Aquatic Therapy for a Child with Type III Spinal Muscular Atrophy: A Case Report
ERIC Educational Resources Information Center
Salem, Yasser; Gropack, Stacy Jaffee
2010-01-01
Spinal muscular atrophy (SMA) is a neuromuscular disorder characterized by degeneration of alpha motor neurons. This case report describes an aquatic therapy program and the outcomes for a 3-year-old girl with type III SMA. Motor skills were examined using the 88-item Gross Motor Function Measure (GMFM), the Peabody Developmental Motor Scales…
Klekamp, Jörg
2017-07-01
The clinical significance of pathologies of the spinal dura is often unclear and their management controversial. To classify spinal dural pathologies analogous to vascular aneurysms, present their symptoms and surgical results. Among 1519 patients with spinal space-occupying lesions, 66 patients demonstrated dural pathologies. Neuroradiological and surgical features were reviewed and clinical data analyzed. Saccular dural diverticula (type I, n = 28) caused by defects of both dural layers, dissections between dural layers (type II, n = 29) due to defects of the inner layer, and dural ectasias (type III, n = 9) related to structural changes of the dura were distinguished. For all types, symptoms consisted of local pain followed by signs of radiculopathy or myelopathy, while one patient with dural ectasia presented a low-pressure syndrome and 10 patients with dural dissections additional spinal cord herniation. Type I and type II pathologies required occlusion of their dural defects via extradural (type I) or intradural (type II) approaches. For type III pathologies of the dural sac no surgery was recommended. Favorable results were obtained in all 14 patients with type I and 13 of 15 patients with type II pathologies undergoing surgery. The majority of dural pathologies involving root sleeves remain asymptomatic, while those of the dural sac commonly lead to pain and neurological symptoms. Type I and type II pathologies were treated with good long-term results occluding their dural defects, while ectasias of the dural sac (type III) were managed conservatively. Copyright © 2017 by the Congress of Neurological Surgeons
Tsai, Li-Kai; Chen, Yi-Chun; Cheng, Wei-Cheng; Ting, Chen-Hung; Dodge, James C; Hwu, Wuh-Liang; Cheng, Seng H; Passini, Marco A
2012-01-01
The efficacy of administering a recombinant adeno-associated virus (AAV) vector encoding human IGF-1 (AAV2/1-hIGF-1) into the deep cerebellar nucleus (DCN) of a type III SMA mouse model was evaluated. High levels of IGF-1 transcripts and protein were detected in the spinal cord at 2 months post-injection demonstrating that axonal connections between the cerebellum and spinal cord were able to act as conduits for the viral vector and protein to the spinal cord. Mice treated with AAV2/1-hIGF-1 and analyzed 8 months later showed changes in endogenous Bax and Bcl-xl levels in spinal cord motor neurons that were consistent with IGF-1-mediated anti-apoptotic effects on motor neurons. However, although AAV2/1-hIGF-1 treatment reduced the extent of motor neuron cell death, the majority of rescued motor neurons were non-functional, as they lacked axons that innervated the muscles. Furthermore, treated SMA mice exhibited abnormal muscle fibers, aberrant neuromuscular junction structure, and impaired performance on motor function tests. These data indicate that although CNS-directed expression of IGF-1 could reduce motor neuron cell death, this did not translate to improvements in motor function in an adult mouse model of type III SMA. Copyright © 2011 Elsevier Inc. All rights reserved.
Cunha, M C; Oliveira, A S; Labronici, R H; Gabbai, A A
1996-09-01
We added hydrotherapy to 50 patients with spinal muscular atrophy (SMA) who were being treated with individual conventional physiotherapy. Hydrotherapy performed at an approximate temperature of 30 degrees Celsius, twice a week, for thirty minutes in children and forty-five minutes in adults during a 2-year period. The outcome derived from this combined modality of treatment was rated according to physiotherapeutic evaluations, the MMT (Manual Muscular Test), and the Barthel Ladder. Patients were reevaluated at 2-month intervals. After two years of ongoing treatment, we were able to observe that the deformities in hip, knee and foot were progressive in all SMA Type II patients, and in some Type III. Muscle strength stabilized in most SMA Type III patients, and improved in some. MMT was not done in SMA Type II. In all patients we were able to detect an improvement in the Barthel Ladder scale. This study suggests that a measurable improvement in the quality of daily living may be obtained in patients with SMA Types II and III subjected to conventional physiotherapy when associated with hydrotherapy.
Siebourg-Polster, Juliane; Wolf, Detlef; Czech, Christian; Bonati, Ulrike; Fischer, Dirk; Khwaja, Omar; Strahm, Martin
2017-01-01
Although functional rating scales are being used increasingly as primary outcome measures in spinal muscular atrophy (SMA), sensitive and objective assessment of early-stage disease progression and drug efficacy remains challenging. We have developed a game based on the Microsoft Kinect sensor, specifically designed to measure active upper limb movement. An explorative study was conducted to determine the feasibility of this new tool in 18 ambulant SMA type III patients and 19 age- and gender-matched healthy controls. Upper limb movement was analysed elaborately through derived features such as elbow flexion and extension angles, arm lifting angle, velocity and acceleration. No significant differences were found in the active range of motion between ambulant SMA type III patients and controls. Hand velocity was found to be different but further validation is necessary. This study presents an important step in the process of designing and handling digital biomarkers as complementary outcome measures for clinical trials. PMID:28122039
Chen, Xing; Siebourg-Polster, Juliane; Wolf, Detlef; Czech, Christian; Bonati, Ulrike; Fischer, Dirk; Khwaja, Omar; Strahm, Martin
2017-01-01
Although functional rating scales are being used increasingly as primary outcome measures in spinal muscular atrophy (SMA), sensitive and objective assessment of early-stage disease progression and drug efficacy remains challenging. We have developed a game based on the Microsoft Kinect sensor, specifically designed to measure active upper limb movement. An explorative study was conducted to determine the feasibility of this new tool in 18 ambulant SMA type III patients and 19 age- and gender-matched healthy controls. Upper limb movement was analysed elaborately through derived features such as elbow flexion and extension angles, arm lifting angle, velocity and acceleration. No significant differences were found in the active range of motion between ambulant SMA type III patients and controls. Hand velocity was found to be different but further validation is necessary. This study presents an important step in the process of designing and handling digital biomarkers as complementary outcome measures for clinical trials.
Soto, Cristina; Canedo, Antonio
2011-01-01
Abstract Aδ- and/or C-fibre nociceptive inputs drive subnucleus reticularis dorsalis (SRD) neurones projecting to a variety of regions including the spinal cord and the nucleus reticularis gigantocellularis (NRGc), but their electrophysiological properties are largely unknown. Here we intracellularly recorded the SRD neuronal responses to injection of polarising current pulses as well as to electrical stimulation of the cervical spinal posterior quadrant (PQ) and the NRGc. Three different classes of neurones with distinct electrophysiological properties were found: type I were characterised by the absence of a fast postspike hyperpolarisation, type II by the presence of a postspike hyperpolarisation followed by a depolarisation resembling low threshold calcium spikes (LTSs), and type III (lacking LTSs) had a fast postspike hyperpolarisation deinactivating A-like potassium channels leading to enlarged interspike intervals. All three classes generated depolarising sags to hyperpolarising current pulses and showed 3–4.5 Hz subthreshold oscillatory activity leading to windup when intracellularly injecting low-frequency repetitive depolarising pulses as well as in response to 0.5–2 Hz NRGc and PQ electrical stimulation. About half of the 132 sampled neurones responded antidromically to NRGc stimulation with more than 65% of the NRGc-antidromic cells, pertaining to all three types, also responding antidromically to PQ stimulation. NRGc stimulation induced exclusively excitatory first-synaptic-responses whilst PQ stimulation induced first-response excitation in most cases, but inhibitory postsynaptic potentials in a few type II and type III neurones not projecting to the spinal cord that also displayed cumulative inhibitory effects (inverse windup). The results show that SRD cells (i) can actively regulate different temporal firing patterns due to their intrinsic electrophysiological properties, (ii) generate windup upon gradual membrane depolarisation produced by low-frequency intracellular current injection and by C-fibre tonic input, both processes leading subthreshold oscillations to threshold, and (iii) collateralise to the NRGc and the spinal cord, potentially providing simultaneous regulation of ascending noxious information and motor reactions to pain. PMID:21746779
Soto, Cristina; Canedo, Antonio
2011-09-01
Aδ- and/or C-fibre nociceptive inputs drive subnucleus reticularis dorsalis (SRD) neurones projecting to a variety of regions including the spinal cord and the nucleus reticularis gigantocellularis (NRGc), but their electrophysiological properties are largely unknown. Here we intracellularly recorded the SRD neuronal responses to injection of polarising current pulses as well as to electrical stimulation of the cervical spinal posterior quadrant (PQ) and the NRGc. Three different classes of neurones with distinct electrophysiological properties were found: type I were characterised by the absence of a fast postspike hyperpolarisation, type II by the presence of a postspike hyperpolarisation followed by a depolarisation resembling low threshold calcium spikes (LTSs), and type III (lacking LTSs) had a fast postspike hyperpolarisation deinactivating A-like potassium channels leading to enlarged interspike intervals. All three classes generated depolarising sags to hyperpolarising current pulses and showed 3-4.5 Hz subthreshold oscillatory activity leading to windup when intracellularly injecting low-frequency repetitive depolarising pulses as well as in response to 0.5-2 Hz NRGc and PQ electrical stimulation. About half of the 132 sampled neurones responded antidromically to NRGc stimulation with more than 65% of the NRGc-antidromic cells, pertaining to all three types, also responding antidromically to PQ stimulation. NRGc stimulation induced exclusively excitatory first-synaptic-responses whilst PQ stimulation induced first-response excitation in most cases, but inhibitory postsynaptic potentials in a few type II and type III neurones not projecting to the spinal cord that also displayed cumulative inhibitory effects (inverse windup). The results show that SRD cells (i) can actively regulate different temporal firing patterns due to their intrinsic electrophysiological properties, (ii) generate windup upon gradual membrane depolarisation produced by low-frequency intracellular current injection and by C-fibre tonic input, both processes leading subthreshold oscillations to threshold, and (iii) collateralise to the NRGc and the spinal cord, potentially providing simultaneous regulation of ascending noxious information and motor reactions to pain.
Low- and high-threshold primary afferent inputs to spinal lamina III antenna-type neurons.
Fernandes, Elisabete C; Santos, Ines C; Kokai, Eva; Luz, Liliana L; Szucs, Peter; Safronov, Boris V
2018-06-21
and non-nociceptive sensory information. Antenna-type neurons with cell bodies located in lamina III and large dendritic trees extending from the superficial lamina I to deep lamina IV are best shaped for the integration of a wide variety of inputs arising from primary afferent fibers and intrinsic spinal circuitries. While the somatodendritic morphology, the hallmark of antenna neurons, has been well studied, little is still known about the axon structure and basic physiological properties of these cells. Here we did whole-cell recordings in a rat (P9-P12) spinal cord preparation with attached dorsal roots to examine the axon course, intrinsic firing properties and primary afferent inputs of antenna cells. Nine antenna cells were identified from a large sample of biocytin-filled lamina III neurons (n = 46). Axon of antenna cells showed intensive branching in laminae III-IV and, in half of the cases, issued dorsally directed collaterals reaching lamina I. Antenna cells exhibited tonic and rhythmic firing patterns; single spikes were followed by hyper- or depolarization. The neurons received monosynaptic inputs from the low-threshold Aβ afferents, Aδ afferents as well as from the high-threshold Aδ and C afferents. When selectively activated, C-fiber-driven mono- and polysynaptic EPSPs were sufficiently strong to evoke firing in the neurons. Thus, lamina III antenna neurons integrate low-threshold and nociceptive high-threshold primary afferent inputs, and can function as wide-dynamic-range neurons able to directly connect deep dorsal horn with the major nociceptive projection area lamina I.
Protective effects of long-term lithium administration in a slowly progressive SMA mouse model.
Biagioni, Francesca; Ferrucci, Michela; Ryskalin, Larisa; Fulceri, Federica; Lazzeri, Gloria; Calierno, Maria Teresa; Busceti, Carla L; Ruffoli, Riccardo; Fornai, Francesco
2017-12-01
In the present study we evaluated the long-term effects of lithium administration to a knock-out double transgenic mouse model (Smn-/-; SMN1A2G+/-; SMN2+/+) of Spinal Muscle Atrophy type III (SMA-III). This model is characterized by very low levels of the survival motor neuron protein, slow disease progression and motor neuron loss, which enables to detect disease-modifying effects at delayed time intervals. Lithium administration attenuates the decrease in motor activity and provides full protection from motor neuron loss occurring in SMA-III mice, throughout the disease course. In addition, lithium prevents motor neuron enlargement and motor neuron heterotopy and suppresses the occurrence of radial-like glial fibrillary acidic protein immunostaining in the ventral white matter of SMA-III mice. In SMA-III mice long-term lithium administration determines a dramatic increase of survival motor neuron protein levels in the spinal cord. These data demonstrate that long-term lithium administration during a long-lasting motor neuron disorder attenuates behavioural deficit and neuropathology. Since low level of survival motor neuron protein is bound to disease severity in SMA, the robust increase in protein level produced by lithium provides solid evidence which calls for further investigations considering lithium in the long-term treatment of spinal muscle atrophy.
Nemoto, Wataru; Ogata, Yoshiki; Nakagawasai, Osamu; Yaoita, Fukie; Tadano, Takeshi; Tan-No, Koichi
2015-12-01
We have previously demonstrated the possibility that angiotensin (Ang) II and its N-terminal metabolite Ang (1-7) act as neurotransmitters and/or neuromodulators in the spinal transmission of nociceptive information. Ang III, which is a C-terminal metabolite of Ang II, can also act on AT1 receptors, but its role in spinal nociceptive transmission remains unclear. Therefore, we examined the role of Ang III on the spinal nociceptive system in comparison with that of Ang II. Intrathecal (i.t.) administration of Ang III into mice produced a nociceptive behavior, which was dose-dependently inhibited by the co-administration of the AT1 receptor antagonist losartan and the p38 MAPK inhibitor SB203580, but not by the AT2 receptor antagonist PD123319, MEK1/2 inhibitor U0126 and JNK inhibitor SP600125. In addition, Ang III increased the phosphorylation of p38 MAPK in the dorsal lumbar spinal cord, which was inhibited by losartan. These effects were similar to those of observed with Ang II. The nociceptive behavior produced by Ang II or III was also attenuated by the administration of the astrocytic inhibitor L-α-aminoadipic acid, but not by the microglial inhibitor minocycline. Double immunohistochemical staining showed that spinal AT1 receptors were expressed on neurons and astrocytes, and that i.t. administration of either Ang II or III phosphorylated p38 MAPK in both spinal astrocytes and neurons. These results indicate that Ang III produces nociceptive behavior similar to Ang II, and suggest that the phosphorylation of p38 MAPK mediated through AT1 receptors on spinal astrocytes and neurons contributes to Ang II- and III-induced nociceptive behavior. Copyright © 2015 Elsevier Ltd. All rights reserved.
Shaikh, Jan Muhammad; Memon, Amna; Memon, Muhammad Ali; Khan, Majida
2008-01-01
To compare the frequency and severity of post dural puncture headache in obstetric patients using 25G Quincke, 27G Quincke and 27G Whitacre spinal needles. Comparative, randomized, double-blind, interventional study. Liaquat University Hospital Hyderabad from October 2005 to December 2006. 480 ASA I-II full term pregnant women, 18 to 45 years of age, scheduled for elective Caesarean section, under spinal anaesthesia, were randomized into three groups: Group I (25G Quincke spinal needle: n=168), Group II (27G Quincke spinal needle: n=160) and Group III (27G Whitacre spinal needle: n=152). Spinal anaesthesia was performed with 1.5-2.0 ml 0.75% hyperbaric bupivacaine using 25G Quincke spinal needle (Group I), 27G Quincke spinal needle (Group II) and 27G Whitacre spinal needle (Group III) at L3-4 inter-vertebral space. Each patient was assessed daily for four consecutive days following Caesarean section. Frequency and severity and of postdural puncture headache (PDPH) were recorded. Data were analyzed using SPSS-11. Frequency of PDPH following the use of 25G Quincke (Group I), 27G Quincke (Group II) and 27G Whitacre (Group III) spinal needles was 8.3% (14/168), 3.8% (6/160) and 2.0% (3/152) respectively. In Group I, PDPH was mild in 5 patients, moderate in 7 patients and severe in 2 patients. In Group II, it was mild in 2, moderate in 3 and severe in 1 patient. In group III, it was mild in 2 and moderate in 1 patient. Severe PDPH did not occur in Group III. Most of the patients with PDPH developed it on 1st and 2nd postoperative day. When using a 27G Whitacre spinal needle, the frequency and severity of PDPH was significantly lower than when a 25G Quincke or 27G Quincke needle was used.
Genetics Home Reference: spinal muscular atrophy
... atrophy types I, II, III, and IV. SMN1 gene mutations lead to a shortage of the SMN protein. ... to be broken down (degraded) within cells. UBA1 gene mutations lead to reduced or absent levels of functional ...
Intelligence and cognitive function in children and adolescents with spinal muscular atrophy.
von Gontard, A; Zerres, K; Backes, M; Laufersweiler-Plass, C; Wendland, C; Melchers, P; Lehmkuhl, G; Rudnik-Schöneborn, S
2002-02-01
Spinal muscular atrophy is a chronic disease characterised by loss of motor function. The aim of the study was to analyse cognitive functions in a large group of patients with spinal muscular atrophy. It was hypothesised that their intelligence is comparable to controls, but not above average as previously postulated. Ninety-six children and adolescents with spinal muscular atrophy I-III, aged 6.0-18.11 years, 45 non-affected siblings and 59 healthy, matched controls were examined with one- (CPM/SPM), as well as multi-dimensional intelligence tests (Kaufman-ABC; Wechsler tests). The mean IQ measured with the CPM/SPM tests was 109.6 for the spinal muscular atrophy group, 107.3 for the sibs and 104.1 for the healthy controls (no significant difference). In the older children and adolescents (SPM only) the mean IQ was significantly higher for the spinal muscular atrophy patients (109.6) than for the controls (95.4). The standard score in the 'mental processing composite' scale of the Kaufman-ABC was identical in the spinal muscular atrophy group and controls (103.8). The cognitive profile was relatively homogeneous. However, the older children and adolescents did have a significantly higher verbal IQ (113.8) than controls (104.6) in the Wechsler tests. There were no significant differences in any of the tests among different grades of severity (spinal muscular atrophy types I-III). It can be concluded that children and adolescents with spinal muscular atrophy have a general intelligence in the normal range. By adolescence, environmentally mediated aspects of intelligence are higher in patients with spinal muscular atrophy. It could be speculated that the development of cognitive skills and knowledge is a creative way to compensate the many restrictions due to their physical handicap.
Çiğdem, Ünal Kantekin; Sevinç, Şahin; Esef, Bolat; Süreyya, Öztürk; Muzaffer, Gencer; Akif, Demirel
To investigate the differences in the number of squamous epithelial cells carried to the spinal canal by three different types of spinal needle tip of the same size. Patients were allocated into three groups (Group I, Group II, Group III). Spinal anesthesia was administered to Group I (n=50) using a 25G Quincke needle, to Group II (n=50) using a 25G pencil point spinal needle, and to Group III (n=50) using a non-cutting atraumatic needle with special bending. The first and third drops of cerebral spinal fluid (CSF) samples were taken from each patient and each drop was placed on a slide for cytological examination. Nucleated and non-nucleated squamous epithelial cells on the smear preparations were counted. There was statistically significant difference between the groups in respect to the number of squamous epithelial cells in the first drop (p<0.05). Group III had lower number of squamous epithelial cells in the first drop compared to that of Group I and Group II. Mean while Group I had higher number of squamous epithelial cells in the third drop compared to the other groups. The number of squamous epithelial cells in the first and third drops was statistically similar in each group respectively (p>0.05 for each group). In this study of different needle tips, it was seen that with atraumatic needle with special bending a significantly smaller number of cells were transported when compared to the Quincke tip needles, and with pencil point needles. Copyright © 2016 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.
Kirschner, J; Schorling, D; Hauschke, D; Rensing-Zimmermann, C; Wein, U; Grieben, U; Schottmann, G; Schara, U; Konrad, K; Müller-Felber, W; Thiele, S; Wilichowski, E; Hobbiebrunken, E; Stettner, G M; Korinthenberg, R
2014-02-01
In preclinical studies growth hormone and its primary mediator IGF-1 have shown potential to increase muscle mass and strength. A single patient with spinal muscular atrophy reported benefit after compassionate use of growth hormone. Therefore we evaluated the efficacy and safety of growth hormone treatment for spinal muscular atrophy in a multicenter, randomised, double-blind, placebo-controlled, crossover pilot trial. Patients (n = 19) with type II/III spinal muscular atrophy were randomised to receive either somatropin (0.03 mg/kg/day) or placebo subcutaneously for 3 months, followed by a 2-month wash-out phase before 3 months of treatment with the contrary remedy. Changes in upper limb muscle strength (megascore for elbow flexion and hand-grip in Newton) were assessed by hand-held myometry as the primary measure of outcome. Secondary outcome measures included lower limb muscle strength, motor function using the Hammersmith Functional Motor Scale and other functional tests for motor function and pulmonary function. Somatropin treatment did not significantly affect upper limb muscle strength (point estimate mean: 0.08 N, 95% confidence interval (CI:-3.79;3.95, p = 0.965), lower limb muscle strength (point estimate mean: 2.23 N, CI:-2.19;6.63, p = 0.302) or muscle and pulmonary function. Side effects occurring during somatropin treatment corresponded with well-known side effects of growth hormone substitution in patients with growth hormone deficiency. In this pilot study, growth hormone treatment did not improve muscle strength or function in patients with spinal muscular atrophy type II/III. Copyright © 2013 Elsevier B.V. All rights reserved.
Chen, Shao-Rui; Chen, Hong; Yuan, Wei-Xiu; Wess, Jürgen; Pan, Hui-Lin
2014-05-16
Stimulation of muscarinic acetylcholine receptors (mAChRs) inhibits nociceptive transmission at the spinal level. However, it is unclear how each mAChR subtype regulates excitatory synaptic input from primary afferents. Here we examined excitatory postsynaptic currents (EPSCs) of dorsal horn neurons evoked by dorsal root stimulation in spinal cord slices from wild-type and mAChR subtype knock-out (KO) mice. In wild-type mice, mAChR activation with oxotremorine-M decreased the amplitude of monosynaptic EPSCs in ∼67% of neurons but increased it in ∼10% of neurons. The inhibitory effect of oxotremorine-M was attenuated by the M2/M4 antagonist himbacine in the majority of neurons, and the remaining inhibition was abolished by group II/III metabotropic glutamate receptor (mGluR) antagonists in wild-type mice. In M2/M4 double-KO mice, oxotremorine-M inhibited monosynaptic EPSCs in significantly fewer neurons (∼26%) and increased EPSCs in significantly more neurons (33%) compared with wild-type mice. Blocking group II/III mGluRs eliminated the inhibitory effect of oxotremorine-M in M2/M4 double-KO mice. In M2 single-KO and M4 single-KO mice, himbacine still significantly reduced the inhibitory effect of oxotremorine-M. However, the inhibitory and potentiating effects of oxotremorine-M on EPSCs in M3 single-KO and M1/M3 double-KO mice were similar to those in wild-type mice. In M5 single-KO mice, oxotremorine-M failed to potentiate evoked EPSCs, and its inhibitory effect was abolished by himbacine. These findings indicate that activation of presynaptic M2 and M4 subtypes reduces glutamate release from primary afferents. Activation of the M5 subtype either directly increases primary afferent input or inhibits it through indirectly stimulating group II/III mGluRs. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Chen, Shao-Rui; Chen, Hong; Yuan, Wei-Xiu; Wess, Jürgen; Pan, Hui-Lin
2014-01-01
Stimulation of muscarinic acetylcholine receptors (mAChRs) inhibits nociceptive transmission at the spinal level. However, it is unclear how each mAChR subtype regulates excitatory synaptic input from primary afferents. Here we examined excitatory postsynaptic currents (EPSCs) of dorsal horn neurons evoked by dorsal root stimulation in spinal cord slices from wild-type and mAChR subtype knock-out (KO) mice. In wild-type mice, mAChR activation with oxotremorine-M decreased the amplitude of monosynaptic EPSCs in ∼67% of neurons but increased it in ∼10% of neurons. The inhibitory effect of oxotremorine-M was attenuated by the M2/M4 antagonist himbacine in the majority of neurons, and the remaining inhibition was abolished by group II/III metabotropic glutamate receptor (mGluR) antagonists in wild-type mice. In M2/M4 double-KO mice, oxotremorine-M inhibited monosynaptic EPSCs in significantly fewer neurons (∼26%) and increased EPSCs in significantly more neurons (33%) compared with wild-type mice. Blocking group II/III mGluRs eliminated the inhibitory effect of oxotremorine-M in M2/M4 double-KO mice. In M2 single-KO and M4 single-KO mice, himbacine still significantly reduced the inhibitory effect of oxotremorine-M. However, the inhibitory and potentiating effects of oxotremorine-M on EPSCs in M3 single-KO and M1/M3 double-KO mice were similar to those in wild-type mice. In M5 single-KO mice, oxotremorine-M failed to potentiate evoked EPSCs, and its inhibitory effect was abolished by himbacine. These findings indicate that activation of presynaptic M2 and M4 subtypes reduces glutamate release from primary afferents. Activation of the M5 subtype either directly increases primary afferent input or inhibits it through indirectly stimulating group II/III mGluRs. PMID:24695732
Schmittner, Marc D; Terboven, Tom; Dluzak, Michael; Janke, Andrea; Limmer, Marc E; Weiss, Christel; Bussen, Dieter G; Burmeister, Marc A; Beck, Grietje C
2010-06-01
Spinal saddle block represents nearly the ideal anaesthesia technique for anorectal surgery. Post-dural puncture headache (PDPH) is a dreaded complication but can be decreased by the use of non-cutting spinal needles to rates less than 1%. Though, cutting Quincke type needles are still widely used for economic reasons, leading to a higher rate of PDPH. We performed this study to demonstrate a reduction of PDPH by the use of very small 29-G compared with commonly used 25-G Quincke type spinal needles. Two hundred sixteen adult patients (male/female, 19-83 years, ASA status I-III) were randomised 1:1 to groups, in which either a 25-G or a 29-G Quincke type spinal needle was used for a spinal saddle block. The incidence of PDPH was assessed during 1 week after surgery. Thirty-nine of 216 patients developed PDPH but there was no difference between the two needle sizes (25-G, n = 18/106 vs. 29-G, n = 21/110, p = 0.6870). Women suffered significantly more from PDPH than men (23/86 vs. 16/130, p = 0.0069). Ambulatory patients had a later onset of PDPH than in-patients (24 h [0.5-72] vs. 2 h [0.2-96], p = 0.0002) and the headache was more severe in these patients (NRS 7 [2-10] vs. NRS 3 [1-8], p = 0.0009). The use of 29-G compared with 25-G Quincke needles led to no reduction of PDPH and is considerably higher compared with data from pencil-point needles. The use of non-cutting or pencil-point spinal needles should become the standard for performing spinal saddle block.
Santanen, U; Rautoma, P; Luurila, H; Erkola, O; Pere, P
2004-04-01
The incidence of headache after spinal anaesthesia has varied greatly between studies. We compared the incidence of postoperative headache in general and postdural puncture headache (PDPH) when using 27-gauge (G) (outer diameter 0.41 mm) Quincke and Whitacre spinal needles in ambulatory surgery performed under spinal anaesthesia. In a prospective, randomized study, 676 ASA physical status I-II day-case outpatients were given a spinal anaesthetic through either a 27-G (0.41 mm) Quincke or a 27-G (0.41 mm) Whitacre spinal needle. The incidence of any type of postoperative headache was assessed and the type of headache defined using a standardized questionnaire including PDPH criteria. The severity of the headache was defined using a 100-mm visual analogue scale. For the final analysis, 529 patients were available (259 patients in the Quincke group and 270 patients in the Whitacre group). The overall incidence of postoperative headache was 20.0%, but the incidence of true PDPH was very low (1.51%). The incidence of PDPH in the Quincke group was 2.70%, while in the Whitacre group it was only 0.37% (P < 0.05). The overall incidence of non-dural puncture headache was 18.5% and did not differ between the study groups. True PDPH seldom occurs when a 27-G (0.41 mm) spinal needle is used, although postoperatively a non-specific headache is common. Using the 27-G (0.41 mm) Whitacre spinal needle further reduced the incidence of PDPH. Thus, we recommend routine use of the 27-G (0.41 mm) Whitacre spinal needle when performing spinal anaesthesia.
Etezadi, Farhad; Karimi Yarandi, Kourosh; Ahangary, Aylar; Shokri, Hajar; Imani, Farsad; Safari, Saeid; Khajavi, Mohammad Reza
2013-01-01
Background The incidence of transient neurologic symptoms (TNS) after spinal anesthesia with lidocaine is reported as high as 40%. Objectives This prospective clinical trial was designed to determine the incidence of TNS in patients who underwent spinal anesthesia with two different needles, in two different surgical positions. Patients and Methods The present randomized clinical trial was conducted on 250 patients (ASA I-II), who were candidates for surgery in supine or lithotomy positions. According to the needle type (Sprotte or Quincke) and local anesthetics (lidocaine and bupivacaine) all patients were randomly divided into four groups. After performing spinal anesthesia in sitting position, the position was changed into supine or lithotomy, according to surgical procedure. The patients were observed for complications of spinal anesthesia during the first five post-operative days. The primary end-point for this trial was to recognize the incidence of TNS among the four groups. Our secondary objective was to evaluate the effect of patient's position, needle type, and duration of surgery on the development of TNS following spinal anesthesia. Results TNS was most commonly observed when lidocaine was used as anesthetic drug (P = 0.003). The impact of needle type, was not significant (P = 0.7). According to multivariate analysis, the duration of surgery was significantly lower in cases suffering from TNS (P = 0.04). Also, the risk of TNS increased following surgeries performed in lithotomy position (P = 0.00). Conclusions According to the results of this clinical study, spinal anesthesia with lidocaine, and the lithotomy position in surgery increased the risk of TNS. PMID:24223352
Behavior of scoliosis during growth in children with osteogenesis imperfecta.
Anissipour, Alireza K; Hammerberg, Kim W; Caudill, Angela; Kostiuk, Theodore; Tarima, Sergey; Zhao, Heather Shi; Krzak, Joseph J; Smith, Peter A
2014-02-05
Spinal deformities are common in patients with osteogenesis imperfecta, a heritable disorder that causes bone fragility. The purpose of this study was to describe the behavior of spinal curvature during growth in patients with osteogenesis imperfecta and establish its relationship to disease severity and medical treatment with bisphosphonates. The medical records and radiographs of 316 patients with osteogenesis imperfecta were retrospectively reviewed. The severity of osteogenesis imperfecta was classified with the modified Sillence classification. Serial curve measurements were recorded throughout the follow-up period for each patient with scoliosis. Regression analysis was used to determine the effect of disease severity (Sillence type), patient age, and bisphosphonate treatment on the progression of scoliosis as measured with the Cobb method. Of the 316 patients with osteogenesis imperfecta, 157 had associated scoliosis, a prevalence of 50%. Scoliosis prevalence (68%) and mean progression rate (6° per year) were the highest in the group of patients with the most severe osteogenesis imperfecta (modified Sillence type III). A group with intermediate osteogenesis imperfecta severity, modified Sillence type IV, demonstrated intermediate scoliosis values (54%, 4° per year). The patient group with the mildest form of osteogenesis imperfecta, modified Sillence type I, had the lowest scoliosis prevalence (39%) and rate of progression (1° per year). Early treatment-before the patient reached the age of six years-of type-III osteogenesis imperfecta with bisphosphonate therapy decreased the curve progression rate by 3.8° per year, which was a significant decrease. Bisphosphonate treatment had no demonstrated beneficial effect on curve behavior in patients with other types of osteogenesis imperfecta or in patients of older age. The prevalence of scoliosis in association with osteogenesis imperfecta is high. Progression rates of scoliosis in children with osteogenesis imperfecta are variable, depending on the Sillence type of osteogenesis imperfecta. High rates of scoliosis progression in type-III and type-IV osteogenesis imperfecta contrast with a benign course in type I. Bisphosphonate therapy initiated before the patient reaches the age of six years can modulate curve progression in type-III osteogenesis imperfecta.
Treatment of giant intradural (perimedullary) arteriovenous fistulas.
Halbach, V V; Higashida, R T; Dowd, C F; Fraser, K W; Edwards, M S; Barnwell, S L
1993-12-01
Ten patients with giant intradural spinal arteriovenous fistulas (perimedullary Types II and III) were treated with embolization alone (three patients) or in combination with surgery (seven patients). Their ages at the time of treatment ranged from 2 to 40 years, with a mean of 19.5 years. The indications for treatment included progressive myelopathy in five patients, spinal subarachnoid hemorrhage in four, and acute paraplegia in one. Associated conditions included Rendu-Osler-Weber syndrome in two patients, and Cobb's syndrome in two patients. In one patient, the cause of the fistula may have been related to epidural anesthesia traumatizing a low tethered cord. Angiographically, the fistulas were subclassified in three groups: a single-hole fistula supplied by a single feeding medullary artery (three patients); a single-hole fistula supplied by multiple medullary arteries (three patients); and multiple separate fistulas supplied by multiple medullary arteries (four patients). Eight patients were classified as perimedullary Type III and two as perimedullary Type II. Embolic agents were delivered from transarterial routes in 14 procedures and transvenous routes in 2 procedures. A total of 16 embolizations and 8 operations were performed in 10 patients. Seven patients were cured of their fistula (as demonstrated by angiography), two patients had 5% residual filling and are scheduled for future therapy. One refused a follow-up angiographic examination. Complications related to embolization included rupture of the anterior spinal artery by a detachable balloon, resulting in transient worsening of paraplegia with recovery to baseline. Transient worsening of symptoms after surgery was common, but all patients returned to baseline or better. Dramatic improvement was observed in four patients.(ABSTRACT TRUNCATED AT 250 WORDS)
Maciel, I S; Azevedo, V M; Pereira, T C; Bogo, M R; Souza, A H; Gomez, M V; Campos, M M
2014-09-26
The present study investigated the effects of pharmacological spinal inhibition of voltage-gated calcium channels (VGCC) in mouse pruritus. The epidural administration of P/Q-type MVIIC or PhTx3.3, L-type verapamil, T-type NNC 55-0396 or R-type SNX-482 VGCC blockers failed to alter the scratching behavior caused by the proteinase-activated receptor 2 (PAR-2) activator trypsin, injected into the mouse nape skin. Otherwise, trypsin-elicited pruritus was markedly reduced by the spinal administration of preferential N-type VGCC inhibitors MVIIA and Phα1β. Time-course experiments revealed that Conus magus-derived toxin MVIIA displayed significant effects when dosed from 1h to 4h before trypsin, while the anti-pruritic effects of Phα1β from Phoneutria nigriventer remained significant for up to 12h. In addition to reducing trypsin-evoked itching, MVIIA or Phα1β also prevented the itching elicited by intradermal (i.d.) injection of SLIGRL-NH2, compound 48/80 or chloroquine, although they did not affect H2O2-induced scratching behavior. Furthermore, the co-administration of MVIIA or Phα1β markedly inhibited the pruritus caused by the spinal injection of gastrin-releasing peptide (GRP), but not morphine. Notably, the epidural administration of MVIIA or Phα1β greatly prevented the chronic pruritus allied to dry skin model. However, either tested toxin failed to alter the edema formation or neutrophil influx caused by trypsin, whereas they significantly reduced the c-Fos activation in laminas I, II and III of the spinal cord. Our data bring novel evidence on itching transmission mechanisms, pointing out the therapeutic relevance of N-type VGCC inhibitors to control refractory pruritus. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Cruciate Paralysis in a 20- year -old Male with an Undisplaced Type III Odontoid Fracture.
A, Mansukhani Sameer; V, Tuteja Sanesh; B, Dhar Sanjay
2016-01-01
Cruciate Paralysis is a rare incomplete spinal cord syndrome presenting as brachial diplegia with minimal or no involvement of the lower extremities. It occurs as a result of trauma to the cervical spine and is associated with fractures of the axis and/or atlas. Diagnosis is confirmed on MRI and is managed by treatment of the underlying pathology. Prognosis depends on the extent of spinal cord injury and the exact cause. A 20-year-old male presented to the casualty with a history of an injury to the back of the head as a result of a fall. He had severe pain in the neck and shoulder region and experienced difficulty in raising both arms and gripping objects. On examination, he had weakness of both arms, more on the right, involving the C5 to T1 distribution and brisk reflexes. There was no sensory deficit. Radiograph and a computed tomography (CT) scan of the cervical spine showed a type III undisplaced odontoid fracture. MRI showed a signal abnormality in the spinal cord at the level of the cervicomedullary junction extending up to the body of C2 vertebra. The patient was treated with traction in Gardner Wells tongs for six weeks and a sterno-occipital-mandibular immobilizer immobilizer (SOMI) brace thereafter. At three-month follow-up, he had attained complete neurological recovery. Cruciate Paralysis is an important cause of brachial diplegia and must be differentiated from Acute Central Cord syndrome which can have similar clinical features.
Jukkola, A; Kauppila, S; Risteli, L; Vuopala, K; Risteli, J; Leisti, J; Pajunen, L
1998-06-01
We describe the clinical findings and biochemical features of a male child suffering from a so far undescribed lethal connective tissue disorder characterised by extreme hypermobility of the joints, lax skin, cataracts, severe growth retardation, and insufficient production of type I and type III procollagens. His features are compared with Ehlers-Danlos type IV, De Barsy syndrome, and geroderma osteodysplastica, as these disorders show some symptoms and signs shared with our patient. The child died because of failure of the connective tissue structures joining the skull and the spine, leading to progressive spinal stenosis. The aortic valve was translucent and insufficient. The clinical symptoms and signs, together with histological findings, suggested a collagen defect. Studies on both skin fibroblast cultures and the patient's serum showed reduced synthesis of collagen types I and III at the protein and RNA levels. The sizes of the mRNAs and newly synthesised proteins were normal, excluding gross structural abnormalities. These findings are not in accordance with any other collagen defect characterised so far.
Aquatic therapy for a child with type III spinal muscular atrophy: a case report.
Salem, Yasser; Gropack, Stacy Jaffee
2010-11-01
Spinal muscular atrophy (SMA) is a neuromuscular disorder characterized by degeneration of alpha motor neurons. This case report describes an aquatic therapy program and the outcomes for a 3-year-old girl with type III SMA. Motor skills were examined using the 88-item Gross Motor Function Measure (GMFM), the Peabody Developmental Motor Scales (PDMS-2), and the GAITRite system. The child received aquatic therapy twice per week for 45-min sessions, for 14 weeks. The intervention included aquatic activities designed to improve gross motor skills and age-appropriate functional mobility. The GMFM total score improved by 11% following the intervention. The Standing Dimension score improved by 28% and the Walking, Running, and Jumping Dimension score improved by 18%. The gross motor quotient for the PDMS-2 improved from 66 to 74. The child's gait showed improvement in walking velocity, stride length, and single-limb support time as a percentage of the gait cycle. The outcomes of this case report demonstrate the successful improvement of gross motor function and gait in a 3-year-old child with SMA. This study provides clinical information for therapists utilizing aquatic therapy as a modality for children with neuromuscular disorders.
Pasternak, Amy; Sideridis, Georgios; Fragala-Pinkham, Maria; Glanzman, Allan M; Montes, Jacqueline; Dunaway, Sally; Salazar, Rachel; Quigley, Janet; Pandya, Shree; O'Riley, Susan; Greenwood, Jonathan; Chiriboga, Claudia; Finkel, Richard; Tennekoon, Gihan; Martens, William B; McDermott, Michael P; Fournier, Heather Szelag; Madabusi, Lavanya; Harrington, Timothy; Cruz, Rosangel E; LaMarca, Nicole M; Videon, Nancy M; Vivo, Darryl C De; Darras, Basil T
2016-12-01
In this study we evaluated the suitability of a caregiver-reported functional measure, the Pediatric Evaluation of Disability Inventory-Computer Adaptive Test (PEDI-CAT), for children and young adults with spinal muscular atrophy (SMA). PEDI-CAT Mobility and Daily Activities domain item banks were administered to 58 caregivers of children and young adults with SMA. Rasch analysis was used to evaluate test properties across SMA types. Unidimensional content for each domain was confirmed. The PEDI-CAT was most informative for type III SMA, with ability levels distributed close to 0.0 logits in both domains. It was less informative for types I and II SMA, especially for mobility skills. Item and person abilities were not distributed evenly across all types. The PEDI-CAT may be used to measure functional performance in SMA, but additional items are needed to identify small changes in function and best represent the abilities of all types of SMA. Muscle Nerve 54: 1097-1107, 2016. © 2016 Wiley Periodicals, Inc.
Cruciate Paralysis in a 20- year -old Male with an Undisplaced Type III Odontoid Fracture
A, Mansukhani Sameer; V, Tuteja Sanesh; B, Dhar Sanjay
2016-01-01
Introduction: Cruciate Paralysis is a rare incomplete spinal cord syndrome presenting as brachial diplegia with minimal or no involvement of the lower extremities. It occurs as a result of trauma to the cervical spine and is associated with fractures of the axis and/or atlas. Diagnosis is confirmed on MRI and is managed by treatment of the underlying pathology. Prognosis depends on the extent of spinal cord injury and the exact cause. Case Presentation: A 20-year-old male presented to the casualty with a history of an injury to the back of the head as a result of a fall. He had severe pain in the neck and shoulder region and experienced difficulty in raising both arms and gripping objects. On examination, he had weakness of both arms, more on the right, involving the C5 to T1 distribution and brisk reflexes. There was no sensory deficit. Radiograph and a computed tomography (CT) scan of the cervical spine showed a type III undisplaced odontoid fracture. MRI showed a signal abnormality in the spinal cord at the level of the cervicomedullary junction extending up to the body of C2 vertebra. The patient was treated with traction in Gardner Wells tongs for six weeks and a sterno-occipital-mandibular immobilizer immobilizer (SOMI) brace thereafter. At three-month follow-up, he had attained complete neurological recovery. Conclusion: Cruciate Paralysis is an important cause of brachial diplegia and must be differentiated from Acute Central Cord syndrome which can have similar clinical features. PMID:28111622
Combined spinal epidural anesthesia during colon surgery in a high-risk patient: case report.
Imbelloni, Luiz Eduardo; Fornasari, Marcos; Fialho, José Carlos
2009-01-01
Combined spinal epidural anesthesia (CSEA) has advantages over single injection epidural or subarachnoid blockades. The objective of this report was to present a case in which segmental subarachnoid block can be an effective technique for gastrointestinal surgery with spontaneous respiration. Patient with physical status ASA III, with diabetes mellitus type II, hypertension, and chronic obstructive pulmonary disease was scheduled for resection of a right colon tumor. Combined spinal epidural block was performed in the T5-T6 space and 8 mg of 0.5% isobaric bupivacaine with 50 microg of morphine were injected in the subarachnoid space. The epidural catheter (20G) was introduced four centimeters in the cephalad direction. Sedation was achieved with fractionated doses of 1 mg of midazolam (total of 6 mg). A bolus of 25 mg of 0.5% bupivacaine was administered through the catheter two hours after the subarachnoid block. Vasopressors and atropine were not used. This case provides evidence that segmental spinal block can be the anesthetic technique used in gastrointestinal surgeries with spontaneous respiration.
Persson, Stefan; Boulland, Jean-Luc; Aspling, Marie; Larsson, Max; Fremeau, Robert T; Edwards, Robert H; Storm-Mathisen, Jon; Chaudhry, Farrukh A; Broman, Jonas
2006-08-10
To evaluate whether the organization of glutamatergic fibers systems in the lumbar cord is also evident at other spinal levels, we examined the immunocytochemical distribution of vesicle glutamate transporters 1 and 2 (VGLUT1, VGLUT2) at several different levels of the rat spinal cord. We also examined the expression of VGLUTs in an ascending sensory pathway, the spinocervical tract, and colocalization of VGLUT1 and VGLUT2. Mainly small VGLUT2-immunoreactive varicosities occurred at relatively high densities in most areas, with the highest density in laminae I-II. VGLUT1 immunolabeling, including small and medium-sized to large varicosities, was more differentiated, with the highest density in the deep dorsal horn and in certain nuclei such as the internal basilar nucleus, the central cervical nucleus, and the column of Clarke. Lamina I and IIo displayed a moderate density of small VGLUT1 varicosities at all spinal levels, although in the spinal enlargements a uniform density of such varicosities was evident throughout laminae I-II in the medial half of the dorsal horn. Corticospinal tract axons displayed VGLUT1, indicating that the corticospinal tract is an important source of small VGLUT1 varicosities. VGLUT1 and VGLUT2 were cocontained in small numbers of varicosities in laminae III-IV and IX. Anterogradely labeled spinocervical tract terminals in the lateral cervical nucleus were VGLUT2 immunoreactive. In conclusion, the principal distribution patterns of VGLUT1 and VGLUT2 are essentially similar throughout the rostrocaudal extension of the spinal cord. The mediolateral differences in VGLUT1 distribution in laminae I-II suggest dual origins of VGLUT1-immunoreactive varicosities in this region.
Isolated cytochrome c oxidase deficiency in G93A SOD1 mice overexpressing CCS protein.
Son, Marjatta; Leary, Scot C; Romain, Nadine; Pierrel, Fabien; Winge, Dennis R; Haller, Ronald G; Elliott, Jeffrey L
2008-05-02
G93A SOD1 transgenic mice overexpressing CCS protein develop an accelerated disease course that is associated with enhanced mitochondrial pathology and increased mitochondrial localization of mutant SOD1. Because these results suggest an effect of mutant SOD1 on mitochondrial function, we assessed the enzymatic activities of mitochondrial respiratory chain complexes in the spinal cords of CCS/G93A SOD1 and control mice. CCS/G93A SOD1 mouse spinal cord demonstrates a 55% loss of complex IV (cytochrome c oxidase) activity compared with spinal cord from age-matched non-transgenic or G93A SOD1 mice. In contrast, CCS/G93A SOD1 spinal cord shows no reduction in the activities of complex I, II, or III. Blue native gel analysis further demonstrates a marked reduction in the levels of complex IV but not of complex I, II, III, or V in spinal cords of CCS/G93A SOD1 mice compared with non-transgenic, G93A SOD1, or CCS/WT SOD1 controls. With SDS-PAGE analysis, spinal cords from CCS/G93A SOD1 mice showed significant decreases in the levels of two structural subunits of cytochrome c oxidase, COX1 and COX5b, relative to controls. In contrast, CCS/G93A SOD1 mouse spinal cord showed no reduction in levels of selected subunits from complexes I, II, III, or V. Heme A analyses of spinal cord further support the existence of cytochrome c oxidase deficiency in CCS/G93A SOD1 mice. Collectively, these results establish that CCS/G93A SOD1 mice manifest an isolated complex IV deficiency which may underlie a substantial part of mutant SOD1-induced mitochondrial cytopathy.
[Infantile spinal atrophy: our experience in the last 25 years].
Madrid Rodríguez, A; Martínez Martínez, P L; Ramos Fernández, J M; Urda Cardona, A; Martínez Antón, J
2015-03-01
To determine the incidence of spinal muscular atrophy (SMA) in our study population and genetic distribution and epidemiological and clinical characteristics and to analyze the level of care and development. Retrospective descriptive study of patients treated in our hospital in the past 25 years (from 1987 to early 2013), with a clinical and neurophysiological diagnosis of SMA. A total of 37 patients were found, representing an incidence for our reference population and year of 1 case per 10,000 live births. Males predominated (male/female ratio: 1.6/1). The type of SMA diagnosed more frequently was, type i (26 cases), followed by type ii (9 cases), one case with SMA type iii, and one case of spinal muscular atrophy with respiratory distress type 1 (SMARD1). The most frequent genetic alteration was homozygous deletion of exons 7 and 8 of SMN1 gene in 31 cases, while five patients had atypical genetics. The median survival for type i was 8.0 months and 15.8 years for type ii. The incidence in our population remains stable at around 1/10.000. Most cases presented with, predominantly male, typical genetics. In approximately 1/10 patients the genetic alteration was different from the classical one to the SMN gene. The prevalence of AME unrelated SMN gene was 1/37. The level of care has increased in line with social and welfare demands in recent years. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.
Goudet, Cyril; Chapuy, Eric; Alloui, Abdelkrim; Acher, Francine; Pin, Jean-Philippe; Eschalier, Alain
2008-07-01
Glutamate plays a key role in modulation of nociceptive processing. This excitatory amino acid exerts its action through two distinct types of receptors, ionotropic and metabotropic glutamate receptors (mGluRs). Eight mGluRs have been identified and divided in three groups based on their sequence similarity, pharmacology and G-protein coupling. While the role of group I and II mGluRs is now well established, little is known about the part played by group III mGluRs in pain. In this work, we studied comparatively the involvement of spinal group III mGluR in modulation of acute, inflammatory and neuropathic pain. While intrathecal injection of ACPT-I, a selective group III mGluR agonist, failed to induce any change in vocalization thresholds of healthy animals submitted to mechanical or thermal stimuli, it dose-dependently inhibited the nociceptive behavior of rats submitted to the formalin test and the mechanical hyperalgesia associated with different animal models of inflammatory (carrageenan-treated and monoarthritic rats) or neuropathic pain (mononeuropathic and vincristine-treated rats). Similar effects were also observed following intrathecal injection of PHCCC, a positive allosteric modulator of mGlu4. Antihyperalgesia induced by ACPT-I was blocked either by LY341495, a nonselective antagonist of mGluR, by MAP4, a selective group III antagonist. This study provide new evidences supporting the role of spinal group III mGluRs in the modulation of pain perception in different pathological pain states of various etiologies but not in normal conditions. It more particularly highlights the specific involvement of mGlu4 in this process and may be a useful therapeutic approach to chronic pain treatment.
Kaspiris, Angelos; Chronopoulos, Efstathios; Grivas, Theodoros B; Vasiliadis, Elias; Khaldi, Lubna; Lamprou, Margarita; Lelovas, Pavlos P; Papaioannou, Nikolaos; Dontas, Ismene A; Papadimitriou, Evangelia
2016-02-01
Mechanical loading of the spine is a major causative factor of degenerative changes and causes molecular and structural changes in the intervertebral disc (IVD) and the vertebrae end plate (EP). Pleiotrophin (PTN) is a growth factor with a putative role in bone remodeling through its receptor protein tyrosine phosphatase beta/zeta (RPTPβ/ζ). The present study investigates the effects of strain on PTN and RPTPβ/ζ protein expression in vivo. Tails of eight weeks old Sprague-Dawley rats were subjected to mechanical loading using a mini Ilizarov external apparatus. Rat tails untreated (control) or after 0 degrees of compression and 10°, 30° and 50° of angulation (groups 0, I, II and III respectively) were studied. PTN and RPTPβ/ζ expression were evaluated using immunohistochemistry and Western blot analysis. In the control group, PTN was mostly expressed by the EP hypertrophic chondrocytes. In groups 0 to II, PTN expression was increased in the chondrocytes of hypertrophic and proliferating zones, as well as in osteocytes and osteoblast-like cells of the ossification zone. In group III, only limited PTN expression was observed in osteocytes. RPTPβ/ζ expression was increased mainly in group 0, but also in group I, in all types of cells. Low intensity RPTPβ/ζ immunostaining was observed in groups II and III. Collectively, PTN and RPTPβ/ζ are expressed in spinal deformities caused by mechanical loading, and their expression depends on the type and severity of the applied strain. Copyright © 2015 Elsevier Ltd. All rights reserved.
Anesthetic management of a parturient with type III Klippel-Feil syndrome.
Hsu, G; Manabat, E; Huffnagle, S; Huffnagle, H J
2011-01-01
Klippel-Feil syndrome is believed to occur from failure of normal segmentation of cervical somites during gestation. We present the case of a 38-year-old primiparous woman with type III Klippel-Feil syndrome for elective cesarean delivery. Our patient had a short webbed neck, short stature, limited neck flexion and extension, and thoraco-lumbar abnormalities. A multidisciplinary approach, involving obstetrics, medical subspecialties, anesthesiology, otolaryngology, and radiology, were utilized to evaluate and manage this patient. Pulmonary function testing revealed a restrictive defect, but transthoracic echocardiography was normal without pulmonary hypertension. We planned a combined spinal-epidural technique; however, only the epidural technique was obtained. Cesarean delivery was commenced with favorable maternal and fetal outcomes. Post-operative pain management was provided with intravenous morphine patient-controlled analgesia. Copyright © 2010 Elsevier Ltd. All rights reserved.
Udina, Esther; Putman, Charles T; Harris, Luke R; Tyreman, Neil; Cook, Victoria E; Gordon, Tessa
2017-03-01
Smn +/- transgenic mouse is a model of the mildest form of spinal muscular atrophy. Although there is a loss of spinal motoneurons in 11-month-old animals, muscular force is maintained. This maintained muscular force is mediated by reinnervation of the denervated fibres by surviving motoneurons. The spinal motoneurons in these animals do not show an increased susceptibility to death after nerve injury and they retain their regenerative capacity. We conclude that the hypothesized immaturity of the neuromuscular system in this model cannot explain the loss of motoneurons by systematic die-back. Spinal muscular atrophy (SMA) is a common autosomal recessive disorder in humans and is the leading genetic cause of infantile death. Patients lack the SMN1 gene with the severity of the disease depending on the number of copies of the highly homologous SMN2 gene. Although motoneuron death in the Smn +/- transgenic mouse model of the mildest form of SMA, SMA type III, has been reported, we have used retrograde tracing of sciatic and femoral motoneurons in the hindlimb with recording of muscle and motor unit isometric forces to count the number of motoneurons with intact neuromuscular connections. Thereby, we investigated whether incomplete maturation of the neuromuscular system induced by survival motoneuron protein (SMN) defects is responsible for die-back of axons relative to survival of motoneurons. First, a reduction of ∼30% of backlabelled motoneurons began relatively late, at 11 months of age, with a significant loss of 19% at 7 months. Motor axon die-back was affirmed by motor unit number estimation. Loss of functional motor units was fully compensated by axonal sprouting to retain normal contractile force in four hindlimb muscles (three fast-twitch and one slow-twitch) innervated by branches of the sciatic nerve. Second, our evaluation of whether axotomy of motoneurons in the adult Smn +/- transgenic mouse increases their susceptibility to cell death demonstrated that all the motoneurons survived and they sustained their capacity to regenerate their nerve fibres. It is concluded the systematic die-back of motoneurons that innervate both fast- and slow-twitch muscle fibres is not related to immaturity of the neuromuscular system in SMA. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Effects from fine muscle and cutaneous afferents on spinal locomotion in cats
Kniffki, K.-D.; Schomburg, E. D.; Steffens, H.
1981-01-01
1. The effects of chemically activated fine muscle afferents (groups III and IV) and electrically activated cutaneous afferents on motoneuronal discharges were studied before and during fictive locomotion induced pharmacologically by i.v. administration of nialamide and l-DOPA in high spinal cats. Efferent activity was recorded simultaneously from nerve filaments to ipsi- and contralateral extensor and flexor muscles. In addition, intracellular recordings were made from lumbar α-motoneurones. 2. After nialamide but before treatment with l-DOPA, in some cases, transient locomotor-like discharges were induced by an increased activity in fine muscle afferents. The response pattern in nerves to both hind limbs could be different showing e.g. only transient alternating activity between knee flexor and extensor of one limb but not of the other one. 3. Treatment with l-DOPA did not always cause fictive locomotion. Often not all motoneurone pools showed rhythmic activity. In these cases stimulation of group III and IV muscle afferents usually caused transient periodic activity. In cases with apparent rhythmic activity, algesic stimulation of the gastrocnemius—soleus muscle caused an accentuation of the rhythm by a more abrupt transition from the active phase to the non-active interval. Again, the response patterns on both sides were not uniform in all cases. 4. A second type of response to activation of fine muscle afferents had a quite different character: the rhythmic activity was more or less completely overridden by a strong transient tonic hyperactivity or the rhythm was transiently blocked. These phenomena did not occur in the same way in all nerves. 5. Electrical stimulation of cutaneous nerves of the hind limb generally induced the same response pattern as chemical stimulation of the group III and IV muscle afferents. The effects varied depending on the stimulus strength and the nerve. 6. The results revealed that cutaneous and fine muscle afferents not only have similar functions in the reflex control of a limb but also in evocation and modulation of locomotion. Therefore, it is assumed that both types of afferents may serve together as a peripheral feed-back to the spinal locomotor centre. PMID:7320927
Schoenfeld, Andrew J; Newcomb, Ronald L; Pallis, Mark P; Cleveland, Andrew W; Serrano, Jose A; Bader, Julia O; Waterman, Brian R; Belmont, Philip J
2013-04-01
This study sought to characterize spine injuries among soldiers killed in Iraq or Afghanistan whose autopsy results were stored by the Armed Forces Medical Examiner System. The Armed Forces Medical Examiner System data set was queried to identify American military personnel who sustained a spine injury in conjunction with wounds that resulted in death during deployment in Iraq or Afghanistan from 2003 to 2011. Demographic and injury-specific characteristics were abstracted for each individual identified. The raw incidence of spinal injuries was calculated and correlations were drawn between the presence of spinal trauma and military specialty, mechanism and manner of injury, and wounds in other body regions. Significant associations were also sought for specific injury patterns, including spinal cord injury, atlantooccipital injury, low lumbar vertebral fractures, and lumbosacral dissociation. Statistical calculations were performed using χ statistic, z test, t test with Satterthwaite correction, and multivariate logistic regression. Among 5,424 deceased service members, 2,089 (38.5%) were found to have sustained at least one spinal injury. Sixty-seven percent of all fatalities with spinal injury were caused by explosion, while 15% occurred by gunshot. Spinal fracture was the most common type of injury (n = 2,328), while spinal dislocations occurred in 378, and vertebral column transection occurred in 223. Fifty-two percent sustained at least one cervical spine injury, and spinal cord injury occurred in 40%. Spinal cord injuries were more likely to occur as a result of gunshot (p < 0.001), while atlantooccipital injuries (p < 0.001) and low lumbar fractures (p = 0.01) were significantly higher among combat specialty soldiers. No significant association was identified between spinal injury risk and the periods 2003 to 2007 and 2008 to 2011, although atlantooccipital injuries and spinal cord injury were significantly reduced beginning in 2008 (p < 0.001). The results of this study indicate that the incidence of spinal trauma in modern warfare seems to be higher than previously reported. Epidemiologic study, level III.
Aortic aneurysm surgery: long-term patency of the reimplanted intercostal arteries.
David, Nathalie; Roux, Nicolas; Douvrin, Françoise; Clavier, Erick; Bessou, Jean Paul; Plissonnier, Didier
2012-08-01
During aortic surgery, the long-term patency of reimplanted intercostal arteries is unknown, limiting the relevance to preserve spinal cord vascularization. Between January 2001 and January 2007, 40 patients were operated for either thoracic aortic aneurysm (TAA) or thoracoabdominal aortic aneurysm (TAAA). Twenty cases of aneurysms limited to the proximal descending thoracic aorta were treated using endovascular repair, without preoperative spinal cord artery identification. Twenty patients--seven with extensive TAA, seven with type I TAAA, two with type II TAAA, and four with type III TAAA--underwent open surgery. Before open surgery, preoperative angiography was performed to identify spinal cord vascularization; in one case, the angiography failed to identify it. The segmental artery destined to the spinal cord artery was identified as originating from outside the aneurysm in 7 patients and inside the aneurysm in 12 patients: T6 R (1), T8 L (2), T9 L (3), T10 L (3), T11 L (3), L1 L (1). During the surgery, normothermic and femorofemoral bypass was used for visceral protection. All segmental arteries identified as critical before surgery were reattached in the graft. Twenty-four months later, computed tomography scans were performed to assess the patency of the reattached segmental arteries. Three patients died, including one with paraplegia (T9 L). No other cases of paraplegia were reported. Computed tomography scans were performed in 10 patients. Segmental artery reattachment was patent in nine patients. Our experience indicates the long-term patency of reimplanted segmental artery, without any convincing evidence of its utility in preventing neurologic events during TAA and TAAA direct repair. Copyright © 2012 Annals of Vascular Surgery Inc. Published by Elsevier Inc. All rights reserved.
Cervical Spinal Cord Atrophy Profile in Adult SMN1-Linked SMA
El Mendili, Mohamed-Mounir; Lenglet, Timothée; Stojkovic, Tanya; Behin, Anthony; Guimarães-Costa, Raquel; Salachas, François; Meininger, Vincent; Bruneteau, Gaelle; Le Forestier, Nadine; Laforêt, Pascal; Lehéricy, Stéphane; Benali, Habib; Pradat, Pierre-François
2016-01-01
Purpose The mechanisms underlying the topography of motor deficits in spinal muscular atrophy (SMA) remain unknown. We investigated the profile of spinal cord atrophy (SCA) in SMN1-linked SMA, and its correlation with the topography of muscle weakness. Materials and Methods Eighteen SMN1-linked SMA patients type III/V and 18 age/gender-matched healthy volunteers were included. Patients were scored on manual muscle testing and functional scales. Spinal cord was imaged using 3T MRI system. Radial distance (RD) and cord cross-sectional area (CSA) measurements in SMA patients were compared to those in controls and correlated with strength and disability scores. Results CSA measurements revealed a significant cord atrophy gradient mainly located between C3 and C6 vertebral levels with a SCA rate ranging from 5.4% to 23% in SMA patients compared to controls. RD was significantly lower in SMA patients compared to controls in the anterior-posterior direction with a maximum along C4 and C5 vertebral levels (p-values < 10−5). There were no correlations between atrophy measurements, strength and disability scores. Conclusions Spinal cord atrophy in adult SMN1-linked SMA predominates in the segments innervating the proximal muscles. Additional factors such as neuromuscular junction or intrinsic skeletal muscle defects may play a role in more complex mechanisms underlying weakness in these patients. PMID:27089520
A comparison of different densities of levobupivacaine solutions for unilateral spinal anaesthesia.
Yağan, Özgür; Taş, Nilay; Küçük, Ahmet; Hancı, Volkan
2016-01-01
The aim of the study was to compare the block characteristics and clinical effects of dextrose added to levobupivacaine solutions at different concentrations to provide unilateral spinal anaesthesia in lower extremity surgery. This prospective, randomised, double-blind study comprised 75 ASA I-II risk patients for whom unilateral total knee arthroscopy was planned. The patients were assigned to three groups: in Group I, 60mg dextrose was added to 7.5mg of 0.5% levobupivacaine, in Group II, 80mg and in Group III, 100mg. Spinal anaesthesia was applied to the patient in the lateral decubitus position with the operated side below and the patient was kept in position for 10min. The time for the sensorial block to achieve T12 level was slower in Group I than in Groups II and III (p<0.05, p<0.00). The time to full recovery of the sensorial block was 136min in Group I, 154min in Group II and 170min in Group III. The differences were statistically significant (p<0.05). The mean duration of the motor block was 88min in Group I, 105min in Group II, and 139min in Group III and the differences were statistically significant (p<0.05). The time to urination in Group I was statistically significantly shorter than in the other groups (p<0.00). The results of the study showed that together with an increase in density, the sensory and motor block duration was lengthened. It can be concluded that 30mg mL(-1) concentration of dextrose added to 7.5mg levobupivacaine is sufficient to provide unilateral spinal anaesthesia in day-case arthroscopic knee surgery. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.
Yağan, Özgür; Taş, Nilay; Küçük, Ahmet; Hancı, Volkan
2016-01-01
The aim of the study was to compare the block characteristics and clinical effects of dextrose added to levobupivacaine solutions at different concentrations to provide unilateral spinal anaesthesia in lower extremity surgery. This prospective, randomised, double-blind study comprised 75 ASA I-II risk patients for whom unilateral total knee arthroscopy was planned. The patients were assigned to three groups: in Group I, 60mg dextrose was added to 7.5mg of 0.5% levobupivacaine, in Group II, 80mg and in Group III, 100mg. Spinal anaesthesia was applied to the patient in the lateral decubitus position with the operated side below and the patient was kept in position for 10min. The time for the sensorial block to achieve T12 level was slower in Group I than in Groups II and III (p<0.05, p<0.00). The time to full recovery of the sensorial block was 136min in Group I, 154min in Group II and 170min in Group III. The differences were statistically significant (p<0.05). The mean duration of the motor block was 88min in Group I, 105min in Group II, and 139min in Group III and the differences were statistically significant (p<0.05). The time to urination in Group I was statistically significantly shorter than in the other groups (p<0.00). The results of the study showed that together with an increase in density, the sensory and motor block duration was lengthened. It can be concluded that 30mgmL(-1) concentration of dextrose added to 7.5mg levobupivacaine is sufficient to provide unilateral spinal anaesthesia in day-case arthroscopic knee surgery. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.
[Cross-cultural adaptation of the Quality of Life Index Spinal Cord Injury - Version III].
Reis, Priscila Alencar Mendes; Carvalho, Zuila Maria de Figueiredo; Tirado Darder, Juan José; Oriá, Mônica Oliveira Batista; Studart, Rita Mônica Borges; Maniva, Samia Jardelle Costa de Freitas
2015-06-01
To translate and culturally adapt to Portuguese the Ferrans and Powers Quality of Life Index Spinal Cord Injury - Version III and characterize the sample in relation to sociodemographic and clinical aspects. A methodological study with view to cross-cultural adaptation, following the particular steps of this method: initial translation, translation synthesis, back-translation (translation back to the original language), review by a committee of judges and pretest of the final version. The pretest was carried out with 30 patients with spinal cord injury. An index of 74 items divided into two parts (satisfaction/importance) was obtained. The criteria of semantic equivalence were evaluated as very adequate translation, higher than 87%, and vocabulary and were grammar higher than 86%. Idiomatic equivalence was higher than 74%, experimental greater than 78% and conceptual was greater than 70%. After cross-cultural adaptation, the instrument proved semantic, idiomatic, experimental and conceptual adequacy, in addition to helping the evaluation of the quality of life of people with spinal cord injury.
Selective thoracic surgery in the Lenke type 1A: King III and King IV type curves.
Parisini, P; Di Silvestre, M; Lolli, F; Bakaloudis, G
2009-06-01
Pedicle screw fixation enables enhanced three-dimensional correction of spinal deformities and effectively shortens the distal fusion level. However, the choice of distal fusion level is still controversial in single thoracic idiopathic scoliosis with the lumbar compensatory curve not crossing the middle line (Lenke type 1 with modifier A or King type III and IV curves).The authors retrospectively analyzed 31 patients treated by segmental pedicular instrumentation alone, affected by a single thoracic adolescent idiopathic scoliosis with a compensatory lumbar curve not crossing the midline (Lenke 1A), with an average age of 16.3 years (range 10-22 years). The patients with regard to the King classification were also assessed. A statistical analysis was performed to determine whether the two groups (King III, King IV) presented differences concerning the level of the stable vertebra (SV), end vertebra (EV), and neutral vertebra (NV) and were also analyzed the results at follow-up regarding the relationships between the SV, EV, and lowest instrumented vertebra (LIV). The statistical analysis showed a significant difference between the two curve types. In the King III type curve the SV, EV, and NV appeared to be more proximal than those of the King IV type curve and the segments between the SV, EV, and NV appeared to be reduced in King III curves compared with King IV curves. At a follow-up of 3.2 years (range 2.2-5) the thoracic curve showed a correction of 58.4% (from 62.3 degrees to 26.6 degrees ) and compensatory lumbar curve an average spontaneous correction of 52.4% (from 38.1 degrees to 18.1 degrees ).The position of the LIV was shorter than the position of the SV in 30 patients (97%) with an average "salvage" of 2.1 (from 1 to 4) distal fusion levels. Four cases (13%), all affected by a King IV type curve, presented at follow-up an unsatisfactory results due to an "adding on" phenomenon. The statistical analysis confirmed that this phenomenon was correlated with The King IV curve (P = 0.043; Chi-square test) and that the only predictive parameter for its onset was the LIV-SV difference (odds ratio = 0.093; with a confidence interval of 0.008-1): every time that in King IV curve type the LIV was three or more levels shorter than the stable vertebra at follow-up the "adding on" phenomenon was present. The authors conclude that Lenke's type 1 with modifier A includes two kinds of curves, King III and King IV and that the Lenke's type 2 curves and King V with the lumbar curve not crossing the middle line have a similar behavior. Therefore, it is of authors' opinion that "the adding on phenomenon" could be prevented by more rigidly defining K. IV versus K. III curves. In Lenke's 1/2 A-K. IV/V type with the rotation of the first vertebra just below the thoracic lower EV in the same direction as the thoracic curve, and when SV and EV show more than two levels of difference, it is necessary to extend the lower fusion down to L2 or L3 (not more than two levels shorter than the SV). Whereas in Lenke's 1/2 A-K. III/V with the rotation of the first proximal vertebra of lumbar curve in the opposite direction to the thoracic apex and when SV and EV show not more than two level gap differences, the position of the lowest instrumented vertebra can be two or three levels shorter than the stable vertebra with satisfactory postoperative spinal balance. Therefore, the stable vertebra and the rotation of lumbar curve are considered to be a reliable guide for selecting the lower level of fusion.
Orthopedic Management of Scoliosis by Garches Brace and Spinal Fusion in SMA Type 2 Children.
Catteruccia, Michela; Vuillerot, Carole; Vaugier, Isabelle; Leclair, Danielle; Azzi, Viviane; Viollet, Louis; Estournet, Brigitte; Bertini, Enrico; Quijano-Roy, Susana
2015-11-21
Scoliosis is the most debilitating issue in SMA type 2 patients. No evidence confirms the efficacy of Garches braces (GB) to delay definitive spinal fusion. Compare orthopedic and pulmonary outcomes in children with SMA type 2 function to management. We carried out a monocentric retrospective study on 29 SMA type 2 children who had spinal fusion between 1999 and 2009. Patients were divided in 3 groups: group 1-French patients (12 children) with a preventive use of GB; group 2-French patients (10 children) with use of GB after the beginning of the scoliosis curve; and group 3-Italian patients (7 children) with use of GB after the beginning of the scoliosis curve referred to our centre to perform orthopedic preoperative management. Mean preoperative and postoperative Cobb angle were significantly lower in the group 1 of proactively braced than in group 2 or 3 (Anova p = 0.03; Kruskal Wallis test p = 0.05). Better surgical results were observed in patients with a minor preoperative Cobb angle (r = 0.92 p < 0.0001). Fewer patients in the group 1 proactively braced required trunk casts and/or halo traction and an additional anterior fusion in comparison with patients in the group 2 and 3. Moreover, major complications tend to be less in the group 1 proactively braced. No significant differences were found between groups in pulmonary outcome measures. A proactive orthotic management may improve orthopedic outcome in SMA type 2. Further prospective studies comparing SMA management are needed to confirm these results. Therapeutic Level III. See Instructions to Authors on jbjs.org for a complete description of levels of evidence (Retrospective comparative study).
The effects of L-carnitine on spinal cord ischemia/reperfusion injury in rabbits.
Tetik, O; Yagdi, T; Islamoglu, F; Calkavur, T; Posacioglu, H; Atay, Y; Ayik, F; Canpolat, L; Yuksel, M
2002-02-01
Paraplegia after distal aortic aneurysm repair remains a persistent clinical problem. We hypothesized that the tolerance of the spinal cord to an ischemic period could be improved with hypothermic Ringer's Lactate containing L-Carnitine. Twenty-eight New Zealand white rabbits were used as spinal cord ischemia models. We separated rabbits into four equal groups and clamped each animal's abdominal aorta distal to the left renal artery. We occluded the aortas above the iliac bifurcation for 30 minutes. In group I, the infrarenal aorta was clamped without infusing any solution. In group II, Ringer's Lactate solution was infused at + 25degrees C for 3 minutes at a rate of 5 ml/min into the isolated aortic segments immediately after cross-clamping and the last 3 minutes of ischemia. In group III, Ringer's Lactate solution at +3 degrees C was given in the same method as that of group II. In group IV, Ringer's Lactate solution at +3 degrees C plus 100 mg/kg of L-carnitine was infused using the same technique. We assessed the neurological status of the hind limbs 24 and 48 hours after operation according to Tarlov's criteria. All animals were sacrificed and spinal cords were harvested for histological analyses. The neurological status in groups III and IV was significantly superior to that of groups I and II. All the animals in group I had complete hind-limb paraplegia. Complete hind-limb paraplegia occurred in 5 rabbits in group II. Two of the 7 animals in group III had spastic paraplegia, and none at all in group IV. Histological analysis of the cross-clamped segments of the rabbits with paraplegia in group I, II and III revealed changes consistent with ischemic injury, while findings were normal for the normal animals in group III and IV. In this model, the infusion of hypothermic Ringer's Lactate contained L-carnitine provided sufficient spinal cord protection against ischemia. Clinically, this may be a useful adjunct for prevention of paraplegia during surgery of the descending aorta.
1979-09-01
carriers and cerebro -spinal meningitis patients will be employed. Aooordin to the economic policy recently adopted by the Egyptia government, it has been...Nasr City, Cairo R. A E. III.- Neisaseiia meningitidis 19 strains of Neisseria menini-,itidis Group A isolated from patients’ throat or cerebro -spinal
SMN transcript levels in leukocytes of SMA patients determined by absolute real-time PCR
Tiziano, Francesco Danilo; Pinto, Anna Maria; Fiori, Stefania; Lomastro, Rosa; Messina, Sonia; Bruno, Claudio; Pini, Antonella; Pane, Marika; D'Amico, Adele; Ghezzo, Alessandro; Bertini, Enrico; Mercuri, Eugenio; Neri, Giovanni; Brahe, Christina
2010-01-01
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by homozygous mutations of the SMN1 gene. Three forms of SMA are recognized (type I–III) on the basis of clinical severity. All patients have at least one or more (usually 2–4) copies of a highly homologous gene (SMN2), which produces insufficient levels of functional SMN protein, because of alternative splicing of exon 7. Recently, evidence has been provided that SMN2 expression can be enhanced by pharmacological treatment. However, no reliable biomarkers are available to test the molecular efficacy of the treatments. At present, the only potential biomarker is the dosage of SMN products in peripheral blood. However, the demonstration that SMN full-length (SMN-fl) transcript levels are reduced in leukocytes of patients compared with controls remains elusive (except for type I). We have developed a novel assay based on absolute real-time PCR, which allows the quantification of SMN1-fl/SMN2-fl transcripts. For the first time, we have shown that SMN-fl levels are reduced in leukocytes of type II–III patients compared with controls. We also found that transcript levels are related to clinical severity as in type III patients SMN2-fl levels are significantly higher compared with type II and directly correlated with functional ability in type II patients and with age of onset in type III patients. Moreover, in haploidentical siblings with discordant phenotype, the less severely affected individuals showed significantly higher transcript levels. Our study shows that SMN2-fl dosage in leukocytes can be considered a reliable biomarker and can provide the rationale for SMN dosage in clinical trials. PMID:19603064
Engelbert, Raoul H H; Uiterwaal, Cuno S P M; van der Hulst, Annelies; Witjes, Baukje; Helders, Paul J M; Pruijs, Hans E H
2003-04-01
We studied the relationship between the age of reaching motor milestones, especially anti-gravity activities, and the age of development of pathological spinal curvatures in children with osteogenesis imperfecta (OI). We hypothesized that earlier achievement of anti-gravity motor milestones predicts a later development of pathological spinal curvatures. Ninety-six children participated in this retrospective study. The severity of the disease was classified according to Sillence into types I-IV. Spinal radiography was performed annually and spinal deformities were measured according to the Cobb angle. Scoliosis was defined as a Cobb angle exceeding 9 degrees. Pathological thoracic kyphosis was defined as a Cobb angle exceeding 40 degrees. The parents were asked to report the age at which the child achieved motor milestones, and data were checked against health care records. Thirty-seven of 96 children (39%) developed a scoliosis of more than 9 degrees. Nine of 96 children (9%) developed a pathological kyphosis. The age of developing scoliosis was significantly lower than the age of development of the pathological kyphosis (P=0.01). Bone mineral density was measured by dual energy X-ray absorptiometry (DEXA) in 53 children, 28 of whom developed scoliosis, and 25 of whom did not. The mean DEXA Z-score of the 28 children with scoliosis was significantly lower than that of the 25 children without (-5.2, SD 1.3 vs -3.2, SD 1.9; P-value <0.001). Children with OI type IV, but particularly OI type III, reached motor milestones much later than children with OI type I. The motor milestone "supported sitting" showed a significant inverse association with time of the first presence of scoliosis with a Cobb angle greater than 9 degrees (linear regression coefficient: -1.3, 95% confidence interval: -2.6 to -0.03). The age of achieving the motor milestones "lifting the head to 45 degrees in prone position", "rolling", and "supported-" and "unsupported standing" were not significantly associated with age of the first presence of scoliosis with a Cobb angle greater than 9 degrees. However, the directions of associations suggest that here, too, there is a tendency for later development of scoliosis in those who reach milestones at earlier ages. Multivariable analyses showed that the motor milestone "sitting with support" was significantly associated with age of first achieving scoliosis, independent of gender and type of OI (linear regression coefficient: -0.9, 95% confidence interval: -1.3 to -0.5). We conclude that in children with OI, the age of anti-gravity motor milestones was associated with the age of development of pathological spinal curvatures. Earlier achievement of the motor milestone "supported sitting" predicted significantly a later development of pathological spinal curvatures, independent of gender and type of OI.
de Souza Godinho, Fernanda Marques; Bock, Hugo; Gheno, Tailise Conte; Saraiva-Pereira, Maria Luiza
2012-12-01
Spinal muscular atrophy (SMA) is an autosomal recessive inherited disorder caused by alterations in the survival motor neuron I (SMN1) gene. SMA patients are classified as type I-IV based on severity of symptoms and age of onset. About 95% of SMA cases are caused by the homozygous absence of SMN1 due to gene deletion or conversion into SMN2. PCR-based methods have been widely used in genetic testing for SMA. In this work, we introduce a new approach based on TaqMan(®)real-time PCR for research and diagnostic settings. DNA samples from 100 individuals with clinical signs and symptoms suggestive of SMA were analyzed. Mutant DNA samples as well as controls were confirmed by DNA sequencing. We detected 58 SMA cases (58.0%) by showing deletion of SMN1 exon 7. Considering clinical information available from 56 of them, the patient distribution was 26 (46.4%) SMA type I, 16 (28.6%) SMA type II and 14 (25.0%) SMA type III. Results generated by the new method was confirmed by PCR-RFLP and by DNA sequencing when required. In conclusion, a protocol based on real-time PCR was shown to be effective and specific for molecular analysis of SMA patients.
Rahman, Wahida; Suzuki, Rie; Hunt, Stephen P; Dickenson, Anthony H
2008-06-01
Activity in descending systems from the brainstem modulates nociceptive transmission through the dorsal horn. Intrathecal injection of the neurotoxin saporin conjugated to SP (SP-SAP) into the lumbar spinal cord results in the selective ablation of NK(1) receptor expressing (NK(1)+ve) neurones in the superficial dorsal horn (lamina I/III). Loss of these NK(1)+ve neurones attenuates excitability of deep dorsal horn neurones due to a disruption of both intrinsic spinal circuits and a spino-bulbo-spinal loop, which activates a descending excitatory drive, mediated through spinal 5HT(3) receptors. Descending inhibitory pathways also modulate spinal activity and hence control the level of nociceptive transmission relayed to higher centres. To ascertain the spinal origins of the major descending noradrenergic inhibitory pathway we studied the effects of a selective alpha2-adrenoceptor antagonist, atipamezole, on neuronal activity in animals pre-treated with SP-SAP. Intrathecal application of atipamezole dose dependently facilitated the mechanically evoked neuronal responses of deep dorsal horn neurones to low intensity von Frey hairs (5-15 g) and noxious thermal (45-50 degrees C) evoked responses in SAP control animals indicating a physiological alpha2-adrenoceptor control. This facilitatory effect of atipamezole was lost in the SP-SAP treated group. These data suggest that activity within noradrenergic pathways have a dependence on dorsal horn NK(1)+ve cells. Further, noradrenergic descending inhibition may in part be driven by lamina I/III (NK(1)+ve) cells, and mediated via spinal alpha2-adrenoceptor activation. Since the same neuronal population drives descending facilitation and inhibition, the reduced excitability of lamina V/VI WDR neurones seen after loss of these NK(1)+ve neurones indicates a dominant role of descending facilitation.
Powell, Elizabeth Salmon; Carrico, Cheryl; Raithatha, Ravi; Salyers, Emily; Ward, Andrea; Sawaki, Lumy
2016-01-01
This double-blind, sham-controlled, crossover case study combined transvertebral direct current stimulation (tvDCS) and locomotor training on a robot-assisted gait orthosis (LT-RGO). Determine whether cathodal tvDCS paired with LT-RGO leads to greater changes in function and neuroplasticity than sham tvDCS paired with LT-RGO. University of Kentucky (UK) HealthCare Stroke and Spinal Cord Neurorehabilitation Research at HealthSouth Cardinal Hill Hospital. A single subject with motor incomplete spinal cord injury (SCI) participated in 24 sessions of sham tvDCS paired with LT-RGO before crossover to 24 sessions of cathodal tvDCS paired with LT-RGO. Functional outcomes were measured with 10 Meter Walk Test (10MWT), 6 Minute Walk Test (6MWT), Spinal Cord Independence Measure-III (SCIM-III) mobility component, lower extremity manual muscle test (MMT), and Berg Balance Scale (BBS). Corticospinal changes were assessed using transcranial magnetic stimulation. Improvement in 10MWT speed, SCIM-III mobility component, and BBS occurred with both conditions. 6MWT worsened after sham tvDCS and improved after cathodal tvDCS. MMT scores for both lower extremities improved following sham tvDCS but decreased following cathodal tvDCS. Corticospinal excitability increased following cathodal tvDCS but not sham tvDCS. These results suggest that combining cathodal tvDCS and LT-RGO may improve functional outcomes, increase corticospinal excitability, and possibly decrease spasticity. Randomized controlled trials are needed to confirm these conclusions. This publication was supported by the National Center for Research Resources and the National Center for Advancing Translational Sciences, National Institutes of Health, through Grant UL1TR000117, and the HealthSouth Cardinal Hill Stroke and Spinal Cord Endowment (1215375670).
Stephen, James H; Sievert, Angela J; Madsen, Peter J; Judkins, Alexander R; Resnick, Adam C; Storm, Phillip B; Rushing, Elisabeth J; Santi, Mariarita
2012-06-01
Primary spinal cord ependymomas (EPNs) are rare in children, comprising classical WHO Grade II and III tumors and Grade I myxopapillary ependymomas (MEPNs). Despite their benign histology, recurrences and neural-axis dissemination have been reported in up to 33% MEPNs in the pediatric population. Treatment options beyond resection are limited, and little is known about their tumorigenesis. The purpose of this study was to explore the tumor biology and outcomes in a consecutive series of pediatric patients treated at a single institution. The authors performed a retrospective clinicopathological review of 19 patients at a tertiary referral children's hospital for resection of a spinal cord ependymoma. The population included 8 patients with a pathological diagnosis of MEPN and 11 patients with a pathological diagnosis of spinal EPN (10 cases were Grade II and 1 case was Grade III). The upregulation of the following genes HOXB13, NEFL, PDGFRα, EGFR, EPHB3, AQP1, and JAGGED 1 was studied by immunohistochemistry from archived paraffin-embedded tumor samples of the entire cohort to compare the expression in MEPN versus EPN. Gross-total resection was achieved in 75% of patients presenting with MEPNs and in 100% of those with EPNs. The average follow-up period was 79 months for the MEPN subset and 53 months for Grade II/III EPNs. Overall survival for both subsets was 100%. However, event-free survival was only 50% for patients with MEPNs. Of note, in all cases involving MEPNs that recurred, the patients had undergone gross-total resection on initial surgery. In contrast, there were no tumor recurrences in patients with EPNs. Immunohistochemistry revealed no significant differences in protein expression between the two tumor types with the exception of EPHB3, which demonstrates a tendency to be positive in MEPNs (6 reactive tumors of 9) rather than in EPN (2 reactive tumors of 10). The authors' experience shows that, following a gross-total resection, MEPNs are more likely to recur than their higher-grade counterpart, EPNs. This supports the recommendation for close long-term radiological follow-up of pediatric patients with MEPNs to monitor for recurrence, despite the tumor's low-grade histological feature. No significant difference in the protein expression of HOXB13, NEFL, PDGFRα, EGFR, EPHB3, AQP1, and JAGGED 1 was present in this selected cohort of pediatric patients.
2010-01-01
Introduction In recent years, several massive earthquakes have occurred across the globe. Multidetector computed tomography (MDCT) is reliable in detecting spinal injuries. The purpose of this study was to compare the features of spinal injuries resulting from the Sichuan earthquake with those of non-earthquake-related spinal trauma using MDCT. Methods Features of spinal injuries of 223 Sichuan earthquake-exposed patients and 223 non-earthquake-related spinal injury patients were retrospectively compared using MDCT. The date of non-earthquake-related spinal injury patients was collected from 1 May 2009 to 22 July 2009 to avoid the confounding effects of seasonal activity and clothing. We focused on anatomic sites, injury types and neurologic deficits related to spinal injuries. Major injuries were classified according to the grid 3-3-3 scheme of the Magerl (AO) classification system. Results A total of 185 patients (82.96%) in the earthquake-exposed cohort experienced crush injuries. In the earthquake and control groups, 65 and 92 patients, respectively, had neurologic deficits. The anatomic distribution of these two cohorts was significantly different (P < 0.001). Cervical spinal injuries were more common in the control group (risk ratio (RR) = 2.12, P < 0.001), whereas lumbar spinal injuries were more common in the earthquake-related spinal injuries group (277 of 501 injured vertebrae; 55.29%). The major types of injuries were significantly different between these cohorts (P = 0.002). Magerl AO type A lesions composed most of the lesions seen in both of these cohorts. Type B lesions were more frequently seen in earthquake-related spinal injuries (RR = 1.27), while we observed type C lesions more frequently in subjects with non-earthquake-related spinal injuries (RR = 1.98, P = 0.0029). Conclusions Spinal injuries sustained in the Sichuan earthquake were located mainly in the lumbar spine, with a peak prevalence of type A lesions and a high occurrence of neurologic deficits. The anatomic distribution and type of spinal injuries that varied between earthquake-related and non-earthquake-related spinal injury groups were perhaps due to the different mechanism of injury. PMID:21190568
Böhm, H; Kayser, R; El Saghir, H; Heyde, C-E
2006-09-01
This retrospective study evaluates eight patients with unstable fractures of the atlas vertebra, treated operatively in the Central Clinic Bad Berka between January 1995 and December 2001. In all cases, we were confronted with unstable and dislocated type III fractures according to Gehweiler, caused by an injured transverse ligament. Mean age was 34 years (range 20-49) in two women and six men. We introduce a new technique of direct reconstruction of the atlas vertebra. This technique leads to a stable ring construct that allows compression osteosynthesis of the fracture. Spinal fusion can be avoided, as can postoperative immobilization, since sufficient stability for functional postoperative treatment is achievable. The follow-up control 38 months (range 6-75) after surgery showed solid bony fusion in all cases, in one case after revision surgery. All patients showed good functional results, there was no need for analgesics and all patients could be reintegrated into their former occupation.
Flight Physical Standards of the 1980’s: Spinal Column Considerations
1979-10-01
disease and spondylosis deformans. In addition, the role of vertebral body fractures oni subsequent spinal column impact is discussed. SECURITY...11 Spondylosis D eform ans ......................................... ................... 11 III...5th lumbar vertebra supports the superimposed weight of the torso upon the inclined plane of the sacrum. The necessity for bony continuity of the 5th
Elsebaie, H B; Dannawi, Z; Altaf, F; Zaidan, A; Al Mukhtar, M; Shaw, M J; Gibson, A; Noordeen, H
2016-02-01
The achievement of shoulder balance is an important measure of successful scoliosis surgery. No previously described classification system has taken shoulder balance into account. We propose a simple classification system for AIS based on two components which include the curve type and shoulder level. Altogether, three curve types have been defined according to the size and location of the curves, each curve pattern is subdivided into type A or B depending on the shoulder level. This classification was tested for interobserver reproducibility and intraobserver reliability. A retrospective analysis of the radiographs of 232 consecutive cases of AIS patients treated surgically between 2005 and 2009 was also performed. Three major types and six subtypes were identified. Type I accounted for 30 %, type II 28 % and type III 42 %. The retrospective analysis showed three patients developed a decompensation that required extension of the fusion. One case developed worsening of shoulder balance requiring further surgery. This classification was tested for interobserver and intraobserver reliability. The mean kappa coefficients for interobserver reproducibility ranged from 0.89 to 0.952, while the mean kappa value for intraobserver reliability was 0.964 indicating a good-to-excellent reliability. The treatment algorithm guides the spinal surgeon to achieve optimal curve correction and postoperative shoulder balance whilst fusing the smallest number of spinal segments. The high interobserver reproducibility and intraobserver reliability makes it an invaluable tool to describe scoliosis curves in everyday clinical practice.
Petitjean, Hugues; Rodeau, Jean-Luc; Schlichter, Rémy
2012-12-01
In acute rat spinal cord slices, the application of capsaicin (5 μm, 90 s), an agonist of transient receptor potential vanilloid 1 receptors expressed by a subset of nociceptors that project to laminae I-II of the spinal cord dorsal horn, induced an increase in the frequency of spontaneous excitatory and spontaneous inhibitory postsynaptic currents in about half of the neurons in laminae II, III-IV and V. In the presence of tetrodotoxin, which blocks action potential generation and polysynaptic transmission, capsaicin increased the frequency of miniature excitatory postsynaptic currents in only 30% of lamina II neurons and had no effect on the frequency of miniature excitatory postsynaptic currents in laminae III-V or on the frequency of miniature inhibitory postsynaptic currents in laminae II-V. When the communication between lamina V and more superficial laminae was interrupted by performing a mechanical section between laminae IV and V, capsaicin induced an increase in spontaneous excitatory postsynaptic current frequency in laminae II-IV and an increase in spontaneous inhibitory postsynaptic current frequency in lamina II that were similar to those observed in intact slices. However, in laminae III-IV of transected slices, the increase in spontaneous inhibitory postsynaptic current frequency was virtually abolished. Our results indicate that nociceptive information conveyed by transient receptor potential vanilloid 1-expressing nociceptors is transmitted from lamina II to deeper laminae essentially by an excitatory pathway and that deep laminae exert a 'feedback' control over neurons in laminae III-IV by increasing inhibitory synaptic transmission in these laminae. Moreover, we provide evidence that laminae III-IV might play an important role in the processing of nociceptive information in the dorsal horn. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Traumatic upper cervical spinal fractures in teaching hospitals of China over 13 years
Wang, Hongwei; Ou, Lan; Zhou, Yue; Li, Changqing; Liu, Jun; Chen, Yu; Yu, Hailong; Wang, Qi; Zhao, Yiwen; Han, Jianda; Xiang, Liangbi
2016-01-01
Abstract To investigate the incidence and pattern of patients managed for traumatic upper cervical spinal fractures (TUCSFs) in teaching hospitals in China over 13 years. We retrospectively reviewed 351 patients with TUCSF admitted to our teaching hospitals. Incidence rates were calculated with respect to age, gender, etiologies of trauma, anatomical distribution, anatomical classification, American spinal injury association impairment scale (ASIA) classification of neurological deficit and associated injuries. There were 260 male and 91 female patients, with a mean age of 44.2 ± 16.3 years. The mean age of the patients significantly increased by year of admission, from 35.2 ± 14.5 years to 47.5 ± 17.2 years (P = 0.005). Motor vehicle accidents (MVAs) (n = 132, 37.6%) and high falls (n = 104, 29.6%) were the 2 most common mechanisms. The number of C2 fractures (n = 300, 85.5%) was significantly higher than that of C1 (n = 99, 28.2%) (P < 0.001). High falls resulted in significantly more Type I C1 fractures than other etiologies (all P < 0.001). MVAs resulted in many more Type II and Type III C1 fractures and Type II and Type III C2 fractures than other etiologies. High falls were the most common injury type (n = 44, 36.4%) resulting in neurological deficits. Patients who presented with Landell classification Type I single C1 fracture (n = 6, 42.9%) had the highest rate of neurological deficits. Eighty-two patients had combined injuries; the most common pattern was cervical + cervical spine (n = 44, 12.5%), followed by cervical + thoracic spine (n = 27, 7.7%). A total of 121 patients (34.5%) suffered neurological deficits. Of all patients with TUCSF without combined injuries, single C2 fractures accounted for the highest rate of neurological deficits (n = 62, 32.0%). Multivariate logistic regression analysis indicated that sex (OR = 1.876, 95% CI: 1.022–3.443, P = 0.042), etiology (MVA pedestrians vs high fall: OR = 0.187, 95% CI: 0.056–0.629, P = 0.007), level (C1 + OFs vs C1: OR = 6.264, 95% CI: 1.152–34.045, P = 0.034), and injury severity scoring (ISS) (OR = 1.186, 95% CI: 1.133–1.242, P < 0.001) were independent risk factors of neurological deficit. The most common causes of TUCSF were MVAs and high falls; single C2 fractures without combined injuries accounted for the most common neurological deficits. Different etiologies resulted in different specific anatomical injuries and neurological deficits. We should make early diagnoses and initiate timely treatment according to different TUCSF patterns. PMID:27787377
Spinal Disinhibition in Experimental and Clinical Painful Diabetic Neuropathy
Marshall, Andrew G.; Lee-Kubli, Corinne; Azmi, Shazli; Zhang, Michael; Ferdousi, Maryam; Mixcoatl-Zecuatl, Teresa; Petropoulos, Ioannis N.; Ponirakis, Georgios; Fineman, Mark S.; Fadavi, Hassan; Frizzi, Katie; Tavakoli, Mitra; Jolivalt, Corinne G.; Boulton, Andrew J.M.; Efron, Nathan; Calcutt, Nigel A.
