Sample records for type ion source

  1. Laser ion source for heavy ion inertial fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamura, Masahiro

    The proposed heavy ion inertial fusion (HIF) scenarios require ampere class low charge state ion beams of heavy species. A laser ion source (LIS) is recognized as one of the promising candidates of ion beam providers, since it can deliver high brightness heavy ion beams to accelerators. A design of LIS for the HIF depends on the accelerator structure and accelerator complex following the source. In this article, we discuss the specifications and design of an appropriate LIS assuming two major types of the accelerators: radio frequency (RF) high quality factor cavity type and non-resonant induction core type. We believemore » that a properly designed LIS satisfies the requirements of both types, however some issues need to be verified experimentally.« less

  2. Laser ion source for heavy ion inertial fusion

    DOE PAGES

    Okamura, Masahiro

    2018-01-10

    The proposed heavy ion inertial fusion (HIF) scenarios require ampere class low charge state ion beams of heavy species. A laser ion source (LIS) is recognized as one of the promising candidates of ion beam providers, since it can deliver high brightness heavy ion beams to accelerators. A design of LIS for the HIF depends on the accelerator structure and accelerator complex following the source. In this article, we discuss the specifications and design of an appropriate LIS assuming two major types of the accelerators: radio frequency (RF) high quality factor cavity type and non-resonant induction core type. We believemore » that a properly designed LIS satisfies the requirements of both types, however some issues need to be verified experimentally.« less

  3. First operation and effect of a new tandem-type ion source based on electron cyclotron resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Yushi, E-mail: kato@eei.eng.osaka-u.ac.jp; Kimura, Daiju; Yano, Keisuke

    A new tandem type source has been constructed on the basis of electron cyclotron resonance plasma for producing synthesized ion beams in Osaka University. Magnetic field in the first stage consists of all permanent magnets, i.e., cylindrically comb shaped one, and that of the second stage consists of a pair of mirror coil, a supplemental coil and the octupole magnets. Both stage plasmas can be individually operated, and produced ions in which is energy controlled by large bore extractor also can be transported from the first to the second stage. We investigate the basic operation and effects of the tandemmore » type electron cyclotron resonance ion source (ECRIS). Analysis of ion beams and investigation of plasma parameters are conducted on produced plasmas in dual plasmas operation as well as each single operation. We describe construction and initial experimental results of the new tandem type ion source based on ECRIS with wide operation window for aiming at producing synthesized ion beams as this new source can be a universal source in future.« less

  4. Negative ion source with hollow cathode discharge plasma

    DOEpatents

    Hershcovitch, Ady; Prelec, Krsto

    1983-01-01

    A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.

  5. Negative ion source with hollow cathode discharge plasma

    DOEpatents

    Hershcovitch, A.; Prelec, K.

    1980-12-12

    A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface is described. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuomo, J.J.; Rossnagel, S.M.; Kaufman, H.R.

    The work presented in this book deals with ion beam processing for basic sputter etching of samples, for sputter deposition of thin films, for the synthesis of material in thin form, and for the modification of the properties of thin films. The ion energy range covered is from a few tens of eV to about 10,000 eV, with primary interest in the range of about 20 to 1-2 keV, where implantation of the incident ion is a minor effect. Of the types of ion sources and devices available, this book examines principally broad beam ion sources, characterized by high fluxesmore » and large work areas. These sources include the ECR ion source, the Kaufman-type single- and multiple-grid sources, gridless sources such as the Hall effect or closed-drift source, and hydrid sources such as the ionized cluster beam system.« less

  7. Design and simulation of ion optics for ion sources for production of singly charged ions

    NASA Astrophysics Data System (ADS)

    Zelenak, A.; Bogomolov, S. L.

    2004-05-01

    During the last 2 years different types of the singly charged ion sources were developed for FLNR (JINR) new projects such as Dubna radioactive ion beams, (Phase I and Phase II), the production of the tritium ion beam and the MASHA mass separator. The ion optics simulations for 2.45 GHz electron cyclotron resonance source, rf source, and the plasma ion source were performed. In this article the design and simulation results of the optics of new ion sources are presented. The results of simulation are compared with measurements obtained during the experiments.

  8. Emittance studies of the 2.45 GHz permanent magnet ECR ion source

    NASA Astrophysics Data System (ADS)

    Zelenak, A.; Bogomolov, S. L.; Yazvitsky, N. Yu.

    2004-05-01

    During the past several years different types of permanent magnet 2.45 GHz (electron cyclotron resonance) ion sources were developed for production of singly charged ions. Ion sources of this type are used in the first stage of DRIBs project, and are planned to be used in the MASHA mass separator. The emittance of the beam provided by the source is one of the important parameters for these applications. An emittance scanner composed from a set of parallel slits and rotary wire beam profile monitor was used for the studying of the beam emittance characteristics. The emittance of helium and argon ion beams was measured with different shapes of the plasma electrode for several ion source parameters: microwave power, source potential, plasma aperture-puller aperture gap distance, gas pressure. The results of measurements are compared with previous simulations of ion optics.

  9. Implementation of Design Changes Towards a More Reliable, Hands-off Magnetron Ion Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sosa, A.; Bollinger, D. S.; Karns, P. R.

    As the main H- ion source for the accelerator complex, magnetron ion sources have been used at Fermilab since the 1970’s. At the offline test stand, new R&D is carried out to develop and upgrade the present magnetron-type sources of H- ions of up to 80 mA and 35 keV beam energy in the context of the Proton Improvement Plan. The aim of this plan is to provide high-power proton beams for the experiments at FNAL. In order to reduce the amount of tuning and monitoring of these ion sources, a new electronic system consisting of a current-regulated arc dischargemore » modulator allow the ion source to run at a constant arc current for improved beam output and operation. A solenoid-type gas valve feeds H2 gas into the source precisely and independently of ambient temperature. This summary will cover several studies and design changes that have been tested and will eventually be implemented on the operational magnetron sources at Fermilab. Innovative results for this type of ion source include cathode geometries, solenoid gas valves, current controlled arc pulser, cesium boiler redesign, gas mixtures of hydrogen and nitrogen, and duty factor reduction, with the aim to improve source lifetime, stability, and reducing the amount of tuning needed. In this summary, I will highlight the advances made in ion sources at Fermilab and will outline the directions of the continuing R&D effort.« less

  10. Design of a Prototype Positive Ion Source with Slit Aperture Type Extraction System

    NASA Astrophysics Data System (ADS)

    Sharma, Sanjeev K.; Vattilli, Prahlad; Choksi, Bhargav; Punyapu, Bharathi; Sidibomma, Rambabu; Bonagiri, Sridhar; Aggrawal, Deepak; Baruah, Ujjwal K.

    2017-04-01

    The neutral beam injector group at IPR aims at developing an experimental positive ion source capable of delivering H+ ion beam having energy of 30 - 40 keV and carrying an ion beam current of 5 A. The slit aperture based extraction system is chosen for extracting and accelerating the ions so as to achieve low divergence of the ion beam (< 0.5°). For producing H+ ions a magnetic multi-pole bucket type plasma chamber is selected. We calculated the magnetic field due to cusp magnets and trajectories (orbits) of the primary electrons to investigate the two magnetic configurations i.e. line cusp and checker board. Numerical simulation is also carried out by using OPERA-3D to study the characteristic performance of the slit aperture type extraction-acceleration system. We report here the results of the studies carried out on various aspects of the design of the slit aperture type positive ion source.

  11. Producing multicharged fullerene ion beam extracted from the second stage of tandem-type ECRIS.

    PubMed

    Nagaya, Tomoki; Nishiokada, Takuya; Hagino, Shogo; Uchida, Takashi; Muramatsu, Masayuki; Otsuka, Takuro; Sato, Fuminobu; Kitagawa, Atsushi; Kato, Yushi; Yoshida, Yoshikazu

    2016-02-01

    We have been constructing the tandem-type electron cyclotron resonance ion source (ECRIS). Two ion sources of the tandem-type ECRIS are possible to generate plasma individually, and they also confined individual ion species by each different plasma parameter. Hence, it is considered to be suitable for new materials production. As the first step, we try to produce and extract multicharged C60 ions by supplying pure C60 vapor in the second stage plasma because our main target is producing the endohedral fullerenes. We developed a new evaporator to supply fullerene vapor, and we succeeded in observation about multicharged C60 ion beam in tandem-type ECRIS for the first time.

  12. A Multicusp Ion Source for Radioactive Ion Beams

    NASA Astrophysics Data System (ADS)

    Wutte, D.; Freedman, S.; Gough, R.; Lee, Y.; Leitner, M.; Leung, K. N.; Lyneis, C.; Picard, D. S.; Sun, L.; Williams, M. D.; Xie, Z. Q.

    1997-05-01

    In order to produce a radioactive ion beam of (14)O+, a 10-cm-diameter, 13.56 MHz radio frequency (rf) driven multicusp ion source is now being developed at Lawrence Berkeley National Laboratory. In this paper we describe the specific ion source design and the basic ion source characteristics using Ar, Xe and a 90types of measurements have been performed: extractable ion current, ion species distributions, gas efficiency, axial energy spread and ion beam emittance measurements. The source can generate ion current densities of approximately 60 mA/cm2 . In addition the design of the ion beam extraction/transport system for the actual experimental setup for the radioactive beam line will be presented.

  13. Ion source and injection line for high intensity medical cyclotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, XianLu, E-mail: jiaxl@ciae.ac.cn; Guan, Fengping; Yao, Hongjuan

    2014-02-15

    A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H− ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H− ion source (CIAE-CH-I type) and a short injection line, which the H− ion source of 3 mA/25 keV H− beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from themore » extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.« less

  14. Producing multicharged fullerene ion beam extracted from the second stage of tandem-type ECRIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagaya, Tomoki, E-mail: nagaya@nf.eie.eng.osaka-u.ac.jp; Nishiokada, Takuya; Hagino, Shogo

    2016-02-15

    We have been constructing the tandem-type electron cyclotron resonance ion source (ECRIS). Two ion sources of the tandem-type ECRIS are possible to generate plasma individually, and they also confined individual ion species by each different plasma parameter. Hence, it is considered to be suitable for new materials production. As the first step, we try to produce and extract multicharged C{sub 60} ions by supplying pure C{sub 60} vapor in the second stage plasma because our main target is producing the endohedral fullerenes. We developed a new evaporator to supply fullerene vapor, and we succeeded in observation about multicharged C{sub 60}more » ion beam in tandem-type ECRIS for the first time.« less

  15. Bright focused ion beam sources based on laser-cooled atoms

    PubMed Central

    McClelland, J. J.; Steele, A. V.; Knuffman, B.; Twedt, K. A.; Schwarzkopf, A.; Wilson, T. M.

    2016-01-01

    Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 μK or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of the industry standard Ga+ liquid metal ion source. In this review we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Nevertheless, a number of promising new approaches have been proposed and/or demonstrated, suggesting that a rapid evolution of this type of source is likely in the near future. PMID:27239245

  16. Bright focused ion beam sources based on laser-cooled atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClelland, J. J.; Wilson, T. M.; Steele, A. V.

    2016-03-15

    Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 μK or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of themore » industry standard Ga{sup +} liquid metal ion source. In this review, we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Nevertheless, a number of promising new approaches have been proposed and/or demonstrated, suggesting that a rapid evolution of this type of source is likely in the near future.« less

  17. Polyatomic ions from a high current ion implanter driven by a liquid metal ion source.

    PubMed

    Pilz, W; Laufer, P; Tajmar, M; Böttger, R; Bischoff, L

    2017-12-01

    High current liquid metal ion sources are well known and found their first application as field emission electric propulsion thrusters in space technology. The aim of this work is the adaption of such kind of sources in broad ion beam technology. Surface patterning based on self-organized nano-structures on, e.g., semiconductor materials formed by heavy mono- or polyatomic ion irradiation from liquid metal (alloy) ion sources (LMAISs) is a very promising technique. LMAISs are nearly the only type of sources delivering polyatomic ions from about half of the periodic table elements. To overcome the lack of only very small treated areas by applying a focused ion beam equipped with such sources, the technology taken from space propulsion systems was transferred into a large single-end ion implanter. The main component is an ion beam injector based on high current LMAISs combined with suited ion optics allocating ion currents in the μA range in a nearly parallel beam of a few mm in diameter. Different types of LMAIS (needle, porous emitter, and capillary) are presented and characterized. The ion beam injector design is specified as well as the implementation of this module into a 200 kV high current ion implanter operating at the HZDR Ion Beam Center. Finally, the obtained results of large area surface modification of Ge using polyatomic Bi 2 + ions at room temperature from a GaBi capillary LMAIS will be presented and discussed.

  18. Polyatomic ions from a high current ion implanter driven by a liquid metal ion source

    NASA Astrophysics Data System (ADS)

    Pilz, W.; Laufer, P.; Tajmar, M.; Böttger, R.; Bischoff, L.

    2017-12-01

    High current liquid metal ion sources are well known and found their first application as field emission electric propulsion thrusters in space technology. The aim of this work is the adaption of such kind of sources in broad ion beam technology. Surface patterning based on self-organized nano-structures on, e.g., semiconductor materials formed by heavy mono- or polyatomic ion irradiation from liquid metal (alloy) ion sources (LMAISs) is a very promising technique. LMAISs are nearly the only type of sources delivering polyatomic ions from about half of the periodic table elements. To overcome the lack of only very small treated areas by applying a focused ion beam equipped with such sources, the technology taken from space propulsion systems was transferred into a large single-end ion implanter. The main component is an ion beam injector based on high current LMAISs combined with suited ion optics allocating ion currents in the μA range in a nearly parallel beam of a few mm in diameter. Different types of LMAIS (needle, porous emitter, and capillary) are presented and characterized. The ion beam injector design is specified as well as the implementation of this module into a 200 kV high current ion implanter operating at the HZDR Ion Beam Center. Finally, the obtained results of large area surface modification of Ge using polyatomic Bi2+ ions at room temperature from a GaBi capillary LMAIS will be presented and discussed.

  19. Compact RF ion source for industrial electrostatic ion accelerator

    NASA Astrophysics Data System (ADS)

    Kwon, Hyeok-Jung; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub

    2016-02-01

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  20. Compact RF ion source for industrial electrostatic ion accelerator.

    PubMed

    Kwon, Hyeok-Jung; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub

    2016-02-01

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  1. RCNP Project on Polarized {sup 3}He Ion Sources - From Optical Pumping to Cryogenic Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, M.; Inomata, T.; Takahashi, Y.

    2009-08-04

    A polarized {sup 3}He ion source has been developed at RCNP for intermediate and high energy spin physics. Though we started with an OPPIS (Optical Pumping Polarized Ion Source), it could not provide highly polarized {sup 3}He beam because of fundamental difficulties. Subsequently to this unhappy result, we examined novel types of the polarized {sup 3}He ion source, i.e., EPPIS (Electron Pumping Polarized Ion Source), and ECRPIS (ECR Polarized Ion Source) experimentally or theoretically, respectively. However, attainable {sup 3}He polarization degrees and beam intensities were still insufficient for practical use. A few years later, we proposed a new idea formore » the polarized {sup 3}He ion source, SEPIS (Spin Exchange Polarized Ion Source) which is based on enhanced spin-exchange cross sections at low incident energies for {sup 3}He{sup +}+Rb, and its feasibility was experimentally examined.Recently, we started a project on polarized {sup 3}He gas generated by the brute force method with low temperature (approx4 mK) and strong magnetic field (approx17 T), and rapid melting of highly polarized solid {sup 3}He followed by gasification. When this project will be successful, highly polarized {sup 3}He gas will hopefully be used for a new type of the polarized {sup 3}He ion source.« less

  2. Performance characterization of a solenoid-type gas valve for the H- magnetron source at FNAL

    NASA Astrophysics Data System (ADS)

    Sosa, A.; Bollinger, D. S.; Karns, P. R.

    2017-08-01

    The magnetron-style H- ion sources currently in operation at Fermilab use piezoelectric gas valves to function. This kind of gas valve is sensitive to small changes in ambient temperature, which affect the stability and performance of the ion source. This motivates the need to find an alternative way of feeding H2 gas into the source. A solenoid-type gas valve has been characterized in a dedicated off-line test stand to assess the feasibility of its use in the operational ion sources. H- ion beams have been extracted at 35 keV using this valve. In this study, the performance of the solenoid gas valve has been characterized measuring the beam current output of the magnetron source with respect to the voltage and pulse width of the signal applied to the gas valve.

  3. The modification at CSNS ion source

    NASA Astrophysics Data System (ADS)

    Liu, S.; Ouyang, H.; Huang, T.; Xiao, Y.; Cao, X.; Lv, Y.; Xue, K.; Chen, W.

    2017-08-01

    The commissioning of CSNS front end has been finished. Above 15 mA beam intensity is obtained at the end of RFQ. For CSNS ion source, it is a type of penning surface plasma ion source, similar to ISIS ion source. To improve the operation stability and reduce spark rate, some modifications have been performed, including Penning field, extraction optics and post acceleration. PBGUNS is applied to optimize beam extraction. The co-extraction electrons are considered at PBGUNS simulation and various extracted structure are simulated aiming to make the beam through the extracted electrode without loss. The stability of ion source is improved further.

  4. Electron temperature profiles in axial field 2.45 GHz ECR ion source with a ceramic chamber

    NASA Astrophysics Data System (ADS)

    Abe, K.; Tamura, R.; Kasuya, T.; Wada, M.

    2017-08-01

    An array of electrostatic probes was arranged on the plasma electrode of a 2.45 GHz microwave driven axial magnetic filter field type negative hydrogen (H-) ion source to clarify the spatial plasma distribution near the electrode. The measured spatial distribution of electron temperature indicated the lower temperature near the extraction hole of the plasma electrode corresponding to the effectiveness of the axial magnetic filter field geometry. When the ratio of electron saturation current to the ion saturation current was plotted as a function of position, the obtained distribution showed a higher ratio near the hydrogen gas inlet through which ground state hydrogen molecules are injected into the source. Though the efficiency in producing H- ions is smaller for a 2.45 GHz source than a source operated at 14 GHz, it gives more volume to measure spatial distributions of various plasma parameters to understand fundamental processes that are influential on H- production in this type of ion sources.

  5. Development of a compact ECR ion source for various ion production.

    PubMed

    Muramatsu, M; Hojo, S; Iwata, Y; Katagiri, K; Sakamoto, Y; Takahashi, N; Sasaki, N; Fukushima, K; Takahashi, K; Suzuki, T; Sasano, T; Uchida, T; Yoshida, Y; Hagino, S; Nishiokada, T; Kato, Y; Kitagawa, A

    2016-02-01

    There is a desire that a carbon-ion radiotherapy facility will produce various ion species for fundamental research. Although the present Kei2-type ion sources are dedicated for the carbon-ion production, a future ion source is expected that could provide: (1) carbon-ion production for medical use, (2) various ions with a charge-to-mass ratio of 1/3 for the existing Linac injector, and (3) low cost for modification. A prototype compact electron cyclotron resonance (ECR) ion source, named Kei3, based on the Kei series has been developed to correspond to the Kei2 type and to produce these various ions at the National Institute of Radiological Sciences (NIRS). The Kei3 has an outer diameter of 280 mm and a length of 1120 mm. The magnetic field is formed by the same permanent magnet as Kei2. The movable extraction electrode has been installed in order to optimize the beam extraction with various current densities. The gas-injection side of the vacuum chamber has enough space for an oven system. We measured dependence of microwave frequency, extraction voltage, and puller position. Charge state distributions of helium, carbon, nitrogen, oxygen, and neon were also measured.

  6. Development of a compact ECR ion source for various ion production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muramatsu, M., E-mail: m-mura@nirs.go.jp; Hojo, S.; Iwata, Y.

    2016-02-15

    There is a desire that a carbon-ion radiotherapy facility will produce various ion species for fundamental research. Although the present Kei2-type ion sources are dedicated for the carbon-ion production, a future ion source is expected that could provide: (1) carbon-ion production for medical use, (2) various ions with a charge-to-mass ratio of 1/3 for the existing Linac injector, and (3) low cost for modification. A prototype compact electron cyclotron resonance (ECR) ion source, named Kei3, based on the Kei series has been developed to correspond to the Kei2 type and to produce these various ions at the National Institute ofmore » Radiological Sciences (NIRS). The Kei3 has an outer diameter of 280 mm and a length of 1120 mm. The magnetic field is formed by the same permanent magnet as Kei2. The movable extraction electrode has been installed in order to optimize the beam extraction with various current densities. The gas-injection side of the vacuum chamber has enough space for an oven system. We measured dependence of microwave frequency, extraction voltage, and puller position. Charge state distributions of helium, carbon, nitrogen, oxygen, and neon were also measured.« less

  7. Comment on "Effects of Magnetic Field Gradient on Ion Beam Current in Cylindrical Hall Ion Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raitses, Y.; Smirnov A.; Fisch, N.J.

