This was followed by another system in 1938 developed by M. Baldwin, C.E. Kellogg, and J. Thorp. In this system soil series were again at the second lowest level with soil types at the lowest level. The soil type concept was dropped and replaced by the soil phase in the 1950s in a modification of the 1938 Baldwin et al. classification (Simonson, 1997). When Soil Taxonomy was released in 1975, soil series became the most detailed (lowest) level of the classification system, and the only term maintained throughout all U.S. classifications to date. While the number of recognized soil series have increased steadily throughout the history of U.S. soil survey, there was a rapid increase in the recognition of new soil series following the introduction of Soil Taxonomy (Brevik and Hartemink, 2013). References Brevik, E.C., and A.E. Hartemink. 2013. Soil maps of the United States of America. Soil Science Society of America Journal 77:1117-1132. doi:10.2136/sssaj2012.0390. Simonson, R.W. 1997. Evolution of soil series and type concepts in the United States. Advances in Geoecology 29:79-108.
Deep neural network and noise classification-based speech enhancement
NASA Astrophysics Data System (ADS)
Shi, Wenhua; Zhang, Xiongwei; Zou, Xia; Han, Wei
2017-07-01
In this paper, a speech enhancement method using noise classification and Deep Neural Network (DNN) was proposed. Gaussian mixture model (GMM) was employed to determine the noise type in speech-absent frames. DNN was used to model the relationship between noisy observation and clean speech. Once the noise type was determined, the corresponding DNN model was applied to enhance the noisy speech. GMM was trained with mel-frequency cepstrum coefficients (MFCC) and the parameters were estimated with an iterative expectation-maximization (EM) algorithm. Noise type was updated by spectrum entropy-based voice activity detection (VAD). Experimental results demonstrate that the proposed method could achieve better objective speech quality and smaller distortion under stationary and non-stationary conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mainzer, A.; Masiero, J.; Bauer, J.
We have combined the NEOWISE and Sloan Digital Sky Survey data to study the albedos of 24,353 asteroids with candidate taxonomic classifications derived using Sloan photometry. We find a wide range of moderate to high albedos for candidate S-type asteroids that are analogous to the S complex defined by previous spectrophotometrically based taxonomic systems. The candidate C-type asteroids, while generally very dark, have a tail of higher albedos that overlaps the S types. The albedo distribution for asteroids with a photometrically derived Q classification is extremely similar to those of the S types. Asteroids with similar colors to (4) Vestamore » have higher albedos than the S types, and most have orbital elements similar to known Vesta family members. Finally, we show that the relative reflectance at 3.4 and 4.6 {mu}m is higher for D-type asteroids and suggest that their red visible and near-infrared spectral slope extends out to these wavelengths. Understanding the relationship between size, albedo, and taxonomic classification is complicated by the fact that the objects with classifications were selected from the visible/near-infrared Sloan Moving Object Catalog, which is biased against fainter asteroids, including those with lower albedos.« less
Classification of document page images based on visual similarity of layout structures
NASA Astrophysics Data System (ADS)
Shin, Christian K.; Doermann, David S.
1999-12-01
Searching for documents by their type or genre is a natural way to enhance the effectiveness of document retrieval. The layout of a document contains a significant amount of information that can be used to classify a document's type in the absence of domain specific models. A document type or genre can be defined by the user based primarily on layout structure. Our classification approach is based on 'visual similarity' of the layout structure by building a supervised classifier, given examples of the class. We use image features, such as the percentages of tex and non-text (graphics, image, table, and ruling) content regions, column structures, variations in the point size of fonts, the density of content area, and various statistics on features of connected components which can be derived from class samples without class knowledge. In order to obtain class labels for training samples, we conducted a user relevance test where subjects ranked UW-I document images with respect to the 12 representative images. We implemented our classification scheme using the OC1, a decision tree classifier, and report our findings.
[Classification and organization technologies in public health].
Filatov, V B; Zhiliaeva, E P; Kal'fa, Iu I
2000-01-01
The authors discuss the impact and main characteristics of organization technologies in public health and the processes of their development and evaluation. They offer an original definition of the notion "organization technologies" with approaches to their classification. A system of logical bases is offered, which can be used for classification. These bases include the level of organization maturity and stage of development of organization technology, its destination to a certain level of management, type of influence and concentration of trend, mechanism of effect, functional group, and methods of development.
Use of mutation profiles to refine the classification of endometrial carcinomas.
McConechy, Melissa K; Ding, Jiarui; Cheang, Maggie Cu; Wiegand, Kimberly; Senz, Janine; Tone, Alicia; Yang, Winnie; Prentice, Leah; Tse, Kane; Zeng, Thomas; McDonald, Helen; Schmidt, Amy P; Mutch, David G; McAlpine, Jessica N; Hirst, Martin; Shah, Sohrab P; Lee, Cheng-Han; Goodfellow, Paul J; Gilks, C Blake; Huntsman, David G
2012-09-01
The classification of endometrial carcinomas is based on pathological assessment of tumour cell type; the different cell types (endometrioid, serous, carcinosarcoma, mixed, undifferentiated, and clear cell) are associated with distinct molecular alterations. This current classification system for high-grade subtypes, in particular the distinction between high-grade endometrioid (EEC-3) and serous carcinomas (ESC), is limited in its reproducibility and prognostic abilities. Therefore, a search for specific molecular classifiers to improve endometrial carcinoma subclassification is warranted. We performed target enrichment sequencing on 393 endometrial carcinomas from two large cohorts, sequencing exons from the following nine genes: ARID1A, PPP2R1A, PTEN, PIK3CA, KRAS, CTNNB1, TP53, BRAF, and PPP2R5C. Based on this gene panel, each endometrial carcinoma subtype shows a distinct mutation profile. EEC-3s have significantly different frequencies of PTEN and TP53 mutations when compared to low-grade endometrioid carcinomas. ESCs and EEC-3s are distinct subtypes with significantly different frequencies of mutations in PTEN, ARID1A, PPP2R1A, TP53, and CTNNB1. From the mutation profiles, we were able to identify subtype outliers, ie cases diagnosed morphologically as one subtype but with a mutation profile suggestive of a different subtype. Careful review of these diagnostically challenging cases suggested that the original morphological classification was incorrect in most instances. The molecular profile of carcinosarcomas suggests two distinct mutation profiles for these tumours: endometrioid-type (PTEN, PIK3CA, ARID1A, KRAS mutations) and serous-type (TP53 and PPP2R1A mutations). While this nine-gene panel does not allow for a purely molecularly based classification of endometrial carcinoma, it may prove useful as an adjunct to morphological classification and serve as an aid in the classification of problematic cases. If used in practice, it may lead to improved diagnostic reproducibility and may also serve to stratify patients for targeted therapeutics. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Second-degree atrioventricular block.
Zipes, D P
1979-09-01
1) While it is possible only one type of second-degree AV block exists electrophysiologically, the available data do not justify such a conclusion and it would seem more appropriate to remain a "splitter," and advocate separation and definition of multiple mechanisms, than to be a "lumper," and embrace a unitary concept. 2) The clinical classification of type I and type II AV block, based on present scalar electrocardiographic criteria, for the most part accurately differentiates clinically important categories of patients. Such a classification is descriptive, but serves a useful function and should be preserved, taking into account the caveats mentioned above. The site of block generally determines the clinical course for the patient. For most examples of AV block, the type I and type II classification in present use is based on the site of block. Because block in the His-Purkinje system is preceded by small or nonmeasurable increments, it is called type II AV block; but the very fact that it is preceded by small increments is because it occurs in the His-Purkinje system. Similar logic can be applied to type I AV block in the AV node. Exceptions do occur. If the site of AV block cannot be distinguished with certainity from the scalar ECG, an electrophysiologic study will generally reveal the answer.
Classification bias in commercial business lists for retail food stores in the U.S.
Han, Euna; Powell, Lisa M; Zenk, Shannon N; Rimkus, Leah; Ohri-Vachaspati, Punam; Chaloupka, Frank J
2012-04-18
Aspects of the food environment such as the availability of different types of food stores have recently emerged as key modifiable factors that may contribute to the increased prevalence of obesity. Given that many of these studies have derived their results based on secondary datasets and the relationship of food stores with individual weight outcomes has been reported to vary by store type, it is important to understand the extent to which often-used secondary data correctly classify food stores. We evaluated the classification bias of food stores in Dun & Bradstreet (D&B) and InfoUSA commercial business lists. We performed a full census in 274 randomly selected census tracts in the Chicago metropolitan area and collected detailed store attributes inside stores for classification. Store attributes were compared by classification match status and store type. Systematic classification bias by census tract characteristics was assessed in multivariate regression. D&B had a higher classification match rate than InfoUSA for supermarkets and grocery stores, while InfoUSA was higher for convenience stores. Both lists were more likely to correctly classify large supermarkets, grocery stores, and convenience stores with more cash registers and different types of service counters (supermarkets and grocery stores only). The likelihood of a correct classification match for supermarkets and grocery stores did not vary systemically by tract characteristics whereas convenience stores were more likely to be misclassified in predominately Black tracts. Researches can rely on classification of food stores in commercial datasets for supermarkets and grocery stores whereas classifications for convenience and specialty food stores are subject to some systematic bias by neighborhood racial/ethnic composition.
Classification bias in commercial business lists for retail food stores in the U.S.
2012-01-01
Background Aspects of the food environment such as the availability of different types of food stores have recently emerged as key modifiable factors that may contribute to the increased prevalence of obesity. Given that many of these studies have derived their results based on secondary datasets and the relationship of food stores with individual weight outcomes has been reported to vary by store type, it is important to understand the extent to which often-used secondary data correctly classify food stores. We evaluated the classification bias of food stores in Dun & Bradstreet (D&B) and InfoUSA commercial business lists. Methods We performed a full census in 274 randomly selected census tracts in the Chicago metropolitan area and collected detailed store attributes inside stores for classification. Store attributes were compared by classification match status and store type. Systematic classification bias by census tract characteristics was assessed in multivariate regression. Results D&B had a higher classification match rate than InfoUSA for supermarkets and grocery stores, while InfoUSA was higher for convenience stores. Both lists were more likely to correctly classify large supermarkets, grocery stores, and convenience stores with more cash registers and different types of service counters (supermarkets and grocery stores only). The likelihood of a correct classification match for supermarkets and grocery stores did not vary systemically by tract characteristics whereas convenience stores were more likely to be misclassified in predominately Black tracts. Conclusion Researches can rely on classification of food stores in commercial datasets for supermarkets and grocery stores whereas classifications for convenience and specialty food stores are subject to some systematic bias by neighborhood racial/ethnic composition. PMID:22512874
Jose M. Iniguez; Joseph L. Ganey; Peter J. Daughtery; John D. Bailey
2005-01-01
The objective of this study was to develop a rule based cover type classification system for the forest and woodland vegetation in the Sky Islands of southeastern Arizona. In order to develop such a system we qualitatively and quantitatively compared a hierarchical (Wardâs) and a non-hierarchical (k-means) clustering method. Ecologically, unique groups represented by...
Jose M. Iniguez; Joseph L. Ganey; Peter J. Daugherty; John D. Bailey
2005-01-01
The objective of this study was to develop a rule based cover type classification system for the forest and woodland vegetation in the Sky Islands of southeastern Arizona. In order to develop such system we qualitatively and quantitatively compared a hierarchical (Wardâs) and a non-hierarchical (k-means) clustering method. Ecologically, unique groups and plots...
Immunological classification of high grade non-Hodgkin's lymphomas (NHL) in children.
Pituch-Noworolska, A; Miezyński, W
1994-01-01
The immunological classification of 28 high grade non-Hodgkin's lymphomas (NHL) in children was shown. The morphological classification was based on Working Formulation, the immunological classification--on acute lymphoblastic leukemia subtypes. The phenotypes were assayed cytofluorometrically with monoclonal antibodies and compared to ontogenic stages in B and T cell development. Small non-cleaved cell lymphoma (Burkitt's type) was seen in 13 patients, lymphoblastic lymphoma in 12 patients, low differentiated in 3 patients. Immunological classification showed B-lymphocyte origin of blast cells in 15 patients including 11 small non-cleaved Burkitt's lymphoma (mature B and cALL phenotype), 3 undifferentiated cases (pro-B and mature B cell) and 1 case of lymphoblastic lymphoma (cALL type). T-cell origin of blast cells was demonstrated in 13 patients. The immunological classification used routinely was helpful in selection of patients with unfavourable prognosis. The more precise description of blast cells was valuable for better adjustment of therapy and better prognosis.
NASA Technical Reports Server (NTRS)
Hogan, Christine A.
1996-01-01
A land cover-vegetation map with a base classification system for remote sensing use in a tropical island environment was produced of the island of Hawaii for the State of Hawaii to evaluate whether or not useful land cover information can be derived from Landsat TM data. In addition, an island-wide change detection mosaic combining a previously created 1977 MSS land classification with the TM-based classification was produced. In order to reach the goal of transferring remote sensing technology to State of Hawaii personnel, a pilot project was conducted while training State of Hawaii personnel in remote sensing technology and classification systems. Spectral characteristics of young island land cover types were compared to determine if there are differences in vegetation types on lava, vegetation types on soils, and barren lava from soils, and if they can be detected remotely, based on differences in pigments detecting plant physiognomic type, health, stress at senescence, heat, moisture level, and biomass. Geographic information systems (GIS) and global positioning systems (GPS) were used to assist in image rectification and classification. GIS was also used to produce large-format color output maps. An interactive GIS program was written to provide on-line access to scanned photos taken at field sites. The pilot project found Landsat TM to be a credible source of land cover information for geologically young islands, and TM data bands are effective in detecting spectral characteristics of different land cover types through remote sensing. Large agriculture field patterns were resolved and mapped successfully from wildland vegetation, but small agriculture field patterns were not. Additional processing was required to work with the four TM scenes from two separate orbits which span three years, including El Nino and drought dates. Results of the project emphasized the need for further land cover and land use processing and research. Change in vegetation composition was noted in the change detection image.
Elsebaie, H B; Dannawi, Z; Altaf, F; Zaidan, A; Al Mukhtar, M; Shaw, M J; Gibson, A; Noordeen, H
2016-02-01
The achievement of shoulder balance is an important measure of successful scoliosis surgery. No previously described classification system has taken shoulder balance into account. We propose a simple classification system for AIS based on two components which include the curve type and shoulder level. Altogether, three curve types have been defined according to the size and location of the curves, each curve pattern is subdivided into type A or B depending on the shoulder level. This classification was tested for interobserver reproducibility and intraobserver reliability. A retrospective analysis of the radiographs of 232 consecutive cases of AIS patients treated surgically between 2005 and 2009 was also performed. Three major types and six subtypes were identified. Type I accounted for 30 %, type II 28 % and type III 42 %. The retrospective analysis showed three patients developed a decompensation that required extension of the fusion. One case developed worsening of shoulder balance requiring further surgery. This classification was tested for interobserver and intraobserver reliability. The mean kappa coefficients for interobserver reproducibility ranged from 0.89 to 0.952, while the mean kappa value for intraobserver reliability was 0.964 indicating a good-to-excellent reliability. The treatment algorithm guides the spinal surgeon to achieve optimal curve correction and postoperative shoulder balance whilst fusing the smallest number of spinal segments. The high interobserver reproducibility and intraobserver reliability makes it an invaluable tool to describe scoliosis curves in everyday clinical practice.
[Research on fast classification based on LIBS technology and principle component analyses].
Yu, Qi; Ma, Xiao-Hong; Wang, Rui; Zhao, Hua-Feng
2014-11-01
Laser-induced breakdown spectroscopy (LIBS) and the principle component analysis (PCA) were combined to study aluminum alloy classification in the present article. Classification experiments were done on thirteen different kinds of standard samples of aluminum alloy which belong to 4 different types, and the results suggested that the LIBS-PCA method can be used to aluminum alloy fast classification. PCA was used to analyze the spectrum data from LIBS experiments, three principle components were figured out that contribute the most, the principle component scores of the spectrums were calculated, and the scores of the spectrums data in three-dimensional coordinates were plotted. It was found that the spectrum sample points show clear convergence phenomenon according to the type of aluminum alloy they belong to. This result ensured the three principle components and the preliminary aluminum alloy type zoning. In order to verify its accuracy, 20 different aluminum alloy samples were used to do the same experiments to verify the aluminum alloy type zoning. The experimental result showed that the spectrum sample points all located in their corresponding area of the aluminum alloy type, and this proved the correctness of the earlier aluminum alloy standard sample type zoning method. Based on this, the identification of unknown type of aluminum alloy can be done. All the experimental results showed that the accuracy of principle component analyses method based on laser-induced breakdown spectroscopy is more than 97.14%, and it can classify the different type effectively. Compared to commonly used chemical methods, laser-induced breakdown spectroscopy can do the detection of the sample in situ and fast with little sample preparation, therefore, using the method of the combination of LIBS and PCA in the areas such as quality testing and on-line industrial controlling can save a lot of time and cost, and improve the efficiency of detection greatly.
Al-Masni, Mohammed A; Al-Antari, Mugahed A; Park, Jeong-Min; Gi, Geon; Kim, Tae-Yeon; Rivera, Patricio; Valarezo, Edwin; Choi, Mun-Taek; Han, Seung-Moo; Kim, Tae-Seong
2018-04-01
Automatic detection and classification of the masses in mammograms are still a big challenge and play a crucial role to assist radiologists for accurate diagnosis. In this paper, we propose a novel Computer-Aided Diagnosis (CAD) system based on one of the regional deep learning techniques, a ROI-based Convolutional Neural Network (CNN) which is called You Only Look Once (YOLO). Although most previous studies only deal with classification of masses, our proposed YOLO-based CAD system can handle detection and classification simultaneously in one framework. The proposed CAD system contains four main stages: preprocessing of mammograms, feature extraction utilizing deep convolutional networks, mass detection with confidence, and finally mass classification using Fully Connected Neural Networks (FC-NNs). In this study, we utilized original 600 mammograms from Digital Database for Screening Mammography (DDSM) and their augmented mammograms of 2,400 with the information of the masses and their types in training and testing our CAD. The trained YOLO-based CAD system detects the masses and then classifies their types into benign or malignant. Our results with five-fold cross validation tests show that the proposed CAD system detects the mass location with an overall accuracy of 99.7%. The system also distinguishes between benign and malignant lesions with an overall accuracy of 97%. Our proposed system even works on some challenging breast cancer cases where the masses exist over the pectoral muscles or dense regions. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wood, N. J.; Jones, J.; Spielman, S.
2013-12-01
Near-field tsunami hazards are credible threats to many coastal communities throughout the world. Along the U.S. Pacific Northwest coast, low-lying areas could be inundated by a series of catastrophic tsunami waves that begin to arrive in a matter of minutes following a Cascadia subduction zone (CSZ) earthquake. This presentation summarizes analytical efforts to classify communities with similar characteristics of community vulnerability to tsunami hazards. This work builds on past State-focused inventories of community exposure to CSZ-related tsunami hazards in northern California, Oregon, and Washington. Attributes used in the classification, or cluster analysis, include demography of residents, spatial extent of the developed footprint based on mid-resolution land cover data, distribution of the local workforce, and the number and type of public venues, dependent-care facilities, and community-support businesses. Population distributions also are characterized by a function of travel time to safety, based on anisotropic, path-distance, geospatial modeling. We used an unsupervised-model-based clustering algorithm and a v-fold, cross-validation procedure (v=50) to identify the appropriate number of community types. We selected class solutions that provided the appropriate balance between parsimony and model fit. The goal of the vulnerability classification is to provide emergency managers with a general sense of the types of communities in tsunami hazard zones based on similar characteristics instead of only providing an exhaustive list of attributes for individual communities. This classification scheme can be then used to target and prioritize risk-reduction efforts that address common issues across multiple communities. The presentation will include a discussion of the utility of proposed place classifications to support regional preparedness and outreach efforts.
NASA Astrophysics Data System (ADS)
Eckert, Sandra
2016-08-01
The SPOT-5 Take 5 campaign provided SPOT time series data of an unprecedented spatial and temporal resolution. We analysed 29 scenes acquired between May and September 2015 of a semi-arid region in the foothills of Mount Kenya, with two aims: first, to distinguish rainfed from irrigated cropland and cropland from natural vegetation covers, which show similar reflectance patterns; and second, to identify individual crop types. We tested several input data sets in different combinations: the spectral bands and the normalized difference vegetation index (NDVI) time series, principal components of NDVI time series, and selected NDVI time series statistics. For the classification we used random forests (RF). In the test differentiating rainfed cropland, irrigated cropland, and natural vegetation covers, the best classification accuracies were achieved using spectral bands. For the differentiation of crop types, we analysed the phenology of selected crop types based on NDVI time series. First results are promising.
Neural attractor network for application in visual field data classification.
Fink, Wolfgang
2004-07-07
The purpose was to introduce a novel method for computer-based classification of visual field data derived from perimetric examination, that may act as a 'counsellor', providing an independent 'second opinion' to the diagnosing physician. The classification system consists of a Hopfield-type neural attractor network that obtains its input data from perimetric examination results. An iterative relaxation process determines the states of the neurons dynamically. Therefore, even 'noisy' perimetric output, e.g., early stages of a disease, may eventually be classified correctly according to the predefined idealized visual field defect (scotoma) patterns, stored as attractors of the network, that are found with diseases of the eye, optic nerve and the central nervous system. Preliminary tests of the classification system on real visual field data derived from perimetric examinations have shown a classification success of over 80%. Some of the main advantages of the Hopfield-attractor-network-based approach over feed-forward type neural networks are: (1) network architecture is defined by the classification problem; (2) no training is required to determine the neural coupling strengths; (3) assignment of an auto-diagnosis confidence level is possible by means of an overlap parameter and the Hamming distance. In conclusion, the novel method for computer-based classification of visual field data, presented here, furnishes a valuable first overview and an independent 'second opinion' in judging perimetric examination results, pointing towards a final diagnosis by a physician. It should not be considered a substitute for the diagnosing physician. Thanks to the worldwide accessibility of the Internet, the classification system offers a promising perspective towards modern computer-assisted diagnosis in both medicine and tele-medicine, for example and in particular, with respect to non-ophthalmic clinics or in communities where perimetric expertise is not readily available.
Cancer classification in the genomic era: five contemporary problems.
Song, Qingxuan; Merajver, Sofia D; Li, Jun Z
2015-10-19
Classification is an everyday instinct as well as a full-fledged scientific discipline. Throughout the history of medicine, disease classification is central to how we develop knowledge, make diagnosis, and assign treatment. Here, we discuss the classification of cancer and the process of categorizing cancer subtypes based on their observed clinical and biological features. Traditionally, cancer nomenclature is primarily based on organ location, e.g., "lung cancer" designates a tumor originating in lung structures. Within each organ-specific major type, finer subgroups can be defined based on patient age, cell type, histological grades, and sometimes molecular markers, e.g., hormonal receptor status in breast cancer or microsatellite instability in colorectal cancer. In the past 15+ years, high-throughput technologies have generated rich new data regarding somatic variations in DNA, RNA, protein, or epigenomic features for many cancers. These data, collected for increasingly large tumor cohorts, have provided not only new insights into the biological diversity of human cancers but also exciting opportunities to discover previously unrecognized cancer subtypes. Meanwhile, the unprecedented volume and complexity of these data pose significant challenges for biostatisticians, cancer biologists, and clinicians alike. Here, we review five related issues that represent contemporary problems in cancer taxonomy and interpretation. (1) How many cancer subtypes are there? (2) How can we evaluate the robustness of a new classification system? (3) How are classification systems affected by intratumor heterogeneity and tumor evolution? (4) How should we interpret cancer subtypes? (5) Can multiple classification systems co-exist? While related issues have existed for a long time, we will focus on those aspects that have been magnified by the recent influx of complex multi-omics data. Exploration of these problems is essential for data-driven refinement of cancer classification and the successful application of these concepts in precision medicine.
NASA Astrophysics Data System (ADS)
Partovi, T.; Fraundorfer, F.; Azimi, S.; Marmanis, D.; Reinartz, P.
2017-05-01
3D building reconstruction from remote sensing image data from satellites is still an active research topic and very valuable for 3D city modelling. The roof model is the most important component to reconstruct the Level of Details 2 (LoD2) for a building in 3D modelling. While the general solution for roof modelling relies on the detailed cues (such as lines, corners and planes) extracted from a Digital Surface Model (DSM), the correct detection of the roof type and its modelling can fail due to low quality of the DSM generated by dense stereo matching. To reduce dependencies of roof modelling on DSMs, the pansharpened satellite images as a rich resource of information are used in addition. In this paper, two strategies are employed for roof type classification. In the first one, building roof types are classified in a state-of-the-art supervised pre-trained convolutional neural network (CNN) framework. In the second strategy, deep features from deep layers of different pre-trained CNN model are extracted and then an RBF kernel using SVM is employed to classify the building roof type. Based on roof complexity of the scene, a roof library including seven types of roofs is defined. A new semi-automatic method is proposed to generate training and test patches of each roof type in the library. Using the pre-trained CNN model does not only decrease the computation time for training significantly but also increases the classification accuracy.
Using ecological zones to increase the detail of Landsat classifications
NASA Technical Reports Server (NTRS)
Fox, L., III; Mayer, K. E.
1981-01-01
Changes in classification detail of forest species descriptions were made for Landsat data on 2.2 million acres in northwestern California. Because basic forest canopy structures may exhibit very similar E-M energy reflectance patterns in different environmental regions, classification labels based on Landsat spectral signatures alone become very generalized when mapping large heterogeneous ecological regions. By adding a seven ecological zone stratification, a 167% improvement in classification detail was made over the results achieved without it. The seven zone stratification is a less costly alternative to the inclusion of complex collateral information, such as terrain data and soil type, into the Landsat data base when making inventories of areas greater than 500,000 acres.
Bayoumi, Ahmed B; Laviv, Yosef; Yokus, Burhan; Efe, Ibrahim E; Toktas, Zafer Orkun; Kilic, Turker; Demir, Mustafa K; Konya, Deniz; Kasper, Ekkehard M
2017-11-01
1) To provide neurosurgeons and radiologists with a new quantitative and anatomical method to describe spinal meningiomas (SM) consistently. 2) To provide a guide to the surgical approach needed and amount of bony resection required based on the proposed classification. 3) To report the distribution of our 58 cases of SM over different Stages and Subtypes in correlation to the surgical treatment needed for each case. 4) To briefly review the literature on the rare non-conventional surgical corridors to resect SM. We reviewed the literature to report on previously published cohorts and classifications used to describe the location of the tumor inside the spinal canal. We reviewed the cases that were published prior showing non-conventional surgical approaches to resect spinal meningiomas. We proposed our classification system composed of Staging based on maximal cross-sectional surface area of tumor inside canal, Typing based on number of quadrants occupied by tumor and Subtyping based on location of the tumor bulk to spinal cord. Extradural and extra-spinal growth were also covered by our classification. We then applied it retrospectively on our 58 cases. 12 articles were published illustrating overlapping terms to describe spinal meningiomas. Another 7 articles were published reporting on 23 cases of anteriorly located spinal meningiomas treated with approaches other than laminectomies/laminoplasties. 4 Types, 9 Subtypes and 4 Stages were described in our Classification System. In our series of 58 patients, no midline anterior type was represented. Therefore, all our cases were treated by laminectomies or laminoplasties (with/without facetectomies) except a case with a paraspinal component where a costotransversectomy was needed. Spinal meningiomas can be radiologically described in a precise fashion. Selection of surgical corridor depends mainly on location of tumor bulk inside canal. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Senovilla, José M. M.
2010-11-01
The algebraic classification of the Weyl tensor in the arbitrary dimension n is recovered by means of the principal directions of its 'superenergy' tensor. This point of view can be helpful in order to compute the Weyl aligned null directions explicitly, and permits one to obtain the algebraic type of the Weyl tensor by computing the principal eigenvalue of rank-2 symmetric future tensors. The algebraic types compatible with states of intrinsic gravitational radiation can then be explored. The underlying ideas are general, so that a classification of arbitrary tensors in the general dimension can be achieved.
SVMs for Vibration-Based Terrain Classification
NASA Astrophysics Data System (ADS)
Weiss, Christian; Stark, Matthias; Zell, Andreas
When an outdoor mobile robot traverses different types of ground surfaces, different types of vibrations are induced in the body of the robot. These vibrations can be used to learn a discrimination between different surfaces and to classify the current terrain. Recently, we presented a method that uses Support Vector Machines for classification, and we showed results on data collected with a hand-pulled cart. In this paper, we show that our approach also works well on an outdoor robot. Furthermore, we more closely investigate in which direction the vibration should be measured. Finally, we present a simple but effective method to improve the classification by combining measurements taken in multiple directions.
A new classification of post-sternotomy dehiscence
Anger, Jaime; Dantas, Daniel Chagas; Arnoni, Renato Tambellini; Farsky, Pedro Sílvio
2015-01-01
The dehiscence after median transesternal sternotomy used as surgical access for cardiac surgery is one of its complications and it increases the patient's morbidity and mortality. A variety of surgical techniques were recently described resulting to the need of a classification bringing a measure of objectivity to the management of these complex and dangerous wounds. The different related classifications are based in the primary causal infection, but recently the anatomical description of the wound including the deepness and the vertical extension showed to be more useful. We propose a new classification based only on the anatomical changes following sternotomy dehiscence and chronic wound formation separating it in four types according to the deepness and in two sub-groups according to the vertical extension based on the inferior insertion of the pectoralis major muscle. PMID:25859875
Hu, Fei; Cheng, Yayun; Gui, Liangqi; Wu, Liang; Zhang, Xinyi; Peng, Xiaohui; Su, Jinlong
2016-11-01
The polarization properties of thermal millimeter-wave emission capture inherent information of objects, e.g., material composition, shape, and surface features. In this paper, a polarization-based material-classification technique using passive millimeter-wave polarimetric imagery is presented. Linear polarization ratio (LPR) is created to be a new feature discriminator that is sensitive to material type and to remove the reflected ambient radiation effect. The LPR characteristics of several common natural and artificial materials are investigated by theoretical and experimental analysis. Based on a priori information about LPR characteristics, the optimal range of incident angle and the classification criterion are discussed. Simulation and measurement results indicate that the presented classification technique is effective for distinguishing between metals and dielectrics. This technique suggests possible applications for outdoor metal target detection in open scenes.
Classification of large-scale fundus image data sets: a cloud-computing framework.
Roychowdhury, Sohini
2016-08-01
Large medical image data sets with high dimensionality require substantial amount of computation time for data creation and data processing. This paper presents a novel generalized method that finds optimal image-based feature sets that reduce computational time complexity while maximizing overall classification accuracy for detection of diabetic retinopathy (DR). First, region-based and pixel-based features are extracted from fundus images for classification of DR lesions and vessel-like structures. Next, feature ranking strategies are used to distinguish the optimal classification feature sets. DR lesion and vessel classification accuracies are computed using the boosted decision tree and decision forest classifiers in the Microsoft Azure Machine Learning Studio platform, respectively. For images from the DIARETDB1 data set, 40 of its highest-ranked features are used to classify four DR lesion types with an average classification accuracy of 90.1% in 792 seconds. Also, for classification of red lesion regions and hemorrhages from microaneurysms, accuracies of 85% and 72% are observed, respectively. For images from STARE data set, 40 high-ranked features can classify minor blood vessels with an accuracy of 83.5% in 326 seconds. Such cloud-based fundus image analysis systems can significantly enhance the borderline classification performances in automated screening systems.
Lean waste classification model to support the sustainable operational practice
NASA Astrophysics Data System (ADS)
Sutrisno, A.; Vanany, I.; Gunawan, I.; Asjad, M.
2018-04-01
Driven by growing pressure for a more sustainable operational practice, improvement on the classification of non-value added (waste) is one of the prerequisites to realize sustainability of a firm. While the use of the 7 (seven) types of the Ohno model now becoming a versatile tool to reveal the lean waste occurrence. In many recent investigations, the use of the Seven Waste model of Ohno is insufficient to cope with the types of waste occurred in industrial practices at various application levels. Intended to a narrowing down this limitation, this paper presented an improved waste classification model based on survey to recent studies discussing on waste at various operational stages. Implications on the waste classification model to the body of knowledge and industrial practices are provided.
Classification of vegetation in an open landscape using full-waveform airborne laser scanner data
NASA Astrophysics Data System (ADS)
Alexander, Cici; Deák, Balázs; Kania, Adam; Mücke, Werner; Heilmeier, Hermann
2015-09-01
Airborne laser scanning (ALS) is increasingly being used for the mapping of vegetation, although the focus so far has been on woody vegetation, and ALS data have only rarely been used for the classification of grassland vegetation. In this study, we classified the vegetation of an open alkali landscape, characterized by two Natura 2000 habitat types: Pannonic salt steppes and salt marshes and Pannonic loess steppic grasslands. We generated 18 variables from an ALS dataset collected in the growing (leaf-on) season. Elevation is a key factor determining the patterns of vegetation types in the landscape, and hence 3 additional variables were based on a digital terrain model (DTM) generated from an ALS dataset collected in the dormant (leaf-off) season. We classified the vegetation into 24 classes based on these 21 variables, at a pixel size of 1 m. Two groups of variables with and without the DTM-based variables were used in a Random Forest classifier, to estimate the influence of elevation, on the accuracy of the classification. The resulting classes at Level 4, based on associations, were aggregated at three levels - Level 3 (11 classes), Level 2 (8 classes) and Level 1 (5 classes) - based on species pool, site conditions and structure, and the accuracies were assessed. The classes were also aggregated based on Natura 2000 habitat types to assess the accuracy of the classification, and its usefulness for the monitoring of habitat quality. The vegetation could be classified into dry grasslands, wetlands, weeds, woody species and man-made features, at Level 1, with an accuracy of 0.79 (Cohen's kappa coefficient, κ). The accuracies at Levels 2-4 and the classification based on the Natura 2000 habitat types were κ: 0.76, 0.61, 0.51 and 0.69, respectively. Levels 1 and 2 provide suitable information for nature conservationists and land managers, while Levels 3 and 4 are especially useful for ecologists, geologists and soil scientists as they provide high resolution data on species distribution, vegetation patterns, soil properties and on their correlations. Including the DTM-based variables increased the accuracy (κ) from 0.73 to 0.79 for Level 1. These findings show that the structural and spectral attributes of ALS echoes can be used for the classification of open landscapes, especially those where vegetation is influenced by elevation, such as coastal salt marshes, sand dunes, karst or alluvial areas; in these cases, ALS has a distinct advantage over other remotely sensed data.
An automatic taxonomy of galaxy morphology using unsupervised machine learning
NASA Astrophysics Data System (ADS)
Hocking, Alex; Geach, James E.; Sun, Yi; Davey, Neil
2018-01-01
We present an unsupervised machine learning technique that automatically segments and labels galaxies in astronomical imaging surveys using only pixel data. Distinct from previous unsupervised machine learning approaches used in astronomy we use no pre-selection or pre-filtering of target galaxy type to identify galaxies that are similar. We demonstrate the technique on the Hubble Space Telescope (HST) Frontier Fields. By training the algorithm using galaxies from one field (Abell 2744) and applying the result to another (MACS 0416.1-2403), we show how the algorithm can cleanly separate early and late type galaxies without any form of pre-directed training for what an 'early' or 'late' type galaxy is. We then apply the technique to the HST Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) fields, creating a catalogue of approximately 60 000 classifications. We show how the automatic classification groups galaxies of similar morphological (and photometric) type and make the classifications public via a catalogue, a visual catalogue and galaxy similarity search. We compare the CANDELS machine-based classifications to human-classifications from the Galaxy Zoo: CANDELS project. Although there is not a direct mapping between Galaxy Zoo and our hierarchical labelling, we demonstrate a good level of concordance between human and machine classifications. Finally, we show how the technique can be used to identify rarer objects and present lensed galaxy candidates from the CANDELS imaging.
Desert plains classification based on Geomorphometrical parameters (Case study: Aghda, Yazd)
NASA Astrophysics Data System (ADS)
Tazeh, mahdi; Kalantari, Saeideh
2013-04-01
This research focuses on plains. There are several tremendous methods and classification which presented for plain classification. One of The natural resource based classification which is mostly using in Iran, classified plains into three types, Erosional Pediment, Denudation Pediment Aggradational Piedmont. The qualitative and quantitative factors to differentiate them from each other are also used appropriately. In this study effective Geomorphometrical parameters in differentiate landforms were applied for plain. Geomorphometrical parameters are calculable and can be extracted using mathematical equations and the corresponding relations on digital elevation model. Geomorphometrical parameters used in this study included Percent of Slope, Plan Curvature, Profile Curvature, Minimum Curvature, the Maximum Curvature, Cross sectional Curvature, Longitudinal Curvature and Gaussian Curvature. The results indicated that the most important affecting Geomorphometrical parameters for plain and desert classifications includes: Percent of Slope, Minimum Curvature, Profile Curvature, and Longitudinal Curvature. Key Words: Plain, Geomorphometry, Classification, Biophysical, Yazd Khezarabad.
Doostparast Torshizi, Abolfazl; Petzold, Linda R
2018-01-01
Data integration methods that combine data from different molecular levels such as genome, epigenome, transcriptome, etc., have received a great deal of interest in the past few years. It has been demonstrated that the synergistic effects of different biological data types can boost learning capabilities and lead to a better understanding of the underlying interactions among molecular levels. In this paper we present a graph-based semi-supervised classification algorithm that incorporates latent biological knowledge in the form of biological pathways with gene expression and DNA methylation data. The process of graph construction from biological pathways is based on detecting condition-responsive genes, where 3 sets of genes are finally extracted: all condition responsive genes, high-frequency condition-responsive genes, and P-value-filtered genes. The proposed approach is applied to ovarian cancer data downloaded from the Human Genome Atlas. Extensive numerical experiments demonstrate superior performance of the proposed approach compared to other state-of-the-art algorithms, including the latest graph-based classification techniques. Simulation results demonstrate that integrating various data types enhances classification performance and leads to a better understanding of interrelations between diverse omics data types. The proposed approach outperforms many of the state-of-the-art data integration algorithms. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com
ERIC Educational Resources Information Center
Smith, J. McCree
Three methods for the preparation of maintenance budgets are discussed--(1) a traditional method, inconclusive and obsolete, based on gross square footage, (2) the formula approach method based on building classification (wood-frame, masonry-wood, masonry-concrete) with maintenance cost factors for each type plus custodial service rates by type of…
A Bio-Inspired Herbal Tea Flavour Assessment Technique
Zakaria, Nur Zawatil Isqi; Masnan, Maz Jamilah; Zakaria, Ammar; Shakaff, Ali Yeon Md
2014-01-01
Herbal-based products are becoming a widespread production trend among manufacturers for the domestic and international markets. As the production increases to meet the market demand, it is very crucial for the manufacturer to ensure that their products have met specific criteria and fulfil the intended quality determined by the quality controller. One famous herbal-based product is herbal tea. This paper investigates bio-inspired flavour assessments in a data fusion framework involving an e-nose and e-tongue. The objectives are to attain good classification of different types and brands of herbal tea, classification of different flavour masking effects and finally classification of different concentrations of herbal tea. Two data fusion levels were employed in this research, low level data fusion and intermediate level data fusion. Four classification approaches; LDA, SVM, KNN and PNN were examined in search of the best classifier to achieve the research objectives. In order to evaluate the classifiers' performance, an error estimator based on k-fold cross validation and leave-one-out were applied. Classification based on GC-MS TIC data was also included as a comparison to the classification performance using fusion approaches. Generally, KNN outperformed the other classification techniques for the three flavour assessments in the low level data fusion and intermediate level data fusion. However, the classification results based on GC-MS TIC data are varied. PMID:25010697
Ground-based cloud classification by learning stable local binary patterns
NASA Astrophysics Data System (ADS)
Wang, Yu; Shi, Cunzhao; Wang, Chunheng; Xiao, Baihua
2018-07-01
Feature selection and extraction is the first step in implementing pattern classification. The same is true for ground-based cloud classification. Histogram features based on local binary patterns (LBPs) are widely used to classify texture images. However, the conventional uniform LBP approach cannot capture all the dominant patterns in cloud texture images, thereby resulting in low classification performance. In this study, a robust feature extraction method by learning stable LBPs is proposed based on the averaged ranks of the occurrence frequencies of all rotation invariant patterns defined in the LBPs of cloud images. The proposed method is validated with a ground-based cloud classification database comprising five cloud types. Experimental results demonstrate that the proposed method achieves significantly higher classification accuracy than the uniform LBP, local texture patterns (LTP), dominant LBP (DLBP), completed LBP (CLTP) and salient LBP (SaLBP) methods in this cloud image database and under different noise conditions. And the performance of the proposed method is comparable with that of the popular deep convolutional neural network (DCNN) method, but with less computation complexity. Furthermore, the proposed method also achieves superior performance on an independent test data set.
Hydrological Climate Classification: Can We Improve on Köppen-Geiger?
NASA Astrophysics Data System (ADS)
Knoben, W.; Woods, R. A.; Freer, J. E.
2017-12-01
Classification is essential in the study of complex natural systems, yet hydrology so far has no formal way to structure the climate forcing which underlies hydrologic response. Various climate classification systems can be borrowed from other disciplines but these are based on different organizing principles than a hydrological classification might use. From gridded global data we calculate a gridded aridity index, an aridity seasonality index and a rain-vs-snow index, which we use to cluster global locations into climate groups. We then define the membership degree of nearly 1100 catchments to each of our climate groups based on each catchment's climate and investigate the extent to which streamflow responses within each climate group are similar. We compare this climate classification approach with the often-used Köppen-Geiger classification, using statistical tests based on streamflow signature values. We find that three climate indices are sufficient to distinguish 18 different climate types world-wide. Climates tend to change gradually in space and catchments can thus belong to multiple climate groups, albeit with different degrees of membership. Streamflow responses within a climate group tend to be similar, regardless of the catchments' geographical proximity. A Wilcoxon two-sample test based on streamflow signature values for each climate group shows that the new classification can distinguish different flow regimes using this classification scheme. The Köppen-Geiger approach uses 29 climate classes but is less able to differentiate streamflow regimes. Climate forcing exerts a strong control on typical hydrologic response and both change gradually in space. This makes arbitrary hard boundaries in any classification scheme difficult to defend. Any hydrological classification should thus acknowledge these gradual changes in forcing. Catchment characteristics (soil or vegetation type, land use, etc) can vary more quickly in space than climate does, which can explain streamflow differences between geographically close locations. Summarizing, this work shows that hydrology needs its own way to structure climate forcing, acknowledging that climates vary gradually on a global scale and explicitly including those climate aspects that drive seasonal changes in hydrologic regimes.
2015-01-01
Background TNM staging plays a critical role in the evaluation and management of a range of different types of cancers. The conventional combinatorial approach to the determination of an anatomic stage relies on the identification of distinct tumor (T), node (N), and metastasis (M) classifications to generate a TNM grouping. This process is inherently inefficient due to the need for scrupulous review of the criteria specified for each classification to ensure accurate assignment. An exclusionary approach to TNM staging based on sequential constraint of options may serve to minimize the number of classifications that need to be reviewed to accurately determine an anatomic stage. Objective Our aim was to evaluate the usability and utility of a Web-based app configured to demonstrate an exclusionary approach to TNM staging. Methods Internal medicine residents, surgery residents, and oncology fellows engaged in clinical training were asked to evaluate a Web-based app developed as an instructional aid incorporating (1) an exclusionary algorithm that polls tabulated classifications and sorts them into ranked order based on frequency counts, (2) reconfiguration of classification criteria to generate disambiguated yes/no questions that function as selection and exclusion prompts, and (3) a selectable grid of TNM groupings that provides dynamic graphic demonstration of the effects of sequentially selecting or excluding specific classifications. Subjects were asked to evaluate the performance of this app after completing exercises simulating the staging of different types of cancers encountered during training. Results Survey responses indicated high levels of agreement with statements supporting the usability and utility of this app. Subjects reported that its user interface provided a clear display with intuitive controls and that the exclusionary approach to TNM staging it demonstrated represented an efficient process of assignment that helped to clarify distinctions between tumor, node, and metastasis classifications. High overall usefulness ratings were bolstered by supplementary comments suggesting that this app might be readily adopted for use in clinical practice. Conclusions A Web-based app that utilizes an exclusionary algorithm to prompt the assignment of tumor, node, and metastasis classifications may serve as an effective instructional aid demonstrating an efficient and informative approach to TNM staging. PMID:28410163
Antarctic Meteorite Newsletter, volume 9, no. 2
NASA Technical Reports Server (NTRS)
Gooding, J. L. (Editor)
1986-01-01
Preliminary description and classifications of meteorites that were completed since publication of the February issue are contained. Most large (greater than 150 g) specimens (regardless of petrologic type) and all pebble sized (less than 150 g) specimens of special petrologic type are represented by separate descriptions. However, specimens of nonspecial petrologic type are listed only as single line entries. For convenience, new specimens are also recast by petrologic type. Each macroscopic description summarizes features that were visible to the eye at the time the meteorite was first examined. Classification is based on microscopic petrography and resonnaissance-level electron-probe microanalysis. The pairing list was updated.
Pattern of Cortical Fracture following Corticotomy for Distraction Osteogenesis.
Luvan, M; Kanthan, S R; Roshan, G; Saw, A
2015-11-01
Corticotomy is an essential procedure for deformity correction and there are many techniques described. However there is no proper classification of the fracture pattern resulting from corticotomies to enable any studies to be conducted. We performed a retrospective study of corticotomy fracture patterns in 44 patients (34 tibias and 10 femurs) performed for various indications. We identified four distinct fracture patterns, Type I through IV classification based on the fracture propagation following percutaneous corticotomy. Type I transverse fracture, Type II transverse fracture with a winglet, Type III presence of butterfly fragment and Type IV fracture propagation to a fixation point. No significant correlation was noted between the fracture pattern and the underlying pathology or region of corticotomy.
Analysis of the 1996 Wisconsin forest statistics by habitat type.
John Kotar; Joseph A. Kovach; Gary Brand
1999-01-01
The fifth inventory of Wisconsin's forests is presented from the perspective of habitat type as a classification tool. Habitat type classifies forests based on the species composition of the understory plant community. Various forest attributes are summarized by habitat type and management implications are discussed.
Classification in Astronomy: Past and Present
NASA Astrophysics Data System (ADS)
Feigelson, Eric
2012-03-01
Astronomers have always classified celestial objects. The ancient Greeks distinguished between asteros, the fixed stars, and planetos, the roving stars. The latter were associated with the Gods and, starting with Plato in his dialog Timaeus, provided the first mathematical models of celestial phenomena. Giovanni Hodierna classified nebulous objects, seen with a Galilean refractor telescope in the mid-seventeenth century into three classes: "Luminosae," "Nebulosae," and "Occultae." A century later, Charles Messier compiled a larger list of nebulae, star clusters and galaxies, but did not attempt a classification. Classification of comets was a significant enterprise in the 19th century: Alexander (1850) considered two groups based on orbit sizes, Lardner (1853) proposed three groups of orbits, and Barnard (1891) divided them into two classes based on morphology. Aside from the segmentation of the bright stars into constellations, most stellar classifications were based on colors and spectral properties. During the 1860s, the pioneering spectroscopist Angelo Secchi classified stars into five classes: white, yellow, orange, carbon stars, and emission line stars. After many debates, the stellar spectral sequence was refined by the group at Harvard into the familiar OBAFGKM spectral types, later found to be a sequence on surface temperature (Cannon 1926). The spectral classification is still being extended with recent additions of O2 hot stars (Walborn et al. 2002) and L and T brown dwarfs (Kirkpatrick 2005). Townley (1913) reviews 30 years of variable star classification, emerging with six classes with five subclasses. The modern classification of variable stars has about 80 (sub)classes, and is still under debate (Samus 2009). Shortly after his confirmation that some nebulae are external galaxies, Edwin Hubble (1926) proposed his famous bifurcated classification of galaxy morphologies with three classes: ellipticals, spirals, and irregulars. These classes are still used today with many refinements by Gerard de Vaucouleurs and others. Supernovae, nearly all of which are found in external galaxies, have a complicated classification scheme:Type I with subtypes Ia, Ib, Ic, Ib/c pec and Type II with subtypes IIb, IIL, IIP, and IIn (Turatto 2003). The classification is based on elemental abundances in optical spectra and on optical light curve shapes. Tadhunter (2009) presents a three-dimensional classification of active galactic nuclei involving radio power, emission line width, and nuclear luminosity. These taxonomies have played enormously important roles in the development of astronomy, yet all were developed using heuristic methods. Many are based on qualitative and subjective assessments of spatial, temporal, or spectral properties. A qualitative, morphological approach to astronomical studies was explicitly promoted by Zwicky (1957). Other classifications are based on quantitative criteria, but these criteria were developed by subjective examination of training datasets. For example, starburst galaxies are discriminated from narrow-line Seyfert galaxies by a curved line in a diagramof the ratios of four emission lines (Veilleux and Osterbrock 1987). Class II young stellar objects have been defined by a rectangular region in a mid-infrared color-color diagram (Allen et al. 2004). Short and hard gamma-ray bursts are discriminated by a dip in the distribution of burst durations (Kouveliotou et al. 2000). In no case was a statistical or algorithmic procedure used to define the classes.
Semi-supervised learning for photometric supernova classification
NASA Astrophysics Data System (ADS)
Richards, Joseph W.; Homrighausen, Darren; Freeman, Peter E.; Schafer, Chad M.; Poznanski, Dovi
2012-01-01
We present a semi-supervised method for photometric supernova typing. Our approach is to first use the non-linear dimension reduction technique diffusion map to detect structure in a data base of supernova light curves and subsequently employ random forest classification on a spectroscopically confirmed training set to learn a model that can predict the type of each newly observed supernova. We demonstrate that this is an effective method for supernova typing. As supernova numbers increase, our semi-supervised method efficiently utilizes this information to improve classification, a property not enjoyed by template-based methods. Applied to supernova data simulated by Kessler et al. to mimic those of the Dark Energy Survey, our methods achieve (cross-validated) 95 per cent Type Ia purity and 87 per cent Type Ia efficiency on the spectroscopic sample, but only 50 per cent Type Ia purity and 50 per cent efficiency on the photometric sample due to their spectroscopic follow-up strategy. To improve the performance on the photometric sample, we search for better spectroscopic follow-up procedures by studying the sensitivity of our machine-learned supernova classification on the specific strategy used to obtain training sets. With a fixed amount of spectroscopic follow-up time, we find that, despite collecting data on a smaller number of supernovae, deeper magnitude-limited spectroscopic surveys are better for producing training sets. For supernova Ia (II-P) typing, we obtain a 44 per cent (1 per cent) increase in purity to 72 per cent (87 per cent) and 30 per cent (162 per cent) increase in efficiency to 65 per cent (84 per cent) of the sample using a 25th (24.5th) magnitude-limited survey instead of the shallower spectroscopic sample used in the original simulations. When redshift information is available, we incorporate it into our analysis using a novel method of altering the diffusion map representation of the supernovae. Incorporating host redshifts leads to a 5 per cent improvement in Type Ia purity and 13 per cent improvement in Type Ia efficiency. A web service for the supernova classification method used in this paper can be found at .
Classification of constraints and degrees of freedom for quadratic discrete actions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Höhn, Philipp A., E-mail: phoehn@perimeterinstitute.ca
2014-11-15
We provide a comprehensive classification of constraints and degrees of freedom for variational discrete systems governed by quadratic actions. This classification is based on the different types of null vectors of the Lagrangian two-form and employs the canonical formalism developed in Dittrich and Höhn [“Constraint analysis for variational discrete systems,” J. Math. Phys. 54, 093505 (2013); e-print http://arxiv.org/abs/arXiv:1303.4294 [math-ph
Mechanisms of starch digestion by α-amylase-Structural basis for kinetic properties.
Dhital, Sushil; Warren, Frederick J; Butterworth, Peter J; Ellis, Peter R; Gidley, Michael J
2017-03-24
Recent studies of the mechanisms determining the rate and extent of starch digestion by α-amylase are reviewed in the light of current widely-used classifications for (a) the proportions of rapidly-digestible (RDS), slowly-digestible (SDS), and resistant starch (RS) based on in vitro digestibility, and (b) the types of resistant starch (RS 1,2,3,4…) based on physical and/or chemical form. Based on methodological advances and new mechanistic insights, it is proposed that both classification systems should be modified. Kinetic analysis of digestion profiles provides a robust set of parameters that should replace the classification of starch as a combination of RDS, SDS, and RS from a single enzyme digestion experiment. This should involve determination of the minimum number of kinetic processes needed to describe the full digestion profile, together with the proportion of starch involved in each process, and the kinetic properties of each process. The current classification of resistant starch types as RS1,2,3,4 should be replaced by one which recognizes the essential kinetic nature of RS (enzyme digestion rate vs. small intestinal passage rate), and that there are two fundamental origins for resistance based on (i) rate-determining access/binding of enzyme to substrate and (ii) rate-determining conversion of substrate to product once bound.
Post-treatment glenoid classification system for total shoulder arthroplasty.
Churchill, R Sean
2012-04-01
Over the past 10 years, numerous advancements in glenoid preparation and resurfacing have occurred. Current glenoid classification systems are either focused solely on the patient's preoperative glenoid bone configuration or on the available glenoid bone stock in revision arthroplasty cases. While these systems provide value in preoperative planning, they fail to properly classify the surgical reconstruction completed. A literature review of common bone preparation methods and sources of glenoid prosthetic failure was performed. Based upon this review, a classification system for grading the status of the glenoid after prosthetic implantation was developed. A 6 category, post-treatment, glenoid classification system is proposed: type 0: no reaming; type I: glenoid reaming into but not through the subchondral bone; type II: glenoid reaming which perforates through <50% of the subchondral bone surface area; type III: glenoid reaming which perforates through >50% of the subchondral bone surface area; type IV: use of structural bone graft; and type V: use of a posterior augmented glenoid prosthesis. Types I-III are further subdivided into subtype A which have 100% bone support of the prosthesis, and subtype B which have a region of unsupported prosthesis. The classification system proposed addresses the surgical management of the glenoid during prosthetic replacement. This unique approach to classifying the glenoid following surgical intervention will allow direct follow-up comparison of similarly treated glenoid replacements. Future multicenter studies, possibly through joint registry databases, could then determine the long-term efficacy of the various glenoid preparation methods. Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
Imaging evaluation of traumatic thoracolumbar spine injuries: Radiological review
Gamanagatti, Shivanand; Rathinam, Deepak; Rangarajan, Krithika; Kumar, Atin; Farooque, Kamran; Sharma, Vijay
2015-01-01
Spine fractures account for a large portion of musculoskeletal injuries worldwide. A classification of spine fractures is necessary in order to develop a common language for treatment indications and outcomes. Several classification systems have been developed based on injury anatomy or mechanisms of action, but they have demonstrated poor reliability, have yielded little prognostic information, and have not been widely used. For this reason, the Arbeitsgemeinschaftfür Osteosynthesefragen (AO) committee has classified thorocolumbar spine injuries based on the pathomorphological criteria into3 types (A: Compression; B: Distraction; C: Axial torque and rotational deformity). Each of these types is further divided into 3 groups and 3 subgroups reflecting progressive scale of morphological damage and the degree of instability. Because of its highly detailed sub classifications, the AO system has shown limited interobserver variability. It is similar to its predecessors in that it does not incorporate the patient’s neurologic status.The need for a reliable, reproducible, clinically relevant, prognostic classification system with an optimal balance of ease of use and detail of injury description contributed to the development of a new classification system, the thoracolumbar injury classification and severity score (TLICS). The TLICS defines injury based on three clinical characteristics: injury morphology, integrity of the posterior ligamentous complex, and neurologic status of the patient. The severity score offers prognostic information and is helpful in decision making about surgical vs nonsurgical management. PMID:26435776
Aspen community types of the Intermountain Region
Walter F. Mueggler
1988-01-01
This vegetation classification is based upon existing community structure and composition in the aspen-dominated forests of the Intermountain Region of the Forest Service. The 56 community types occur within eight tree-cover types. A diagnostic key using indicator species facilitates field identification of the community types. Vegetational composition, productivity,...
A Visual Galaxy Classification Interface and its Classroom Application
NASA Astrophysics Data System (ADS)
Kautsch, Stefan J.; Phung, Chau; VanHilst, Michael; Castro, Victor H
2014-06-01
Galaxy morphology is an important topic in modern astronomy to understand questions concerning the evolution and formation of galaxies and their dark matter content. In order to engage students in exploring galaxy morphology, we developed a web-based, graphical interface that allows students to visually classify galaxy images according to various morphological types. The website is designed with HTML5, JavaScript, PHP, and a MySQL database. The classification interface provides hands-on research experience and training for students and interested clients, and allows them to contribute to studies of galaxy morphology. We present the first results of a pilot study and compare the visually classified types using our interface with that from automated classification routines.
Lehmann, Kuno; Schneider, Paul M
2010-01-01
Adenocarcinoma of the distal esophagus, gastric cardia, and upper gastric third are grouped in type I-III by the Siewert classification. This classification is based on the endoscopic localisation of the tumor center, and is the most important diagnostic tool to group these tumors. On a molecular level, there is currently no marker that would allow to differentiate the three different types. Furthermore, the Siewert classification was not uniformly used in the recent literature, making interpretation and generalization of these results difficult. However, several potential targets have been identified that may help to separate these tumors by molecular markers, and are summarized in this chapter.
Classification and authentication of unknown water samples using machine learning algorithms.
Kundu, Palash K; Panchariya, P C; Kundu, Madhusree
2011-07-01
This paper proposes the development of water sample classification and authentication, in real life which is based on machine learning algorithms. The proposed techniques used experimental measurements from a pulse voltametry method which is based on an electronic tongue (E-tongue) instrumentation system with silver and platinum electrodes. E-tongue include arrays of solid state ion sensors, transducers even of different types, data collectors and data analysis tools, all oriented to the classification of liquid samples and authentication of unknown liquid samples. The time series signal and the corresponding raw data represent the measurement from a multi-sensor system. The E-tongue system, implemented in a laboratory environment for 6 numbers of different ISI (Bureau of Indian standard) certified water samples (Aquafina, Bisleri, Kingfisher, Oasis, Dolphin, and McDowell) was the data source for developing two types of machine learning algorithms like classification and regression. A water data set consisting of 6 numbers of sample classes containing 4402 numbers of features were considered. A PCA (principal component analysis) based classification and authentication tool was developed in this study as the machine learning component of the E-tongue system. A proposed partial least squares (PLS) based classifier, which was dedicated as well; to authenticate a specific category of water sample evolved out as an integral part of the E-tongue instrumentation system. The developed PCA and PLS based E-tongue system emancipated an overall encouraging authentication percentage accuracy with their excellent performances for the aforesaid categories of water samples. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
A hybrid sensing approach for pure and adulterated honey classification.
Subari, Norazian; Mohamad Saleh, Junita; Md Shakaff, Ali Yeon; Zakaria, Ammar
2012-10-17
This paper presents a comparison between data from single modality and fusion methods to classify Tualang honey as pure or adulterated using Linear Discriminant Analysis (LDA) and Principal Component Analysis (PCA) statistical classification approaches. Ten different brands of certified pure Tualang honey were obtained throughout peninsular Malaysia and Sumatera, Indonesia. Various concentrations of two types of sugar solution (beet and cane sugar) were used in this investigation to create honey samples of 20%, 40%, 60% and 80% adulteration concentrations. Honey data extracted from an electronic nose (e-nose) and Fourier Transform Infrared Spectroscopy (FTIR) were gathered, analyzed and compared based on fusion methods. Visual observation of classification plots revealed that the PCA approach able to distinct pure and adulterated honey samples better than the LDA technique. Overall, the validated classification results based on FTIR data (88.0%) gave higher classification accuracy than e-nose data (76.5%) using the LDA technique. Honey classification based on normalized low-level and intermediate-level FTIR and e-nose fusion data scored classification accuracies of 92.2% and 88.7%, respectively using the Stepwise LDA method. The results suggested that pure and adulterated honey samples were better classified using FTIR and e-nose fusion data than single modality data.