2017-01-01
Impaired rate-dependent depression (RDD) of the Hoffman reflex is associated with reduced dorsal spinal cord potassium chloride cotransporter expression and impaired spinal γ-aminobutyric acid type A receptor function, indicative of spinal inhibitory dysfunction. We have investigated the pathogenesis of impaired RDD in diabetic rodents exhibiting features of painful neuropathy and the translational potential of this marker of spinal inhibitory dysfunction in human painful diabetic neuropathy. Impaired RDD and allodynia were present in type 1 and type 2 diabetic rats but not in rats with type 1 diabetes receiving insulin supplementation that did not restore normoglycemia. Impaired RDD in diabetic rats was rapidly normalized by spinal delivery of duloxetine acting via 5-hydroxytryptamine type 2A receptors and temporally coincident with the alleviation of allodynia. Deficits in RDD and corneal nerve density were demonstrated in patients with painful diabetic neuropathy compared with healthy control subjects and patients with painless diabetic neuropathy. Spinal inhibitory dysfunction and peripheral small fiber pathology may contribute to the clinical phenotype in painful diabetic neuropathy. Deficits in RDD may help identify patients with spinally mediated painful diabetic neuropathy who may respond optimally to therapies such as duloxetine. PMID:28202580
Individualized 3D printing navigation template for pedicle screw fixation in upper cervical spine
Guo, Fei; Dai, Jianhao; Zhang, Junxiang; Ma, Yichuan; Zhu, Guanghui; Shen, Junjie; Niu, Guoqi
2017-01-01
Purpose Pedicle screw fixation in the upper cervical spine is a difficult and high-risk procedure. The screw is difficult to place rapidly and accurately, and can lead to serious injury of spinal cord or vertebral artery. The aim of this study was to design an individualized 3D printing navigation template for pedicle screw fixation in the upper cervical spine. Methods Using CT thin slices data, we employed computer software to design the navigation template for pedicle screw fixation in the upper cervical spine (atlas and axis). The upper cervical spine models and navigation templates were produced by 3D printer with equal proportion, two sets for each case. In one set (Test group), pedicle screws fixation were guided by the navigation template; in the second set (Control group), the screws were fixed under fluoroscopy. According to the degree of pedicle cortex perforation and whether the screw needed to be refitted, the fixation effects were divided into 3 types: Type I, screw is fully located within the vertebral pedicle; Type II, degree of pedicle cortex perforation is <1 mm, but with good internal fixation stability and no need to renovate; Type III, degree of pedicle cortex perforation is >1 mm or with the poor internal fixation stability and in need of renovation. Type I and Type II were acceptable placements; Type III placements were unacceptable. Results A total of 19 upper cervical spine and 19 navigation templates were printed, and 37 pedicle screws were fixed in each group. Type I screw-placements in the test group totaled 32; Type II totaled 3; and Type III totaled 2; with an acceptable rate of 94.60%. Type I screw placements in the control group totaled 23; Type II totaled 3; and Type III totaled 11, with an acceptable rate of 70.27%. The acceptability rate in test group was higher than the rate in control group. The operation time and fluoroscopic frequency for each screw were decreased, compared with control group. Conclusion The individualized 3D printing navigation template for pedicle screw fixation is easy and safe, with a high success rate in the upper cervical spine surgery. PMID:28152039
Individualized 3D printing navigation template for pedicle screw fixation in upper cervical spine.
Guo, Fei; Dai, Jianhao; Zhang, Junxiang; Ma, Yichuan; Zhu, Guanghui; Shen, Junjie; Niu, Guoqi
2017-01-01
Pedicle screw fixation in the upper cervical spine is a difficult and high-risk procedure. The screw is difficult to place rapidly and accurately, and can lead to serious injury of spinal cord or vertebral artery. The aim of this study was to design an individualized 3D printing navigation template for pedicle screw fixation in the upper cervical spine. Using CT thin slices data, we employed computer software to design the navigation template for pedicle screw fixation in the upper cervical spine (atlas and axis). The upper cervical spine models and navigation templates were produced by 3D printer with equal proportion, two sets for each case. In one set (Test group), pedicle screws fixation were guided by the navigation template; in the second set (Control group), the screws were fixed under fluoroscopy. According to the degree of pedicle cortex perforation and whether the screw needed to be refitted, the fixation effects were divided into 3 types: Type I, screw is fully located within the vertebral pedicle; Type II, degree of pedicle cortex perforation is <1 mm, but with good internal fixation stability and no need to renovate; Type III, degree of pedicle cortex perforation is >1 mm or with the poor internal fixation stability and in need of renovation. Type I and Type II were acceptable placements; Type III placements were unacceptable. A total of 19 upper cervical spine and 19 navigation templates were printed, and 37 pedicle screws were fixed in each group. Type I screw-placements in the test group totaled 32; Type II totaled 3; and Type III totaled 2; with an acceptable rate of 94.60%. Type I screw placements in the control group totaled 23; Type II totaled 3; and Type III totaled 11, with an acceptable rate of 70.27%. The acceptability rate in test group was higher than the rate in control group. The operation time and fluoroscopic frequency for each screw were decreased, compared with control group. The individualized 3D printing navigation template for pedicle screw fixation is easy and safe, with a high success rate in the upper cervical spine surgery.
Lin, Bon-Jour; Lin, Meng-Chi; Lin, Chin; Lee, Meei-Shyuan; Feng, Shao-Wei; Ju, Da-Tong; Ma, Hsin-I; Liu, Ming-Ying; Hueng, Dueng-Yuan
2015-10-01
Previous studies have identified the factors affecting the surgical outcome of cervical spondylotic myelopathy (CSM) following laminoplasty. Nonetheless, the effect of these factors remains controversial. It is unknown about the association between pre-operative cervical spinal cord morphology and post-operative imaging result following laminoplasty. The goal of this study is to analyze the impact of pre-operative cervical spinal cord morphology on post-operative imaging in patients with CSM. Twenty-six patients with CSM undergoing open-door laminoplasty were classified according to pre-operative cervical spine bony alignment and cervical spinal cord morphology, and the results were evaluated in terms of post-operative spinal cord posterior drift, and post-operative expansion of the antero-posterior dura diameter. By the result of study, pre-operative spinal cord morphology was an effective classification in predicting surgical outcome - patients with anterior convexity type, description of cervical spinal cord morphology, had more spinal cord posterior migration than those with neutral or posterior convexity type after open-door laminoplasty. Otherwise, the interesting finding was that cervical spine Cobb's angle had an impact on post-operative spinal cord posterior drift in patients with neutral or posterior convexity type spinal cord morphology - the degree of kyphosis was inversely proportional to the distance of post-operative spinal cord posterior drift, but not in the anterior convexity type. These findings supported that pre-operative cervical spinal cord morphology may be used as screening for patients undergoing laminoplasty. Patients having neutral or posterior convexity type spinal cord morphology accompanied with kyphotic deformity were not suitable candidates for laminoplasty. Copyright © 2015 Elsevier B.V. All rights reserved.
Stratford, J M; Larson, E D; Yang, R; Salcedo, E; Finger, T E
2017-07-01
Taste buds contain multiple cell types with each type expressing receptors and transduction components for a subset of taste qualities. The sour sensing cells, Type III cells, release serotonin (5-HT) in response to the presence of sour (acidic) tastants and this released 5-HT activates 5-HT 3 receptors on the gustatory nerves. We show here, using 5-HT 3A GFP mice, that 5-HT 3 -expressing nerve fibers preferentially contact and receive synaptic contact from Type III taste cells. Further, these 5-HT 3 -expressing nerve fibers terminate in a restricted central-lateral portion of the nucleus of the solitary tract (nTS)-the same area that shows increased c-Fos expression upon presentation of a sour tastant (30 mM citric acid). This acid stimulation also evokes c-Fos in the laterally adjacent mediodorsal spinal trigeminal nucleus (DMSp5), but this trigeminal activation is not associated with the presence of 5-HT 3 -expressing nerve fibers as it is in the nTS. Rather, the neuronal activation in the trigeminal complex likely is attributable to direct depolarization of acid-sensitive trigeminal nerve fibers, for example, polymodal nociceptors, rather than through taste buds. Taken together, these findings suggest that transmission of sour taste information involves communication between Type III taste cells and 5-HT 3 -expressing afferent nerve fibers that project to a restricted portion of the nTS consistent with a crude mapping of taste quality information in the primary gustatory nucleus. © 2017 Wiley Periodicals, Inc.
Multilevel non-contiguous spinal injuries: incidence and patterns based on whole spine MRI.
Kanna, Rishi Mugesh; Gaike, Chandrasekar V; Mahesh, Anupama; Shetty, Ajoy Prasad; Rajasekaran, S
2016-04-01
Multi-level non-contiguous spinal injuries are not uncommon and their incidence varies from 1.6 to 77% depending on the type of imaging modality used. Delayed diagnosis and missed spinal injuries in non-contiguous spine fractures have been frequently described which can result in significant pain, deformity and neurological deficit. The efficacy of whole spine MRI in detecting asymptomatic significant vertebral fractures is not known. Consecutive spinal injury patients treated between 2011 and 2013 were retrospectively evaluated based on clinical and radiographic records. Patients' demographics, mode of injury, presence of associated injuries, clinical symptoms and the presence of neurological deficit were studied. Radiographs of the fractured region and whole spine MRI were evaluated for the presence of multi-level injuries. Among 484 patients, 95 (19.62%) patients had multilevel injuries including 86 (17.76%) with non-contiguous injuries. Five common patterns of non-contiguous spinal injuries were observed. Pattern I: cervical and thoracic--29.1%, Pattern II: thoracolumbar and lumbosacral--22.1%, Pattern III: thoracic and thoracolumbar--12.8 %, Pattern IV: cervical and thoracolumbar--9.1% and Pattern V: lumbosacral and associated injuries--9.0 %. The incidence of intra-regional non-contiguous injuries was 17.4%. Whole spine MRI scan detected 24 (28.6%) missed secondary injuries of which 5 were unstable. The incidence of multilevel non-contiguous spine injury using whole spine MRI imaging is 17.76%. Five different patterns of multi-level non-contiguous injuries were found with the most common pattern being the cervical and thoracic level injuries. The incidence of unstable injuries can be as high as 21% of missed secondary injuries.
Factors associated with acute and chronic pain after inguinal herniorraphy.
Erdogan, Elif; Ozenc, Ecder
2018-04-01
The aim of this study was to analyse the relationship between types of anaesthesia, patients' demographic variables, preoperative emotional states and the prevalence of postoperative pain. In this randomized prospective study, postoperative pain was assessed in 100 patients, who were ASA (American Society of Anaesthesiologist) I-II and between 18-65 years old, undergoing inguinal herniorrhaphy with either general or spinal anaesthesia. In addition, postoperative pain compared with patients' demographic properties and psychological conditions in each group was also considered. Acute pain was evaluated at 1, 2, 4, 6, 12 and 24 th hours with the Numerical Rating Scale (NRS) and chronic neuropathic pain was at 1, 2 and 3 rd months with Douleur Neuropathique 4 Questions (DN4). All patients were treated with the same analgesics after operation. Group spinal anaesthesia had lower acute pain at 1 and 2 nd hours but they felt more severe pain at the 24 th hour. Also patients' anxieties were correlated with acute and chronic postoperative pain. Ten patients complained about postoperative chronic pain after 3 months and there was no significant difference between groups. Spinal anaesthesia decreased acute pain intensity at the first postoperative hours. Patients with anxiety felt high pain levels and they had an increased chronic pain prevalence.
Bartels, Ronald H M A; Hosman, Allard J F; van de Meent, Henk; Hofmeijer, Jeannette; Vos, Pieter E; Slooff, Willem Bart; Öner, F Cumhur; Coppes, Maarten H; Peul, Wilco C; Verbeek, André L M
2013-01-31
Incomplete cervical cord syndrome without spinal instability is a very devastating event for the patient and the family. It is estimated that up to 25% of all traumatic spinal cord lesions belong to this category. The treatment for this type of spinal cord lesion is still subject of discussion. From a biological point of view early surgery could prevent secondary damage due to ongoing compression of the already damaged spinal cord. Historically, however, conservative treatment was propagated with good clinical results. Proponents for early surgery as well those favoring conservative treatment are still in debate. The proposed trial will contribute to the discussion and hopefully also to a decrease in the variability of clinical practice. A randomized controlled trial is designed to compare the clinical outcome of early surgical strategy versus a conservative approach. The primary outcome is clinical outcome according to mJOA. This also measured by ASIA score, DASH score and SCIM III score. Other endpoints are duration of the stay at a high care department (medium care, intensive care), duration of the stay at the hospital, complication rate, mortality rate, sort of rehabilitation, and quality of life. A sample size of 36 patients per group was calculated to reach a power of 95%. The data will be analyzed as intention-to-treat at regular intervals, but the end evaluation will take place at two years post-injury. At the end of the study, clinical outcomes between treatments attitudes can be compared. Efficacy, but also efficiency can be determined. A goal of the study is to determine which treatment will result in the best quality of life for the patients. This study will certainly contribute to more uniformity of treatment offered to patients with a special sort of spinal cord injury. Gov: NCT01367405.
Motojima, Yasuhito; Nishimura, Haruki; Ueno, Hiromichi; Sonoda, Satomi; Nishimura, Kazuaki; Tanaka, Kentaro; Saito, Reiko; Yoshimura, Mitsuhiro; Maruyama, Takashi; Matsuura, Takanori; Suzuki, Hitoshi; Kawasaki, Makoto; Ohnishi, Hideo; Sakai, Akinori; Ueta, Yoichi
2018-06-21
Pain management remains a major concern regarding the treatment of postoperative patients. Transient receptor potential (TRP) channels are considered to be new therapeutic targets for pain control. We investigated whether the genes Trpv1 and Trpv4 are involved in hind paw swelling caused after surgical incision in mice or in incision-induced Fos-like immunoreactivity (Fos-LI) levels in the central nervous system. Mice were divided into four groups: wild-type (WT) control, WT incision, Trpv1 knockout (Trpv1 -/- ) incision, and Trpv4 knockout (Trpv4 -/- ) incision. Mice were anesthetized, and only those in the incision, and not control, groups received a surgical incision to their right plantar hind paw. Changes in paw diameter and in Fos-LI levels in the dorsal horn of the spinal cord, paraventricular nucleus of the hypothalamus (PVN), paraventricular nucleus of the thalamus, and central amygdala were evaluated 2 h after the incision. There was no significant difference in the paw diameter among groups. In contrast, in laminae I-II of the dorsal horn of the spinal cord and PVN, Fos-LI was significantly higher in all incision groups than in the WT control group. A significant increase in Fos-positive cells was also observed in the dorsal horn laminae III-IV in Trpv1 -/- and Trpv4 -/- incision groups compared with the WT incision group. Our results indicate that surgical incision activates the PVN and that Trpv1 and Trpv4 might be involved in neuronal activity in the dorsal horn laminae III-IV after surgical incision. Copyright © 2018 Elsevier B.V. All rights reserved.
Purinergic Modulation of Spinal Neuroglial Maladaptive Plasticity Following Peripheral Nerve Injury.
Cirillo, Giovanni; Colangelo, Anna Maria; Berbenni, Miluscia; Ippolito, Vita Maria; De Luca, Ciro; Verdesca, Francesco; Savarese, Leonilde; Alberghina, Lilia; Maggio, Nicola; Papa, Michele
2015-12-01
Modulation of spinal reactive gliosis following peripheral nerve injury (PNI) is a promising strategy to restore synaptic homeostasis. Oxidized ATP (OxATP), a nonselective antagonist of purinergic P2X receptors, was found to recover a neuropathic behavior following PNI. We investigated the role of intraperitoneal (i.p.) OxATP treatment in restoring the expression of neuronal and glial markers in the mouse spinal cord after sciatic spared nerve injury (SNI). Using in vivo two-photon microscopy, we imaged Ca(2+) transients in neurons and astrocytes of the dorsal horn of spinal cord at rest and upon right hind paw electrical stimulation in sham, SNI, and OxATP-treated mice. Neuropathic behavior was investigated by von Frey and thermal plantar test. Glial [glial fibrillary acidic protein (GFAP), ionized calcium-binding adaptor molecule 1 (Iba1)] and GABAergic [vesicular GABA transporter (vGAT) and glutamic acid decarboxylase 65/76 (GAD65/67)] markers and glial [glutamate transporter (GLT1) and GLAST] and neuronal amino acid [EAAC1, vesicular glutamate transporter 1 (vGLUT1)] transporters have been evaluated. In SNI mice, we found (i) increased glial response, (ii) decreased glial amino acid transporters, and (iii) increased levels of neuronal amino acid transporters, and (iv) in vivo analysis of spinal neurons and astrocytes showed a persistent increase of Ca(2+) levels. OxATP administration reduced glial activation, modulated the expression of glial and neuronal glutamate/GABA transporters, restored neuronal and astrocytic Ca(2+) levels, and prevented neuropathic behavior. In vitro studies validated that OxATP (i) reduced levels of reactive oxygen species (ROS), (ii) reduced astrocytic proliferation, (iii) increase vGLUT expression. All together, these data support the correlation between reactive gliosis and perturbation of the spinal synaptic homeostasis and the role played by the purinergic system in modulating spinal plasticity following PNI.
Pettorossi, V E; Della Torre, G; Bortolami, R; Brunetti, O
1999-03-01
1. The role of group III and IV afferent fibres of the lateral gastrocnemious muscle (LG) in modulating the homonymous monosynaptic reflex was investigated during muscle fatigue in spinalized rats. 2. Muscle fatigue was induced by a series of increasing tetanic electrical stimuli (85 Hz, 600 ms) delivered to the LG muscle nerve. Series consisted of increasing train numbers from 1 to 60. 3. Potentials from the spinal cord LG motor pool and from the ventral root were recorded in response to proprioceptive afferent stimulation and analysed before and during tetanic muscle activations. Both the pre- and postsynaptic waves showed an initial enhancement and, after a '12-train' series, an increasing inhibition. 4. The enhancement of the responses to muscle fatiguing stimulation disappeared after L3-L6 dorsal root section, while a partial reflex inhibition was still present. Conversely, after section of the corresponding ventral root, there was only a reduction in the inhibitory effect. 5. The monosynaptic reflex was also studied in animals in which a large number of group III and IV muscle afferents were eliminated by injecting capsaicin (10 mM) into the LG muscle. As a result of capsaicin treatment, the fatigue-induced inhibition of the pre- and postsynaptic waves disappeared, while the response enhancement remained. 6. We concluded that the monosynaptic reflex inhibition, but not the enhancement, was mediated by those group III and IV muscle afferents that are sensitive to the toxic action of capsaicin. The afferents that are responsible for the response enhancement enter the spinal cord through the dorsal root, while those responsible for the inhibition enter the spinal cord through both the ventral and dorsal roots.
Pettorossi, V E; Torre, G Della; Bortolami, R; Brunetti, O
1999-01-01
The role of group III and IV afferent fibres of the lateral gastrocnemious muscle (LG) in modulating the homonymous monosynaptic reflex was investigated during muscle fatigue in spinalized rats. Muscle fatigue was induced by a series of increasing tetanic electrical stimuli (85 Hz, 600 ms) delivered to the LG muscle nerve. Series consisted of increasing train numbers from 1 to 60. Potentials from the spinal cord LG motor pool and from the ventral root were recorded in response to proprioceptive afferent stimulation and analysed before and during tetanic muscle activations. Both the pre- and postsynaptic waves showed an initial enhancement and, after a ‘12-train’ series, an increasing inhibition. The enhancement of the responses to muscle fatiguing stimulation disappeared after L3-L6 dorsal root section, while a partial reflex inhibition was still present. Conversely, after section of the corresponding ventral root, there was only a reduction in the inhibitory effect. The monosynaptic reflex was also studied in animals in which a large number of group III and IV muscle afferents were eliminated by injecting capsaicin (10 mM) into the LG muscle. As a result of capsaicin treatment, the fatigue-induced inhibition of the pre- and postsynaptic waves disappeared, while the response enhancement remained. We concluded that the monosynaptic reflex inhibition, but not the enhancement, was mediated by those group III and IV muscle afferents that are sensitive to the toxic action of capsaicin. The afferents that are responsible for the response enhancement enter the spinal cord through the dorsal root, while those responsible for the inhibition enter the spinal cord through both the ventral and dorsal roots. PMID:10050025
Baba, Takeshi; Ohki, Takao; Kanaoka, Yuji; Maeda, Koji; Toya, Naoki; Ohta, Hiroki; Fukushima, Soichiro; Hara, Masayuki
2018-05-01
To evaluate initial and midterm clinical outcomes of aortic aneurysms involving the proximal anastomotic aneurysm (AAPAAs) following initial open repair for infrarenal abdominal aortic aneurysm. Between July 2006 and August 2015, 24 patients underwent elective endovascular repair for the treatment of AAPAAs at our institution. AAPAA classification has been categorized as 3 types. Type I AAPAA is the most extensive, extending from the descending aorta to the prior proximal anastomosis as similar to Crawford type II or III thoracoabdominal aortic aneurysm. Type II AAPAA is limited to the aortic aneurysm below the diaphragm including the abdominal visceral arteries. Finally, similar to pararenal abdominal aortic aneurysm, type III AAPAA involves the renal origins, but does not extend to the celiac and superior mesenteric arteries. Total endovascular aneurysm repair (t-EVAR) consisted of fenestrated EVAR (f-EVAR), multibranched EVAR (t-Branch), and snorkel EVAR (s-EVAR) were performed for patients with high-risk open surgical repair. We retrospectively analyzed 24 cases, which were categorized with 3 types of AAPAA. F-EVAR, t-Branch, and s-EVAR for AAPAAs were performed in 15 patients (62.5%), 5 patients (20.8%), and 4 patients (16.7%), respectively. Type I and type II AAPAA were identified in 13 patients (54.2%) and 7 patients (29.2%), and type III AAPAA was identified in 4 patients (16.7%). Technical success was 95.8%, and clinical success was 79.2% with t-EVAR. Spinal cord ischemia was identified in 2 patients (8.3%) of type I AAPAA, the 30-day mortality rate was 4.2% (n = 1, type I AAPAA). Type II and III endoleaks occurred in 1 (4.2%, type III AAPAA) and 3 patients (12.5%, each case of type I, II, and III AAPAA), respectively. There was no open conversion or aneurysm rupture in the late follow-up period. The estimated overall survival rates of t-EVAR after 1 and 3 years were 95.6% and 76.2%, respectively. Rates of freedom from aneurysm-related death and secondary intervention of t-EVAR at 3 years were 90.1% and 89.7%, respectively. Finally, rates of target vessel patency at 1 and 3 years were 95.3% and 88.8%, respectively. Our initial to midterm results of t-EVAR for the treatment of AAPAA were generally good with low rates of perioperative mortality and aneurysm-related death. However, more attentions should be paid for the treatment of type I AAPAA with high incidence of major adverse events. Copyright © 2018 Elsevier Inc. All rights reserved.
Effect of spinal needle characteristics on measurement of spinal canal opening pressure.
Bellamkonda, Venkatesh R; Wright, Thomas C; Lohse, Christine M; Keaveny, Virginia R; Funk, Eric C; Olson, Michael D; Laack, Torrey A
2017-05-01
A wide variety of spinal needles are used in clinical practice. Little is currently known regarding the impact of needle length, gauge, and tip type on the needle's ability to measure spinal canal opening pressure. This study aimed to investigate the relationship between these factors and the opening-pressure measurement or time to obtain an opening pressure. Thirteen distinct spinal needles, chosen to isolate the effects of length, gauge, and needle-point type, were prospectively tested on a lumbar puncture simulator. The key outcomes were the opening-pressure measurement and the time required to obtain that measure. Pressures were recorded at 10-s intervals until 3 consecutive, identical readings were observed. Time to measure opening pressure increased with increasing spinal needle length, increasing gauge, and the Quincke-type (cutting) point (P<0.001 for all). The time to measurement ranged from 30s to 530s, yet all needle types were able to obtain a consistent opening pressure measure. Although opening pressure estimates are unlikely to vary markedly by needle type, the time required to obtain the measurement increased with increasing needle length and gauge and with Quincke-type needles. Copyright © 2017 Elsevier Inc. All rights reserved.
Comparing the Use of Dynamic Response Index (DRI) and Lumbar Load as Relevant Spinal Injury Metrics
2014-01-09
reproducible results in greater detail under controlled testing conditions • Biofidelic enhancements to the Hybrid III design were made which support...occupants 4) General discussion on continued use of DRI as a design criterion for spinal injuries given the availability of the more direct Lumbar...load from fully encumbered ATDs in underbody blast testing . 15. SUBJECT TERMS DRI, Lumbar Load, Blast, LSDYNA, MADYMO, occupant, injury, pelvic
Khurana, Meetika; Walia, Shefali
2017-01-01
Objective: To determine whether there is any difference between virtual reality game–based balance training and real-world task-specific balance training in improving sitting balance and functional performance in individuals with paraplegia. Methods: The study was a pre test–post test experimental design. There were 30 participants (28 males, 2 females) with traumatic spinal cord injury randomly assigned to 2 groups (group A and B). The levels of spinal injury of the participants were between T6 and T12. The virtual reality game–based balance training and real-world task-specific balance training were used as interventions in groups A and B, respectively. The total duration of the intervention was 4 weeks, with a frequency of 5 times a week; each training session lasted 45 minutes. The outcome measures were modified Functional Reach Test (mFRT), t-shirt test, and the self-care component of the Spinal Cord Independence Measure–III (SCIM-III). Results: There was a significant difference for time (p = .001) and Time × Group effect (p = .001) in mFRT scores, group effect (p = .05) in t-shirt test scores, and time effect (p = .001) in the self-care component of SCIM-III. Conclusions: Virtual reality game–based training is better in improving balance and functional performance in individuals with paraplegia than real-world task-specific balance training. PMID:29339902
Khurana, Meetika; Walia, Shefali; Noohu, Majumi M
2017-01-01
Objective: To determine whether there is any difference between virtual reality game-based balance training and real-world task-specific balance training in improving sitting balance and functional performance in individuals with paraplegia. Methods: The study was a pre test-post test experimental design. There were 30 participants (28 males, 2 females) with traumatic spinal cord injury randomly assigned to 2 groups (group A and B). The levels of spinal injury of the participants were between T6 and T12. The virtual reality game-based balance training and real-world task-specific balance training were used as interventions in groups A and B, respectively. The total duration of the intervention was 4 weeks, with a frequency of 5 times a week; each training session lasted 45 minutes. The outcome measures were modified Functional Reach Test (mFRT), t-shirt test, and the self-care component of the Spinal Cord Independence Measure-III (SCIM-III). Results: There was a significant difference for time ( p = .001) and Time × Group effect ( p = .001) in mFRT scores, group effect ( p = .05) in t-shirt test scores, and time effect ( p = .001) in the self-care component of SCIM-III. Conclusions: Virtual reality game-based training is better in improving balance and functional performance in individuals with paraplegia than real-world task-specific balance training.
Scivoletto, Giorgio; Glass, Clive; Anderson, Kim D; Galili, Tal; Benjamin, Yoav; Front, Lilach; Aidinoff, Elena; Bluvshtein, Vadim; Itzkovich, Malka; Aito, Sergio; Baroncini, Ilaria; Benito-Penalva, Jesùs; Castellano, Simona; Osman, Aheed; Silva, Pedro; Catz, Amiram
2015-01-01
Background. A quadratic formula of the Spinal Cord Injury Ability Realization Measurement Index (SCI-ARMI) has previously been published. This formula was based on a model of Spinal Cord Independence Measure (SCIM95), the 95th percentile of the SCIM III values, which correspond with the American Spinal Injury Association Motor Scores (AMS) of SCI patients. Objective. To further develop the original formula. Setting. Spinal cord injury centers from 6 countries and the Statistical Laboratory, Tel-Aviv University, Israel. Methods. SCIM95 of 661 SCI patients was modeled, using a quantile regression with or without adjustment for age and gender, to calculate SCI-ARMI values. SCI-ARMI gain during rehabilitation and its correlations were examined. Results. A new quadratic SCIM95 model was created. This resembled the previously published model, which yielded similar SCIM95 values in all the countries, after adjustment for age and gender. Without this adjustment, however, only 86% of the non-Israeli SCIM III observations were lower than those SCIM95 values (P < .0001). Adding the variables age and gender to the new model affected the SCIM95 value significantly (P < .04). Adding country information did not add a significant effect (P > .1). SCI-ARMI gain was positive (38.8 ± 22 points, P < .0001) and correlated weakly with admission age and AMS. Conclusions. The original quadratic SCI-ARMI formula is valid for an international population after adjustment for age and gender. The new formula considers more factors that affect functional ability following SCI. © The Author(s) 2014.
Dorsal–Ventral Gradient for Neuronal Plasticity in the Embryonic Spinal Cord
Pineda, Ricardo H.; Ribera, Angeles B.
2008-01-01
Within the developing Xenopus spinal cord, voltage-gated potassium (Kv) channel genes display different expression patterns, many of which occur in opposing dorsal–ventral gradients. Regional differences in Kv gene expression would predict different patterns of potassium current (IKv) regulation. However, during the first 24 h of postmitotic differentiation, all primary spinal neurons undergo a temporally coordinated upregulation of IKv density that shortens the duration of the action potential. Here, we tested whether spinal neurons demonstrate regional differences in IKv regulation subsequent to action potential maturation. We show that two types of neurons, I and II, can be identified in culture on the basis of biophysical and pharmacological properties of IKv and different firing patterns. Chronic increases in extracellular potassium, a signature of high neuronal activity, do not alter excitability properties of either neuron type. However, elevating extracellular potassium acutely after the period of action potential maturation leads to different changes in membrane properties of the two types of neurons. IKv of type I neurons gains sensitivity to the blocker XE991, whereas type II neurons increase IKv density and fire fewer action potentials. Moreover, by recording from neurons in vivo, we found that primary spinal neurons can be identified as either type I or type II. Type I neurons predominate in dorsal regions, whereas type II neurons localize to ventral regions. The findings reveal a dorsal–ventral gradient for IKv regulation and a novel form of neuronal plasticity in spinal cord neurons. PMID:18385340
Herzog, E; Landry, M; Buhler, E; Bouali-Benazzouz, R; Legay, C; Henderson, C E; Nagy, F; Dreyfus, P; Giros, B; El Mestikawy, S
2004-10-01
Mammalian spinal motoneurons are cholinergic neurons that have long been suspected to use also glutamate as a neurotransmitter. We report that VGLUT1 and VGLUT2, two subtypes of vesicular glutamate transporters, are expressed in rat spinal motoneurons. Both proteins are present in somato-dendritic compartments as well as in axon terminals in primary cultures of immunopurified motoneurons and sections of spinal cord from adult rat. However, VGLUT1 and VGLUT2 are not found at neuromuscular junctions of skeletal muscles. After intracellular injection of biocytin in motoneurons, VGLUT2 is observed in anterogradely labelled terminals contacting Renshaw inhibitory interneurons. These VGLUT2- and VGLUT1-positive terminals do not express VAChT, the vesicular acetylcholine transporter. Overall, our study establishes for the first time that (i) mammalian spinal motoneurons express vesicular glutamate transporters, (ii) these motoneurons have the potential to release glutamate (in addition to acetylcholine) at terminals contacting Renshaw cells, and finally (iii) the VGLUTs are not present at neuromuscular synapses of skeletal muscles.
Kim, Joohyun; Lee, Jang-Bo; Cho, Tai-Hyoung; Hur, Junseok W
2017-05-01
Onyx embolization is one of the standard treatments for brain arteriovenous malformations (AVMs) and is a promising method for spinal AVMs as well. Its advantages have been emphasized, and few complications have been reported with Onyx embolization in spinal AVMs. Here, we report an incidental anterior spinal artery (ASA) occlusion due to Onyx reflux during embolization of a spinal type II AVM. A 15-year-old boy presented with weakness in both upper and lower extremities. Magnetic resonance imaging and spinal angiogram revealed a spinal type II AVM with two feeders including the right vertebral artery (VA) and the right deep cervical artery. Onyx embolization was performed gradually from the VA to the deep cervical artery and an unexpected Onyx reflux to the ASA was observed during the latter stage deep cervical artery embolization. Post-operative quadriplegia and low cranial nerves (CN) dysfunction were observed. Rehabilitation treatment was performed and the patient showed marked improvement of neurologic deterioration at 1-year follow-up. Onyx is an effective treatment choice for spinal AVMs. However, due to the small vasculature of the spine compared to the brain, the nidus is rapidly packed with a small amount of Onyx, which allows Onyx reflux to unexpected vessels. Extreme caution is required and dual-lumen balloon catheter could be considered for Onyx embolization in spinal AVMs treatment.
Driving Safety after Spinal Surgery: A Systematic Review
Alkhalili, Kenan; Hannallah, Jack; Ibeche, Bashar; Bajammal, Sohail; Baco, Abdul Moeen
2017-01-01
This study aimed to assess driving reaction times (DRTs) after spinal surgery to establish a timeframe for safe resumption of driving by the patient postoperatively. The MEDLINE and Google Scholar databases were analyzed according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) Statement for clinical studies that investigated changes in DRTs following cervical and lumbar spinal surgery. Changes in DRTs and patients' clinical presentation, pathology, anatomical level affected, number of spinal levels involved, type of intervention, pain level, and driving skills were assessed. The literature search identified 12 studies that investigated postoperative DRTs. Six studies met the inclusion criteria; five studies assessed changes in DRT after lumbar spine surgery and two studies after cervical spina surgery. The spinal procedures were selective nerve root block, anterior cervical discectomy and fusion, and lumbar fusion and/ordecompression. DRTs exhibited variable responses to spinal surgery and depended on the patients' clinical presentation, spinal level involved, and type of procedure performed. The evidence regarding the patients' ability to resume safe driving after spinal surgery is scarce. Normalization of DRT or a return of DRT to pre-spinal intervention level is a widely accepted indicator for safe driving, with variable levels of statistical significance owing to multiple confounding factors. Considerations of the type of spinal intervention, pain level, opioid consumption, and cognitive function should be factored in the assessment of a patient's ability to safely resume driving. PMID:28443178
Driving Safety after Spinal Surgery: A Systematic Review.
Alhammoud, Abduljabbar; Alkhalili, Kenan; Hannallah, Jack; Ibeche, Bashar; Bajammal, Sohail; Baco, Abdul Moeen
2017-04-01
This study aimed to assess driving reaction times (DRTs) after spinal surgery to establish a timeframe for safe resumption of driving by the patient postoperatively. The MEDLINE and Google Scholar databases were analyzed according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) Statement for clinical studies that investigated changes in DRTs following cervical and lumbar spinal surgery. Changes in DRTs and patients' clinical presentation, pathology, anatomical level affected, number of spinal levels involved, type of intervention, pain level, and driving skills were assessed. The literature search identified 12 studies that investigated postoperative DRTs. Six studies met the inclusion criteria; five studies assessed changes in DRT after lumbar spine surgery and two studies after cervical spina surgery. The spinal procedures were selective nerve root block, anterior cervical discectomy and fusion, and lumbar fusion and/ordecompression. DRTs exhibited variable responses to spinal surgery and depended on the patients' clinical presentation, spinal level involved, and type of procedure performed. The evidence regarding the patients' ability to resume safe driving after spinal surgery is scarce. Normalization of DRT or a return of DRT to pre-spinal intervention level is a widely accepted indicator for safe driving, with variable levels of statistical significance owing to multiple confounding factors. Considerations of the type of spinal intervention, pain level, opioid consumption, and cognitive function should be factored in the assessment of a patient's ability to safely resume driving.
21 CFR 522.1698 - Pentazocine lactate injection.
Code of Federal Regulations, 2012 CFR
2012-04-01
.... Federal law restricts this drug to use by or on the order of a licensed veterinarian. (2) Dogs—(i) Amount... amelioration of pain accompanying postoperative recovery, fracture, trauma, and spinal disorders. (iii...
21 CFR 522.1698 - Pentazocine lactate injection.
Code of Federal Regulations, 2013 CFR
2013-04-01
.... Federal law restricts this drug to use by or on the order of a licensed veterinarian. (2) Dogs—(i) Amount... amelioration of pain accompanying postoperative recovery, fracture, trauma, and spinal disorders. (iii...
Devoize, Laurent; Doméjean, Sophie; Melin, Céline; Raboisson, Patrick; Artola, Alain; Dallel, Radhouane
2010-07-09
The organization of efferent projections from the spinal trigeminal nucleus oralis (Sp5O) to the spinal cord in the rat was studied using the anterograde tracer Phaseolus vulgaris leucoagglutinin. Sp5O projections to the spinal cord are restricted to the cervical cord. No labeled terminal can be detected in the thoracic and lumbar cord. The organization of these projections happens to critically depend on the dorso-ventral location of the injection site. On the one hand, the dorsal part of the Sp5O projects to the medial part of the dorsal horn (laminae III-V) at the C1 level, on the ipsilateral side, and to the ventral horn, on both sides but mainly on the ipsilateral one. Ipsilateral labeled terminals are distributed throughout laminae VII to IX but tend to cluster around the dorso-medial motor nuclei, especially at C3-C5 levels. Within the contralateral ventral horn, label terminals are found particularly in the region of the ventro-medial motor nucleus. This projection extends as far caudally as C3 or C4 level. On the other hand, the ventral part of the Sp5O projects to the lateral part of the dorsal horn (laminae III-V) at the C1 level, on the ipsilateral side, and to the ventral horn, on both sides but mainly on the contralateral one. Contralateral labeled terminals are distributed within the region of the dorso- and ventro-medial motor nuclei at C1-C4 levels whereas they are restricted to the dorso-medial motor nucleus at C5-C8 levels. These findings suggest that Sp5O is involved in the coordination of neck movements and in the modulation of incoming sensory information at the cervical spinal cord. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Isola spinal instrumentation system for idiopathic scoliosis.
Benli, I T; Akalin, S; Aydin, E; Baz, A; Citak, M; Kiş, M; Duman, E
2001-01-01
Since the definition of three-dimensional components of the scoliotic deformity, there have been important improvements in the surgical treatment of the problem. A derotation maneuver was proposed as a treatment option with CD instrumentation, but the reports of imbalance and decompensation with this system repopularized sublaminar wiring and translation as a corrective maneuver. Isola spinal instrumentation is one of the modern systems that utilizes vertebral translation instead of rod rotation. This study analyzes the results of 24 patients with idiopathic scoliosis who had been followed up for at least 2 years, and were surgically treated with titanium Isola Spinal Instrumentation in the Department of Orthopaedics and Traumatology, Ankara Social Security Hospital. Patients were grouped according to the King-Moe classification. Patients with type III, IV or V curves received only posterior instrumentation while this procedure followed anterior release and discectomy in the same session in patients with type I or II curves. A translation maneuver was utilized in the correction of scoliotic curves using the cantilever technique, either alone or supplemented by sublaminar wiring with Songer multifilament titanium cables. This study aimed to elucidate the effects of this technique in the frontal and sagittal plane curves and the trunk balance. The balance was analyzed clinically and radiologically by measurement of the lateral trunk shift (LT), shift of stable vertebra (SS), and shift of head (SH) in vertebral units (VU). The postoperative correction was significant in the frontal plane for all types of curves (p < 0.05). The postoperative correction was 80.9% +/- 9.5% in type III curves. Overall, the mean Cobb angle of the major curve value in the frontal plane was 66.9 degrees +/- 18.8 degrees, and it was corrected by 62.8% +/- 20.1%. The correction loss of Cobb angles in the frontal plane was 5.4 degrees +/- 5.5 degrees at the last follow-up visit. A normal physiologic thoracic contour (30 degrees - 50 degrees) was achieved in 83.3% of the patients and normal lumbar contour (40 degrees - 60 degrees) in 66.7% of the patients in the sagittal plane. The correction was found to be significant in all balance values (p < 0.05). The postoperative correction in LT values correlated with the correction of the Cobb angle values in the frontal plane. All patients had complete balance (SH: 0 VU and SS: 0 VU) or balanced curves (0 VU < SH, SS < 0.5 VU).Finally, the study concluded that the translation maneuver, especially when used with the cantilever technique, resulted in high correction rates in the frontal plane. Additionally, the technique was also successful in obtaining normal sagittal contours and correcting balance values.
Higashino, Kosaku; Matsuura, Tetsuya; Suganuma, Katsuyoshi; Yukata, Kiminori; Nishisho, Toshihiko; Yasui, Natsuo
2013-05-20
Spinal cord transection and peripheral nerve transection cause muscle atrophy and muscle fiber type conversion. It is still unknown how spinal cord transection and peripheral nerve transection each affect the differentiation of muscle fiber type conversion mechanism and muscle atrophy. The aim of our study was to evaluate the difference of muscle weight change, muscle fiber type conversion, and Peroxisome proliferator-activated receptor-γ coactivatior-1α (PGC-1α) expression brought about by spinal cord transection and by peripheral nerve transection. Twenty-four Wistar rats underwent surgery, the control rats underwent a laminectomy; the spinal cord injury group underwent a spinal cord transection; the denervation group underwent a sciatic nerve transection. The rats were harvested of the soleus muscle and the TA muscle at 0 week, 1 week and 2 weeks after surgery. Histological examination was assessed using hematoxylin and eosin (H&E) staining and immunofluorescent staing. Western blot was performed with 3 groups. Both sciatic nerve transection and spinal cord transection caused muscle atrophy with the effect being more severe after sciatic nerve transection. Spinal cord transection caused a reduction in the expression of both sMHC protein and PGC-1α protein in the soleus muscle. On the other hand, sciatic nerve transection produced an increase in expression of sMHC protein and PGC-1α protein in the soleus muscle. The results of the expression of PGC-1α were expected in other words muscle atrophy after sciatic nerve transection is less than after spinal cord transection, however muscle atrophy after sciatic nerve transection was more severe than after spinal cord transection. In the conclusion, spinal cord transection diminished the expression of sMHC protein and PGC-1α protein in the soleus muscle. On the other hand, sciatic nerve transection enhanced the expression of sMHC protein and PGC-1α protein in the soleus muscle.
Watanabe, Shigeo; Kitamura, Taiko; Watanabe, Lisa; Sato, Hitoshi; Yamada, Jinzo
2003-03-01
The aim of this study is to clarify the fiber distribution of the nucleus reticularis magnocellularis (NRMC) and adjacent areas in the rat spinal cord. Biotinylated dextran amine was injected iontophoretically through a glass capillary into the areas, in which a single cell responded to noxious electrical stimulation of the sciatic nerve and to a pinch of the thigh skin with multiple spikes. Labeled fibers descended bilaterally through the ventral funiculi of the medulla oblongata and then through the ventral and lateral funiculi of the cervical cord with an ipsilateral predominance, and terminated in the spinal gray (laminae I-X). A single fiber sometimes ran through several laminae while bifurcating many short branches with axon varicosities and terminal buttons in one transverse section, that is, through laminae V, VII and X, through laminae V, IIl-IV and I-II, and through laminae VII to I-II. The present study showed that the wide distribution of a single fiber and a mass of fibers descending from the NRMC and adjacent areas might modulate not only somatic sensory and motor functions but also autonomic functions in the spinal cord.
Chen, Shao-Rui; Chen, Hong; Yuan, Wei-Xiu; Wess, Jürgen; Pan, Hui-Lin
2010-12-24
Activation of muscarinic acetylcholine receptors (mAChRs) in the spinal cord inhibits pain transmission. At least three mAChR subtypes (M(2), M(3), and M(4)) are present in the spinal dorsal horn. However, it is not clear how each mAChR subtype contributes to the regulation of glutamatergic input to dorsal horn neurons. We recorded spontaneous excitatory postsynaptic currents (sEPSCs) from lamina II neurons in spinal cord slices from wild-type (WT) and mAChR subtype knock-out (KO) mice. The mAChR agonist oxotremorine-M increased the frequency of glutamatergic sEPSCs in 68.2% neurons from WT mice and decreased the sEPSC frequency in 21.2% neurons. Oxotremorine-M also increased the sEPSC frequency in ∼50% neurons from M(3)-single KO and M(1)/M(3) double-KO mice. In addition, the M(3) antagonist J104129 did not block the stimulatory effect of oxotremorine-M in the majority of neurons from WT mice. Strikingly, in M(5)-single KO mice, oxotremorine-M increased sEPSCs in only 26.3% neurons, and J104129 abolished this effect. In M(2)/M(4) double-KO mice, but not M(2)- or M(4)-single KO mice, oxotremorine-M inhibited sEPSCs in significantly fewer neurons compared with WT mice, and blocking group II/III metabotropic glutamate receptors abolished this effect. The M(2)/M(4) antagonist himbacine either attenuated the inhibitory effect of oxotremorine-M or potentiated the stimulatory effect of oxotremorine-M in WT mice. Our study demonstrates that activation of the M(2) and M(4) receptor subtypes inhibits synaptic glutamate release to dorsal horn neurons. M(5) is the predominant receptor subtype that potentiates glutamatergic synaptic transmission in the spinal cord.
Chen, Shao-Rui; Chen, Hong; Yuan, Wei-Xiu; Wess, Jürgen; Pan, Hui-Lin
2010-01-01
Activation of muscarinic acetylcholine receptors (mAChRs) in the spinal cord inhibits pain transmission. At least three mAChR subtypes (M2, M3, and M4) are present in the spinal dorsal horn. However, it is not clear how each mAChR subtype contributes to the regulation of glutamatergic input to dorsal horn neurons. We recorded spontaneous excitatory postsynaptic currents (sEPSCs) from lamina II neurons in spinal cord slices from wild-type (WT) and mAChR subtype knock-out (KO) mice. The mAChR agonist oxotremorine-M increased the frequency of glutamatergic sEPSCs in 68.2% neurons from WT mice and decreased the sEPSC frequency in 21.2% neurons. Oxotremorine-M also increased the sEPSC frequency in ∼50% neurons from M3-single KO and M1/M3 double-KO mice. In addition, the M3 antagonist J104129 did not block the stimulatory effect of oxotremorine-M in the majority of neurons from WT mice. Strikingly, in M5-single KO mice, oxotremorine-M increased sEPSCs in only 26.3% neurons, and J104129 abolished this effect. In M2/M4 double-KO mice, but not M2- or M4-single KO mice, oxotremorine-M inhibited sEPSCs in significantly fewer neurons compared with WT mice, and blocking group II/III metabotropic glutamate receptors abolished this effect. The M2/M4 antagonist himbacine either attenuated the inhibitory effect of oxotremorine-M or potentiated the stimulatory effect of oxotremorine-M in WT mice. Our study demonstrates that activation of the M2 and M4 receptor subtypes inhibits synaptic glutamate release to dorsal horn neurons. M5 is the predominant receptor subtype that potentiates glutamatergic synaptic transmission in the spinal cord. PMID:20940295
Hsu, Wellington K; Wang, Jeffrey C; Liu, Nancy Q; Krenek, Lucie; Zuk, Patricia A; Hedrick, Marc H; Benhaim, Prosper; Lieberman, Jay R
2008-05-01
Mesenchymal stem cells derived from human liposuction aspirates, termed processed lipoaspirate cells, have been utilized as cellular delivery vehicles for the induction of bone formation in tissue engineering and gene therapy strategies. In this study, we sought to evaluate the efficacy of bone morphogenetic protein (BMP)-2-producing adipose-derived stem cells in inducing a posterolateral spine fusion in an athymic rat model. Single-level (L4-L5) intertransverse spinal arthrodesis was attempted with use of a type-I collagen matrix in five groups of athymic rats, with eight animals in each group. Group I was treated with 5 x 10(6) adipose-derived stem cells transduced with an adenoviral vector containing the BMP-2 gene; group II, with 5 x 10(6) adipose-derived stem cells treated with osteogenic media and 1 microg/mL of recombinant BMP-2 (rhBMP-2); group III, with 10 microg of rhBMP-2; group IV, with 1 microg of rhBMP-2; and group V, with 5 x 10(6) adipose-derived stem cells alone. The animals that showed radiographic evidence of healing were killed four weeks after cell implantation and were examined with plain radiographs, manual palpation, microcomputed tomography scanning, and histological analysis. All eight animals in group I demonstrated successful spinal fusion, with a large fusion mass, four weeks postoperatively. Furthermore, group-I specimens consistently revealed spinal fusion at the cephalad level (L3 and L4), where no fusion bed had been prepared surgically. In contrast, despite substantial BMP-2 production measured in vitro, group-II animals demonstrated minimal bone formation even eight weeks after implantation. Of the groups treated with the application of rhBMP-2 alone, the one that received a relatively high dose (group III) had a higher rate of fusion (seen in all eight specimens) than the one that received the low dose (group IV, in which fusion was seen in four of the eight specimens). None of the group-V animals (treated with adipose-derived stem cells alone) demonstrated successful spine fusion eight weeks after the surgery. Adipose-derived stem cells show promise as gene transduction targets for inducing bone formation to enhance spinal fusion in biologically stringent environments.
... Overview Spinal stenosis is a narrowing of the spaces within your spine, which can put pressure on ... stenosis, doctors may recommend surgery to create additional space for the spinal cord or nerves. Types of ...
21 CFR 522.1698 - Pentazocine.
Code of Federal Regulations, 2014 CFR
2014-04-01
... consumption. Federal law restricts this drug to use by or on the order of a licensed veterinarian. (2) Dogs—(i..., trauma, and spinal disorders. (iii) Limitations. Federal law restricts this drug to use by or on the...
Gil Martens, L; Lock, E J; Fjelldal, P G; Wargelius, A; Araujo, P; Torstensen, B E; Witten, P E; Hansen, T; Waagbø, R; Ørnsrud, R
2010-12-01
Vegetable oils (Vo) are an alternative to fish oil (Fo) in aquaculture feeds. This study aimed to evaluate the effect of dietary soybean oil (Vo diet), rich in linoleic acid, and of dietary fish oil (Fo diet) on the development of spinal deformities under bacterial lipopolysaccharide (LPS)-induced chronic inflammation conditions in Atlantic salmon, Salmo salar L. Fish [25 g body weight (BW)] were fed the experimental diets for 99 days. On day 47 of feeding (40 g BW), fish were subjected to four experimental regimes: (i) intramuscular injections with LPS, (ii) sham-injected phosphate-buffered saline (PBS), (iii) intraperitoneally injected commercial oil adjuvant vaccine, or (iv) no treatment. The fish continued under a common feeding regime in sea water for 165 more days. Body weight was temporarily higher in the Vo group than in the Fo group prior to immunization and was also affected by the type of immunization. At the end of the trial, no differences were seen between the dietary groups. The overall prevalence of spinal deformities was approximately 14% at the end of the experiment. The Vo diet affected vertebral shape but did not induce spinal deformities. In groups injected with LPS and PBS, spinal deformities ranged between 21% and 38%, diet independent. Deformed vertebrae were located at or in proximity to the injection point. Assessment of inflammatory markers revealed high levels of plasma prostaglandin E₂ (PGE₂) in the Vo-fed and LPS-injected groups, suggesting an inflammatory response to LPS. Cyclooxigenase 2 (COX-2) mRNA expression in bone was higher in fish fed Fo compared to Vo-fed fish. Gene expression of immunoglobulin M (IgM) was up-regulated in bone of all LPS-injected groups irrespective of dietary oil. In conclusion, the study suggests that Vo is not a risk factor for the development of inflammation-related spinal deformities. At the same time, we found evidence that localized injection-related processes could trigger the development of vertebral body malformations. © 2010 Blackwell Publishing Ltd.
Derakhshanrad, N; Yekaninejad, M S; Vosoughi, F; Sadeghi Fazel, F; Saberi, H
2016-10-01
A cross-sectional study. This study was performed for epidemiological assessment of Iranian Traumatic Spinal Cord Injuries (TSCI), referred to a specialized spine center. Patient recruitment and evaluations were conducted at the Brain and Spinal Injury Research Center, Tehran, Iran. This study was performed from September 2011 to March 2015 on 1137 consecutive TSCIs. History, clinicoradiological findings as well as chronic complications and social integration were recorded. The capture-recapture method was used to calculate a rough estimation of TSCI prevalence in Tehran Province. Our report includes 1137 cases with a mean age of 29.1 years (s.d.=11.2 year)-79.2% of them being male (M/F=3.8/1). Rough estimation of TSCI prevalence in Tehran province was 2.36 per 10 000 population. Regarding etiology, 61.8% were due to motor vehicle accident (MVA), followed by falling 24.5%, heavy drop 5.2%, violence 3.8%, sport 2.8% and others causes 1.9%. Regarding injury level, 31.5% were cervical, 57.9% thoracic and 10.6% lumbar. Complete lesions were 53.5% of patients and 46.5% were incomplete. Most common neurological type was T1-S5 (American Spinal Injury Association Impairment Scale: A, B, C, 61.7%). Most common complications included urinary tract infection followed by pressure sore (grade III and IV, 37.5%), autonomic dysreflexia (37%) and neuropathic pain (31.2%). Substance abuse was observed in 8.8% of cases. Overall, ~25% in our cases were employed after TSCI. Secondary divorce was also much more frequent than normal matched controls. MVA was the most common cause for TSCI. The elderly subjects were less frequent among our patients than more developed countries. The high rate of unemployment and divorce in our cases deserves special consideration.
Oh, Sun Kyu; Choi, Kyoung Hyo; Yoo, Jong Yoon; Kim, Dae Yul; Kim, Sang Joon; Jeon, Sang Ryong
2016-03-01
In our previous report, 3 of 10 patients with spinal cord injury who were injected with autologous mesenchymal stem cells (MSCs) showed motor improvement in the upper extremities and in activities of daily living. To report on the results of a phase III clinical trial of autologous MSCs therapy. Patients were selected based on the following criteria: chronic American Spinal Injury Association B status patients who had more than 12 months of cervical injury, and no neurological changes during the recent 3 months of vigorous rehabilitation. We injected 1.6 × 10 autologous MSCs into the intramedullary area at the injured level and 3.2 × 10 autologous MSCs into the subdural space. Outcome data were collected over 6 months regarding neurological examination, magnetic resonance imaging with diffusion tensor imaging, and electrophysiological analyses. Among the 16 patients, only 2 showed improvement in neurological status (unilateral right C8 segment from grade 1 to grade 3 in 1 patient and bilateral C6 from grade 3 to grade 4 and unilateral right C8 from grade 0 to grade 1 in 1 patient). Both patients with neurological improvement showed the appearance of continuity in the spinal cord tract by diffusion tensor imaging. There were no adverse effects associated with MSCs injection. Single MSCs application to intramedullary and intradural space is safe, but has a very weak therapeutic effect compared with multiple MSCs injection. Further clinical trials to enhance the effect of MSCs injection are necessary.
DREAM regulates BDNF-dependent spinal sensitization
2010-01-01
Background The transcriptional repressor DREAM (downstream regulatory element antagonist modulator) controls the expression of prodynorphin and has been involved in the modulation of endogenous responses to pain. To investigate the role of DREAM in central mechanisms of pain sensitization, we used a line of transgenic mice (L1) overexpressing a Ca2+- and cAMP-insensitive DREAM mutant in spinal cord and dorsal root ganglia. Results L1 DREAM transgenic mice showed reduced expression in the spinal cord of several genes related to pain, including prodynorphin and BDNF (brain-derived neurotrophic factor) and a state of basal hyperalgesia without change in A-type currents. Peripheral inflammation produced enhancement of spinal reflexes and increased expression of BDNF in wild type but not in DREAM transgenic mice. The enhancement of the spinal reflexes was reproduced in vitro by persistent electrical stimulation of C-fibers in wild type but not in transgenic mice. Exposure to exogenous BDNF produced a long-term enhancement of dorsal root-ventral root responses in transgenic mice. Conclusions Our results indicate that endogenous BDNF is involved in spinal sensitization following inflammation and that blockade of BDNF induction in DREAM transgenic mice underlies the failure to develop spinal sensitization. PMID:21167062
Li, Wen-Chang; Cooke, Tom; Sautois, Bart; Soffe, Stephen R; Borisyuk, Roman; Roberts, Alan
2007-09-10
How specific are the synaptic connections formed as neuronal networks develop and can simple rules account for the formation of functioning circuits? These questions are assessed in the spinal circuits controlling swimming in hatchling frog tadpoles. This is possible because detailed information is now available on the identity and synaptic connections of the main types of neuron. The probabilities of synapses between 7 types of identified spinal neuron were measured directly by making electrical recordings from 500 pairs of neurons. For the same neuron types, the dorso-ventral distributions of axons and dendrites were measured and then used to calculate the probabilities that axons would encounter particular dendrites and so potentially form synaptic connections. Surprisingly, synapses were found between all types of neuron but contact probabilities could be predicted simply by the anatomical overlap of their axons and dendrites. These results suggested that synapse formation may not require axons to recognise specific, correct dendrites. To test the plausibility of simpler hypotheses, we first made computational models that were able to generate longitudinal axon growth paths and reproduce the axon distribution patterns and synaptic contact probabilities found in the spinal cord. To test if probabilistic rules could produce functioning spinal networks, we then made realistic computational models of spinal cord neurons, giving them established cell-specific properties and connecting them into networks using the contact probabilities we had determined. A majority of these networks produced robust swimming activity. Simple factors such as morphogen gradients controlling dorso-ventral soma, dendrite and axon positions may sufficiently constrain the synaptic connections made between different types of neuron as the spinal cord first develops and allow functional networks to form. Our analysis implies that detailed cellular recognition between spinal neuron types may not be necessary for the reliable formation of functional networks to generate early behaviour like swimming.
Zeng, Jian; Ke, Long-feng; Deng, Xiao-jun; Cai, Mei-ying; Tu, Xiang-dong; Lan, Feng-hua
2008-12-16
To investigate the effect of multiplex ligation-dependent probe amplification (MLPA) in molecular diagnosis of spinal muscular atrophy (SMA). Peripheral blood samples were collected from 13 SMA patients, 31 parents of SMA patients, 50 healthy individuals without family history of SMA, and 10 specimens of amniotic fluid from these families were collected too. Genomic DNA was analyzed by MLPA, conventional PCR-RFLP, and allele-specific PCR. In complete agreement with the results of conventional PCR-RFLP and allele-specific PCR, MLPA analysis showed that all of the 13 patients had homozygous deletion of the survival of motor neuron 1 (SMN1) gene, and there was significant difference between the SMA severity (type I to type III) and SMN2 copy number (P < 0.05). Of the 31 parents 29 (93.5%) had 1 copy of SMN1, 2 (6.5%) had 2 copies of SMN1. Of the 50 healthy individuals, 1 (2.0%) had 1 copy of SMN1, 48 (96.0%) had 2 copies of SMN1, and 1 (2.0%) had 3 copies. The SMN1 copy number of the parents was significantly higher than that of the healthy individuals (P < 0.01). Two of the 10 fetuses had homozygous deletion of SMN1. The MLPA technique has proved to be an accurate and reliable tool for the molecular diagnosis of SMA, both in patients and in healthy carriers.
Barbour, Helen R; Plant, Christine D; Harvey, Alan R; Plant, Giles W
2013-09-27
It has been shown that olfactory ensheathing glia (OEG) and Schwann cell (SCs) transplantation are beneficial as cellular treatments for spinal cord injury (SCI), especially acute and sub-acute time points. In this study, we transplanted DsRED transduced adult OEG and SCs sub-acutely (14 days) following a T10 moderate spinal cord contusion injury in the rat. Behaviour was measured by open field (BBB) and horizontal ladder walking tests to ascertain improvements in locomotor function. Fluorogold staining was injected into the distal spinal cord to determine the extent of supraspinal and propriospinal axonal sparing/regeneration at 4 months post injection time point. The purpose of this study was to investigate if OEG and SCs cells injected sub acutely (14 days after injury) could: (i) improve behavioral outcomes, (ii) induce sparing/regeneration of propriospinal and supraspinal projections, and (iii) reduce tissue loss. OEG and SCs transplanted rats showed significant increased locomotion when compared to control injury only in the open field tests (BBB). However, the ladder walk test did not show statistically significant differences between treatment and control groups. Fluorogold retrograde tracing showed a statistically significant increase in the number of supraspinal nuclei projecting into the distal spinal cord in both OEG and SCs transplanted rats. These included the raphe, reticular and vestibular systems. Further pairwise multiple comparison tests also showed a statistically significant increase in raphe projecting neurons in OEG transplanted rats when compared to SCs transplanted animals. Immunohistochemistry of spinal cord sections short term (2 weeks) and long term (4 months) showed differences in host glial activity, migration and proteoglycan deposits between the two cell types. Histochemical staining revealed that the volume of tissue remaining at the lesion site had increased in all OEG and SCs treated groups. Significant tissue sparing was observed at both time points following glial SCs transplantation. In addition, OEG transplants showed significantly decreased chondroitin proteoglycan synthesis in the lesion site, suggesting a more CNS tolerant graft. These results show that transplantation of OEG and SCs in a sub-acute phase can improve anatomical outcomes after a contusion injury to the spinal cord, by increasing the number of spared/regenerated supraspinal fibers, reducing cavitation and enhancing tissue integrity. This provides important information on the time window of glial transplantation for the repair of the spinal cord.
Human dipeptidyl peptidase III acts as a post-proline-cleaving enzyme on endomorphins.
Barsun, Marina; Jajcanin, Nina; Vukelić, Bojana; Spoljarić, Jasminka; Abramić, Marija
2007-03-01
Dipeptidyl peptidase III (DPP III) is a zinc exopeptidase with an implied role in the mammalian pain-modulatory system owing to its high affinity for enkephalins and localisation in the superficial laminae of the spinal cord dorsal horn. Our study revealed that this human enzyme hydrolyses opioid peptides belonging to three new groups, endomorphins, hemorphins and exorphins. The enzymatic hydrolysis products of endomorphin-1 were separated and quantified by capillary electrophoresis and the kinetic parameters were determined for human DPP III and rat DPP IV. Both peptidases cleave endomorphin-1 at comparable rates, with liberation of the N-terminal Tyr-Pro. This is the first evidence of DPP III acting as an endomorphin-cleaving enzyme.
Sidhu, Simranjit K.; Weavil, Joshua C.; Mangum, Tyler S.; Jessop, Jacob E.; Richardson, Russell S.; Morgan, David E.; Amann, Markus
2017-01-01
Objective To investigate the influence of group III/IV muscle afferents on the development of central fatigue and corticospinal excitability during exercise. Methods Fourteen males performed cycling-exercise both under control-conditions (CTRL) and with lumbar intrathecal fentanyl (FENT) impairing feedback from leg muscle afferents. Transcranial magnetic- and cervicomedullary stimulation was used to monitor cortical versus spinal excitability. Results While fentanyl-blockade during non-fatiguing cycling had no effect on motor-evoked potentials (MEPs), cervicomedullary-evoked motor potentials (CMEPs) were 13 ± 3% higher (P < 0.05), resulting in a decrease in MEP/CMEP (P < 0.05). Although the pre- to post-exercise reduction in resting twitch was greater in FENT vs. CTRL (−53 ± 3% vs. −39 ± 3%; P < 0.01), the reduction in voluntary muscle activation was smaller (−2 ± 2% vs. −10 ± 2%; P < 0.05). Compared to the start of fatiguing exercise, MEPs and CMEPs were unchanged at exhaustion in CTRL. In contrast, MEPs and MEP/CMEP increased 13 ± 3% and 25 ± 6% in FENT (P < 0.05). Conclusion During non-fatiguing exercise, group III/IV muscle afferents disfacilitate, or inhibit, spinal motoneurons and facilitate motor cortical cells. In contrast, during exhaustive exercise, group III/IV muscle afferents disfacilitate/inhibit the motor cortex and promote central fatigue. Significance Group III/IV muscle afferents influence corticospinal excitability and central fatigue during whole-body exercise in humans. PMID:27866119
Sidhu, Simranjit K; Weavil, Joshua C; Mangum, Tyler S; Jessop, Jacob E; Richardson, Russell S; Morgan, David E; Amann, Markus
2017-01-01
To investigate the influence of group III/IV muscle afferents on the development of central fatigue and corticospinal excitability during exercise. Fourteen males performed cycling-exercise both under control-conditions (CTRL) and with lumbar intrathecal fentanyl (FENT) impairing feedback from leg muscle afferents. Transcranial magnetic- and cervicomedullary stimulation was used to monitor cortical versus spinal excitability. While fentanyl-blockade during non-fatiguing cycling had no effect on motor-evoked potentials (MEPs), cervicomedullary-evoked motor potentials (CMEPs) were 13±3% higher (P<0.05), resulting in a decrease in MEP/CMEP (P<0.05). Although the pre- to post-exercise reduction in resting twitch was greater in FENT vs. CTRL (-53±3% vs. -39±3%; P<0.01), the reduction in voluntary muscle activation was smaller (-2±2% vs. -10±2%; P<0.05). Compared to the start of fatiguing exercise, MEPs and CMEPs were unchanged at exhaustion in CTRL. In contrast, MEPs and MEP/CMEP increased 13±3% and 25±6% in FENT (P<0.05). During non-fatiguing exercise, group III/IV muscle afferents disfacilitate, or inhibit, spinal motoneurons and facilitate motor cortical cells. In contrast, during exhaustive exercise, group III/IV muscle afferents disfacilitate/inhibit the motor cortex and promote central fatigue. Group III/IV muscle afferents influence corticospinal excitability and central fatigue during whole-body exercise in humans. Copyright © 2016 International Federation of Clinical Neurophysiology. All rights reserved.
General Information about Childhood Brain and Spinal Cord Tumors
... Cord Tumors Treatment Overview (PDQ®)–Patient Version General Information About Childhood Brain and Spinal Cord Tumors Go ... types of brain and spinal cord tumors. The information from tests and procedures done to detect (find) ...
Lee, Su Hyun; Lee, Dong Hoon; Ha, Dong Hoon; Oh, Young Jun
2015-10-08
Little is known about the changes in autonomic function during spinal anaesthesia in type 2 diabetic patients. The purpose of the study was to assess the influence of spinal anaesthesia on the heart rate variability in type 2 diabetic patients according to the glycated hemoglobin (HbA1c) level. Sixty-six patients who were scheduled for elective orthostatic lower limb surgery were assigned to three groups (n = 22, each) according to HbA1c; controlled diabetes mellitus (HbA1c < 7 %), uncontrolled diabetes mellitus (HbA1c > 7 %) and the control group. The heart rate variability was measured 10 min before (T0), and at10 min (T1), 20 min (T2) and 30 min (T3) after spinal anaesthesia. Before spinal anaesthesia, total, low-and high-frequency power were significantly lower in the uncontrolled diabetec group than in other group (p < 0.05). During spinal anaesthesia, total, low- and high-frequency powers were did not change in the uncontrolled diabetec group while the low-frequency power in the controlled diabetec group was significantly depressed (p < 0.05). The ratio of low-to high-frequency was comparable among the groups, while it was reduced at T1-2 than at T0 in all the groups. The blood pressures were higher in the uncontrolled diabetec group than in the other groups. Spinal anaesthesia had an influence on the cardiac autonomic modulation in controlled diabetec patients, but not in uncontrolled diabetec patients. There were no differences in all haemodynamic variables during an adequate level of spinal anaesthesia in controlled and uncontrolled type 2 DM. ClinicalTrials.gov NCT02137057.
Acar, Yusuf; Bozkurt, Mehmet; Firat, Ugur; Selcuk, Caferi Tayyar; Kapi, Emin; Isik, Fatma Birgul; Kuvat, Samet Vasfi; Celik, Feyzi; Bozarslan, Beri Hocaoglu
2013-11-01
The purpose of this study is to compare the effects of spinal and epidural anesthesia on a rat transverse rectus abdominus myocutaneous flap ischemia-reperfusion injury model.Forty Sprague-Dawley rats were divided into 4 experimental groups: group I (n = 10), sham group; group II (n = 10), control group; group III (n = 10), epidural group; and group IV (n = 10), spinal group. After the elevation of the transverse rectus abdominus myocutaneous flaps, all groups except for the sham group were subjected to normothermic no-flow ischemia for 4 hours, followed by a reperfusion period of 2 hours. At the end of the reperfusion period, biochemical and histopathological evaluations were performed on tissue samples.Although there was no significant difference concerning the malonyldialdehyde, nitric oxide, and paraoxonase levels in the spinal and epidural groups, the total antioxidant state levels were significantly increased, and the total oxidative stress levels were significantly decreased in the epidural group in comparison to the spinal group. The pathological evaluation showed that findings related to inflammation, nuclear change rates and hyalinization were significantly higher in the spinal group compared with the epidural group.Epidural anesthesia can be considered as a more suitable method that enables a decrease in ischemia-reperfusion injuries in the muscle flaps.
NASA Technical Reports Server (NTRS)
Watt, D. G. D.; Money, K. E.; Tomi, L. M.
1986-01-01
Reflex responses that depend on human otolith organ sensitivity were measured before, during and after a 10 day space flight. Otolith-spinal reflexes were elicited by means of sudden, unexpected falls. In weightlessness, 'falls' were achieved using elastic cords running from a torso harness to the floor. Electromyographic (EMG) activity was recorded from gastrocnemius-soleus. The EMG response occurring in the first 100-120 ms of a fall, considered to be predominantly otolith-spinal in origin, decreased in amplitude immediately upon entering weightlessness, and continued to decline throughout the flight, especially during the first two mission days. The response returned to normal before the first post-flight testing session. The results suggest that information coming from the otolith organs is gradually ignored by the nervous system during prolonged space flight, although the possibility that otolith-spinal reflexes are decreased independent of other otolith output pathways cannot by ruled out.
Gowdappa, H Basavana; Mahesh, M; Murthy, K V K S N; Narahari, M G
2013-09-30
A 23-year-old man presented with weakness in the lower limbs, numbness in hands and feet over past 6 months. Examination revealed a combination of absent ankle jerk, extensor plantar response and reduced sensations in a glove and stocking distribution. MRI of the spinal cord was distinctive of subacute combined degeneration (SACD) of the spinal cord. Serum vitamin B12 was low and anti-intrinsic factor antibodies were positive. A biopsy of the stomach revealed intense inflammatory infiltrates in lamina propria with grade III Helicobacter pylori infection. Other work-up for the cause of vitamin B12 deficiency was unremarkable. H pylori infection triggers autoantibodies by a mechanism of molecular mimicry. This case report highlights H pylori as a causative agent in vitamin B12 deficiency and culminating in SACD of the spinal cord. H pylori treatment reverses the underlying pathogenesis and corrects vitamin B12 deficient state in selected individuals.
Patrick, J
1993-01-01
To review the Food and Drug Administration's regulatory requirements for bringing a new or substantially changed medical device to market in the United States, noting the history and current requirements for the continuous spinal catheter. The relevant laws and guidelines for classifying, testing, and submitting a device to Food and Drug Administration approval are reviewed. The Food and Drug Administration categorizes medical devices into three classes, based on potential risk for illness or injury presented by a malfunction or failure. Class III devices are the most critical ones, and require a Premarket Approval that includes clinical trials before market introduction. Classes I and II usually require a 510(k), or premarket notification, which usually does not need any clinical data. Testing requirements include biocompatibility testing; physical, functional, and packaging testing; and sterility testing. The continuous spinal catheter (25-32 gauge) was marketed under a 510(k) claiming substantial equivalence to the Bizzarri-Giuffrida 24-gauge catheter, which was a pre-Amendment device. After incidences of cauda equina syndrome were reported with use of the continuous spinal technique, the Food and Drug Administration reclassified the small-gauge catheters as Class III devices, which require a Premarket Approval before being marketed.
Finkel, Richard S; Bishop, Kathie M; Nelson, Robert M
2017-02-01
The natural history of spinal muscular atrophy type I (SMA-I) has changed as improved medical support has become available. With investigational drugs for spinal muscular atrophy now in clinical trials, efficient trial design focuses on enrolling recently diagnosed infants, providing best available supportive care, and minimizing subject variation. The quandary has arisen whether it is ethically appropriate to specify a predefined level of nutritional and/or ventilation support for spinal muscular atrophy type I subjects while participating in these studies. We conducted a survey at 2 spinal muscular atrophy investigator meetings involving physician investigators, clinical evaluators, and study coordinators from North America, Europe, and Asia-Pacific. Each group endorsed the concept that having a predefined degree of nutritional and ventilation support was warranted in this context. We discuss how autonomy, beneficence/non-maleficence, noncoercion, social benefit, and equipoise can be maintained when a predefined level of supportive care is proposed, for participation in a clinical trial.
The evolution and rise of stereotactic body radiotherapy (SBRT) for spinal metastases.
Vellayappan, Balamurugan A; Chao, Samuel T; Foote, Matthew; Guckenberger, Matthias; Redmond, Kristin J; Chang, Eric L; Mayr, Nina A; Sahgal, Arjun; Lo, Simon S
2018-06-25
Owing to improvements in clinical care and systemic therapy, more patients are being diagnosed with, and living longer with, spinal metastases (SM). In parallel, tremendous technological progress has been made in the field of radiation oncology. Advances in both software and hardware are able to integrate three- (and four-) dimensional body imaging with spatially accurate treatment delivery methods. This is able to improve the efficacy, shorten the overall treatment schedule and potentially reduce treatment-related toxicity. Areas covered: In this review, we will look at the progress made by stereotactic body radiotherapy (SBRT) in the management of SM. We will review the technological factors which have enabled the widespread use of SBRT. The efficacy of SBRT, in various clinical scenarios, and associated toxicities will be reviewed. Lastly, we will discuss about patient selection, and provide a five-year roadmap. Expert commentary: Spine SBRT is a safe and efficacious treatment option. Practice guidelines recommend the use of SBRT in oligo-metastatic patients especially those with radio-resistant cancer types, and in scenarios involving re-irradiation. SBRT offers patients dose-intensification over a short schedule which may allow less time off systemic therapy. The results of the phase III trials are eagerly awaited.
MALET, M.; VIEYTES, C. A.; LUNDGREN, K. H.; SEAL, R. P.; TOMASELLA, E.; SEROOGY, K. B.; HÖKFELT, T.; GEBHART, G.F.; BRUMOVSKY, P. R.
2013-01-01
Using specific riboprobes, we characterized the expression of VGLUT1-VGLUT3 transcripts in lumbar 4-5 (L4-5) DRGs and the thoracolumbar to lumbosacral spinal cord in male BALB/C mice after a 1- or 3-day hindpaw inflammation, or a 7-day sciatic nerve axotomy. Sham animals were also included. In sham and contralateral L4-5 DRGs of injured mice, VGLUT1-, VGLUT2- and VGLUT3 mRNAs were expressed in ~45%, ~69% or ~17% of neuron profiles (NPs), respectively. VGLUT1 was expressed in large and medium-sized NPs, VGLUT2 in NPs of all sizes, and VGLUT3 in small and medium-sized NPs. In the spinal cord, VGLUT1 was restricted to a number of NPs at thoracolumbar and lumbar segments, in what appears to be the dorsal nucleus of Clarke, and in mid laminae III-IV. In contrast, VGLUT2 was present in numerous NPs at all analyzed spinal segments, except the lateral aspects of the ventral horns, especially at the lumbar enlargement, where it was virtually absent. VGLUT3 was detected in a discrete number of NPs in laminae III-IV of the dorsal horn. Axotomy resulted in a moderate decrease in the number of DRG NPs expressing VGLUT3, whereas VGLUT1 and VGLUT2 were unaffected. Likewise, the percentage of NPs expressing VGLUT transcripts remained unaltered after hindpaw inflammation, both in DRGs and the spinal cord. Altogether, these results confirm previous descriptions on VGLUTs expression in adult mice DRGs, with the exception of VGLUT1, whose protein expression was detected in a lower percentage of mouse DRG NPs. A detailed account on the location of neurons expressing VGLUTs transcripts in the adult mouse spinal cord is also presented. Finally, the lack of change in the number of neurons expressing VGLUT1 and VGLUT2 transcripts after axotomy, as compared to data on protein expression, suggests translational rather than transcriptional regulation of VGLUTs after injury. PMID:23727452
2012-01-01
Background Although there is evidence that spinal manipulative therapy (SMT) can reduce pain, the mechanisms involved are not well established. There is a need to review the scientific literature to establish the evidence-base for the reduction of pain following SMT. Objectives To determine if SMT can reduce experimentally induced pain, and if so, if the effect is i) only at the level of the treated spinal segment, ii) broader but in the same general region as SMT is performed, or iii) systemic. Design A systematic critical literature review. Methods A systematic search was performed for experimental studies on healthy volunteers and people without chronic syndromes, in which the immediate effect of SMT was tested. Articles selected were reviewed blindly by two authors. A summary quality score was calculated to indicate level of manuscript quality. Outcome was considered positive if the pain-reducing effect was statistically significant. Separate evidence tables were constructed with information relevant to each research question. Results were interpreted taking into account their manuscript quality. Results Twenty-two articles were included, describing 43 experiments, primarily on pain produced by pressure (n = 27) or temperature (n = 9). Their quality was generally moderate. A hypoalgesic effect was shown in 19/27 experiments on pressure pain, produced by pressure in 3/9 on pain produced by temperature and in 6/7 tests on pain induced by other measures. Second pain provoked by temperature seems to respond to SMT but not first pain. Most studies revealed a local or regional hypoalgesic effect whereas a systematic effect was unclear. Manipulation of a “restricted motion segment” (“manipulable lesion”) seemed not to be essential to analgesia. In relation to outcome, there was no discernible difference between studies with higher vs. lower quality scores. Conclusions These results indicate that SMT has a direct local/regional hypoalgesic effect on experimental pain for some types of stimuli. Further research is needed to determine i) if there is also a systemic effect, ii) the exact mechanisms by which SMT attenuates pain, and iii) whether this response is clinically significant. PMID:22883534
Effect of Robotic-Assisted Gait Training in Patients With Incomplete Spinal Cord Injury
Shin, Ji Cheol; Kim, Ji Yong; Park, Han Kyul
2014-01-01
Objective To determine the effect of robotic-assisted gait training (RAGT) compared to conventional overground training. Methods Sixty patients with motor incomplete spinal cord injury (SCI) were included in a prospective, randomized clinical trial by comparing RAGT to conventional overground training. The RAGT group received RAGT three sessions per week at duration of 40 minutes with regular physiotherapy in 4 weeks. The conventional group underwent regular physiotherapy twice a day, 5 times a week. Main outcomes were lower extremity motor score of American Spinal Injury Association impairment scale (LEMS), ambulatory motor index (AMI), Spinal Cord Independence Measure III mobility section (SCIM3-M), and walking index for spinal cord injury version II (WISCI-II) scale. Results At the end of rehabilitation, both groups showed significant improvement in LEMS, AMI, SCIM3-M, and WISCI-II. Based on WISCI-II, statistically significant improvement was observed in the RAGT group. For the remaining variables, no difference was found. Conclusion RAGT combined with conventional physiotherapy could yield more improvement in ambulatory function than conventional therapy alone. RAGT should be considered as one additional tool to provide neuromuscular reeducation in patient with incomplete SCI. PMID:25566469
Sabino, Luzzi; Maria, Crovace Alberto; Luca, Lacitignola; Valerio, Valentini; Edda, Francioso; Giacomo, Rossi; Gloria, Invernici; Juan, Galzio Renato; Antonio, Crovace
2018-01-01
Proof of the efficacy and safety of a xenogeneic mesenchymal stem cell (MSCs) transplant for spinal cord injury (SCI) may theoretically widen the spectrum of possible grafts for neuroregeneration. Twenty rats were submitted to complete spinal cord transection. Ovine bone marrow MSCs, retrovirally transfected with red fluorescent protein and not previously induced for neuroglial differentiation, were applied in 10 study rats (MSCG). Fibrin glue was injected in 10 control rats (FGG). All rats were evaluated on a weekly basis and scored using the Basso-Beattie-Bresnahan (BBB) locomotor scale for 10 weeks, when the collected data were statistically analyzed. The spinal cords were then harvested and analyzed with light microscopy, immunohistochemistry, and immunofluorescence. Ovine MSCs culture showed positivity for Nestin. MSCG had a significant and durable recovery of motor functions ( P <.001). Red fluorescence was found at the injury sites in MSCG. Positivity for Nestin, tubulin βIII, NG2 glia, neuron-specific enolase, vimentin, and 200 kD neurofilament were also found at the same sites. Xenogeneic ovine bone marrow MSCs proved capable of engrafting into the injured rat spinal cord. Transdifferentiation into a neuroglial phenotype was able to support partial functional recovery.
Sabino, Luzzi; Maria, Crovace Alberto; Luca, Lacitignola; Valerio, Valentini; Edda, Francioso; Giacomo, Rossi; Gloria, Invernici; Juan, Galzio Renato; Antonio, Crovace
2018-01-01
Background: Proof of the efficacy and safety of a xenogeneic mesenchymal stem cell (MSCs) transplant for spinal cord injury (SCI) may theoretically widen the spectrum of possible grafts for neuroregeneration. Methods: Twenty rats were submitted to complete spinal cord transection. Ovine bone marrow MSCs, retrovirally transfected with red fluorescent protein and not previously induced for neuroglial differentiation, were applied in 10 study rats (MSCG). Fibrin glue was injected in 10 control rats (FGG). All rats were evaluated on a weekly basis and scored using the Basso–Beattie–Bresnahan (BBB) locomotor scale for 10 weeks, when the collected data were statistically analyzed. The spinal cords were then harvested and analyzed with light microscopy, immunohistochemistry, and immunofluorescence. Results: Ovine MSCs culture showed positivity for Nestin. MSCG had a significant and durable recovery of motor functions (P <.001). Red fluorescence was found at the injury sites in MSCG. Positivity for Nestin, tubulin βIII, NG2 glia, neuron-specific enolase, vimentin, and 200 kD neurofilament were also found at the same sites. Conclusions: Xenogeneic ovine bone marrow MSCs proved capable of engrafting into the injured rat spinal cord. Transdifferentiation into a neuroglial phenotype was able to support partial functional recovery. PMID:29497572
Liu, Chao; Yu, Wen; Zheng, Guoquan; Guo, Yue; Song, Kai; Tang, Xiangyu; Wang, Zheng; Wang, Yan; Zhang, Yonggang
2017-08-01
This is a retrospective clinical study. To investigate the correction angle and safety of the spinal osteotomy at the T12 or L1 vertebra. Monosegment subtraction osteotomy cannot effectively correct severe kyphosis in ankylosing spondylitis (AS), generally 2-level spinal osteotomy was taken for achieving expected correction. According to literature, the T12 or L1 were usually taken as the upper spinal osteotomy vertebra. Because of the canalis vertebralis at the T12 and L1 were spinal cord and medullary cone, so the spinal osteotomy at the T12 or L1 vertebra were more dangerous than at lower level. The correction angle and safety of the spinal osteotomy at the T12 or L1 vertebra have not yet been reported. From July 2009 to 2014, 33 patients in our department with severe AS kyphosis underwent 2-level pedicle subtraction osteotomy were studied. Preoperative and postoperative relevant parameters and complications were recorded. The upper spinal osteotomy was taken at the T12 vertebra for 10 patients. The upper spinal osteotomy was taken at the L1 vertebra for 23 patients. The mean amount of correction of T12 and L1 was 26.230 and 27.952 degrees, respectively. All patients could walk with orthophoria and lie horizontally postoperatively. No deadly vascular and neurological lesion occurred. Performing pedicle subtraction osteotomy at T12 and L1 can safely achieve a mean correction of 26.230 and 27.952 degrees, respectively. Two-level osteotomy was safely and advocated for correcting severe AS kyphosis. Level III.
Kamizato, Kota; Marsala, Silvia; Navarro, Michael; Kakinohana, Manabu; Platoshyn, Oleksandr; Yoshizumi, Tetsuya; Lukacova, Nadezda; Wancewicz, Ed; Powers, Berit; Mazur, Curt; Marsala, Martin
2018-07-01
The loss of local spinal glycine-ergic tone has been postulated as one of the mechanisms contributing to the development of spinal injury-induced spasticity. In our present study using a model of spinal transection-induced muscle spasticity, we characterize the effect of spinally-targeted GlyT2 downregulation once initiated at chronic stages after induction of spasticity in rats. In animals with identified hyper-reflexia, the anti-spasticity effect was studied after intrathecal treatment with: i) glycine, ii) GlyT2 inhibitor (ALX 1393), and iii) GlyT2 antisense oligonucleotide (GlyT2-ASO). Administration of glycine and GlyT2 inhibitor led to significant suppression of spasticity lasting for a minimum of 45-60 min. Treatment with GlyT2-ASO led to progressive suppression of muscle spasticity seen at 2-3 weeks after treatment. Over the subsequent 4-12 weeks, however, the gradual appearance of profound spinal hyper-reflexia was seen. This was presented as spontaneous or slight-tactile stimulus-evoked muscle oscillations in the hind limbs (but not in upper limbs) with individual hyper-reflexive episodes lasting between 3 and 5 min. Chronic hyper-reflexia induced by GlyT2-ASO treatment was effectively blocked by intrathecal glycine. Immunofluorescence staining and Q-PCR analysis of the lumbar spinal cord region showed a significant (>90%) decrease in GlyT2 mRNA and GlyT2 protein. These data demonstrate that spinal GlyT2 downregulation provides only a time-limited therapeutic benefit and that subsequent loss of glycine vesicular synthesis resulting from chronic GlyT2 downregulation near completely eliminates the tonic glycine-ergic activity and is functionally expressed as profound spinal hyper-reflexia. These characteristics also suggest that chronic spinal GlyT2 silencing may be associated with pro-nociceptive activity. Copyright © 2018 Elsevier Inc. All rights reserved.
Spencer, Nick J; Kyloh, Melinda; Beckett, Elizabeth A; Brookes, Simon; Hibberd, Tim
2016-10-15
In visceral organs of mammals, most noxious (painful) stimuli as well as innocuous stimuli are detected by spinal afferent neurons, whose cell bodies lie in dorsal root ganglia (DRGs). One of the major unresolved questions is the location, morphology, and neurochemistry of the nerve endings of spinal afferents that actually detect these stimuli in the viscera. In the upper gastrointestinal (GI) tract, there have been many anterograde tracing studies of vagal afferent endings, but none on spinal afferent endings. Recently, we developed a technique that now provides selective labeling of only spinal afferents. We used this approach to identify spinal afferent nerve endings in the upper GI tract of mice. Animals were anesthetized, and injections of dextran-amine were made into thoracic DRGs (T8-T12). Seven days post surgery, mice were euthanized, and the stomach and esophagus were removed, fixed, and stained for calcitonin gene-related peptide (CGRP). Spinal afferent axons were identified that ramified extensively through many rows of myenteric ganglia and formed nerve endings in discrete anatomical layers. Most commonly, intraganglionic varicose endings (IGVEs) were identified in myenteric ganglia of the stomach and varicose simple-type endings in the circular muscle and mucosa. Less commonly, nerve endings were identified in internodal strands, blood vessels, submucosal ganglia, and longitudinal muscle. In the esophagus, only IGVEs were identified in myenteric ganglia. No intraganglionic lamellar endings (IGLEs) were identified in the stomach or esophagus. We present the first identification of spinal afferent endings in the upper GI tract. Eight distinct types of spinal afferent endings were identified in the stomach, and most of them were CGRP immunoreactive. J. Comp. Neurol. 524:3064-3083, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Takahashi, Ryosuke; Yoshizawa, Tsuyoshi; Yunoki, Takakazu; Tyagi, Pradeep; Naito, Seiji; de Groat, William C; Yoshimura, Naoki
2013-12-01
To clarify the functional and molecular mechanisms inducing hyperexcitability of C-fiber bladder afferent pathways after spinal cord injury we examined changes in the electrophysiological properties of bladder afferent neurons, focusing especially on voltage-gated K channels. Freshly dissociated L6-S1 dorsal root ganglion neurons were prepared from female spinal intact and spinal transected (T9-T10 transection) Sprague Dawley® rats. Whole cell patch clamp recordings were performed on individual bladder afferent neurons. Kv1.2 and Kv1.4 α-subunit expression levels were also evaluated by immunohistochemical and real-time polymerase chain reaction methods. Capsaicin sensitive bladder afferent neurons from spinal transected rats showed increased cell excitability, as evidenced by lower spike activation thresholds and a tonic firing pattern. The peak density of transient A-type K+ currents in capsaicin sensitive bladder afferent neurons from spinal transected rats was significantly less than that from spinal intact rats. Also, the KA current inactivation curve was displaced to more hyperpolarized levels after spinal transection. The protein and mRNA expression of Kv1.4 α-subunits, which can form transient A-type K+ channels, was decreased in bladder afferent neurons after spinal transection. Results indicate that the excitability of capsaicin sensitive C-fiber bladder afferent neurons is increased in association with reductions in transient A-type K+ current density and Kv1.4 α-subunit expression in injured rats. Thus, the Kv1.4 α-subunit could be a molecular target for treating overactive bladder due to neurogenic detrusor overactivity. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Spinal Cord Injury Impairs Cardiovascular Capacity in Elite Wheelchair Rugby Athletes.
Gee, Cameron M; Currie, Katharine D; Phillips, Aaron A; Squair, Jordan W; Krassioukov, Andrei V
2017-12-19
To examine differences in heart rate (HR) responses during international wheelchair rugby competition between athletes with and without a cervical spinal cord injury (SCI) and across standardized sport classifications. Observational study. The 2015 Parapan American Games wheelchair rugby competition. Forty-three male athletes (31 ± 8 years) with a cervical SCI (n = 32) or tetraequivalent impairment (non-SCI, n = 11). Average and peak HR (HRavg and HRpeak, respectively). To characterize HR responses in accordance with an athletes' International Wheelchair Rugby Federation (IWRF) classification, we separated athletes into 3 groups: group I (IWRF classification 0.5-1.5, n = 15); group II (IWRF classification 2.0, n = 15); and group III (IWRF classification 2.5-3.5, n = 13). Athletes with SCI had lower HRavg (111 ± 14 bpm vs 155 ± 13 bpm) and HRpeak (133 ± 12 bpm vs 178 ± 13 bpm) compared with non-SCI (both P < 0.001). Average HR was higher in group III than in I (136 ± 25 bpm vs 115 ± 20 bpm, P = 0.045); however, SCI athletes showed no difference in HRavg or HRpeak between groups. Within group III, SCI athletes had lower HRavg (115 ± 6 bpm vs 160 ± 8 bpm) and HRpeak (135 ± 11 bpm vs 183 ± 11 bpm) than non-SCI athletes (both P < 0.001). This study is the first to demonstrate attenuated HR responses during competition in SCI compared with non-SCI athletes, likely due to injury to spinal autonomic pathways. Among athletes with SCI, IWRF classification was not related to differences in HR. Specific assessment of autonomic function after SCI may be able to predict HR during competition and consideration of autonomic impairments may improve the classification process.