    It is argued that the key difference of the cylindrical Hall thruster (CHT) as compared to the end-Hall ion source cannot be exclusively attributed to the magnetic field topology [Tang et al. J. Appl. Phys., 102, 123305 (2007)]. With a similar mirror-type topology, the CHT configuration provides the electric field with nearly equipotential magnetic field surfaces and a better suppression of the electron cross-field transport, as compared to both the end-Hall ion source and the cylindrical Hall ion source of Tang et al.

  8. PULSED ION SOURCE

    DOEpatents

    Martina, E.F.

    1958-10-14

    An improved pulsed ion source of the type where the gas to be ionized is released within the source by momentary heating of an electrode occluded with the gas is presented. The other details of the ion source construction include an electron emitting filament and a positive reference grid, between which an electron discharge is set up, and electrode means for withdrawing the ions from the source. Due to the location of the gas source behind the electrode discharge region, and the positioning of the vacuum exhaust system on the opposite side of the discharge, the released gas is drawn into the electron discharge and ionized in accurately controlled amounts. Consequently, the output pulses of the ion source may be accurately controlled.

  9. Performance Characterization of a Solenoid-type Gas Valve for the H- Magnetron Source at FNAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sosa, A.; Bollinger, D. S.; Karns, P. R.

    2016-09-06

    The magnetron-style H- ion sources currently in operation at Fermilab use piezoelectric gas valves to function. This kind of gas valve is sensitive to small changes in ambient temperature, which affect the stability and performance of the ion source. This motivates the need to find an alternative way of feeding H2 gas into the source. A solenoid-type gas valve has been characterized in a dedicated off-line test stand to assess the feasibility of its use in the operational ion sources. H- ion beams have been extracted at 35 keV using this valve. In this study, the performance of the solenoidmore » gas valve has been characterized measuring the beam current output of the magnetron source with respect to the voltage and pulse width of the signal applied to the gas valve.« less

  10. Adjustable ECR Ion Source Control System: Ion Source Hydrogen Positive Project

    NASA Astrophysics Data System (ADS)

    Arredondo, I.; Eguiraun, M.; Jugo, J.; Piso, D.; del Campo, M.; Poggi, T.; Varnasseri, S.; Feuchtwanger, J.; Bilbao, J.; Gonzalez, X.; Harper, G.; Muguira, L.; Miracoli, R.; Corres, J.; Belver, D.; Echevarria, P.; Garmendia, N.; Gonzalez, P.; Etxebarria, V.

    2015-06-01

    ISHP (Ion Source Hydrogen Positive) project consists of a highly versatile ECR type ion source. It has been built for several purposes, on the one hand, to serve as a workbench to test accelerator related technologies and validate in-house made developments, at the first stages. On the other hand, to design an ion source valid as the first step in an actual LINAC. Since this paper is focused on the control system of ISHP, besides the ion source, all the hardware and its control architecture is presented. Nowadays the ion source is able to generate a pulse of positive ions of Hydrogen from 2 μs to a few ms range with a repetition rate ranging from 1 Hz to 50 Hz with a maximum of 45 mA of current. Furthermore, the first experiments with White Rabbit (WR) synchronization system are presented.

  11. Role of positive ions on the surface production of negative ions in a fusion plasma reactor type negative ion source--Insights from a three dimensional particle-in-cell Monte Carlo collisions model

    NASA Astrophysics Data System (ADS)

    Fubiani, G.; Boeuf, J. P.

    2013-11-01

    Results from a 3D self-consistent Particle-In-Cell Monte Carlo Collisions (PIC MCC) model of a high power fusion-type negative ion source are presented for the first time. The model is used to calculate the plasma characteristics of the ITER prototype BATMAN ion source developed in Garching. Special emphasis is put on the production of negative ions on the plasma grid surface. The question of the relative roles of the impact of neutral hydrogen atoms and positive ions on the cesiated grid surface has attracted much attention recently and the 3D PIC MCC model is used to address this question. The results show that the production of negative ions by positive ion impact on the plasma grid is small with respect to the production by atomic hydrogen or deuterium bombardment (less than 10%).

  12. The negative hydrogen Penning ion gauge ion source for KIRAMS-13 cyclotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, D. H.; Jung, I. S.; Kang, J.

    2008-02-15

    The cold-cathode-type Penning ion gauge (PIG) ion source for the internal ion source of KIRAMS-13 cyclotron has been used for generation of negative hydrogen ions. The dc H-beam current of 650 {mu}A from the PIG ion source with the Dee voltage of 40 kV and arc current of 1.0 A is extrapolated from the measured dc extraction beam currents at the low extraction dc voltages. The output optimization of PIG ion source in the cyclotron has been carried out by using various chimneys with different sizes of the expansion gap between the plasma boundary and the chimney wall. This papermore » presents the results of the dc H-extraction measurement and the expansion gap experiment.« less

  13. Development of Bipolar Pulse Accelerator for Pulsed Ion Beam Implantation to Semiconductor

    NASA Astrophysics Data System (ADS)

    Masugata, Katsumi; Kawahara, Yoshihiro; Mitsui, Chihiro; Kitamura, Iwao; Takahashi, Takakazu; Tanaka, Yasunori; Tanoue, Hisao; Arai, Kazuo

    2002-12-01

    To improve the purity of the ion beams new type of pulsed power ion accelerator named "bipolar pulse accelerator" was proposed. The accelerator consists of two acceleration gaps (an ion source gap and a post acceleration gap) and a drift tube, and a bipolar pulse is applied to the drift tube to accelerate the beam. In the accelerator intended ions are selectively accelerated and the purity of the ion beam is enhanced. As the first step of the development of the accelerator, a Br-type magnetically insulated acceleration gap is developed. The gap has an ion source of coaxial gas puff plasma gun on the grounded anode and a negative pulse is applied to the cathode to accelerate the ion beam. By using the plasma gun, ion source plasma (nitrogen) of current density around 100 A/cm2 is obtained. In the paper, the experimental results of the evaluation of the ion beam and the characteristics of the gap are shown with the principle and the design concept of the proposed accelerator.

  14. Air ion concentrations in various urban outdoor environments

    NASA Astrophysics Data System (ADS)

    Ling, Xuan; Jayaratne, Rohan; Morawska, Lidia

    2010-06-01

    Atmospheric ions are produced by many natural and anthropogenic sources and their concentrations vary widely between different environments. There is very little information on their concentrations in different types of urban environments, how they compare across these environments and their dominant sources. In this study, we measured airborne concentrations of small ions, particles and net particle charge at 32 different outdoor sites in and around a major city in Australia and identified the main ion sources. Sites were classified into seven groups as follows: park, woodland, city centre, residential, freeway, power lines and power substation. Generally, parks were situated away from ion sources and represented the urban background value of about 270 ions cm -3. Median concentrations at all other groups were significantly higher than in the parks. We show that motor vehicles and power transmission systems are two major ion sources in urban areas. Power lines and substations constituted strong unipolar sources, while motor vehicle exhaust constituted strong bipolar sources. The small ion concentration in urban residential areas was about 960 cm -3. At sites where ion sources were co-located with particle sources, ion concentrations were inhibited due to the ion-particle attachment process. These results improved our understanding on air ion distribution and its interaction with particles in the urban outdoor environment.

  15. Comment on 'Effects of magnetic field gradient on ion beam current in cylindrical Hall ion source' [J. Appl. Phys. 102, 123305 (2007)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raitses, Y.; Smirnov, A.; Fisch, N. J.

    It is argued that the key difference in the cylindrical Hall thruster (CHT) as compared to the end-Hall ion source cannot be exclusively attributed to the magnetic field topology [Tang et al., J. Appl. Phys. 102, 123305 (2007)]. With a similar mirror-type topology, the CHT configuration provides the electric field with nearly equipotential magnetic field surfaces and a better suppression of the electron cross-field transport, as compared to both the end-Hall ion source and the cylindrical Hall ion source of [Tang et al., J. Appl. Phys. 102, 123305 (2007)].

  16. Caesium sputter ion source compatible with commercial SIMS instruments

    NASA Astrophysics Data System (ADS)

    Belykh, S. F.; Palitsin, V. V.; Veryovkin, I. V.; Kovarsky, A. P.; Chang, R. J. H.; Adriaens, A.; Dowsett, M.; Adams, F.

    2006-07-01

    A simple design for a caesium sputter cluster ion source compatible with commercially available secondary ion mass spectrometers is reported. This source has been tested with the Cameca IMS 4f instrument using the cluster Si n- and Cu n- ions, and will shortly be retrofitted to the floating low energy ion gun (FLIG) of the type used on the Cameca 4500/4550 quadruple instruments. Our experiments with surface characterization and depth profiling conducted to date demonstrate improvements of analytical capabilities of the SIMS instrument due to the non-additive enhancement of secondary ion emission and shorter ion ranges of polyatomic projectiles compared to atomic ions with the same impact energy.

  17. ION SOURCE FOR CALUTRONS

    DOEpatents

    Tolmie, J.R.

    1958-09-16

    An improvement is presented in ion sources of the type employed in calutron devices. The described ion source has for its inventive contribution the incorporation of a plate-like cathode having the general configuration of a polygon including a given number of apices. When a polyphase source of current has a phase connected to each of the apices, the cathode is heated and rendered electron emissive. This particular cathode configuration is of sturdy construction and provides unuform emission over a considerable area.

  18. Investigations of the emittance and brightness of ion beams from an electron beam ion source of the Dresden EBIS type.

    PubMed

    Silze, Alexandra; Ritter, Erik; Zschornack, Günter; Schwan, Andreas; Ullmann, Falk

    2010-02-01

    We have characterized ion beams extracted from the Dresden EBIS-A, a compact room-temperature electron beam ion source (EBIS) with a permanent magnet system for electron beam compression, using a pepper-pot emittance meter. The EBIS-A is the precursor to the Dresden EBIS-SC in which the permanent magnets have been replaced by superconducting solenoids for the use of the source in high-ion-current applications such as heavy-ion cancer therapy. Beam emittance and brightness values were calculated from data sets acquired for a variety of source parameters, in leaky as well as pulsed ion extraction mode. With box shaped pulses of C(4+) ions at an energy of 39 keV root mean square emittances of 1-4 mm mrad and a brightness of 10 nA mm(-2) mrad(-2) were achieved. The results meet the expectations for high quality ion beams generated by an electron beam ion source.

  19. Helicon plasma generator-assisted surface conversion ion source for the production of H- ion beams at the Los Alamos Neutron Science Centera)

    NASA Astrophysics Data System (ADS)

    Tarvainen, O.; Rouleau, G.; Keller, R.; Geros, E.; Stelzer, J.; Ferris, J.

    2008-02-01

    The converter-type negative ion source currently employed at the Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H- ion beams in a filament-driven discharge. In this kind of an ion source the extracted H- beam current is limited by the achievable plasma density which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which deposits on the H- converter surface and degrades its performance. Therefore, we have started an ion source development project focused on replacing these thermionic cathodes (filaments) of the converter source by a helicon plasma generator capable of producing high-density hydrogen plasmas with low electron energy. In our studies which have so far shown that the plasma density of the surface conversion source can be increased significantly by exciting a helicon wave in the plasma, and we expect to improve the performance of the surface converter H- ion source in terms of beam brightness and time between services. The design of this new source and preliminary results are presented, along with a discussion of physical processes relevant for H- ion beam production with this novel design. Ultimately, we perceive this approach as an interim step towards our long-term goal, combining a helicon plasma generator with an SNS-type main discharge chamber, which will allow us to individually optimize the plasma properties of the plasma cathode (helicon) and H- production (main discharge) in order to further improve the brightness of extracted H- ion beams.

  20. Helicon plasma generator-assisted surface conversion ion source for the production of H(-) ion beams at the Los Alamos Neutron Science Center.

    PubMed

    Tarvainen, O; Rouleau, G; Keller, R; Geros, E; Stelzer, J; Ferris, J

    2008-02-01

    The converter-type negative ion source currently employed at the Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H(-) ion beams in a filament-driven discharge. In this kind of an ion source the extracted H(-) beam current is limited by the achievable plasma density which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which deposits on the H(-) converter surface and degrades its performance. Therefore, we have started an ion source development project focused on replacing these thermionic cathodes (filaments) of the converter source by a helicon plasma generator capable of producing high-density hydrogen plasmas with low electron energy. In our studies which have so far shown that the plasma density of the surface conversion source can be increased significantly by exciting a helicon wave in the plasma, and we expect to improve the performance of the surface converter H(-) ion source in terms of beam brightness and time between services. The design of this new source and preliminary results are presented, along with a discussion of physical processes relevant for H(-) ion beam production with this novel design. Ultimately, we perceive this approach as an interim step towards our long-term goal, combining a helicon plasma generator with an SNS-type main discharge chamber, which will allow us to individually optimize the plasma properties of the plasma cathode (helicon) and H(-) production (main discharge) in order to further improve the brightness of extracted H(-) ion beams.

  1. New ion source for KSTAR neutral beam injection system.

    PubMed

    Kim, Tae-Seong; Jeong, Seung Ho; In, Sang-Ryul

    2012-02-01

    The neutral beam injection system (NBI-1) of the KSTAR tokamak can accommodate three ion sources; however, it is currently equipped with only one prototype ion source. In the 2010 and 2011 KSTAR campaigns, this ion source supplied deuterium neutral beam power of 0.7-1.6 MW to the KSTAR plasma with a beam energy of 70-100 keV. A new ion source will be prepared for the 2012 KSTAR campaign with a much advanced performance compared with the previous one. The newly designed ion source has a very large transparency (∼56%) without deteriorating the beam optics, which is designed to deliver a 2 MW injection power of deuterium beams at 100 keV. The plasma generator of the ion source is of a horizontally cusped bucket type, and the whole inner wall, except the cathode filaments and plasma grid side, functions as an anode. The accelerator assembly consists of four multi-circular aperture grids made of copper and four electrode flanges made of aluminum alloy. The electrodes are insulated using PEEK. The ion source will be completed and tested in 2011.

  2. Collison nebulizer as a new soft ionization source for mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pervukhin, V. V.; Sheven', D. G.; Kolomiets, Yu. N.

    2016-08-01

    We have proposed that a Collison-type nebulizer be used as an ionization source for mass spectrometry with ionization under atmospheric pressure. This source does not require the use of electric voltage, radioactive sources, heaters, or liquid pumps. It has been shown that the number of ions produced by the 63Ni radioactive source is three to four times larger than the number of ions produced by acoustic ionization sources. We have considered the possibility of using a Collison-type nebulizer in combination with a vortex focusing system as an ion source for extractive ionization of compounds under atmospheric pressure. The ionization of volatile substances in crossflows of a charged aerosol and an analyte (for model compounds of the amine class, viz., diethylaniline, triamylamine, and cocaine) has been investigated. It has been shown that the limit of detecting cocaine vapor by this method is on the level of 4.6 × 10-14 g/cm3.

  3. A 60 mA DC H- multi cusp ion source developed at TRIUMF

    NASA Astrophysics Data System (ADS)

    Jayamanna, K.; Ames, F.; Bylinskii, I.; Lovera, M.; Minato, B.

    2018-07-01

    This paper describes the latest high-current multi cusp type ion source developed at TRIUMF, which is capable of producing a negative hydrogen ion beam (H-) of 60 mA of direct current at 140V and 90A arc. The results achieved to date including emittance measurements and filament lifetime issues are presented. The low current version of this ion source is suitable for medical cyclotrons as well as accelerators and the high current version is intended for producing large neutral hydrogen beams for fusion research. The description of the source magnetic configuration, the electron filter profile and the differential pumping techniques given in the paper will allow the building of an arc discharge H- ion source with similar properties.

  4. Deuteron Beam Source Based on Mather Type Plasma Focus

    NASA Astrophysics Data System (ADS)

    Lim, L. K.; Yap, S. L.; Wong, C. S.; Zakaullah, M.

    2013-04-01

    A 3 kJ Mather type plasma focus system filled with deuterium gas is operated at pressure lower than 1 mbar. Operating the plasma focus in a low pressure regime gives a consistent ion beam which can make the plasma focus a reliable ion beam source. In our case, this makes a good deuteron beam source, which can be utilized for neutron generation by coupling a suitable target. This paper reports ion beam measurements obtained at the filling pressure of 0.05-0.5 mbar. Deuteron beam energy is measured by time of flight technique using three biased ion collectors. The ion beam energy variation with the filling pressure is investigated. Deuteron beam of up to 170 keV are obtained with the strongest deuteron beam measured at 0.1 mbar, with an average energy of 80 keV. The total number of deuterons per shot is in the order of 1018 cm-2.

  5. CALUTRON ION SOURCE

    DOEpatents

    Lofgren, E.J.

    1959-02-17

    An improvement is described in ion source mechanisms whereby the source structure is better adapted to withstanid the ravages of heat, erosion, and deterioration concomitant with operation of an ion source of the calutron type. A pair of molybdenum plates define the exit opening of the arc chamber and are in thermal contact with the walls of the chamber. These plates are maintained at a reduced temperature by a pair of copper blocks in thermal conducting contact therewith to form subsequent diverging margins for the exit opening.

  6. Membranes in Lithium Ion Batteries

    PubMed Central

    Yang, Min; Hou, Junbo

    2012-01-01

    Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed. PMID:24958286

  7. Electrostatic energy analyzer measurements of low energy zirconium beam parameters in a plasma sputter-type negative ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malapit, Giovanni M.; Department of Physical Sciences, University of the Philippines Baguio, Baguio City 2600; Mahinay, Christian Lorenz S.

    2012-02-15

    A plasma sputter-type negative ion source is utilized to produce and detect negative Zr ions with energies between 150 and 450 eV via a retarding potential-type electrostatic energy analyzer. Traditional and modified semi-cylindrical Faraday cups (FC) inside the analyzer are employed to sample negative Zr ions and measure corresponding ion currents. The traditional FC registered indistinct ion current readings which are attributed to backscattering of ions and secondary electron emissions. The modified Faraday cup with biased repeller guard ring, cut out these signal distortions leaving only ringings as issues which are theoretically compensated by fitting a sigmoidal function into themore » data. The mean energy and energy spread are calculated using the ion current versus retarding potential data while the beam width values are determined from the data of the transverse measurement of ion current. The most energetic negative Zr ions yield tighter energy spread at 4.11 eV compared to the least energetic negative Zr ions at 4.79 eV. The smallest calculated beam width is 1.04 cm for the negative Zr ions with the highest mean energy indicating a more focused beam in contrast to the less energetic negative Zr ions due to space charge forces.« less

  8. Electrical shielding box measurement of the negative hydrogen beam from Penning ion gauge ion source.

    PubMed

    Wang, T; Yang, Z; Dong, P; long, J D; He, X Z; Wang, X; Zhang, K Z; Zhang, L W

    2012-06-01

    The cold-cathode Penning ion gauge (PIG) type ion source has been used for generation of negative hydrogen (H(-)) ions as the internal ion source of a compact cyclotron. A novel method called electrical shielding box dc beam measurement is described in this paper, and the beam intensity was measured under dc extraction inside an electrical shielding box. The results of the trajectory simulation and dc H(-) beam extraction measurement were presented. The effect of gas flow rate, magnetic field strength, arc current, and extraction voltage were also discussed. In conclusion, the dc H(-) beam current of about 4 mA from the PIG ion source with the puller voltage of 40 kV and arc current of 1.31 A was extrapolated from the measurement at low extraction dc voltages.

  9. Ion Outflow Observations

    NASA Technical Reports Server (NTRS)

    Mellot, Mary (Technical Monitor)

    2002-01-01

    The characteristics of out-flowing ions have been investigated under various circumstances. In particular the upwelling of ions from the cleft region has been studied to attempt to look at source characteristics (e.g., temperature, altitude). High altitude (6-8 Re) data tend to show ions species that have the same velocity and are adiabatically cooled. Such ions, while representative of their source, can not provide an accurate picture. Ion observations from the TIDE detector on the Polar spacecraft show an energy (or equivalently a velocity) spectrum of ions as they undo the geomagnetic mass spectrometer effect due to convection-gravity separation of the different species. Consolidation of this type of data into a complete representation of the source spectrum can be attempted by building a set of maximum-phase-space- density-velocity pairs and attributing the total to the source.

  10. A review of ion sources for medical accelerators (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muramatsu, M.; Kitagawa, A.