NASA Astrophysics Data System (ADS)
Dronova, I.; Gong, P.; Wang, L.; Clinton, N.; Fu, W.; Qi, S.
2011-12-01
Remote sensing-based vegetation classifications representing plant function such as photosynthesis and productivity are challenging in wetlands with complex cover and difficult field access. Recent advances in object-based image analysis (OBIA) and machine-learning algorithms offer new classification tools; however, few comparisons of different algorithms and spatial scales have been discussed to date. We applied OBIA to delineate wetland plant functional types (PFTs) for Poyang Lake, the largest freshwater lake in China and Ramsar wetland conservation site, from 30-m Landsat TM scene at the peak of spring growing season. We targeted major PFTs (C3 grasses, C3 forbs and different types of C4 grasses and aquatic vegetation) that are both key players in system's biogeochemical cycles and critical providers of waterbird habitat. Classification results were compared among: a) several object segmentation scales (with average object sizes 900-9000 m2); b) several families of statistical classifiers (including Bayesian, Logistic, Neural Network, Decision Trees and Support Vector Machines) and c) two hierarchical levels of vegetation classification, a generalized 3-class set and more detailed 6-class set. We found that classification benefited from object-based approach which allowed including object shape, texture and context descriptors in classification. While a number of classifiers achieved high accuracy at the finest pixel-equivalent segmentation scale, the highest accuracies and best agreement among algorithms occurred at coarser object scales. No single classifier was consistently superior across all scales, although selected algorithms of Neural Network, Logistic and K-Nearest Neighbors families frequently provided the best discrimination of classes at different scales. The choice of vegetation categories also affected classification accuracy. The 6-class set allowed for higher individual class accuracies but lower overall accuracies than the 3-class set because individual classes differed in scales at which they were best discriminated from others. Main classification challenges included a) presence of C3 grasses in C4-grass areas, particularly following harvesting of C4 reeds and b) mixtures of emergent, floating and submerged aquatic plants at sub-object and sub-pixel scales. We conclude that OBIA with advanced statistical classifiers offers useful instruments for landscape vegetation analyses, and that spatial scale considerations are critical in mapping PFTs, while multi-scale comparisons can be used to guide class selection. Future work will further apply fuzzy classification and field-collected spectral data for PFT analysis and compare results with MODIS PFT products.
Detection of distorted frames in retinal video-sequences via machine learning
NASA Astrophysics Data System (ADS)
Kolar, Radim; Liberdova, Ivana; Odstrcilik, Jan; Hracho, Michal; Tornow, Ralf P.
2017-07-01
This paper describes detection of distorted frames in retinal sequences based on set of global features extracted from each frame. The feature vector is consequently used in classification step, in which three types of classifiers are tested. The best classification accuracy 96% has been achieved with support vector machine approach.
An automatic graph-based approach for artery/vein classification in retinal images.
Dashtbozorg, Behdad; Mendonça, Ana Maria; Campilho, Aurélio
2014-03-01
The classification of retinal vessels into artery/vein (A/V) is an important phase for automating the detection of vascular changes, and for the calculation of characteristic signs associated with several systemic diseases such as diabetes, hypertension, and other cardiovascular conditions. This paper presents an automatic approach for A/V classification based on the analysis of a graph extracted from the retinal vasculature. The proposed method classifies the entire vascular tree deciding on the type of each intersection point (graph nodes) and assigning one of two labels to each vessel segment (graph links). Final classification of a vessel segment as A/V is performed through the combination of the graph-based labeling results with a set of intensity features. The results of this proposed method are compared with manual labeling for three public databases. Accuracy values of 88.3%, 87.4%, and 89.8% are obtained for the images of the INSPIRE-AVR, DRIVE, and VICAVR databases, respectively. These results demonstrate that our method outperforms recent approaches for A/V classification.
Forest cover type analysis of New England forests using innovative WorldView-2 imagery
NASA Astrophysics Data System (ADS)
Kovacs, Jenna M.
For many years, remote sensing has been used to generate land cover type maps to create a visual representation of what is occurring on the ground. One significant use of remote sensing is the identification of forest cover types. New England forests are notorious for their especially complex forest structure and as a result have been, and continue to be, a challenge when classifying forest cover types. To most accurately depict forest cover types occurring on the ground, it is essential to utilize image data that have a suitable combination of both spectral and spatial resolution. The WorldView-2 (WV2) commercial satellite, launched in 2009, is the first of its kind, having both high spectral and spatial resolutions. WV2 records eight bands of multispectral imagery, four more than the usual high spatial resolution sensors, and has a pixel size of 1.85 meters at the nadir. These additional bands have the potential to improve classification detail and classification accuracy of forest cover type maps. For this reason, WV2 imagery was utilized on its own, and in combination with Landsat 5 TM (LS5) multispectral imagery, to evaluate whether these image data could more accurately classify forest cover types. In keeping with recent developments in image analysis, an Object-Based Image Analysis (OBIA) approach was used to segment images of Pawtuckaway State Park and nearby private lands, an area representative of the typical complex forest structure found in the New England region. A Classification and Regression Tree (CART) analysis was then used to classify image segments at two levels of classification detail. Accuracies for each forest cover type map produced were generated using traditional and area-based error matrices, and additional standard accuracy measures (i.e., KAPPA) were generated. The results from this study show that there is value in analyzing imagery with both high spectral and spatial resolutions, and that WV2's new and innovative bands can be useful for the classification of complex forest structures.
A comparison of rule-based and machine learning approaches for classifying patient portal messages.
Cronin, Robert M; Fabbri, Daniel; Denny, Joshua C; Rosenbloom, S Trent; Jackson, Gretchen Purcell
2017-09-01
Secure messaging through patient portals is an increasingly popular way that consumers interact with healthcare providers. The increasing burden of secure messaging can affect clinic staffing and workflows. Manual management of portal messages is costly and time consuming. Automated classification of portal messages could potentially expedite message triage and delivery of care. We developed automated patient portal message classifiers with rule-based and machine learning techniques using bag of words and natural language processing (NLP) approaches. To evaluate classifier performance, we used a gold standard of 3253 portal messages manually categorized using a taxonomy of communication types (i.e., main categories of informational, medical, logistical, social, and other communications, and subcategories including prescriptions, appointments, problems, tests, follow-up, contact information, and acknowledgement). We evaluated our classifiers' accuracies in identifying individual communication types within portal messages with area under the receiver-operator curve (AUC). Portal messages often contain more than one type of communication. To predict all communication types within single messages, we used the Jaccard Index. We extracted the variables of importance for the random forest classifiers. The best performing approaches to classification for the major communication types were: logistic regression for medical communications (AUC: 0.899); basic (rule-based) for informational communications (AUC: 0.842); and random forests for social communications and logistical communications (AUCs: 0.875 and 0.925, respectively). The best performing classification approach of classifiers for individual communication subtypes was random forests for Logistical-Contact Information (AUC: 0.963). The Jaccard Indices by approach were: basic classifier, Jaccard Index: 0.674; Naïve Bayes, Jaccard Index: 0.799; random forests, Jaccard Index: 0.859; and logistic regression, Jaccard Index: 0.861. For medical communications, the most predictive variables were NLP concepts (e.g., Temporal_Concept, which maps to 'morning', 'evening' and Idea_or_Concept which maps to 'appointment' and 'refill'). For logistical communications, the most predictive variables contained similar numbers of NLP variables and words (e.g., Telephone mapping to 'phone', 'insurance'). For social and informational communications, the most predictive variables were words (e.g., social: 'thanks', 'much', informational: 'question', 'mean'). This study applies automated classification methods to the content of patient portal messages and evaluates the application of NLP techniques on consumer communications in patient portal messages. We demonstrated that random forest and logistic regression approaches accurately classified the content of portal messages, although the best approach to classification varied by communication type. Words were the most predictive variables for classification of most communication types, although NLP variables were most predictive for medical communication types. As adoption of patient portals increases, automated techniques could assist in understanding and managing growing volumes of messages. Further work is needed to improve classification performance to potentially support message triage and answering. Copyright © 2017 Elsevier B.V. All rights reserved.
Mallants, Dirk; Batelaan, Okke; Gedeon, Matej; Huysmans, Marijke; Dassargues, Alain
2017-01-01
Cone penetration testing (CPT) is one of the most efficient and versatile methods currently available for geotechnical, lithostratigraphic and hydrogeological site characterization. Currently available methods for soil behaviour type classification (SBT) of CPT data however have severe limitations, often restricting their application to a local scale. For parameterization of regional groundwater flow or geotechnical models, and delineation of regional hydro- or lithostratigraphy, regional SBT classification would be very useful. This paper investigates the use of model-based clustering for SBT classification, and the influence of different clustering approaches on the properties and spatial distribution of the obtained soil classes. We additionally propose a methodology for automated lithostratigraphic mapping of regionally occurring sedimentary units using SBT classification. The methodology is applied to a large CPT dataset, covering a groundwater basin of ~60 km2 with predominantly unconsolidated sandy sediments in northern Belgium. Results show that the model-based approach is superior in detecting the true lithological classes when compared to more frequently applied unsupervised classification approaches or literature classification diagrams. We demonstrate that automated mapping of lithostratigraphic units using advanced SBT classification techniques can provide a large gain in efficiency, compared to more time-consuming manual approaches and yields at least equally accurate results. PMID:28467468
Rogiers, Bart; Mallants, Dirk; Batelaan, Okke; Gedeon, Matej; Huysmans, Marijke; Dassargues, Alain
2017-01-01
Cone penetration testing (CPT) is one of the most efficient and versatile methods currently available for geotechnical, lithostratigraphic and hydrogeological site characterization. Currently available methods for soil behaviour type classification (SBT) of CPT data however have severe limitations, often restricting their application to a local scale. For parameterization of regional groundwater flow or geotechnical models, and delineation of regional hydro- or lithostratigraphy, regional SBT classification would be very useful. This paper investigates the use of model-based clustering for SBT classification, and the influence of different clustering approaches on the properties and spatial distribution of the obtained soil classes. We additionally propose a methodology for automated lithostratigraphic mapping of regionally occurring sedimentary units using SBT classification. The methodology is applied to a large CPT dataset, covering a groundwater basin of ~60 km2 with predominantly unconsolidated sandy sediments in northern Belgium. Results show that the model-based approach is superior in detecting the true lithological classes when compared to more frequently applied unsupervised classification approaches or literature classification diagrams. We demonstrate that automated mapping of lithostratigraphic units using advanced SBT classification techniques can provide a large gain in efficiency, compared to more time-consuming manual approaches and yields at least equally accurate results.
Does the Modified Gartland Classification Clarify Decision Making?
Leung, Sophia; Paryavi, Ebrahim; Herman, Martin J; Sponseller, Paul D; Abzug, Joshua M
2018-01-01
The modified Gartland classification system for pediatric supracondylar fractures is often utilized as a communication tool to aid in determining whether or not a fracture warrants operative intervention. This study sought to determine the interobserver and intraobserver reliability of the Gartland classification system, as well as to determine whether there was agreement that a fracture warranted operative intervention regardless of the classification system. A total of 200 anteroposterior and lateral radiographs of pediatric supracondylar humerus fractures were retrospectively reviewed by 3 fellowship-trained pediatric orthopaedic surgeons and 2 orthopaedic residents and then classified as type I, IIa, IIb, or III. The surgeons then recorded whether they would treat the fracture nonoperatively or operatively. The κ coefficients were calculated to determine interobserver and intraobserver reliability. Overall, the Wilkins-modified Gartland classification has low-moderate interobserver reliability (κ=0.475) and high intraobserver reliability (κ=0.777). A low interobserver reliability was found when differentiating between type IIa and IIb (κ=0.240) among attendings. There was moderate-high interobserver reliability for the decision to operate (κ=0.691) and high intraobserver reliability (κ=0.760). Decreased interobserver reliability was present for decision to operate among residents. For fractures classified as type I, the decision to operate was made 3% of the time and 27% for type IIa. The decision was made to operate 99% of the time for type IIb and 100% for type III. There is almost full agreement for the nonoperative treatment of Type I fractures and operative treatment for type III fractures. There is agreement that type IIb fractures should be treated operatively and that the majority of type IIa fractures should be treated nonoperatively. However, the interobserver reliability for differentiating between type IIa and IIb fractures is low. Our results validate the Gartland classfication system as a method to help direct treatment of pediatric supracondylar humerus fractures, although the modification of the system, IIa versus IIb, seems to have limited reliability and utility. Terminology based on decision to treat may lead to a more clinically useful classification system in the evaluation and treatment of pediatric supracondylar humerus fractures. Level III-diagnostic studies.
Classification of Clouds in Satellite Imagery Using Adaptive Fuzzy Sparse Representation.
Jin, Wei; Gong, Fei; Zeng, Xingbin; Fu, Randi
2016-12-16
Automatic cloud detection and classification using satellite cloud imagery have various meteorological applications such as weather forecasting and climate monitoring. Cloud pattern analysis is one of the research hotspots recently. Since satellites sense the clouds remotely from space, and different cloud types often overlap and convert into each other, there must be some fuzziness and uncertainty in satellite cloud imagery. Satellite observation is susceptible to noises, while traditional cloud classification methods are sensitive to noises and outliers; it is hard for traditional cloud classification methods to achieve reliable results. To deal with these problems, a satellite cloud classification method using adaptive fuzzy sparse representation-based classification (AFSRC) is proposed. Firstly, by defining adaptive parameters related to attenuation rate and critical membership, an improved fuzzy membership is introduced to accommodate the fuzziness and uncertainty of satellite cloud imagery; secondly, by effective combination of the improved fuzzy membership function and sparse representation-based classification (SRC), atoms in training dictionary are optimized; finally, an adaptive fuzzy sparse representation classifier for cloud classification is proposed. Experiment results on FY-2G satellite cloud image show that, the proposed method not only improves the accuracy of cloud classification, but also has strong stability and adaptability with high computational efficiency.
Wearable-Sensor-Based Classification Models of Faller Status in Older Adults.
Howcroft, Jennifer; Lemaire, Edward D; Kofman, Jonathan
2016-01-01
Wearable sensors have potential for quantitative, gait-based, point-of-care fall risk assessment that can be easily and quickly implemented in clinical-care and older-adult living environments. This investigation generated models for wearable-sensor based fall-risk classification in older adults and identified the optimal sensor type, location, combination, and modelling method; for walking with and without a cognitive load task. A convenience sample of 100 older individuals (75.5 ± 6.7 years; 76 non-fallers, 24 fallers based on 6 month retrospective fall occurrence) walked 7.62 m under single-task and dual-task conditions while wearing pressure-sensing insoles and tri-axial accelerometers at the head, pelvis, and left and right shanks. Participants also completed the Activities-specific Balance Confidence scale, Community Health Activities Model Program for Seniors questionnaire, six minute walk test, and ranked their fear of falling. Fall risk classification models were assessed for all sensor combinations and three model types: multi-layer perceptron neural network, naïve Bayesian, and support vector machine. The best performing model was a multi-layer perceptron neural network with input parameters from pressure-sensing insoles and head, pelvis, and left shank accelerometers (accuracy = 84%, F1 score = 0.600, MCC score = 0.521). Head sensor-based models had the best performance of the single-sensor models for single-task gait assessment. Single-task gait assessment models outperformed models based on dual-task walking or clinical assessment data. Support vector machines and neural networks were the best modelling technique for fall risk classification. Fall risk classification models developed for point-of-care environments should be developed using support vector machines and neural networks, with a multi-sensor single-task gait assessment.
Delineation of marsh types of the Texas coast from Corpus Christi Bay to the Sabine River in 2010
Enwright, Nicholas M.; Hartley, Stephen B.; Brasher, Michael G.; Visser, Jenneke M.; Mitchell, Michael K.; Ballard, Bart M.; Parr, Mark W.; Couvillion, Brady R.; Wilson, Barry C.
2014-01-01
Coastal zone managers and researchers often require detailed information regarding emergent marsh vegetation types for modeling habitat capacities and needs of marsh-reliant wildlife (such as waterfowl and alligator). Detailed information on the extent and distribution of marsh vegetation zones throughout the Texas coast has been historically unavailable. In response, the U.S. Geological Survey, in cooperation and collaboration with the U.S. Fish and Wildlife Service via the Gulf Coast Joint Venture, Texas A&M University-Kingsville, the University of Louisiana-Lafayette, and Ducks Unlimited, Inc., has produced a classification of marsh vegetation types along the middle and upper Texas coast from Corpus Christi Bay to the Sabine River. This study incorporates approximately 1,000 ground reference locations collected via helicopter surveys in coastal marsh areas and about 2,000 supplemental locations from fresh marsh, water, and “other” (that is, nonmarsh) areas. About two-thirds of these data were used for training, and about one-third were used for assessing accuracy. Decision-tree analyses using Rulequest See5 were used to classify emergent marsh vegetation types by using these data, multitemporal satellite-based multispectral imagery from 2009 to 2011, a bare-earth digital elevation model (DEM) based on airborne light detection and ranging (lidar), alternative contemporary land cover classifications, and other spatially explicit variables believed to be important for delineating the extent and distribution of marsh vegetation communities. Image objects were generated from segmentation of high-resolution airborne imagery acquired in 2010 and were used to refine the classification. The classification is dated 2010 because the year is both the midpoint of the multitemporal satellite-based imagery (2009–11) classified and the date of the high-resolution airborne imagery that was used to develop image objects. Overall accuracy corrected for bias (accuracy estimate incorporates true marginal proportions) was 91 percent (95 percent confidence interval [CI]: 89.2–92.8), with a kappa statistic of 0.79 (95 percent CI: 0.77–0.81). The classification performed best for saline marsh (user’s accuracy 81.5 percent; producer’s accuracy corrected for bias 62.9 percent) but showed a lesser ability to discriminate intermediate marsh (user’s accuracy 47.7 percent; producer’s accuracy corrected for bias 49.5 percent). Because of confusion in intermediate and brackish marsh classes, an alternative classification containing only three marsh types was created in which intermediate and brackish marshes were combined into a single class. Image objects were reattributed by using this alternative three-marsh-type classification. Overall accuracy, corrected for bias, of this more general classification was 92.4 percent (95 percent CI: 90.7–94.2), and the kappa statistic was 0.83 (95 percent CI: 0.81–0.85). Mean user’s accuracy for marshes within the four-marsh-type and three-marsh-type classifications was 65.4 percent and 75.6 percent, respectively, whereas mean producer’s accuracy was 56.7 percent and 65.1 percent, respectively. This study provides a more objective and repeatable method for classifying marsh types of the middle and upper Texas coast at an extent and greater level of detail than previously available for the study area. The seamless classification produced through this work is now available to help State agencies (such as the Texas Parks and Wildlife Department) and landscape-scale conservation partnerships (such as the Gulf Coast Prairie Landscape Conservation Cooperative and the Gulf Coast Joint Venture) to develop and (or) refine conservation plans targeting priority natural resources. Moreover, these data may improve projections of landscape change and serve as a baseline for monitoring future changes resulting from chronic and episodic stressors.
Classification of Birds and Bats Using Flight Tracks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cullinan, Valerie I.; Matzner, Shari; Duberstein, Corey A.
Classification of birds and bats that use areas targeted for offshore wind farm development and the inference of their behavior is essential to evaluating the potential effects of development. The current approach to assessing the number and distribution of birds at sea involves transect surveys using trained individuals in boats or airplanes or using high-resolution imagery. These approaches are costly and have safety concerns. Based on a limited annotated library extracted from a single-camera thermal video, we provide a framework for building models that classify birds and bats and their associated behaviors. As an example, we developed a discriminant modelmore » for theoretical flight paths and applied it to data (N = 64 tracks) extracted from 5-min video clips. The agreement between model- and observer-classified path types was initially only 41%, but it increased to 73% when small-scale jitter was censored and path types were combined. Classification of 46 tracks of bats, swallows, gulls, and terns on average was 82% accurate, based on a jackknife cross-validation. Model classification of bats and terns (N = 4 and 2, respectively) was 94% and 91% correct, respectively; however, the variance associated with the tracks from these targets is poorly estimated. Model classification of gulls and swallows (N ≥ 18) was on average 73% and 85% correct, respectively. The models developed here should be considered preliminary because they are based on a small data set both in terms of the numbers of species and the identified flight tracks. Future classification models would be greatly improved by including a measure of distance between the camera and the target.« less
NASA Astrophysics Data System (ADS)
Fezzani, Ridha; Berger, Laurent
2018-06-01
An automated signal-based method was developed in order to analyse the seafloor backscatter data logged by calibrated multibeam echosounder. The processing consists first in the clustering of each survey sub-area into a small number of homogeneous sediment types, based on the backscatter average level at one or several incidence angles. Second, it uses their local average angular response to extract discriminant descriptors, obtained by fitting the field data to the Generic Seafloor Acoustic Backscatter parametric model. Third, the descriptors are used for seafloor type classification. The method was tested on the multi-year data recorded by a calibrated 90-kHz Simrad ME70 multibeam sonar operated in the Bay of Biscay, France and Celtic Sea, Ireland. It was applied for seafloor-type classification into 12 classes, to a dataset of 158 spots surveyed for demersal and benthic fauna study and monitoring. Qualitative analyses and classified clusters using extracted parameters show a good discriminatory potential, indicating the robustness of this approach.
A Neural-Network-Based Semi-Automated Geospatial Classification Tool
NASA Astrophysics Data System (ADS)
Hale, R. G.; Herzfeld, U. C.
2014-12-01
North America's largest glacier system, the Bering Bagley Glacier System (BBGS) in Alaska, surged in 2011-2013, as shown by rapid mass transfer, elevation change, and heavy crevassing. Little is known about the physics controlling surge glaciers' semi-cyclic patterns; therefore, it is crucial to collect and analyze as much data as possible so that predictive models can be made. In addition, physical signs frozen in ice in the form of crevasses may help serve as a warning for future surges. The BBGS surge provided an opportunity to develop an automated classification tool for crevasse classification based on imagery collected from small aircraft. The classification allows one to link image classification to geophysical processes associated with ice deformation. The tool uses an approach that employs geostatistical functions and a feed-forward perceptron with error back-propagation. The connectionist-geostatistical approach uses directional experimental (discrete) variograms to parameterize images into a form that the Neural Network (NN) can recognize. In an application to preform analysis on airborne video graphic data from the surge of the BBGS, an NN was able to distinguish 18 different crevasse classes with 95 percent or higher accuracy, for over 3,000 images. Recognizing that each surge wave results in different crevasse types and that environmental conditions affect the appearance in imagery, we designed the tool's semi-automated pre-training algorithm to be adaptable. The tool can be optimized to specific settings and variables of image analysis: (airborne and satellite imagery, different camera types, observation altitude, number and types of classes, and resolution). The generalization of the classification tool brings three important advantages: (1) multiple types of problems in geophysics can be studied, (2) the training process is sufficiently formalized to allow non-experts in neural nets to perform the training process, and (3) the time required to manually pre-sort imagery into classes is greatly reduced.
Pattern of Cortical Fracture following Corticotomy for Distraction Osteogenesis
Luvan, M; Roshan, G; Saw, A
2015-01-01
Corticotomy is an essential procedure for deformity correction and there are many techniques described. However there is no proper classification of the fracture pattern resulting from corticotomies to enable any studies to be conducted. We performed a retrospective study of corticotomy fracture patterns in 44 patients (34 tibias and 10 femurs) performed for various indications. We identified four distinct fracture patterns, Type I through IV classification based on the fracture propagation following percutaneous corticotomy. Type I transverse fracture, Type II transverse fracture with a winglet, Type III presence of butterfly fragment and Type IV fracture propagation to a fixation point. No significant correlation was noted between the fracture pattern and the underlying pathology or region of corticotomy. PMID:28611907
Kopps, Anna M; Kang, Jungkoo; Sherwin, William B; Palsbøll, Per J
2015-06-30
Kinship analyses are important pillars of ecological and conservation genetic studies with potentially far-reaching implications. There is a need for power analyses that address a range of possible relationships. Nevertheless, such analyses are rarely applied, and studies that use genetic-data-based-kinship inference often ignore the influence of intrinsic population characteristics. We investigated 11 questions regarding the correct classification rate of dyads to relatedness categories (relatedness category assignments; RCA) using an individual-based model with realistic life history parameters. We investigated the effects of the number of genetic markers; marker type (microsatellite, single nucleotide polymorphism SNP, or both); minor allele frequency; typing error; mating system; and the number of overlapping generations under different demographic conditions. We found that (i) an increasing number of genetic markers increased the correct classification rate of the RCA so that up to >80% first cousins can be correctly assigned; (ii) the minimum number of genetic markers required for assignments with 80 and 95% correct classifications differed between relatedness categories, mating systems, and the number of overlapping generations; (iii) the correct classification rate was improved by adding additional relatedness categories and age and mitochondrial DNA data; and (iv) a combination of microsatellite and single-nucleotide polymorphism data increased the correct classification rate if <800 SNP loci were available. This study shows how intrinsic population characteristics, such as mating system and the number of overlapping generations, life history traits, and genetic marker characteristics, can influence the correct classification rate of an RCA study. Therefore, species-specific power analyses are essential for empirical studies. Copyright © 2015 Kopps et al.
Large-scale optimization-based classification models in medicine and biology.
Lee, Eva K
2007-06-01
We present novel optimization-based classification models that are general purpose and suitable for developing predictive rules for large heterogeneous biological and medical data sets. Our predictive model simultaneously incorporates (1) the ability to classify any number of distinct groups; (2) the ability to incorporate heterogeneous types of attributes as input; (3) a high-dimensional data transformation that eliminates noise and errors in biological data; (4) the ability to incorporate constraints to limit the rate of misclassification, and a reserved-judgment region that provides a safeguard against over-training (which tends to lead to high misclassification rates from the resulting predictive rule); and (5) successive multi-stage classification capability to handle data points placed in the reserved-judgment region. To illustrate the power and flexibility of the classification model and solution engine, and its multi-group prediction capability, application of the predictive model to a broad class of biological and medical problems is described. Applications include: the differential diagnosis of the type of erythemato-squamous diseases; predicting presence/absence of heart disease; genomic analysis and prediction of aberrant CpG island meythlation in human cancer; discriminant analysis of motility and morphology data in human lung carcinoma; prediction of ultrasonic cell disruption for drug delivery; identification of tumor shape and volume in treatment of sarcoma; discriminant analysis of biomarkers for prediction of early atherosclerois; fingerprinting of native and angiogenic microvascular networks for early diagnosis of diabetes, aging, macular degeneracy and tumor metastasis; prediction of protein localization sites; and pattern recognition of satellite images in classification of soil types. In all these applications, the predictive model yields correct classification rates ranging from 80 to 100%. This provides motivation for pursuing its use as a medical diagnostic, monitoring and decision-making tool.
Stumpe, B; Engel, T; Steinweg, B; Marschner, B
2012-04-03
In the past, different slag materials were often used for landscaping and construction purposes or simply dumped. Nowadays German environmental laws strictly control the use of slags, but there is still a remaining part of 35% which is uncontrolled dumped in landfills. Since some slags have high heavy metal contents and different slag types have typical chemical and physical properties that will influence the risk potential and other characteristics of the deposits, an identification of the slag types is needed. We developed a FT-IR-based statistical method to identify different slags classes. Slags samples were collected at different sites throughout various cities within the industrial Ruhr area. Then, spectra of 35 samples from four different slags classes, ladle furnace (LF), blast furnace (BF), oxygen furnace steel (OF), and zinc furnace slags (ZF), were determined in the mid-infrared region (4000-400 cm(-1)). The spectra data sets were subject to statistical classification methods for the separation of separate spectral data of different slag classes. Principal component analysis (PCA) models for each slag class were developed and further used for soft independent modeling of class analogy (SIMCA). Precise classification of slag samples into four different slag classes were achieved using two different SIMCA models stepwise. At first, SIMCA 1 was used for classification of ZF as well as OF slags over the total spectral range. If no correct classification was found, then the spectrum was analyzed with SIMCA 2 at reduced wavenumbers for the classification of LF as well as BF spectra. As a result, we provide a time- and cost-efficient method based on FT-IR spectroscopy for processing and identifying large numbers of environmental slag samples.
Developing Land Surface Type Map with Biome Classification Scheme Using Suomi NPP/JPSS VIIRS Data
NASA Astrophysics Data System (ADS)
Zhang, Rui; Huang, Chengquan; Zhan, Xiwu; Jin, Huiran
2016-08-01
Accurate representation of actual terrestrial surface types at regional to global scales is an important element for a wide range of applications, such as land surface parameterization, modeling of biogeochemical cycles, and carbon cycle studies. In this study, in order to meet the requirement of the retrieval of global leaf area index (LAI) and fraction of photosynthetically active radiation absorbed by the vegetation (fPAR) and other studies, a global map generated from Suomi National Polar- orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) surface reflectance data in six major biome classes based on their canopy structures, which include: Grass/Cereal Crops, Shrubs, Broadleaf Crops, Savannas, Broadleaf Forests, and Needleleaf Forests, was created. The primary biome classes were converted from an International Geosphere-Biosphere Program (IGBP) legend global surface type data that was created in previous study, and the separation of two crop types are based on a secondary classification.
Bozkurt, Gülpembe; Ünsal, Özlem; Coşkun, Berna Uslu
2016-06-01
The aim of this study was to re-evaluate the open partial horizontal laryngectomies (OPHLs) performed at our institution in terms of the new classification of the European Laryngological Society and compare the differences with the new classification system. A retrospective analysis of 45 patients diagnosed with T1b, T2, and T3 laryngeal carcinoma who were treated with OPHLs in our department between 2010 and 2016 were conducted. All supraglottic laryngectomies (31 operations) were classified as OPHL Type 1. Among these, 11 operations required a resection of an additional structure including arytenoid (ARY) in five operations, piriform sinus (PIR) in four operations, the base of tongue (BOT) in one surgery, and ARY + PIR in one patient. Five supracricoid laryngectomies with cricohyoidoepiglottopexy (CHEP), five supracricoid laryngectomies with cricohyoidopexy (CHP), and four near-total laryngectomy operations constituted Type 2 OPHL (7 operations) and Type 3 OPHL (7 operations). Among these operations, two were classified into Type 2b OPHL and four into Type 3b OPHL as the superior margin of incision included epiglottis. We consider that, this new classification, because it allows understanding the content of the surgery from the related title, will be useful in comparing different series and techniques.
Spectrally based mapping of riverbed composition
Legleiter, Carl; Stegman, Tobin K.; Overstreet, Brandon T.
2016-01-01
Remote sensing methods provide an efficient means of characterizing fluvial systems. This study evaluated the potential to map riverbed composition based on in situ and/or remote measurements of reflectance. Field spectra and substrate photos from the Snake River, Wyoming, USA, were used to identify different sediment facies and degrees of algal development and to quantify their optical characteristics. We hypothesized that accounting for the effects of depth and water column attenuation to isolate the reflectance of the streambed would enhance distinctions among bottom types and facilitate substrate classification. A bottom reflectance retrieval algorithm adapted from coastal research yielded realistic spectra for the 450 to 700 nm range; but bottom reflectance-based substrate classifications, generated using a random forest technique, were no more accurate than classifications derived from above-water field spectra. Additional hypothesis testing indicated that a combination of reflectance magnitude (brightness) and indices of spectral shape provided the most accurate riverbed classifications. Convolving field spectra to the response functions of a multispectral satellite and a hyperspectral imaging system did not reduce classification accuracies, implying that high spectral resolution was not essential. Supervised classifications of algal density produced from hyperspectral data and an inferred bottom reflectance image were not highly accurate, but unsupervised classification of the bottom reflectance image revealed distinct spectrally based clusters, suggesting that such an image could provide additional river information. We attribute the failure of bottom reflectance retrieval to yield more reliable substrate maps to a latent correlation between depth and bottom type. Accounting for the effects of depth might have eliminated a key distinction among substrates and thus reduced discriminatory power. Although further, more systematic study across a broader range of fluvial environments is needed to substantiate our initial results, this case study suggests that bed composition in shallow, clear-flowing rivers potentially could be mapped remotely.
Integrative Chemical-Biological Read-Across Approach for Chemical Hazard Classification
Low, Yen; Sedykh, Alexander; Fourches, Denis; Golbraikh, Alexander; Whelan, Maurice; Rusyn, Ivan; Tropsha, Alexander
2013-01-01
Traditional read-across approaches typically rely on the chemical similarity principle to predict chemical toxicity; however, the accuracy of such predictions is often inadequate due to the underlying complex mechanisms of toxicity. Here we report on the development of a hazard classification and visualization method that draws upon both chemical structural similarity and comparisons of biological responses to chemicals measured in multiple short-term assays (”biological” similarity). The Chemical-Biological Read-Across (CBRA) approach infers each compound's toxicity from those of both chemical and biological analogs whose similarities are determined by the Tanimoto coefficient. Classification accuracy of CBRA was compared to that of classical RA and other methods using chemical descriptors alone, or in combination with biological data. Different types of adverse effects (hepatotoxicity, hepatocarcinogenicity, mutagenicity, and acute lethality) were classified using several biological data types (gene expression profiling and cytotoxicity screening). CBRA-based hazard classification exhibited consistently high external classification accuracy and applicability to diverse chemicals. Transparency of the CBRA approach is aided by the use of radial plots that show the relative contribution of analogous chemical and biological neighbors. Identification of both chemical and biological features that give rise to the high accuracy of CBRA-based toxicity prediction facilitates mechanistic interpretation of the models. PMID:23848138
Classifications for Cesarean Section: A Systematic Review
Torloni, Maria Regina; Betran, Ana Pilar; Souza, Joao Paulo; Widmer, Mariana; Allen, Tomas; Gulmezoglu, Metin; Merialdi, Mario
2011-01-01
Background Rising cesarean section (CS) rates are a major public health concern and cause worldwide debates. To propose and implement effective measures to reduce or increase CS rates where necessary requires an appropriate classification. Despite several existing CS classifications, there has not yet been a systematic review of these. This study aimed to 1) identify the main CS classifications used worldwide, 2) analyze advantages and deficiencies of each system. Methods and Findings Three electronic databases were searched for classifications published 1968–2008. Two reviewers independently assessed classifications using a form created based on items rated as important by international experts. Seven domains (ease, clarity, mutually exclusive categories, totally inclusive classification, prospective identification of categories, reproducibility, implementability) were assessed and graded. Classifications were tested in 12 hypothetical clinical case-scenarios. From a total of 2948 citations, 60 were selected for full-text evaluation and 27 classifications identified. Indications classifications present important limitations and their overall score ranged from 2–9 (maximum grade = 14). Degree of urgency classifications also had several drawbacks (overall scores 6–9). Woman-based classifications performed best (scores 5–14). Other types of classifications require data not routinely collected and may not be relevant in all settings (scores 3–8). Conclusions This review and critical appraisal of CS classifications is a methodologically sound contribution to establish the basis for the appropriate monitoring and rational use of CS. Results suggest that women-based classifications in general, and Robson's classification, in particular, would be in the best position to fulfill current international and local needs and that efforts to develop an internationally applicable CS classification would be most appropriately placed in building upon this classification. The use of a single CS classification will facilitate auditing, analyzing and comparing CS rates across different settings and help to create and implement effective strategies specifically targeted to optimize CS rates where necessary. PMID:21283801
Ensemble Classifier Strategy Based on Transient Feature Fusion in Electronic Nose
NASA Astrophysics Data System (ADS)
Bagheri, Mohammad Ali; Montazer, Gholam Ali
2011-09-01
In this paper, we test the performance of several ensembles of classifiers and each base learner has been trained on different types of extracted features. Experimental results show the potential benefits introduced by the usage of simple ensemble classification systems for the integration of different types of transient features.
Efficiency of the spectral-spatial classification of hyperspectral imaging data
NASA Astrophysics Data System (ADS)
Borzov, S. M.; Potaturkin, O. I.
2017-01-01
The efficiency of methods of the spectral-spatial classification of similarly looking types of vegetation on the basis of hyperspectral data of remote sensing of the Earth, which take into account local neighborhoods of analyzed image pixels, is experimentally studied. Algorithms that involve spatial pre-processing of the raw data and post-processing of pixel-based spectral classification maps are considered. Results obtained both for a large-size hyperspectral image and for its test fragment with different methods of training set construction are reported. The classification accuracy in all cases is estimated through comparisons of ground-truth data and classification maps formed by using the compared methods. The reasons for the differences in these estimates are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Möller, A.; Ruhlmann-Kleider, V.; Leloup, C.
In the era of large astronomical surveys, photometric classification of supernovae (SNe) has become an important research field due to limited spectroscopic resources for candidate follow-up and classification. In this work, we present a method to photometrically classify type Ia supernovae based on machine learning with redshifts that are derived from the SN light-curves. This method is implemented on real data from the SNLS deferred pipeline, a purely photometric pipeline that identifies SNe Ia at high-redshifts (0.2 < z < 1.1). Our method consists of two stages: feature extraction (obtaining the SN redshift from photometry and estimating light-curve shape parameters)more » and machine learning classification. We study the performance of different algorithms such as Random Forest and Boosted Decision Trees. We evaluate the performance using SN simulations and real data from the first 3 years of the Supernova Legacy Survey (SNLS), which contains large spectroscopically and photometrically classified type Ia samples. Using the Area Under the Curve (AUC) metric, where perfect classification is given by 1, we find that our best-performing classifier (Extreme Gradient Boosting Decision Tree) has an AUC of 0.98.We show that it is possible to obtain a large photometrically selected type Ia SN sample with an estimated contamination of less than 5%. When applied to data from the first three years of SNLS, we obtain 529 events. We investigate the differences between classifying simulated SNe, and real SN survey data. In particular, we find that applying a thorough set of selection cuts to the SN sample is essential for good classification. This work demonstrates for the first time the feasibility of machine learning classification in a high- z SN survey with application to real SN data.« less
Pirih, Nina; Kunej, Tanja
2018-05-01
The volume of publications and the type of research approaches used in omics system sciences are vast and continue to expand rapidly. This increased complexity and heterogeneity of omics data are challenging data extraction, sensemaking, analyses, knowledge translation, and interpretation. An extended and dynamic taxonomy for the classification and summary of omics studies are essential. We present an updated taxonomy for classification of omics research studies based on four criteria: (1) type and number of genomic loci in a research study, (2) number of species and biological samples, (3) the type of omics technology (e.g., genomics, transcriptomics, and proteomics) and omics technology application type (e.g., pharmacogenomics and nutrigenomics), and (4) phenotypes. In addition, we present a graphical summary approach that enables the researchers to define the main characteristics of their study in a single figure, and offers the readers to rapidly grasp the published study and omics data. We searched the PubMed and the Web of Science from 09/2002 to 02/2018, including research and review articles, and identified 90 scientific publications. We propose a call toward omics studies' standardization for reporting in scientific literature. We anticipate the proposed classification scheme will usefully contribute to improved classification of published reports in genomics and other omics fields, and help data extraction from publications for future multiomics data integration.
Classification of the Gabon SAR Mosaic Using a Wavelet Based Rule Classifier
NASA Technical Reports Server (NTRS)
Simard, Marc; Saatchi, Sasan; DeGrandi, Gianfranco
2000-01-01
A method is developed for semi-automated classification of SAR images of the tropical forest. Information is extracted using the wavelet transform (WT). The transform allows for extraction of structural information in the image as a function of scale. In order to classify the SAR image, a Desicion Tree Classifier is used. The method of pruning is used to optimize classification rate versus tree size. The results give explicit insight on the type of information useful for a given class.
Ecological type classification for California: the Forest Service approach
Barbara H. Allen
1987-01-01
National legislation has mandated the development and use of an ecological data base to improve resource decision making, while State and Federal agencies have agreed to cooperate in standardizing resource classification and inventory data. In the Pacific Southwest Region, which includes nearly 20 million acres (8.3 million ha) in California, the Forest Service, U.S....
Application of the Covalent Bond Classification Method for the Teaching of Inorganic Chemistry
ERIC Educational Resources Information Center
Green, Malcolm L. H.; Parkin, Gerard
2014-01-01
The Covalent Bond Classification (CBC) method provides a means to classify covalent molecules according to the number and types of bonds that surround an atom of interest. This approach is based on an elementary molecular orbital analysis of the bonding involving the central atom (M), with the various interactions being classified according to the…
Impact of Information based Classification on Network Epidemics
Mishra, Bimal Kumar; Haldar, Kaushik; Sinha, Durgesh Nandini
2016-01-01
Formulating mathematical models for accurate approximation of malicious propagation in a network is a difficult process because of our inherent lack of understanding of several underlying physical processes that intrinsically characterize the broader picture. The aim of this paper is to understand the impact of available information in the control of malicious network epidemics. A 1-n-n-1 type differential epidemic model is proposed, where the differentiality allows a symptom based classification. This is the first such attempt to add such a classification into the existing epidemic framework. The model is incorporated into a five class system called the DifEpGoss architecture. Analysis reveals an epidemic threshold, based on which the long-term behavior of the system is analyzed. In this work three real network datasets with 22002, 22469 and 22607 undirected edges respectively, are used. The datasets show that classification based prevention given in the model can have a good role in containing network epidemics. Further simulation based experiments are used with a three category classification of attack and defense strengths, which allows us to consider 27 different possibilities. These experiments further corroborate the utility of the proposed model. The paper concludes with several interesting results. PMID:27329348
NASA Astrophysics Data System (ADS)
Wang, Bingjie; Pi, Shaohua; Sun, Qi; Jia, Bo
2015-05-01
An improved classification algorithm that considers multiscale wavelet packet Shannon entropy is proposed. Decomposition coefficients at all levels are obtained to build the initial Shannon entropy feature vector. After subtracting the Shannon entropy map of the background signal, components of the strongest discriminating power in the initial feature vector are picked out to rebuild the Shannon entropy feature vector, which is transferred to radial basis function (RBF) neural network for classification. Four types of man-made vibrational intrusion signals are recorded based on a modified Sagnac interferometer. The performance of the improved classification algorithm has been evaluated by the classification experiments via RBF neural network under different diffusion coefficients. An 85% classification accuracy rate is achieved, which is higher than the other common algorithms. The classification results show that this improved classification algorithm can be used to classify vibrational intrusion signals in an automatic real-time monitoring system.
NASA Technical Reports Server (NTRS)
Johnson, J. R. (Principal Investigator)
1974-01-01
The author has identified the following significant results. The broad scale vegetation classification was developed for a 3,200 sq mile area in southeastern Arizona. The 31 vegetation types were derived from association tables which contained information taken at about 500 ground sites. The classification provided an information base that was suitable for use with small scale photography. A procedure was developed and tested for objectively comparing photo images. The procedure consisted of two parts, image groupability testing and image complexity testing. The Apollo and ERTS photos were compared for relative suitability as first stage stratification bases in two stage proportional probability sampling. High altitude photography was used in common at the second stage.
Event Classification and Identification Based on the Characteristic Ellipsoid of Phasor Measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Jian; Diao, Ruisheng; Makarov, Yuri V.
2011-09-23
In this paper, a method to classify and identify power system events based on the characteristic ellipsoid of phasor measurement is presented. The decision tree technique is used to perform the event classification and identification. Event types, event locations and clearance times are identified by decision trees based on the indices of the characteristic ellipsoid. A sufficiently large number of transient events were simulated on the New England 10-machine 39-bus system based on different system configurations. Transient simulations taking into account different event types, clearance times and various locations are conducted to simulate phasor measurement. Bus voltage magnitudes and recordedmore » reactive and active power flows are used to build the characteristic ellipsoid. The volume, eccentricity, center and projection of the longest axis in the parameter space coordinates of the characteristic ellipsoids are used to classify and identify events. Results demonstrate that the characteristic ellipsoid and the decision tree are capable to detect the event type, location, and clearance time with very high accuracy.« less
Sánchez-Ribas, Jordi; Oliveira-Ferreira, Joseli; Rosa-Freitas, Maria Goreti; Trilla, Lluís; Silva-do-Nascimento, Teresa Fernandes
2015-09-01
Here we present the first in a series of articles about the ecology of immature stages of anophelines in the Brazilian Yanomami area. We propose a new larval habitat classification and a new larval sampling methodology. We also report some preliminary results illustrating the applicability of the methodology based on data collected in the Brazilian Amazon rainforest in a longitudinal study of two remote Yanomami communities, Parafuri and Toototobi. In these areas, we mapped and classified 112 natural breeding habitats located in low-order river systems based on their association with river flood pulses, seasonality and exposure to sun. Our classification rendered seven types of larval habitats: lakes associated with the river, which are subdivided into oxbow lakes and nonoxbow lakes, flooded areas associated with the river, flooded areas not associated with the river, rainfall pools, small forest streams, medium forest streams and rivers. The methodology for larval sampling was based on the accurate quantification of the effective breeding area, taking into account the area of the perimeter and subtypes of microenvironments present per larval habitat type using a laser range finder and a small portable inflatable boat. The new classification and new sampling methodology proposed herein may be useful in vector control programs.
Sánchez-Ribas, Jordi; Oliveira-Ferreira, Joseli; Rosa-Freitas, Maria Goreti; Trilla, Lluís; Silva-do-Nascimento, Teresa Fernandes
2015-01-01
Here we present the first in a series of articles about the ecology of immature stages of anophelines in the Brazilian Yanomami area. We propose a new larval habitat classification and a new larval sampling methodology. We also report some preliminary results illustrating the applicability of the methodology based on data collected in the Brazilian Amazon rainforest in a longitudinal study of two remote Yanomami communities, Parafuri and Toototobi. In these areas, we mapped and classified 112 natural breeding habitats located in low-order river systems based on their association with river flood pulses, seasonality and exposure to sun. Our classification rendered seven types of larval habitats: lakes associated with the river, which are subdivided into oxbow lakes and nonoxbow lakes, flooded areas associated with the river, flooded areas not associated with the river, rainfall pools, small forest streams, medium forest streams and rivers. The methodology for larval sampling was based on the accurate quantification of the effective breeding area, taking into account the area of the perimeter and subtypes of microenvironments present per larval habitat type using a laser range finder and a small portable inflatable boat. The new classification and new sampling methodology proposed herein may be useful in vector control programs. PMID:26517655
Stellite-based classification of tillage practices in the U.S.
NASA Astrophysics Data System (ADS)
Azzari, G.; Lobell, D. B.
2017-12-01
The number of applications based on Machine learning algorithms applied to satellite images has been increasing steadily in last few years. While in the context of agricultural monitoring these techiques are most commonly used for land cover type and crop classification, they also show a great potential for monitoring management practices. In this study, we present some preliminary results on classifying tillage practices in the U.S. midwest using Landsat 8 and Sentinel 2 data.
SeqRate: sequence-based protein folding type classification and rates prediction
2010-01-01
Background Protein folding rate is an important property of a protein. Predicting protein folding rate is useful for understanding protein folding process and guiding protein design. Most previous methods of predicting protein folding rate require the tertiary structure of a protein as an input. And most methods do not distinguish the different kinetic nature (two-state folding or multi-state folding) of the proteins. Here we developed a method, SeqRate, to predict both protein folding kinetic type (two-state versus multi-state) and real-value folding rate using sequence length, amino acid composition, contact order, contact number, and secondary structure information predicted from only protein sequence with support vector machines. Results We systematically studied the contributions of individual features to folding rate prediction. On a standard benchmark dataset, the accuracy of folding kinetic type classification is 80%. The Pearson correlation coefficient and the mean absolute difference between predicted and experimental folding rates (sec-1) in the base-10 logarithmic scale are 0.81 and 0.79 for two-state protein folders, and 0.80 and 0.68 for three-state protein folders. SeqRate is the first sequence-based method for protein folding type classification and its accuracy of fold rate prediction is improved over previous sequence-based methods. Its performance can be further enhanced with additional information, such as structure-based geometric contacts, as inputs. Conclusions Both the web server and software of predicting folding rate are publicly available at http://casp.rnet.missouri.edu/fold_rate/index.html. PMID:20438647
Network-based high level data classification.
Silva, Thiago Christiano; Zhao, Liang
2012-06-01
Traditional supervised data classification considers only physical features (e.g., distance or similarity) of the input data. Here, this type of learning is called low level classification. On the other hand, the human (animal) brain performs both low and high orders of learning and it has facility in identifying patterns according to the semantic meaning of the input data. Data classification that considers not only physical attributes but also the pattern formation is, here, referred to as high level classification. In this paper, we propose a hybrid classification technique that combines both types of learning. The low level term can be implemented by any classification technique, while the high level term is realized by the extraction of features of the underlying network constructed from the input data. Thus, the former classifies the test instances by their physical features or class topologies, while the latter measures the compliance of the test instances to the pattern formation of the data. Our study shows that the proposed technique not only can realize classification according to the pattern formation, but also is able to improve the performance of traditional classification techniques. Furthermore, as the class configuration's complexity increases, such as the mixture among different classes, a larger portion of the high level term is required to get correct classification. This feature confirms that the high level classification has a special importance in complex situations of classification. Finally, we show how the proposed technique can be employed in a real-world application, where it is capable of identifying variations and distortions of handwritten digit images. As a result, it supplies an improvement in the overall pattern recognition rate.
A dynamical classification of the cosmic web
NASA Astrophysics Data System (ADS)
Forero-Romero, J. E.; Hoffman, Y.; Gottlöber, S.; Klypin, A.; Yepes, G.
2009-07-01
In this paper, we propose a new dynamical classification of the cosmic web. Each point in space is classified in one of four possible web types: voids, sheets, filaments and knots. The classification is based on the evaluation of the deformation tensor (i.e. the Hessian of the gravitational potential) on a grid. The classification is based on counting the number of eigenvalues above a certain threshold, λth, at each grid point, where the case of zero, one, two or three such eigenvalues corresponds to void, sheet, filament or a knot grid point. The collection of neighbouring grid points, friends of friends, of the same web type constitutes voids, sheets, filaments and knots as extended web objects. A simple dynamical consideration of the emergence of the web suggests that the threshold should not be null, as in previous implementations of the algorithm. A detailed dynamical analysis would have found different threshold values for the collapse of sheets, filaments and knots. Short of such an analysis a phenomenological approach has been opted for, looking for a single threshold to be determined by analysing numerical simulations. Our cosmic web classification has been applied and tested against a suite of large (dark matter only) cosmological N-body simulations. In particular, the dependence of the volume and mass filling fractions on λth and on the resolution has been calculated for the four web types. We also study the percolation properties of voids and filaments. Our main findings are as follows. (i) Already at λth = 0.1 the resulting web classification reproduces the visual impression of the cosmic web. (ii) Between 0.2 <~ λth <~ 0.4, a system of percolated voids coexists with a net of interconnected filaments. This suggests a reasonable choice for λth as the parameter that defines the cosmic web. (iii) The dynamical nature of the suggested classification provides a robust framework for incorporating environmental information into galaxy formation models, and in particular to semi-analytical models.
Classification and disease prediction via mathematical programming
NASA Astrophysics Data System (ADS)
Lee, Eva K.; Wu, Tsung-Lin
2007-11-01
In this chapter, we present classification models based on mathematical programming approaches. We first provide an overview on various mathematical programming approaches, including linear programming, mixed integer programming, nonlinear programming and support vector machines. Next, we present our effort of novel optimization-based classification models that are general purpose and suitable for developing predictive rules for large heterogeneous biological and medical data sets. Our predictive model simultaneously incorporates (1) the ability to classify any number of distinct groups; (2) the ability to incorporate heterogeneous types of attributes as input; (3) a high-dimensional data transformation that eliminates noise and errors in biological data; (4) the ability to incorporate constraints to limit the rate of misclassification, and a reserved-judgment region that provides a safeguard against over-training (which tends to lead to high misclassification rates from the resulting predictive rule) and (5) successive multi-stage classification capability to handle data points placed in the reserved judgment region. To illustrate the power and flexibility of the classification model and solution engine, and its multigroup prediction capability, application of the predictive model to a broad class of biological and medical problems is described. Applications include: the differential diagnosis of the type of erythemato-squamous diseases; predicting presence/absence of heart disease; genomic analysis and prediction of aberrant CpG island meythlation in human cancer; discriminant analysis of motility and morphology data in human lung carcinoma; prediction of ultrasonic cell disruption for drug delivery; identification of tumor shape and volume in treatment of sarcoma; multistage discriminant analysis of biomarkers for prediction of early atherosclerois; fingerprinting of native and angiogenic microvascular networks for early diagnosis of diabetes, aging, macular degeneracy and tumor metastasis; prediction of protein localization sites; and pattern recognition of satellite images in classification of soil types. In all these applications, the predictive model yields correct classification rates ranging from 80% to 100%. This provides motivation for pursuing its use as a medical diagnostic, monitoring and decision-making tool.
Patterns and correlates of co-occurrence among multiple types of child maltreatment
Kim, Kihyun; Mennen, Ferol E.; Trickett, Penelope K.
2017-01-01
This study examined the patterns and correlates of the types of maltreatment experienced by adolescents aged 9–12, participating in an ongoing longitudinal study on the impact of neglect on children’s development. Using case record abstraction, the study compared the child protection classification and findings from the case record abstraction with regard to the rates of four types of maltreatment (i.e. physical, sexual, emotional abuse and neglect) as well as co-occurrence across multiple types of maltreatment. Next, the study examined the frequently observed patterns of child maltreatment. Finally, the study investigated whether aspects of caretaker functioning and the detailed incident characteristics in the cases of neglect differed by the number of different types of maltreatment the children experienced. Results showed significant discrepancies between the Child Protective Service classification and case record abstraction. Child Protective Service classification considerably underestimated the rate of co-occurrence across multiple types of maltreatment. Neglect accompanied by physical and emotional abuse was the most common form. Some of the caretaker functioning variables distinguished the number of types of maltreatment. Based on the findings, future-research directions and practice implication were discussed. PMID:29225485
Image-based fall detection and classification of a user with a walking support system
NASA Astrophysics Data System (ADS)
Taghvaei, Sajjad; Kosuge, Kazuhiro
2017-10-01
The classification of visual human action is important in the development of systems that interact with humans. This study investigates an image-based classification of the human state while using a walking support system to improve the safety and dependability of these systems.We categorize the possible human behavior while utilizing a walker robot into eight states (i.e., sitting, standing, walking, and five falling types), and propose two different methods, namely, normal distribution and hidden Markov models (HMMs), to detect and recognize these states. The visual feature for the state classification is the centroid position of the upper body, which is extracted from the user's depth images. The first method shows that the centroid position follows a normal distribution while walking, which can be adopted to detect any non-walking state. The second method implements HMMs to detect and recognize these states. We then measure and compare the performance of both methods. The classification results are employed to control the motion of a passive-type walker (called "RT Walker") by activating its brakes in non-walking states. Thus, the system can be used for sit/stand support and fall prevention. The experiments are performed with four subjects, including an experienced physiotherapist. Results show that the algorithm can be adapted to the new user's motion pattern within 40 s, with a fall detection rate of 96.25% and state classification rate of 81.0%. The proposed method can be implemented to other abnormality detection/classification applications that employ depth image-sensing devices.
A two-tier atmospheric circulation classification scheme for the European-North Atlantic region
NASA Astrophysics Data System (ADS)
Guentchev, Galina S.; Winkler, Julie A.
A two-tier classification of large-scale atmospheric circulation was developed for the European-North-Atlantic domain. The classification was constructed using a combination of principal components and k-means cluster analysis applied to reanalysis fields of mean sea-level pressure for 1951-2004. Separate classifications were developed for the winter, spring, summer, and fall seasons. For each season, the two classification tiers were identified independently, such that the definition of one tier does not depend on the other tier having already been defined. The first tier of the classification is comprised of supertype patterns. These broad-scale circulation classes are useful for generalized analyses such as investigations of the temporal trends in circulation frequency and persistence. The second, more detailed tier consists of circulation types and is useful for numerous applied research questions regarding the relationships between large-scale circulation and local and regional climate. Three to five supertypes and up to 19 circulation types were identified for each season. An intuitive nomenclature scheme based on the physical entities (i.e., anomaly centers) which dominate the specific patterns was used to label each of the supertypes and types. Two example applications illustrate the potential usefulness of a two-tier classification. In the first application, the temporal variability of the supertypes was evaluated. In general, the frequency and persistence of supertypes dominated by anticyclonic circulation increased during the study period, whereas the supertypes dominated by cyclonic features decreased in frequency and persistence. The usefulness of the derived circulation types was exemplified by an analysis of the circulation associated with heat waves and cold spells reported at several cities in Bulgaria. These extreme temperature events were found to occur with a small number of circulation types, a finding that can be helpful in understanding past variability and projecting future changes in the occurrence of extreme weather and climate events.
Shishir, Sharmin; Tsuyuzaki, Shiro
2018-05-11
Detecting fine-scale spatiotemporal land use changes is a prerequisite for understanding and predicting the effects of urbanization and its related human impacts on the ecosystem. Land use changes are frequently examined using vegetation indices (VIs), although the validation of these indices has not been conducted at a high resolution. Therefore, a hierarchical classification was constructed to obtain accurate land use types at a fine scale. The characteristics of four popular VIs were investigated prior to examining the hierarchical classification by using Purbachal New Town, Bangladesh, which exhibits ongoing urbanization. These four VIs are the normalized difference VI (NDVI), green-red VI (GRVI), enhanced VI (EVI), and two-band EVI (EVI2). The reflectance data were obtained by the IKONOS (0.8-m resolution) and WorldView-2 sensor (0.5-m resolution) in 2001 and 2015, respectively. The hierarchical classification of land use types was constructed using a decision tree (DT) utilizing all four of the examined VIs. The accuracy of the classification was evaluated using ground truth data with multiple comparisons and kappa (κ) coefficients. The DT showed overall accuracies of 96.1 and 97.8% in 2001 and 2015, respectively, while the accuracies of the VIs were less than 91.2%. These results indicate that each VI exhibits unique advantages. In addition, the DT was the best classifier of land use types, particularly for native ecosystems represented by Shorea forests and homestead vegetation, at the fine scale. Since the conservation of these native ecosystems is of prime importance, DTs based on hierarchical classifications should be used more widely.
Prediction of carbonate rock type from NMR responses using data mining techniques
NASA Astrophysics Data System (ADS)
Gonçalves, Eduardo Corrêa; da Silva, Pablo Nascimento; Silveira, Carla Semiramis; Carneiro, Giovanna; Domingues, Ana Beatriz; Moss, Adam; Pritchard, Tim; Plastino, Alexandre; Azeredo, Rodrigo Bagueira de Vasconcellos
2017-05-01
Recent studies have indicated that the accurate identification of carbonate rock types in a reservoir can be employed as a preliminary step to enhance the effectiveness of petrophysical property modeling. Furthermore, rock typing activity has been shown to be of key importance in several steps of formation evaluation, such as the study of sedimentary series, reservoir zonation and well-to-well correlation. In this paper, a methodology based exclusively on the analysis of 1H-NMR (Nuclear Magnetic Resonance) relaxation responses - using data mining algorithms - is evaluated to perform the automatic classification of carbonate samples according to their rock type. We analyze the effectiveness of six different classification algorithms (k-NN, Naïve Bayes, C4.5, Random Forest, SMO and Multilayer Perceptron) and two data preprocessing strategies (discretization and feature selection). The dataset used in this evaluation is formed by 78 1H-NMR T2 distributions of fully brine-saturated rock samples from six different rock type classes. The experiments reveal that the combination of preprocessing strategies with classification algorithms is able to achieve a prediction accuracy of 97.4%.