Evaluation of cervical posture of children in skeletal class I, II, and III.
D'Attilio, Michele; Caputi, Sergio; Epifania, Ettore; Festa, Felice; Tecco, Simona
2005-07-01
Previous studies on the relationship between morphological structure of the face and cervical posture have predominantly focused on vertical dimensions of the face. The aim of this study was to investigate whether there are significant differences in cervical posture in subjects with a different sagittal morphology of the face, i.e., a different skeletal class. One hundred twenty (120) children (60 males and 60 females, average age 9.5 yrs., SD+/-0.5) were admitted for orthodontic treatment. Selection criteria was: European ethnic origin, date of birth, considerable skeletal growth potential remaining and an absence of temporomandibular joint dysfunction (TMD). Lateral skull radiographs were taken in mirror position. Subjects were divided into three groups based on their skeletal class. The cephalometric tracings included postural variables. The most interesting findings were: 1. children in skeletal class III showed a significantly lower cervical lordosis angle (p<0.001) than the children in skeletal class I and skeletal class II; 2. children in skeletal class II showed a significantly higher extension of the head upon the spinal column compared to children in skeletal class I and skeletal class III (p<0.001 and p<0.01, respectively). This is probably because the lower part of their spinal column was straighter than those of subjects in skeletal class I and II (p<0.01 and p<0.001, respectively). Significant differences among the three groups were also observed in the inclination of maxillary and mandibular bases to the spinal column. The posture of the neck seems to be strongly associated with the sagittal as well as the vertical structure of the face.
Terashima, Tetsuji; Xu, Qinghao; Yamaguchi, Shigeki; Yaksh, Tony L.
2013-01-01
Intrathecal (IT) studies have shown that several voltage sensitive calcium channels (VSCCs), such as the L-, N- and T-type may play roles in nociception and that of these only the N-type regulates primary afferent substance P (SP) release. However, the actions of other VSCCs at the spinal level are not well known. We investigated the roles of spinal P/Q- and R-type VSCCs, by IT administration of R-type (SNX-482) and P/Q-type (ω-agatoxin IVA) VSCC blockers on intraplantar formalin-evoked flinching, SP release from primary afferents and c-Fos expression in spinal dorsal horn. Intraplantar injection of formalin (2.5%, 50 µL) produced an intense, characteristic biphasic paw flinching response. In rats with IT catheters, IT SNX-482 (0.5 µg) reduced formalin-evoked paw flinching in both phase 1 and 2 compared with vehicle. Intraplantar formalin caused robust neurokinin 1 receptor (NK1r) internalization (indicating SP release) and c-Fos expression in the ipsilateral dorsal horn, which were blocked by IT SNX-482. IT ω-agatoxin IVA (0.03, 0.125 and 0.5 µg) did not reduce formalin-evoked paw flinching or c-Fos expression at any doses, with higher doses resulting in motor dysfunction. Thus, we demonstrated that blockade of spinal R-type, but not P/Q type VSCCs attenuated formalin-induced pain behavior, NK1r internalization and c-Fos expression in the superficial dorsal horn. This study supports a role for Cav2.3 in presynaptic neurotransmitter release from peptidergic nociceptive afferents and pain behaviors. PMID:23810829
Degtyarenko, A M; Kaufman, M P
2003-01-01
We examined the effect of iontophoretic application of bicuculline methiodide and strychnine hydrochloride on the mesencephalic locomotor region (MLR)-induced inhibition of dorsal horn cells in paralyzed cats. The activity of 60 dorsal horn cells was recorded extracellularly in laminae I, II, V-VII of spinal segments L7-S1. Each of the cells was shown to receive group III muscle afferent input as demonstrated by their responses to electrical stimulation of the tibial nerve (mean latency and threshold of activation: 20.1+/-6.4 ms and 15.2+/-1.4 times motor threshold, respectively). Electrical stimulation of the MLR suppressed transmission in group III muscle afferent pathways to dorsal horn cells. Specifically the average number of impulses generated by the dorsal horn neurons in response to a single pulse applied to the tibial nerve was decreased by 78+/-2.8% (n=60) during the MLR stimulation. Iontophoretic application (10-50 nA) of bicuculline and strychnine (5-10 mM) suppressed the MLR-induced inhibition of transmission of group III afferent input to laminae I and II cells by 69+/-5% (n=10) and 29+/-7% (n=7), respectively. Likewise, bicuculline and strychnine suppressed the MLR-induced inhibition of transmission of group III afferent input to lamina V cells by 59+/-13% (n=14) and 39+/-11% (n=10), respectively. Our findings raise the possibility that GABA and glycine release onto dorsal horn neurons in the spinal cord may play an important role in the suppression by central motor command of thin fiber muscle afferent-reflex pathways.
Papathomas, Anthony; Williams, Toni L.; Smith, Brett
2015-01-01
The aim of this study was to identity the types of physical activity narratives drawn upon by active spinal injured people. More than 50 h of semi-structured life-story interview data, collected as part of larger interdisciplinary program of disability lifestyle research, was analysed for 30 physically active male and female spinal cord injury (SCI) participants. A structural narrative analysis of data identified three narrative types which people with SCI draw on: (1) exercise is restitution, (2) exercise is medicine, and (3) exercise is progressive redemption. These insights contribute new knowledge by adding a unique narrative perspective to existing cognitive understanding of physical activity behaviour in the spinal cord injured population. The implications of this narrative typology for developing effective positive behavioural change interventions are critically discussed. It is concluded that the identified narratives types may be constitutive, as well as reflective, of physical activity experiences and therefore may be a useful tool on which to base physical activity promotion initiatives. PMID:26282868
Outcomes of Spinal Fusion for Cervical Kyphosis in Children with Neurofibromatosis.
Helenius, Ilkka J; Sponseller, Paul D; Mackenzie, William; Odent, Thierry; Dormans, John P; Asghar, Jahangir; Rathjen, Karl; Pahys, Joshua M; Miyanji, Firoz; Hedequist, Daniel; Phillips, Jonathan H
2016-11-02
Cervical kyphosis may occur with neurofibromatosis type I (NF1) and is often associated with vertebral dysplasia. Outcomes of cervical spinal fusion in patients with NF1 are not well described because of the rarity of the condition. We aimed to (1) characterize the clinical presentation of cervical kyphosis and (2) report the outcomes of posterior and anteroposterior cervical fusion for the condition in these children. The medical records and imaging studies of 22 children with NF1 who had undergone spinal fusion for cervical kyphosis (mean, 67°) at a mean age of 11 years and who had been followed for a minimum of 2 years were reviewed. Thirteen children presented with neck pain; 10, with head tilt; 9, with a previous cervical laminectomy or fusion; and 5, with a neurologic deficit. Two patients had spontaneous dislocation of the mid-cervical spine without a neurologic deficit. Eleven had scoliosis, with the major curve measuring a mean of 61°. Nine patients underwent posterior and 13 underwent anteroposterior surgery. Twenty-one received spinal instrumentation, and 1 was not treated with instrumentation. Preoperative halo traction was used for 9 patients, and it reduced the mean preoperative kyphosis by 34% (p = 0.0059). At the time of final follow-up, all spinal fusion sites had healed and the cervical kyphosis averaged 21° (mean correction, 69%; p < 0.001). The cervical kyphosis correction was significantly better after the anteroposterior procedures (83%) than after the posterior-only procedures (58%) (p = 0.031). Vertebral dysplasia and erosion continued in all 17 patients who had presented with dysplasia preoperatively. Thirteen patients had complications, including 5 new neurologic deficits and 8 cases of junctional kyphosis. Nine patients required revision surgery. Junctional kyphosis was more common in children in whom ≤5 levels had been fused (p = 0.054). Anteroposterior surgery provided better correction of cervical kyphosis than posterior spinal fusion in children with NF1. Erosion of vertebral bodies continued during the postoperative follow-up period in all patients who had presented with dysplastic changes preoperatively. The cervical spine should be screened in all children with NF1. Fusion should include at least 6 levels to prevent junctional kyphosis. Therapeutic Level III. See Instructions for Authors for a complete description of levels of evidence. Copyright © 2016 by The Journal of Bone and Joint Surgery, Incorporated.
Wang, Jiajing; Hmadcha, Abdelkrim; Zakarian, Vaagn; Song, Fei; Loeb, Jeffrey A
2015-09-01
The neuregulins (NRGs) are a family of alternatively spliced factors that play important roles in nervous system development and disease. In motor neurons, NRG1 expression is regulated by activity and neurotrophic factors, however, little is known about what controls isoform-specific transcription. Here we show that NRG1 expression in the chick embryo increases in motor neurons that have extended their axons and that limb bud ablation before motor axon outgrowth prevents this induction, suggesting a trophic role from the developing limb. Consistently, NRG1 induction after limb bud ablation can be rescued by adding back the neurotrophic factors BDNF and GDNF. Mechanistically, BDNF induces a rapid and transient increase in type I and type III NRG1 mRNAs that peak at 4h in rat embryonic ventral spinal cord cultures. Blocking MAPK or PI3K signaling or blocking transcription with Actinomycin D blocks BDNF induced NRG1 gene induction. BDNF had no effect on mRNA degradation, suggesting that transcriptional activation rather than message stability is important. Furthermore, BDNF activates a reporter construct that includes 700bp upstream of the type I NRG1 start site. Protein synthesis is also required for type I NRG1 mRNA transcription as cycloheximide produced a super-induction of type I, but not type III NRG1 mRNA, possibly through a mechanism involving sustained activation of MAPK and PI3K. These results reveal the existence of highly responsive, transient transcriptional regulatory mechanisms that differentially modulate NRG1 isoform expression as a function of extracellular and intracellular signaling cascades and mediated by neurotrophic factors and axon-target interactions. Copyright © 2015 Elsevier Inc. All rights reserved.
Spinal Injury Rehabilitation in Singapore.
ERIC Educational Resources Information Center
Yen, H. L.; Chua, K.; Chan, W.
1998-01-01
This study reviewed 231 cases of spinal cord injury treated in Singapore. Data on demographic characteristics, common causes (mostly falls and traffic accidents), types of spinal damage, and outcomes are reported. Following rehabilitation, 68 patients were able to ambulate independently and 45 patients achieved independence in activities of daily…
21 CFR 522.1698 - Pentazocine lactate injection.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Pentazocine lactate injection. 522.1698 Section 522.1698 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... amelioration of pain accompanying postoperative recovery, fracture, trauma, and spinal disorders. (iii...
21 CFR 522.1698 - Pentazocine lactate injection.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Pentazocine lactate injection. 522.1698 Section 522.1698 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... amelioration of pain accompanying postoperative recovery, fracture, trauma, and spinal disorders. (iii...
Privat, J M; Finiels, P J
1997-01-01
Epidural granulomas following intra-discal injection of triamcinolone hexacetonide are a well-known complication of this procedure, which is still encountered, even if its utilization was discontinued several years ago. According to the results of their experience, the authors propose a new radio-clinical grading system: grade I: disc calcification with aspect of "sub-ligamentar hernia" on CT scan; grade II: ascendant or descendant retrosomatic migration of distal content; grade III: pseudotumoral epidural infiltrate producing progressive narrowing of the spinal canal with neurological disturbance. Surgical indications in these cases can be drawn from their evolution: posterior approach can be used, with or without laminectomy, for excision as complete as possible of the involved disc (grades I and II); anterior approach should be preferred in cases of multiples recurrences after medical treatment and failure of classical posterior approach, or in case of necrotico-inflammatory proliferation with narrowing of the spinal canal (grade III).
Dynorphin is expressed primarily by GABAergic neurons that contain galanin in the rat dorsal horn
2011-01-01
Background The opioid peptide dynorphin is expressed by certain neurons in the superficial dorsal horn of the spinal cord, but little is known about the types of cell that contain dynorphin. In this study, we have used an antibody against the dynorphin precursor preprodynorphin (PPD), to reveal the cell bodies and axons of dynorphin-expressing neurons in the rat spinal cord. The main aims were to estimate the proportion of neurons in each of laminae I-III that express dynorphin and to determine whether they are excitatory or inhibitory neurons. Results PPD-immunoreactive cells were concentrated in lamina I and the outer part of lamina II (IIo), where they constituted 17% and 8%, respectively, of all neurons. Around half of those in lamina I and 80% of those in lamina II were GABA-immunoreactive. We have previously identified four non-overlapping neurochemical populations of inhibitory interneurons in this region, defined by the presence of neuropeptide Y, galanin, parvalbumin and neuronal nitric oxide synthase. PPD co-localised extensively with galanin in both cell bodies and axons, but rarely or not at all with the other three markers. PPD was present in around 4% of GABAergic boutons (identified by the presence of the vesicular GABA transporter) in laminae I-II. Conclusions These results show that most dynorphin-expressing cells in the superficial dorsal horn are inhibitory interneurons, and that they largely correspond to the population that is defined by the presence of galanin. We estimate that dynorphin is present in ~32% of inhibitory interneurons in lamina I and 11% of those in lamina II. Since the proportion of GABAergic boutons that contain PPD in these laminae was considerably lower than this, our findings suggest that these neurons may generate relatively small axonal arborisations. PMID:21958458
A qualitative study of perceptions of meaningful change in spinal muscular atrophy.
McGraw, Sarah; Qian, Ying; Henne, Jeff; Jarecki, Jill; Hobby, Kenneth; Yeh, Wei-Shi
2017-04-04
This qualitative study examined how individuals with Spinal Muscular Atrophy (SMA), their caregivers, and clinicians defined meaningful change, primarily in the Type II and non-ambulant type III patient populations, associated with treatment of this condition. In addition, we explored participants' views about two measures of motor function routinely used in clinical trials for these SMA subtypes, namely the expanded version of the Hammersmith Functional Motor Scale (HFMSE) and the Upper Limb Module (ULM). The 123 participants (21 with SMA, 64 parents, and 11 clinicians), recruited through SMA advocacy organizations, participated in one of 16 focus groups or 37 interviews. The sessions were audio-recorded, and verbatim transcripts were analyzed using a grounded theory approach. For the participants, meaningful change was relative to functional ability, and small changes in motor function could have an important impact on quality of life. Because patients and families feared progressive loss of functional ability, the participants saw maintenance of abilities as a meaningful outcome. They believed that measures of motor function covered important items, but worried that the HFMSE and ULM might not be sensitive enough to capture small changes. In addition, they felt that outcome measures should assess other important features of life with SMA, including the ability to perform daily activities, respiratory function, swallowing, fatigue, and endurance. Given the heterogeneity of SMA, it is important to expand the assessment of treatment effects to a broader range of outcomes using measures sensitive enough to detect small changes.
Liu, Hui-Miao; Dong, Ci; Zhang, Yong-Zhi; Tian, Ya-Yun; Chen, Hong-Xu; Zhang, Sai; Li, Na; Gu, Ping
2017-10-01
To investigate the clinical and MRI characteristics of spinal cord nerve Behçet's disease. One patient with spinal cord nerve Behçet's disease was admitted to our hospital at October 20, 2015. Spinal cord nerve Behçet's disease. Retrospective analysis was performed on such case as well as 16 cases of spinal cord nerve Behçet's disease reported in China or abroad. Seventeen cases of spinal cord type of neuro Behçet's disease include 13 men and 4 women, with an average age of onset of 34.8 years old. The mean time from Behçet's disease symptoms to spinal cord involvement were 10.8 years. The initial symptom in one case was spinal cord injury, and another 4 cases had a recurrence course. The most common performance of spinal cord injury was sensory disturbance (82.4%), following by weakness (76.5%), sphincter or sexual dysfunction (58.8%), and pain in back, backside of neck or lower chest (29.4%). The number of cells was slightly increased or the protein level was increased in cerebrospinal fluid test. And the water channel protein antibody and oligoclonal band of serum levels were all negative. The spinal cord injury involved more than 3 vertebral bodies in 10 cases, and involved more than half of spinal cord in sagittal plane in 8 cases. In acute stage, shock therapy with large dose of glucocorticoid was generally applied both in China and abroad. The clinical features of spinal cord nerve Behçet's disease were various, making it easily misdiagnosed. Longitudinal extensive transverse myelitis performs as a characteristic manifestation.
Childhood Brain and Spinal Cord Tumors Treatment Overview (PDQ®)—Patient Version
Brain and spinal cord tumors may be benign (not cancer) or malignant (cancer). Both types cause signs or symptoms and need treatment. Get information about the many kinds of brain and spinal cord tumors, signs and symptoms, tests to diagnose, and treatment in this expert-reviewed summary.
34 CFR 359.10 - What types of projects are authorized under this program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... rehabilitation services to individuals with spinal cord injuries; and (b) Conduct spinal cord research, including clinical research and the analysis of standardized data in collaboration with other related projects... REHABILITATION RESEARCH: SPECIAL PROJECTS AND DEMONSTRATIONS FOR SPINAL CORD INJURIES What Kinds of Activities...
Recording temperature affects the excitability of mouse superficial dorsal horn neurons, in vitro.
Graham, B A; Brichta, A M; Callister, R J
2008-05-01
Superficial dorsal horn (SDH) neurons in laminae I-II of the spinal cord play an important role in processing noxious stimuli. These neurons represent a heterogeneous population and are divided into various categories according to their action potential (AP) discharge during depolarizing current injection. We recently developed an in vivo mouse preparation to examine functional aspects of nociceptive processing and AP discharge in SDH neurons and to extend investigation of pain mechanisms to the genetic level of analysis. Not surprisingly, some in vivo data obtained at body temperature (37 degrees C) differed from those generated at room temperature (22 degrees C) in spinal cord slices. In the current study we examine how temperature influences SDH neuron properties by making recordings at 22 and 32 degrees C in transverse spinal cord slices prepared from L3-L5 segments of adult mice (C57Bl/6). Patch-clamp recordings (KCH(3)SO(4) internal) were made from visualized SDH neurons. At elevated temperature all SDH neurons had reduced input resistance and smaller, briefer APs. Resting membrane potential and AP afterhyperpolarization amplitude were temperature sensitive only in subsets of the SDH population. Notably, elevated temperature increased the prevalence of neurons that did not discharge APs during current injection. These reluctant firing neurons expressed a rapid A-type potassium current, which is enhanced at higher temperatures and thus restrains AP discharge. When compared with previously published whole cell recordings obtained in vivo (37 degrees C) our results suggest that, on balance, in vitro data collected at elevated temperature more closely resemble data collected under in vivo conditions.
Qiao, Yan-Yan; Chu, Ping
2018-02-01
In this study, we examined expression of nestin in the spinal cord, lung, kidney, stomach, colon, and intestine tissues at different stages of embryos in patients with placenta previa. Fetuses of 75 patients with placenta previa were assigned to case group and 80 fetuses from healthy pregnant women with normal placenta who voluntarily terminated pregnancy to control group. Clinical data of pregnant women were collected at the time of admission. Blood from elbow vein was collected to determine expression of serum nestin. Tissues from spinal cord, lung, kidney, stomach, colon, and intestine in 3-7 months fetuses of the two groups were extracted. Expression of nestin in tissues was detected by immunohistochemistry, Western blotting and RT-qPCR. The mRNA expression of nestin in the case group was increased. Nestin expression was correlated with the gestational age, age of foetus, and type of placenta previa in patients with placenta previa. Positive nestin expression was detected in the spinal cord, lung, kidney, stomach, intestine, and colon tissues in normal and placenta previa embryo at Stage I. The positive cell density and nestin expression decreased at Stage II, and further decreased at Stage III. The case group had higher nestin mRNA and protein levels throughout human fetal development. Findings of this study suggested that, nestin, as a specific marker of neural precursor cells, was expressed in various tissues of the embryo in patients with placenta previa and nestin expression was lower with increased maturation of the embryo. © 2017 Wiley Periodicals, Inc.
Increasing Rates of Surgical Management of Multilevel Spinal Curvature in Elderly Patients.
Sing, David C; Khanna, Ryan; Shaw, Jeremy D; Metz, Lionel N; Burch, Shane; Berven, Sigurd H
2016-09-01
Retrospective analysis of Nationwide Inpatient Sample (NIS) database. To analyze trends in utilization and hospital charges for multilevel spinal curvature surgery in patients over 60 from 2004 to 2011. Multilevel spinal curvature has been increasingly recognized as a major source of morbidity in patients over sixty years of age. The economic burden of non-operative management for spinal curvature is elusive and likely underestimated. Though patient reported outcomes suggest that surgical treatment of spinal curvature may be superior to non-operative treatment in selected patients, surgical utilization trends remain unclear. Data were obtained from the NIS between 2004 and 2011. The NIS is the largest all-payer inpatient care database with approximately eight million annual patient discharges throughout the United States. Analysis included patients over age 60 with a spinal curvature diagnosis treated with a multi-level spinal fusion (≥3 levels fused) determined by ICD-9-CM diagnosis and procedure codes. Population-based utilization rates were calculated from US census data. A total of 84,302 adult patients underwent multilevel spinal curvature surgery from 2004 to 2011. The annual number of ≥3 level spinal curvature fusions in patients over age 60 increased from 6,571 to 16,526, representing a 107.8% increase from 13.4 cases per 100,000 people in 2004 to 27.9 in 2011 (p < .001). Utilization rates in patients 65-69 years old experienced the greatest growth, increasing by 122% from 15.8 cases per 100,000 people to 35.1. Average hospital charges increased 108% from $90,557 in 2007 to $188,727 in 2011 (p < .001). Rates of surgical management of multilevel spinal curvature increased from 2004 to 2011, exceeding growth of the 60+ age demographic during the same period. Growth was observed in all age demographics, and hospital charges consistently increased from 2004 to 2011 reflecting a per-user increase in expenditure. III. Copyright © 2016 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.
Variations in the formation of the human caudal spinal cord.
Saraga-Babić, M; Sapunar, D; Wartiovaara, J
1995-01-01
Collection of 15 human embryos between 4-8 developmental weeks was used to histologically investigate variations in the development of the caudal part of the spinal cord and the neighboring axial organs (notochord and vertebral column). In the 4-week embryo, two types of neurulation were parallelly observed along the anteroposterior body axis: primary in the areas cranial to the neuroporus caudalis and secondary in the more caudal tail regions. In the 5-week embryos, both parts of the neural tube fused, forming only one continuous lumen in the developing spinal cord. In the three examined embryos we found anomalous pattern of spinal cord formation. Caudal parts of these spinal cords displayed division of their central canal into two or three separate lumina, each surrounded by neuroepithelial layer. In the caudal area of the spinal cord, derived by secondary neurulation, formation of separate lumina was neither connected to any anomalous notochord or vertebral column formation, nor the appearance of any major axial disturbances. We suggest that development of the caudal part of the spinal cord differs from its cranial region not only in the type of neurulation, but also in the destiny of its derivatives and possible modes of abnormality formation.
Turhan, K S Cakar; Akmese, R; Ozkan, F; Okten, F F
2015-04-01
In the current prospective, randomized study, we aimed to compare the effects of low dose selective spinal anesthesia with 5 mg of hyperbaric bupivacaine and single-shot femoral nerve block combination with conventional dose selective spinal anesthesia in terms of intraoperative anesthesia characteristics, block recovery characteristics, and postoperative analgesic consumption. After obtaining institutional Ethics Committee approval, 52 ASA I-II patients aged 25-65, undergoing arthroscopic meniscus repair were randomly assigned to Group S (conventional dose selective spinal anesthesia with 10 mg bupivacaine) and Group FS (low-dose selective spinal anesthesia with 5mg bupivacaine +single-shot femoral block with 0.25% bupivacaine). Primary endpoints were time to reach T12 sensory block level, L2 regression, and complete motor block regression. Secondary endpoints were maximum sensory block level (MSBL); time to reach MSBL, time to first urination, time to first analgesic consumption and pain severity at the time of first mobilization. Demographic characteristics were similar in both groups (p > 0.05). MSBL and time to reach T12 sensory level were similar in both groups (p > 0.05). Time to reach L2 regression, complete motor block regression, and time to first micturition were significantly shorter; time to first analgesic consumption was significantly longer; and total analgesic consumption and severity of pain at time of first mobilization were significantly lower in Group FS (p < 0.05). The findings of the current study suggest that addition of single-shot femoral block to low dose spinal anesthesia could be an alternative to conventional dose spinal anesthesia in outpatient arthroscopic meniscus repair. NCT02322372.
Hastings, Jennifer; Robins, Hillary; Griffiths, Yvette; Hamilton, Christina
2011-11-01
To explore the differences between manual and power wheelchair users in terms of self-esteem, function, and participation in persons with a similar motor level of spinal cord injury (SCI). Descriptive cross-sectional study with a single data collection. General community. Participants (N=30) were a convenience sample of adults with self-reported C6 and C7 tetraplegia caused by SCI who are 1 or more years postinjury. Eighteen were manual chair users, and 12 were power chair users. Not applicable. Rosenberg Self-Esteem Scale, Spinal Cord Independence Measure III (SCIM III) as a measure of function, and the Craig Handicap Assessment and Reporting Technique (CHART) as a measure of participation. There were no significant differences between manual and power chair users regarding age, time since injury, or length of initial rehabilitation stay. A significant difference was seen between wheelchair groups (F=2.677, P=.038). Multivariate analysis showed the differences to be in the SCIM III (F=11.088, P=.003) and the CHART subcategories Physical (F=7.402, P=.011), Mobility (F=12.894, P=.001), and Occupation (F=5.174, P=.031). Manual wheelchair users demonstrated better physical function, mobility, and had a higher employment rate than power wheelchair users based on the SCIM III and CHART in this sample of adults with C6 or C7 motor level tetraplegia. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Mammas, Ioannis N.; Spandidos, Demetrios A.
2018-01-01
According to Professor Basil T. Darras, Professor of Neurology (Pediatrics) at Harvard Medical School and Director of the Spinal Muscular Atrophy (SMA) Program at Boston Children's Hospital in Boston (MA, USA), the diagnosis of SMA type I is clinical and is based on detailed general physical and neurological examinations. SMA type I remains the most common genetic disease resulting in death in infancy and is really devastating for the child, the parents, as well as the medical professionals with the privilege of caring for patients with SMA and their parents. The proposed management options include: i) no respiratory support; ii) non-invasive ventilation; and iii) tracheotomy with mechanical ventilation. Deciding, which option is the best, is indeed a very personal decision. The optimal clinical care should be extremely mindful of parents' wishes and management goals with regard to the quality of life. Since the end of 2016 in the USA, and recently in Europe, there exists the possibility of accessing a novel treatment drug for SMA, namely Nusinersen. This antisense oligonucleotide is administered intrathecally and increases the production of the fully functional SMN protein, thus improving motor function, the quality of life and survival. Among the ongoing clinical trials, oral treatment with RG7916, a small molecule SMN2 splicing modifier, appears to be really promising. Gene therapy using viral vectors is expected to offer an ‘one and done’ therapy and possibly a cure, if administered early in life, before any symptoms appear. It is really interesting that viruses, which at the moment are the cause of death of children with SMA, if genetically modified, may be used for their treatment. PMID:29556256
Lavelle, William F; Ranade, Ashish; Samdani, Amer F; Gaughan, John P; D'Andrea, Linda P; Betz, Randal R
2014-01-01
Pedicle screws are used increasingly in spine surgery. Concerns of complications associated with screw breach necessitates accurate pedicle screw placement. Postoperative CT imaging helps to detect screw malposition and assess its severity. However, accuracy is dependent on the reading of the CT scans. Inter- and intra-observer variability could affect the reliability of CT scans to assess multiple screw types and sites. The purpose of this study was to assess the reliability of multi-observer analysis of CT scans for determining pedicle screw breach for various screw types and sites in patients with spinal deformity or degenerative pathologies. Axial CT scan images of 23 patients (286 screws) were read by four experienced spine surgeons. Pedicle screw placement was considered 'In' when the screw was fully contained and/or the pedicle wall breach was ≤2 mm. 'Out' was defined as a breach in the medial or lateral pedicle wall >2 mm. Intra-class coefficients (ICC) were calculated to assess the inter- and intra-observer reliability. Marked inter- and intra-observer variability was noticed. The overall inter-observer ICC was 0.45 (95% confidence limits 0.25 to 0.65). The intra-observer ICC was 0.49 (95% confidence limits 0.29 to 0.69). Underlying spinal pathology, screw type, and patient age did not seem to impact the reliability of our CT assessments. Our results indicate the evaluation of pedicle screw breach on CT by a single surgeon is highly variable, and care should be taken when using individual CT evaluations of millimeters of breach as a basis for screw removal. This was a Level III study.
Mammas, Ioannis N; Spandidos, Demetrios A
2018-04-01
According to Professor Basil T. Darras, Professor of Neurology (Pediatrics) at Harvard Medical School and Director of the Spinal Muscular Atrophy (SMA) Program at Boston Children's Hospital in Boston (MA, USA), the diagnosis of SMA type I is clinical and is based on detailed general physical and neurological examinations. SMA type I remains the most common genetic disease resulting in death in infancy and is really devastating for the child, the parents, as well as the medical professionals with the privilege of caring for patients with SMA and their parents. The proposed management options include: i) no respiratory support; ii) non-invasive ventilation; and iii) tracheotomy with mechanical ventilation. Deciding, which option is the best, is indeed a very personal decision. The optimal clinical care should be extremely mindful of parents' wishes and management goals with regard to the quality of life. Since the end of 2016 in the USA, and recently in Europe, there exists the possibility of accessing a novel treatment drug for SMA, namely Nusinersen. This antisense oligonucleotide is administered intrathecally and increases the production of the fully functional SMN protein, thus improving motor function, the quality of life and survival. Among the ongoing clinical trials, oral treatment with RG7916, a small molecule SMN2 splicing modifier, appears to be really promising. Gene therapy using viral vectors is expected to offer an 'one and done' therapy and possibly a cure, if administered early in life, before any symptoms appear. It is really interesting that viruses, which at the moment are the cause of death of children with SMA, if genetically modified, may be used for their treatment.
The Animal Model of Spinal Cord Injury as an Experimental Pain Model
Nakae, Aya; Nakai, Kunihiro; Yano, Kenji; Hosokawa, Ko; Shibata, Masahiko; Mashimo, Takashi
2011-01-01
Pain, which remains largely unsolved, is one of the most crucial problems for spinal cord injury patients. Due to sensory problems, as well as motor dysfunctions, spinal cord injury research has proven to be complex and difficult. Furthermore, many types of pain are associated with spinal cord injury, such as neuropathic, visceral, and musculoskeletal pain. Many animal models of spinal cord injury exist to emulate clinical situations, which could help to determine common mechanisms of pathology. However, results can be easily misunderstood and falsely interpreted. Therefore, it is important to fully understand the symptoms of human spinal cord injury, as well as the various spinal cord injury models and the possible pathologies. The present paper summarizes results from animal models of spinal cord injury, as well as the most effective use of these models. PMID:21436995
Jain, Amit; Jain, Kajal; Bhardawaj, Neerja
2012-01-01
Background and Aim: Intrathecal (IT) neostigmine has been used as an adjunct to spinal anesthesia. The purpose of this study was to determine whether a combination of low-dose neostigmine IT would enhance analgesia of a fixed dose of fentanyl IT, in patients undergoing unilateral total knee replacement (TKR) surgery with spinal anesthesia. Settings and Design: Forty-five patients scheduled for unilateral TKR were randomized to one of the three groups (n = 15) and prospectively studied using placebo-controlled, double-blinded design. Materials and Methods: A 19-G epidural catheter was introduced through the L3–L4 interspace with patient in the sitting position, followed by spinal anesthesia administration through the L3–L4 interspace. Fifteen milligrams of hyperbaric bupivacaine (3 ml) plus the test drug (0.5 ml) was administered IT. The test drug was normal saline (0.5 ml) in group I; fentanyl 20 mcg (0.4 ml) and normal saline (0.1 ml) in group II; and fentanyl 20 mcg (0.4 ml) and neostigmine 1 mcg (0.1 ml) in group III. Characteristics of sensory and motor block, heart rate, and blood pressure were recorded intraoperatively. Postoperatively, pain scores, postoperative nausea and vomiting (PONV) scores, and sedation scores, and postoperative analgesic dose were recorded. Results: Forty-five patients were enrolled in this study and 43 patients were subjected to statistical analysis. Overall 24-h visual analog score in group III was significantly less than in those who received fentanyl alone (P = 0.00). The durations of complete analgesia and effective analgesia were longer for all patients in group III compared with group II (P < 0.05) and group I (P < 0.005) patients. The total number of epidural top ups (rescue analgesia) required was less in group II (P < 0.05) and group III (P < 0.005) patients, compared with the control group. The incidence of nausea and vomiting was not increased in group III patients. Conclusions: The addition of 1 mcg neostigmine IT increased the duration of analgesia and decreased the analgesic consumption in 24 h in TKR. There was no increase in the incidence of adverse effects. PMID:23225930
Ekinci, Mürsel; Gölboyu, Birzat Emre; Dülgeroğlu, Onur; Aksun, Murat; Baysal, Pınar Karaca; Çelik, Erkan Cem; Yeksan, Ayşe Nur
It was aimed to investigate the relationship between preoperative anxiety and vasovagal symptoms observed during the administration of spinal anesthesia in patients undergoing surgery in the perianal and inguinal regions. The study included patients with planned surgery for inguinal hernia repair, anal fissure, hemorrhoid and pilonidal sinus excision. The study included a total of 210 patients of ASA I-II, aged 18-65 years. Patients were evaluated in respect of demographic characteristics, smoking and alcohol consumption, ASA grade and educational level. Correlations were evaluated between the number of attempts at spinal anesthesia and anesthesia history with vasovagal symptoms and educational level, gender, smoking and alcohol consumption and anesthesia history with anxiety scores. The instant (transient) state anxiety inventory part of the Transient State/Trait Anxiety Inventory (State Trait Anxiety Inventory - STAI) was used to determine the anxiety levels of the participants. Clinical findings of peripheral vasodilation, hypotension, bradycardia and asystole observed during the administration of spinal anesthesia were recorded. Vasovagal incidences during the administration of spinal anesthesia were seen to increase in cases of high anxiety score, male gender, and an absence of anesthesia history. Educational level and the number of spinal needle punctures were not found to have any effect on vasovagal incidents. The determination of causes triggering vasovagal incidents seen during the application of spinal anesthesia, better patient information of regional anesthesia implementations and anxiety relief with preoperative anxiolytic treatment will help to eliminate potential vasovagal incidents. Copyright © 2016 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.
Spinal hemianesthesia: Unilateral and posterior
Imbelloni, Luiz Eduardo
2014-01-01
The injection of a non-isobaric local anesthetic should induce a unilateral spinal anesthesia in patients in a lateral decubitus position. The posterior spinal hemianesthesia only be obtained with hypobaric solutions injected in the jackknife position. The most important factors to be considered when performing a spinal hemianesthesia are: type and gauge of the needle, density of the local anesthetic relative to the CSF, position of the patient, speed of administration of the solution, time of stay in position, and dose/concentration/volume of the anesthetic solution. The distance between the spinal roots on the right-left sides and anterior-posterior is, approximately, 10-15 mm. This distance allows performing unilateral spinal anesthesia or posterior spinal anesthesia. The great advantage of obtaining spinal hemianesthesia is the reduction of cardiovascular changes. Likewise, both the dorsal and unilateral sensory block predominates in relation to the motor block. Because of the numerous advantages of producing spinal hemianesthesia, anesthesiologists should apply this technique more often. This review considers the factors which are relevant, plausible and proven to obtain spinal hemianesthesia. PMID:25886320
Rossignol, Serge; Martinez, Marina; Escalona, Manuel; Kundu, Aritra; Delivet-Mongrain, Hugo; Alluin, Olivier; Gossard, Jean-Pierre
2015-01-01
This chapter reviews a number of experiments on the recovery of locomotion after various types of spinal lesions and locomotor training mainly in cats. We first recall the major evidence on the recovery of hindlimb locomotion in completely spinalized cats at the T13 level and the role played by the spinal locomotor network, also known as the central pattern generator, as well as the beneficial effects of locomotor training on this recovery. Having established that hindlimb locomotion can recover, we raise the issue as to whether spinal plastic changes could also contribute to the recovery after partial spinal lesions such as unilateral hemisections. We found that after such hemisection at T10, cats could recover quadrupedal locomotion and that deficits could be improved by training. We further showed that, after a complete spinalization a few segments below the first hemisection (at T13, i.e., the level of previous studies on spinalization), cats could readily walk with the hindlimbs within hours of completely severing the remaining spinal tracts and not days as is usually the case with only a single complete spinalization. This suggests that neuroplastic changes occurred below the first hemisection so that the cat was already primed to walk after the spinalization subsequent to the hemispinalization 3 weeks before. Of interest is the fact that some characteristic kinematic features in trained or untrained hemispinalized cats could remain after complete spinalization, suggesting that spinal changes induced by training could also be durable. Other studies on reflexes and on the pattern of "fictive" locomotion recorded after curarization corroborate this view. More recent work deals with training cats in more demanding situations such as ladder treadmill (vs. flat treadmill) to evaluate how the locomotor training regimen can influence the spinal cord. Finally, we report our recent studies in rats using compressive lesions or surgical complete spinalization and find that some principles of locomotor recovery in cats also apply to rats when adequate locomotor training is provided. © 2015 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
1998-09-03
... United States. Meningitis is an infection of the brain and spinal cord coverings which can lead to..., meningitis (infection of the brain and spinal cord covering), painful swelling of the testicles, and, rarely... Vaccine Information Materials for Hepatitis B, Haemophilus influenzae type b (Hib), Varicella (Chickenpox...
Bayoumi, Ahmed B; Laviv, Yosef; Yokus, Burhan; Efe, Ibrahim E; Toktas, Zafer Orkun; Kilic, Turker; Demir, Mustafa K; Konya, Deniz; Kasper, Ekkehard M
2017-11-01
1) To provide neurosurgeons and radiologists with a new quantitative and anatomical method to describe spinal meningiomas (SM) consistently. 2) To provide a guide to the surgical approach needed and amount of bony resection required based on the proposed classification. 3) To report the distribution of our 58 cases of SM over different Stages and Subtypes in correlation to the surgical treatment needed for each case. 4) To briefly review the literature on the rare non-conventional surgical corridors to resect SM. We reviewed the literature to report on previously published cohorts and classifications used to describe the location of the tumor inside the spinal canal. We reviewed the cases that were published prior showing non-conventional surgical approaches to resect spinal meningiomas. We proposed our classification system composed of Staging based on maximal cross-sectional surface area of tumor inside canal, Typing based on number of quadrants occupied by tumor and Subtyping based on location of the tumor bulk to spinal cord. Extradural and extra-spinal growth were also covered by our classification. We then applied it retrospectively on our 58 cases. 12 articles were published illustrating overlapping terms to describe spinal meningiomas. Another 7 articles were published reporting on 23 cases of anteriorly located spinal meningiomas treated with approaches other than laminectomies/laminoplasties. 4 Types, 9 Subtypes and 4 Stages were described in our Classification System. In our series of 58 patients, no midline anterior type was represented. Therefore, all our cases were treated by laminectomies or laminoplasties (with/without facetectomies) except a case with a paraspinal component where a costotransversectomy was needed. Spinal meningiomas can be radiologically described in a precise fashion. Selection of surgical corridor depends mainly on location of tumor bulk inside canal. Copyright © 2017 Elsevier B.V. All rights reserved.
Spinal Muscular Atrophy With Respiratory Distress Type 1-A Child With Atypical Presentation.
Chiu, Annie Ting Gee; Chan, Sophelia Hoi Shan; Wu, Shun Ping; Ting, Shun Hin; Chung, Brian Hon Yin; Chan, Angel On Kei; Wong, Virginia Chun Nei
2018-01-01
The authors report a child with spinal muscular atrophy with respiratory distress type 1 (SMARD1). She presented atypically with hypothyroidism and heart failure due to septal defects that required early heart surgery and microcephaly in association with cerebral atrophy and thin corpus collosum. The subsequent asymmetrical onset of diaphragmatic paralysis, persistent hypotonia, and generalized muscle weakness led to the suspicion of spinal muscular atrophy with respiratory distress type 1. Sanger sequencing confirmed a compound heterozygous mutation in the Immunoglobulin Mu Binding Protein 2 (IGHMBP2) gene, with a known mutation c.2362C > T (p.Arg788*) and a novel frameshift mutation c.2048delG (p.Gly683A1afs*50). Serial nerve conduction study and electromyography confirmed progressive sensorimotor polyneuropathy and neuronopathy. In summary, this case report describes a child with spinal muscular atrophy with respiratory distress type 1 also with congenital cardiac disease and endocrine dysfunction, expanding the phenotypic spectrum of this condition. A high index of suspicion is needed in diagnosing this rare condition to guide the management and genetic counseling.
Iwagaki, Noboru; Ganley, Robert P.; Dickie, Allen C.; Polgár, Erika; Hughes, David I.; Del Rio, Patricia; Revina, Yulia; Watanabe, Masahiko; Todd, Andrew J.; Riddell, John S.
2015-01-01
Abstract The spinal dorsal horn contains numerous inhibitory interneurons that control transmission of somatosensory information. Although these cells have important roles in modulating pain, we still have limited information about how they are incorporated into neuronal circuits, and this is partly due to difficulty in assigning them to functional populations. Around 15% of inhibitory interneurons in laminae I-III express neuropeptide Y (NPY), but little is known about this population. We therefore used a combined electrophysiological/morphological approach to investigate these cells in mice that express green fluorescent protein (GFP) under control of the NPY promoter. We show that GFP is largely restricted to NPY-immunoreactive cells, although it is only expressed by a third of those in lamina I-II. Reconstructions of recorded neurons revealed that they were morphologically heterogeneous, but never islet cells. Many NPY-GFP cells (including cells in lamina III) appeared to be innervated by C fibres that lack transient receptor potential vanilloid-1, and consistent with this, we found that some lamina III NPY-immunoreactive cells were activated by mechanical noxious stimuli. Projection neurons in lamina III are densely innervated by NPY-containing axons. Our results suggest that this input originates from a small subset of NPY-expressing interneurons, with the projection cells representing only a minority of their output. Taken together with results of previous studies, our findings indicate that somatodendritic morphology is of limited value in classifying functional populations among inhibitory interneurons in the dorsal horn. Because many NPY-expressing cells respond to noxious stimuli, these are likely to have a role in attenuating pain and limiting its spread. PMID:26882346
Lamon, Agnes M; Einhorn, Lisa M; Cooter, Mary; Habib, Ashraf S
2017-08-01
To investigate the hypothesis that the risk of high spinal block is not increased in obese parturients undergoing cesarean delivery compared to non-obese parturients. This is a retrospective study at an academic center. We searched the perioperative database for women who underwent cesarean delivery under spinal or combined spinal epidural anesthesia with hyperbaric bupivacaine ≥10.5 mg. A body mass index (BMI) ≥30 kg/m 2 was defined as obese. We categorized obesity into: obesity class I (BMI = 30-34.9 kg/m 2 ), obesity class II (BMI = 35-39.9 kg/m 2 ), obesity class III (BMI = 40-49.9 kg/m 2 ), and super obese (BMI ≥50 kg/m 2 ). The primary outcome was high spinal block defined as need to convert to general anesthesia within 20 min of spinal placement as a result of altered mental status, weakness, or respiratory distress resulting from the high block, or a recorded block height ≥T1. The analysis included 5015 women. High spinal blocks occurred in 29 patients (0.6%). The risk of high spinal was significantly different according to BMI (p = 0.025). In a multivariate model, BMI (p = 0.008) and cesarean delivery priority (p = 0.009) were associated with high blocks. BMI ≥50 kg/m 2 was associated with greater odds of high block compared to BMI <30 kg/m 2 [odds ratio (95% confidence interval): 6.3 (2.2, 18.5)]. Scheduled cesarean delivery was also associated with greater odds of high block compared with unscheduled delivery. At standard spinal doses of hyperbaric bupivacaine used in our practice (≥10.5 mg), there were greater odds of high block in those with BMI ≥50 kg/m 2 .
Spinal cord compression in pseudohypoparathyroidism.
Roberts, Timothy T; Khasnavis, Siddharth; Papaliodis, Dean N; Citone, Isabella; Carl, Allen L
2013-12-01
Spinal cord compression associated with pseudohypoparathyroidism (PHP) is an increasingly reported sequelae of the underlying metabolic syndrome. The association of neurologic dysfunction with PHP is not well appreciated. We believe this to be secondary to a combination of underlying congenital stenosis, manifest by short pedicles secondary to premature physeal closure, and hypertrophic ossification of the vertebral bony and ligamentous complexes. The purpose of this case report is to review the case of spinal stenosis in a child with PHP Type Ia. We are aware of only eight published reports of patients with PHP Type Ia and spinal stenosis-there are only two previously known cases of pediatric spinal stenosis secondary to PHP. This is a case report detailing the symptoms, diagnosis, interventions, complications, and ultimate outcomes of a pediatric patient undergoing spinal decompression and fusion for symptomatic stenosis secondary to PHP Type Ia. Literature search was reviewed regarding the reports of spinal stenosis and PHP, and the results are culminated and discussed. We report on a 14-year-old obese male with PHP and progressive lower extremity weakness secondary to congenital spinal stenosis. Examination revealed functional upper extremities with spastic paraplegia of bilateral lower extremities. The patient's neurologic function was cautiously monitored, but he deteriorated to a bed-bound state, preoperatively. The patient's chart was reviewed, summarized, and presented. Literature was searched using cross-reference of PHP and the terms "spinal stenosis," "myelopathy", "myelopathic," and "spinal cord compression." All relevant case reports were reviewed, and the results are discussed herein. The patient underwent decompression and instrumented fusion of T2-T11. He improved significantly with regard to lower extremity function, achieving unassisted ambulation function after extensive rehabilitation. Results from surgical decompression in previously reported cases are mixed, ranging from full recovery to iatrogenic paraplegia. The association of neurologic dysfunction with PHP is not well appreciated. It is important to highlight this rare association. Surgical decompression in patients with PHP yields mixed results but may be of greatest efficacy in younger patients who receive early intervention. Copyright © 2013 Elsevier Inc. All rights reserved.
Segmental thoracic spinal has advantages over general anesthesia for breast cancer surgery.
Elakany, Mohamed Hamdy; Abdelhamid, Sherif Ahmed
2013-01-01
Thoracic spinal anesthesia has been used for laparoscopic cholecystectomy and abdominal surgeries, but not in breast surgery. The present study compared this technique with general anesthesia in breast cancer surgeries. Forty patients were enrolled in this comparative study with inclusion criteria of ASA physical status I-III, primary breast cancer without known extension beyond the breast and axillary nodes, scheduled for unilateral mastectomy with axillary dissection. They were randomly divided into two groups. The thoracic spinal group (S) (n = 20) underwent segmental thoracic spinal anesthesia with bupivacaine and fentanyl at T5-T6 interspace, while the other group (n = 20) underwent general anesthesia (G). Intraoperative hemodynamic parameters, intraoperative complications, postoperative discharge time from post-anesthesia care unit (PACU), postoperative pain and analgesic consumption, postoperative adverse effects, and patient satisfaction with the anesthetic techniques were recorded. Intraoperative hypertension (20%) was more frequent in group (G), while hypotension and bradycardia (15%) were more frequent in the segmental thoracic spinal (S) group. Postoperative nausea (30%) and vomiting (40%) during PACU stay were more frequent in the (G) group. Postoperative discharge time from PACU was shorter in the (S) group (124 ± 38 min) than in the (G) group (212 ± 46 min). The quality of postoperative analgesia and analgesic consumption was better in the (S) group. Patient satisfaction was similar in both groups. Segmental thoracic spinal anesthesia has some advantages when compared with general anesthesia and can be considered as a sole anesthetic in breast cancer surgery with axillary lymph node clearance.
Weirich, S D; Cotler, H B; Narayana, P A; Hazle, J D; Jackson, E F; Coupe, K J; McDonald, C L; Langford, L A; Harris, J H
1990-07-01
Magnetic resonance imaging (MRI) provides a noninvasive method of monitoring the pathologic response to spinal cord injury. Specific MR signal intensity patterns appear to correlate with degrees of improvement in the neurologic status in spinal cord injury patients. Histologic correlation of two types of MR signal intensity patterns are confirmed in the current study using a rat animal model. Adult male Sprague-Dawley rats underwent spinal cord trauma at the midthoracic level using a weight-dropping technique. After laminectomy, 5- and 10-gm brass weights were dropped from designated heights onto a 0.1-gm impounder placed on the exposed dura. Animals allowed to regain consciousness demonstrated variable recovery of hind limb paraplegia. Magnetic resonance images were obtained from 2 hours to 1 week after injury using a 2-tesla MRI/spectrometer. Sacrifice under anesthesia was performed by perfusive fixation; spinal columns were excised en bloc, embedded, sectioned, and observed with the compound light microscope. Magnetic resonance axial images obtained during the time sequence after injury demonstrate a distinct correlation between MR signal intensity patterns and the histologic appearance of the spinal cord. Magnetic resonance imaging delineates the pathologic processes resulting from acute spinal cord injury and can be used to differentiate the type of injury and prognosis.
Update on traumatic acute spinal cord injury. Part 2.
Mourelo Fariña, M; Salvador de la Barrera, S; Montoto Marqués, A; Ferreiro Velasco, M E; Galeiras Vázquez, R
The aim of treatment in acute traumatic spinal cord injury is to preserve residual neurologic function, avoid secondary injury, and restore spinal alignment and stability. In this second part of the review, we describe the management of spinal cord injury focusing on issues related to short-term respiratory management, where the preservation of diaphragmatic function is a priority, with prediction of the duration of mechanical ventilation and the need for tracheostomy. Surgical assessment of spinal injuries based on updated criteria is discussed, taking into account that although the type of intervention depends on the surgical team, nowadays treatment should afford early spinal decompression and stabilization. Within a comprehensive strategy in spinal cord injury, it is essential to identify and properly treat patient anxiety and pain associated to spinal cord injury, as well as to prevent and ensure the early diagnosis of complications secondary to spinal cord injury (thromboembolic disease, gastrointestinal and urinary disorders, pressure ulcers). Copyright © 2016 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.
Spine and axial skeleton injuries in the National Football League.
Mall, Nathan A; Buchowski, Jacob; Zebala, Lukas; Brophy, Robert H; Wright, Rick W; Matava, Matthew J
2012-08-01
The majority of previous literature focusing on spinal injuries in American football players is centered around catastrophic injuries; however, this may underestimate the true number of these injuries in this athletic cohort. The goals of this study were to (1) report the incidence of spinal and axial skeleton injuries, both minor and severe, in the National Football League (NFL) over an 11-year period; (2) determine the incidence of spinal injury by injury type, anatomic location, player position, mechanism of injury, and type of exposure (practice vs game); and (3) determine the average number of practices and days missed because of injury for each injury type. Descriptive epidemiological study. All documented injuries to the cervical, thoracic, and lumbar spine; pelvis; ribs; and spinal cord were retrospectively analyzed using the NFL's injury surveillance database over a period of 11 seasons from 2000 through 2010. The data were analyzed by the number of injuries per athlete-exposure, the anatomic location and type of injury, player position, mechanism of injury, and number of days missed per injury. A total of 2208 injuries occurred to the spine or axial skeleton over an 11-season interval in the NFL, with a mean loss of 25.7 days per injury. This represented 7% of the total injuries during this time period. Of these 2208 injuries, 987 (44.7%) occurred in the cervical spine. Time missed from play was greatest for thoracic disc herniations (189 days/injury). Other injuries that had a mean time missed greater than 30 days included (in descending order) cervical fracture (120 days/injury), cervical disc degeneration/herniation (85 days/injury), spinal cord injury (77 days/injury), lumbar disc degeneration/herniation (52 days/injury), thoracic fracture (34 days/injury), and thoracic nerve injury (30 days/injury). Offensive linemen were the most likely to suffer a spinal injury, followed by defensive backs, defensive linemen, and linebackers. Blocking and tackling were the 2 most frequent injury mechanisms reported. Spinal and axial skeleton injuries occur frequently in the NFL and can result in significant time missed from practices and games. Tackling and blocking result in the greatest number of injuries, and players performing these activities are the most likely to sustain a spinal injury. The results of this study may be used as an impetus to formulate strategies to prevent spinal injuries in American football players.
Zhong, Guisheng; Shevtsova, Natalia A; Rybak, Ilya A; Harris-Warrick, Ronald M
2012-01-01
We explored the organization of the spinal central pattern generator (CPG) for locomotion by analysing the activity of spinal interneurons and motoneurons during spontaneous deletions occurring during fictive locomotion in the isolated neonatal mouse spinal cord, following earlier work on locomotor deletions in the cat. In the isolated mouse spinal cord, most spontaneous deletions were non-resetting, with rhythmic activity resuming after an integer number of cycles. Flexor and extensor deletions showed marked asymmetry: flexor deletions were accompanied by sustained ipsilateral extensor activity, whereas rhythmic flexor bursting was not perturbed during extensor deletions. Rhythmic activity on one side of the cord was not perturbed during non-resetting spontaneous deletions on the other side, and these deletions could occur with no input from the other side of the cord. These results suggest that the locomotor CPG has a two-level organization with rhythm-generating (RG) and pattern-forming (PF) networks, in which only the flexor RG network is intrinsically rhythmic. To further explore the neuronal organization of the CPG, we monitored activity of motoneurons and selected identified interneurons during spontaneous non-resetting deletions. Motoneurons lost rhythmic synaptic drive during ipsilateral deletions. Flexor-related commissural interneurons continued to fire rhythmically during non-resetting ipsilateral flexor deletions. Deletion analysis revealed two classes of rhythmic V2a interneurons. Type I V2a interneurons retained rhythmic synaptic drive and firing during ipsilateral motor deletions, while type II V2a interneurons lost rhythmic synaptic input and fell silent during deletions. This suggests that the type I neurons are components of the RG, whereas the type II neurons are components of the PF network. We propose a computational model of the spinal locomotor CPG that reproduces our experimental results. The results may provide novel insights into the organization of spinal locomotor networks. PMID:22869012
Familial spinal neurofibromatosis due to a multiexonic NF1 gene deletion.
Pizzuti, Antonio; Bottillo, Irene; Inzana, Francesca; Lanari, Valentina; Buttarelli, Francesca; Torrente, Isabella; Giallonardo, Anna Teresa; De Luca, Alessandro; Dallapiccola, Bruno
2011-08-01
We report the detailed clinical presentation and molecular features of a spinal neurofibromatosis familial case where a 40-year-old woman, presenting with multiple bilateral spinal neurofibromas and no other clinical feature of neurofibromatosis type 1 (NF1), inherited a paternal large multiexonic deletion (c.5944-?_7126+?del) which resulted in NF1 gene haploinsufficiency at the RNA level. In the clinically unaffected 73-year-old father, spinal cord MRI disclosed bilateral and symmetrical hypertrophy of spinal lumbosacral roots. Our study widens the phenotypic and mutational spectrum of NF1 and illustrates the difficulties of counseling patients with border-line or atypical presentation of this disorder.
Partata, W A; Krepsky, A M R; Xavier, L L; Marques, M; Achaval, M
2003-04-01
Immunoreactive substance P was investigated in turtle lumbar spinal cord after sciatic nerve transection. In control animals immunoreactive fibers were densest in synaptic field Ia, where the longest axons invaded synaptic field III. Positive neuronal bodies were identified in the lateral column of the dorsal horn and substance P immunoreactive varicosities were observed in the ventral horn, in close relationship with presumed motoneurons. Other varicosities appeared in the lateral and anterior funiculi. After axotomy, substance P immunoreactive fibers were reduced slightly on the side of the lesion, which was located in long fibers that invaded synaptic field III and in the varicosities of the lateral and anterior funiculus. The changes were observed at 7 days after axonal injury and persisted at 15, 30, 60 and 90 days after the lesion. These findings show that turtles should be considered as a model to study the role of substance P in peripheral axonal injury, since the distribution and temporal changes of substance P were similar to those found in mammals.
Mardirosoff, C; Dumont, L; Deyaert, M; Leconte, M
2001-07-01
No studies have evaluated the relationship between duration of time sitting and spinal needle type on the maximal spread of local anaesthetics. The few trials available have studied the influence of time spent sitting on the spread of anaesthesia without standardising spinal needle types, and have not found any effect. In this randomised, blinded study, 60 patients scheduled for elective orthopaedic surgery of the lower limbs were divided into 4 groups. With the patient sitting erect, 15 mg hyperbaric bupivacaine were injected in a standard manner through a 24G Sprotte or a 27G Whitacre needle and patients were placed supine after 1 min (24G/1 group and 27G/1 group) or 4 min (24G/4 group and 27G/4 group). Time to achieve maximum block height after injection was similar in all groups. Block height levels were significantly lower at all time points for the 24G/4 group. Maximum block heights were Th4 in the 24G/1, 27G/1 and 27G/4 groups, and Th6 in the 24G/4 group (P<0.0001). In a standard spinal anaesthesia procedure, when different lengths of time spent sitting are compared, spinal needle characteristics influence the maximum spread of hyperbaric bupivacaine. However, within the limits of our study, a two-segment difference in block height is too small to consider using spinal needles as valuable tools to control block height during spinal anaesthesia in our daily practice.
Celic, T; Španjol, J; Bobinac, M; Tovmasyan, A; Vukelic, I; Reboucas, J S; Batinic-Haberle, I; Bobinac, D
2014-12-01
Herein we have demonstrated that both superoxide dismutase (SOD) mimic, cationic Mn(III) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin (MnTnHex-2-PyP(5+)), and non-SOD mimic, anionic Mn(III) meso-tetrakis(4-carboxylatophenyl)porphyrin (MnTBAP(3-)), protect against oxidative stress caused by spinal cord ischemia/reperfusion via suppression of nuclear factor kappa B (NF-κB) pro-inflammatory pathways. Earlier reports showed that Mn(III) N-alkylpyridylporphyrins were able to prevent the DNA binding of NF-κB in an aqueous system, whereas MnTBAP(3-) was not. Here, for the first time, in a complex in vivo system-animal model of spinal cord injury-a similar impact of MnTBAP(3-), at a dose identical to that of MnTnHex-2-PyP(5+), was demonstrated in NF-κB downregulation. Rats were treated subcutaneously at 1.5 mg/kg starting at 30 min before ischemia/reperfusion, and then every 12 h afterward for either 48 h or 7 days. The anti-inflammatory effects of both Mn porphyrins (MnPs) were demonstrated in the spinal cord tissue at both 48 h and 7 days. The downregulation of NF-κB, a major pro-inflammatory signaling protein regulating astrocyte activation, was detected and found to correlate well with the suppression of astrogliosis (as glial fibrillary acidic protein) by both MnPs. The markers of oxidative stress, lipid peroxidation and protein carbonyl formation, were significantly reduced by MnPs. The favorable impact of both MnPs on motor neurons (Tarlov score and inclined plane test) was assessed. No major changes in glutathione peroxidase- and SOD-like activities were demonstrated, which implies that none of the MnPs acted as SOD mimic. Increasing amount of data on the reactivity of MnTBAP(3-) with reactive nitrogen species (RNS) (.NO/HNO/ONOO(-)) suggests that RNS/MnTBAP(3-)-driven modification of NF-κB protein cysteines may be involved in its therapeutic effects. This differs from the therapeutic efficacy of MnTnHex-2-PyP(5+) which presumably occurs via reactive oxygen species and relates to NF-κB thiol oxidation; the role of RNS cannot be excluded.
Single-operator real-time ultrasound-guided spinal injection using SonixGPS™: a case series.
Brinkmann, Silke; Tang, Raymond; Sawka, Andrew; Vaghadia, Himat
2013-09-01
The SonixGPS™ is a novel needle tracking system that has recently been approved in Canada for ultrasound-guided needle interventions. It allows optimization of needle-beam alignment by providing a real-time display of current and predicted needle tip position. Currently, there is limited evidence on the effectiveness of this technique for performance of real-time spinal anesthesia. This case series reports performance of the SonixGPS system for real-time ultrasound-guided spinal anesthesia in elective patients scheduled for joint arthroplasty. In this single-centre case series, 20 American Society of Anesthesiologists' class I-II patients scheduled for lower limb joint arthroplasty were recruited to undergo real-time ultrasound-guided spinal anesthesia with the SonixGPS after written informed consent. The primary outcome for this clinical cases series was the success rate of spinal anesthesia, and the main secondary outcome was time required to perform spinal anesthesia. Successful spinal anesthesia for joint arthroplasty was achieved in 18/20 patients, and 17 of these required only a single skin puncture. In 7/20 (35%) patients, dural puncture was achieved on the first needle pass, and in 11/20 (55%) patients, dural puncture was achieved with two or three needle redirections. Median (range) time taken to perform the block was 8 (5-14) min. The study procedure was aborted in two cases because our clinical protocol dictated using a standard approach if spinal anesthesia was unsuccessful after three ultrasound-guided insertion attempts. These two cases were classified as failures. No complications, including paresthesia, were observed during the procedure. All patients with successful spinal anesthesia found the technique acceptable and were willing to undergo a repeat procedure if deemed necessary. This case series shows that real-time ultrasound-guided spinal anesthesia with the SonixGPS system is possible within an acceptable time frame. It proved effective with a low rate of failure and a low rate of complications. Our clinical experience suggests that a randomized trial is warranted to compare the SonixGPS with a standard block technique.
König, Christian; Zharsky, Maxim; Möller, Christian; Schaible, Hans-Georg; Ebersberger, Andrea
2014-03-01
Tumor necrosis factor α (TNFα) is produced not only in peripheral tissues, but also in the spinal cord. The purpose of this study was to address the potential of peripheral and spinal TNFα to induce and maintain spinal hyperexcitability, which is a hallmark of pain states in the joints during rheumatoid arthritis and osteoarthritis. In vivo recordings of the responses of spinal cord neurons to nociceptive knee input under normal conditions and in the presence of experimental knee joint inflammation were obtained in anesthetized rats. TNFα, etanercept, or antibodies to TNF receptors were applied to either the knee joint or the spinal cord surface. Injection of TNFα into the knee joint cavity increased the responses of spinal cord neurons to mechanical joint stimulation, and injection of etanercept into the knee joint reduced the inflammation-evoked spinal activity. These spinal effects closely mirrored the induction and reduction of peripheral sensitization. Responses to joint stimulation were also enhanced by spinal application of TNFα, and spinal application of either etanercept or anti-TNF receptor type I significantly attenuated the generation of inflammation-evoked spinal hyperexcitability, which is characterized by widespread pain sensitization beyond the inflamed joint. Spinally applied etanercept did not reduce established hyperexcitability in the acute kaolin/carrageenan model. In antigen-induced arthritis, etanercept decreased spinal responses on day 1, but not on day 3. While peripheral TNFα increases spinal responses to joint stimulation, spinal TNFα supports the generation of the full pattern of spinal hyperexcitability. However, established spinal hyperexcitability may be maintained by downstream mechanisms that are independent of spinal TNFα. Copyright © 2014 by the American College of Rheumatology.
Neck pain in children: a retrospective case series.
Cox, Jocelyn; Davidian, Christine; Mior, Silvano
2016-09-01
Spinal pain in the paediatric population is a significant health issue, with an increasing prevalence as they age. Paediatric patients attend for chiropractor care for spinal pain, yet, there is a paucity of quality evidence to guide the practitioner with respect to appropriate care planning. A retrospective chart review was used to describe chiropractic management of paediatric neck pain. Two researchers abstracted data from 50 clinical files that met inclusion criteria from a general practice chiropractic office in the Greater Toronto Area, Canada. Data were entered into SPSS 15 and descriptively analyzed. Fifty paediatric neck pain patient files were analysed. Patients' age ranged between 6 and 18 years (mean 13 years). Most (98%) were diagnosed with Grade I-II mechanical neck pain. Treatment frequency averaged 5 visits over 19 days; with spinal manipulative therapy used in 96% of patients. Significant improvement was recorded in 96% of the files. No adverse events were documented. Paediatric mechanical neck pain appears to be successfully managed by chiropractic care. Spinal manipulative therapy appears to benefit paediatric mechanical neck pain resulting from day-today activities with no reported serious adverse events. Results can be used to inform clinical trials assessing effectiveness of manual therapy in managing paediatric mechanical neck pain.
Genetics Home Reference: spinal and bulbar muscular atrophy
... from a particular type of mutation in the AR gene. This gene provides instructions for making a ... as regulating hair growth and sex drive. The AR gene mutation that causes spinal and bulbar muscular ...
Secondary intracranial subarachnoid hemorrhage due to spinal missile injury.
Smialek, J E; Chason, J L; Kshirsagar, V; Spitz, W U
1981-04-01
Fresh intracranial subarachnoid hemorrhage may occur secondary to blast-type injury of the spinal cord. This phenomenon is demonstrated in four cases of gunshot and shotgun wounds involving the spinal column. The significance of such a finding is that the subarachnoid hemorrhage should not be construed to represent an independent injury. Such an erroneous conclusion could jeopardize a theory of self-defense in a homicidal shooting.
Honoré, Margaux; Leboeuf-Yde, Charlotte; Gagey, Olivier
2018-01-01
Spinal manipulation (SM) has been shown to have an effect on pain perception. More knowledge is needed on this phenomenon and it would be relevant to study its effect in asymptomatic subjects. To compare regional effect of SM on pressure pain threshold (PPT) vs. sham, inactive control, mobilisation, another SM, and some type of physical therapy. In addition, we reported the results for the three different spinal regions. A systematic search of literature was done using PubMed, Embase and Cochrane. Search terms were ((spinal manipulation) AND (experimental pain)); ((spinal manipulative therapy OR spinal manipulation) AND ((experimental pain OR quantitative sensory testing OR pressure pain threshold OR pain threshold)) (Final search: June 13th 2017). The inclusion criteria were SM performed anywhere in the spine; the use of PPT, PPT tested in an asymptomatic region and on the same day as the SM. Studies had to be experimental with at least one external or internal control group. Studies on only spinal motion or tenderness, other reviews, case reports, and less than 15 invited participants in each group were excluded. Evidence tables were constructed with information relevant to each research question and by spinal region. Results were reported in relation to statistical significance and were interpreted taking into account their quality. Only 12 articles of 946 were accepted. The quality of studies was generally good. In 8 sham controlled studies, a psychologically and physiologically "credible" sham was found in only 2 studies. A significant difference was noted between SM vs. Sham, and between SM and an inactive control. No significant difference in PPT was found between SM and another SM, mobilisation or some type of physical therapy. The cervical region more often obtained significant findings as compared to studies in the thoracic or lumbar regions. SM has an effect regionally on pressure pain threshold in asymptomatic subjects. The clinical significance of this must be quantified. More knowledge is needed in relation to the comparison of different spinal regions and different types of interventions.
Helm, Standiford; Racz, Gabor B; Gerdesmeyer, Ludger; Justiz, Rafael; Hayek, Salim M; Kaplan, Eugene D; El Terany, Mohamed Ahamed; Knezevic, Nebojsa Nick
2016-02-01
Chronic refractory low back and lower extremity pain is frustrating to treat. Percutaneous adhesiolysis and spinal endoscopy are techniques which can treat chronic refractory low back and lower extremity pain.Percutaneous adhesiolysis is performed by placing the catheter into the tissue plane at the ventrolateral aspect of the foramen so that medications can be injected. Adhesiolysis is used both for pain caused by scarring which is not resistant to catheter placement and other sources of pain, including inflammation in the absence of scarring.Mechanical lysis of scars with a catheter may or may not be necessary for percutaneous adhesiolysis to be effective. Spinal endoscopy allows direct visualization of the epidural space and has the possibility to use laser energy to treat pathology. A systematic review of the effectiveness of percutaneous adhesiolysis and spinal endoscopic adhesiolysis to treat chronic refractory low back and lower extremity pain. To evaluate and update the effectiveness of percutaneous adhesiolysis and spinal endoscopic adhesiolysis to treat chronic refractory low back and lower extremity pain. The available literature on percutaneous adhesiolysis and spinal endoscopic adhesiolysis in treating persistent low back and leg pain was reviewed. The quality of each article used in this analysis was assessed. The level of evidence was classified on a 5-point scale from strong, based upon multiple randomized controlled trials to weak, based upon consensus, as developed by the U.S. Preventive Services Task Force (USPSTF) and modified by ASIPP. Data sources included relevant literature identified through searches of PubMed and EMBASE from 1966 to September 2015, and manual searches of the bibliographies of known primary and review articles. Pain relief of at least 50% and functional improvement of at least 40% were the primary outcome measures. Short-term efficacy was defined as improvement of 6 months or less; whereas, long-term efficacy was defined more than 6 months. For this systematic review, 45 studies were identified. Of these, for percutaneous adhesiolysis there were 7 randomized controlled trials and 3 observational studies which met the inclusion criteria. For spinal endoscopy, there was one randomized controlled trial and 3 observational studies. Based upon 7 randomized controlled trials showing efficacy, with no negative trials, there is Level I or strong evidence of the efficacy of percutaneous adhesiolysis in the treatment of chronic refractory low back and lower extremity pain. Based upon one high-quality randomized controlled trial, there is Level II to III evidence supporting the use of spinal endoscopy in treating chronic refractory low back and lower extremity pain. The evidence is Level I or strong that percutaneous adhesiolysis is efficacious in the treatment of chronic refractory low back and lower extremity pain. Percutaneous adhesiolysis may be considered as a first-line treatment for chronic refractory low back and lower extremity pain. The evidence is Level II to III that spinal endoscopy is effective in the treatment of chronic refractory low back and lower extremity pain. Spinal pain, chronic low back pain, post lumbar surgery syndrome, epidural scarring, adhesiolysis, endoscopy, radicular pain.
Roche, N; Lackmy, A; Achache, V; Bussel, B; Katz, R
2011-01-01
Abstract In recent years, two techniques have become available for the non-invasive stimulation of human motor cortex: transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). The effects of TMS and tDCS when applied over motor cortex should be considered with regard not only to cortical circuits but also to spinal motor circuits. The different modes of action and specificity of TMS and tDCS suggest that their effects on spinal network excitability may be different from that in the cortex. Until now, the effects of tDCS on lumbar spinal network excitability have never been studied. In this series of experiments, on healthy subjects, we studied the effects of anodal tDCS over the lower limb motor cortex on (i) reciprocal Ia inhibition projecting from the tibialis anterior muscle (TA) to the soleus (SOL), (ii) presynaptic inhibition of SOL Ia terminals, (iii) homonymous SOL recurrent inhibition, and (iv) SOL H-reflex recruitment curves. The results show that anodal tDCS decreases reciprocal Ia inhibition, increases recurrent inhibition and induces no modification of presynaptic inhibition of SOL Ia terminals and of SOL-H reflex recruitment curves. Our results indicate therefore that the effects of tDCS are the opposite of those previously described for TMS on spinal network excitability. They also indicate that anodal tDCS induces effects on spinal network excitability similar to those observed during co-contraction suggesting that anodal tDCS activates descending corticospinal projections mainly involved in co-contractions. PMID:21502292
Segmental thoracic spinal has advantages over general anesthesia for breast cancer surgery
Elakany, Mohamed Hamdy; Abdelhamid, Sherif Ahmed
2013-01-01
Background: Thoracic spinal anesthesia has been used for laparoscopic cholecystectomy and abdominal surgeries, but not in breast surgery. The present study compared this technique with general anesthesia in breast cancer surgeries. Materials and Methods: Forty patients were enrolled in this comparative study with inclusion criteria of ASA physical status I-III, primary breast cancer without known extension beyond the breast and axillary nodes, scheduled for unilateral mastectomy with axillary dissection. They were randomly divided into two groups. The thoracic spinal group (S) (n = 20) underwent segmental thoracic spinal anesthesia with bupivacaine and fentanyl at T5-T6 interspace, while the other group (n = 20) underwent general anesthesia (G). Intraoperative hemodynamic parameters, intraoperative complications, postoperative discharge time from post-anesthesia care unit (PACU), postoperative pain and analgesic consumption, postoperative adverse effects, and patient satisfaction with the anesthetic techniques were recorded. Results: Intraoperative hypertension (20%) was more frequent in group (G), while hypotension and bradycardia (15%) were more frequent in the segmental thoracic spinal (S) group. Postoperative nausea (30%) and vomiting (40%) during PACU stay were more frequent in the (G) group. Postoperative discharge time from PACU was shorter in the (S) group (124 ± 38 min) than in the (G) group (212 ± 46 min). The quality of postoperative analgesia and analgesic consumption was better in the (S) group. Patient satisfaction was similar in both groups. Conclusions: Segmental thoracic spinal anesthesia has some advantages when compared with general anesthesia and can be considered as a sole anesthetic in breast cancer surgery with axillary lymph node clearance. PMID:25885990
Kogan, Michael; Morr, Simon; Siddiqui, Adnan H
2017-04-28
Spinal aneurysms are rare causes of spontaneous subarachnoid hemorrhage. We present an unusual, initially occult, case of an upper thoracic intradural extramedullary isolated aneurysm arising from the T2 intercostal-radicular circulation that was initially angiographically occult but was discovered due to unique, albeit nonspecific, magnetic resonance imaging findings of spinal cord T2 hyperintensity and contrast enhancement that were noted to progress with a clinical picture of ictal rehemorrhage. Repeat spinal angiography revealed a spinal aneurysm that was treated surgically. In cases of sufficient clinical suspicion and nonspecific imaging findings, continued vigilance is advised in seeking an underlying pathoanatomic etiology.
Laubacher, Marco; Perret, Claudio; Hunt, Kenneth J
2015-01-01
Robotics-assisted tilt-table (RTT) technology allows neurological rehabilitation therapy to be started early thus alleviating some secondary complications of prolonged bed rest. This study assessed the feasibility of a novel work-rate-guided RTT approach for cardiopulmonary training and assessment in patients with incomplete spinal cord injury (iSCI). Three representative subjects with iSCI at three distinct stages of primary rehabilitation completed an incremental exercise test (IET) and a constant load test (CLT) on a RTT augmented with integrated leg-force and position measurement and visual work rate feedback. Feasibility assessment focused on: (i) implementation, (ii) limited efficacy testing, (iii) acceptability. (i) All subjects were able follow the work rate target profile by adapting their volitional leg effort. (ii) During the IETs, peak oxygen uptake above rest was 304, 467 and 1378 ml/min and peak heart rate (HR) was 46, 32 and 65 beats/min above rest (subjects A, B and C, respectively). During the CLTs, steady-state oxygen uptake increased by 42%, 38% and 162% and HR by 12%, 20% and 29%. (iii) All exercise tests were tolerated well. The novel work-rate guided RTT intervention is deemed feasible for cardiopulmonary training and assessment in patients with iSCI: substantial cardiopulmonary responses were observed and the approach was found to be tolerable and implementable. Implications for Rehabilitation Work-rate guided robotics-assisted tilt-table technology is deemed feasible for cardiopulmonary assessment and training in patients with incomplete spinal cord injury. Robotics-assisted tilt-tables might be a good way to start with an active rehabilitation as early as possible after a spinal cord injury. During training with robotics-assisted devices the active participation of the patients is crucial to strain the cardiopulmonary system and hence gain from the training.
Nicita, Francesco; Torrente, Isabella; Spalice, Alberto; Bottillo, Irene; Papetti, Laura; Pinna, Valentina; Ursitti, Fabiana; Ruggieri, Martino
2014-02-01
Familial spinal neurofibromatosis (FSNF) is a rare form of neurofibromatosis type 1 (NF1) characterized by multiple, histologically proven neurofibromas of the spinal roots leaving no intact segments and associated neurofibromas of major peripheral nerves. It is sometimes associated with other NF1 stigmata. Most patients have NF1 gene mutations. We describe a patient who fulfilled the diagnostic criteria for spinal neurofibromatosis and belonged to a family in which other affected members exhibited classical NF1 stigmata. A novel missense (c.7109 T>A; p.Val2370Asp) mutation in exon 39 of the NF1 gene was present in the affected family members. The family displayed extreme phenotypic variability in the spectrum of NF1. To our knowledge, this is the first patient with spinal neurofibromatosis in the context of classical NF1 with an NF1 gene mutation. The term FSNF is inaccurate as this condition simply reflects the typical autosomal dominant pattern of NF1 inheritance with phenotypoc variability and does not encompass patients with sporadic disease or those in the context of a classical NF1 phenotype as reported in the present family. The term could be replaced by "spinal neurofibromatosis". Copyright © 2013 Elsevier Ltd. All rights reserved.
Tarkkila, P; Huhtala, J; Salminen, U
1994-08-01
The effect of different size (25-, 27- and 29-gauge) Quincke-type spinal needles on the incidence of insertion difficulties and failure rates was investigated in a randomised, prospective study with 300 patients. The needle size was randomised but the insertion procedure was standardised. The time to achieve dural puncture was significantly longer with the 29-gauge spinal needle compared with the larger bore needles and was due to the greater flexibility of the thin needle. However, the difference was less than 1 min and cannot be considered clinically significant. There were no significant differences between groups in the number of insertion attempts or failures and the same sensory level of analgesia was reached with all the needle sizes studied. Postoperatively, no postdural puncture headaches occurred in the 29-gauge spinal needle group, whilst in the 25- and 27-gauge needle groups, the postdural puncture headache rates were 7.4% and 2.1% respectively. The incidence of backache was similar in all study groups. We conclude that dural puncture with a 29-gauge spinal needle is clinically as easy as with larger bore needles and its use is indicated in patients who have a high risk of postdural puncture headache.
Spinal analgesia and auditory functions: a comparison of two sizes of Quincke needle.
Malhotra, S K; Iyer, B A; Gupta, A K; Raghunathan, M; Nakra, D
2007-01-01
Spinal anaesthesia may produce complications ranging from minor problems such as pain on injection, backache and urinary retention to more serious consequences such as post-dural puncture headache (PDPH), neurological complications like meningitis, cranial and peripheral nerve palsies and even cardiac arrest. Impaired auditory function is a relatively lesser-recognized complication of spinal analgesia. The objective of this study was to investigate the effects of spinal analgesia on vestibular dysfunction, using different sizes of the same type of spinal needle. The study included 30 ASA I patients who had received spinal analgesia for lower abdominal surgery. Pure tone audiometry was performed before surgery and on postoperative day 2. In addition, any patient with hearing impairment of >15 dB was scheduled to undergo electrocochleography. Hearing levels were measured from 250 Hz to 8 kHz. In group 1 (n=15), a 26gauge Quincke needle was used. In group 2 (n=15), a 23-gauge Quincke needle was used. Comparison of hearing thresholds showed a significant reduction in the hearing level (P<0.05) in 2 patients in group 2 but none in group 1. The use of a 23-gauge Quincke needle is associated with a greater reduction in the mean hearing level compared to a 26-gauge needle of the same type.
Corleto, Jose A.; Bravo-Hernández, Mariana; Kamizato, Kota; Kakinohana, Osamu; Santucci, Camila; Navarro, Michael R.; Platoshyn, Oleksandr; Cizkova, Dasa; Lukacova, Nadezda; Taylor, Julian; Marsala, Martin
2015-01-01
The development of spinal hyper-reflexia as part of the spasticity syndrome represents one of the major complications associated with chronic spinal traumatic injury (SCI). The primary mechanism leading to progressive appearance of muscle spasticity is multimodal and may include loss of descending inhibitory tone, alteration of segmental interneuron-mediated inhibition and/or increased reflex activity to sensory input. Here, we characterized a chronic thoracic (Th 9) complete transection model of muscle spasticity in Sprague-Dawley (SD) rats. Isoflurane-anesthetized rats received a Th9 laminectomy and the spinal cord was transected using a scalpel blade. After the transection the presence of muscle spasticity quantified as stretch and cutaneous hyper-reflexia was identified and quantified as time-dependent changes in: i) ankle-rotation-evoked peripheral muscle resistance (PMR) and corresponding electromyography (EMG) activity, ii) Hoffmann reflex, and iii) EMG responses in gastrocnemius muscle after paw tactile stimulation for up to 8 months after injury. To validate the clinical relevance of this model, the treatment potency after systemic treatment with the clinically established anti-spastic agents baclofen (GABAB receptor agonist), tizanidine (α2-adrenergic agonist) and NGX424 (AMPA receptor antagonist) was also tested. During the first 3 months post spinal transection, a progressive increase in ankle rotation-evoked muscle resistance, Hoffmann reflex amplitude and increased EMG responses to peripherally applied tactile stimuli were consistently measured. These changes, indicative of the spasticity syndrome, then remained relatively stable for up to 8 months post injury. Systemic treatment with baclofen, tizanidine and NGX424 led to a significant but transient suppression of spinal hyper-reflexia. These data demonstrate that a chronic Th9 spinal transection model in adult SD rat represents a reliable experimental platform to be used in studying the pathophysiology of chronic spinal injury-induced spasticity. In addition a consistent anti-spastic effect measured after treatment with clinically effective anti-spastic agents indicate that this model can effectively be used in screening new anti-spasticity compounds or procedures aimed at modulating chronic spinal trauma-associated muscle spasticity. PMID:26713446
Neurogenin3 restricts serotonergic neuron differentiation to the hindbrain.
Carcagno, Abel L; Di Bella, Daniela J; Goulding, Martyn; Guillemot, Francois; Lanuza, Guillermo M
2014-11-12
The development of the nervous system is critically dependent on the production of functionally diverse neuronal cell types at their correct locations. In the embryonic neural tube, dorsoventral signaling has emerged as a fundamental mechanism for generating neuronal diversity. In contrast, far less is known about how different neuronal cell types are organized along the rostrocaudal axis. In the developing mouse and chick neural tube, hindbrain serotonergic neurons and spinal glutamatergic V3 interneurons are produced from ventral p3 progenitors, which possess a common transcriptional identity but are confined to distinct anterior-posterior territories. In this study, we show that the expression of the transcription factor Neurogenin3 (Neurog3) in the spinal cord controls the correct specification of p3-derived neurons. Gain- and loss-of-function manipulations in the chick and mouse embryo show that Neurog3 switches ventral progenitors from a serotonergic to V3 differentiation program by repressing Ascl1 in spinal p3 progenitors through a mechanism dependent on Hes proteins. In this way, Neurog3 establishes the posterior boundary of the serotonergic system by actively suppressing serotonergic specification in the spinal cord. These results explain how equivalent p3 progenitors within the hindbrain and the spinal cord produce functionally distinct neuron cell types. Copyright © 2014 the authors 0270-6474/14/3415223-11$15.00/0.
ERIC Educational Resources Information Center
Miller, Susan M.
2008-01-01
This article examines the effect of frequency and type of Internet use on perceived social support and sense of well-being in persons with spinal cord injury. The results show that Internet use is not significantly related to perceived social support. Bivariate analysis indicates that there is a significant negative association between total…
Sudden onset odontoid fracture caused by cervical instability in hypotonic cerebral palsy.
Shiohama, Tadashi; Fujii, Katsunori; Kitazawa, Katsuhiko; Takahashi, Akiko; Maemoto, Tatsuo; Honda, Akihito
2013-11-01
Fractures of the upper cervical spine rarely occur but carry a high rate of mortality and neurological disabilities in children. Although odontoid fractures are commonly caused by high-impact injuries, cerebral palsy children with cervical instability have a risk of developing spinal fractures even from mild trauma. We herein present the first case of an odontoid fracture in a 4-year-old boy with cerebral palsy. He exhibited prominent cervical instability due to hypotonic cerebral palsy from infancy. He suddenly developed acute respiratory failure, which subsequently required mechanical ventilation. Neuroimaging clearly revealed a type-III odontoid fracture accompanied by anterior displacement with compression of the cervical spinal cord. Bone mineral density was prominently decreased probably due to his long-term bedridden status and poor nutritional condition. We subsequently performed posterior internal fixation surgically using an onlay bone graft, resulting in a dramatic improvement in his respiratory failure. To our knowledge, this is the first report of an odontoid fracture caused by cervical instability in hypotonic cerebral palsy. Since cervical instability and decreased bone mineral density are frequently associated with cerebral palsy, odontoid fractures should be cautiously examined in cases of sudden onset respiratory failure and aggravated weakness, especially in hypotonic cerebral palsy patients. Copyright © 2012 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Role of sigma 1 receptor in high fat diet-induced peripheral neuropathy.
Song, Tieying; Zhao, Jianhui; Ma, Xiaojing; Zhang, Zaiwang; Jiang, Bo; Yang, Yunliang
2017-09-26
The neurobiological mechanisms of obesity-induced peripheral neuropathy are poorly understood. We evaluated the role of Sigma-1 receptor (Sig-1R) and NMDA receptor (NMDARs) in the spinal cord in peripheral neuropathy using an animal model of high fat diet-induced diabetes. We examined the expression of Sig-1R and NMDAR subunits GluN2A and GluN2B along with postsynaptic density protein 95 (PSD-95) in the spinal cord after 24-week HFD treatment in both wild-type and Sig-1R-/- mice. Finally, we examined the effects of repeated intrathecal administrations of selective Sig-1R antagonists BD1047 in HFD-fed wild-type mice on peripheral neuropathy. Wild-type mice developed tactile allodynia and thermal hypoalgesia after 24-week HFD treatment. HFD-induced peripheral neuropathy correlated with increased expression of GluN2A and GluN2B subunits of NMDARs, PDS-95, and Sig-1R, as well as increased Sig-1R-NMDAR interaction in the spinal cord. In contrast, Sig-1R-/- mice did not develop thermal hypoalgesia or tactile allodynia after 24-week HFD treatment, and the levels of GluN2A, GluN2B, and PSD-95 were not altered in the spinal cord of HFD-fed Sig-1R-/- mice. Finally, repeated intrathecal administrations of selective Sig-1R antagonists BD1047 in HFD-fed wild-type mice attenuated peripheral neuropathy. Our results suggest that obesity-associated peripheral neuropathy may involve Sig-1R-mediated enhancement of NMDAR expression in the spinal cord.
The Effects of Ketorolac Injected via Patient Controlled Analgesia Postoperatively on Spinal Fusion
Park, Si-Young; Moon, Seong-Hwan; Park, Moon-Soo; Oh, Kyung-Soo
2005-01-01
Lumbar spinal fusions have been performed for spinal stability, pain relief and improved function in spinal stenosis, scoliosis, spinal fractures, infectious conditions and other lumbar spinal problems. The success of lumbar spinal fusion depends on multifactors, such as types of bone graft materials, levels and numbers of fusion, spinal instrumentation, electrical stimulation, smoking and some drugs such as nonsteroidal anti-inflammatory drugs (NSAIDs). From January 2000 to December 2001, 88 consecutive patients, who were diagnosed with spinal stenosis or spondylolisthesis, were retrospectively enrolled in this study. One surgeon performed all 88 posterolateral spinal fusions with instrumentation and autoiliac bone graft. The patients were divided into two groups. The first group (n=30) was infused with ketorolac and fentanyl intravenously via patient controlled analgesia (PCA) postoperatively and the second group (n=58) was infused only with fentanyl. The spinal fusion rates and clinical outcomes of the two groups were compared. The incidence of incomplete union or nonunion was much higher in the ketorolac group, and the relative risk was approximately 6 times higher than control group (odds ratio: 5.64). The clinical outcomes, which were checked at least 1 year after surgery, showed strong correlations with the spinal fusion status. The control group (93.1%) showed significantly better clinical results than the ketorolac group (77.6%). Smoking had no effect on the spinal fusion outcome in this study. Even though the use of ketorolac after spinal fusion can reduce the need for morphine, thereby decreasing morphine related complications, ketorolac used via PCA at the immediate postoperative state inhibits spinal fusion resulting in a poorer clinical outcome. Therefore, NSAIDs such as ketorolac, should be avoided after posterolateral spinal fusion. PMID:15861498
Hu, Jia; Huang, Tianwen; Li, Tingting; Guo, Zhen; Cheng, Leping
2012-04-18
Establishment of proper connectivity between peripheral sensory neurons and their central targets is required for an animal to sense and respond to various external stimuli. Dorsal root ganglion (DRG) neurons convey sensory signals of different modalities via their axon projections to distinct laminae in the dorsal horn of the spinal cord. In this study, we found that c-Maf was expressed predominantly in the interneurons of laminae III/IV, which primarily receive inputs from mechanoreceptive DRG neurons. In the DRG, c-Maf⁺ neurons also coexpressed neurofilament-200, a marker for the medium- and large-diameter myelinated afferents that transmit non-noxious information. Furthermore, mouse embryos deficient in c-Maf displayed abnormal development of dorsal horn laminae III/IV neurons, as revealed by the marked reduction in the expression of several marker genes for these neurons, including those for transcription factors MafA and Rora, GABA(A) receptor subunit α5, and neuropeptide cholecystokinin. In addition, among the four major subpopulations of DRG neurons marked by expression of TrkA, TrkB, TrkC, and MafA/GFRα2/Ret, c-Maf was required selectively for the proper differentiation of MafA⁺/Ret⁺/GFRα2⁺ low-threshold mechanoreceptors (LTMs). Last, we found that the central and peripheral projections of mechanoreceptive DRG neurons were compromised in c-Maf deletion mice. Together, our results indicate that c-Maf is required for the proper development of MafA⁺/Ret⁺/GFRα2⁺ LTMs in the DRG, their afferent projections in the dorsal horn and Pacinian corpuscles, as well as neurons in laminae III/IV of the spinal cord.
Mittmann, Nicole; Chan, Brian C; Craven, B Cathy; Isogai, Pierre K; Houghton, Pamela
2011-06-01
To evaluate the incremental cost-effectiveness of electrical stimulation (ES) plus standard wound care (SWC) as compared with SWC only in a spinal cord injury (SCI) population with grade III/IV pressure ulcers (PUs) from the public payer perspective. A decision analytic model was constructed for a 1-year time horizon to determine the incremental cost-effectiveness of ES plus SWC to SWC in a cohort of participants with SCI and grade III/IV PUs. Model inputs for clinical probabilities were based on published literature. Model inputs, namely clinical probabilities and direct health system and medical resources were based on a randomized controlled trial of ES plus SWC versus SWC. Costs (Can $) included outpatient (clinic, home care, health professional) and inpatient management (surgery, complications). One way and probabilistic sensitivity (1000 Monte Carlo iterations) analyses were conducted. The perspective of this analysis is from a Canadian public health system payer. Model target population was an SCI cohort with grade III/IV PUs. Not applicable. Incremental cost per PU healed. ES plus SWC were associated with better outcomes and lower costs. There was a 16.4% increase in the PUs healed and a cost savings of $224 at 1 year. ES plus SWC were thus considered a dominant economic comparator. Probabilistic sensitivity analysis resulted in economic dominance for ES plus SWC in 62%, with another 35% having incremental cost-effectiveness ratios of $50,000 or less per PU healed. The largest driver of the economic model was the percentage of PU healed with ES plus SWC. The addition of ES to SWC improved healing in grade III/IV PU and reduced costs in an SCI population. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Development of the International Spinal Cord Injury Activities and Participation Basic Data Set.
Post, M W; Charlifue, S; Biering-Sørensen, F; Catz, A; Dijkers, M P; Horsewell, J; Noonan, V K; Noreau, L; Tate, D G; Sinnott, K A
2016-07-01
Consensus decision-making process. The objective of this study was to develop an International Spinal Cord Injury (SCI) Activities and Participation (A&P) Basic Data Set. International working group. A committee of experts was established to select and define A&P data elements to be included in this data set. A draft data set was developed and posted on the International Spinal Cord Society (ISCoS) and American Spinal Injury Association websites and was also disseminated among appropriate organizations for review. Suggested revisions were considered, and a final version of the A&P Data Set was completed. Consensus was reached to define A&P and to incorporate both performance and satisfaction ratings. Items that were considered core to each A&P domain were selected from two existing questionnaires. Four items measuring activities were selected from the Spinal Cord Independence Measure III to provide basic data on task execution in activities of daily living. Eight items were selected from the Craig Handicap Assessment and Reporting Technique to provide basic data on the frequency of participation. An additional rating of satisfaction on a three-point scale for each item completes the total of 24 A&P variables. Collection of the International SCI A&P Basic Data Set variables in all future research on SCI outcomes is advised to facilitate comparison of results across published studies from around the world. Additional standardised instruments to assess activities of daily living or participation can be administered, depending on the purpose of a particular study.
Surveillance imaging in children with malignant CNS tumors: low yield of spine MRI.