    2012-02-15

    There are two major medical applications of ion accelerators. One is a production of short-lived isotopes for radionuclide imaging with positron emission tomography and single photon emission computer tomography. Generally, a combination of a source for negative ions (usually H- and/or D-) and a cyclotron is used; this system is well established and distributed over the world. Other important medical application is charged-particle radiotherapy, where the accelerated ion beam itself is being used for patient treatment. Two distinctly different methods are being applied: either with protons or with heavy-ions (mostly carbon ions). Proton radiotherapy for deep-seated tumors has become widespreadmore » since the 1990s. The energy and intensity are typically over 200 MeV and several 10{sup 10} pps, respectively. Cyclotrons as well as synchrotrons are utilized. The ion source for the cyclotron is generally similar to the type for production of radioisotopes. For a synchrotron, one applies a positive ion source in combination with an injector linac. Carbon ion radiotherapy awakens a worldwide interest. About 6000 cancer patients have already been treated with carbon beams from the Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences in Japan. These clinical results have clearly verified the advantages of carbon ions. Heidelberg Ion Therapy Center and Gunma University Heavy Ion Medical Center have been successfully launched. Several new facilities are under commissioning or construction. The beam energy is adjusted to the depth of tumors. It is usually between 140 and 430 MeV/u. Although the beam intensity depends on the irradiation method, it is typically several 10{sup 8} or 10{sup 9} pps. Synchrotrons are only utilized for carbon ion radiotherapy. An ECR ion source supplies multi-charged carbon ions for this requirement. Some other medical applications with ion beams attract developer's interests. For example, the several types of accelerators are under development for the boron neutron capture therapy. This treatment is conventionally demonstrated by a nuclear reactor, but it is strongly expected to replace the reactor by the accelerator. We report status of ion source for medical application and such scope for further developments.« less

  11. Improved yields for MOST’s using ion implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brockman, H. E.

    1976-04-01

    Conventionally diffused source and drain polysilicon gate MOST's commonly exhibit one type of fault, namely, that of polysilicon-to-diffusion short circuits. Investigations into the yields of large-area devices fabricated using ion-implanted sources and drains are compared with those of diffused structures. An improved technology for the chemical shaping of the polysilicon gates, which improves the yields for both types of devices, is also described. (AIP)

  12. Electron string ion sources for carbon ion cancer therapy accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.

    2015-08-15

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C{sup 4+} and C{sup 6+} ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 10{sup 10} C{sup 4+} ions per pulse and about 5 × 10{sup 9} C{sup 6+} ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 10{sup 11} C{sup 6+} ions per second at the 100 Hz repetition rate, and the repetition rate can bemore » increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the {sup 11}C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C{sup 4+} ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of {sup 11}C, transporting to the tumor with the primary accelerated {sup 11}C{sup 4+} beam, this efficiency is preliminarily considered to be large enough to produce the {sup 11}C{sup 4+} beam from radioactive methane and to inject this beam into synchrotrons.« less

  13. Beam current enhancement of microwave plasma ion source utilizing double-port rectangular cavity resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Yuna; Park, Yeong-Shin; Jo, Jong-Gab

    2012-02-15

    Microwave plasma ion source with rectangular cavity resonator has been examined to improve ion beam current by changing wave launcher type from single-port to double-port. The cavity resonators with double-port and single-port wave launchers are designed to get resonance effect at TE-103 mode and TE-102 mode, respectively. In order to confirm that the cavities are acting as resonator, the microwave power for breakdown is measured and compared with the E-field strength estimated from the HFSS (High Frequency Structure Simulator) simulation. Langmuir probe measurements show that double-port cavity enhances central density of plasma ion source by modifying non-uniform plasma density profilemore » of the single-port cavity. Correspondingly, beam current from the plasma ion source utilizing the double-port resonator is measured to be higher than that utilizing single-port resonator. Moreover, the enhancement in plasma density and ion beam current utilizing the double-port resonator is more pronounced as higher microwave power applied to the plasma ion source. Therefore, the rectangular cavity resonator utilizing the double-port is expected to enhance the performance of plasma ion source in terms of ion beam extraction.« less

  14. Beam current enhancement of microwave plasma ion source utilizing double-port rectangular cavity resonator.

    PubMed

    Lee, Yuna; Park, Yeong-Shin; Jo, Jong-Gab; Yang, J J; Hwang, Y S

    2012-02-01

    Microwave plasma ion source with rectangular cavity resonator has been examined to improve ion beam current by changing wave launcher type from single-port to double-port. The cavity resonators with double-port and single-port wave launchers are designed to get resonance effect at TE-103 mode and TE-102 mode, respectively. In order to confirm that the cavities are acting as resonator, the microwave power for breakdown is measured and compared with the E-field strength estimated from the HFSS (High Frequency Structure Simulator) simulation. Langmuir probe measurements show that double-port cavity enhances central density of plasma ion source by modifying non-uniform plasma density profile of the single-port cavity. Correspondingly, beam current from the plasma ion source utilizing the double-port resonator is measured to be higher than that utilizing single-port resonator. Moreover, the enhancement in plasma density and ion beam current utilizing the double-port resonator is more pronounced as higher microwave power applied to the plasma ion source. Therefore, the rectangular cavity resonator utilizing the double-port is expected to enhance the performance of plasma ion source in terms of ion beam extraction.

  15. Application of laser driven fast high density plasma blocks for ion implantation

    NASA Astrophysics Data System (ADS)

    Sari, Amir H.; Osman, F.; Doolan, K. R.; Ghoranneviss, M.; Hora, H.; Höpfl, R.; Benstetter, G.; Hantehzadeh, M. H.

    2005-10-01

    The measurement of very narrow high density plasma blocks of high ion energy from targets irradiated with ps-TW laser pulses based on a new skin depth interaction process is an ideal tool for application of ion implantation in materials, especially of silicon, GaAs, or conducting polymers, for micro-electronics as well as for low cost solar cells. A further application is for ion sources in accelerators with most specifications of many orders of magnitudes advances against classical ion sources. We report on near band gap generation of defects by implantation of ions as measured by optical absorption spectra. A further connection is given for studying the particle beam transforming of n-type semiconductors into p-type and vice versa as known from sub-threshold particle beams. The advantage consists in the use of avoiding aggressive or rare chemical materials when using the beam techniques for industrial applications.

  16. Systematic analysis of the contributions of stochastic voltage gated channels to neuronal noise

    PubMed Central

    O'Donnell, Cian; van Rossum, Mark C. W.

    2014-01-01

    Electrical signaling in neurons is mediated by the opening and closing of large numbers of individual ion channels. The ion channels' state transitions are stochastic and introduce fluctuations in the macroscopic current through ion channel populations. This creates an unavoidable source of intrinsic electrical noise for the neuron, leading to fluctuations in the membrane potential and spontaneous spikes. While this effect is well known, the impact of channel noise on single neuron dynamics remains poorly understood. Most results are based on numerical simulations. There is no agreement, even in theoretical studies, on which ion channel type is the dominant noise source, nor how inclusion of additional ion channel types affects voltage noise. Here we describe a framework to calculate voltage noise directly from an arbitrary set of ion channel models, and discuss how this can be use to estimate spontaneous spike rates. PMID:25360105

  17. Effect of Ion Escape Velocity and Conversion Surface Material on H- Production

    NASA Astrophysics Data System (ADS)

    Tarvainen, O.; Kalvas, T.; Komppula, J.; Koivisto, H.; Geros, E.; Stelzer, J.; Rouleau, G.; Johnson, K. F.; Carmichael, J.

    2011-09-01

    According to generally accepted models surface production of negative ions depends on ion escape velocity and work function of the surface. We have conducted an experimental study addressing the role of the ion escape velocity on H- production. A converter-type ion source at Los Alamos Neutron Science Center was employed for the experiment. The ion escape velocity was affected by varying the bias voltage of the converter electrode. It was observed that due to enhanced stripping of H- no direct gain of extracted beam current can be achieved by increasing the converter voltage. The conversion efficiency of H- was observed to vary with converter voltage and follow the existing theories in qualitative manner. We present calculations predicting relative H- yields from different cesiated surfaces with comparison to experimental observations from different types of H- ion sources. Utilizing materials exhibiting negative electron affinity and exposed to UV-light is considered for Cesium-free H-/D- production.

  18. MASS SEPARATORS

    DOEpatents

    Oppenheimer, F.; Bell, J.W.

    1959-02-17

    An improvement in the mounting arrangement for the ion source within the vacuum tank of a calutron is presented. The entire source is supported by the vacuum envelope through the medium of a bracket secured to a removable face plate. The bracket forms a supporting platform that is generally transverse to the magnetic field. The ion generator is mounted on a pedestal-type insulator supported on the bracket, and the hot leads are brought into the vacuum envelope through a tubular elbow connected to the vacuum envelope, having the axis of its outer opening aligned with the magnetic field at which point a bushing-type insulator is employed. With this arrangement thc ion source is maintained at a positive potential with respect to the vacuum tank and the problem of electron bombardment of the insulator is considerably reduced.

  19. Neutralization of an ion beam from the end-Hall ion source by a plasma electron source based on a discharge in crossed E × H fields

    NASA Astrophysics Data System (ADS)

    Dostanko, A. P.; Golosov, D. A.

    2009-10-01

    The possibility of using a plasma electron source (PES) with a discharge in crossed E × H field for compensating the ion beam from an end-Hall ion source (EHIS) is analyzed. The PES used as a neutralizer is mounted in the immediate vicinity of the EHIS ion generation and acceleration region at 90° to the source axis. The behavior of the discharge and emission parameters of the EHIS is determined for operation with a filament neutralizer and a plasma electron source. It is found that the maximal discharge current from the ion source attains a value of 3.8 A for operation with a PES and 4 A for operation with a filament compensator. It is established that the maximal discharge current for the ion source strongly depends on the working gas flow rate for low flow rates (up to 10 ml/min) in the EHIS; for higher flow rates, the maximum discharge current in the EHIS depends only on the emissivity of the PES. Analysis of the emission parameters of EHISs with filament and plasma neutralizers shows that the ion beam current and the ion current density distribution profile are independent of the type of the electron source and the ion current density can be as high as 0.2 mA/cm2 at a distance of 25 cm from the EHIS anode. The balance of currents in the ion source-electron source system is considered on the basis of analysis of operation of EHISs with various sources of electrons. It is concluded that the neutralization current required for operation of an ion source in the discharge compensation mode must be equal to or larger than the discharge current of the ion source. The use of PES for compensating the ion beam from an end-Hall ion source proved to be effective in processes of ion-assisted deposition of thin films using reactive gases like O2 or N2. The application of the PES technique makes it possible to increase the lifetime of the ion-assisted deposition system by an order of magnitude (the lifetime with a Ti cathode is at least 60 h and is limited by the replacement life of the deposited cathode insertion).

  20. Development of a Standard Test Scenario to Evaluate the Effectiveness of Portable Fire Extinguishers on Lithium-ion Battery Fires

    NASA Technical Reports Server (NTRS)

    Juarez, Alfredo; Harper, Susan A.; Hirsch, David B.; Carriere, Thierry

    2013-01-01

    Many sources of fuel are present aboard current spacecraft, with one especially hazardous source of stored energy: lithium ion batteries. Lithium ion batteries are a very hazardous form of fuel due to their self-sustaining combustion once ignited, for example, by an external heat source. Batteries can become extremely energetic fire sources due to their high density electrochemical energy content that may, under duress, be violently converted to thermal energy and fire in the form of a thermal runaway. Currently, lithium ion batteries are the preferred types of batteries aboard international spacecraft and therefore are routinely installed, collectively forming a potentially devastating fire threat to a spacecraft and its crew. Currently NASA is developing a fine water mist portable fire extinguisher for future use on international spacecraft. As its development ensues, a need for the standard evaluation of various types of fire extinguishers against this potential threat is required to provide an unbiased means of comparing between fire extinguisher technologies and ranking them based on performance.

  1. Towards a better comprehension of plasma formation and heating in high performances electron cyclotron resonance ion sources (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mascali, D.; Gammino, S.; Celona, L.

    2012-02-15

    Further improvements of electron cyclotron resonance ion sources (ECRIS) output currents and average charge state require a deep understanding of electron and ion dynamics in the plasma. This paper will discuss the most recent advances about modeling of non-classical evidences like the sensitivity of electron energy distribution function to the magnetic field detuning, the influence of plasma turbulences on electron heating and ion confinement, the coupling between electron and ion dynamics. All these issues have in common the non-homogeneous distribution of the plasma inside the source: the abrupt density drop at the resonance layer regulates the heating regimes (from collectivemore » to turbulent), the beam formation mechanism and emittance. Possible means to boost the performances of future ECRIS will be proposed. In particular, the use of Bernstein waves, in preliminary experiments performed at Laboratori Nazionali del Sud (LNS) on MDIS (microwave discharge ion sources)-type sources, has permitted to sustain largely overdense plasmas enhancing the warm electron temperature, which will make possible in principle the construction of sources for high intensity multicharged ions beams with simplified magnetic structures.« less

  2. Accessibility condition of wave propagation and multicharged ion production in electron cyclotron resonance ion source plasma.

    PubMed

    Kato, Yushi; Yano, Keisuke; Nishiokada, Takuya; Nagaya, Tomoki; Kimura, Daiju; Kumakura, Sho; Imai, Youta; Hagino, Shogo; Otsuka, Takuro; Sato, Fuminobu

    2016-02-01

    A new tandem type source of electron cyclotron resonance (ECR) plasmas has been constructing for producing synthesized ion beams in Osaka University. Magnetic mirror field configuration with octupole magnets can be controlled to various shape of ECR zones, namely, in the 2nd stage plasma to be available by a pair mirror and a supplemental coil. Noteworthy correlations between these magnetic configurations and production of multicharged ions are investigated in detail, as well as their optimum conditions. We have been considering accessibility condition of electromagnetic and electrostatic waves propagating in ECR ion source plasma, and then investigated their correspondence relationships with production of multicharged ions. It has been clarified that there exits efficient configuration of ECR zones for producing multicharged ion beams experimentally, and then has been suggested from detail accessibility conditions on the ECR plasma that new resonance, i.e., upper hybrid resonance, must have occurred.

  3. Shunting arc plasma source for pure carbon ion beam.

    PubMed

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse.

  4. Shunting arc plasma source for pure carbon ion beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koguchi, H.; Sakakita, H.; Kiyama, S.

    2012-02-15

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm{sup 2} at the peak of the pulse.

  5. A new multidimensional diagnostic method for measuring the properties of intense ion beams

    NASA Astrophysics Data System (ADS)

    Yasuike, Kazuhito; Miyamoto, Shuji; Nakai, Sadao

    1996-02-01

    A new arrayed pinhole camera (APC) diagnostic method for intense ion beams has been developed. The APC diagnostic technique permits the acquisition of the angular divergences and the ion fluxes of high intensity ion beams, in one shot, with a spatial resolution on the source of better than 1 mm and an effective angular divergence resolution of better than 10 mrad. A prototype time integrated APC has been designed and evaluated. The demonstration experiments have been performed on a Reiden-IV, 1 MV and 1 Ω pulsed power machine [1 T W (tera-watt or trillion watts)]. Proton beams of 0.7 MeV, with a pulse duration of ˜50 ns and an ion current density of about 100 A/cm2, were generated in an applied-Br type ion diode source using paraffin-filled grooves. These experimental results show that the APC can measure nonuniformities in the ion beam intensity generated from the ion source and the dependence of beam angular divergence on ion beam intensity.

  6. High Frequency Plasma Generators for Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Divergilio, W. F.; Goede, H.; Fosnight, V. V.

    1981-01-01

    The results of a one year program to experimentally adapt two new types of high frequency plasma generators to Argon ion thrusters and to analytically study a third high frequency source concept are presented. Conventional 30 cm two grid ion extraction was utilized or proposed for all three sources. The two plasma generating methods selected for experimental study were a radio frequency induction (RFI) source, operating at about 1 MHz, and an electron cyclotron heated (ECH) plasma source operating at about 5 GHz. Both sources utilize multi-linecusp permanent magnet configurations for plasma confinement. The plasma characteristics, plasma loading of the rf antenna, and the rf frequency dependence of source efficiency and antenna circuit efficiency are described for the RFI Multi-cusp source. In a series of tests of this source at Lewis Research Center, minimum discharge losses of 220+/-10 eV/ion were obtained with propellant utilization of .45 at a beam current of 3 amperes. Possible improvement modifications are discussed.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsubara, Y.; Tahara, H.; Nogawa, S.

    A new type of electron source for ion sources, which serves as a cathode has been developed. In this cathode, a high-density microwave plasma is produced under the electron-cyclotron-resonance (ECR) condition, and a high electron current of several amperes can be extracted from it. The structure of this microwave plasma (MP) cathode is very simple and compact. A rod antenna connected to a coaxial line for introducing the microwave power (2.45 GHz) and a rare-earth metal permanent magnet for producing the ECR condition are major components. Since there is no filament in this MP cathode, it has a longer lifetimemore » than the equivalent thermionic filament electron emitter. It offers a great advantage to the operation with reactive as well as inert gases. This MP cathode has been adapted in Kaufman-type ion source and have successfully obtained an argon ion-beam current of 110 mA and an oxygen ion-beam current of 43 mA in 25 mm diameter.« less

  8. Development of Compact Electron Cyclotron Resonance Ion Source with Permanent Magnets for High-Energy Carbon-Ion Therapy

    NASA Astrophysics Data System (ADS)

    Muramatsu, M.; Kitagawa, A.; Iwata, Y.; Hojo, S.; Sakamoto, Y.; Sato, S.; Ogawa, Hirotsugu; Yamada, S.; Ogawa, Hiroyuki; Yoshida, Y.; Ueda, T.; Miyazaki, H.; Drentje, A. G.

    2008-11-01

    Heavy-ion cancer treatment is being carried out at the Heavy Ion Medical Accelerator in Chiba (HIMAC) with 140 to 400 MeV/n carbon ions at National Institute of Radiological Sciences (NIRS) since 1994. At NIRS, more than 4,000 patients have been treated, and the clinical efficiency of carbon ion radiotherapy has been demonstrated for many diseases. A more compact accelerator facility for cancer therapy is now being constricted at the Gunma University. In order to reduce the size of the injector (consists of ion source, low-energy beam transport and post-accelerator Linac include these power supply and cooling system), an ion source requires production of highly charged carbon ions, lower electric power for easy installation of the source on a high-voltage platform, long lifetime and easy operation. A compact Electron Cyclotron Resonance Ion Source (ECRIS) with all permanent magnets is one of the best types for this purpose. An ECRIS has advantage for production of highly charged ions. A permanent magnet is suitable for reduce the electric power and cooling system. For this, a 10 GHz compact ECRIS with all permanent magnets (Kei2-source) was developed. The maximum mirror magnetic fields on the beam axis are 0.59 T at the extraction side and 0.87 T at the gas-injection side, while the minimum B strength is 0.25 T. These parameters have been optimized for the production of C4+ based on experience at the 10 GHz NIRS-ECR ion source. The Kei2-source has a diameter of 320 mm and a length of 295 mm. The beam intensity of C4+ was obtained to be 618 eμA under an extraction voltage of 30 kV. Outline of the heavy ion therapy and development of the compact ion source for new facility are described in this paper.

  9. Beam property measurement of a 300-kV ion source test stand for a 1-MV electrostatic accelerator

    NASA Astrophysics Data System (ADS)

    Park, Sae-Hoon; Kim, Dae-Il; Kim, Yu-Seok

    2016-09-01

    The KOMAC (Korea Multi-purpose Accelerator Complex) has been developing a 300-kV ion source test stand for a 1-MV electrostatic accelerator for industrial purposes. A RF ion source was operated at 200 MHz with its matching circuit. The beam profile and emittance were measured behind an accelerating column to confirm the beam property from the RF ion source. The beam profile was measured at the end of the accelerating tube and at the beam dump by using a beam profile monitor (BPM) and wire scanner. An Allison-type emittance scanner was installed behind the beam profile monitor (BPM) to measure the beam density in phase space. The measurement results for the beam profile and emittance are presented in this paper.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, T.; Yang, Z.; Dong, P.

    The cold-cathode Penning ion gauge (PIG) type ion source has been used for generation of negative hydrogen (H{sup -}) ions as the internal ion source of a compact cyclotron. A novel method called electrical shielding box dc beam measurement is described in this paper, and the beam intensity was measured under dc extraction inside an electrical shielding box. The results of the trajectory simulation and dc H{sup -} beam extraction measurement were presented. The effect of gas flow rate, magnetic field strength, arc current, and extraction voltage were also discussed. In conclusion, the dc H{sup -} beam current of aboutmore » 4 mA from the PIG ion source with the puller voltage of 40 kV and arc current of 1.31 A was extrapolated from the measurement at low extraction dc voltages.« less

  11. Mass analyzer ``MASHA'' high temperature target and plasma ion source

    NASA Astrophysics Data System (ADS)

    Semchenkov, A. G.; Rassadov, D. N.; Bekhterev, V. V.; Bystrov, V. A.; Chizov, A. Yu.; Dmitriev, S. N.; Efremov, A. A.; Guljaev, A. V.; Kozulin, E. M.; Oganessian, Yu. Ts.; Starodub, G. Ya.; Voskresensky, V. M.; Bogomolov, S. L.; Paschenko, S. V.; Zelenak, A.; Tikhonov, V. I.