Pettersson-Yeo, William; Benetti, Stefania; Marquand, Andre F.; Joules, Richard; Catani, Marco; Williams, Steve C. R.; Allen, Paul; McGuire, Philip; Mechelli, Andrea
2014-01-01
In the pursuit of clinical utility, neuroimaging researchers of psychiatric and neurological illness are increasingly using analyses, such as support vector machine, that allow inference at the single-subject level. Recent studies employing single-modality data, however, suggest that classification accuracies must be improved for such utility to be realized. One possible solution is to integrate different data types to provide a single combined output classification; either by generating a single decision function based on an integrated kernel matrix, or, by creating an ensemble of multiple single modality classifiers and integrating their predictions. Here, we describe four integrative approaches: (1) an un-weighted sum of kernels, (2) multi-kernel learning, (3) prediction averaging, and (4) majority voting, and compare their ability to enhance classification accuracy relative to the best single-modality classification accuracy. We achieve this by integrating structural, functional, and diffusion tensor magnetic resonance imaging data, in order to compare ultra-high risk (n = 19), first episode psychosis (n = 19) and healthy control subjects (n = 23). Our results show that (i) whilst integration can enhance classification accuracy by up to 13%, the frequency of such instances may be limited, (ii) where classification can be enhanced, simple methods may yield greater increases relative to more computationally complex alternatives, and, (iii) the potential for classification enhancement is highly influenced by the specific diagnostic comparison under consideration. In conclusion, our findings suggest that for moderately sized clinical neuroimaging datasets, combining different imaging modalities in a data-driven manner is no “magic bullet” for increasing classification accuracy. However, it remains possible that this conclusion is dependent on the use of neuroimaging modalities that had little, or no, complementary information to offer one another, and that the integration of more diverse types of data would have produced greater classification enhancement. We suggest that future studies ideally examine a greater variety of data types (e.g., genetic, cognitive, and neuroimaging) in order to identify the data types and combinations optimally suited to the classification of early stage psychosis. PMID:25076868
Pettersson-Yeo, William; Benetti, Stefania; Marquand, Andre F; Joules, Richard; Catani, Marco; Williams, Steve C R; Allen, Paul; McGuire, Philip; Mechelli, Andrea
2014-01-01
In the pursuit of clinical utility, neuroimaging researchers of psychiatric and neurological illness are increasingly using analyses, such as support vector machine, that allow inference at the single-subject level. Recent studies employing single-modality data, however, suggest that classification accuracies must be improved for such utility to be realized. One possible solution is to integrate different data types to provide a single combined output classification; either by generating a single decision function based on an integrated kernel matrix, or, by creating an ensemble of multiple single modality classifiers and integrating their predictions. Here, we describe four integrative approaches: (1) an un-weighted sum of kernels, (2) multi-kernel learning, (3) prediction averaging, and (4) majority voting, and compare their ability to enhance classification accuracy relative to the best single-modality classification accuracy. We achieve this by integrating structural, functional, and diffusion tensor magnetic resonance imaging data, in order to compare ultra-high risk (n = 19), first episode psychosis (n = 19) and healthy control subjects (n = 23). Our results show that (i) whilst integration can enhance classification accuracy by up to 13%, the frequency of such instances may be limited, (ii) where classification can be enhanced, simple methods may yield greater increases relative to more computationally complex alternatives, and, (iii) the potential for classification enhancement is highly influenced by the specific diagnostic comparison under consideration. In conclusion, our findings suggest that for moderately sized clinical neuroimaging datasets, combining different imaging modalities in a data-driven manner is no "magic bullet" for increasing classification accuracy. However, it remains possible that this conclusion is dependent on the use of neuroimaging modalities that had little, or no, complementary information to offer one another, and that the integration of more diverse types of data would have produced greater classification enhancement. We suggest that future studies ideally examine a greater variety of data types (e.g., genetic, cognitive, and neuroimaging) in order to identify the data types and combinations optimally suited to the classification of early stage psychosis.
Cysts of the oro-facial region: A Nigerian experience
Lawal, AO; Adisa, AO; Sigbeku, OF
2012-01-01
Aim: Though many studies have examined cysts of the jaws, most of them focused on a group of cysts and only few have examined cysts based on a particular classification. The aim of this study is to review cysts of the oro-facial region seen at a tertiary health centre in Ibadan and to categorize these cases based on Lucas, Killey and Kay and WHO classifications. Materials and Methods: All histologically diagnosed oro-facial cysts were retrieved from the oral pathology archives. Information concerning cyst type, topography, age at time of diagnosis and gender of patients was gathered. Data obtained was analyzed with the SPSS 18.0.1 version software. Results: A total of 92 histologically diagnosed oro-facial cysts comprising 60 (65.2%) males and 32 (34.8%) females were seen. The age range was 4 to 73 years with a mean age of 27.99 ± 15.26 years. The peak incidence was in the third decade. The mandible/ maxilla ratio was 1.5:1. Apical periodontal was the most common type of cyst accounting for 50% (n = 46) of total cysts observed. Using the WHO classification, cysts of the soft tissues of head, face and neck were overwhelmingly more common in males than females with a ratio of 14:3, while non-epithelial cysts occurred at a 3:1 male/female ratio. Conclusion: This study showed similar findings in regard to type, site and age incidence of oro-facial cysts compared to previous studies and also showed that the WHO classification protocol was the most comprehensive classification method for oro-facial cysts. PMID:22923885
A Hybrid Sensing Approach for Pure and Adulterated Honey Classification
Subari, Norazian; Saleh, Junita Mohamad; Shakaff, Ali Yeon Md; Zakaria, Ammar
2012-01-01
This paper presents a comparison between data from single modality and fusion methods to classify Tualang honey as pure or adulterated using Linear Discriminant Analysis (LDA) and Principal Component Analysis (PCA) statistical classification approaches. Ten different brands of certified pure Tualang honey were obtained throughout peninsular Malaysia and Sumatera, Indonesia. Various concentrations of two types of sugar solution (beet and cane sugar) were used in this investigation to create honey samples of 20%, 40%, 60% and 80% adulteration concentrations. Honey data extracted from an electronic nose (e-nose) and Fourier Transform Infrared Spectroscopy (FTIR) were gathered, analyzed and compared based on fusion methods. Visual observation of classification plots revealed that the PCA approach able to distinct pure and adulterated honey samples better than the LDA technique. Overall, the validated classification results based on FTIR data (88.0%) gave higher classification accuracy than e-nose data (76.5%) using the LDA technique. Honey classification based on normalized low-level and intermediate-level FTIR and e-nose fusion data scored classification accuracies of 92.2% and 88.7%, respectively using the Stepwise LDA method. The results suggested that pure and adulterated honey samples were better classified using FTIR and e-nose fusion data than single modality data. PMID:23202033
NASA Astrophysics Data System (ADS)
Kumar, Abhishek; Harinarayan, N. H.; Verma, Vishal; Anand, Saurabh; Borah, Uddipana; Bania, Mousumi
2018-04-01
Guwahati, the Gateway of India in the northeast, is a large business and development center. Past seismic scenarios suggest moderate to significant effects of regional earthquakes (EQs) in Guwahati in terms of liquefaction as well as building damages. Considering the role of local soil in amplifying EQ-generated ground motions and controlling surface damages, present study attempts seismic site classification of subsoil of Guwahati. Subsoil is explored based on 43 geophysical tests and 244 borelogs gathered from different resources. Based on the borehole data, 4 numbers of 2D cross-sections are developed from different parts of Guwahati, clearly indicating that a majority of the locations are composed of clay of intermediate to high plasticity while at specific locations only, layers of sand are found at selective depths. Further, seismic site classification based on 30 m average SPT-N suggests that a major part of Guwahati falls under seismic site class (SSC) D such as Balaji Temple and Airport. However, Assam Zoo, Pan Bazaar, IIT campus, Dhol Gobinda and Maligaon show SSC E clearly indicating the presence of soft soil deposits at these locations. Similar site classification is also attempted from MASW test-based 30 m average shear wave velocity (V S30). V S30-based site classification also categorizes most of Guwahati under SSC D. However, there are locations in the southern part of Guwahati which belong to SSC C as well. Mismatch in SSC based on two different test findings for Indian soil found here are consistent with previous studies. Further, three empirical correlations based on both SPT-N and V S profiles at 22 test locations are developed for: (1) clayey; (2) sandy and (3) all soil types. Proposed correlation for all soil types is validated graphically and is found closely matching with similar correlations for Turkey and Lucknow.
40 CFR 75.53 - Monitoring plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Energy and used in the National Allowance Data Base (or equivalent facility ID number assigned by EPA, if...; (C) Type of boiler (or boilers for a group of units using a common stack); (D) Type of fuel(s) fired... more than one fuel, the fuel classification of the boiler; (E) Type(s) of emission controls for SO2...
40 CFR 75.53 - Monitoring plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Energy and used in the National Allowance Data Base (or equivalent facility ID number assigned by EPA, if...; (C) Type of boiler (or boilers for a group of units using a common stack); (D) Type of fuel(s) fired... more than one fuel, the fuel classification of the boiler; (E) Type(s) of emission controls for SO2...
Forest habitat types of northern Idaho: A second approximation
Stephen V. Cooper; Kenneth E. Neiman; David W. Roberts
1991-01-01
The addition of more than 900 plots to the Daubenmire's original 181-plot database has resulted in a refinement of their potential natural vegetation-based land classification for northern Idaho. A diagnostic, indicator species-based key is provided for field identification of the eight climax series, 46 habitat types, and 60 phases. Recognized syntaxa are...
Evia-Viscarra, María Lola; Guardado-Mendoza, Rodolfo; Rodea-Montero, Edel Rafael
2016-01-01
Current classification of diabetes mellitus (DM) is based on etiology and includes type 1 (T1DM), type 2 (T2DM), gestational, and other. Clinical and pathophysiological characteristics of T1DM and T2DM in the same patient have been designated as type 1.5 DM (T1.5DM). The aim of this study was to classify pediatric patients with DM based on pancreatic autoimmunity and the presence or absence of overweight/obesity, and to compare the clinical, anthropometric, and biochemical characteristics between children in the different classes of DM. A sample of 185 patients, recruited (March 2008-April 2015) as part of the Cohort of Mexican Children with DM (CMC-DM); ClinicalTrials.gov, identifier: NCT02722655. The DM classification was made considering pancreatic autoimmunity (via antibodies GAD-65, IAA, and AICA) and the presence or absence of overweight/obesity. Clinical, anthropometric and biochemical variables, grouped by type of DM were compared (Kruskal-Wallis or chi-squared test). The final analysis included 140 children; 18.57% T1ADM, 46.43% T1BDM, 12.14% T1.5DM, and 22.86% T2DM. Fasting C-Peptide (FCP), and hs-CRP levels were higher in T1.5DM and T2DM, and the greatest levels were observed in T1.5DM (p<0.001 and 0.024 respectively). We clearly identified that the etiologic mechanisms of T1DM and T2DM are not mutually exclusive, and we detailed why FCP levels are not critical for the classification system of DM in children. The findings of this study suggest that T1.5DM should be considered during the classification of pediatric DM and might facilitate more tailored approaches to treatment, clinical care and follow-up.
Classification of Clouds in Satellite Imagery Using Adaptive Fuzzy Sparse Representation
Jin, Wei; Gong, Fei; Zeng, Xingbin; Fu, Randi
2016-01-01
Automatic cloud detection and classification using satellite cloud imagery have various meteorological applications such as weather forecasting and climate monitoring. Cloud pattern analysis is one of the research hotspots recently. Since satellites sense the clouds remotely from space, and different cloud types often overlap and convert into each other, there must be some fuzziness and uncertainty in satellite cloud imagery. Satellite observation is susceptible to noises, while traditional cloud classification methods are sensitive to noises and outliers; it is hard for traditional cloud classification methods to achieve reliable results. To deal with these problems, a satellite cloud classification method using adaptive fuzzy sparse representation-based classification (AFSRC) is proposed. Firstly, by defining adaptive parameters related to attenuation rate and critical membership, an improved fuzzy membership is introduced to accommodate the fuzziness and uncertainty of satellite cloud imagery; secondly, by effective combination of the improved fuzzy membership function and sparse representation-based classification (SRC), atoms in training dictionary are optimized; finally, an adaptive fuzzy sparse representation classifier for cloud classification is proposed. Experiment results on FY-2G satellite cloud image show that, the proposed method not only improves the accuracy of cloud classification, but also has strong stability and adaptability with high computational efficiency. PMID:27999261
U.S. Fish and Wildlife Service 1979 wetland classification: a review
Cowardin, L.M.; Golet, F.C.
1995-01-01
In 1979 the US Fish and Wildlife Service published and adopted a classification of wetlands and deepwater habitats of the United States. The system was designed for use in a national inventory of wetlands. It was intended to be ecologically based, to furnish the mapping units needed for the inventory, and to provide national consistency in terminology and definition. We review the performance of the classification after 13 years of use. The definition of wetland is based on national lists of hydric soils and plants that occur in wetlands. Our experience suggests that wetland classifications must facilitate mapping and inventory because these data gathering functions are essential to management and preservation of the wetland resource, but the definitions and taxa must have ecological basis. The most serious problem faced in construction of the classification was lack of data for many of the diverse wetland types. Review of the performance of the classification suggests that, for the most part, it was successful in accomplishing its objectives, but that problem areas should be corrected and modification could strengthen its utility. The classification, at least in concept, could be applied outside the United States. Experience gained in use of the classification can furnish guidance as to pitfalls to be avoided in the wetland classification process.
Soil classification based on cone penetration test (CPT) data in Western Central Java
NASA Astrophysics Data System (ADS)
Apriyono, Arwan; Yanto, Santoso, Purwanto Bekti; Sumiyanto
2018-03-01
This study presents a modified friction ratio range for soil classification i.e. gravel, sand, silt & clay and peat, using CPT data in Western Central Java. The CPT data was obtained solely from Soil Mechanic Laboratory of Jenderal Soedirman University that covers more than 300 sites within the study area. About 197 data were produced from data filtering process. IDW method was employed to interpolated friction ratio values in a regular grid point for soil classification map generation. Soil classification map was generated and presented using QGIS software. In addition, soil classification map with respect to modified friction ratio range was validated using 10% of total measurements. The result shows that silt and clay dominate soil type in the study area, which is in agreement with two popular methods namely Begemann and Vos. However, the modified friction ratio range produces 85% similarity with laboratory measurements whereby Begemann and Vos method yields 70% similarity. In addition, modified friction ratio range can effectively distinguish fine and coarse grains, thus useful for soil classification and subsequently for landslide analysis. Therefore, modified friction ratio range proposed in this study can be used to identify soil type for mountainous tropical region.
Kambhampati, Satya Samyukta; Singh, Vishal; Manikandan, M Sabarimalai; Ramkumar, Barathram
2015-08-01
In this Letter, the authors present a unified framework for fall event detection and classification using the cumulants extracted from the acceleration (ACC) signals acquired using a single waist-mounted triaxial accelerometer. The main objective of this Letter is to find suitable representative cumulants and classifiers in effectively detecting and classifying different types of fall and non-fall events. It was discovered that the first level of the proposed hierarchical decision tree algorithm implements fall detection using fifth-order cumulants and support vector machine (SVM) classifier. In the second level, the fall event classification algorithm uses the fifth-order cumulants and SVM. Finally, human activity classification is performed using the second-order cumulants and SVM. The detection and classification results are compared with those of the decision tree, naive Bayes, multilayer perceptron and SVM classifiers with different types of time-domain features including the second-, third-, fourth- and fifth-order cumulants and the signal magnitude vector and signal magnitude area. The experimental results demonstrate that the second- and fifth-order cumulant features and SVM classifier can achieve optimal detection and classification rates of above 95%, as well as the lowest false alarm rate of 1.03%.
Janousova, Eva; Schwarz, Daniel; Kasparek, Tomas
2015-06-30
We investigated a combination of three classification algorithms, namely the modified maximum uncertainty linear discriminant analysis (mMLDA), the centroid method, and the average linkage, with three types of features extracted from three-dimensional T1-weighted magnetic resonance (MR) brain images, specifically MR intensities, grey matter densities, and local deformations for distinguishing 49 first episode schizophrenia male patients from 49 healthy male subjects. The feature sets were reduced using intersubject principal component analysis before classification. By combining the classifiers, we were able to obtain slightly improved results when compared with single classifiers. The best classification performance (81.6% accuracy, 75.5% sensitivity, and 87.8% specificity) was significantly better than classification by chance. We also showed that classifiers based on features calculated using more computation-intensive image preprocessing perform better; mMLDA with classification boundary calculated as weighted mean discriminative scores of the groups had improved sensitivity but similar accuracy compared to the original MLDA; reducing a number of eigenvectors during data reduction did not always lead to higher classification accuracy, since noise as well as the signal important for classification were removed. Our findings provide important information for schizophrenia research and may improve accuracy of computer-aided diagnostics of neuropsychiatric diseases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System.
Li, Hongqiang; Yuan, Danyang; Wang, Youxi; Cui, Dianyin; Cao, Lu
2016-10-20
Automatic recognition of arrhythmias is particularly important in the diagnosis of heart diseases. This study presents an electrocardiogram (ECG) recognition system based on multi-domain feature extraction to classify ECG beats. An improved wavelet threshold method for ECG signal pre-processing is applied to remove noise interference. A novel multi-domain feature extraction method is proposed; this method employs kernel-independent component analysis in nonlinear feature extraction and uses discrete wavelet transform to extract frequency domain features. The proposed system utilises a support vector machine classifier optimized with a genetic algorithm to recognize different types of heartbeats. An ECG acquisition experimental platform, in which ECG beats are collected as ECG data for classification, is constructed to demonstrate the effectiveness of the system in ECG beat classification. The presented system, when applied to the MIT-BIH arrhythmia database, achieves a high classification accuracy of 98.8%. Experimental results based on the ECG acquisition experimental platform show that the system obtains a satisfactory classification accuracy of 97.3% and is able to classify ECG beats efficiently for the automatic identification of cardiac arrhythmias.
Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System
Li, Hongqiang; Yuan, Danyang; Wang, Youxi; Cui, Dianyin; Cao, Lu
2016-01-01
Automatic recognition of arrhythmias is particularly important in the diagnosis of heart diseases. This study presents an electrocardiogram (ECG) recognition system based on multi-domain feature extraction to classify ECG beats. An improved wavelet threshold method for ECG signal pre-processing is applied to remove noise interference. A novel multi-domain feature extraction method is proposed; this method employs kernel-independent component analysis in nonlinear feature extraction and uses discrete wavelet transform to extract frequency domain features. The proposed system utilises a support vector machine classifier optimized with a genetic algorithm to recognize different types of heartbeats. An ECG acquisition experimental platform, in which ECG beats are collected as ECG data for classification, is constructed to demonstrate the effectiveness of the system in ECG beat classification. The presented system, when applied to the MIT-BIH arrhythmia database, achieves a high classification accuracy of 98.8%. Experimental results based on the ECG acquisition experimental platform show that the system obtains a satisfactory classification accuracy of 97.3% and is able to classify ECG beats efficiently for the automatic identification of cardiac arrhythmias. PMID:27775596
NASA Astrophysics Data System (ADS)
Juniati, E.; Arrofiqoh, E. N.
2017-09-01
Information extraction from remote sensing data especially land cover can be obtained by digital classification. In practical some people are more comfortable using visual interpretation to retrieve land cover information. However, it is highly influenced by subjectivity and knowledge of interpreter, also takes time in the process. Digital classification can be done in several ways, depend on the defined mapping approach and assumptions on data distribution. The study compared several classifiers method for some data type at the same location. The data used Landsat 8 satellite imagery, SPOT 6 and Orthophotos. In practical, the data used to produce land cover map in 1:50,000 map scale for Landsat, 1:25,000 map scale for SPOT and 1:5,000 map scale for Orthophotos, but using visual interpretation to retrieve information. Maximum likelihood Classifiers (MLC) which use pixel-based and parameters approach applied to such data, and also Artificial Neural Network classifiers which use pixel-based and non-parameters approach applied too. Moreover, this study applied object-based classifiers to the data. The classification system implemented is land cover classification on Indonesia topographic map. The classification applied to data source, which is expected to recognize the pattern and to assess consistency of the land cover map produced by each data. Furthermore, the study analyse benefits and limitations the use of methods.
Weather types in the South Shetlands (Antarctica) using a circulation type approach
NASA Astrophysics Data System (ADS)
Mora, Carla; João Rocha, Maria; Dutra, Emanuel; Trigo, Isabel; Vieira, Gonçalo; Fragoso, Marcelo; Ramos, Miguel
2010-05-01
Weather types in the South Shetlands (Antarctica) were defined using an automated method based on the Lamb Weather Type classification scheme (Jones et al. 1993). This is an objective classification originally developed for the British Isles (Jones et al., 1993) and also applied to southeast (Goodess and Palutikof 1998) and northwest Spain (Lorenzo et al, 2009), Portugal (Trigo and DaCamara 2000) and Greece (Maheras et al. 2004) with good results. Daily atmospheric circulation in the South Shetlands region from 1989 to 2009 was classified using a 16-node grid of sea level pressure data from the ERA Interim. The classification is obtained through the comparison of the magnitudes of the directional and rotational components of the geostrophic flow. Basic circulation types were combined into 10 groups of weather types: four directional types (NW, N, S and SW), three anticyclonic types (A, ASW and ANW), and three cyclonic types (C, CSW and CNW). Westerly flow and cyclonic circulation are the most frequent events throughout the year. The sea level pressure field for each weather type is presented and the synoptic characteristics are described. The analysis is based on ERA-Interim fields, including mean sea level pressure, precipitation, cloud cover, humidity and air temperature. Snow thickess modelled using HTESSEL is also considered. Analysis of variance (anova) and multivariate analysis (principal component analysis) are applied to evaluate the characteristics of each weather type. This circulation-type approach showed good results in the past for the downscaling of precipitation in other regions, and we are interested in evaluating the possibilities that the classification offers for downscaling precipitation, but also for snow and air temperature. For this we will be using observational data at test sites in Livingston and Deception islands. We are also motivated by the possibility of using the circulation-type approach as a predictor in statistical downscaling. References: Goodess CM, Palutikof JP.1998. Development of daily rainfall scenarios for southeast Spain using a Circulation-type approach to downscaling. International Journal of Climatology. 10: 1051-1083. JonesPD, Hulme M, Briffa KR. 1993. A comparison of Lamb circulation types with an objective classification scheme. International Journal of Climatology, 13:655-663. Lorenzo M N, Iglesias I , Taboada JJ , Gómez-Gesteira M. 2009. Relationship between monthly rainfall in northwest Iberian Peninsula and North Atlantic sea surface temperature. International Journal of Climatology. Maheras P, Tolika K, Anagnostopoulou C, Vafiadis M, Patrikas I, Flocas H. 2004. On the relationship between circulation types and changes in rainfall variability in Grece. International Journal of Climatology 24: 1695-1712. Trigo RM, DaCamara C. 2000. Circulation weather types and their influence on the precipitation regime in Portugal. International Journal of Climatology. 20: 1559-1581.
Gross, Douglas P; Zhang, Jing; Steenstra, Ivan; Barnsley, Susan; Haws, Calvin; Amell, Tyler; McIntosh, Greg; Cooper, Juliette; Zaiane, Osmar
2013-12-01
To develop a classification algorithm and accompanying computer-based clinical decision support tool to help categorize injured workers toward optimal rehabilitation interventions based on unique worker characteristics. Population-based historical cohort design. Data were extracted from a Canadian provincial workers' compensation database on all claimants undergoing work assessment between December 2009 and January 2011. Data were available on: (1) numerous personal, clinical, occupational, and social variables; (2) type of rehabilitation undertaken; and (3) outcomes following rehabilitation (receiving time loss benefits or undergoing repeat programs). Machine learning, concerned with the design of algorithms to discriminate between classes based on empirical data, was the foundation of our approach to build a classification system with multiple independent and dependent variables. The population included 8,611 unique claimants. Subjects were predominantly employed (85 %) males (64 %) with diagnoses of sprain/strain (44 %). Baseline clinician classification accuracy was high (ROC = 0.86) for selecting programs that lead to successful return-to-work. Classification performance for machine learning techniques outperformed the clinician baseline classification (ROC = 0.94). The final classifiers were multifactorial and included the variables: injury duration, occupation, job attachment status, work status, modified work availability, pain intensity rating, self-rated occupational disability, and 9 items from the SF-36 Health Survey. The use of machine learning classification techniques appears to have resulted in classification performance better than clinician decision-making. The final algorithm has been integrated into a computer-based clinical decision support tool that requires additional validation in a clinical sample.
Pham, Tuyen Danh; Lee, Dong Eun; Park, Kang Ryoung
2017-07-08
Automatic recognition of banknotes is applied in payment facilities, such as automated teller machines (ATMs) and banknote counters. Besides the popular approaches that focus on studying the methods applied to various individual types of currencies, there have been studies conducted on simultaneous classification of banknotes from multiple countries. However, their methods were conducted with limited numbers of banknote images, national currencies, and denominations. To address this issue, we propose a multi-national banknote classification method based on visible-light banknote images captured by a one-dimensional line sensor and classified by a convolutional neural network (CNN) considering the size information of each denomination. Experiments conducted on the combined banknote image database of six countries with 62 denominations gave a classification accuracy of 100%, and results show that our proposed algorithm outperforms previous methods.
Pham, Tuyen Danh; Lee, Dong Eun; Park, Kang Ryoung
2017-01-01
Automatic recognition of banknotes is applied in payment facilities, such as automated teller machines (ATMs) and banknote counters. Besides the popular approaches that focus on studying the methods applied to various individual types of currencies, there have been studies conducted on simultaneous classification of banknotes from multiple countries. However, their methods were conducted with limited numbers of banknote images, national currencies, and denominations. To address this issue, we propose a multi-national banknote classification method based on visible-light banknote images captured by a one-dimensional line sensor and classified by a convolutional neural network (CNN) considering the size information of each denomination. Experiments conducted on the combined banknote image database of six countries with 62 denominations gave a classification accuracy of 100%, and results show that our proposed algorithm outperforms previous methods. PMID:28698466
Siew, Ging Yang; Ng, Wei Lun; Tan, Sheau Wei; Alitheen, Noorjahan Banu; Tan, Soon Guan; Yeap, Swee Keong
2018-01-01
Durian ( Durio zibethinus ) is one of the most popular tropical fruits in Asia. To date, 126 durian types have been registered with the Department of Agriculture in Malaysia based on phenotypic characteristics. Classification based on morphology is convenient, easy, and fast but it suffers from phenotypic plasticity as a direct result of environmental factors and age. To overcome the limitation of morphological classification, there is a need to carry out genetic characterization of the various durian types. Such data is important for the evaluation and management of durian genetic resources in producing countries. In this study, simple sequence repeat (SSR) markers were used to study the genetic variation in 27 durian types from the germplasm collection of Universiti Putra Malaysia. Based on DNA sequences deposited in Genbank, seven pairs of primers were successfully designed to amplify SSR regions in the durian DNA samples. High levels of variation among the 27 durian types were observed (expected heterozygosity, H E = 0.35). The DNA fingerprinting power of SSR markers revealed by the combined probability of identity (PI) of all loci was 2.3×10 -3 . Unique DNA fingerprints were generated for 21 out of 27 durian types using five polymorphic SSR markers (the other two SSR markers were monomorphic). We further tested the utility of these markers by evaluating the clonal status of shared durian types from different germplasm collection sites, and found that some were not clones. The findings in this preliminary study not only shows the feasibility of using SSR markers for DNA fingerprinting of durian types, but also challenges the current classification of durian types, e.g., on whether the different types should be called "clones", "varieties", or "cultivars". Such matters have a direct impact on the regulation and management of durian genetic resources in the region.
Siew, Ging Yang; Tan, Sheau Wei; Tan, Soon Guan; Yeap, Swee Keong
2018-01-01
Durian (Durio zibethinus) is one of the most popular tropical fruits in Asia. To date, 126 durian types have been registered with the Department of Agriculture in Malaysia based on phenotypic characteristics. Classification based on morphology is convenient, easy, and fast but it suffers from phenotypic plasticity as a direct result of environmental factors and age. To overcome the limitation of morphological classification, there is a need to carry out genetic characterization of the various durian types. Such data is important for the evaluation and management of durian genetic resources in producing countries. In this study, simple sequence repeat (SSR) markers were used to study the genetic variation in 27 durian types from the germplasm collection of Universiti Putra Malaysia. Based on DNA sequences deposited in Genbank, seven pairs of primers were successfully designed to amplify SSR regions in the durian DNA samples. High levels of variation among the 27 durian types were observed (expected heterozygosity, HE = 0.35). The DNA fingerprinting power of SSR markers revealed by the combined probability of identity (PI) of all loci was 2.3×10−3. Unique DNA fingerprints were generated for 21 out of 27 durian types using five polymorphic SSR markers (the other two SSR markers were monomorphic). We further tested the utility of these markers by evaluating the clonal status of shared durian types from different germplasm collection sites, and found that some were not clones. The findings in this preliminary study not only shows the feasibility of using SSR markers for DNA fingerprinting of durian types, but also challenges the current classification of durian types, e.g., on whether the different types should be called “clones”, “varieties”, or “cultivars”. Such matters have a direct impact on the regulation and management of durian genetic resources in the region. PMID:29511604
Alternative temporal classification of long Gamma Ray Bursts
NASA Astrophysics Data System (ADS)
Alejandro Vasquez, Nicolas; Baquero, Andres; Andrade, David
2015-08-01
In order to increase the understanding on Gamma Ray Bursts, many attempts of classification have been proposed. Starting with the canonical classification into long and short GRBs, alternative classifications taking into account the cosmological origin of GRBs have been analyzed. In the present work we propose an alternative classification based on two temporal estimators, the Auto Correlation Function (ACF) of the light curves and the emission time which considered the time where the bursts engine is active. The time estimators chosen reflects the internal evolution of the GRB and the internal structure. Using a sample of 61 bright GRBs detected by SWIFT satellite with known redshift, we proposed a bimodal distribution of long bursts. The two types of bursts have different internal structure suggesting different progenitors.
A Novel Classification System for Injuries After Electronic Cigarette Explosions.
Patterson, Scott B; Beckett, Allison R; Lintner, Alicia; Leahey, Carly; Greer, Ashley; Brevard, Sidney B; Simmons, Jon D; Kahn, Steven A
Electronic cigarettes (e-cigarettes) contain lithium batteries that have been known to explode and/or cause fires that have resulted in burn injury. The purpose of this article is to present a case study, review injuries caused by e-cigarettes, and present a novel classification system from the newly emerging patterns of burns. A case study was presented and online media reports for e-cigarette burns were queried with search terms "e-cigarette burns" and "electronic cigarette burns." The reports and injury patterns were tabulated. Analysis was then performed to create a novel classification system based on the distinct injury patterns seen in the study. Two patients were seen at our regional burn center after e-cigarette burns. One had an injury to his thigh and penis that required operative intervention after ignition of this device in his pocket. The second had a facial burn and corneal abrasions when the device exploded while he was inhaling vapor. The Internet search and case studies resulted in 26 cases for evaluation. The burn patterns were divided in direct injury from the device igniting and indirect injury when the device caused a house or car fire. A numerical classification was created: direct injury: type 1 (hand injury) 7 cases, type 2 (face injury) 8 cases, type 3 (waist/groin injury) 11 cases, and type 5a (inhalation injury from using device) 2 cases; indirect injury: type 4 (house fire injury) 7 cases and type 5b (inhalation injury from fire started by the device) 4 cases. Multiple e-cigarette injuries are occurring in the United States and distinct patterns of burns are emerging. The classification system developed in this article will aid in further study and future regulation of these dangerous devices.
A Raman spectroscopy bio-sensor for tissue discrimination in surgical robotics.
Ashok, Praveen C; Giardini, Mario E; Dholakia, Kishan; Sibbett, Wilson
2014-01-01
We report the development of a fiber-based Raman sensor to be used in tumour margin identification during endoluminal robotic surgery. Although this is a generic platform, the sensor we describe was adapted for the ARAKNES (Array of Robots Augmenting the KiNematics of Endoluminal Surgery) robotic platform. On such a platform, the Raman sensor is intended to identify ambiguous tissue margins during robot-assisted surgeries. To maintain sterility of the probe during surgical intervention, a disposable sleeve was specially designed. A straightforward user-compatible interface was implemented where a supervised multivariate classification algorithm was used to classify different tissue types based on specific Raman fingerprints so that it could be used without prior knowledge of spectroscopic data analysis. The protocol avoids inter-patient variability in data and the sensor system is not restricted for use in the classification of a particular tissue type. Representative tissue classification assessments were performed using this system on excised tissue. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
14 CFR 21.93 - Classification of changes in type design.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Classification of changes in type design... TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Changes to Type Certificates § 21.93 Classification of changes in type design. (a) In addition to changes in type design specified in paragraph (b) of...
Karadjian, Grégory; Chavatte, Jean-Marc; Landau, Irène
2015-01-01
Life cycles and molecular data for terrestrial haemogregarines are reviewed in this article. Collection material was re-examined: Hepatozoon argantis Garnham, 1954 in Argas brumpti was reassigned to Hemolivia as Hemolivia argantis (Garnham, 1954) n. comb.; parasite DNA was extracted from a tick crush on smear of an archived slide of Hemolivia stellata in Amblyomma rotondatum, then the 18S ssrRNA gene was amplified by PCR. A systematic revision of the group is proposed, based on biological life cycles and phylogenetic reconstruction. Four types of life cycles, based on parasite vector, vertebrate host and the characteristics of their development, are defined. We propose combining species, based on their biology, into four groups (types I, II, III and IV). The characters of each type are defined and associated with a type genus and a type species. The biological characters of each type are associated with a different genus and a type species. The phylogenetic reconstruction with sequences deposited in the databases and our own new sequence of Hemolivia stellata is consistent with this classification. The classification is as follows: Type I, Hepatozoon Miller, 1908, type species H. perniciosum Miller, 1908; Type II, Karyolysus Labbé, 1894, type species K. lacertae (Danilewsky, 1886) Reichenow, 1913; Type III Hemolivia Petit et al., 1990, type species H. stellata, Petit et al., 1990; and Type IV: Bartazoon n. g., type species B. breinli (Mackerras, 1960). PMID:26551414
NASA Astrophysics Data System (ADS)
Knoefel, Patrick; Loew, Fabian; Conrad, Christopher
2015-04-01
Crop maps based on classification of remotely sensed data are of increased attendance in agricultural management. This induces a more detailed knowledge about the reliability of such spatial information. However, classification of agricultural land use is often limited by high spectral similarities of the studied crop types. More, spatially and temporally varying agro-ecological conditions can introduce confusion in crop mapping. Classification errors in crop maps in turn may have influence on model outputs, like agricultural production monitoring. One major goal of the PhenoS project ("Phenological structuring to determine optimal acquisition dates for Sentinel-2 data for field crop classification"), is the detection of optimal phenological time windows for land cover classification purposes. Since many crop species are spectrally highly similar, accurate classification requires the right selection of satellite images for a certain classification task. In the course of one growing season, phenological phases exist where crops are separable with higher accuracies. For this purpose, coupling of multi-temporal spectral characteristics and phenological events is promising. The focus of this study is set on the separation of spectrally similar cereal crops like winter wheat, barley, and rye of two test sites in Germany called "Harz/Central German Lowland" and "Demmin". However, this study uses object based random forest (RF) classification to investigate the impact of image acquisition frequency and timing on crop classification uncertainty by permuting all possible combinations of available RapidEye time series recorded on the test sites between 2010 and 2014. The permutations were applied to different segmentation parameters. Then, classification uncertainty was assessed and analysed, based on the probabilistic soft-output from the RF algorithm at the per-field basis. From this soft output, entropy was calculated as a spatial measure of classification uncertainty. The results indicate that uncertainty estimates provide a valuable addition to traditional accuracy assessments and helps the user to allocate error in crop maps.
Characterization and classification of South American land cover types using satellite data
NASA Technical Reports Server (NTRS)
Townshend, J. R. G.; Justice, C. O.; Kalb, V.
1987-01-01
Various methods are compared for carrying out land cover classifications of South America using multitemporal Advanced Very High Resolution Radiometer data. Fifty-two images of the normalized difference vegetation index (NDVI) from a 1-year period are used to generate multitemporal data sets. Three main approaches to land cover classification are considered, namely the use of the principal components transformed images, the use of a characteristic curves procedure based on NDVI values plotted against time, and finally application of the maximum likelihood rule to multitemporal data sets. Comparison of results from training sites indicates that the last approach yields the most accurate results. Despite the reliance on training site figures for performance assessment, the results are nevertheless extremely encouraging, with accuracies for several cover types exceeding 90 per cent.
Differentiation of osteophyte types in osteoarthritis - proposal of a histological classification.
Junker, Susann; Krumbholz, Grit; Frommer, Klaus W; Rehart, Stefan; Steinmeyer, Jürgen; Rickert, Markus; Schett, Georg; Müller-Ladner, Ulf; Neumann, Elena
2016-01-01
Osteoarthritis is not only characterized by cartilage degradation but also involves subchondral bone remodeling and osteophyte formation. Osteophytes are fibrocartilage-capped bony outgrowths originating from the periosteum. The pathophysiology of osteophyte formation is not completely understood. Yet, different research approaches are under way. Therefore, a histological osteophyte classification to achieve comparable results in osteophyte research was established for application to basic science research questions. The osteophytes were collected from knee joints of osteoarthritis patients (n=10, 94 osteophytes in total) after joint replacement surgery. Their size and origin in the respective joint were photo-documented. To develop an osteophyte classification, serial tissue sections were evaluated using histological (hematoxylin and eosin, Masson's trichrome, toluidine blue) and immunohistochemical staining (collagen type II). Based on the histological and immunohistochemical evaluation, osteophytes were categorized into four different types depending on the degree of ossification and the percentage of mesenchymal connective tissue. Size and localization of osteophytes were independent from the histological stages. This histological classification system of osteoarthritis osteophytes provides a helpful tool for analyzing and monitoring osteophyte development and for characterizing osteophyte types within a single human joint and may therefore contribute to achieve comparable results when analyzing histological findings in osteophytes. Copyright © 2015 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Bodenheimer, Shalev; Nirel, Ronit; Lensky, Itamar M.; Dayan, Uri
2018-03-01
The Eastern Mediterranean (EM) Basin is strongly affected by dust originating from two of the largest world sources: The Sahara Desert and the Arabian Peninsula. Climatologically, the distribution pattern of aerosol optical depth (AOD), as proxy to particulate matter (PM), is known to be correlated with synoptic circulation. The climatological relationship between circulation type classifications (CTCs) and AOD levels over the EM Basin ("synoptic skill") was examined for the years 2000-2014. We compared the association between subjective (expert-based) and objective (fully automated) classifications and AOD using autoregressive models. After seasonal adjustment, the mean values of R2 for the different methods were similar. However, the distinct spatial pattern of the R2 values suggests that subjective classifications perform better in their area of expertise, specifically in the southeast region of the study area, while, objective CTCs had better synoptic skill over the northern part of the EM. This higher synoptic skill of subjective CTCs stem from their ability to identify distinct circulation types (e.g. Sharav lows and winter lows) that are infrequent but are highly correlated with AOD. Notably, a simple CTC based on seasonality rather than meteorological parameters predicted well AOD levels, especially over the south-eastern part of the domain. Synoptic classifications that are area-oriented are likely better predictors of AOD and possibly other environmental variables.
Classification of ligand molecules in PDB with graph match-based structural superposition.
Shionyu-Mitsuyama, Clara; Hijikata, Atsushi; Tsuji, Toshiyuki; Shirai, Tsuyoshi
2016-12-01
The fast heuristic graph match algorithm for small molecules, COMPLIG, was improved by adding a structural superposition process to verify the atom-atom matching. The modified method was used to classify the small molecule ligands in the Protein Data Bank (PDB) by their three-dimensional structures, and 16,660 types of ligands in the PDB were classified into 7561 clusters. In contrast, a classification by a previous method (without structure superposition) generated 3371 clusters from the same ligand set. The characteristic feature in the current classification system is the increased number of singleton clusters, which contained only one ligand molecule in a cluster. Inspections of the singletons in the current classification system but not in the previous one implied that the major factors for the isolation were differences in chirality, cyclic conformations, separation of substructures, and bond length. Comparisons between current and previous classification systems revealed that the superposition-based classification was effective in clustering functionally related ligands, such as drugs targeted to specific biological processes, owing to the strictness of the atom-atom matching.
Urrutia, Julio; Zamora, Tomas; Klaber, Ianiv; Carmona, Maximiliano; Palma, Joaquin; Campos, Mauricio; Yurac, Ratko
2016-04-01
It has been postulated that the complex patterns of spinal injuries have prevented adequate agreement using thoraco-lumbar spinal injuries (TLSI) classifications; however, limb fracture classifications have also shown variable agreements. This study compared agreement using two TLSI classifications with agreement using two classifications of fractures of the trochanteric area of the proximal femur (FTAPF). Six evaluators classified the radiographs and computed tomography scans of 70 patients with acute TLSI using the Denis and the new AO Spine thoraco-lumbar injury classifications. Additionally, six evaluators classified the radiographs of 70 patients with FTAPF using the Tronzo and the AO schemes. Six weeks later, all cases were presented in a random sequence for repeat assessment. The Kappa coefficient (κ) was used to determine agreement. Inter-observer agreement: For TLSI, using the AOSpine classification, the mean κ was 0.62 (0.57-0.66) considering fracture types, and 0.55 (0.52-0.57) considering sub-types; using the Denis classification, κ was 0.62 (0.59-0.65). For FTAPF, with the AO scheme, the mean κ was 0.58 (0.54-0.63) considering fracture types and 0.31 (0.28-0.33) considering sub-types; for the Tronzo classification, κ was 0.54 (0.50-0.57). Intra-observer agreement: For TLSI, using the AOSpine scheme, the mean κ was 0.77 (0.72-0.83) considering fracture types, and 0.71 (0.67-0.76) considering sub-types; for the Denis classification, κ was 0.76 (0.71-0.81). For FTAPF, with the AO scheme, the mean κ was 0.75 (0.69-0.81) considering fracture types and 0.45 (0.39-0.51) considering sub-types; for the Tronzo classification, κ was 0.64 (0.58-0.70). Using the main types of AO classifications, inter- and intra-observer agreement of TLSI were comparable to agreement evaluating FTAPF; including sub-types, inter- and intra-observer agreement evaluating TLSI were significantly better than assessing FTAPF. Inter- and intra-observer agreements using the Denis classification were also significantly better than agreement using the Tronzo scheme. Copyright © 2015 Elsevier Ltd. All rights reserved.
Feature Extraction and Machine Learning for the Classification of Brazilian Savannah Pollen Grains
Souza, Junior Silva; da Silva, Gercina Gonçalves
2016-01-01
The classification of pollen species and types is an important task in many areas like forensic palynology, archaeological palynology and melissopalynology. This paper presents the first annotated image dataset for the Brazilian Savannah pollen types that can be used to train and test computer vision based automatic pollen classifiers. A first baseline human and computer performance for this dataset has been established using 805 pollen images of 23 pollen types. In order to access the computer performance, a combination of three feature extractors and four machine learning techniques has been implemented, fine tuned and tested. The results of these tests are also presented in this paper. PMID:27276196
A new precipitation and drought climatology based on weather patterns.
Richardson, Douglas; Fowler, Hayley J; Kilsby, Christopher G; Neal, Robert
2018-02-01
Weather-pattern, or weather-type, classifications are a valuable tool in many applications as they characterize the broad-scale atmospheric circulation over a given region. This study analyses the aspects of regional UK precipitation and meteorological drought climatology with respect to a new set of objectively defined weather patterns. These new patterns are currently being used by the Met Office in several probabilistic forecasting applications driven by ensemble forecasting systems. Weather pattern definitions and daily occurrences are mapped to Lamb weather types (LWTs), and parallels between the two classifications are drawn. Daily precipitation distributions are associated with each weather pattern and LWT. Standardized precipitation index (SPI) and drought severity index (DSI) series are calculated for a range of aggregation periods and seasons. Monthly weather-pattern frequency anomalies are calculated for SPI wet and dry periods and for the 5% most intense DSI-based drought months. The new weather-pattern definitions and daily occurrences largely agree with their respective LWTs, allowing comparison between the two classifications. There is also broad agreement between weather pattern and LWT changes in frequencies. The new data set is shown to be adequate for precipitation-based analyses in the UK, although a smaller set of clustered weather patterns is not. Furthermore, intra-pattern precipitation variability is lower in the new classification compared to the LWTs, which is an advantage in this context. Six of the new weather patterns are associated with drought over the entire UK, with several other patterns linked to regional drought. It is demonstrated that the new data set of weather patterns offers a new opportunity for classification-based analyses in the UK.
Integration of Network Topological and Connectivity Properties for Neuroimaging Classification
Jie, Biao; Gao, Wei; Wang, Qian; Wee, Chong-Yaw
2014-01-01
Rapid advances in neuroimaging techniques have provided an efficient and noninvasive way for exploring the structural and functional connectivity of the human brain. Quantitative measurement of abnormality of brain connectivity in patients with neurodegenerative diseases, such as mild cognitive impairment (MCI) and Alzheimer’s disease (AD), have also been widely reported, especially at a group level. Recently, machine learning techniques have been applied to the study of AD and MCI, i.e., to identify the individuals with AD/MCI from the healthy controls (HCs). However, most existing methods focus on using only a single property of a connectivity network, although multiple network properties, such as local connectivity and global topological properties, can potentially be used. In this paper, by employing multikernel based approach, we propose a novel connectivity based framework to integrate multiple properties of connectivity network for improving the classification performance. Specifically, two different types of kernels (i.e., vector-based kernel and graph kernel) are used to quantify two different yet complementary properties of the network, i.e., local connectivity and global topological properties. Then, multikernel learning (MKL) technique is adopted to fuse these heterogeneous kernels for neuroimaging classification. We test the performance of our proposed method on two different data sets. First, we test it on the functional connectivity networks of 12 MCI and 25 HC subjects. The results show that our method achieves significant performance improvement over those using only one type of network property. Specifically, our method achieves a classification accuracy of 91.9%, which is 10.8% better than those by single network-property-based methods. Then, we test our method for gender classification on a large set of functional connectivity networks with 133 infants scanned at birth, 1 year, and 2 years, also demonstrating very promising results. PMID:24108708
Evaluation of image deblurring methods via a classification metric
NASA Astrophysics Data System (ADS)
Perrone, Daniele; Humphreys, David; Lamb, Robert A.; Favaro, Paolo
2012-09-01
The performance of single image deblurring algorithms is typically evaluated via a certain discrepancy measure between the reconstructed image and the ideal sharp image. The choice of metric, however, has been a source of debate and has also led to alternative metrics based on human visual perception. While fixed metrics may fail to capture some small but visible artifacts, perception-based metrics may favor reconstructions with artifacts that are visually pleasant. To overcome these limitations, we propose to assess the quality of reconstructed images via a task-driven metric. In this paper we consider object classification as the task and therefore use the rate of classification as the metric to measure deblurring performance. In our evaluation we use data with different types of blur in two cases: Optical Character Recognition (OCR), where the goal is to recognise characters in a black and white image, and object classification with no restrictions on pose, illumination and orientation. Finally, we show how off-the-shelf classification algorithms benefit from working with deblurred images.
LAMMR world data base documentation support and demonstrations
NASA Technical Reports Server (NTRS)
Chin, R.; Beaudet, P.
1980-01-01
The primary purpose of the World Surface Map is to provide the LAMMR subsystem with world surface type classifications that are used to set up LAMMR LEVEL II process control. This data base will be accessed solely by the LAMMR subsystem. The SCATT and ALT subsystems will access the data base indirectly through the T sub b (Brightness Temperature) Data Bank, where the surface types were updated from a priori to current classification, and where the surface types were organized on an orbital subtrack basis. The single most important factor in the design of the World Surface Maps is the ease of access to the information while the complexity of generating these maps is of lesser importance because their generation is a one-time, off-line process. The World Surface Map provides storage of information with a resolution of 7 km necessary to set flags concerning the earth's features with a different set of maps for each month of the year.
Scattering property based contextual PolSAR speckle filter
NASA Astrophysics Data System (ADS)
Mullissa, Adugna G.; Tolpekin, Valentyn; Stein, Alfred
2017-12-01
Reliability of the scattering model based polarimetric SAR (PolSAR) speckle filter depends upon the accurate decomposition and classification of the scattering mechanisms. This paper presents an improved scattering property based contextual speckle filter based upon an iterative classification of the scattering mechanisms. It applies a Cloude-Pottier eigenvalue-eigenvector decomposition and a fuzzy H/α classification to determine the scattering mechanisms on a pre-estimate of the coherency matrix. The H/α classification identifies pixels with homogeneous scattering properties. A coarse pixel selection rule groups pixels that are either single bounce, double bounce or volume scatterers. A fine pixel selection rule is applied to pixels within each canonical scattering mechanism. We filter the PolSAR data and depending on the type of image scene (urban or rural) use either the coarse or fine pixel selection rule. Iterative refinement of the Wishart H/α classification reduces the speckle in the PolSAR data. Effectiveness of this new filter is demonstrated by using both simulated and real PolSAR data. It is compared with the refined Lee filter, the scattering model based filter and the non-local means filter. The study concludes that the proposed filter compares favorably with other polarimetric speckle filters in preserving polarimetric information, point scatterers and subtle features in PolSAR data.
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.; Ross, Kenton W.; Graham, William D.
2006-01-01
Hurricane Katrina inflicted widespread damage to vegetation in southwestern coastal Mississippi upon landfall on August 29, 2005. Storm damage to surface vegetation types at the NASA John C. Stennis Space Center (SSC) was mapped and quantified using IKONOS data originally acquired on September 2, 2005, and later obtained via a Department of Defense ClearView contract. NASA SSC management required an assessment of the hurricane s impact to the 125,000-acre buffer zone used to mitigate rocket engine testing noise and vibration impacts and to manage forestry and fire risk. This study employed ERDAS IMAGINE software to apply traditional classification techniques to the IKONOS data. Spectral signatures were collected from multiple ISODATA classifications of subset areas across the entire region and then appended to a master file representative of major targeted cover type conditions. The master file was subsequently used with the IKONOS data and with a maximum likelihood algorithm to produce a supervised classification later refined using GIS-based editing. The final results enabled mapped, quantitative areal estimates of hurricane-induced damage according to general surface cover type. The IKONOS classification accuracy was assessed using higher resolution aerial imagery and field survey data. In-situ data and GIS analysis indicate that the results compare well to FEMA maps of flooding extent. The IKONOS classification also mapped open areas with woody storm debris. The detection of such storm damage categories is potentially useful for government officials responsible for hurricane disaster mitigation.
A classification model of Hyperion image base on SAM combined decision tree
NASA Astrophysics Data System (ADS)
Wang, Zhenghai; Hu, Guangdao; Zhou, YongZhang; Liu, Xin
2009-10-01
Monitoring the Earth using imaging spectrometers has necessitated more accurate analyses and new applications to remote sensing. A very high dimensional input space requires an exponentially large amount of data to adequately and reliably represent the classes in that space. On the other hand, with increase in the input dimensionality the hypothesis space grows exponentially, which makes the classification performance highly unreliable. Traditional classification algorithms Classification of hyperspectral images is challenging. New algorithms have to be developed for hyperspectral data classification. The Spectral Angle Mapper (SAM) is a physically-based spectral classification that uses an ndimensional angle to match pixels to reference spectra. The algorithm determines the spectral similarity between two spectra by calculating the angle between the spectra, treating them as vectors in a space with dimensionality equal to the number of bands. The key and difficulty is that we should artificial defining the threshold of SAM. The classification precision depends on the rationality of the threshold of SAM. In order to resolve this problem, this paper proposes a new automatic classification model of remote sensing image using SAM combined with decision tree. It can automatic choose the appropriate threshold of SAM and improve the classify precision of SAM base on the analyze of field spectrum. The test area located in Heqing Yunnan was imaged by EO_1 Hyperion imaging spectrometer using 224 bands in visual and near infrared. The area included limestone areas, rock fields, soil and forests. The area was classified into four different vegetation and soil types. The results show that this method choose the appropriate threshold of SAM and eliminates the disturbance and influence of unwanted objects effectively, so as to improve the classification precision. Compared with the likelihood classification by field survey data, the classification precision of this model heightens 9.9%.
Azadmanjir, Zahra; Safdari, Reza; Ghazisaeedi, Marjan; Mokhtaran, Mehrshad; Kameli, Mohammad Esmail
2017-06-01
Accurate coded data in the healthcare are critical. Computer-Assisted Coding (CAC) is an effective tool to improve clinical coding in particular when a new classification will be developed and implemented. But determine the appropriate method for development need to consider the specifications of existing CAC systems, requirements for each type, our infrastructure and also, the classification scheme. The aim of the study was the development of a decision model for determining accurate code of each medical intervention in Iranian Classification of Health Interventions (IRCHI) that can be implemented as a suitable CAC system. first, a sample of existing CAC systems was reviewed. Then feasibility of each one of CAC types was examined with regard to their prerequisites for their implementation. The next step, proper model was proposed according to the structure of the classification scheme and was implemented as an interactive system. There is a significant relationship between the level of assistance of a CAC system and integration of it with electronic medical documents. Implementation of fully automated CAC systems is impossible due to immature development of electronic medical record and problems in using language for medical documenting. So, a model was proposed to develop semi-automated CAC system based on hierarchical relationships between entities in the classification scheme and also the logic of decision making to specify the characters of code step by step through a web-based interactive user interface for CAC. It was composed of three phases to select Target, Action and Means respectively for an intervention. The proposed model was suitable the current status of clinical documentation and coding in Iran and also, the structure of new classification scheme. Our results show it was practical. However, the model needs to be evaluated in the next stage of the research.
The Cross-Entropy Based Multi-Filter Ensemble Method for Gene Selection.
Sun, Yingqiang; Lu, Chengbo; Li, Xiaobo
2018-05-17
The gene expression profile has the characteristics of a high dimension, low sample, and continuous type, and it is a great challenge to use gene expression profile data for the classification of tumor samples. This paper proposes a cross-entropy based multi-filter ensemble (CEMFE) method for microarray data classification. Firstly, multiple filters are used to select the microarray data in order to obtain a plurality of the pre-selected feature subsets with a different classification ability. The top N genes with the highest rank of each subset are integrated so as to form a new data set. Secondly, the cross-entropy algorithm is used to remove the redundant data in the data set. Finally, the wrapper method, which is based on forward feature selection, is used to select the best feature subset. The experimental results show that the proposed method is more efficient than other gene selection methods and that it can achieve a higher classification accuracy under fewer characteristic genes.
Identification of sea ice types in spaceborne synthetic aperture radar data
NASA Technical Reports Server (NTRS)
Kwok, Ronald; Rignot, Eric; Holt, Benjamin; Onstott, R.
1992-01-01
This study presents an approach for identification of sea ice types in spaceborne SAR image data. The unsupervised classification approach involves cluster analysis for segmentation of the image data followed by cluster labeling based on previously defined look-up tables containing the expected backscatter signatures of different ice types measured by a land-based scatterometer. Extensive scatterometer observations and experience accumulated in field campaigns during the last 10 yr were used to construct these look-up tables. The classification approach, its expected performance, the dependence of this performance on radar system performance, and expected ice scattering characteristics are discussed. Results using both aircraft and simulated ERS-1 SAR data are presented and compared to limited field ice property measurements and coincident passive microwave imagery. The importance of an integrated postlaunch program for the validation and improvement of this approach is discussed.
Taxonomy of breast cancer based on normal cell phenotype predicts outcome
Santagata, Sandro; Thakkar, Ankita; Ergonul, Ayse; Wang, Bin; Woo, Terri; Hu, Rong; Harrell, J. Chuck; McNamara, George; Schwede, Matthew; Culhane, Aedin C.; Kindelberger, David; Rodig, Scott; Richardson, Andrea; Schnitt, Stuart J.; Tamimi, Rulla M.; Ince, Tan A.
2014-01-01
Accurate classification is essential for understanding the pathophysiology of a disease and can inform therapeutic choices. For hematopoietic malignancies, a classification scheme based on the phenotypic similarity between tumor cells and normal cells has been successfully used to define tumor subtypes; however, use of normal cell types as a reference by which to classify solid tumors has not been widely emulated, in part due to more limited understanding of epithelial cell differentiation compared with hematopoiesis. To provide a better definition of the subtypes of epithelial cells comprising the breast epithelium, we performed a systematic analysis of a large set of breast epithelial markers in more than 15,000 normal breast cells, which identified 11 differentiation states for normal luminal cells. We then applied information from this analysis to classify human breast tumors based on normal cell types into 4 major subtypes, HR0–HR3, which were differentiated by vitamin D, androgen, and estrogen hormone receptor (HR) expression. Examination of 3,157 human breast tumors revealed that these HR subtypes were distinct from the current classification scheme, which is based on estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. Patient outcomes were best when tumors expressed all 3 hormone receptors (subtype HR3) and worst when they expressed none of the receptors (subtype HR0). Together, these data provide an ontological classification scheme associated with patient survival differences and provides actionable insights for treating breast tumors. PMID:24463450
Sethi, Sanjeev; Haas, Mark; Markowitz, Glen S; D'Agati, Vivette D; Rennke, Helmut G; Jennette, J Charles; Bajema, Ingeborg M; Alpers, Charles E; Chang, Anthony; Cornell, Lynn D; Cosio, Fernando G; Fogo, Agnes B; Glassock, Richard J; Hariharan, Sundaram; Kambham, Neeraja; Lager, Donna J; Leung, Nelson; Mengel, Michael; Nath, Karl A; Roberts, Ian S; Rovin, Brad H; Seshan, Surya V; Smith, Richard J H; Walker, Patrick D; Winearls, Christopher G; Appel, Gerald B; Alexander, Mariam P; Cattran, Daniel C; Casado, Carmen Avila; Cook, H Terence; De Vriese, An S; Radhakrishnan, Jai; Racusen, Lorraine C; Ronco, Pierre; Fervenza, Fernando C
2016-05-01
Renal pathologists and nephrologists met on February 20, 2015 to establish an etiology/pathogenesis-based system for classification and diagnosis of GN, with a major aim of standardizing the kidney biopsy report of GN. On the basis of etiology/pathogenesis, GN is classified into the following five pathogenic types, each with specific disease entities: immune-complex GN, pauci-immune GN, antiglomerular basement membrane GN, monoclonal Ig GN, and C3 glomerulopathy. The pathogenesis-based classification forms the basis of the kidney biopsy report. To standardize the report, the diagnosis consists of a primary diagnosis and a secondary diagnosis. The primary diagnosis should include the disease entity/pathogenic type (if disease entity is not known) followed in order by pattern of injury (mixed patterns may be present); score/grade/class for disease entities, such as IgA nephropathy, lupus nephritis, and ANCA GN; and additional features as detailed herein. A pattern diagnosis as the sole primary diagnosis is not recommended. Secondary diagnoses should be reported separately and include coexisting lesions that do not form the primary diagnosis. Guidelines for the report format, light microscopy, immunofluorescence microscopy, electron microscopy, and ancillary studies are also provided. In summary, this consensus report emphasizes a pathogenesis-based classification of GN and provides guidelines for the standardized reporting of GN. Copyright © 2016 by the American Society of Nephrology.