Perreault, Sébastien; Lober, Robert M; Carret, Anne-Sophie; Zhang, Guohua; Hershon, Linda; Décarie, Jean-Claude; Vogel, Hannes; Yeom, Kristen W; Fisher, Paul G; Partap, Sonia
2014-02-01
Magnetic resonance imaging (MRI) is routinely obtained in patients with central nervous system (CNS) tumors, but few studies have been conducted to evaluate this practice. We assessed the benefits of surveillance MRI and more specifically spine MRI in a contemporary cohort. We evaluated MRI results of children diagnosed with CNS tumors from January 2000 to December 2011. Children with at least one surveillance MRI following the diagnosis of medulloblastoma (MB), atypical teratoid rhabdoid tumor (ATRT), pineoblastoma (PB), supratentorial primitive neuroectodermal tumor, supratentorial high-grade glioma (World Health Organization grade III-IV), CNS germ cell tumors or ependymoma were included. A total of 2,707 brain and 1,280 spine MRI scans were obtained in 258 patients. 97% of all relapses occurred in the brain and 3% were isolated to the spine. Relapse was identified in 226 (8%) brain and 48 (4%) spine MRI scans. The overall rate of detecting isolated spinal relapse was 9/1,000 and 7/1,000 for MB patients. MRI performed for PB showed the highest rate for detecting isolated spinal recurrence with 49/1,000. No initial isolated spinal relapse was identified in patients with glioma, supratentorial primitive neuroectodermal tumor and ATRT. Isolated spinal recurrences are infrequent in children with malignant CNS tumors and the yield of spine MRI is very low. Tailoring surveillance spine MRI to patients with higher spinal relapse risk such as PB, MB with metastatic disease and within 3 years of diagnosis could improve allocation of resources without compromising patient care.
Spinal Accessory Motor Neurons in the Mouse: A Special Type of Branchial Motor Neuron?
Watson, Charles; Tvrdik, Petr
2018-04-16
The spinal accessory nerve arises from motor neurons in the upper cervical spinal cord. The axons of these motor neurons exit dorsal to the ligamentum denticulatum and form the spinal accessory nerve. The nerve ascends in the spinal subarachnoid space to enter the posterior cranial fossa through the foramen magnum. The spinal accessory nerve then turns caudally to exit through the jugular foramen alongside the vagus and glossopharyngeal nerves, and then travels to supply the sternomastoid and trapezius muscles in the neck. The unusual course of the spinal accessory nerve has long prompted speculation that it is not a typical spinal motor nerve and that it might represent a caudal remnant of the branchial motor system. Our cell lineage tracing data, combined with images from public databases, show that the spinal accessory motor neurons in the mouse transiently express Phox2b, a transcription factor that is required for development of brain stem branchial motor nuclei. While this is strong prima facie evidence that the spinal accessory motor neurons should be classified as branchial motor, the evolutionary history of these motor neurons in anamniote vertebrates suggests that they may be considered to be an atypical branchial group that possesses both branchial and somatic characteristics. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Silva, R B M; Sperotto, N D M; Andrade, E L; Pereira, T C B; Leite, C E; de Souza, A H; Bogo, M R; Morrone, F B; Gomez, M V; Campos, M M
2015-01-01
Background and Purpose Spinal voltage-gated calcium channels (VGCCs) are pivotal regulators of painful and inflammatory alterations, representing attractive therapeutic targets. We examined the effects of epidural administration of the P/Q- and N-type VGCC blockers Tx3-3 and Phα1β, respectively, isolated from the spider Phoneutria nigriventer, on symptomatic, inflammatory and functional changes allied to mouse cyclophosphamide (CPA)-induced haemorrhagic cystitis (HC). The effects of P. nigriventer-derived toxins were compared with those displayed by MVIIC and MVIIA, extracted from the cone snail Conus magus. Experimental Approach HC was induced by a single i.p. injection of CPA (300 mg·kg–1). Dose- and time-related effects of spinally administered P/Q and N-type VGCC blockers were assessed on nociceptive behaviour and macroscopic inflammation elicited by CPA. The effects of toxins were also evaluated on cell migration, cytokine production, oxidative stress, functional cystometry alterations and TRPV1, TRPA1 and NK1 receptor mRNA expression. Key Results The spinal blockage of P/Q-type VGCC by Tx3-3 and MVIIC or N-type VGCC by Phα1β attenuated nociceptive and inflammatory events associated with HC, including bladder oxidative stress and cytokine production. CPA produced a slight increase in bladder TRPV1 and TRPA1 mRNA expression, which was reversed by all the toxins tested. Noteworthy, Phα1β strongly prevented bladder neutrophil migration, besides HC-related functional alterations, and its effects were potentiated by co-injecting the selective NK1 receptor antagonist CP-96345. Conclusions and Implications Our results shed new light on the role of spinal P/Q and N-type VGCC in bladder dysfunctions, pointing out Phα1β as a promising alternative for treating complications associated with CPA-induced HC. PMID:25298144
Usability assessment of ASIBOT: a portable robot to aid patients with spinal cord injury.
Jardón, Alberto; Gil, Ángel M; de la Peña, Ana I; Monje, Concepción A; Balaguer, Carlos
2011-01-01
The usability concept refers to aspects related to the use of products that are closely linked to the user's degree of satisfaction. Our goal is to present a functional evaluation methodology for assessing the usability of sophisticated technical aids, such as a portable robot for helping disabled patients with severe spinal cord injuries. The specific manipulator used for this task is ASIBOT, a personal assistance robot totally developed by RoboticsLab at the University Carlos III of Madrid. Our purpose is also to improve some aspects of the manipulator according to the user's perception. For our case study, a population of six patients with spinal cord injury is considered. These patients have been suffering spinal cord injuries for a period of time longer than 1 year before the tests are carried out. The methodology followed for the information gathering is based on the Quebec User Evaluation of Satisfaction with assistive Technology (QUEST). Different daily functions, such as drinking, brushing one's teeth and washing one's face, are considered to assess the user's perception when using ASIBOT as a technical aid. The human factor in this procedure is the main base to establish the specific needs and tools to make the end product more suitable and usable.
NASA Astrophysics Data System (ADS)
Kowalski, Ireneusz M.; Palko, Tadeusz; Pasniczek, Roman; Szarek, Jozef
2009-01-01
Clinical studies were carried out in the period of 2003-2006 at the Provincial Children's Rehabilitation Hospital in Ameryka near Olsztyn (Poland). The study involved a group of children and youth exhibiting spinal deformity progression in idiopathic scoliosis (IS) of more than 5° per year according to the Cobb scale. Four hundred and fifty patients between 4 and 15 years of age were divided into three groups (n = 150). Group I and group II received 2-hour and 9-hour lateral electrical surface stimulation (LESS), respectively, whereas group III (control) was treated only with corrective exercises for 30 minutes twice a day. LESS was performed with the use of a battery-operated SCOL-2 stimulator manufactured by Elmech, Warsaw, Poland. The effectiveness of this method was confirmed in the treatment of spinal IS in children and youth, especially when the initial spinal deformity did not exceed 20° according to the Cobb scale. A short-duration electrostimulation (2 hours daily) was found to produce results similar to those obtained after overnight (9 h) electrostimulation. Moreover, the analysis of the Harrington prognostic index F confirms the positive effect of LESS in both groups of patients (2 h and 9 h of LESS).
Effective Structured Query Formulation for Session Search
2012-11-01
with top frequency are “type of paralysi”, “ quadriplegia paraplegia”, “paraplegia”, “spinal cord injury”, and “quadriplegic tetraplegic”, so the final... quadriplegia paraplegia) 0.004819 paraplegia 0.004819 #combine(spinal cord injury) 0.00241 #combine(quadriplegic tetraplegic) )”, where the
Center for the Study of Rhythmic Processes.
1987-10-20
pattern generators Neural network Spinal cord Mathematical modeling Neuromodulators Regeneration Sensory feedback 19 ABSTRACT (Continue on reverse if...generator circuit. Trends in Neurosciences 9: 432-437. Marder, E. (1987) Neurotransmitters and neuromodulators . In Selverston, A.I. and Moulins, M. The...relating to the effects of neuromodulators on the output of the lobster stomatogastric central pattern generator. (See Sections III and IV.) 2. Trainig
Mohta, Medha; Agarwal, Deepti; Sethi, AK
2011-01-01
Needle-through-needle combined spinal–epidural (CSE) may cause significant delay in patient positioning resulting in settling down of spinal anaesthetic and unacceptably low block level. Bilateral hip flexion has been shown to extend the spinal block by flattening lumbar lordosis. However, patients with lower limb fractures cannot flex their injured limb. This study was conducted to find out if unilateral hip flexion could extend the level of spinal anaesthesia following a prolonged CSE technique. Fifty American Society of Anesthesiologists (ASA) I/II males with unilateral femur fracture were randomly allocated to Control or Flexion groups. Needle-through-needle CSE was performed in the sitting position at L2-3 interspace and 2.6 ml 0.5% hyperbaric bupivacaine injected intrathecally. Patients were made supine 4 min after the spinal injection or later if epidural placement took longer. The Control group patients (n=25) lay supine with legs straight, whereas the Flexion group patients (n=25) had their uninjured hip and knee flexed for 5 min. Levels of sensory and motor blocks and time to epidural drug requirement were recorded. There was no significant difference in sensory levels at different time-points; maximum sensory and motor blocks; times to achieve maximum blocks; and time to epidural drug requirement in two groups. However, four patients in the Control group in contrast to none in the Flexion group required epidural drug before start of surgery. Moreover, in the Control group four patients took longer than 30 min to achieve maximum sensory block. To conclude, unilateral hip flexion did not extend the spinal anaesthetic level; however, further studies are required to explore the potential benefits of this technique. PMID:21808396
Thoracic spinal anesthesia is safe for patients undergoing abdominal cancer surgery
Ellakany, Mohamed Hamdy
2014-01-01
Aim: A double-blinded randomized controlled study to compare discharge time and patient satisfaction between two groups of patients submitted to open surgeries for abdominal malignancies using segmental thoracic spinal or general anesthesia. Background: Open surgeries for abdominal malignancy are usually done under general anesthesia, but many patients with major medical problems sometimes can’t tolerate such anesthesia. Regional anesthesia namely segmental thoracic spinal anesthesia may be beneficial in such patients. Materials and Methods: A total of 60 patients classified according to American Society of Anesthesiology (ASA) as class II or III undergoing surgeries for abdominal malignancy, like colonic or gastric carcinoma, divided into two groups, 30 patients each. Group G, received general anesthesia, Group S received a segmental (T9-T10 injection) thoracic spinal anesthesia with intrathecal injection of 2 ml of hyperbaric bupivacaine 0.5% (10 mg) and 20 ug fentanyl citrate. Intraoperative monitoring, postoperative pain, complications, recovery time, and patient satisfaction at follow-up were compared between the two groups. Results: Spinal anesthesia was performed easily in all 30 patients, although two patients complained of paraesthesiae, which responded to slight needle withdrawal. No patient required conversion to general anesthesia, six patients required midazolam for anxiety and six patients required phenylephrine and atropine for hypotension and bradycardia, recovery was uneventful and without sequelae. The two groups were comparable with respect to gender, age, weight, height, body mass index, ASA classification, preoperative oxygen saturation and preoperative respiratory rate and operative time. Conclusion: This preliminary study has shown that segmental thoracic spinal anesthesia can be used successfully and effectively for open surgeries for abdominal malignancies by experienced anesthetists. It showed shorter postanesthesia care unit stay, better postoperative pain relief and patient satisfaction than general anesthesia. PMID:25886230
Thoracic spinal anesthesia is safe for patients undergoing abdominal cancer surgery.
Ellakany, Mohamed Hamdy
2014-01-01
A double-blinded randomized controlled study to compare discharge time and patient satisfaction between two groups of patients submitted to open surgeries for abdominal malignancies using segmental thoracic spinal or general anesthesia. Open surgeries for abdominal malignancy are usually done under general anesthesia, but many patients with major medical problems sometimes can't tolerate such anesthesia. Regional anesthesia namely segmental thoracic spinal anesthesia may be beneficial in such patients. A total of 60 patients classified according to American Society of Anesthesiology (ASA) as class II or III undergoing surgeries for abdominal malignancy, like colonic or gastric carcinoma, divided into two groups, 30 patients each. Group G, received general anesthesia, Group S received a segmental (T9-T10 injection) thoracic spinal anesthesia with intrathecal injection of 2 ml of hyperbaric bupivacaine 0.5% (10 mg) and 20 ug fentanyl citrate. Intraoperative monitoring, postoperative pain, complications, recovery time, and patient satisfaction at follow-up were compared between the two groups. Spinal anesthesia was performed easily in all 30 patients, although two patients complained of paraesthesiae, which responded to slight needle withdrawal. No patient required conversion to general anesthesia, six patients required midazolam for anxiety and six patients required phenylephrine and atropine for hypotension and bradycardia, recovery was uneventful and without sequelae. The two groups were comparable with respect to gender, age, weight, height, body mass index, ASA classification, preoperative oxygen saturation and preoperative respiratory rate and operative time. This preliminary study has shown that segmental thoracic spinal anesthesia can be used successfully and effectively for open surgeries for abdominal malignancies by experienced anesthetists. It showed shorter postanesthesia care unit stay, better postoperative pain relief and patient satisfaction than general anesthesia.
Polgár, Erika; Thomson, Suzanne; Maxwell, David J; Al-Khater, Khulood; Todd, Andrew J
2007-01-01
The dorsal horn of the rat spinal cord contains a population of large neurons with cell bodies in laminae III or IV, that express the neurokinin 1 receptor (NK1r) and have long dorsal dendrites that branch extensively within the superficial laminae. In this study, we have identified a separate population of neurons that have similar dendritic morphology, but lack the NK1r. These cells also differ from the NK1r-expressing neurons in that they have significantly fewer contacts from substance P-containing axons and are not retrogradely labelled following injection of tracer into the caudal ventrolateral medulla. We also provide evidence that these cells do not belong to the postsynaptic dorsal column pathway or the spinothalamic tract. It is therefore likely that these cells do not have supraspinal projections. They may provide a route through which information transmitted by C fibres that lack neuropeptides is conveyed to deeper laminae. The present findings demonstrate the need for caution when attempting to classify neurons solely on the basis of somatodendritic morphology. PMID:17880393
Calbindin-D28k immunoreactivity in the mice thoracic spinal cord after space flight
NASA Astrophysics Data System (ADS)
Porseva, Valentina V.; Shilkin, Valentin V.; Krasnov, Igor B.; Masliukov, Petr M.
2015-10-01
The aim of the work was to analyse changes in the location and morphological characteristics of calbindin (CB)-immunoreactive (IR) neurons of the thoracic spinal cord of C57BL/6N male mice after completion of a 30-day space flight on board the BION-M1 biosatellite (Russia, 2013). Space flight induced multidirectional changes of the number and morphological parameters of CB-positive neurons. The number of IR neurons increased in laminae I (from 10 to 17 neurons per section), II (from 42 to 67 cells per section) and IX (from two neurons per segment to two neurons per section), but CB disappeared in neurons of lamina VIII. Weightlessness did not affect the number of CB-IR neurons in laminae III-V and VII, including preganglionic sympathetic neurons. The cross-sectional area of CB-IR neurons decreased in lamina II and VII (group of partition cells) and increased in laminae III-V and IX. After a space flight, few very large neurons with long dendrites appeared in lamina IV. The results obtained give evidence about substantial changes in the calcium buffer system and imbalance of different groups of CB-IR neurons due to reduction of afferent information under microgravity.
Spinal muscle evaluation in healthy individuals and low-back-pain patients: a literature review.
Demoulin, Christophe; Crielaard, Jean-Michel; Vanderthommen, Marc
2007-01-01
This article reviews available techniques for spinal muscle investigation, as well as data on spinal muscles in healthy individuals and in patients with low back pain. In patients with chronic low back pain, medical imaging studies show paraspinal muscle wasting with reductions in cross-sectional surface area and fiber density. In healthy individuals, the paraspinal muscles contain a high proportion of slow-twitch fibers (Type I), reflecting their role in maintaining posture. The proportion of Type I fibers is higher in females, leading to better adaptation to aerobic exertion compared to males. Abnormalities seen in paraspinal muscles from patients with chronic low back pain include marked Type II fiber atrophy, conversion of Type I to Type II fibers, and an increased number of nonspecific abnormalities. Limited data are available from magnetic resonance spectroscopy used to investigate muscle metabolism and from near infrared spectroscopy used to measure oxygen uptake by the paraspinal muscles. Surface electromyography in patients with chronic low back pain shows increased paraspinal muscle fatigability, often with abolition of the flexion-relaxation phenomenon.
Tang, Liang; Feng, Shiqing; Gao, Ruixiao; Han, Chenfu; Sun, Xiaochen; Bao, Yucheng; Zhang, Wenlong
2017-12-01
The aim of the present study was to compare the efficacy of the commercial Xpert Mycobacterium tuberculosis/rifampin (MTB/RIF) test for evaluating different types of spinal tuberculosis (TB) tissue specimens. Pus, granulation tissue, and caseous necrotic tissue specimens from 223 patients who were diagnosed with spinal TB and who underwent curettage were collected for bacterial culture and the Xpert MTB/RIF assay to calculate the positive rate. Bacterial culture and phenotypic drug sensitivity testing (pDST) were adopted as the gold standards to calculate the sensitivity and specificity of the Xpert bacterial detection and drug resistance (DR) test. The positive rate (68.61% ± 7.35%) from the Xpert MTB/RIF assays of spinal TB patients' tissue specimens was higher compared with bacterial culture (44.39% ± 6.51%, Z = 5.1642, p < 0.01), and the positive rates from Xpert MTB/RIF assays on the three types of specimens were all higher than those of bacterial culture, with statistically significant results for pus and granulation tissue specimens. The positive rates for pus using the two bacteriological tests were higher than those for granulation tissue but were not statistically significant. However, the positive rates obtained from granulation tissue were statistically significantly higher than those obtained from caseous necrotic tissue. With bacterial culture and pDST as the gold standards, the sensitivity of Xpert MTB/RIF assays for MTB was 96.97%, while the sensitivity and specificity of the DR test also remained relatively high. For efficient and accurate diagnosis of spinal TB and DR and timely provision of effective treatment, multiple specimens, especially the pus of spinal TB patients, should be collected for Xpert MTB/RIF assays.
Generation of Spinal Motor Neurons from Human Pluripotent Stem Cells.
Santos, David P; Kiskinis, Evangelos
2017-01-01
Human embryonic stem cells (ESCs) are characterized by their unique ability to self-renew indefinitely, as well as to differentiate into any cell type of the human body. Induced pluripotent stem cells (iPSCs) share these salient characteristics with ESCs and can easily be generated from any given individual by reprogramming somatic cell types such as fibroblasts or blood cells. The spinal motor neuron (MN) is a specialized neuronal subtype that synapses with muscle to control movement. Here, we present a method to generate functional, postmitotic, spinal motor neurons through the directed differentiation of ESCs and iPSCs by the use of small molecules. These cells can be utilized to study the development and function of human motor neurons in healthy and disease states.
Manubriosternal dislocation with spinal fracture: A rare cause for delayed haemothorax.
Kothari, Manish; Saini, Pramod; Shethna, Sunny; Dalvie, Samir
2015-01-01
Type 2 manubriosternal dislocations with concomitant spinal fracture are rare and may be associated with thoracic visceral injuries. The complication of delayed haemothorax has not been reported yet. We report a case of a young male who suffered manubriosternal dislocation with chance type thoracic spine fracture due to fall of a tree branch over his back. The haemothorax presented late on day three. The possible injury mechanism is discussed along with review of literature. We conclude that a lateral chest radiograph is indicated in spinal fracture patients complaining of midsternal pain. Computerized axial tomography scan of chest with contrast is indicated to rule out visceral injuries and a chest radiograph should be repeated before the patient is discharged to look for delayed haemothorax.
Hussain, Manzar; Nasir, Sadaf; Moed, Amber; Murtaza, Ghulam
2011-12-01
This is a case series. We wanted to identify variations in the practice patterns among neurosurgeons and orthopedic surgeons for the management of spinal disorders. Spinal disorders are common in the clinical practice of both neurosurgeons and orthopedic surgeons. It has been observed that despite the availability of various guidelines, there is lack of consensus among surgeons about the management of various disorders. A questionnaire was distributed, either directly or via e-mail, to the both the neurosurgeons and orthopedic surgeons who worked at 5 tertiary care centers within a single region of Korea. The surgeons were working either in private practice or in academic institutions. The details of the questionnaire included demographic details and the specialty (orthopedic/neurosurgeon). The surgeons were classified according to the level of experience as up to 5 years, 6-10 years and > 10 years. Questions were asked about the approach to lumbar discectomy (fragmentectomy or aggressive disc removal), using steroids for treating discitis, the fusion preference for spondylolisthesis, the role of an orthosis after fusion, the preferred surgical approach for spinal stenosis, the operative approach for spinal trauma (early within 72 hours or late > 72 hours) and the role of surgery in complete spinal cord injury. The data was analyzed using SPSS ver 16. p-values < 0.05 were considered to be significant. Of the 30 surgeons who completed the questionnaire, 20 were neurosurgeons and 10 were orthopedic surgeons. Statistically significant differences were observed for the management of spinal stenosis, spondylolisthesis, using an orthosis after fusion, the type of lumbar discectomy and the value of surgical intervention after complete spinal cord injury. Our results suggest that there continues to exist a statistically significant lack of consensus among neurosurgeons and orthopedic spine surgeons when considering using an orthosis after fusion, the type of discectomy and the value of intervention after complete spinal injury.
Nasir, Sadaf; Moed, Amber; Murtaza, Ghulam
2011-01-01
Study Design This is a case series. Purpose We wanted to identify variations in the practice patterns among neurosurgeons and orthopedic surgeons for the management of spinal disorders. Overview of Literature Spinal disorders are common in the clinical practice of both neurosurgeons and orthopedic surgeons. It has been observed that despite the availability of various guidelines, there is lack of consensus among surgeons about the management of various disorders. Methods A questionnaire was distributed, either directly or via e-mail, to the both the neurosurgeons and orthopedic surgeons who worked at 5 tertiary care centers within a single region of Korea. The surgeons were working either in private practice or in academic institutions. The details of the questionnaire included demographic details and the specialty (orthopedic/neurosurgeon). The surgeons were classified according to the level of experience as up to 5 years, 6-10 years and > 10 years. Questions were asked about the approach to lumbar discectomy (fragmentectomy or aggressive disc removal), using steroids for treating discitis, the fusion preference for spondylolisthesis, the role of an orthosis after fusion, the preferred surgical approach for spinal stenosis, the operative approach for spinal trauma (early within 72 hours or late > 72 hours) and the role of surgery in complete spinal cord injury. The data was analyzed using SPSS ver 16. p-values < 0.05 were considered to be significant. Results Of the 30 surgeons who completed the questionnaire, 20 were neurosurgeons and 10 were orthopedic surgeons. Statistically significant differences were observed for the management of spinal stenosis, spondylolisthesis, using an orthosis after fusion, the type of lumbar discectomy and the value of surgical intervention after complete spinal cord injury. Conclusions Our results suggest that there continues to exist a statistically significant lack of consensus among neurosurgeons and orthopedic spine surgeons when considering using an orthosis after fusion, the type of discectomy and the value of intervention after complete spinal injury. PMID:22164314
Bedi, Parneet Kaur; Arumugam, Narkeesh; Chhabra, Harvinder Singh
2018-06-01
A multi-centric randomized controlled trial to be conducted at two sites, department of phyhysiotherapypy, Punjabi University, Patiala and rehabilitation department, Indian Spinal Injury Centre, New Delhi, India. To determine the effectiveness of activity-based therapy in comparison with surface spinal stimulation (SSS) in traumatic incomplete spinal cord injury (SCI) with special reference to locomotion-a central pattern generator controlled function. A major goal for many patients after SCI is to regain the function of locomotion. It is crucial that rehabilitation strives to maximize locomotor ability and functional recovery after SCI. Experimental evidence of improvement in stepping and motor control after activity-based training in animal models and human SCI has been translated into clinical neuro-rehabilitation. Control group participants will undertake an intensive 24-week duration thrice weekly program of activity-based therapy. In addition to this the participants in experimental group will also receive a session of 45 minutes of SSS on thrice weekly basis. The primary analysis for our study will be at 24 weeks. Linear regression will be used to determine the mean between-group differences and 95% confidence interval for all continuous outcomes using baseline scores and group allocation as covariates. The primary outcome measure is improvement in the level of walking index for SCI-II. The secondary outcome measures are modified Ashworth scale, Penn spasm frequency score, spinal cord independence measure-III, SCI functional ambulation inventory, Hoffman's reflex, somatosensory evoked potential, and American Spinal Injury Association Impairment Scale scores. An insight into training-induced mechanisms will be of great importance to fine tune such combined treatments and vindicate their efficacy in restoration of locomotion and functional activities in individuals with SCI.
Axonal loss in the multiple sclerosis spinal cord revisited.
Petrova, Natalia; Carassiti, Daniele; Altmann, Daniel R; Baker, David; Schmierer, Klaus
2018-05-01
Preventing chronic disease deterioration is an unmet need in people with multiple sclerosis, where axonal loss is considered a key substrate of disability. Clinically, chronic multiple sclerosis often presents as progressive myelopathy. Spinal cord cross-sectional area (CSA) assessed using MRI predicts increasing disability and has, by inference, been proposed as an indirect index of axonal degeneration. However, the association between CSA and axonal loss, and their correlation with demyelination, have never been systematically investigated using human post mortem tissue. We extensively sampled spinal cords of seven women and six men with multiple sclerosis (mean disease duration= 29 years) and five healthy controls to quantify axonal density and its association with demyelination and CSA. 396 tissue blocks were embedded in paraffin and immuno-stained for myelin basic protein and phosphorylated neurofilaments. Measurements included total CSA, areas of (i) lateral cortico-spinal tracts, (ii) gray matter, (iii) white matter, (iv) demyelination, and the number of axons within the lateral cortico-spinal tracts. Linear mixed models were used to analyze relationships. In multiple sclerosis CSA reduction at cervical, thoracic and lumbar levels ranged between 19 and 24% with white (19-24%) and gray (17-21%) matter atrophy contributing equally across levels. Axonal density in multiple sclerosis was lower by 57-62% across all levels and affected all fibers regardless of diameter. Demyelination affected 24-48% of the gray matter, most extensively at the thoracic level, and 11-13% of the white matter, with no significant differences across levels. Disease duration was associated with reduced axonal density, however not with any area index. Significant association was detected between focal demyelination and decreased axonal density. In conclusion, over nearly 30 years multiple sclerosis reduces axonal density by 60% throughout the spinal cord. Spinal cord cross sectional area, reduced by about 20%, appears to be a poor predictor of axonal density. © 2017 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology.
Duz, Bulent; Cansever, Tufan; Secer, Halil Ibrahim; Kahraman, Serdar; Daneyemez, Mehmet Kadri; Gonul, Engin
2008-09-15
Analysis of the patients with spinal missile injury (SMI). Choosing the optimum treatment for SMI with respect to bullet trajectory, evaluation of surgical indications, and timing of surgical intervention. A few guidelines were reported for the management of SMI. But there is still no consensus about the indication and timing of the surgery. The relationship between the surgery and bullet trajectory was not reported previously. One hundred twenty-nine patients with spinal missile injury were admitted to our department from 1994 to 2006 and 122 of them could be functionally monitored. Functional recovery and complications in surgical and conservative treatment groups were evaluated. Surgical indications were discussed. The injuries were classified with respect to the bullet's trajectory. Seventy-four patients were treated surgically, of whom 60 (81%) had incomplete injuries. All 17 patients whose vertebral column was injured with side-to-side trajectory were operated on because of instability. In the surgical group, 33 (56.9%) showed improvement, 20 (34.5%) showed no change, and 5 (8.6%) worsened. The best results were obtained by the patients who received operations because of rapid neurologic decline, compression, and instability in the spinal canal (P < 0.0001). Twenty-three (31%) complications and associated injuries were seen in the surgically treated patients and 18 (34.6%) were seen in the conservatively treated patients. Anteroposterior and oblique trajectories [Gulhane Military Medical Academy (GATA)-SMI I and GATA-SMI II] of SMI must be recognized as highly infective in the lumbar region. A side-to-side trajectory (GATA-SMI III) missile causing spinal cord injury is unstable and needs further stabilization. The spinal cord is not injured by the GATA-SMI IV trajectory, and thus, the best approach in this case is conservative. The best results from neurosurgical interventions may be achieved after rapid neurologic deteriorations because of spinal compression and/or instability.
Boros, Ákos; Albert, Mihály; Pankovics, Péter; Bíró, Hunor; Pesavento, Patricia A.; Phan, Tung Gia; Delwart, Eric
2017-01-01
A large, highly prolific swine farm in Hungary had a 2-year history of neurologic disease among newly weaned (25- to 35-day-old) pigs, with clinical signs of posterior paraplegia and a high mortality rate. Affected pigs that were necropsied had encephalomyelitis and neural necrosis. Porcine astrovirus type 3 was identified by reverse transcription PCR and in situ hybridization in brain and spinal cord samples in 6 animals from this farm. Among tissues tested by quantitative RT-PCR, the highest viral loads were detected in brain stem and spinal cord. Similar porcine astrovirus type 3 was also detected in archived brain and spinal cord samples from another 2 geographically distant farms. Viral RNA was predominantly restricted to neurons, particularly in the brain stem, cerebellum (Purkinje cells), and cervical spinal cord. Astrovirus was generally undetectable in feces but present in respiratory samples, indicating a possible respiratory infection. Astrovirus could cause common, neuroinvasive epidemic disease. PMID:29148391
Boros, Ákos; Albert, Mihály; Pankovics, Péter; Bíró, Hunor; Pesavento, Patricia A; Phan, Tung Gia; Delwart, Eric; Reuter, Gábor
2017-12-01
A large, highly prolific swine farm in Hungary had a 2-year history of neurologic disease among newly weaned (25- to 35-day-old) pigs, with clinical signs of posterior paraplegia and a high mortality rate. Affected pigs that were necropsied had encephalomyelitis and neural necrosis. Porcine astrovirus type 3 was identified by reverse transcription PCR and in situ hybridization in brain and spinal cord samples in 6 animals from this farm. Among tissues tested by quantitative RT-PCR, the highest viral loads were detected in brain stem and spinal cord. Similar porcine astrovirus type 3 was also detected in archived brain and spinal cord samples from another 2 geographically distant farms. Viral RNA was predominantly restricted to neurons, particularly in the brain stem, cerebellum (Purkinje cells), and cervical spinal cord. Astrovirus was generally undetectable in feces but present in respiratory samples, indicating a possible respiratory infection. Astrovirus could cause common, neuroinvasive epidemic disease.
Stam, Floor J.; Hendricks, Timothy J.; Zhang, Jingming; Geiman, Eric J.; Francius, Cedric; Labosky, Patricia A.; Clotman, Frederic; Goulding, Martyn
2012-01-01
The spinal cord contains a diverse array of physiologically distinct interneuron cell types that subserve specialized roles in somatosensory perception and motor control. The mechanisms that generate these specialized interneuronal cell types from multipotential spinal progenitors are not known. In this study, we describe a temporally regulated transcriptional program that controls the differentiation of Renshaw cells (RCs), an anatomically and functionally discrete spinal interneuron subtype. We show that the selective activation of the Onecut transcription factors Oc1 and Oc2 during the first wave of V1 interneuron neurogenesis is a key step in the RC differentiation program. The development of RCs is additionally dependent on the forkhead transcription factor Foxd3, which is more broadly expressed in postmitotic V1 interneurons. Our demonstration that RCs are born, and activate Oc1 and Oc2 expression, in a narrow temporal window leads us to posit that neuronal diversity in the developing spinal cord is established by the composite actions of early spatial and temporal determinants. PMID:22115757
Konig, Niclas; Trolle, Carl; Kapuralin, Katarina; Adameyko, Igor; Mitrecic, Dinko; Aldskogius, Hakan; Shortland, Peter J; Kozlova, Elena N
2017-01-01
Spinal root avulsion results in paralysis and sensory loss, and is commonly associated with chronic pain. In addition to the failure of avulsed dorsal root axons to regenerate into the spinal cord, avulsion injury leads to extensive neuroinflammation and degeneration of second-order neurons in the dorsal horn. The ultimate objective in the treatment of this condition is to counteract degeneration of spinal cord neurons and to achieve functionally useful regeneration/reconnection of sensory neurons with spinal cord neurons. Here we compare survival and migration of murine boundary cap neural crest stem cells (bNCSCs) and embryonic stem cells (ESCs)-derived, predifferentiated neuron precursors after their implantation acutely at the junction between avulsed dorsal roots L3-L6 and the spinal cord. Both types of cells survived transplantation, but showed distinctly different modes of migration. Thus, bNCSCs migrated into the spinal cord, expressed glial markers and formed elongated tubes in the peripheral nervous system (PNS) compartment of the avulsed dorsal root transitional zone (DRTZ) area. In contrast, the ESC transplants remained at the site of implantation and differentiated to motor neurons and interneurons. These data show that both stem cell types successfully survived implantation to the acutely injured spinal cord and maintained their differentiation and migration potential. These data suggest that, depending on the source of neural stem cells, they can play different beneficial roles for recovery after dorsal root avulsion. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.
Vaishampayan, Ashwini; Clark, Florence; Carlson, Mike; Blanche, Erna Imperatore
2012-01-01
Purpose To sensitize practitioners working with individuals with spinal cord injury to the complex life circumstances that are implicated in the development of pressure ulcers, and to document the ways that interventions can be adapted to target individual needs. Methods Content analysis of weekly fidelity/ quality control meetings that were undertaken as part of a lifestyle intervention for pressure ulcer prevention in community-dwelling adults with spinal cord injury. Results Four types of lifestyle-relevant challenges to ulcer prevention were identified: risk-elevating life circumstances, communication difficulties, equipment problems, and individual personality issues. Intervention flexibility was achieved by changing the order of treatment modules, altering the intervention content or delivery approach, or going beyond the stipulated content. Conclusion Attention to recurrent types of individual needs, along with explicit strategies for tailoring manualized interventions, has potential to enhance pressure ulcer prevention efforts for adults with spinal cord injury. Target audience This continuing education article is intended for practitioners interested in learning about a comprehensive, context-sensitive, community-based pressure ulcer prevention program for people with spinal cord injury. Objectives After reading this article, the reader should be able to: Describe some of the contextual factors that increase pressure ulcer risk in people with spinal cord injury living in the community.Distinguish between tailored and individualized intervention approaches.Identify the issues that must be taken into account to design context-sensitive, community-based pressure ulcer prevention programs for people with spinal cord injury.Describe approaches that can be used to individualize manualized interventions. PMID:21586911
Kakinohana, O; Hefferan, M P; Nakamura, S; Kakinohana, M; Galik, J; Tomori, Z; Marsala, J; Yaksh, T L; Marsala, M
2006-09-01
Transient spinal cord ischemia may lead to a progressive degeneration of spinal interneurons and subsequently to increased hind limb motor tone. In the present work we sought to characterize the rigidity and spasticity components of this altered motor function by: i) tonic electromyographic activity measured in gastrocnemius muscle before and after ischemia, ii) measurement of muscle resistance during the period of ankle flexion and corresponding changes in electromyographic activity, iii) changes in Hoffmann reflex, and, iv) motor evoked potentials. In addition the effect of intrathecal treatment with baclofen (GABAB receptor agonist; 1 microg), nipecotic acid (GABA uptake inhibitor; 300 microg) and dorsal L2-L5 rhizotomy on spasticity and rigidity was studied. Finally, the changes in spinal choline acetyltransferase (ChAT) and vesicular glutamate transporter 2 and 1 (VGLUT2 and VGLUT1) expression were characterized using immunofluorescence and confocal microscopy. At 3-7 days after ischemia an increase in tonic electromyographic activity with a variable degree of rigidity was seen. In animals with modest rigidity a velocity-dependent increase in muscle resistance and corresponding appearance in electromyographic activity (consistent with the presence of spasticity) was measured during ankle rotation (4-612 degrees /s rotation). Measurement of the H-reflex revealed a significant increase in Hmax/Mmax ratio and a significant loss of rate-dependent inhibition. In the same animals a potent increase in motor evoked potential amplitudes was measured and this change correlated positively with the increased H-reflex responses. Spasticity and rigidity were consistently present for a minimum of 3 months after ischemia. Intrathecal treatment with baclofen (GABA B receptor agonist) and nipecotic acid (GABA uptake inhibitor) provided a significant suppression of spasticity, rigidity, H-reflex or motor evoked potentials. Dorsal L2-L5 rhizotomy significantly decreased muscle resistance but had no effect on increased amplitudes of motor evoked potentials. Confocal analysis of spinal cord sections at 8 weeks-12 months after ischemia revealed a continuing presence of ChAT positive alpha-motoneurons, Ia afferents and VGLUT2 and VGLUT1-positive terminals but a selective loss of small presumably inhibitory interneurons between laminae V-VII. These data demonstrate that brief transient spinal cord ischemia in rat leads to a consistent development of spasticity and rigidity. The lack of significant suppressive effect of dorsal L2-L5 rhizotomy on motor evoked potentials response indicates that descending motor input into alpha-motoneurons is independent on Ia afferent couplings and can independently contribute to increased alpha-motoneuronal excitability. The pharmacology of this effect emphasizes the potent role of GABAergic type B receptors in regulating both the spasticity and rigidity.
2013-10-01
TERMS Lower urinary tract symptoms (LUTS), spinal cord injury (SCI), Botulinum Toxin Type A and β3 adrenoceptor agonists 16. SECURITY...focused on the therapeutic benefits of β3 adrenoceptor agonists, botulinum neurotoxin type A (BTX-A) intradetrusor injections and their combination...compromised by the toxin . Thus, β3 adrenoceptor agonists in combination with BTX-A are beneficial in improving bladder function in SCI patients. 15. SUBJECT
Matsunaga, Shunji; Nakamura, Kozo; Seichi, Atsushi; Yokoyama, Toru; Toh, Satoshi; Ichimura, Shoichi; Satomi, Kazuhiko; Endo, Kenji; Yamamoto, Kengo; Kato, Yoshiharu; Ito, Tatsuo; Tokuhashi, Yasuaki; Uchida, Kenzo; Baba, Hisatoshi; Kawahara, Norio; Tomita, Katsuro; Matsuyama, Yukihiro; Ishiguro, Naoki; Iwasaki, Motoki; Yoshikawa, Hideki; Yonenobu, Kazuo; Kawakami, Mamoru; Yoshida, Munehito; Inoue, Shinsuke; Tani, Toshikazu; Kaneko, Kazuo; Taguchi, Toshihiko; Imakiire, Takanori; Komiya, Setsuro
2008-11-15
A multicenter cohort study was performed retrospectively. To identify radiographic predictors for the development of myelopathy in patients with ossification of the posterior longitudinal ligaments (OPLL). The pathomechanism of myelopathy in the OPLL remains unknown. Some patients with large OPLL have not exhibited myelopathy for a long periods of time. Predicting the course of future neurologic deterioration in asyptomatic patients with OPLL is difficult at their initial visit. A total of 156 OPLL patients from 16 spine institutes with an average of 10.3 years of follow-up were reviewed. Subjects underwent a plain roentgenogram, computed tomography (CT), and magnetic resonance imaging of the cervical spine during the follow-up. The trauma history of the cervical spine, maximum percentage of spinal canal stenosis in a plain roentgenogram and CT, range of motion of the cervical spine, and axial ossified pattern in magnetic resonance imaging or CT were reviewed in relation to the existence of myelopathy. All 39 patients with greater than 60% spinal canal stenosis on the plain roentgenogram exhibited myelopathy. Of 117 patients with less than 60% spinal canal stenosis, 57 (49%) patients exhibited myelopathy. The range of motion of the cervical spine was significantly larger in patients with myelopathy than in those of without it. The axial ossified pattern could be classified into 2 types: a central type and a lateral deviated type. The incidence of myelopathy in patients with less than 60% spinal canal stenosis was significantly higher in the lateral deviated-type group than in the central-type group. Fifteen patients of 156 subjects developed trauma-induced myelopathy. Of the 15 patients, 13 had mixed-type OPLL and 2 had segmental-type OPLL. Static and dynamic factors were related to the development of myelopathy in OPLL.
[Experience with combined spinal and epidural anesthesia at cesarean section].
Levinzon, A S; Taran, O I; Pura, K R; Mishchenko, G S; Mamaeva, N V
2006-01-01
The paper analyzes some experience gained in using various modes of regional anesthesia as an anesthetic appliance at cesarean sections and comparatively characterizes various types of central segmental blocks. The results of 213 cases of cesarean section performed under spinal or combined spinal and epidural anesthesia (CSEA) were generalized by the following parameters: block onset, maternal and fetal action, the quality of anesthesia and postoperative analgesia, which leads to the conclusion that CSEA is the method of choice.
Chronic shin splints. Classification and management of medial tibial stress syndrome.
Detmer, D E
1986-01-01
A clinical classification and treatment programme has been developed for chronic medial tibial stress syndrome. Medial tibial stress syndrome has been reported to be either tibial stress fracture or microfracture, tibial periostitis, or distal deep posterior chronic compartment syndrome. Three chronic types exist and may coexist: Type I (tibial microfracture, bone stress reaction or cortical fracture); type II (periostalgia from chronic avulsion of the periosteum at the periosteal-fascial junction); and type III (chronic compartment syndrome syndrome). Type I disease is treated nonoperatively. Operations for resistant types II and III medial tibial stress syndrome were performed in 41 patients. Bilaterality was common (type II, 50% type III, 88%). Seven had coexistent type II/III; one had type I/II. Preoperative symptoms averaged 24 months in type II, 6 months in type III, and 33 months in types II/III. Mean age was 22 years (15 to 51). Resting compartment pressures were normal in type II (mean 12 mm Hg) and elevated in type III and type II/III (mean 23 mm Hg). Type II and type II/III patients received fasciotomy plus periosteal cauterisation. Type III patients had fasciotomy only. All procedures were performed on an outpatient basis using local anaesthesia. Follow up was complete and averaged 6 months (2 to 14 months). Improved performance was as follows: type II, 93%, type III, 100%; type II/III, 86%. Complete cures were as follows: type II, 78%; type III, 75%; and type II/III, 57%. This experience suggests that with precise diagnosis and treatment involving minimal risk and cost the athlete has a reasonable chance of return to full activity.
Tokunaga, A; Akert, K; Sandri, C; Bennett, M V
1980-08-01
The medullary electromotor nucleus (EMN) of Sternarchus albifrons was studied at the light and electron microscopic levels. The EMN consists of a dense meshwork of myelinated axons and glial elements with interposed large neurons; it is provided with an abundant supply of capillaries. Two types of essentially adrendritic nerve cells were distinguished on the basis of size: giant neurons (approx. 70 micrometers in diameter) and large neurons (approx. 30 micrometers in diameter). Their population ratio is 1:4. Only giant cells are labelled following the injection of retrograde tracer into the spinal cord; they are therefore identified with the so-called "relay cells" of other gymnotids. Tracer experiments further suggest that the descending axons of these relay cells give off collateral branches throughout the elongated spinal electromotor nucleus. In contrast, the large cells remain unlabelled and therefore lack spinal projections; they most likely correspond to "pacemaker cells." The perikaryal surface, including axon hillock and proximal part of initial segment of both types of EMN cells, is contacted by clusters of synaptic terminals and astrocytic processes. Two main varieties of synaptic terminals occur: (1) large endings and (2) ordinary end feet with standard size (S-type) and variable size (Sv-type) clear, spherical vesicles. The junction between large endings and EMN cells is characterized by the combination of gap junctions and surrounding intermediate junctions whose freeze-fracture characteristics were morphometrically analyzed. The large endings were formed by nodes of Ranvier as well as by fiber terminations, and synchronization within the EMN may be achieved by presynaptic fibers. Some of the contacts occur directly on the initial segment, which could allow activity to bypass the soma. It is concluded that the elctromotor system of Sternarchus is comprised of a rapid conduction pathway where medullary pacemaker and relay cells as well as spinal electromotor neurons are coupled by synapses with gap junctions. In contrast to the spinal electromotor neurons, the medullary EMN cells receive synapses with morphological characteristics of chemical transmission, and the S-type and SV-type terminals may possibly correspond to Gray's Type I and Type II synapses, respectively. These synapses may be involved in modulation of the electric organ discharge frequency.
Hasler, Rebecca M; Hüttner, Harald E; Keel, Marius J B; Durrer, Bruno; Zimmermann, Heinz; Exadaktylos, Aristomenis K; Benneker, Lorin M
2012-04-01
Adrenalin-seeking airborne sports like BASE-jumping, paragliding, parachuting, delta-gliding, speedflying, and skysurfing are now firmly with us as outdoor lifestyle activities and are associated with a high frequency of severe injuries, especially to the spine. Retrospective analysis of all airborne sports-associated spinal and pelvic injuries admitted to a Level I trauma centre in the Swiss Alps between 1st March 2000 and 31st October 2009. Spinal injuries were classified by the Magerl system and pelvic injuries by the AO/OTA scheme modified by Isler and Ganz. Spino-pelvic dissociation fractures in airborne sports were compared to similar injuries in the general trauma population using multiple logistic regression analysis. 181 patients (11 BASE-jumpers, 144 paragliders, 19 parachuters, 1 speedflyer, 4 deltagliders, 2 skysurfer) were included. 161 (89%) were male. Median age was 37.0 years (IQR=29.0-47.0) and ISS 8 (IQR=4-13). 89 (49.2%) patients sustained spinal fractures. Type A fractures were predominant (91.5%), followed by Type C (5.3%) and Type B (3.2%). The level L1 was most often affected (35.1%). 17 patients (9.4%) had pelvic ring fractures. Most frequent were Type C fractures (41.2%), followed by Types A and B (29.4% each). 8 paragliders (4.4%) suffered spino-pelvic dissociation injuries. The odds ratio for sustaining such fractures in paragliders was 21-fold higher (OR 21.04, 95% CI 7.83-56.57, p<0.001) than in the general trauma population. Serious spinal and pelvic injuries account for most injuries sustained during airborne sporting activities. The thoracolumbar region was most often affected, but the lumbopelvic junction is also especially vulnerable as high impact forces from vertical and horizontal deceleration need to be absorbed. The frequency of spino-pelvic dissociation was very high in paragliding injuries, with a 21-fold higher odds ratio than in the general trauma population. Copyright © 2011 Elsevier Ltd. All rights reserved.
Fernández-de-las-Peñas, César; Alonso-Blanco, Cristina; San-Roman, Jesús; Miangolarra-Page, Juan C
2006-03-01
Literature review of quality of clinical trials. To determine the methodological quality of published randomized controlled trials that used spinal manipulation and/or mobilization to treat patients with tension-type headache (TTH), cervicogenic headache (CeH), and migraine (M) in the last decade. TTH, CeH, and M are the most prevalent types of headaches seen in adults. Individuals who have headaches frequently use physical therapy, manual therapy, or chiropractic care. Randomized controlled trials are considered an optimal method with which to assess the efficacy of any intervention. Computerized literature searches were performed in MEDLINE, EMBASE, COCHRANE, AMED, MANTIS, CINHAL, and PEDro databases. Randomized controlled trials in which spinal manipulation and/or mobilization had been used for TTH, CeH, and M published in a peer-reviewed journal as full text, and with at least 1 clinically relevant outcome measure (ie, headache intensity, duration, or frequency) were reviewed. The methodological quality of the studies was assessed independently by 2 reviewers using a set of predefined criteria. Only 8 studies met all the inclusion criteria. One clinical trial evaluated spinal manipulation and mobilization together, and the remaining 7 assessed spinal manipulative therapy. No controlled trials analyzing exclusively the effects of spinal mobilization were found. Methodological scores ranged from 35 to 56 points out of a theoretical maximum of 100 points, indicating an overall poor methodology of the studies. Only 2 studies obtained a high-quality score (greater than 50 points). No significant differences in quality scores were found based on the type of headache investigated. Methodological quality was not associated with the year of publication (before 2000, or later) nor with the results (positive, neutral, negative) reported in the studies. The most common flaws were a small sample size, the absence of a placebo control group, lack of blinded patients, and no description of the manipulative procedure. There are few published randomized controlled trials analyzing the effectiveness of spinal manipulation and/or mobilization for TTH, CeH, and M in the last decade. In addition, the methodological quality of these papers is typically low. Clearly, there is a need for high-quality randomized controlled trials assessing the effectiveness of these interventions in these headache disorders.
A scoping review of biopsychosocial risk factors and co-morbidities for common spinal disorders.
Green, Bart N; Johnson, Claire D; Haldeman, Scott; Griffith, Erin; Clay, Michael B; Kane, Edward J; Castellote, Juan M; Rajasekaran, Shanmuganathan; Smuck, Matthew; Hurwitz, Eric L; Randhawa, Kristi; Yu, Hainan; Nordin, Margareta
2018-01-01
The purpose of this review was to identify risk factors, prognostic factors, and comorbidities associated with common spinal disorders. A scoping review of the literature of common spinal disorders was performed through September 2016. To identify search terms, we developed 3 terminology groups for case definitions: 1) spinal pain of unknown origin, 2) spinal syndromes, and 3) spinal pathology. We used a comprehensive strategy to search PubMed for meta-analyses and systematic reviews of case-control studies, cohort studies, and randomized controlled trials for risk and prognostic factors and cross-sectional studies describing associations and comorbidities. Of 3,453 candidate papers, 145 met study criteria and were included in this review. Risk factors were reported for group 1: non-specific low back pain (smoking, overweight/obesity, negative recovery expectations), non-specific neck pain (high job demands, monotonous work); group 2: degenerative spinal disease (workers' compensation claim, degenerative scoliosis), and group 3: spinal tuberculosis (age, imprisonment, previous history of tuberculosis), spinal cord injury (age, accidental injury), vertebral fracture from osteoporosis (type 1 diabetes, certain medications, smoking), and neural tube defects (folic acid deficit, anti-convulsant medications, chlorine, influenza, maternal obesity). A range of comorbidities was identified for spinal disorders. Many associated factors for common spinal disorders identified in this study are modifiable. The most common spinal disorders are co-morbid with general health conditions, but there is a lack of clarity in the literature differentiating which conditions are merely comorbid versus ones that are risk factors. Modifiable risk factors present opportunities for policy, research, and public health prevention efforts on both the individual patient and community levels. Further research into prevention interventions for spinal disorders is needed to address this gap in the literature.
A scoping review of biopsychosocial risk factors and co-morbidities for common spinal disorders
Smuck, Matthew; Hurwitz, Eric L.; Randhawa, Kristi; Yu, Hainan; Nordin, Margareta
2018-01-01
Objective The purpose of this review was to identify risk factors, prognostic factors, and comorbidities associated with common spinal disorders. Methods A scoping review of the literature of common spinal disorders was performed through September 2016. To identify search terms, we developed 3 terminology groups for case definitions: 1) spinal pain of unknown origin, 2) spinal syndromes, and 3) spinal pathology. We used a comprehensive strategy to search PubMed for meta-analyses and systematic reviews of case-control studies, cohort studies, and randomized controlled trials for risk and prognostic factors and cross-sectional studies describing associations and comorbidities. Results Of 3,453 candidate papers, 145 met study criteria and were included in this review. Risk factors were reported for group 1: non-specific low back pain (smoking, overweight/obesity, negative recovery expectations), non-specific neck pain (high job demands, monotonous work); group 2: degenerative spinal disease (workers’ compensation claim, degenerative scoliosis), and group 3: spinal tuberculosis (age, imprisonment, previous history of tuberculosis), spinal cord injury (age, accidental injury), vertebral fracture from osteoporosis (type 1 diabetes, certain medications, smoking), and neural tube defects (folic acid deficit, anti-convulsant medications, chlorine, influenza, maternal obesity). A range of comorbidities was identified for spinal disorders. Conclusion Many associated factors for common spinal disorders identified in this study are modifiable. The most common spinal disorders are co-morbid with general health conditions, but there is a lack of clarity in the literature differentiating which conditions are merely comorbid versus ones that are risk factors. Modifiable risk factors present opportunities for policy, research, and public health prevention efforts on both the individual patient and community levels. Further research into prevention interventions for spinal disorders is needed to address this gap in the literature. PMID:29856783
Zhang, Su-Jie; Si, Tong; Li, Zhi
2008-11-01
To observe clinical effect of nanometer acupoint mounting method for alleviation of myospasm complicated by spinal injury. Sixty cases were randomly divided into an observation group and a control group, 30 cases in each group. The observation group were treated by nanometer mounting at 4 Jiaji (EX-B 2) points each on both sides of the affected spine and Shenshu (BL 23), Shangliao (BL 31), Ciliao (BL 32), Yang-lingquan (GB 34), Xuanzhong (GB 39); and the control group by mounting zinc oxide sticking tablets at the above acupoints. The mounting was replaced once each two days, 7 times constituting one course. One week and one month after the end of 3 courses, their results were recorded, respectively. Before treatment, there was no significant difference between the two groups in grades of the myospasm degree (P > 0.05). One week after the end of treatment, 15 cases were grade I of myospasm, 9 cases were grade II, 5 cases were grade III and 1 case was grade IV in the observation group, and 1 cases grade I, 7 cases grade II, 14 cases grade III, 8 cases grade IV in the control group. Ridit analysis on the data indicated that there were significant differences before and after treatment in the myospasm degree (P < 0.01) and between the two groups after treatment (P < 0.01). One month after the end of treatment, the results were similar to those one week after the end of treatment. Nanometer acupoint mounting method is a new one for alleviation of myospasm complicated by spinal injury, with convenience, safety and no side effect.
[Pregnancy and childbirth in a patient with a spinal cord lesion].
Vanderbeke, I; Boll, D; Verguts, J K
2008-05-17
A 37-year-old woman with a spinal cord lesion at the level of TvIII due to a car-accident, became pregnant. She had posttraumatic syringomyely at Cv-TvIII, for which she underwent syringo-arachnoidal drainage. At approximately six weeks of amenorrhoea she presented at the emergency room with vaginal bleeding. She was treated with dalteparine 5000 IU once daily given by intramuscular injection until 6 weeks post partum. Weekly urine checks were advised. At 36 6/7 weeks of pregnancy, the patient was admitted to hospital for daily cardiotocography and 4-hourly contraction monitoring. After spontaneous rupture of the membranes she went into labour and had a vaginal delivery of a son weighing 3320 g. His Apgar score was 6 after 1 min and 9 after 5 min; arterial pH was 7.31. For three months after giving birth she received specialist care at home as well as help and counselling from a rehabilitation centre. In pregnant women with a spinal cord lesion, special attention should be paid to urinary tract infections, pressure areas, anaemia and thrombo-embolic symptoms. During partus, cardiotocographic monitoring should be carried out, also in patients with TvI-Tx lesions regularly from 36 weeks. In pregnant women with lesions from TvI, medical attendants should be aware of the possibility of autonomous dysreflection. Epidural anaesthesia should be administered and episiotomy or rupture avoided. Post partum, the bladder should always be completely emptied and pressure areas and signs ofthrombo-embolic complications monitored. A urological bladder function consultation should be requested, and, ifepisiotomy or rupture does occur, extra care should be taken to avoid infection. The ergonomic situation at home should be evaluated to ensure that any ergonomic changes necessary for the care of the patient and her newborn, take place in time.
Coleman, W P; Benzel, D; Cahill, D W; Ducker, T; Geisler, F; Green, B; Gropper, M R; Goffin, J; Madsen, P W; Maiman, D J; Ondra, S L; Rosner, M; Sasso, R C; Trost, G R; Zeidman, S
2000-06-01
From the beginning, the reporting of the results of National Acute Spinal Cord Injury Studies (NASCIS) II and III has been incomplete, leaving clinicians in the spinal cord injury (SCI) community to use or avoid using methylprednisolone in acute SCI on the basis of faith rather than a publicly developed scientific consensus. NASCIS II was initially reported by National Institutes of Health announcements, National Institutes of Health facsimiles to emergency room physicians, and the news media. The subsequent report in the New England Journal of Medicine implied that there was a positive result in the primary efficacy analysis for the entire 487 patient sample. However, this analysis was in fact negative, and the positive result was found only in a secondary analysis of the subgroup of patients who received treatment within 8 hours. In addition, that subgroup apparently had only 62 patients taking methylprednisolone and 67 receiving placebo. The NASCIS II and III reports embody specific choices of statistical methods that have strongly shaped the reporting of results but have not been adequately challenged or or even explained. These studies show statistical artifacts that call their results into question. In NASCIS II, the placebo group treated before 8 hours did poorly, not only when compared with the methylprednisolone group treated before 8 hours but even when compared with the placebo group treated after 8 hours. Thus, the positive result may have been caused by a weakness in the control group rather than any strength of methylprednisolone. In NASCIS III, a randomization imbalance occurred that allocated a disproportionate number of patients with no motor deficit (and therefore no chance for recovery) to the lower dose control group. When this imbalance is controlled for, much of the superiority of the higher dose group seems to disappear. The NASCIS group's decision to admit persons with minor SCIs with minimal or no motor deficit not only enables statistical artifacts it complicates the interpretation of results from the population actually sampled. Perhaps one half of the NASCIS III sample may have had at most a minor deficit. Thus, we do not know whether the results of these studies reflect the severely injured population to which they have been applied. The numbers, tables, and figures in the published reports are scant and are inconsistently defined, making it impossible even for professional statisticians to duplicate the analyses, to guess the effect of changes in assumptions, or to supply the missing parts of the picture. Nonetheless, even 9 years after NASCIS II, the primary data have not been made public. The reporting of the NASCIS studies has fallen far short of the guidelines of the ICH/FDA and of the Evidence-based Medicine Group. Despite the lucrative "off label" markets for methylprednisolone in SCI, no Food and Drug Association indication has been obtained. There has been no public process of validation. These shortcomings have denied physicians the chance to use confidently a drug that many were enthusiastic about and has left them in an intolerably ambiguous position in their therapeutic choices, in their legal exposure, and in their ability to perform further research to help their patients.
NASA Technical Reports Server (NTRS)
Boyle, R.; Goldberg, J. M.; Highstein, S. M.
1992-01-01
1. A previous study measured the relative contributions made by regularly and irregularly discharging afferents to the monosynaptic vestibular nerve (Vi) input of individual secondary neurons located in and around the superior vestibular nucleus of barbiturate-anesthetized squirrel monkeys. Here, the analysis is extended to more caudal regions of the vestibular nuclei, which are a major source of both vestibuloocular and vestibulospinal pathways. As in the previous study, antidromic stimulation techniques are used to classify secondary neurons as oculomotor or spinal projecting. In addition, spinal-projecting neurons are distinguished by their descending pathways, their termination levels in the spinal cord, and their collateral projections to the IIIrd nucleus. 2. Monosynaptic excitatory postsynaptic potentials (EPSPs) were recorded intracellularly from secondary neurons as shocks of increasing strength were applied to Vi. Shocks were normalized in terms of the threshold (T) required to evoke field potentials in the vestibular nuclei. As shown previously, the relative contribution of irregular afferents to the total monosynaptic Vi input of each secondary neuron can be expressed as a %I index, the ratio (x100) of the relative sizes of the EPSPs evoked by shocks of 4 x T and 16 x T. 3. Antidromic stimulation was used to type secondary neurons as 1) medial vestibulospinal tract (MVST) cells projecting to spinal segments C1 or C6; 2) lateral vestibulospinal tract (LVST) cells projecting to C1, C6; or L1; 3) vestibulooculo-collic (VOC) cells projecting both to the IIIrd nucleus and by way of the MVST to C1 or C6; and 4) vestibuloocular (VOR) neurons projecting to the IIIrd nucleus but not to the spinal cord. Most of the neurons were located in the lateral vestibular nucleus (LV), including its dorsal (dLV) and ventral (vLV) divisions, and adjacent parts of the medial (MV) and descending nuclei (DV). Cells receiving quite different proportions of their direct inputs from regular and irregular afferents were intermingled in all regions explored. 4. LVST neurons are restricted to LV and DV and show a somatotopic organization. Those destined for the cervical and thoracic cord come from vLV, from a transition zone between vLV and DV, and to a lesser extent from dLV. Lumbar-projecting neurons are located more dorsally in dLV and more caudally in DV. MVST neurons reside in MV and in the vLV-DV transition zone.(ABSTRACT TRUNCATED AT 400 WORDS).
Chiari III malformation: a comprehensive review of this enigmatic anomaly.
Ivashchuk, Galyna; Loukas, Marios; Blount, Jeffrey P; Tubbs, R Shane; Oakes, W Jerry
2015-11-01
Chiari III is one of the rarest of the Chiari malformations and is characterized by a high cervical or low occipital encephalocele and osseous defect with or without spinal cord involvement and may include many of the anatomical characteristics seen in the Chiari II malformation. Herein, we provide a comprehensive review of this rare anomaly as well as a translation of Chiari's original description. We review all reported cases of Chiari III malformation found in the extant literature. Out of 57 reported cases of Chiari III malformation, encephaloceles were in a high cervical/low occipital position in 23, 8 were in a high cervical position, 17 were in low occipital position, and the position in 9 cases was not reported. The pathogenesis of Chiari III malformation remains unclear. The majority of patients have concomitant hydrocephalus. Brain parts occurring in the sac from the most to least common include the following: cerebellum, occipital lobe, and parietal lobe. The severity of symptoms is correlated with the amount of brain structures within the encephalocele. Neurologic functional outcomes have been varied and depend on the neurological status of the patient before surgery.
Sertöz, Nezih; Aysel, İnan; Uyar, Meltem
2014-01-01
The aim of this study is to examine the effects of sufentanil added to low-dose hyperbaric bupivacaine in unilateral spinal anaesthesia for outpatients undergoing knee arthroscopy. Sixty two patients (ASA I-II) aged 20 to 50 who were planning on undergoing a knee arthroscopy were enrolled in this study. Patients were randomly divided into two groups. Unilateral spinal anaesthesia with 1ml 0.5% hyperbaric bupivacaine was administered to Group B (n=33); and unilateral spinal anaesthesia with 0.5ml (2.5µg) sufentanil added to 1ml hyperbaric bupivacaine was administered to Group BS (n=29). There were no statistically significant differences observed between the groups in terms of demographic data, hemodynamic parameters, maximum sensorial, sympathetic and motor block levels, time to motor block resolution, and time of discharge (p>0.05). There were statistically significant differences between the groups in terms of two segments regression time (Group B=52 min., Group BS=59 min.), ambulation time (Group B=147 min., Group BS=157 min.) and urination time (Group B=136 min., Group BS=149 min.) (p<0.05). In this study, no itching was observed in Group B, whereas seven patients in Group BS were observed as having postoperative itching (p<0.05). All patients were successfully given unilateral spinal anaesthesia with sufentanil added to low-dose hyperbaric bupivacaine for an outpatient knee arthroscopy, without affecting the time of discharge. However, for one-day interventions such as arthroscopy, it was concluded that administration of only low-dose hyperbaric bupivacaine was sufficient.
Reciprocal functional interactions between the brainstem and the lower spinal cord
Yazawa, Itaru
2014-01-01
The interplay of the neuronal discharge patterns regarding respiration and locomotion was investigated using electrophysiological techniques in a decerebrate and arterially perfused in situ mouse preparation. The phrenic, tibial, and/or peroneal nerve discharge became clearly organized into discharge episodes of increasing frequency and duration, punctuated by periods of quiescence as the perfusion flow rate increased at room temperature. The modulated sympathetic tone induced by the hyperoxic/normocapnic state was found to activate the locomotor pattern generator (LPG) via descending pathways and generate a left and right alternating discharge during discharge episodes in the motor nerves. The rhythm coupling of respiration and locomotion occurred at a 1:1 frequency ratio. Although the phrenic discharge synchronized with the tibial discharge at all flow rates tested, the time lag between peaks of the two discharges during locomotion was ≈400 ms rather than ≈200 ms, suggesting spinal feedback via ascending pathways. The incidence of the phrenic and tibial discharge episodes decreased by ≈50% after spinalization at the twelfth thoracic cord and the respiratory rhythm was more regular. These results indicate that: (i) locomotion can be generated in a hyperoxic/normocapnic state induced by specific respiratory conditions, (ii) the central mechanism regarding entrainment of respiratory and locomotor rhythms relies on spinal feedback via ascending pathways, initiated by the activated LPG generating locomotion, and (iii) the increase in respiratory rate seen during locomotion is caused not only by afferent mechanical and nociceptive inputs but also by impulses from the activated spinal cord producing a locomotor-like discharge via ascending pathways. PMID:24910591
de Andrés, J; Bellver, J; Bolinches, R
1994-12-01
One hundred and twenty-eight ASA I-III patients less than 40 yr of age, undergoing orthopaedic or trauma lower limb surgery, were allocated randomly to receive either continuous spinal anaesthesia (CSA) using a 32-gauge polyimide microcatheter with a permanent stylet (Rusch/TFX Medical, Duluth, GA, USA) or single-dose spinal anaesthesia (SDSA) with a 24-gauge x 103-mm Sprotte spinal needle (Pajunk, Germany). Plain bupivacaine (0.5%) was used as the local anaesthetic. The initial doses were 1 ml (5 mg) of CSA and 3 ml (15 mg) of SDSA, while the re-injection doses were 1 ml (5 mg) in the CSA group. SDSA was quicker to perform: mean 4.4 (SD 1.6) min compared with 6.2 (2.6) min for CSA (P < 0.01). Times to onset and surgical anaesthesia were also significantly greater in the CSA group (P < 0.01). The quality of the block was better in the SDSA group (P < 0.05), but was associated with greater haemodynamic instability (P < 0.05). The segmental level of analgesia was significantly lower in the CSA group (median T10 (range T12-T8)) than in the SDSA group (T9 (T11-T5)) (P < 0.05). There were no significant differences in the incidence of postoperative complications, with two mild spinal headaches in both groups. We conclude that CSA using a microcatheter in young patients is difficult to perform and affords no advantages over SDSA with a small gauge atraumatic needle.
In Vivo PET Imaging of Myelin Damage and Repair in the Spinal Cord
2013-12-01
100, 110, 120 min(Pɘ.0001, two-tailed t- test , CI 99%). (B) the average radiance of wild-type mice after injection of DBT (blue) and vehicle ( red ...radiance between the Plp-Akt-DD mice ( red ) and wild-type mice (blue) after deducting the vehicle signals (P=0.0012, two-tailed t- test , CI 99...demyelination and remyelination in the intact brain and spinal cord. We have also begun to test the ability of the imaging probes to assay remyelination in
Arbuatti, Alessio; Della Salda, Leonardo; Romanucci, Mariarita
2013-03-01
To describe the occurrence of various spinal deformations in a captive-bred wild line of Poecilia wingei (P. wingei). Fish belonging to a wild line of P. wingei caught from Laguna de Los Patos, Venezuela, were bred in an aquarium home-breeding system during a period of three years (2006-2009). The spinal curvature was observed to study spinal deformities in P. wingei. Out of a total of 600 fish, 22 showed different types of deformities (scoliosis, lordosis, kyphosis), with a higher incidence in females. Growth, swimming and breeding of deformed fish were generally normal. Possible causes for spinal curvature in fish are discussed on the basis of the current literature. While it is not possible to determine the exact cause(s) of spinal deformities observed in the present study, traumatic injuries, nutritional imbalances, genetic defects or a combination of these factors can be supposed to be involved in the pathogenesis of such lesions.
NASA Technical Reports Server (NTRS)
Stegenga, S. L.; Kalb, R. G.
2001-01-01
Spinal motor neurons undergo experience-dependent development during a critical period in early postnatal life. It has been suggested that the repertoire of glutamate receptor subunits differs between young and mature motor neurons and contributes to this activity-dependent development. In the present study we examined the expression patterns of N-methyl-D-aspartate- and kainate-type glutamate receptor subunits during the postnatal maturation of the spinal cord. Young motor neurons express much higher levels of the N-methyl-D-aspartate receptor subunit NR1 than do adult motor neurons. Although there are eight potential splice variants of NR1, only a subgroup is expressed by motor neurons. With respect to NR2 receptor subunits, young motor neurons express NR2A and C, while adult motor neurons express only NR2A. Young motor neurons express kainate receptor subunits GluR5, 6 and KA2 but we are unable to detect these or any other kainate receptor subunits in the adult spinal cord. Other spinal cord regions display a distinct pattern of developmental regulation of N-methyl-D-aspartate and kainate receptor subunit expression in comparison to motor neurons. Our findings indicate a precise spatio-temporal regulation of individual subunit expression in the developing spinal cord. Specific combinations of subunits in developing neurons influence their excitable properties and could participate in the emergence of adult neuronal form and function.
Goodwin, C Rory; Abu-Bonsrah, Nancy; Rhines, Laurence D; Verlaan, Jorrit-Jan; Bilsky, Mark H; Laufer, Ilya; Boriani, Stefano; Sciubba, Daniel M; Bettegowda, Chetan
2016-10-15
A review of the literature. The aim of this study was to discuss the evolution of molecular signatures and the history and development of targeted therapeutics in metastatic tumor types affecting the spinal column. Molecular characterization of metastatic spine tumors is expected to usher in a revolution in diagnostic and treatment paradigms. Molecular characterization will provide critical information that can be used for initial diagnosis, prognosticating the ideal treatment strategy, assessment of treatment efficacy, surveillance and monitoring recurrence, and predicting complications, clinical outcome, and overall survival in patients diagnosed with metastatic cancers to the spinal column. A review of the literature was performed focusing on illustrative examples of the role that molecular-based therapeutics have played in clinical outcomes for patients diagnosed with metastatic tumor types affecting the spinal column. The impact of molecular therapeutics including receptor tyrosine kinases and immune checkpoint inhibitors and the ability of molecular signatures to provide prognostic information are discussed in metastatic breast cancer, lung cancer, prostate cancer, melanoma, and renal cell cancer affecting the spinal column. For the providers who will ultimately counsel patients diagnosed with metastases to the spinal column, molecular advancements will radically alter the management/surgical paradigms utilized. Ultimately, the translation of these molecular advancements into routine clinical care will greatly improve the quality and quantity of life for patients diagnosed with spinal malignancies and provide better overall outcomes and counseling for treating physicians. N/A.
Factors predicting publication of spinal cord injury trials registered on www.ClinicalTrials. gov.
DePasse, J Mason; Park, Sara; Eltorai, Adam E M; Daniels, Alan H
2018-02-06
Treatment options for spinal cord injuries are currently limited, but multiple clinical trials are underway for a variety of interventions, drugs, and devices. The Food and Drug Administration website www.ClinicalTrials.gov catalogues these trials and includes information on the status of the trial, date of initiation and completion, source of funding, and region. This investigation assesses the factors associated with publication and the publication rate of spinal cord injury trials. Retrospective analysis of publically available data on www.ClinicalTrials.gov. The www.ClinicalTrials.gov was queried for all trials on patients with spinal cord injury, and these trials were assessed for status, type of intervention, source of funding, and region. Multiple literature searches were performed on all completed trials to determine publication status. There were 626 studies identified concerning the treatment of patients with spinal cord injury, of which 250 (39.9%) were completed. Of these, only 119 (47.6%) were published. There was no significant difference in the rate of publication between regions (p> 0.16) or by study type (p> 0.29). However, trials that were funded by the NIH were more likely to be published than trials funded by industry (p= 0.01). The current publication rate of spinal cord injury trials is only 47.6%, though this rate is similar to the publication rate for trials in other fields. NIH-funded trials are significantly more likely to become published than industry-funded trials, which could indicate that some trials remain unpublished due to undesirable results. However, it is also likely that many trials on spinal cord injury yield negative results, as treatments are often ineffective.
2011-01-01
Background Bone morphogenetic protein (BMP)7 evokes both inductive and axon orienting responses in dorsal interneurons (dI neurons) in the developing spinal cord. These events occur sequentially during the development of spinal neurons but in these and other cell types such inductive and acute chemotactic responses occur concurrently, highlighting the requirement for divergent intracellular signaling. Both type I and type II BMP receptor subtypes have been implicated selectively in orienting responses but it remains unclear how, in a given cell, divergence occurs. We have examined the mechanisms by which disparate BMP7 activities are generated in dorsal spinal neurons. Results We show that widely different threshold concentrations of BMP7 are required to elicit the divergent inductive and axon orienting responses. Type I BMP receptor kinase activity is required for activation of pSmad signaling and induction of dI character by BMP7, a high threshold response. In contrast, neither type I BMP receptor kinase activity nor Smad1/5/8 phosphorylation is involved in the low threshold orienting responses of dI axons to BMP7. Instead, BMP7-evoked axonal repulsion and growth cone collapse are dependent on phosphoinositide-3-kinase (PI3K) activation, plausibly through type II receptor signaling. BMP7 stimulates PI3K-dependent signaling in dI neurons. BMP6, which evokes neural induction but does not have orienting activity, activates Smad signaling but does not stimulate PI3K. Conclusions Divergent signaling through pSmad-dependent and PI3K-dependent (Smad-independent) mechanisms mediates the inductive and orienting responses of dI neurons to BMP7. A model is proposed whereby selective engagement of BMP receptor subunits underlies choice of signaling pathway. PMID:22085733
Ravindra, Vijay M; Wallace, Scott A; Vaidya, Rahul; Fox, W Christopher; Klugh, Arnett R; Puskas, David; Park, Min S
2016-02-01
The Role III, Multinational Medical Unit at Kandahar Air Field, Afghanistan, was established to provide combat casualty care in theater for International Security Assistance Forces, Afghanistan National Security Forces, and local nationals during Operation Enduring Freedom-Afghanistan. The authors describe their experience of treating unstable lumbar spine fractures with orthopedic extremity instrumentation sets from January 2007 to January 2008 and November 2010 to May 2011. During the study periods, 15 patients comprising Afghanistan National Security Forces and local nationals presented to the medical facility for treatment of unstable lumbar spine fractures. The patients underwent surgery for either anterior corpectomy and instrumented fusion (n = 5) or posterior instrumented fusion (n = 10). Because of periodic scarcity of spinal instrumentation sets, orthopedic extremity instrumentation sets were used (Synthes Large Fragment LCP Instrument and Implant Set) for spinal stabilization. Immediate postoperative standing and sitting plain radiographs demonstrated no evidence of fracture progression or immediate hardware failure. One patient was seen in follow-up at 4 weeks and demonstrated construct stability on follow-up radiographs. In the combat environment with sparse resources, unstable spine fractures may potentially be treated using instrumentation not specifically designed for spinal implantation. This is an off-label use, and the authors do not recommend the use of these techniques as standard treatment in most medical environments. Copyright © 2016 Elsevier Inc. All rights reserved.
Electrode contact configuration and energy consumption in spinal cord stimulation.
de Vos, Cecile C; Hilgerink, Marjolein P; Buschman, Hendrik P J; Holsheimer, Jan
2009-12-01
To test the hypothesis that in spinal cord stimulation, an increase in the number of cathodes increases the energy per pulse, contrary to an increase in the number of anodes, which decreases energy consumption per pulse. Patients with an Itrel III (7425; Medtronic, Inc., Minneapolis, MN) implantable pulse generator and a Pisces-Quad (3487A; Medtronic, Inc.) implantable quadripolar lead were selected for this study. A set of 7 standard contact configurations was used for each patient. Resistor network models mimicking these configurations were constructed. The University of Twente's Spinal Cord Stimulation software was used to simulate the effect of these contact configurations on large spinal nerve fibers. To allow a comparison of the measured and modeled energy per pulse, all values were normalized. Both the empirical and the modeling results showed an increase in energy consumption with an increasing number of cathodes. Although the patient data with 1 and 2 cathodes did not differ significantly, energy consumption was significantly higher when 3 cathodes were used instead of 1 or 2 cathodes. The average energy consumption was significantly higher when bipolar stimulation was used instead of monopolar cathodal stimulation. An increasing number of anodes caused a decrease in energy consumption. When the paresthesia area can be covered with several configurations, it will be beneficial for the patient to program a configuration with 1 cathode and either no or multiple anodes.
Excitatory interneurons dominate sensory processing in the spinal substantia gelatinosa of rat
Santos, Sónia F A; Rebelo, Sandra; Derkach, Victor A; Safronov, Boris V
2007-01-01
Substantia gelatinosa (SG, lamina II) is a spinal cord region where most unmyelinated primary afferents terminate and the central nociceptive processing begins. It is formed by several distinct groups of interneurons whose functional properties and synaptic connections are poorly understood, in part, because recordings from synaptically coupled pairs of SG neurons are quite challenging due to a very low probability of finding connected cells. Here, we describe an efficient method for identifying synaptically coupled interneurons in rat spinal cord slices and characterizing their excitatory or inhibitory function. Using tight-seal whole-cell recordings and a cell-attached stimulation technique, we routinely tested about 1500 SG interneurons, classifying 102 of them as monosynaptically connected to neurons in lamina I–III. Surprisingly, the vast majority of SG interneurons (n = 87) were excitatory and glutamatergic, while only 15 neurons were inhibitory. According to their intrinsic firing properties, these 102 SG neurons were also classified as tonic (n = 49), adapting (n = 17) or delayed-firing neurons (n = 36). All but two tonic neurons and all adapting neurons were excitatory interneurons. Of 36 delayed-firing neurons, 23 were excitatory and 13 were inhibitory. We conclude that sensory integration in the intrinsic SG neuronal network is dominated by excitatory interneurons. Such organization of neuronal circuitries in the spinal SG can be important for nociceptive encoding. PMID:17331995
Hsu, Li‐Ju; Zelenin, Pavel V.; Orlovsky, Grigori N.
2016-01-01
Key points Spinal reflexes are substantial components of the motor control system in all vertebrates and centrally driven reflex modifications are essential to many behaviours, but little is known about the neuronal mechanisms underlying these modifications.To study this issue, we took advantage of an in vitro brainstem–spinal cord preparation of the lamprey (a lower vertebrate), in which spinal reflex responses to spinal cord bending (caused by signals from spinal stretch receptor neurons) can be evoked during different types of fictive behaviour.Our results demonstrate that reflexes observed during fast forward swimming are reversed during escape behaviours, with the reflex reversal presumably caused by supraspinal commands transmitted by a population of reticulospinal neurons.NMDA receptors are involved in the formation of these commands, which are addressed primarily to the ipsilateral spinal networks.In the present study the neuronal mechanisms underlying reflex reversal have been characterized for the first time. Abstract Spinal reflexes can be modified during different motor behaviours. However, our knowledge about the neuronal mechanisms underlying these modifications in vertebrates is scarce. In the lamprey, a lower vertebrate, body bending causes activation of intraspinal stretch receptor neurons (SRNs) resulting in spinal reflexes: activation of motoneurons (MNs) with bending towards either the contralateral or ipsilateral side (a convex or concave response, respectively). The present study had two main aims: (i) to investigate how these spinal reflexes are modified during different motor behaviours, and (ii) to reveal reticulospinal neurons (RSNs) transmitting commands for the reflex modification. For this purpose in in vitro brainstem–spinal cord preparation, RSNs and reflex responses to bending were recorded during different fictive behaviours evoked by supraspinal commands. We found that during fast forward swimming MNs exhibited convex responses. By contrast, during escape behaviours, MNs exhibited concave responses. We found RSNs that were activated during both stimulation causing reflex reversal without initiation of any specific behaviour, and stimulation causing reflex reversal during escape behaviour. We suggest that these RSNs transmit commands for the reflex modification. Application of the NMDA antagonist (AP‐5) to the brainstem significantly decreased the reversed reflex, suggesting involvement of NMDA receptors in the formation of these commands. Longitudinal split of the spinal cord did not abolish the reflex reversal caused by supraspinal commands, suggesting an important role for ipsilateral networks in determining this type of motor response. This is the first study to reveal the neuronal mechanisms underlying supraspinal control of reflex reversal. PMID:27589479
Schuh, Claus Dieter; Brenneis, Christian; Zhang, Dong Dong; Angioni, Carlo; Schreiber, Yannick; Ferreiros-Bouzas, Nerea; Pierre, Sandra; Henke, Marina; Linke, Bona; Nüsing, Rolf; Scholich, Klaus; Geisslinger, Gerd
2014-02-01
Prostacyclin (PGI2) is known to be an important mediator of peripheral pain sensation (nociception) whereas little is known about its role in central sensitization. The levels of the stable PGI2-metabolite 6-keto-prostaglandin F1α (6-keto-PGF1α) and of prostaglandin E2 (PGE2) were measured in the dorsal horn with the use of mass spectrometry after peripheral inflammation. Expression of the prostanoid receptors was determined by immunohistology. Effects of prostacyclin receptor (IP) activation on spinal neurons were investigated with biochemical assays (cyclic adenosine monophosphate-, glutamate release-measurement, Western blot analysis) in embryonic cultures and adult spinal cord. The specific IP antagonist Cay10441 was applied intrathecally after zymosan-induced mechanical hyperalgesia in vivo. Peripheral inflammation caused a significant increase of the stable PGI2 metabolite 6-keto-PGF1α in the dorsal horn of wild-type mice (n = 5). IP was located on spinal neurons and did not colocalize with the prostaglandin E2 receptors EP2 or EP4. The selective IP-agonist cicaprost increased cyclic adenosine monophosphate synthesis in spinal cultures from wild-type but not from IP-deficient mice (n = 5-10). The combination of fluorescence-resonance-energy transfer-based cyclic adenosine monophosphate imaging and calcium imaging showed a cicaprost-induced cyclic adenosine monophosphate synthesis in spinal cord neurons (n = 5-6). Fittingly, IP activation increased glutamate release from acute spinal cord sections of adult mice (n = 13-58). Cicaprost, but not agonists for EP2 and EP4, induced protein kinase A-dependent phosphorylation of the GluR1 subunit and its translocation to the membrane. Accordingly, intrathecal administration of the IP receptor antagonist Cay10441 had an antinociceptive effect (n = 8-11). Spinal prostacyclin synthesis during early inflammation causes the recruitment of GluR1 receptors to membrane fractions, thereby augmenting the onset of central sensitization.
Recurrent and Transient Spinal Pain Among Commercial Helicopter Pilots.
Andersen, Knut; Baardsen, Roald; Dalen, Ingvild; Larsen, Jan Petter
2015-11-01
The aim of this study was to provide information on the occurrence of spinal pain, i.e., low back and neck pain, among commercial helicopter pilots, along with possible associations between pain and anthropometric and demographic factors and flying exposure. Data were collected through a subjective and retrospective survey among all the 313 (294 men, 19 women) full-time pilots employed by two helicopter companies. A questionnaire was used to assess the extent of spinal complaints in a transient and recurrent pain pattern along with information on physical activities, occupational flying experience, and airframes. The survey had 207 responders (194 men, 13 women). The pilots had extensive flying experience. Spinal pain was reported by 67%. Flying-related transient pain was reported among 50%, whereas recurrent spinal pain, not necessarily associated with flying, was reported by 52%. Women experienced more pain, but sample size prevented further conclusions. Male pilots reporting any spinal pain flew significantly more hours last year (median 500 h, IQR 400-650) versus men with no pain (median 445 h, IQR 300-550). Male pilots with transient or recurrent spinal pain did not differ from nonaffected male colleagues in the measured parameters. Spinal pain is a frequent problem among male and female commercial helicopter pilots. For men, no significant associations were revealed for transient or recurrent spinal pain with age, flying experience in years, total hours, annual flying time, type of aircraft, or anthropometric factors except for any spinal pain related to hours flown in the last year.
Effect of ramosetron on shivering during spinal anesthesia
Kim, Min Soo; Kim, Dong Won; Woo, Seung-Hoon; Yon, Jun Heum
2010-01-01
Background Shivering associated with spinal anesthesia is uncomfortable and may interfere with monitoring. The aim of this study is to evaluate the effect of ramosetron, a serotonin-3 receptor antagonist, on the prevention of shivering during spinal anesthesia. Methods We enrolled 52 patients who were ASA I or II and who had undergone knee arthroscopy under spinal anesthesia. Warmed (37°) lactated Ringer's solution was infused over 15 minutes before spinal anesthesia. Patients were randomly allocated to a control group (group S, N = 26) or study group (group R, N = 26). Spinal anesthesia was performed with a 25-G Quincke-type spinal needle between the lumbar 3-4 interspace with 2.2 ml 0.5% hyperbaric bupivacaine. For patients allocated in groups S and R, 2 ml 0.9% saline and 0.3 mg ramosetron, respectively, was intravenously injected immediately before intrathecal injection at identical times. Shivering and spinal block levels were assessed immediately after the completion of subarachnoid injection, as well as 5, 10, 15, 20, 25, 30, 60, and 120 minutes after spinal anesthesia. Systolic and diastolic blood pressures, heart rate, and peripheral oxygen saturation were also recorded. Core temperatures were measured by tympanic thermometer and recorded before and during spinal anesthesia at 30-minute intervals. Results Shivering was observed in 2 patients in group R and 9 patients in group S (P = 0.038, odds ratio = 6.14, 95% C.I. = 1.08-65.5). The difference in core temperature between the groups was not significant. Conclusions Compared to control, ramosetron is an effective way to prevent shivering during spinal anesthesia. PMID:20498774
Degenerative spinal disease in large felids.
Kolmstetter, C; Munson, L; Ramsay, E C
2000-03-01
Degenerative spinal disorders, including intervertebral disc disease and spondylosis, seldom occur in domestic cats. In contrast, a retrospective study of 13 lions (Panthera leo), 16 tigers (Panthera tigris), 4 leopards (Panthera pardis), 1 snow leopard (Panthera uncia), and 3 jaguars (Panthera onca) from the Knoxville Zoo that died or were euthanatized from 1976 to 1996 indicated that degenerative spinal disease is an important problem in large nondomestic felids. The medical record, radiographic data, and the necropsy report of each animal were examined for evidence of intervertebral disc disease or spondylosis. Eight (three lions, four tigers, and one leopard) animals were diagnosed with degenerative spinal disease. Clinical signs included progressively decreased activity, moderate to severe rear limb muscle atrophy, chronic intermittent rear limb paresis, and ataxia. The age at onset of clinical signs was 10-19 yr (median = 18 yr). Radiographic evaluation of the spinal column was useful in assessing the severity of spinal lesions, and results were correlated with necropsy findings. Lesions were frequently multifocal, included intervertebral disc mineralization or herniation with collapsed intervertebral disc spaces, and were most common in the lumbar area but also involved cervical and thoracic vertebrae. Marked spondylosis was present in the cats with intervertebral disc disease, presumably subsequent to vertebral instability. Six of the animals' spinal cords were examined histologically, and five had acute or chronic damage to the spinal cord secondary to disc protrusion. Spinal disease should be suspected in geriatric large felids with decreased appetite or activity. Radiographic evaluation of the spinal column is the most useful method to assess the type and severity of spinal lesions.
Spinal astrocyte gap junctions contribute to oxaliplatin-induced mechanical hypersensitivity.
Yoon, Seo-Yeon; Robinson, Caleb R; Zhang, Haijun; Dougherty, Patrick M
2013-02-01
Spinal glial cells contribute to the development of many types of inflammatory and neuropathic pain. Here the contribution of spinal astrocytes and astrocyte gap junctions to oxaliplatin-induced mechanical hypersensitivity was explored. The expression of glial fibrillary acidic protein (GFAP) in spinal dorsal horn was significantly increased at day 7 but recovered at day 14 after oxaliplatin treatment, suggesting a transient activation of spinal astrocytes by chemotherapy. Astrocyte-specific gap junction protein connexin 43 (Cx43) was significantly increased in dorsal horn at both day 7 and day 14 following chemotherapy, but neuronal (connexin 36 [Cx36]) and oligodendrocyte (connexin 32 [Cx32]) gap junction proteins did not show any change. Blockade of astrocyte gap junction with carbenoxolone (CBX) prevented oxaliplatin-induced mechanical hypersensitivity in a dose-dependent manner and the increase of spinal GFAP expression, but had no effect once the mechanical hypersensitivity induced by oxaliplatin had fully developed. These results suggest that oxaliplatin chemotherapy induces the activation of spinal astrocytes and this is accompanied by increased expression of astrocyte-astrocyte gap junction connections via Cx43. These alterations in spinal astrocytes appear to contribute to the induction but not the maintenance of oxaliplatin-induced mechanical hypersensitivity. Combined, these results suggest that targeting spinal astrocyte/astrocyte-specific gap junction could be a new therapeutic strategy to prevent oxaliplatin-induced neuropathy. Spinal astrocytes but not microglia were recently shown to be recruited in paclitaxel-related chemoneuropathy. Here, spinal astrocyte gap junctions are shown to play an important role in the induction of oxaliplatin neuropathy. Copyright © 2013 American Pain Society. Published by Elsevier Inc. All rights reserved.
Incidence of tissue coring with the 25-gauge Quincke and Whitacre spinal needles.
Campbell, D C; Douglas, M J; Taylor, G
1996-01-01
Tissue cores, implanted into the subarachnoid space during subarachnoid injections, can develop into intraspinal lumbar epidermoid tumors. The availability of smaller needles has made spinal anesthesia more popular. Therefore, this prospective, randomized, blinded study was undertaken to determine whether tissue coring occurs with two of the currently used 25-gauge spinal needles. Fifteen 25-gauge Quincke and seventeen 25-gauge Whitacre spinal needles, in which cerebrospinal fluid (CSF) was not identified and the local anesthetic solution not injected, were obtained from adult male patients undergoing spinal anesthesia. The needles were then evaluated by a pathologist following randomization with similar sterile, unused spinal needles. Twenty additional needles, ten of each type, in which CSF was identified and through which local anesthetic was injected, were also randomized with similar sterile, unused spinal needles and examined. Tissue cores were identified in 12 of the 15 Quincke and 7 of the 17 Whitacre spinal needles in which CSF was not identified (P < .05). Of the 20 needles in which CSF was identified and local anesthetic injected, no tissue cores were identified in the 10 Whitacre needles and only one small tissue core was identified in the 10 Quincke needles. All the tissue cores were identified as fat tissue. The 25-gauge Quincke and 25-gauge Whitacre spinal needles currently used in anesthesia can produce tissue coring.
In-vivo spinal nerve sensing in MISS using Raman spectroscopy
NASA Astrophysics Data System (ADS)
Chen, Hao; Xu, Weiliang; Broderick, Neil
2016-04-01
In modern Minimally Invasive Spine Surgery (MISS), lack of visualization and haptic feedback information are the main obstacles. The spinal cord is a part of the central nervous system (CNS). It is a continuation of the brain stem, carries motor and sensory messages between CNS and the rest of body, and mediates numerous spinal reflexes. Spinal cord and spinal nerves are of great importance but vulnerable, once injured it may result in severe consequences to patients, e.g. paralysis. Raman Spectroscopy has been proved to be an effective and powerful tool in biological and biomedical applications as it works in a rapid, non-invasive and label-free way. It can provide molecular vibrational features of tissue samples and reflect content and proportion of protein, nucleic acids lipids etc. Due to the distinct chemical compositions spinal nerves have, we proposed that spinal nerves can be identified from other types of tissues by using Raman spectroscopy. Ex vivo experiments were first done on samples taken from swine backbones. Comparative spectral data of swine spinal cord, spinal nerves and adjacent tissues (i.e. membrane layer of the spinal cord, muscle, bone and fatty tissue) are obtained by a Raman micro-spectroscopic system and the peak assignment is done. Then the average spectra of all categories of samples are averaged and normalized to the same scale to see the difference against each other. The results verified the feasibility of spinal cord and spinal nerves identification by using Raman spectroscopy. Besides, a fiber-optic Raman sensing system including a miniature Raman sensor for future study is also introduced. This Raman sensor can be embedded into surgical tools for MISS.
Koizuka, Shiro; Obata, Hideaki; Sasaki, Masayuki; Saito, Shigeru; Goto, Fumio
2005-05-01
Systemic ketamine suppresses several types of chronic pain. Although ketamine is used as a general anesthetic agent, the analgesic effect of systemic ketamine for early-stage postoperative pain is not clear. We investigated the efficacy and mechanism of systemic ketamine in a rat model of postoperative pain. An incision was made in the plantar aspect of the left hind paw in male Wistar rats. Mechanical hypersensitivity was measured using calibrated von Frey filaments. The anti-hypersensitivity effect of systemic or intrathecal administration of ketamine was determined every hour after making the incision. We examined the effects of intrathecal pretreatment with yohimbine, an alpha2-adrenoceptor antagonist, and methysergide, a serotonergic receptor antagonist, on the anti-hypersensitivity effect of ketamine. We also examined the effect of systemic ketamine on the c-fos immunoreactivity in the spinal cord. Systemic administration of ketamine at doses from 3 to 30 mg.kg(-1) produced anti-hypersensitivity effects in a dose-dependent manner. Intrathecal administration of ketamine had no effect. There was no significant difference between effects of pre- and post-incisional administration. Intrathecal pretreatment with yohimbine (10 microg) or methysergide (15 microg) completely reversed the anti-hypersensitivity effects of systemic ketamine. Systemic ketamine reduced fos expression in laminae I-II in the dorsal horn of the lumbar spinal cord ipsilateral to the paw incision. The results suggest that systemic administration of ketamine perioperatively suppresses early-stage postoperative pain via monoaminergic descending inhibitory pathways.