    2004-05-01

    A new separator and mass analyzer of super heavy atoms (MASHA) has been created at the FLNR JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10-3. First experiments with the FEBIAD plasma ion source have been done and give an efficiency of ionization of up to 20% for Kr with a low flow test leak (6 particle μA). We suppose a magnetic field optimization, using the additional electrode (einzel lens type) in the extracting system, and an improving of the vacuum conditions in order to increase the ion source efficiency.

  12. Production of multicharged metal ion beams on the first stage of tandem-type ECRIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagino, Shogo, E-mail: hagino@nf.eie.eng.osaka-u.ac.jp; Nagaya, Tomoki; Nishiokada, Takuya

    2016-02-15

    Multicharged metal ion beams are required to be applied in a wide range of fields. We aim at synthesizing iron-endohedral fullerene by transporting iron ion beams from the first stage into the fullerene plasma in the second stage of the tandem-type electron cyclotron resonance ion source (ECRIS). We developed new evaporators by using a direct ohmic heating method and a radiation heating method from solid state pure metal materials. We investigate their properties in the test chamber and produce iron ions on the first stage of the tandem-type ECRIS. As a result, we were successful in extracting Fe{sup +} ionmore » beams from the first stage and introducing Fe{sup +} ion beams to the second stage. We will try synthesizing iron-endohedral fullerene on the tandem-type ECRIS by using these evaporators.« less

  13. Neutron generator for BNCT based on high current ECR ion source with gyrotron plasma heating.

    PubMed

    Skalyga, V; Izotov, I; Golubev, S; Razin, S; Sidorov, A; Maslennikova, A; Volovecky, A; Kalvas, T; Koivisto, H; Tarvainen, O

    2015-12-01

    BNCT development nowadays is constrained by a progress in neutron sources design. Creation of a cheap and compact intense neutron source would significantly simplify trial treatments avoiding use of expensive and complicated nuclear reactors and accelerators. D-D or D-T neutron generator is one of alternative types of such sources for. A so-called high current quasi-gasdynamic ECR ion source with plasma heating by millimeter wave gyrotron radiation is suggested to be used in a scheme of D-D neutron generator in the present work. Ion source of that type was developed in the Institute of Applied Physics of Russian Academy of Sciences (Nizhny Novgorod, Russia). It can produce deuteron ion beams with current density up to 700-800 mA/cm(2). Generation of the neutron flux with density at the level of 7-8·10(10) s(-1) cm(-2) at the target surface could be obtained in case of TiD2 target bombardment with deuteron beam accelerated to 100 keV. Estimations show that it is enough for formation of epithermal neutron flux with density higher than 10(9) s(-1) cm(-2) suitable for BNCT. Important advantage of described approach is absence of Tritium in the scheme. First experiments performed in pulsed regime with 300 mA, 45 kV deuteron beam directed to D2O target demonstrated 10(9) s(-1) neutron flux. This value corresponds to theoretical estimations and proofs prospects of neutron generator development based on high current quasi-gasdynamic ECR ion source. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. ISHN Ion Source Control System. First Steps Toward an EPICS Based ESS-Bilbao Accelerator Control System

    NASA Astrophysics Data System (ADS)

    Eguiraun, M.; Jugo, J.; Arredondo, I.; del Campo, M.; Feuchtwanger, J.; Etxebarria, V.; Bermejo, F. J.

    2013-04-01

    ISHN (Ion Source Hydrogen Negative) consists of a Penning type ion source in operation at ESS-Bilbao facilities. From the control point of view, this source is representative of the first steps and decisions taken towards the general control architecture of the whole accelerator to be built. The ISHN main control system is based on a PXI architecture, under a real-time controller which is programmed using LabVIEW. This system, with additional elements, is connected to the general control system. The whole system is based on EPICS for the control network, and the modularization of the communication layers of the accelerator plays an important role in the proposed control architecture.

  15. Bayesian Integration and Characterization of Composition C-4 Plastic Explosives Based on Time-of-Flight Secondary Ion Mass Spectrometry and Laser Ablation-Inductively Coupled Plasma Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahoney, Christine M.; Kelly, Ryan T.; Alexander, M. L.

    Key elements regarding the use of non-radioactive ionization sources will be presented as related to explosives detection by mass spectrometry and ion mobility spectrometry. Various non-radioactive ionization sources will be discussed along with associated ionization mechanisms pertaining to specific sample types.

  16. Studies on the Extraction Region of the Type VI RF Driven H- Ion Source

    NASA Astrophysics Data System (ADS)

    McNeely, P.; Bandyopadhyay, M.; Franzen, P.; Heinemann, B.; Hu, C.; Kraus, W.; Riedl, R.; Speth, E.; Wilhelm, R.

    2002-11-01

    IPP Garching has spent several years developing a RF driven H- ion source intended to be an alternative to the current ITER (International Thermonuclear Experimental Reactor) reference design ion source. A RF driven source offers a number of advantages to ITER in terms of reduced costs and maintenance requirements. Although the RF driven ion source has shown itself to be competitive with a standard arc filament ion source for positive ions many questions still remain on the physics behind the production of the H- ion beam extracted from the source. With the improvements that have been implemented to the BATMAN (Bavarian Test Machine for Negative Ions) facility over the last two years it is now possible to study both the extracted ion beam and the plasma in the vicinity of the extraction grid in greater detail. This paper will show the effect of changing the extraction and acceleration voltage on both the current and shape of the beam as measured on the calorimeter some 1.5 m downstream from the source. The extraction voltage required to operate in the plasma limit is 3 kV. The perveance optimum for the extraction system was determined to be 2.2 x 10-6 A/V3/2 and occurs at 2.7 kV extraction voltage. The horizontal and vertical beam half widths vary as a function of the extracted ion current and the horizontal half width is generally smaller than the vertical. The effect of reducing the co-extracted electron current via plasma grid biasing on the H- current extractable and the beam profile from the source is shown. It is possible in the case of a silver contaminated plasma to reduce the co-extracted electron current to 20% of the initial value by applying a bias of 12 V. In the case where argon is present in the plasma, biasing is observed to have minimal effect on the beam half width but in a pure hydrogen plasma the beam half width increases as the bias voltage increases. New Langmuir probe studies that have been carried out parallel to the plasma grid (in the vicinity of the peak of the external magnetic filter field) and changes to source parameters as a function of power, and argon addition are reported. The behaviour of the electron density is different when the plasma is argon seeded showing a strong increase with RF power. The plasma potential is decreased by 2 V when argon is added to the plasma. The effect of the presence of unwanted silver sputtered from the Faraday screen by Ar+ ions on both the source performance and the plasma parameters is also presented. The silver dramatically downgraded source performance in terms of current density and produced an early saturation of current with applied RF power. Recently, collaboration was begun with the Technical University of Augsburg to perform spectroscopic measurements on the Type VI ion source. The final results of this analysis are not yet ready but some interesting initial observations on the gas temperature, disassociation degree and impurity ions will be presented.

  17. Development of ion source with a washer gun for pulsed neutral beam injection.

    PubMed

    Asai, T; Yamaguchi, N; Kajiya, H; Takahashi, T; Imanaka, H; Takase, Y; Ono, Y; Sato, K N

    2008-06-01

    A new type of economical neutral beam source has been developed by using a single washer gun, pulsed operation, and a simple electrode system. We replaced the conventional hot filaments for arc-discharge-type plasma formation with a single stainless-steel washer gun, eliminating the entire dc power supply for the filaments and the cooling system for the electrodes. Our initial experiments revealed successful beam extraction up to 10 kV and 8.6 A, based on spatial profile measurements of density and temperature in the plasma source. The system also shows the potential to control the beam profile by controlling the plasma parameters in the ion accumulation chamber.

  18. Characteristics of a RF-Driven Ion Source for a Neutron Generator Used for Associated Particle Imaging

    NASA Astrophysics Data System (ADS)

    Wu, Ying; Hurley, John P.; Ji, Qing; Kwan, Joe; Leung, Ka-Ngo

    2009-03-01

    We present recent work on a prototype compact neutron generator for associated particle imaging (API). API uses alpha particles that are produced simultaneously with neutrons in the deuterium-tritium (2D(3T,n)4α) fusion reaction to determine the direction of the neutrons upon exiting the reaction. This method determines the spatial position of each neutron interaction and requires the neutrons to be generated from a small spot in order to achieve high spatial resolution. The ion source for API is designed to produce a focused ion beam with a beam spot diameter of 1-mm or less on the target. We use an axial type neutron generator with a predicted neutron yield of 108 n/s for a 50 μA D/T ion beam current accelerated to 80 kV. The generator utilizes an RF planar spiral antenna at 13.56 MHz to create a highly efficient inductively coupled plasma at the ion source. Experimental results show that beams with an atomic ion fraction of over 80% can be obtained while utilizing only 100 watts of RF power in the ion source. A single acceleration gap with a secondary electron suppression electrode is used in the tube. Experimental results from ion source testing, such as the current density, atomic ion fraction, electron temperature, and electron density will be discussed.

  19. A review of vacuum ARC ion source research at ANSTO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, P.J.; Noorman, J.T.; Watt, G.C.

    1996-08-01

    The authors talk briefly describes the history and current status of vacuum arc ion source research at the Australian Nuclear Science and Technology Organization (ANSTO). In addition, the author makes some mention of the important role of previous Vacuum Arc Ion Source Workshops in fostering the development of this research field internationally. During the period 1986 - 89, a type of plasma centrifuge known as a vacuum arc centrifuge was developed at ANSTO as part of a research project on stable isotope separation. In this device, a high current vacuum arc discharge was used to produce a metal plasma whichmore » was subsequently rotated in an axial magnetic field. The high rotational speeds (10{sup 5} - 10{sup 6} rad sec{sup {minus}1}) achievable with this method produce centrifugal separation of ions with different mass:charge ratios such as isotopic species. The first portent of things to come occurred in 1985 when Dr. Ian Brown visited ANSTO`s Lucas Heights Research Laboratories and presented a talk on the metal vapour vacuum arc (MEVVA) ion source which had only recently been invented by Brown and co-workers, J. Galvin and R. MacGill, at Lawrence Berkeley Laboratory. For those of us involved in vacuum arc centrifuge research, this was an exciting development primarily because the metal vapour vacuum arc plasma source was common to both devices. Thus, a type of arc, which had since the 1930`s been extensively investigated as a means of switching high current loads, had found wider application as a useful plasma source.« less

  20. Tests of New NIRS Compact ECR Ion Source for Carbon Therapy

    NASA Astrophysics Data System (ADS)

    Muramatsu, M.; Kitagawa, A.; Sakamoto, Y.; Sato, S.; Sato, Y.; Ogawa, Hirotsugu; Yamada, S.; Ogawa, Hiroyuki; Yoshida, Y.; Drentje, A. G.

    2005-03-01

    Ion sources for medical facilities should have characteristics of easy maintenance, low electric power, good stability and long operation time without maintenance (one year or more). Based on the performance of the proto type compact source, a 10 GHz compact ECR ion source with all permanent magnets has been developed. Peak values of the mirror magnetic field along the beam axis are 0.59 T at the extraction side and 0.87 T at the gas injection side, respectively, while the minimum B strength is 0.25 T. The source has a diameter of 320 mm and a length of 295 mm. The result of beam tests showed that a C4+ intensity of 530 μA was obtained under an extraction voltage of 40 kV. This paper describes the experimental results for the new source.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koh, S.K.; Song, S.K.; Choi, W.K.

    A Kaufman-type 5 cm convex gridded ion-beam source is characterized in terms of angle-resolved ion-beam current density and beam uniformity at various discharge currents, electromagnet currents, and acceleration potentials. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  2. Ion source and beam guiding studies for an API neutron generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sy, A.; Ji, Q.; Persaud, A.

    2013-04-19

    Recently developed neutron imaging methods require high neutron yields for fast imaging times and small beam widths for good imaging resolution. For ion sources with low current density to be viable for these types of imaging methods, large extraction apertures and beam focusing must be used. We present recent work on the optimization of a Penning-type ion source for neutron generator applications. Two multi-cusp magnet configurations have been tested and are shown to increase the extracted ion current density over operation without multi-cusp magnetic fields. The use of multi-cusp magnetic confinement and gold electrode surfaces have resulted in increased ionmore » current density, up to 2.2 mA/cm{sup 2}. Passive beam focusing using tapered dielectric capillaries has been explored due to its potential for beam compression without the cost and complexity issues associated with active focusing elements. Initial results from first experiments indicate the possibility of beam compression. Further work is required to evaluate the viability of such focusing methods for associated particle imaging (API) systems.« less

  3. Characterization of Boron Contamination in Fluorine Implantation using Boron Trifluoride as a Source Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmeide, Matthias; Kondratenko, Serguei

    2011-01-07

    Fluorine implantation process purity was considered on different types of high current implanters. It was found that implanters equipped with an indirectly heated cathode ion source show an enhanced deep boron contamination compared to a high current implanter using a cold RF-driven multicusp ion source when boron trifluoride is used for fluorine implantations. This contamination is directly related to the source technology and thus, should be considered potentially for any implanter design using hot cathode/hot filament ion source, independently of the manufacturer.The boron contamination results from the generation of double charged boron ions in the arc chamber and the subsequentmore » charge exchange reaction to single charged boron ions taking place between the arc chamber and the extraction electrode. The generation of the double charged boron ions depends mostly on the source parameters, whereas the pressure in the region between the arc chamber and the extraction electrode is mostly responsible for the charge exchange from double charged to single charged ions. The apparent mass covers a wide range, starting at mass 11. A portion of boron ions with energies of (19/11) times higher than fluorine energy has the same magnetic rigidity as fluorine beam and cannot be separated by the analyzer magnet. The earlier described charge exchange effects between the extraction electrode and the entrance to the analyzer magnet, however, generates boron beam with a higher magnetic rigidity compared to fluorine beam and cannot cause boron contamination after mass-separation.The energetic boron contamination was studied as a function of the ion source parameters, such as gas flow, arc voltage, and source magnet settings, as well as analyzing magnet aperture resolution. This allows process optimization reducing boron contamination to the level acceptable for device performance.« less

  4. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    NASA Astrophysics Data System (ADS)

    Hill, Nicholas C.; Limbach, Patrick A.; Shomo, Ronald E., II; Marshall, Alan G.; Appelhans, Anthony D.; Delmore, James E.

    1991-11-01

    The coupling of an autoneutralizing SF-6 fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis [e.g., production of abundant pseudomolecular (M+H)+ ions] of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with tetra-butylammonium bromide and a Tylenol■ sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon■. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  5. Modeling of negative ion transport in a plasma source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riz, David; Departement de Recherches sur la Fusion Controelee CE Cadarache, 13108 St Paul lez Durance; Pamela, Jerome

    1998-08-20

    A code called NIETZSCHE has been developed to simulate the negative ion transport in a plasma source, from their birth place to the extraction holes. The ion trajectory is calculated by numerically solving the 3-D motion equation, while the atomic processes of destruction, of elastic collision H{sup -}/H{sup +} and of charge exchange H{sup -}/H{sup 0} are handled at each time step by a Monte-Carlo procedure. This code can be used to calculate the extraction probability of a negative ion produced at any location inside the source. Calculations performed with NIETZSCHE have allowed to explain, either quantitatively or qualitatively, severalmore » phenomena observed in negative ion sources, such as the isotopic H{sup -}/D{sup -} effect, and the influence of the plasma grid bias or of the magnetic filter on the negative ion extraction. The code has also shown that in the type of sources contemplated for ITER, which operate at large arc power densities (>1 W cm{sup -3}), negative ions can reach the extraction region provided if they are produced at a distance lower than 2 cm from the plasma grid in the case of 'volume production' (dissociative attachment processes), or if they are produced at the plasma grid surface, in the vicinity of the extraction holes.« less

  6. Modeling of negative ion transport in a plasma source

    NASA Astrophysics Data System (ADS)

    Riz, David; Paméla, Jérôme

    1998-08-01

    A code called NIETZSCHE has been developed to simulate the negative ion transport in a plasma source, from their birth place to the extraction holes. The ion trajectory is calculated by numerically solving the 3-D motion equation, while the atomic processes of destruction, of elastic collision H-/H+ and of charge exchange H-/H0 are handled at each time step by a Monte-Carlo procedure. This code can be used to calculate the extraction probability of a negative ion produced at any location inside the source. Calculations performed with NIETZSCHE have allowed to explain, either quantitatively or qualitatively, several phenomena observed in negative ion sources, such as the isotopic H-/D- effect, and the influence of the plasma grid bias or of the magnetic filter on the negative ion extraction. The code has also shown that in the type of sources contemplated for ITER, which operate at large arc power densities (>1 W cm-3), negative ions can reach the extraction region provided if they are produced at a distance lower than 2 cm from the plasma grid in the case of «volume production» (dissociative attachment processes), or if they are produced at the plasma grid surface, in the vicinity of the extraction holes.

  7. Development and testing of a pulsed helium ion source for probing materials and warm dense matter studies

    NASA Astrophysics Data System (ADS)

    Ji, Q.; Seidl, P. A.; Waldron, W. L.; Takakuwa, J. H.; Friedman, A.; Grote, D. P.; Persaud, A.; Barnard, J. J.; Schenkel, T.

    2016-02-01

    The neutralized drift compression experiment was designed and commissioned as a pulsed, linear induction accelerator to drive thin targets to warm dense matter (WDM) states with peak temperatures of ˜1 eV using intense, short pulses (˜1 ns) of 1.2 MeV lithium ions. At that kinetic energy, heating a thin target foil near the Bragg peak energy using He+ ions leads to more uniform energy deposition of the target material than Li+ ions. Experiments show that a higher current density of helium ions can be delivered from a plasma source compared to Li+ ions from a hot plate type ion source. He+ beam pulses as high as 200 mA at the peak and 4 μs long were measured from a multi-aperture 7-cm-diameter emission area. Within ±5% variation, the uniform beam area is approximately 6 cm across. The accelerated and compressed pulsed ion beams can be used for materials studies and isochoric heating of target materials for high energy density physics experiments and WDM studies.

  8. Development and testing of a pulsed helium ion source for probing materials and warm dense matter studies.

    PubMed

    Ji, Q; Seidl, P A; Waldron, W L; Takakuwa, J H; Friedman, A; Grote, D P; Persaud, A; Barnard, J J; Schenkel, T

    2016-02-01

    The neutralized drift compression experiment was designed and commissioned as a pulsed, linear induction accelerator to drive thin targets to warm dense matter (WDM) states with peak temperatures of ∼1 eV using intense, short pulses (∼1 ns) of 1.2 MeV lithium ions. At that kinetic energy, heating a thin target foil near the Bragg peak energy using He(+) ions leads to more uniform energy deposition of the target material than Li(+) ions. Experiments show that a higher current density of helium ions can be delivered from a plasma source compared to Li(+) ions from a hot plate type ion source. He(+) beam pulses as high as 200 mA at the peak and 4 μs long were measured from a multi-aperture 7-cm-diameter emission area. Within ±5% variation, the uniform beam area is approximately 6 cm across. The accelerated and compressed pulsed ion beams can be used for materials studies and isochoric heating of target materials for high energy density physics experiments and WDM studies.

  9. Development and testing of a pulsed helium ion source for probing materials and warm dense matter studies

    DOE PAGES

    Ji, Q.; Seidl, P. A.; Waldron, W. L.; ...

    2015-11-12

    In this paper, the neutralized drift compression experiment was designed and commissioned as a pulsed, linear induction accelerator to drive thin targets to warm dense matter (WDM) states with peak temperatures of ~1 eV using intense, short pulses (~1 ns) of 1.2 MeV lithium ions. At that kinetic energy, heating a thin target foil near the Bragg peak energy using He + ions leads to more uniform energy deposition of the target material than Li + ions. Experiments show that a higher current density of helium ions can be delivered from a plasma source compared to Li + ions frommore » a hot plate type ion source. He + beam pulses as high as 200 mA at the peak and 4 μs long were measured from a multi-aperture 7-cm-diameter emission area. Within ±5% variation, the uniform beam area is approximately 6 cm across. Finally, the accelerated and compressed pulsed ion beams can be used for materials studies and isochoric heating of target materials for high energy density physics experiments and WDM studies.« less

  10. Survey of ion plating sources

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1979-01-01

    Ion plating is a plasma deposition technique where ions of the gas and the evaporant have a decisive role in the formation of a coating in terms of adherence, coherence, and morphological growth. The range of materials that can be ion plated is predominantly determined by the selection of the evaporation source. Based on the type of evaporation source, gaseous media and mode of transport, the following will be discussed: resistance, electron beam sputtering, reactive and ion beam evaporation. Ionization efficiencies and ion energies in the glow discharge determine the percentage of atoms which are ionized under typical ion plating conditions. The plating flux consists of a small number of energetic ions and a large number of energetic neutrals. The energy distribution ranges from thermal energies up to a maximum energy of the discharge. The various reaction mechanisms which contribute to the exceptionally strong adherence - formation of a graded substrate/coating interface are not fully understood, however the controlling factors are evaluated. The influence of process variables on the nucleation and growth characteristics are illustrated in terms of morphological changes which affect the mechanical and tribological properties of the coating.