Abou Zeid, Elias; Rezazadeh Sereshkeh, Alborz; Schultz, Benjamin; Chau, Tom
2017-01-01
In recent years, the readiness potential (RP), a type of pre-movement neural activity, has been investigated for asynchronous electroencephalogram (EEG)-based brain-computer interfaces (BCIs). Since the RP is attenuated for involuntary movements, a BCI driven by RP alone could facilitate intentional control amid a plethora of unintentional movements. Previous studies have mainly attempted binary single-trial classification of RP. An RP-based BCI with three or more states would expand the options for functional control. Here, we propose a ternary BCI based on single-trial RPs. This BCI classifies amongst an idle state, a left hand and a right hand self-initiated fine movement. A pipeline of spatio-temporal filtering with per participant parameter optimization was used for feature extraction. The ternary classification was decomposed into binary classifications using a decision-directed acyclic graph (DDAG). For each class pair in the DDAG structure, an ordered diversified classifier system (ODCS-DDAG) was used to select the best among various classification algorithms or to combine the results of different classification algorithms. Using EEG data from 14 participants performing self-initiated left or right key presses, punctuated with rest periods, we compared the performance of ODCS-DDAG to a ternary classifier and four popular multiclass decomposition methods using only a single classification algorithm. ODCS-DDAG had the highest performance (0.769 Cohen's Kappa score) and was significantly better than the ternary classifier and two of the four multiclass decomposition methods. Our work supports further study of RP-based BCI for intuitive asynchronous environmental control or augmentative communication. PMID:28596725
Subacute and non-acute casemix in Australia.
Lee, L A; Eagar, K M; Smith, M C
1998-10-19
The costs of subacute care (palliative care, rehabilitation medicine, psychogeriatrics, and geriatric evaluation and management) and non-acute care (nursing home, convalescent and planned respite care) are not adequately described by existing casemix classifications. The predominant treatment goals in subacute care are enhancement of quality of life and/or improvement in functional status and, in non-acute care, maintenance of current health and functional status. A national classification system for this area has now been developed--the Australian National Sub-Acute and Non-Acute Patient Classification System (AN-SNAP). The AN-SNAP system, based on analysis of over 30,000 episodes of care, defines four case types of subacute care (palliative care, rehabilitation, psychogeriatric care, and geriatric evaluation and management and one case type of non-acute care (maintenance care), and classifies both overnight and ambulatory care. The AN-SNAP system reflects the goal of management--a change in functional status or improvement in quality of life--rather than the patient's diagnosis. It will complement the existing AN-DRG classification.
Advanced defect classification by smart sampling, based on sub-wavelength anisotropic scatterometry
NASA Astrophysics Data System (ADS)
van der Walle, Peter; Kramer, Esther; Ebeling, Rob; Spruit, Helma; Alkemade, Paul; Pereira, Silvania; van der Donck, Jacques; Maas, Diederik
2018-03-01
We report on advanced defect classification using TNO's RapidNano particle scanner. RapidNano was originally designed for defect detection on blank substrates. In detection-mode, the RapidNano signal from nine azimuth angles is added for sensitivity. In review-mode signals from individual angles are analyzed to derive additional defect properties. We define the Fourier coefficient parameter space that is useful to study the statistical variation in defect types on a sample. By selecting defects from each defect type for further review by SEM, information on all defects can be obtained efficiently.
Classification of ductal carcinoma in situ by gene expression profiling.
Hannemann, Juliane; Velds, Arno; Halfwerk, Johannes B G; Kreike, Bas; Peterse, Johannes L; van de Vijver, Marc J
2006-01-01
Ductal carcinoma in situ (DCIS) is characterised by the intraductal proliferation of malignant epithelial cells. Several histological classification systems have been developed, but assessing the histological type/grade of DCIS lesions is still challenging, making treatment decisions based on these features difficult. To obtain insight in the molecular basis of the development of different types of DCIS and its progression to invasive breast cancer, we have studied differences in gene expression between different types of DCIS and between DCIS and invasive breast carcinomas. Gene expression profiling using microarray analysis has been performed on 40 in situ and 40 invasive breast cancer cases. DCIS cases were classified as well- (n = 6), intermediately (n = 18), and poorly (n = 14) differentiated type. Of the 40 invasive breast cancer samples, five samples were grade I, 11 samples were grade II, and 24 samples were grade III. Using two-dimensional hierarchical clustering, the basal-like type, ERB-B2 type, and the luminal-type tumours originally described for invasive breast cancer could also be identified in DCIS. Using supervised classification, we identified a gene expression classifier of 35 genes, which differed between DCIS and invasive breast cancer; a classifier of 43 genes could be identified separating between well- and poorly differentiated DCIS samples.
Classification of ductal carcinoma in situ by gene expression profiling
Hannemann, Juliane; Velds, Arno; Halfwerk, Johannes BG; Kreike, Bas; Peterse, Johannes L; van de Vijver, Marc J
2006-01-01
Introduction Ductal carcinoma in situ (DCIS) is characterised by the intraductal proliferation of malignant epithelial cells. Several histological classification systems have been developed, but assessing the histological type/grade of DCIS lesions is still challenging, making treatment decisions based on these features difficult. To obtain insight in the molecular basis of the development of different types of DCIS and its progression to invasive breast cancer, we have studied differences in gene expression between different types of DCIS and between DCIS and invasive breast carcinomas. Methods Gene expression profiling using microarray analysis has been performed on 40 in situ and 40 invasive breast cancer cases. Results DCIS cases were classified as well- (n = 6), intermediately (n = 18), and poorly (n = 14) differentiated type. Of the 40 invasive breast cancer samples, five samples were grade I, 11 samples were grade II, and 24 samples were grade III. Using two-dimensional hierarchical clustering, the basal-like type, ERB-B2 type, and the luminal-type tumours originally described for invasive breast cancer could also be identified in DCIS. Conclusion Using supervised classification, we identified a gene expression classifier of 35 genes, which differed between DCIS and invasive breast cancer; a classifier of 43 genes could be identified separating between well- and poorly differentiated DCIS samples. PMID:17069663
Cho, Chul-Hyun; Oh, Joo Han; Jung, Gu-Hee; Moon, Gi-Hyuk; Rhyou, In Hyeok; Yoon, Jong Pil; Lee, Ho Min
2015-10-01
As there is substantial variation in the classification and diagnosis of lateral clavicle fractures, proper management can be challenging. Although the Neer classification system modified by Craig has been widely used, no study has assessed its validity through inter- and intrarater agreement. To determine the inter- and intrarater agreement of the modified Neer classification system and associated treatment choice for lateral clavicle fractures and to assess whether 3-dimensional computed tomography (3D CT) improves the level of agreement. Cohort study (diagnosis); Level of evidence, 3. Nine experienced shoulder specialists and 9 orthopaedic fellows evaluated 52 patients with lateral clavicle fractures, completing fracture typing according to the modified Neer classification system and selecting a treatment choice for each case. Web-based assessment was performed using plain radiographs only, followed by the addition of 3D CT images 2 weeks later. This procedure was repeated 4 weeks later. Fleiss κ values were calculated to estimate the inter- and intrarater agreement. Based on plain radiographs only, the inter- and intrarater agreement of the modified Neer classification system was regarded as fair (κ = 0.344) and moderate (κ = 0.496), respectively; the inter- and intrarater agreement of treatment choice was both regarded as moderate (κ = 0.465 and 0.555, respectively). Based on the plain radiographs and 3D CT images, the inter- and intrarater agreement of the classification system was regarded as fair (κ = 0.317) and moderate (κ = 0.508), respectively; the inter- and intrarater agreement of treatment choice was regarded as moderate (κ = 0.463) and substantial (κ = 0.623), respectively. There were no significant differences in the level of agreement between the plain radiographs only and plain radiographs plus 3D CT images for any κ values (all P > .05). The level of interrater agreement of the modified Neer classification system for lateral clavicle fractures was fair. Additional 3D CT did not improve the overall level of interrater or intrarater agreement of the modified Neer classification system or associated treatment choice. To eliminate a common source of disagreement among surgeons, a new classification system to focus on unclassifiable fracture types is needed. © 2015 The Author(s).
Objective Classification of Radar Profile Types, and Their Relationship to Lightning Occurrence
NASA Technical Reports Server (NTRS)
Boccippio, Dennis
2003-01-01
A cluster analysis technique is used to identify 16 "archetypal" vertical radar profile types from a large, globally representative sample of profiles from the TRMM Precipitation Radar. These include nine convective types (7 of these deep convective) and seven stratiform types (5 of these clearly glaciated). Radar profile classification provides an alternative to conventional deep convective storm metrics, such as 30 dBZ echo height, maximum reflectivity or VIL. As expected, the global frequency of occurrence of deep convective profile types matches satellite-observed total lightning production, including to very small scall local features. Each location's "mix" of profile types provides an objective description of the local convective spectrum, and in turn, is a first step in objectively classifying convective regimes. These classifiers are tested as inputs to a neural network which attempts to predict lightning occurrence based on radar-only storm observations, and performance is compared with networks using traditional radar metrics as inputs.
Automatic classification of spectral units in the Aristarchus plateau
NASA Astrophysics Data System (ADS)
Erard, S.; Le Mouelic, S.; Langevin, Y.
1999-09-01
A reduction scheme has been recently proposed for the NIR images of Clementine (Le Mouelic et al, JGR 1999). This reduction has been used to build an integrated UVvis-NIR image cube of the Aristarchus region, from which compositional and maturity variations can be studied (Pinet et al, LPSC 1999). We will present an analysis of this image cube, providing a classification in spectral types and spectral units. The image cube is processed with Gmode analysis using three different data sets: Normalized spectra provide a classification based mainly on spectral slope variations (ie. maturity and volcanic glasses). This analysis discriminates between craters plus ejecta, mare basalts, and DMD. Olivine-rich areas and Aristarchus central peak are also recognized. Continuum-removed spectra provide a classification more related to compositional variations, which correctly identifies olivine and pyroxenes-rich areas (in Aristarchus, Krieger, Schiaparelli\\ldots). A third analysis uses spectral parameters related to maturity and Fe composition (reflectance, 1 mu m band depth, and spectral slope) rather than intensities. It provides the most spatially consistent picture, but fails in detecting Vallis Schroeteri and DMDs. A supplementary unit, younger and rich in pyroxene, is found on Aristarchus south rim. In conclusion, Gmode analysis can discriminate between different spectral types already identified with more classic methods (PCA, linear mixing\\ldots). No previous assumption is made on the data structure, such as endmembers number and nature, or linear relationship between input variables. The variability of the spectral types is intrinsically accounted for, so that the level of analysis is always restricted to meaningful limits. A complete classification should integrate several analyses based on different sets of parameters. Gmode is therefore a powerful light toll to perform first look analysis of spectral imaging data. This research has been partly founded by the French Programme National de Planetologie.
The classification based on intrahepatic portal system for congenital portosystemic shunts.
Kanazawa, Hiroyuki; Nosaka, Shunsuke; Miyazaki, Osamu; Sakamoto, Seisuke; Fukuda, Akinari; Shigeta, Takanobu; Nakazawa, Atsuko; Kasahara, Mureo
2015-04-01
Liver transplantation was previously indicated as a curative operation for congenital absence of portal vein. Recent advances in radiological interventional techniques can precisely visualize the architecture of the intrahepatic portal system (IHPS). Therefore, the therapeutic approach for congenital portosystemic shunt (CPS) needs to be reevaluated from a viewpoint of radiological appearances. The aim of this study was to propose the IHPS classification which could explain the pathophysiological characteristics and play a complementary role of a therapeutic approach and management for CPS. Nineteen patients with CPS were retrospectively reviewed. The median age at diagnosis was 6.8 years old. Eighteen of these patients underwent angiography with a shunt occlusion test and were classified based of the severity of the hypoplasia of IHPS. The eighteen cases who could undergo the shunt occlusion test were classified into mild (n=7), moderate (n=6) and severe types (n=5) according to the IHPS classification. The IHPS classification correlated with the portal venous pressure under shunt occlusion, the histopathological findings, postoperative portal venous flow and liver regeneration. Shunt closure resulted in dramatic improvement in the laboratory data and subclinical encephalopathy. Two patients with the severe type suffered from sepsis associated with portal hypertension after treatment, and from the portal flow steal phenomenon because of the development of unexpected collateral vessels. The patients with the severe type had a high risk of postoperative complications after shunt closure in one step, even if the PVP was relatively low during the shunt occlusion test. The IHPS could be visualized by the shunt occlusion test. The IHPS classification reflected the clinicopathological features of CPS, and was useful to determine the therapeutic approach and management for CPS. Copyright © 2015 Elsevier Inc. All rights reserved.
Rough set classification based on quantum logic
NASA Astrophysics Data System (ADS)
Hassan, Yasser F.
2017-11-01
By combining the advantages of quantum computing and soft computing, the paper shows that rough sets can be used with quantum logic for classification and recognition systems. We suggest the new definition of rough set theory as quantum logic theory. Rough approximations are essential elements in rough set theory, the quantum rough set model for set-valued data directly construct set approximation based on a kind of quantum similarity relation which is presented here. Theoretical analyses demonstrate that the new model for quantum rough sets has new type of decision rule with less redundancy which can be used to give accurate classification using principles of quantum superposition and non-linear quantum relations. To our knowledge, this is the first attempt aiming to define rough sets in representation of a quantum rather than logic or sets. The experiments on data-sets have demonstrated that the proposed model is more accuracy than the traditional rough sets in terms of finding optimal classifications.
Cho, Ming-Yuan; Hoang, Thi Thom
2017-01-01
Fast and accurate fault classification is essential to power system operations. In this paper, in order to classify electrical faults in radial distribution systems, a particle swarm optimization (PSO) based support vector machine (SVM) classifier has been proposed. The proposed PSO based SVM classifier is able to select appropriate input features and optimize SVM parameters to increase classification accuracy. Further, a time-domain reflectometry (TDR) method with a pseudorandom binary sequence (PRBS) stimulus has been used to generate a dataset for purposes of classification. The proposed technique has been tested on a typical radial distribution network to identify ten different types of faults considering 12 given input features generated by using Simulink software and MATLAB Toolbox. The success rate of the SVM classifier is over 97%, which demonstrates the effectiveness and high efficiency of the developed method.
Deep Convolutional Neural Networks for Classifying Body Constitution Based on Face Image.
Huan, Er-Yang; Wen, Gui-Hua; Zhang, Shi-Jun; Li, Dan-Yang; Hu, Yang; Chang, Tian-Yuan; Wang, Qing; Huang, Bing-Lin
2017-01-01
Body constitution classification is the basis and core content of traditional Chinese medicine constitution research. It is to extract the relevant laws from the complex constitution phenomenon and finally build the constitution classification system. Traditional identification methods have the disadvantages of inefficiency and low accuracy, for instance, questionnaires. This paper proposed a body constitution recognition algorithm based on deep convolutional neural network, which can classify individual constitution types according to face images. The proposed model first uses the convolutional neural network to extract the features of face image and then combines the extracted features with the color features. Finally, the fusion features are input to the Softmax classifier to get the classification result. Different comparison experiments show that the algorithm proposed in this paper can achieve the accuracy of 65.29% about the constitution classification. And its performance was accepted by Chinese medicine practitioners.
Bou Kheir, Rania; Greve, Mogens H; Bøcher, Peder K; Greve, Mette B; Larsen, René; McCloy, Keith
2010-05-01
Soil organic carbon (SOC) is one of the most important carbon stocks globally and has large potential to affect global climate. Distribution patterns of SOC in Denmark constitute a nation-wide baseline for studies on soil carbon changes (with respect to Kyoto protocol). This paper predicts and maps the geographic distribution of SOC across Denmark using remote sensing (RS), geographic information systems (GISs) and decision-tree modeling (un-pruned and pruned classification trees). Seventeen parameters, i.e. parent material, soil type, landscape type, elevation, slope gradient, slope aspect, mean curvature, plan curvature, profile curvature, flow accumulation, specific catchment area, tangent slope, tangent curvature, steady-state wetness index, Normalized Difference Vegetation Index (NDVI), Normalized Difference Wetness Index (NDWI) and Soil Color Index (SCI) were generated to statistically explain SOC field measurements in the area of interest (Denmark). A large number of tree-based classification models (588) were developed using (i) all of the parameters, (ii) all Digital Elevation Model (DEM) parameters only, (iii) the primary DEM parameters only, (iv), the remote sensing (RS) indices only, (v) selected pairs of parameters, (vi) soil type, parent material and landscape type only, and (vii) the parameters having a high impact on SOC distribution in built pruned trees. The best constructed classification tree models (in the number of three) with the lowest misclassification error (ME) and the lowest number of nodes (N) as well are: (i) the tree (T1) combining all of the parameters (ME=29.5%; N=54); (ii) the tree (T2) based on the parent material, soil type and landscape type (ME=31.5%; N=14); and (iii) the tree (T3) constructed using parent material, soil type, landscape type, elevation, tangent slope and SCI (ME=30%; N=39). The produced SOC maps at 1:50,000 cartographic scale using these trees are highly matching with coincidence values equal to 90.5% (Map T1/Map T2), 95% (Map T1/Map T3) and 91% (Map T2/Map T3). The overall accuracies of these maps once compared with field observations were estimated to be 69.54% (Map T1), 68.87% (Map T2) and 69.41% (Map T3). The proposed tree models are relatively simple, and may be also applied to other areas. Copyright 2010 Elsevier Ltd. All rights reserved.
Veselka, Walter; Rentch, James S; Grafton, William N; Kordek, Walter S; Anderson, James T
2010-11-01
Bioassessment methods for wetlands, and other bodies of water, have been developed worldwide to measure and quantify changes in "biological integrity." These assessments are based on a classification system, meant to ensure appropriate comparisons between wetland types. Using a local site-specific disturbance gradient, we built vegetation indices of biological integrity (Veg-IBIs) based on two commonly used wetland classification systems in the USA: One based on vegetative structure and the other based on a wetland's position in a landscape and sources of water. The resulting class-specific Veg-IBIs were comprised of 1-5 metrics that varied in their sensitivity to the disturbance gradient (R2=0.14-0.65). Moreover, the sensitivity to the disturbance gradient increased as metrics from each of the two classification schemes were combined (added). Using this information to monitor natural and created wetlands will help natural resource managers track changes in biological integrity of wetlands in response to anthropogenic disturbance and allows the use of vegetative communities to set ecological performance standards for mitigation banks.
Hopp, Sascha; Ojodu, Ishaq; Jain, Atul; Fritz, Tobias; Pohlemann, Tim; Kelm, Jens
2018-05-01
Radiographic abnormalities of the symphysis as well as the formation of accessory clefts, indicating injury at the rectus-adductor aponeurosis, reportedly relate to longstanding groin pain in athletes. However, yet, no systematic classification for clinical and scientific purposes exists. We aimed to (1) create a radiographic classification based on symphysography; (2) test intra- and interobserver reliability; (3) characterise clinical significance of the morphologic patterns by evaluating success of injection therapy. We retrospectively reviewed symphysography, AP radiographs, and MRI of the pelvis from 70 consecutive competitive athletes, with chronic groin pain. Symphysographs were evaluated for intra- and interobserver variance using cohen's kappa statistics. Morphologic studies of the different contrast distribution patterns and their clinical and radiological correlation with symptom relief were investigated. All patients were followed up to evaluate immediate and long-term response to the initial therapeutic injection with steroid. Four reproducible symphysographic patterns were identified: type 0, no changes; type 1, symphyseal disk degeneration; types 2a with unilateral clefts, bilateral clefts (2b), suprapubic clefts (2c); and type 3, with expanded or multidirectional clefts. Analysis revealed excellent intra (0.94)-and interobserver (0.90) reliability. Our findings showed that 78.6% of our patients had significant short-term improvement enabling early resumption of physiotherapy, only in types 1 and 2 (p = 0.001), while type 0 and 3 did not respond. At follow-up, only 21.8% had permanent pain relief. Regarding the detection of pathologic clefts with symphysography, sensitivity (88%) and specifity (77%) were superior to that of MRI. A reproducible symphysography-based classification of distinct morphologic patterns is proposed. It serves as a predictive tool for response to injection therapy in a select group of pathologic lesions. Complete recovery after injection can only be expected in a lesser percentage, as this might indicate surgical treatment for long-term non-responders.
Morawietz, L; Gehrke, Th; Classen, R-A; Barden, B; Otto, M; Hansen, T; Aigner, Th; Stiehl, P; Neidel, J; Schröder, J H; Frommelt, L; Schubert, Th; Meyer-Scholten, C; König, A; Ströbel, Ph; Rader, Ch P; Kirschner, S; Lintner, F; Rüther, W; Skwara, A; Bos, I; Kriegsmann, J; Krenn, V
2004-09-01
After 10 years, loosening of total joint endoprostheses occurs in about 3 to 10 percent of all patients, requiring elaborate revision surgery. A periprosthetic membrane is routinely found between bone and loosened prosthesis. Further histomorphological examination allows determination of the etiology of the loosening process. Aim of this study is the introduction of clearly defined histopathological criteria for a standardized evaluation of the periprosthetic membrane. Based on histomorphological criteria and polarized light microscopy, four types of the periprosthetic membrane were defined: periprosthetic membrane of wear particle type (type I), periprosthetic membrane of infectious type (type II), periprosthetic membrane of combined type (type III), periprosthetic membrane of indifferent type (type IV). Periprosthetic membranes of 268 patients were analyzed according to the defined criteria. The correlation between histopathological and microbiological diagnosis was high (89%, p<0,001), the inter-observer reproducibility was sufficient (95%). This classification system enables a standardized diagnostic procedure and therefore is a basis for further studies concerning the etiology of and pathogenesis of prosthesis loosening.
Automated artery-venous classification of retinal blood vessels based on structural mapping method
NASA Astrophysics Data System (ADS)
Joshi, Vinayak S.; Garvin, Mona K.; Reinhardt, Joseph M.; Abramoff, Michael D.
2012-03-01
Retinal blood vessels show morphologic modifications in response to various retinopathies. However, the specific responses exhibited by arteries and veins may provide a precise diagnostic information, i.e., a diabetic retinopathy may be detected more accurately with the venous dilatation instead of average vessel dilatation. In order to analyze the vessel type specific morphologic modifications, the classification of a vessel network into arteries and veins is required. We previously described a method for identification and separation of retinal vessel trees; i.e. structural mapping. Therefore, we propose the artery-venous classification based on structural mapping and identification of color properties prominent to the vessel types. The mean and standard deviation of each of green channel intensity and hue channel intensity are analyzed in a region of interest around each centerline pixel of a vessel. Using the vector of color properties extracted from each centerline pixel, it is classified into one of the two clusters (artery and vein), obtained by the fuzzy-C-means clustering. According to the proportion of clustered centerline pixels in a particular vessel, and utilizing the artery-venous crossing property of retinal vessels, each vessel is assigned a label of an artery or a vein. The classification results are compared with the manually annotated ground truth (gold standard). We applied the proposed method to a dataset of 15 retinal color fundus images resulting in an accuracy of 88.28% correctly classified vessel pixels. The automated classification results match well with the gold standard suggesting its potential in artery-venous classification and the respective morphology analysis.
Corkscrew trachea: a novel type of congenital tracheal stenosis.
Bryant, Roosevelt; Morales, David L S
2009-06-01
The classic definition of congenital tracheal stenosis includes the presence of complete tracheal rings with absence of the membranous portion of the trachea. The morphologic type, based on Cantrell's classification, dictates the surgical management. In this report, we describe the presentation and surgical management of a novel type of distal congenital tracheal stenosis referred to as "corkscrew" trachea.
Automatic evidence quality prediction to support evidence-based decision making.
Sarker, Abeed; Mollá, Diego; Paris, Cécile
2015-06-01
Evidence-based medicine practice requires practitioners to obtain the best available medical evidence, and appraise the quality of the evidence when making clinical decisions. Primarily due to the plethora of electronically available data from the medical literature, the manual appraisal of the quality of evidence is a time-consuming process. We present a fully automatic approach for predicting the quality of medical evidence in order to aid practitioners at point-of-care. Our approach extracts relevant information from medical article abstracts and utilises data from a specialised corpus to apply supervised machine learning for the prediction of the quality grades. Following an in-depth analysis of the usefulness of features (e.g., publication types of articles), they are extracted from the text via rule-based approaches and from the meta-data associated with the articles, and then applied in the supervised classification model. We propose the use of a highly scalable and portable approach using a sequence of high precision classifiers, and introduce a simple evaluation metric called average error distance (AED) that simplifies the comparison of systems. We also perform elaborate human evaluations to compare the performance of our system against human judgments. We test and evaluate our approaches on a publicly available, specialised, annotated corpus containing 1132 evidence-based recommendations. Our rule-based approach performs exceptionally well at the automatic extraction of publication types of articles, with F-scores of up to 0.99 for high-quality publication types. For evidence quality classification, our approach obtains an accuracy of 63.84% and an AED of 0.271. The human evaluations show that the performance of our system, in terms of AED and accuracy, is comparable to the performance of humans on the same data. The experiments suggest that our structured text classification framework achieves evaluation results comparable to those of human performance. Our overall classification approach and evaluation technique are also highly portable and can be used for various evidence grading scales. Copyright © 2015 Elsevier B.V. All rights reserved.
Iris Image Classification Based on Hierarchical Visual Codebook.
Zhenan Sun; Hui Zhang; Tieniu Tan; Jianyu Wang
2014-06-01
Iris recognition as a reliable method for personal identification has been well-studied with the objective to assign the class label of each iris image to a unique subject. In contrast, iris image classification aims to classify an iris image to an application specific category, e.g., iris liveness detection (classification of genuine and fake iris images), race classification (e.g., classification of iris images of Asian and non-Asian subjects), coarse-to-fine iris identification (classification of all iris images in the central database into multiple categories). This paper proposes a general framework for iris image classification based on texture analysis. A novel texture pattern representation method called Hierarchical Visual Codebook (HVC) is proposed to encode the texture primitives of iris images. The proposed HVC method is an integration of two existing Bag-of-Words models, namely Vocabulary Tree (VT), and Locality-constrained Linear Coding (LLC). The HVC adopts a coarse-to-fine visual coding strategy and takes advantages of both VT and LLC for accurate and sparse representation of iris texture. Extensive experimental results demonstrate that the proposed iris image classification method achieves state-of-the-art performance for iris liveness detection, race classification, and coarse-to-fine iris identification. A comprehensive fake iris image database simulating four types of iris spoof attacks is developed as the benchmark for research of iris liveness detection.
Sexual Dimorphism Analysis and Gender Classification in 3D Human Face
NASA Astrophysics Data System (ADS)
Hu, Yuan; Lu, Li; Yan, Jingqi; Liu, Zhi; Shi, Pengfei
In this paper, we present the sexual dimorphism analysis in 3D human face and perform gender classification based on the result of sexual dimorphism analysis. Four types of features are extracted from a 3D human-face image. By using statistical methods, the existence of sexual dimorphism is demonstrated in 3D human face based on these features. The contributions of each feature to sexual dimorphism are quantified according to a novel criterion. The best gender classification rate is 94% by using SVMs and Matcher Weighting fusion method.This research adds to the knowledge of 3D faces in sexual dimorphism and affords a foundation that could be used to distinguish between male and female in 3D faces.
NASA Astrophysics Data System (ADS)
Brodic, D.
2011-01-01
Text line segmentation represents the key element in the optical character recognition process. Hence, testing of text line segmentation algorithms has substantial relevance. All previously proposed testing methods deal mainly with text database as a template. They are used for testing as well as for the evaluation of the text segmentation algorithm. In this manuscript, methodology for the evaluation of the algorithm for text segmentation based on extended binary classification is proposed. It is established on the various multiline text samples linked with text segmentation. Their results are distributed according to binary classification. Final result is obtained by comparative analysis of cross linked data. At the end, its suitability for different types of scripts represents its main advantage.
Kanna, Rishi Mugesh; Schroeder, Gregory D.; Oner, Frank Cumhur; Vialle, Luiz; Chapman, Jens; Dvorak, Marcel; Fehlings, Michael; Shetty, Ajoy Prasad; Schnake, Klaus; Kandziora, Frank; Vaccaro, Alexander R.
2017-01-01
Study Design: Prospective survey-based study. Objectives: The AO Spine thoracolumbar injury classification has been shown to have good reproducibility among clinicians. However, the influence of spine surgeons’ clinical experience on fracture classification, stability assessment, and decision on management based on this classification has not been studied. Furthermore, the usefulness of varying imaging modalities including radiographs, computed tomography (CT) and magnetic resonance imaging (MRI) in the decision process was also studied. Methods: Forty-one spine surgeons from different regions, acquainted with the AOSpine classification system, were provided with 30 thoracolumbar fractures in a 3-step assessment: first radiographs, followed by CT and MRI. Surgeons classified the fracture, evaluated stability, chose management, and identified reasons for any changes. The surgeons were divided into 2 groups based on years of clinical experience as <10 years (n = 12) and >10 years (n = 29). Results: There were no significant differences between the 2 groups in correctly classifying A1, B2, and C type fractures. Surgeons with less experience had more correct diagnosis in classifying A3 (47.2% vs 38.5% in step 1, 73.6% vs 60.3% in step 2 and 77.8% vs 65.5% in step 3), A4 (16.7% vs 24.1% in step 1, 72.9% vs 57.8% in step 2 and 70.8% vs 56.0% in step3) and B1 injuries (31.9% vs 20.7% in step 1, 41.7% vs 36.8% in step 2 and 38.9% vs 33.9% in step 3). In the assessment of fracture stability and decision on treatment, the less and more experienced surgeons performed equally. The selection of a particular treatment plan varied in all subtypes except in A1 and C type injuries. Conclusion: Surgeons’ experience did not significantly affect overall fracture classification, evaluating stability and planning the treatment. Surgeons with less experience had a higher percentage of correct classification in A3 and A4 injuries. Despite variations between them in classification, the assessment of overall stability and management decisions were similar between the 2 groups. PMID:28815158
Rajasekaran, Shanmuganathan; Kanna, Rishi Mugesh; Schroeder, Gregory D; Oner, Frank Cumhur; Vialle, Luiz; Chapman, Jens; Dvorak, Marcel; Fehlings, Michael; Shetty, Ajoy Prasad; Schnake, Klaus; Kandziora, Frank; Vaccaro, Alexander R
2017-06-01
Prospective survey-based study. The AO Spine thoracolumbar injury classification has been shown to have good reproducibility among clinicians. However, the influence of spine surgeons' clinical experience on fracture classification, stability assessment, and decision on management based on this classification has not been studied. Furthermore, the usefulness of varying imaging modalities including radiographs, computed tomography (CT) and magnetic resonance imaging (MRI) in the decision process was also studied. Forty-one spine surgeons from different regions, acquainted with the AOSpine classification system, were provided with 30 thoracolumbar fractures in a 3-step assessment: first radiographs, followed by CT and MRI. Surgeons classified the fracture, evaluated stability, chose management, and identified reasons for any changes. The surgeons were divided into 2 groups based on years of clinical experience as <10 years (n = 12) and >10 years (n = 29). There were no significant differences between the 2 groups in correctly classifying A1, B2, and C type fractures. Surgeons with less experience had more correct diagnosis in classifying A3 (47.2% vs 38.5% in step 1, 73.6% vs 60.3% in step 2 and 77.8% vs 65.5% in step 3), A4 (16.7% vs 24.1% in step 1, 72.9% vs 57.8% in step 2 and 70.8% vs 56.0% in step3) and B1 injuries (31.9% vs 20.7% in step 1, 41.7% vs 36.8% in step 2 and 38.9% vs 33.9% in step 3). In the assessment of fracture stability and decision on treatment, the less and more experienced surgeons performed equally. The selection of a particular treatment plan varied in all subtypes except in A1 and C type injuries. Surgeons' experience did not significantly affect overall fracture classification, evaluating stability and planning the treatment. Surgeons with less experience had a higher percentage of correct classification in A3 and A4 injuries. Despite variations between them in classification, the assessment of overall stability and management decisions were similar between the 2 groups.
PREDICTING APHASIA TYPE FROM BRAIN DAMAGE MEASURED WITH STRUCTURAL MRI
Yourganov, Grigori; Smith, Kimberly G.; Fridriksson, Julius; Rorden, Chris
2015-01-01
Chronic aphasia is a common consequence of a left-hemisphere stroke. Since the early insights by Broca and Wernicke, studying the relationship between the loci of cortical damage and patterns of language impairment has been one of the concerns of aphasiology. We utilized multivariate classification in a cross-validation framework to predict the type of chronic aphasia from the spatial pattern of brain damage. Our sample consisted of 98 patients with five types of aphasia (Broca’s, Wernicke’s, global, conduction, and anomic), classified based on scores on the Western Aphasia Battery. Binary lesion maps were obtained from structural MRI scans (obtained at least 6 months poststroke, and within 2 days of behavioural assessment); after spatial normalization, the lesions were parcellated into a disjoint set of brain areas. The proportion of damage to the brain areas was used to classify patients’ aphasia type. To create this parcellation, we relied on five brain atlases; our classifier (support vector machine) could differentiate between different kinds of aphasia using any of the five parcellations. In our sample, the best classification accuracy was obtained when using a novel parcellation that combined two previously published brain atlases, with the first atlas providing the segmentation of grey matter, and the second atlas used to segment the white matter. For each aphasia type, we computed the relative importance of different brain areas for distinguishing it from other aphasia types; our findings were consistent with previously published reports of lesion locations implicated in different types of aphasia. Overall, our results revealed that automated multivariate classification could distinguish between aphasia types based on damage to atlas-defined brain areas. PMID:26465238
Predicting aphasia type from brain damage measured with structural MRI.
Yourganov, Grigori; Smith, Kimberly G; Fridriksson, Julius; Rorden, Chris
2015-12-01
Chronic aphasia is a common consequence of a left-hemisphere stroke. Since the early insights by Broca and Wernicke, studying the relationship between the loci of cortical damage and patterns of language impairment has been one of the concerns of aphasiology. We utilized multivariate classification in a cross-validation framework to predict the type of chronic aphasia from the spatial pattern of brain damage. Our sample consisted of 98 patients with five types of aphasia (Broca's, Wernicke's, global, conduction, and anomic), classified based on scores on the Western Aphasia Battery (WAB). Binary lesion maps were obtained from structural MRI scans (obtained at least 6 months poststroke, and within 2 days of behavioural assessment); after spatial normalization, the lesions were parcellated into a disjoint set of brain areas. The proportion of damage to the brain areas was used to classify patients' aphasia type. To create this parcellation, we relied on five brain atlases; our classifier (support vector machine - SVM) could differentiate between different kinds of aphasia using any of the five parcellations. In our sample, the best classification accuracy was obtained when using a novel parcellation that combined two previously published brain atlases, with the first atlas providing the segmentation of grey matter, and the second atlas used to segment the white matter. For each aphasia type, we computed the relative importance of different brain areas for distinguishing it from other aphasia types; our findings were consistent with previously published reports of lesion locations implicated in different types of aphasia. Overall, our results revealed that automated multivariate classification could distinguish between aphasia types based on damage to atlas-defined brain areas. Copyright © 2015 Elsevier Ltd. All rights reserved.
Using self-organizing maps to develop ambient air quality classifications: a time series example
2014-01-01
Background Development of exposure metrics that capture features of the multipollutant environment are needed to investigate health effects of pollutant mixtures. This is a complex problem that requires development of new methodologies. Objective Present a self-organizing map (SOM) framework for creating ambient air quality classifications that group days with similar multipollutant profiles. Methods Eight years of day-level data from Atlanta, GA, for ten ambient air pollutants collected at a central monitor location were classified using SOM into a set of day types based on their day-level multipollutant profiles. We present strategies for using SOM to develop a multipollutant metric of air quality and compare results with more traditional techniques. Results Our analysis found that 16 types of days reasonably describe the day-level multipollutant combinations that appear most frequently in our data. Multipollutant day types ranged from conditions when all pollutants measured low to days exhibiting relatively high concentrations for either primary or secondary pollutants or both. The temporal nature of class assignments indicated substantial heterogeneity in day type frequency distributions (~1%-14%), relatively short-term durations (<2 day persistence), and long-term and seasonal trends. Meteorological summaries revealed strong day type weather dependencies and pollutant concentration summaries provided interesting scenarios for further investigation. Comparison with traditional methods found SOM produced similar classifications with added insight regarding between-class relationships. Conclusion We find SOM to be an attractive framework for developing ambient air quality classification because the approach eases interpretation of results by allowing users to visualize classifications on an organized map. The presented approach provides an appealing tool for developing multipollutant metrics of air quality that can be used to support multipollutant health studies. PMID:24990361
A drone detection with aircraft classification based on a camera array
NASA Astrophysics Data System (ADS)
Liu, Hao; Qu, Fangchao; Liu, Yingjian; Zhao, Wei; Chen, Yitong
2018-03-01
In recent years, because of the rapid popularity of drones, many people have begun to operate drones, bringing a range of security issues to sensitive areas such as airports and military locus. It is one of the important ways to solve these problems by realizing fine-grained classification and providing the fast and accurate detection of different models of drone. The main challenges of fine-grained classification are that: (1) there are various types of drones, and the models are more complex and diverse. (2) the recognition test is fast and accurate, in addition, the existing methods are not efficient. In this paper, we propose a fine-grained drone detection system based on the high resolution camera array. The system can quickly and accurately recognize the detection of fine grained drone based on hd camera.
NASA Astrophysics Data System (ADS)
Jin, Y.; Lee, D.
2017-12-01
North Korea (the Democratic People's Republic of Korea, DPRK) is known to have some of the most degraded forest in the world. The characteristics of forest landscape in North Korea is complex and heterogeneous, the major vegetation cover types in the forest are hillside farm, unstocked forest, natural forest, and plateau vegetation. Better classification of types in high spatial resolution of deforested areas could provide essential information for decisions about forest management priorities and restoration of deforested areas. For mapping heterogeneous vegetation covers, the phenology-based indices are helpful to overcome the reflectance value confusion that occurs when using one season images. Coarse spatial resolution images may be acquired with a high repetition rate and it is useful for analyzing phenology characteristics, but may not capture the spatial detail of the land cover mosaic of the region of interest. Previous spatial-temporal fusion methods were only capture the temporal change, or focused on both temporal change and spatial change but with low accuracy in heterogeneous landscapes and small patches. In this study, a new concept for spatial-temporal image fusion method focus on heterogeneous landscape was proposed to produce fine resolution images at both fine spatial and temporal resolution. We classified the three types of pixels between the base image and target image, the first type is only reflectance changed caused by phenology, this type of pixels supply the reflectance, shape and texture information; the second type is both reflectance and spectrum changed in some bands caused by phenology like rice paddy or farmland, this type of pixels only supply shape and texture information; the third type is reflectance and spectrum changed caused by land cover type change, this type of pixels don't provide any information because we can't know how land cover changed in target image; and each type of pixels were applied different prediction methods. Results show that both STARFM and FSDAF predicted in low accuracy in second type pixels and small patches. Classification results used spatial-temporal image fusion method proposed in this study showed overall classification accuracy of 89.38%, with corresponding kappa coefficients of 0.87.
Dello Strologo, Luca; Pras, Elon; Pontesilli, Claudia; Beccia, Ercole; Ricci-Barbini, Vittorino; de Sanctis, Luisa; Ponzone, Alberto; Gallucci, Michele; Bisceglia, Luigi; Zelante, Leopoldo; Jimenez-Vidal, Maite; Font, Mariona; Zorzano, Antonio; Rousaud, Ferran; Nunes, Virginia; Gasparini, Paolo; Palacín, Manuel; Rizzoni, Gianfranco
2002-10-01
Recent developments in the genetics and physiology of cystinuria do not support the traditional classification, which is based on the excretion of cystine and dibasic amino acids in obligate heterozygotes. Mutations of only two genes (SLC3A1 and SLC7A9), identified by the International Cystinuria Consortium (ICC), have been found to be responsible for all three types of the disease. The ICC set up a multinational database and collected genetic and clinical data from 224 patients affected by cystinuria, 125 with full genotype definition. Amino acid urinary excretion patterns of 189 heterozygotes with genetic definition and of 83 healthy controls were also included. All SLC3A1 carriers and 14% of SLC7A9 carriers showed a normal amino acid urinary pattern (i.e., type I phenotype). The rest of the SLC7A9 carriers showed phenotype non-I (type III, 80.5%; type II, 5.5%). This makes the traditional classification imprecise. A new classification is needed: type A, due to two mutations of SLC3A1 (rBAT) on chromosome 2 (45.2% in our database); type B, due to two mutations of SLC7A9 on chromosome 19 (53.2% in this series); and a possible third type, AB (1.6%), with one mutation on each of the above-mentioned genes. Clinical data show that cystinuria is more severe in males than in females. The two types of cystinuria (A and B) had a similar outcome in this retrospective study, but the effect of the treatment could not be analyzed. Stone events do not correlate with amino acid urinary excretion. Renal function was clearly impaired in 17% of the patients.
Clustering performance comparison using K-means and expectation maximization algorithms.
Jung, Yong Gyu; Kang, Min Soo; Heo, Jun
2014-11-14
Clustering is an important means of data mining based on separating data categories by similar features. Unlike the classification algorithm, clustering belongs to the unsupervised type of algorithms. Two representatives of the clustering algorithms are the K -means and the expectation maximization (EM) algorithm. Linear regression analysis was extended to the category-type dependent variable, while logistic regression was achieved using a linear combination of independent variables. To predict the possibility of occurrence of an event, a statistical approach is used. However, the classification of all data by means of logistic regression analysis cannot guarantee the accuracy of the results. In this paper, the logistic regression analysis is applied to EM clusters and the K -means clustering method for quality assessment of red wine, and a method is proposed for ensuring the accuracy of the classification results.
Automated noninvasive classification of renal cancer on multiphase CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linguraru, Marius George; Wang, Shijun; Shah, Furhawn
2011-10-15
Purpose: To explore the added value of the shape of renal lesions for classifying renal neoplasms. To investigate the potential of computer-aided analysis of contrast-enhanced computed-tomography (CT) to quantify and classify renal lesions. Methods: A computer-aided clinical tool based on adaptive level sets was employed to analyze 125 renal lesions from contrast-enhanced abdominal CT studies of 43 patients. There were 47 cysts and 78 neoplasms: 22 Von Hippel-Lindau (VHL), 16 Birt-Hogg-Dube (BHD), 19 hereditary papillary renal carcinomas (HPRC), and 21 hereditary leiomyomatosis and renal cell cancers (HLRCC). The technique quantified the three-dimensional size and enhancement of lesions. Intrapatient and interphasemore » registration facilitated the study of lesion serial enhancement. The histograms of curvature-related features were used to classify the lesion types. The areas under the curve (AUC) were calculated for receiver operating characteristic curves. Results: Tumors were robustly segmented with 0.80 overlap (0.98 correlation) between manual and semi-automated quantifications. The method further identified morphological discrepancies between the types of lesions. The classification based on lesion appearance, enhancement and morphology between cysts and cancers showed AUC = 0.98; for BHD + VHL (solid cancers) vs. HPRC + HLRCC AUC = 0.99; for VHL vs. BHD AUC = 0.82; and for HPRC vs. HLRCC AUC = 0.84. All semi-automated classifications were statistically significant (p < 0.05) and superior to the analyses based solely on serial enhancement. Conclusions: The computer-aided clinical tool allowed the accurate quantification of cystic, solid, and mixed renal tumors. Cancer types were classified into four categories using their shape and enhancement. Comprehensive imaging biomarkers of renal neoplasms on abdominal CT may facilitate their noninvasive classification, guide clinical management, and monitor responses to drugs or interventions.« less
NASA Astrophysics Data System (ADS)
Chiaro, G.; Salvetti, D.; La Mura, G.; Giroletti, M.; Thompson, D. J.; Bastieri, D.
2016-11-01
The Fermi-Large Area Telescope (LAT) is currently the most important facility for investigating the GeV γ-ray sky. With Fermi-LAT, more than three thousand γ-ray sources have been discovered so far. 1144 (˜40 per cent) of the sources are active galaxies of the blazar class, and 573 (˜20 per cent) are listed as blazar candidate of uncertain type (BCU), or sources without a conclusive classification. We use the empirical cumulative distribution functions and the artificial neural networks for a fast method of screening and classification for BCUs based on data collected at γ-ray energies only, when rigorous multiwavelength analysis is not available. Based on our method, we classify 342 BCUs as BL Lacs and 154 as flat-spectrum radio quasars, while 77 objects remain uncertain. Moreover, radio analysis and direct observations in ground-based optical observatories are used as counterparts to the statistical classifications to validate the method. This approach is of interest because of the increasing number of unclassified sources in Fermi catalogues and because blazars and in particular their subclass high synchrotron peak objects are the main targets of atmospheric Cherenkov telescopes.
NASA Technical Reports Server (NTRS)
Cibula, William G.; Nyquist, Maurice O.
1987-01-01
An unsupervised computer classification of vegetation/landcover of Olympic National Park and surrounding environs was initially carried out using four bands of Landsat MSS data. The primary objective of the project was to derive a level of landcover classifications useful for park management applications while maintaining an acceptably high level of classification accuracy. Initially, nine generalized vegetation/landcover classes were derived. Overall classification accuracy was 91.7 percent. In an attempt to refine the level of classification, a geographic information system (GIS) approach was employed. Topographic data and watershed boundaries (inferred precipitation/temperature) data were registered with the Landsat MSS data. The resultant boolean operations yielded 21 vegetation/landcover classes while maintaining the same level of classification accuracy. The final classification provided much better identification and location of the major forest types within the park at the same high level of accuracy, and these met the project objective. This classification could now become inputs into a GIS system to help provide answers to park management coupled with other ancillary data programs such as fire management.
Motor Oil Classification using Color Histograms and Pattern Recognition Techniques.
Ahmadi, Shiva; Mani-Varnosfaderani, Ahmad; Habibi, Biuck
2018-04-20
Motor oil classification is important for quality control and the identification of oil adulteration. In thiswork, we propose a simple, rapid, inexpensive and nondestructive approach based on image analysis and pattern recognition techniques for the classification of nine different types of motor oils according to their corresponding color histograms. For this, we applied color histogram in different color spaces such as red green blue (RGB), grayscale, and hue saturation intensity (HSI) in order to extract features that can help with the classification procedure. These color histograms and their combinations were used as input for model development and then were statistically evaluated by using linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and support vector machine (SVM) techniques. Here, two common solutions for solving a multiclass classification problem were applied: (1) transformation to binary classification problem using a one-against-all (OAA) approach and (2) extension from binary classifiers to a single globally optimized multilabel classification model. In the OAA strategy, LDA, QDA, and SVM reached up to 97% in terms of accuracy, sensitivity, and specificity for both the training and test sets. In extension from binary case, despite good performances by the SVM classification model, QDA and LDA provided better results up to 92% for RGB-grayscale-HSI color histograms and up to 93% for the HSI color map, respectively. In order to reduce the numbers of independent variables for modeling, a principle component analysis algorithm was used. Our results suggest that the proposed method is promising for the identification and classification of different types of motor oils.
An Efficient Optimization Method for Solving Unsupervised Data Classification Problems.
Shabanzadeh, Parvaneh; Yusof, Rubiyah
2015-01-01
Unsupervised data classification (or clustering) analysis is one of the most useful tools and a descriptive task in data mining that seeks to classify homogeneous groups of objects based on similarity and is used in many medical disciplines and various applications. In general, there is no single algorithm that is suitable for all types of data, conditions, and applications. Each algorithm has its own advantages, limitations, and deficiencies. Hence, research for novel and effective approaches for unsupervised data classification is still active. In this paper a heuristic algorithm, Biogeography-Based Optimization (BBO) algorithm, was adapted for data clustering problems by modifying the main operators of BBO algorithm, which is inspired from the natural biogeography distribution of different species. Similar to other population-based algorithms, BBO algorithm starts with an initial population of candidate solutions to an optimization problem and an objective function that is calculated for them. To evaluate the performance of the proposed algorithm assessment was carried on six medical and real life datasets and was compared with eight well known and recent unsupervised data classification algorithms. Numerical results demonstrate that the proposed evolutionary optimization algorithm is efficient for unsupervised data classification.
Classification of breast cancer cytological specimen using convolutional neural network
NASA Astrophysics Data System (ADS)
Żejmo, Michał; Kowal, Marek; Korbicz, Józef; Monczak, Roman
2017-01-01
The paper presents a deep learning approach for automatic classification of breast tumors based on fine needle cytology. The main aim of the system is to distinguish benign from malignant cases based on microscopic images. Experiment was carried out on cytological samples derived from 50 patients (25 benign cases + 25 malignant cases) diagnosed in Regional Hospital in Zielona Góra. To classify microscopic images, we used convolutional neural networks (CNN) of two types: GoogLeNet and AlexNet. Due to the very large size of images of cytological specimen (on average 200000 × 100000 pixels), they were divided into smaller patches of size 256 × 256 pixels. Breast cancer classification usually is based on morphometric features of nuclei. Therefore, training and validation patches were selected using Support Vector Machine (SVM) so that suitable amount of cell material was depicted. Neural classifiers were tuned using GPU accelerated implementation of gradient descent algorithm. Training error was defined as a cross-entropy classification loss. Classification accuracy was defined as the percentage ratio of successfully classified validation patches to the total number of validation patches. The best accuracy rate of 83% was obtained by GoogLeNet model. We observed that more misclassified patches belong to malignant cases.
Accelerometer and Camera-Based Strategy for Improved Human Fall Detection.
Zerrouki, Nabil; Harrou, Fouzi; Sun, Ying; Houacine, Amrane
2016-12-01
In this paper, we address the problem of detecting human falls using anomaly detection. Detection and classification of falls are based on accelerometric data and variations in human silhouette shape. First, we use the exponentially weighted moving average (EWMA) monitoring scheme to detect a potential fall in the accelerometric data. We used an EWMA to identify features that correspond with a particular type of fall allowing us to classify falls. Only features corresponding with detected falls were used in the classification phase. A benefit of using a subset of the original data to design classification models minimizes training time and simplifies models. Based on features corresponding to detected falls, we used the support vector machine (SVM) algorithm to distinguish between true falls and fall-like events. We apply this strategy to the publicly available fall detection databases from the university of Rzeszow's. Results indicated that our strategy accurately detected and classified fall events, suggesting its potential application to early alert mechanisms in the event of fall situations and its capability for classification of detected falls. Comparison of the classification results using the EWMA-based SVM classifier method with those achieved using three commonly used machine learning classifiers, neural network, K-nearest neighbor and naïve Bayes, proved our model superior.
Classification of clinically useful sentences in clinical evidence resources.
Morid, Mohammad Amin; Fiszman, Marcelo; Raja, Kalpana; Jonnalagadda, Siddhartha R; Del Fiol, Guilherme
2016-04-01
Most patient care questions raised by clinicians can be answered by online clinical knowledge resources. However, important barriers still challenge the use of these resources at the point of care. To design and assess a method for extracting clinically useful sentences from synthesized online clinical resources that represent the most clinically useful information for directly answering clinicians' information needs. We developed a Kernel-based Bayesian Network classification model based on different domain-specific feature types extracted from sentences in a gold standard composed of 18 UpToDate documents. These features included UMLS concepts and their semantic groups, semantic predications extracted by SemRep, patient population identified by a pattern-based natural language processing (NLP) algorithm, and cue words extracted by a feature selection technique. Algorithm performance was measured in terms of precision, recall, and F-measure. The feature-rich approach yielded an F-measure of 74% versus 37% for a feature co-occurrence method (p<0.001). Excluding predication, population, semantic concept or text-based features reduced the F-measure to 62%, 66%, 58% and 69% respectively (p<0.01). The classifier applied to Medline sentences reached an F-measure of 73%, which is equivalent to the performance of the classifier on UpToDate sentences (p=0.62). The feature-rich approach significantly outperformed general baseline methods. This approach significantly outperformed classifiers based on a single type of feature. Different types of semantic features provided a unique contribution to overall classification performance. The classifier's model and features used for UpToDate generalized well to Medline abstracts. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Abramovich, N. S.; Kovalev, A. A.; Plyuta, V. Y.
1986-02-01
A computer algorithm has been developed to classify the spectral bands of natural scenes on Earth according to their optical characteristics. The algorithm is written in FORTRAN-IV and can be used in spectral data processing programs requiring small data loads. The spectral classifications of some different types of green vegetable canopies are given in order to illustrate the effectiveness of the algorithm.
1997-01-01
supplemented using established literature values for similar aquifer materials . The groundwater sampling activities and analytical results from both...subsurface materials recovered. Observed soil classification types compared very favorably to the soil classifications determined by the CPT tests. 0 2.1.5...other similar substances were handled in a manner consistent with accepted safety procedures and standard operating practices. Well completion materials
Toward a Persistent Object Base.
1986-07-01
would eliminate the user burden of explicitly invoking a decompressing program before each use of the compresed file. Another kind of flexible...joined to Source .version. It Is not the case, however, that I two relations have attributes with the same types that It always makes sense to join them...25 V V V~ ~ . - .. ~ " - IPE-~w Fam .rf rw vqrf wwp IECURITY CLASSIFICATION OF THIS PAGE REPORT DOCUMENTATION PAGE Is. REPORT SECURITY CLASSIFICATION
NASA Astrophysics Data System (ADS)
Giles, D. M.; Holben, B. N.; Eck, T. F.; Schafer, J.; Crawford, J. H.; Kim, J.; Sano, I.; Liew, S.; Salinas Cortijo, S. V.; Chew, B. N.; Lim, H.; Smirnov, A.; Sorokin, M.; Kenny, P.; Slutsker, I.
2013-12-01
Aerosols can have major implications on human health by inducing respiratory diseases due to inhalation of fine particles from biomass burning smoke or industrial pollution and on radiative forcing whereby the presence of absorbing aerosol particles (e.g., black carbon) increases atmospheric heating. Aerosol classification techniques have utilized aerosol loading and aerosol properties derived from multi-spectral and multi-angle observations by ground-based (e.g., AERONET) and satellite instrumentation (e.g., MISR). Aerosol Robotic Network (AERONET) data have been utilized to determine aerosol types by implementing various combinations of measured aerosol optical depth or retrieved size and absorption aerosol properties (e.g., Gobbi et al., 2007; Russell et al., 2010). Giles et al. [2012] showed single scattering albedo (SSA) relationship with extinction Angstrom exponent (EAE) can provide an estimate of the general classification of dominant aerosol types (i.e., desert dust, urban/industrial pollution, biomass burning smoke, and mixtures) based on data from ~20 AERONET sites located in known aerosol source regions. In addition, the absorption Angstrom exponent relationship with EAE can provide an indication of the dominant absorbing aerosol type such as dust, black carbon, brown carbon, or mixtures of them. These classification techniques are applied to the AERONET Level 2.0 quality assured data sets collected during Distributed Regional Aerosol Gridded Observational Network (DRAGON) campaigns in Maryland (USA), Japan, South Korea, Singapore, Penang (Malaysia), and California (USA). An analysis of aerosol type classification for DRAGON sites is performed as well as an assessment of the spatial variability of the aerosol types for selected DRAGON campaigns. Giles, D. M., B. N. Holben, T. F. Eck, A. Sinyuk, A. Smirnov, I. Slutsker, R. R. Dickerson, A. M. Thompson, and J. S. Schafer (2012), An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions, J. Geophys. Res., 117, D17203, doi:10.1029/2012JD018127. Gobbi, G. P., Y. J. Kaufman, I. Koren, and T. F. Eck (2007), Classification of aerosol properties derived from AERONET direct sun data, Atmos. Chem. Phys., 7, 453-458, doi:10.5194/acp-7-453-2007. Russell, P. B., R. W. Bergstrom, Y. Shinozuka, A. D. Clarke, P. F. DeCarlo, J. L. Jimenez, J. M. Livingston, J. Redemann, O. Dubovik, and A. Strawa (2010), Absorption Ångstrom Exponent in AERONET and related data as an indicator of aerosol composition, Atmos. Chem. Phys., 10, 1155-1169, doi:10.5194/acp-10-1155-2010.
Chica, Manuel
2012-11-01
A novel method for authenticating pollen grains in bright-field microscopic images is presented in this work. The usage of this new method is clear in many application fields such as bee-keeping sector, where laboratory experts need to identify fraudulent bee pollen samples against local known pollen types. Our system is based on image processing and one-class classification to reject unknown pollen grain objects. The latter classification technique allows us to tackle the major difficulty of the problem, the existence of many possible fraudulent pollen types, and the impossibility of modeling all of them. Different one-class classification paradigms are compared to study the most suitable technique for solving the problem. In addition, feature selection algorithms are applied to reduce the complexity and increase the accuracy of the models. For each local pollen type, a one-class classifier is trained and aggregated into a multiclassifier model. This multiclassification scheme combines the output of all the one-class classifiers in a unique final response. The proposed method is validated by authenticating pollen grains belonging to different Spanish bee pollen types. The overall accuracy of the system on classifying fraudulent microscopic pollen grain objects is 92.3%. The system is able to rapidly reject pollen grains, which belong to nonlocal pollen types, reducing the laboratory work and effort. The number of possible applications of this authentication method in the microscopy research field is unlimited. Copyright © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Fluet-Chouinard, E.; Lehner, B.; Aires, F.; Prigent, C.; McIntyre, P. B.
2017-12-01
Global surface water maps have improved in spatial and temporal resolutions through various remote sensing methods: open water extents with compiled Landsat archives and inundation with topographically downscaled multi-sensor retrievals. These time-series capture variations through time of open water and inundation without discriminating between hydrographic features (e.g. lakes, reservoirs, river channels and wetland types) as other databases have done as static representation. Available data sources present the opportunity to generate a comprehensive map and typology of aquatic environments (deepwater and wetlands) that improves on earlier digitized inventories and maps. The challenge of classifying surface waters globally is to distinguishing wetland types with meaningful characteristics or proxies (hydrology, water chemistry, soils, vegetation) while accommodating limitations of remote sensing data. We present a new wetland classification scheme designed for global application and produce a map of aquatic ecosystem types globally using state-of-the-art remote sensing products. Our classification scheme combines open water extent and expands it with downscaled multi-sensor inundation data to capture the maximal vegetated wetland extent. The hierarchical structure of the classification is modified from the Cowardin Systems (1979) developed for the USA. The first level classification is based on a combination of landscape positions and water source (e.g. lacustrine, riverine, palustrine, coastal and artificial) while the second level represents the hydrologic regime (e.g. perennial, seasonal, intermittent and waterlogged). Class-specific descriptors can further detail the wetland types with soils and vegetation cover. Our globally consistent nomenclature and top-down mapping allows for direct comparison across biogeographic regions, to upscale biogeochemical fluxes as well as other landscape level functions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Group. 30.7 Section 30.7 Agriculture Regulations of... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.7 Group. A group of grades, or a division of a type covering several closely related grades, based on the...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Group. 30.7 Section 30.7 Agriculture Regulations of... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.7 Group. A group of grades, or a division of a type covering several closely related grades, based on the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Group. 30.7 Section 30.7 Agriculture Regulations of... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.7 Group. A group of grades, or a division of a type covering several closely related grades, based on the...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Group. 30.7 Section 30.7 Agriculture Regulations of... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.7 Group. A group of grades, or a division of a type covering several closely related grades, based on the...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Group. 30.7 Section 30.7 Agriculture Regulations of... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.7 Group. A group of grades, or a division of a type covering several closely related grades, based on the...
A Model of Psychopathology Based on an Integration of MMPI Actuarial Systems.
ERIC Educational Resources Information Center
Skinner, Harvey A.; Jackson, Douglas N.