A role for the melanocortin 4 receptor in sexual function.
Van der Ploeg, Lex H T; Martin, William J; Howard, Andrew D; Nargund, Ravi P; Austin, Christopher P; Guan, Xiaoming; Drisko, Jennifer; Cashen, Doreen; Sebhat, Iyassu; Patchett, Arthur A; Figueroa, David J; DiLella, Anthony G; Connolly, Brett M; Weinberg, David H; Tan, Carina P; Palyha, Oksana C; Pong, Sheng-Shung; MacNeil, Tanya; Rosenblum, Charles; Vongs, Aurawan; Tang, Rui; Yu, Hong; Sailer, Andreas W; Fong, Tung Ming; Huang, Cathy; Tota, Michael R; Chang, Ray S; Stearns, Ralph; Tamvakopoulos, Constantin; Christ, George; Drazen, Deborah L; Spar, Brian D; Nelson, Randy J; MacIntyre, D Euan
2002-08-20
By using a combination of genetic, pharmacological, and anatomical approaches, we show that the melanocortin 4 receptor (MC4R), implicated in the control of food intake and energy expenditure, also modulates erectile function and sexual behavior. Evidence supporting this notion is based on several findings: (i) a highly selective non-peptide MC4R agonist augments erectile activity initiated by electrical stimulation of the cavernous nerve in wild-type but not Mc4r-null mice; (ii) copulatory behavior is enhanced by administration of a selective MC4R agonist and is diminished in mice lacking Mc4r; (iii) reverse transcription (RT)-PCR and non-PCR based methods demonstrate MC4R expression in rat and human penis, and rat spinal cord, hypothalamus, brainstem, pelvic ganglion (major autonomic relay center to the penis), but not in rat primary corpus smooth muscle cavernosum cells; and (iv) in situ hybridization of glans tissue from the human and rat penis reveal MC4R expression in nerve fibers and mechanoreceptors in the glans of the penis. Collectively, these data implicate the MC4R in the modulation of penile erectile function and provide evidence that MC4R-mediated proerectile responses may be activated through neuronal circuitry in spinal cord erectile centers and somatosensory afferent nerve terminals of the penis. Our results provide a basis for the existence of MC4R-controlled neuronal pathways that control sexual function.
Ispinesib in Treating Young Patients With Relapsed or Refractory Solid Tumors or Lymphoma
2013-01-15
Childhood Burkitt Lymphoma; Childhood Central Nervous System Germ Cell Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Spinal Cord Neoplasm; Childhood Supratentorial Ependymoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Brain Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Unspecified Childhood Solid Tumor, Protocol Specific
MRI and MRA of spinal cord arteriovenous shunts.
Condette-Auliac, Stéphanie; Boulin, Anne; Roccatagliata, Luca; Coskun, Oguzhan; Guieu, Stéphanie; Guedin, Pierre; Rodesch, Georges
2014-12-01
The purpose of this review is to describe the diagnostic criteria for spinal cord arteriovenous shunts (SCAVSs) when using magnetic resonance imaging (MRI) and magnetic resonance angiography (MRA), and to discuss the extent to which the different MRI and MRA sequences and technical parameters provide the information that is required to diagnose these lesions properly. SCAVSs are divided into four groups according to location (paraspinal, epidural, dural, or intradural) and type (fistula or nidus); each type of lesion is described. SCAVSs are responsible for neurological symptoms due to spinal cord or nerve root involvement. MRI is usually the first examination performed when a spinal cord lesion is suspected. Recognition of the image characteristics of vascular lesions is mandatory if useful sequences are to be performed-especially MRA sequences. Because the treatment of SCAVSs relies mainly on endovascular therapies, MRI and MRA help with the planning of the angiographic procedure. We explain the choice of MRA sequences and parameters, the advantages and pitfalls to be aware of in order to obtain the best visualization, and the analysis of each lesion. © 2014 Wiley Periodicals, Inc.
Cooper, Georgia; Rosenstein, Carolyn; Walter, Annabel; Peizer, Lenore
1932-01-01
The unclassified strains known as Group IV have been separated into twenty-nine types which are designated by the Roman numerals IV and XXXII. Only a small percentage of the pneumococcus strains isolated in New York City for this study were left unclassified. The majority of the types gave very slight cross-reactions, the exceptions being Types II and V, III and VIII, VII and XVIII and XV and XXX. In the series of cases studied, Types IV, V, VII and VIII were found more prevalent in the lobar pneumonia of adults and Types V, VI a and XIV in children. The majority of the types were also found in normal individuals and in persons having respiratory infections other than pneumonia. Types VI a and XIX were most prevalent in the limited number of strains studied by us. Fourteen of the types were found in pneumococcus meningitis; Type XVIII was found most often. Antisera suitable for clinical trial have been prepared for fourteen types. From the majority of the horses inoculated for more than a year, antisera having 500 to 1000 units per cc. were obtained. Antisera of lower potency were concentrated and preparations obtained equal to or stronger than high grade unconcentrated serum. Potent bivalent antisera have been prepared for types which were found to give marked cross-agglutination reactions. The results with each type as to prevalence, severity of cases, presence in normal individuals, and in spinal meningitis, potency of antisera produced for therapeutic trial and virulence of strains for mice have been considered under the different type headings. PMID:19870011
Suited and Unsuited Hybrid III Impact Testing and Finite Element Model Characterization
NASA Technical Reports Server (NTRS)
Lawrence, C.; Somers, J. T.; Baldwin, M. A.; Wells, J. A.; Newby, N.; Currie, N. J.
2016-01-01
NASA spacecraft design requirements for occupant protection are a combination of the Brinkley Dynamic Response Criteria and injury assessment reference values (IARV) extracted from anthropomorphic test devices (ATD). For the ATD IARVs, the requirements specify the use of the 5th percentile female Hybrid III and the 95th percentile male Hybrid III. Each of these ATDs is required to be fitted with an articulating pelvis (also known as the aerospace pelvis) and a straight spine. The articulating pelvis is necessary for the ATD to fit into spacecraft seats, while the straight spine is required as injury metrics for vertical accelerations are better defined for this configuration. Sled testing of the Hybrid III 5th Percentile Female Anthropomorphic Test Device (ATD) was performed at Wright-Patterson Air Force Base (WAPFB). Two 5th Percentile ATDs were tested, the Air Force Research Lab (AFRL) and NASA owned Hybrid III ATDs with aerospace pelvises. Testing was also conducted with a NASA-owned 95th Percentile Male Hybrid III with aerospace pelvis at WPAFB. Testing was performed using an Orion seat prototype provided by Johnson Space Center (JSC). A 5-point harness comprised of 2 inch webbing was also provided by JSC. For suited runs, a small and extra-large Advanced Crew Escape System (ACES) suit and helmet were also provided by JSC. Impact vectors were combined frontal/spinal and rear/lateral. Some pure spinal and rear axis testing was also performed for model validation. Peak accelerations ranged between 15 and 20-g. This range was targeted because the ATD responses fell close to the IARV defined in the Human-Systems Integration Requirements (HSIR) document. Rise times varied between 70 and 110 ms to assess differences in ATD responses and model correlation for different impact energies. The purpose of the test series was to evaluate the Hybrid III ATD models in Orion-specific landing orientations both with and without a spacesuit. The results of these tests were used by the NASA Engineering and Safety Center (NESC) to validate the finite element model (FEM) of the Hybrid III 5th Percentile Female ATD. Physical test data was compared to analytical predictions from simulations, and modelling uncertainty factors have been determined for each injury metric. Additionally, the test data has been used to further improve the FEM, particularly in the areas of the ATD preload, harness, and suit and helmet effects.
Tieppo Francio, Vinicius
2014-01-01
An 18-year-old female patient presented with left dominant neck pain after a motor vehicle collision. Her cervical spine MRI revealed syringomyelia with associated Type I Arnold-Chiari malformation. Some researchers have reported that these might be considered contraindications to spinal manipulation. Nevertheless, her benign and functional clinical examination suggested otherwise and she underwent four manipulative treatments in 2 weeks. By the end of the treatment plan and after 1-month follow-up, she was asymptomatic, no adverse effects were noted and her outcome assessment score decreased from 56% to 0%. This case illustrates that spinal manipulation may be a useful adjunctive treatment procedure for spinal pain, even in the presence of syringomyelia and Chiari malformation, which may not necessarily be a contraindication to spinal manipulation, when performed by a skilled and well-trained physician. PMID:25385566
Incidentally diagnosed giant invasive sacral schwannoma
Togral, Guray; Arikan, Murat; Hasturk, Askin E.; Gungor, Safak
2014-01-01
Schwannomas are benign encapsulated tumors of Schwan cells that grow slowly along the peripheral myelin nerve fibers. Sacral spinal schwannomas are very rare, and the incidence of sacral schwannoma ranges from 1-5% of all spinal schwannomas, and only around 50 cases are reported in the literature. There are 3 defined types of sacral schwannomas. These are retroperitoneal or presacral, intra osseous, and spinal schwannomas. Patients commonly present with complaints of pain and paresthesia due to the spinal schwannoma extending to extra spinal tissues. Direct x-ray, CT, MRI, and scintigraphy are used for preoperative diagnosis and treatment planning. Local recurrence and transformation to malignancy is very rare. For this reason, the frequently preferred treatments are subtotal removal of the mass or simple enucleation. In our article, we discuss the clinical features and the surgical treatment we performed without the need for stabilization in an incidentally determined giant invasive schwannoma case. PMID:24983285
Comparison of hydrocephalus appearance at spinaldysraphia.
Elshani, Besnik; Lenjani, Basri
2013-01-01
Congenital malformation of spinal dysraphism followed by hydrocephalus are phenomenon reveals during intrauterine child growth. Prime objective of this work was to present Comparison of hydrocephalus appearance at spinal dysraphism respectively at its meningocele and myelomeningocele forms in Neurosurgery Clinic in UCC in Prishtina. It is perfected with retrospective and prospective method precisely of its epidemiologic part summarizing notices from patients' histories which in 2000-2006 are hospitalized in Neurosurgery Clinic from (QFLPK)--Pediatric Clinic and Children Box (Department)--Gynecology Clinic and from Sanitary Regional Center throughout Kosova. Our study objects were two groups, as the first group 90 patients with spinal dysraphism where neurosurgery operations were done and classified types of dysraphism. At myelomeningocele hydrocephalus has dominated and in a percent of appearance and as acute of its active form was 97% of hydrocephalus form where subjected to cerebrospinal liquid derivation with ventriculo -peritoneal shunt in comparison with meningocele we do not have involvation of spinal nerve element, hydrocephalus takes active form with intervention indication in 60% of cases. Reflection in shown deficit aspect is totally different at myelomeningoceles where lower paraplegia dominate more than paraparesis. The second patient operative technique developed by hydrocephalus with neurosurgical intervention indication has to do with placing of (VP) ventriculo- peritoneal system (shant) at myelomeningoceles with hydrocephalus 58 cases and 12 cases meningoceles with hydrocephalus. Post operative meningitis (shant meningitis): from 70 operated cases of hydrocephalus with spinal dysraphism shunts complications from all types are just cases. Finally that appearance of hydrocephalus compared at spinal dysraphism dominate at myellomeningoceles as in notice time aspect, it is persisting and further acute, with vital motivation for neurosurgical intervention.
The association between preoperative spinal cord rotation and postoperative C5 nerve palsy.
Eskander, Mark S; Balsis, Steve M; Balinger, Chris; Howard, Caitlin M; Lewing, Nicholas W; Eskander, Jonathan P; Aubin, Michelle E; Lange, Jeffrey; Eck, Jason; Connolly, Patrick J; Jenis, Louis G
2012-09-05
C5 nerve palsy is a known complication of cervical spine surgery. The development and etiology of this complication are not completely understood. The purpose of the present study was to determine whether rotation of the cervical spinal cord predicts the development of a C5 palsy. We performed a retrospective review of prospectively collected spine registry data as well as magnetic resonance images. We reviewed the records for 176 patients with degenerative disorders of the cervical spine who underwent anterior cervical decompression or corpectomy within the C4 to C6 levels. Our measurements included area for the spinal cord, space available for the cord, and rotation of the cord with respect to the vertebral body. There was a 6.8% prevalence of postoperative C5 nerve palsy as defined by deltoid motor strength of ≤ 3 of 5. The average rotation of the spinal cord (and standard deviation) was 2.8° ± 3.0°. A significant association was detected between the degree of rotation (0° to 5° versus 6° to 10° versus ≥ 11°) and palsy (point-biserial correlation = 0.94; p < 0.001). A diagnostic criterion of 6° of rotation could identify patients who had a C5 palsy (sensitivity = 1.00 [95% confidence interval, 0.70 to 1.00], specificity = 0.97 [95% confidence interval, 0.93 to 0.99], positive predictive value = 0.71 [95% confidence interval, 0.44 to 0.89], negative predictive value = 1.00 [95% confidence interval, 0.97 to 1.00]). Our evidence suggests that spinal cord rotation is a strong and significant predictor of C5 palsy postoperatively. Patients can be classified into three types, with Type 1 representing mild rotation (0° to 5°), Type 2 representing moderate rotation (6° to 10°), and Type 3 representing severe rotation (≥ 11°). The rate of C5 palsy was zero of 159 in the Type-1 group, eight of thirteen in the Type-2 group, and four of four in the Type-3 group. This information may be valuable for surgeons and patients considering anterior surgery in the C4 to C6 levels.
Ahn, Eun Jin; Park, Jun Ha; Kim, Hyo Jin; Kim, Kyung Woo; Choi, Hey Ran; Bang, Si Ra
2016-12-01
When dexmedetomidine is used in patients undergoing spinal anesthesia, high incidence of bradycardia in response to parasympathetic activation is reported. Therefore, we aimed to evaluate the effectiveness of atropine premedication for preventing the incidence of bradycardia and the hemodynamic effect on patients undergoing spinal anesthesia with sedation by dexmedetomidine. Randomized, double-blind, placebo-controlled study. Operating room. One hundred fourteen patients (age range, 2-65 years; American Society of Anesthesiology class I-II) participated in this study, willing to be sedated and to undergo spinal anesthesia. The patients were divided into 2 groups: group A and group C. After performing spinal anesthesia, dexmedetomidine was infused at a loading dose of 0.6 μg/kg for 10 minutes, followed by an infusion at 0.25 μg/(kg h). Simultaneously with the loading dose of dexmedetomidine, patients in group A received an intravenous bolus of 0.5 mg atropine, whereas patients in group C received an intravenous normal saline bolus. Data on administration of atropine and ephedrine were collected. Hemodynamic data including heart rate, systolic blood pressure, diastolic blood pressure (DBP), and mean blood pressure (MBP) were also recorded. The incidence of bradycardia requiring atropine treatment was significantly higher in group C than group A (P=.035). However, the incidence of hypotension needing ephedrine treatment showed no significant difference between the 2 groups (P=.7). Systolic blood pressure and heart rate showed no significant differences between the 2 groups (P=.138 and .464, respectively). However, group A showed significant increases in DBP and MBP, and group C did not (P=.014 and .008, respectively). Prophylactic atropine reduces the incidence of bradycardia in patients undergoing spinal anesthesia with dexmedetomidine sedation. However, DBP and MBP showed significant increases in patients when prophylactic atropine was administrated. Therefore, atropine premedication should be administered cautiously. Copyright © 2016 Elsevier Inc. All rights reserved.
Akdemir, Mehmet Salim; Kaydu, Ayhan; Yanlı, Yonca; Özdemir, Mehtap; Gökçek, Erhan; Karaman, Haktan
2017-01-01
The postdural puncture headache (PDPH) and postdural puncture backache (PDPB) are well-known complications of spinal anesthesia. There are some attempts to reduce the frequency of complication such as different design of the spinal needles. The primary outcome of this study is to compare the incidence of PDPH between 26-gauge Atraucan and 26-gauge Quincke spinal needles in elective cesarean operations. The severity of symptoms, the incidence of backache, technical issues, and comparison of cost of needles are secondary outcomes. After Investigational Review Board approval, a randomized, prospective, double-blinded study was designed in 682 American Society of Anesthesiologists I-II women having elective cesarean operations under spinal anesthesia. Patients were divided into two groups as 26-gauge Atraucan Group A ( n = 323) and 26-gauge Quincke spinal needles Group Q ( n = 342). All patients were questioned about backache 1 week later. Differences between categorical variables were evaluated with Chi-square test. Continuous variables were compared by Student's t -test for two independent groups. A two-sided P < 0.05 was considered statistically significant for all analyses. There were no significant differences between groups in all demographic data. The one attempt success rate of the dural puncture in Group A (70,58%) and in Group Q (69.3%) was similar ( P > 0.05). The incidence of PDPH was 6.5% in Group A and 4.9% in Group Q ( P > 0.05). The epidural blood patch was performed to the three patients in Group A and five patients in Group Q who had severe headache ( P > 0.05). The incidence of PDPB was 4.33% versus 2.04% in Group A and Group Q ( P > 0.05). The incidence of complication rates and technical handling characteristics did not differ between two groups. Quincke needle is cheaper than Atracaun needle, so it can be a cost-effective choice in obstetric patients.
Lee, Andy C H; Feger, Mark A; Singla, Anuj; Abel, Mark F
2016-11-15
Systemic review and meta-analysis. To analyze the effect of spinal fusion and instrumentation for adolescent idiopathic scoliosis (AIS) on absolute pulmonary function test (PFTs). Pulmonary function is correlated with severity of deformity in AIS patients and studies that have analyzed the effect of spinal fusion and instrumentation on PFTs for AIS have reported inconsistent results. There is a need to analyze the effect of spinal fusion on PFTs with stratification by surgical approach. Our analysis included 22 studies. Cohen's d effect sizes were calculated for absolute PFT outcome measures with 95% confidence intervals (CI). Meta-analyses were performed at each postoperative time frame for six homogeneous surgical approaches: (i) combined anterior release and posterior fusion with instrumentation; (ii) combined video assisted anterior release and posterior fusion with instrumentation without thoracoplasty; (iii) posterior fusion with instrumentation without thoracoplasty; (iv) anterior fusion with instrumentation and without thoracoplasty; (v) video assisted anterior fusion with instrumentation without thoracoplasty; and (vi) any scoliosis surgery with additional thoracoplasty. Anterior spinal fusion with instrumentation, any scoliosis surgery with concomitant thoracoplasty, or video-assisted anterior fusion with instrumentation for AIS had similar absolute PFTs at their 2 year postoperative follow up compared with their preoperative PFTs (effect sizes ranging from -0.2-0.2 with all CI crossing "0"). Posterior spinal fusion with instrumentation (with or without an anterior release) demonstrated small to moderate increases in PFTs 2 years postoperatively (effect sizes ranging from 0.35-0.65 with all CI not crossing "0"). Anterior fusion with instrumentation, regardless of the approach, and any scoliosis surgery with concomitant thoracoplasty do not lead to significant change in pulmonary functions 2 year after surgery. Posterior spinal fusion with instrumentation (with or without an anterior release) resulted in small to moderate increases in PFTs. N/A.
Farace, Paolo; Piras, Sara; Porru, Sergio; Massazza, Federica; Fadda, Giuseppina; Solla, Ignazio; Piras, Denise; Deidda, Maria Assunta; Amichetti, Maurizio; Possanzini, Marco
2014-01-06
Since reirradiation in recurrent head and neck patients is limited by previous treatment, a marked reduction of maximum doses to spinal cord and brain stem was investigated in the initial irradiation of stage III/IV head and neck cancers. Eighteen patients were planned by simultaneous integrated boost, prescribing 69.3 Gy to PTV1 and 56.1 Gy to PTV2. Nine 6 MV coplanar photon beams at equispaced gantry angles were chosen for each patient. Step-and-shoot IMRT was calculated by direct machine parameter optimization, with the maximum number of segments limited to 80. In the standard plan, optimization considered organs at risk (OAR), dose conformity, maximum dose < 45 Gy to spinal cord and < 50 Gy to brain stem. In the sparing plans, a marked reduction to spinal cord and brain stem were investigated, with/without changes in dose conformity. In the sparing plans, the maximum doses to spinal cord and brain stem were reduced from the initial values (43.5 ± 2.2 Gy and 36.7 ± 14.0 Gy), without significant changes on the other OARs. A marked difference (-15.9 ± 1.9 Gy and -10.1 ± 5.7 Gy) was obtained at the expense of a small difference (-1.3% ± 0.9%) from initial PTV195% coverage (96.6% ± 0.9%). Similar difference (-15.7 ± 2.2 Gy and -10.2 ± 6.1 Gy) was obtained compromising dose conformity, but unaffecting PTV195% and with negligible decrease in PTV295% (-0.3% ± 0.3% from the initial 98.3% ± 0.8%). A marked spinal cord and brain stem preventive sparing was feasible at the expense of a decrease in dose conformity or slightly compromising target coverage. A sparing should be recommended in highly recurrent tumors, to make potential reirradiation safer.
Murata, Yuzo; Yasaka, Toshiharu; Takano, Makoto; Ishihara, Keiko
2016-03-23
Inward rectifier K(+) channels of the Kir2.x subfamily play important roles in controlling the neuronal excitability. Although their cellular localization in the brain has been extensively studied, only a few studies have examined their expression in the spinal cord and peripheral nervous system. In this study, immunohistochemical analyses of Kir2.1, Kir2.2, and Kir2.3 expression were performed in rat dorsal root ganglion (DRG) and spinal cord using bright-field and confocal microscopy. In DRG, most ganglionic neurons expressed Kir2.1, Kir2.2 and Kir2.3, whereas satellite glial cells chiefly expressed Kir2.3. In the spinal cord, Kir2.1, Kir2.2 and Kir2.3 were all expressed highly in the gray matter of dorsal and ventral horns and moderately in the white matter also. Within the gray matter, the expression was especially high in the substantia gelatinosa (lamina II). Confocal images obtained using markers for neuronal cells, NeuN, and astrocytes, Sox9, showed expression of all three Kir2 subunits in both neuronal somata and astrocytes in lamina I-III of the dorsal horn and the lateral spinal nucleus of the dorsolateral funiculus. Immunoreactive signals other than those in neuronal and glial somata were abundant in lamina I and II, which probably located mainly in nerve fibers or nerve terminals. Colocalization of Kir2.1 and 2.3 and that of Kir2.2 and 2.3 were present in neuronal and glial somata. In the ventral horn, motor neurons and interneurons were also immunoreactive with the three Kir2 subunits. Our study suggests that Kir2 channels composed of Kir2.1-2.3 subunits are expressed in neuronal and glial cells in the DRG and spinal cord, contributing to sensory transduction and motor control. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Comparison of two spinal needle types to achieve a unilateral spinal block.
Kuusniemi, Kristiina; Leino, Kari; Lertola, Kaarlo; Pihlajamäki, Kalevi; Pitkänen, Mikko
2013-04-01
Unilateral spinal anesthesia is beneficial in patients undergoing unilateral leg surgery. The direction and the shape of the spinal needle are thought to influence the unilateral distribution of the local anesthetic in the intrathecal space. Therefore, to study the effects of different spinal needles we compared the effects of the Whitacre and Quincke spinal needles. This was a prospective, randomized, double-blind study of 60 consecutive outpatients scheduled for unilateral lower-limb surgery. The patients were randomized to receive spinal anesthesia with 1.2 ml of 0.5 % plain bupivacaine using either a 27-G Whitacre or a Quincke needle. One half of the local anesthetic was injected towards the nondependent side and the other half was directed cranially. The spread of spinal anesthesia, both sensory and motor blocks, was defined as the primary endpoint and was recorded at 10, 20, and 30 min after the spinal injection, at the end of the operation, 2 h after the spinal injection, and every 30 min thereafter until there was no motor block. Secondary endpoints included patient satisfaction and adverse effects. There was no difference in the spread of sensory or motor blocks between the Whitacre and the Quincke groups. However, the sensory and motor blocks on the operated and the nonoperated sides were significantly different at all testing times, as expected. There was no difference in the incidence of adverse effects or patient satisfaction scores between the Whitacre and the Quincke groups. Unilateral spinal block for outpatient surgery can be achieved with both pencil-point (Whitacre) and Quincke needles using 6.0 mg of plain bupivacaine. Neither the spread of sensory and motor blocks nor the corresponding recovery times appeared to be different between the groups. Nor was there any difference in patient satisfaction.
Spinal injury in car crashes: crash factors and the effects of occupant age.
Bilston, Lynne E; Clarke, Elizabeth C; Brown, Julie
2011-08-01
Motor vehicle crashes are the leading cause of serious spinal injury in most developed nations. However, since these injuries are rare, systematic analyses of the crash factors that are predictive of spinal injury have rarely been performed. This study aimed to use a population-reference crash sample to identify crash factors associated with moderate to severe spinal injury, and how these vary with occupant age. The US National Automotive Sampling System Crashworthiness Data System (NASS) data for 1993-2007 were analysed using logistic regression to identify crash factors associated with Abbreviated Injury Scale (AIS)2+ spinal injury among restrained vehicle passengers. Risk of moderate or severe spinal injury (AIS2+) was associated with higher severity crashes (OR=3.5 (95% CI 2.6 to 4.6)), intrusion into an occupant's seating position (OR=2.7 (95% CI 1.9 to 3.7)), striking a fixed object rather than another car (OR=1.7 (95% CI 1.3 to 2.1)), and use of a shoulder-only belt (OR=2.7 (95% CI 1.5 to 4.8)). Older occupants (65 years or older) were at higher risk of spinal injury than younger adults in frontal, side and rollover crashes. Children under 16 were at a lower risk of spinal injury than adults in all crash types except frontal crashes. While the risk of serious spinal injury in motor vehicle crashes is low, these injuries are more common in crashes of higher severity or into fixed objects, and in the presence of intrusion. There are elevated risks of spinal injury for older occupants compared with younger adults, which may reflect changes in biomechanical tolerances with age. Children appear to be at lower risk of serious spinal injury than adults except in frontal crashes.
Frawley, Geoff; Bell, Graham; Disma, Nicola; Withington, Davinia E.; de Graaff, Jurgen C.; Morton, Neil S.; McCann, Mary Ellen; Arnup, Sarah J.; Bagshaw, Oliver; Wolfler, Andrea; Bellinger, David; Davidson, Andrew J.
2015-01-01
Background Awake regional anesthesia (RA) is a viable alternative to general anesthesia (GA) for infants undergoing lower abdominal surgery. Benefits include lower incidence of postoperative apnea and avoidance of anesthetic agents that may increase neuroapoptosis and worsen neurocognitive outcomes. The General Anesthesia compared to Spinal anesthesia (GAS) study compares neurodevelopmental outcomes following awake RA or GA in otherwise healthy infants. Our aim was to describe success and failure rates of RA in this study and report factors associated with failure. Methods This was a nested cohort study within a prospective randomized, controlled, observer blind, equivalence trial. Seven hundred twenty two infants ≤ 60 weeks postmenstrual age, scheduled for herniorrhaphy under anesthesia were randomly assigned to receive RA (spinal, caudal epidural or combined spinal caudal anesthetic) or GA with sevoflurane. The data of 339 infants, where spinal or combined spinal caudal anesthetic was attempted, was analyzed. Possible predictors of failure were assessed including: patient factors, technique, experience of site and anesthetist and type of local anesthetic. Results RA was sufficient for the completion of surgery in 83.2% of patients. Spinal anesthesia was successful in 86.9% of cases and combined spinal caudal anesthetic in 76.1%. Thirty four patients required conversion to GA and an additional 23 (6.8%) required brief sedation. Bloody tap on the first attempt at lumbar puncture was the only risk factor significantly associated with block failure (OR = 2.46). Conclusions The failure rate of spinal anesthesia was low. Variability in application of combined spinal caudal anesthetic limited attempts to compare the success of this technique to spinal alone. PMID:26001028
The 100 most-cited articles in spinal oncology.
De la Garza-Ramos, Rafael; Benvenutti-Regato, Mario; Caro-Osorio, Enrique
2016-05-01
OBJECTIVE The authors' objective was to identify the 100 most-cited research articles in the field of spinal oncology. METHODS The Thomson Reuters Web of Science service was queried for the years 1864-2015 without language restrictions. Articles were sorted in descending order of the number of times they were cited by other studies, and all titles and abstracts were screened to identify the research areas of the top 100 articles. Levels of evidence were assigned on the basis of the North American Spine Society criteria. RESULTS The authors identified the 100 most-cited articles in spinal oncology, which collectively had been cited 20,771 times at the time of this writing. The oldest article on this top 100 list had been published in 1931, and the most recent in 2008; the most prolific decade was the 1990s, with 34 articles on this list having been published during that period. There were 4 studies with Level I evidence, 3 with Level II evidence, 9 with Level III evidence, 70 with Level IV evidence, and 2 with Level V evidence; levels of evidence were not assigned to 12 studies because they were not on therapeutic, prognostic, or diagnostic topics. Thirty-one unique journals contributed to the 100 articles, with the Journal of Neurosurgery contributing most of the articles (n = 25). The specialties covered included neurosurgery, orthopedic surgery, neurology, radiation oncology, and pathology. Sixty-seven articles reported clinical outcomes. The most common country of article origin was the United States (n = 62), followed by Canada (n = 8) and France (n = 7). The most common topics were spinal metastases (n = 35), intramedullary tumors (n = 18), chordoma (n = 17), intradural tumors (n = 7), vertebroplasty/kyphoplasty (n = 7), primary bone tumors (n = 6), and others (n = 10). One researcher had authored 6 studies on the top 100 list, and 7 authors had 3 studies each on this list. CONCLUSIONS This study identified the 100 most-cited research articles in the area of spinal oncology. The studies highlighted the multidisciplinary and multimodal nature of spinal tumor management. Recognition of historical articles may guide future spinal oncology research.
Wilkinson, John T; Songy, Chad E; Bumpass, David B; McCullough, Francis L; McCarthy, Richard E
2017-04-03
The Shilla procedure was designed to correct and control early-onset spinal deformity while harnessing a child's remaining spinal growth. It allows for controlled axial skeletal growth within the construct, avoiding the need for frequent surgeries to lengthen implants. We hypothesized that curve characteristics evolve over time after initial apex fusion and placement of the Shilla implants. The purpose of this study was to identify trends in curve evolution after Shilla implantation and understand how these changes influence ultimate outcome. A single-center, retrospective review of all patients with Shilla implants in place for ≥5 years yielded 21 patients. Charts and radiographs were reviewed to compare coronal curve characteristics preoperatively, postoperatively, and at last follow-up to note changes in the apex of the primary curve. Also noted were the development of adjacent compensatory curves, the overall vertical spinal growth, and the need for definitive spinal fusion once skeletal maturity was reached. Of the 21 patients, the curve apex migrated caudally in 12 patients (57%) and cephalad in 1 patient (5%), with a mean migration of 2.7 vertebral levels. Two patients (10%) developed new, significant compensatory curves (1 caudal and 1 cephalad). All patients demonstrated spinal growth in T1-S1 length following index surgery (mean, 45 mm). At skeletal maturity, 10 patients underwent definitive posterior spinal fusion and instrumentation, and 3 underwent implant removal alone. This study constitutes the longest follow-up of Shilla patients evaluating curve and implant behavior. Results of this review suggest that the apex of the fused primary curve shifts in approximately 62% of patients, with nearly all of these (92%) involving a distal migration. Compensatory curves did develop after Shilla placement as well. Overall, these findings represent adding-on distal to the apex after Shilla instrumentation rather than a crankshaft phenomenon about the apex. A better understanding of spinal growth mechanics and outcomes after Shilla placement may improve our ability to appropriately select patients and instrumentation levels. Level III.
Wang, Li-na; Yang, Jian-ping; Ji, Fu-hai; Wang, Xiu-yun; Zuo, Jian-ling; Xu, Qi-nian; Jia, Xiao-ming; Zhou, Jing; Ren, Chun-guang; Li, Wei
2011-05-10
To investigate the role of brain-derived neurotrophic factor (BDNF) in pain facilitation and spinal mechanisms in the rat model of bone cancer pain. The bone cancer pain model was developed by inoculated Walker 256 mammary gland carcinoma cells into the tibia medullary cavity. Sixty SD female rats were divided into 5 groups (n = 12 each) randomly; group I: control group (sham operation); group II: model group; group III: control group + anti-BDNF intrathecal (i.t.); group IV: model group + control IgG i.t.; group V: model group + anti-BDNF i.t.. Anti-BDNF or control IgG was injected i.t. during 7 to 9th day. Von-Frey threshold was measured one day before operation and every 2 days after operation. On the 9th day after threshold tested, rats were sacrificed after i.t. injection of either anti-BDNF or control IgG, the lumbar 4-6 spinal cord was removed. The expression of the spinal BDNF and the phosphorylation of extracellular signal-regulated protein kinase 1/2 (p-ERK1/2) were detected by immunohistochemistry assay and Western-Blot. Co-expression pattern of BDNF and p-ERK1/2 were determined by double-labeling immunofluorescence. We demonstrated the coexistence of BDNF and p-ERK1/2 in the spinal cord of rats. From the 7 to 9th day after operation, von-Frey threshold in groups II and IV was significantly lower than that in group I and group V (P < 0.01), group V was remarkly higher than that in group IV (P < 0.01). The spinal BDNF and p-ERK1/2 expression in group II or IV were significantly increased compared with that in group I or V (P < 0.01), intrathecal anti-BDNF was significantly suppressed BDNF and p-ERK1/2 expression (P < 0.01). BDNF and p-ERK1/2 was coexistence in the spinal cord of rats, and it maybe involved in the bone cancer pain.
Survey of spinal cord injury-induced neurogenic bladder studies using the Web of Science.
Zou, Benjing; Zhang, Yongli; Li, Yucheng; Wang, Zantao; Zhang, Ping; Zhang, Xiyin; Wang, Bingdong; Long, Zhixin; Wang, Feng; Song, Guo; Wang, Yan
2012-08-15
To identify global trends in research on spinal cord injury-induced neurogenic bladder, through a bibliometric analysis using the Web of Science. We performed a bibliometric analysis of studies on spinal cord injury-induced neurogenic bladder using the Web of Science. Data retrieval was performed using key words "spinal cord injury", "spinal injury", "neurogenic bladder", "neuropathic bladder", "neurogenic lower urinary tract dysfunction", "neurogenic voiding dysfunction", "neurogenic urination disorder" and "neurogenic vesicourethral dysfunction". (a) published peer-reviewed articles on spinal cord injury-induced neurogenic bladder indexed in the Web of Science; (b) type of articles: original research articles and reviews; (c) year of publication: no limitation. (a) articles that required manual searching or telephone access; (b) Corrected papers and book chapters. (1) Annual publication output; (2) distribution according to journals; (3) distribution according to subject areas; (4) distribution according to country; (5) distribution according to institution; and (6) top cited publications. There were 646 research articles addressing spinal cord injury-induced neurogenic bladder in the Web of Science. Research on spinal cord injury-induced neurogenic bladder was found in the Science Citation Index-Expanded as of 1946. The United States, Ireland and Switzerland were the three major countries contributing to studies in spinal cord injury-induced neurogenic bladder in the 1970s. However, in the 1990s, the United States, the United Kingdom, the Netherlands, Germany and Japan published more papers on spinal cord injury-induced neurogenic bladder than Switzerland, and Ireland fell off the top ten countries list. In this century, the United States ranks first in spinal cord injury-induced neurogenic bladder studies, followed by France, the United Kingdom, Germany, Switzerland and Japan. Subject categories including urology, nephrology and clinical neurology, as well as rehabilitation, are represented in spinal cord injury-induced neurogenic bladder studies. From our analysis of the literature and research trends, we conclude that spinal cord injury-induced neurogenic bladder is a hot topic that will continue to generate considerable research interest in the future.
Balázs, Anita; Mészár, Zoltán; Hegedűs, Krisztina; Kenyeres, Annamária; Hegyi, Zoltán; Dócs, Klaudia; Antal, Miklós
2017-07-01
The superficial spinal dorsal horn is the first relay station of pain processing. It is also widely accepted that spinal synaptic processing to control the modality and intensity of pain signals transmitted to higher brain centers is primarily defined by inhibitory neurons in the superficial spinal dorsal horn. Earlier studies suggest that the construction of pain processing spinal neural circuits including the GABAergic components should be completed by birth, although major chemical refinements may occur postnatally. Because of their utmost importance in pain processing, we intended to provide a detailed knowledge concerning the development of GABAergic neurons in the superficial spinal dorsal horn, which is now missing from the literature. Thus, we studied the developmental changes in the distribution of neurons expressing GABAergic markers like Pax2, GAD65 and GAD67 in the superficial spinal dorsal horn of wild type as well as GAD65-GFP and GAD67-GFP transgenic mice from embryonic day 11.5 (E11.5) till postnatal day 14 (P14). We found that GABAergic neurons populate the superficial spinal dorsal horn from the beginning of its delineation at E14.5. We also showed that the numbers of GABAergic neurons in the superficial spinal dorsal horn continuously increase till E17.5, but there is a prominent decline in their numbers during the first two postnatal weeks. Our results indicate that the developmental process leading to the delineation of the inhibitory and excitatory cellular assemblies of pain processing neural circuits in the superficial spinal dorsal horn of mice is not completed by birth, but it continues postnatally.
Drug therapy in spinal tuberculosis.
Rajasekaran, S; Khandelwal, Gaurav
2013-06-01
Although the discovery of effective anti-tuberculosis drugs has made uncomplicated spinal tuberculosis a medical disease, the advent of multi-drug-resistant Mycobacterium tuberculosis and the co-infection of HIV with tuberculosis have led to a resurgence of the disease recently. The principles of drug treatment of spinal tuberculosis are derived from our experience in treating pulmonary tuberculosis. Spinal tuberculosis is classified to be a severe form of extrapulmonary tuberculosis and hence is included in Category I of the WHO classification. The tuberculosis bacilli isolated from patients are of four different types with different growth kinetics and metabolic characteristics. Hence multiple drugs, which act on the different groups of the mycobacteria, are included in each anti-tuberculosis drug regimen. Prolonged and uninterrupted chemotherapy (which may be 'short course' and 'intermittent' but preferably 'directly observed') is effective in controlling the infection. Spinal Multi-drug-resistant TB and spinal TB in HIV-positive patients present unique problems in management and have much poorer prognosis. Failure of chemotherapy and emergence of drug resistance are frequent due to the failure of compliance hence all efforts must be made to improve patient compliance to the prescribed drug regimen.
Akagi, H; Patton, D E; Miledi, R
1989-01-01
Three synthetic oligodeoxynucleotides complementary to different parts of an RNA encoding a glycine receptor subunit were used to discriminate heterogenous mRNAs coding for glycine receptors in adult and neonatal rat spinal cord. Injection of the three antisense oligonucleotides into Xenopus oocytes specifically inhibited the expression of glycine receptors by adult spinal cord mRNA. In contrast, the antisense oligonucleotides were much less potent in inhibiting the expression of glycine receptors encoded by neonatal spinal cord mRNA. Northern blot analysis revealed that the oligonucleotides hybridized mostly to an adult cord transcript of approximately 10 kilobases in size. This band was also present in neonatal spinal cord mRNA but its density was about one-fourth of the adult cord message. There was no intense band in the low molecular weight position (approximately 2 kilobases), the existence of which was expected from electrophysiological studies with size-fractionated mRNA of neonatal spinal cord. Our results suggest that in the rat spinal cord there are at least three different types of mRNAs encoding functional strychnine-sensitive glycine receptors. Images PMID:2479016
Bittar, Cíntia Kelly; Cliquet, Alberto
2011-01-01
To assess epidemiological profile of spinal cord injury outpatients which have been participating of rehabilitation programme using neuromuscular electrical stimulation, in order to implement campaigns for preventing spinal cord trauma. From January to April 2009, 30 patients at the spinal cord injury ambulatory clinic at Hospital das Clínicas of Unicamp were analysed by some epidemiologic characteristics: age, profession, type and level of their paralysis, origin and time of injury. All patients had complete spinal cord injury (ASIA); 24 patients were men and six were women, the mean age was 34.6 years (range, 10-64 years), two patients were children. Twenty-one patients were paraplegic and nine were tetraplegic; causes included automobile accident (12), run over (three), diving (four), bicycle accident (one), motorcycle accident (three), gunshot wound (six), thoracic tuberculosis (one), and lumbar surgery (one). The mean lesion time was 8.2 years (range, 1-15 years). Two patients were retired. The results suggested that spinal cord injury affects mainly young active men. It is necessary to develop incisive actions to prevent accidents, specially directed to traffic security.
Chu, Weihua; Yuan, Jichao; Huang, Lei; Xiang, Xin; Zhu, Haitao; Chen, Fei; Chen, Yanyan; Lin, Jiangkai; Feng, Hua
2015-07-01
Although the adult spinal cord contains a population of multipotent neural stem/precursor cells (NSPCs) exhibiting the potential to replace neurons, endogenous neurogenesis is very limited after spinal cord injury (SCI) because the activated NSPCs primarily differentiate into astrocytes rather than neurons. Valproic acid (VPA), a histone deacetylase inhibitor, exerts multiple pharmacological effects including fate regulation of stem cells. In this study, we cultured adult spinal NSPCs from chronic compressive SCI rats and treated with VPA. In spite of inhibiting the proliferation and arresting in the G0/G1 phase of NSPCs, VPA markedly promoted neuronal differentiation (β-tubulin III(+) cells) as well as decreased astrocytic differentiation (GFAP(+) cells). Cell cycle regulator p21(Cip/WAF1) and proneural genes Ngn2 and NeuroD1 were increased in the two processes respectively. In vivo, to minimize the possible inhibitory effects of VPA to the proliferation of NSPCs as well as avoid other neuroprotections of VPA in acute phase of SCI, we carried out a delayed intraperitoneal injection of VPA (150 mg/kg/12 h) to SCI rats from day 15 to day 22 after injury. Both of the newborn neuron marker doublecortin and the mature neuron marker neuron-specific nuclear protein were significantly enhanced after VPA treatment in the epicenter and adjacent segments of the injured spinal cord. Although the impaired corticospinal tracks had not significantly improved, Basso-Beattie-Bresnahan scores in VPA treatment group were better than control. Our study provide the first evidence that administration of VPA enhances the neurogenic potential of NSPCs after SCI and reveal the therapeutic value of delayed treatment of VPA to SCI.
Reirradiation spine stereotactic body radiation therapy for spinal metastases: systematic review.
Myrehaug, Sten; Sahgal, Arjun; Hayashi, Motohiro; Levivier, Marc; Ma, Lijun; Martinez, Roberto; Paddick, Ian; Régis, Jean; Ryu, Samuel; Slotman, Ben; De Salles, Antonio
2017-10-01
OBJECTIVE Spinal metastases that recur after conventional palliative radiotherapy have historically been difficult to manage due to concerns of spinal cord toxicity in the retreatment setting. Spine stereotactic body radiation therapy (SBRT), also known as stereotactic radiosurgery, is emerging as an effective and safe means of delivering ablative doses to these recurrent tumors. The authors performed a systematic review of the literature to determine the clinical efficacy and safety of spine SBRT specific to previously irradiated spinal metastases. METHODS A systematic literature review was conducted, which was specific to SBRT to the spine, using MEDLINE, Embase, Cochrane Evidence-Based Medicine Database, National Guideline Clearinghouse, and CMA Infobase, with further bibliographic review of appropriate articles. Research questions included: 1) Is retreatment spine SBRT efficacious with respect to local control and symptom control? 2) Is retreatment spine SBRT safe? RESULTS The initial literature search retrieved 2263 articles. Of these articles, 160 were potentially relevant, 105 were selected for in-depth review, and 9 studies met all inclusion criteria for analysis. All studies were single-institution series, including 4 retrospective, 3 retrospective series of prospective databases, 1 prospective, and 1 Phase I/II prospective study (low- or very low-quality data). The results indicated that spine SBRT is effective, with a median 1-year local control rate of 76% (range 66%-90%). Improvement in patients' pain scores post-SBRT ranged from 65% to 81%. Treatment delivery was safe, with crude rates of vertebral body fracture of 12% (range 0%-22%) and radiation-induced myelopathy of 1.2%. CONCLUSIONS This systematic literature review suggests that SBRT to previously irradiated spinal metastases is safe and effective with respect to both local control and pain relief. Although the evidence is limited to low-quality data, SBRT can be a recommended treatment option for reirradiation.
Distribution of glycinergic neuronal somata in the rat spinal cord.
Hossaini, Mehdi; French, Pim J; Holstege, Jan C
2007-04-20
Glycine transporter 2 (GlyT2) mRNA is exclusively expressed in glycinergic neurons, and is presently considered a reliable marker for glycinergic neuronal somata. In this study, we have performed non-radioactive in situ hybridization to localize GlyT2 mRNA in fixed free-floating sections of cervical (C2 and C6), thoracic (T5), lumbar (L2 and L5) and sacral (S1) segments of the rat spinal cord. The results showed that in all segments the majority of the GlyT2 mRNA labeled (glycinergic) neuronal somata was present in the deep dorsal horn and the intermediate zone (laminae III-VIII), with around 50% (range 43.7-70.9%) in laminae VII&VIII. In contrast, the superficial dorsal horn, the motoneuronal cell groups and the area around the central canal contained only few glycinergic neuronal somata. The density (number of glycinergic neuronal somata per mm(2)) was also low in these areas, while the highest densities were found in laminae V to VIII. The lateral spinal nucleus and the lateral cervical nucleus also contained a limited number of glycinergic neurons. Our findings showed that the distribution pattern of the glycinergic neuronal somata is similar in all the examined segments. The few differences that were found in the relative laminar distribution between some of the segments, are most likely due to technical reasons. We therefore conclude that the observed distribution pattern of glycinergic neuronal somata is present throughout the spinal cord. Our findings further showed that the non-radioactive in situ hybridization technique for identifying GlyT2 mRNA in fixed free-floating sections is a highly efficient tool for identifying glycinergic neurons in the spinal cord.
Application of the McDonald MRI criteria in multiple sclerosis.
Chan, Ling Ling; Sitoh, Yih Yian; Chong, June; See, Siew Ju; Umapathi, Thirugnanam N; Lim, Shih Hui; Ong, Benjamin
2007-08-01
The aim of this study was to assess the sensitivity of McDonald's magnetic resonance imaging (MRI) criteria for the diagnosis of multiple sclerosis (MS) in a group of Asian patients diagnosed with clinically definite MS, based on lesion characterisation on MRI scans. Forty-nine patients from 3 major neurological institutions were classified as having Asian- or Western-type MS based on clinical assessment. Each MRI scan was reviewed by 2 neuroradiologists for the presence and characteristics of brain and spinal lesions. The McDonald's MRI criteria were then applied and its sensitivity evaluated. Nine patients were excluded, leaving 34 females and 6 males who were dominantly Chinese (90%), with a mean age of 36.2 years. The MRI brain and spinal findings were detailed and tabulated. Statistically significant differences (P <0.01) in MRI brain findings and sensitivity of McDonald's MRI criteria were found between our Asian- and Western-type MS patients. The diagnostic yield of McDonald's MRI criteria increased by 20% when we substituted a cord for a brain lesion, and applied the substitution for enhancing cord lesions as well. The diagnosis is more likely to be made when using McDonald MRI criteria based on brain findings, in a patient who presents clinically with Western-type MS. The provision for substitution of "one brain for a spinal lesion" is helpful in Asian-type MS, where there is preponderance of spinal lesion load. Our findings suggest that minor modifications in the interpretation of McDonald's MRI criteria have significant impact on the diagnosis in patients clinically presenting as Asian-type MS, with potential bearing on their subsequent management.
Modeling of Spinal Column of Seated Human Body under Exposure to Whole-Body Vibration
NASA Astrophysics Data System (ADS)
Tamaoki, Gen; Yoshimura, Takuya; Kuriyama, Kaoru; Nakai, Kazuma
In vehicle systems occupational drivers might expose themselves to vibration for a long time. This may cause illness of the spinal column such as low back pain. Therefore, it is necessary to evaluate the influence of vibration to the spinal column. Thus the modeling of seated human body is conducted in order to evaluate the effect of whole-body vibration to the spinal column. This model has the spinal column and the support structures such as the muscles of the back and the abdomen. The spinal column is made by the vertebrae and the intervertebral disks that are considered the rigid body and the rotational spring and damper respectively. The parameter of this model is decided by the literature and the body type of the subject with respect to the mass and the model structure. And stiffness and damping parameters are searched by fitting the model simulation results to the experimental measured data with respect to the vibration transmissibilities from the seat surface to the spinal column and the head and with respect to the driving-point apparent mass. In addition, the natural modes of the model compare with the result of experimental modal analysis. The influence of the abdomen and the muscles of the back are investigated by comparing three models with respect to above vibration characteristics. Three model are the proposed model, the model that has the spinal column and the model that has the muscles of the back in addition to the spinal column.
Yang, Hai-song; Chen, De-yu; Lu, Xu-hua; Yang, Li-li; Yan, Wang-jun; Yuan, Wen; Chen, Yu
2010-03-01
Ossification of the posterior longitudinal ligament (OPLL) is a common spinal disorder that presents with or without cervical myelopathy. Furthermore, there is evidence suggesting that OPLL often coexists with cervical disc hernia (CDH), and that the latter is the more important compression factor. To raise the awareness of CDH in OPLL for spinal surgeons, we performed a retrospective study on 142 patients with radiologically proven OPLL who had received surgery between January 2004 and January 2008 in our hospital. Plain radiograph, three-dimensional computed tomography construction (3D CT), and magnetic resonance imaging (MRI) of the cervical spine were all performed. Twenty-six patients with obvious CDH (15 of segmental-type, nine of mixed-type, two of continuous-type) were selected via clinical and radiographic features, and intraoperative findings. By MRI, the most commonly involved level was C5/6, followed by C3/4, C4/5, and C6/7. The areas of greatest spinal cord compression were at the disc levels because of herniated cervical discs. Eight patients were decompressed via anterior cervical discectomy and fusion (ACDF), 13 patients via anterior cervical corpectomy and fusion (ACCF), and five patients via ACDF combined with posterior laminectomy and fusion. The outcomes were all favorable. In conclusion, surgeons should consider the potential for CDH when performing spinal cord decompression and deciding the surgical approach in patients presenting with OPLL.
Neurogenic bowel management after spinal cord injury: Malaysian experience.
Engkasan, Julia Patrick; Sudin, Siti Suhaida
2013-02-01
To describe the bowel programmes utilized by individuals with spinal cord injury; and to determine the association between the outcome of the bowel programmes and various interventions to facilitate defecation. A cross-sectional study. Individuals with spinal cord injury who have neurogenic bowel dysfunction. Face-to-face interviews were conducted using a self-constructed questionnaire that consisted of: (i) demographic and clinical characteristics of the participants; (ii) interventions to facilitate defecation; (iii) bowel care practices; (iv) outcome of the bowel programme (incidence of incontinence and duration of the evacuation procedure); and (v) participant satisfaction with their bowel programme. The majority (79.2%) of subjects used multiple interventions for bowel care. Duration of the evacuation procedure was more than 60 min in 28.0% of participants. Water intake of more than 2 l/day was associated with longer duration of bowel care. Only 8.0% of participants had at least one episode of incontinence per month. The majority of participants (84.8%) were satisfied with their bowel programme. Patients used multiple interventions to manage their bowels and spent a substantial amount of time performing bowel care. Nevertheless, the incidence of incontinence was low and satisfaction with their bowel programme was high.
Przewlocka, B; Mika, J; Capone, F; Machelska, H; Pavone, F
1999-03-01
The present research was undertaken to investigate, by behavioral and immunohistochemical methods, the effects of intrathecal (i.th.) injection of the muscarinic agonist oxotremorine on the response to the long-lasting nociceptive stimulus induced by injection of formalin into the rat hind paw. Formalin injection induced a biphasic, pain-induced behavioral response (paw jerks), as well as an increase in the number of nitric oxide (NO) synthase-labeled neurons in laminae I-III, IV, and X, but not in laminae V-VI. Oxotremorine (0.1-10 ng, i.th.) inhibited paw-jerk frequency in both phases of formalin-induced behavior. The immunohistochemical results showed that i.th.-injected oxotremorine differently affected the level of NO synthase in lumbar part of the spinal cord: no change or increase after the dose of 1 ng, and a significant reduction of nitric oxide synthase neurons after the higher dose (10 ng). These results evidenced a role of cholinergic system in the modulation of tonic pain and in nitric oxide synthase expression at the spinal cord level, which further suggests that these two systems could be involved in phenomena induced by long-lasting nociceptive stimulation.
Lewinter, R D; Scherrer, G; Basbaum, A I
2008-01-02
The transient receptor potential cation channel, vanilloid family, type 2 (TRPV2) is a member of the TRPV family of proteins and is a homologue of the capsaicin/vanilloid receptor (transient receptor potential cation channel, vanilloid family, type 1, TRPV1). Like TRPV1, TRPV2 is expressed in a subset of dorsal root ganglia (DRG) neurons that project to superficial laminae of the spinal cord dorsal horn. Because noxious heat (>52 degrees C) activates TRPV2 in transfected cells this channel has been implicated in the processing of high intensity thermal pain messages in vivo. In contrast to TRPV1, however, which is restricted to small diameter DRG neurons, there is significant TRPV2 immunoreactivity in a variety of CNS regions. The present report focuses on a subset of neurons in the brainstem and spinal cord of the rat including the dorsal lateral nucleus (DLN) of the spinal cord, the nucleus ambiguus, and the motor trigeminal nucleus. Double label immunocytochemistry with markers of motoneurons, combined with retrograde labeling, established that these cells are, in fact, motoneurons. With the exception of their smaller diameter, these cells did not differ from other motoneurons, which are only lightly TRPV2-immunoreactive. As for the majority of DLN neurons, the densely-labeled populations co-express androgen receptor and follow normal DLN ontogeny. The functional significance of the very intense TRPV2 expression in these three distinct spinal cord and brainstem motoneurons groups remains to be determined.
Nimptsch, Ulrike; Bolczek, Claire; Spoden, Melissa; Schuler, Ekkehard; Zacher, Josef; Mansky, Thomas
2018-04-01
Marked volume growth of inpatient treatments for spinal disease has been observed since diagnosis related groups (DRG) were introduced as payment for inpatient services in Germany. This study aims to analyse this increase by population and stratified by types of treatment. Using German nationwide hospital discharge data (DRG statistics), inpatient treatments for spinal disease with or without surgery were identified. Trends in case numbers were analysed from 2005 to 2014 with consideration of demographic changes, in order to explore which age groups and which types of treatment are affected by volume growth. In 2014 (2005), 289 000 (177 000) inpatient treatments with surgery and 463 000 (287 000) treatments without surgery were identified. After adjusting for demographic factors, treatments with and without surgery exhibited a relative volume growth of + 50%. This increase affected higher age groups and women, in particular. Depending on the type of treatment, very different degrees of volume growth were observed. For example, disc surgeries adjusted for demographic change increased by about + 5%, whereas spinal fusion and vertebral replacement surgeries, kypho-/vertebroplasties and decompression of the spine more than doubled. Within the non-surgically treated cases, local pain therapies of the spine increased after adjustment for demographic changes by about + 142%. The conservatively treated cases showed a demographically adjusted increase of + 22%. Apart from demographic changes, this analysis cannot resolve the underlying causes of volume growth in treatments for spinal disease. However, the stratified analysis of various subgroups may help to classify these developments in a more differentiated manner. The results may support a more targeted debate about potential over- or misallocation of inpatient services in this area. Georg Thieme Verlag KG Stuttgart · New York.
Kumar, Chandra M; Corbett, William A; Wilson, Robert G
2008-08-01
Extended spinal anaesthesia using a spinal micro-catheter was used as a primary method of anaesthesia for elective colorectal cancer surgery in 68 high risk patients over a 14-year period in our institution. The technique was also useful in eight elective and 13 emergency abdominal surgeries. All patients suffered from severe chronic obstructive airway disease requiring multiple inhalers and drugs (ASA III). Thirty nine of these patients also suffered from angina, myocardial infarction, diabetes and other systemic diseases (ASA IV). Surgery included right hemicolectomy, left hemicolectomy, total colectomy, sigmoid colectomy, Hartman's resection, anterior resection of rectum, abdominoperineal resection, cholecystectomy (open and laparoscopic) and obstructed inguinal hernia requiring laparotomy. Spinal anaesthesia was performed under strict aseptic conditions with a 22 gauge spinal needle with a mixture consisting of 2.75ml of 0.5% heavy bupivacaine and 0.25ml of fentanyl (25microg). This was followed by placement of a spinal micro-catheter and the duration of anaesthesia was extended by intermittent injection of 0.5% isobaric bupivacaine. Brief hypotension occurred in 12.4% of patients during the establishment of anaesthetic block height to T6-7 and was duly treated with intravenous administration of fluid and ephedrine hydrochloride. Good anaesthesia resulted in all patients except for brief discomfort in some patients during hemicolectomy surgery possibly due to the dissection and traction on the peritoneum causing irritation to the diaphragm. The use of sedation was avoided. General anaesthesia was administered in one patient and this patient required postoperative ventilation and cardiovascular support in the Intensive Care Unit. The spinal micro-catheter was removed at the end of surgery. Postoperative pain relief was obtained by administering intravenous morphine through a patient controlled analgesia machine in the critical care ward area (High Dependency Unit). There was a low incidence of minor postoperative side effects such as nausea (14.6%), vomiting (7.9%), minor post dural puncture headache (5.6%) and pruritus (5.6%). We conclude that spinal anaesthesia with a micro-catheter may be used as a primary method of anaesthesia for colorectal cancer surgery and other major abdominal surgery in high-risk patients for whom general anaesthesia would be associated with higher morbidity and mortality.
Xu, Lei; Chu, Bin; Feng, Yang; Xu, Feng; Zou, Yue-Fen
2016-01-01
The purpose of this study is to evaluate the distribution of end plate oedema in different types of Modic change especially in mixed type and to analyze the presence of end plate sclerosis in various types of Modic change. 276 patients with low back pain were scanned with 1.5-T MRI. Three radiologists assessed the MR images by T1 weighted, T2 weighted and fat-saturation T2 weighted sequences and classified them according to the Modic changes. Pure oedematous end plate signal changes were classified as Modic Type I; pure fatty end plate changes were classified as Modic Type II; and pure sclerotic end plate changes as Modic Type III. A mixed feature of both Types I and II with predominant oedematous signal change is classified as Modic I-II, and a mixture of Types I and II with predominant fatty change is classified as Modic II-I. Thus, the mixed types can further be subdivided into seven subtypes: Types I-II, Types II-I, Types I-III, Types III-I, Types II-III, Types III-II and Types I-III. During the same period, 52 of 276 patients who underwent CT and MRI were retrospectively reviewed to determine end plate sclerosis. (1) End plate oedema: of the 2760 end plates (276 patients) examined, 302 end plates showed Modic changes, of which 82 end plates showed mixed Modic changes. The mixed Modic changes contain 92.7% of oedematous changes. The mixed types especially Types I-II and Types II-I made up the majority of end plate oedematous changes. (2) End plate sclerosis: 52 of 276 patients were examined by both MRI and CT. Of the 520 end plates, 93 end plates showed Modic changes, of which 34 end plates have shown sclerotic changes in CT images. 11.8% of 34 end plates have shown Modic Type I, 20.6% of 34 end plates have shown Modic Type II, 2.9% of 34 end plates have shown Modic Type III and 64.7% of 34 end plates have shown mixed Modic type. End plate oedema makes up the majority of mixed types especially Types I-II and Types II-I. The end plate sclerosis on CT images may not just mean Modic Type III but does exist in all types of Modic changes, especially in mixed Modic types, and may reflect vertebral body mineralization rather than change in the bone marrow. End plate oedema and end plate sclerosis are present in a large proportion of mixed types.
Spinal cord stimulation for chronic pain.
Mailis-Gagnon, A; Furlan, A D; Sandoval, J A; Taylor, R
2004-01-01
Spinal cord stimulation (SCS) is a form of therapy used to treat certain types of chronic pain. It involves an electrical generator that delivers pulses to a targeted spinal cord area. The leads can be implanted by laminectomy or percutaneously and the source of power is supplied by an implanted battery or by an external radio-frequency transmitter. The exact mechanism of action of SCS is poorly understood. To assess the efficacy and effectiveness of spinal cord stimulation in relieving certain kinds of pain, as well as the complications and adverse effects of this procedure. We searched MEDLINE and EMBASE to September 2003; the Cochrane Central Register of Controlled Trials (CENTRAL) (Issue 3, 2003); textbooks and reference lists in retrieved articles. We also contacted experts in the field of pain and the main manufacturer of the stimulators. We included trials with a control group, either randomized controlled trials (RCTs) or non-randomized controlled clinical trials (CCTs), that assessed spinal cord stimulation for chronic pain. Two independent reviewers selected the studies, assessed study quality and extracted the data. One of the assessors of methodological quality was blinded to authors, dates and journals. The data were analysed using qualitative methods (best evidence synthesis). Two RCTs (81 patients in total) met our inclusion criteria. One was judged as being of high quality (score of 3 on Jadad scale) and the other of low quality (score of 1 on Jadad scale). One trial included patients with Complex Regional Pain Syndrome Type I (reflex sympathetic dystrophy) and the other patients with Failed Back Surgery Syndrome. The follow-up periods varied from 6 to 12 months. Both studies reported that SCS was effective, however, meta-analysis was not undertaken because of the small number of patients and the heterogeneity of the study population. Although there is limited evidence in favour of SCS for Failed Back Surgery Syndrome and Complex Regional Pain Syndrome Type I, more trials are needed to confirm whether SCS is an effective treatment for certain types of chronic pain. In addition, there needs to be a debate about trial designs that will provide the best evidence for assessing this type of intervention.
Responses of neuromuscular systems under gravity or microgravity environment.
Ishihara, Akihiko; Kawano, Fuminori; Wang, Xiao Dong; Ohira, Yoshinobu
2004-11-01
Hindlimb suspension of rats induces induces fiber atrophy and type shift of muscle fibers. In contrast, there is no change in the cell size or oxidative enzyme activity of spinal motoneurons innervating muscle fibers. Growth-related increases in the cell size of muscle fibers and their spinal motoneurons are inhibited by hindlimb suspension. Exposure to microgravity induces atrophy of fibers (especially slow-twitch fibers) and shift of fibers from slow- to fast-twitch type in skeletal muscles (especially slow, anti-gravity muscles). In addition, a decrease in the oxidative enzyme activity of spinal motoneurons innervating slow-twitch fibers and of sensory neurons in the dorsal root ganglion is observed following exposure to microgravity. It is concluded that neuromuscular activities are important for maintaining metabolism and function of neuromuscular systems at an early postnatal development and that gravity effects both efferent and afferent neural pathways.
Transmission of Insult in Out-of-Position Subjects: II. Lumbosacral Injury
NASA Astrophysics Data System (ADS)
Shaibani, Saami J.
2002-03-01
The occurrence, or not, of injuries in vehicular collisions can depend critically on the initial seating position of vehicle occupants. Careful application of physics in an earlier study[1] was successful in determining the causation of injury for an occupant with a highly unconventional posture. A similarly unexpected outcome in another low-severity impact is explained here for an occupant lying fully backward at the time of impact. Again, this was achieved by evaluating the nature and extent of how each part of the body articulated throughout the impact. The effect on the low back was found from the associated kinematics, which in turn allowed the spinal injury mechanism to be ascertained. The methodology employed in both this study and the previous one is continued in a third paper[2] for an analysis in a different type of geometrical environment. 1. Transmission of Insult in Out-of-Position Subjects: I. Shoulder Injury, Bull. Am. Phys. Soc. in press (2002); 2. ibid: III. Thoracic Spine Injury.
Schuelert, N; Gorodetskaya, N; Just, S; Doods, H; Corradini, L
2015-04-16
Diabetic polyneuropathy (DPN) is a devastating complication of diabetes. The underlying pathogenesis of DPN is still elusive and an effective treatment devoid of side effects presents a challenge. There is evidence that in type-1 and -2 diabetes, metabolic and morphological changes lead to peripheral nerve damage and altered central nociceptive transmission, which may contribute to neuropathic pain symptoms. We characterized the electrophysiological response properties of spinal wide dynamic range (WDR) neurons in three diabetic models. The streptozotocin (STZ) model was used as a drug-induced model of type-1 diabetes, and the BioBreeding/Worcester (BB/Wor) and Zucker diabetic fatty (ZDF) rat models were used for genetic DPN models. Data were compared to the respective control group (BB/Wor diabetic-resistant, Zucker lean (ZL) and saline-injected Wistar rat). Response properties of WDR neurons to mechanical stimulation and spontaneous activity were assessed. We found abnormal response properties of spinal WDR neurons in all diabetic rats but not controls. Profound differences between models were observed. In BB/Wor diabetic rats evoked responses were increased, while in ZDF rats spontaneous activity was increased and in STZ rats mainly after discharges were increased. The abnormal response properties of neurons might indicate differential pathological, diabetes-induced, changes in spinal neuronal transmission. This study shows for the first time that specific electrophysiological response properties are characteristic for certain models of DPN and that these might reflect the diverse and complex symptomatology of DPN in the clinic. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Physiological changes in fast and slow muscle with simulated weightlessness
NASA Technical Reports Server (NTRS)
Dettbarn, W. D.; Misulis, K. E.
1984-01-01
A rat hindlimb suspension model of simulated weightlessness was used to examine the physiological characteristics of skeletal muscle. The physiological sequelae of hindlimb suspension were compared to those of spinal cord section, denervation by sciatic nerve crush, and control. Muscle examined were the predominantly slow (Type 1) soleus (SOL) and the predominantly fast (Type 2) extensor digitorum longus (EDL). Two procedures which alter motor unit activity, hindlimb suspension and spinal cord section, produce changes in characteristics of skeletal muscles that are dependent upon fiber type. The SOL develops characteristics more representative of a fast muscle, including smaller Type 1 fiber proportion and higher AChE activity. The EDL, which is already predominantly fast, loses most of its few Type 1 fibers, thus also becoming faster. These data are in agreement with the studies in which rats experienced actual weightlessness.
Matsumoto, Misaki; Xie, Weijiao; Inoue, Makoto; Ueda, Hiroshi
2007-01-01
Background We have proposed that nerve injury-specific loss of spinal tonic cholinergic inhibition may play a role in the analgesic effects of nicotinic acetylcholine receptor (nAChR) agonists on neuropathic pain. However, the tonic cholinergic inhibition of pain remains to be well characterized. Results Here, we show that choline acetyltransferase (ChAT) signals were localized not only in outer dorsal horn fibers (lamina I–III) and motor neurons in the spinal cord, but also in the vast majority of neurons in the dorsal root ganglion (DRG). When mice were treated with an antisense oligodeoxynucleotide (AS-ODN) against ChAT, which decreased ChAT signals in the dorsal horn and DRG, but not in motor neurons, they showed a significant decrease in nociceptive thresholds in paw pressure and thermal paw withdrawal tests. Furthermore, in a novel electrical stimulation-induced paw withdrawal (EPW) test, the thresholds for stimulation through C-, Aδ- and Aβ-fibers were all decreased by AS-ODN-pretreatments. The administration of nicotine (10 nmol i.t.) induced a recovery of the nociceptive thresholds, decreased by the AS-ODN, in the mechanical, thermal and EPW tests. However, nicotine had no effects in control mice or treated with a mismatch scramble (MS)-ODN in all of these nociception tests. Conclusion These findings suggest that primary afferent cholinergic neurons produce tonic inhibition of spinal pain through nAChR activation, and that intrathecal administration of nicotine rescues the loss of tonic cholinergic inhibition. PMID:18088441
Irradiation of Pediatric High-Grade Spinal Cord Tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tendulkar, Rahul D.; Pai Panandiker, Atmaram S., E-mail: atmaram.pai-panandiker@stjude.or; Wu Shengjie
2010-12-01
Purpose: To report the outcome using radiation therapy (RT) for pediatric patients with high-grade spinal cord tumors. Methods and Materials: A retrospective chart review was conducted that included 17 children with high-grade spinal cord tumors treated with RT at St. Jude Children's Research Hospital between 1981 and 2007. Three patients had gross total resection, 11 had subtotal resection, and 3 underwent biopsy. The tumor diagnosis was glioblastoma multiforme (n = 7), anaplastic astrocytoma (n = 8), or anaplastic oligodendroglioma (n = 2). Seven patients received craniospinal irradiation (34.2-48.6 Gy). The median dose to the primary site was 52.2 Gy (range,more » 38-66 Gy). Results: The median progression-free and overall survivals were 10.8 and 13.8 months, respectively. Local tumor progression at 12 months (79% vs. 30%, p = 0.02) and median survival (13.1 vs. 27.2 months, p = 0.09) were worse for patients with glioblastoma multiforme compared with anaplastic astrocytoma or oligodendroglioma. The median overall survival was shorter for patients when failure included neuraxis dissemination (n = 8) compared with local failure alone (n = 5), 9.6 vs. 13.8 months, p = 0.08. Three long-term survivors with World Health Organization Grade III tumors were alive with follow-up, ranging from 88-239 months. Conclusions: High-grade spinal cord primary tumors in children have a poor prognosis. The propensity for neuraxis metastases as a component of progression after RT suggests the need for more aggressive therapy.« less
Gulay, Ucarli; Meltem, Turkay; Nadir, Sinikoglu Sitki; Aysin, Alagol
2015-01-01
The aim was to compare visibility of the spinal space in sitting and lateral positions, number of attempts, spinal needle depth, skin-dura mater distance and the possible complications; in application of spinal anesthesia, using ultrasound in pregnant patients scheduled to receive elective cesarean operations. The study was conducted prospective-randomly after receiving approval from the ethics committee and the patients' permission. ASA I-II 50 pregnant patients were divided into two groups. The patients in Group SP were those placed in a sitting position and the patients in Group LP were those placed in a lateral position. In both groups, the skin-dura mater distance was recorded through an out-of plane technique accompanied by ultrasound. The depth of the spinal needle was measured. The number of attempts, the level of attempts recorded. The degree of visibility of the vertebral space was observed through ultrasound and was numerically scored. Intraoperative and postoperative complications were recorded. There was no difference between the number of attempts, Modified Bromage Scale and mean measurements of skin-dura mater distance observed through ultrasound. The mean needle depths of Group LP were statistically found significantly higher than Group SP (p=0.002). Our study supports the notion that access to the skin-dura mater distance is longer in the lateral decubitus position when skin-dura mater distance is evaluated by measuring needle depth.
Low-dose levobupivacaine plus fentanyl combination for spinal anesthesia in anorectal surgery.
Honca, Mehtap; Dereli, Necla; Kose, Emine Arzu; Honca, Tevfik; Kutuk, Selcen; Unal, Selma Savas; Horasanli, Eyup
2015-01-01
the aim of this study was to investigate the effects of spinal anesthesia using two different doses of fentanyl combined with low-dose levobupivacaine in anorectal surgery. in this prospective, double-blind study, 52 American Society of Anaesthesiologists I-II patients scheduled for elective anorectal surgery were randomized into two groups. The patients in group I received intrathecal 2.5mg hyperbaric levobupivacaine plus 12.5 μg fentanyl and in group II received intrathecal 2.5mg hyperbaric levobupivacaine plus 25 μg fentanyl. All the patients remained in the seated position for 5 min after completion of the spinal anesthesia. Sensory block was evaluated with pin-prick test and motor block was evaluated with a modified Bromage scale. motor block was not observed in both of the groups. The sensory block was limited to the S2 level in group I, and S1 level in group II. None of the patients required additional analgesics during the operation. Time to two-segment regression was shorter in group I compared with group II (p<0.01). One patient in group I and 5 patients in group II had pruritus. Hemodynamic parameters were stable during the operation in both of the groups. spinal saddle block using hyperbaric levobupivacaine with both 12.5 μg and 25 μg fentanyl provided good quality of anesthesia without motor block for anorectal surgery in the prone position. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.
[Low-dose levobupivacaine plus fentanyl combination for spinal anesthesia in anorectal surgery].
Honca, Mehtap; Dereli, Necla; Kose, Emine Arzu; Honca, Tevfik; Kutuk, Selcen; Unal, Selma Savas; Horasanli, Eyup
2015-01-01
The aim of this study was to investigate the effects of spinal anesthesia using two different doses of fentanyl combined with low-dose levobupivacaine in anorectal surgery. In this prospective, double-blind study, 52 American Society of Anaesthesiologists I-II patients scheduled for elective anorectal surgery were randomized into two groups. The patients in group I received intrathecal 2.5mg hyperbaric levobupivacaine plus 12.5μg fentanyl and in group II received intrathecal 2.5mg hyperbaric levobupivacaine plus 25μg fentanyl. All the patients remained in the seated position for 5min after completion of the spinal anesthesia. Sensory block was evaluated with pin-prick test and motor block was evaluated with a modified Bromage scale. Motor block was not observed in both of the groups. The sensory block was limited to the S2 level in group I, and S1 level in group II. None of the patients required additional analgesics during the operation. Time to two-segment regression was shorter in group I compared with group II (p<0.01). One patient in group I and 5 patients in group II had pruritus. Hemodynamic parameters were stable during the operation in both of the groups. Spinal saddle block using hyperbaric levobupivacaine with both 12.5μg and 25μg fentanyl provided good quality of anesthesia without motor block for anorectal surgery in the prone position. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.
Spinal deformity in patients with Sotos syndrome (cerebral gigantism).
Tsirikos, Athanasios I; Demosthenous, Nestor; McMaster, Michael J
2009-04-01
Retrospective review of a case series. To present the clinical characteristics and progression of spinal deformity in patients with Sotos syndrome. There is limited information on the development of spinal deformity and the need for treatment in this condition. The medical records and spinal radiographs of 5 consecutive patients were reviewed. All patients were followed to skeletal maturity (mean follow-up: 6.6 y). The mean age at diagnosis of spinal deformity was 11.9 years (range: 5.8 to 14.5) with 4 patients presenting in adolescence. The type of deformity was not uniform. Two patients presented in adolescence with relatively small and nonprogressive thoracolumbar and lumbar scoliosis, which required observation but no treatment until the end of spinal growth. Three patients underwent spinal deformity correction at a mean age of 11.7 years (range: 6 to 15.4). The first patient developed a double structural thoracic and lumbar scoliosis and underwent a posterior spinal arthrodesis extending from T3 to L4. Five years later, she developed marked degenerative changes at the L4/L5 level causing symptomatic bilateral lateral recess stenosis and affecting the L5 nerve roots. She underwent spinal decompression at L4/L5 and L5/S1 levels followed by extension of the fusion to the sacrum. The second patient developed a severe thoracic kyphosis and underwent a posterior spinal arthrodesis. The remaining patient presented at the age of 5.9 years with a severe thoracic kyphoscoliosis and underwent a 2-stage antero-posterior spinal arthrodesis. The development of spinal deformity is a common finding in children with Sotos syndrome and in our series it occurred in adolescence in 4 out of 5 patients. There is significant variability on the pattern of spine deformity, ranging from a scoliosis through kyphoscoliosis to a pure kyphosis, and also the age at presentation and need for treatment.
Takeoka, Aya; Vollenweider, Isabel; Courtine, Grégoire; Arber, Silvia
2014-12-18
Spinal cord injuries alter motor function by disconnecting neural circuits above and below the lesion, rendering sensory inputs a primary source of direct external drive to neuronal networks caudal to the injury. Here, we studied mice lacking functional muscle spindle feedback to determine the role of this sensory channel in gait control and locomotor recovery after spinal cord injury. High-resolution kinematic analysis of intact mutant mice revealed proficient execution in basic locomotor tasks but poor performance in a precision task. After injury, wild-type mice spontaneously recovered basic locomotor function, whereas mice with deficient muscle spindle feedback failed to regain control over the hindlimb on the lesioned side. Virus-mediated tracing demonstrated that mutant mice exhibit defective rearrangements of descending circuits projecting to deprived spinal segments during recovery. Our findings reveal an essential role for muscle spindle feedback in directing basic locomotor recovery and facilitating circuit reorganization after spinal cord injury. Copyright © 2014 Elsevier Inc. All rights reserved.
Dupont, Sara M; De Leener, Benjamin; Taso, Manuel; Le Troter, Arnaud; Nadeau, Sylvie; Stikov, Nikola; Callot, Virginie; Cohen-Adad, Julien
2017-04-15
The spinal cord white and gray matter can be affected by various pathologies such as multiple sclerosis, amyotrophic lateral sclerosis or trauma. Being able to precisely segment the white and gray matter could help with MR image analysis and hence be useful in further understanding these pathologies, and helping with diagnosis/prognosis and drug development. Up to date, white/gray matter segmentation has mostly been done manually, which is time consuming, induces a bias related to the rater and prevents large-scale multi-center studies. Recently, few methods have been proposed to automatically segment the spinal cord white and gray matter. However, no single method exists that combines the following criteria: (i) fully automatic, (ii) works on various MRI contrasts, (iii) robust towards pathology and (iv) freely available and open source. In this study we propose a multi-atlas based method for the segmentation of the spinal cord white and gray matter that addresses the previous limitations. Moreover, to study the spinal cord morphology, atlas-based approaches are increasingly used. These approaches rely on the registration of a spinal cord template to an MR image, however the registration usually doesn't take into account the spinal cord internal structure and thus lacks accuracy. In this study, we propose a new template registration framework that integrates the white and gray matter segmentation to account for the specific gray matter shape of each individual subject. Validation of segmentation was performed in 24 healthy subjects using T 2 * -weighted images, in 8 healthy subjects using diffusion weighted images (exhibiting inverted white-to-gray matter contrast compared to T 2 *-weighted), and in 5 patients with spinal cord injury. The template registration was validated in 24 subjects using T 2 *-weighted data. Results of automatic segmentation on T 2 *-weighted images was in close correspondence with the manual segmentation (Dice coefficient in the white/gray matter of 0.91/0.71 respectively). Similarly, good results were obtained in data with inverted contrast (diffusion-weighted image) and in patients. When compared to the classical template registration framework, the proposed framework that accounts for gray matter shape significantly improved the quality of the registration (comparing Dice coefficient in gray matter: p=9.5×10 -6 ). While further validation is needed to show the benefits of the new registration framework in large cohorts and in a variety of patients, this study provides a fully-integrated tool for quantitative assessment of white/gray matter morphometry and template-based analysis. All the proposed methods are implemented in the Spinal Cord Toolbox (SCT), an open-source software for processing spinal cord multi-parametric MRI data. Copyright © 2017 Elsevier Inc. All rights reserved.
Periconal arterial anastomotic circle and posterior lumbosacral watershed zone of the spinal cord.
Gailloud, Philippe; Gregg, Lydia; Galan, Peter; Becker, Daniel; Pardo, Carlos
2015-11-01
The existence of spinal cord watershed territories was suggested in the 1950s. Segmental infarcts within the junctional territories of adjacent radiculomedullary contributors and isolated spinal gray matter ischemia constitute two well-recognized types of watershed injury. This report describes the existence of another watershed territory related to the particular configuration of the spinal vasculature in the region of the conus medullaris. The anatomical bases underlying the concept of a posterior lumbosacral watershed zone are demonstrated with angiographic images obtained in a 16-year-old child. The clinical importance of this watershed zone is illustrated with MRI and angiographic data of three patients with a conus medullaris infarction. In all three cases of spinal ischemia an intersegmental artery providing a significant radiculomedullary contribution for the lower cord was compromised by a compressive mechanism responsible for decreased spinal cord perfusion (diaphragmatic crus syndrome in two cases, disk herniation in one). The ischemic injury, located at the junction of the anterior and posterior spinal artery territories along the dorsal aspect of the conus medullaris, was consistent with a watershed mechanism. This zone is at risk because of the caudocranial direction of flow within the most caudal segment of the posterior spinal arterial network which, from a functional standpoint, depends on the anterior spinal artery. The posterior thoracolumbar watershed zone of the spinal cord represents an area at increased risk of ischemic injury, particularly in the context of partial flow impairment related to arterial compression mechanisms. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Spinal ultrasound in patients with anorectal malformations: is this the end of an era?
Scottoni, Federico; Iacobelli, Barbara Daniela; Zaccara, Antonio Maria; Totonelli, Giorgia; Schingo, Antonio Maria Salvatore; Bagolan, Pietro
2014-08-01
Even if lumbar magnetic resonance imaging (MRI) is considered the gold standard in the diagnosis of occult spinal dysraphism (SD) in patients with anorectal malformations (ARMs), spinal ultrasound (US) performed up to 5 months of life have been largely used as a screening test. The aim of the present study was to evaluate the accuracy in terms of sensibility and specificity of neonatal US to detect occult SD in patients with ARMs. Retrospective analysis of all patients treated for ARMs between 1999 and 2013 at our institution who underwent both spinal US (up to 5 months of life) and MRI. Sensibility and specificity have been calculated for US based on MRI results. Of 244 patients treated for ARMs at our institution, 82 (34 females, 48 males) underwent both the imaging studies and have been included in this study. ARMs types were: anal stenosis (7), recto-vestibular fistula (19), recto-perineal fistula (3) and cloaca (5) in female and imperforate anus (7) recto-perineal fistula (14), recto-urethral fistula (22), recto-vesical fistula (5) in males. Forty-seven patients (57, 3 % of total, 18 females, 29 males) had some occult SD (tethered spinal cord, spinal lipoma, syringomyelia) at MRI. Only 7 (14, 8 %) patients of those with spinal anomalies at MRI had pathological US studies. In our population, sensibility and specificity of US for diagnosis of occult SD were, respectively, 14, 8 and 100 %. Since it is well known that a screening test must have a high sensibility, our data suggest that spinal ultrasound is not suitable as a screening test for occult spinal dysraphism in patients with ARMs. Furthermore, we strongly advise against the use of US as a screening test for spinal dysraphism to prevent a false sense of security in physician and patients' families.
Sun, Ke-fu; Feng, Wan-wen; Liu, Yue-peng; Dong, Yan-bin; Gao, Li; Yang, Hui-lin
2018-01-01
Objective The analgesic effect on chronic pain of peripheral nerve stimulation (PNS) has been proven, but its underlying mechanism remains unknown. Therefore, this study aimed to assess the analgesic effect of PNS on bone cancer pain in a rat model and to explore the underlying mechanism. Materials and methods PNS on sciatic nerves with bipolar electrode was performed in both naïve and bone cancer pain model rats. Then, the protein levels of activity-regulated cytoskeleton-associated protein (Arc), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid–type glutamate receptor 1 (GluA1), and phosphate N-methyl-d-aspartic acid-type glutamate receptor subunit 2B (pGluNR2B) in spinal cord were evaluated by immunohistochemistry and Western blotting. Thermal paw withdraw latency and mechanical paw withdraw threshold were used to estimate the analgesic effect of PNS on bone cancer pain. Intrathecal administration of Arc shRNA was used to inhibit Arc expression in the spinal cord. Results PNS at 60 and 120 Hz for 20 min overtly induced Arc expression in the spinal cord, increased thermal pain thresholds in naïve rats, and relieved bone cancer pain; meanwhile, 10 Hz PNS did not achieve those results. In addition, PNS at 60 and 120 Hz also reduced the expression of GluA1, but not pGluNR2B, in the spinal cord. Finally, the anti-nociceptive effect and GluA1 downregulation induced by PNS were inhibited by intrathecal administration of Arc shRNA. Conclusion PNS (60 Hz, 0.3 mA) can relieve bone-cancer-induced allodynia and hyperalgesia by upregulating Arc protein expression and then by decreasing GluA1 transcription in the spinal cord dorsal horn. PMID:29606887
Fathallah, F A; Marras, W S; Parnianpour, M
1999-09-01
Most biomechanical assessments of spinal loading during industrial work have focused on estimating peak spinal compressive forces under static and sagittally symmetric conditions. The main objective of this study was to explore the potential of feasibly predicting three-dimensional (3D) spinal loading in industry from various combinations of trunk kinematics, kinetics, and subject-load characteristics. The study used spinal loading, predicted by a validated electromyography-assisted model, from 11 male participants who performed a series of symmetric and asymmetric lifts. Three classes of models were developed: (a) models using workplace, subject, and trunk motion parameters as independent variables (kinematic models); (b) models using workplace, subject, and measured moments variables (kinetic models); and (c) models incorporating workplace, subject, trunk motion, and measured moments variables (combined models). The results showed that peak 3D spinal loading during symmetric and asymmetric lifting were predicted equally well using all three types of regression models. Continuous 3D loading was predicted best using the combined models. When the use of such models is infeasible, the kinematic models can provide adequate predictions. Finally, lateral shear forces (peak and continuous) were consistently underestimated using all three types of models. The study demonstrated the feasibility of predicting 3D loads on the spine under specific symmetric and asymmetric lifting tasks without the need for collecting EMG information. However, further validation and development of the models should be conducted to assess and extend their applicability to lifting conditions other than those presented in this study. Actual or potential applications of this research include exposure assessment in epidemiological studies, ergonomic intervention, and laboratory task assessment.
Occupant Kinematics in Laboratory Rollover Tests: ATD Response and Biofidelity.
Zhang, Qi; Lessley, David L; Riley, Patrick; Toczyski, Jacek; Lockerby, Jack; Foltz, Patrick; Overby, Brian; Seppi, Jeremy; Crandall, Jeff R; Kerrigan, Jason R
2014-11-01
Rollover crashes are a serious public health problem in United States, with one third of traffic fatalities occurring in crashes where rollover occurred. While it has been shown that occupant kinematics affect the injury risk in rollover crashes, no anthropomorphic test device (ATD) has yet demonstrated kinematic biofidelity in rollover crashes. Therefore, the primary goal of this study was to assess the kinematic response biofidelity of six ATDs (Hybrid III, Hybrid III Pedestrian, Hybrid III with Pedestrian Pelvis, WorldSID, Polar II and THOR) by comparing them to post mortem human surrogate (PMHS) kinematic response targets published concurrently; and the secondary goal was to evaluate and compare the kinematic response differences among these ATDs. Trajectories (head, T1, T4, T10, L1 and sacrum), spinal segment (head-to-T1, T1-to-T4, T4-T10, T10-L1, and L1-to-sacrum) rotations relative to the rollover buck, and spinal segment extension/compression were calculated from the collected kinematics data from an optical motion tracking system. Response differences among the ATDs were observed mainly due to the different lateral bending stiffness of the spine from their varied architecture, while the additional thoracic joint in Polar II and THOR did not seem to provide more flexion/extension compliance than the other ATDs. In addition, the ATD response data were compared to PMHS response corridors developed from similar tests for assessing ATD biofidelity. All of the ATDs, generally, drifted outboard and upward during the tests similar to the PMHS. However, accompanied with this upward and outward motion, the ATD head and upper torso pitched forward (~10 degrees) while the PMHS' head and upper torso pitching rearward (~10 to ~15 degrees), due to the absence of flexion/extension compliance in the ATD spine. The differences in these pitch motions resulted in a difference of 130 mm to 160 mm in the longitudinal position of the head at 195 degrees of roll angle. Finally, substantially less lateral spinal bending was also observed in the ATDs compared to the PMHS. The results of the current study suggests there is greater upper spine flexion/extension, and lateral bending stiffness in all of the ATDs in comparison to the PMHS, and provided information for improvement of ATD biofidelity in future for rollover crashes.
Effects of Electromagnetic Fields in Spinal Muscular Atrophy: A Case Report
NASA Astrophysics Data System (ADS)
Cañedo, L.; Martínez-Mata, J.; Serrano-Luna, G.
2004-09-01
Spinal Muscular Atrophy Type I is a disease that rapidly progress to death in early infancy. A case report of a child with Werdnig-Hoffmann disease Type I that recovered at three years of age after two years exposure to electromagnetic fields (ELF) is presented. The child is now eleven years old and with the exception of slightly abnormal gait, the muscle mass of tights and gluteus, high, weight and his everyday activities correspond to those of a normal child his age. Hypothetical explanations for the effects of the electromagnetic fields are discussed.
Agarwal, Prateek; Pierce, John; Welch, William C
2016-05-01
Lumbar spine surgery can be performed using various anesthetic modalities, most notably general or spinal anesthesia. Because data comparing the cost of these anesthetic modalities in spine surgery are scarce, this study asks whether spinal anesthesia is less costly than general anesthesia. A total of 542 patients who underwent elective lumbar diskectomy or laminectomy spine surgery between 2007 and 2011 were retrospectively identified, with 364 having received spinal anesthesia and 178 having received general anesthesia. Mean direct operating cost, indirect cost (general support staff, insurance, taxes, floor space, facility, and administrative costs), and total cost were compared among patients who received general and spinal anesthesia. Linear multiple regression analysis was used to identify the effect of anesthesia type on cost and determine the factors underlying this effect, while controlling for patient and procedure characteristics. When controlling for patient and procedure characteristics, use of spinal anesthesia was associated with a 41.1% lower direct operating cost (-$3629 ± $343, P < 0.001), 36.6% lower indirect cost (-$1603 ± $168, P < 0.001), and 39.6% lower total cost (-$5232 ± $482, P < 0.001) compared with general anesthesia. Shorter hospital stay, shorter duration of anesthesia, shorter duration of operation, and lower estimated blood loss contributed to lower costs for spinal anesthesia, but other factors beyond these were also responsible for lower direct operating and total costs. When comparing the benefits of spinal and general anesthesia, spinal anesthesia is less costly when used in patients undergoing lumbar diskectomy and laminectomy spine surgery. Copyright © 2016 Elsevier Inc. All rights reserved.
Modules in the brain stem and spinal cord underlying motor behaviors
Cheung, Vincent C. K.; Bizzi, Emilio
2011-01-01
Previous studies using intact and spinalized animals have suggested that coordinated movements can be generated by appropriate combinations of muscle synergies controlled by the central nervous system (CNS). However, which CNS regions are responsible for expressing muscle synergies remains an open question. We address whether the brain stem and spinal cord are involved in expressing muscle synergies used for executing a range of natural movements. We analyzed the electromyographic (EMG) data recorded from frog leg muscles before and after transection at different levels of the neuraxis—rostral midbrain (brain stem preparations), rostral medulla (medullary preparations), and the spinal-medullary junction (spinal preparations). Brain stem frogs could jump, swim, kick, and step, while medullary frogs could perform only a partial repertoire of movements. In spinal frogs, cutaneous reflexes could be elicited. Systematic EMG analysis found two different synergy types: 1) synergies shared between pre- and posttransection states and 2) synergies specific to individual states. Almost all synergies found in natural movements persisted after transection at rostral midbrain or medulla but not at the spinal-medullary junction for swim and step. Some pretransection- and posttransection-specific synergies for a certain behavior appeared as shared synergies for other motor behaviors of the same animal. These results suggest that the medulla and spinal cord are sufficient for the expression of most muscle synergies in frog behaviors. Overall, this study provides further evidence supporting the idea that motor behaviors may be constructed by muscle synergies organized within the brain stem and spinal cord and activated by descending commands from supraspinal areas. PMID:21653716
Crumrine, M H; Fischer, G W; Balk, M W
1979-01-01
Serological cross-reactions between certain streptococci and some serotypes of Streptococcus pneumoniae have been reported. These studies detail the serological cross-reactivity observed between hot HCl-extracted group b streptococcus type III (GBS III) antigens and S. pneumoniae type 14 (Pn 14) polysaccharide. Similar electrophoretic migration patterns of GBS III and Pn 14 were observed when either type-specific BGS III antisera or pneumococcal omniserum was utilized to precipitate these antigens. Both the GBS III antigen and the Pn 14 polysaccharide migrated toward the cathode, whereas all other pneumococcal polysaccharides migrated toward the anode. No cross-reactions were observed between GBS III antisera and the 11 other types of pneumococcal polysaccharides. Lines of identity were observed between type-specific GBS III antisera and monospecific Pn 14 antiserum with either GBS III antigens or purified Pn 14 polysaccharide. The cross-reacting antigens of GBS III and Pn 14 appear to be identical by immunodiffusion and immunoelectrophoresis. Images PMID:40876
Akazawa, S; Harada, A; Futatsuki, K
1984-07-01
It is known that interstitial collagens are initially synthesized as precursors (procollagen), which possess extra peptide segments at both ends of the molecules. The authors attempted to detect the aminoterminal peptide of type III procollagen (type III-N-peptide) and also to measure the carcinoembryonic antigen (CEA) and carbohydrate antigen (CA 19-9) together in sera of patients with gastric cancer. The results showed that: (1) mean serum levels and positive ratios of the type III-N-peptide increased as the clinical stage of the patients with gastric cancer advanced; (2) serum levels of the type III-N-peptide were not correlated either with those of CEA or CA 19-9; (3) positive ratios of type III-N-peptide, CEA and CA 19-9 were 51.7%, 44.8% and 48.3%, respectively: (4) positive ratio in combination of the type III-N-peptide with CEA was 69.3% and that in combination of the type III-N-peptide with CEA and CA 19-9 was 72.4%. These results suggest that type III-N-peptide is available for diagnosis of gastric cancer and, that the combination assay of type III-N-peptide with CEA and CA 19-9 is more effective than a single assay for diagnosis.