  11. A survey of Kaufman thruster cathodes

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Nakanishi, S.

    1971-01-01

    A survey is presented of the various cathodes which were developed and used in the Kaufman ion thruster. The electron bombardment type ion source is briefly described. The general design, operating characteristics, and power requirements are shown for each type of cathode from the refractory metals used in 1960 to the plasma discharge hollow cathodes of today. A detailed discussion of the hollow cathode is given, including starting and cyclic operating characteristics as well as more fundamental design parameters. Tests to date show that the plasma hollow cathode is an efficient electron source with demonstrated durability over 10,000 hours.

  12. Peptide Fragmentation Induced by Radicals at Atmospheric Pressure

    PubMed Central

    Vilkov, Andrey N.; Laiko, Victor V.; Doroshenko, Vladimir M.

    2009-01-01

    A novel ion dissociation technique, which is capable of providing an efficient fragmentation of peptides at essentially atmospheric pressure conditions, is developed. The fragmentation patterns observed often contain c-type fragments that are specific to ECD/ETD, along with the y-/b- fragments that are specific to CAD. In the presented experimental setup, ion fragmentation takes place within a flow reactor located in the atmospheric pressure region between the ion source and the mass spectrometer. According to a proposed mechanism, the fragmentation results from the interaction of ESI-generated analyte ions with the gas-phase radical species produced by a corona discharge source. PMID:19034885

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maimone, F., E-mail: f.maimone@gsi.de; Tinschert, K.; Endermann, M.

    In order to increase the intensity of the highly charged ions produced by the Electron Cyclotron Resonance Ion Sources (ECRISs), techniques like the frequency tuning and the afterglow mode have been developed and in this paper the effect on the ion production is shown for the first time when combining both techniques. Recent experimental results proved that the tuning of the operating frequency of the ECRIS is a promising technique to achieve higher ion currents of higher charge states. On the other hand, it is well known that the afterglow mode of the ECRIS operation can provide more intense pulsedmore » ion beams in comparison with the continuous wave (cw) operation. These two techniques can be combined by pulsing the variable frequency signal driving the traveling wave tube amplifier which provides the high microwave power to the ECRIS. In order to analyze the effect of these two combined techniques on the ion source performance, several experiments were carried out on the pulsed frequency tuned CAPRICE (Compacte source A Plusiers Résonances Ionisantes Cyclotron Electroniques)-type ECRIS. Different waveforms and pulse lengths have been investigated under different settings of the ion source. The results of the pulsed mode have been compared with those of cw operation.« less

  14. Measurement of ion species in high current ECR H⁺/D⁺ ion source for IFMIF (International Fusion Materials Irradiation Facility).

    PubMed

    Shinto, K; Senée, F; Ayala, J-M; Bolzon, B; Chauvin, N; Gobin, R; Ichimiya, R; Ihara, A; Ikeda, Y; Kasugai, A; Kitano, T; Kondo, K; Marqueta, A; Okumura, Y; Takahashi, H; Valette, M

    2016-02-01

    Ion species ratio of high current positive hydrogen/deuterium ion beams extracted from an electron-cyclotron-resonance ion source for International Fusion Materials Irradiation Facility accelerator was measured by the Doppler shift Balmer-α line spectroscopy. The proton (H(+)) ratio at the middle of the low energy beam transport reached 80% at the hydrogen ion beam extraction of 100 keV/160 mA and the deuteron (D(+)) ratio reached 75% at the deuterium ion beam extraction of 100 keV/113 mA. It is found that the H(+) ratio measured by the spectroscopy gives lower than that derived from the phase-space diagram measured by an Allison scanner type emittance monitor. The H(+)/D(+) ratio estimated by the emittance monitor was more than 90% at those extraction currents.

  15. Development of a Time-tagged Neutron Source for SNM Detection

    DOE PAGES

    Ji, Qing; Ludewigt, Bernhard; Wallig, Joe; ...

    2015-06-18

    Associated particle imaging (API) is a powerful technique for special nuclear material (SNM) detection and characterization of fissile material configurations. A sealed-tube neutron generator has been under development by Lawrence Berkeley National Laboratory to reduce the beam spot size on the neutron production target to 1 mm in diameter for a several-fold increase in directional resolution and simultaneously increases the maximum attainable neutron flux. A permanent magnet 2.45 GHz microwave-driven ion source has been adopted in this time-tagged neutron source. This type of ion source provides a high plasma density that allows the use of a sub-millimeter aperture for themore » extraction of a sufficient ion beam current and lets us achieve a much reduced beam spot size on target without employing active focusing. The design of this API generator uses a custom-made radial high voltage insulator to minimize source to neutron production target distance and to provide for a simple ion source cooling arrangement. Preliminary experimental results showed that more than 100 µA of deuterium ions have been extracted, and the beam diameter on the neutron production target is around 1 mm.« less

  16. Mechanical properties of ion-beam-textured surgical implant alloys

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.

    1977-01-01

    An electron-bombardment Hg ion thruster was used as an ion source to texture surfaces of materials used to make orthopedic and/or dental prostheses or implants. The materials textured include 316 stainless steel, titanium-6% aluminum, 4% vanadium, and cobalt-20% chromium, 15% tungsten. To determine the effect of ion texturing on the ultimate strength and yield strength, stainless steel and Co-Cr-W alloy samples were tensile tested to failure. Three types of samples of both materials were tested. One type was ion-textured (the process also heats each sample to 300 C), another type was simply heated to 300 C in an oven, and the third type was untreated. Stress-strain diagrams, 0.2% offset yield strength data, total elongation data, and area reduction data are presented. Fatigue specimens of ion textured and untextured 316 stainless steel and Ti-6% Al-4% V were tested. Included as an ion textured sample is a Ti-6% Al-4% V sample which was ion machined by means of Ni screen mask so as to produce an array of 140 mu m x 140 mu m x 60 mu m deep pits. Scanning electron microscopy was used to characterize the ion textured surfaces.

  17. Meniscus and beam halo formation in a tandem-type negative ion source with surface production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyamoto, K.; Okuda, S.; Hatayama, A.

    2012-06-04

    A meniscus of plasma-beam boundary in H{sup -} ion sources largely affects the extracted H{sup -} ion beam optics. Although it is hypothesized that the shape of the meniscus is one of the main reasons for the beam halo observed in experiments, a physical mechanism of the beam halo formation is not yet fully understood. In this letter, it is first shown by the 2D particle in cell simulation that the H{sup -} ions extracted from the periphery of the meniscus cause a beam halo since the surface produced H{sup -} ions penetrate into the bulk plasma, and, thus, themore » resultant meniscus has a relatively large curvature.« less

  18. Hydrogeochemistry of the Catskill Mountains of New York.

    PubMed

    Parisio, Steven J; Halton, Casey R; Bowles, Emily K; Keimowitz, Alison R; Corey, Karen; Myers, Kellie; Adams, Morton S

    2013-09-01

    Major ion chemistry of Catskill region groundwater is characterized on the basis of 207 analyses compiled from three sources, including a web-based U.S. Geological Survey database, state agency regulatory compliance data, and sampling of trailside springs performed by the authors. All samples were analyzed for the complete set of major ions, including calcium, magnesium, sodium, potassium, bicarbonate, chloride, sulfate, and nitrate. Groundwater in pristine, high-elevation areas of the Catskill Peaks was found to be predominantly of calcium bicarbonate, calcium sulfate, or calcium bicarbonate-sulfate types, with relatively low ionic strength. Groundwater at lower elevations along the margins of the region or in valley bottoms was predominantly of sodium-chloride or sodium-bicarbonate types, showing the effects of road salt and other local pollution sources. Nitrate and sulfate enrichment attributable to regional air pollution sources were most evident in the high-elevation spring samples, owing to the generally low concentrations of other major ions. Trailside springs appear to be viable low-cost sources for obtaining samples representative of groundwater, especially in remote and inaccessible areas of the Catskill forest preserve. © 2013 New York Academy of Sciences.

  19. H- ion sources for CERN's Linac4

    NASA Astrophysics Data System (ADS)

    Lettry, J.; Aguglia, D.; Coutron, Y.; Chaudet, E.; Dallocchio, A.; Gil Flores, J.; Hansen, J.; Mahner, E.; Mathot, S.; Mattei, S.; Midttun, O.; Moyret, P.; Nisbet, D.; O'Neil, M.; Paoluzzi, M.; Pasquino, C.; Pereira, H.; Arias, J. Sanchez; Schmitzer, C.; Scrivens, R.; Steyaert, D.

    2013-02-01

    The specifications set to the Linac4 ion source are: H- ion pulses of 0.5 ms duration, 80 mA intensity and 45 keV energy within a normalized emittance of 0.25 mmmrad RMS at a repetition rate of 2 Hz. In 2010, during the commissioning of a prototype based on H- production from the plasma volume, it was observed that the powerful co-extracted electron beam inherent to this type of ion source could destroy its electron beam dump well before reaching nominal parameters. However, the same source was able to provide 80 mA of protons mixed with a small fraction of H2+ and H3+ molecular ions. The commissioning of the radio frequency quadrupole accelerator (RFQ), beam chopper and H- beam diagnostics of the Linac4 are scheduled for 2012 and its final installation in the underground building is to start in 2013. Therefore, a crash program was launched in 2010 and reviewed in 2011 aiming at keeping the original Linac4 schedule with the following deliverables: Design and production of a volume ion source prototype suitable for 20-30 mA H- and 80 mA proton pulses at 45 keV by mid-2012. This first prototype will be dedicated to the commissioning of the low energy components of the Linac4. Design and production of a second prototype suitable for 40-50 mA H- based on an external RF solenoid plasma heating and cesiated-surface production mechanism in 2013 and a third prototype based on BNL's Magnetron aiming at reliable 2 Hz and 80 mA H- operations in 2014. In order to ease the future maintenance and allow operation with Ion sources based on three different production principles, an ion source "front end" providing alignment features, pulsed gas injection, pumping units, beam tuning capabilities and pulsed bipolar high voltage acceleration was designed and is being produced. This paper describes the progress of the Linac4 ion source program, the design of the Front end and first ion source prototype. Preliminary results of the summer 2012 commissioning are presented. The outlook on the future prototype ion sources is sketched.

  20. Development of bipolar-pulse accelerator for intense pulsed ion beam acceleration

    NASA Astrophysics Data System (ADS)

    Masugata, Katsumi; Shimizu, Yuichro; Fujioka, Yuhki; Kitamura, Iwao; Tanoue, Hisao; Arai, Kazuo

    2004-12-01

    To improve the purity of intense pulsed ion beams, a new type of pulsed ion beam accelerator named "bipolar pulse accelerator" was proposed. To confirm the principle of the accelerator a prototype of the experimental system was developed. The system utilizes By type magnetically insulated acceleration gap and operated with single polar negative pulse. A coaxial gas puff plasma gun was used as an ion source, which was placed inside the grounded anode. Source plasma (nitrogen) of current density ≈25 A/cm2, duration ≈1.5 μs was injected into the acceleration gap by the plasma gun. The ions were successfully accelerated from the grounded anode to the drift tube by applying negative pulse of voltage 240 kV, duration 100 ns to the drift tube. Pulsed ion beam of current density ≈40 A/cm2, duration ≈50 ns was obtained at 41 mm downstream from the anode surface. To evaluate the irradiation effect of the ion beam to solid material, an amorphous silicon thin film of thickness ≈500 nm was used as the target, which was deposited on the glass substrate. The film was found to be poly-crystallized after 4-shots of the pulsed nitrogen ion beam irradiation.

  1. Automatic control of a negative ion source

    NASA Astrophysics Data System (ADS)

    Saadatmand, K.; Sredniawski, J.; Solensten, L.

    1989-04-01

    A CAMAC based control architecture is devised for a Berkeley-type H - volume ion source [1]. The architecture employs three 80386 TM PCs. One PC is dedicated to control and monitoring of source operation. The other PC functions with digitizers to provide data acquisition of waveforms. The third PC is used for off-line analysis. Initially, operation of the source was put under remote computer control (supervisory). This was followed by development of an automated startup procedure. Finally, a study of the physics of operation is now underway to establish a data base from which automatic beam optimization can be derived.

  2. Evaluation of power transfer efficiency for a high power inductively coupled radio-frequency hydrogen ion source

    NASA Astrophysics Data System (ADS)

    Jain, P.; Recchia, M.; Cavenago, M.; Fantz, U.; Gaio, E.; Kraus, W.; Maistrello, A.; Veltri, P.

    2018-04-01

    Neutral beam injection (NBI) for plasma heating and current drive is necessary for International Thermonuclear Experimental reactor (ITER) tokamak. Due to its various advantages, a radio frequency (RF) driven plasma source type was selected as a reference ion source for the ITER heating NBI. The ITER relevant RF negative ion sources are inductively coupled (IC) devices whose operational working frequency has been chosen to be 1 MHz and are characterized by high RF power density (˜9.4 W cm-3) and low operational pressure (around 0.3 Pa). The RF field is produced by a coil in a cylindrical chamber leading to a plasma generation followed by its expansion inside the chamber. This paper recalls different concepts based on which a methodology is developed to evaluate the efficiency of the RF power transfer to hydrogen plasma. This efficiency is then analyzed as a function of the working frequency and in dependence of other operating source and plasma parameters. The study is applied to a high power IC RF hydrogen ion source which is similar to one simplified driver of the ELISE source (half the size of the ITER NBI source).

  3. ETD in a traveling wave ion guide at tuned Z-spray ion source conditions allows for site-specific hydrogen/deuterium exchange measurements.

    PubMed

    Rand, Kasper D; Pringle, Steven D; Morris, Michael; Engen, John R; Brown, Jeffery M

    2011-10-01

    The recent application of electron transfer dissociation (ETD) to measure the hydrogen exchange of proteins in solution at single-residue resolution (HX-ETD) paves the way for mass spectrometry-based analyses of biomolecular structure at an unprecedented level of detail. The approach requires that activation of polypeptide ions prior to ETD is minimal so as to prevent undesirable gas-phase randomization of the deuterium label from solution (i.e., hydrogen scrambling). Here we explore the use of ETD in a traveling wave ion guide of a quadrupole-time-of-flight (Q-TOF) mass spectrometer with a "Z-spray" type ion source, to measure the deuterium content of individual residues in peptides. We systematically identify key parameters of the Z-spray ion source that contribute to collisional activation and define conditions that allow ETD experiments to be performed in the traveling wave ion guide without gas-phase hydrogen scrambling. We show that ETD and supplemental collisional activation in a subsequent traveling wave ion guide allows for improved extraction of residue-specific deuterium contents in peptides with low charge. Our results demonstrate the feasibility, and illustrate the advantages of performing HX-ETD experiments on a high-resolution Q-TOF instrument equipped with traveling wave ion guides. Determination of parameters of the Z-spray ion source that contribute to ion heating are similarly pertinent to a growing number of MS applications that also rely on an energetically gentle transfer of ions into the gas-phase, such as the analysis of biomolecular structure by native mass spectrometry in combination with gas-phase ion-ion/ion-neutral reactions or ion mobility spectrometry. © American Society for Mass Spectrometry, 2011

  4. Modeling of negative ion transport in a plasma source (invited)

    NASA Astrophysics Data System (ADS)

    Riz, David; Paméla, Jérôme

    1998-02-01

    A code called NIETZSCHE has been developed to simulate the negative ion transport in a plasma source, from their birth place to the extraction holes. The H-/D- trajectory is calculated by numerically solving the 3D motion equation, while the atomic processes of destruction, of elastic collision with H+/D+ and of charge exchange with H0/D0 are handled at each time step by a Monte Carlo procedure. This code can be used to calculate the extraction probability of a negative ion produced at any location inside the source. Calculations performed with NIETZSCHE have been allowed to explain, either quantitatively or qualitatively, several phenomena observed in negative ion sources, such as the isotopic H-/D- effect, and the influence of the plasma grid bias or of the magnetic filter on the negative ion extraction. The code has also shown that, in the type of sources contemplated for ITER, which operate at large arc power densities (>1 W cm-3), negative ions can reach the extraction region provided they are produced at a distance lower than 2 cm from the plasma grid in the case of volume production (dissociative attachment processes), or if they are produced at the plasma grid surface, in the vicinity of the extraction holes.

  5. A survey of Kaufman thruster cathodes.

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Nakanishi, S.

    1971-01-01

    A survey is presented of various cathodes which have been developed and used in the Kaufman ion thruster. The electron-bombardment type ion source used in the thruster is briefly described. The general design, operating characteristics, and power requirements are shown for each type of cathode from the refractory metals used in 1960 to the plasma discharge hollow cathodes of today. A detailed discussion of the hollow cathode is given describing starting and cyclic operating characteristics as well as more fundamental design parameters. Tests to date show that the plasma hollow cathode is an efficient electron source with demonstrated durability over 10,000 hours and should offer further performance and life improvements.

  6. Probing the heat sources during thermal runaway process by thermal analysis of different battery chemistries

    NASA Astrophysics Data System (ADS)

    Zheng, Siqi; Wang, Li; Feng, Xuning; He, Xiangming

    2018-02-01

    Safety issue is very important for the lithium ion battery used in electric vehicle or other applications. This paper probes the heat sources in the thermal runaway processes of lithium ion batteries composed of different chemistries using accelerating rate calorimetry (ARC) and differential scanning calorimetry (DSC). The adiabatic thermal runaway features for the 4 types of commercial lithium ion batteries are tested using ARC, whereas the reaction characteristics of the component materials, including the cathode, the anode and the separator, inside the 4 types of batteries are measured using DSC. The peaks and valleys of the critical component reactions measured by DSC can match the fluctuations in the temperature rise rate measured by ARC, therefore the relevance between the DSC curves and the ARC curves is utilized to probe the heat source in the thermal runaway process and reveal the thermal runaway mechanisms. The results and analysis indicate that internal short circuit is not the only way to thermal runaway, but can lead to extra electrical heat, which is comparable with the heat released by chemical reactions. The analytical approach of the thermal runaway mechanisms in this paper can guide the safety design of commercial lithium ion batteries.

  7. Development of target ion source systems for radioactive beams at GANIL

    NASA Astrophysics Data System (ADS)

    Bajeat, O.; Delahaye, P.; Couratin, C.; Dubois, M.; Franberg-Delahaye, H.; Henares, J. L.; Huguet, Y.; Jardin, P.; Lecesne, N.; Lecomte, P.; Leroy, R.; Maunoury, L.; Osmond, B.; Sjodin, M.

    2013-12-01

    The GANIL facility (Caen, France) is dedicated to the acceleration of heavy ion beams including radioactive beams produced by the Isotope Separation On-Line (ISOL) method at the SPIRAL1 facility. To extend the range of radioactive ion beams available at GANIL, using the ISOL method two projects are underway: SPIRAL1 upgrade and the construction of SPIRAL2. For SPIRAL1, a new target ion source system (TISS) using the VADIS FEBIAD ion source coupled to the SPIRAL1 carbon target will be tested on-line by the end of 2013 and installed in the cave of SPIRAL1 for operation in 2015. The SPIRAL2 project is under construction and is being design for using different production methods as fission, fusion or spallation reactions to cover a large area of the chart of nuclei. It will produce among others neutron rich beams obtained by the fission of uranium induced by fast neutrons. The production target made from uranium carbide and heated at 2000 °C will be associated with several types of ion sources. Developments currently in progress at GANIL for each of these projects are presented.

  8. An Adaptable Multiple Power Source for Mass Spectrometry and other Scientific Instruments

    DOE PAGES

    Lin, Tzu-Yung; Anderson, Gordon A.; Norheim, Randolph V.; ...

    2015-09-18

    Power supplies are commonly used in the operation of many types of scientific equipment, including mass spectrometers and ancillary instrumentation. A generic modern mass spectrometer comprises an ionization source, such as electrospray ionization (ESI), ion transfer devices such as ion funnels and multipole ion guides, and ion signal detection apparatus. Very often such platforms include, or are interfaced with ancillary elements in order to manipulate samples before or after ionization. In order to operate such scientific instruments, numerous direct current (DC) channels and radio frequency (RF) signals are required, along with other controls such as temperature regulation. In particular, DCmore » voltages in the range of ±400 V, along with MHz range RF signals with peak-to-peak amplitudes in the hundreds of volts range are commonly used to transfer ionized samples under vacuum. Additionally, an ESI source requires a high voltage (HV) DC source capable of producing several thousand volts and heaters capable of generating temperatures up to 300°C. All of these signals must be properly synchronized and managed in order to carry out ion trapping, accumulation and detection.« less

  9. Simulations of negative hydrogen ion sources

    NASA Astrophysics Data System (ADS)

    Demerdjiev, A.; Goutev, N.; Tonev, D.