1978-01-01
Evaluated relationships among Minnesota Multiphasic Personality Inventory (MMPI) code types from the Gilberstadt and Duker and the Marks, Seeman, and Haller systems. Superordinate types were identified: neurotic, psychotic and sociopathic. Data from the MMPI do not support the practice of highly differentiated classification within the three…
Triñanes, Yolanda; González-Villar, Alberto; Gómez-Perretta, Claudio; Carrillo-de-la-Peña, María T
2014-11-01
The heterogeneity found in fibromyalgia (FM) patients has led to the investigation of disease subgroups, mainly based on clinical features. The aim of this study was to test the hypothesis that clinical FM subgroups are associated with different underlying pathophysiological mechanisms. Sixty-three FM patients were classified in type I or type II, according to the Fibromyalgia Impact Questionnaire (FIQ), and in mild/moderate versus severe FM, according to the severity of three cardinal symptoms considered in the American College of Rheumatology (ACR) 2010 criteria (unrefreshed sleep, cognitive problems and fatigue). To validate the subgroups obtained by these two classifications, we calculated the area under the receiver operating characteristic curves for various clinical variables and for two potential biomarkers of FM: Response to experimental pressure pain (algometry) and the amplitude/intensity slopes of the auditory evoked potentials (AEPs) obtained to stimuli of increasing intensity. The variables that best discriminated type I versus type II were those related to depression, while the indices of clinical or experimental pain (threshold or tolerance) did not significantly differ between them. The variables that best discriminated the mild/moderate versus severe subgroups were those related to the algometry. The AEPs did not allow discrimination among the generated subsets. The FIQ-based classification allows the identification of subgroups that differ in psychological distress, while the index based on the ACR 2010 criteria seems to be useful to characterize the severity of FM mainly based on hyperalgesia. The incorporation of potential biomarkers to generate or validate classification criteria is crucial to advance in the knowledge of FM and in the understanding of pathophysiological pathways.
NASA Astrophysics Data System (ADS)
gurioli, L.; Harris, A. J.
2013-12-01
Strombolian activity is the most common type of explosive eruption (by frequency) experienced by Earth's volcanoes. It is commonly viewed as consisting of a succession of short discrete explosions where fragments of incandescent magma are ejected a few tens to hundreds meters into the air. This kind of activity is generally restricted to basaltic or basaltic-andesitic magmas because these systems have the sufficiently low viscosities so as to allow gas coalescence and decoupled slug ascent. Mercalli (1907) proposed one of the first formal classifications of explosive activity based on the character of the erupted products and descriptions of case-type eruptions. Later, Walker (1973) devised a classification based on grain size and dispersion, within which strombolian explosions formed the low-to-middle end of the classification. Other classifications have categorized strombolian activity on the basis of erupted magnitude and/or intensity, such as Newhall and Self's (1982) Volcanic Explosivity Index (VEI). Classification can also be made on the basis of explosion mechanism, where strombolian eruptions have become associated with bursting of large gas bubbles, as opposed to release of locked in bubble populations in rapidly ascending magma that feed sustained fountains. Finally, strombolian eruptions can be defined on the basis of geophysical metrics for the explosion source and plume ascent dynamics. Recently, the volcanology community has begun to discuss the difficulty of actually placing strombolian explosions within the compartments defined by each scheme. New sampling strategies in active strombolian volcanic fields have allowed us to parameterize these mildly explosive events both physically and geophysically. Our data show that individual 'normal' and "major" explosions at Stromboli are extremely small, meaning that the classical deposit-based classification thresholds need to be reduced, or a new category defined, if the 'strombolian' eruption style at Stromboli, and other volcanoes like it, are to plot in the strombolian fields of deposit-based classifications. We also quenched a number of bombs soon explosion at Stromboli. This enabled us to quantify the degassing history and rheology of the magma(s) resident in the shallow, near-surface, system. The different textural facies observed in these bombs showed that fresh magma, mingled with partially or completely degassed, oxidized, re-crystallized, evolved and high viscosity magma, was ejected. The degassed magma appears to sit at the top of the conduit, playing only a passive role in the explosive process. Our best model, is that the degassed, oxidized magma forms a plug, or rheologically defined layer, at the top of the conduit, through which the fresh magma bursts. Integration of geophysical measurements with sample analyses, indicates that popular (bubble-bursting) models may not fit this case, thus also changeling the model-based definition of this eruption type.
Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong
2017-06-19
A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification.
Novel Algorithm for Classification of Medical Images
NASA Astrophysics Data System (ADS)
Bhushan, Bharat; Juneja, Monika
2010-11-01
Content-based image retrieval (CBIR) methods in medical image databases have been designed to support specific tasks, such as retrieval of medical images. These methods cannot be transferred to other medical applications since different imaging modalities require different types of processing. To enable content-based queries in diverse collections of medical images, the retrieval system must be familiar with the current Image class prior to the query processing. Further, almost all of them deal with the DICOM imaging format. In this paper a novel algorithm based on energy information obtained from wavelet transform for the classification of medical images according to their modalities is described. For this two types of wavelets have been used and have been shown that energy obtained in either case is quite distinct for each of the body part. This technique can be successfully applied to different image formats. The results are shown for JPEG imaging format.
Pío del Río-Hortega: A Visionary in the Pathology of Central Nervous System Tumors
Ramon y Cajal Agüeras, Santiago
2016-01-01
The last 140 years have seen considerable advances in knowledge of central nervous system tumors. However, the main tumor types had already been described during the early years of the twentieth century. The studies of Dr. Pío del Río Hortega have been ones of the most exhaustive histology and cytology-based studies of nervous system tumors. Río Hortega's work was performed using silver staining methods, which require a high level of practical skill and were therefore difficult to standardize. His technical aptitude and interest in nervous system tumors played a key role in the establishment of his classification, which was based on cell lineage and embryonic development. Río Hortega's approach was controversial when he proposed it. Current classifications are not only based on cell type and embryonic lineage, as well as on clinical characteristics, anatomical site, and age. PMID:26973470
Automated retinal vessel type classification in color fundus images
NASA Astrophysics Data System (ADS)
Yu, H.; Barriga, S.; Agurto, C.; Nemeth, S.; Bauman, W.; Soliz, P.
2013-02-01
Automated retinal vessel type classification is an essential first step toward machine-based quantitative measurement of various vessel topological parameters and identifying vessel abnormalities and alternations in cardiovascular disease risk analysis. This paper presents a new and accurate automatic artery and vein classification method developed for arteriolar-to-venular width ratio (AVR) and artery and vein tortuosity measurements in regions of interest (ROI) of 1.5 and 2.5 optic disc diameters from the disc center, respectively. This method includes illumination normalization, automatic optic disc detection and retinal vessel segmentation, feature extraction, and a partial least squares (PLS) classification. Normalized multi-color information, color variation, and multi-scale morphological features are extracted on each vessel segment. We trained the algorithm on a set of 51 color fundus images using manually marked arteries and veins. We tested the proposed method in a previously unseen test data set consisting of 42 images. We obtained an area under the ROC curve (AUC) of 93.7% in the ROI of AVR measurement and 91.5% of AUC in the ROI of tortuosity measurement. The proposed AV classification method has the potential to assist automatic cardiovascular disease early detection and risk analysis.
NASA Astrophysics Data System (ADS)
Kuttner, Benjamin George
Natural fire return intervals are relatively long in eastern Canadian boreal forests and often allow for the development of stands with multiple, successive cohorts of trees. Multi-cohort forest management (MCM) provides a strategy to maintain such multi-cohort stands that focuses on three broad phases of increasingly complex, post-fire stand development, termed "cohorts", and recommends different silvicultural approaches be applied to emulate different cohort types. Previous research on structural cohort typing has relied upon primarily subjective classification methods; in this thesis, I develop more comprehensive and objective methods for three common boreal mixedwood and black spruce forest types in northeastern Ontario. Additionally, I examine relationships between cohort types and stand age, productivity, and disturbance history and the utility of airborne LiDAR to retrieve ground-based classifications and to extend structural cohort typing from plot- to stand-levels. In both mixedwood and black spruce forest types, stand age and age-related deadwood features varied systematically with cohort classes in support of an age-based interpretation of increasing cohort complexity. However, correlations of stand age with cohort classes were surprisingly weak. Differences in site productivity had a significant effect on the accrual of increasingly complex multi-cohort stand structure in both forest types, especially in black spruce stands. The effects of past harvesting in predictive models of class membership were only significant when considered in isolation of age. As an age-emulation strategy, the three cohort model appeared to be poorly suited to black spruce forests where the accrual of structural complexity appeared to be more a function of site productivity than age. Airborne LiDAR data appear to be particularly useful in recovering plot-based cohort types and extending them to the stand-level. The main gradients of structural variability detected using LiDAR were similar between boreal mixedwood and black spruce forest types; the best LiDAR-based models of cohort type relied upon combinations of tree size, size heterogeneity, and tree density related variables. The methods described here to measure, classify, and predict cohort-related structural complexity assist in translating the conceptual three cohort model to a more precise, measurement-based management system. In addition, the approaches presented here to measure and classify stand structural complexity promise to significantly enhance the detail of structural information in operational forest inventories in support of a wide array of forest management and conservation applications.
A new classification scheme of plastic wastes based upon recycling labels.
Özkan, Kemal; Ergin, Semih; Işık, Şahin; Işıklı, Idil
2015-01-01
Since recycling of materials is widely assumed to be environmentally and economically beneficial, reliable sorting and processing of waste packaging materials such as plastics is very important for recycling with high efficiency. An automated system that can quickly categorize these materials is certainly needed for obtaining maximum classification while maintaining high throughput. In this paper, first of all, the photographs of the plastic bottles have been taken and several preprocessing steps were carried out. The first preprocessing step is to extract the plastic area of a bottle from the background. Then, the morphological image operations are implemented. These operations are edge detection, noise removal, hole removing, image enhancement, and image segmentation. These morphological operations can be generally defined in terms of the combinations of erosion and dilation. The effect of bottle color as well as label are eliminated using these operations. Secondly, the pixel-wise intensity values of the plastic bottle images have been used together with the most popular subspace and statistical feature extraction methods to construct the feature vectors in this study. Only three types of plastics are considered due to higher existence ratio of them than the other plastic types in the world. The decision mechanism consists of five different feature extraction methods including as Principal Component Analysis (PCA), Kernel PCA (KPCA), Fisher's Linear Discriminant Analysis (FLDA), Singular Value Decomposition (SVD) and Laplacian Eigenmaps (LEMAP) and uses a simple experimental setup with a camera and homogenous backlighting. Due to the giving global solution for a classification problem, Support Vector Machine (SVM) is selected to achieve the classification task and majority voting technique is used as the decision mechanism. This technique equally weights each classification result and assigns the given plastic object to the class that the most classification results agree on. The proposed classification scheme provides high accuracy rate, and also it is able to run in real-time applications. It can automatically classify the plastic bottle types with approximately 90% recognition accuracy. Besides this, the proposed methodology yields approximately 96% classification rate for the separation of PET or non-PET plastic types. It also gives 92% accuracy for the categorization of non-PET plastic types into HPDE or PP. Copyright © 2014 Elsevier Ltd. All rights reserved.
Forest type mapping with satellite data
NASA Technical Reports Server (NTRS)
Dodge, A. G., Jr.; Bryant, E. S.
1976-01-01
Computer classification of data from Landsat, an earth-orbiting satellite, has resulted in measurements and maps of forest types for two New Hampshire counties. The acreages of hardwood and softwood types and total forested areas compare favorably with Forest Service figures for the same areas. These techniques have advantages for field application, particularly in states having forest taxation laws based on general productivity.
NASA Astrophysics Data System (ADS)
Saran, Sameer; Sterk, Geert; Kumar, Suresh
2007-10-01
Land use/cover is an important watershed surface characteristic that affects surface runoff and erosion. Many of the available hydrological models divide the watershed into Hydrological Response Units (HRU), which are spatial units with expected similar hydrological behaviours. The division into HRU's requires good-quality spatial data on land use/cover. This paper presents different approaches to attain an optimal land use/cover map based on remote sensing imagery for a Himalayan watershed in northern India. First digital classifications using maximum likelihood classifier (MLC) and a decision tree classifier were applied. The results obtained from the decision tree were better and even improved after post classification sorting. But the obtained land use/cover map was not sufficient for the delineation of HRUs, since the agricultural land use/cover class did not discriminate between the two major crops in the area i.e. paddy and maize. Therefore we adopted a visual classification approach using optical data alone and also fused with ENVISAT ASAR data. This second step with detailed classification system resulted into better classification accuracy within the 'agricultural land' class which will be further combined with topography and soil type to derive HRU's for physically-based hydrological modelling.
Duane retraction syndrome: causes, effects and management strategies
Kekunnaya, Ramesh; Negalur, Mithila
2017-01-01
Duane retraction syndrome (DRS) is a congenital eye movement anomaly characterized by variable horizontal duction deficits, with narrowing of the palpebral fissure and globe retraction on attempted adduction, occasionally accompanied by upshoot or down-shoot. The etiopathogenesis of this condition can be explained by a spectrum of mechanical, innervational, neurologic and genetic abnormalities occurring independently or which influence each other giving rise to patterns of clinical presentations along with a complex set of ocular and systemic anomalies. Huber type I DRS is the most common form of DRS with an earlier presentation, while Huber type II is the least common presentation. Usually, patients with unilateral type I Duane syndrome have esotropia more frequently than exotropia, those with type II have exotropia and those with type III have esotropia and exotropia occurring equally common. Cases of bilateral DRS may have variable presentation depending upon the type of presentation in each eye. As regards its management, DRS classification based on primary position deviation as esotropic, exotropic or orthotropic is more relevant than Huber’s classification before planning surgery. Surgical approach to these patients is challenging and must be individualized based on the amount of ocular deviation, abnormal head position, associated globe retraction and overshoots. PMID:29133973
Hasan, David; Zanaty, Mario; Starke, Robert M; Atallah, Elias; Chalouhi, Nohra; Jabbour, Pascal; Singla, Amit; Guerrero, Waldo R; Nakagawa, Daichi; Samaniego, Edgar A; Mbabuike, Nnenna; Tawk, Rabih G; Siddiqui, Adnan H; Levy, Elad I; Novakovic, Roberta L; White, Jonathan; Schirmer, Clemens M; Brott, Thomas G; Shallwani, Hussain; Hopkins, L Nelson
2018-05-18
OBJECTIVE The overall risk of ischemic stroke from a chronically occluded internal carotid artery (COICA) is around 5%-7% per year despite receiving the best available medical therapy. Here, authors propose a radiographic classification of COICA that can be used as a guide to determine the technical success and safety of endovascular recanalization for symptomatic COICA and to assess the changes in systemic blood pressure following successful revascularization. METHODS The radiographic images of 100 consecutive subjects with COICA were analyzed. A new classification of COICA was proposed based on the morphology, location of occlusion, and presence or absence of reconstitution of the distal ICA. The classification was used to predict successful revascularization in 32 symptomatic COICAs in 31 patients, five of whom were female (5/31 [16.13%]). Patients were included in the study if they had a COICA with ischemic symptoms refractory to medical therapy. Carotid artery occlusion was defined as 100% cross-sectional occlusion of the vessel lumen as documented on CTA or MRA and confirmed by digital subtraction angiography. RESULTS Four types (A-D) of radiographic COICA were identified. Types A and B were more amenable to safe revascularization than types C and D. Recanalization was successful at a rate of 68.75% (22/32 COICAs; type A: 8/8; type B: 8/8; type C: 4/8; type D: 2/8). The perioperative complication rate was 18.75% (6/32; type A: 0/8 [0%]; type B: 1/8 [12.50%]; type C: 3/8 [37.50%], type D: 2/8 [25.00%]). None of these complications led to permanent morbidity or death. Twenty (64.52%) of 31 subjects had improvement in their symptoms at the 2-6 months' follow-up. A statistically significant decrease in systolic blood pressure (SBP) was noted in 17/21 (80.95%) patients who had successful revascularization, which persisted on follow-up (p = 0.0001). The remaining 10 subjects in whom revascularization failed had no significant changes in SBP (p = 0.73). CONCLUSIONS The pilot study suggested that our proposed classification of COICA may be useful as an adjunctive guide to determine the technical feasibility and safety of revascularization for symptomatic COICA using endovascular techniques. Additionally, successful revascularization may lead to a significant decrease in SBP postprocedure. A Phase 2b trial in larger cohorts to assess the efficacy of endovascular revascularization using our COICA classification is warranted.
Mapping wetland and forest landscapes in Siberia with Landsat data
NASA Astrophysics Data System (ADS)
Maksyutov, Shamil; Kleptsova, Irina; Glagolev, Mikhail; Sedykh, Vladimir; Kuzmenko, Ekaterina; Silaev, Anton; Frolov, Alexander; Nikolaeva, Svetlana; Fedorov, Alexander
2014-05-01
Landsat data availability provides opportunity for improving the knowledge of the Siberian ecosystems necessary for quantifying the response of the regional carbon cycle to the climate change. We developed a new wetland map based on Landsat data for whole West Siberia aiming at scaling up the methane emission observations. Mid-summer Landsat scenes were used in supervised classification method, based on ground truth data obtained during multiple field surveys. The method allows distinguishing following wetland types: pine-dwarf shrubs-sphagnum bogs or ryams, ridge-hollows complexes, shallow-water complexes, sedge-sphagnum poor fens, herbaceous-sphagnum poor fens, sedge-(moss) poor fens and fens, wooded swamps or sogra, palsa complexes. In our estimates wetlands cover 36% of the taiga area. Total methane emission from WS taiga mires is estimated as 3.6 TgC/yr,which is 77% larger as compared to the earlier estimate based on partial Landsat mapping combined with low resolution map due to higher fraction of fen area. We make an attempt to develop a forest typology system useful for a dynamic vegetation modeling and apply it to the analysis of the forest type distribution for several test areas in West and East Siberia, aiming at capability of mapping whole Siberian forests based on Landsat data. Test region locations are: two in West Siberian middle taiga (Laryegan and Nyagan), and one in East Siberia near Yakutsk. The ground truth data are based on analysis of the field survey, forest inventory data from the point of view of the successional forest type classification. Supervised classification was applied to the areas where ample ground truth and inventory data are available, using several limited area maps and vegetation survey. In Laryegan basin the upland forest areas are dominated (as climax forest species) by Scots pine on sandy soils and Siberian pine with presence of fir and spruce on the others. Those types are separable using Landsat spectral data alone. In the permafrost area around Yakutsk the most widespread succession type is birch to larch succession. Three stages of the birch to larch succession are detectable from Landsat image. When Landsat data is used in both West and East Siberia, distinction between deciduous broad-leaved species (birch, aspen, and willow) is difficult due to similarity in spectral signatures. Same problem exists for distinguishing between dark coniferous species (Siberian pine, fir and spruce). Forest classification can be improved by applying landscape type analysis, such as separation into floodplain, terrace, sloping hills.
NASA Astrophysics Data System (ADS)
Fu, Jundong; Zhang, Guangcheng; Wang, Lei; Xia, Nuan
2018-01-01
Based on gigital elevation model in the 1 arc-second format of shuttle radar topography mission data, using the window analysis and mean change point analysis of geographic information system (GIS) technology, programmed with python modules this, automatically extracted and calculated geomorphic elements of Shandong province. The best access to quantitatively study area relief amplitude of statistical area. According to Chinese landscape classification standard, the landscape type in Shandong province was divided into 8 types: low altitude plain, medium altitude plain, low altitude platform, medium altitude platform, low altitude hills, medium altitude hills, low relief mountain, medium relief mountain and the percentages of Shandong province’s total area are as follows: 12.72%, 0.01%, 36.38%, 0.24%, 17.26%, 15.64%, 11.1%, 6.65%. The results of landforms are basically the same as the overall terrain of Shandong Province, Shandong province’s total area, and the study can quantitatively and scientifically provide reference for the classification of landforms in Shandong province.
3D Texture Analysis in Renal Cell Carcinoma Tissue Image Grading
Cho, Nam-Hoon; Choi, Heung-Kook
2014-01-01
One of the most significant processes in cancer cell and tissue image analysis is the efficient extraction of features for grading purposes. This research applied two types of three-dimensional texture analysis methods to the extraction of feature values from renal cell carcinoma tissue images, and then evaluated the validity of the methods statistically through grade classification. First, we used a confocal laser scanning microscope to obtain image slices of four grades of renal cell carcinoma, which were then reconstructed into 3D volumes. Next, we extracted quantitative values using a 3D gray level cooccurrence matrix (GLCM) and a 3D wavelet based on two types of basis functions. To evaluate their validity, we predefined 6 different statistical classifiers and applied these to the extracted feature sets. In the grade classification results, 3D Haar wavelet texture features combined with principal component analysis showed the best discrimination results. Classification using 3D wavelet texture features was significantly better than 3D GLCM, suggesting that the former has potential for use in a computer-based grading system. PMID:25371701
Texture operator for snow particle classification into snowflake and graupel
NASA Astrophysics Data System (ADS)
Nurzyńska, Karolina; Kubo, Mamoru; Muramoto, Ken-ichiro
2012-11-01
In order to improve the estimation of precipitation, the coefficients of Z-R relation should be determined for each snow type. Therefore, it is necessary to identify the type of falling snow. Consequently, this research addresses a problem of snow particle classification into snowflake and graupel in an automatic manner (as these types are the most common in the study region). Having correctly classified precipitation events, it is believed that it will be possible to estimate the related parameters accurately. The automatic classification system presented here describes the images with texture operators. Some of them are well-known from the literature: first order features, co-occurrence matrix, grey-tone difference matrix, run length matrix, and local binary pattern, but also a novel approach to design simple local statistic operators is introduced. In this work the following texture operators are defined: mean histogram, min-max histogram, and mean-variance histogram. Moreover, building a feature vector, which is based on the structure created in many from mentioned algorithms is also suggested. For classification, the k-nearest neighbourhood classifier was applied. The results showed that it is possible to achieve correct classification accuracy above 80% by most of the techniques. The best result of 86.06%, was achieved for operator built from a structure achieved in the middle stage of the co-occurrence matrix calculation. Next, it was noticed that describing an image with two texture operators does not improve the classification results considerably. In the best case the correct classification efficiency was 87.89% for a pair of texture operators created from local binary pattern and structure build in a middle stage of grey-tone difference matrix calculation. This also suggests that the information gathered by each texture operator is redundant. Therefore, the principal component analysis was applied in order to remove the unnecessary information and additionally reduce the length of the feature vectors. The improvement of the correct classification efficiency for up to 100% is possible for methods: min-max histogram, texture operator built from structure achieved in a middle stage of co-occurrence matrix calculation, texture operator built from a structure achieved in a middle stage of grey-tone difference matrix creation, and texture operator based on a histogram, when the feature vector stores 99% of initial information.
Genetic variability of HEV isolates: inconsistencies of current classification.
Oliveira-Filho, Edmilson F; König, Matthias; Thiel, Heinz-Jürgen
2013-07-26
Many HEV and HEV-like sequences have been reported during the last years, including isolates which may represent a number of potential new genera, new genotypes or new subtypes within the family Hepeviridae. Using the most common classification system, difficulties in the establishment of subtypes have been reported. Moreover the relevance of subtype classification for epidemiology can be questioned. In this study we have performed phylogenetic analyses based on whole capsid gene and complete HEV genomic sequences in order to evaluate the current classification of HEV at genotype and subtype levels. The results of our analyses modify the current taxonomy of genotype 3 and refine the established system for typing of HEV. In addition we suggest a classification for hepeviruses recently isolated from bats, ferrets, rats and wild boar. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nomura, Yukihiro; Lu, Jianming; Sekiya, Hiroo; Yahagi, Takashi
This paper presents a speech enhancement using the classification between the dominants of speech and noise. In our system, a new classification scheme between the dominants of speech and noise is proposed. The proposed classifications use the standard deviation of the spectrum of observation signal in each band. We introduce two oversubtraction factors for the dominants of speech and noise, respectively. And spectral subtraction is carried out after the classification. The proposed method is tested on several noise types from the Noisex-92 database. From the investigation of segmental SNR, Itakura-Saito distance measure, inspection of spectrograms and listening tests, the proposed system is shown to be effective to reduce background noise. Moreover, the enhanced speech using our system generates less musical noise and distortion than that of conventional systems.
Arribas-Gil, Ana; De la Cruz, Rolando; Lebarbier, Emilie; Meza, Cristian
2015-06-01
We propose a classification method for longitudinal data. The Bayes classifier is classically used to determine a classification rule where the underlying density in each class needs to be well modeled and estimated. This work is motivated by a real dataset of hormone levels measured at the early stages of pregnancy that can be used to predict normal versus abnormal pregnancy outcomes. The proposed model, which is a semiparametric linear mixed-effects model (SLMM), is a particular case of the semiparametric nonlinear mixed-effects class of models (SNMM) in which finite dimensional (fixed effects and variance components) and infinite dimensional (an unknown function) parameters have to be estimated. In SNMM's maximum likelihood estimation is performed iteratively alternating parametric and nonparametric procedures. However, if one can make the assumption that the random effects and the unknown function interact in a linear way, more efficient estimation methods can be used. Our contribution is the proposal of a unified estimation procedure based on a penalized EM-type algorithm. The Expectation and Maximization steps are explicit. In this latter step, the unknown function is estimated in a nonparametric fashion using a lasso-type procedure. A simulation study and an application on real data are performed. © 2015, The International Biometric Society.
Bertaux, François; Maler, Oded; Batt, Gregory
2013-01-01
Extrinsic apoptosis is a programmed cell death triggered by external ligands, such as the TNF-related apoptosis inducing ligand (TRAIL). Depending on the cell line, the specific molecular mechanisms leading to cell death may significantly differ. Precise characterization of these differences is crucial for understanding and exploiting extrinsic apoptosis. Cells show distinct behaviors on several aspects of apoptosis, including (i) the relative order of caspases activation, (ii) the necessity of mitochondria outer membrane permeabilization (MOMP) for effector caspase activation, and (iii) the survival of cell lines overexpressing Bcl2. These differences are attributed to the activation of one of two pathways, leading to classification of cell lines into two groups: type I and type II. In this work we challenge this type I/type II cell line classification. We encode the three aforementioned distinguishing behaviors in a formal language, called signal temporal logic (STL), and use it to extensively test the validity of a previously-proposed model of TRAIL-induced apoptosis with respect to experimental observations made on different cell lines. After having solved a few inconsistencies using STL-guided parameter search, we show that these three criteria do not define consistent cell line classifications in type I or type II, and suggest mutants that are predicted to exhibit ambivalent behaviors. In particular, this finding sheds light on the role of a feedback loop between caspases, and reconciliates two apparently-conflicting views regarding the importance of either upstream or downstream processes for cell-type determination. More generally, our work suggests that these three distinguishing behaviors should be merely considered as type I/II features rather than cell-type defining criteria. On the methodological side, this work illustrates the biological relevance of STL-diagrams, STL population data, and STL-guided parameter search implemented in the tool Breach. Such tools are well-adapted to the ever-increasing availability of heterogeneous knowledge on complex signal transduction pathways. PMID:23675292
Military personnel recognition system using texture, colour, and SURF features
NASA Astrophysics Data System (ADS)
Irhebhude, Martins E.; Edirisinghe, Eran A.
2014-06-01
This paper presents an automatic, machine vision based, military personnel identification and classification system. Classification is done using a Support Vector Machine (SVM) on sets of Army, Air Force and Navy camouflage uniform personnel datasets. In the proposed system, the arm of service of personnel is recognised by the camouflage of a persons uniform, type of cap and the type of badge/logo. The detailed analysis done include; camouflage cap and plain cap differentiation using gray level co-occurrence matrix (GLCM) texture feature; classification on Army, Air Force and Navy camouflaged uniforms using GLCM texture and colour histogram bin features; plain cap badge classification into Army, Air Force and Navy using Speed Up Robust Feature (SURF). The proposed method recognised camouflage personnel arm of service on sets of data retrieved from google images and selected military websites. Correlation-based Feature Selection (CFS) was used to improve recognition and reduce dimensionality, thereby speeding the classification process. With this method success rates recorded during the analysis include 93.8% for camouflage appearance category, 100%, 90% and 100% rates of plain cap and camouflage cap categories for Army, Air Force and Navy categories, respectively. Accurate recognition was recorded using SURF for the plain cap badge category. Substantial analysis has been carried out and results prove that the proposed method can correctly classify military personnel into various arms of service. We show that the proposed method can be integrated into a face recognition system, which will recognise personnel in addition to determining the arm of service which the personnel belong. Such a system can be used to enhance the security of a military base or facility.
Borozan, Ivan; Watt, Stuart; Ferretti, Vincent
2015-05-01
Alignment-based sequence similarity searches, while accurate for some type of sequences, can produce incorrect results when used on more divergent but functionally related sequences that have undergone the sequence rearrangements observed in many bacterial and viral genomes. Here, we propose a classification model that exploits the complementary nature of alignment-based and alignment-free similarity measures with the aim to improve the accuracy with which DNA and protein sequences are characterized. Our model classifies sequences using a combined sequence similarity score calculated by adaptively weighting the contribution of different sequence similarity measures. Weights are determined independently for each sequence in the test set and reflect the discriminatory ability of individual similarity measures in the training set. Because the similarity between some sequences is determined more accurately with one type of measure rather than another, our classifier allows different sets of weights to be associated with different sequences. Using five different similarity measures, we show that our model significantly improves the classification accuracy over the current composition- and alignment-based models, when predicting the taxonomic lineage for both short viral sequence fragments and complete viral sequences. We also show that our model can be used effectively for the classification of reads from a real metagenome dataset as well as protein sequences. All the datasets and the code used in this study are freely available at https://collaborators.oicr.on.ca/vferretti/borozan_csss/csss.html. ivan.borozan@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.
Borozan, Ivan; Watt, Stuart; Ferretti, Vincent
2015-01-01
Motivation: Alignment-based sequence similarity searches, while accurate for some type of sequences, can produce incorrect results when used on more divergent but functionally related sequences that have undergone the sequence rearrangements observed in many bacterial and viral genomes. Here, we propose a classification model that exploits the complementary nature of alignment-based and alignment-free similarity measures with the aim to improve the accuracy with which DNA and protein sequences are characterized. Results: Our model classifies sequences using a combined sequence similarity score calculated by adaptively weighting the contribution of different sequence similarity measures. Weights are determined independently for each sequence in the test set and reflect the discriminatory ability of individual similarity measures in the training set. Because the similarity between some sequences is determined more accurately with one type of measure rather than another, our classifier allows different sets of weights to be associated with different sequences. Using five different similarity measures, we show that our model significantly improves the classification accuracy over the current composition- and alignment-based models, when predicting the taxonomic lineage for both short viral sequence fragments and complete viral sequences. We also show that our model can be used effectively for the classification of reads from a real metagenome dataset as well as protein sequences. Availability and implementation: All the datasets and the code used in this study are freely available at https://collaborators.oicr.on.ca/vferretti/borozan_csss/csss.html. Contact: ivan.borozan@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25573913
Application of random forests methods to diabetic retinopathy classification analyses.
Casanova, Ramon; Saldana, Santiago; Chew, Emily Y; Danis, Ronald P; Greven, Craig M; Ambrosius, Walter T
2014-01-01
Diabetic retinopathy (DR) is one of the leading causes of blindness in the United States and world-wide. DR is a silent disease that may go unnoticed until it is too late for effective treatment. Therefore, early detection could improve the chances of therapeutic interventions that would alleviate its effects. Graded fundus photography and systemic data from 3443 ACCORD-Eye Study participants were used to estimate Random Forest (RF) and logistic regression classifiers. We studied the impact of sample size on classifier performance and the possibility of using RF generated class conditional probabilities as metrics describing DR risk. RF measures of variable importance are used to detect factors that affect classification performance. Both types of data were informative when discriminating participants with or without DR. RF based models produced much higher classification accuracy than those based on logistic regression. Combining both types of data did not increase accuracy but did increase statistical discrimination of healthy participants who subsequently did or did not have DR events during four years of follow-up. RF variable importance criteria revealed that microaneurysms counts in both eyes seemed to play the most important role in discrimination among the graded fundus variables, while the number of medicines and diabetes duration were the most relevant among the systemic variables. We have introduced RF methods to DR classification analyses based on fundus photography data. In addition, we propose an approach to DR risk assessment based on metrics derived from graded fundus photography and systemic data. Our results suggest that RF methods could be a valuable tool to diagnose DR diagnosis and evaluate its progression.
Mrena, S; Savola, K; Kulmala, P; Reijonen, H; Ilonen, J; Akerblom, H K; Knip, M
2003-06-01
We set out to study the association between human leukocyte antigen-defined genetic disease susceptibility and the stage of preclinical type 1 diabetes and whether genetic predisposition affects the natural course of preclinical diabetes in initially nondiabetic siblings of affected children. A total of 701 initially unaffected siblings were graded into four stages of preclinical type 1 diabetes based on the initial number of disease-associated autoantibodies detectable close to the time of diagnosis of the index case: no prediabetes (no antibodies), early (one antibody specificity), advanced (two antibodies), and late prediabetes (three or more antibodies). Another classification system covering 659 siblings was based on a combination of the initial number of antibodies and the first-phase insulin response (FPIR) to iv glucose: no prediabetes (no antibodies), early (one antibody specificity, normal FPIR), advanced (two or more antibodies, normal FPIR), and late prediabetes (at least one antibody, reduced FPIR). Genetic susceptibility to type 1 diabetes was defined by human leukocyte antigen identity and DR and DQ genotypes. There was a higher proportion of siblings with late prediabetes initially among those with strong genetic disease susceptibility than among those with decreased genetic predisposition (16.7% vs. 0.5%; P < 0.001 for DQB1 genotypes according to the first classification), whereas there was a higher proportion of siblings with no signs of prediabetes among those with genotypes conferring decreased risk (91.2% vs. 70.4% among those with high-risk DQB1 genotypes; P < 0.001 according to the first classification). Autoantibodies alone were more sensitive in the prediction of future diabetes in siblings than when combined with genetic susceptibility. Genetic susceptibility played a role in whether the initial prediabetic stage progressed (progression in 29.6% of the high-risk siblings compared with 6.6% of the siblings with DQB1 genotypes conferring decreased risk; P < 0.001 according to the first classification) and whether overt type 1 diabetes became manifest or not. Genetic susceptibility has an impact on both the initiation and progression of the autoimmune process leading to clinical diabetes in siblings of affected children.
Influence of Texture and Colour in Breast TMA Classification
Fernández-Carrobles, M. Milagro; Bueno, Gloria; Déniz, Oscar; Salido, Jesús; García-Rojo, Marcial; González-López, Lucía
2015-01-01
Breast cancer diagnosis is still done by observation of biopsies under the microscope. The development of automated methods for breast TMA classification would reduce diagnostic time. This paper is a step towards the solution for this problem and shows a complete study of breast TMA classification based on colour models and texture descriptors. The TMA images were divided into four classes: i) benign stromal tissue with cellularity, ii) adipose tissue, iii) benign and benign anomalous structures, and iv) ductal and lobular carcinomas. A relevant set of features was obtained on eight different colour models from first and second order Haralick statistical descriptors obtained from the intensity image, Fourier, Wavelets, Multiresolution Gabor, M-LBP and textons descriptors. Furthermore, four types of classification experiments were performed using six different classifiers: (1) classification per colour model individually, (2) classification by combination of colour models, (3) classification by combination of colour models and descriptors, and (4) classification by combination of colour models and descriptors with a previous feature set reduction. The best result shows an average of 99.05% accuracy and 98.34% positive predictive value. These results have been obtained by means of a bagging tree classifier with combination of six colour models and the use of 1719 non-correlated (correlation threshold of 97%) textural features based on Statistical, M-LBP, Gabor and Spatial textons descriptors. PMID:26513238
Analysis of biliary anatomy according to different classification systems.
Deka, Pranjal; Islam, Mahibul; Jindal, Deepti; Kumar, Niteen; Arora, Ankur; Negi, Sanjay Singh
2014-01-01
Variations in biliary anatomy are common, and different classifications have been described. These classification systems have not been compared to each other in a single cohort. We report such variations in biliary anatomy on magnetic resonance cholangiopancreatography (MRCP) using six different classification systems. In 299 patients undergoing MRCP for various indications, biliary anatomy was classified as described by Couinaud (1957), Huang (1996), Karakas (2008), Choi (2003), Champetier (1994), and Ohkubo (2004). Correlation with direct cholangiography and vascular anatomy was done. Bile duct dimensions were measured. Cystic duct junction and pancreaticobiliary ductal junction (PBDJ) were classified. Normal biliary anatomy was noted in 57.8 %. The most common variants were Couinaud type D2, Choi type 3A, Huang type A1, Champetier type a, Ohkubo types D and J, and Karakas type 2a. The Ohkubo classification was the most appropriate; 3.1 % of right ducts and 6.3 % of left ducts with variant anatomy could not be classified using the Ohkubo classification. There was a good agreement between MRCP and direct cholangiography (ĸ = 0.9). Anomalous PBDJ was noted in 8.7 %. Variant biliary anatomy was not associated with gender (p = 0.194) or variant vascular anatomy (p = 0.24). Although each classification system has its merits and demerits, some anatomical variations cannot be classified using any of the previously described classifications. The Ohkubo classification system is the most applicable as it considers most clinically relevant variations pertinent to hepatobiliary surgery.
Extreme Facial Expressions Classification Based on Reality Parameters
NASA Astrophysics Data System (ADS)
Rahim, Mohd Shafry Mohd; Rad, Abdolvahab Ehsani; Rehman, Amjad; Altameem, Ayman
2014-09-01
Extreme expressions are really type of emotional expressions that are basically stimulated through the strong emotion. An example of those extreme expression is satisfied through tears. So to be able to provide these types of features; additional elements like fluid mechanism (particle system) plus some of physics techniques like (SPH) are introduced. The fusion of facile animation with SPH exhibits promising results. Accordingly, proposed fluid technique using facial animation is the real tenor for this research to get the complex expression, like laugh, smile, cry (tears emergence) or the sadness until cry strongly, as an extreme expression classification that's happens on the human face in some cases.
Application of visible and near-infrared spectroscopy to classification of Miscanthus species
Jin, Xiaoli; Chen, Xiaoling; Xiao, Liang; ...
2017-04-03
Here, the feasibility of visible and near infrared (NIR) spectroscopy as tool to classify Miscanthus samples was explored in this study. Three types of Miscanthus plants, namely, M. sinensis, M. sacchariflorus and M. fIoridulus, were analyzed using a NIR spectrophotometer. Several classification models based on the NIR spectra data were developed using line discriminated analysis (LDA), partial least squares (PLS), least squares support vector machine regression (LSSVR), radial basis function (RBF) and neural network (NN). The principal component analysis (PCA) presented rough classification with overlapping samples, while the models of Line_LSSVR, RBF_LSSVR and RBF_NN presented almost same calibration and validationmore » results. Due to the higher speed of Line_LSSVR than RBF_LSSVR and RBF_NN, we selected the line_LSSVR model as a representative. In our study, the model based on line_LSSVR showed higher accuracy than LDA and PLS models. The total correct classification rates of 87.79 and 96.51% were observed based on LDA and PLS model in the testing set, respectively, while the line_LSSVR showed 99.42% of total correct classification rate. Meanwhile, the lin_LSSVR model in the testing set showed correct classification rate of 100, 100 and 96.77% for M. sinensis, M. sacchariflorus and M. fIoridulus, respectively. The lin_LSSVR model assigned 99.42% of samples to the right groups, except one M. fIoridulus sample. The results demonstrated that NIR spectra combined with a preliminary morphological classification could be an effective and reliable procedure for the classification of Miscanthus species.« less
Application of visible and near-infrared spectroscopy to classification of Miscanthus species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Xiaoli; Chen, Xiaoling; Xiao, Liang
Here, the feasibility of visible and near infrared (NIR) spectroscopy as tool to classify Miscanthus samples was explored in this study. Three types of Miscanthus plants, namely, M. sinensis, M. sacchariflorus and M. fIoridulus, were analyzed using a NIR spectrophotometer. Several classification models based on the NIR spectra data were developed using line discriminated analysis (LDA), partial least squares (PLS), least squares support vector machine regression (LSSVR), radial basis function (RBF) and neural network (NN). The principal component analysis (PCA) presented rough classification with overlapping samples, while the models of Line_LSSVR, RBF_LSSVR and RBF_NN presented almost same calibration and validationmore » results. Due to the higher speed of Line_LSSVR than RBF_LSSVR and RBF_NN, we selected the line_LSSVR model as a representative. In our study, the model based on line_LSSVR showed higher accuracy than LDA and PLS models. The total correct classification rates of 87.79 and 96.51% were observed based on LDA and PLS model in the testing set, respectively, while the line_LSSVR showed 99.42% of total correct classification rate. Meanwhile, the lin_LSSVR model in the testing set showed correct classification rate of 100, 100 and 96.77% for M. sinensis, M. sacchariflorus and M. fIoridulus, respectively. The lin_LSSVR model assigned 99.42% of samples to the right groups, except one M. fIoridulus sample. The results demonstrated that NIR spectra combined with a preliminary morphological classification could be an effective and reliable procedure for the classification of Miscanthus species.« less
Application of visible and near-infrared spectroscopy to classification of Miscanthus species.
Jin, Xiaoli; Chen, Xiaoling; Xiao, Liang; Shi, Chunhai; Chen, Liang; Yu, Bin; Yi, Zili; Yoo, Ji Hye; Heo, Kweon; Yu, Chang Yeon; Yamada, Toshihiko; Sacks, Erik J; Peng, Junhua
2017-01-01
The feasibility of visible and near infrared (NIR) spectroscopy as tool to classify Miscanthus samples was explored in this study. Three types of Miscanthus plants, namely, M. sinensis, M. sacchariflorus and M. fIoridulus, were analyzed using a NIR spectrophotometer. Several classification models based on the NIR spectra data were developed using line discriminated analysis (LDA), partial least squares (PLS), least squares support vector machine regression (LSSVR), radial basis function (RBF) and neural network (NN). The principal component analysis (PCA) presented rough classification with overlapping samples, while the models of Line_LSSVR, RBF_LSSVR and RBF_NN presented almost same calibration and validation results. Due to the higher speed of Line_LSSVR than RBF_LSSVR and RBF_NN, we selected the line_LSSVR model as a representative. In our study, the model based on line_LSSVR showed higher accuracy than LDA and PLS models. The total correct classification rates of 87.79 and 96.51% were observed based on LDA and PLS model in the testing set, respectively, while the line_LSSVR showed 99.42% of total correct classification rate. Meanwhile, the lin_LSSVR model in the testing set showed correct classification rate of 100, 100 and 96.77% for M. sinensis, M. sacchariflorus and M. fIoridulus, respectively. The lin_LSSVR model assigned 99.42% of samples to the right groups, except one M. fIoridulus sample. The results demonstrated that NIR spectra combined with a preliminary morphological classification could be an effective and reliable procedure for the classification of Miscanthus species.
Application of visible and near-infrared spectroscopy to classification of Miscanthus species
Shi, Chunhai; Chen, Liang; Yu, Bin; Yi, Zili; Yoo, Ji Hye; Heo, Kweon; Yu, Chang Yeon; Yamada, Toshihiko; Sacks, Erik J.; Peng, Junhua
2017-01-01
The feasibility of visible and near infrared (NIR) spectroscopy as tool to classify Miscanthus samples was explored in this study. Three types of Miscanthus plants, namely, M. sinensis, M. sacchariflorus and M. fIoridulus, were analyzed using a NIR spectrophotometer. Several classification models based on the NIR spectra data were developed using line discriminated analysis (LDA), partial least squares (PLS), least squares support vector machine regression (LSSVR), radial basis function (RBF) and neural network (NN). The principal component analysis (PCA) presented rough classification with overlapping samples, while the models of Line_LSSVR, RBF_LSSVR and RBF_NN presented almost same calibration and validation results. Due to the higher speed of Line_LSSVR than RBF_LSSVR and RBF_NN, we selected the line_LSSVR model as a representative. In our study, the model based on line_LSSVR showed higher accuracy than LDA and PLS models. The total correct classification rates of 87.79 and 96.51% were observed based on LDA and PLS model in the testing set, respectively, while the line_LSSVR showed 99.42% of total correct classification rate. Meanwhile, the lin_LSSVR model in the testing set showed correct classification rate of 100, 100 and 96.77% for M. sinensis, M. sacchariflorus and M. fIoridulus, respectively. The lin_LSSVR model assigned 99.42% of samples to the right groups, except one M. fIoridulus sample. The results demonstrated that NIR spectra combined with a preliminary morphological classification could be an effective and reliable procedure for the classification of Miscanthus species. PMID:28369059
Pham, Tuyen Danh; Nguyen, Dat Tien; Kim, Wan; Park, Sung Ho; Park, Kang Ryoung
2018-01-01
In automatic paper currency sorting, fitness classification is a technique that assesses the quality of banknotes to determine whether a banknote is suitable for recirculation or should be replaced. Studies on using visible-light reflection images of banknotes for evaluating their usability have been reported. However, most of them were conducted under the assumption that the denomination and input direction of the banknote are predetermined. In other words, a pre-classification of the type of input banknote is required. To address this problem, we proposed a deep learning-based fitness-classification method that recognizes the fitness level of a banknote regardless of the denomination and input direction of the banknote to the system, using the reflection images of banknotes by visible-light one-dimensional line image sensor and a convolutional neural network (CNN). Experimental results on the banknote image databases of the Korean won (KRW) and the Indian rupee (INR) with three fitness levels, and the Unites States dollar (USD) with two fitness levels, showed that our method gives better classification accuracy than other methods. PMID:29415447
Using Gaussian mixture models to detect and classify dolphin whistles and pulses.
Peso Parada, Pablo; Cardenal-López, Antonio
2014-06-01
In recent years, a number of automatic detection systems for free-ranging cetaceans have been proposed that aim to detect not just surfaced, but also submerged, individuals. These systems are typically based on pattern-recognition techniques applied to underwater acoustic recordings. Using a Gaussian mixture model, a classification system was developed that detects sounds in recordings and classifies them as one of four types: background noise, whistles, pulses, and combined whistles and pulses. The classifier was tested using a database of underwater recordings made off the Spanish coast during 2011. Using cepstral-coefficient-based parameterization, a sound detection rate of 87.5% was achieved for a 23.6% classification error rate. To improve these results, two parameters computed using the multiple signal classification algorithm and an unpredictability measure were included in the classifier. These parameters, which helped to classify the segments containing whistles, increased the detection rate to 90.3% and reduced the classification error rate to 18.1%. Finally, the potential of the multiple signal classification algorithm and unpredictability measure for estimating whistle contours and classifying cetacean species was also explored, with promising results.
Srivastava, Saurabh Kumar; Singh, Sandeep Kumar; Suri, Jasjit S
2018-04-13
A machine learning (ML)-based text classification system has several classifiers. The performance evaluation (PE) of the ML system is typically driven by the training data size and the partition protocols used. Such systems lead to low accuracy because the text classification systems lack the ability to model the input text data in terms of noise characteristics. This research study proposes a concept of misrepresentation ratio (MRR) on input healthcare text data and models the PE criteria for validating the hypothesis. Further, such a novel system provides a platform to amalgamate several attributes of the ML system such as: data size, classifier type, partitioning protocol and percentage MRR. Our comprehensive data analysis consisted of five types of text data sets (TwitterA, WebKB4, Disease, Reuters (R8), and SMS); five kinds of classifiers (support vector machine with linear kernel (SVM-L), MLP-based neural network, AdaBoost, stochastic gradient descent and decision tree); and five types of training protocols (K2, K4, K5, K10 and JK). Using the decreasing order of MRR, our ML system demonstrates the mean classification accuracies as: 70.13 ± 0.15%, 87.34 ± 0.06%, 93.73 ± 0.03%, 94.45 ± 0.03% and 97.83 ± 0.01%, respectively, using all the classifiers and protocols. The corresponding AUC is 0.98 for SMS data using Multi-Layer Perceptron (MLP) based neural network. All the classifiers, the best accuracy of 91.84 ± 0.04% is shown to be of MLP-based neural network and this is 6% better over previously published. Further we observed that as MRR decreases, the system robustness increases and validated by standard deviations. The overall text system accuracy using all data types, classifiers, protocols is 89%, thereby showing the entire ML system to be novel, robust and unique. The system is also tested for stability and reliability.
CNN for breaking text-based CAPTCHA with noise
NASA Astrophysics Data System (ADS)
Liu, Kaixuan; Zhang, Rong; Qing, Ke
2017-07-01
A CAPTCHA ("Completely Automated Public Turing test to tell Computers and Human Apart") system is a program that most humans can pass but current computer programs could hardly pass. As the most common type of CAPTCHAs , text-based CAPTCHA has been widely used in different websites to defense network bots. In order to breaking textbased CAPTCHA, in this paper, two trained CNN models are connected for the segmentation and classification of CAPTCHA images. Then base on these two models, we apply sliding window segmentation and voting classification methods realize an end-to-end CAPTCHA breaking system with high success rate. The experiment results show that our method is robust and effective in breaking text-based CAPTCHA with noise.
Towards an International Classification for Patient Safety: the conceptual framework.
Sherman, Heather; Castro, Gerard; Fletcher, Martin; Hatlie, Martin; Hibbert, Peter; Jakob, Robert; Koss, Richard; Lewalle, Pierre; Loeb, Jerod; Perneger, Thomas; Runciman, William; Thomson, Richard; Van Der Schaaf, Tjerk; Virtanen, Martti
2009-02-01
Global advances in patient safety have been hampered by the lack of a uniform classification of patient safety concepts. This is a significant barrier to developing strategies to reduce risk, performing evidence-based research and evaluating existing healthcare policies relevant to patient safety. Since 2005, the World Health Organization's World Alliance for Patient Safety has undertaken the Project to Develop an International Classification for Patient Safety (ICPS) to devise a classification which transforms patient safety information collected from disparate systems into a common format to facilitate aggregation, analysis and learning across disciplines, borders and time. A drafting group, comprised of experts from the fields of patient safety, classification theory, health informatics, consumer/patient advocacy, law and medicine, identified and defined key patient safety concepts and developed an internationally agreed conceptual framework for the ICPS based upon existing patient safety classifications. The conceptual framework was iteratively improved through technical expert meetings and a two-stage web-based modified Delphi survey of over 250 international experts. This work culminated in a conceptual framework consisting of ten high level classes: incident type, patient outcomes, patient characteristics, incident characteristics, contributing factors/hazards, organizational outcomes, detection, mitigating factors, ameliorating actions and actions taken to reduce risk. While the framework for the ICPS is in place, several challenges remain. Concepts need to be defined, guidance for using the classification needs to be provided, and further real-world testing needs to occur to progressively refine the ICPS to ensure it is fit for purpose.
Towards an International Classification for Patient Safety: the conceptual framework
Sherman, Heather; Castro, Gerard; Fletcher, Martin; Hatlie, Martin; Hibbert, Peter; Jakob, Robert; Koss, Richard; Lewalle, Pierre; Loeb, Jerod; Perneger, Thomas; Runciman, William; Thomson, Richard; Van Der Schaaf, Tjerk; Virtanen, Martti
2009-01-01
Global advances in patient safety have been hampered by the lack of a uniform classification of patient safety concepts. This is a significant barrier to developing strategies to reduce risk, performing evidence-based research and evaluating existing healthcare policies relevant to patient safety. Since 2005, the World Health Organization's World Alliance for Patient Safety has undertaken the Project to Develop an International Classification for Patient Safety (ICPS) to devise a classification which transforms patient safety information collected from disparate systems into a common format to facilitate aggregation, analysis and learning across disciplines, borders and time. A drafting group, comprised of experts from the fields of patient safety, classification theory, health informatics, consumer/patient advocacy, law and medicine, identified and defined key patient safety concepts and developed an internationally agreed conceptual framework for the ICPS based upon existing patient safety classifications. The conceptual framework was iteratively improved through technical expert meetings and a two-stage web-based modified Delphi survey of over 250 international experts. This work culminated in a conceptual framework consisting of ten high level classes: incident type, patient outcomes, patient characteristics, incident characteristics, contributing factors/hazards, organizational outcomes, detection, mitigating factors, ameliorating actions and actions taken to reduce risk. While the framework for the ICPS is in place, several challenges remain. Concepts need to be defined, guidance for using the classification needs to be provided, and further real-world testing needs to occur to progressively refine the ICPS to ensure it is fit for purpose. PMID:19147595
NASA Astrophysics Data System (ADS)
Tan, Kok Liang; Tanaka, Toshiyuki; Nakamura, Hidetoshi; Shirahata, Toru; Sugiura, Hiroaki
The standard computer-tomography-based method for measuring emphysema uses percentage of area of low attenuation which is called the pixel index (PI). However, the PI method is susceptible to the problem of averaging effect and this causes the discrepancy between what the PI method describes and what radiologists observe. Knowing that visual recognition of the different types of regional radiographic emphysematous tissues in a CT image can be fuzzy, this paper proposes a low-attenuation gap length matrix (LAGLM) based algorithm for classifying the regional radiographic lung tissues into four emphysema types distinguishing, in particular, radiographic patterns that imply obvious or subtle bullous emphysema from those that imply diffuse emphysema or minor destruction of airway walls. Neural network is used for discrimination. The proposed LAGLM method is inspired by, but different from, former texture-based methods like gray level run length matrix (GLRLM) and gray level gap length matrix (GLGLM). The proposed algorithm is successfully validated by classifying 105 lung regions that are randomly selected from 270 images. The lung regions are hand-annotated by radiologists beforehand. The average four-class classification accuracies in the form of the proposed algorithm/PI/GLRLM/GLGLM methods are: 89.00%/82.97%/52.90%/51.36%, respectively. The p-values from the correlation analyses between the classification results of 270 images and pulmonary function test results are generally less than 0.01. The classification results are useful for a followup study especially for monitoring morphological changes with progression of pulmonary disease.
NASA Astrophysics Data System (ADS)
Mohammadimanesh, F.; Salehi, B.; Mahdianpari, M.; Homayouni, S.
2016-06-01
Polarimetric Synthetic Aperture Radar (PolSAR) imagery is a complex multi-dimensional dataset, which is an important source of information for various natural resources and environmental classification and monitoring applications. PolSAR imagery produces valuable information by observing scattering mechanisms from different natural and man-made objects. Land cover mapping using PolSAR data classification is one of the most important applications of SAR remote sensing earth observations, which have gained increasing attention in the recent years. However, one of the most challenging aspects of classification is selecting features with maximum discrimination capability. To address this challenge, a statistical approach based on the Fisher Linear Discriminant Analysis (FLDA) and the incorporation of physical interpretation of PolSAR data into classification is proposed in this paper. After pre-processing of PolSAR data, including the speckle reduction, the H/α classification is used in order to classify the basic scattering mechanisms. Then, a new method for feature weighting, based on the fusion of FLDA and physical interpretation, is implemented. This method proves to increase the classification accuracy as well as increasing between-class discrimination in the final Wishart classification. The proposed method was applied to a full polarimetric C-band RADARSAT-2 data set from Avalon area, Newfoundland and Labrador, Canada. This imagery has been acquired in June 2015, and covers various types of wetlands including bogs, fens, marshes and shallow water. The results were compared with the standard Wishart classification, and an improvement of about 20% was achieved in the overall accuracy. This method provides an opportunity for operational wetland classification in northern latitude with high accuracy using only SAR polarimetric data.
A novel classification of prostate specific antigen (PSA) biosensors based on transducing elements.
Najeeb, Mansoor Ani; Ahmad, Zubair; Shakoor, R A; Mohamed, A M A; Kahraman, Ramazan
2017-06-01
During the last few decades, there has been a tremendous rise in the number of research studies dedicated towards the development of diagnostic tools based on bio-sensing technology for the early detection of various diseases like cardiovascular diseases (CVD), many types of cancer, diabetes mellitus (DM) and many infectious diseases. Many breakthroughs have been developed in the areas of improving specificity, selectivity and repeatability of the biosensor devices. Innovations in the interdisciplinary areas like biotechnology, genetics, organic electronics and nanotechnology also had a great positive impact on the growth of bio-sensing technology. As a product of these improvements, fast and consistent sensing policies have been productively created for precise and ultrasensitive biomarker-based disease diagnostics. Prostate-specific antigen (PSA) is widely considered as an important biomarker used for diagnosing prostate cancer. There have been many publications based on various biosensors used for PSA detection, but a limited review was available for the classification of these biosensors used for the detection of PSA. This review highlights the various biosensors used for PSA detection and proposes a novel classification for PSA biosensors based on the transducer type used. We also highlight the advantages, disadvantages and limitations of each technique used for PSA biosensing which will make this article a complete reference tool for the future researches in PSA biosensing. Copyright © 2017 Elsevier B.V. All rights reserved.
Niphadkar, Madhura; Nagendra, Harini; Tarantino, Cristina; Adamo, Maria; Blonda, Palma
2017-01-01
The establishment of invasive alien species in varied habitats across the world is now recognized as a genuine threat to the preservation of biodiversity. Specifically, plant invasions in understory tropical forests are detrimental to the persistence of healthy ecosystems. Monitoring such invasions using Very High Resolution (VHR) satellite remote sensing has been shown to be valuable in designing management interventions for conservation of native habitats. Object-based classification methods are very helpful in identifying invasive plants in various habitats, by their inherent nature of imitating the ability of the human brain in pattern recognition. However, these methods have not been tested adequately in dense tropical mixed forests where invasion occurs in the understorey. This study compares a pixel-based and object-based classification method for mapping the understorey invasive shrub Lantana camara (Lantana) in a tropical mixed forest habitat in the Western Ghats biodiversity hotspot in India. Overall, a hierarchical approach of mapping top canopy at first, and then further processing for the understorey shrub, using measures such as texture and vegetation indices proved effective in separating out Lantana from other cover types. In the first method, we implement a simple parametric supervised classification for mapping cover types, and then process within these types for Lantana delineation. In the second method, we use an object-based segmentation algorithm to map cover types, and then perform further processing for separating Lantana. The improved ability of the object-based approach to delineate structurally distinct objects with characteristic spectral and spatial characteristics of their own, as well as with reference to their surroundings, allows for much flexibility in identifying invasive understorey shrubs among the complex vegetation of the tropical forest than that provided by the parametric classifier. Conservation practices in tropical mixed forests can benefit greatly by adopting methods which use high resolution remotely sensed data and advanced techniques to monitor the patterns and effective functioning of native ecosystems by periodically mapping disturbances such as invasion. PMID:28620400
A Novel Segment-Based Approach for Improving Classification Performance of Transport Mode Detection.
Guvensan, M Amac; Dusun, Burak; Can, Baris; Turkmen, H Irem
2017-12-30
Transportation planning and solutions have an enormous impact on city life. To minimize the transport duration, urban planners should understand and elaborate the mobility of a city. Thus, researchers look toward monitoring people's daily activities including transportation types and duration by taking advantage of individual's smartphones. This paper introduces a novel segment-based transport mode detection architecture in order to improve the results of traditional classification algorithms in the literature. The proposed post-processing algorithm, namely the Healing algorithm, aims to correct the misclassification results of machine learning-based solutions. Our real-life test results show that the Healing algorithm could achieve up to 40% improvement of the classification results. As a result, the implemented mobile application could predict eight classes including stationary, walking, car, bus, tram, train, metro and ferry with a success rate of 95% thanks to the proposed multi-tier architecture and Healing algorithm.
[New varieties of lateral metatarsophalangeal dislocations of the great toe].