LaPatra, S.E.; Batts, W.N.; Overturf, K.; Jones, G.N.; Shewmaker, W.D.; Winton, J.R.
2001-01-01
To assess the risk of transmission of infectious haematopoietic necrosis virus (IHNV) associated with the movement of processed rainbow trout, Oncorhynchus mykiss, from an area where the virus is endemic, 240 freshly eviscerated fish (225-500 g) exhibiting spinal curvature or spinal compression types of deformities were tested for IHNV by virus isolation and polymerase chain reaction (PCR) techniques. Commercially produced rainbow trout, approximately 1-year-old, that exhibited spinal deformities were considered to have had a high likelihood of having survived an outbreak of IHN. Serological analysis of fish exhibiting spinal curvature or spinal compression types of deformities for anti-IHNV antibodies resulted, in 71 and 50% of the serum samples, respectively, with detectable neutralization activity suggesting previous infection with IHNV. A portion of the skin and muscle in the area of the deformity was collected, as well as brain tissue from each commercially processed fish. Tissue homogenates were tested for IHNV using the epithelioma papulosum cyprini (EPC) cell line pretreated with polyethylene glycol and the chinook salmon embryo (CHSE-214) cell line using standard methods. Nested, reverse transcriptase (RT)-PCR for the detection of IHNV used the central 1231 bp portion of the glycoprotein (G) challenge studies and is suggested as a mechanism responsible for virus clearance. These results provide scientific information that can be used to assess the risk associated with the movement of processed rainbow trout from an IHNV endemic area.
The late and dual origin of cerebrospinal fluid-contacting neurons in the mouse spinal cord
Petracca, Yanina L.; Sartoretti, Maria Micaela; Di Bella, Daniela J.; Marin-Burgin, Antonia; Carcagno, Abel L.; Schinder, Alejandro F.; Lanuza, Guillermo M.
2016-01-01
Considerable progress has been made in understanding the mechanisms that control the production of specialized neuronal types. However, how the timing of differentiation contributes to neuronal diversity in the developing spinal cord is still a pending question. In this study, we show that cerebrospinal fluid-contacting neurons (CSF-cNs), an anatomically discrete cell type of the ependymal area, originate from surprisingly late neurogenic events in the ventral spinal cord. CSF-cNs are identified by the expression of the transcription factors Gata2 and Gata3, and the ionic channels Pkd2l1 and Pkd1l2. Contrasting with Gata2/3+ V2b interneurons, differentiation of CSF-cNs is independent of Foxn4 and takes place during advanced developmental stages previously assumed to be exclusively gliogenic. CSF-cNs are produced from two distinct dorsoventral regions of the mouse spinal cord. Most CSF-cNs derive from progenitors circumscribed to the late-p2 and the oligodendrogenic (pOL) domains, whereas a second subset of CSF-cNs arises from cells bordering the floor plate. The development of these two subgroups of CSF-cNs is differentially controlled by Pax6, they adopt separate locations around the postnatal central canal and they display electrophysiological differences. Our results highlight that spatiotemporal mechanisms are instrumental in creating neural cell diversity in the ventral spinal cord to produce distinct classes of interneurons, motoneurons, CSF-cNs, glial cells and ependymal cells. PMID:26839365
Foulon, Brianne L; Ginis, Kathleen A Martin
2013-01-01
The purpose of this study was to explore the effectiveness of informational portrait vignettes for enhancing physical activity-related psychosocial cognitions in adults with spinal cord injury (n = 90). Using the Health Action Process Approach (HAPA), participants were classified as being in the motivational or volitional phase of behavior change. Half of the participants were randomly allocated to read an experimental vignette, which described the physical activity behaviours, thoughts, and feelings of a character demographically similar to the reader. The remainder read a control vignette. Social cognitions were measured one-week before, and immediately after reading the vignette. Analyses revealed no significant effects of the vignettes on social cognitions (p > 0.05). Informational portrait vignettes describing a physically active person with SCI and targeting multiple HAPA-based social cognitions are not recommended as a physical activity promotional strategy for people with SCI. The effectiveness of other types of vignettes should be examined. Until further research is completed to determine whether social comparison strategies play a meditational role in accounting for the impact of a tailored informational portrait vignette to alter leisure time physical activity among those with spinal cord injury, these types of informational intervention should not be utilized in a rehabilitation, or real-world, setting. Although informational portrait vignettes may not be effective in altering leisure time physical activity social cognitions among those with spinal cord injury, different types of vignettes, such as composite vignettes, should be explored.
Yang, Hai-song; Lu, Xu-hua; Yang, Li–li; Yan, Wang-jun; Yuan, Wen; Chen, Yu
2009-01-01
Ossification of the posterior longitudinal ligament (OPLL) is a common spinal disorder that presents with or without cervical myelopathy. Furthermore, there is evidence suggesting that OPLL often coexists with cervical disc hernia (CDH), and that the latter is the more important compression factor. To raise the awareness of CDH in OPLL for spinal surgeons, we performed a retrospective study on 142 patients with radiologically proven OPLL who had received surgery between January 2004 and January 2008 in our hospital. Plain radiograph, three-dimensional computed tomography construction (3D CT), and magnetic resonance imaging (MRI) of the cervical spine were all performed. Twenty-six patients with obvious CDH (15 of segmental-type, nine of mixed-type, two of continuous-type) were selected via clinical and radiographic features, and intraoperative findings. By MRI, the most commonly involved level was C5/6, followed by C3/4, C4/5, and C6/7. The areas of greatest spinal cord compression were at the disc levels because of herniated cervical discs. Eight patients were decompressed via anterior cervical discectomy and fusion (ACDF), 13 patients via anterior cervical corpectomy and fusion (ACCF), and five patients via ACDF combined with posterior laminectomy and fusion. The outcomes were all favorable. In conclusion, surgeons should consider the potential for CDH when performing spinal cord decompression and deciding the surgical approach in patients presenting with OPLL. PMID:20012451
Postoperative cognitive changes after total knee arthroplasty under regional anesthesia
Jeon, Young-Tae; Kim, Byung-Gun; Park, Young Ho; Sohn, Hye-Min; Kim, Jungeun; Kim, Seung Chan; An, Seong Soo; Kim, SangYun
2016-01-01
Abstract Background: The type of postoperative cognitive decline after surgery under spinal anesthesia is unknown. We investigated the type of postoperative cognitive decline after total knee arthroplasty (TKA). Neuropsychological testing was conducted and the changes in cerebrospinal fluid (CSF) biomarkers after surgery were evaluated. Methods: Fifteen patients who required bilateral TKA at a 1-week interval under spinal anesthesia were included. Neuropsychological tests were performed twice, once the day before the first operation and just before the second operation (usually 1 week after the first test) to determine cognitive decline. Validated neuropsychological tests were used to examine 4 types of cognitive decline: memory, frontal-executive, language-semantic, and others. Concentrations of CSF amyloid peptide, tau protein, and S100B were measured twice during spinal anesthesia at a 1-week interval. The patients showed poor performance in frontal-executive function (forward digit span, semantic fluency, letter-phonemic fluency, and Stroop color reading) at the second compared to the first neuropsychological assessment. Results: S100B concentration decreased significantly 1 week after the operation compared to the basal value (638 ± 178 vs 509 ± 167 pg/mL) (P = 0.019). Amyloid protein β1–42, total tau, and phosphorylated tau concentrations tended to decrease but the changes were not significant. Conclusion: Our results suggest that frontal-executive function declined 1 week after TKA under spinal anesthesia. The CSF biomarker analysis indicated that TKA under regional anesthesia might not cause neuronal damage. PMID:28033253
Ahmed, Nayeema; Quadir, Mohammad Morshedul; Rahman, Mohammad Akhlasur; Alamgir, Hasanat
2018-05-01
This study reports level of community integration and life satisfaction among individuals who sustained traumatic spinal cord injuries, received institutional rehabilitation care services, and went back to live in the community in Bangladesh. It examines the impact of type of injury, demographic characteristics, socio-economic profile, and secondary health conditions on community integration and life satisfaction and explores the association between these two measures. Individuals with spinal cord injury were telephone interviewed by the Centre for the Rehabilitation of the Paralysed, Bangladesh from February to June of 2014. Data were collected from the subjects on type of injury, demographic and socio-economic profile, and secondary health conditions. The outcome measures were determined by using two validated tools - Community Integration Questionnaire and Life Satisfaction 9 Questionnaire. Total community integration and life satisfaction scores were 15.09 and 3.69, respectively. A significant positive relationship between community integration and life satisfaction was revealed. Type of injury, gender, and age were found to be significant predictors of both community integration and life satisfaction scores. Higher education was significantly related to community integration and life satisfaction scores. Participants scored low in total community integration and life satisfaction, suggesting there is a great need to develop interventions by governmental and non-governmental organizations to better integrate individuals with spinal cord injury in the community. Implications for Rehabilitation Government and non-government organizations should offer disability friendly public transportation facilities for individuals with spinal cord injury so that they can return to education, resume employment, and involve in social activities. Entrepreneurs and businesses should develop assistive devices featuring low technology, considering the rural structure and housing conditions in Bangladesh. Innovations being made in assistive technology should be supported by subsidies and grants. They should also plan to offer injury appropriate employment opportunities for individuals who suffer major injuries like spinal cord injury in Bangladesh. Housing facilities with accessible bathrooms, kitchens and stairs should be designed and offered for this population to improve their ability to self-care and decrease the dependence on caregivers for household tasks such as - cooking meals and taking care of children.
Pervolaraki, Kalliopi; Stanifer, Megan L; Münchau, Stephanie; Renn, Lynnsey A; Albrecht, Dorothee; Kurzhals, Stefan; Senís, Elena; Grimm, Dirk; Schröder-Braunstein, Jutta; Rabin, Ronald L; Boulant, Steeve
2017-01-01
Intestinal epithelial cells (IECs) are constantly exposed to commensal flora and pathogen challenges. How IECs regulate their innate immune response to maintain gut homeostasis remains unclear. Interferons (IFNs) are cytokines produced during infections. While type I IFN receptors are ubiquitously expressed, type III IFN receptors are expressed only on epithelial cells. This epithelium specificity strongly suggests exclusive functions at epithelial surfaces, but the relative roles of type I and III IFNs in the establishment of an antiviral innate immune response in human IECs are not clearly defined. Here, we used mini-gut organoids to define the functions of types I and III IFNs to protect the human gut against viral infection. We show that primary non-transformed human IECs, upon viral challenge, upregulate the expression of both type I and type III IFNs at the transcriptional level but only secrete type III IFN in the supernatant. However, human IECs respond to both type I and type III IFNs by producing IFN-stimulated genes that in turn induce an antiviral state. Using genetic ablation of either type I or type III IFN receptors, we show that either IFN can independently restrict virus infection in human IECs. Importantly, we report, for the first time, differences in the mechanisms by which each IFN establishes the antiviral state. Contrary to type I IFN, the antiviral activity induced by type III IFN is strongly dependent on the mitogen-activated protein kinases signaling pathway, suggesting a pathway used by type III IFNs that non-redundantly contributes to the antiviral state. In conclusion, we demonstrate that human intestinal epithelial cells specifically regulate their innate immune response favoring type III IFN-mediated signaling, which allows for efficient protection against pathogens without producing excessive inflammation. Our results strongly suggest that type III IFN constitutes the frontline of antiviral response in the human gut. We propose that mucosal surfaces, particularly the gastrointestinal tract, have evolved to favor type III IFN-mediated response to pathogen infections as it allows for spatial segregation of signaling and moderate production of inflammatory signals which we propose are key to maintain gut homeostasis.
Bailey, K Alysse; Gammage, Kimberley L; van Ingen, Cathy; Ditor, David S
2016-01-01
Using modified constructivist grounded theory, the purpose of this study was to explore body image experiences in people with spinal cord injury. Nine participants (five women, four men) varying in age (21-63 years), type of injury (C3-T7; complete and incomplete), and years post-injury (4-36 years) took part in semi-structured in-depth interviews. The following main categories were found: appearance, weight concerns, negative functional features, impact of others, body disconnection, hygiene and incontinence, and self-presentation. Findings have implications for the health and well-being of those living with a spinal cord injury.
Properties of Decameter IIIb-III Pairs
NASA Astrophysics Data System (ADS)
Melnik, V. N.; Brazhenko, A. I.; Frantsuzenko, A. V.; Dorovskyy, V. V.; Rucker, H. O.
2018-02-01
A large number of Type IIIb-III pairs, in which the first component is a Type IIIb burst and the second one is a Type III burst, are often recorded during decameter Type III burst storms. From the beginning of their observation, the question of whether the components of these pairs are the first and the second harmonics of radio emission or not has remained open. We discuss properties of decameter IIIb-III pairs in detail to answer this question. The components of these pairs, Type IIIb bursts and Type III bursts, have essentially different durations and polarizations. At the same time their frequency drift rates are rather close, provided that the drift rates of Type IIIb bursts are a little larger those of Type III bursts at the same frequency. Frequency ratios of the bursts at the same moment are close to two. This points at a harmonic connection of the components in IIIb-III pairs. At the same time there was a serious difficulty, namely why the first harmonic had fine frequency structure in the form of striae and the second harmonic did not have it. Recently Loi, Cairns, and Li ( Astrophys. J. 790, 67, 2014) succeeded in solving this problem. The physical aspects of observational properties of decameter IIIb-III pairs are discussed and pros and cons of harmonic character of Type IIIb bursts and Type III bursts in IIIb-III pairs are presented. We conclude that practically all properties of the IIIb-III pair components can be understood in the framework of the harmonic relation of the components of the IIIb-III pairs.
Théroux, Jean; Le May, Sylvie; Hebert, Jeffrey J; Labelle, Hubert
2017-08-01
A cross-sectional study. The aim of this study was to investigate spinal pain prevalence in adolescents with idiopathic scoliosis (AIS) and to explore associations between pain intensity and pain-related disability with scoliosis site, severity, and spinal bracing. The causal link between spinal pain and AIS remains unclear. Spinal asymmetry has been recognized as a back pain risk factor, which is a known cause of care-seeking in adolescents. Participants were recruited from an outpatient tertiary-care scoliosis clinic. Pain intensity and pain-related disability were measured by the Brief Pain Inventory questionnaire and the Roland-Morris Disability Questionnaire. Scoliosis severity estimation was performed using Cobb angles. Associations were explored using multiple linear regressions and reported with unstandardized beta coefficients (β) adjusted for age and sex. We recruited 500 patients (85% female) with mean (SD) age of 14.2 (1.8) years. Means (SD) of thoracic and lumbar Cobb angle were 24.54(9.77) and 24.13 (12.40), respectively. Spinal pain prevalence was 68% [95% confidence interval (95% CI): 64.5-72.4] with a mean intensity of 1.63 (SD, 1.89). Spinal pain intensity was positively associated with scoliosis severity in the main thoracic (P = 0.003) and lumbar (P = 0.001) regions. The mean (SD) disability score was 1.73 (2.98). Disability was positively associated with scoliosis severity in the proximal thoracic (P = 0.035), main thoracic (P = 0.000), and lumbar (P = 0.000) regions.Spinal bracing was associated with lower spinal pain intensity in the thoracic (P = 0.000) and lumbar regions (P = 0.009). Bracing was also related with lower disability for all spinal areas (P < 0.045). Spinal pain is common among patients with AIS, and greater spinal deformity was associated with higher pain intensity. These findings should inform clinical decision-making when caring for patients with AIS. 3.
Koda, Masao; Hanaoka, Hideki; Sato, Takatoshi; Fujii, Yasuhisa; Hanawa, Michiko; Takahashi, Sho; Furuya, Takeo; Ijima, Yasushi; Saito, Junya; Kitamura, Mitsuhiro; Ohtori, Seiji; Matsumoto, Yukei; Abe, Tetsuya; Watanabe, Kei; Hirano, Toru; Ohashi, Masayuki; Shoji, Hirokazu; Mizouchi, Tatsuki; Takahashi, Ikuko; Kawahara, Norio; Kawaguchi, Masahito; Orita, Yugo; Sasamoto, Takeshi; Yoshioka, Masahito; Fujii, Masafumi; Yonezawa, Katsutaka; Soma, Daisuke; Taneichi, Hiroshi; Takeuchi, Daisaku; Inami, Satoshi; Moridaira, Hiroshi; Ueda, Haruki; Asano, Futoshi; Shibao, Yosuke; Aita, Ikuo; Takeuchi, Yosuke; Mimura, Masaya; Shimbo, Jun; Someya, Yukio; Ikenoue, Sumio; Sameda, Hiroaki; Takase, Kan; Ikeda, Yoshikazu; Nakajima, Fumitake; Hashimoto, Mitsuhiro; Ozawa, Tomoyuki; Hasue, Fumio; Fujiyoshi, Takayuki; Kamiya, Koshiro; Watanabe, Masahiko; Katoh, Hiroyuki; Matsuyama, Yukihiro; Yamamoto, Yu; Togawa, Daisuke; Hasegawa, Tomohiko; Kobayashi, Sho; Yoshida, Go; Oe, Shin; Banno, Tomohiro; Arima, Hideyuki; Akeda, Koji; Kawamoto, Eiji; Imai, Hiroshi; Sakakibara, Toshihiko; Sudo, Akihiro; Ito, Yasuo; Kikuchi, Tsuyoshi; Osaki, Shuhei; Tanaka, Nobuhiro; Nakanishi, Kazuyoshi; Kamei, Naosuke; Kotaka, Shinji; Baba, Hideo; Okudaira, Tsuyoshi; Konishi, Hiroaki; Yamaguchi, Takayuki; Ito, Keigo; Katayama, Yoshito; Matsumoto, Taro; Matsumoto, Tomohiro; Idota, Masaru; Kanno, Haruo; Aizawa, Toshimi; Hashimoto, Ko; Eto, Toshimitsu; Sugaya, Takehiro; Matsuda, Michiharu; Fushimi, Kazunari; Nozawa, Satoshi; Iwai, Chizuo; Taguchi, Toshihiko; Kanchiku, Tsukasa; Suzuki, Hidenori; Nishida, Norihiro; Funaba, Masahiro; Yamazaki, Masashi
2018-01-01
Introduction Granulocyte colony-stimulating factor (G-CSF) is generally used for neutropaenia. Previous experimental studies revealed that G-CSF promoted neurological recovery after spinal cord injury (SCI). Next, we moved to early phase of clinical trials. In a phase I/IIa trial, no adverse events were observed. Next, we conducted a non-randomised, non-blinded, comparative trial, which suggested the efficacy of G-CSF for promoting neurological recovery. Based on those results, we are now performing a phase III trial. Methods and analysis The objective of this study is to evaluate the efficacy of G-CSF for acute SCI. The study design is a prospective, multicentre, randomised, double-blinded, placebo-controlled comparative study. The current trial includes cervical SCI (severity of American Spinal Injury Association (ASIA) Impairment Scale B/C) within 48 hours after injury. Patients are randomly assigned to G-CSF and placebo groups. The G-CSF group is administered 400 µg/m2/day×5 days of G-CSF in normal saline via intravenous infusion for 5 consecutive days. The placebo group is similarly administered a placebo. Our primary endpoint is changes in ASIA motor scores from baseline to 3 months. Each group includes 44 patients (88 total patients). Ethics and dissemination The study will be conducted according to the principles of the World Medical Association Declaration of Helsinki and in accordance with the Japanese Medical Research Involving Human Subjects Act and other guidelines, regulations and Acts. Results of the clinical study will be submitted to the head of the respective clinical study site as a report after conclusion of the clinical study by the sponsor-investigator. Even if the results are not favourable despite conducting the clinical study properly, the data will be published as a paper. Trial registration number UMIN000018752. PMID:29730616
Spine Trauma-What Are the Current Controversies?
Oner, Cumhur; Rajasekaran, Shanmuganathan; Chapman, Jens R; Fehlings, Michael G; Vaccaro, Alexander R; Schroeder, Gregory D; Sadiqi, Said; Harrop, James
2017-09-01
Although less common than other musculoskeletal injuries, spinal trauma may lead to significantly more disability and costs. During the last 2 decades there was substantial improvement in our understanding of the basic patterns of spinal fractures leading to more reliable classification and injury severity assessment systems but also rapid developments in surgical techniques. Despite these advancements, there remain unresolved issues concerning the management of these injuries. At this moment there is persistent controversy within the spinal trauma community, which can be grouped under 6 headings. First of all there is still no unanimity on the role and timing of medical and surgical interventions for patients with associated neurologic injury. The same is also true for type and timing of surgical intervention in multiply injured patients. In some common injury types like odontoid fractures and burst type (A3-A4) fractures in thoracolumbar spine, there is wide variation in practice between operative versus nonoperative management without clear reasons. Also, the role of different surgical approaches and techniques in certain injury types are not clarified yet. Methods of nonoperative management and care of elderly patients with concurrent complex disorders are also areas where there is no consensus. In this overview article the main reasons for these controversies are reviewed and the possible ways for resolutions are discussed.
Jones, Victoria; Wykes, Victoria; Cohen, Nicki; Thompson, Dominic; Jacques, Tom S
2018-06-01
Lumbosacral lipomas (LSL) are congenital disorders of the terminal spinal cord region that have the potential to cause significant spinal cord dysfunction in children. They are of unknown embryogenesis with variable clinical presentation and natural history. It is unclear whether the spinal cord dysfunction reflects a primary developmental dysplasia or whether it occurs secondarily to mechanical traction (spinal cord tethering) with growth. While different anatomical subtypes are recognised and classified according to radiological criteria, these subtypes correlate poorly with clinical prognosis. We have undertaken an analysis of surgical specimens in order to describe the spectrum of histological changes that occur and have correlated the histology with the anatomical type of LSL to determine if there are distinct histological subtypes. The histopathology was reviewed of 64 patients who had undergone surgical resection of LSL. The presence of additional tissues and cell types were recorded. LSLs were classified from pre-operative magnetic resonance imaging (MRI) scans according to Chapman classification. Ninety-five per cent of the specimens consisted predominantly of mature adipocytes with all containing thickened bands of connective tissue and peripheral nerve fibres, 91% of samples contained ectatic blood vessels with thickened walls, while 22% contained central nervous system (CNS) glial tissue. Additional tissue was identified of both mesodermal and neuroectodermal origin. Our analysis highlights the heterogeneity of tissue types within all samples, not reflected in the nomenclature. The diversity of tissue types, consistent across all subtypes, challenges currently held notions regarding the embryogenesis of LSLs and the assumption that clinical deterioration is due simply to tethering. © 2018 The Authors. Histopathology Published by John Wiley & Sons Ltd.
Will stem cell therapies be safe and effective for treating spinal cord injuries?
Thomas, Katharine E.; Moon, Lawrence D. F.
2017-01-01
Introduction A large number of different cells including embryonic and adult stem cells have been transplanted into animal models of spinal cord injury, and in many cases these procedures have resulted in modest sensorimotor benefits. In October 2010 the world’s first clinical trial using human embryonic stem cells began, using stem cells converted into oligodendrocyte precursor cells. Sources of data In this review we examine some of the publically-available pre-clinical evidence that some of these cell types improve outcome in animal models of spinal cord injury. Much evidence is not available for public scrutiny, however, being private commercial property of various stem cell companies. Areas of agreement Transplantation of many different types of stem and progenitor cell enhances spontaneous recovery of function when transplanted acutely after spinal cord injury in animal models. Areas of disagreement The common mechanism(s) whereby the generic procedure of cellular transplantation enhances recovery of function are not well understood, although a range of possibilities are usually cited (including preservation of tissue, remyelination, axon sprouting, glial cell replacement). Only in exceptional cases has it been shown that functional recovery depends causally on the survival and differentiation of the transplanted cells. There is no agreement about the optimal cell type for transplantation: candidate stem cells have not yet been compared with each other or with other cell types (e.g., autologous Schwann cells) in a single study. Areas timely for developing research Transplantation of cells into animals with a long lifespan is important to determine whether or not tumours will eventually form. It will also be important to determine whether long-term survival of cells is required for functional recovery, and if so, how many are optimal. PMID:21586446
White, S M; Moppett, I K; Griffiths, R
2014-03-01
Large observational studies of accurate data can provide similar results to more arduous and expensive randomised controlled trials. In 2012, the National Hip Fracture Database extended its dataset to include 'type of anaesthesia' data fields. We analysed 65 535 patient record sets to determine differences in outcome. Type of anaesthesia was recorded in 59 191 (90%) patients. Omitting patients who received both general and spinal anaesthesia or in whom an uncertain type of anaesthesia was recorded, there was no significant difference in either cumulative five-day (2.8% vs 2.8%, p = 0.991) or 30-day (7.0% vs 7.5%, p = 0.053) mortality between 30 130 patients receiving general anaesthesia and 22 999 patients receiving spinal anaesthesia, even when 30-day mortality was adjusted for age and ASA physical status (p = 0.226). Mortality within 24 hours after surgery was significantly higher among patients receiving cemented compared with uncemented hemiarthroplasty (1.6% vs 1.2%, p = 0.030), suggesting excess early mortality related to bone cement implantation syndrome. If these data are accurate, then either there is no difference in 30-day mortality between general and spinal anaesthesia after hip fracture surgery per se, and therefore future research should focus on how to make both types of anaesthesia safer, or there is a difference, but mortality is not the correct outcome to measure after anaesthesia, and therefore future research should focus on differences between general and spinal anaesthesia. These could include more anaesthesia-sensitive outcomes, such as hypotension, pain, postoperative confusion, respiratory infection and mobilisation. © 2014 The Association of Anaesthetists of Great Britain and Ireland.
Type III Radio Burst Duration and SEP Events
NASA Technical Reports Server (NTRS)
Gopalswamy, N.; Makela, P.; Xie, H.
2010-01-01
Long-duration (>15 min), low-frequency (<14 MHz) type III radio bursts have been reported to be indicative of solar energetic particle events. We measured the durations of type III bursts associated with large SEP events of solar cycle 23. The Type III durations are distributed symmetrically at 1 MHz yielding a mean value of approximately 33 min (median = 32 min) for the large SEP events. When the SEP events with ground level enhancement (GLE,) are considered, the distribution is essentially unchanged (mean = 32 min, median = 30 min). To test the importance of type III bursts in indicating SEP events, we considered a set of six type III bursts from the same active region (AR 10588) whose durations fit the "long duration" criterion. We analyzed the coronal mass ejections (CMEs), flares, and type II radio bursts associated with the type III bursts. The CMEs were of similar speeds and the flares are also of similar size and duration. All but one of the type III bursts was not associated with a type II burst in the metric or longer wavelength domains. The burst without type II burst also lacked a solar energetic particle (SEP) event at energies >25 MeV. The 1-MHz duration of the type III burst (28 rein) is near the median value of type III durations found for gradual SEP events and ground level enhancement (GLE) events. Yet, there was no sign of SEP events. On the other hand, two other type III bursts from the same active region had similar duration but accompanied by WAVES type 11 bursts; these bursts were also accompanied by SEP events detected by SOHO/ERNE. This study suggests that the type III burst duration may not be a good indicator of an SEP event, consistent with the statistical study of Cliver and Ling (2009, ApJ ).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavitt, Ania S.; Bylaska, Eric J.; Tratnyek, Paul G.
As described in the main text, we classified our voltammograms into four types. For phenols, most compounds were type I or type II, except four phenols that were type III (4-nitrophenol, 4-cyanophenol, DNOC, and 4-hydroxyacetphenone); and two phenols that were type IV (4-aminophenol and dopamine). Almost all of the compounds gave the same type by SCV and SWV, except for 2,4-dinitrophenol (whose current went up and down and therefore could be considered a type II or III), 4-cyanophenol (which fell into a type III for SCV, but whose current went up and down in SWV (type II or III)), andmore » 4-hydroxyacetophenone (which was a type III in SCV, but a type II in SWV). The majority of the anilines were type I except for p-toluidine (type II) and 4-methyl-3-nitroaniline and 2-methoxy-5-nitroaniline (both were type I for SWV, but for SCV fell into type III and type II respectively).« less
Pavitt, Ania S.; Bylaska, Eric J.; Tratnyek, Paul G.
2017-02-10
As described in the main text, we classified our voltammograms into four types. For phenols, most compounds were type I or type II, except four phenols that were type III (4-nitrophenol, 4-cyanophenol, DNOC, and 4-hydroxyacetphenone); and two phenols that were type IV (4-aminophenol and dopamine). Almost all of the compounds gave the same type by SCV and SWV, except for 2,4-dinitrophenol (whose current went up and down and therefore could be considered a type II or III), 4-cyanophenol (which fell into a type III for SCV, but whose current went up and down in SWV (type II or III)), andmore » 4-hydroxyacetophenone (which was a type III in SCV, but a type II in SWV). The majority of the anilines were type I except for p-toluidine (type II) and 4-methyl-3-nitroaniline and 2-methoxy-5-nitroaniline (both were type I for SWV, but for SCV fell into type III and type II respectively).« less
Savikj, Mladen; Ruby, Maxwell A; Kostovski, Emil; Iversen, Per O; Zierath, Juleen R; Krook, Anna; Widegren, Ulrika
2018-06-01
Despite the well-known role of satellite cells in skeletal muscle plasticity, the effect of spinal cord injury on their function in humans remains unknown. We determined whether spinal cord injury affects the intrinsic ability of satellite cells to differentiate and produce metabolically healthy myotubes. We obtained vastus lateralis biopsies from eight spinal cord-injured and six able-bodied individuals. Satellite cells were isolated, grown and differentiated in vitro. Gene expression was measured by quantitative PCR. Abundance of differentiation markers and regulatory proteins was determined by Western blotting. Protein synthesis and fatty acid oxidation were measured by radioactive tracer-based assays. Activated satellite cells (myoblasts) and differentiated myotubes derived from skeletal muscle of able-bodied and spinal cord-injured individuals expressed similar (P > 0.05) mRNA levels of myogenic regulatory factors. Myogenic differentiation factor 1 expression was higher in myoblasts from spinal cord-injured individuals. Desmin and myogenin protein content was increased upon differentiation in both groups, while myotubes from spinal cord-injured individuals contained more type I and II myosin heavy chain. Phosphorylated and total protein levels of Akt-mechanistic target of rapamycin and forkhead box protein O signalling axes and protein synthesis rate in myotubes were similar (P > 0.05) between groups. Additionally, fatty acid oxidation of myotubes from spinal cord-injured individuals was unchanged (P > 0.05) compared to able-bodied controls. Our results indicate that the intrinsic differentiation capacity of satellite cells and metabolic characteristics of myotubes are preserved following spinal cord injury. This may inform potential interventions targeting satellite cell activation to alleviate skeletal muscle atrophy. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Liu, Tong; Han, Qingjian; Chen, Gang; Huang, Ya; Zhao, Lin-Xia; Berta, Temugin; Gao, Yong-Jing; Ji, Ru-Rong
2016-01-01
Increasing evidence suggests that Toll-like receptor 4 (TLR4) contributes importantly to spinal cord glial activation and chronic pain sensitization; however, its unique role in acute and chronic itch is unclear. In this study, we investigated the involvement of TLR4 in acute and chronic itch models in male mice using both transgenic and pharmacological approaches. Tlr4−/− mice exhibited normal acute itch induced by compound 48/80 and chloroquine, but these mice showed substantial reductions in scratching in chronic itch models of dry skin, induced by acetone and diethyether followed by water (AEW), contact dermatitis, and allergic contact dermatitis on the neck. Intrathecal (spinal) inhibition of TLR4 with lipopolysaccharide Rhodobacter sphaeroides (LPS-RS) did not affect acute itch but suppressed AEW-induced chronic itch. Compound 48/80 and AEW also produced robust alloknesis, a touch-elicited itch in wild-type mice, which was suppressed by intrathecal LPS-RS and Tlr4−/− deletion. AEW induced persistent upregulation of Tlr4 mRNA and increased TLR4 expression in GFAP-expressing astrocytes in spinal cord dorsal horn. AEW also induced TLR4-dependent astrogliosis (GFAP upregulation) in spinal cord. Intrathecal injection of astroglial inhibitor L-α-aminoadipate reduced AEW-induced chronic itch and alloknesis without affecting acute itch. Spinal TLR4 was also necessary for AEW-induced chronic itch in the cheek model. Interestingly, scratching plays an essential role in spinal astrogliosis, since AEW-induced astrogliosis was abrogated by putting Elizabethan Collars on the neck to prevent scratching the itchy skin. Our findings suggest that spinal TLR4 signaling is important for spinal astrocyte activation and astrogliosis that may underlie alloknesis and chronic itch. PMID:26645545
Cocks, Graham; Romanyuk, Nataliya; Amemori, Takashi; Jendelova, Pavla; Forostyak, Oksana; Jeffries, Aaron R; Perfect, Leo; Thuret, Sandrine; Dayanithi, Govindan; Sykova, Eva; Price, Jack
2013-06-07
The use of immortalized neural stem cells either as models of neural development in vitro or as cellular therapies in central nervous system (CNS) disorders has been controversial. This controversy has centered on the capacity of immortalized cells to retain characteristic features of the progenitor cells resident in the tissue of origin from which they were derived, and the potential for tumorogenicity as a result of immortalization. Here, we report the generation of conditionally immortalized neural stem cell lines from human fetal spinal cord tissue, which addresses these issues. Clonal neural stem cell lines were derived from 10-week-old human fetal spinal cord and conditionally immortalized with an inducible form of cMyc. The derived lines were karyotyped, transcriptionally profiled by microarray, and assessed against a panel of spinal cord progenitor markers with immunocytochemistry. In addition, the lines were differentiated and assessed for the presence of neuronal fate markers and functional calcium channels. Finally, a clonal line expressing eGFP was grafted into lesioned rat spinal cord and assessed for survival, differentiation characteristics, and tumorogenicity. We demonstrate that these clonal lines (a) retain a clear transcriptional signature of ventral spinal cord progenitors and a normal karyotype after extensive propagation in vitro, (b) differentiate into relevant ventral neuronal subtypes with functional T-, L-, N-, and P/Q-type Ca(2+) channels and spontaneous calcium oscillations, and (c) stably engraft into lesioned rat spinal cord without tumorogenicity. We propose that these cells represent a useful tool both for the in vitro study of differentiation into ventral spinal cord neuronal subtypes, and for examining the potential of conditionally immortalized neural stem cells to facilitate functional recovery after spinal cord injury or disease.
Cost analysis of spinal and general anesthesia for the surgical treatment of lumbar spondylosis.
Walcott, Brian P; Khanna, Arjun; Yanamadala, Vijay; Coumans, Jean-Valery; Peterfreund, Robert A
2015-03-01
Lumbar spine surgery is typically performed under general anesthesia, although spinal anesthesia can also be used. Given the prevalence of lumbar spine surgery, small differences in cost between the two anesthetic techniques have the potential to make a large impact on overall healthcare costs. We sought to perform a cost comparison analysis of spinal versus general anesthesia for lumbar spine operations. Following Institutional Review Board approval, a retrospective cohort study was performed from 2009-2012 on consecutive patients undergoing non-instrumented, elective lumbar spine surgery for spondylosis by a single surgeon. Each patient was evaluated for both types of anesthesia, with the decision for anesthetic method being made based on a combination of physical status, anatomical considerations, and ultimately a consensus agreement between patient, surgeon, and anesthesiologist. Patient demographics and clinical characteristics were compared between the two groups. Operating room costs were calculated whilst blinded to clinical outcomes and reported in percentage difference. General anesthesia (n=319) and spinal anesthesia (n=81) patients had significantly different median operative times of 175 ± 39.08 and 158 ± 32.75 minutes, respectively (p<0.001, Mann-Whitney U test). Operating room costs were 10.33% higher for general anesthesia compared to spinal anesthesia (p=0.003, Mann-Whitney U test). Complications of spinal anesthesia included excessive movement (n=1), failed spinal attempt (n=3), intraoperative conversion to general anesthesia (n=2), and a high spinal level (n=1). In conclusion, spinal anesthesia can be performed safely in patients undergoing lumbar spine surgery. It has the potential to reduce operative times, costs, and possibly, complications. Further prospective evaluation will help to validate these findings. Copyright © 2014 Elsevier Ltd. All rights reserved.
Spine Day 2012: spinal pain in Swiss school children- epidemiology and risk factors.
Wirth, Brigitte; Knecht, Christina; Humphreys, Kim
2013-10-05
The key to a better understanding of the immense problem of spinal pain seems to be to investigate its development in adolescents. Based on the data of Spine Day 2012 (an annual action day where Swiss school children were examined by chiropractors on a voluntary basis for back problems), the aim of the present study was to gain systematic epidemiologic data on adolescent spinal pain in Switzerland and to explore risk factors per gender and per spinal area. Data (questionnaires and physical examinations) of 836 school children were descriptively analyzed for prevalence, recurrence and severity of spinal pain. Of those, 434 data sets were included in risk factor analysis. Using logistic regression analysis, psycho-social parameters (presence of parental back pain, parental smoking, media consumption, type of school bag) and physical parameters (trunk symmetry, posture, mobility, coordination, BMI) were analyzed per gender and per spinal area. Prevalence of spinal pain was higher for female gender in all areas apart from the neck. With age, a steep increase in prevalence was observed for low back pain (LBP) and for multiple pain sites. The increasing impact of spinal pain on quality of life with age was reflected in an increase in recurrence, but not in severity of spinal pain. Besides age and gender, parental back pain (Odds ratio (OR)=3.26, p=0.011) and trunk asymmetry (OR=3.36, p=0.027) emerged as risk factors for spinal pain in girls. Parental smoking seemed to increase the risk for both genders (boys: OR=2.39, p=0.020; girls: OR=2.19, p=0.051). Risk factor analysis per spinal area resulted in trunk asymmetry as risk factor for LBP (OR=3.15, p=0.015), while parental smoking increased the risk for thoracic spinal pain (TSP) (OR=2.83, p=0.036) and neck pain (OR=2.23, p=0.038). The risk for TSP was further enhanced by a higher BMI (OR=1.15, p=0.027). This study supports the view of adolescent spinal pain as a bio-psycho-social problem that should be investigated per spinal area, age and gender. The role of trunk asymmetry and passive smoking as risk factors as well as the association between BMI and TSP should be further investigated, preferably in prospective studies.
2013-01-01
Introduction Intraspinal grafting of human neural stem cells represents a promising approach to promote recovery of function after spinal trauma. Such a treatment may serve to: I) provide trophic support to improve survival of host neurons; II) improve the structural integrity of the spinal parenchyma by reducing syringomyelia and scarring in trauma-injured regions; and III) provide neuronal populations to potentially form relays with host axons, segmental interneurons, and/or α-motoneurons. Here we characterized the effect of intraspinal grafting of clinical grade human fetal spinal cord-derived neural stem cells (HSSC) on the recovery of neurological function in a rat model of acute lumbar (L3) compression injury. Methods Three-month-old female Sprague–Dawley rats received L3 spinal compression injury. Three days post-injury, animals were randomized and received intraspinal injections of either HSSC, media-only, or no injections. All animals were immunosuppressed with tacrolimus, mycophenolate mofetil, and methylprednisolone acetate from the day of cell grafting and survived for eight weeks. Motor and sensory dysfunction were periodically assessed using open field locomotion scoring, thermal/tactile pain/escape thresholds and myogenic motor evoked potentials. The presence of spasticity was measured by gastrocnemius muscle resistance and electromyography response during computer-controlled ankle rotation. At the end-point, gait (CatWalk), ladder climbing, and single frame analyses were also assessed. Syrinx size, spinal cord dimensions, and extent of scarring were measured by magnetic resonance imaging. Differentiation and integration of grafted cells in the host tissue were validated with immunofluorescence staining using human-specific antibodies. Results Intraspinal grafting of HSSC led to a progressive and significant improvement in lower extremity paw placement, amelioration of spasticity, and normalization in thermal and tactile pain/escape thresholds at eight weeks post-grafting. No significant differences were detected in other CatWalk parameters, motor evoked potentials, open field locomotor (Basso, Beattie, and Bresnahan locomotion score (BBB)) score or ladder climbing test. Magnetic resonance imaging volume reconstruction and immunofluorescence analysis of grafted cell survival showed near complete injury-cavity-filling by grafted cells and development of putative GABA-ergic synapses between grafted and host neurons. Conclusions Peri-acute intraspinal grafting of HSSC can represent an effective therapy which ameliorates motor and sensory deficits after traumatic spinal cord injury. PMID:23710605
Matinian, N V; Saltanov, A I
2005-01-01
Thirty-five patients (ASA II-III) aged 12 to 17 years, diagnosed as having osteogenic sarcoma and Ewing's sarcoma localizing in the femur and tibia, were examined. Surgery was performed as sectoral resection of the affected bone along with knee joint endoprosthesis. Surgical intervention was made under combined spinal and epidural anesthesia (CSEA) with sedation, by using the methods for exact dosing of propofol (6-4 mg/kg x h). During intervention, a child's respiration remains is kept spontaneous with oxygen insufflation through a nasal catheter. CSEA was performed in two-segmental fashion. The epidural space was first catheterized. After administration of a test dose, 0.5% marcaine spinal was injected into dermatomas below the subarachnoidal space, depending on body weight (3.0-4.0 ml). Sensory blockade developed following 3-5 min and lasted 90-120 min, thereafter a local anesthetic (bupivacaine) or its mixture plus promedole was epidurally administered. ??Anesthesia was effective in all cases, motor blockade. During surgery, there was a moderate arterial hypotension that did not require the use of vasopressors. The acid-alkali balance suggested the adequacy of spontaneous respiration. The only significant complication we observed was atony of the bladder that requires its catheterization till the following day. An epidural catheter makes it possible to effect adequate postoperative analgesia.
Spinogenesis in spinal cord motor neurons following pharmacological lesions to the rat motor cortex.
Martínez-Torres, N I; González-Tapia, D; Flores-Soto, M; Vázquez-Hernández, N; Salgado-Ceballos, H; González-Burgos, I
2018-03-16
Motor function is impaired in multiple neurological diseases associated with corticospinal tract degeneration. Motor impairment has been linked to plastic changes at both the presynaptic and postsynaptic levels. However, there is no evidence of changes in information transmission from the cortex to spinal motor neurons. We used kainic acid to induce stereotactic lesions to the primary motor cortex of female adult rats. Fifteen days later, we evaluated motor function with the BBB scale and the rotarod and determined the density of thin, stubby, and mushroom spines of motor neurons from a thoracolumbar segment of the spinal cord. Spinophilin, synaptophysin, and β iii-tubulin expression was also measured. Pharmacological lesions resulted in poor motor performance. Spine density and the proportion of thin and stubby spines were greater. We also observed increased expression of the 3 proteins analysed. The clinical symptoms of neurological damage secondary to Wallerian degeneration of the corticospinal tract are associated with spontaneous, compensatory plastic changes at the synaptic level. Based on these findings, spontaneous plasticity is a factor to consider when designing more efficient strategies in the early phase of rehabilitation. Copyright © 2018 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Solo Sonographically Guided PCNL under Spinal Anesthesia: Defining Predictors of Success.
Nouralizadeh, Akbar; Pakmanesh, Hamid; Basiri, Abbas; Aayanifard, Mohammad; Soltani, Mohammad Hossein; Tabibi, Ali; Sharifiaghdas, Farzaneh; Ziaee, Seyed Amir Mohsen; Shakhssalim, Naser; Valipour, Reza; Narouie, Behzad; Radfar, Mohammad Hadi
2016-01-01
Aim. Sonography has been brought in percutaneous nephrolithotripsy (PCNL) as an adjunct to or substitute for X-ray to restrict radiation exposure. This study was designed to investigate the possible predictors for the success of the solo sonographically guided PCNL. Methods. 148 consecutive cases were prospectively enrolled. All steps of PCNL were performed solely with sonography guidance under spinal anesthesia. Residual stones were evaluated the day after surgery using sonography and plain radiography. Results. The mean age was 46 ± 15 years; 40% of kidneys had hydronephrosis. The mean stone burden was 504 ± 350 mm(2). The mean duration of surgery was 43 ± 21 minutes. The early stone-free rate was 92% in inferior or middle calyceal stones, 89.5% in single pelvic stones, 81.5% in partial staghorn stones, and 61.9% in staghorn stones. The mean residual stone size was 13 ± 8 mm. Logistic regression showed that a lower age and a larger stone burden significantly predicted positive residual stones. Fifteen percent of patients presented with grade I or II and six percent showed grade III complication based on Clavien classification. There was no cases of organ injury or death. Conclusion. Solo ultrasonographically guided PCNL under spinal anesthesia is feasible with an acceptable stone-free rate and complication rate.
Congenital spinal malformations in small animals.
Westworth, Diccon R; Sturges, Beverly K
2010-09-01
Congenital anomalies of the spine are common in small animals. The type of deformity, location, severity, time of onset of associated clinical signs, and progression of neurologic dysfunction varies widely. To promote clearer understanding, the authors present the various spinal malformations using modified human classification schemes and use current widely accepted definitions and terminology. The diagnostic approach, including utilization of advanced imaging, and surgical management is emphasized. Copyright 2010. Published by Elsevier Inc.
Bliemel, Christopher; Lefering, Rolf; Buecking, Benjamin; Frink, Michael; Struewer, Johannes; Krueger, Antonio; Ruchholtz, Steffen; Frangen, Thomas Manfred
2014-02-01
Because of a lack of evidence, the appropriate timing of surgical stabilization of thoracic and lumbar spine injuries in severely injured patients is still controversial. Data of a large international trauma register were analyzed to investigate the medical care situation of unstable spinal column fractures in patients with multiple injuries, so as to examine the outcome related to timing of surgical stabilization. Data sets of the Trauma Registry of German Trauma Society (Deutsche Gesellschaft für Unfallchirurgie [DGU]) (1993-2010) were analyzed. The Trauma Registry of DGU is a prospective, multicenter register that provides information on severely injured patients. All patients with an Injury Severity Score (ISS) of 16 or greater caused by blunt trauma, subsequent treatment of 7 days or more, 16 years or older, and thoracic or lumbar spine injuries (spine Abbreviated Injury Scale [AIS] score ≥ 2) were included in our analysis. Patients with relevant spine injuries classified as having a spine AIS score of 3 or greater were further analyzed in terms of whether they got early (<72 hours) or late (>72 hours) surgical treatment due to unstable spinal column fractures. Of 24,974 patients, 8,994 (36.0%) had documented spinal injuries (spine AIS score ≥ 2). A total of 1,309 patients who sustained relevant thoracic spine injuries (spine AIS score ≥ 3) and 994 patients who experienced lumbar spine trauma and classified as having spine AIS score of 3 or greater were more precisely analyzed. Of these, 68.2% and 71.0%, respectively, received an early thoracic or lumbar spine fixation. With an increase in spinal injury severity, an increase in early stabilization in the thoracic and lumbar spine was seen. In the group of patients with early surgical stabilization, significantly shorter hospital stays, shorter intensive care unit stays, fewer days on mechanical ventilation, and lower rates of sepsis were seen. In the case that additional body regions were affected, for example, when patients were critically ill, a delayed spinal stabilization was more often performed. A spinal stabilization at an early stage (<72 hours) is presumed to be beneficial. Although some patients may require delay due to necessary medical improvement, every reasonable effort should be made to treat patients with instable spinal column fractures as soon as possible. If an early surgical treatment is feasible, severely injured patients may benefit from a shorter period of hospital treatment and a lower rate of complications. Therapeutic study, level III.
Li, Peng; Zhao, Fu; Zhang, Jing; Wang, Zhenmin; Wang, Xingchao; Wang, Bo; Yang, Zhijun; Yang, Jun; Gao, Zhixian; Liu, Pinan
2016-01-01
The aim of this study was to evaluate the clinical features of spinal schwannomas in patients with schwannomatosis and compare them with a large cohort of patients with solitary schwannomas and neurofibromatosis Type 2 (NF2). The study was a retrospective review of 831 patients with solitary schwannomas, 65 with schwannomatosis, and 102 with NF2. The clinical, radiographic, and pathological data were extracted with specific attention to the age at onset, location of tumors, initial symptoms, family history, and treatment outcome. The male-to-female ratio of patients with schwannomatosis (72.3% vs 27.7%) was significantly higher than that of patients with solitary schwannomas (53.3% vs 46.7%) and NF2 (54.0% vs 46.0%), respectively (chi-square test, p = 0.012). The mean age at the first spinal schwannoma operation of patients with NF2 (24.7 ± 10.2 years) was significantly younger than that of patients with solitary schwannomas (44.8 ± 13.2 years) and schwannomatosis (44.4 ± 14.1 years; 1-way ANOVA, p < 0.001). The initial symptoms were similar among the 3 groups, with pain being the most common. The distribution of spinal tumors among the 3 groups was significantly different. The peak locations of spinal schwannomas in patients with solitary schwannomas were at C1-3 and T12-L3; in schwannomatosis, the peak location was at T12-L5. A preferred spinal location was not evident for intradural-extramedullary tumors in NF2. Only a slight prominence in the lumbar area could be observed. The patients in the 3 groups obtained similar benefits from the operation; the recovery rates in the patients with solitary schwannomas, NF2, and schwannomatosis were 50.1%, 38.0%, and 53.9%, respectively. The prognosis varied among spinal schwannomas in the patients with schwannomatosis. Up until the last date of follow-up, most patients with schwannomatosis (81.5%) had undergone a single spinal operation, but 12 patients (18.5%) had undergone multiple spinal operations. Patients with nonsegmental schwannomatosis or those with early onset disease seemed to have a poor prognosis; they were more likely to undergo multiple spinal operations. Small cauda equina nodules were common in patients with schwannomatosis (46.7%) and NF2 (86.9%); these small schwannomas appeared to have relatively static behavior. Two patients suspicious for schwannomatosis were diagnosed with NF2 with the detection of constitutional NF2 mutations; 1 had unilateral vestibular schwannoma, and the other had suspicious bilateral trigeminal schwannomas. The clinical features of spinal schwannomas vary among patients with solitary schwannomas, NF2, and schwannomatosis. Spinal schwannomas of patients with NF2 appear to be more aggressive than those in patients with solitary schwannomas and schwannomatosis. Spinal schwannomas of schwannomatosis predominate in the lumbar area, and most of them can be treated successfully with surgery. The prognosis varies among spinal schwannomas of schwannomatosis; some patients may need multiple operations due to newly developed schwannomas. Sometimes, it is difficult to differentiate schwannomatosis from NF2 based on clinical manifestations. It is prudent to perform close follow-up examinations in patients with undetermined schwannomatosis and their offspring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffin, B.R.; Griffin, T.W.; Tong, D.Y.K.
Eighteen patients with pineal region tumors seen from November 1960 to November 1978 were reviewed. Thirteen patients treated with radiation therapy received tumor doses in the 4000 to 5500 rad range. The five year survival and five year disease-free survival were 73 and 63% respectively. Spinal cord metastasis occurred in 2 of 13 (15%) patients. Attempts at salvage radiotherapy for these patients were unsuccessful. Computerized tomography (CT) scan provides an excellent method of evaluating the response of pineal region tumors to radiation. Rapid regression of the tumor mass on CT scan reflects the highly radioresponsive nature of germinomas, the tumormore » type most likely to disseminate throughout the neuraxis. This principle can be exploited to select unbiopsied patients with a high risk of spinal cord metastasis for prophylactic spinal radiation at an early stage of treatment.« less
Goto, Shinichi; Taira, Takaomi; Hori, Tomokatsu
2009-09-01
The authors describe an experience of spinal cord stimulation (SCS) in a 30-year-old woman who developed complex regional pain syndrome type-I (CRPS-I) with spread phenomenon. She had received lumbar SCS under a diagnosis of CRPS-I in her left leg for 8 years. She had refractory pain in her right arm for the recent two years. There was no new lesion explaining her refractory pain on physical or radiological examination. Thus, the pain in her right upper arm was considered as spread phenomenon of CRPS-I. Test stimulation with cervical epidural spinal electrode showed good results and the pulse generator was implanted. It is suggested that the symptom of CRPS-I involving spread phenomenon was possibly due to a cortical reorganization. But a certain effect of SCS may be contributing to the favorable results of test stimulation for the treatment of CRPS-I with spread phenomenon in this case.
Mancuso, Renzo; Osta, Rosario; Navarro, Xavier
2014-12-01
We assessed the predictive value of electrophysiological tests as a marker of clinical disease onset and survival in superoxide-dismutase 1 (SOD1)(G93A) mice. We evaluated the accuracy of electrophysiological tests in differentiating transgenic versus wild-type mice. We made a correlation analysis of electrophysiological parameters and the onset of symptoms, survival, and number of spinal motoneurons. Presymptomatic electrophysiological tests show great accuracy in differentiating transgenic versus wild-type mice, with the most sensitive parameter being the tibialis anterior compound muscle action potential (CMAP) amplitude. The CMAP amplitude at age 10 weeks correlated significantly with clinical disease onset and survival. Electrophysiological tests increased their survival prediction accuracy when evaluated at later stages of the disease and also predicted the amount of lumbar spinal motoneuron preservation. Electrophysiological tests predict clinical disease onset, survival, and spinal motoneuron preservation in SOD1(G93A) mice. This is a methodological improvement for preclinical studies. © 2014 Wiley Periodicals, Inc.
Impact of spinal pain on daily living activities in postmenopausal women working in agriculture.
Raczkiewicz, Dorota; Owoc, Alfred; Sarecka-Hujar, Beata; Saran, Tomasz; Bojar, Iwona
2017-03-22
Postmenopausal women working in agriculture suffer from spinal pain for two overlapping reasons, the first is related to the menopause and the second to the specificity of rural work, which includes lifting heavy objects and changing weather conditions. Spinal pain affects the daily life of women as well as their ability to work. The objective of the study was to analyse the impact of spinal pain on activities of daily life in Polish postmenopausal women performing agricultural work. The study was conducted in 2016 in Poland and included 1,119 post-menopausal women living in rural areas and working in agriculture. The women assessed the severity of spinal pain in 3 sections: neck, thorax and lumbar. Neck Disability Index (NDI) and Oswestry Low Back Disability Index (ODI) questionnaires were used to assess the impact of spinal pain on daily life activities. Generalized linear models were estimated in statistical analyses. Postmenopausal women working in agriculture suffered most often from pain in the lumbar spine, less frequently in the neck, and the least in the thoracic. The most common was an isolated pain in only one section of the spine. Spinal pain disturbed the most the women's rest, standing, lifting objects, while sleep, concentration, and walking the least. The impact of spinal pain on the activities of daily life, on average, was moderate, and increased with greater pain severity, the earlier the age the pain started, the higher the body weight, the lower education level and if there was a co-existing pain in any of the other spine sections. The impact of spinal pain on daily life activities did not depend on age between 45-65, WHR, age at last menstruation, parity, and number and types of births. The impact of spinal pain on daily life activities in postmenopausal women working in agriculture was assessed as moderate, on average, and depended mainly on spinal pain-related characteristics, such as severity, age at onset and co-existence of pain in any other spinal sections.
Kwan, Alex C; Dietz, Shelby B; Zhong, Guisheng; Harris-Warrick, Ronald M; Webb, Watt W
2010-12-01
In rhythmic neural circuits, a neuron often fires action potentials with a constant phase to the rhythm, a timing relationship that can be functionally significant. To characterize these phase preferences in a large-scale, cell type-specific manner, we adapted multitaper coherence analysis for two-photon calcium imaging. Analysis of simulated data showed that coherence is a simple and robust measure of rhythmicity for calcium imaging data. When applied to the neonatal mouse hindlimb spinal locomotor network, the phase relationships between peak activity of >1,000 ventral spinal interneurons and motor output were characterized. Most interneurons showed rhythmic activity that was coherent and in phase with the ipsilateral motor output during fictive locomotion. The phase distributions of two genetically identified classes of interneurons were distinct from the ensemble population and from each other. There was no obvious spatial clustering of interneurons with similar phase preferences. Together, these results suggest that cell type, not neighboring neuron activity, is a better indicator of an interneuron's response during fictive locomotion. The ability to measure the phase preferences of many neurons with cell type and spatial information should be widely applicable for studying other rhythmic neural circuits.
Effects of Aloe Vera on Spinal Cord Ischemia-Reperfusion Injury of Rats.
Yuksel, Yasemin; Guven, Mustafa; Kaymaz, Burak; Sehitoglu, Muserref Hilal; Aras, Adem Bozkurt; Akman, Tarik; Tosun, Murat; Cosar, Murat
2016-12-01
The purpose of this study was to evaluate the possible protective/therapeutic effects of aloe vera (AV) on ischemia-reperfusion injury (I/R) of spinal cord in rats. A total of 28 Wistar Albino rats were divided into four random groups of equal number (n = 7). Group I (control) had no medication or surgery; Group II underwent spinal cord ischemia and was given no medication; Group III was administered AV by gastric gavage for 30 days as pre-treatment; Group IV was administered single dose intraperitoneal methylprednisolone (MP) after the ischemia. Nuclear respiratory factor-1 (NRF1), malondialdehyde (MDA) and superoxide dismutase (SOD) levels were evaluated. Tissue samples were examined histopathologically and neuronal nitric oxide synthase (nNOS) and nuclear factor-kappa B (NF-κB) protein expressions were assessed by immunohistochemical staining. NRF1 and SOD levels of ischemia group were found to be lower compared to the other groups. MDA levels significantly increased after I/R. Treatment with AV and MP resulted in reduced MDA levels and also alleviated hemorrhage, edema, inflammatory cell migration and neurons were partially protected from ischemic injury. When AV treatment was compared with MP, there was no statistical difference between them in terms of reduction of neuronal damage. I/R injury increased NF-κB and nNOS expressions. AV and MP treatments decreased NF-κB and nNOS expressions. It was observed that aloe vera attenuated neuronal damage histopathologically and biochemically as pretreatment. Further studies may provide more evidence to determine the additional role of aloe vera in spinal cord ischemia reperfusion injury.
Gordon, Zachary L; Son-Hing, Jochen P; Poe-Kochert, Connie; Thompson, George H
2013-01-01
Reducing perioperative blood loss and transfusion requirements is important in the operative treatment of idiopathic scoliosis. This can be achieved with special frames, cell saver systems, pharmacologic aspects, and other techniques. Recently there has been interest in bipolar sealer devices as an adjunct to traditional monopolar electrocautery. However, there is limited information on this device in pediatric spinal deformity surgery. We reviewed our experience with this device in a setting of a standard institutional operative carepath. Perioperative blood loss and transfusion requirements of 50 consecutive patients with adolescent idiopathic scoliosis undergoing a posterior spinal fusion and segmental spinal instrumentation and who had a bipolar sealer device used during their surgery was compared with a control group of the 50 preceding consecutive patients who did not. Anesthesia, surgical technique, use of intraoperative epsilon aminocaproic acid (Amicar), postoperative protocol, and indications for transfusions (hemoglobin≤7.0 g/dL) were identical in both groups. The preoperative demographics for the patients in both groups were statistically the same. The bipolar sealer group demonstrated a significant reduction in intraoperative estimated blood loss, total perioperative blood loss, volume of blood products transfused, and overall transfusion rate when compared with the control group. When subgroups consisting of only hybrid or all-pedicle screw constructs were considered individually, these findings remained consistent. There were no complications associated with the use of this device. Using the bipolar sealer device is a significant adjunct in decreasing perioperative blood loss and transfusion requirements in patients undergoing surgery for adolescent idiopathic scoliosis. Level III-retrospective comparative study.
Spinal translocator protein (TSPO) modulates pain behavior in rats with CFA-induced monoarthritis.
Hernstadt, Hayley; Wang, Shuxing; Lim, Grewo; Mao, Jianren
2009-08-25
Translocator protein 18 kDa (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), is predominantly located in the mitochondrial outer membrane and plays an important role in steroidogenesis, immunomodulation, cell survival and proliferation. Previous studies have shown an increased expression of TSPO centrally in neuropathology, as well as in injured nerves. TSPO has also been implicated in modulation of nociception. In the present study, we examined the hypothesis that TSPO is involved in the initiation and maintenance of inflammatory pain using a rat model of Complete Freund's Adjuvant (CFA)-induced monoarthritis of the tibio-tarsal joint. Immunohistochemistry was performed using Iba-1 (microglia), NeuN (neurons), anti-Glial Fibrillary Acidic Protein, GFAP (astrocytes) and anti-PBR (TSPO) on Days 1, 7 and 14 after CFA-induced arthritis. Rats with CFA-induced monoarthritis showed mechanical allodynia and thermal hyperalgesia on the ipsilateral hindpaw, which correlated with the increased TSPO expression in ipsilateral laminae I-II on all experimental days. Iba-1 expression in the ipsilateral dorsal horn was also increased on Days 7 and 14. Moreover, TSPO was colocalized with Iba-1, GFAP and NeuN within the spinal cord dorsal horn. The TSPO agonist Ro5-4864, given intrathecally, dose-dependently retarded or prevented the development of mechanical allodynia and thermal hyperalgesia in rats with CFA-induced monoarthritis. These findings provide evidence that spinal TSPO is involved in the development and maintenance of inflammatory pain behaviors in rats. Thus, spinal TSPO may present a central target as a complementary therapy to reduce inflammatory pain.
Vasopressor choice for hypotension in elective Cesarean section: ephedrine or phenylephrine?
Gunda, Chandrakala P.; Malinowski, Jennifer; Tegginmath, Aruna; Suryanarayana, Venkatesh G.
2010-01-01
Introduction Hypotensive episodes are a common complication of spinal anesthesia during Cesarean section. The purpose of this study was to compare the effectiveness and the side effects of vasopressors, ephedrine and phenylephrine, administered for hypotension during elective Cesarean section under spinal anesthesia. Material and methods The study consisted of 100 selected ASA I/II females scheduled for elective Cesarean section under spinal anesthesia. Each patient was randomly assigned to one of the two double-blind study groups. Group E received 1 ml ephedrine (5 mg/ml) with normal saline if hypotension was present (n=50). Group P received 1 ml phenylephrine (100 µg/ml) with normal saline if hypotension developed (n=50). Heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP) were compared within and between groups to basal levels at time increments of 0, 2, 4, 6, 8, 10, 15, 20, 25, 30, 45, and 60 min from start of surgery. Incidence of side effects and neonatal outcomes were studied between groups. Results All patients required vasopressor therapy for hypotension. Administration of phenylephrine was associated with significant drop in HR. Changes in SBP, DBP, and MAP were similar in both groups for most observed times. The incidences of nausea/vomiting and tachycardia were significantly higher in the ephedrine group. Conclusions Phenylephrine and ephedrine are acceptable choices to combat maternal hypotension related to spinal anesthesia in elective Cesarean section. Complications of intra-operative nausea and vomiting, tachycardia and bradycardia should be considered when choosing a vasopressor, suggesting phenylephrine may be more appropriate when considering maternal well-being. PMID:22371756
SPINAL TRANSLOCATOR PROTEIN (TSPO) MODULATES PAIN BEHAVIOR IN RATS WITH CFA-INDUCED MONOARTHRITIS
Hernstadt, Hayley; Wang, Shuxing; Lim, Grewo; Mao, Jianren
2009-01-01
Translocator protein 18kDa (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), is predominantly located in the mitochondrial outer membrane and plays an important role in steroidogenesis, immunomodulation, cell survival and proliferation. Previous studies have shown an increased expression of TSPO centrally in neuropathology, as well as in injured nerves. TSPO has also been implicated in modulation of nociception. In the present study, we examined the hypothesis that TSPO is involved in the initiation and maintenance of inflammatory pain using a rat model of Complete Freund’s Adjuvant (CFA)-induced monoarthritis of the tibio-tarsal joint. Immunohistochemistry was performed using Iba-1 (microglia), NeuN (neurons), anti-Glial Fibrillary Acidic Protein, GFAP (astrocytes) and anti-PBR (TSPO) on day 1, 7 and 14 after CFA-induced arthritis. Rats with CFA-induced monoarthritis showed mechanical allodynia and thermal hyperalgesia on the ipsilateral hindpaw, which correlated with the increased TSPO expression in ipsilateral lamina I-II on all experimental days. Iba-1 expression in the ipsilateral dorsal horn was also increased on Day 7 and 14. Moreover, TSPO was co-localized with Iba-1, GFAP and NeuN within the spinal cord dorsal horn. The TSPO agonist Ro5-4864, given intrathecally, dose-dependently retarded or prevented the development of mechanical allodynia and thermal hyperalgesia in rats with CFA-induced monoarthritis. These findings provide evidence that spinal TSPO is involved in the development and maintenance of inflammatory pain behaviors in rats. Thus, spinal TSPO may present a central target as a complementary therapy to reduce inflammatory pain. PMID:19555675
Lehman, Ronald A; Kang, Daniel G; Lenke, Lawrence G; Sucato, Daniel J; Bevevino, Adam J
2015-05-01
There are no guidelines for when surgeons should allow patients to return to sports and athletic activities after spinal fusion for adolescent idiopathic scoliosis (AIS). Current recommendations are based on anecdotal reports and a survey performed more than a decade ago in the era of first/second-generation posterior implants. To identify current recommendations for return to sports and athletic activities after surgery for AIS. Questionnaire-based survey. Adolescent idiopathic scoliosis after corrective surgery. Type and time to return to sports. A survey was administered to members of the Spinal Deformity Study Group. The survey consisted of surgeon demographic information, six clinical case scenarios, three different construct types (hooks, pedicle screws, hybrid), and questions regarding the influence of lowest instrumented vertebra (LIV) and postoperative physical therapy. Twenty-three surgeons completed the survey, and respondents were all experienced expert deformity surgeons. Pedicle screw instrumentation allows earlier return to noncontact and contact sports, with most patients allowed to return to running by 3 months, both noncontact and contact sports by 6 months, and collision sports by 12 months postoperatively. For all construct types, approximately 20% never allow return to collision sports, whereas all surgeons allow eventual return to contact and noncontact sports regardless of construct type. In addition to construct type, we found progressively distal LIV resulted in more surgeons never allowing return to collision sports, with 12% for selective thoracic fusion to T12/L1 versus 33% for posterior spinal fusion to L4. Most respondents also did not recommend formal postoperative physical therapy (78%). Of all surgeons surveyed, there was only one reported instrumentation failure/pullout without neurologic deficit after a patient went snowboarding 2 weeks postoperatively. Modern posterior instrumentation allows surgeons to recommend earlier return to sports after fusion for AIS, with the majority allowing running by 3 months, noncontact and contact sports by 6 months, and collision sports by 12 months. Published by Elsevier Inc.
[Epidemiological aspects of spinal traumas: about 139 cases].
Bemora, Joseph Synèse; Rakotondraibe, Willy Francis; Ramarokoto, Mijoro; Ratovondrainy, Willy; Andriamamonjy, Clément
2017-01-01
Spinal trauma is one of the most common types of injuries among victims of traffic accidents, sports accidents, domestic accidents and workplace accidents. We conducted a 3-year retrospective study of 139 cases of spinal trauma hospitalized and treated in the Neurosurgery department of the CHUJRA, Madagascar. This study shows that 25.17% of injured patients were between 21 and 30 years of age, with a clear male predominance (69.78%; sex ratio 2.3). Falls were the dominating traumatic injury mechanism (33.09%) with risk factors including alcohol use (8.63%). Spinal injuries occurred in patients with polytrauma, of whom 34.63% had cranial trauma. Patients were admitted to the department within 1-5 hours after the trauma in 31.65% of cases, using private car as their means of transport 36.69% of cases. During the hospitalization 20 patients signed the discharge form and 6.34% of patients died. Spinal trauma is a public health problem requiring high intensity management, especially for patients with life-long disabilities. Any spine trauma requires a diligent search for cranial lesion.
Characterization of Proliferating Neural Progenitors after Spinal Cord Injury in Adult Zebrafish
Hui, Subhra Prakash; Nag, Tapas Chandra; Ghosh, Sukla
2015-01-01
Zebrafish can repair their injured brain and spinal cord after injury unlike adult mammalian central nervous system. Any injury to zebrafish spinal cord would lead to increased proliferation and neurogenesis. There are presences of proliferating progenitors from which both neuronal and glial loss can be reversed by appropriately generating new neurons and glia. We have demonstrated the presence of multiple progenitors, which are different types of proliferating populations like Sox2+ neural progenitor, A2B5+ astrocyte/ glial progenitor, NG2+ oligodendrocyte progenitor, radial glia and Schwann cell like progenitor. We analyzed the expression levels of two common markers of dedifferentiation like msx-b and vimentin during regeneration along with some of the pluripotency associated factors to explore the possible role of these two processes. Among the several key factors related to pluripotency, pou5f1 and sox2 are upregulated during regeneration and associated with activation of neural progenitor cells. Uncovering the molecular mechanism for endogenous regeneration of adult zebrafish spinal cord would give us more clues on important targets for future therapeutic approach in mammalian spinal cord repair and regeneration. PMID:26630262
Piras, Sara; Porru, Sergio; Massazza, Federica; Fadda, Giuseppina; Solla, Ignazio; Piras, Denise; Deidda, Maria Assunta; Amichetti, Maurizio; Possanzini, Marco
2014-01-01
Since reirradiation in recurrent head and neck patients is limited by previous treatment, a marked reduction of maximum doses to spinal cord and brain stem was investigated in the initial irradiation of stage III/IV head and neck cancers. Eighteen patients were planned by simultaneous integrated boost, prescribing 69.3 Gy to PTV1 and 56.1 Gy to PTV2. Nine 6 MV coplanar photon beams at equispaced gantry angles were chosen for each patient. Step‐and‐shoot IMRT was calculated by direct machine parameter optimization, with the maximum number of segments limited to 80. In the standard plan, optimization considered organs at risk (OAR), dose conformity, maximum dose <45 Gy to spinal cord and <50 Gy to brain stem. In the sparing plans, a marked reduction to spinal cord and brain stem were investigated, with/without changes in dose conformity. In the sparing plans, the maximum doses to spinal cord and brain stem were reduced from the initial values (43.5±2.2 Gy and 36.7±14.0 Gy), without significant changes on the other OARs. A marked difference (−15.9±1.9 Gy and −10.1±5.7 Gy) was obtained at the expense of a small difference (−1.3%±0.9%) from initial PTV195% coverage (96.6%±0.9%). Similar difference (−15.7±2.2 Gy and −10.2±6.1 Gy) was obtained compromising dose conformity, but unaffecting PTV195% and with negligible decrease in PTV295% (−0.3%±0.3% from the initial 98.3%±0.8%). A marked spinal cord and brain stem preventive sparing was feasible at the expense of a decrease in dose conformity or slightly compromising target coverage. A sparing should be recommended in highly recurrent tumors, to make potential reirradiation safer. PACS number: 87.55.D PMID:24423836
Cloutier, Frank; Kalincik, Tomas; Lauschke, Jenny; Tuxworth, Gervase; Cavanagh, Brenton; Meedeniya, Adrian; Mackay-Sim, Alan; Carrive, Pascal; Waite, Phil
2016-12-01
Autonomic dysreflexia is a common complication after high level spinal cord injury and can be life-threatening. We have previously shown that the acute transplantation of olfactory ensheathing cells into the lesion site of rats transected at the fourth thoracic spinal cord level reduced autonomic dysreflexia up to 8weeks after spinal cord injury. This beneficial effect was correlated with changes in the morphology of sympathetic preganglionic neurons despite the olfactory cells surviving no longer than 3weeks. Thus the transitory presence of olfactory ensheathing cells at the injury site initiated long-term functional as well as morphological changes in the sympathetic preganglionic neurons. The primary aim of the present study was to evaluate whether olfactory ensheathing cells survive after transplantation within the parenchyma close to sympathetic preganglionic neurons and whether, in this position, they still reduce the duration of autonomic dysreflexia and modulate sympathetic preganglionic neuron morphology. The second aim was to quantify the density of synapses on the somata of sympathetic preganglionic neurons with the hypothesis that the reduction of autonomic dysreflexia requires synaptic changes. As a third aim, we evaluated the cell type-specificity of olfactory ensheathing cells by comparing their effects with a control group transplanted with fibroblasts. Animals transplanted with OECs had a faster recovery from hypertension induced by colorectal distension at 6 and 7weeks but not at 8weeks after T4 spinal cord transection. Olfactory ensheathing cells survived for at least 8weeks and were observed adjacent to sympathetic preganglionic neurons whose overall number of primary dendrites was reduced and the synaptic density on the somata increased, both caudal to the lesion site. Our results showed a long term cell type-specific effects of olfactory ensheathing cells on sympathetic preganglionic neurons morphology and on the synaptic density on their somata, and a transient cell type-specific reduction of autonomic dysreflexia. Copyright © 2016 Elsevier B.V. All rights reserved.
Epstein, Nancy E
2017-01-01
Lumbar surgery for spinal stenosis is the most common spine operation being performed in older patients. Nevertheless, every time we want to schedule surgery, we confront the insurance industry. More often than not they demand patients first undergo epidural steroid injections (ESI); clearly they are not aware of ESI's lack of long-term efficacy. Who put these insurance companies in charge anyway? We did. How? Through performing too many unnecessary or overly extensive spinal operations (e.g., interbody fusions and instrumented fusions) without sufficient clinical and/or radiographic indications. Patients with lumbar spinal stenosis with/without degenerative spondylolisthesis (DS) are being offered decompressions alone and/or unnecessarily extensive interbody and/or instrumented fusions. Furthermore, a cursory review of the literature largely demonstrates comparable outcomes for decompressions alone vs. decompressions/in situ fusions vs. interbody/instrumented fusions. Too many older patients are being subjected to unnecessary lumbar spine surgery, some with additional interbody/non instrumented or instrumented fusions, without adequate clinical/neurodiagnostic indications. The decision to perform spine surgery for lumbar stenosis/DS, including decompression alone, decompression with non instrumented or instrumented fusion should be in the hands of competent spinal surgeons with their patients' best outcomes in mind. Presently, insurance companies have stepped into the "void" left by spinal surgeons' failing to regulate when, what type, and why spinal surgery is being offered to patients with spinal stenosis. Clearly, spine surgeons need to establish guidelines to maximize patient safety and outcomes for lumbar stenosis surgery. We need to remove insurance companies from their present roles as the "spinal police."
Widespread spinal cord involvement in progressive supranuclear palsy.
Iwasaki, Yasushi; Yoshida, Mari; Hashizume, Yoshio; Hattori, Manabu; Aiba, Ikuko; Sobue, Gen
2007-08-01
We describe the histopathologic features of spinal cord lesions in 10 cases of progressive supranuclear palsy (PSP) and review the literature. Histologic examination revealed atrophy with myelin pallor in the anterior funiculus and anterolateral funiculus in the cervical and thoracic segments in eight of the 10 cases, whereas the posterior funiculus was well preserved. The degrees of atrophy of the anterior funiculus and the anterolateral funiculus correlated with that of the tegmentum of the medulla oblongata. Myelin pallor of the lateral corticospinal tract was observed in two of the 10 cases. Microscopic observation of the spinal white matter, particularly the cervical segment, revealed a few to several neuropil threads, particularly in the white matter surrounding the anterior horn after Gallyas-Braak (GB) staining or AT-8 tau immunostaining. However, the posterior funiculus was completely preserved from the presence of argyrophilic or tau-positive structures. In the spinal gray matter, widespread distribution of neurons with cytoplasmic inclusions and neuropil threads was observed, particularly in the medial division of the anterior horn and intermediate gray matter, especially in the cervical segment. Globose-type neurofibrillary tangles and pretangles were found. The distribution of GB- or AT-8 tau-positive small neurons and neuropil threads resembled that of the spinal interneurons. In conclusion, the spinal cord, especially the cervical segment, is constantly involved in the pathologic process of PSP. We speculate that spinal interneurons and their neuronal processes, particularly in the medial division of the anterior horn and intermediate gray matter of the cervical segment, are most severely damaged in the PSP spinal cord.
Ramos, Alexander D; Rolston, John D; Gauger, Grant E; Larson, Paul S
2016-07-12
BACKGROUND Spinal subdural abscesses, also known as empyemas, are rare infectious lesions, the exact incidence of which is unknown. Presentation is typically dramatic, with back pain, fever, motor, and sensory deficits. Rapid identification and surgical intervention with laminectomy, durotomy, and washout provides the best outcomes. While hematogenous spread of an extra-spinal infection is the most common cause of this condition, a significant number of cases result from iatrogenic mechanisms, including lumbar punctures, epidural injections, and surgery. CASE REPORT Here we present 2 cases: 1) an 87-year-old man with type 2 diabetes, schizophrenia, mild cognitive impairment, and symptomatic lumbar spinal stenosis and 2) a 62-year-old man with a prior L3-4 spinal fusion with symptomatic lumbar spinal stenosis. In both cases, patients underwent laminectomy for spinal stenosis and developed epidural abscess. Following successful drainage of the epidural abscess, they continued to be symptomatic, and repeat imaging revealed the presence of a subdural abscess that was subsequently evacuated. Case 1 had significant improvement with residual lower-extremity weakness, while Case 2 made a complete neurological recovery. CONCLUSIONS These cases illustrate patients at increased risk for developing this rare spinal infection, and demonstrate that rapid recognition and surgical treatment is key to cure and recovery. Review of the literature highlights pertinent risk factors and demonstrates nearly one-third of reported cases have an iatrogenic etiology. The cases presented here demonstrate that a subdural process should be suspected in any patient with intractable pain following treatment of an epidural abscess.
Prevalent genotypes of Toxoplasma gondii in pregnant women and patients from Crete and Cyprus.
Messaritakis, Ippokratis; Detsika, Maria; Koliou, Maria; Sifakis, Stavros; Antoniou, Maria
2008-08-01
Molecular genotyping has been used to characterize Toxoplasma gondii strains into the three clonal lineages known as types I, II, and III. To characterize T. gondii strains from Greece and Cyprus, polymerase chain reaction-restriction fragment length polymorphism analysis on the GRA6 gene was performed directly on 20 clinical samples from 18 humans (11 pregnant women, six patients with lymphadenopathy, and one patient positive for human immunodeficiency virus) and two rats. Characterization of T. gondii types was performed after digestion of amplified products with Mse I. The 20 strains were characterized as type II (20%) and type III (80%). Of these strains, 19 originated from the island of Crete (4 strains type II and 15 strains type III), and 1 from the island of Cyprus (type III). Although both type II and type III strains were found, type III was the most prevalent in Crete.
Postoperative Nonpathologic Fever After Spinal Surgery: Incidence and Risk Factor Analysis.
Seo, Junghan; Park, Jin Hoon; Song, Eun Hee; Lee, Young-Seok; Jung, Sang Ku; Jeon, Sang Ryong; Rhim, Seung Chul; Roh, Sung Woo
2017-07-01
Although there are many postoperative febrile causes, surgical-site infection has always been considered as one of the major causes, but it should be excluded; we encountered many patients who showed delayed postoperative fever that was not related to wound infection after spinal surgery. We aimed to determine the incidence of delayed postoperative fever and its characteristics after spinal surgery, and to analyze the causal factors. A total of 250 patients who underwent any type of spinal surgery were analyzed. We determined febrile patients as those who did not show any fever until postoperative day 3, and those who showed a fever with an ear temperature of greater than 37.8°C at 4 days after surgery. We collected patient data including age, sex, coexistence of diabetes mellitus or hypertension, smoking history, location of surgical lesion (e.g., cervical, thoracic, lumbar spine), type of surgery, surgical approach, diagnosis, surgical level, presence of revision surgery, operative time, duration of administration of prophylactic antibiotics, and the presence of transfusion during the perioperative period, with a chart review. There were 33 febrile patients and 217 afebrile patients. Multivariate logistic regression showed that surgical approach (i.e., posterior approach with anterior body removal and mesh graft insertion), trauma and tumor surgery compared with degenerative disease, and long duration of surgery were statistically significant risk factors for postoperative nonpathologic fever. We suggest that most spinal surgeons should be aware that postoperative fever can be common without a wound infection, despite its appearance during the late acute or subacute period. Copyright © 2017 Elsevier Inc. All rights reserved.
The late and dual origin of cerebrospinal fluid-contacting neurons in the mouse spinal cord.
Petracca, Yanina L; Sartoretti, Maria Micaela; Di Bella, Daniela J; Marin-Burgin, Antonia; Carcagno, Abel L; Schinder, Alejandro F; Lanuza, Guillermo M
2016-03-01
Considerable progress has been made in understanding the mechanisms that control the production of specialized neuronal types. However, how the timing of differentiation contributes to neuronal diversity in the developing spinal cord is still a pending question. In this study, we show that cerebrospinal fluid-contacting neurons (CSF-cNs), an anatomically discrete cell type of the ependymal area, originate from surprisingly late neurogenic events in the ventral spinal cord. CSF-cNs are identified by the expression of the transcription factors Gata2 and Gata3, and the ionic channels Pkd2l1 and Pkd1l2. Contrasting with Gata2/3(+) V2b interneurons, differentiation of CSF-cNs is independent of Foxn4 and takes place during advanced developmental stages previously assumed to be exclusively gliogenic. CSF-cNs are produced from two distinct dorsoventral regions of the mouse spinal cord. Most CSF-cNs derive from progenitors circumscribed to the late-p2 and the oligodendrogenic (pOL) domains, whereas a second subset of CSF-cNs arises from cells bordering the floor plate. The development of these two subgroups of CSF-cNs is differentially controlled by Pax6, they adopt separate locations around the postnatal central canal and they display electrophysiological differences. Our results highlight that spatiotemporal mechanisms are instrumental in creating neural cell diversity in the ventral spinal cord to produce distinct classes of interneurons, motoneurons, CSF-cNs, glial cells and ependymal cells. © 2016. Published by The Company of Biologists Ltd.
Bailey, K Alysse; Gammage, Kimberley L; van Ingen, Cathy; Ditor, David S
2016-01-01
Using modified constructivist grounded theory, the purpose of this study was to explore body image experiences in people with spinal cord injury. Nine participants (five women, four men) varying in age (21–63 years), type of injury (C3-T7; complete and incomplete), and years post-injury (4–36 years) took part in semi-structured in-depth interviews. The following main categories were found: appearance, weight concerns, negative functional features, impact of others, body disconnection, hygiene and incontinence, and self-presentation. Findings have implications for the health and well-being of those living with a spinal cord injury. PMID:28070405
Partata, W A; Krepsky, A M; Marques, M; Achaval, M
1999-04-01
Seven days after transection of the sciatic nerve NADPH-diaphorase activity increased in the small and medium neurons of the dorsal root ganglia of the turtle. However, this increase was observed only in medium neurons for up to 90 days. At this time a bilateral increase of NADPH-diaphorase staining was observed in all areas and neuronal types of the dorsal horn, and in positive motoneurons in the lumbar spinal cord, ipsilateral to the lesion. A similar increase was also demonstrable in spinal glial and endothelial cells. These findings are discussed in relation to the role of nitric oxide in hyperalgesia and neuronal regeneration or degeneration.
Veintemillas Aráiz, M T; Beltrán Salazar, V P; Rivera Valladares, L; Marín Aznar, A; Melloni Ribas, P; Valls Pascual, R
2016-04-01
Spinal misalignments are a common reason for consultation at primary care centers and specialized departments. Misalignment has diverse causes and is influenced by multiple factors: in adolescence, the most frequent misalignment is scoliosis, which is idiopathic in 80% of cases and normally asymptomatic. In adults, the most common cause is degenerative. It is important to know the natural history and to detect factors that might predict progression. The correct diagnosis of spinal deformities requires specific imaging studies. The degree of deformity determines the type of treatment. The aim is to prevent progression of the deformity and to recover the flexibility and balance of the body. Copyright © 2016 SERAM. Published by Elsevier España, S.L.U. All rights reserved.
A pilot study on the use of cerebrospinal fluid cell-free DNA in intramedullary spinal ependymoma.
Connolly, Ian David; Li, Yingmei; Pan, Wenying; Johnson, Eli; You, Linya; Vogel, Hannes; Ratliff, John; Hayden Gephart, Melanie
2017-10-01
Cerebrospinal fluid (CSF) represents a promising source of cell-free DNA (cfDNA) for tumors of the central nervous system. A CSF-based liquid biopsy may obviate the need for riskier tissue biopsies and serve as a means for monitoring tumor recurrence or response to therapy. Spinal ependymomas most commonly occur in adults, and aggressive resection must be delicately balanced with the risk of injury to adjacent normal tissue. In patients with subtotal resection, recurrence commonly occurs. A CSF-based liquid biopsy matched to the patient's spinal ependymoma mutation profile has potential to be more sensitive then surveillance MRI, but the utility has not been well characterized for tumors of the spinal cord. In this study, we collected matched blood, tumor, and CSF samples from three adult patients with WHO grade II intramedullary spinal ependymoma. We performed whole exome sequencing on matched tumor and normal DNA to design Droplet Digital™ PCR (ddPCR) probes for tumor and wild-type mutations. We then interrogated CSF samples for tumor-derived cfDNA by performing ddPCR on extracted cfDNA. Tumor cfDNA was not reliably detected in the CSF of our cohort. Anatomic sequestration and low grade of intramedullary spinal cord tumors likely limits the role of CSF liquid biopsy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gvozdikova, Z.M.
1962-01-01
Local irradiation tests were carried out on the spinal cord and the shin of rabbits for the purpose of obtaining more information on the direct and reflex action of radiation on the hypothalamic region. Of the 25 animals, 5 were used for control and each of the 2 groups of 10 animals was used for irradiating either the spinal cord or the shin. The hypothalamus was excited by means of electrodes. The amplitude of the current of the flexor action, their frequency, and the latent period of the bending reflex were determined. Hard x rays were directed on the lumbarmore » vertebrae and soft radiation was applied on the lower third portion of the leg, using a dose of 1000 r. It was found that in the case a strong depression of the spinal centers, irritation of the hypothalamus stimulates the reflex activity. Increase of the excitability of the subtubercular region seemed to be one of the reasons of the depression of spinal reflexes. Change of the state of hypothalamus, noticed after irradiation of the shin of the animals, points toward the reflex-type nature of this disturbance. (TTT)« less
2003-01-01
GW Pharmaceuticals is undertaking a major research programme in the UK to develop and market distinct cannabis-based prescription medicines [THC:CBD, High THC, High CBD] in a range of medical conditions. The cannabis for this programme is grown in a secret location in the UK. It is expected that the product will be marketed in the US in late 2003. GW's cannabis-based products include selected phytocannabinoids from cannabis plants, including D9 tetrahydrocannabinol (THC) and cannabidiol (CBD). The company is investigating their use in three delivery systems, including sublingual spray, sublingual tablet and inhaled (but not smoked) dosage forms. The technology is protected by patent applications. Four different formulations are currently being investigated, including High THC, THC:CBD (narrow ratio), THC:CBD (broad ratio) and High CBD. GW is also developing a specialist security technology that will be incorporated in all its drug delivery systems. This technology allows for the recording and remote monitoring of patient usage to prevent any potential abuse of its cannabis-based medicines. GW plans to enter into agreements with other companies following phase III development, to secure the best commercialisation terms for its cannabis-based medicines. In June 2003, GW announced that exclusive commercialisation rights for the drug in the UK had been licensed to Bayer AG. The drug will be marketed under the Sativex brand name. This agreement also provides Bayer with an option to expand their license to include the European Union and certain world markets. GW was granted a clinical trial exemption certificate by the Medicines Control Agency to conduct clinical studies with cannabis-based medicines in the UK. The exemption includes investigations in the relief of pain of neurological origin and defects of neurological function in the following indications: multiple sclerosis (MS), spinal cord injury, peripheral nerve injury, central nervous system damage, neuroinvasive cancer, dystonias, cerebral vascular accident and spina bifida, as well as for the relief of pain and inflammation in rheumatoid arthritis and also pain relief in brachial plexus injury. The UK Government stated that it would be willing to amend the Misuse of Drugs Act 1971 to permit the introduction of a cannabis-based medicine. GW stated in its 2002 Annual Report that it was currently conducting five phase III trials of its cannabis derivatives, including a double-blind, placebo-controlled trial with a sublingual spray containing High THC in more than 100 patients with cancer pain in the UK. Also included is a phase III trial of THC:CBD (narrow ratio) being conducted in patients with severe pain due to brachial plexus injury, as are two more phase III trials of THC:CBD (narrow ratio) targeting spasticity and bladder dysfunction in multiple sclerosis patients. Another phase III trial of THC:CBD (narrow ratio) in patients with spinal cord injury is also being conducted. Results from the trials are expected during 2003. Three additional trials are also in the early stages of planning. These trials include a phase I trial of THC:CBD (broad ratio) in patients with inflammatory bowel disease, a phase I trial of High CBD in patients with psychotic disorders such as schizophrenia, and a preclinical trial of High CBD in various CNS disorders (including epilepsy, stroke and head injury). GW Pharmaceuticals submitted an application for approval of cannabis-based medicines to UK regulatory authorities in March 2003. Originally GW hoped to market cannabis-based prescription medicines by 2004, but is now planning for a launch in the UK towards the end of 2003. Several trials for GW's cannabis derivatives have also been completed, including four randomised, double-blind, placebo-controlled phase III clinical trials conducted in the UK. The trials were initiated by GW in April 2002, to investigate the use of a sublingual spray containing THC:CBD (narrow ratio) in the following medical conditions: pain in spinal cord injury, pain and sleep in MS and spinal cord injury, neuropathic pain in MS and general neuropathic pain (presented as allodynia). Results from these trials show that THC:CBD (narrow ratio) caused statistically significant reductions in neuropathic pain in patients with MS and other conditions. In addition, improvements in other MS symptoms were observed as well. Phase II studies of THC:CBD (narrow ratio) have also been completed in patients with MS, spinal cord injury, neuropathic pain and a small number of patients with peripheral neuropathy secondary to diabetes mellitus or AIDS. A phase II trial of THC:CBD (broad ratio) has also been completed in a small number of patients with rheumatoid arthritis, as has a trial of High CBD in patients with neurogenic symptoms. A phase II trial has also been evaluated with High THC in small numbers of patients for the treatment of perioperative pain. The phase II trials provided positive results and confirmed an excellent safety profile for cannabis-based medicines. GW Pharmaceuticals received an IND approval to commence phase II clinical trials in Canada in patients with chronic pain, multiple sclerosis and spinal cord injury in 2002. Following meetings with the US FDA, Drug Enforcement Agency (DEA), the Office for National Drug Control Policy, and National Institute for Drug Abuse, GW was granted an import license from the DEA and has imported its first cannabis extracts into the US. Preclinical research with these extracts in the US is ongoing.
Pattern and presentation of spine trauma in Gwagwalada-Abuja, Nigeria.
Kawu, A A
2012-01-01
The objective was to demonstrate the correlations and effects of age, gender, and cause of accident on the type of vertebral fracture as well as on the likelihood to sustain neurological deficit following trauma in Nigeria. Spinal column injury is a well-documented problem but literature has been mute on this problem in Nigeria unlike the many papers on spinal cord injury. A retrospective review of spinal cord injured (SCI) patients was performed. Age, sex, cause and level of injury, fracture pattern and distribution, and neurologic presentation of SCI patients from 1997 to 2007 were studied from case notes. There were 202 patients with male preponderance and a mean age of 38.9 ± 11.4 years over the 11-year period. The most common cause of spine injury was road traffic injury (79.7%). Cervical spine injury (10.4%) accounted for the highest number of cases with complete neurologic deficit. The majority of patients, 119 (58.9%) sustained a type A fracture, 37 (18.3%) a type B fracture, and 41(20.3%) patients experienced a type C fracture. All patients had neurologic deficits. Age (P=0.032) and road traffic injury (P=0.029) were independently associated with type of fracture after multivariate analysis. Age (P=0.038), road traffic injury (P=0.027), and cervical spine fracture (P=0.009) were also independently associated with neurologic deficit. These data showed the correlation between trauma mechanism and the type of fracture seen, and also the type of fracture and the incidence of neurologic deficit. The predictors of fracture types are age and road traffic injury while age, road traffic injury, and cervical spine fractures predict neurologic deficit.