    2018-05-01

    The development and the optimisation of negative hydrogen/deuterium ion sources goes hand in hand with modelling. In this paper a brief introduction on the physics and types of different sources, and on the Kinetic and Fluid theories for plasma description is made. Examples of some recent models are considered whereas the main emphasis is on the model behind the concept and design of a matrix source of negative hydrogen ions. At the Institute for Nuclear Research and Nuclear Energy of the Bulgarian Academy of Sciences a new cyclotron center is under construction which opens new opportunities for research. One of them is the development of plasma sources for additional proton beam acceleration. We have applied the modelling technique implemented in the aforementioned model of the matrix source to a microwave plasma source exemplifying a plasma filled array of cavities made of a dielectric material with high permittivity. Preliminary results for the distribution of the plasma parameters and the φ component of the electric field in the plasma are obtained.

  10. A liquid hydrocarbon deuteron source for neutron generators

    NASA Astrophysics Data System (ADS)

    Schwoebel, P. R.

    2017-06-01

    Experimental studies of a deuteron spark source for neutron generators using hydrogen isotope fusion reactions are reported. The ion source uses a spark discharge between electrodes coated with a deuterated hydrocarbon liquid, here Santovac 5, to inhibit permanent electrode erosion and extend the lifetime of high-output neutron generator spark ion sources. Thompson parabola mass spectra show that principally hydrogen and deuterium ions are extracted from the ion source. Hydrogen is the chief residual gas phase species produced due to source operation in a stainless-steel vacuum chamber. The prominent features of the optical emission spectra of the discharge are C+ lines, the hydrogen Balmer Hα-line, and the C2 Swan bands. Operation of the ion source was studied in a conventional laboratory neutron generator. The source delivered an average deuteron current of ˜0.5 A nominal to the target in a 5 μs duration pulse at 1 Hz with target voltages of -80 to -100 kV. The thickness of the hydrocarbon liquid in the spark gap and the consistency thereof from spark to spark influences the deuteron yield and plays a role in determining the beam-focusing characteristics through the applied voltage necessary to break down the spark gap. Higher breakdown voltages result in larger ion beam spots on the target and vice-versa. Because the liquid self-heals and thereby inhibits permanent electrode erosion, the liquid-based source provides long life, with 104 pulses to date, and without clear evidence that, in principle, the lifetime could not be much longer. Initial experiments suggest that an alternative cylindrical target-type generator design can extract approximately 10 times the deuteron current from the source. Preliminary data using the deuterated source liquid as a neutron-producing target are also presented.

  11. Survey of ion plating sources. [conferences

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1979-01-01

    Based on the type of evaporation source, gaseous media and mode of transport, the following is discussed: resistance, electron beam, sputtering, reactive and ion beam evaporation. Ionization efficiencies and ion energies in the glow discharge determine the percentage of atoms which are ionized under typical ion plating conditions. The plating flux consists of a small number of energetic ions and a large number of energetic neutrals. The energy distribution ranges from thermal energies up to a maximum energy of the discharge. The various reaction mechanisms which contribute to the exceptionally strong adherence - formation of a graded sustrate/coating interface are not fully understood, however the controlling factors are evaluated. The influence of process variables on the nucleation and growth characteristics are illustrated in terms of morphological changes which affect the mechanical and tribological properties of the coating.

  12. SU-F-T-05: Dosimetric Evaluation and Validation of Newlydeveloped Well Chamber for Use in the Calibration of Brachytherapy Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saminathan, S; Godson, H; Ponmalar, R

    2016-06-15

    Purpose: To evaluate the dosimetric characteristics of newly developed well type ionization chamber and to validate the results with the commercially available calibrated well chambers that are being used for the calibration of brachytherapy sources. Methods: The newly developed well type ionization chamber (BDS 1000) has been designed for the convenient use in brachytherapy which is open to atmospheric condition. The chamber has a volume of 240 cm3 and weight of 2.5 Kg. The calibration of the radioactive source with activities from 0.01 mCi to 20 Ci can be carried out using this chamber. The dosimetric parameters such as leakagemore » current, stability, scattering effect, ion collection efficiency, reference air kerma rate and nominal response with energy were carried out with the BDS 1000 well type ion chamber. The evaluated dosimetric characteristics of BDS1000 well chamber were validated with two other commercially available well chambers (HDR 1000 plus and BTC/3007). Results: The measured leakage current observed was negligible for the newly developed BDS 1000 well type ion chamber. The ion collection efficiency was close to 1 and the response of the chamber was found to be very stable. The determined sweet spot was at 42 mm from bottom of the chamber insert. The reference air kerma rate was found to be 4.634 × 105 Gym2hr-1A-1 for the BDS 1000 well chamber. The overall dosimetric characteristics of BDS 1000 well chamber was in good agreement with the dosimetric properties of other two well chambers. Conclusion: The dosimetric study shows that the newly developed BDS 1000 well type ionization chamber is high sensitive and reliable chamber for reference air kerma strength calibration. The results obtained confirm that this chamber can be used for the calibration of HDR and LDR brachytherapy sources.« less

  13. Ion beam production and study of radioactive isotopes with the laser ion source at ISOLDE

    NASA Astrophysics Data System (ADS)

    Fedosseev, Valentin; Chrysalidis, Katerina; Day Goodacre, Thomas; Marsh, Bruce; Rothe, Sebastian; Seiffert, Christoph; Wendt, Klaus

    2017-08-01

    At ISOLDE the majority of radioactive ion beams are produced using the resonance ionization laser ion source (RILIS). This ion source is based on resonant excitation of atomic transitions by wavelength tunable laser radiation. Since its installation at the ISOLDE facility in 1994, the RILIS laser setup has been developed into a versatile remotely operated laser system comprising state-of-the-art solid state and dye lasers capable of generating multiple high quality laser beams at any wavelength in the range of 210-950 nm. A continuous programme of atomic ionization scheme development at CERN and at other laboratories has gradually increased the number of RILIS-ionized elements. At present, isotopes of 40 different elements have been selectively laser-ionized by the ISOLDE RILIS. Studies related to the optimization of the laser-atom interaction environment have yielded new laser ion source types: the laser ion source and trap and the versatile arc discharge and laser ion source. Depending on the specific experimental requirements for beam purity or versatility to switch between different ionization mechanisms, these may offer a favourable alternative to the standard hot metal cavity configuration. In addition to its main purpose of ion beam production, the RILIS is used for laser spectroscopy of radioisotopes. In an ongoing experimental campaign the isotope shifts and hyperfine structure of long isotopic chains have been measured by the extremely sensitive in-source laser spectroscopy method. The studies performed in the lead region were focused on nuclear deformation and shape coexistence effects around the closed proton shell Z = 82. The paper describes the functional principles of the RILIS, the current status of the laser system and demonstrated capabilities for the production of different ion beams including the high-resolution studies of short-lived isotopes and other applications of RILIS lasers for ISOLDE experiments. This article belongs to the Focus on Exotic Beams at ISOLDE: A Laboratory Portrait special issue.

  14. Development of portable mass spectrometer with electron cyclotron resonance ion source for detection of chemical warfare agents in air.

    PubMed

    Urabe, Tatsuya; Takahashi, Kazuya; Kitagawa, Michiko; Sato, Takafumi; Kondo, Tomohide; Enomoto, Shuichi; Kidera, Masanori; Seto, Yasuo

    2014-01-01

    A portable mass spectrometer with an electron cyclotron resonance ion source (miniECRIS-MS) was developed. It was used for in situ monitoring of trace amounts of chemical warfare agents (CWAs) in atmospheric air. Instrumental construction and parameters were optimized to realize a fast response, high sensitivity, and a small body size. Three types of CWAs, i.e., phosgene, mustard gas, and hydrogen cyanide were examined to check if the mass spectrometer was able to detect characteristic elements and atomic groups. From the results, it was found that CWAs were effectively ionized in the miniECRIS-MS, and their specific signals could be discerned over the background signals of air. In phosgene, the signals of the 35Cl+ and 37Cl+ ions were clearly observed with high dose-response relationships in the parts-per-billion level, which could lead to the quantitative on-site analysis of CWAs. A parts-per-million level of mustard gas, which was far lower than its lethal dosage (LCt50), was successfully detected with a high signal-stability of the plasma ion source. It was also found that the chemical forms of CWAs ionized in the plasma, i.e., monoatomic ions, fragment ions, and molecular ions, could be detected, thereby enabling the effective identification of the target CWAs. Despite the disadvantages associated with miniaturization, the overall performance (sensitivity and response time) of the miniECRIS-MS in detecting CWAs exceeded those of sector-type ECRIS-MS, showing its potential for on-site detection in the future. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Recent H- diagnostics, plasma simulations, and 2X scaled Penning ion source developments at the Rutherford Appleton Laboratory

    NASA Astrophysics Data System (ADS)

    Lawrie, S. R.; Faircloth, D. C.; Smith, J. D.; Sarmento, T. M.; Whitehead, M. O.; Wood, T.; Perkins, M.; Macgregor, J.; Abel, R.

    2018-05-01

    A vessel for extraction and source plasma analyses is being used for Penning H- ion source development at the Rutherford Appleton Laboratory. A new set of optical elements including an einzel lens has been installed, which transports over 80 mA of H- beam successfully. Simultaneously, a 2X scaled Penning source has been developed to reduce cathode power density. The 2X source is now delivering a 65 mA H- ion beam at 10% duty factor, meeting its design criteria. The long-term viability of the einzel lens and 2X source is now being evaluated, so new diagnostic devices have been installed. A pair of electrostatic deflector plates is used to correct beam misalignment and perform fast chopping, with a voltage rise time of 24 ns. A suite of four quartz crystal microbalances has shown that the cesium flux in the vacuum vessel is only increased by a factor of two, despite the absence of a dedicated cold trap. Finally, an infrared camera has demonstrated good agreement with thermal simulations but has indicated unexpected heating due to beam loss on the downstream electrode. These types of diagnostics are suitable for monitoring all operational ion sources. In addition to experimental campaigns and new diagnostic tools, the high-performance VSim and COMSOL software packages are being used for plasma simulations of two novel ion thrusters for space propulsion applications. In parallel, a VSim framework has been established to include arbitrary temperature and cesium fields to allow the modeling of surface physics in H- ion sources.

  16. A new ion-beam laboratory for materials research at the Slovak University of Technology

    NASA Astrophysics Data System (ADS)

    Noga, Pavol; Dobrovodský, Jozef; Vaňa, Dušan; Beňo, Matúš; Závacká, Anna; Muška, Martin; Halgaš, Radoslav; Minárik, Stanislav; Riedlmajer, Róbert

    2017-10-01

    An ion beam laboratory (IBL) for materials research has been commissioned recently at the Slovak University of Technology within the University Science Park CAMBO located in Trnava. The facility will support research in the field of materials science, physical engineering and nanotechnology. Ion-beam materials modification (IBMM) as well as ion-beam analysis (IBA) are covered and deliverable ion energies are in the range from tens of keV up to tens of MeV. Two systems have been put into operation. First, a high current version of the HVEE 6 MV Tandetron electrostatic tandem accelerator with duoplasmatron and cesium sputtering ion sources, equipped with two end-stations: a high-energy ion implantation and IBA end-station which includes RBS, PIXE and ERDA analytical systems. Second, a 500 kV implanter equipped with a Bernas type ion source and two experimental wafer processing end-stations. The facility itself, operational experience and first IBMM and IBA experiments are presented together with near-future plans and ongoing development of the IBL.

  17. Lunar Neutral Exposphere Properties from Pickup Ion Analysis

    NASA Technical Reports Server (NTRS)

    Hartle, R. E.; Sarantos, M.; Killen, R.; Sittler, E. C. Jr.; Halekas, J.; Yokota, S.; Saito, Y.

    2009-01-01

    Composition and structure of neutral constituents in the lunar exosphere can be determined through measurements of phase space distributions of pickup ions borne from the exosphere [1]. An essential point made in an early study [ 1 ] and inferred by recent pickup ion measurements [2, 3] is that much lower neutral exosphere densities can be derived from ion mass spectrometer measurements of pickup ions than can be determined by conventional neutral mass spectrometers or remote sensing instruments. One approach for deriving properties of neutral exospheric source gasses is to first compare observed ion spectra with pickup ion model phase space distributions. Neutral exosphere properties are then inferred by adjusting exosphere model parameters to obtain the best fit between the resulting model pickup ion distributions and the observed ion spectra. Adopting this path, we obtain ion distributions from a new general pickup ion model, an extension of a simpler analytic description obtained from the Vlasov equation with an ion source [4]. In turn, the ion source is formed from a three-dimensional exospheric density distribution, which can range from the classical Chamberlain type distribution to one with variable exobase temperatures and nonthermal constituents as well as those empirically derived. The initial stage of this approach uses the Moon's known neutral He and Na exospheres to deriv e He+ and Na+ pickup ion exospheres, including their phase space distributions, densities and fluxes. The neutral exospheres used are those based on existing models and remote sensing studies. As mentioned, future ion measurements can be used to constrain the pickup ion model and subsequently improve the neutral exosphere descriptions. The pickup ion model is also used to estimate the exosphere sources of recently observed pickup ions on KAGUYA [3]. Future missions carrying ion spectrometers (e.g., ARTEMIS) will be able to study the lunar neutral exosphere with great sensitivity, yielding the necessary ion velocity spectra needed to further analysis of parent neutral exosphere properties.

  18. New method for comprehensive detection of chemical warfare agents using an electron-cyclotron-resonance ion-source mass spectrometer

    NASA Astrophysics Data System (ADS)

    Kidera, Masanori; Seto, Yasuo; Takahashi, Kazuya; Enomoto, Shuichi; Kishi, Shintaro; Makita, Mika; Nagamatsu, Tsuyoshi; Tanaka, Tatsuhiko; Toda, Masayoshi

    2011-03-01

    We developed a detection technology for vapor forms of chemical warfare agents (CWAs) with an element analysis system using an electron cyclotron resonance ion source. After the vapor sample was introduced directly into the ion source, the molecular material was decomposed into elements using electron cyclotron resonance plasma and ionized. The following CWAs and stimulants were examined: diisopropyl fluorophosphonate (DFP), 2-chloroethylethylsulfide (2CEES), cyanogen chloride (CNCl), and hydrogen cyanide (HCN). The type of chemical warfare agents, specifically, whether it was a nerve agent, blister agent, blood agent, or choking agent, could be determined by measuring the quantities of the monatomic ions or CN + using mass spectrometry. It was possible to detect gaseous CWAs that could not be detected by a conventional mass spectrometer. The distribution of electron temperature in the plasma could be closely controlled by adjusting the input power of the microwaves used to generate the electron cyclotron resonance plasma, and the target compounds could be detected as molecular ions or fragment ions, enabling identification of the target agents.

  19. The Study of Compact Plasma Source of SXR of Vacuum Spark Type with Capillary Concentrator and It's Application

    NASA Astrophysics Data System (ADS)

    Kantsyrev, V. L.; Kopytok, K. I.; Shlyaptseva, A. S.

    1994-03-01

    The results are presented dealing with the working out and study of the plasma source of soft X-ray (SXR) of the new type. Experimental set up included compact low-inductance vacuum spark (LIVS) with initial energy supply equal up to 2.5 kJ and glass-capillary concentrator (GCC) of SXR. The characteristics of SXR of vacuum spark and properties of SXR were studied using diagnostic complex. The coefficient of conversion of initial energy supply into SXR (η) amounted to 0.01 in range 1.2nm. Value η had peak dependence on atomic number of anode Za. The spectra were recorded belonging to Ne-like, F-like ions of Fe, Cu ions and He-like, H-like ions of Al, Ti, Fe. Glass capillary concentrator consists of about several hundreds glass capillaries Flux density of SXR in focusing spot was up to 105-106 Wt/cm, density of energy is up to 20-30 mJ/cm2 at diameter of SXR focusing spot equal to about 2-3mm in the range 0.7-1.0 nm. The plasma source of the new type is intended for X-ray microscopy, study of influence of SXR on the surface of solid state. It allows to carry out experiments making only on electron synchrotronic sources of SXR.

  20. Diagnosing the Fine Structure of Electron Energy Within the ECRIT Ion Source

    NASA Astrophysics Data System (ADS)

    Jin, Yizhou; Yang, Juan; Tang, Mingjie; Luo, Litao; Feng, Bingbing

    2016-07-01

    The ion source of the electron cyclotron resonance ion thruster (ECRIT) extracts ions from its ECR plasma to generate thrust, and has the property of low gas consumption (2 sccm, standard-state cubic centimeter per minute) and high durability. Due to the indispensable effects of the primary electron in gas discharge, it is important to experimentally clarify the electron energy structure within the ion source of the ECRIT through analyzing the electron energy distribution function (EEDF) of the plasma inside the thruster. In this article the Langmuir probe diagnosing method was used to diagnose the EEDF, from which the effective electron temperature, plasma density and the electron energy probability function (EEPF) were deduced. The experimental results show that the magnetic field influences the curves of EEDF and EEPF and make the effective plasma parameter nonuniform. The diagnosed electron temperature and density from sample points increased from 4 eV/2×1016 m-3 to 10 eV/4×1016 m-3 with increasing distances from both the axis and the screen grid of the ion source. Electron temperature and density peaking near the wall coincided with the discharge process. However, a double Maxwellian electron distribution was unexpectedly observed at the position near the axis of the ion source and about 30 mm from the screen grid. Besides, the double Maxwellian electron distribution was more likely to emerge at high power and a low gas flow rate. These phenomena were believed to relate to the arrangements of the gas inlets and the magnetic field where the double Maxwellian electron distribution exits. The results of this research may enhance the understanding of the plasma generation process in the ion source of this type and help to improve its performance. supported by National Natural Science Foundation of China (No. 11475137)

  1. Ion-beam technology and applications

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.; Robson, R. R.; Sovey, J. S.

    1977-01-01

    Ion propulsion research and development yields a mature technology that is transferable to a wide range of nonpropulsive applications, including terrestrial and space manufacturing. A xenon ion source was used for an investigation into potential ion-beam applications. The results of cathode tests and discharge-chamber experiments are presented. A series of experiments encompassing a wide range of potential applications is discussed. Two types of processes, sputter deposition, and erosion were studied. Some of the potential applications are thin-film Teflon capacitor fabrication, lubrication applications, ion-beam cleaning and polishing, and surface texturing.

  2. Ion beam sputtering of fluoropolymers. [etching polymer films and target surfaces

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.

    1978-01-01

    Ion beam sputter processing rates as well as pertinent characteristics of etched targets and films are described. An argon ion beam source was used to sputter etch and deposit the fluoropolymers PTFE, FEP, and CTFE. Ion beam energy, current density, and target temperature were varied to examine effects on etch and deposition rates. The ion etched fluoropolymers yield cone or spire-like surface structures which vary depending upon the type of polymer, ion beam power density, etch time, and target temperature. Sputter target and film characteristics documented by spectral transmittance measurements, X-ray diffraction, ESCA, and SEM photomicrographs are included.

  3. In-air calibration of an HDR 192Ir brachytherapy source using therapy ion chambers.

    PubMed

    Patel, Narayan Prasad; Majumdar, Bishnu; Vijiyan, V; Hota, Pradeep K

    2005-01-01

    The Gammamed Plus 192Ir high dose rate brachytherapy sources were calibrated using the therapy level ionization chambers (0.1 and 0.6 cc) and the well-type chamber. The aim of the present study was to assess the accuracy and suitability of use of the therapy level chambers for in-air calibration of brachytherapy sources in routine clinical practice. In a calibration procedure using therapy ion chambers, the air kerma was measured at several distances from the source in a specially designed jig. The room scatter correction factor was determined by superimposition method based on the inverse square law. Various other correction factors were applied on measured air kerma values at multiple distances and mean value was taken to determine the air kerma strength of the source. The results from four sources, the overall mean deviation between measured and quoted source strength by manufacturers was found -2.04% (N = 18) for well-type chamber. The mean deviation for the 0.6 cc chamber with buildup cap was found -1.48 % (N = 19) and without buildup cap was 0.11% (N = 22). The mean deviation for the 0.1 cc chamber was found -0.24% (N = 27). Result shows that probably the excess ionization in case of 0.6 cc therapy ion chamber without buildup cap was estimated about 2.74% and 1.99% at 10 and 20 cm from the source respectively. Scattered radiation measured by the 0.1 cc and 0.6 cc chamber at 10 cm measurement distance was about 1.1% and 0.33% of the primary radiation respectively. The study concludes that the results obtained with therapy level ionization chambers were extremely reproducible and in good agreement with the results of the well-type ionization chamber and source supplier quoted value. The calibration procedure with therapy ionization chambers is equally competent and suitable for routine calibration of the brachytherapy sources.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auciello, O.; Ameen, M.S.; Graettinger, T.M.