Bousselmame, N; Rachid, K; Lazrak, K; Galuia, F; Taobane, H; Moulay, I
2001-04-01
We report seven cases of traumatic dislocation of the great toe, detailing the anatomy, the mechanism of injury and the radiographic diagnosis. We propose an additional classification based on three hereto unreported cases. Between october 1994 and october 1997, we treated seven patients with traumatic dislocation of the first metatarso-phalangeal joint of the great toe. There were six men and one woman, mean age 35 years (range 24 - 44 years). Dislocation was caused by motor vehicle accidents in four cases and by falls in three. Diagnosis was made on anteroposterior, lateral and medial oblique radiographs. According to Jahss' classification, there was one type I and three type IIB dislocations. There was also one open lateral dislocation and two dorsomedial dislocations. Only these dorsomedial dislocations required open reduction, done via a dorsal approach. Mean follow-up was 17.5 months (range 9 - 24 months) in six cases. One patient was lost to follow-up. The outcome was good in six cases and poor in one (dorsomedial dislocation). Dislocation of the first metatarso-phalangeal joint of the great toe is an uncommon injury. In 1980, Jahss reported two cases and reviewed three others described in the literature. He proposed three types of dislocation based on the feasibility of closed reduction (type I, II and IIB). In 1991, Copeland and Kanat reported a unique case in which there was an association of IIA and IIB lesions. They proposed an addition to the classification (type IIC). In 1994, Garcia Mata et al. reported another case which had not been described by Jahss and proposed another addition. All dislocations reported to date have been sagittal dislocations. Pathological alteration of the collateral ligaments has not been previously reported. In our experience, we have seen one case of open lateral dislocation due, at surgical exploration, to medial ligament rupture and two cases of dorsomedial dislocation due, at surgical exploration, to lateral ligament rupture. We propose another additional classification with pure lateral dislocation (type III) and dorso-lateral dislocation (type IL or IIL+), which are related to the formerly described variants.
Human Papillomavirus Type 16 Genetic Variants: Phylogeny and Classification Based on E6 and LCR
Gheit, Tarik; Franceschi, Silvia; Vignat, Jerome; Burk, Robert D.; Sylla, Bakary S.; Tommasino, Massimo; Clifford, Gary M.
2012-01-01
Naturally occurring genetic variants of human papillomavirus type 16 (HPV16) are common and have previously been classified into 4 major lineages; European-Asian (EAS), including the sublineages European (EUR) and Asian (As), African 1 (AFR1), African 2 (AFR2), and North-American/Asian-American (NA/AA). We aimed to improve the classification of HPV16 variant lineages by using a large resource of HPV16-positive cervical samples collected from geographically diverse populations in studies on HPV and/or cervical cancer undertaken by the International Agency for Research on Cancer. In total, we sequenced the entire E6 genes and long control regions (LCRs) of 953 HPV16 isolates from 27 different countries worldwide. Phylogenetic analyses confirmed previously described variant lineages and subclassifications. We characterized two new sublineages within each of the lineages AFR1 and AFR2 that are robustly classified using E6 and/or the LCR. We could differentiate previously identified AA1, AA2, and NA sublineages, although they could not be distinguished by E6 alone, requiring the LCR for correct phylogenetic classification. We thus provide a classification system for HPV16 genomes based on 13 and 32 phylogenetically distinguishing positions in E6 and the LCR, respectively, that distinguish nine HPV16 variant sublineages (EUR, As, AFR1a, AFR1b, AFR2a, AFR2b, NA, AA1, and AA2). Ninety-seven percent of all 953 samples fitted this classification perfectly. Other positions were frequently polymorphic within one or more lineages but did not define phylogenetic subgroups. Such a standardized classification of HPV16 variants is important for future epidemiological and biological studies of the carcinogenic potential of HPV16 variant lineages. PMID:22491459
Human papillomavirus type 16 genetic variants: phylogeny and classification based on E6 and LCR.
Cornet, Iris; Gheit, Tarik; Franceschi, Silvia; Vignat, Jerome; Burk, Robert D; Sylla, Bakary S; Tommasino, Massimo; Clifford, Gary M
2012-06-01
Naturally occurring genetic variants of human papillomavirus type 16 (HPV16) are common and have previously been classified into 4 major lineages; European-Asian (EAS), including the sublineages European (EUR) and Asian (As), African 1 (AFR1), African 2 (AFR2), and North-American/Asian-American (NA/AA). We aimed to improve the classification of HPV16 variant lineages by using a large resource of HPV16-positive cervical samples collected from geographically diverse populations in studies on HPV and/or cervical cancer undertaken by the International Agency for Research on Cancer. In total, we sequenced the entire E6 genes and long control regions (LCRs) of 953 HPV16 isolates from 27 different countries worldwide. Phylogenetic analyses confirmed previously described variant lineages and subclassifications. We characterized two new sublineages within each of the lineages AFR1 and AFR2 that are robustly classified using E6 and/or the LCR. We could differentiate previously identified AA1, AA2, and NA sublineages, although they could not be distinguished by E6 alone, requiring the LCR for correct phylogenetic classification. We thus provide a classification system for HPV16 genomes based on 13 and 32 phylogenetically distinguishing positions in E6 and the LCR, respectively, that distinguish nine HPV16 variant sublineages (EUR, As, AFR1a, AFR1b, AFR2a, AFR2b, NA, AA1, and AA2). Ninety-seven percent of all 953 samples fitted this classification perfectly. Other positions were frequently polymorphic within one or more lineages but did not define phylogenetic subgroups. Such a standardized classification of HPV16 variants is important for future epidemiological and biological studies of the carcinogenic potential of HPV16 variant lineages.
Acoustic firearm discharge detection and classification in an enclosed environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luzi, Lorenzo; Gonzalez, Eric; Bruillard, Paul
2016-05-01
Two different signal processing algorithms are described for detection and classification of acoustic signals generated by firearm discharges in small enclosed spaces. The first is based on the logarithm of the signal energy. The second is a joint entropy. The current study indicates that a system using both signal energy and joint entropy would be able to both detect weapon discharges and classify weapon type, in small spaces, with high statistical certainty.
Jiang, Binghu; Takashima, Shodayu; Hakucho, Tomoaki; Hodaka, Numasaki; Yasuhiko, Tomita; Masahiko, Higashiyama
2013-10-01
To investigate the clinicopathological features and prognosis in patients with adenocarcinoma of the lung with scattered consolidation (ALSC). Between January 2006 and March 2010, 139 consecutive patients with lung adenocarcinoma of ≤3 cm, who underwent pulmonary resection for lung cancer, were investigated retrospectively. Radiologic classification was based on the findings of thin-section CT such as the presence of consolidation or ground-glass opacity (GGO). Type I (n=15) and Type II (n=14), showed a pure GGO and a mixed GGO with consolidation <50%, respectively. Type IV (n=38) and Type V (n=52) showed a mixed GGO with consolidation ≥50% and a pure consolidation, respectively. Type III (n=20) was the adenocarcinoma of the lung with scattered consolidation (ALSC). The clinicopathological features and prognosis of ALSC was investigated with comparative analysis and survival analysis. Because of the similar recurrence rate for Type I and Type II (P=1.000), Type IV and Type V (P=0.343), we merged Type I and Type II as Type I+II, Type IV and Type V as Type IV+V, respectively. In the 20 (14.4%) patients with ALSC, lymph node metastasis was not observed, and it was rare in lymphatic invasion and vascular invasion. On the basis of IASLC/ATS/ERS 2011 classification, 80% of the ALSC were preinvasive lesions. In Noguchi classification, there was no significant difference between Type I+II and ALSC (P=0.260). The prognosis of ALSC was similar to Type I+II (P=0.408), but better than Type IV+V (P=0.040). Adenocarcinoma of the lung with scattered consolidation (ALSC) on thin-section CT was a relatively favorable prognostic factor. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Cell-based therapy technology classifications and translational challenges
Mount, Natalie M.; Ward, Stephen J.; Kefalas, Panos; Hyllner, Johan
2015-01-01
Cell therapies offer the promise of treating and altering the course of diseases which cannot be addressed adequately by existing pharmaceuticals. Cell therapies are a diverse group across cell types and therapeutic indications and have been an active area of research for many years but are now strongly emerging through translation and towards successful commercial development and patient access. In this article, we present a description of a classification of cell therapies on the basis of their underlying technologies rather than the more commonly used classification by cell type because the regulatory path and manufacturing solutions are often similar within a technology area due to the nature of the methods used. We analyse the progress of new cell therapies towards clinical translation, examine how they are addressing the clinical, regulatory, manufacturing and reimbursement requirements, describe some of the remaining challenges and provide perspectives on how the field may progress for the future. PMID:26416686
[Categorization of uterine cervix tumors : What's new in the 2014 WHO classification].
Lax, S F; Horn, L-C; Löning, T
2016-11-01
In the 2014 WHO classification, squamous cell precursor lesions are classified as low-grade and high-grade intraepithelial lesions. LSIL corresponds to CIN1, HSIL includes CIN2 and CIN3. Only adenocarcinoma in situ (AIS) is accepted as precursor of adenocarcinoma and includes the stratified mucin-producing intraepithelial lesion (SMILE). Although relatively rare, adenocarcinoma and squamous cell carcinoma can be mixed with a poorly differentiated neuroendocrine carcinoma. Most cervical adenocarcinomas are low grade and of endocervical type. Mucinous carcinomas show marked intra- and extracellular mucin production. Almost all squamous cell carcinomas, the vast majority of adenocarcinomas, and many rare carcinoma types are HPV related. For low grade endocervical adenocarcinomas, the pattern-based classification according to Silva should be reported. Neuroendocrine tumors are rare and are classified into low-grade and high-grade, whereby the term carcinoid is still used.
Insausti, Matías; Gomes, Adriano A; Cruz, Fernanda V; Pistonesi, Marcelo F; Araujo, Mario C U; Galvão, Roberto K H; Pereira, Claudete F; Band, Beatriz S F
2012-08-15
This paper investigates the use of UV-vis, near infrared (NIR) and synchronous fluorescence (SF) spectrometries coupled with multivariate classification methods to discriminate biodiesel samples with respect to the base oil employed in their production. More specifically, the present work extends previous studies by investigating the discrimination of corn-based biodiesel from two other biodiesel types (sunflower and soybean). Two classification methods are compared, namely full-spectrum SIMCA (soft independent modelling of class analogies) and SPA-LDA (linear discriminant analysis with variables selected by the successive projections algorithm). Regardless of the spectrometric technique employed, full-spectrum SIMCA did not provide an appropriate discrimination of the three biodiesel types. In contrast, all samples were correctly classified on the basis of a reduced number of wavelengths selected by SPA-LDA. It can be concluded that UV-vis, NIR and SF spectrometries can be successfully employed to discriminate corn-based biodiesel from the two other biodiesel types, but wavelength selection by SPA-LDA is key to the proper separation of the classes. Copyright © 2012 Elsevier B.V. All rights reserved.
Guo, Lei; Abbosh, Amin
2018-05-01
For any chance for stroke patients to survive, the stroke type should be classified to enable giving medication within a few hours of the onset of symptoms. In this paper, a microwave-based stroke localization and classification framework is proposed. It is based on microwave tomography, k-means clustering, and a support vector machine (SVM) method. The dielectric profile of the brain is first calculated using the Born iterative method, whereas the amplitude of the dielectric profile is then taken as the input to k-means clustering. The cluster is selected as the feature vector for constructing and testing the SVM. A database of MRI-derived realistic head phantoms at different signal-to-noise ratios is used in the classification procedure. The performance of the proposed framework is evaluated using the receiver operating characteristic (ROC) curve. The results based on a two-dimensional framework show that 88% classification accuracy, with a sensitivity of 91% and a specificity of 87%, can be achieved. Bioelectromagnetics. 39:312-324, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.5 Class. One of the major divisions of leaf tobacco based on the distinct characteristics of the tobacco caused...
Code of Federal Regulations, 2013 CFR
2013-01-01
... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.5 Class. One of the major divisions of leaf tobacco based on the distinct characteristics of the tobacco caused...
Code of Federal Regulations, 2010 CFR
2010-01-01
... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.5 Class. One of the major divisions of leaf tobacco based on the distinct characteristics of the tobacco caused...
Code of Federal Regulations, 2011 CFR
2011-01-01
... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.5 Class. One of the major divisions of leaf tobacco based on the distinct characteristics of the tobacco caused...
Code of Federal Regulations, 2014 CFR
2014-01-01
... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.5 Class. One of the major divisions of leaf tobacco based on the distinct characteristics of the tobacco caused...
NASA Astrophysics Data System (ADS)
Navratil, Peter; Wilps, Hans
2013-01-01
Three different object-based image classification techniques are applied to high-resolution satellite data for the mapping of the habitats of Asian migratory locust (Locusta migratoria migratoria) in the southern Aral Sea basin, Uzbekistan. A set of panchromatic and multispectral Système Pour l'Observation de la Terre-5 satellite images was spectrally enhanced by normalized difference vegetation index and tasseled cap transformation and segmented into image objects, which were then classified by three different classification approaches: a rule-based hierarchical fuzzy threshold (HFT) classification method was compared to a supervised nearest neighbor classifier and classification tree analysis by the quick, unbiased, efficient statistical trees algorithm. Special emphasis was laid on the discrimination of locust feeding and breeding habitats due to the significance of this discrimination for practical locust control. Field data on vegetation and land cover, collected at the time of satellite image acquisition, was used to evaluate classification accuracy. The results show that a robust HFT classifier outperformed the two automated procedures by 13% overall accuracy. The classification method allowed a reliable discrimination of locust feeding and breeding habitats, which is of significant importance for the application of the resulting data for an economically and environmentally sound control of locust pests because exact spatial knowledge on the habitat types allows a more effective surveying and use of pesticides.
Classification of Partial Discharge Measured under Different Levels of Noise Contamination.
Jee Keen Raymond, Wong; Illias, Hazlee Azil; Abu Bakar, Ab Halim
2017-01-01
Cable joint insulation breakdown may cause a huge loss to power companies. Therefore, it is vital to diagnose the insulation quality to detect early signs of insulation failure. It is well known that there is a correlation between Partial discharge (PD) and the insulation quality. Although many works have been done on PD pattern recognition, it is usually performed in a noise free environment. Also, works on PD pattern recognition in actual cable joint are less likely to be found in literature. Therefore, in this work, classifications of actual cable joint defect types from partial discharge data contaminated by noise were performed. Five cross-linked polyethylene (XLPE) cable joints with artificially created defects were prepared based on the defects commonly encountered on site. Three different types of input feature were extracted from the PD pattern under artificially created noisy environment. These include statistical features, fractal features and principal component analysis (PCA) features. These input features were used to train the classifiers to classify each PD defect types. Classifications were performed using three different artificial intelligence classifiers, which include Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Support Vector Machine (SVM). It was found that the classification accuracy decreases with higher noise level but PCA features used in SVM and ANN showed the strongest tolerance against noise contamination.
Faber-Langendoen, D.; Aaseng, N.; Hop, K.; Lew-Smith, M.; Drake, J.
2007-01-01
Question: How can the U.S. National Vegetation Classification (USNVC) serve as an effective tool for classifying and mapping vegetation, and inform assessments and monitoring? Location: Voyageurs National Park, northern Minnesota, U.S.A and environs. The park contains 54 243 ha of terrestrial habitat in the sub-boreal region of North America. Methods: We classified and mapped the natural vegetation using the USNVC, with 'alliance' and 'association' as base units. We compiled 259 classification plots and 1251 accuracy assessment test plots. Both plot and type ordinations were used to analyse vegetation and environmental patterns. Color infrared aerial photography (1:15840 scale) was used for mapping. Polygons were manually drawn, then transferred into digital form. Classification and mapping products are stored in publicly available databases. Past fire and logging events were used to assess distribution of forest types. Results and Discussion: Ordination and cluster analyses confirmed 49 associations and 42 alliances, with three associations ranked as globally vulnerable to extirpation. Ordination provided a useful summary of vegetation and ecological gradients. Overall map accuracy was 82.4%. Pinus banksiana - Picea mariana forests were less frequent in areas unburned since the 1930s. Conclusion: The USNVC provides a consistent ecological tool for summarizing and mapping vegetation. The products provide a baseline for assessing forests and wetlands, including fire management. The standardized classification and map units provide local to continental perspectives on park resources through linkages to state, provincial, and national classifications in the U.S. and Canada, and to NatureServe's Ecological Systems classification. ?? IAVS; Opulus Press.
Pollettini, Juliana T; Panico, Sylvia R G; Daneluzzi, Julio C; Tinós, Renato; Baranauskas, José A; Macedo, Alessandra A
2012-12-01
Surveillance Levels (SLs) are categories for medical patients (used in Brazil) that represent different types of medical recommendations. SLs are defined according to risk factors and the medical and developmental history of patients. Each SL is associated with specific educational and clinical measures. The objective of the present paper was to verify computer-aided, automatic assignment of SLs. The present paper proposes a computer-aided approach for automatic recommendation of SLs. The approach is based on the classification of information from patient electronic records. For this purpose, a software architecture composed of three layers was developed. The architecture is formed by a classification layer that includes a linguistic module and machine learning classification modules. The classification layer allows for the use of different classification methods, including the use of preprocessed, normalized language data drawn from the linguistic module. We report the verification and validation of the software architecture in a Brazilian pediatric healthcare institution. The results indicate that selection of attributes can have a great effect on the performance of the system. Nonetheless, our automatic recommendation of surveillance level can still benefit from improvements in processing procedures when the linguistic module is applied prior to classification. Results from our efforts can be applied to different types of medical systems. The results of systems supported by the framework presented in this paper may be used by healthcare and governmental institutions to improve healthcare services in terms of establishing preventive measures and alerting authorities about the possibility of an epidemic.
Sea ice type dynamics in the Arctic based on Sentinel-1 Data
NASA Astrophysics Data System (ADS)
Babiker, Mohamed; Korosov, Anton; Park, Jeong-Won
2017-04-01
Sea ice observation from satellites has been carried out for more than four decades and is one of the most important applications of EO data in operational monitoring as well as in climate change studies. Several sensors and retrieval methods have been developed and successfully utilized to measure sea ice area, concentration, drift, type, thickness, etc [e.g. Breivik et al., 2009]. Today operational sea ice monitoring and analysis is fully dependent on use of satellite data. However, new and improved satellite systems, such as multi-polarisation Synthetic Apperture Radar (SAR), require further studies to develop more advanced and automated sea ice monitoring methods. In addition, the unprecedented volume of data available from recently launched Sentinel missions provides both challenges and opportunities for studying sea ice dynamics. In this study we investigate sea ice type dynamics in the Fram strait based on Sentinel-1 A, B SAR data. Series of images for the winter season are classified into 4 ice types (young ice, first year ice, multiyear ice and leads) using the new algorithm developed by us for sea ice classification, which is based on segmentation, GLCM calculation, Haralick texture feature extraction, unsupervised and supervised classifications and Support Vector Machine (SVM) [Zakhvatkina et al., 2016; Korosov et al., 2016]. This algorithm is further improved by applying thermal and scalloping noise removal [Park et al. 2016]. Sea ice drift is retrieved from the same series of Sentinel-1 images using the newly developed algorithm based on combination of feature tracking and pattern matching [Mukenhuber et al., 2016]. Time series of these two products (sea ice type and sea ice drift) are combined in order to study sea ice deformation processes at small scales. Zones of sea ice convergence and divergence identified from sea ice drift are compared with ridges and leads identified from texture features. That allows more specific interpretation of SAR imagery and more accurate automatic classification. In addition, the map of four ice types calculated using the texture features from one SAR image is propagated forward using the sea ice drift vectors. The propagated ice type is compared with ice type derived from the next image. The comparison identifies changes in ice type which occurred during drift and allows to reduce uncertainties in sea ice type calculation.
A minimal dissipation type-based classification in irreversible thermodynamics and microeconomics
NASA Astrophysics Data System (ADS)
Tsirlin, A. M.; Kazakov, V.; Kolinko, N. A.
2003-10-01
We formulate the problem of finding classes of kinetic dependencies in irreversible thermodynamic and microeconomic systems for which minimal dissipation processes belong to the same type. We show that this problem is an inverse optimal control problem and solve it. The commonality of this problem in irreversible thermodynamics and microeconomics is emphasized.
An approach for automatic classification of grouper vocalizations with passive acoustic monitoring.
Ibrahim, Ali K; Chérubin, Laurent M; Zhuang, Hanqi; Schärer Umpierre, Michelle T; Dalgleish, Fraser; Erdol, Nurgun; Ouyang, B; Dalgleish, A
2018-02-01
Grouper, a family of marine fishes, produce distinct vocalizations associated with their reproductive behavior during spawning aggregation. These low frequencies sounds (50-350 Hz) consist of a series of pulses repeated at a variable rate. In this paper, an approach is presented for automatic classification of grouper vocalizations from ambient sounds recorded in situ with fixed hydrophones based on weighted features and sparse classifier. Group sounds were labeled initially by humans for training and testing various feature extraction and classification methods. In the feature extraction phase, four types of features were used to extract features of sounds produced by groupers. Once the sound features were extracted, three types of representative classifiers were applied to categorize the species that produced these sounds. Experimental results showed that the overall percentage of identification using the best combination of the selected feature extractor weighted mel frequency cepstral coefficients and sparse classifier achieved 82.7% accuracy. The proposed algorithm has been implemented in an autonomous platform (wave glider) for real-time detection and classification of group vocalizations.
Wendel, Jochen; Buttenfield, Barbara P.; Stanislawski, Larry V.
2016-01-01
Knowledge of landscape type can inform cartographic generalization of hydrographic features, because landscape characteristics provide an important geographic context that affects variation in channel geometry, flow pattern, and network configuration. Landscape types are characterized by expansive spatial gradients, lacking abrupt changes between adjacent classes; and as having a limited number of outliers that might confound classification. The US Geological Survey (USGS) is exploring methods to automate generalization of features in the National Hydrography Data set (NHD), to associate specific sequences of processing operations and parameters with specific landscape characteristics, thus obviating manual selection of a unique processing strategy for every NHD watershed unit. A chronology of methods to delineate physiographic regions for the United States is described, including a recent maximum likelihood classification based on seven input variables. This research compares unsupervised and supervised algorithms applied to these seven input variables, to evaluate and possibly refine the recent classification. Evaluation metrics for unsupervised methods include the Davies–Bouldin index, the Silhouette index, and the Dunn index as well as quantization and topographic error metrics. Cross validation and misclassification rate analysis are used to evaluate supervised classification methods. The paper reports the comparative analysis and its impact on the selection of landscape regions. The compared solutions show problems in areas of high landscape diversity. There is some indication that additional input variables, additional classes, or more sophisticated methods can refine the existing classification.
Ito, Hiroyuki; Oshikiri, Koshiro; Mifune, Mizuo; Abe, Mariko; Antoku, Shinichi; Takeuchi, Yuichiro; Togane, Michiko; Yukawa, Chizuko
2012-01-01
A new classification of chronic kidney disease (CKD) was proposed by the Kidney Disease: Improving Global Outcomes (KDIGO) in 2011. The major point of revision of this classification was the introduction of a two-dimensional staging of the CKD according to the level of albuminuria in addition to the GFR level. Furthermore, the previous CKD stage 3 was subdivided into two stages (G3a and G3b). We examined the prevalence of diabetic micro- and macroangiopathies in patients with type 2 diabetes mellitus based on the new classification. A cross-sectional study was performed in 2018 patients with type 2 diabetes mellitus. All of the diabetic micro- and macroangiopathies significantly more common in the later stages of both the GFR and albuminuria. The proportion of subjects with diabetic retinopathy, neuropathy, cerebrovascular disease and coronary heart disease was significantly higher in the G3b group than in the G3a group. The brachial-ankle pulse wave velocity, which is one of the surrogate markers for atherosclerosis, was also significantly greater in the G3b group compared to the G3a group. The subdivision of the G3 stage in the revised classification proposed by the KDIGO is useful to evaluate the risk for diabetic vascular complications. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Tao, Bangyi; Mao, Zhihua; Lei, Hui; Pan, Delu; Bai, Yan; Zhu, Qiankun; Zhang, Zhenglong
2017-03-01
A new bio-optical algorithm based on the green and red bands of the Medium Resolution Imaging Spectrometer (MERIS) is developed to differentiate the harmful algal blooms of Prorocentrum donghaiense Lu (P. donghaiense) from diatom blooms in the East China Sea (ECS). Specifically, a novel green-red index (GRI), actually an indicator for a(510) of bloom waters, is retrieved from a semianalytical bio-optical model based on the green and red bands of phytoplankton-absorption and backscattering spectra. In addition, a MERIS-based diatom index (DIMERIS) is derived by adjusting a Moderate Resolution Imaging Spectroradiometer (MODIS) diatom index algorithm to the MERIS bands. Finally, bloom types are effectively differentiated in the feature spaces of the green-red index and DIMERIS. Compared with three previous MERIS-based quasi-analytical algorithm (QAA) algorithms and three existing classification methods, the proposed GRI and classification method have the best discrimination performance when using the MERIS data. Further validations of the algorithm by using several MERIS image series and near-concurrent in situ observations indicate that our algorithm yields the best classification accuracy and thus can be used to reliably detect and classify P. donghaiense and diatom blooms in the ECS. This is the first time that the MERIS data have been used to identify bloom types in the ECS. Our algorithm can also be used for the successor of the MERIS, the Ocean and Land Color Instrument, which will aid the long-term observation of species succession in the ECS.
Automated detection of tuberculosis on sputum smeared slides using stepwise classification
NASA Astrophysics Data System (ADS)
Divekar, Ajay; Pangilinan, Corina; Coetzee, Gerrit; Sondh, Tarlochan; Lure, Fleming Y. M.; Kennedy, Sean
2012-03-01
Routine visual slide screening for identification of tuberculosis (TB) bacilli in stained sputum slides under microscope system is a tedious labor-intensive task and can miss up to 50% of TB. Based on the Shannon cofactor expansion on Boolean function for classification, a stepwise classification (SWC) algorithm is developed to remove different types of false positives, one type at a time, and to increase the detection of TB bacilli at different concentrations. Both bacilli and non-bacilli objects are first analyzed and classified into several different categories including scanty positive, high concentration positive, and several non-bacilli categories: small bright objects, beaded, dim elongated objects, etc. The morphological and contrast features are extracted based on aprior clinical knowledge. The SWC is composed of several individual classifiers. Individual classifier to increase the bacilli counts utilizes an adaptive algorithm based on a microbiologist's statistical heuristic decision process. Individual classifier to reduce false positive is developed through minimization from a binary decision tree to classify different types of true and false positive based on feature vectors. Finally, the detection algorithm is was tested on 102 independent confirmed negative and 74 positive cases. A multi-class task analysis shows high accordance rate for negative, scanty, and high-concentration as 88.24%, 56.00%, and 97.96%, respectively. A binary-class task analysis using a receiver operating characteristics method with the area under the curve (Az) is also utilized to analyze the performance of this detection algorithm, showing the superior detection performance on the high-concentration cases (Az=0.913) and cases mixed with high-concentration and scanty cases (Az=0.878).
Circulation Type Classifications and their nexus to Van Bebber's storm track Vb
NASA Astrophysics Data System (ADS)
Hofstätter, M.; Chimani, B.
2012-04-01
Circulation Type Classifications (CTCs) are tools to identify repetitive and predominantly stationary patterns of the atmospheric circulation over a certain area, with the purpose to enable the recognition of specific characteristics in surface climate variables. On the other hand storm tracks can be used to identify similar types of synoptic events from a non-stationary, kinematic perspective. Such a storm track classification for Europe has been done in the late 19th century by Van Bebber (1882, 1891), from which the famous type Vb and Vc/d remained up to the present day because of to their association with major flooding events like in August 2002 in Europe. In this work a systematic tracking procedure has been developed, to determine storm track types and their characteristics especially for the Eastern Alpine Region in the period 1961-2002, using ERA40 and ERAinterim reanalysis. The focus thereby is on cyclone tracks of type V as suggested by van Bebber and congeneric types. This new catalogue is used as a reference to verify the hypothesis of a certain coherence of storm track Vb with certain circulation types (e.g. Fricke and Kaminski, 2002). Selected objective and subjective classification schemes from the COST733 action (http://cost733.met.no/, Phillip et al. 2010) are used therefore, as well as the manual classification from ZAMG (Lauscher 1972 and 1985), in which storm track Vb has been classified explicitly on a daily base since 1948. The latter scheme should prove itself as a valuable and unique data source in that issue. Results show that not less than 146 storm tracks are identified as Vb between 1961 and 2002, whereas only three events could be found from literature, pointing to big subjectivity and preconception in the issue of Vb storm tracks. The annual number of Vb storm tracks do not show any significant trend over the last 42 years, but large variations from year to year. Circulation type classification CAP27 (Cluster Analysis of Principal Components) is the best performing, fully objective scheme tested herein, showing the power to discriminate Vb events. Most of the other fully objective schemes do by far not perform as well. Largest skill in that issue can be seen from the subjective/manual CTCs, proving themselves to enhance relevant synoptic phenomena instead of emphasizing mathematic criteria in the classification. The hypothesis of Fricke and Kaminsky can definitely be supported by this work: Vb storm tracks are included in one or the other stationary circulation pattern, but to which extent depends on the specific characteristics of the CTC in question.
An online sleep apnea detection method based on recurrence quantification analysis.
Nguyen, Hoa Dinh; Wilkins, Brek A; Cheng, Qi; Benjamin, Bruce Allen
2014-07-01
This paper introduces an online sleep apnea detection method based on heart rate complexity as measured by recurrence quantification analysis (RQA) statistics of heart rate variability (HRV) data. RQA statistics can capture nonlinear dynamics of a complex cardiorespiratory system during obstructive sleep apnea. In order to obtain a more robust measurement of the nonstationarity of the cardiorespiratory system, we use different fixed amount of neighbor thresholdings for recurrence plot calculation. We integrate a feature selection algorithm based on conditional mutual information to select the most informative RQA features for classification, and hence, to speed up the real-time classification process without degrading the performance of the system. Two types of binary classifiers, i.e., support vector machine and neural network, are used to differentiate apnea from normal sleep. A soft decision fusion rule is developed to combine the results of these classifiers in order to improve the classification performance of the whole system. Experimental results show that our proposed method achieves better classification results compared with the previous recurrence analysis-based approach. We also show that our method is flexible and a strong candidate for a real efficient sleep apnea detection system.
76 FR 79685 - Privacy Act of 1974; System of Records Notice
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-22
... pertain to individual office-based health care providers who are enrolled with the ONC Health IT Regional.../ rural classification) or demographic data (e.g., health care provider type, such as office-based...-based health care providers who are enrolled with the ONC Health IT Regional Extension Centers (REC) and...
AO Distal Radius Fracture Classification: Global Perspective on Observer Agreement.
Jayakumar, Prakash; Teunis, Teun; Giménez, Beatriz Bravo; Verstreken, Frederik; Di Mascio, Livio; Jupiter, Jesse B
2017-02-01
Background The primary objective of this study was to test interobserver reliability when classifying fractures by consensus by AO types and groups among a large international group of surgeons. Secondarily, we assessed the difference in inter- and intraobserver agreement of the AO classification in relation to geographical location, level of training, and subspecialty. Methods A randomized set of radiographic and computed tomographic images from a consecutive series of 96 distal radius fractures (DRFs), treated between October 2010 and April 2013, was classified using an electronic web-based portal by an invited group of participants on two occasions. Results Interobserver reliability was substantial when classifying AO type A fractures but fair and moderate for type B and C fractures, respectively. No difference was observed by location, except for an apparent difference between participants from India and Australia classifying type B fractures. No statistically significant associations were observed comparing interobserver agreement by level of training and no differences were shown comparing subspecialties. Intra-rater reproducibility was "substantial" for fracture types and "fair" for fracture groups with no difference accounting for location, training level, or specialty. Conclusion Improved definition of reliability and reproducibility of this classification may be achieved using large international groups of raters, empowering decision making on which system to utilize. Level of Evidence Level III.
AO Distal Radius Fracture Classification: Global Perspective on Observer Agreement
Jayakumar, Prakash; Teunis, Teun; Giménez, Beatriz Bravo; Verstreken, Frederik; Di Mascio, Livio; Jupiter, Jesse B.
2016-01-01
Background The primary objective of this study was to test interobserver reliability when classifying fractures by consensus by AO types and groups among a large international group of surgeons. Secondarily, we assessed the difference in inter- and intraobserver agreement of the AO classification in relation to geographical location, level of training, and subspecialty. Methods A randomized set of radiographic and computed tomographic images from a consecutive series of 96 distal radius fractures (DRFs), treated between October 2010 and April 2013, was classified using an electronic web-based portal by an invited group of participants on two occasions. Results Interobserver reliability was substantial when classifying AO type A fractures but fair and moderate for type B and C fractures, respectively. No difference was observed by location, except for an apparent difference between participants from India and Australia classifying type B fractures. No statistically significant associations were observed comparing interobserver agreement by level of training and no differences were shown comparing subspecialties. Intra-rater reproducibility was “substantial” for fracture types and “fair” for fracture groups with no difference accounting for location, training level, or specialty. Conclusion Improved definition of reliability and reproducibility of this classification may be achieved using large international groups of raters, empowering decision making on which system to utilize. Level of Evidence Level III PMID:28119795
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apellániz, J. Maíz; Sota, A.; Alfaro, E. J.
This is the third installment of the Galactic O-Star Spectroscopic Survey (GOSSS), a massive spectroscopic survey of Galactic O stars, based on new homogeneous, high signal-to-noise ratio, R ∼ 2500 digital observations selected from the Galactic O-Star Catalog. In this paper, we present 142 additional stellar systems with O stars from both hemispheres, bringing the total of O-type systems published within the project to 590. Among the new objects, there are 20 new O stars. We also identify 11 new double-lined spectroscopic binaries, 6 of which are of O+O type and 5 of O+B type, and an additional new tripled-lined spectroscopic binary of O+O+Bmore » type. We also revise some of the previous GOSSS classifications, present some egregious examples of stars erroneously classified as O-type in the past, introduce the use of luminosity class IV at spectral types O4-O5.5, and adapt the classification scheme to the work of Arias et al.« less
A Novel Acoustic Sensor Approach to Classify Seeds Based on Sound Absorption Spectra
Gasso-Tortajada, Vicent; Ward, Alastair J.; Mansur, Hasib; Brøchner, Torben; Sørensen, Claus G.; Green, Ole
2010-01-01
A non-destructive and novel in situ acoustic sensor approach based on the sound absorption spectra was developed for identifying and classifying different seed types. The absorption coefficient spectra were determined by using the impedance tube measurement method. Subsequently, a multivariate statistical analysis, i.e., principal component analysis (PCA), was performed as a way to generate a classification of the seeds based on the soft independent modelling of class analogy (SIMCA) method. The results show that the sound absorption coefficient spectra of different seed types present characteristic patterns which are highly dependent on seed size and shape. In general, seed particle size and sphericity were inversely related with the absorption coefficient. PCA presented reliable grouping capabilities within the diverse seed types, since the 95% of the total spectral variance was described by the first two principal components. Furthermore, the SIMCA classification model based on the absorption spectra achieved optimal results as 100% of the evaluation samples were correctly classified. This study contains the initial structuring of an innovative method that will present new possibilities in agriculture and industry for classifying and determining physical properties of seeds and other materials. PMID:22163455
Efficient crop type mapping based on remote sensing in the Central Valley, California
NASA Astrophysics Data System (ADS)
Zhong, Liheng
Most agricultural systems in California's Central Valley are purposely flexible and intentionally designed to meet the demands of dynamic markets. Agricultural land use is also impacted by climate change and urban development. As a result, crops change annually and semiannually, which makes estimating agricultural water use difficult, especially given the existing method by which agricultural land use is identified and mapped. A minor portion of agricultural land is surveyed annually for land-use type, and every 5 to 8 years the entire valley is completely evaluated. So far no effort has been made to effectively and efficiently identify specific crop types on an annual basis in this area. The potential of satellite imagery to map agricultural land cover and estimate water usage in the Central Valley is explored. Efforts are made to minimize the cost and reduce the time of production during the mapping process. The land use change analysis shows that a remote sensing based mapping method is the only means to map the frequent change of major crop types. The traditional maximum likelihood classification approach is first utilized to map crop types to test the classification capacity of existing algorithms. High accuracy is achieved with sufficient ground truth data for training, and crop maps of moderate quality can be timely produced to facilitate a near-real-time water use estimate. However, the large set of ground truth data required by this method results in high costs in data collection. It is difficult to reduce the cost because a trained classification algorithm is not transferable between different years or different regions. A phenology based classification (PBC) approach is developed which extracts phenological metrics from annual vegetation index profiles and identifies crop types based on these metrics using decision trees. According to the comparison with traditional maximum likelihood classification, this phenology-based approach shows great advantages when the size of the training set is limited by ground truth availability. Once developed, the classifier is able to be applied to different years and a vast area with only a few adjustments according to local agricultural and annual weather conditions. 250 m MODIS imagery is utilized as the main input to the PBC algorithm and displays promising capacity in crop identification in several counties in the Central Valley. A time series of Landsat TM/ETM+ images at a 30 m resolution is necessary in the crop mapping of counties with smaller land parcels, although the processing time is longer. Spectral characteristics are also employed to identify crops in PBC. Spectral signatures are associated with phenological stages instead of imaging dates, which highly increases the stability of the classifier performance and overcomes the problem of over-fitting. Moderate accuracies are achieved by PBC, with confusions mostly within the same crop categories. Based on a quantitative analysis, misclassification in PBC has very trivial impacts on the accuracy of agricultural water use estimate. The cost of the entire PBC procedure is controlled to a very low level, which will enable its usage in routine annual crop mapping in the Central Valley.
Ihara, Eikichi; Muta, Kazumasa; Fukaura, Keita; Nakamura, Kazuhiko
2017-01-01
Based on Chicago Classification version 3.0, the disorders of esophagogastric junction outflow obstruction (EGJOO) include achalasia (types I, II and III) and EGJOO. Although no curative treatments are currently available for the treatment of the disorders of EGJOO, medical treatments, endoscopic pneumatic dilation (PD), laparoscopic Heller myotomy (LHM), and per-oral endoscopic myotomy (POEM) are usually the sought-after modes of treatment. Since the etiology and pathogenesis might vary depending on the types of EGJOO disorders, treatment strategies should be considered based on those subtypes. Based on the accumulated evidences, the treatment strategies of our institution are as follows: effects of medical treatments on achalasia are limited. Either PD or LHM/POEM can be considered a first-line in achalasia type I, according to the patient's wish. PD and POEM can be considered first-line in achalasia types II and III, respectively. Conversely, In EGJOO, medical treatments including drugs like acotiamide and/or diltiazem can be tested as a first-line, and PD and POEM will be considered second and third-line treatments, respectively. Key Messages: The classification of subtypes based on high-resolution manometry will help us consider which treatment option can be selected as a first-line treatment depending upon the subtypes of disorders of EGJOO. Acotiamide has the potential to cure patients with EGJOO. © 2016 S. Karger AG, Basel.
Brain-Computer Interface Based on Generation of Visual Images
Bobrov, Pavel; Frolov, Alexander; Cantor, Charles; Fedulova, Irina; Bakhnyan, Mikhail; Zhavoronkov, Alexander
2011-01-01
This paper examines the task of recognizing EEG patterns that correspond to performing three mental tasks: relaxation and imagining of two types of pictures: faces and houses. The experiments were performed using two EEG headsets: BrainProducts ActiCap and Emotiv EPOC. The Emotiv headset becomes widely used in consumer BCI application allowing for conducting large-scale EEG experiments in the future. Since classification accuracy significantly exceeded the level of random classification during the first three days of the experiment with EPOC headset, a control experiment was performed on the fourth day using ActiCap. The control experiment has shown that utilization of high-quality research equipment can enhance classification accuracy (up to 68% in some subjects) and that the accuracy is independent of the presence of EEG artifacts related to blinking and eye movement. This study also shows that computationally-inexpensive Bayesian classifier based on covariance matrix analysis yields similar classification accuracy in this problem as a more sophisticated Multi-class Common Spatial Patterns (MCSP) classifier. PMID:21695206
Deep learning application: rubbish classification with aid of an android device
NASA Astrophysics Data System (ADS)
Liu, Sijiang; Jiang, Bo; Zhan, Jie
2017-06-01
Deep learning is a very hot topic currently in pattern recognition and artificial intelligence researches. Aiming at the practical problem that people usually don't know correct classifications some rubbish should belong to, based on the powerful image classification ability of the deep learning method, we have designed a prototype system to help users to classify kinds of rubbish. Firstly the CaffeNet Model was adopted for our classification network training on the ImageNet dataset, and the trained network was deployed on a web server. Secondly an android app was developed for users to capture images of unclassified rubbish, upload images to the web server for analyzing backstage and retrieve the feedback, so that users can obtain the classification guide by an android device conveniently. Tests on our prototype system of rubbish classification show that: an image of one single type of rubbish with origin shape can be better used to judge its classification, while an image containing kinds of rubbish or rubbish with changed shape may fail to help users to decide rubbish's classification. However, the system still shows promising auxiliary function for rubbish classification if the network training strategy can be optimized further.
Classification systems for natural resource management
Kleckner, Richard L.
1981-01-01
Resource managers employ various types of resource classification systems in their management activities such as inventory, mapping, and data analysis. Classification is the ordering or arranging of objects into groups or sets on the basis of their relationships, and as such, provide the resource managers with a structure for organizing their needed information. In addition of conforming to certain logical principles, resource classifications should be flexible, widely applicable to a variety of environmental conditions, and useable with minimal training. The process of classification may be approached from the bottom up (aggregation) or the top down (subdivision) or a combination of both, depending on the purpose of the classification. Most resource classification systems in use today focus on a single resource and are used for a single, limited purpose. However, resource managers now must employ the concept of multiple use in their management activities. What they need is an integrated, ecologically based approach to resource classification which would fulfill multiple-use mandates. In an effort to achieve resource-data compatibility and data sharing among Federal agencies, and interagency agreement has been signed by five Federal agencies to coordinate and cooperate in the area of resource classification and inventory.
NASA Astrophysics Data System (ADS)
Alevizos, Evangelos; Snellen, Mirjam; Simons, Dick; Siemes, Kerstin; Greinert, Jens
2018-06-01
This study applies three classification methods exploiting the angular dependence of acoustic seafloor backscatter along with high resolution sub-bottom profiling for seafloor sediment characterization in the Eckernförde Bay, Baltic Sea Germany. This area is well suited for acoustic backscatter studies due to its shallowness, its smooth bathymetry and the presence of a wide range of sediment types. Backscatter data were acquired using a Seabeam1180 (180 kHz) multibeam echosounder and sub-bottom profiler data were recorded using a SES-2000 parametric sonar transmitting 6 and 12 kHz. The high density of seafloor soundings allowed extracting backscatter layers for five beam angles over a large part of the surveyed area. A Bayesian probability method was employed for sediment classification based on the backscatter variability at a single incidence angle, whereas Maximum Likelihood Classification (MLC) and Principal Components Analysis (PCA) were applied to the multi-angle layers. The Bayesian approach was used for identifying the optimum number of acoustic classes because cluster validation is carried out prior to class assignment and class outputs are ordinal categorical values. The method is based on the principle that backscatter values from a single incidence angle express a normal distribution for a particular sediment type. The resulting Bayesian classes were well correlated to median grain sizes and the percentage of coarse material. The MLC method uses angular response information from five layers of training areas extracted from the Bayesian classification map. The subsequent PCA analysis is based on the transformation of these five layers into two principal components that comprise most of the data variability. These principal components were clustered in five classes after running an external cluster validation test. In general both methods MLC and PCA, separated the various sediment types effectively, showing good agreement (kappa >0.7) with the Bayesian approach which also correlates well with ground truth data (r2 > 0.7). In addition, sub-bottom data were used in conjunction with the Bayesian classification results to characterize acoustic classes with respect to their geological and stratigraphic interpretation. The joined interpretation of seafloor and sub-seafloor data sets proved to be an efficient approach for a better understanding of seafloor backscatter patchiness and to discriminate acoustically similar classes in different geological/bathymetric settings.
Prediction and Confirmation of V-type Asteroids Beyond 2.5 AU Based on SDSS Colors
NASA Astrophysics Data System (ADS)
Binzel, Richard P.; Masi, G.; Foglia, S.
2006-09-01
We apply a taxonomic classification system developed by Masi et al. (2006, submitted to Icarus) to identify C-, S-, and V-type asteroids present within the 3rd Release of the Sloan Digital Sky Survey Moving Object Catalog (SDSS MOC3). The classifications deduced by Masi et al. for 43,000 asteroids using SDSS colors are based on the taxonomy of Bus (1999; MIT Ph.D. thesis). To link SDSS colors to the Bus taxonomy, Masi et al. (2006) use 149 objects measured in common by both SDSS and the Small Main-Belt Asteroid Spectroscopic Survey (SMASS) (Bus and Binzel 2002, Icarus 158, 106). We report results of direct testing of SDSS V-type classification predictions for six objects, where the tests were performed by visible wavelength spectroscopy (Lazzaro et al. 2004, Icarus 172, 179) and target of opportunity near-infrared spectroscopy obtained using the NASA Infrared Telescope Facility (IRTF). Vesta-like spectra and a V-type taxonomy are confirmed for five of the six predicted V-type objects sampled. Most interestingly, the SDSS taxonomy correctly predicted the V-type spectral characteristics for asteroid (21238) 1995 WV7, a 6 km asteroid located far from Vesta across the 3:1 mean motion resonance at 2.54 AU. (Proper elements a,e,i: 2.54 AU, 0.14, and 10.8 deg.) Given the 2 km/sec ejection velocity required from Vesta to reach the current orbit, and the difficulty of migrating across the 3:1 resonance (at 2.5 AU) by a process such as Yarkovsky drift or via secular resonances (Carruba et al. 2005, Astron. Astrophys. 441, 819), asteroid 21238 may be a new candidate for a basaltic asteroid having no relationship to Vesta.
NASA Astrophysics Data System (ADS)
Kacenelenbogen, M. S.; Russell, P. B.; Vaughan, M.; Redemann, J.; Shinozuka, Y.; Livingston, J. M.; Zhang, Q.
2014-12-01
According to the 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), the model estimates of Radiative Forcing due to aerosol-radiation interactions (RFari) for individual aerosol types are less certain than the total RFari [Boucher et al., 2013]. For example, the RFari specific to Black Carbon (BC) is uncertain due to an underestimation of its mass concentration near source regions [Koch et al., 2009]. Several recent studies have evaluated chemical transport model (CTM) predictions using observations of aerosol optical properties such as Aerosol Optical Depth (AOD) or Single Scattering Albedo (SSA) from satellite or ground-based instruments (e.g., Huneeus et al., [2010]). However, most passive remote sensing instruments fail to provide a comprehensive assessment of the particle type without further analysis and combination of measurements. To improve the predictions of aerosol composition in CTMs, we have developed an aerosol classification algorithm (called Specified Clustering and Mahalanobis Classification, SCMC) that assigns an aerosol type to multi-parameter retrievals by spaceborne, airborne or ground based passive remote sensing instruments [Russell et al., 2014]. The aerosol types identified by our scheme are pure dust, polluted dust, urban-industrial/developed economy, urban-industrial/developing economy, dark biomass smoke, light biomass smoke and pure marine. First, we apply the SCMC method to five years of clear-sky space-borne POLDER observations over Greece. We then use the aerosol extinction and SSA spectra retrieved from a combination of MODIS, OMI and CALIOP clear-sky observations to infer the aerosol type over the globe in 2007. Finally, we will extend the spaceborne aerosol classification from clear-sky to above low opaque water clouds using a combination of CALIOP AOD and backscatter observations and OMI absorption AOD values from near-by clear-sky pixels.
NASA Astrophysics Data System (ADS)
Verma, Surendra P.; Rivera-Gómez, M. Abdelaly; Díaz-González, Lorena; Pandarinath, Kailasa; Amezcua-Valdez, Alejandra; Rosales-Rivera, Mauricio; Verma, Sanjeet K.; Quiroz-Ruiz, Alfredo; Armstrong-Altrin, John S.
2017-05-01
A new multidimensional scheme consistent with the International Union of Geological Sciences (IUGS) is proposed for the classification of igneous rocks in terms of four magma types: ultrabasic, basic, intermediate, and acid. Our procedure is based on an extensive database of major element composition of a total of 33,868 relatively fresh rock samples having a multinormal distribution (initial database with 37,215 samples). Multinormally distributed database in terms of log-ratios of samples was ascertained by a new computer program DOMuDaF, in which the discordancy test was applied at the 99.9% confidence level. Isometric log-ratio (ilr) transformation was used to provide overall percent correct classification of 88.7%, 75.8%, 88.0%, and 80.9% for ultrabasic, basic, intermediate, and acid rocks, respectively. Given the known mathematical and uncertainty propagation properties, this transformation could be adopted for routine applications. The incorrect classification was mainly for the "neighbour" magma types, e.g., basic for ultrabasic and vice versa. Some of these misclassifications do not have any effect on multidimensional tectonic discrimination. For an efficient application of this multidimensional scheme, a new computer program MagClaMSys_ilr (MagClaMSys-Magma Classification Major-element based System) was written, which is available for on-line processing on http://tlaloc.ier.unam.mx/index.html. This classification scheme was tested from newly compiled data for relatively fresh Neogene igneous rocks and was found to be consistent with the conventional IUGS procedure. The new scheme was successfully applied to inter-laboratory data for three geochemical reference materials (basalts JB-1 and JB-1a, and andesite JA-3) from Japan and showed that the inferred magma types are consistent with the rock name (basic for basalts JB-1 and JB-1a and intermediate for andesite JA-3). The scheme was also successfully applied to five case studies of older Archaean to Mesozoic igneous rocks. Similar or more reliable results were obtained from existing tectonomagmatic discrimination diagrams when used in conjunction with the new computer program as compared to the IUGS scheme. The application to three case studies of igneous provenance of sedimentary rocks was demonstrated as a novel approach. Finally, we show that the new scheme is more robust for post-emplacement compositional changes than the conventional IUGS procedure.
Application of Archimedean copulas to the analysis of drought decadal variation in China
NASA Astrophysics Data System (ADS)
Zuo, Dongdong; Feng, Guolin; Zhang, Zengping; Hou, Wei
2017-12-01
Based on daily precipitation data collected from 1171 stations in China during 1961-2015, the monthly standardized precipitation index was derived and used to extract two major drought characteristics which are drought duration and severity. Next, a bivariate joint model was established based on the marginal distributions of the two variables and Archimedean copula functions. The joint probability and return period were calculated to analyze the drought characteristics and decadal variation. According to the fit analysis, the Gumbel-Hougaard copula provided the best fit to the observed data. Based on four drought duration classifications and four severity classifications, the drought events were divided into 16 drought types according to the different combinations of duration and severity classifications, and the probability and return period were analyzed for different drought types. The results showed that the occurring probability of six common drought types (0 < D ≤ 1 and 0.5 < S ≤ 1, 1 < D ≤ 3 and 0.5 < S ≤ 1, 1 < D ≤ 3 and 1 < S ≤ 1.5, 1 < D ≤ 3 and 1.5 < S ≤ 2, 1 < D ≤ 3 and 2 < S, and 3 < D ≤ 6 and 2 < S) accounted for 76% of the total probability of all types. Moreover, due to their greater variation, two drought types were particularly notable, i.e., the drought types where D ≥ 6 and S ≥ 2. Analyzing the joint probability in different decades indicated that the location of the drought center had a distinctive stage feature, which cycled from north to northeast to southwest during 1961-2015. However, southwest, north, and northeast China had a higher drought risk. In addition, the drought situation in southwest China should be noted because the joint probability values, return period, and the analysis of trends in the drought duration and severity all indicated a considerable risk in recent years.
SAR data for river ice monitoring. How to meet requirements?
NASA Astrophysics Data System (ADS)
Łoś, Helena; Osińska-Skotak, Katarzyna; Pluto-Kossakowska, Joanna
2017-04-01
Although river ice is a natural element of rivers regime it can lead to severe problems such as winter floods or damages of bridges and bank revetments. Services that monitor river ice condition are still often based on field observation. For several year, however, Earth observation data have become of a great interest, especially SAR images, which allows to observe ice and river condition independently of clouds and sunlight. One of requirements of an effective monitoring system is frequent and regular data acquisition. To help to meet this requirement we assessed an impact of selected SAR data parameters into automatic ice types identification. Presented work consists of two parts. The first one focuses on comparison of C-band and X-band data in terms of the main ice type detection. The second part contains an analysis of polarisation reduction from quad-pol to dual-pol data. As the main element of data processing we chose the supervised classification with maximum likelihood algorithm adapted to Wishart distribution. The classification was preceded by statistical analysis of radar signal obtained for selected ice types including separability measures. Two river were selected as areas of interest - the Peace River in Canada and the Vistula in Poland. The results shows that using data registered in both bands similar accuracy of classification into main ice types can be obtain. Differences appear with details e.g. thin initial ice. Classification results obtained from quad-pol and dual-pol data were similar while four classes were selected. With six classes, however, differences between polarisation types have been noticed.
NASA Astrophysics Data System (ADS)
Fedrigo, Melissa; Newnham, Glenn J.; Coops, Nicholas C.; Culvenor, Darius S.; Bolton, Douglas K.; Nitschke, Craig R.
2018-02-01
Light detection and ranging (lidar) data have been increasingly used for forest classification due to its ability to penetrate the forest canopy and provide detail about the structure of the lower strata. In this study we demonstrate forest classification approaches using airborne lidar data as inputs to random forest and linear unmixing classification algorithms. Our results demonstrated that both random forest and linear unmixing models identified a distribution of rainforest and eucalypt stands that was comparable to existing ecological vegetation class (EVC) maps based primarily on manual interpretation of high resolution aerial imagery. Rainforest stands were also identified in the region that have not previously been identified in the EVC maps. The transition between stand types was better characterised by the random forest modelling approach. In contrast, the linear unmixing model placed greater emphasis on field plots selected as endmembers which may not have captured the variability in stand structure within a single stand type. The random forest model had the highest overall accuracy (84%) and Cohen's kappa coefficient (0.62). However, the classification accuracy was only marginally better than linear unmixing. The random forest model was applied to a region in the Central Highlands of south-eastern Australia to produce maps of stand type probability, including areas of transition (the 'ecotone') between rainforest and eucalypt forest. The resulting map provided a detailed delineation of forest classes, which specifically recognised the coalescing of stand types at the landscape scale. This represents a key step towards mapping the structural and spatial complexity of these ecosystems, which is important for both their management and conservation.
NASA Astrophysics Data System (ADS)
Müller-Putz, Gernot R.; Scherer, Reinhold; Brauneis, Christian; Pfurtscheller, Gert
2005-12-01
Brain-computer interfaces (BCIs) can be realized on the basis of steady-state evoked potentials (SSEPs). These types of brain signals resulting from repetitive stimulation have the same fundamental frequency as the stimulation but also include higher harmonics. This study investigated how the classification accuracy of a 4-class BCI system can be improved by incorporating visually evoked harmonic oscillations. The current study revealed that the use of three SSVEP harmonics yielded a significantly higher classification accuracy than was the case for one or two harmonics. During feedback experiments, the five subjects investigated reached a classification accuracy between 42.5% and 94.4%.
Müller-Putz, Gernot R; Scherer, Reinhold; Brauneis, Christian; Pfurtscheller, Gert
2005-12-01
Brain-computer interfaces (BCIs) can be realized on the basis of steady-state evoked potentials (SSEPs). These types of brain signals resulting from repetitive stimulation have the same fundamental frequency as the stimulation but also include higher harmonics. This study investigated how the classification accuracy of a 4-class BCI system can be improved by incorporating visually evoked harmonic oscillations. The current study revealed that the use of three SSVEP harmonics yielded a significantly higher classification accuracy than was the case for one or two harmonics. During feedback experiments, the five subjects investigated reached a classification accuracy between 42.5% and 94.4%.
NASA Astrophysics Data System (ADS)
Xiao, Guoqiang; Jiang, Yang; Song, Gang; Jiang, Jianmin
2010-12-01
We propose a support-vector-machine (SVM) tree to hierarchically learn from domain knowledge represented by low-level features toward automatic classification of sports videos. The proposed SVM tree adopts a binary tree structure to exploit the nature of SVM's binary classification, where each internal node is a single SVM learning unit, and each external node represents the classified output type. Such a SVM tree presents a number of advantages, which include: 1. low computing cost; 2. integrated learning and classification while preserving individual SVM's learning strength; and 3. flexibility in both structure and learning modules, where different numbers of nodes and features can be added to address specific learning requirements, and various learning models can be added as individual nodes, such as neural networks, AdaBoost, hidden Markov models, dynamic Bayesian networks, etc. Experiments support that the proposed SVM tree achieves good performances in sports video classifications.
Assessments of SENTINEL-2 Vegetation Red-Edge Spectral Bands for Improving Land Cover Classification
NASA Astrophysics Data System (ADS)
Qiu, S.; He, B.; Yin, C.; Liao, Z.
2017-09-01
The Multi Spectral Instrument (MSI) onboard Sentinel-2 can record the information in Vegetation Red-Edge (VRE) spectral domains. In this study, the performance of the VRE bands on improving land cover classification was evaluated based on a Sentinel-2A MSI image in East Texas, USA. Two classification scenarios were designed by excluding and including the VRE bands. A Random Forest (RF) classifier was used to generate land cover maps and evaluate the contributions of different spectral bands. The combination of VRE bands increased the overall classification accuracy by 1.40 %, which was statistically significant. Both confusion matrices and land cover maps indicated that the most beneficial increase was from vegetation-related land cover types, especially agriculture. Comparison of the relative importance of each band showed that the most beneficial VRE bands were Band 5 and Band 6. These results demonstrated the value of VRE bands for land cover classification.
Wu, Miao; Yan, Chuanbo; Liu, Huiqiang; Liu, Qian
2018-06-29
Ovarian cancer is one of the most common gynecologic malignancies. Accurate classification of ovarian cancer types (serous carcinoma, mucous carcinoma, endometrioid carcinoma, transparent cell carcinoma) is an essential part in the different diagnosis. Computer-aided diagnosis (CADx) can provide useful advice for pathologists to determine the diagnosis correctly. In our study, we employed a Deep Convolutional Neural Networks (DCNN) based on AlexNet to automatically classify the different types of ovarian cancers from cytological images. The DCNN consists of five convolutional layers, three max pooling layers, and two full reconnect layers. Then we trained the model by two group input data separately, one was original image data and the other one was augmented image data including image enhancement and image rotation. The testing results are obtained by the method of 10-fold cross-validation, showing that the accuracy of classification models has been improved from 72.76 to 78.20% by using augmented images as training data. The developed scheme was useful for classifying ovarian cancers from cytological images. © 2018 The Author(s).
NASA Astrophysics Data System (ADS)
Wood, N. J.; Spielman, S.