Types of neural cells in the spinal ganglia of human embryos and early fetuses.
Olszewska, B; Woźniak, W; Gardner, E; O'Rahilly, R
1979-01-01
Spinal ganglial of human embryos and fetuses ranging in C.-R. length from 15 to 74 mm and in age from 6 1/2 to 11 postovulatory weeks were studied by light and electron microscopy. A sequence of events in differentiation and maturation enabled five types of cells to be distinguished: 1. apolar, undifferentiated neuroblasts are the main cells at 6 1/2 to 7 1/2 weeks; 2. early bipolar neuroblasts (strictly speaking, types 2 to 5 are immature neurons) predominate at the end of the embryonic period proper (8 postovulatory weeks); 3. intermediate bipolar neuroblasts are characteristic of the early fetal period; 4. late bipolar neuroblasts, in which two proceses arise separately from one pole of the cell, appear at about 10 postovulatory weeks; 5. unipolar neuroblasts are found within another week and, by that time, cells of types 1 and 2 are no longer present.
Berry, Jack W; Elliott, Timothy R; Rivera, Patricia
2007-12-01
A sample of 199 persons with spinal cord injury (SCI) were assessed on Big Five personality dimensions using the NEO Five-Factor Inventory (NEO-FFI; Costa & McCrae, 1992) at admission to an inpatient medical rehabilitation program. A cluster analysis of the baseline NEO-FFI yielded 3 cluster prototypes that resemble resilient, undercontrolled, and overcontrolled prototypes identified in many previous studies of children and adult community samples. Compared with normative samples, this sample had significantly fewer resilient prototypes and significantly more overcontrolled and undercontrolled prototypes. Undercontrolled individuals were the modal prototype. The resilient and undercontrolled types were better adjusted than the overcontrolled types, showing lower levels of depression at admission and higher acceptance of disability at discharge. The resilient type at admission predicted the most effective reports of social problem-solving abilities at discharge and the overcontrolled type the least. We discuss the implications of these results for assessment and interventions in rehabilitation settings.
Dhandapani, Sivashanmugam; Srinivasan, Anirudh
2016-01-01
Triple spinal dysraphism is extremely rare. There are published reports of multiple discrete neural tube defects with intervening normal segments that are explained by the multisite closure theory of primary neurulation, having an association with Chiari malformation Type II consistent with the unified theory of McLone. The authors report on a 1-year-old child with contiguous myelomeningocele and lipomyelomeningocele centered on Type I split cord malformation with Chiari malformation Type II and hydrocephalus. This composite anomaly is probably due to select abnormalities of the neurenteric canal during gastrulation, with a contiguous cascading impact on both dysjunction of the neural tube and closure of the neuropore, resulting in a small posterior fossa, probably bringing the unified theory of McLone closer to the unified theory of Pang.
NASA Astrophysics Data System (ADS)
Yasvoina, Marina V.
Current understanding of basic cellular and molecular mechanisms for motor neuron vulnerability during motor neuron disease initiation and progression is incomplete. The complex cytoarchitecture and cellular heterogeneity of the cortex and spinal cord greatly impedes our ability to visualize, isolate, and study specific neuron populations in both healthy and diseased states. We generated a novel reporter line, the Uchl1-eGFP mouse, in which cortical and spinal components of motor neuron circuitry are genetically labeled with eGFP under the Uchl1 promoter. A series of cellular and anatomical analyses combined with retrograde labeling, molecular marker expression, and electrophysiology were employed to determine identity of eGFP expressing cells in the motor cortex and the spinal cord of novel Uchl1-eGFP reporter mice. We conclude that eGFP is expressed in corticospinal motor neurons (CSMN) in the motor cortex and a subset of S-type alpha and gamma spinal motor neurons (SMN) in the spinal cord. hSOD1G93A and Alsin-/- mice, mouse models for amyotrophic lateral sclerosis (ALS), were bred to Uchl1-eGFP reporter mouse line to investigate the pathophysiology and underlying mechanisms of CSMN degeneration in vivo. Evidence suggests early and progressive degeneration of CSMN and SMN in the hSOD1G93A transgenic mice. We show an early increase of autophagosome formation in the apical dendrites of vulnerable CSMN in hSOD1G93A-UeGFP mice, which is localized to the apical dendrites. In addition, labeling S-type alpha and gamma SMN in the hSOD1G93A-UeGFP mice provide a unique opportunity to study basis of their resistance to degeneration. Mice lacking alsin show moderate clinical phenotype and mild CSMN axon degeneration in the spinal cord, which suggests vulnerability of CSMN. Therefore, we investigated the CSMN cellular and axon defects in aged Alsin-/- mice bred to Uchl1-eGFP reporter mouse line. We show that while CSMN are preserved and lack signs of degeneration, CSMN axons are vulnerable and show significant loss.
Kusku, Aysegul; Demir, Guray; Cukurova, Zafer; Eren, Gulay; Hergunsel, Oya
2014-01-01
Central blockage provided by spinal anaesthesia enables realization of many surgical procedures, whereas hemodynamic and respiratory changes influence systemic oxygen delivery leading to the potential development of series of problems such as cerebral ischemia, myocardial infarction and acute renal failure. This study was intended to detect potentially adverse effects of hemodynamic and respiratory changes on systemic oxygen delivery using cerebral oxymetric methods in patients who underwent spinal anaesthesia. Twenty-five ASA I-II Group patients aged 65-80 years scheduled for unilateral inguinal hernia repair under spinal anaesthesia were included in the study. Following standard monitorization baseline cerebral oxygen levels were measured using cerebral oximetric methods. Standardized Mini Mental Test (SMMT) was applied before and after the operation so as to determine the level of cognitive functioning of the cases. Using a standard technique and equal amounts of a local anaesthetic drug (15mg bupivacaine 5%) intratechal blockade was performed. Mean blood pressure (MBP), maximum heart rate (MHR), peripheral oxygen saturation (SpO2) and cerebral oxygen levels (rSO2) were preoperatively monitored for 60min. Pre- and postoperative haemoglobin levels were measured. The variations in data obtained and their correlations with the cerebral oxygen levels were investigated. Significant changes in pre- and postoperative measurements of haemoglobin levels and SMMT scores and intraoperative SpO2 levels were not observed. However, significant variations were observed in intraoperative MBP, MHR and rSO2 levels. Besides, a correlation between variations in rSO2, MBP and MHR was determined. Evaluation of the data obtained in the study demonstrated that post-spinal decline in blood pressure and also heart rate decreases systemic oxygen delivery and adversely effects cerebral oxygen levels. However, this downward change did not result in deterioration of cognitive functioning. Copyright © 2013 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.
Kusku, Aysegul; Demir, Guray; Cukurova, Zafer; Eren, Gulay; Hergunsel, Oya
2014-01-01
Central blockage provided by spinal anaesthesia enables realization of many surgical procedures, whereas hemodynamic and respiratory changes influence systemic oxygen delivery leading to the potential development of series of problems such as cerebral ischemia, myocardial infarction and acute renal failure. This study was intended to detect potentially adverse effects of hemodynamic and respiratory changes on systemic oxygen delivery using cerebral oxymetric methods in patients who underwent spinal anaesthesia. Twenty-five ASA I-II Group patients aged 65-80 years scheduled for unilateral inguinal hernia repair under spinal anaesthesia were included in the study. Following standard monitorization baseline cerebral oxygen levels were measured using cerebral oximetric methods. Standardized Mini Mental Test (SMMT) was applied before and after the operation so as to determine the level of cognitive functioning of the cases. Using a standard technique and equal amounts of a local anaesthetic drug (15mg bupivacaine 5%) intratechal blockade was performed. Mean blood pressure (MBP), maximum heart rate (MHR), peripheral oxygen saturation (SpO2) and cerebral oxygen levels (rSO2) were preoperatively monitored for 60min. Pre- and postoperative haemoglobin levels were measured. The variations in data obtained and their correlations with the cerebral oxygen levels were investigated. Significant changes in pre- and postoperative measurements of haemoglobin levels and SMMT scores and intraoperative SpO2 levels were not observed. However, significant variations were observed in intraoperative MBP, MHR and rSO2 levels. Besides, a correlation between variations in rSO2, MBP and MHR was determined. Evaluation of the data obtained in the study demonstrated that post-spinal decline in blood pressure and also heart rate decreases systemic oxygen delivery and adversely effects cerebral oxygen levels. However, this downward change did not result in deterioration of cognitive functioning. Copyright © 2013 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.
Sikandar, Shafaq; Gustavsson, Ynette; Marino, Marc J; Dickenson, Anthony H; Yaksh, Tony L; Sorkin, Linda S; Ramachandran, Roshni
2016-07-01
Increasing evidence suggests that botulinum neurotoxins (BoNTs) delivered into the skin and muscle in certain human and animal pain states may exert antinociceptive efficacy though their uptake and transport to central afferent terminals. Cleavage of soluble N-methylaleimide-sensitive attachment protein receptor by BoNTs can impede vesicular mediated neurotransmitter release as well as transport/insertion of channel/receptor subunits into plasma membranes, an effect that can reduce activity-evoked facilitation. Here, we explored the effects of intraplantar botulinum toxin- B (BoNT-B) on peripheral inflammation and spinal nociceptive processing in an inflammatory model of pain. C57BL/6 mice (male) received unilateral intraplantar BoNT (1 U, 30 μL) or saline prior to intraplantar carrageenan (20 μL, 2%) or intrathecal N-methyl-D-aspartate (NMDA), substance P or saline (5 μL). Intraplantar carrageenan resulted in edema and mechanical allodynia in the injected paw and increased phosphorylation of a glutamate subunit (pGluA1ser845) and a serine/threonine-specific protein kinase (pAktser473) in spinal dorsal horn along with an increased incidence of spinal c-Fos positive cells. Pre-treatment with intraplantar BoNT-B reduced carrageenan evoked: (i) allodynia, but not edema; (ii) pGluA1 and pAkt and (iii) c-Fos expression. Further, intrathecal NMDA and substance P each increased dorsal horn levels of pGluA1 and pAkt. Intraplantar BoNT-B inhibited NMDA, but not substance P evoked phosphorylation of GluA1 and Akt. These results suggest that intraplantar toxin is transported centrally to block spinal activation and prevent phosphorylation of a glutamate receptor subunit and a kinase, which otherwise contribute to facilitated states. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Inhibition by spinal mu- and delta-opioid agonists of afferent-evoked substance P release.
Kondo, Ichiro; Marvizon, Juan Carlos G; Song, Bingbing; Salgado, Frances; Codeluppi, Simone; Hua, Xiao-Ying; Yaksh, Tony L
2005-04-06
Opioid mu- and delta-receptors are present on the central terminals of primary afferents, where they are thought to inhibit neurotransmitter release. This mechanism may mediate analgesia produced by spinal opiates; however, when they used neurokinin 1 receptor (NK1R) internalization as an indicator of substance P release, Trafton et al. (1999) noted that this evoked internalization was altered only modestly by morphine delivered intrathecally at spinal cord segment S1-S2. We reexamined this issue by studying the effect of opiates on NK1R internalization in spinal cord slices and in vivo. In slices, NK1R internalization evoked by dorsal root stimulation at C-fiber intensity was abolished by the mu agonist [D-Ala2, N-Me-Phe4, Gly-ol5]-enkephalin (DAMGO) (1 microM) and decreased by the delta agonist [D-Phe2,5]-enkephalin (DPDPE) (1 microM). In vivo, hindpaw compression induced NK1R internalization in ipsilateral laminas I-II. This evoked internalization was significantly reduced by morphine (60 nmol), DAMGO (1 nmol), and DPDPE (100 nmol), but not by the kappa agonist trans-(1S,2S)-3,4-dichloro-N-mathyl-N-[2-(1-pyrrolidinyl)cyclohexyl]-benzeneacetamide hydrochloride (200 nmol), delivered at spinal cord segment L2 using intrathecal catheters. These doses of the mu and delta agonists were equi-analgesic as measured by a thermal escape test. Lower doses neither produced analgesia nor inhibited NK1R internalization. In contrast, morphine delivered by percutaneous injections at S1-S2 had only a modest effect on thermal escape, even at higher doses. Morphine decreased NK1R internalization after systemic delivery, but at a dose greater than that necessary to produce equivalent analgesia. All effects were reversed by naloxone. These results indicate that lumbar opiates inhibit noxious stimuli-induced neurotransmitter release from primary afferents at doses that are confirmed behaviorally as analgesic.
Konkaev, A K; Eltaeva, A A; Zabolotskikh, I B; Musaeva, T S; Dibvik, L Z; Kuklin, V N
2016-11-01
Efficacy Safety Score (ESS) with "call-out algorithm" developed in Kongsberg hospital, Norway was used for the validation. ESS consists of the mathematical sum ofscorefrom: 2 subjective (Visual Analog Scale: VAS at rest and during mobilization) and 4 vital (conscious levels, PONV circulation and respiration status) parameters and ESS > 10 is a "call-out alarm "for visit ofpatient by anaesthesiologist. Hourly registration of ESS, mobility degree and amounts of analgetics during the first 8 hours after surgery was recorded in the specially designed IPad program. According to the type ofanaesthesia all patients were allocated in 4 groups: I spinal anaesthesia (SA), II general anesthesia (GA), III peripheral blockade (PB) and IV Total intravenous anaesthesia (TIVA). A total of 223 patients were included in the study. Statistically low levels of both VAS and ESS in the first 2-4 postoperative hours were found in SA and PB groups compared to GA and TIVA groups. During 8 post-operative hours, VAS> 3 was recorded in 10.5% of SA, 13.9% in GA, 12.8% in PG and 23.5% in TIVA patients. Intramuscular postoperative analgesia was effective in SA, GA and PG groups. More attention of anaesthesiologist must be paid to patients ofter TIVA.
Dekio, Itaru; Culak, Renata; Misra, Raju; Gaulton, Tom; Fang, Min; Sakamoto, Mitsuo; Ohkuma, Moriya; Oshima, Kenshiro; Hattori, Masahira; Klenk, Hans-Peter; Rajendram, Dunstan; Gharbia, Saheer E; Shah, Haroun N
2015-12-01
Propionibacterium acnes subsp. acnes subsp. nov. and Propionibacterium acnes subsp. elongatum subsp. nov. are described. These emanate from the three known phylotypes of P. acnes, designated types I, II and III. Electron microscopy confirmed the filamentous cell shape of type III, showing a striking difference from types I/II, which were short rods. Biochemical tests indicated that, in types I/II, either the pyruvate, l-pyrrolidonyl arylamidase or d-ribose 2 test was positive, whereas all of these were negative among type III strains. Matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) spectra, which profile mainly their ribosomal proteins, were different between these two groups. Surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) spectra of all phylotypes revealed a specific protein biomarker that was overexpressed in type III strains compared with types I/II only when grown aerobically. Reference strains had high whole-genome similarity between types I (>91 %) and II (>75 %), but a considerably lower level of 72 % similarity with type III. recA and gyrB sequence dendrograms confirmed the distant relatedness of type III, indicating the presence of two distinct centres of variation within the species P. acnes. On the other hand, cellular fatty acid profiles and 16S rRNA gene sequence relatedness (>99.3 %) circumscribed the species. Thus, we propose two subspecies, Propionibacterium acnes subsp. acnes subsp. nov. for types I/II and Propionibacterium acnes subsp. elongatum subsp. nov. for type III. The type strain of Propionibacterium acnes subsp. acnes is NCTC 737T ( = ATCC 6919T = JCM 6425T = DSM 1897T = CCUG 1794T), while the type strain of Propionibacterium acnes subsp. elongatum is K124T ( = NCTC 13655T = JCM 18919T).
2014-12-01
functional recovery improved in spinal injured rats using glibenclamide (Glib), an FDA approved anti-diabetic drug that targets SUR1 receptors on... protocols in rat model of SCI. • Established that glibenclamide is neuroprotective across different types of SCI but that efficacy is related to the location...the relative efficacy of glibenclamide with other neuroprotective drugs (Riluzole, systemic hypothermia). Data show that glibenclamide has superior
Smail, Hassiba; Baste, Jean Marc; Melki, Jean; Peillon, Christophe
2013-02-01
We report a novel surgical strategy for the resection of a rare type of posterior mediastinal tumour in a young patient. A melanotic schwannoma arose from the left thoracic sympathetic chain, adjacent to the origin of the artery of Adamkiewicz. Successful excision of this tumour via a minimally invasive approach without arterial or spinal cord injury was possible with the aid of neurological monitoring using spinal-evoked potentials.
Segmental spinal anaesthesia for cholecystectomy in a patient with severe lung disease.
van Zundert, A A J; Stultiens, G; Jakimowicz, J J; van den Borne, B E E M; van der Ham, W G J M; Wildsmith, J A W
2006-04-01
Occasionally patients awaiting heart or lung transplant because of terminal disease require other types of surgery, but present significant challenges to the anaesthetist because of impaired organ function. Regional anaesthesia may have much to offer such patients and we here report one who underwent successfully a laparoscopic cholecystectomy under segmental subarachnoid (spinal) anaesthesia performed at the low thoracic level. The anatomical and physiological consequences of such a technique are discussed.
Palliative care in children with spinal muscular atrophy type I: What do they need?
García-Salido, Alberto; de Paso-Mora, María García; Monleón-Luque, Manuel; Martino-Alba, Ricardo
2015-04-01
Our aim was to describe the clinical evolution and needs of children with spinal muscular atrophy type I treated in a domiciliary palliative care program. We undertook a retrospective chart review of nine consecutive patients. Descriptions of the clinical and demographic profile of children with spinal muscular atrophy (SMA) type I were referred to a pediatric palliative care team (PPCT). Six males and three females were admitted to the PPCT, all before six months of age, except for one afflicted with SMA type I with respiratory distress. The median time of attention was 57 days (range 1-150). The domiciliary attention mainly consisted of respiratory care. The patient with SMA type I with respiratory distress required domiciliary mechanical ventilation by tracheotomy. In all cases, a nasogastric tube (NT) was indicated. As end-of-life care, eight required morphine to manage the dyspnea, four received it only by enteral (oral or NT) administration, and four received it first by enteral administration with continuous subcutaneous infusion (CSI) later. Three of the four patients with CSI also received benzodiazepines. While they were attended by the PPCT, none required hospital admission. All the patients died at home except for the one attended to for just one day. Domiciliary care for these patients is possible. The respiratory morbidity and its management are the main issues. Application of an NT is useful to maintain nutritional balance. Morphine administration is necessary to manage the dyspnea. Palliative sedation is not always necessary.
Continuous spinal anesthesia for lower limb surgery: a retrospective analysis of 1212 cases
Lux, Eberhard Albert
2012-01-01
Background Continuous spinal anesthesia is a very reliable and versatile technique for providing effective anesthesia and analgesia. However, the incidence of possible complications, including postdural puncture headache or neurological impairment, remains controversial. Therefore, the aim of the present retrospective study was to analyze a large number of patients for the incidence of adverse events after continuous spinal anesthesia with a microcatheter. Methods This retrospective study was conducted on 1212 patients who underwent surgery of the lower extremities with continuous spinal anesthesia, which was administered with 22-gauge Quincke spinal needles and 28-gauge microcatheters. Sociodemographic and clinical data were available from the patient records, and data on headaches and patient satisfaction were drawn from a brief postoperative patient questionnaire. Results The patient population included 825 females (68%) and 387 males; the median age was 61 (56–76). The types of operations performed were 843 hip prostheses, 264 knee prostheses, and 105 other leg operations. No major complications were observed in any of these patients. Tension headaches were experienced by 190 (15.7%) patients, but postdural puncture headaches were reported by only 18 (1.5%) patients. Nearly all patients (98.4%) were satisfied with continuous spinal anesthesia and confirmed that they would choose this kind of anesthesia again. Conclusion Based on the findings of this large data analysis, continuous spinal anesthesia using a 28-gauge microcatheter appears to be a safe and appropriate anesthetic technique in lower leg surgery for aged patients. PMID:23204868
Cell-type-dependent action potentials and voltage-gated currents in mouse fungiform taste buds.
Kimura, Kenji; Ohtubo, Yoshitaka; Tateno, Katsumi; Takeuchi, Keita; Kumazawa, Takashi; Yoshii, Kiyonori
2014-01-01
Taste receptor cells fire action potentials in response to taste substances to trigger non-exocytotic neurotransmitter release in type II cells and exocytotic release in type III cells. We investigated possible differences between these action potentials fired by mouse taste receptor cells using in situ whole-cell recordings, and subsequently we identified their cell types immunologically with cell-type markers, an IP3 receptor (IP3 R3) for type II cells and a SNARE protein (SNAP-25) for type III cells. Cells not immunoreactive to these antibodies were examined as non-IRCs. Here, we show that type II cells and type III cells fire action potentials using different ionic mechanisms, and that non-IRCs also fire action potentials with either of the ionic mechanisms. The width of action potentials was significantly narrower and their afterhyperpolarization was deeper in type III cells than in type II cells. Na(+) current density was similar in type II cells and type III cells, but it was significantly smaller in non-IRCs than in the others. Although outwardly rectifying current density was similar between type II cells and type III cells, tetraethylammonium (TEA) preferentially suppressed the density in type III cells and the majority of non-IRCs. Our mathematical model revealed that the shape of action potentials depended on the ratio of TEA-sensitive current density and TEA-insensitive current one. The action potentials of type II cells and type III cells under physiological conditions are discussed. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Liu, Jean; Reid, Allison R; Sawynok, Jana
2013-03-01
Acetaminophen (paracetamol) is a widely used analgesic, but its sites and mechanisms of action remain incompletely understood. Recent studies have separately implicated spinal adenosine A(1) receptors (A(1)Rs) and serotonin 5-HT(7) receptors (5-HT(7)Rs) in the antinociceptive effects of systemically administered acetaminophen. In the present study, we determined whether these two actions are linked by delivering a selective 5-HT(7)R antagonist to the spinal cord of mice and examining nociception using the formalin 2% model. In normal and A(1)R wild type mice, antinociception by systemic (i.p.) acetaminophen 300mg/kg was reduced by intrathecal (i.t.) delivery of the selective 5-HT(7)R antagonist SB269970 3μg. In mice lacking A(1)Rs, i.t. SB269970 did not reverse antinociception by systemic acetaminophen, indicating a link between spinal 5-HT(7)R and A(1)R mechanisms. We also explored potential roles of peripheral A(1)Rs in antinociception by acetaminophen administered both locally and systemically. In normal mice, intraplantar (i.pl.) acetaminophen 200μg produced antinociception in the formalin test, and this was blocked by co-administration of the selective A(1)R antagonist DPCPX 4.5μg. Acetaminophen administered into the contralateral hindpaw had no effect, indicating a local peripheral action. When acetaminophen was administered systemically, its antinociceptive effect was reversed by i.pl. DPCPX in normal mice; this was also observed in A(1)R wild type mice, but not in those lacking A(1)Rs. In summary, we demonstrate a link between spinal 5-HT(7)Rs and A(1)Rs in the spinal cord relevant to antinociception by systemic acetaminophen. Furthermore, we implicate peripheral A(1)Rs in the antinociceptive effects of locally- and systemically-administered acetaminophen. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Itabashi, Tetsuya; Arima, Yasunobu; Kamimura, Daisuke; Higuchi, Kotaro; Bando, Yoshio; Takahashi-Iwanaga, Hiromi; Murakami, Masaaki; Watanabe, Masahiko; Iwanaga, Toshihiko; Nio-Kobayashi, Junko
2018-06-16
Multiple sclerosis (MS) is an autoimmune disease in which pathogenic T cells play an important role, and an experimental autoimmune encephalomyelitis (EAE) is used as an animal model of MS. Galectins are β-galactoside-binding lectins and involved in various physiological and pathological events. Among fifteen members of galectins, galectin-1, -8, and -9 play immunosuppressive roles in MS and EAE; however, the role of galectin-3 (gal-3) is complex and controversial. We examined expression of gal-3 in the spinal cord and nerve roots of EAE mice. No immunohistochemical signals were detected in naïve mice, whereas gal-3 appeared at lower lumbar levels of the spinal cord and nerve roots in EAE mice. In the spinal cord, gal-3-positive cells were activated microglia and/or infiltrating macrophages, which were round in shape and intensified for the lysosomal enzyme, cathepsin D, indicating elevated phagocytic activity. Gal-3-positive cells in the spinal cord were most abundant during the peak symptomatic period. In the recovery period, they disappeared from the spinal parenchyma but remained at moderate levels in the pia mater. Interestingly, gal-3-positive cells selectively appeared in ventral, but not dorsal, nerve roots running through the spinal canal, with expression peaking during the recovery period. In ventral nerve roots, the major cell type expressing gal-3 was a specific population of Schwann cells that surround unmyelinated axons and express the biosynthetic enzyme for l-serine, a potent neurotrophic amino acid. Gal-3 was also induced in Iba1/F4/80-positive macrophages, which engulf damaged myelin and axon debris. Thus, gal-3 is induced in distinct cell types that are engaged in removal of damaged axons and cell debris and axon regeneration and remyelination, suggesting a potential neuroprotective role of gal-3 in EAE mice. Copyright © 2018. Published by Elsevier Ltd.
Zwaans, Willem A R; le Mair, Léon H P M; Scheltinga, Marc R M; Roumen, Rudi M H
2017-01-14
Chronic inguinodynia (groin pain) is a common complication following open inguinal hernia repair or a Pfannenstiel incision but may also be experienced after other types of (groin) surgery. If conservative treatments are to no avail, tailored remedial surgery, including a neurectomy and/or a (partial) meshectomy, may be considered. Retrospective studies in patients with chronic inguinodynia suggested that spinal anaesthesia is superior compared to general anaesthesia in terms of pain relief following remedial operations. This randomised controlled trial is designed to study the effect of type of anaesthesia (spinal or general) on pain relief following remedial surgery for inguinodynia. A total of 190 adult patients who suffer from unacceptable chronic (more than 3 months) inguinodynia, as subjectively judged by the patients themselves, are included. Only patients scheduled to undergo a neurectomy and/or a meshectomy by an open approach are considered for inclusion and randomised to spinal or general anaesthesia. Patients are excluded if pain is attributable to abdominal causes or if any contraindications for either type of anaesthesia are present. Primary outcome is effect of type of anaesthesia on pain relief. Secondary outcomes include patient satisfaction, quality of life, use of analgesics and (in)direct medical costs. Patient follow-up period is one year. The first patient was included in January 2016. The expected trial deadline is December 2019. Potential effects are deemed related to the entire setting of type of anaesthesia. Since any setting is multifactorial, all of these factors may influence the outcome measures. This is the first large randomised controlled trial comparing the two most frequently used anaesthetic techniques in remedial surgery for groin pain. There is a definite need for evidence-based strategies to optimise results of these types of surgery. Besides pain relief, other important patient-related outcome measures are assessed to include patient's perspectives on outcome. The protocol (protocol number NL54115.015.15 ) is approved by the Medical Ethics Committee of Máxima Medical Centre, Veldhoven, The Netherlands. The study protocol was registered at www.trialregister.nl (NTR registration number: 5586) on 15 January 2016.
[Diagnostic values of serum type III procollagen N-terminal peptide in type IV gastric cancer].
Akazawa, S; Fujiki, T; Kanda, Y; Kumai, R; Yoshida, S
1985-04-01
Since increased synthesis of collagen has been demonstrated in tissue of type IV gastric cancer, we attempted to distinguish type IV gastric cancer from other cancers by measuring serum levels of type III procollagen N-terminal peptide (type III-N-peptide). Mean serum levels in type IV gastric cancer patients without metastasis were found to be elevated above normal values and developed a tendency to be higher than those in types I, II and III gastric cancer patients without metastasis. Highly positive ratios were found in patients with liver diseases including hepatoma and colon cancer, biliary tract cancer, and esophageal cancer patients with liver, lung or bone metastasis, but only 2 out of 14 of these cancer patients without such metastasis showed positive serum levels of type III-N-peptide. Positive cases in patients with type IV gastric cancer were obtained not only in the group with clinical stage IV but also in the groups with clinical stages II and III. In addition, high serum levels of type III-N-peptide in patients with type IV gastric cancer were seen not only in the cases with liver, lung or bone metastasis but also in cases with disseminated peritoneal metastasis alone. These results suggest that if the serum level of type III-N-peptide is elevated above normal values, type IV gastric cancer should be suspected after ruling out liver diseases, myelofibrosis and liver, lung or bone metastasis.
Viciano, Joan; López-Lázaro, Sandra; Pérez-Fernández, Ángela; Amores-Ampuero, Anabel; D'Anastasio, Ruggero; Jiménez-Triguero, José Miguel
2017-09-01
This study details a severe case of Scheuermann's disease (SD) in a well-preserved skeleton of a juvenile male (designated TOR302), dated to 3rd-4th century CE, from the late Roman necropolis of Torrenueva (Granada, Spain). Individual TOR302 shows an evident kyphotic curve in the thoraco-lumbar spine, which is characterised by: (i) vertebral bodies of thoracic vertebra T2, thoracic segment T4-T9, and thoraco-lumbar segment T12-L2 wedged at >5°; (ii) slight anterior extensions of the epiphyseal ring; (iii) Schmorl's nodes on the superior and/or inferior plates; and (iv) a Cobb angle of 75°, derived from thoracic segments T4-T9. In addition, TOR302 shows other skeletal malformations as the secondary results of abnormal growth, due to altered biomechanical forces imposed by the spinal deformity, including: (i) lateral distortion of the spine that causes a slight secondary scoliotic curve; (ii) pelvic obliquity; and (iii) discrepancy in the length of the limbs. We argue that the secondary skeletal abnormalities allowed the individual to adapt to his spinal deformity meaning he was able to walk without the aid of a stick. Despite SD being a common modern clinical finding, few cases have been reported in ancient skeletal remains. This case therefore represents an important contribution to the palaeopathological literature. Copyright © 2017 Elsevier Inc. All rights reserved.
Molecular architectures of benzoic acid-specific type III polyketide synthases
Stewart, Charles; Woods, Kate; Macias, Greg; Allan, Andrew C.; Noel, Joseph P.
2017-01-01
Biphenyl synthase and benzophenone synthase constitute an evolutionarily distinct clade of type III polyketide synthases (PKSs) that use benzoic acid-derived substrates to produce defense metabolites in plants. The use of benzoyl-CoA as an endogenous substrate is unusual for type III PKSs. Moreover, sequence analyses indicate that the residues responsible for the functional diversification of type III PKSs are mutated in benzoic acid-specific type III PKSs. In order to gain a better understanding of structure–function relationships within the type III PKS family, the crystal structures of biphenyl synthase from Malus × domestica and benzophenone synthase from Hypericum androsaemum were compared with the structure of an archetypal type III PKS: chalcone synthase from Malus × domestica. Both biphenyl synthase and benzophenone synthase contain mutations that reshape their active-site cavities to prevent the binding of 4-coumaroyl-CoA and to favor the binding of small hydrophobic substrates. The active-site cavities of biphenyl synthase and benzophenone synthase also contain a novel pocket associated with their chain-elongation and cyclization reactions. Collectively, these results illuminate structural determinants of benzoic acid-specific type III PKSs and expand the understanding of the evolution of specialized metabolic pathways in plants. PMID:29199980
2013-05-01
Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Embryonal Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Childhood Mixed Glioma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Extra-adrenal Paraganglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Spinal Cord Neoplasm; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma
Chen, H; Tseng, F; Su, D; Chen, H; Tsai, K
2005-01-01
Type la pseudohypoparathyroidism (PHP la) is an unusual inherited disease. PHP la often causes extraskeletal calcifications and even soft tissue ossifications. Patients may present neurologic symptoms and signs related to hypocalcemia and hyperphosphatemia. We report here a 38-yr-old woman with PHP la who had two uncommon neurologic complications. One was involuntary movements related to basal ganglia calcification, and the other was myelopathy owing to ossifications of the posterior longitudinal ligament and multiple herniated intervertebral disks. Aggressive body weight control and corrections of hypocalcemia, hyperphosphatemia, and elevated PTH may be important to prevent these unusual neurologic complications. Regular and careful neurologic examinations should be performed for early diagnosis and treatments of these spinal lesions.
Enrichment of spinal cord cell cultures with motoneurons
1978-01-01
Spinal cord cell cultures contain several types of neurons. Two methods are described for enriching such cultures with motoneurons (defined here simply as cholinergic cells that are capable of innervating muscle). In the first method, 7-day embryonic chick spinal cord neurons were separated according to size by 1 g velocity sedimentation. It is assumed that cholinergic motoneurons are among the largest cells present at this stage. The spinal cords were dissociated vigorously so that 95-98% of the cells in the initial suspension were isolated from one another. Cells in leading fractions (large cell fractions: LCFs) contain about seven times as much choline acetyltransferase (CAT) activity per unit cytoplasm as do cells in trailing fractions (small cell fractions: SCFs). Muscle cultures seeded with LCFs develop 10-70 times as much CAT as cultures seeded with SCFs and six times as much CAT as cultures seeded with control (unfractionated) spinal cord cells. More than 20% of the large neurons in LCF-muscle cultures innervate nearby myotubes. In the second method, neurons were gently dissociated from 4-day embryonic spinal cords and maintained in vitro. This approach is based on earlier observations that cholinergic neurons are among the first cells to withdraw form the mitotic cycle in the developing chick embryo (Hamburger, V. 1948. J. Comp. Neurol. 88:221- 283; and Levi-Montalcini, R. 1950. J. Morphol. 86:253-283). 4-Day spinal cord-muscle cultures develop three times as much CAT as do 7-day spinal cord-muscle plates, prepared in the same (gentle) manner. More than 50% of the relatively large 4-day neurons innervate nearby myotubes. Thus, both methods are useful first steps toward the complete isolation of motoneurons. Both methods should facilitate study of the development of cholinergic neurons and of nerve-muscle synapse formation. PMID:566275
Mehta, Prachi; Premkumar, Brian; Morris, Renée
2016-08-03
The mammalian central nervous system (CNS) is composed of multiple cellular elements, making it challenging to segregate one particular cell type to study their gene expression profile. For instance, as motor neurons represent only 5-10% of the total cell population of the spinal cord, meaningful transcriptional analysis on these neurons is almost impossible to achieve from homogenized spinal cord tissue. A major challenge faced by scientists is to obtain good quality RNA from small amounts of starting material. In this paper, we used Laser Capture Microdissection (LCM) techniques to identify and isolate spinal cord motor neurons. The present analysis revealed that perfusion with paraformaldehyde (PFA) does not alter RNA quality. RNA integrity numbers (RINs) of tissue samples from rubrospinal tract (RST)-transected, intact spinal cord or from whole spinal cord homogenate were all above 8, which indicates intact, high-quality RNA. Levels of mRNA for brain-derived neurotrophic factor (BDNF) or for its tropomyosin receptor kinase B (TrkB) were not affected by rubrospinal tract (RST) transection, a surgical procedure that deprive motor neurons from one of their main supraspinal input. The isolation of pure populations of neurons with LCM techniques allows for robust transcriptional characterization that cannot be achieved with spinal cord homogenates. Such preparations of pure population of motor neurons will provide valuable tools to advance our understanding of the molecular mechanisms underlying spinal cord injury and neuromuscular diseases. In the near future, LCM techniques might be instrumental to the success of gene therapy for these debilitating conditions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Cardiac dysfunctions following spinal cord injury
Sandu, AM; Popescu, M; Iacobini, MA; Stoian, R; Neascu, C; Popa, F
2009-01-01
The aim of this article is to analyze cardiac dysfunctions occurring after spinal cord injury (SCI). Cardiac dysfunctions are common complications following SCI. Cardiovascular disturbances are the leading causes of morbidity and mortality in both acute and chronic stages of SCI. We reviewed epidemiology of cardiac disturbances after SCI, and neuroanatomy and pathophysiology of autonomic nervous system, sympathetic and parasympathetic. SCI causes disruption of descendent pathways from central control centers to spinal sympathetic neurons, originating into intermediolateral nuclei of T1–L2 spinal cord segments. Loss of supraspinal control over sympathetic nervous system results in reduced overall sympathetic activity below the level of injury and unopposed parasympathetic outflow through intact vagal nerve. SCI associates significant cardiac dysfunction. Impairment of autonomic nervous control system, mostly in patients with cervical or high thoracic SCI, causes cardiac dysrrhythmias, especially bradycardia and, rarely, cardiac arrest, or tachyarrhytmias and hypotension. Specific complication dependent on the period of time after trauma like spinal shock and autonomic dysreflexia are also reviewed. Spinal shock occurs during the acute phase following SCI and is a transitory suspension of function and reflexes below the level of the injury. Neurogenic shock, part of spinal shock, consists of severe bradycardia and hypotension. Autonomic dysreflexia appears during the chronic phase, after spinal shock resolution, and it is a life–threatening syndrome of massive imbalanced reflex sympathetic discharge occurring in patients with SCI above the splanchnic sympathetic outflow (T5–T6). Besides all this, additional cardiac complications, such as cardiac deconditioning and coronary heart disease may also occur. Proper prophylaxis, including nonpharmacologic and pharmacological strategies and cardiac rehabilitation diminish occurrence of the cardiac dysfunction following SCI. Each type of cardiac disturbance requires specific treatment. PMID:20108532
12 CFR 1.4 - Calculation of limits.
Code of Federal Regulations, 2010 CFR
2010-01-01
... separately to the Type III and Type V securities held by a bank. (e) Limit on investment company holdings—(1... investment limits at that interval until further notice. (d) Calculation of Type III and Type V securities holdings—(1) General. In calculating the amount of its investment in Type III or Type V securities issued...
Chen, Ying-Jiun J.; Johnson, Madeleine A.; Lieberman, Michael D.; Goodchild, Rose E.; Schobel, Scott; Lewandowski, Nicole; Rosoklija, Gorazd; Liu, Ruei-Che; Gingrich, Jay A.; Small, Scott; Moore, Holly; Dwork, Andrew J.; Talmage, David A.; Role, Lorna W.
2008-01-01
Neuregulin-1 (Nrg1)/erbB signaling regulates neuronal development, migration, myelination, and synaptic maintenance. The Nrg1 gene is a schizophrenia susceptibility gene. To understand the contribution of Nrg1 signaling to adult brain structure and behaviors, we have studied the regulation of Type III Nrg1 expression and evaluated the effect of decreased expression of the Type III Nrg1 isoforms. Type III Nrg1 is transcribed by a promoter distinct from those for other Nrg1 isoforms and, in the adult brain, is expressed in the medial prefrontal cortex, ventral hippocampus and ventral subiculum, regions involved in the regulation of sensorimotor gating and short term memory. Adult heterozygous mutant mice with a targeted disruption for Type III Nrg1 (Nrg1tm1.1Lwr+/-) have enlarged lateral ventricles and decreased dendritic spine density on subicular pyramidal neurons. MRI imaging of Type III Nrg1 heterozygous mice revealed hypo-function in the medial prefrontal cortex and the hippocampal CA1 and subiculum regions. Type III Nrg1 heterozygous mice also have impaired performance on delayed alternation memory tasks, and deficits in prepulse inhibition (PPI). Chronic nicotine treatment eliminated differences in PPI between Type III Nrg1 heterozygous mice and their wild type littermates. Our findings demonstrate a role of Type III Nrg1-signaling in the maintenance of cortico-striatal components, and in the neural circuits involved in sensorimotor gating and short term memory. PMID:18596162
2017-10-01
Award Number: W81XWH-16-1-0763 TITLE: Increasing Bone Mass and Bone Strength in Individuals with Chronic Spinal Cord Injury: Maximizing Response...TYPE Annual 3. DATES COVERED (From - To) 30 Sep 2016-29 Sep 2017 5a. CONTRACT NUMBER Increasing Bone Mass and Bone Strength in Individuals with...DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Rapid bone loss is a universal
Long term follow up of spinal cord injury caused by penetrating missiles.
Brooks, M E; Brouner, R; Ohry, A
1992-02-01
Eighty-four spinal cord injured patients (SCIP) injured as a result of penetrating missiles were categorised according to: neurological level of injury, age at time of injury, circumstances of injury, missile type, initial treatment, duration of injury, and ethnic background. Evaluations and comparisons were made concerning: life habits, family status, education, employment, and mental well being. A discussion of complicating factors, both physical and psychological, and their relation to the final rehabilitation result is presented.
Luchetti, Andrea; Ciafrè, Silvia Anna; Murdocca, Michela; Malgieri, Arianna; Masotti, Andrea; Sanchez, Massimo; Farace, Maria Giulia; Novelli, Giuseppe; Sangiuolo, Federica
2015-01-01
Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder and the leading genetic cause of death in infants. Despite the disease-causing gene, survival motor neuron (SMN1), encodes a ubiquitous protein, SMN1 deficiency preferentially affects spinal motor neurons (MNs), leaving the basis of this selective cell damage still unexplained. As neural stem cells (NSCs) are multipotent self-renewing cells that can differentiate into neurons, they represent an in vitro model for elucidating the pathogenetic mechanism of neurodegenerative diseases such as SMA. Here we characterize for the first time neural stem cells (NSCs) derived from embryonic spinal cords of a severe SMNΔ7 SMA mouse model. SMNΔ7 NSCs behave as their wild type (WT) counterparts, when we consider neurosphere formation ability and the expression levels of specific regional and self-renewal markers. However, they show a perturbed cell cycle phase distribution and an increased proliferation rate compared to wild type cells. Moreover, SMNΔ7 NSCs are characterized by the differential expression of a limited number of miRNAs, among which miR-335-5p and miR-100-5p, reduced in SMNΔ7 NSCs compared to WT cells. We suggest that such miRNAs may be related to the proliferation differences characterizing SMNΔ7 NSCs, and may be potentially involved in the molecular mechanisms of SMA. PMID:26258776
Luchetti, Andrea; Ciafrè, Silvia Anna; Murdocca, Michela; Malgieri, Arianna; Masotti, Andrea; Sanchez, Massimo; Farace, Maria Giulia; Novelli, Giuseppe; Sangiuolo, Federica
2015-08-06
Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder and the leading genetic cause of death in infants. Despite the disease-causing gene, survival motor neuron (SMN1), encodes a ubiquitous protein, SMN1 deficiency preferentially affects spinal motor neurons (MNs), leaving the basis of this selective cell damage still unexplained. As neural stem cells (NSCs) are multipotent self-renewing cells that can differentiate into neurons, they represent an in vitro model for elucidating the pathogenetic mechanism of neurodegenerative diseases such as SMA. Here we characterize for the first time neural stem cells (NSCs) derived from embryonic spinal cords of a severe SMNΔ7 SMA mouse model. SMNΔ7 NSCs behave as their wild type (WT) counterparts, when we consider neurosphere formation ability and the expression levels of specific regional and self-renewal markers. However, they show a perturbed cell cycle phase distribution and an increased proliferation rate compared to wild type cells. Moreover, SMNΔ7 NSCs are characterized by the differential expression of a limited number of miRNAs, among which miR-335-5p and miR-100-5p, reduced in SMNΔ7 NSCs compared to WT cells. We suggest that such miRNAs may be related to the proliferation differences characterizing SMNΔ7 NSCs, and may be potentially involved in the molecular mechanisms of SMA.
Brown, Paul; Dale, Nicholas
2000-01-01
Adenosine causes voltage- and non-voltage-dependent inhibition of high voltage-activated (HVA) Ca2+ currents in Xenopus laevis embryo spinal neurons. As this inhibition can be blocked by 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and mimicked by N6-cyclopentyladenosine (CPA) it appears to be mediated by A1 receptors. Agents active at A2 receptors either were without effect or could be blocked by DPCPX. AMP had no agonist action on these receptors. By using ω-conotoxin GVIA we found that adenosine inhibited an N-type Ca2+ current as well as a further unidentified HVA current that was insensitive to dihydropyridines, ω-agatoxin TK and ω-conotoxin MVIIC. Both types of current were subject to voltage- and non-voltage-dependent inhibition. We used CPA and DPCPX to test whether A1 receptors regulated spinal motor pattern generation in spinalized Xenopus embryos. DPCPX caused a near doubling of, while CPA greatly shortened, the length of swimming episodes. In addition, DPCPX slowed, while CPA greatly speeded up, the rate of run-down of motor activity. Our results demonstrate a novel action of A1 receptors in modulating spinal motor activity. Furthermore they confirm that adenosine is produced continually throughout swimming episodes and acts to cause the eventual termination of activity. PMID:10856119
Optical properties of animal tissues in the wavelength range from 350 to 2600 nm
NASA Astrophysics Data System (ADS)
Filatova, Serafima A.; Shcherbakov, Ivan A.; Tsvetkov, Vladimir B.
2017-03-01
The optical properties of different cow and pig biological tissues such as skeletal muscle, adipose, spinal cord, and dura mater of the spinal cord were investigated in the spectral range of 350 to 2600 nm. The measurements were carried out by a commercially available spectrophotometer SHIMADZU UV 3101PC. The wavelength dependence on the scattering coefficient has been observed to follow a power-law decay for skeletal muscle and dura mater of spinal cord. The influence of time delay between the sample preparation and measuring of transmittance spectra on the data reasonableness was reviewed. The conclusion about the benefits of 2-μm lasers application in surgery is given for the tissue types listed above.
Viswanathan, Vibhu K; Minnema, Amy J; Farhadi, H Francis
2018-06-01
Split cord malformation (SCM) is a rare form of spinal dysraphism wherein the spinal cord is divided longitudinally into two distinct hemicords. Surgery is usually performed in children while management in adults, who rarely manifest symptoms, remains controversial. Both expectant management and prophylactic surgery have been variously advocated. The present article describes our experience in two adult patients with predominant pain-related complaints who underwent surgical excision of type 1 SCM lesions. A comprehensive review of the literature on SCM in adults is also provided. While pain, disability, and quality of life scores improved in these two patients, further larger studies will be required to define the role of surgery in adults with type 1 SCM and a pain-dominant presentation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hadi, B A; Al Ramadani, R; Daas, R; Naylor, I; Zelkó, R
2010-08-01
This study is aimed at conducting a program for two different anesthetic methods used during a spinal fusion surgery to ensure better intra-operative hemodynamic stability and post-operative pain control. A prospective, randomized, double blind study in patients scheduled for spinal fusion surgery, who were randomly allocated to two groups, G1 and G2, (n = 15 per group), class I-II ASA, was carried out. Both groups received pre-operatively midazolam, followed intra-operatively by propofol, sevoflurane, atracurium, and either remifentanil infusion 0.2 microg/kg/min (G1), or the same dose of remifentanil infusion and low doses of ketamine infusion 1 microg/kg/min (G2) anesthetics, antidote medication and post-operative morphine doses. HR, MAP, vital signs, surgical bleeding, urine output, duration of surgery and duration of anesthesia were recorded. In a 24-h recovery period in a post-anesthesia care unit (PACU) the recovery time, the first pain score and analgesic requirements were measured. Intra-operative HR and arterial BP were significantly less (p < 0.05) in G1 as compared to G2. In the PACU the first pain scores were significantly less (p < 0.05) in G2 than in G1. The time for the first patient analgesia demand dose was greater in G2, as also morphine consumption which was greater in G1 than G2 (p < 0.05). Other results were the same. None of the patients had any adverse drug reaction. Adding low doses of ketamine hydrochloride could be a routine therapy to improve the hemodynamic stability and reduce the post-operative morphine consumption during spinal fusion surgery.
Sieg, Emily P; Payne, Russell A; Hazard, Sprague; Rizk, Elias
2016-06-01
Case reports, case series and case control studies have looked at the use of phrenic nerve stimulators in the setting of high spinal cord injuries and central hypoventilation syndromes dating back to the 1980s. We evaluated the evidence related to this topic by performing a systematic review of the published literature. Search terms "phrenic nerve stimulation," "phrenic nerve and spinal cord injury," and "phrenic nerve and central hypoventilation" were entered into standard search engines in a systematic fashion. Articles were reviewed by two study authors and graded independently for class of evidence according to published guidelines. The published evidence was reviewed, and the overall body of evidence was evaluated using the grading of recommendations, assesment, development and evaluations (GRADE) criteria Balshem et al. (J Clin Epidemiol 64:401-406, 2011). Our initial search yielded 420 articles. There were no class I, II, or III studies. There were 18 relevant class IV articles. There were no discrepancies among article ratings (i.e., kappa = 1). A meta-analysis could not be performed due to the low quality of the available evidence. The overall quality of the body of evidence was evaluated using GRADE criteria and fell within the "very poor" category. The quality of the published literature for phrenic nerve stimulation is poor. Our review of the literature suggests that phrenic nerve stimulation is a safe and effective option for decreasing ventilator dependence in high spinal cord injuries and central hypoventilation; however, we are left with critical questions that provide crucial directions for future studies.
Hwang, Wonjung; Kim, Eunsung
2014-08-01
Induced hypotension is widely used intraoperatively to reduce blood loss and to improve the surgical field during spinal surgery. To determine the effect of milrinone on induced hypotension during spinal surgery in elderly patients. Prospective randomized clinical trial. Forty patients, 60 to 70 years old, ASA I-II, who underwent elective lumbar fusion surgery. Intraoperative hemodynamics, blood loss, hourly urine output, and grade of surgical field. All patients were randomized to group M or N. The study drug was infused after perivertebral muscle retraction until complete interbody fusion. In group M, 50 μg/kg/min of milrinone was infused over 10 minutes as a loading dose followed by 0.6 μg/kg/min of milrinone as a continuous dose. In group N, an identical volume of normal saline was infused in the same fashion. This study was not funded by commercial or other sponsorship and the authors confirm no conflicts of interest, financial or otherwise. During infusion of the study drug, the systolic and mean blood pressures were maintained within adequate limits of induced hypotension in group M. Intraoperative blood loss was 445.0±226.5 mL in group M and 765.0±339.2 mL in group N (p=.001). Hourly urine output was 1.4±0.6 mL in group M and 0.8±0.2 mL in group N (p<.001). The grade of the surgical field was better in group M than in group N (p=.004). We conclude that milrinone is useful for induced hypotension in elderly patients during spinal surgery. Copyright © 2014 Elsevier Inc. All rights reserved.
Renno, Waleed M; Al-Khaledi, Ghanim; Mousa, Alyaa; Karam, Shaima M; Abul, Habib; Asfar, Sami
2014-02-01
Spinal cord injury (SCI) causes severe and long lasting motor and sensory deficits, chronic pain, and autonomic dysreflexia. (-)-epigallocatechin-3-gallate (EGCG) has shown to produce neuroprotective effect in a broad range of neurodegenerative disease animal models. This study designed to test the efficacy of intravenous infusion of EGCG for 36 h, in acutely injured rats' spinal cord: within first 4 h post-injury and, in chronically SC injured rats: after one year of injury. Functional outcomes measured using standard BBB scale, The Louisville Swim Scale (LSS) and, pain behavior assessment tests. 72 Female adult rats subjected to moderate thoracic SCI using MASCIS Impactor, blindly randomized as the following: (I) Acute SCI + EGCG (II) Acute SCI + saline. (III) Chronic SCI + EGCG. (IV) Chronic SCI + saline and, sham SCI animals. EGCG i.v. treatment of acute and, chronic SCI animals resulted in significantly better recovery of motor and sensory functions, BBB and LSS (P < 0.005) and (P < 0.05) respectively. Tactile allodynia, mechanical nociception (P < 0.05) significantly improved. Paw withdrawal and, tail flick latencies increase significantly (P < 0.05). Moreover, in the EGCG treated acute SCI animals the percentage of lesion size area significantly reduced (P < 0.0001) and, the number of neurons in the spinal cord increased (P < 0.001). Percent areas of GAP-43 and GFAP immunohistochemistry showed significant (P < 0.05) increase. We conclude that the therapeutic window of opportunity for EGCG to depict neurological recovery in SCI animals, is viable up to one year post SCI when intravenously infused for 36 h. Copyright © 2013 Elsevier Ltd. All rights reserved.
van Middendorp, J J; Allison, H C; Ahuja, S; Bracher, D; Dyson, C; Fairbank, J; Gall, A; Glover, A; Gray, L; Masri, W El; Uttridge, A; Cowan, K
2016-05-01
This is a mixed-method consensus development project. The objective of this study was to identify a top ten list of priorities for future research into spinal cord injury (SCI). The British Spinal Cord Injury Priority Setting Partnership was established in 2013 and completed in 2014. Stakeholders included consumer organisations, healthcare professional societies and caregivers. This partnership involved the following four key stages: (i) gathering of research questions, (ii) checking of existing research evidence, (iii) interim prioritisation and (iv) a final consensus meeting to reach agreement on the top ten research priorities. Adult individuals with spinal cord dysfunction because of trauma or non-traumatic causes, including transverse myelitis, and individuals with a cauda equina syndrome (henceforth grouped and referred to as SCI) were invited to participate in this priority setting partnership. We collected 784 questions from 403 survey respondents (290 individuals with SCI), which, after merging duplicate questions and checking systematic reviews for evidence, were reduced to 109 unique unanswered research questions. A total of 293 people (211 individuals with SCI) participated in the interim prioritisation process, leading to the identification of 25 priorities. At a final consensus meeting, a representative group of individuals with SCI, caregivers and health professionals agreed on their top ten research priorities. Following a comprehensive, rigorous and inclusive process, with participation from individuals with SCI, caregivers and health professionals, the SCI research agenda has been defined by people to whom it matters most and should inform the scope and future activities of funders and researchers for the years to come. The NIHR Oxford Biomedical Research Centre provided core funding for this project.
Guo, Ya-Jing; Shi, Xu-Dan; Fu, DI; Yang, Yong; Wang, Ya-Ping; Dai, Ru-Ping
2013-07-01
Cyclooxygenase (COX)-2 inhibitors are widely used for postoperative pain control in clinical practice. However, it is unknown whether spinal sensitization is involved in the analgesic effects of COX-2 inhibitors on surgical pain. Extracellular signal-regulated kinase (ERK) in the spinal cord is implicated in various types of pain, including surgical pain. The present study investigated the role of spinal ERK signaling in the analgesic effect of the COX-2 inhibitor parecoxib on surgical pain. Surgical pain was produced in rats by surgical incision of the hind paw. Phosphorylated (p)-ERK1/2 expression was determined by immunohistochemistry. Pain hypersensitivity was evaluated by measuring the paw withdrawal threshold using the von Frey test. The selective COX-2 inhibitor parecoxib was delivered 20 min before or 20 min after the incision by intraperitoneal injection. Pretreatment with parecoxib markedly attenuated the pain hypersensitivity induced by incision. However, post-treatment with parecoxib produced minimal analgesic effects. Parecoxib inhibited the increase in spinal p-ERK expression following surgical incision. The present study thus suggests that the COX-2 inhibitor parecoxib exerts its analgesic effect on surgical pain through the inhibition of neuronal ERK activation in the spinal cord. COX-2 inhibitor delivery prior to surgery has more potent analgesic effects, suggesting the advantage of preventive analgesia for post-operative pain control.
Ahn, Henry; Singh, Jeffrey; Nathens, Avery; MacDonald, Russell D.; Travers, Andrew; Tallon, John; Fehlings, Michael G.
2011-01-01
Abstract An interdisciplinary expert panel of medical and surgical specialists involved in the management of patients with potential spinal cord injuries (SCI) was assembled. Four key questions were created that were of significant interest. These were: (1) what is the optimal type and duration of pre-hospital spinal immobilization in patients with acute SCI?; (2) during airway manipulation in the pre-hospital setting, what is the ideal method of spinal immobilization?; (3) what is the impact of pre-hospital transport time to definitive care on the outcomes of patients with acute spinal cord injury?; and (4) what is the role of pre-hospital care providers in cervical spine clearance and immobilization? A systematic review utilizing multiple databases was performed to determine the current evidence about the specific questions, and each article was independently reviewed and assessed by two reviewers based on inclusion and exclusion criteria. Guidelines were then created related to the questions by a national Canadian expert panel using the Delphi method for reviewing the evidence-based guidelines about each question. Recommendations about the key questions included: the pre-hospital immobilization of patients using a cervical collar, head immobilization, and a spinal board; utilization of padded boards or inflatable bean bag boards to reduce pressure; transfer of patients off of spine boards as soon as feasible, including transfer of patients off spinal boards while awaiting transfer from one hospital institution to another hospital center for definitive care; inclusion of manual in-line cervical spine traction for airway management in patients requiring intubation in the pre-hospital setting; transport of patients with acute traumatic SCI to the definitive hospital center for care within 24 h of injury; and training of emergency medical personnel in the pre-hospital setting to apply criteria to clear patients of cervical spinal injuries, and immobilize patients suspected of having cervical spinal injury. PMID:20175667
Stress induces pain transition by potentiation of AMPA receptor phosphorylation.
Li, Changsheng; Yang, Ya; Liu, Sufang; Fang, Huaqiang; Zhang, Yong; Furmanski, Orion; Skinner, John; Xing, Ying; Johns, Roger A; Huganir, Richard L; Tao, Feng
2014-10-08
Chronic postsurgical pain is a serious issue in clinical practice. After surgery, patients experience ongoing pain or become sensitive to incident, normally nonpainful stimulation. The intensity and duration of postsurgical pain vary. However, it is unclear how the transition from acute to chronic pain occurs. Here we showed that social defeat stress enhanced plantar incision-induced AMPA receptor GluA1 phosphorylation at the Ser831 site in the spinal cord and greatly prolonged plantar incision-induced pain. Interestingly, targeted mutation of the GluA1 phosphorylation site Ser831 significantly inhibited stress-induced prolongation of incisional pain. In addition, stress hormones enhanced GluA1 phosphorylation and AMPA receptor-mediated electrical activity in the spinal cord. Subthreshold stimulation induced spinal long-term potentiation in GluA1 phosphomimetic mutant mice, but not in wild-type mice. Therefore, spinal AMPA receptor phosphorylation contributes to the mechanisms underlying stress-induced pain transition. Copyright © 2014 the authors 0270-6474/14/3413737-10$15.00/0.
Chen, Qin; Shine, H David
2013-10-01
Lesions of the spinal cord cause two distinctive types of neuroimmune responses, a response at the lesion site that leads to additional tissue destruction and a more subtle response, termed Wallerian degeneration (WD), that occurs distal to the lesion site. We have evidence that the neuroimmune response associated with WD may support tissue repair. Previously, we found that overexpression of neurotrophin-3 (NT-3) induced axonal growth in the spinal cord after a unilateral corticospinal tract (CST) lesion, but only if the immune system was intact and activated. We reasoned that a neuroimmune response associated with WD was involved in this neuroplasticity. To test this, we compared NT-3-induced axonal sprouting in athymic nude rats that lack functional T cells with rats with functional T cells and in nude rats grafted with CD4(+) T cells or CD8(+) T cells. There was no sprouting in nude rats and in nude rats grafted with CD8(+) T cells. However, nude rats grafted with CD4(+) T cells mounted a sprouting response. To determine which CD4(+) subtype, type 1 T helper (Th1) or type 2 T helper (Th2) cells, was responsible, we grafted Th1 and Th2 cells into nude rats and tested whether they would support sprouting. Axonal sprouting was greater in rats grafted with Th2 cells, demonstrating that the Th2 subtype was responsible for supporting axonal sprouting. These data suggest that WD activates Th2 cells that, along with the direct effects of NT-3 on CST axons, act to support axonal sprouting in the lesioned spinal cord. Copyright © 2013 Wiley Periodicals, Inc.
Mammen, Mathew V; Tripathi, Manoj; Chandola, Harish C; Tyagi, Amit; Bais, Prateek Singh; Sanjeev, Om Prakash
2017-01-01
Relief of pain is very important goal intraoperatively and postoperatively. Neostigmine has been used successfully intrathecally with other agents such as clonidine and opioids for pain relief. This study aims to compare and evaluate the efficacy and safety of combining intrathecal (IT) neostigmine with IT clonidine and transdermal nitroglycerin (tNTG) patch for the relief of pain in patients after surgery. This was a randomized, prospective, and comparative study. In this study, recruited patients were randomly allocated into three groups. Groups I, II, and III received intrathecally 25 μg of neostigmine + 15 mg hyperbaric 0.5% bupivacaine, 25 μg of neostigmine + 25 μg clonidine + 15 mg hyperbaric 0.5% bupivacaine, and 25 μg of neostigmine + tNTG patch (3 cm × 5 cm, 5 mg/24 h) +15 mg hyperbaric 0.5% bupivacaine, respectively. Heart rate, mean arterial pressure, analgesic properties, and complications were assessed and compared among groups. Mean and standard deviation were calculated. Test of analysis between two groups was done by t -test and among three groups by ANOVA, then P value was calculated. Duration of analgesia was significantly longer in Group III in comparison to Group II (7.142 ± 1.81 vs. 4.408 ± 0.813 h) and was significantly longer in Group II in comparison to Group I (4.408 ± 0.813 vs. 2.583 ± 0.493 h). Analgesic requirement was significantly less in Group III in comparison to Group II (1.9 ± 0.76 vs. 2.5 ± 0.51) and was significantly less in Group II in comparison to Group I (2.5 ± 0.51 vs. 3.1 ± 0.48). Sedation score was found significantly high in Group II than other groups. Both IT clonidine and tNTG patch with bupivacaine + neostigmine spinal anesthesia were found effective in pain control. Results were found better with tNTG patch.
Teraguchi, Masatoshi; Samartzis, Dino; Hashizume, Hiroshi; Yamada, Hiroshi; Muraki, Shigeyuki; Oka, Hiroyuki; Cheung, Jason Pui Yin; Kagotani, Ryohei; Iwahashi, Hiroki; Tanaka, Sakae; Kawaguchi, Hiroshi; Nakamura, Kozo; Akune, Toru; Cheung, Kenneth Man-Chee; Yoshimura, Noriko; Yoshida, Munehito
2016-01-01
High intensity zones (HIZ) of the lumbar spine are a phenotype of the intervertebral disc noted on MRI whose clinical relevance has been debated. Traditionally, T2-weighted (T2W) magnetic resonance imaging (MRI) has been utilized to identify HIZ of lumbar discs. However, controversy exists with regards to HIZ morphology, topography, and association with other MRI spinal phenotypes. Moreover, classification of HIZ has not been thoroughly defined in the past and the use of additional imaging parameters (e.g. T1W MRI) to assist in defining this phenotype has not been addressed. A cross-sectional study of 814 (69.8% females) subjects with mean age of 63.6 years from a homogenous Japanese population was performed. T2W and T1W sagittal 1.5T MRI was obtained on all subjects to assess HIZ from L1-S1. We created a morphological and topographical HIZ classification based on disc level, shape type (round, fissure, vertical, rim, and enlarged), location within the disc (posterior, anterior), and signal type on T1W MRI (low, high and iso intensity) in comparison to the typical high intensity on T2W MRI. HIZ was noted in 38.0% of subjects. Of these, the prevalence of posterior, anterior, and both posterior/anterior HIZ in the overall lumbar spine were 47.3%, 42.4%, and 10.4%, respectively. Posterior HIZ was most common, occurring at L4/5 (32.5%) and L5/S1 (47.0%), whereas anterior HIZ was most common at L3/4 (41.8%). T1W iso-intensity type of HIZ was most prevalent (71.8%), followed by T1W high-intensity (21.4%) and T1W low-intensity (6.8%). Of all discs, round types were most prevalent (anterior: 3.6%, posterior: 3.7%) followed by vertical type (posterior: 1.6%). At all affected levels, there was a significant association between HIZ and disc degeneration, disc bulge/protrusion and Modic type II (p<0.01). Posterior HIZ and T1W high-intensity type of HIZ were significantly associated with disc bulge/protrusion and disc degeneration (p<0.01). In addition, posterior HIZ was significantly associated with Modic type II and III. T1W low-intensity type of HIZ was significantly associated with Modic type II. This is the first large-scale study reporting a novel classification scheme of HIZ of the lumbar spine. This study is the first that has utilized T2W and T1W MRIs in differentiating HIZ sub-phenotypes. Specific HIZ sub-phenotypes were found to be more associated with specific MRI degenerative changes. With a more detailed description of the HIZ phenotype, this scheme can be standardized for future clinical and research initiatives.
Federal Register 2010, 2011, 2012, 2013, 2014
1999-02-23
... children under 5 years old in the United States. Meningitis is an infection of the brain and spinal cord... Information Materials for Hepatitis B, Haemophilus influenzae type b (Hib), and Varicella (Chickenpox... vaccine information materials for the newly covered vaccines hepatitis B, Haemophilus influenzae type b...
Reliability and Validity of the TIMPSI for Infants With Spinal Muscular Atrophy Type I
Krosschell, Kristin J.; Maczulski, Jo Anne; Scott, Charles; King, Wendy; Hartman, Jill T.; Case, Laura E.; Viazzo-Trussell, Donata; Wood, Janine; Roman, Carolyn A.; Hecker, Eva; Meffert, Marianne; Léveillé, Maude; Kienitz, Krista; Swoboda, Kathryn J.
2014-01-01
Purpose This study examined the reliability and validity of the Test of Infant Motor Performance Screening Items (TIMPSI) in infants with type I spinal muscular atrophy (SMA). Methods After training, 12 evaluators scored 4 videos of infants with type I SMA to assess interrater reliability. Intrarater and test-retest reliability was further assessed for 9 evaluators during a SMA type I clinical trial, with 9 evaluators testing a total of 38 infants twice. Relatedness of the TIMPSI score to ability to reach and ventilatory support was also examined. Results Excellent interrater video score reliability was noted (intraclass correlation coefficient, 0.97–0.98). Intrarater reliability was excellent (intraclass correlation coefficient, 0.91–0.98) and test-retest reliability ranged from r = 0.82 to r = 0.95. The TIMPSI score was related to the ability to reach (P ≤ .05). Conclusion The TIMPSI can reliably be used to assess motor function in infants with type I SMA. In addition, the TIMPSI scores are related to the ability to reach, an important functional skill in children with type I SMA. PMID:23542189
Saad, F; Ivanescu, C; Phung, D; Loriot, Y; Abhyankar, S; Beer, T M; Tombal, B; Holmstrom, S
2017-03-01
We investigated the impact of skeletal-related events (SREs) on health-related quality of life (HRQoL) in patients with metastatic castration-resistant prostate cancer (mCRPC) in phase III trials of enzalutamide versus placebo. Patients with mCRPC experiencing at least one SRE during AFFIRM and PREVAIL were assessed for trajectory-adjusted mean change in HRQoL by first SRE using Functional Assessment of Cancer Therapy-Prostate (FACT-P; AFFIRM, three domains, and PREVAIL, nine domains) and EQ-5D (PREVAIL) instruments. First SREs caused HRQoL deterioration in both trials. Spinal cord compression had the largest impact, with clinically meaningful reductions in seven of nine FACT-P domains in PREVAIL and all three in AFFIRM (mean (95% confidence interval (CI)) change in FACT-P total score -16.95 (-26.47, -7.44) and -9.69 (-16.10, -3.27), respectively). In PREVAIL, first SREs caused clinically meaningful declines in EQ-5D utility index, irrespective of category; spinal cord compression had the largest impact (mean (95% CI) change -0.24 (-0.39, -0.08)). In AFFIRM, FACT-P and FACT-General total scores showed clinically meaningful declines after radiation/surgery to bone. SREs were associated with clinically meaningful functional declines in the daily lives of patients with mCRPC. Spinal cord compression had the largest impact on HRQoL.
Notch3 is necessary for neuronal differentiation and maturation in the adult spinal cord.
Rusanescu, Gabriel; Mao, Jianren
2014-10-01
Notch receptors are key regulators of nervous system development and promoters of neural stem cells renewal and proliferation. Defects in the expression of Notch genes result in severe, often lethal developmental abnormalities. Notch3 is generally thought to have a similar proliferative, anti-differentiation and gliogenic role to Notch1. However, in some cases, Notch3 has an opposite, pro-differentiation effect. Here, we show that Notch3 segregates from Notch1 and is transiently expressed in adult rat and mouse spinal cord neuron precursors and immature neurons. This suggests that during the differentiation of adult neural progenitor cells, Notch signalling may follow a modified version of the classical lateral inhibition model, involving the segregation of individual Notch receptors. Notch3 knockout mice, otherwise neurologically normal, are characterized by a reduced number of mature inhibitory interneurons and an increased number of highly excitable immature neurons in spinal cord laminae I-II. As a result, these mice have permanently lower nociceptive thresholds, similar to chronic pain. These results suggest that defective neuronal differentiation, for example as a result of reduced Notch3 expression or activation, may underlie human cases of intractable chronic pain, such as fibromyalgia and neuropathic pain. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Sun, Chao; Tian, Jiwei; Liu, Xinhui; Guan, Guoping
2017-08-26
The molecular mechanism underlying the fibrosis of ligamentum flavum(LF) in patients with lumbar spinal canal stenosis(LSCS) remains unknown. MicroRNAs are reported to play important roles in regulating fibrosis in different organs. The present study aimed to identify fibrosis related miR-21 expression profile and investigate the pathological process of miR-21 in the fibrosis of LF hypertrophy and associated regulatory mechanisms. 15 patients with LSCS underwent surgical treatment were enrolled in this study. For the control group, 11 patients with lumbar disc herniation(LDH) was included. The LF thickness was measured on MRI. LF samples were obtained during the surgery. Fibrosis score was assessed by Masson's trichrome staining. The expression of miR-21 in LF tissues were determined by RT-PCR. Correlation among LF thickness, fibrosis score, and miR-21 expression was analyzed. In addition, Lentiviral vectors for miR-21 mimic were constructed and transfected into LF cells to examine the role of miR-21 in LF fibrosis. Types I and III collagen were used as indicators of fibrosis. IL-6 expression in LF cells after transfection was investigated by RT-PCR and ELISA. Patients in two groups showed similar outcomes regarding age, gender, level of LF tissue. The thickness and fibrosis score of LF in the LSCS group were significantly greater than those in LDH group (all P < 0.05). Similarly, the expression of miR-21 in LSCS group was substantially higher than that in LDH group(P < 0.05). Furthermore, the miR-21 expression exhibited positive correlations with the LF thickness (r = 0.595, P < 0.05) and fibrosis score (r = 0.608, P < 0.05). Of note, miR-21 over-expression increased the expression levels of collagen I and III (P < 0.05). Also, IL-6 expression and secretion in LF cells was elevated after transfection of miR-21 mimic. MiR-21 is a fibrosis-associated miRNA and promotes inflammation in LF tissue by activating IL-6 expression, leading to LF fibrosis and hypertrophy. Copyright © 2017 Elsevier Inc. All rights reserved.
Role of TRPV1 in acupuncture modulation of reflex excitatory cardiovascular responses.
Guo, Zhi-Ling; Fu, Liang-Wu; Su, Hou-Fen; Tjen-A-Looi, Stephanie C; Longhurst, John C
2018-05-01
We have shown that acupuncture, including manual and electroacupuncture (MA and EA), at the P5-6 acupoints stimulates afferent fibers in the median nerve (MN) to modulate sympathoexcitatory cardiovascular reflexes through central regulation of autonomic function. However, the mechanisms underlying acupuncture activation of these sensory afferent nerves and their cell bodies in the dorsal root ganglia (DRG) are unclear. Transient receptor potential vanilloid type 1 (TRPV1) is present in sensory nerve fibers distributed in the general region of acupoints like ST36 and BL 40 located in the hindlimb. However, the contribution of TRPV1 to activation of sensory nerves by acupuncture, leading to modulation of pressor responses, has not been studied. We hypothesized that TRPV1 participates in acupuncture's activation of sensory afferents and their associated cell bodies in the DRG to modulate pressor reflexes. Local injection of iodoresiniferatoxin (Iodo-RTX; a selective TRPV1 antagonist), but not 5% DMSO (vehicle), into the P6 acupoint on the forelimb reversed the MA's inhibition of pressor reflexes induced by gastric distension (GD). Conversely, inhibition of GD-induced sympathoexcitatory responses by EA at P5-6 was unchanged after administration of Iodo-RTX into P5-6. Single-unit activity of Group III or IV bimodal afferents sensitive to both mechanical and capsaicin stimuli responded to MA stimulation at P6. MA-evoked activity was attenuated significantly ( P < 0.05) by local administration of Iodo-RTX ( n = 12) but not by 5% DMSO ( n = 12) into the region of the P6 acupoint in rats. Administration of Iodo-RTX into P5-6 did not reduce bimodal afferent activity evoked by EA stimulation ( n = 8). Finally, MA at P6 and EA at P5-6 induced phosphorylation of extracellular signal-regulated kinases (ERK; an intracellular signaling messenger involved in cellular excitation) in DRG neurons located at C 7-8 spinal levels receiving MN inputs. After TRPV1 was knocked down in the DRG at these spinal levels with intrathecal injection of TRPV1-siRNA, expression of phosphorylated ERK in the DRG neuron was reduced in MA-treated, but not EA-treated animals. These data suggest that TRPV1 in Group III and IV bimodal sensory afferent nerves contributes to acupuncture inhibition of reflex increases in blood pressure and specifically plays an important role during MA but not EA.
Instrumentation Failure after Partial Corpectomy with Instrumentation of a Metastatic Spine
Park, Sung Bae; Kim, Ki Jeong; Han, Sanghyun; Oh, Sohee; Kim, Chi Heon; Chung, Chun Kee
2018-01-01
Objective To identify the perioperative factors associated with instrument failure in patients undergoing a partial corpectomy with instrumentation (PCI) for spinal metastasis. Methods We assessed the one hundred twenty-four patients with who underwent PCI for a metastatic spine from 1987 to 2011. Outcome measure was the risk factor related to implantation failure. The preoperative factors analyzed were age, sex, ambulation, American Spinal Injury Association grade, bone mineral density, use of steroid, primary tumor site, number of vertebrae with metastasis, extra-bone metastasis, preoperative adjuvant chemotherapy, and preoperative spinal radiotherapy. The intraoperative factors were the number of fixed vertebrae, fixation in osteolytic vertebrae, bone grafting, and type of surgical approach. The postoperative factors included postoperative adjuvant chemotherapy and spinal radiotherapy. This study was supported by the National Research Foundation grant funded by government. There were no study-specific biases related to conflicts of interest. Results There were 15 instrumentation failures (15/124, 12.1%). Preoperative ambulatory status and primary tumor site were not significantly related to the development of implant failure. There were no significant associations between insertion of a bone graft into the partial corpectomy site and instrumentation failure. The preoperative and operative factors analyzed were not significantly related to instrumentation failure. In univariable and multivariable analyses, postoperative spinal radiotherapy was the only significant variable related to instrumentation failure (p=0.049 and 0.050, respectively). Conclusion When performing PCI in patients with spinal metastasis followed by postoperative spinal radiotherapy, the surgeon may consider the possibility of instrumentation failure and find other strategies for augmentation than the use of a bone graft for fusion. PMID:29631384
Instrumentation Failure after Partial Corpectomy with Instrumentation of a Metastatic Spine.
Park, Sung Bae; Kim, Ki Jeong; Han, Sanghyun; Oh, Sohee; Kim, Chi Heon; Chung, Chun Kee
2018-05-01
To identify the perioperative factors associated with instrument failure in patients undergoing a partial corpectomy with instrumentation (PCI) for spinal metastasis. We assessed the one hundred twenty-four patients with who underwent PCI for a metastatic spine from 1987 to 2011. Outcome measure was the risk factor related to implantation failure. The preoperative factors analyzed were age, sex, ambulation, American Spinal Injury Association grade, bone mineral density, use of steroid, primary tumor site, number of vertebrae with metastasis, extra-bone metastasis, preoperative adjuvant chemotherapy, and preoperative spinal radiotherapy. The intraoperative factors were the number of fixed vertebrae, fixation in osteolytic vertebrae, bone grafting, and type of surgical approach. The postoperative factors included postoperative adjuvant chemotherapy and spinal radiotherapy. This study was supported by the National Research Foundation grant funded by government. There were no study-specific biases related to conflicts of interest. There were 15 instrumentation failures (15/124, 12.1%). Preoperative ambulatory status and primary tumor site were not significantly related to the development of implant failure. There were no significant associations between insertion of a bone graft into the partial corpectomy site and instrumentation failure. The preoperative and operative factors analyzed were not significantly related to instrumentation failure. In univariable and multivariable analyses, postoperative spinal radiotherapy was the only significant variable related to instrumentation failure ( p =0.049 and 0.050, respectively). When performing PCI in patients with spinal metastasis followed by postoperative spinal radiotherapy, the surgeon may consider the possibility of instrumentation failure and find other strategies for augmentation than the use of a bone graft for fusion.
Activation of p38 MAP Kinase is Involved in Central Neuropathic Pain Following Spinal Cord Injury
Crown, Eric D; Gwak, Young Seob; Ye, Zaiming; Johnson, Kathia M; Hulsebosch, Claire E
2008-01-01
Recent work regarding chronic central neuropathic pain (CNP) following spinal cord injury (SCI) suggests that activation of key signaling molecules such as members of the mitogen activated protein kinase (MAPK) family play a role in the expression of at-level mechanical allodynia. Specifically, Crown and colleagues (2005, 2006) have shown that the development of at-level CNP following moderate spinal cord injury is correlated with increased expression of the activated (and thus phosphorylated) forms of the MAPKs extracellular signal related kinase and p38 MAPK. The current study extends this work by directly examining the role of p38 MAPK in the maintenance of at-level CNP following spinal cord injury. Using a combination of behavioral, immunocytochemical, and electrophysiological measures we demonstrate that increased activation of p38 MAPK occurs in the spinal cord just rostral to the site of injury in rats that develop at-level mechanical allodynia after moderate SCI. Immunocytochemical analyses indicate that the increases in p38 MAPK activation occurred in astrocytes, microglia, and dorsal horn neurons in the spinal cord rostral to the site of injury. Inhibiting the enzymatic activity of p38 MAPK dose dependently reverses the behavioral expression of at-level mechanical allodynia and also decreases the hyperexcitability seen in thoracic dorsal horn neurons after moderate SCI. Taken together, these novel data are the first to demonstrate causality that increased activation of p38 MAPK in multiple cell types play an important role in the maintenance of at-level CNP following spinal cord injury. PMID:18590729
Wang, Zhi-Bo; Zhang, Xiaoqing; Li, Xue-Jun
2013-01-01
Establishing human cell models of spinal muscular atrophy (SMA) to mimic motor neuron-specific phenotypes holds the key to understanding the pathogenesis of this devastating disease. Here, we developed a closely representative cell model of SMA by knocking down the disease-determining gene, survival motor neuron (SMN), in human embryonic stem cells (hESCs). Our study with this cell model demonstrated that knocking down of SMN does not interfere with neural induction or the initial specification of spinal motor neurons. Notably, the axonal outgrowth of spinal motor neurons was significantly impaired and these disease-mimicking neurons subsequently degenerated. Furthermore, these disease phenotypes were caused by SMN-full length (SMN-FL) but not SMN-Δ7 (lacking exon 7) knockdown, and were specific to spinal motor neurons. Restoring the expression of SMN-FL completely ameliorated all of the disease phenotypes, including specific axonal defects and motor neuron loss. Finally, knockdown of SMN-FL led to excessive mitochondrial oxidative stress in human motor neuron progenitors. The involvement of oxidative stress in the degeneration of spinal motor neurons in the SMA cell model was further confirmed by the administration of N-acetylcysteine, a potent antioxidant, which prevented disease-related apoptosis and subsequent motor neuron death. Thus, we report here the successful establishment of an hESC-based SMA model, which exhibits disease gene isoform specificity, cell type specificity, and phenotype reversibility. Our model provides a unique paradigm for studying how motor neurons specifically degenerate and highlights the potential importance of antioxidants for the treatment of SMA. PMID:23208423
Ryu, Hak-Hyun; Kang, Byung-Jae; Park, Sung-Su; Kim, Yongsun; Sung, Gyu-Jin; Woo, Heung-Myong; Kim, Wan Hee; Kweon, Oh-Kyeong
2012-12-01
Previous animal studies have shown that transplantation of mesenchymal stem cells (MSCs) into spinal cord lesions enhances axonal regeneration and promotes functional recovery. We isolated the MSCs derived from fat, bone marrow, Wharton's jelly and umbilical cord blood (UCB) positive for MSC markers and negative for hematopoietic cell markers. Their effects on the regeneration of injured canine spinal cords were compared. Spinal cord injury was induced by balloon catheter compression. Dogs with injured spinal cords were treated with only matrigel or matrigel mixed with each type of MSCs. Olby and modified Tarlov scores, immunohistochemistry, ELISA and Western blot analysis were used to evaluate the therapeutic effects. The different MSC groups showed significant improvements in locomotion at 8 weeks after transplantation (P<0.05). This recovery was accompanied by increased numbers of surviving neuron and neurofilament-positive fibers in the lesion site. Compared to the control, the lesion sizes were smaller, and fewer microglia and reactive astrocytes were found in the spinal cord epicenter of all MSC groups. Although there were no significant differences in functional recovery among the MSCs groups, UCB-derived MSCs (UCSCs) induced more nerve regeneration and anti-inflammation activity (P<0.05). Transplanted MSCs survived for 8 weeks and reduced IL-6 and COX-2 levels, which may have promoted neuronal regeneration in the spinal cord. Our data suggest that transplantation of MSCs promotes functional recovery after SCI. Furthermore, application of UCSCs led to more nerve regeneration, neuroprotection and less inflammation compared to other MSCs.
Böthig, Ralf; Kurze, Ines; Fiebag, Kai; Kaufmann, Albert; Schöps, Wolfgang; Kadhum, Thura; Zellner, Michael; Golka, Klaus
2017-06-01
Life expectancy for people with spinal cord injury has shown a marked increase due to modern advances in treatment methods and in neuro-urology. However, since life expectancy of people with paralysis increases, the risk of developing of urinary bladder cancer is gaining importance. Single-centre retrospective evaluation of patient data with spinal cord injuries and proven urinary bladder cancer and summary of the literature. Between 1998 and 2014, 24 (3 female, 21 male) out of a total of 6599 patients with spinal cord injury were diagnosed with bladder cancer. The average age at bladder cancer diagnosis was 57.67 years, which is well below the average for bladder cancer cases in the general population (male: 73, female: 77). All but one patient had a latency period between the onset of the spinal paralysis and tumour diagnosis of more than 10 years. The median latency was 29.83 years. The median survival for these patients was 11.5 months. Of the 24 patients, 19 (79%) had muscle invasive bladder cancer at ≥T2 at the time of diagnosis. The type of neurogenic bladder (neurogenic detrusor overactivity or acontractility) and the form of bladder drainage do not appear to influence the risk. Long-term indwelling catheter drainage played only a minor role in the investigated patients. The significantly younger age at onset and the frequency of invasive tumours at diagnosis indicate that spinal cord injury influences bladder cancer risk and prognosis as well. Early detection of bladder cancer in patients with spinal cord injury remains a challenge.
Koksal, Ismet; Alagoz, Fatih; Celik, Haydar; Yildirim, Ali Erdem; Akin, Tezcan; Guvenc, Yahya; Karatay, Mete; Erdem, Yavuz
An underestimated evaluation of systemic organs in cases with spinal fractures might jeopardize the intervention for treatment and future complications with an increased morbidity and mortality are almost warranted. In the present study, a retrospective analysis of spinal fracture cases associated with systemic trauma was performed to assess surgical success. A retrospective analysis of patients with thoracolumbar fractures who were admitted to the emergency unit between September 2012 and September 2014 was used for the study. The cases were categorized according to age, sex, reason of trauma, associated trauma, neurological condition and treatment details and results were analysed using SPSS 14.0 for Windows. The most common reason of trauma is detected as falls in 101 cases (64.3%). Radiological evaluation of spinal fractures revealed a compression fracture in 106 cases (67.5%) and other fractures in 51 cases (32.5%). Surgical treatment for spinal fracture was performed in 60.5% of the cases and conservative approach was preferred in 39.5% cases. In non-compressive spinal fractures, an associated pathology like head trauma, lower extremity fracture or neurological deficit was found to be higher in incidence (p < 0.05). Necessity for surgical intervention was found to be more prominent in this group (p < 0.05). However, the fracture type was not found to be associated with morbidity and mortality (p < 0.05). A surgical intervention for a spinal fracture necessitating surgery should rather be performed right after stabilization of the systemic condition which might be associated with decreased morbidity and mortality.
Giraudin, Aurore; Le Bon-Jégo, Morgane; Cabirol, Marie-Jeanne; Simmers, John; Morin, Didier
2012-08-22
The coordination of locomotion and respiration is widespread among mammals, although the underlying neural mechanisms are still only partially understood. It was previously found in neonatal rat that cyclic electrical stimulation of spinal cervical and lumbar dorsal roots (DRs) can fully entrain (1:1 coupling) spontaneous respiratory activity expressed by the isolated brainstem/spinal cord. Here, we used a variety of preparations to determine the type of spinal sensory inputs responsible for this respiratory rhythm entrainment, and to establish the extent to which limb movement-activated feedback influences the medullary respiratory networks via direct or relayed ascending pathways. During in vivo overground locomotion, respiratory rhythm slowed and became coupled 1:1 with locomotion. In hindlimb-attached semi-isolated preparations, passive flexion-extension movements applied to a single hindlimb led to entrainment of fictive respiratory rhythmicity recorded in phrenic motoneurons, indicating that the recruitment of limb proprioceptive afferents could participate in the locomotor-respiratory coupling. Furthermore, in correspondence with the regionalization of spinal locomotor rhythm-generating circuitry, the stimulation of DRs at different segmental levels in isolated preparations revealed that cervical and lumbosacral proprioceptive inputs are more effective in this entraining influence than thoracic afferent pathways. Finally, blocking spinal synaptic transmission and using a combination of electrophysiology, calcium imaging and specific brainstem lesioning indicated that the ascending entraining signals from the cervical or lumbar limb afferents are transmitted across first-order synapses, probably monosynaptic, in the spinal cord. They are then conveyed to the brainstem respiratory centers via a brainstem pontine relay located in the parabrachial/Kölliker-Fuse nuclear complex.
The type III secretion system is involved in Escherichia coli K1 interactions with Acanthamoeba.
Siddiqui, Ruqaiyyah; Malik, Huma; Sagheer, Mehwish; Jung, Suk-Yul; Khan, Naveed Ahmed
2011-08-01
The type III secretion system among Gram-negative bacteria is known to deliver effectors into host cell to interfere with host cellular processes. The type III secretion system in Yersina, Pseudomonas and Enterohemorrhagic Escherichia coli have been well documented to be involved in the bacterial pathogenicity. The existence of type III secretion system has been demonstrated in neuropathogenic E. coli K1 strains. Here, it is observed that the deletion mutant of type III secretion system in E. coli strain EC10 exhibited defects in the invasion and intracellular survival in Acanthamoeba castellanii (a keratitis isolate) compared to its parent strain. Next, it was determined whether type III secretion system plays a role in E. coli K1 survival inside Acanthamoeba during the encystment process. Using encystment assays, our findings revealed that the type III secretion system-deletion mutant exhibited significantly reduced survival inside Acanthamoeba cysts compared with its parent strain, EC10 (P<0.01). This is the first demonstration that the type III secretion system plays an important role in E. coli interactions with Acanthamoeba. A complete understanding of how amoebae harbor bacterial pathogens will help design strategies against E. coli transmission to the susceptible hosts. Copyright © 2011 Elsevier Inc. All rights reserved.
Giroux, N; Reader, T A; Rossignol, S
2001-06-01
Several studies have shown that noradrenergic mechanisms are important for locomotion. For instance, L-dihydroxyphenylalanine (L-DOPA) can initiate "fictive" locomotion in immobilized acutely spinalized cats and alpha(2)-noradrenergic agonists, such as 2,6,-dichloro-N-2-imidazolidinylid-enebenzenamine (clonidine), can induce treadmill locomotion soon after spinalization. However, the activation of noradrenergic receptors may be not essential for the basic locomotor rhythmicity because chronic spinal cats can walk with the hindlimbs on a treadmill in the absence of noradrenergic stimulation because the descending pathways are completely severed. This suggests that locomotion, in intact and spinal conditions, is probably expressed and controlled through different neurotransmitter mechanisms. To test this hypothesis, we compared the effect of the alpha(2) agonist, clonidine, and the antagonist (16 alpha, 17 alpha)-17-hydroxy yohimbine-16-carboxylic acid methyl ester hydrochloride (yohimbine), injected intrathecally at L(3)--L(4) before and after spinalization in the same cats chronically implanted with electrodes to record electromyograms (EMGs). In intact cats, clonidine (50-150 microg/100 microl) modulated the locomotor pattern slightly causing a decrease in duration of the step cycle accompanied with some variation of EMG burst amplitude and duration. In the spinal state, clonidine could trigger robust and sustained hind limb locomotion in the first week after the spinalization at a time when the cats were paraplegic. Later, after the spontaneous recovery of a stable locomotor pattern, clonidine prolonged the cycle duration, increased the amplitude and duration of flexor and extensor bursts, and augmented the foot drag at the onset of swing. In intact cats, yohimbine at high doses (800--1600 microg/100 microl) caused major walking difficulties characterized by asymmetric stepping, stumbling with poor lateral stability, and, at smaller doses (400 microg/100 microl), only had slight effects such as abduction of one of the hindlimbs and the turning of the hindquarters to one side. After spinalization, yohimbine had no effect even at the largest doses. These results indicate that, in the intact state, noradrenergic mechanisms probably play an important role in the control of locomotion since blocking the receptors results in a marked disruption of walking. In the spinal state, although the receptors are still present and functional since they can be activated by clonidine, they are seemingly not critical for the spontaneous expression of spinal locomotion since their blockade by yohimbine does not impair spinal locomotion. It is postulated therefore that the expression of spinal locomotion must depend on the activation of other types of receptors, probably related to excitatory amino acids.
A Comparative Survey of Selected Muscles of the Trunk in Four Species of Primates.
1981-06-01
AD-A10D 769 MICHIGAN STATE UNIV EAST LANSING DEPT OF BIOMECHANICS FS61 COMPARATIVE SURVEY OF SELECTED MUSCLES OF THE TRUNK IN FOUR S-ETC(U) JUN 81 J...Ph.D. F 1-7-C-914 F ANIZATION NA*E AND ADDRESS III... PROGRAM ELEMENT, PROJECT. TASK Michigan State University AE OKUI UBR Department of Biomechanics ...survey of the back musculature of four primates and is part of a biomechanical study of the spinal system with emphasis on soft tissues. A comparative
AZD2171 in Treating Young Patients With Recurrent, Progressive, or Refractory Primary CNS Tumors
2016-03-04
Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Cerebral Anaplastic Astrocytoma; Childhood Cerebral Astrocytoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood Infratentorial Ependymoma; Childhood Oligodendroglioma; Childhood Spinal Cord Neoplasm; Childhood Supratentorial Ependymoma; Recurrent Childhood Brain Neoplasm; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway Glioma
Hancock, Melissa L.; Canetta, Sarah E.; Role, Lorna W.; Talmage, David A.
2008-01-01
Type III Neuregulin1 (Nrg1) isoforms are membrane-tethered proteins capable of participating in bidirectional juxtacrine signaling. Neuronal nicotinic acetylcholine receptors (nAChRs), which can modulate the release of a rich array of neurotransmitters, are differentially targeted to presynaptic sites. We demonstrate that Type III Nrg1 back signaling regulates the surface expression of α7 nAChRs along axons of sensory neurons. Stimulation of Type III Nrg1 back signaling induces an increase in axonal surface α7 nAChRs, which results from a redistribution of preexisting intracellular pools of α7 rather than from increased protein synthesis. We also demonstrate that Type III Nrg1 back signaling activates a phosphatidylinositol 3-kinase signaling pathway and that activation of this pathway is required for the insertion of preexisting α7 nAChRs into the axonal plasma membrane. These findings, in conjunction with prior results establishing that Type III Nrg1 back signaling controls gene transcription, demonstrate that Type III Nrg1 back signaling can regulate both short-and long-term changes in neuronal function. PMID:18458158
Hancock, Melissa L; Canetta, Sarah E; Role, Lorna W; Talmage, David A
2008-05-05
Type III Neuregulin1 (Nrg1) isoforms are membrane-tethered proteins capable of participating in bidirectional juxtacrine signaling. Neuronal nicotinic acetylcholine receptors (nAChRs), which can modulate the release of a rich array of neurotransmitters, are differentially targeted to presynaptic sites. We demonstrate that Type III Nrg1 back signaling regulates the surface expression of alpha7 nAChRs along axons of sensory neurons. Stimulation of Type III Nrg1 back signaling induces an increase in axonal surface alpha7 nAChRs, which results from a redistribution of preexisting intracellular pools of alpha7 rather than from increased protein synthesis. We also demonstrate that Type III Nrg1 back signaling activates a phosphatidylinositol 3-kinase signaling pathway and that activation of this pathway is required for the insertion of preexisting alpha7 nAChRs into the axonal plasma membrane. These findings, in conjunction with prior results establishing that Type III Nrg1 back signaling controls gene transcription, demonstrate that Type III Nrg1 back signaling can regulate both short-and long-term changes in neuronal function.