    Ion beam sputtering is presently used to deposit films from single phase YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} targets. Generally, Ar+ ion beams ({approx}1500 eV) produced by Kaufman-type ion sources are used for this purpose. It has been observed that these ion beams induce compositional and morphological changes on the polycrystalline ceramic target surface, which results in the composition of sputtered flux displaying a time-dependent behavior. This in turn may lead to undesirably long times for reaching steady state conditions in the sputtering process.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auciello, O.; Ameen, M.S.; Graettinger, T.

    Ion beam sputtering is presently used to deposit films from single phase YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} targets. Generally, Ar{sup +} ion beams ({similar to}1500 eV) produced by Kaufman-type ion sources are used for this purpose. It has been observed that these ion beams induce compositional and morphological changes on the polycrystalline ceramic target surface, which results in the composition of sputtered flux displaying a time-dependent behavior. This in turn may lead to undesirably long times for reaching steady state conditions in the sputtering process.

  6. Permanent magnet electron beam ion source/trap systems with bakeable magnets for improved operation conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, M., E-mail: mike.schmidt@dreebit.com; Zschornack, G.; Kentsch, U.

    The magnetic system of a Dresden electron beam ion source (EBIS) generating the necessary magnetic field with a new type of permanent magnet made of high energy density NdFeB-type material operable at temperatures above 100 °C has been investigated and tested. The employment of such kind of magnets provides simplified operation without the time-consuming installation and de-installation procedures of the magnets for the necessary baking of the ion source after commissioning and maintenance work. Furthermore, with the use of a new magnetization technique the geometrical filling factor of the magnetic Dresden EBIS design could be increased to a filling factor ofmore » 100% leading to an axial magnetic field strength of approximately 0.5 T exceeding the old design by 20%. Simulations using the finite element method software Field Precision and their results compared with measurements are presented as well. It could be shown that several baking cycles at temperatures higher than 100 °C did not change the magnetic properties of the setup.« less

  7. Permanent magnet electron beam ion source/trap systems with bakeable magnets for improved operation conditions.

    PubMed

    Schmidt, M; Zschornack, G; Kentsch, U; Ritter, E

    2014-02-01

    The magnetic system of a Dresden electron beam ion source (EBIS) generating the necessary magnetic field with a new type of permanent magnet made of high energy density NdFeB-type material operable at temperatures above 100 °C has been investigated and tested. The employment of such kind of magnets provides simplified operation without the time-consuming installation and de-installation procedures of the magnets for the necessary baking of the ion source after commissioning and maintenance work. Furthermore, with the use of a new magnetization technique the geometrical filling factor of the magnetic Dresden EBIS design could be increased to a filling factor of 100% leading to an axial magnetic field strength of approximately 0.5 T exceeding the old design by 20%. Simulations using the finite element method software Field Precision and their results compared with measurements are presented as well. It could be shown that several baking cycles at temperatures higher than 100 °C did not change the magnetic properties of the setup.

  8. High-intensity polarized H- ion source for the RHIC SPIN physics

    NASA Astrophysics Data System (ADS)

    Zelenski, A.; Atoian, G.; Raparia, D.; Ritter, J.; Kolmogorov, A.; Davydenko, V.

    2017-08-01

    A novel polarization technique had been successfully implemented for the RHIC polarized H- ion source upgrade to higher intensity and polarization. In this technique a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gas ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically-pumped Rb vapour. The use of high-brightness primary beam and large cross-sections of charge-exchange cross-sections resulted in production of high intensity H- ion beam of 85% polarization. High beam brightness and polarization resulted in 75% polarization at 23 GeV out of AGS and 60-65% beam polarization at 100-250 GeV colliding beams in RHIC. The status of un-polarized magnetron type (Cs-vapour loaded) BNL source is also discussed.

  9. Formation of ECR Plasma in a Dielectric Plasma Guide under Self-Excitation of a Standing Ion-Acoustic Wave

    NASA Astrophysics Data System (ADS)

    Balmashnov, A. A.; Kalashnikov, A. V.; Kalashnikov, V. V.; Stepina, S. P.; Umnov, A. M.

    2018-01-01

    The formation of a spatially localized plasma with a high brightness has been experimentally observed in a dielectric plasma guide under the electron cyclotron resonance discharge at the excitation of a standing ion-acoustic wave. The results obtained show the possibility of designing compact high-intensity radiation sources with a spectrum determined by the working gas or gas mixture type, high-intensity chemically active particle flow sources, and plasma thrusters for correcting orbits of light spacecraft.

  10. A high energy and power Li-ion capacitor based on a TiO2 nanobelt array anode and a graphene hydrogel cathode.

    PubMed

    Wang, Huanwen; Guan, Cao; Wang, Xuefeng; Fan, Hong Jin

    2015-03-25

    A novel hybrid Li-ion capacitor (LIC) with high energy and power densities is constructed by combining an electrochemical double layer capacitor type cathode (graphene hydrogels) with a Li-ion battery type anode (TiO(2) nanobelt arrays). The high power source is provided by the graphene hydrogel cathode, which has a 3D porous network structure and high electrical conductivity, and the counter anode is made of free-standing TiO(2) nanobelt arrays (NBA) grown directly on Ti foil without any ancillary materials. Such a subtle designed hybrid Li-ion capacitor allows rapid electron and ion transport in the non-aqueous electrolyte. Within a voltage range of 0.0-3.8 V, a high energy of 82 Wh kg(-1) is achieved at a power density of 570 W kg(-1). Even at an 8.4 s charge/discharge rate, an energy density as high as 21 Wh kg(-1) can be retained. These results demonstrate that the TiO(2) NBA//graphene hydrogel LIC exhibits higher energy density than supercapacitors and better power density than Li-ion batteries, which makes it a promising electrochemical power source. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Ultracompact/ultralow power electron cyclotron resonance ion source for multipurpose applications.

    PubMed

    Sortais, P; Lamy, T; Médard, J; Angot, J; Latrasse, L; Thuillier, T

    2010-02-01

    In order to drastically reduce the power consumption of a microwave ion source, we have studied some specific discharge cavity geometries in order to reduce the operating point below 1 W of microwave power (at 2.45 GHz). We show that it is possible to drive an electron cyclotron resonance ion source with a transmitter technology similar to those used for cellular phones. By the reduction in the size and of the required microwave power, we have developed a new type of ultralow cost ion sources. This microwave discharge system (called COMIC, for COmpact MIcrowave and Coaxial) can be used as a source of light, plasma or ions. We will show geometries of conductive cavities where it is possible, in a 20 mm diameter chamber, to reduce the ignition of the plasma below 100 mW and define typical operating points around 5 W. Inside a simple vacuum chamber it is easy to place the source and its extraction system anywhere and fully under vacuum. In that case, current densities from 0.1 to 10 mA/cm(2) (Ar, extraction 4 mm, 1 mAe, 20 kV) have been observed. Preliminary measurements and calculations show the possibility, with a two electrodes system, to extract beams within a low emittance. The first application for these ion sources is the ion injection for charge breeding, surface analyzing system and surface treatment. For this purpose, a very small extraction hole is used (typically 3/10 mm for a 3 microA extracted current with 2 W of HF power). Mass spectrum and emittance measurements will be presented. In these conditions, values down to 1 pi mm mrad at 15 kV (1sigma) are observed, thus very close to the ones currently observed for a surface ionization source. A major interest of this approach is the possibility to connect together several COMIC devices. We will introduce some new on-going developments such as sources for high voltage implantation platforms, fully quartz radioactive ion source at ISOLDE or large plasma generators for plasma immersion, broad or ribbon beams generation.

  12. Secondary batteries with multivalent ions for energy storage

    PubMed Central

    Xu, Chengjun; Chen, Yanyi; Shi, Shan; Li, Jia; Kang, Feiyu; Su, Dangsheng

    2015-01-01

    The use of electricity generated from clean and renewable sources, such as water, wind, or sunlight, requires efficiently distributed electrical energy storage by high-power and high-energy secondary batteries using abundant, low-cost materials in sustainable processes. American Science Policy Reports state that the next-generation “beyond-lithium” battery chemistry is one feasible solution for such goals. Here we discover new “multivalent ion” battery chemistry beyond lithium battery chemistry. Through theoretic calculation and experiment confirmation, stable thermodynamics and fast kinetics are presented during the storage of multivalent ions (Ni2+, Zn2+, Mg2+, Ca2+, Ba2+, or La3+ ions) in alpha type manganese dioxide. Apart from zinc ion battery, we further use multivalent Ni2+ ion to invent another rechargeable battery, named as nickel ion battery for the first time. The nickel ion battery generally uses an alpha type manganese dioxide cathode, an electrolyte containing Ni2+ ions, and Ni anode. The nickel ion battery delivers a high energy density (340 Wh kg−1, close to lithium ion batteries), fast charge ability (1 minute), and long cycle life (over 2200 times). PMID:26365600

  13. An overview of the facilities, activities, and developments at the University of North Texas Ion Beam Modification and Analysis Laboratory (IBMAL)

    NASA Astrophysics Data System (ADS)

    Rout, Bibhudutta; Dhoubhadel, Mangal S.; Poudel, Prakash R.; Kummari, Venkata C.; Pandey, Bimal; Deoli, Naresh T.; Lakshantha, Wickramaarachchige J.; Mulware, Stephen J.; Baxley, Jacob; Manuel, Jack E.; Pacheco, Jose L.; Szilasi, Szabolcs; Weathers, Duncan L.; Reinert, Tilo; Glass, Gary A.; Duggan, Jerry L.; McDaniel, Floyd D.

    2013-07-01

    The Ion Beam Modification and Analysis Laboratory (IBMAL) at the University of North Texas includes several accelerator facilities with capabilities of producing a variety of ion beams from tens of keV to several MeV in energy. The four accelerators are used for research, graduate and undergraduate education, and industrial applications. The NEC 3MV Pelletron tandem accelerator has three ion sources for negative ions: He Alphatross and two different SNICS-type sputter ion sources. Presently, the tandem accelerator has four high-energy beam transport lines and one low-energy beam transport line directly taken from the negative ion sources for different research experiments. For the low-energy beam line, the ion energy can be varied from ˜20 to 80 keV for ion implantation/modification of materials. The four post-acceleration beam lines include a heavy-ion nuclear microprobe; multi-purpose PIXE, RBS, ERD, NRA, and broad-beam single-event upset; high-energy ion implantation line; and trace-element accelerator mass spectrometry. The NEC 3MV single-ended Pelletron accelerator has an RF ion source mainly for hydrogen, helium and heavier inert gases. We recently installed a capacitive liner to the terminal potential stabilization system for high terminal voltage stability and high-resolution microprobe analysis. The accelerator serves a beam line for standard RBS and RBS/C. Another beamline for high energy focused ion beam application using a magnetic quadrupole lens system is currently under construction. This beam line will also serve for developmental work on an electrostatic lens system. The third accelerator is a 200 kV Cockcroft-Walton accelerator with an RF ion source. The fourth accelerator is a 2.5 MV Van de Graaff accelerator, which was in operation for last several decades is currently planned to be used mainly for educational purpose. Research projects that will be briefly discussed include materials synthesis/modification for photonic, electronic, and magnetic applications, surface sputtering and micro-fabrication of materials, development of high-energy ion microprobe systems, and educational and outreach activities.

  14. An overview of the facilities, activities, and developments at the University of North Texas Ion Beam Modification and Analysis Laboratory (IBMAL)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rout, Bibhudutta; Dhoubhadel, Mangal S.; Poudel, Prakash R.

    2013-07-03

    The Ion Beam Modification and Analysis Laboratory (IBMAL) at the University of North Texas includes several accelerator facilities with capabilities of producing a variety of ion beams from tens of keV to several MeV in energy. The four accelerators are used for research, graduate and undergraduate education, and industrial applications. The NEC 3MV Pelletron tandem accelerator has three ion sources for negative ions: He Alphatross and two different SNICS-type sputter ion sources. Presently, the tandem accelerator has four high-energy beam transport lines and one low-energy beam transport line directly taken from the negative ion sources for different research experiments. Formore » the low-energy beam line, the ion energy can be varied from {approx}20 to 80 keV for ion implantation/modification of materials. The four post-acceleration beam lines include a heavy-ion nuclear microprobe; multi-purpose PIXE, RBS, ERD, NRA, and broad-beam single-event upset; high-energy ion implantation line; and trace-element accelerator mass spectrometry. The NEC 3MV single-ended Pelletron accelerator has an RF ion source mainly for hydrogen, helium and heavier inert gases. We recently installed a capacitive liner to the terminal potential stabilization system for high terminal voltage stability and high-resolution microprobe analysis. The accelerator serves a beam line for standard RBS and RBS/C. Another beamline for high energy focused ion beam application using a magnetic quadrupole lens system is currently under construction. This beam line will also serve for developmental work on an electrostatic lens system. The third accelerator is a 200 kV Cockcroft-Walton accelerator with an RF ion source. The fourth accelerator is a 2.5 MV Van de Graaff accelerator, which was in operation for last several decades is currently planned to be used mainly for educational purpose. Research projects that will be briefly discussed include materials synthesis/modification for photonic, electronic, and magnetic applications, surface sputtering and micro-fabrication of materials, development of high-energy ion microprobe systems, and educational and outreach activities.« less

  15. Electron Cyclotron Resonance (ECR) Ion Source Development at the Holified Radioactive Ion Beam Facility

    NASA Astrophysics Data System (ADS)

    Bilheux, Hassina; Liu, Yuan; Alton, Gerald; Cole, John; Williams, Cecil; Reed, Charles

    2004-11-01

    Performance of ECR ion sources can be significantly enhanced by increasing the physical size of their ECR zones in relation to the size of their plasma volumes (spatial and frequency domain methods).^3-5 A 6 GHz, all-permanent magnet ECR ion source with a large resonant plasma volume has been tested at ORNL.^6 The magnetic circuit can be configured for creating both flat-β (volume) and conventional minimum-β (surface) resonance conditions. Direct comparisons of the performance of the two source types can be made under similar operating conditions. In this paper, we clearly demonstrate that the flat-β source outperforms its minimum-β counterpart in terms of charge state distribution and intensity within a particular charge state. ^1bilheuxhn@ornl.gov ^2Managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. ^3G.D. Alton, D.N. Smithe, Rev. Sci. Instrum. 65 (1994) 775. ^4G.D. Alton et al., Rev. Sci. Instrum. 69 (1998) 2305. ^5Z.Q. Xie, C.M. Lyneis, Rev. Sci. Instrum. 66 (1995) 4218. ^6Y. Liu et al., Rev. Sci. Instrum. 69 (1998) 1311.

  16. Laser ion source activities at Brookhaven National Laboratory

    DOE PAGES

    Kanesue, Takeshi; Okamura, Masahiro

    2015-07-31

    In Brookhaven National Laboratory (BNL), we have been developing laser ion sources for diverse accelerators. Tabletop Nd:YAG lasers with up to several Joules of energy are mainly used to create ablation plasmas for stable operations. The obtained charge states depend on laser power density and target species. Two types of ion extraction schemes, Direct Plasma Injection Scheme (DPIS) and conventional static extraction, are used depending on application. We optimized and select a suitable laser irradiation condition and a beam extraction scheme to meet the requirement of the following accelerator system. We have demonstrated to accelerate more than 5 x 10more » 10 of C 6+ ions using the DPIS. We successfully commissioned low charge ion beam provider to the user facilities in BNL. As a result, to achieve higher current, higher charge state and lower emittance, further studies will continue.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doyle, J.P.; Roy, R.A.; Cuomo, J.J.

    We have investigated the effects of low energy bombardment on the microstructural, compositional, and electrical characteristics of ion beam sputtered thin films of Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub {ital x}}. During deposition, secondary bombardment of the growing film was performed using a Kaufman or ECR type ion source with energy ranging up to 125 eV. Microstructural changes have been characterized by TEM and XRD. Ion channeling has been performed to characterize the degree of orientation of the films. The effects of bombardment on the composition of the films were studied by RBS. It has been found that the use of anmore » ECR microwave oxygen ion source trained on the growing films induces as-deposited superconductivity and also play a role in the texturing of the films. The effects of ion bombardment on the critical current (J{sub {ital c}}) and temperature (T{sub {ital c}}) are also reported.« less

  18. Single particle mass spectral signatures from vehicle exhaust particles and the source apportionment of on-line PM2.5 by single particle aerosol mass spectrometry.

    PubMed

    Yang, Jian; Ma, Shexia; Gao, Bo; Li, Xiaoying; Zhang, Yanjun; Cai, Jing; Li, Mei; Yao, Ling'ai; Huang, Bo; Zheng, Mei

    2017-09-01

    In order to accurately apportion the many distinct types of individual particles observed, it is necessary to characterize fingerprints of individual particles emitted directly from known sources. In this study, single particle mass spectral signatures from vehicle exhaust particles in a tunnel were performed. These data were used to evaluate particle signatures in a real-world PM 2.5 apportionment study. The dominant chemical type originating from average positive and negative mass spectra for vehicle exhaust particles are EC species. Four distinct particle types describe the majority of particles emitted by vehicle exhaust particles in this tunnel. Each particle class is labeled according to the most significant chemical features in both average positive and negative mass spectral signatures, including ECOC, NaK, Metal and PAHs species. A single particle aerosol mass spectrometry (SPAMS) was also employed during the winter of 2013 in Guangzhou to determine both the size and chemical composition of individual atmospheric particles, with vacuum aerodynamic diameter (d va ) in the size range of 0.2-2μm. A total of 487,570 particles were chemically analyzed with positive and negative ion mass spectra and a large set of single particle mass spectra was collected and analyzed in order to identify the speciation. According to the typical tracer ions from different source types and classification by the ART-2a algorithm which uses source fingerprints for apportioning ambient particles, the major sources of single particles were simulated. Coal combustion, vehicle exhaust, and secondary ion were the most abundant particle sources, contributing 28.5%, 17.8%, and 18.2%, respectively. The fraction with vehicle exhaust species particles decreased slightly with particle size in the condensation mode particles. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. SOME PRACTICAL MODIFICATIONS ON HIGH FREQUENCY ION SOURCES (in Hungarian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagy, J.; Gombos, P.

    1962-05-01

    A radiofrequency ion source was constructed for the 800-kv cascade type accelerator and 300-kv neutron generator built in the Institute. Besides the usual transversal magnetic field of 50 gauss, an axial magnetic field of 250 gauss intensity was also applied in the immediate neighborhood of the probe. As a result of this, the service life of the discharge tube was increased by several hundred hours but in comparison with the measurements of other authors the percentage of protons underwent no change. The quartz calyx which was built to surround the probe, contributed considerably to an increase of the service life.more » Measurements concerning the selection of the pre-focusing lens are summarized. With a probe of 1.3-mm canal diameter, a maximum 1.9 ma pre-focused ion current was obtained in H/sub 2/ with a gas consumption of 8 to 10 cm/sup 3//hr, (With a probe of 1.7-mm canal diameter, at a gas consumption of 25 cm/sup 3//hr, 2.7 ma current was obtained.) The total consumption of the ion source amounted to 800 w with prefocusing. The energy-spread of the ion beam was found to be 200 ev. Having built it into the cascade type accelerator 1 ma current was measured on the target at an accelerating voltage of 500 kv, where this amount included the secondary electrons as well. (auth)« less

  20. Helicon plasma ion temperature measurements and observed ion cyclotron heating in proto-MPEX

    NASA Astrophysics Data System (ADS)

    Beers, C. J.; Goulding, R. H.; Isler, R. C.; Martin, E. H.; Biewer, T. M.; Caneses, J. F.; Caughman, J. B. O.; Kafle, N.; Rapp, J.

    2018-01-01

    The Prototype-Material Plasma Exposure eXperiment (Proto-MPEX) linear plasma device is a test bed for exploring and developing plasma source concepts to be employed in the future steady-state linear device Material Plasma Exposure eXperiment (MPEX) that will study plasma-material interactions for the nuclear fusion program. The concept foresees using a helicon plasma source supplemented with electron and ion heating systems to reach necessary plasma conditions. In this paper, we discuss ion temperature measurements obtained from Doppler broadening of spectral lines from argon ion test particles. Plasmas produced with helicon heating alone have average ion temperatures downstream of the Helicon antenna in the range of 3 ± 1 eV; ion temperature increases to 10 ± 3 eV are observed with the addition of ion cyclotron heating (ICH). The temperatures are higher at the edge than the center of the plasma either with or without ICH. This type of profile is observed with electrons as well. A one-dimensional RF antenna model is used to show where heating of the plasma is expected.