2012-12-01
Near-field tsunami hazards are credible threats to many coastal communities throughout the world. Along the U.S. Pacific Northwest coast, low-lying areas could be inundated by a series of catastrophic tsunamis that begin to arrive in a matter of minutes following a major Cascadia subduction zone (CSZ) earthquake. Previous research has documented the residents, employees, tourists at public venues, customers at local businesses, and vulnerable populations at dependent-care facilities that are in CSZ-related tsunami-prone areas of northern California, Oregon, and the open-ocean coast of Washington. Community inventories of demographic attributes and other characteristics of the at-risk population have helped emergency managers to develop preparedness and outreach efforts. Although useful for distinct risk-reduction issues, these data can be difficult to fully appreciate holistically given the large number of community attributes. This presentation summarizes analytical efforts to classify communities with similar characteristics of community exposure to tsunami hazards. This work builds on past State-focused inventories of community exposure to CSZ-related tsunami hazards in northern California, Oregon, and Washington. Attributes used in the classification, or cluster analysis, fall into several categories, including demography of residents, spatial extent of the developed footprint based on mid-resolution land cover data, distribution of the local workforce, and the number and type of public venues, dependent-care facilities, and community-support businesses. As we were unsure of the number of different types of communities, we used an unsupervised-model-based clustering algorithm and a v-fold, cross-validation procedure (v=50) to identify the appropriate number of community types. Ultimately we selected class solutions that provided the appropriate balance between parsimony and model fit. The goal of the exposure classification is to provide emergency managers with a general sense of the types of communities in tsunami hazard zones based on similar exposure characteristics instead of only providing an exhaustive list of attributes for individual communities. This community-exposure classification scheme can be then used to target and prioritize risk-reduction efforts that address common issues across multiple communities, instead of community-specific efforts. Examples include risk-reduction efforts that focus on similar demographic attributes of the at-risk population or on the type of service populations that dominate tsunami-prone areas. The presentation will include a discussion of the utility of proposed place classifications to support regional preparedness and outreach efforts.
A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles
NASA Astrophysics Data System (ADS)
Djokic, Denia
The radioactive waste classification system currently used in the United States primarily relies on a source-based framework. This has lead to numerous issues, such as wastes that are not categorized by their intrinsic risk, or wastes that do not fall under a category within the framework and therefore are without a legal imperative for responsible management. Furthermore, in the possible case that advanced fuel cycles were to be deployed in the United States, the shortcomings of the source-based classification system would be exacerbated: advanced fuel cycles implement processes such as the separation of used nuclear fuel, which introduce new waste streams of varying characteristics. To be able to manage and dispose of these potential new wastes properly, development of a classification system that would assign appropriate level of management to each type of waste based on its physical properties is imperative. This dissertation explores how characteristics from wastes generated from potential future nuclear fuel cycles could be coupled with a characteristics-based classification framework. A static mass flow model developed under the Department of Energy's Fuel Cycle Research & Development program, called the Fuel-cycle Integration and Tradeoffs (FIT) model, was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices: two modified open fuel cycle cases (recycle in MOX reactor) and two different continuous-recycle fast reactor recycle cases (oxide and metal fuel fast reactors). This analysis focuses on the impact of waste heat load on waste classification practices, although future work could involve coupling waste heat load with metrics of radiotoxicity and longevity. The value of separation of heat-generating fission products and actinides in different fuel cycles and how it could inform long- and short-term disposal management is discussed. It is shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is on increasing repository capacity. The need for a more diverse set of waste classes is discussed, and it is shown that the characteristics-based IAEA classification guidelines could accommodate wastes created from advanced fuel cycles more comprehensively than the U.S. classification framework.
Azadmanjir, Zahra; Safdari, Reza; Ghazisaeedi, Marjan; Mokhtaran, Mehrshad; Kameli, Mohammad Esmail
2017-01-01
Introduction: Accurate coded data in the healthcare are critical. Computer-Assisted Coding (CAC) is an effective tool to improve clinical coding in particular when a new classification will be developed and implemented. But determine the appropriate method for development need to consider the specifications of existing CAC systems, requirements for each type, our infrastructure and also, the classification scheme. Aim: The aim of the study was the development of a decision model for determining accurate code of each medical intervention in Iranian Classification of Health Interventions (IRCHI) that can be implemented as a suitable CAC system. Methods: first, a sample of existing CAC systems was reviewed. Then feasibility of each one of CAC types was examined with regard to their prerequisites for their implementation. The next step, proper model was proposed according to the structure of the classification scheme and was implemented as an interactive system. Results: There is a significant relationship between the level of assistance of a CAC system and integration of it with electronic medical documents. Implementation of fully automated CAC systems is impossible due to immature development of electronic medical record and problems in using language for medical documenting. So, a model was proposed to develop semi-automated CAC system based on hierarchical relationships between entities in the classification scheme and also the logic of decision making to specify the characters of code step by step through a web-based interactive user interface for CAC. It was composed of three phases to select Target, Action and Means respectively for an intervention. Conclusion: The proposed model was suitable the current status of clinical documentation and coding in Iran and also, the structure of new classification scheme. Our results show it was practical. However, the model needs to be evaluated in the next stage of the research. PMID:28883671
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, M; Craft, D
Purpose: To develop an efficient, pathway-based classification system using network biology statistics to assist in patient-specific response predictions to radiation and drug therapies across multiple cancer types. Methods: We developed PICS (Pathway Informed Classification System), a novel two-step cancer classification algorithm. In PICS, a matrix m of mRNA expression values for a patient cohort is collapsed into a matrix p of biological pathways. The entries of p, which we term pathway scores, are obtained from either principal component analysis (PCA), normal tissue centroid (NTC), or gene expression deviation (GED). The pathway score matrix is clustered using both k-means and hierarchicalmore » clustering, and a clustering is judged by how well it groups patients into distinct survival classes. The most effective pathway scoring/clustering combination, per clustering p-value, thus generates various ‘signatures’ for conventional and functional cancer classification. Results: PICS successfully regularized large dimension gene data, separated normal and cancerous tissues, and clustered a large patient cohort spanning six cancer types. Furthermore, PICS clustered patient cohorts into distinct, statistically-significant survival groups. For a suboptimally-debulked ovarian cancer set, the pathway-classified Kaplan-Meier survival curve (p = .00127) showed significant improvement over that of a prior gene expression-classified study (p = .0179). For a pancreatic cancer set, the pathway-classified Kaplan-Meier survival curve (p = .00141) showed significant improvement over that of a prior gene expression-classified study (p = .04). Pathway-based classification confirmed biomarkers for the pyrimidine, WNT-signaling, glycerophosphoglycerol, beta-alanine, and panthothenic acid pathways for ovarian cancer. Despite its robust nature, PICS requires significantly less run time than current pathway scoring methods. Conclusion: This work validates the PICS method to improve cancer classification using biological pathways. Patients are classified with greater specificity and physiological relevance as compared to current gene-specific approaches. Focus now moves to utilizing PICS for pan-cancer patient-specific treatment response prediction.« less
A minimum spanning forest based classification method for dedicated breast CT images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pike, Robert; Sechopoulos, Ioannis; Fei, Baowei, E-mail: bfei@emory.edu
Purpose: To develop and test an automated algorithm to classify different types of tissue in dedicated breast CT images. Methods: Images of a single breast of five different patients were acquired with a dedicated breast CT clinical prototype. The breast CT images were processed by a multiscale bilateral filter to reduce noise while keeping edge information and were corrected to overcome cupping artifacts. As skin and glandular tissue have similar CT values on breast CT images, morphologic processing is used to identify the skin based on its position information. A support vector machine (SVM) is trained and the resulting modelmore » used to create a pixelwise classification map of fat and glandular tissue. By combining the results of the skin mask with the SVM results, the breast tissue is classified as skin, fat, and glandular tissue. This map is then used to identify markers for a minimum spanning forest that is grown to segment the image using spatial and intensity information. To evaluate the authors’ classification method, they use DICE overlap ratios to compare the results of the automated classification to those obtained by manual segmentation on five patient images. Results: Comparison between the automatic and the manual segmentation shows that the minimum spanning forest based classification method was able to successfully classify dedicated breast CT image with average DICE ratios of 96.9%, 89.8%, and 89.5% for fat, glandular, and skin tissue, respectively. Conclusions: A 2D minimum spanning forest based classification method was proposed and evaluated for classifying the fat, skin, and glandular tissue in dedicated breast CT images. The classification method can be used for dense breast tissue quantification, radiation dose assessment, and other applications in breast imaging.« less
Chorological classification approach for species and ecosystem conservation practice
NASA Astrophysics Data System (ADS)
Rogova, T. V.; Kozevnikova, M. V.; Prokhorov, V. E.; Timofeeva, N. O.
2018-01-01
The habitat type allocation approach based on the EUNIS Habitat Classification and the JUICE version 7 software is used for the conservation of species and ecosystem biodiversity. Using the vegetation plots of the Vegetation Database of Tatarstan, included in the EVA (European Vegetation Archive) and GIVD (Global Index of Vegetation-plots Databases) types of habitats of dry meadows and steppes are distinguished by differing compositions of the leading families composing their flora - Asteraceae, Fabaceae, Poaceae and Rosaceae. E12a - Semi-dry perennial calcareous grassland, and E12b - Perennial calcareous grassland and basic steppes were identified. The selected group of relevés that do not correspond to any of the EUNIS types can be considered specific for ecotone forest-steppe landscapes of the southeast of the Republic of Tatarstan. In all types of studied habitats, rare and protected plant species are noted, most of which are South-East-European-Asian species.
Analysis of thematic mapper simulator data collected over eastern North Dakota
NASA Technical Reports Server (NTRS)
Anderson, J. E. (Principal Investigator)
1982-01-01
The results of the analysis of aircraft-acquired thematic mapper simulator (TMS) data, collected to investigate the utility of thematic mapper data in crop area and land cover estimates, are discussed. Results of the analysis indicate that the seven-channel TMS data are capable of delineating the 13 crop types included in the study to an overall pixel classification accuracy of 80.97% correct, with relative efficiencies for four crop types examined between 1.62 and 26.61. Both supervised and unsupervised spectral signature development techniques were evaluated. The unsupervised methods proved to be inferior (based on analysis of variance) for the majority of crop types considered. Given the ground truth data set used for spectral signature development as well as evaluation of performance, it is possible to demonstrate which signature development technique would produce the highest percent correct classification for each crop type.
A new classification system for congenital laryngeal cysts.
Forte, Vito; Fuoco, Gabriel; James, Adrian
2004-06-01
A new classification system for congenital laryngeal cysts based on the extent of the cyst and on the embryologic tissue of origin is proposed. Retrospective chart review. The charts of 20 patients with either congenital or acquired laryngeal cysts that were treated surgically between 1987 and 2002 at the Hospital for Sick Children, Toronto were retrospectively reviewed. Clinical presentation, radiologic findings, surgical management, histopathology, and outcome were recorded. A new classification system is proposed to better appreciate the origin of these cysts and to guide in their successful surgical management. Fourteen of the supraglottic and subglottic simple mucous retention cysts posed no diagnostic or therapeutic challenge and were treated successfully by a single endoscopic excision or marsupialization. The remaining six patients with congenital cysts in the study were deemed more complex, and all required open surgical procedures for cure. On the basis of the analysis of the data of these patients, a new classification of congenital laryngeal cysts is proposed. Type I cysts are confined to the larynx, the cyst wall composed of endodermal elements only, and can be managed endoscopically. Type II cysts extend beyond the confines of the larynx and require an external approach. The Type II cysts are further subclassified histologically on the basis of the embryologic tissue of origin: IIa, composed of endoderm only and IIb, containing endodermal and mesodermal elements (epithelium and cartilage) in the wall of the cyst. A new classification system for congenital laryngeal cysts is proposed on the basis of the extent of the cyst and the embryologic tissue of origin. This classification can help guide the surgeon with initial management and help us better understand the origin of these cysts.
Large-area settlement pattern recognition from Landsat-8 data
NASA Astrophysics Data System (ADS)
Wieland, Marc; Pittore, Massimiliano
2016-09-01
The study presents an image processing and analysis pipeline that combines object-based image analysis with a Support Vector Machine to derive a multi-layered settlement product from Landsat-8 data over large areas. 43 image scenes are processed over large parts of Central Asia (Southern Kazakhstan, Kyrgyzstan, Tajikistan and Eastern Uzbekistan). The main tasks tackled by this work include built-up area identification, settlement type classification and urban structure types pattern recognition. Besides commonly used accuracy assessments of the resulting map products, thorough performance evaluations are carried out under varying conditions to tune algorithm parameters and assess their applicability for the given tasks. As part of this, several research questions are being addressed. In particular the influence of the improved spatial and spectral resolution of Landsat-8 on the SVM performance to identify built-up areas and urban structure types are evaluated. Also the influence of an extended feature space including digital elevation model features is tested for mountainous regions. Moreover, the spatial distribution of classification uncertainties is analyzed and compared to the heterogeneity of the building stock within the computational unit of the segments. The study concludes that the information content of Landsat-8 images is sufficient for the tested classification tasks and even detailed urban structures could be extracted with satisfying accuracy. Freely available ancillary settlement point location data could further improve the built-up area classification. Digital elevation features and pan-sharpening could, however, not significantly improve the classification results. The study highlights the importance of dynamically tuned classifier parameters, and underlines the use of Shannon entropy computed from the soft answers of the SVM as a valid measure of the spatial distribution of classification uncertainties.
CNN universal machine as classificaton platform: an art-like clustering algorithm.
Bálya, David
2003-12-01
Fast and robust classification of feature vectors is a crucial task in a number of real-time systems. A cellular neural/nonlinear network universal machine (CNN-UM) can be very efficient as a feature detector. The next step is to post-process the results for object recognition. This paper shows how a robust classification scheme based on adaptive resonance theory (ART) can be mapped to the CNN-UM. Moreover, this mapping is general enough to include different types of feed-forward neural networks. The designed analogic CNN algorithm is capable of classifying the extracted feature vectors keeping the advantages of the ART networks, such as robust, plastic and fault-tolerant behaviors. An analogic algorithm is presented for unsupervised classification with tunable sensitivity and automatic new class creation. The algorithm is extended for supervised classification. The presented binary feature vector classification is implemented on the existing standard CNN-UM chips for fast classification. The experimental evaluation shows promising performance after 100% accuracy on the training set.
Peres, Marines Bertolo; Silveira, Landulfo; Zângaro, Renato Amaro; Pacheco, Marcos Tadeu Tavares; Pasqualucci, Carlos Augusto
2011-09-01
This study presents the results of Raman spectroscopy applied to the classification of arterial tissue based on a simplified model using basal morphological and biochemical information extracted from the Raman spectra of arteries. The Raman spectrograph uses an 830-nm diode laser, imaging spectrograph, and a CCD camera. A total of 111 Raman spectra from arterial fragments were used to develop the model, and those spectra were compared to the spectra of collagen, fat cells, smooth muscle cells, calcification, and cholesterol in a linear fit model. Non-atherosclerotic (NA), fatty and fibrous-fatty atherosclerotic plaques (A) and calcified (C) arteries exhibited different spectral signatures related to different morphological structures presented in each tissue type. Discriminant analysis based on Mahalanobis distance was employed to classify the tissue type with respect to the relative intensity of each compound. This model was subsequently tested prospectively in a set of 55 spectra. The simplified diagnostic model showed that cholesterol, collagen, and adipocytes were the tissue constituents that gave the best classification capability and that those changes were correlated to histopathology. The simplified model, using spectra obtained from a few tissue morphological and biochemical constituents, showed feasibility by using a small amount of variables, easily extracted from gross samples.
Scoliosis curve type classification using kernel machine from 3D trunk image
NASA Astrophysics Data System (ADS)
Adankon, Mathias M.; Dansereau, Jean; Parent, Stefan; Labelle, Hubert; Cheriet, Farida
2012-03-01
Adolescent idiopathic scoliosis (AIS) is a deformity of the spine manifested by asymmetry and deformities of the external surface of the trunk. Classification of scoliosis deformities according to curve type is used to plan management of scoliosis patients. Currently, scoliosis curve type is determined based on X-ray exam. However, cumulative exposure to X-rays radiation significantly increases the risk for certain cancer. In this paper, we propose a robust system that can classify the scoliosis curve type from non invasive acquisition of 3D trunk surface of the patients. The 3D image of the trunk is divided into patches and local geometric descriptors characterizing the surface of the back are computed from each patch and forming the features. We perform the reduction of the dimensionality by using Principal Component Analysis and 53 components were retained. In this work a multi-class classifier is built with Least-squares support vector machine (LS-SVM) which is a kernel classifier. For this study, a new kernel was designed in order to achieve a robust classifier in comparison with polynomial and Gaussian kernel. The proposed system was validated using data of 103 patients with different scoliosis curve types diagnosed and classified by an orthopedic surgeon from the X-ray images. The average rate of successful classification was 93.3% with a better rate of prediction for the major thoracic and lumbar/thoracolumbar types.
NASA Astrophysics Data System (ADS)
Gajda, Agnieszka; Wójtowicz-Nowakowska, Anna
2013-04-01
A comparison of the accuracy of pixel based and object based classifications of integrated optical and LiDAR data Land cover maps are generally produced on the basis of high resolution imagery. Recently, LiDAR (Light Detection and Ranging) data have been brought into use in diverse applications including land cover mapping. In this study we attempted to assess the accuracy of land cover classification using both high resolution aerial imagery and LiDAR data (airborne laser scanning, ALS), testing two classification approaches: a pixel-based classification and object-oriented image analysis (OBIA). The study was conducted on three test areas (3 km2 each) in the administrative area of Kraków, Poland, along the course of the Vistula River. They represent three different dominating land cover types of the Vistula River valley. Test site 1 had a semi-natural vegetation, with riparian forests and shrubs, test site 2 represented a densely built-up area, and test site 3 was an industrial site. Point clouds from ALS and ortophotomaps were both captured in November 2007. Point cloud density was on average 16 pt/m2 and it contained additional information about intensity and encoded RGB values. Ortophotomaps had a spatial resolution of 10 cm. From point clouds two raster maps were generated: intensity (1) and (2) normalised Digital Surface Model (nDSM), both with the spatial resolution of 50 cm. To classify the aerial data, a supervised classification approach was selected. Pixel based classification was carried out in ERDAS Imagine software. Ortophotomaps and intensity and nDSM rasters were used in classification. 15 homogenous training areas representing each cover class were chosen. Classified pixels were clumped to avoid salt and pepper effect. Object oriented image object classification was carried out in eCognition software, which implements both the optical and ALS data. Elevation layers (intensity, firs/last reflection, etc.) were used at segmentation stage due to proper wages usage. Thus a more precise and unambiguous boundaries of segments (objects) were received. As a results of the classification 5 classes of land cover (buildings, water, high and low vegetation and others) were extracted. Both pixel-based image analysis and OBIA were conducted with a minimum mapping unit of 10m2. Results were validated on the basis on manual classification and random points (80 per test area), reference data set was manually interpreted using ortophotomaps and expert knowledge of the test site areas.
Automated Classification of ROSAT Sources Using Heterogeneous Multiwavelength Source Catalogs
NASA Technical Reports Server (NTRS)
McGlynn, Thomas; Suchkov, A. A.; Winter, E. L.; Hanisch, R. J.; White, R. L.; Ochsenbein, F.; Derriere, S.; Voges, W.; Corcoran, M. F.
2004-01-01
We describe an on-line system for automated classification of X-ray sources, ClassX, and present preliminary results of classification of the three major catalogs of ROSAT sources, RASS BSC, RASS FSC, and WGACAT, into six class categories: stars, white dwarfs, X-ray binaries, galaxies, AGNs, and clusters of galaxies. ClassX is based on a machine learning technology. It represents a system of classifiers, each classifier consisting of a considerable number of oblique decision trees. These trees are built as the classifier is 'trained' to recognize various classes of objects using a training sample of sources of known object types. Each source is characterized by a preselected set of parameters, or attributes; the same set is then used as the classifier conducts classification of sources of unknown identity. The ClassX pipeline features an automatic search for X-ray source counterparts among heterogeneous data sets in on-line data archives using Virtual Observatory protocols; it retrieves from those archives all the attributes required by the selected classifier and inputs them to the classifier. The user input to ClassX is typically a file with target coordinates, optionally complemented with target IDs. The output contains the class name, attributes, and class probabilities for all classified targets. We discuss ways to characterize and assess the classifier quality and performance and present the respective validation procedures. Based on both internal and external validation, we conclude that the ClassX classifiers yield reasonable and reliable classifications for ROSAT sources and have the potential to broaden class representation significantly for rare object types.
Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong
2017-01-01
A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification. PMID:28629202
Reformulating Constraints for Compilability and Efficiency
NASA Technical Reports Server (NTRS)
Tong, Chris; Braudaway, Wesley; Mohan, Sunil; Voigt, Kerstin
1992-01-01
KBSDE is a knowledge compiler that uses a classification-based approach to map solution constraints in a task specification onto particular search algorithm components that will be responsible for satisfying those constraints (e.g., local constraints are incorporated in generators; global constraints are incorporated in either testers or hillclimbing patchers). Associated with each type of search algorithm component is a subcompiler that specializes in mapping constraints into components of that type. Each of these subcompilers in turn uses a classification-based approach, matching a constraint passed to it against one of several schemas, and applying a compilation technique associated with that schema. While much progress has occurred in our research since we first laid out our classification-based approach [Ton91], we focus in this paper on our reformulation research. Two important reformulation issues that arise out of the choice of a schema-based approach are: (1) compilability-- Can a constraint that does not directly match any of a particular subcompiler's schemas be reformulated into one that does? and (2) Efficiency-- If the efficiency of the compiled search algorithm depends on the compiler's performance, and the compiler's performance depends on the form in which the constraint was expressed, can we find forms for constraints which compile better, or reformulate constraints whose forms can be recognized as ones that compile poorly? In this paper, we describe a set of techniques we are developing for partially addressing these issues.
Comparative study of classification algorithms for immunosignaturing data
2012-01-01
Background High-throughput technologies such as DNA, RNA, protein, antibody and peptide microarrays are often used to examine differences across drug treatments, diseases, transgenic animals, and others. Typically one trains a classification system by gathering large amounts of probe-level data, selecting informative features, and classifies test samples using a small number of features. As new microarrays are invented, classification systems that worked well for other array types may not be ideal. Expression microarrays, arguably one of the most prevalent array types, have been used for years to help develop classification algorithms. Many biological assumptions are built into classifiers that were designed for these types of data. One of the more problematic is the assumption of independence, both at the probe level and again at the biological level. Probes for RNA transcripts are designed to bind single transcripts. At the biological level, many genes have dependencies across transcriptional pathways where co-regulation of transcriptional units may make many genes appear as being completely dependent. Thus, algorithms that perform well for gene expression data may not be suitable when other technologies with different binding characteristics exist. The immunosignaturing microarray is based on complex mixtures of antibodies binding to arrays of random sequence peptides. It relies on many-to-many binding of antibodies to the random sequence peptides. Each peptide can bind multiple antibodies and each antibody can bind multiple peptides. This technology has been shown to be highly reproducible and appears promising for diagnosing a variety of disease states. However, it is not clear what is the optimal classification algorithm for analyzing this new type of data. Results We characterized several classification algorithms to analyze immunosignaturing data. We selected several datasets that range from easy to difficult to classify, from simple monoclonal binding to complex binding patterns in asthma patients. We then classified the biological samples using 17 different classification algorithms. Using a wide variety of assessment criteria, we found ‘Naïve Bayes’ far more useful than other widely used methods due to its simplicity, robustness, speed and accuracy. Conclusions ‘Naïve Bayes’ algorithm appears to accommodate the complex patterns hidden within multilayered immunosignaturing microarray data due to its fundamental mathematical properties. PMID:22720696
Xu, Jun; Luo, Xiaofei; Wang, Guanhao; Gilmore, Hannah; Madabhushi, Anant
2016-01-01
Epithelial (EP) and stromal (ST) are two types of tissues in histological images. Automated segmentation or classification of EP and ST tissues is important when developing computerized system for analyzing the tumor microenvironment. In this paper, a Deep Convolutional Neural Networks (DCNN) based feature learning is presented to automatically segment or classify EP and ST regions from digitized tumor tissue microarrays (TMAs). Current approaches are based on handcraft feature representation, such as color, texture, and Local Binary Patterns (LBP) in classifying two regions. Compared to handcrafted feature based approaches, which involve task dependent representation, DCNN is an end-to-end feature extractor that may be directly learned from the raw pixel intensity value of EP and ST tissues in a data driven fashion. These high-level features contribute to the construction of a supervised classifier for discriminating the two types of tissues. In this work we compare DCNN based models with three handcraft feature extraction based approaches on two different datasets which consist of 157 Hematoxylin and Eosin (H&E) stained images of breast cancer and 1376 immunohistological (IHC) stained images of colorectal cancer, respectively. The DCNN based feature learning approach was shown to have a F1 classification score of 85%, 89%, and 100%, accuracy (ACC) of 84%, 88%, and 100%, and Matthews Correlation Coefficient (MCC) of 86%, 77%, and 100% on two H&E stained (NKI and VGH) and IHC stained data, respectively. Our DNN based approach was shown to outperform three handcraft feature extraction based approaches in terms of the classification of EP and ST regions. PMID:28154470
Xu, Jun; Luo, Xiaofei; Wang, Guanhao; Gilmore, Hannah; Madabhushi, Anant
2016-05-26
Epithelial (EP) and stromal (ST) are two types of tissues in histological images. Automated segmentation or classification of EP and ST tissues is important when developing computerized system for analyzing the tumor microenvironment. In this paper, a Deep Convolutional Neural Networks (DCNN) based feature learning is presented to automatically segment or classify EP and ST regions from digitized tumor tissue microarrays (TMAs). Current approaches are based on handcraft feature representation, such as color, texture, and Local Binary Patterns (LBP) in classifying two regions. Compared to handcrafted feature based approaches, which involve task dependent representation, DCNN is an end-to-end feature extractor that may be directly learned from the raw pixel intensity value of EP and ST tissues in a data driven fashion. These high-level features contribute to the construction of a supervised classifier for discriminating the two types of tissues. In this work we compare DCNN based models with three handcraft feature extraction based approaches on two different datasets which consist of 157 Hematoxylin and Eosin (H&E) stained images of breast cancer and 1376 immunohistological (IHC) stained images of colorectal cancer, respectively. The DCNN based feature learning approach was shown to have a F1 classification score of 85%, 89%, and 100%, accuracy (ACC) of 84%, 88%, and 100%, and Matthews Correlation Coefficient (MCC) of 86%, 77%, and 100% on two H&E stained (NKI and VGH) and IHC stained data, respectively. Our DNN based approach was shown to outperform three handcraft feature extraction based approaches in terms of the classification of EP and ST regions.
NASA Astrophysics Data System (ADS)
Martín–Moruno, Prado; Visser, Matt
2017-11-01
The (generalized) Rainich conditions are algebraic conditions which are polynomial in the (mixed-component) stress-energy tensor. As such they are logically distinct from the usual classical energy conditions (NEC, WEC, SEC, DEC), and logically distinct from the usual Hawking-Ellis (Segré-Plebański) classification of stress-energy tensors (type I, type II, type III, type IV). There will of course be significant inter-connections between these classification schemes, which we explore in the current article. Overall, we shall argue that it is best to view the (generalized) Rainich conditions as a refinement of the classical energy conditions and the usual Hawking-Ellis classification.
NASA Astrophysics Data System (ADS)
Pradhan, Biswajeet; Kabiri, Keivan
2012-07-01
This paper describes an assessment of coral reef mapping using multi sensor satellite images such as Landsat ETM, SPOT and IKONOS images for Tioman Island, Malaysia. The study area is known to be one of the best Islands in South East Asia for its unique collection of diversified coral reefs and serves host to thousands of tourists every year. For the coral reef identification, classification and analysis, Landsat ETM, SPOT and IKONOS images were collected processed and classified using hierarchical classification schemes. At first, Decision tree classification method was implemented to separate three main land cover classes i.e. water, rural and vegetation and then maximum likelihood supervised classification method was used to classify these main classes. The accuracy of the classification result is evaluated by a separated test sample set, which is selected based on the fieldwork survey and view interpretation from IKONOS image. Few types of ancillary data in used are: (a) DGPS ground control points; (b) Water quality parameters measured by Hydrolab DS4a; (c) Sea-bed substrates spectrum measured by Unispec and; (d) Landcover observation photos along Tioman island coastal area. The overall accuracy of the final classification result obtained was 92.25% with the kappa coefficient is 0.8940. Key words: Coral reef, Multi-spectral Segmentation, Pixel-Based Classification, Decision Tree, Tioman Island
NASA Astrophysics Data System (ADS)
Mahmud, Kashif; Mariethoz, Gregoire; Baker, Andy; Treble, Pauline C.
2018-02-01
Cave drip water response to surface meteorological conditions is complex due to the heterogeneity of water movement in the karst unsaturated zone. Previous studies have focused on the monitoring of fractured rock limestones that have little or no primary porosity. In this study, we aim to further understand infiltration water hydrology in the Tamala Limestone of SW Australia, which is Quaternary aeolianite with primary porosity. We build on our previous studies of the Golgotha Cave system and utilize the existing spatial survey of 29 automated cave drip loggers and a lidar-based flow classification scheme, conducted in the two main chambers of this cave. We find that a daily sampling frequency at our cave site optimizes the capture of drip variability with the least possible sampling artifacts. With the optimum sampling frequency, most of the drip sites show persistent autocorrelation for at least a month, typically much longer, indicating ample storage of water feeding all stalactites investigated. Drip discharge histograms are highly variable, showing sometimes multimodal distributions. Histogram skewness is shown to relate to the wetter-than-average 2013 hydrological year and modality is affected by seasonality. The hydrological classification scheme with respect to mean discharge and the flow variation can distinguish between groundwater flow types in limestones with primary porosity, and the technique could be used to characterize different karst flow paths when high-frequency automated drip logger data are available. We observe little difference in the coefficient of variation (COV) between flow classification types, probably reflecting the ample storage due to the dominance of primary porosity at this cave site. Moreover, we do not find any relationship between drip variability and discharge within similar flow type. Finally, a combination of multidimensional scaling (MDS) and clustering by k means is used to classify similar drip types based on time series analysis. This clustering reveals four unique drip regimes which agree with previous flow type classification for this site. It highlights a spatial homogeneity in drip types in one cave chamber, and spatial heterogeneity in the other, which is in agreement with our understanding of cave chamber morphology and lithology.
Lesion classification using clinical and visual data fusion by multiple kernel learning
NASA Astrophysics Data System (ADS)
Kisilev, Pavel; Hashoul, Sharbell; Walach, Eugene; Tzadok, Asaf
2014-03-01
To overcome operator dependency and to increase diagnosis accuracy in breast ultrasound (US), a lot of effort has been devoted to developing computer-aided diagnosis (CAD) systems for breast cancer detection and classification. Unfortunately, the efficacy of such CAD systems is limited since they rely on correct automatic lesions detection and localization, and on robustness of features computed based on the detected areas. In this paper we propose a new approach to boost the performance of a Machine Learning based CAD system, by combining visual and clinical data from patient files. We compute a set of visual features from breast ultrasound images, and construct the textual descriptor of patients by extracting relevant keywords from patients' clinical data files. We then use the Multiple Kernel Learning (MKL) framework to train SVM based classifier to discriminate between benign and malignant cases. We investigate different types of data fusion methods, namely, early, late, and intermediate (MKL-based) fusion. Our database consists of 408 patient cases, each containing US images, textual description of complaints and symptoms filled by physicians, and confirmed diagnoses. We show experimentally that the proposed MKL-based approach is superior to other classification methods. Even though the clinical data is very sparse and noisy, its MKL-based fusion with visual features yields significant improvement of the classification accuracy, as compared to the image features only based classifier.
Automated simultaneous multiple feature classification of MTI data
NASA Astrophysics Data System (ADS)
Harvey, Neal R.; Theiler, James P.; Balick, Lee K.; Pope, Paul A.; Szymanski, John J.; Perkins, Simon J.; Porter, Reid B.; Brumby, Steven P.; Bloch, Jeffrey J.; David, Nancy A.; Galassi, Mark C.
2002-08-01
Los Alamos National Laboratory has developed and demonstrated a highly capable system, GENIE, for the two-class problem of detecting a single feature against a background of non-feature. In addition to the two-class case, however, a commonly encountered remote sensing task is the segmentation of multispectral image data into a larger number of distinct feature classes or land cover types. To this end we have extended our existing system to allow the simultaneous classification of multiple features/classes from multispectral data. The technique builds on previous work and its core continues to utilize a hybrid evolutionary-algorithm-based system capable of searching for image processing pipelines optimized for specific image feature extraction tasks. We describe the improvements made to the GENIE software to allow multiple-feature classification and describe the application of this system to the automatic simultaneous classification of multiple features from MTI image data. We show the application of the multiple-feature classification technique to the problem of classifying lava flows on Mauna Loa volcano, Hawaii, using MTI image data and compare the classification results with standard supervised multiple-feature classification techniques.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Li, F.; Zhang, S.; Hao, W.; Zhu, T.; Yuan, L.; Xiao, F.
2017-09-01
In this paper, Statistical Distribution based Conditional Random Fields (STA-CRF) algorithm is exploited for improving marginal ice-water classification. Pixel level ice concentration is presented as the comparison of methods based on CRF. Furthermore, in order to explore the effective statistical distribution model to be integrated into STA-CRF, five statistical distribution models are investigated. The STA-CRF methods are tested on 2 scenes around Prydz Bay and Adélie Depression, where contain a variety of ice types during melt season. Experimental results indicate that the proposed method can resolve sea ice edge well in Marginal Ice Zone (MIZ) and show a robust distinction of ice and water.
Collagen morphology and texture analysis: from statistics to classification
Mostaço-Guidolin, Leila B.; Ko, Alex C.-T.; Wang, Fei; Xiang, Bo; Hewko, Mark; Tian, Ganghong; Major, Arkady; Shiomi, Masashi; Sowa, Michael G.
2013-01-01
In this study we present an image analysis methodology capable of quantifying morphological changes in tissue collagen fibril organization caused by pathological conditions. Texture analysis based on first-order statistics (FOS) and second-order statistics such as gray level co-occurrence matrix (GLCM) was explored to extract second-harmonic generation (SHG) image features that are associated with the structural and biochemical changes of tissue collagen networks. Based on these extracted quantitative parameters, multi-group classification of SHG images was performed. With combined FOS and GLCM texture values, we achieved reliable classification of SHG collagen images acquired from atherosclerosis arteries with >90% accuracy, sensitivity and specificity. The proposed methodology can be applied to a wide range of conditions involving collagen re-modeling, such as in skin disorders, different types of fibrosis and muscular-skeletal diseases affecting ligaments and cartilage. PMID:23846580
USDA-ARS?s Scientific Manuscript database
Based on the examination of 4,218 slide-mounted preparations of male and female genitalia of tortricine moths, representing all major clades of the subfamily worldwide, we propose a classification system for cornuti based on four criteria: (1) presence/absence; (2) deciduous/non-deciduous; (3) type ...
CAMUR: Knowledge extraction from RNA-seq cancer data through equivalent classification rules.
Cestarelli, Valerio; Fiscon, Giulia; Felici, Giovanni; Bertolazzi, Paola; Weitschek, Emanuel
2016-03-01
Nowadays, knowledge extraction methods from Next Generation Sequencing data are highly requested. In this work, we focus on RNA-seq gene expression analysis and specifically on case-control studies with rule-based supervised classification algorithms that build a model able to discriminate cases from controls. State of the art algorithms compute a single classification model that contains few features (genes). On the contrary, our goal is to elicit a higher amount of knowledge by computing many classification models, and therefore to identify most of the genes related to the predicted class. We propose CAMUR, a new method that extracts multiple and equivalent classification models. CAMUR iteratively computes a rule-based classification model, calculates the power set of the genes present in the rules, iteratively eliminates those combinations from the data set, and performs again the classification procedure until a stopping criterion is verified. CAMUR includes an ad-hoc knowledge repository (database) and a querying tool.We analyze three different types of RNA-seq data sets (Breast, Head and Neck, and Stomach Cancer) from The Cancer Genome Atlas (TCGA) and we validate CAMUR and its models also on non-TCGA data. Our experimental results show the efficacy of CAMUR: we obtain several reliable equivalent classification models, from which the most frequent genes, their relationships, and the relation with a particular cancer are deduced. dmb.iasi.cnr.it/camur.php emanuel@iasi.cnr.it Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.
NASA Astrophysics Data System (ADS)
Saran, Sameer; Sterk, Geert; Kumar, Suresh
2009-10-01
Land use/land cover is an important watershed surface characteristic that affects surface runoff and erosion. Many of the available hydrological models divide the watershed into Hydrological Response Units (HRU), which are spatial units with expected similar hydrological behaviours. The division into HRU's requires good-quality spatial data on land use/land cover. This paper presents different approaches to attain an optimal land use/land cover map based on remote sensing imagery for a Himalayan watershed in northern India. First digital classifications using maximum likelihood classifier (MLC) and a decision tree classifier were applied. The results obtained from the decision tree were better and even improved after post classification sorting. But the obtained land use/land cover map was not sufficient for the delineation of HRUs, since the agricultural land use/land cover class did not discriminate between the two major crops in the area i.e. paddy and maize. Subsequently the digital classification on fused data (ASAR and ASTER) were attempted to map land use/land cover classes with emphasis to delineate the paddy and maize crops but the supervised classification over fused datasets did not provide the desired accuracy and proper delineation of paddy and maize crops. Eventually, we adopted a visual classification approach on fused data. This second step with detailed classification system resulted into better classification accuracy within the 'agricultural land' class which will be further combined with topography and soil type to derive HRU's for physically-based hydrological modeling.
Vegetation zones in changing climate
NASA Astrophysics Data System (ADS)
Belda, Michal; Holtanova, Eva; Halenka, Tomas; Kalvova, Jaroslava
2017-04-01
Climate patterns analysis can be performed for individual climate variables separately or the data can be aggregated using e.g. some kind of climate classification. These classifications usually correspond to vegetation distribution in the sense that each climate type is dominated by one vegetation zone or eco-region. Thus, the Köppen-Trewartha classification provides integrated assessment of temperature and precipitation together with their annual cycle as well. This way climate classifications also can be used as a convenient tool for the assessment and validation of climate models and for the analysis of simulated future climate changes. The Köppen-Trewartha classification is applied on full CMIP5 family of more than 40 GCM simulations and CRU dataset for comparison. This evaluation provides insight on the GCM performance and errors for simulations of the 20th century climate. Common regions are identified, such as Australia or Amazonia, where many state-of-the-art models perform inadequately. Moreover, the analysis of the CMIP5 ensemble for future under RCP 4.5 and RCP 8.5 is performed to assess the climate change for future. There are significant changes for some types in most models e.g. increase of savanna and decrease of tundra for the future climate. For some types significant shifts in latitude can be seen when studying their geographical location in selected continental areas, e.g. toward higher latitudes for boreal climate. Quite significant uncertainty can be seen for some types. For Europe, EuroCORDEX results for both 0.11 and 0.44 degree resolution are validated using Köppen-Trewartha types in comparison to E-OBS based classification. ERA-Interim driven simulations are compared to both present conditions of CMIP5 models as well as their downscaling by EuroCORDEX RCMs. Finally, the climate change signal assessment is provided using the individual climate types. In addition to the changes assessed similarly as for GCMs analysis in terms of the area of individual types, in the continental scale some shifts of boundaries between the selected types can be studied as well providing the information on climate change signal. The shift of the boundary between the boreal zone and continental temperate zone to the north is clearly seen in most simulations as well as eastern move of the boundary of the maritime and continental type of temperate zone. However, there can be quite clear problem with model biases in climate types association. When analysing climate types in Europe and their shifts under climate change using Köppen-Trewartha classification (KTC), for the temperate climate type there are subtypes defined following the continentality patterns, and we can see their generally meridionally located divide across Europe shifted to the east. There is a question whether this is realistic or rather due to the simplistic condition in KTC following the winter minimum temperature, while other continentality indices consider rather the amplitude of temperature during the year. This leads us to connect our analysis of climate change effects using climate classification to the more detailed analysis of continentality patterns development in Europe to provide better insight on the climate regimes and to verify the continentality conditions, their definitions and climate change effects on them. The comparison of several selected continentality indices is shown.
On-line classification of pollutants in water using wireless portable electronic noses.
Herrero, José Luis; Lozano, Jesús; Santos, José Pedro; Suárez, José Ignacio
2016-06-01
A portable electronic nose with database connection for on-line classification of pollutants in water is presented in this paper. It is a hand-held, lightweight and powered instrument with wireless communications capable of standalone operation. A network of similar devices can be configured for distributed measurements. It uses four resistive microsensors and headspace as sampling method for extracting the volatile compounds from glass vials. The measurement and control program has been developed in LabVIEW using the database connection toolkit to send the sensors data to a server for training and classification with Artificial Neural Networks (ANNs). The use of a server instead of the microprocessor of the e-nose increases the capacity of memory and the computing power of the classifier and allows external users to perform data classification. To address this challenge, this paper also proposes a web-based framework (based on RESTFul web services, Asynchronous JavaScript and XML and JavaScript Object Notation) that allows remote users to train ANNs and request classification values regardless user's location and the type of device used. Results show that the proposed prototype can discriminate the samples measured (Blank water, acetone, toluene, ammonia, formaldehyde, hydrogen peroxide, ethanol, benzene, dichloromethane, acetic acid, xylene and dimethylacetamide) with a 94% classification success rate. Copyright © 2016 Elsevier Ltd. All rights reserved.
A subject-independent pattern-based Brain-Computer Interface
Ray, Andreas M.; Sitaram, Ranganatha; Rana, Mohit; Pasqualotto, Emanuele; Buyukturkoglu, Korhan; Guan, Cuntai; Ang, Kai-Keng; Tejos, Cristián; Zamorano, Francisco; Aboitiz, Francisco; Birbaumer, Niels; Ruiz, Sergio
2015-01-01
While earlier Brain-Computer Interface (BCI) studies have mostly focused on modulating specific brain regions or signals, new developments in pattern classification of brain states are enabling real-time decoding and modulation of an entire functional network. The present study proposes a new method for real-time pattern classification and neurofeedback of brain states from electroencephalographic (EEG) signals. It involves the creation of a fused classification model based on the method of Common Spatial Patterns (CSPs) from data of several healthy individuals. The subject-independent model is then used to classify EEG data in real-time and provide feedback to new individuals. In a series of offline experiments involving training and testing of the classifier with individual data from 27 healthy subjects, a mean classification accuracy of 75.30% was achieved, demonstrating that the classification system at hand can reliably decode two types of imagery used in our experiments, i.e., happy emotional imagery and motor imagery. In a subsequent experiment it is shown that the classifier can be used to provide neurofeedback to new subjects, and that these subjects learn to “match” their brain pattern to that of the fused classification model in a few days of neurofeedback training. This finding can have important implications for future studies on neurofeedback and its clinical applications on neuropsychiatric disorders. PMID:26539089
A new precipitation and drought climatology based on weather patterns
Fowler, Hayley J.; Kilsby, Christopher G.; Neal, Robert
2017-01-01
ABSTRACT Weather‐pattern, or weather‐type, classifications are a valuable tool in many applications as they characterize the broad‐scale atmospheric circulation over a given region. This study analyses the aspects of regional UK precipitation and meteorological drought climatology with respect to a new set of objectively defined weather patterns. These new patterns are currently being used by the Met Office in several probabilistic forecasting applications driven by ensemble forecasting systems. Weather pattern definitions and daily occurrences are mapped to Lamb weather types (LWTs), and parallels between the two classifications are drawn. Daily precipitation distributions are associated with each weather pattern and LWT. Standardized precipitation index (SPI) and drought severity index (DSI) series are calculated for a range of aggregation periods and seasons. Monthly weather‐pattern frequency anomalies are calculated for SPI wet and dry periods and for the 5% most intense DSI‐based drought months. The new weather‐pattern definitions and daily occurrences largely agree with their respective LWTs, allowing comparison between the two classifications. There is also broad agreement between weather pattern and LWT changes in frequencies. The new data set is shown to be adequate for precipitation‐based analyses in the UK, although a smaller set of clustered weather patterns is not. Furthermore, intra‐pattern precipitation variability is lower in the new classification compared to the LWTs, which is an advantage in this context. Six of the new weather patterns are associated with drought over the entire UK, with several other patterns linked to regional drought. It is demonstrated that the new data set of weather patterns offers a new opportunity for classification‐based analyses in the UK. PMID:29456290
Application of Random Forests Methods to Diabetic Retinopathy Classification Analyses
Casanova, Ramon; Saldana, Santiago; Chew, Emily Y.; Danis, Ronald P.; Greven, Craig M.; Ambrosius, Walter T.
2014-01-01
Background Diabetic retinopathy (DR) is one of the leading causes of blindness in the United States and world-wide. DR is a silent disease that may go unnoticed until it is too late for effective treatment. Therefore, early detection could improve the chances of therapeutic interventions that would alleviate its effects. Methodology Graded fundus photography and systemic data from 3443 ACCORD-Eye Study participants were used to estimate Random Forest (RF) and logistic regression classifiers. We studied the impact of sample size on classifier performance and the possibility of using RF generated class conditional probabilities as metrics describing DR risk. RF measures of variable importance are used to detect factors that affect classification performance. Principal Findings Both types of data were informative when discriminating participants with or without DR. RF based models produced much higher classification accuracy than those based on logistic regression. Combining both types of data did not increase accuracy but did increase statistical discrimination of healthy participants who subsequently did or did not have DR events during four years of follow-up. RF variable importance criteria revealed that microaneurysms counts in both eyes seemed to play the most important role in discrimination among the graded fundus variables, while the number of medicines and diabetes duration were the most relevant among the systemic variables. Conclusions and Significance We have introduced RF methods to DR classification analyses based on fundus photography data. In addition, we propose an approach to DR risk assessment based on metrics derived from graded fundus photography and systemic data. Our results suggest that RF methods could be a valuable tool to diagnose DR diagnosis and evaluate its progression. PMID:24940623
Hoffmann, Jürgen; Wallwiener, Diethelm
2009-04-08
One of the basic prerequisites for generating evidence-based data is the availability of classification systems. Attempts to date to classify breast cancer operations have focussed on specific problems, e.g. the avoidance of secondary corrective surgery for surgical defects, rather than taking a generic approach. Starting from an existing, simpler empirical scheme based on the complexity of breast surgical procedures, which was used in-house primarily in operative report-writing, a novel classification of ablative and breast-conserving procedures initially needed to be developed and elaborated systematically. To obtain proof of principle, a prospectively planned analysis of patient records for all major breast cancer-related operations performed at our breast centre in 2005 and 2006 was conducted using the new classification. Data were analysed using basic descriptive statistics such as frequency tables. A novel two-type, six-tier classification system comprising 12 main categories, 13 subcategories and 39 sub-subcategories of oncological, oncoplastic and reconstructive breast cancer-related surgery was successfully developed. Our system permitted unequivocal classification, without exception, of all 1225 procedures performed in 1166 breast cancer patients in 2005 and 2006. Breast cancer-related surgical procedures can be generically classified according to their surgical complexity. Analysis of all major procedures performed at our breast centre during the study period provides proof of principle for this novel classification system. We envisage various applications for this classification, including uses in randomised clinical trials, guideline development, specialist surgical training, continuing professional development as well as quality of care and public health research.
Noise tolerant dendritic lattice associative memories
NASA Astrophysics Data System (ADS)
Ritter, Gerhard X.; Schmalz, Mark S.; Hayden, Eric; Tucker, Marc
2011-09-01
Linear classifiers based on computation over the real numbers R (e.g., with operations of addition and multiplication) denoted by (R, +, x), have been represented extensively in the literature of pattern recognition. However, a different approach to pattern classification involves the use of addition, maximum, and minimum operations over the reals in the algebra (R, +, maximum, minimum) These pattern classifiers, based on lattice algebra, have been shown to exhibit superior information storage capacity, fast training and short convergence times, high pattern classification accuracy, and low computational cost. Such attributes are not always found, for example, in classical neural nets based on the linear inner product. In a special type of lattice associative memory (LAM), called a dendritic LAM or DLAM, it is possible to achieve noise-tolerant pattern classification by varying the design of noise or error acceptance bounds. This paper presents theory and algorithmic approaches for the computation of noise-tolerant lattice associative memories (LAMs) under a variety of input constraints. Of particular interest are the classification of nonergodic data in noise regimes with time-varying statistics. DLAMs, which are a specialization of LAMs derived from concepts of biological neural networks, have successfully been applied to pattern classification from hyperspectral remote sensing data, as well as spatial object recognition from digital imagery. The authors' recent research in the development of DLAMs is overviewed, with experimental results that show utility for a wide variety of pattern classification applications. Performance results are presented in terms of measured computational cost, noise tolerance, classification accuracy, and throughput for a variety of input data and noise levels.
46 CFR 164.018-3 - Classification.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 6 2011-10-01 2011-10-01 false Classification. 164.018-3 Section 164.018-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS... Classification. The following types of retroreflective material are approved under this specification: (a) Type I...
46 CFR 164.018-3 - Classification.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 6 2012-10-01 2012-10-01 false Classification. 164.018-3 Section 164.018-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS... Classification. The following types of retroreflective material are approved under this specification: (a) Type I...
46 CFR 164.018-3 - Classification.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 6 2013-10-01 2013-10-01 false Classification. 164.018-3 Section 164.018-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS... Classification. The following types of retroreflective material are approved under this specification: (a) Type I...
46 CFR 164.018-3 - Classification.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 6 2014-10-01 2014-10-01 false Classification. 164.018-3 Section 164.018-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS... Classification. The following types of retroreflective material are approved under this specification: (a) Type I...
46 CFR 164.018-3 - Classification.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 6 2010-10-01 2010-10-01 false Classification. 164.018-3 Section 164.018-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS... Classification. The following types of retroreflective material are approved under this specification: (a) Type I...
NASA Astrophysics Data System (ADS)
Nitze, Ingmar; Barrett, Brian; Cawkwell, Fiona
2015-02-01
The analysis and classification of land cover is one of the principal applications in terrestrial remote sensing. Due to the seasonal variability of different vegetation types and land surface characteristics, the ability to discriminate land cover types changes over time. Multi-temporal classification can help to improve the classification accuracies, but different constraints, such as financial restrictions or atmospheric conditions, may impede their application. The optimisation of image acquisition timing and frequencies can help to increase the effectiveness of the classification process. For this purpose, the Feature Importance (FI) measure of the state-of-the art machine learning method Random Forest was used to determine the optimal image acquisition periods for a general (Grassland, Forest, Water, Settlement, Peatland) and Grassland specific (Improved Grassland, Semi-Improved Grassland) land cover classification in central Ireland based on a 9-year time-series of MODIS Terra 16 day composite data (MOD13Q1). Feature Importances for each acquisition period of the Enhanced Vegetation Index (EVI) and Normalised Difference Vegetation Index (NDVI) were calculated for both classification scenarios. In the general land cover classification, the months December and January showed the highest, and July and August the lowest separability for both VIs over the entire nine-year period. This temporal separability was reflected in the classification accuracies, where the optimal choice of image dates outperformed the worst image date by 13% using NDVI and 5% using EVI on a mono-temporal analysis. With the addition of the next best image periods to the data input the classification accuracies converged quickly to their limit at around 8-10 images. The binary classification schemes, using two classes only, showed a stronger seasonal dependency with a higher intra-annual, but lower inter-annual variation. Nonetheless anomalous weather conditions, such as the cold winter of 2009/2010 can alter the temporal separability pattern significantly. Due to the extensive use of the NDVI for land cover discrimination, the findings of this study should be transferrable to data from other optical sensors with a higher spatial resolution. However, the high impact of outliers from the general climatic pattern highlights the limitation of spatial transferability to locations with different climatic and land cover conditions. The use of high-temporal, moderate resolution data such as MODIS in conjunction with machine-learning techniques proved to be a good base for the prediction of image acquisition timing for optimal land cover classification results.
NASA Astrophysics Data System (ADS)
Xu, Ye; van Beek, Edwin J.; McLennan, Geoffrey; Guo, Junfeng; Sonka, Milan; Hoffman, Eric
2006-03-01
In this study we utilize our texture characterization software (3-D AMFM) to characterize interstitial lung diseases (including emphysema) based on MDCT generated volumetric data using 3-dimensional texture features. We have sought to test whether the scanner and reconstruction filter (kernel) type affect the classification of lung diseases using the 3-D AMFM. We collected MDCT images in three subject groups: emphysema (n=9), interstitial pulmonary fibrosis (IPF) (n=10), and normal non-smokers (n=9). In each group, images were scanned either on a Siemens Sensation 16 or 64-slice scanner, (B50f or B30 recon. kernel) or a Philips 4-slice scanner (B recon. kernel). A total of 1516 volumes of interest (VOIs; 21x21 pixels in plane) were marked by two chest imaging experts using the Iowa Pulmonary Analysis Software Suite (PASS). We calculated 24 volumetric features. Bayesian methods were used for classification. Images from different scanners/kernels were combined in all possible combinations to test how robust the tissue classification was relative to the differences in image characteristics. We used 10-fold cross validation for testing the result. Sensitivity, specificity and accuracy were calculated. One-way Analysis of Variances (ANOVA) was used to compare the classification result between the various combinations of scanner and reconstruction kernel types. This study yielded a sensitivity of 94%, 91%, 97%, and 93% for emphysema, ground-glass, honeycombing, and normal non-smoker patterns respectively using a mixture of all three subject groups. The specificity for these characterizations was 97%, 99%, 99%, and 98%, respectively. The F test result of ANOVA shows there is no significant difference (p <0.05) between different combinations of data with respect to scanner and convolution kernel type. Since different MDCT and reconstruction kernel types did not show significant differences in regards to the classification result, this study suggests that the 3-D AMFM can be generally introduced.
NASA Astrophysics Data System (ADS)
Dennison, Andrew G.
Classification of the seafloor substrate can be done with a variety of methods. These methods include Visual (dives, drop cameras); mechanical (cores, grab samples); acoustic (statistical analysis of echosounder returns). Acoustic methods offer a more powerful and efficient means of collecting useful information about the bottom type. Due to the nature of an acoustic survey, larger areas can be sampled, and by combining the collected data with visual and mechanical survey methods provide greater confidence in the classification of a mapped region. During a multibeam sonar survey, both bathymetric and backscatter data is collected. It is well documented that the statistical characteristic of a sonar backscatter mosaic is dependent on bottom type. While classifying the bottom-type on the basis on backscatter alone can accurately predict and map bottom-type, i.e a muddy area from a rocky area, it lacks the ability to resolve and capture fine textural details, an important factor in many habitat mapping studies. Statistical processing of high-resolution multibeam data can capture the pertinent details about the bottom-type that are rich in textural information. Further multivariate statistical processing can then isolate characteristic features, and provide the basis for an accurate classification scheme. The development of a new classification method is described here. It is based upon the analysis of textural features in conjunction with ground truth sampling. The processing and classification result of two geologically distinct areas in nearshore regions of Lake Superior; off the Lester River,MN and Amnicon River, WI are presented here, using the Minnesota Supercomputer Institute's Mesabi computing cluster for initial processing. Processed data is then calibrated using ground truth samples to conduct an accuracy assessment of the surveyed areas. From analysis of high-resolution bathymetry data collected at both survey sites is was possible to successfully calculate a series of measures that describe textural information about the lake floor. Further processing suggests that the features calculated capture a significant amount of statistical information about the lake floor terrain as well. Two sources of error, an anomalous heave and refraction error significantly deteriorated the quality of the processed data and resulting validate results. Ground truth samples used to validate the classification methods utilized for both survey sites, however, resulted in accuracy values ranging from 5 -30 percent at the Amnicon River, and between 60-70 percent for the Lester River. The final results suggest that this new processing methodology does adequately capture textural information about the lake floor and does provide an acceptable classification in the absence of significant data quality issues.
Transoral oropharyngeal resection classification: Proposal of the SCORL working group.
Virós Porcuna, David; Avilés Jurado, Francisco; Pollán Guisasola, Carlos; Ramírez Ruiz, Rosa Delia; García Lorenzo, Jacinto; Tobed Secall, Marc; Vilaseca González, Isabel; Costa González, José Miguel; Soteras Olle, Josep; Casamitjana Claramunt, Francesc; Sumarroca Trouboul, Anna; Hijano Esqué, Rafael; Viscasillas Pallàs, Guillem; Mañós Pujol, Manel; Quer Agustí, Miquel
There has been a very significant increase in the use of minimally invasive surgery has in the last decade. In order to provide a common language after transoral surgery of the oropharynx, a system for classifying resections has been created in this area, regardless of the instrumentation used. From the Oncology Working Group of the Catalan Society of Otorhinolaryngology, a proposal for classification based on a topographical division of the different areas of the oropharynx is presented, as also based on the invasion of the related structures according to the anatomical routes of extension of these tumours. The classification starts using the letter D or I according to laterality either right (D) or left (I). The number of the resected area is then placed. This numbering defines the zones beginning at the cranial level where area I would be the soft palate, lateral area II in the tonsillar area, area III in the tongue base, area IV in the glossoepiglottic folds, epiglottis and pharyngoepiglottic folds, area V posterior oropharyngeal wall and VI the retromolar trigone. The suffix p is added if the resection deeply affects the submucosal plane of the compromised area. The different proposed areas would, in theory, have different functional implications. Proposal for a system of classification by area to definedifferent types of transoral surgery of the oropharynx, and enable as sharing of results and helps in teaching this type of technique. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. All rights reserved.
NASA Astrophysics Data System (ADS)
Buteau, Sylvie; Simard, Jean-Robert; Roy, Gilles; Lahaie, Pierre; Nadeau, Denis; Mathieu, Pierre
2013-10-01
A standoff sensor called BioSense was developed to demonstrate the capacity to map, track and classify bioaerosol clouds from a distant range and over wide area. The concept of the system is based on a two steps dynamic surveillance: 1) cloud detection using an infrared (IR) scanning cloud mapper and 2) cloud classification based on a staring ultraviolet (UV) Laser Induced Fluorescence (LIF) interrogation. The system can be operated either in an automatic surveillance mode or using manual intervention. The automatic surveillance operation includes several steps: mission planning, sensor deployment, background monitoring, surveillance, cloud detection, classification and finally alarm generation based on the classification result. One of the main challenges is the classification step which relies on a spectrally resolved UV LIF signature library. The construction of this library relies currently on in-chamber releases of various materials that are simultaneously characterized with the standoff sensor and referenced with point sensors such as Aerodynamic Particle Sizer® (APS). The system was tested at three different locations in order to evaluate its capacity to operate in diverse types of surroundings and various environmental conditions. The system showed generally good performances even though the troubleshooting of the system was not completed before initiating the Test and Evaluation (T&E) process. The standoff system performances appeared to be highly dependent on the type of challenges, on the climatic conditions and on the period of day. The real-time results combined with the experience acquired during the 2012 T & E allowed to identify future ameliorations and investigation avenues.