Hancock, Melissa L; Canetta, Sarah E; Role, Lorna W; Talmage, David A
2008-06-01
Type III Neuregulin1 (Nrg1) isoforms are membrane-tethered proteins capable of participating in bidirectional juxtacrine signaling. Neuronal nicotinic acetylcholine receptors (nAChRs), which can modulate the release of a rich array of neurotransmitters, are differentially targeted to presynaptic sites. We demonstrate that Type III Nrg1 back signaling regulates the surface expression of alpha7 nAChRs along axons of sensory neurons. Stimulation of Type III Nrg1 back signaling induces an increase in axonal surface alpha7 nAChRs, which results from a redistribution of preexisting intracellular pools of alpha7 rather than from increased protein synthesis. We also demonstrate that Type III Nrg1 back signaling activates a phosphatidylinositol 3-kinase signaling pathway and that activation of this pathway is required for the insertion of preexisting alpha7 nAChRs into the axonal plasma membrane. These findings, in conjunction with prior results establishing that Type III Nrg1 back signaling controls gene transcription, demonstrate that Type III Nrg1 back signaling can regulate both short-and long-term changes in neuronal function.
Hydroxyurea enhances SMN2 gene expression through nitric oxide release.
Xu, Cheng; Chen, Xin; Grzeschik, Susanna M; Ganta, Madhuri; Wang, Ching H
2011-02-01
Small molecules that increase full-length survivor motor neuron (SMN) gene transcript are promising therapeutic candidates for spinal muscular atrophy (SMA). Hydroxyurea (HU) has recently been shown to increase full-length SMN transcript in cultured lymphocytes from patients with SMA. We investigate the mechanism by which HU enhances full-length SMN2 gene expression in SMA lymphocytes. Nitric oxide (NO) is a major intracellular metabolite of HU. We test whether NO donors can themselves enhance full-length SMN2 expression. Eighteen cell lines (five type I, five type II, six type III SMA, and two non-SMA controls) were treated with or without NO donors for 48 h. SMA cells treated with HU and three NO donors: two long-acting donors, Deta-NONOate and S-nitrosoglutathione, and one short-acting donor, 3-ethyl-3-(ethylaminoethyl)-1-hydroxy-2-oxo-1-triazene, resulted in significant increase in full-length SMN2 mRNA. These effects were abolished by co-treatment with an NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide. One short-acting NO donor, S-nitroso-N-acetyl-DL-penicillamine, failed to show significant effect on full-length SMN2 expression, possibly due to high degree of cytotoxicity. These results were observed using both densitometry and quantitative PCR methods. We conclude that HU enhances SMN2 expression through the release of NO. NO donors may themselves be considered as new therapeutic candidates for SMA.
Apple, Jeffrey; McQuade, Karen L; Hamman, Baron L; Hebeler, Robert F; Shutze, William P; Gable, Dennis R
2008-04-01
A retrospective review of 27 patients who underwent endovascular repair of thoracic aneurysms and of other thoracic aortic pathology with the thoracic aortic endograft (Gore Medical, Flagstaff, AZ) from June 2005 to July 2007 was performed. The mean follow-up period was 13.5 months (range, 2-25 months). Indications for thoracic endografting included descending thoracic aneurysms (n = 18), thoracoabdominal aneurysms (n = 3), traumatic aortic injuries (n = 3), penetrating aortic ulcers (n = 2), and contained rupture of a type B dissection (n = 1). One patient died during the procedure, for an overall mortality rate of 3.7%. The average length of stay was 8.1 days, with an average stay in the intensive care unit of 4.2 days. If patients with traumatic aortic injuries were excluded, the average overall and intensive care unit length of stay were 5.6 and 1.8 days, respectively. There was one incident of spinal cord ischemia (3.7%). There were five type I or type III endoleaks, three of which required revision (11.1%). In conclusion, thoracic endografting is a safe and viable option for the repair of descending thoracic aneurysms and other aortic pathologies. We have found it to be less invasive, even in conjunction with preoperative debranching procedures, with a shorter recovery time, decreased perioperative morbidity and blood loss, and decreased peri-operative mortality compared with standard open repair.
Apple, Jeffrey; McQuade, Karen L.; Hamman, Baron L.; Hebeler, Robert F.; Shutze, William P.
2008-01-01
A retrospective review of 27 patients who underwent endovascular repair of thoracic aneurysms and of other thoracic aortic pathology with the thoracic aortic endograft (Gore Medical, Flagstaff, AZ) from June 2005 to July 2007 was performed. The mean follow-up period was 13.5 months (range, 2–25 months). Indications for thoracic endografting included descending thoracic aneurysms (n = 18), thoracoabdominal aneurysms (n = 3), traumatic aortic injuries (n = 3), penetrating aortic ulcers (n = 2), and contained rupture of a type B dissection (n = 1). One patient died during the procedure, for an overall mortality rate of 3.7%. The average length of stay was 8.1 days, with an average stay in the intensive care unit of 4.2 days. If patients with traumatic aortic injuries were excluded, the average overall and intensive care unit length of stay were 5.6 and 1.8 days, respectively. There was one incident of spinal cord ischemia (3.7%). There were five type I or type III endoleaks, three of which required revision (11.1%). In conclusion, thoracic endografting is a safe and viable option for the repair of descending thoracic aneurysms and other aortic pathologies. We have found it to be less invasive, even in conjunction with preoperative debranching procedures, with a shorter recovery time, decreased perioperative morbidity and blood loss, and decreased peri-operative mortality compared with standard open repair. PMID:18382748
Impaired Muscle Mitochondrial Biogenesis and Myogenesis in Spinal Muscular Atrophy
Ripolone, Michela; Ronchi, Dario; Violano, Raffaella; Vallejo, Dionis; Fagiolari, Gigliola; Barca, Emanuele; Lucchini, Valeria; Colombo, Irene; Villa, Luisa; Berardinelli, Angela; Balottin, Umberto; Morandi, Lucia; Mora, Marina; Bordoni, Andreina; Fortunato, Francesco; Corti, Stefania; Parisi, Daniela; Toscano, Antonio; Sciacco, Monica; DiMauro, Salvatore; Comi, Giacomo P.; Moggio, Maurizio
2016-01-01
IMPORTANCE The important depletion of mitochondrial DNA (mtDNA) and the general depression of mitochondrial respiratory chain complex levels (including complex II) have been confirmed, implying an increasing paucity of mitochondria in the muscle from patients with types I, II, and III spinal muscular atrophy (SMA-I, -II, and -III, respectively). OBJECTIVE To investigate mitochondrial dysfunction in a large series of muscle biopsy samples from patients with SMA. DESIGN, SETTING, AND PARTICIPANTS We studied quadriceps muscle samples from 24 patients with genetically documented SMA and paraspinal muscle samples from 3 patients with SMA-II undergoing surgery for scoliosis correction. Postmortem muscle samples were obtained from 1 additional patient. Age-matched controls consisted of muscle biopsy specimens from healthy children aged 1 to 3 years who had undergone analysis for suspected myopathy. Analyses were performed at the Neuromuscular Unit, Istituto di Ricovero e Cura a Carattere Scientifico Foundation Ca’ Granda Ospedale Maggiore Policlinico-Milano, from April 2011 through January 2015. EXPOSURES We used histochemical, biochemical, and molecular techniques to examine the muscle samples. MAIN OUTCOMES AND MEASURES Respiratory chain activity and mitochondrial content. RESULTS Results of histochemical analysis revealed that cytochrome-c oxidase (COX) deficiency was more evident in muscle samples from patients with SMA-I and SMA-II. Residual activities for complexes I, II, and IV in muscles from patients with SMA-I were 41%, 27%, and 30%, respectively, compared with control samples (P < .005). Muscle mtDNA content and cytrate synthase activity were also reduced in all 3 SMA types (P < .05). We linked these alterations to downregulation of peroxisome proliferator–activated receptor coactivator 1α, the transcriptional activators nuclear respiratory factor 1 and nuclear respiratory factor 2, mitochondrial transcription factor A, and their downstream targets, implying depression of the entire mitochondrial biogenesis. Results of Western blot analysis confirmed the reduced levels of the respiratory chain subunits that included mitochondrially encoded COX1 (47.5%; P = .004), COX2 (32.4%; P < .001), COX4 (26.6%; P < .001), and succinate dehydrogenase complex subunit A (65.8%; P = .03) as well as the structural outer membrane mitochondrial porin (33.1%; P < .001). Conversely, the levels of expression of 3 myogenic regulatory factors—muscle-specificmyogenic factor 5, myoblast determination 1, and myogenin—were higher in muscles from patients with SMA compared with muscles from age-matched controls (P < .05). CONCLUSIONS AND RELEVANCE Our results strongly support the conclusion that an altered regulation of myogenesis and a downregulated mitochondrial biogenesis contribute to pathologic change in the muscle of patients with SMA. Therapeutic strategies should aim at counteracting these changes. PMID:25844556
Central control of interlimb coordination and speed‐dependent gait expression in quadrupeds
Danner, Simon M.; Wilshin, Simon D.; Shevtsova, Natalia A.
2016-01-01
Key points Quadrupeds express different gaits depending on speed of locomotion.Central pattern generators (one per limb) within the spinal cord generate locomotor oscillations and control limb movements. Neural interactions between these generators define interlimb coordination and gait.We present a computational model of spinal circuits representing four rhythm generators with left–right excitatory and inhibitory commissural and fore–hind inhibitory interactions within the cord.Increasing brainstem drive to all rhythm generators and excitatory commissural interneurons induces an increasing frequency of locomotor oscillations accompanied by speed‐dependent gait changes from walk to trot and to gallop and bound.The model closely reproduces and suggests explanations for multiple experimental data, including speed‐dependent gait transitions in intact mice and changes in gait expression in mutants lacking certain types of commissural interneurons. The model suggests the possible circuit organization in the spinal cord and proposes predictions that can be tested experimentally. Abstract As speed of locomotion is increasing, most quadrupeds, including mice, demonstrate sequential gait transitions from walk to trot and to gallop and bound. The neural mechanisms underlying these transitions are poorly understood. We propose that the speed‐dependent expression of different gaits results from speed‐dependent changes in the interactions between spinal circuits controlling different limbs and interlimb coordination. As a result, the expression of each gait depends on (1) left–right interactions within the spinal cord mediated by different commissural interneurons (CINs), (2) fore–hind interactions on each side of the spinal cord and (3) brainstem drives to rhythm‐generating circuits and CIN pathways. We developed a computational model of spinal circuits consisting of four rhythm generators (RGs) with bilateral left–right interactions mediated by V0 CINs (V0D and V0V sub‐types) providing left–right alternation, and conditional V3 CINs promoting left–right synchronization. Fore and hind RGs mutually inhibited each other. We demonstrate that linearly increasing excitatory drives to the RGs and V3 CINs can produce a progressive increase in the locomotor speed accompanied by sequential changes of gaits from walk to trot and to gallop and bound. The model closely reproduces and suggests explanations for the speed‐dependent gait expression observed in vivo in intact mice and in mutants lacking V0V or all V0 CINs. Specifically, trot is not expressed after removal of V0V CINs, and only bound is expressed after removal of all V0 CINs. The model provides important insights into the organization of spinal circuits and neural control of locomotion. PMID:27633893
Zhang, Ying; Xie, Jingming; Wang, Yingsong; Bi, Ni; Zhao, Zhi; Li, Tao
2014-08-13
Posterior vertebral column resection (PVCR) is an effective alternative for treating rigid and severe spinal deformities. Accurate placement of pedicle screws, especially apically, is crucial. As morphologic evaluations of thoracic pedicles have not provided objective criteria, we propose a thoracic pedicle classification for treating rigid and severe spinal deformities. A consecutive series of 56 patients with severe and rigid spinal deformities who underwent PVCR at a single institution were reviewed retrospectively. Altogether, 1098 screws were inserted into thoracic pedicles at T2-T12. Based on the inner cortical width of the thoracic pedicles, the patients were divided into four groups: group 1 (0-1.0 mm), group 2 (1.1-2.0 mm), group 3 (2.1-3.0 mm), group 4 (≥3.1 mm). The proportion of screws accurately inserted in thoracic pedicles for each group was calculated. Statistical analysis was also performed regarding types of thoracic pedicles classified by Lenke et al. (SPINE 35:1836-1842, 2010) using a morphological method. There were statistically significant differences in the rates of screws inserted in thoracic pedicles between the groups (P < 0.008) except groups 3 and 4 (P > 0.008), which were then combined. The accuracies for the three new groups were 35.05%, 65.34%, and 88.32%, respectively, with statistically significant differences between the groups (P < 0.017). Rates of screws inserted in thoracic pedicles classified by Lenke et al. (SPINE 35:1836-1842, 2010) were 82.31%, 83.40%, 80.00%, and 30.28% for types A, B, C, and D, respectively. There was no statistically significant difference (P > 0.008) between these types except between type D and the other three types (P < 0.008). The inner cortical width of thoracic pedicles is the sole factor crucial for accurate placement of thoracic pedicle screws. We propose a computed tomography-based classification of the pedicle's inner cortical width: type I thoracic pedicle: absent channel, inner cortical width of 0-1 mm; type II: presence of a channel of which type IIa has an inner cortical width of 1.1-2.0 mm and type IIb a width of ≥2.1 mm. The proposed classification can help surgeons predict whether screws can be inserted into the thoracic pedicle, thus guiding instrumentation when PVCR is performed.
Alberio, Sanny O; Diniz, Jose A; Silva, Edilene O; de Souza, Wanderley; DaMatta, Renato A
2005-06-01
The fine structure and differential cell count of blood and coelomic exudate leukocytes were studied with the aim to identify granulocytes from Ameiva ameiva, a lizard distributed in the tropical regions of the Americas. Blood leukocytes were separated with a Percoll cushion and coelomic exudate cells were obtained 24 h after intracoelomic thioglycollate injection. In the blood, erythrocytes, monocytes, thrombocytes, lymphocytes, plasma cells and four types of granulocytes were identified based on their morphology and cytochemistry. Types I and III granulocytes had round intracytoplasmic granules with the same basic morphology; however, type III granulocyte had a bilobued nucleus and higher amounts of heterochromatin suggesting an advance stage of maturation. Type II granulocytes had fusiformic granules and more mitochondria. Type IV granulocytes were classified as the basophil mammalian counterpart based on their morphology and relative number. Macrophages and granulocytes type III were found in the normal coelomic cavity. However, after the thioglycollate injection the number of type III granulocyte increased. Granulocytes found in the coelomic cavity were related to type III blood granulocyte based on the morphology and cytochemical localization of alkaline phosphatase and basic proteins in their intracytoplasmic granules. Differential blood leukocyte counts showed a predominance of type III granulocyte followed by lymphocyte, type I granulocyte, type II granulocyte, monocyte and type IV granulocyte. Taken together, these results indicate that types I and III granulocytes correspond to the mammalian neutrophils/heterophils and type II to the eosinophil granulocytes.
Behind the lines–actions of bacterial type III effector proteins in plant cells
Büttner, Daniela
2016-01-01
Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression. This review summarizes our current knowledge on the molecular functions of type III effector proteins with known plant target molecules. Furthermore, plant defense strategies for the detection of effector protein activities or effector-triggered alterations in plant targets are discussed. PMID:28201715
Kepler, Christopher K; Vaccaro, Alexander R; Koerner, John D; Dvorak, Marcel F; Kandziora, Frank; Rajasekaran, Shanmuganathan; Aarabi, Bizhan; Vialle, Luiz R; Fehlings, Michael G; Schroeder, Gregory D; Reinhold, Maximilian; Schnake, Klaus John; Bellabarba, Carlo; Cumhur Öner, F
2016-04-01
The aims of this study were (1) to demonstrate the AOSpine thoracolumbar spine injury classification system can be reliably applied by an international group of surgeons and (2) to delineate those injury types which are difficult for spine surgeons to classify reliably. A previously described classification system of thoracolumbar injuries which consists of a morphologic classification of the fracture, a grading system for the neurologic status and relevant patient-specific modifiers was applied to 25 cases by 100 spinal surgeons from across the world twice independently, in grading sessions 1 month apart. The results were analyzed for classification reliability using the Kappa coefficient (κ). The overall Kappa coefficient for all cases was 0.56, which represents moderate reliability. Kappa values describing interobserver agreement were 0.80 for type A injuries, 0.68 for type B injuries and 0.72 for type C injuries, all representing substantial reliability. The lowest level of agreement for specific subtypes was for fracture subtype A4 (Kappa = 0.19). Intraobserver analysis demonstrated overall average Kappa statistic for subtype grading of 0.68 also representing substantial reproducibility. In a worldwide sample of spinal surgeons without previous exposure to the recently described AOSpine Thoracolumbar Spine Injury Classification System, we demonstrated moderate interobserver and substantial intraobserver reliability. These results suggest that most spine surgeons can reliably apply this system to spine trauma patients as or more reliably than previously described systems.
Type III CRISPR-Cas systems can provide redundancy to counteract viral escape from type I systems.
Silas, Sukrit; Lucas-Elio, Patricia; Jackson, Simon A; Aroca-Crevillén, Alejandra; Hansen, Loren L; Fineran, Peter C; Fire, Andrew Z; Sánchez-Amat, Antonio
2017-08-17
CRISPR-Cas-mediated defense utilizes information stored as spacers in CRISPR arrays to defend against genetic invaders. We define the mode of target interference and role in antiviral defense for two CRISPR-Cas systems in Marinomonas mediterranea . One system (type I-F) targets DNA. A second system (type III-B) is broadly capable of acquiring spacers in either orientation from RNA and DNA, and exhibits transcription-dependent DNA interference. Examining resistance to phages isolated from Mediterranean seagrass meadows, we found that the type III-B machinery co-opts type I-F CRISPR-RNAs. Sequencing and infectivity assessments of related bacterial and phage strains suggests an 'arms race' in which phage escape from the type I-F system can be overcome through use of type I-F spacers by a horizontally-acquired type III-B system. We propose that the phage-host arms race can drive selection for horizontal uptake and maintenance of promiscuous type III interference modules that supplement existing host type I CRISPR-Cas systems.
Berry, Jack W.; Elliott, Timothy R.; Rivera, Patricia
2008-01-01
A sample of 199 persons with spinal cord injury (SCI) were assessed on Big Five personality dimensions using the NEO Five-Factor Inventory (NEO–FFI; Costa & McCrae, 1992) at admission to an inpatient medical rehabilitation program. A cluster analysis of the baseline NEO–FFI yielded 3 cluster prototypes that resemble resilient, undercontrolled, and overcontrolled prototypes identified in many previous studies of children and adult community samples. Compared with normative samples, this sample had significantly fewer resilient prototypes and significantly more overcontrolled and undercontrolled prototypes. Undercontrolled individuals were the modal prototype. The resilient and undercontrolled types were better adjusted than the overcontrolled types, showing lower levels of depression at admission and higher acceptance of disability at discharge. The resilient type at admission predicted the most effective reports of social problem-solving abilities at discharge and the overcontrolled type the least. We discuss the implications of these results for assessment and interventions in rehabilitation settings. PMID:18001229
Koda, Masao; Hanaoka, Hideki; Sato, Takatoshi; Fujii, Yasuhisa; Hanawa, Michiko; Takahashi, Sho; Furuya, Takeo; Ijima, Yasushi; Saito, Junya; Kitamura, Mitsuhiro; Ohtori, Seiji; Matsumoto, Yukei; Abe, Tetsuya; Watanabe, Kei; Hirano, Toru; Ohashi, Masayuki; Shoji, Hirokazu; Mizouchi, Tatsuki; Takahashi, Ikuko; Kawahara, Norio; Kawaguchi, Masahito; Orita, Yugo; Sasamoto, Takeshi; Yoshioka, Masahito; Fujii, Masafumi; Yonezawa, Katsutaka; Soma, Daisuke; Taneichi, Hiroshi; Takeuchi, Daisaku; Inami, Satoshi; Moridaira, Hiroshi; Ueda, Haruki; Asano, Futoshi; Shibao, Yosuke; Aita, Ikuo; Takeuchi, Yosuke; Mimura, Masaya; Shimbo, Jun; Someya, Yukio; Ikenoue, Sumio; Sameda, Hiroaki; Takase, Kan; Ikeda, Yoshikazu; Nakajima, Fumitake; Hashimoto, Mitsuhiro; Ozawa, Tomoyuki; Hasue, Fumio; Fujiyoshi, Takayuki; Kamiya, Koshiro; Watanabe, Masahiko; Katoh, Hiroyuki; Matsuyama, Yukihiro; Yamamoto, Yu; Togawa, Daisuke; Hasegawa, Tomohiko; Kobayashi, Sho; Yoshida, Go; Oe, Shin; Banno, Tomohiro; Arima, Hideyuki; Akeda, Koji; Kawamoto, Eiji; Imai, Hiroshi; Sakakibara, Toshihiko; Sudo, Akihiro; Ito, Yasuo; Kikuchi, Tsuyoshi; Osaki, Shuhei; Tanaka, Nobuhiro; Nakanishi, Kazuyoshi; Kamei, Naosuke; Kotaka, Shinji; Baba, Hideo; Okudaira, Tsuyoshi; Konishi, Hiroaki; Yamaguchi, Takayuki; Ito, Keigo; Katayama, Yoshito; Matsumoto, Taro; Matsumoto, Tomohiro; Idota, Masaru; Kanno, Haruo; Aizawa, Toshimi; Hashimoto, Ko; Eto, Toshimitsu; Sugaya, Takehiro; Matsuda, Michiharu; Fushimi, Kazunari; Nozawa, Satoshi; Iwai, Chizuo; Taguchi, Toshihiko; Kanchiku, Tsukasa; Suzuki, Hidenori; Nishida, Norihiro; Funaba, Masahiro; Yamazaki, Masashi
2018-05-05
Granulocyte colony-stimulating factor (G-CSF) is generally used for neutropaenia. Previous experimental studies revealed that G-CSF promoted neurological recovery after spinal cord injury (SCI). Next, we moved to early phase of clinical trials. In a phase I/IIa trial, no adverse events were observed. Next, we conducted a non-randomised, non-blinded, comparative trial, which suggested the efficacy of G-CSF for promoting neurological recovery. Based on those results, we are now performing a phase III trial. The objective of this study is to evaluate the efficacy of G-CSF for acute SCI. The study design is a prospective, multicentre, randomised, double-blinded, placebo-controlled comparative study. The current trial includes cervical SCI (severity of American Spinal Injury Association (ASIA) Impairment Scale B/C) within 48 hours after injury. Patients are randomly assigned to G-CSF and placebo groups. The G-CSF group is administered 400 µg/m 2 /day×5 days of G-CSF in normal saline via intravenous infusion for 5 consecutive days. The placebo group is similarly administered a placebo. Our primary endpoint is changes in ASIA motor scores from baseline to 3 months. Each group includes 44 patients (88 total patients). The study will be conducted according to the principles of the World Medical Association Declaration of Helsinki and in accordance with the Japanese Medical Research Involving Human Subjects Act and other guidelines, regulations and Acts. Results of the clinical study will be submitted to the head of the respective clinical study site as a report after conclusion of the clinical study by the sponsor-investigator. Even if the results are not favourable despite conducting the clinical study properly, the data will be published as a paper. UMIN000018752. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Antal, M; Polgár, E; Chalmers, J; Minson, J B; Llewellyn-Smith, I; Heizmann, C W; Somogyi, P
1991-12-01
The colocalization of parvalbumin (PV), calbindin-D28k (CaBP), GABA immunoreactivities, and the ability to accumulate 3H-D-aspartate selectively were investigated in neurons of laminae I-IV of the dorsal horn of the rat spinal cord. Following injection of 3H-D-aspartate into the basal dorsal horn (laminae IV-VI), perikarya selectively accumulating 3H-D-aspartate were detected in araldite embedded semithin sections by autoradiography, and consecutive semithin sections were treated to reveal PV, CaBP and GABA by postembedding immunocytochemistry. Perikarya accumulating 3H-D-aspartate were found exclusively in laminae I-III, and no labelled somata were found in deeper layers or in the intermediolateral column although the labelled amino acid clearly spread to these regions. More than half of the labelled cells were localized in lamina II. In this layer, 16.4% of 3H-D-aspartate-labelled perikarya were also stained for CaBP. In contrast to CaBP, PV or GABA was never detected in neurons accumulating 3H-D-aspartate. A high proportion of PV-immunoreactive perikarya were also stained for GABA in laminae II and III (70.0% and 61.2% respectively). However, the majority of CaBP-immunoreactive perikarya were GABA-negative. GABA-immunoreactivity was found in less than 2% of the total population of cells stained for CaBP in laminae I-IV. A significant proportion of the GABA-negative but PV-immunoreactive neurons also showed CaBP-immunoreactivity in laminae II and IV. These results show that out of the two calcium-binding proteins, CaBP is a characteristic protein of a small subpopulation of neurons using excitatory amino acids and PV is a characteristic protein of a subpopulation of neurons utilizing GABA as a transmitter. However, both proteins are present in additional subgroups of neurons, and neuronal populations using inhibitory or excitatory amino acid transmitters are heterogeneous with regard to their content of calcium-binding proteins in the dorsal horn of the rat spinal cord.
Mallika, V; Sivakumar, K C; Jaichand, S; Soniya, E V
2010-07-13
Type III Polyketide synthases (PKS) are family of proteins considered to have significant roles in the biosynthesis of various polyketides in plants, fungi and bacteria. As these proteins shows positive effects to human health, more researches are going on regarding this particular protein. Developing a tool to identify the probability of sequence being a type III polyketide synthase will minimize the time consumption and manpower efforts. In this approach, we have designed and implemented PKSIIIpred, a high performance prediction server for type III PKS where the classifier is Support Vector Machines (SVMs). Based on the limited training dataset, the tool efficiently predicts the type III PKS superfamily of proteins with high sensitivity and specificity. The PKSIIIpred is available at http://type3pks.in/prediction/. We expect that this tool may serve as a useful resource for type III PKS researchers. Currently work is being progressed for further betterment of prediction accuracy by including more sequence features in the training dataset.
Stellar C III Emissions as a New Classification Parameter for (WC) Central Stars
NASA Technical Reports Server (NTRS)
Feibelman, W. A.
1999-01-01
We report detection of stellar C III lambda 1909 emission in International Ultraviolet Explorer (IUE) echelle spectra of early-type [WC] planetary nebula central stars (CSPNs). Additionally, stellar C III emission at lambda 2297 is observed in early- and late-type [WC) CSPNS. Inclusion of these C III features for abundance determinations may resolve a conflict of underabundance of C/O for early type [WC2] - [WC4] CSPNS. A linear dependence on stellar C III lambda 2297 equivalent widths can be used to indicate a new classification of type [WCUV] central stars.
... Marie-Tooth Disease (CMT) Congenital Muscular Dystrophy (CMD) Duchenne Muscular Dystrophy (DMD) Emery-Dreifuss Muscular Dystrophy Endocrine Myopathies Metabolic Diseases of Muscle Mitochondrial Myopathies (MM) Myotonic Dystrophy (DM) Spinal-Bulbar ...
Canetta, Sarah E; Luca, Edlira; Pertot, Elyse; Role, Lorna W; Talmage, David A
2011-01-01
Type III Nrg1, a member of the Nrg1 family of signaling proteins, is expressed in sensory neurons, where it can signal in a bi-directional manner via interactions with the ErbB family of receptor tyrosine kinases (ErbB RTKs). Type III Nrg1 signaling as a receptor (Type III Nrg1 back signaling) can acutely activate phosphatidylinositol-3-kinase (PtdIns3K) signaling, as well as regulate levels of α7* nicotinic acetylcholine receptors, along sensory axons. Transient receptor potential vanilloid 1 (TRPV1) is a cation-permeable ion channel found in primary sensory neurons that is necessary for the detection of thermal pain and for the development of thermal hypersensitivity to pain under inflammatory conditions. Cell surface expression of TRPV1 can be enhanced by activation of PtdIns3K, making it a potential target for regulation by Type III Nrg1. We now show that Type III Nrg1 signaling in sensory neurons affects functional axonal TRPV1 in a PtdIns3K-dependent manner. Furthermore, mice heterozygous for Type III Nrg1 have specific deficits in their ability to respond to noxious thermal stimuli and to develop capsaicin-induced thermal hypersensitivity to pain. Cumulatively, these results implicate Type III Nrg1 as a novel regulator of TRPV1 and a molecular mediator of nociceptive function.
Solar Flares, Type III Radio Bursts, Coronal Mass Ejections, and Energetic Particles
NASA Technical Reports Server (NTRS)
Cane, Hilary V.; Erickson, W. C.; Prestage, N. P.; White, Nicholas E. (Technical Monitor)
2002-01-01
In this correlative study between greater than 20 MeV solar proton events, coronal mass ejections (CMEs), flares, and radio bursts it is found that essentially all of the proton events are preceded by groups of type III bursts and all are preceded by CMEs. These type III bursts (that are a flare phenomenon) usually are long-lasting, intense bursts seen in the low-frequency observations made from space. They are caused by streams of electrons traveling from close to the solar surface out to 1 AU. In most events the type III emissions extend into, or originate at, the time when type II and type IV bursts are reported (some 5 to 10 minutes after the start of the associated soft X-ray flare) and have starting frequencies in the 500 to approximately 100 MHz range that often get lower as a function of time. These later type III emissions are often not reported by ground-based observers, probably because of undue attention to type II bursts. It is suggested to call them type III-1. Type III-1 bursts have previously been called shock accelerated (SA) events, but an examination of radio dynamic spectra over an extended frequency range shows that the type III-1 bursts usually start at frequencies above any type II burst that may be present. The bursts sometimes continue beyond the time when type II emission is seen and, furthermore, sometimes occur in the absence of any type II emission. Thus the causative electrons are unlikely to be shock accelerated and probably originate in the reconnection regions below fast CMEs. A search did not find any type III-1 bursts that were not associated with CMEs. The existence of low-frequency type III bursts proves that open field lines extend from within 0.5 radius of the Sun into the interplanetary medium (the bursts start above 100 MHz, and such emission originates within 0.5 solar radius of the solar surface). Thus it is not valid to assume that only closed field lines exist in the flaring regions associated with CMEs and some interplanetary particles originating in such flare regions might be expected in all solar particle events.
Neural tube closure depends on expression of Grainyhead-like 3 in multiple tissues.
De Castro, Sandra C P; Hirst, Caroline S; Savery, Dawn; Rolo, Ana; Lickert, Heiko; Andersen, Bogi; Copp, Andrew J; Greene, Nicholas D E
2018-03-15
Failure of neural tube closure leads to neural tube defects (NTDs), common congenital abnormalities in humans. Among the genes whose loss of function causes NTDs in mice, Grainyhead-like3 (Grhl3) is essential for spinal neural tube closure, with null mutants exhibiting fully penetrant spina bifida. During spinal neurulation Grhl3 is initially expressed in the surface (non-neural) ectoderm, subsequently in the neuroepithelial component of the neural folds and at the node-streak border, and finally in the hindgut endoderm. Here, we show that endoderm-specific knockout of Grhl3 causes late-arising spinal NTDs, preceded by increased ventral curvature of the caudal region which was shown previously to suppress closure of the spinal neural folds. This finding supports the hypothesis that diminished Grhl3 expression in the hindgut is the cause of spinal NTDs in the curly tail, carrying a hypomorphic Grhl3 allele. Complete loss of Grhl3 function produces a more severe phenotype in which closure fails earlier in neurulation, before the stage of onset of expression in the hindgut of wild-type embryos. This implicates additional tissues and NTD mechanisms in Grhl3 null embryos. Conditional knockout of Grhl3 in the neural plate and node-streak border has minimal effect on closure, suggesting that abnormal function of surface ectoderm, where Grhl3 transcripts are first detected, is primarily responsible for early failure of spinal neurulation in Grhl3 null embryos. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Yin, Hong; Jiang, Tao; Deng, Xi; Yu, Miao; Xing, Hui; Ren, Xianjun
2018-01-01
Spinal cord injury (SCI), usually resulting in severe sensory and motor deficits, is a major public health concern. Adipose-derived stem cells (ADSCs), one type of adult stem cell, are free from ethical restriction, easily isolated and enriched. Therefore, ADSCs may provide a feasible cell source for cell-based therapies in treatment of SCI. The present study successfully isolated rat ADSCs (rADSCs) from Sprague-Dawley male rats and co-cultured them with acellular spinal cord scaffolds (ASCs). Then, a rat spinal cord hemisection model was built and rats were randomly divided into 3 groups: SCI only, ASC only, and ASC + ADSCs. Furthermore, behavioral tests were conducted to evaluate functional recovery. Hematoxylin & Eosin staining and immunofluorence were carried out to assess histopathological remodeling. In addition, biotinylated dextran amines anterograde tracing was employed to visualize axon regeneration. The data demonstrated that harvested cells, which were positive for cell surface antigen cluster of differentiation (CD) 29, CD44 and CD90 and negative for CD4, detected by flow cytometry analysis, held the potential to differentiate into osteocytes and adipocytes. Rats that received transplantation of ASCs seeded with rADSCs benefited greatly in functional recovery through facilitation of histopathological rehabilitation, axon regeneration and reduction of reactive gliosis. rADSCs co-cultured with ASCs may survive and integrate into the host spinal cord on day 14 post-SCI. PMID:29257299
72 FR 56765 - Proposed Consolidated Vaccine Information Materials for Multiple Infant Vaccines
Federal Register 2010, 2011, 2012, 2013, 2014
2007-10-04
... to meningitis (infection of the brain and spinal cord coverings); pneumonia; infections of the blood... vaccines: DTaP, Haemophilus influenzae type b, inactivated polio vaccine, pneumococcal conjugate vaccine... to administration of any of these vaccines. Hepatitis B, Haemophilus influenzae type b (Hib...
Lavrov, Igor; Fox, Lyle; Shen, Jun; Han, Yingchun; Cheng, Jianguo
2016-01-01
Although gap junctions are widely expressed in the developing central nervous system, the role of electrical coupling of neurons and glial cells via gap junctions in the spinal cord in adults is largely unknown. We investigated whether gap junctions are expressed in the mature spinal cord of the mudpuppy and tested the effects of applying gap junction blocker on the walking-like activity induced by NMDA or glutamate in an in vitro mudpuppy preparation. We found that glial and neural cells in the mudpuppy spinal cord expressed different types of connexins that include connexin 32 (Cx32), connexin 36 (Cx36), connexin 37 (Cx37), and connexin 43 (Cx43). Application of a battery of gap junction blockers from three different structural classes (carbenexolone, flufenamic acid, and long chain alcohols) substantially and consistently altered the locomotor-like activity in a dose-dependent manner. In contrast, these blockers did not significantly change the amplitude of the dorsal root reflex, indicating that gap junction blockers did not inhibit neuronal excitability nonselectively in the spinal cord. Taken together, these results suggest that gap junctions play a significant modulatory role in the spinal neural networks responsible for the generation of walking-like activity in the adult mudpuppy.
Rouleau, Pascal; Guertin, Pierre A
2013-01-01
Most animal models of contused, compressed or transected spinal cord injury (SCI) require a laminectomy to be performed. However, despite advantages and disadvantages associated with each of these models, the laminectomy itself is generally associated with significant problems including longer surgery and anaesthesia (related post-operative complications), neuropathic pain, spinal instabilities, deformities, lordosis, and biomechanical problems, etc. This review provides an overview of findings obtained mainly from our laboratory that are associated with the development and characterization of a novel murine model of spinal cord transection that does not require a laminectomy. A number of studies successfully conducted with this model provided strong evidence that it constitutes a simple, reliable and reproducible transection model of complete paraplegia which is particularly useful for studies on large cohorts of wild-type or mutant animals - e.g., drug screening studies in vivo or studies aimed at characterizing neuronal and non-neuronal adaptive changes post-trauma. It is highly suitable also for studies aimed at identifying and developing new pharmacological treatments against aging associated comorbid problems and specific SCI-related dysfunctions (e.g., stereotyped motor behaviours such as locomotion, sexual response, defecation and micturition) largely related with 'command centers' located in lumbosacral areas of the spinal cord.
[Acute-stage para- and tetraplegia].
Hachen, H J
1993-03-20
A quarter of a century ago, in October 1964, the first spinal cord injury center in Switzerland was opened at Geneva University Hospital. At that time all para- and tetraplegics were classified as "high-risk" patients. Early mortality, covering the initial four weeks following trauma, was still around 15%. The available resources for diagnostic assessment were limited to clinical examination and neuroradiological assessment (subsequently improved by the introduction of tomography and gas myelography). A great many patients suffered a deteriorated neurological level due to inadequate, multiple transfers between hospitals. Most patients who are paralyzed following a road-traffic accident show severe polytrauma. Their chances of survival and functional recovery have greatly improved in recent years due to efficient emergency transport by helicopter, admission to an intensive care unit (respiratory therapy, prophylactic anticoagulation, gastrointestinal cytoprotection, prevention of pressure sores, etc.) and a comprehensive medico-surgical team approach (orthopedic surgeons, neurosurgeons, ICU specialists, internists, etc.). Evaluation of the spine and spinal cord by NMR and CT scan allows precise assessment of the extent of CNS damage and provides additional guide-lines regarding efficient surgical reposition and spinal fusion. Ongoing experimental research in neurophysiology and neurobiochemistry of the brain and spinal cord is presently yielding some interesting results which hold out new hopes for functional recovery in some specific types of incomplete spinal cord trauma.
Kazdal, Hizir; Batcik, Osman Ersagun; Ozdemir, Bulent; Senturk, Senol; Yildirim, Murat; Kazancioglu, Leyla; Sen, Ahmet; Batcik, Sule; Balik, Mehmet Sabri
2017-01-01
Study Design Retrospective. Purpose This study investigated the possible association of persistent low back pain (LBP) with caesarean section (CS) under spinal anesthesia. Overview of Literature Many women suffer from LBP after CS, which is commonly performed under spinal anesthesia. However, this type of LBP is poorly understood, and there is poor consensus regarding increased risk after spinal anesthesia. Methods We examined two groups of patients who underwent cesarean delivery under spinal anesthesia. Group I included patients who presented to a neurosurgical clinic complaining of LBP for at least 6 months. Group II was a control group with patients without LBP. We analyzed clinical and sagittal angle parameters, including age, body mass index, parity, central sagittal angle of the sacrum (CSAS), and sacral slope (SS). Results Fifty-three patients participated in this study: 23 (43.1%) in Group I and 30 (56.9%) in Group II. Non-parametric Mann–Whitney U-tests showed that age, parity, and CSAS significantly differed between the two groups at 6 months. Conclusions Age, parity, and CSAS appear to be associated with increased risk for LBP after CS under spinal anesthesia. Future prospective studies on this subject may help validate our results. PMID:29093782
Vehicle Exposure and Spinal Musculature Fatigue in Military Warfighters: A Meta-Analysis.
Kollock, Roger O; Games, Kenneth E; Wilson, Alan E; Sefton, JoEllen M
2016-11-01
Spinal musculature fatigue from vehicle exposure may place warfighters at risk for spinal injuries and pain. Research on the relationship between vehicle exposure and spinal musculature fatigue is conflicting. A better understanding of the effect of military duty on musculoskeletal function is needed before sports medicine teams can develop injury-prevention programs. To determine if the literature supports a definite effect of vehicle exposure on spinal musculature fatigue. We searched the MEDLINE, Military & Government Collection (EBSCO), National Institute for Occupational Safety and Health Technical Information Center, PubMed, and Web of Science databases for articles published between January 1990 and September 2015. To be included, a study required a clear sampling method, preexposure and postexposure assessments of fatigue, a defined objective measurement of fatigue, a defined exposure time, and a study goal of exposing participants to forces related to vehicle exposure. Sample size, mean preexposure and postexposure measures of fatigue, vehicle type, and exposure time. Six studies met the inclusion criteria. We used the Scottish Intercollegiate Guidelines Network algorithm to determine the appropriate tool for quality appraisal of each article. Unweighted random-effects model meta-analyses were conducted, and a natural log response ratio was used as the effect metric. The overall meta-analysis demonstrated that vehicle exposure increased fatigue of the spinal musculature (P = .03; natural log response ratio = -0.22, 95% confidence interval = -0.42, -0.02). Using the spinal region as a moderator, we observed that vehicle ride exposure significantly increased fatigue at the lumbar musculature (P = .02; natural log response ratio = -0.27, 95% confidence interval = -0.50, -0.04) but not at the cervical or thoracic region. Vehicle exposure increased fatigue at the lumbar region.
Emergence of Serotonergic Neurons After Spinal Cord Injury in Turtles
Fabbiani, Gabriela; Rehermann, María I.; Aldecosea, Carina; Trujillo-Cenóz, Omar; Russo, Raúl E.
2018-01-01
Plasticity of neural circuits takes many forms and plays a fundamental role in regulating behavior to changing demands while maintaining stability. For example, during spinal cord development neurotransmitter identity in neurons is dynamically adjusted in response to changes in the activity of spinal networks. It is reasonable to speculate that this type of plasticity might occur also in mature spinal circuits in response to injury. Because serotonergic signaling has a central role in spinal cord functions, we hypothesized that spinal cord injury (SCI) in the fresh water turtle Trachemys scripta elegans may trigger homeostatic changes in serotonergic innervation. To test this possibility we performed immunohistochemistry for serotonin (5-HT) and key molecules involved in the determination of the serotonergic phenotype before and after SCI. We found that as expected, in the acute phase after injury the dense serotonergic innervation was strongly reduced. However, 30 days after SCI the population of serotonergic cells (5-HT+) increased in segments caudal to the lesion site. These cells expressed the neuronal marker HuC/D and the transcription factor Nkx6.1. The new serotonergic neurons did not incorporate the thymidine analog 5-bromo-2′-deoxyuridine (BrdU) and did not express the proliferating cell nuclear antigen (PCNA) indicating that novel serotonergic neurons were not newborn but post-mitotic cells that have changed their neurochemical identity. Switching towards a serotonergic neurotransmitter phenotype may be a spinal cord homeostatic mechanism to compensate for the loss of descending serotonergic neuromodulation, thereby helping the outstanding functional recovery displayed by turtles. The 5-HT1A receptor agonist (±)-8-Hydroxy-2-dipropylaminotetralin hydrobromide (8-OH-DPAT) blocked the increase in 5-HT+ cells suggesting 5-HT1A receptors may trigger the respecification process. PMID:29593503
Vehicle Exposure and Spinal Musculature Fatigue in Military Warfighters: A Meta-Analysis
Kollock, Roger O.; Games, Kenneth E.; Wilson, Alan E.; Sefton, JoEllen M.
2016-01-01
Context: Spinal musculature fatigue from vehicle exposure may place warfighters at risk for spinal injuries and pain. Research on the relationship between vehicle exposure and spinal musculature fatigue is conflicting. A better understanding of the effect of military duty on musculoskeletal function is needed before sports medicine teams can develop injury-prevention programs. Objective: To determine if the literature supports a definite effect of vehicle exposure on spinal musculature fatigue. Data Sources: We searched the MEDLINE, Military & Government Collection (EBSCO), National Institute for Occupational Safety and Health Technical Information Center, PubMed, and Web of Science databases for articles published between January 1990 and September 2015. Study Selection: To be included, a study required a clear sampling method, preexposure and postexposure assessments of fatigue, a defined objective measurement of fatigue, a defined exposure time, and a study goal of exposing participants to forces related to vehicle exposure. Data Extraction: Sample size, mean preexposure and postexposure measures of fatigue, vehicle type, and exposure time. Data Synthesis: Six studies met the inclusion criteria. We used the Scottish Intercollegiate Guidelines Network algorithm to determine the appropriate tool for quality appraisal of each article. Unweighted random-effects model meta-analyses were conducted, and a natural log response ratio was used as the effect metric. The overall meta-analysis demonstrated that vehicle exposure increased fatigue of the spinal musculature (P = .03; natural log response ratio = −0.22, 95% confidence interval = −0.42, −0.02). Using the spinal region as a moderator, we observed that vehicle ride exposure significantly increased fatigue at the lumbar musculature (P = .02; natural log response ratio = −0.27, 95% confidence interval = −0.50, −0.04) but not at the cervical or thoracic region. Conclusions: Vehicle exposure increased fatigue at the lumbar region. PMID:28068167
Arakawa, Reiko; Arakawa, Masayuki; Kaneko, Kaori; Otsuki, Noriko; Aoki, Ryoko; Saito, Kayoko
2016-08-01
Spinal muscular atrophy is a neurodegenerative disorder caused by the deficient expression of survival motor neuron protein in motor neurons. A major goal of disease-modifying therapy is to increase survival motor neuron expression. Changes in survival motor neuron protein expression can be monitored via peripheral blood cells in patients; therefore we tested the sensitivity and utility of imaging flow cytometry for this purpose. After the immortalization of peripheral blood lymphocytes from a human healthy control subject and two patients with spinal muscular atrophy type 1 with two and three copies of SMN2 gene, respectively, we used imaging flow cytometry analysis to identify significant differences in survival motor neuron expression. A bright detail intensity analysis was used to investigate differences in the cellular localization of survival motor neuron protein. Survival motor neuron expression was significantly decreased in cells derived from patients with spinal muscular atrophy relative to those derived from a healthy control subject. Moreover, survival motor neuron expression correlated with the clinical severity of spinal muscular atrophy according to SMN2 copy number. The cellular accumulation of survival motor neuron protein was also significantly decreased in cells derived from patients with spinal muscular atrophy relative to those derived from a healthy control subject. The benefits of imaging flow cytometry for peripheral blood analysis include its capacities for analyzing heterogeneous cell populations; visualizing cell morphology; and evaluating the accumulation, localization, and expression of a target protein. Imaging flow cytometry analysis should be implemented in future studies to optimize its application as a tool for spinal muscular atrophy clinical trials. Copyright © 2016 Elsevier Inc. All rights reserved.
Gallucci, A; Dragone, L; Menchetti, M; Gagliardo, T; Pietra, M; Cardinali, M; Gandini, G
2017-03-01
Spinal walking (SW) is described as the acquisition of an involuntary motor function in paraplegic dogs and cats without pain perception affected by a thoracolumbar lesion. Whereas spinal locomotion is well described in cats that underwent training trials after experimental spinal cord resection, less consistent information is available for dogs. Paraplegic dogs affected by a thoracolumbar complete spinal cord lesion undergoing intensive physical rehabilitation could acquire an autonomous SW gait under field conditions. Eighty-one acute paraplegic thoracolumbar dogs without pelvic limb pain perception. Retrospective study of medical records of dogs selected for intensive rehabilitation treatment in paraplegic dogs with absence of pain perception on admission and during the whole treatment. Binary regression and multivariate logistic regression were used to analyze potential associations with the development of SW. Autonomous SW was achieved in 48 dogs (59%). Median time to achieve SW was of 75.5 days (range: 16-350 days). On univariate analysis, SW gait was associated with younger age (P = .002) and early start of physiotherapy (P = .024). Multivariate logistic regression showed that younger age (≤60 months) and lightweight (≤7.8 kg) were positively associated with development of SW (P = .012 and P < .001, respectively). BCS, full-time hospitalization, and type and site of the lesion were not significantly associated with development of SW. Dogs with irreversible thoracolumbar lesion undergoing intensive physiotherapic treatment can acquire SW. Younger age and lightweight are positively associated with the development of SW gait. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.
Pathology of radiation injury to the canine spinal cord.
Powers, B E; Beck, E R; Gillette, E L; Gould, D H; LeCouter, R A
1992-01-01
The histopathologic response of the canine spinal cord to fractionated doses of radiation was investigated. Forty-two dogs received 0, 44, 52, 60, or 68 Gy in 4 Gy fractions to the thoracic spinal cord. Dogs were evaluated for neurologic signs and were observed for 1 or 2 years after irradiation. Six major lesion types were observed; five in the irradiated spinal cord and one in irradiated dorsal root ganglia. The three most severe spinal cord lesions were white matter necrosis, massive hemorrhage, and segmental parenchymal atrophy which had an ED50 of 56.9 Gy (51.3-63.3 Gy 95% CI) in 4 Gy fractions. These lesions were consistently associated with abnormal neurologic signs. Radiation damage to the vasculature was the most likely cause of these three lesions. The two less severe spinal cord lesions were focal fiber loss, which had an ED50 of 49.5 Gy (44.8-53.6 Gy 95% CI) in 4 gy fractions and scattered white matter vacuolation that occurred at all doses. These less severe lesions were not consistently associated with neurologic signs and indicated the presence of residual damage that may occur after lower doses of radiation. Radiation damage to glial cells, axons, and/or vasculature were possible causes of these lesions. In the irradiated dorsal root ganglia, affected sensory neurons contained large intracytoplasmic vacuoles, and there was loss of neurons and satellite cells. Such alterations could affect sensory function. The dog is a good model for spinal cord irradiation studies as tolerance doses for lesions causing clinical signs are close to the estimated tolerance doses for humans, and studies involving volume and long-term observation can be done.
Roh, Dae-Hyun; Yoon, Seo-Yeon; Seo, Hyoung-Sig; Kang, Suk-Yun; Han, Ho-Jae; Beitz, Alvin J; Lee, Jang-Hern
2010-07-01
The most common type of chronic pain following spinal cord injury (SCI) is central neuropathic pain and SCI patients typically experience mechanical allodynia and thermal hyperalgesia. The present study was designed to examine the potential role of astrocyte gap junction connectivity in the induction and maintenance of "below-level" neuropathic pain in SCI rats. We examined the effect of intrathecal treatment with carbenoxolone (CARB), a gap junction decoupler, on SCI-induced bilateral thermal hyperalgesia and mechanical allodynia during the induction phase (postoperative days 0 to 5) and the maintenance phase (days 15 to 20) following T13 spinal cord hemisection. Immunohistochemistry was performed to determine potential SCI-induced changes in spinal astrocyte activation and phosphorylation of the NMDA receptor NR1 subunit (pNR1). CARB administered during the induction period dose-dependently attenuated the development of bilateral thermal hyperalgesia and mechanical allodynia. Intrathecal CARB also significantly reduced the bilateral SCI-induced increase in GFAP-immunoreactive (ir) staining and the number of pNR1-ir cell profiles in the spinal cord dorsal horn compared to vehicle-treated rats. In contrast, CARB treatment during the maintenance phase had no effect on the established thermal hyperalgesia and mechanical allodynia nor on spinal GFAP expression or the number of pNR1-ir cell profiles. These results indicate that gap junctions play a critical role in the activation of astrocytes distant from the site of SCI and in the subsequent phosphorylation of NMDA receptors in the lumbar spinal cord. Both of these processes appear to contribute to the induction of bilateral below-level pain in SCI rats. Copyright 2010 Elsevier Inc. All rights reserved.
Giszter, Simon F.
2015-01-01
The current literature on Intra-Spinal Micro-Stimulation (ISMS) for motor prostheses is reviewed in light of neurobiological data on spinal organization, and a neurobiological perspective on output motor modularity, ISMS maps, stimulation combination effects, and stability. By comparing published data in these areas, the review identifies several gaps in current knowledge that are crucial to the development of effective intraspinal neuroprostheses. Gaps can be categorized into a lack of systematic and reproducible details of: (a) Topography and threshold for ISMS across the segmental motor system, the topography of autonomic recruitment by ISMS, and the coupling relations between these two types of outputs in practice. (b) Compositional rules for ISMS motor responses tested across the full range of the target spinal topographies. (c) Rules for ISMS effects' dependence on spinal cord state and neural dynamics during naturally elicited or ISMS triggered behaviors. (d) Plasticity of the compositional rules for ISMS motor responses, and understanding plasticity of ISMS topography in different spinal cord lesion states, disease states, and following rehabilitation. All these knowledge gaps to a greater or lesser extent require novel electrode technology in order to allow high density chronic recording and stimulation. The current lack of this technology may explain why these prominent gaps in the ISMS literature currently exist. It is also argued that given the “known unknowns” in the current ISMS literature, it may be prudent to adopt and develop control schemes that can manage the current results with simple superposition and winner-take-all interactions, but can also incorporate the possible plastic and stochastic dynamic interactions that may emerge in fuller analyses over longer terms, and which have already been noted in some simpler model systems. PMID:25852454
Analysis of National Rates, Cost, and Sources of Cost Variation in Adult Spinal Deformity.
Zygourakis, Corinna C; Liu, Caterina Y; Keefe, Malla; Moriates, Christopher; Ratliff, John; Dudley, R Adams; Gonzales, Ralph; Mummaneni, Praveen V; Ames, Christopher P
2018-03-01
Several studies suggest significant variation in cost for spine surgery, but there has been little research in this area for spinal deformity. To determine the utilization, cost, and factors contributing to cost for spinal deformity surgery. The cohort comprised 55 599 adults who underwent spinal deformity fusion in the 2001 to 2013 National Inpatient Sample database. Patient variables included age, gender, insurance, median income of zip code, county population, severity of illness, mortality risk, number of comorbidities, length of stay, elective vs nonelective case. Hospital variables included bed size, wage index, hospital type (rural, urban nonteaching, urban teaching), and geographical region. The outcome was total hospital cost for deformity surgery. Statistics included univariate and multivariate regression analyses. The number of spinal deformity cases increased from 1803 in 2001 (rate: 4.16 per 100 000 adults) to 6728 in 2013 (rate: 13.9 per 100 000). Utilization of interbody fusion devices increased steadily during this time period, while bone morphogenic protein usage peaked in 2010 and declined thereafter. The mean inflation-adjusted case cost rose from $32 671 to $43 433 over the same time period. Multivariate analyses showed the following patient factors were associated with cost: age, race, insurance, severity of illness, length of stay, and elective admission (P < .01). Hospitals in the western United States and those with higher wage indices or smaller bed sizes were significantly more expensive (P < .05). The rate of adult spinal deformity surgery and the mean case cost increased from 2001 to 2013, exceeding the rate of inflation. Both patient and hospital factors are important contributors to cost variation for spinal deformity surgery. Copyright © 2017 by the Congress of Neurological Surgeons
Dong, Ling; Smith, Jenell R; Winkelstein, Beth A
2013-05-15
Chronic neck pain affects up to 70% of persons, with the facet joint being the most common source. Intra-articular injection of the non-steroidal anti-inflammatory drug ketorolac reduces post-operative joint-mediated pain; however, the mechanism of its attenuation of facet-mediated pain has not been evaluated. Protease-activated receptor-1 (PAR1) has differential roles in pain maintenance depending on the type and location of painful injury. This study investigated if the timing of intra-articular ketorolac injection after painful cervical facet injury affects behavioral hypersensitivity by modulating spinal astrocyte activation and/or PAR1 expression. Rats underwent a painful joint distraction and received an injection of ketorolac either immediately or 1 day later. Separate control groups included injured rats with a vehicle injection at day 1 and sham operated rats. Forepaw mechanical allodynia was measured for 7 days, and spinal cord tissue was immunolabeled for glial fibrillary acidic protein (GFAP) and PAR1 expression in the dorsal horn on day 7. Ketorolac administered on day 1 after injury significantly reduced allodynia (p=0.0006) to sham levels, whereas injection immediately after the injury had no effect compared with vehicle. Spinal astrocytic activation followed behavioral responses and was significantly decreased (p=0.009) only for ketorolac given at day 1. Spinal PAR1 (p=0.0025) and astrocytic PAR1 (p=0.012) were significantly increased after injury. Paralleling behavioral data, astrocytic PAR1 was returned to levels in sham only when ketorolac was administered on day 1. Yet, spinal PAR1 was significantly reduced (p<0.0001) by ketorolac independent of timing. Spinal astrocyte expression of PAR1 appears to be associated with the maintenance of facet-mediated pain.
Dong, Ling; Smith, Jenell R.
2013-01-01
Abstract Chronic neck pain affects up to 70% of persons, with the facet joint being the most common source. Intra-articular injection of the non-steroidal anti-inflammatory drug ketorolac reduces post-operative joint-mediated pain; however, the mechanism of its attenuation of facet-mediated pain has not been evaluated. Protease-activated receptor-1 (PAR1) has differential roles in pain maintenance depending on the type and location of painful injury. This study investigated if the timing of intra-articular ketorolac injection after painful cervical facet injury affects behavioral hypersensitivity by modulating spinal astrocyte activation and/or PAR1 expression. Rats underwent a painful joint distraction and received an injection of ketorolac either immediately or 1 day later. Separate control groups included injured rats with a vehicle injection at day 1 and sham operated rats. Forepaw mechanical allodynia was measured for 7 days, and spinal cord tissue was immunolabeled for glial fibrillary acidic protein (GFAP) and PAR1 expression in the dorsal horn on day 7. Ketorolac administered on day 1 after injury significantly reduced allodynia (p=0.0006) to sham levels, whereas injection immediately after the injury had no effect compared with vehicle. Spinal astrocytic activation followed behavioral responses and was significantly decreased (p=0.009) only for ketorolac given at day 1. Spinal PAR1 (p=0.0025) and astrocytic PAR1 (p=0.012) were significantly increased after injury. Paralleling behavioral data, astrocytic PAR1 was returned to levels in sham only when ketorolac was administered on day 1. Yet, spinal PAR1 was significantly reduced (p<0.0001) by ketorolac independent of timing. Spinal astrocyte expression of PAR1 appears to be associated with the maintenance of facet-mediated pain. PMID:23126437
Lu, Jian-ping; Zhang, Xiao-hui; Yu, Xiao-yun
2006-01-01
The structural change of the oviduct of freshwater shrimp (Macrobrachium nipponense) during spawning was examined by electron microscopy. The oviduct wall structural characteristics seem to be influenced significantly by the spawning process. Before the parturition and ovulation, two types of epithelial cells (types I and II) are found in the epithelium. The free surfaces of type I and type II cells have very dense long microvilli. Under the type I and type II cells, are a relatively thick layer of secreting material and a layer of mostly dead cells. After ovulation, two other types of epithelial cells (types III and IV) are found in the oviduct wall epithelium. The free surface of type III cells only has short microvilli scattered on the surface. The thick layer with secreting material and the dead cell layer disappeared at this stage. In some type III cells, the leaking out of cytoplasm from broken cell membrane led to the death of these type III cells. The transformation of all four types of epithelial cells was in the order: IV→I→II→III. PMID:16365928
Hagiwara, Yoshihiro; Yabe, Yutaka; Yamada, Hiroyuki; Watanabe, Takashi; Kanazawa, Kenji; Koide, Masashi; Sekiguchi, Takuya; Hatano, Hirokazu; Itoi, Eiji
2017-03-28
To examine the effects of a new wearable type of lumbosacral support on low back pain. A total of 121 healthcare workers participated in this study. They were randomly allocated into the experimental and control groups and the former wore the support with signals of compression on the back by poor posture for the first 3 months. The control group remained on a waiting list for the first 3 months. Medical history, musculoskeletal symptoms, feeling in good posture, sleep habits, psychological distress, Roland-Morris Disability Questionnaire, and Somatosensory Amplification Scale (SSAS) were evaluated. The range of motion (ROM) in the shoulder and hip joints as well as spinal alignment were evaluated. Our primary concern was the difference in the change of low back pain measured by visual analog scale (VAS) between the two groups. A total of 54 participants in the experimental and 53 participants in the control groups were analyzed. VAS and SSAS scores as well as lumbar spinal ROM in the experimental group significantly decreased. Low back pain (OR=0.401, 95% CI=0.168-0.954) and neck pain in the experimental group (OR=0.198, 95% CI=0.052-0.748) significantly decreased. The new lumbar support reduced VAS and SSAS scores, lumbar spinal ROM, low back pain, and neck pain. This new type of lumbar support reduced low back pain among healthcare workers.
Prenatal diagnosis of diastematomyelia.
Sonigo-Cohen, Pascale; Schmit, Pierre; Zerah, Michel; Chat, Latifa; Simon, Isabelle; Aubry, Marie Cécile; Gonzales, Marie; Pierre-Kahn, Alain; Brunelle, Francis
2003-08-01
Diastematomyelia, also termed split cord malformation, is a form of occult spinal dysraphism characterized by a cleft in the spinal cord. Prenatal diagnosis of this anomaly is possible by ultrasonography (US), and fetal MRI can be used to diagnose the type of diastematomyelia precisely. Diastematomyelia can be isolated or associated with other dysraphisms, segmental anomalies of the vertebral bodies, or visceral malformations (horseshoe or ectopic kidney, utero-ovarian malformation, and anorectal malformation). We present three cases of fetal diastematomyelia investigated using a multimodal prenatal work-up (US, MRI, 3D-CT). The first case, detected at 20 weeks' gestation, had a lumbar meningocele. At 30 weeks' gestation, direct US visualization revealed the division of the spinal cord into two hemicords. This patient illustrates an isolated type II diastematomyelia with a favorable prognosis. The second case, detected at 22 weeks' gestation, presented with disorganization of bony process of the vertebral column with a midline echogenic bony spur, asymmetrical hemicords, and a foot malposition. Fetal MRI at 26 weeks' gestation and CT/3D reconstructed at 32 weeks' gestation confirmed a type I diastematomyelia with orthopedic malposition. The third case, detected at 22 weeks' gestation, presented with widening of the lumbar canal and scoliosis. Prenatal work-up (US, MRI) disclosed other visceral malformations (pelvic kidney), which led to the assumption of a complex polymalformative syndrome. The pregnancy was terminated. Fetopathologic examination disclosed even more visceral malformations (anal atresia and unicorn uterus).
Electrical stimulation and motor recovery.
Young, Wise
2015-01-01
In recent years, several investigators have successfully regenerated axons in animal spinal cords without locomotor recovery. One explanation is that the animals were not trained to use the regenerated connections. Intensive locomotor training improves walking recovery after spinal cord injury (SCI) in people, and >90% of people with incomplete SCI recover walking with training. Although the optimal timing, duration, intensity, and type of locomotor training are still controversial, many investigators have reported beneficial effects of training on locomotor function. The mechanisms by which training improves recovery are not clear, but an attractive theory is available. In 1949, Donald Hebb proposed a famous rule that has been paraphrased as "neurons that fire together, wire together." This rule provided a theoretical basis for a widely accepted theory that homosynaptic and heterosynaptic activity facilitate synaptic formation and consolidation. In addition, the lumbar spinal cord has a locomotor center, called the central pattern generator (CPG), which can be activated nonspecifically with electrical stimulation or neurotransmitters to produce walking. The CPG is an obvious target to reconnect after SCI. Stimulating motor cortex, spinal cord, or peripheral nerves can modulate lumbar spinal cord excitability. Motor cortex stimulation causes long-term changes in spinal reflexes and synapses, increases sprouting of the corticospinal tract, and restores skilled forelimb function in rats. Long used to treat chronic pain, motor cortex stimuli modify lumbar spinal network excitability and improve lower extremity motor scores in humans. Similarly, epidural spinal cord stimulation has long been used to treat pain and spasticity. Subthreshold epidural stimulation reduces the threshold for locomotor activity. In 2011, Harkema et al. reported lumbosacral epidural stimulation restores motor control in chronic motor complete patients. Peripheral nerve or functional electrical stimulation (FES) has long been used to activate sacral nerves to treat bladder and pelvic dysfunction and to augment motor function. In theory, FES should facilitate synaptic formation and motor recovery after regenerative therapies. Upcoming clinical trials provide unique opportunities to test the theory.
... and tendons and abnormal curvature of the spine ( scoliosis ). Bracing may be needed. Surgery may be needed to correct skeletal deformities, such as scoliosis. Outlook (Prognosis) Children with SMA type I rarely ...
Aircraft evacuations through type-III exits II : effects of individual subject differences.
DOT National Transportation Integrated Search
1995-08-01
Simulated emergency egress from Type III over-wing exits was studied to support regulatory action by the FAA. Passageway width from the aircraft center aisle to the Type-III exit was the major variable of interest; effects of individual subject attri...
Shin, John I; Phan, Kevin; Kothari, Parth; Kim, Jun S; Guzman, Javier Z; Cho, Samuel K
2017-08-01
This is a retrospective analysis of administrative database. To elucidate the effect of glycemic control on surgical outcomes of middle-aged and elderly idiopathic scoliosis patients undergoing spinal fusion surgery. Diabetes mellitus (DM) is a condition thought to adversely affect outcomes of spine surgery. However, no study has stratified glycemic control levels and their impact on outcome for idiopathic scoliosis patients receiving a spinal fusion surgery. Previous studies may have reported higher than true rates of complications for controlled diabetic patients, who are the majority of diabetic patients. The Nationwide Inpatient Sample was queried from years 2002 to 2011. We extracted idiopathic scoliosis patients older than 45 years of age that received spinal fusion and analyzed complications and outcomes variables among 3 cohorts: nondiabetic patients, controlled diabetics, and uncontrolled diabetics. Multivariate analyses were used to assess whether glycemic control was a risk factor for adverse postoperative outcomes. Controlled diabetics had significantly increased rates of acute renal failure (ARF), while uncontrolled diabetics had significantly increased rates of acute postoperative hemorrhage. In multivariate analyses controlling for patient factors and comorbidities, controlled DM was found to be an independent predictor of ARF [odds ratio (OR), 1.863; 95% confidence interval (CI), 1.346-2.579; P=0.0002), and uncontrolled DM was found to be a significant risk factor for acute postoperative hemorrhage (OR, 2.182; 95% CI, 1.192-3.997; P=0.0115), ARF (OR, 4.839; 95% CI, 1.748-13.392; P=0.0024), deep vein thrombosis (OR, 5.825; 95% CI, 1.329-25.522, P=0.0194) and in-patient mortality (OR, 8.889; 95% CI, 1.001-78.945; P=0.0499). Controlled DM was found to be a risk factor for ARF in adult idiopathic scoliosis patients undergoing spinal fusion surgery, while uncontrolled DM was shown to be a risk factor for postoperative hemorrhage, ARF, deep vein thrombosis, and mortality. The present study provides valuable data for better informed consent for patients with diabetes considering surgery for idiopathic scoliosis. Level III.
Manchikanti, Laxmaiah; Boswell, Mark V; Singh, Vijay; Derby, Richard; Fellows, Bert; Falco, Frank J E; Datta, Sukdeb; Smith, Howard S; Hirsch, Joshua A
2009-01-01
Understanding the neurophysiological basis of chronic spinal pain and diagnostic interventional techniques is crucial in the proper diagnosis and management of chronic spinal pain. Central to the understanding of the structural basis of chronic spinal pain is the provision of physical diagnosis and validation of patient symptomatology. It has been shown that history, physical examination, imaging, and nerve conduction studies in non-radicular or discogenic pain are unable to diagnose the precise cause in 85% of the patients. In contrast, controlled diagnostic blocks have been shown to determine the cause of pain in as many as 85% of the patients. To provide evidence-based clinical practice guidelines for diagnostic interventional techniques. Best evidence synthesis. Strength of evidence was assessed by the U.S. Preventive Services Task Force (USPSTF) criteria utilizing 5 levels of evidence ranging from Level I to III with 3 subcategories in Level II. Diagnostic criteria established by systematic reviews were utilized with controlled diagnostic blocks. Diagnostic criteria included at least 80% pain relief with controlled local anesthetic blocks with the ability to perform multiple maneuvers which were painful prior to the diagnostic blocks for facet joint and sacroiliac joint blocks, whereas for provocation discography, the criteria included concordant pain upon stimulation of the target disc with 2 adjacent discs producing no pain at all. The indicated level of evidence for diagnostic lumbar, cervical, and thoracic facet joint nerve blocks is Level I or II-1. The indicated evidence is Level II-2 for lumbar and cervical discography, whereas it is Level II-3 for thoracic provocation discography. The evidence for diagnostic sacroiliac joint nerve blocks is Level II-2. Level of evidence for selective nerve root blocks for diagnostic purposes is Level II-3. Limitations of this guideline preparation include a continued paucity of literature and conflicts in preparation of systematic reviews and guidelines. These guidelines include the evaluation of evidence for diagnostic interventional procedures in managing chronic spinal pain and recommendations. However, these guidelines do not constitute inflexible treatment recommendations. These guidelines also do not represent a "standard of care."
Type III CRISPR-Cas systems can provide redundancy to counteract viral escape from type I systems
Silas, Sukrit; Lucas-Elio, Patricia; Jackson, Simon A; Aroca-Crevillén, Alejandra; Hansen, Loren L; Fineran, Peter C
2017-01-01
CRISPR-Cas-mediated defense utilizes information stored as spacers in CRISPR arrays to defend against genetic invaders. We define the mode of target interference and role in antiviral defense for two CRISPR-Cas systems in Marinomonas mediterranea. One system (type I-F) targets DNA. A second system (type III-B) is broadly capable of acquiring spacers in either orientation from RNA and DNA, and exhibits transcription-dependent DNA interference. Examining resistance to phages isolated from Mediterranean seagrass meadows, we found that the type III-B machinery co-opts type I-F CRISPR-RNAs. Sequencing and infectivity assessments of related bacterial and phage strains suggests an ‘arms race’ in which phage escape from the type I-F system can be overcome through use of type I-F spacers by a horizontally-acquired type III-B system. We propose that the phage-host arms race can drive selection for horizontal uptake and maintenance of promiscuous type III interference modules that supplement existing host type I CRISPR-Cas systems. PMID:28826484
Canetta, Sarah E.; Luca, Edlira; Pertot, Elyse; Role, Lorna W.; Talmage, David A.
2011-01-01
Type III Nrg1, a member of the Nrg1 family of signaling proteins, is expressed in sensory neurons, where it can signal in a bi-directional manner via interactions with the ErbB family of receptor tyrosine kinases (ErbB RTKs) [1]. Type III Nrg1 signaling as a receptor (Type III Nrg1 back signaling) can acutely activate phosphatidylinositol-3-kinase (PtdIns3K) signaling, as well as regulate levels of α7* nicotinic acetylcholine receptors, along sensory axons [2]. Transient receptor potential vanilloid 1 (TRPV1) is a cation-permeable ion channel found in primary sensory neurons that is necessary for the detection of thermal pain and for the development of thermal hypersensitivity to pain under inflammatory conditions [3]. Cell surface expression of TRPV1 can be enhanced by activation of PtdIns3K [4], [5], [6], making it a potential target for regulation by Type III Nrg1. We now show that Type III Nrg1 signaling in sensory neurons affects functional axonal TRPV1 in a PtdIns3K-dependent manner. Furthermore, mice heterozygous for Type III Nrg1 have specific deficits in their ability to respond to noxious thermal stimuli and to develop capsaicin-induced thermal hypersensitivity to pain. Cumulatively, these results implicate Type III Nrg1 as a novel regulator of TRPV1 and a molecular mediator of nociceptive function. PMID:21949864
Federal Register 2010, 2011, 2012, 2013, 2014
2003-03-06
.... [sbull] It can lead to deafness, meningitis (infection of the brain and spinal cord covering), painful... vaccine information materials for the following vaccines: hepatitis B, haemophilus influenzae type b (Hib..., hepatitis B, Haemophilus influenzae type b (Hib), varicella (chickenpox), or pneumococcal conjugate vaccine...
Magnetic resonance imaging of rodent spinal cord with an improved performance coil at 7 Tesla
NASA Astrophysics Data System (ADS)
Solis-Najera, S. E.; Rodriguez, A. O.
2014-11-01
Magnetic Resonance Imaging of animal models provide reliable means to study human diseases. The image acquisition particularly determined by the radio frequency coil to detect the signal emanated from a particular region of interest. A scaled-down version of the slotted surface coil was built based on the previous results of a magnetron-type surface coil for human applications. Our coil prototype had a 2 cm total diameter and six circular slots and was developed for murine spinal cord at 7 T. Electromagnetic simulations of the slotted and circular coils were also performed to compute the spatially dependent magnetic and electric fields using a simulated saline-solution sphere. The quality factor of both coils was experimentally measured giving a lower noise figure and a higher quality factor for the slotted coil outperforming the circular coil. Images of the spinal cord of a rat were acquired using standard pulse sequences. The slotted surface coil can be a good tool for spinal cord rat imaging using conventional pulse sequences at 7 T.
Hermanns, Pia; Unger, Sheila; Rossi, Antonio; Perez-Aytes, Antonio; Cortina, Hector; Bonafé, Luisa; Boccone, Loredana; Setzu, Valeria; Dutoit, Michel; Sangiorgi, Luca; Pecora, Fabio; Reicherter, Kerstin; Nishimura, Gen; Spranger, Jürgen; Zabel, Bernhard; Superti-Furga, Andrea
2008-06-01
Deficiency of carbohydrate sulfotransferase 3 (CHST3; also known as chondroitin-6-sulfotransferase) has been reported in a single kindred so far and in association with a phenotype of severe chondrodysplasia with progressive spinal involvement. We report eight CHST3 mutations in six unrelated individuals who presented at birth with congenital joint dislocations. These patients had been given a diagnosis of either Larsen syndrome (three individuals) or humero-spinal dysostosis (three individuals), and their clinical features included congenital dislocation of the knees, elbow joint dysplasia with subluxation and limited extension, hip dysplasia or dislocation, clubfoot, short stature, and kyphoscoliosis developing in late childhood. Analysis of chondroitin sulfate proteoglycans in dermal fibroblasts showed markedly decreased 6-O-sulfation but enhanced 4-O-sulfation, confirming functional impairment of CHST3 and distinguishing them from diastrophic dysplasia sulphate transporter (DTDST)-deficient cells. These observations provide a molecular basis for recessive Larsen syndrome and indicate that recessive Larsen syndrome, humero-spinal dysostosis, and spondyloepiphyseal dysplasia Omani type form a phenotypic spectrum.
Prior, Alessandro; Severino, Mariasavina; Rossi, Andrea; Pavanello, Marco; Piatelli, Gianluca; Consales, Alessandro
2018-04-17
A lumbar lipomyelocele is a closed spinal dysraphism that can cause tethered cord syndrome. Between 5% and 15% of spinal dysraphism surgery cases are burdened with complications, the most common being wound infections or dehiscence and cerebrospinal fluid leak. Acute communicating hydrocephalus has never been described as a complication of this type of surgery. A 6-year-old girl who had undergone several surgeries in another institution for lumbar lipomyeloschisis came to our attention for a second opinion about the management of her spinal dysraphism. During the visit, she experienced sudden loss of consciousness. An emergent computed tomography scan revealed an acute communicating hydrocephalus. External ventricular drainage was performed with quick recovery of consciousness. Further craniospinal magnetic resonance imaging revealed small droplets of fat in the intracranial subarachnoid spaces and ventricular system, suggestive of rupture of the lipoma with consequent aseptic meningitis. This is the first description of acute communicating hydrocephalus as a complication of lipomyelocele surgery. We discuss the possible pathophysiologic mechanisms leading to cerebrospinal fluid dynamics alteration. Copyright © 2018 Elsevier Inc. All rights reserved.
Gene Delivery Strategies to Promote Spinal Cord Repair
Walthers, Christopher M; Seidlits, Stephanie K
2015-01-01
Gene therapies hold great promise for the treatment of many neurodegenerative disorders and traumatic injuries in the central nervous system. However, development of effective methods to deliver such therapies in a controlled manner to the spinal cord is a necessity for their translation to the clinic. Although essential progress has been made to improve efficiency of transgene delivery and reduce the immunogenicity of genetic vectors, there is still much work to be done to achieve clinical strategies capable of reversing neurodegeneration and mediating tissue regeneration. In particular, strategies to achieve localized, robust expression of therapeutic transgenes by target cell types, at controlled levels over defined time periods, will be necessary to fully regenerate functional spinal cord tissues. This review summarizes the progress over the last decade toward the development of effective gene therapies in the spinal cord, including identification of appropriate target genes, improvements to design of genetic vectors, advances in delivery methods, and strategies for delivery of multiple transgenes with synergistic actions. The potential of biomaterials to mediate gene delivery while simultaneously providing inductive scaffolding to facilitate tissue regeneration is also discussed. PMID:25922572
Mandolesi, Sandro; Marceca, Giuseppe; Moser, Jon; Niglio, Tarcisio; d'Alessandro, Aldo; Ciccone, Matteo Marco; Zito, Annapaola; Mandolesi, Dimitri; d'Alessandro, Alessandro; Fedele, Francesco
2015-01-01
The aim of the study is to evaluate the clinical and X-ray results of the Upper Cervical Chiropractic care through the specific adjustments (corrections) of C1-C2 on patients with chronic venous cerebral-spinal insufficiency (CCSVI) and multiple sclerosis (MS). We studied a sample of 77 patients before and after the Upper Cervical Chiropractic care, and we analyzed: A) The change of the X-ray parameters; B) The clinical results using a new set of questions. The protocol of the C1- C2 upper Cervical Chiropractic treatment, specific for these patients, lasts four months. From a haemodynamic point of view we divided the patients in 3 types: Type 1 - purely vascular with intravenous alterations; Type 2 - "mechanical" with of external venous compressions; Type 3 - mixed. We found an improvement in all kinds of subluxations after the treatment with respect to the pre-treatment X-ray evaluation, with a significant statistical difference. The differences between the clinical symptoms before and after the specific treatment of C1-C2 are statistically significant with p<0.001 according to the CHI-Square test revised by Yates. The preliminary X-ray and clinical improvements of the Upper Cervical Chiropractic corrections on C1- C2 on these patients with CCSVI and MS encourage us to continue with our studies. We believe that the Upper Cervical correction on C1-C2 could be the main non-invasive treatment of the CCSVI mechanical type in patients with MS. Further studies are required to evaluate the correlation between the Upper Cervical Chiropractic correction on C1-C2 on the cerebral venous drainage and the cerebro-spinal fluid.
[Upregulation of P2X3 receptors in dorsal root ganglion of TRPV1 knockout female mice].
Fang, Xiao; Shi, Xiao-Han; Huang, Li-Bin; Rong, Wei-Fang; Ma, Bei
2014-08-25
The study was aimed to investigate the changes in mechanical pain threshold in the condition of chronic inflammatory pain after transient receptor potential vanilloid 1 (TRPV1) gene was knockout. Hind-paw intraplantar injection of complete freund's adjuvant (CFA, 20 μL) produced peripheral inflammation in wild-type and TRPV1 knockout female mice. The mechanical pain thresholds were measured during the 8 days after injection and pre-injection by using Von-Frey hair. Nine days after injection, mice were killed and the differences of expression of c-Fos and P2X3 receptor in the dorsal root ganglia (DRG) and spinal cord dorsal horn were examined by Western blotting between the two groups. Compared with that in wild-type mice, the mechanical pain threshold was increased significantly in TRPV1 knockout mice (P < 0.05); 3 days after CFA injection, the baseline mechanical pain threshold in the TRPV1 knockout mice group was significantly higher than that in the wild-type mice group (P < 0.05); The result of Western blotting showed that the expression of c-Fos protein both in DRG and spinal cord dorsal horn of TRPV1 knockout mice group was decreased significantly compared with that in wild-type mice group (P < 0.01, P < 0.05), while the expression of P2X3 receptor in DRG of TRPV1 knockout mice group was increased significantly compared with that in wild-type mice group (P < 0.05). Our findings indicate that TRPV1 may influence the peripheral mechanical pain threshold by mediating the expression of c-Fos protein both in DRG and spinal cord dorsal horn and changing the expression of P2X3 receptor in DRG.
A biomechanical study of artificial cervical discs using computer simulation.
Ahn, Hyung Soo; DiAngelo, Denis J
2008-04-15
A virtual simulation model of the subaxial cervical spine was used to study the biomechanical effects of various disc prosthesis designs. To study the biomechanics of different design features of cervical disc arthroplasty devices. Disc arthroplasty is an alternative approach to cervical fusion surgery for restoring and maintaining motion at a diseased spinal segment. Different types of cervical disc arthroplasty devices exist and vary based on their placement and degrees of motion offered. A virtual dynamic model of the subaxial cervical spine was used to study 3 different prosthetic disc designs (PDD): (1) PDD-I: The center of rotation of a spherical joint located at the mid C5-C6 disc, (2) PDD-II: The center of rotation of a spherical joint located 6.5 mm below the mid C5-C6 disc, and (3) PDD-III: The center of rotation of a spherical joint in a plane located at the C5-C6 disc level. A constrained spherical joint placed at the disc level (PDD-I) significantly increased facet loads during extension. Lowering the rotational axis of the spherical joint towards the subjacent body (PDD-II) caused a marginal increase in facet loading during flexion, extension, and lateral bending. Lastly, unconstraining the spherical joint to move freely in a plane (PDD-III) minimized facet load build up during all loading modes. The simulation model showed the impact simple design changes may have on cervical disc dynamics. The predicted facet loads calculated from computer model have to be validated in the experimental study.
A classification of growth friendly spine implants.
Skaggs, David L; Akbarnia, Behrooz A; Flynn, John M; Myung, Karen S; Sponseller, Paul D; Vitale, Michael G
2014-01-01
Various types of spinal implants have been used with the objective of minimizing spinal deformities while maximizing the spine and thoracic growth in a growing child with a spinal deformity. The aim of this study was to describe a classification system of growth friendly spinal implants to allow researchers and clinicians to have a common language and facilitate comparative studies. Growth friendly spinal implant systems fall into 3 categories based upon the forces of correction the implants exert on the spine, which are as follows: Distraction-based systems correct spinal deformities by mechanically applying a distractive force across a deformed segment with anchors at the top and bottom of the implants, which commonly attach to the spine, rib, and/or the pelvis. The present examples of distraction-based implants are spine-based or rib-based growing rods, vertical expandable titanium rib prosthesis, and remotely expandable devices. Compression-based systems correct spinal deformities with a compressive force applied to the convexity of the curve causing convex growth inhibition. This compressive force may be generated both mechanically at the time of implantation, as well as over time resulting from longitudinal growth of vertebral endplates hindered by the spinal implants. Examples of compression-based systems are vertebral staples and tethers. Guided growth systems correct spinal deformity by anchoring multiple vertebrae (usually including the apical vertebrae) to rods with mechanical forces including translation at the time of the initial implant. The majority of the anchors are not rigidly attached to the rods, thus permitting longitudinal growth over time as the anchors slide over the rods. Examples of guided growth systems include the Luque trolley and Shilla. Each system has its benefits and shortcomings. Knowledge of the fundamental principles upon which these systems are based may aid the clinician to choose an appropriate treatment for patients. Having a common language for these systems may aid in comparative research. Vertical expandable titanium rib prosthesis is used with humanitarian exemption. The other devices mentioned in this manuscript are not approved for growing constructs by the Food and Drug Administration and are used off-label.
Yang, Wencheng; Dong, Youhai; Hong, Yang; Guang, Qian; Chen, Xujun
2016-05-01
The study used a rabbit model to achieve anterior vertebral interbody fusion using osteogenic mesenchymal stem cells (OMSCs) transplanted in collagen sponge. We investigated the effectiveness of graft material for anterior vertebral interbody fusion using a rabbit model by examining the OMSCs transplanted in collagen sponge. Anterior vertebral interbody fusion is commonly performed. Although autogenous bone graft remains the gold-standard fusion material, it requires a separate surgical procedure and is associated with significant short-term and long-term morbidity. Recently, mesenchymal stem cells from bone marrow have been studied in various fields, including posterolateral spinal fusion. Thus, we hypothesized that cultured OMSCs transplanted in porous collagen sponge could be used successfully even in anterior vertebral interbody fusion. Forty mature male White Zealand rabbits (weight, 3.5-4.5 kg) were randomly allocated to receive one of the following graft materials: porous collagen sponge plus cultured OMSCs (group I); porous collagen sponge alone (group II); autogenous bone graft (group III); and nothing (group IV). All animals underwent anterior vertebral interbody fusion at the L4/L5 level. The lumbar spine was harvested en bloc, and the new bone formation and spinal fusion was evaluated using radiographic analysis, microcomputed tomography, manual palpation test, and histologic examination at 8 and 12 weeks after surgery. New bone formation and bony fusion was evident as early as 8 weeks in groups I and III. And there was no statistically significant difference between 8 and 12 weeks. At both time points, by microcomputed tomography and histologic analysis, new bone formation was observed in both groups I and III, fibrous tissue was observed and there was no new bone in both groups II and IV; by manual palpation test, bony fusion was observed in 40% (4/10) of rabbits in group I, 70% (7/10) of rabbits in group III, and 0% (0/10) of rabbits in both groups II and IV. These findings suggest that mesenchymal stem cells that have been cultured with osteogenic differentiation medium and loaded with collagen sponge could induce bone formation and anterior vertebral interbody fusion. And the rabbit model we developed will be useful in evaluating the effects of graft materials for anterior vertebral interbody fusion. Further study is needed to determine the most appropriate carrier for OMSCs and the feasibility in the clinical setting.
Aircraft evacuations through type-III exits I : effects of seat placement at the exit.
DOT National Transportation Integrated Search
1995-07-01
Simulated emergency egress from Type III over-wing exits was studied to support regulatory action by the FAA. Passageway width and seat encroachment distance adjacent to the Type-III exit were the major variables of interest. : Methods. Two subject g...
Pain Relief in CRPS-II after Spinal Cord and Motor Cortex Simultaneous Dual Stimulation.
Lopez, William Oc; Barbosa, Danilo C; Teixera, Manoel J; Paiz, Martin; Moura, Leonardo; Monaco, Bernardo A; Fonoff, Erich T
2016-05-01
We describe a case of a 30-year-old woman who suffered a traumatic injury of the right brachial plexus, developing severe complex regional pain syndrome type II (CRPS-II). After clinical treatment failure, spinal cord stimulation (SCS) was indicated with initial positive pain control. However, after 2 years her pain progressively returned to almost baseline intensity before SCS. Additional motor cortex electrode implant was then proposed as a rescue therapy and connected to the same pulse generator. This method allowed simultaneous stimulation of the motor cortex and SCS in cycling mode with independent stimulation parameters in each site. At 2 years follow-up, the patient reported sustained improvement in pain with dual stimulation, reduction of painful crises, and improvement in quality of life. The encouraging results in this case suggests that this can be an option as add-on therapy over SCS as a possible rescue therapy in the management of CRPS-II. However, comparative studies must be performed in order to determine the effectiveness of this therapy. Chronic neuropathic pain, Complex regional pain syndrome Type II, brachial plexus injury, motor cortex stimulation, spinal cord stimulation.
Midbrain and spinal cord magnetic resonance imaging (MRI) changes in poliomyelitis.
Choudhary, Anita; Sharma, Suvasini; Sankhyan, Naveen; Gulati, Sheffali; Kalra, Veena; Banerjee, Bidisha; Kumar, Atin
2010-04-01
Poliomyelitis, though eradicated from most parts of the world, continues to occur in India. There is paucity of data on the magnetic resonance imaging (MRI) changes in poliomyelitis. We report a 3(1/2)-year-old boy who presented with subacute onset flaccid paralysis and altered sensorium. Stool culture was positive for wild polio virus type 3. Magnetic resonance imaging revealed signal changes in bilateral substantia nigra and anterior horns of the spinal cord. These MRI changes may be of potential diagnostic significance in a child with poliomyelitis.
Saxena, Kapil; Simon, Lukas M; Zeng, Xi-Lei; Blutt, Sarah E; Crawford, Sue E; Sastri, Narayan P; Karandikar, Umesh C; Ajami, Nadim J; Zachos, Nicholas C; Kovbasnjuk, Olga; Donowitz, Mark; Conner, Margaret E; Shaw, Chad A; Estes, Mary K
2017-01-24
The intestinal epithelium can limit enteric pathogens by producing antiviral cytokines, such as IFNs. Type I IFN (IFN-α/β) and type III IFN (IFN-λ) function at the epithelial level, and their respective efficacies depend on the specific pathogen and site of infection. However, the roles of type I and type III IFN in restricting human enteric viruses are poorly characterized as a result of the difficulties in cultivating these viruses in vitro and directly obtaining control and infected small intestinal human tissue. We infected nontransformed human intestinal enteroid cultures from multiple individuals with human rotavirus (HRV) and assessed the host epithelial response by using RNA-sequencing and functional assays. The dominant transcriptional pathway induced by HRV infection is a type III IFN-regulated response. Early after HRV infection, low levels of type III IFN protein activate IFN-stimulated genes. However, this endogenous response does not restrict HRV replication because replication-competent HRV antagonizes the type III IFN response at pre- and posttranscriptional levels. In contrast, exogenous IFN treatment restricts HRV replication, with type I IFN being more potent than type III IFN, suggesting that extraepithelial sources of type I IFN may be the critical IFN for limiting enteric virus replication in the human intestine.
Saxena, Kapil; Simon, Lukas M.; Zeng, Xi-Lei; Blutt, Sarah E.; Crawford, Sue E.; Sastri, Narayan P.; Karandikar, Umesh C.; Ajami, Nadim J.; Zachos, Nicholas C.; Kovbasnjuk, Olga; Donowitz, Mark; Conner, Margaret E.; Shaw, Chad A.; Estes, Mary K.
2017-01-01
The intestinal epithelium can limit enteric pathogens by producing antiviral cytokines, such as IFNs. Type I IFN (IFN-α/β) and type III IFN (IFN-λ) function at the epithelial level, and their respective efficacies depend on the specific pathogen and site of infection. However, the roles of type I and type III IFN in restricting human enteric viruses are poorly characterized as a result of the difficulties in cultivating these viruses in vitro and directly obtaining control and infected small intestinal human tissue. We infected nontransformed human intestinal enteroid cultures from multiple individuals with human rotavirus (HRV) and assessed the host epithelial response by using RNA-sequencing and functional assays. The dominant transcriptional pathway induced by HRV infection is a type III IFN-regulated response. Early after HRV infection, low levels of type III IFN protein activate IFN-stimulated genes. However, this endogenous response does not restrict HRV replication because replication-competent HRV antagonizes the type III IFN response at pre- and posttranscriptional levels. In contrast, exogenous IFN treatment restricts HRV replication, with type I IFN being more potent than type III IFN, suggesting that extraepithelial sources of type I IFN may be the critical IFN for limiting enteric virus replication in the human intestine. PMID:28069942
Koca, E; Sokmensuer, C; Yildiz, B O; Engin, H; Bozkurt, M F; Aras, T; Barista, I; Gurlek, A
2004-06-01
A 61-yr-old woman presented with complaints of weakness and pain in her legs. A magnetic resonance imaging showed a 3 x 5.6 x 7.8 cm mass lesion destructing the T1 and T2 vertebral bodies and compressing the spinal cord. The mass was excised surgically. It was follicular carcinoma metastasis of the cervicodorsal region. Then, she underwent a total thyroidectomy. Pathological examination showed two different types of carcinomas in two different focuses; follicular carcinoma in the left lobe and follicular variant papillary carcinoma in the isthmic lobe. After the operation she was given 100 mCi 131I. This is the first report of a patient who had both metastatic follicular carcinoma and follicular variant papillary carcinoma together.
Dab, Houcine; Hachani, Rafik; Hodroj, Wassim; Sakly, Mohsen; Bricca, Giampiero; Kacem, Kamel
2009-12-03
In the present study, we tested the hypothesis of the indirect (via the sympathetic nervous system (SNS)) and direct (via AT1 receptors) contributions of Angiotensin II (Ang II) on the synthesis of collagen types I and III in the left ventricle (LV) in vivo. Sympathectomy and blockade of the Ang II receptor AT1 were performed alone or in combination in normotensive rats. The mRNA and protein synthesis of collagen types I and III were examined by Q-RT-PCR and immunoblotting in the LV. Collagen types I and III mRNA were decreased respectively by 53% and 22% after sympathectomy and only collagen type I mRNA was increased by 52% after AT1 receptor blockade. mRNA was not changed for collagen type I but was decreased by 25% for collagen type III after double treatment. Only collagen protein type III was decreased after sympathectomy by 12%, but collagen proteins were increased respectively for types I and III by 145% and 52% after AT1 receptor blockade and by 45% and 60% after double treatment. Deducted interpretations from our experimental approach suggest that Ang II stimulates indirectly (via SNS) and inhibits directly (via AT1 receptors) the collagen type I at transcriptional and protein levels. For collagen type III, it stimulates indirectly the transcription and inhibited directly the protein level. Therefore, the Ang II regulates collagen synthesis differently through indirect and direct pathways.