Classification of Types of Stuttering Symptoms Based on Brain Activity
Jiang, Jing; Lu, Chunming; Peng, Danling; Zhu, Chaozhe; Howell, Peter
2012-01-01
Among the non-fluencies seen in speech, some are more typical (MT) of stuttering speakers, whereas others are less typical (LT) and are common to both stuttering and fluent speakers. No neuroimaging work has evaluated the neural basis for grouping these symptom types. Another long-debated issue is which type (LT, MT) whole-word repetitions (WWR) should be placed in. In this study, a sentence completion task was performed by twenty stuttering patients who were scanned using an event-related design. This task elicited stuttering in these patients. Each stuttered trial from each patient was sorted into the MT or LT types with WWR put aside. Pattern classification was employed to train a patient-specific single trial model to automatically classify each trial as MT or LT using the corresponding fMRI data. This model was then validated by using test data that were independent of the training data. In a subsequent analysis, the classification model, just established, was used to determine which type the WWR should be placed in. The results showed that the LT and the MT could be separated with high accuracy based on their brain activity. The brain regions that made most contribution to the separation of the types were: the left inferior frontal cortex and bilateral precuneus, both of which showed higher activity in the MT than in the LT; and the left putamen and right cerebellum which showed the opposite activity pattern. The results also showed that the brain activity for WWR was more similar to that of the LT and fluent speech than to that of the MT. These findings provide a neurological basis for separating the MT and the LT types, and support the widely-used MT/LT symptom grouping scheme. In addition, WWR play a similar role as the LT, and thus should be placed in the LT type. PMID:22761887
Saghafi, Shahram; Ferguson, Lisa; Hogue, Olivia; Gales, Jordan M; Prayson, Richard; Busch, Robyn M
2018-04-01
The International League Against Epilepsy (ILAE) proposed a classification system for hippocampal sclerosis (HS) based on location and extent of hippocampal neuron loss. The literature debates the usefulness of this classification system when studying memory in people with temporal lobe epilepsy (TLE) and determining memory outcome after temporal lobe resection (TLR). This study further explores the relationship between HS ILAE subtypes and episodic memory performance in patients with TLE and examines memory outcomes after TLR. This retrospective study identified 213 patients with TLE who underwent TLR and had histopathological evidence of HS (HS ILAE type 1a = 92; type 1b = 103; type 2 = 18). Patients completed the Wechsler Memory Scale-3rd Edition prior to surgery, and 78% of patients had postoperative scores available. Linear regressions examined differences in preoperative memory scores as a function of pathology classification, controlling for potential confounders. Fisher's exact tests were used to compare pathology subtypes on the magnitude of preoperative memory impairment and the proportion of patients who experienced clinically meaningful postoperative memory decline. Individuals with HS ILAE type 2 demonstrated better preoperative verbal memory performance than patients with HS ILAE type 1; however, individual data revealed verbal and visual episodic memory impairments in many patients with HS ILAE type 2. The base rate of postoperative memory decline was similar among all 3 pathology groups. This is the largest reported overall sample and the largest subset of patients with HS ILAE type 2. Group data suggest that patients with HS ILAE type 2 perform better on preoperative memory measures, but individually there were no differences in the magnitude of memory impairment. Following surgery, there were no statistically significant differences between groups in the proportion of patients who declined. Future research should focus on quantitative measurements of hippocampal neuronal loss, and multicenter collaboration is encouraged. Wiley Periodicals, Inc. © 2018 International League Against Epilepsy.
Classification and reduction of pilot error
NASA Technical Reports Server (NTRS)
Rogers, W. H.; Logan, A. L.; Boley, G. D.
1989-01-01
Human error is a primary or contributing factor in about two-thirds of commercial aviation accidents worldwide. With the ultimate goal of reducing pilot error accidents, this contract effort is aimed at understanding the factors underlying error events and reducing the probability of certain types of errors by modifying underlying factors such as flight deck design and procedures. A review of the literature relevant to error classification was conducted. Classification includes categorizing types of errors, the information processing mechanisms and factors underlying them, and identifying factor-mechanism-error relationships. The classification scheme developed by Jens Rasmussen was adopted because it provided a comprehensive yet basic error classification shell or structure that could easily accommodate addition of details on domain-specific factors. For these purposes, factors specific to the aviation environment were incorporated. Hypotheses concerning the relationship of a small number of underlying factors, information processing mechanisms, and error types types identified in the classification scheme were formulated. ASRS data were reviewed and a simulation experiment was performed to evaluate and quantify the hypotheses.
Analysis of composition-based metagenomic classification.
Higashi, Susan; Barreto, André da Motta Salles; Cantão, Maurício Egidio; de Vasconcelos, Ana Tereza Ribeiro
2012-01-01
An essential step of a metagenomic study is the taxonomic classification, that is, the identification of the taxonomic lineage of the organisms in a given sample. The taxonomic classification process involves a series of decisions. Currently, in the context of metagenomics, such decisions are usually based on empirical studies that consider one specific type of classifier. In this study we propose a general framework for analyzing the impact that several decisions can have on the classification problem. Instead of focusing on any specific classifier, we define a generic score function that provides a measure of the difficulty of the classification task. Using this framework, we analyze the impact of the following parameters on the taxonomic classification problem: (i) the length of n-mers used to encode the metagenomic sequences, (ii) the similarity measure used to compare sequences, and (iii) the type of taxonomic classification, which can be conventional or hierarchical, depending on whether the classification process occurs in a single shot or in several steps according to the taxonomic tree. We defined a score function that measures the degree of separability of the taxonomic classes under a given configuration induced by the parameters above. We conducted an extensive computational experiment and found out that reasonable values for the parameters of interest could be (i) intermediate values of n, the length of the n-mers; (ii) any similarity measure, because all of them resulted in similar scores; and (iii) the hierarchical strategy, which performed better in all of the cases. As expected, short n-mers generate lower configuration scores because they give rise to frequency vectors that represent distinct sequences in a similar way. On the other hand, large values for n result in sparse frequency vectors that represent differently metagenomic fragments that are in fact similar, also leading to low configuration scores. Regarding the similarity measure, in contrast to our expectations, the variation of the measures did not change the configuration scores significantly. Finally, the hierarchical strategy was more effective than the conventional strategy, which suggests that, instead of using a single classifier, one should adopt multiple classifiers organized as a hierarchy.
The multiscale classification system and grid encoding mode of ecological land in China
NASA Astrophysics Data System (ADS)
Wang, Jing; Liu, Aixia; Lin, Yifan
2017-10-01
Ecological land provides goods and services that have direct or indirect benefic to eco-environment and human welfare. In recent years, researches on ecological land have become important in the field of land changes and ecosystem management. In the study, a multi-scale classification scheme of ecological land was developed for land management based on combination of the land-use classification and the ecological function zoning in China, including eco-zone, eco-region, eco-district, land ecosystem, and ecological land-use type. The geographical spatial unit leads toward greater homogeneity from macro to micro scale. The term "ecological land-use type" is the smallest one, being important to maintain the key ecological processes in land ecosystem. Ecological land-use type was categorized into main-functional and multi-functional ecological land-use type according to its ecological function attributes and production function attributes. Main-functional type was defined as one kind of land-use type mainly providing ecological goods and function attributes, such as river, lake, swampland, shoaly land, glacier and snow, while multi-functional type not only providing ecological goods and function attributes but also productive goods and function attributes, such as arable land, forestry land, and grassland. Furthermore, a six-level grid encoding mode was proposed for modern management of ecological land and data update under cadastral encoding. The six-level irregular grid encoding from macro to micro scale included eco-zone, eco-region, eco-district, cadastral area, land ecosystem, land ownership type, ecological land-use type, and parcel. Besides, the methodologies on ecosystem management were discussed for integrated management of natural resources in China.
Unsupervised Biomedical Named Entity Recognition: Experiments with Clinical and Biological Texts
Zhang, Shaodian; Elhadad, Nóemie
2013-01-01
Named entity recognition is a crucial component of biomedical natural language processing, enabling information extraction and ultimately reasoning over and knowledge discovery from text. Much progress has been made in the design of rule-based and supervised tools, but they are often genre and task dependent. As such, adapting them to different genres of text or identifying new types of entities requires major effort in re-annotation or rule development. In this paper, we propose an unsupervised approach to extracting named entities from biomedical text. We describe a stepwise solution to tackle the challenges of entity boundary detection and entity type classification without relying on any handcrafted rules, heuristics, or annotated data. A noun phrase chunker followed by a filter based on inverse document frequency extracts candidate entities from free text. Classification of candidate entities into categories of interest is carried out by leveraging principles from distributional semantics. Experiments show that our system, especially the entity classification step, yields competitive results on two popular biomedical datasets of clinical notes and biological literature, and outperforms a baseline dictionary match approach. Detailed error analysis provides a road map for future work. PMID:23954592
Holschneider, Alexander; Hutson, John; Peña, Albert; Beket, Elhamy; Chatterjee, Subir; Coran, Arnold; Davies, Michael; Georgeson, Keith; Grosfeld, Jay; Gupta, Devendra; Iwai, Naomi; Kluth, Dieter; Martucciello, Giuseppe; Moore, Samuel; Rintala, Risto; Smith, E Durham; Sripathi, D V; Stephens, Douglas; Sen, Sudipta; Ure, Benno; Grasshoff, Sabine; Boemers, Thomas; Murphy, Feilin; Söylet, Yunus; Dübbers, Martin; Kunst, Marc
2005-10-01
Anorectal malformations (ARM) are common congenital anomalies seen throughout the world. Comparison of outcome data has been hindered because of confusion related to classification and assessment systems. The goals of the Krinkenbeck Conference on ARM was to develop standards for an International Classification of ARM based on a modification of fistula type and adding rare and regional variants, and design a system for comparable follow up studies. Lesions were classified into major clinical groups based on the fistula location (perineal, recto-urethral, recto-vesical, vestibular), cloacal lesions, those with no fistula and anal stenosis. Rare and regional variants included pouch colon, rectal atresia or stenosis, rectovaginal fistula, H-fistula and others. Groups would be analyzed according to the type of procedure performed stratified for confounding associated conditions such as sacral anomalies and tethered cord. A standard method for postoperative assessment of continence was determined. A new International diagnostic classification system, operative groupings and a method of postoperative assessment of continence was developed by consensus of a large contingent of participants experienced in the management of patients with ARM. These methods should allow for a common standardization of diagnosis and comparing postoperative results.
DNA methylation-based classification of central nervous system tumours.
Capper, David; Jones, David T W; Sill, Martin; Hovestadt, Volker; Schrimpf, Daniel; Sturm, Dominik; Koelsche, Christian; Sahm, Felix; Chavez, Lukas; Reuss, David E; Kratz, Annekathrin; Wefers, Annika K; Huang, Kristin; Pajtler, Kristian W; Schweizer, Leonille; Stichel, Damian; Olar, Adriana; Engel, Nils W; Lindenberg, Kerstin; Harter, Patrick N; Braczynski, Anne K; Plate, Karl H; Dohmen, Hildegard; Garvalov, Boyan K; Coras, Roland; Hölsken, Annett; Hewer, Ekkehard; Bewerunge-Hudler, Melanie; Schick, Matthias; Fischer, Roger; Beschorner, Rudi; Schittenhelm, Jens; Staszewski, Ori; Wani, Khalida; Varlet, Pascale; Pages, Melanie; Temming, Petra; Lohmann, Dietmar; Selt, Florian; Witt, Hendrik; Milde, Till; Witt, Olaf; Aronica, Eleonora; Giangaspero, Felice; Rushing, Elisabeth; Scheurlen, Wolfram; Geisenberger, Christoph; Rodriguez, Fausto J; Becker, Albert; Preusser, Matthias; Haberler, Christine; Bjerkvig, Rolf; Cryan, Jane; Farrell, Michael; Deckert, Martina; Hench, Jürgen; Frank, Stephan; Serrano, Jonathan; Kannan, Kasthuri; Tsirigos, Aristotelis; Brück, Wolfgang; Hofer, Silvia; Brehmer, Stefanie; Seiz-Rosenhagen, Marcel; Hänggi, Daniel; Hans, Volkmar; Rozsnoki, Stephanie; Hansford, Jordan R; Kohlhof, Patricia; Kristensen, Bjarne W; Lechner, Matt; Lopes, Beatriz; Mawrin, Christian; Ketter, Ralf; Kulozik, Andreas; Khatib, Ziad; Heppner, Frank; Koch, Arend; Jouvet, Anne; Keohane, Catherine; Mühleisen, Helmut; Mueller, Wolf; Pohl, Ute; Prinz, Marco; Benner, Axel; Zapatka, Marc; Gottardo, Nicholas G; Driever, Pablo Hernáiz; Kramm, Christof M; Müller, Hermann L; Rutkowski, Stefan; von Hoff, Katja; Frühwald, Michael C; Gnekow, Astrid; Fleischhack, Gudrun; Tippelt, Stephan; Calaminus, Gabriele; Monoranu, Camelia-Maria; Perry, Arie; Jones, Chris; Jacques, Thomas S; Radlwimmer, Bernhard; Gessi, Marco; Pietsch, Torsten; Schramm, Johannes; Schackert, Gabriele; Westphal, Manfred; Reifenberger, Guido; Wesseling, Pieter; Weller, Michael; Collins, Vincent Peter; Blümcke, Ingmar; Bendszus, Martin; Debus, Jürgen; Huang, Annie; Jabado, Nada; Northcott, Paul A; Paulus, Werner; Gajjar, Amar; Robinson, Giles W; Taylor, Michael D; Jaunmuktane, Zane; Ryzhova, Marina; Platten, Michael; Unterberg, Andreas; Wick, Wolfgang; Karajannis, Matthias A; Mittelbronn, Michel; Acker, Till; Hartmann, Christian; Aldape, Kenneth; Schüller, Ulrich; Buslei, Rolf; Lichter, Peter; Kool, Marcel; Herold-Mende, Christel; Ellison, David W; Hasselblatt, Martin; Snuderl, Matija; Brandner, Sebastian; Korshunov, Andrey; von Deimling, Andreas; Pfister, Stefan M
2018-03-22
Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging-with substantial inter-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that the availability of this method may have a substantial impact on diagnostic precision compared to standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility, we have designed a free online classifier tool, the use of which does not require any additional onsite data processing. Our results provide a blueprint for the generation of machine-learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology.
Classification of stellar spectra with SVM based on within-class scatter and between-class scatter
NASA Astrophysics Data System (ADS)
Liu, Zhong-bao; Zhou, Fang-xiao; Qin, Zhen-tao; Luo, Xue-gang; Zhang, Jing
2018-07-01
Support Vector Machine (SVM) is a popular data mining technique, and it has been widely applied in astronomical tasks, especially in stellar spectra classification. Since SVM doesn't take the data distribution into consideration, and therefore, its classification efficiencies can't be greatly improved. Meanwhile, SVM ignores the internal information of the training dataset, such as the within-class structure and between-class structure. In view of this, we propose a new classification algorithm-SVM based on Within-Class Scatter and Between-Class Scatter (WBS-SVM) in this paper. WBS-SVM tries to find an optimal hyperplane to separate two classes. The difference is that it incorporates minimum within-class scatter and maximum between-class scatter in Linear Discriminant Analysis (LDA) into SVM. These two scatters represent the distributions of the training dataset, and the optimization of WBS-SVM ensures the samples in the same class are as close as possible and the samples in different classes are as far as possible. Experiments on the K-, F-, G-type stellar spectra from Sloan Digital Sky Survey (SDSS), Data Release 8 show that our proposed WBS-SVM can greatly improve the classification accuracies.
Brain tumor classification and segmentation using sparse coding and dictionary learning.
Salman Al-Shaikhli, Saif Dawood; Yang, Michael Ying; Rosenhahn, Bodo
2016-08-01
This paper presents a novel fully automatic framework for multi-class brain tumor classification and segmentation using a sparse coding and dictionary learning method. The proposed framework consists of two steps: classification and segmentation. The classification of the brain tumors is based on brain topology and texture. The segmentation is based on voxel values of the image data. Using K-SVD, two types of dictionaries are learned from the training data and their associated ground truth segmentation: feature dictionary and voxel-wise coupled dictionaries. The feature dictionary consists of global image features (topological and texture features). The coupled dictionaries consist of coupled information: gray scale voxel values of the training image data and their associated label voxel values of the ground truth segmentation of the training data. For quantitative evaluation, the proposed framework is evaluated using different metrics. The segmentation results of the brain tumor segmentation (MICCAI-BraTS-2013) database are evaluated using five different metric scores, which are computed using the online evaluation tool provided by the BraTS-2013 challenge organizers. Experimental results demonstrate that the proposed approach achieves an accurate brain tumor classification and segmentation and outperforms the state-of-the-art methods.
Algorithmic Classification of Five Characteristic Types of Paraphasias.
Fergadiotis, Gerasimos; Gorman, Kyle; Bedrick, Steven
2016-12-01
This study was intended to evaluate a series of algorithms developed to perform automatic classification of paraphasic errors (formal, semantic, mixed, neologistic, and unrelated errors). We analyzed 7,111 paraphasias from the Moss Aphasia Psycholinguistics Project Database (Mirman et al., 2010) and evaluated the classification accuracy of 3 automated tools. First, we used frequency norms from the SUBTLEXus database (Brysbaert & New, 2009) to differentiate nonword errors and real-word productions. Then we implemented a phonological-similarity algorithm to identify phonologically related real-word errors. Last, we assessed the performance of a semantic-similarity criterion that was based on word2vec (Mikolov, Yih, & Zweig, 2013). Overall, the algorithmic classification replicated human scoring for the major categories of paraphasias studied with high accuracy. The tool that was based on the SUBTLEXus frequency norms was more than 97% accurate in making lexicality judgments. The phonological-similarity criterion was approximately 91% accurate, and the overall classification accuracy of the semantic classifier ranged from 86% to 90%. Overall, the results highlight the potential of tools from the field of natural language processing for the development of highly reliable, cost-effective diagnostic tools suitable for collecting high-quality measurement data for research and clinical purposes.
Bào, Yīmíng; Amarasinghe, Gaya K; Basler, Christopher F; Bavari, Sina; Bukreyev, Alexander; Chandran, Kartik; Dolnik, Olga; Dye, John M; Ebihara, Hideki; Formenty, Pierre; Hewson, Roger; Kobinger, Gary P; Leroy, Eric M; Mühlberger, Elke; Netesov, Sergey V; Patterson, Jean L; Paweska, Janusz T; Smither, Sophie J; Takada, Ayato; Towner, Jonathan S; Volchkov, Viktor E; Wahl-Jensen, Victoria; Kuhn, Jens H
2017-05-11
The mononegaviral family Filoviridae has eight members assigned to three genera and seven species. Until now, genus and species demarcation were based on arbitrarily chosen filovirus genome sequence divergence values (≈50% for genera, ≈30% for species) and arbitrarily chosen phenotypic virus or virion characteristics. Here we report filovirus genome sequence-based taxon demarcation criteria using the publicly accessible PAirwise Sequencing Comparison (PASC) tool of the US National Center for Biotechnology Information (Bethesda, MD, USA). Comparison of all available filovirus genomes in GenBank using PASC revealed optimal genus demarcation at the 55-58% sequence diversity threshold range for genera and at the 23-36% sequence diversity threshold range for species. Because these thresholds do not change the current official filovirus classification, these values are now implemented as filovirus taxon demarcation criteria that may solely be used for filovirus classification in case additional data are absent. A near-complete, coding-complete, or complete filovirus genome sequence will now be required to allow official classification of any novel "filovirus." Classification of filoviruses into existing taxa or determining the need for novel taxa is now straightforward and could even become automated using a presented algorithm/flowchart rooted in RefSeq (type) sequences.
NASA Astrophysics Data System (ADS)
Manteiga, M.; Carricajo, I.; Rodríguez, A.; Dafonte, C.; Arcay, B.
2009-02-01
Astrophysics is evolving toward a more rational use of costly observational data by intelligently exploiting the large terrestrial and spatial astronomical databases. In this paper, we present a study showing the suitability of an expert system to perform the classification of stellar spectra in the Morgan and Keenan (MK) system. Using the formalism of artificial intelligence for the development of such a system, we propose a rules' base that contains classification criteria and confidence grades, all integrated in an inference engine that emulates human reasoning by means of a hierarchical decision rules tree that also considers the uncertainty factors associated with rules. Our main objective is to illustrate the formulation and development of such a system for an astrophysical classification problem. An extensive spectral database of MK standard spectra has been collected and used as a reference to determine the spectral indexes that are suitable for classification in the MK system. It is shown that by considering 30 spectral indexes and associating them with uncertainty factors, we can find an accurate diagnose in MK types of a particular spectrum. The system was evaluated against the NOAO-INDO-US spectral catalog.
Automated classification of four types of developmental odontogenic cysts.
Frydenlund, A; Eramian, M; Daley, T
2014-04-01
Odontogenic cysts originate from remnants of the tooth forming epithelium in the jaws and gingiva. There are various kinds of such cysts with different biological behaviours that carry different patient risks and require different treatment plans. Types of odontogenic cysts can be distinguished by the properties of their epithelial layers in H&E stained samples. Herein we detail a set of image features for automatically distinguishing between four types of odontogenic cyst in digital micrographs and evaluate their effectiveness using two statistical classifiers - a support vector machine (SVM) and bagging with logistic regression as the base learner (BLR). Cyst type was correctly predicted from among four classes of odontogenic cysts between 83.8% and 92.3% of the time with an SVM and between 90 ± 0.92% and 95.4 ± 1.94% with a BLR. One particular cyst type was associated with the majority of misclassifications. Omission of this cyst type from the data set improved the classification rate for the remaining three cyst types to 96.2% for both SVM and BLR. Copyright © 2013 Elsevier Ltd. All rights reserved.
A Classification of Mediterranean Cyclones Based on Global Analyses
NASA Technical Reports Server (NTRS)
Reale, Oreste; Atlas, Robert
2003-01-01
The Mediterranean Sea region is dominated by baroclinic and orographic cyclogenesis. However, previous work has demonstrated the existence of rare but intense subsynoptic-scale cyclones displaying remarkable similarities to tropical cyclones and polar lows, including, but not limited to, an eye-like feature in the satellite imagery. The terms polar low and tropical cyclone have been often used interchangeably when referring to small-scale, convective Mediterranean vortices and no definitive statement has been made so far on their nature, be it sub-tropical or polar. Moreover, most of the classifications of Mediterranean cyclones have neglected the small-scale convective vortices, focusing only on the larger-scale and far more common baroclinic cyclones. A classification of all Mediterranean cyclones based on operational global analyses is proposed The classification is based on normalized horizontal shear, vertical shear, scale, low versus mid-level vorticity, low-level temperature gradients, and sea surface temperatures. In the classification system there is a continuum of possible events, according to the increasing role of barotropic instability and decreasing role of baroclinic instability. One of the main results is that the Mediterranean tropical cyclone-like vortices and the Mediterranean polar lows appear to be different types of events, in spite of the apparent similarity of their satellite imagery. A consistent terminology is adopted, stating that tropical cyclone- like vortices are the less baroclinic of all, followed by polar lows, cold small-scale cyclones and finally baroclinic lee cyclones. This classification is based on all the cyclones which occurred in a four-year period (between 1996 and 1999). Four cyclones, selected among all the ones which developed during this time-frame, are analyzed. Particularly, the classification allows to discriminate between two cyclones (occurred in October 1996 and in March 1999) which both display a very well-defined eye-like feature in the satellite imagery. According to our classification system, the two events are dynamically different and can be categorized as being respectively a tropical cyclone-like vortex and well-developed polar low.
Weak scratch detection and defect classification methods for a large-aperture optical element
NASA Astrophysics Data System (ADS)
Tao, Xian; Xu, De; Zhang, Zheng-Tao; Zhang, Feng; Liu, Xi-Long; Zhang, Da-Peng
2017-03-01
Surface defects on optics cause optic failure and heavy loss to the optical system. Therefore, surface defects on optics must be carefully inspected. This paper proposes a coarse-to-fine detection strategy of weak scratches in complicated dark-field images. First, all possible scratches are detected based on bionic vision. Then, each possible scratch is precisely positioned and connected to a complete scratch by the LSD and a priori knowledge. Finally, multiple scratches with various types can be detected in dark-field images. To classify defects and pollutants, a classification method based on GIST features is proposed. This paper uses many real dark-field images as experimental images. The results show that this method can detect multiple types of weak scratches in complex images and that the defects can be correctly distinguished with interference. This method satisfies the real-time and accurate detection requirements of surface defects.
Classification of Korla fragrant pears using NIR hyperspectral imaging analysis
NASA Astrophysics Data System (ADS)
Rao, Xiuqin; Yang, Chun-Chieh; Ying, Yibin; Kim, Moon S.; Chao, Kuanglin
2012-05-01
Korla fragrant pears are small oval pears characterized by light green skin, crisp texture, and a pleasant perfume for which they are named. Anatomically, the calyx of a fragrant pear may be either persistent or deciduous; the deciduouscalyx fruits are considered more desirable due to taste and texture attributes. Chinese packaging standards require that packed cases of fragrant pears contain 5% or less of the persistent-calyx type. Near-infrared hyperspectral imaging was investigated as a potential means for automated sorting of pears according to calyx type. Hyperspectral images spanning the 992-1681 nm region were acquired using an EMCCD-based laboratory line-scan imaging system. Analysis of the hyperspectral images was performed to select wavebands useful for identifying persistent-calyx fruits and for identifying deciduous-calyx fruits. Based on the selected wavebands, an image-processing algorithm was developed that targets automated classification of Korla fragrant pears into the two categories for packaging purposes.
NASA Astrophysics Data System (ADS)
Jones, D. O.; Scolnic, D. M.; Riess, A. G.; Kessler, R.; Rest, A.; Kirshner, R. P.; Berger, E.; Ortega, C. A.; Foley, R. J.; Chornock, R.; Challis, P. J.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Huber, M. E.; Kaiser, N.; Kudritzki, R.-P.; Metcalfe, N.; Wainscoat, R. J.; Waters, C.
2017-07-01
The Pan-STARRS (PS1) Medium Deep Survey discovered over 5000 likely supernovae (SNe) but obtained spectral classifications for just 10% of its SN candidates. We measured spectroscopic host galaxy redshifts for 3147 of these likely SNe and estimate that ˜1000 are Type Ia SNe (SNe Ia) with light-curve quality sufficient for a cosmological analysis. We use these data with simulations to determine the impact of core-collapse SN (CC SN) contamination on measurements of the dark energy equation of state parameter, w. Using the method of Bayesian Estimation Applied to Multiple Species (BEAMS), distances to SNe Ia and the contaminating CC SN distribution are simultaneously determined. We test light-curve-based SN classification priors for BEAMS as well as a new classification method that relies upon host galaxy spectra and the association of SN type with host type. By testing several SN classification methods and CC SN parameterizations on large SN simulations, we estimate that CC SN contamination gives a systematic error on w ({σ }w{CC}) of 0.014, 29% of the statistical uncertainty. Our best method gives {σ }w{CC}=0.004, just 8% of the statistical uncertainty, but could be affected by incomplete knowledge of the CC SN distribution. This method determines the SALT2 color and shape coefficients, α and β, with ˜3% bias. However, we find that some variants require α and β to be fixed to known values for BEAMS to yield accurate measurements of w. Finally, the inferred abundance of bright CC SNe in our sample is greater than expected based on measured CC SN rates and luminosity functions.
NASA Astrophysics Data System (ADS)
Tsalmantza, P.; Kontizas, M.; Rocca-Volmerange, B.; Bailer-Jones, C. A. L.; Kontizas, E.; Bellas-Velidis, I.; Livanou, E.; Korakitis, R.; Dapergolas, A.; Vallenari, A.; Fioc, M.
2009-09-01
Aims: This paper is the second in a series, implementing a classification system for Gaia observations of unresolved galaxies. Our goals are to determine spectral classes and estimate intrinsic astrophysical parameters via synthetic templates. Here we describe (1) a new extended library of synthetic galaxy spectra; (2) its comparison with various observations; and (3) first results of classification and parametrization experiments using simulated Gaia spectrophotometry of this library. Methods: Using the PÉGASE.2 code, based on galaxy evolution models that take account of metallicity evolution, extinction correction, and emission lines (with stellar spectra based on the BaSeL library), we improved our first library and extended it to cover the domain of most of the SDSS catalogue. Our classification and regression models were support vector machines (SVMs). Results: We produce an extended library of 28 885 synthetic galaxy spectra at zero redshift covering four general Hubble types of galaxies, over the wavelength range between 250 and 1050 nm at a sampling of 1 nm or less. The library is also produced for 4 random values of redshift in the range of 0-0.2. It is computed on a random grid of four key astrophysical parameters (infall timescale and 3 parameters defining the SFR) and, depending on the galaxy type, on two values of the age of the galaxy. The synthetic library was compared and found to be in good agreement with various observations. The first results from the SVM classifiers and parametrizers are promising, indicating that Hubble types can be reliably predicted and several parameters estimated with low bias and variance.
NASA Astrophysics Data System (ADS)
Besic, Nikola; Ventura, Jordi Figueras i.; Grazioli, Jacopo; Gabella, Marco; Germann, Urs; Berne, Alexis
2016-09-01
Polarimetric radar-based hydrometeor classification is the procedure of identifying different types of hydrometeors by exploiting polarimetric radar observations. The main drawback of the existing supervised classification methods, mostly based on fuzzy logic, is a significant dependency on a presumed electromagnetic behaviour of different hydrometeor types. Namely, the results of the classification largely rely upon the quality of scattering simulations. When it comes to the unsupervised approach, it lacks the constraints related to the hydrometeor microphysics. The idea of the proposed method is to compensate for these drawbacks by combining the two approaches in a way that microphysical hypotheses can, to a degree, adjust the content of the classes obtained statistically from the observations. This is done by means of an iterative approach, performed offline, which, in a statistical framework, examines clustered representative polarimetric observations by comparing them to the presumed polarimetric properties of each hydrometeor class. Aside from comparing, a routine alters the content of clusters by encouraging further statistical clustering in case of non-identification. By merging all identified clusters, the multi-dimensional polarimetric signatures of various hydrometeor types are obtained for each of the studied representative datasets, i.e. for each radar system of interest. These are depicted by sets of centroids which are then employed in operational labelling of different hydrometeors. The method has been applied on three C-band datasets, each acquired by different operational radar from the MeteoSwiss Rad4Alp network, as well as on two X-band datasets acquired by two research mobile radars. The results are discussed through a comparative analysis which includes a corresponding supervised and unsupervised approach, emphasising the operational potential of the proposed method.
Sheehan, David V; Giddens, Jennifer M; Sheehan, Kathy Harnett
2014-09-01
Standard international classification criteria require that classification categories be comprehensive to avoid type II error. Categories should be mutually exclusive and definitions should be clear and unambiguous (to avoid type I and type II errors). In addition, the classification system should be robust enough to last over time and provide comparability between data collections. This article was designed to evaluate the extent to which the classification system contained in the United States Food and Drug Administration 2012 Draft Guidance for the prospective assessment and classification of suicidal ideation and behavior in clinical trials meets these criteria. A critical review is used to assess the extent to which the proposed categories contained in the Food and Drug Administration 2012 Draft Guidance are comprehensive, unambiguous, and robust. Assumptions that underlie the classification system are also explored. The Food and Drug Administration classification system contained in the 2012 Draft Guidance does not capture the full range of suicidal ideation and behavior (type II error). Definitions, moreover, are frequently ambiguous (susceptible to multiple interpretations), and the potential for misclassification (type I and type II errors) is compounded by frequent mismatches in category titles and definitions. These issues have the potential to compromise data comparability within clinical trial sites, across sites, and over time. These problems need to be remedied because of the potential for flawed data output and consequent threats to public health, to research on the safety of medications, and to the search for effective medication treatments for suicidality.
NASA Technical Reports Server (NTRS)
Keil, K.; Kirchner, E.; Gomes, C. B.; Jarosewich, E.; Murta, R. L. L.
1978-01-01
The Conquista chondrite is described and classified as an H4. The mineral composition is reported. H-group classification is based on described microscopic, electron microprobe, and bulk chemical studies. The evidence for petrologic type 4 classification includes the pronounced well-developed chondritic texture; the slight compositional variations in constituent phases; the high Ca contents of pyroxene and the presence of pigeonite; glassy to microcrystalline interstitial material rich in alkalis and SiO2; and twinned low-Ca clinopyroxene.
A transversal approach for patch-based label fusion via matrix completion
Sanroma, Gerard; Wu, Guorong; Gao, Yaozong; Thung, Kim-Han; Guo, Yanrong; Shen, Dinggang
2015-01-01
Recently, multi-atlas patch-based label fusion has received an increasing interest in the medical image segmentation field. After warping the anatomical labels from the atlas images to the target image by registration, label fusion is the key step to determine the latent label for each target image point. Two popular types of patch-based label fusion approaches are (1) reconstruction-based approaches that compute the target labels as a weighted average of atlas labels, where the weights are derived by reconstructing the target image patch using the atlas image patches; and (2) classification-based approaches that determine the target label as a mapping of the target image patch, where the mapping function is often learned using the atlas image patches and their corresponding labels. Both approaches have their advantages and limitations. In this paper, we propose a novel patch-based label fusion method to combine the above two types of approaches via matrix completion (and hence, we call it transversal). As we will show, our method overcomes the individual limitations of both reconstruction-based and classification-based approaches. Since the labeling confidences may vary across the target image points, we further propose a sequential labeling framework that first labels the highly confident points and then gradually labels more challenging points in an iterative manner, guided by the label information determined in the previous iterations. We demonstrate the performance of our novel label fusion method in segmenting the hippocampus in the ADNI dataset, subcortical and limbic structures in the LONI dataset, and mid-brain structures in the SATA dataset. We achieve more accurate segmentation results than both reconstruction-based and classification-based approaches. Our label fusion method is also ranked 1st in the online SATA Multi-Atlas Segmentation Challenge. PMID:26160394
Zhang, Yi; Li, Peiyang; Zhu, Xuyang; Su, Steven W; Guo, Qing; Xu, Peng; Yao, Dezhong
2017-01-01
The EMG signal indicates the electrophysiological response to daily living of activities, particularly to lower-limb knee exercises. Literature reports have shown numerous benefits of the Wavelet analysis in EMG feature extraction for pattern recognition. However, its application to typical knee exercises when using only a single EMG channel is limited. In this study, three types of knee exercises, i.e., flexion of the leg up (standing), hip extension from a sitting position (sitting) and gait (walking) are investigated from 14 healthy untrained subjects, while EMG signals from the muscle group of vastus medialis and the goniometer on the knee joint of the detected leg are synchronously monitored and recorded. Four types of lower-limb motions including standing, sitting, stance phase of walking, and swing phase of walking, are segmented. The Wavelet Transform (WT) based Singular Value Decomposition (SVD) approach is proposed for the classification of four lower-limb motions using a single-channel EMG signal from the muscle group of vastus medialis. Based on lower-limb motions from all subjects, the combination of five-level wavelet decomposition and SVD is used to comprise the feature vector. The Support Vector Machine (SVM) is then configured to build a multiple-subject classifier for which the subject independent accuracy will be given across all subjects for the classification of four types of lower-limb motions. In order to effectively indicate the classification performance, EMG features from time-domain (e.g., Mean Absolute Value (MAV), Root-Mean-Square (RMS), integrated EMG (iEMG), Zero Crossing (ZC)) and frequency-domain (e.g., Mean Frequency (MNF) and Median Frequency (MDF)) are also used to classify lower-limb motions. The five-fold cross validation is performed and it repeats fifty times in order to acquire the robust subject independent accuracy. Results show that the proposed WT-based SVD approach has the classification accuracy of 91.85%±0.88% which outperforms other feature models.
Urrutia, Julio; Zamora, Tomas; Campos, Mauricio; Yurac, Ratko; Palma, Joaquin; Mobarec, Sebastian; Prada, Carlos
2016-07-01
We performed an agreement study using two subaxial cervical spine classification systems: the AOSpine and the Allen and Ferguson (A&F) classifications. We sought to determine which scheme allows better agreement by different evaluators and by the same evaluator on different occasions. Complete imaging studies of 65 patients with subaxial cervical spine injuries were classified by six evaluators (three spine sub-specialists and three senior orthopaedic surgery residents) using the AOSpine subaxial cervical spine classification system and the A&F scheme. The cases were displayed in a random sequence after a 6-week interval for repeat evaluation. The Kappa coefficient (κ) was used to determine inter- and intra-observer agreement. Inter-observer: considering the main AO injury types, the agreement was substantial for the AOSpine classification [κ = 0.61 (0.57-0.64)]; using AO sub-types, the agreement was moderate [κ = 0.57 (0.54-0.60)]. For the A&F classification, the agreement [κ = 0.46 (0.42-0.49)] was significantly lower than using the AOSpine scheme. Intra-observer: the agreement was substantial considering injury types [κ = 0.68 (0.62-0.74)] and considering sub-types [κ = 0.62 (0.57-0.66)]. Using the A&F classification, the agreement was also substantial [κ = 0.66 (0.61-0.71)]. No significant differences were observed between spine surgeons and orthopaedic residents in the overall inter- and intra-observer agreement, or in the inter- and intra-observer agreement of specific type of injuries. The AOSpine classification (using the four main injury types or at the sub-types level) allows a significantly better agreement than the A&F classification. The A&F scheme does not allow reliable communication between medical professionals.
Classification and description of world formation types
D. Faber-Langendoen; T. Keeler-Wolf; D. Meidinger; C. Josse; A. Weakley; D. Tart; G. Navarro; B. Hoagland; S. Ponomarenko; G. Fults; Eileen Helmer
2016-01-01
An ecological vegetation classification approach has been developed in which a combination of vegetation attributes (physiognomy, structure, and floristics) and their response to ecological and biogeographic factors are used as the basis for classifying vegetation types. This approach can help support international, national, and subnational classification efforts. The...
Classification of Partial Discharge Measured under Different Levels of Noise Contamination
2017-01-01
Cable joint insulation breakdown may cause a huge loss to power companies. Therefore, it is vital to diagnose the insulation quality to detect early signs of insulation failure. It is well known that there is a correlation between Partial discharge (PD) and the insulation quality. Although many works have been done on PD pattern recognition, it is usually performed in a noise free environment. Also, works on PD pattern recognition in actual cable joint are less likely to be found in literature. Therefore, in this work, classifications of actual cable joint defect types from partial discharge data contaminated by noise were performed. Five cross-linked polyethylene (XLPE) cable joints with artificially created defects were prepared based on the defects commonly encountered on site. Three different types of input feature were extracted from the PD pattern under artificially created noisy environment. These include statistical features, fractal features and principal component analysis (PCA) features. These input features were used to train the classifiers to classify each PD defect types. Classifications were performed using three different artificial intelligence classifiers, which include Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Support Vector Machine (SVM). It was found that the classification accuracy decreases with higher noise level but PCA features used in SVM and ANN showed the strongest tolerance against noise contamination. PMID:28085953
A new map of standardized terrestrial ecosystems of Africa
Sayre, Roger G.; Comer, Patrick; Hak, Jon; Josse, Carmen; Bow, Jacquie; Warner, Harumi; Larwanou, Mahamane; Kelbessa, Ensermu; Bekele, Tamrat; Kehl, Harald; Amena, Ruba; Andriamasimanana, Rado; Ba, Taibou; Benson, Laurence; Boucher, Timothy; Brown, Matthew; Cress, Jill J.; Dassering, Oueddo; Friesen, Beverly A.; Gachathi, Francis; Houcine, Sebei; Keita, Mahamadou; Khamala, Erick; Marangu, Dan; Mokua, Fredrick; Morou, Boube; Mucina, Ladislav; Mugisha, Samuel; Mwavu, Edward; Rutherford, Michael; Sanou, Patrice; Syampungani, Stephen; Tomor, Bojoi; Vall, Abdallahi Ould Mohamed; Vande Weghe, Jean Pierre; Wangui, Eunice; Waruingi, Lucy
2013-01-01
Terrestrial ecosystems and vegetation of Africa were classified and mapped as part of a larger effort and global protocol (GEOSS – the Global Earth Observation System of Systems), which includes an activity to map terrestrial ecosystems of the earth in a standardized, robust, and practical manner, and at the finest possible spatial resolution. To model the potential distribution of ecosystems, new continental datasets for several key physical environment datalayers (including coastline, landforms, surficial lithology, and bioclimates) were developed at spatial and classification resolutions finer than existing similar datalayers. A hierarchical vegetation classification was developed by African ecosystem scientists and vegetation geographers, who also provided sample locations of the newly classified vegetation units. The vegetation types and ecosystems were then mapped across the continent using a classification and regression tree (CART) inductive model, which predicted the potential distribution of vegetation types from a suite of biophysical environmental attributes including bioclimate region, biogeographic region, surficial lithology, landform, elevation and land cover. Multi-scale ecosystems were classified and mapped in an increasingly detailed hierarchical framework using vegetation-based concepts of class, subclass, formation, division, and macrogroup levels. The finest vegetation units (macrogroups) classified and mapped in this effort are defined using diagnostic plant species and diagnostic growth forms that reflect biogeographic differences in composition and sub-continental to regional differences in mesoclimate, geology, substrates, hydrology, and disturbance regimes (FGDC, 2008). The macrogroups are regarded as meso-scale (100s to 10,000s of hectares) ecosystems. A total of 126 macrogroup types were mapped, each with multiple, repeating occurrences on the landscape. The modeling effort was implemented at a base spatial resolution of 90 m. In addition to creating several rich, new continent-wide biophysical datalayers describing African vegetation and ecosystems, our intention was to explore feasible approaches to rapidly moving this type of standardized, continent-wide, ecosystem classification and mapping effort forward.
Serrated colorectal cancer: Molecular classification, prognosis, and response to chemotherapy
Murcia, Oscar; Juárez, Miriam; Hernández-Illán, Eva; Egoavil, Cecilia; Giner-Calabuig, Mar; Rodríguez-Soler, María; Jover, Rodrigo
2016-01-01
Molecular advances support the existence of an alternative pathway of colorectal carcinogenesis that is based on the hypermethylation of specific DNA regions that silences tumor suppressor genes. This alternative pathway has been called the serrated pathway due to the serrated appearance of tumors in histological analysis. New classifications for colorectal cancer (CRC) were proposed recently based on genetic profiles that show four types of molecular alterations: BRAF gene mutations, KRAS gene mutations, microsatellite instability, and hypermethylation of CpG islands. This review summarizes what is known about the serrated pathway of CRC, including CRC molecular and clinical features, prognosis, and response to chemotherapy. PMID:27053844
A lung sound classification system based on the rational dilation wavelet transform.
Ulukaya, Sezer; Serbes, Gorkem; Sen, Ipek; Kahya, Yasemin P
2016-08-01
In this work, a wavelet based classification system that aims to discriminate crackle, normal and wheeze lung sounds is presented. While the previous works related with this problem use constant low Q-factor wavelets, which have limited frequency resolution and can not cope with oscillatory signals, in the proposed system, the Rational Dilation Wavelet Transform, whose Q-factors can be tuned, is employed. Proposed system yields an accuracy of 95 % for crackle, 97 % for wheeze, 93.50 % for normal and 95.17 % for total sound signal types using energy feature subset and proposed approach is superior to conventional low Q-factor wavelet analysis.
2012-01-01
Background While progress has been made to develop automatic segmentation techniques for mitochondria, there remains a need for more accurate and robust techniques to delineate mitochondria in serial blockface scanning electron microscopic data. Previously developed texture based methods are limited for solving this problem because texture alone is often not sufficient to identify mitochondria. This paper presents a new three-step method, the Cytoseg process, for automated segmentation of mitochondria contained in 3D electron microscopic volumes generated through serial block face scanning electron microscopic imaging. The method consists of three steps. The first is a random forest patch classification step operating directly on 2D image patches. The second step consists of contour-pair classification. At the final step, we introduce a method to automatically seed a level set operation with output from previous steps. Results We report accuracy of the Cytoseg process on three types of tissue and compare it to a previous method based on Radon-Like Features. At step 1, we show that the patch classifier identifies mitochondria texture but creates many false positive pixels. At step 2, our contour processing step produces contours and then filters them with a second classification step, helping to improve overall accuracy. We show that our final level set operation, which is automatically seeded with output from previous steps, helps to smooth the results. Overall, our results show that use of contour pair classification and level set operations improve segmentation accuracy beyond patch classification alone. We show that the Cytoseg process performs well compared to another modern technique based on Radon-Like Features. Conclusions We demonstrated that texture based methods for mitochondria segmentation can be enhanced with multiple steps that form an image processing pipeline. While we used a random-forest based patch classifier to recognize texture, it would be possible to replace this with other texture identifiers, and we plan to explore this in future work. PMID:22321695
Not Color-Blind: Using Multiband Photometry to Classify Supernovae
NASA Astrophysics Data System (ADS)
Poznanski, Dovi; Gal-Yam, Avishay; Maoz, Dan; Filippenko, Alexei V.; Leonard, Douglas C.; Matheson, Thomas
2002-08-01
Large numbers of supernovae (SNe) have been discovered in recent years, and many more will be found in the near future. Once discovered, further study of a SN and its possible use as an astronomical tool (e.g., as a distance estimator) require knowledge of the SN type. Current classification methods rely almost solely on the analysis of SN spectra to determine their type. However, spectroscopy may not be possible or practical when SNe are faint, numerous, or discovered in archival studies. We present a classification method for SNe based on the comparison of their observed colors with synthetic ones, calculated from a large database of multiepoch optical spectra of nearby events. We discuss the capabilities and limitations of this method. For example, Type Ia SNe at redshifts z<0.1 can be distinguished from most other SN types during the first few weeks of their evolution, based on V-R versus R-I colors. Type II-P SNe have distinct (very red) colors at late (t>100 days) stages. Broadband photometry through standard Johnson-Cousins UBVRI filters can be useful to classify SNe out to z~0.6. The use of Sloan Digital Sky Survey (SDSS) ugriz filters allows the extension of our classification method to even higher redshifts (z=0.75), and the use of infrared bands, to z=2.5. We demonstrate the application of this method to a recently discovered SN from the SDSS. Finally, we outline the observational data required to further improve the sensitivity of the method and discuss prospects for its use on future SN samples. Community access to the tools developed is provided by a dedicated Web site.5
A machine learning approach for viral genome classification.
Remita, Mohamed Amine; Halioui, Ahmed; Malick Diouara, Abou Abdallah; Daigle, Bruno; Kiani, Golrokh; Diallo, Abdoulaye Baniré
2017-04-11
Advances in cloning and sequencing technology are yielding a massive number of viral genomes. The classification and annotation of these genomes constitute important assets in the discovery of genomic variability, taxonomic characteristics and disease mechanisms. Existing classification methods are often designed for specific well-studied family of viruses. Thus, the viral comparative genomic studies could benefit from more generic, fast and accurate tools for classifying and typing newly sequenced strains of diverse virus families. Here, we introduce a virus classification platform, CASTOR, based on machine learning methods. CASTOR is inspired by a well-known technique in molecular biology: restriction fragment length polymorphism (RFLP). It simulates, in silico, the restriction digestion of genomic material by different enzymes into fragments. It uses two metrics to construct feature vectors for machine learning algorithms in the classification step. We benchmark CASTOR for the classification of distinct datasets of human papillomaviruses (HPV), hepatitis B viruses (HBV) and human immunodeficiency viruses type 1 (HIV-1). Results reveal true positive rates of 99%, 99% and 98% for HPV Alpha species, HBV genotyping and HIV-1 M subtyping, respectively. Furthermore, CASTOR shows a competitive performance compared to well-known HIV-1 specific classifiers (REGA and COMET) on whole genomes and pol fragments. The performance of CASTOR, its genericity and robustness could permit to perform novel and accurate large scale virus studies. The CASTOR web platform provides an open access, collaborative and reproducible machine learning classifiers. CASTOR can be accessed at http://castor.bioinfo.uqam.ca .
Auto-simultaneous laser treatment and Ohshiro's classification of laser treatment
NASA Astrophysics Data System (ADS)
Ohshiro, Toshio
2005-07-01
When the laser was first applied in medicine and surgery in the late 1960"s and early 1970"s, early adopters reported better wound healing and less postoperative pain with laser procedures compared with the same procedure performed with the cold scalpel or with electrothermy, and multiple surgical effects such as incision, vaporization and hemocoagulation could be achieved with the same laser beam. There was thus an added beneficial component which was associated only with laser surgery. This was first recognized as the `?-effect", was then classified by the author as simultaneous laser therapy, but is now more accurately classified by the author as part of the auto-simultaneous aspect of laser treatment. Indeed, with the dramatic increase of the applications of the laser in surgery and medicine over the last 2 decades there has been a parallel increase in the need for a standardized classification of laser treatment. Some classifications have been machine-based, and thus inaccurate because at appropriate parameters, a `low-power laser" can produce a surgical effect and a `high power laser", a therapeutic one . A more accurate classification based on the tissue reaction is presented, developed by the author. In addition to this, the author has devised a graphical representation of laser surgical and therapeutic beams whereby the laser type, parameters, penetration depth, and tissue reaction can all be shown in a single illustration, which the author has termed the `Laser Apple", due to the typical pattern generated when a laser beam is incident on tissue. Laser/tissue reactions fall into three broad groups. If the photoreaction in the tissue is irreversible, then it is classified as high-reactive level laser treatment (HLLT). If some irreversible damage occurs together with reversible photodamage, as in tissue welding, the author refers to this as mid-reactive level laser treatment (MLLT). If the level of reaction in the target tissue is lower than the cells" survival threshold, then this is low reactive-level laser therapy (LLLT). All three of these classifications can occur simultaneously in the one target, and fall under the umbrella of laser treatment (LT). LT is further subdivided into three main types: mono-type LT (Mo-LT, treatment with a single laser system; multi-type LT (Mu-LT, treatment with multiple laser systems); and concomitant LT (Cc-LT), laser treatment in combination, each of which is further subdivided by tissue reaction to give an accurate, treatment-based categorization of laser treatment. When this effect-based classification is combined with and illustrated by the appropriate laser apple pattern, an accurate and simple method of classifying laser/tissue reactions by the reaction, rather than by the laser used to produce the reaction, is achieved. Examples will be given to illustrate the author"s new approach to this important concept.
Habitat typing versus advanced vegetation classification in western forests
Tony Kusbach; John Shaw; James Long; Helga Van Miegroet
2012-01-01
Major habitat and community types in northern Utah were compared with plant alliances and associations that were derived from fidelity- and diagnostic-species classification concepts. Each of these classification approaches was associated with important environmental factors. Within a 20,000-ha watershed, 103 forest ecosystems were described by physiographic features,...
Low Altitude AVIRIS Data for Mapping Landform Types on West Ship Island, Mississippi
NASA Technical Reports Server (NTRS)
Spruce, Joseph; Otvos, Ervin; Giardino, Marco
2002-01-01
A chain of barrier islands provides protection against hurricanes and severe storms along the south and southeastern shores of the United States. Barrier island landform types can be spectrally similar and as small as a few meters across, making highly detailed maps difficult to produce. To determine whether high-resolution airborne hyperspectral imagery could provide detailed maps of barrier island landform types, we used low-altitude hyperspectral and multispectral imagery to map surface environments of West Ship Island, Mississippi. We employed 3.4-meter AVIRIS hyperspectral imagery acquired in July 1999 and 0.5-meter ADAR multispectral data acquired in November 1997. The data were co-registered to digital ortho aerial imagery, and the AVIRIS data was scaled to ground reflectance using ATREM software. Unsupervised classification of AVIRIS and ADAR data proceeded using ISODATA clustering techniques. The resulting landform maps were field-checked and compared to aerial photography and digital elevation maps. Preliminary analyses indicated that the AVIRIS classification mapped more landform types, while the ADAR-based map enabled smaller patches to be identified. Used together, these maps provided a means to assess landform distributions of West Ship Island before and after Hurricane Gorges. Classification accuracy is being addressed through photo-interpretation and field surveys of sample areas selected with stratified random sampling.
Low Altitude AVIRIS Data for Mapping Landform Types on West Ship Island, Mississippi
NASA Technical Reports Server (NTRS)
Spruce, Joseph; Otvos, Ervin; Giardino, Marco
2003-01-01
A chain of barrier islands provides protection against hurricanes and severe storms along the southern and southeastern shores of the Unites States. Barrier island landform types can be spectrally similar and as small as a few meters across, making highly detailed maps difficult to produce. To determine whether high-resolution airborne hyperspectral imagery could provide detailed maps of barrier island landform types, we used low-altitude hyperspectral and multispectral imagery to map surface environments of West Ship Island, Mississippi. We employed 3.4 meter AVIRIS hyperspectral imagery acquired in July 1999 and 0.5 meter ADAR multispectral data acquired in November 1997. The data were co-registered to digital ortho aerial imagery, and the AVIRIS data was scaled to ground reflectance using ATREM software. Unsupervised classification of AVIRIS and ADAR data proceeded using ISODATA clustering techniques. The resulting landform maps were field-checked and compared to aerial photography and digital elevation maps. Preliminary analyses indicated that the AVIRIS classification mapped more landform types, while the ADAR-based map enabled smaller patches to be identified. Used together, these maps provided a means to assess landform distributions of West Ship Island before and after Hurricane Georges. Classification accuracy is being assessed through photo-interpretation and field surveys of sample areas selected with stratified random sampling.
Classifying Adverse Events in the Dental Office.
Kalenderian, Elsbeth; Obadan-Udoh, Enihomo; Maramaldi, Peter; Etolue, Jini; Yansane, Alfa; Stewart, Denice; White, Joel; Vaderhobli, Ram; Kent, Karla; Hebballi, Nutan B; Delattre, Veronique; Kahn, Maria; Tokede, Oluwabunmi; Ramoni, Rachel B; Walji, Muhammad F
2017-06-30
Dentists strive to provide safe and effective oral healthcare. However, some patients may encounter an adverse event (AE) defined as "unnecessary harm due to dental treatment." In this research, we propose and evaluate two systems for categorizing the type and severity of AEs encountered at the dental office. Several existing medical AE type and severity classification systems were reviewed and adapted for dentistry. Using data collected in previous work, two initial dental AE type and severity classification systems were developed. Eight independent reviewers performed focused chart reviews, and AEs identified were used to evaluate and modify these newly developed classifications. A total of 958 charts were independently reviewed. Among the reviewed charts, 118 prospective AEs were found and 101 (85.6%) were verified as AEs through a consensus process. At the end of the study, a final AE type classification comprising 12 categories, and an AE severity classification comprising 7 categories emerged. Pain and infection were the most common AE types representing 73% of the cases reviewed (56% and 17%, respectively) and 88% were found to cause temporary, moderate to severe harm to the patient. Adverse events found during the chart review process were successfully classified using the novel dental AE type and severity classifications. Understanding the type of AEs and their severity are important steps if we are to learn from and prevent patient harm in the dental office.
Zhang, Wenyu; Zhang, Zhenjiang
2015-01-01
Decision fusion in sensor networks enables sensors to improve classification accuracy while reducing the energy consumption and bandwidth demand for data transmission. In this paper, we focus on the decentralized multi-class classification fusion problem in wireless sensor networks (WSNs) and a new simple but effective decision fusion rule based on belief function theory is proposed. Unlike existing belief function based decision fusion schemes, the proposed approach is compatible with any type of classifier because the basic belief assignments (BBAs) of each sensor are constructed on the basis of the classifier’s training output confusion matrix and real-time observations. We also derive explicit global BBA in the fusion center under Dempster’s combinational rule, making the decision making operation in the fusion center greatly simplified. Also, sending the whole BBA structure to the fusion center is avoided. Experimental results demonstrate that the proposed fusion rule has better performance in fusion accuracy compared with the naïve Bayes rule and weighted majority voting rule. PMID:26295399
Interactive classification and content-based retrieval of tissue images
NASA Astrophysics Data System (ADS)
Aksoy, Selim; Marchisio, Giovanni B.; Tusk, Carsten; Koperski, Krzysztof
2002-11-01
We describe a system for interactive classification and retrieval of microscopic tissue images. Our system models tissues in pixel, region and image levels. Pixel level features are generated using unsupervised clustering of color and texture values. Region level features include shape information and statistics of pixel level feature values. Image level features include statistics and spatial relationships of regions. To reduce the gap between low-level features and high-level expert knowledge, we define the concept of prototype regions. The system learns the prototype regions in an image collection using model-based clustering and density estimation. Different tissue types are modeled using spatial relationships of these regions. Spatial relationships are represented by fuzzy membership functions. The system automatically selects significant relationships from training data and builds models which can also be updated using user relevance feedback. A Bayesian framework is used to classify tissues based on these models. Preliminary experiments show that the spatial relationship models we developed provide a flexible and powerful framework for classification and retrieval of tissue images.
Engine classification using vibrations measured by Laser Doppler Vibrometer on different surfaces
NASA Astrophysics Data System (ADS)
Wei, J.; Liu, Chi-Him; Zhu, Zhigang; Vongsy, Karmon; Mendoza-Schrock, Olga
2015-05-01
In our previous studies, vehicle surfaces' vibrations caused by operating engines measured by Laser Doppler Vibrometer (LDV) have been effectively exploited in order to classify vehicles of different types, e.g., vans, 2-door sedans, 4-door sedans, trucks, and buses, as well as different types of engines, such as Inline-four engines, V-6 engines, 1-axle diesel engines, and 2-axle diesel engines. The results are achieved by employing methods based on an array of machine learning classifiers such as AdaBoost, random forests, neural network, and support vector machines. To achieve effective classification performance, we seek to find a more reliable approach to pick authentic vibrations of vehicle engines from a trustworthy surface. Compared with vibrations directly taken from the uncooperative vehicle surfaces that are rigidly connected to the engines, these vibrations are much weaker in magnitudes. In this work we conducted a systematic study on different types of objects. We tested different types of engines ranging from electric shavers, electric fans, and coffee machines among different surfaces such as a white board, cement wall, and steel case to investigate the characteristics of the LDV signals of these surfaces, in both the time and spectral domains. Preliminary results in engine classification using several machine learning algorithms point to the right direction on the choice of type of object surfaces to be planted for LDV measurements.
Kierkegaard, Marie; Harms-Ringdahl, Karin; Widén Holmqvist, Lotta; Tollbäck, Anna
2009-06-01
The purpose of this study was to describe and analyse self-rated perceived functioning, disability and environmental facilitators/barriers with regard to disease severity, using the International Classification of Functioning, Disability and Health (ICF) checklist, in adults with myotonic dystrophy type 1. Cross-sectional design. Forty-one women and 29 men with myotonic dystrophy type 1. A modified ICF checklist was used for self-rating of perceived problems in 29 body-function categories, difficulties in 52 activity and participation categories, and facilitators/barriers in 23 environmental-factor categories according to the verbal anchors of the ICF qualifiers. Disease severity classification was based on the muscular impairment rating scale. Of the persons with myotonic dystrophy type 1, 80% perceived problems of excessive daytime sleepiness, 76% of muscle power, and 66% of energy and drive functions, while over 59% perceived difficulties in physically demanding mobility activities. Disabilities in mobility, self-care and domestic life were more frequently reported by persons with severe disease. Support from the immediate family, medicines and social security services were perceived as facilitators for 50-60% of the participants. Disabilities and important environmental facilitators in adults with myotonic dystrophy type 1 were identified, and this clinically-relevant information can be used for developing health services for people with this condition.
Xiao, Di; Zhao, Fei; Zhang, Huifang; Meng, Fanliang; Zhang, Jianzhong
2014-08-01
The typing of Mycoplasma pneumoniae mainly relies on the detection of nucleic acid, which is limited by the use of a single gene target, complex operation procedures, and a lengthy assay time. Here, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) coupled to ClinProTools was used to discover MALDI-TOF MS biomarker peaks and to generate a classification model based on a genetic algorithm (GA) to differentiate between type 1 and type 2 M. pneumoniae isolates. Twenty-five M. pneumoniae strains were used to construct an analysis model, and 43 Mycoplasma strains were used for validation. For the GA typing model, the cross-validation values, which reflect the ability of the model to handle variability among the test spectra and the recognition capability value, which reflects the model's ability to correctly identify its component spectra, were all 100%. This model contained 7 biomarker peaks (m/z 3,318.8, 3,215.0, 5,091.8, 5,766.8, 6,337.1, 6,431.1, and 6,979.9) used to correctly identify 31 type 1 and 7 type 2 M. pneumoniae isolates from 43 Mycoplasma strains with a sensitivity and specificity of 100%. The strain distribution map and principle component analysis based on the GA classification model also clearly showed that the type 1 and type 2 M. pneumoniae isolates can be divided into two categories based on their peptide mass fingerprints. With the obvious advantages of being rapid, highly accurate, and highly sensitive and having a low cost and high throughput, MALDI-TOF MS ClinProTools is a powerful and reliable tool for M. pneumoniae typing. Copyright © 2014, American Society for Microbiology. All Rights Reserved.