  1. Two-chamber configuration of Bio-Nano electron cyclotron resonance ion source for fullerene modification.

    PubMed

    Uchida, T; Rácz, R; Muramatsu, M; Kato, Y; Kitagawa, A; Biri, S; Yoshida, Y

    2016-02-01

    We report on the modification of fullerenes with iron and chlorine using two individually controllable plasmas in the Bio-Nano electron cyclotron resonance ion source (ECRIS). One of the plasmas is composed of fullerene and the other one is composed of iron and chlorine. The online ion beam analysis allows one to investigate the rate of the vapor-phase collisional modification process in the ECRIS, while the offline analyses (e.g., liquid chromatography-mass spectrometry) of the materials deposited on the plasma chamber can give information on the surface-type process. Both analytical methods show the presence of modified fullerenes such as fullerene-chlorine, fullerene-iron, and fullerene-chlorine-iron.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattox, D.M.; Sharp, D.J.

    A Veeco microetch system which uses a Kaufman type ion source has been used to study ion erosion yields for a variety of materials of possible interest in CTR wall coating applications. A schematic diagram of the Kaufman gun and etching chamber are given. The ion beam is nearly monoenergetic (within several eV). The extracted ion beam consists of a mixture of H/sub 2//sup +/ and H/sup +/. A H/sub 2//sup +/ ion will have a sputtering yield equivalent to 2H/sup +/ ions with one-half the energy of the H/sub 2//sup +/ ion. For most of these investigations, the chargemore » compensation filament is removed to avoid sputtering of the tungsten filament.« less

  3. Enhanced-wetting, boron-based liquid-metal ion source and method

    DOEpatents

    Bozack, Michael J.; Swanson, Lynwood W.; Bell, Anthony E.; Clark Jr., William M.; Utlaut, Mark W.; Storms, Edmund K.

    1999-01-01

    A binary, boron-based alloy as a source for field-emission-type, ion-beam generating devices, wherein boron predominates in the alloy, preferably with a presence of about 60 atomic percent. The other constituent in the alloy is selected from the group of elements consisting of nickel, palladium and platinum. Predominance of boron in these alloys, during operation, promotes combining of boron with trace impurities of carbon in the alloys to form B.sub.4 C and thus to promote wetting of an associated carbon support substrate.

  4. Enhanced-wetting, boron-based liquid-metal ion source and method

    DOEpatents

    Bozack, M.J.; Swanson, L.W.; Bell, A.E.; Clark, W.M. Jr.; Utlaut, M.W.; Storms, E.K.

    1999-02-16

    A binary, boron-based alloy as a source for field-emission-type, ion-beam generating devices, wherein boron predominates in the alloy, preferably with a presence of about 60 atomic percent is disclosed. The other constituent in the alloy is selected from the group of elements consisting of nickel, palladium and platinum. Predominance of boron in these alloys, during operation, promotes combining of boron with trace impurities of carbon in the alloys to form B{sub 4}C and thus to promote wetting of an associated carbon support substrate. 1 fig.

  5. Design of the central region for axial injection in the VINCY cyclotron

    NASA Astrophysics Data System (ADS)

    Milinković, Ljiljana; Toprek, Dragan

    1996-02-01

    This paper describes the design of the central region for h = 1, h = 2 and h = 4 modes of acceleration in the VINCY cyclotron. The result which is worth reported in that the central region is unique and compatible with the three above mentioned harmonic modes of operation. Only one spiral type inflector will be used. The central region is designed to operate with two external ion sources: (a) an ECR ion source with the maximum extraction voltage of 25 kV for heavy ions, and (b) a multicusp ion source with the maximum extraction voltage of 30 kV for H - and D - ions. Heavy ions will be accelerated by the second and fourth harmonics, D - ions by the second harmonic and H - ions by the first harmonic of the RF field. The central region is equipped with an axial injection system. The electric field distribution in the inflector and in the four acceleration gaps has been numerically calculated from an electric potential map produced by the program RELAX3D. The geometry of the central region has been tested with the computations of orbits carried out by means of the computer code CYCLONE. The optical properties of the spiral inflector and the central region were studied by using the programs CASINO and CYCLONE respectively. We have also made an effort to minimize the inflector fringe field using the RELAX3D program.

  6. Intense Pulsed Heavy Ion Beam Technology

    NASA Astrophysics Data System (ADS)

    Masugata, Katsumi; Ito, Hiroaki

    Development of intense pulsed heavy ion beam accelerator technology is described for the application of materials processing. Gas puff plasma gun and vacuum arc discharge plasma gun were developed as an active ion source for magnetically insulated pulsed ion diode. Source plasma of nitrogen and aluminum were successfully produced with the gas puff plasma gun and the vacuum arc plasma gun, respectively. The ion diode was successfully operated with gas puff plasma gun at diode voltage 190 kV, diode current 2.2 kA and nitrogen ion beam of ion current density 27 A/cm2 was obtained. The ion composition was evaluated by a Thomson parabola spectrometer and the purity of the nitrogen ion beam was estimated to be 86%. The diode also operated with aluminum ion source of vacuum arc plasma gun. The ion diode was operated at 200 kV, 12 kA, and aluminum ion beam of current density 230 A/cm2 was obtained. The beam consists of aluminum ions (Al(1-3)+) of energy 60-400 keV, and protons (90-130 keV), and the purity was estimated to be 89 %. The development of the bipolar pulse accelerator (BPA) was reported. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. The generator was tested with dummy load of 7.5 ohm, bipolar pulses of -138 kV, 72 ns (1st pulse) and +130 kV, 70 ns (2nd pulse) were succesively generated. By applying the bipolar pulse to the drift tube of the BPA, nitrogen ion beam of 2 A/cm2 was observed in the cathode, which suggests the bipolar pulse acceleration.

  7. A new tritium monitor design based on plasma source ion implantation technique

    NASA Astrophysics Data System (ADS)

    Nassar, Rafat Mohammad

    Tritium is an important isotope of hydrogen. The availability of tritium in our environment is manifest through both natural and artificial sources. Consequently, the requirement for tritium handling and usage will continue to increase in the future. An important future contributor is nuclear fusion power plants and facilities. Essential safety regulations and procedures require effective monitoring and measurements of tritium concentrations in workplaces. The unique characteristics of tritium impose an important role on the criteria for its detection and measurement. As tritium decays by the emission of soft beta particles, maximum 18 keV, it cannot be readily detected by commonly used detectors. Specially built monitors are required. Additional complications occur due to the presence of other radioactive isotopes or ambient radiation fields and because of the high diffusivity of tritium. When it is in oxidized form it is 25000 times more hazardous biologically than when in elemental form. Therefore, contamination of the monitor is expected and compound specific monitors are important. A summary is given of the various well known methods of detecting tritium-in-air. This covers the direct as well as the indirect measuring techniques, although each has been continually improved and further developed, nevertheless, each has its own limitations. Ionization chambers cannot discriminate against airborne P emitters. Proportional counters have a narrow operating range, 3-4 decades, and have poor performance in relatively high humid environments and require a dry counting gas. Liquid scintillation counters are sensitive, but inspection of the sample is slow and they produce chemical liquid waste. A new way to improve the sensitivity of detecting tritium with plastic scintillators has been developed. The technique is based on a non-line-of-sight implantation of tritium ions into a 20 mum plastic scintillator using a plasma source ion implantation (PSII) technique, This type of source is different, superior to the line-of-sight implantation and requires no additional beam handling. It is capable of implanting ion species in a broad beam configuration into the entire surface of a target. The technique requires a special ion source with special characteristics of the type obtained from a surfatron plasma source. This ion source has a large high ion density plasma with minimum contamination and produces ions of low temperature. It was constructed to ionize the sampled air and to produce a plasma over a wide range of pressure, 4-0.1 mTorr. A plasma source ion implantation cell was designed and constructed using mathematical modeling with personal computer, to optimize the essential variables of the design and to estimate the implantation rate under different operation conditions. Also, a high voltage pulse modulator was designed and constructed to produce a series of 10 musec pulses (up to 2 MHz) with a maximum magnitude of -60 kV. The developed device was capable of ionizing air samples and implanting the resulting ions into a plastic scintillator. Two different methods to enhance the collection and deposition of the tritium ions, have been proposed and assessed. A movable prototype device for monitoring environmental tritium in air has been designed and constructed. Although this prototype was not fully tested, the primary calculations have shown that measurable concentrations of tritium ions can be collected from an air sample, with tritium activity ranging from 0.3 Bq/cm3 down to 0.03 mBq/cm3, in a short time, to the order of seconds, on-line. This sensitivity fulfills the requirement for environmental monitoring.

  8. Steady-State Ion Beam Modeling with MICHELLE

    NASA Astrophysics Data System (ADS)

    Petillo, John

    2003-10-01

    There is a need to efficiently model ion beam physics for ion implantation, chemical vapor deposition, and ion thrusters. Common to all is the need for three-dimensional (3D) simulation of volumetric ion sources, ion acceleration, and optics, with the ability to model charge exchange of the ion beam with a background neutral gas. The two pieces of physics stand out as significant are the modeling of the volumetric source and charge exchange. In the MICHELLE code, the method for modeling the plasma sheath in ion sources assumes that the electron distribution function is a Maxwellian function of electrostatic potential over electron temperature. Charge exchange is the process by which a neutral background gas with a "fast" charged particle streaming through exchanges its electron with the charged particle. An efficient method for capturing this is essential, and the model presented is based on semi-empirical collision cross section functions. This appears to be the first steady-state 3D algorithm of its type to contain multiple generations of charge exchange, work with multiple species and multiple charge state beam/source particles simultaneously, take into account the self-consistent space charge effects, and track the subsequent fast neutral particles. The solution used by MICHELLE is to combine finite element analysis with particle-in-cell (PIC) methods. The basic physics model is based on the equilibrium steady-state application of the electrostatic particle-in-cell (PIC) approximation employing a conformal computational mesh. The foundation stems from the same basic model introduced in codes such as EGUN. Here, Poisson's equation is used to self-consistently include the effects of space charge on the fields, and the relativistic Lorentz equation is used to integrate the particle trajectories through those fields. The presentation will consider the complexity of modeling ion thrusters.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    CorAL is a software Library designed to aid in the analysis of femtoscipic data. Femtoscopic data are a class of measured quantities used in heavy-ion collisions to characterize particle emitting source sizes. The most common type of this data is two-particle correleations induced by the Hanbury-Brown/Twiss (HBT) Effect, but can also include correlations induced by final-state interactions between pairs of emitted particles in a heavy-ion collision. Because heavy-ion collisions are complex many particle systems, modeling hydrodynamical models or hybrid techniques. Using the CRAB module, CorAL can turn the output from these models into something that can be directley compared tomore » experimental data. CorAL can also take the raw experimentally measured correlation functions and image them by inverting the Koonin-Pratt equation to extract the space-time emission profile of the particle emitting source. This source function can be further analyzed or directly compared to theoretical calculations.« less

  10. A new class of galactic discrete gamma ray sources: Chaotic winds of massive stars

    NASA Technical Reports Server (NTRS)

    Chen, Wan; White, Richard L.

    1992-01-01

    We propose a new class of galactic discrete gamma-ray sources, the chaotic, high mass-loss-rate winds from luminous early-type stars. Early-type stellar winds are highly unstable due to intrinsic line-driven instabilities, and so are permeated by numerous strong shocks. These shocks can accelerate a small fraction of thermal electrons and ions to relativistic energies via the first-order Fermi mechanism. A power-law-like photon spectrum extending from keV to above 10 MeV energies is produced by inverse Compton scattering of the extremely abundant stellar UV photons by the relativistic electrons. In addition, a typical pi(sup 0)-decay gamma-ray spectrum is generated by proton-ion interactions in the densest part of the winds.

  11. Two-chamber configuration of Bio-Nano electron cyclotron resonance ion source for fullerene modification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uchida, T., E-mail: uchida-t@toyo.jp; Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585; Rácz, R.

    2016-02-15

    We report on the modification of fullerenes with iron and chlorine using two individually controllable plasmas in the Bio-Nano electron cyclotron resonance ion source (ECRIS). One of the plasmas is composed of fullerene and the other one is composed of iron and chlorine. The online ion beam analysis allows one to investigate the rate of the vapor-phase collisional modification process in the ECRIS, while the offline analyses (e.g., liquid chromatography-mass spectrometry) of the materials deposited on the plasma chamber can give information on the surface-type process. Both analytical methods show the presence of modified fullerenes such as fullerene-chlorine, fullerene-iron, andmore » fullerene-chlorine-iron.« less

  12. Improvements on the stability and operation of a magnetron H - ion source

    DOE PAGES

    Sosa, A.; Bollinger, D. S.; Karns, P. R.; ...

    2017-05-31

    The magnetron H - ion sources developed in the 1970s currently in operation at Fermilab provide beam to the rest of the accelerator complex. A series of modifications to these sources have been tested in a dedicated offline test stand with the aim of improving different operational issues. The solenoid type gas valve was tested as an alternative to the piezoelectric gas valve in order to avoid its temperature dependence. A new cesium oven was designed and tested in order to avoid glass pieces that were present with the previous oven, improve thermal insulation and fine tune its temperature. Amore » current-regulated arc modulator was developed to run the ion source at a constant arc current, providing very stable beam outputs during operations. In order to reduce beam noise, the addition of small amounts of N 2 gas was explored, as well as testing different cathode shapes with increasing plasma volume. This study summarizes the studies and modifications done in the source over the last three years with the aim of improving its stability, reliability and overall performance.« less

  13. Improvements on the stability and operation of a magnetron H- ion source

    NASA Astrophysics Data System (ADS)

    Sosa, A.; Bollinger, D. S.; Karns, P. R.; Tan, C. Y.

    2017-05-01

    The magnetron H- ion sources developed in the 1970s currently in operation at Fermilab provide beam to the rest of the accelerator complex. A series of modifications to these sources have been tested in a dedicated off-line test stand with the aim of improving different operational issues. The solenoid type gas valve was tested as an alternative to the piezoelectric gas valve in order to avoid its temperature dependence. A new cesium oven was designed and tested in order to avoid glass pieces that were present with the previous oven, improve thermal insulation and fine-tune its temperature. A current-regulated arc modulator was developed to run the ion source at a constant arc current, providing very stable beam outputs during operations. In order to reduce beam noise, the addition of small amounts of N2 gas was explored, as well as testing different cathode shapes with increasing plasma volume. This paper summarizes the studies and modifications done in the source over the past three years with the aim of improving its stability, reliability and overall performance.

  14. Improvements on the stability and operation of a magnetron H - ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sosa, A.; Bollinger, D. S.; Karns, P. R.

    The magnetron H - ion sources developed in the 1970s currently in operation at Fermilab provide beam to the rest of the accelerator complex. A series of modifications to these sources have been tested in a dedicated offline test stand with the aim of improving different operational issues. The solenoid type gas valve was tested as an alternative to the piezoelectric gas valve in order to avoid its temperature dependence. A new cesium oven was designed and tested in order to avoid glass pieces that were present with the previous oven, improve thermal insulation and fine tune its temperature. Amore » current-regulated arc modulator was developed to run the ion source at a constant arc current, providing very stable beam outputs during operations. In order to reduce beam noise, the addition of small amounts of N 2 gas was explored, as well as testing different cathode shapes with increasing plasma volume. This study summarizes the studies and modifications done in the source over the last three years with the aim of improving its stability, reliability and overall performance.« less

  15. Development of a plasma generator for a long pulse ion source for neutral beam injectors.

    PubMed

    Watanabe, K; Dairaku, M; Tobari, H; Kashiwagi, M; Inoue, T; Hanada, M; Jeong, S H; Chang, D H; Kim, T S; Kim, B R; Seo, C S; Jin, J T; Lee, K W; In, S R; Oh, B H; Kim, J; Bae, Y S

    2011-06-01

    A plasma generator for a long pulse H(+)/D(+) ion source has been developed. The plasma generator was designed to produce 65 A H(+)/D(+) beams at an energy of 120 keV from an ion extraction area of 12 cm in width and 45 cm in length. Configuration of the plasma generator is a multi-cusp bucket type with SmCo permanent magnets. Dimension of a plasma chamber is 25 cm in width, 59 cm in length, and 32.5 cm in depth. The plasma generator was designed and fabricated at Japan Atomic Energy Agency. Source plasma generation and beam extraction tests for hydrogen coupling with an accelerator of the KSTAR ion source have been performed at the KSTAR neutral beam test stand under the agreement of Japan-Korea collaborative experiment. Spatial uniformity of the source plasma at the extraction region was measured using Langmuir probes and ±7% of the deviation from an averaged ion saturation current density was obtained. A long pulse test of the plasma generation up to 200 s with an arc discharge power of 70 kW has been successfully demonstrated. The arc discharge power satisfies the requirement of the beam production for the KSTAR NBI. A 70 keV, 41 A, 5 s hydrogen ion beam has been extracted with a high arc efficiency of 0.9 -1.1 A/kW at a beam extraction experiment. A deuteron yield of 77% was measured even at a low beam current density of 73 mA/cm(2). © 2011 American Institute of Physics

  16. Three-dimensional modeling of a negative ion source with a magnetic filter: impact of biasing the plasma electrode on the plasma asymmetry

    NASA Astrophysics Data System (ADS)

    Fubiani, G.; Boeuf, J. P.

    2015-10-01

    The effect on the plasma characteristics of biasing positively the plasma electrode (PE) in negative ion sources with a magnetic filter is analysed using a 3D particle-in-cell model with Monte-Carlo collisions (PIC-MCC). We specialize to the one driver (i.e. one inductively coupled radio-frequency discharge) BATMAN negative ion source and the 4-drivers (large volume) ELISE device. Both are ITER prototype high power tandem-type negative ion sources developed for the neutral beam injector (NBI) system. The plasma is generated in the driver and diffuses inside the second chamber which is magnetized. Asymmetric plasma profiles originate from the formation of an electric field transverse to the electron current flowing through the magnetic filter (Hall effect). The model shows that the importance of the asymmetry increases with the PE bias potential, i.e. with the electron flow from the driver to the extraction region and depends on the shape of the magnetic filter field. We find that although the plasma density and potential profiles may be more or less asymmetric depending on the filter field configuration, the electron current to the plasma grid is always strongly asymmetric.

  17. Planetary exploration with electrically propelled vehicles.

    NASA Technical Reports Server (NTRS)

    Stuhlinger, E.

    1972-01-01

    The characteristics of propulsion systems required for carrying out flight missions within the solar system, as desired by planetary physicists and astronomers, are reviewed. It is shown that an encouraging answer to these requirements is available in the form of electrostatic or ion propulsion systems. The design and performance characteristics of an electrostatic thrustor employing an ion source, accelerating electrode, beam neutralizer, and power source are discussed, together with those of the Kaufmann engine (electrostatic thrustor employing bombardment type ionization). More demanding missions which will become feasible with the advent of nuclear-electric power sources (such as the incore thermionic reactor) may include close orbiters around all the planets, and asteroid and cometary missions.

  18. A corona discharge atmospheric pressure chemical ionization source with selective NO(+) formation and its application for monoaromatic VOC detection.

    PubMed

    Sabo, Martin; Matejčík, Štefan

    2013-11-21

    We have developed a new type of corona discharge (CD) for atmospheric pressure chemical ionization (APCI) for application in ion mobility spectrometry (IMS) as well as in mass spectrometry (MS). While the other CD-APCI sources are able to generate H3O(+)·(H2O)n as the major reactant ions in N2 or in zero air, the present CD-APCI source has the ability to generate up to 84% NO(+)·(H2O)n reactant ions in zero air. The change of the working gas from zero air to N2 allows us to change the major reactant ions from NO(+)·(H2O)n to H3O(+)·(H2O)n. In this paper we present the description of the new CD-APCI and discuss the processes associated with the NO(+) formation. The selective formation of NO(+)·(H2O)n reactant ions offers chemical ionization based on these ions which can be of great advantage for some classes of chemicals. We demonstrate here a significant increase in the sensitivity of the IMS-MS instrument for monoaromatic volatile organic compound (VOC) detection upon NO(+)·(H2O)n chemical ionization.

  19. Proceedings of the 10th international workshop on ECR ion sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, F W; Kirkpatrick, M I

    This report contains papers on the following topics: Recent Developments and Future Projects on ECR Ion Sources; Operation of the New KVI ECR Ion Source at 10 GHz; Operational Experience and Status of the INS SF-ECR Ion Source; Results of the New ECR4'' 14.5 GHz ECRIS; Preliminary Performance of the AECR; Experimental Study of the Parallel and Perpendicular Particle Losses from an ECRIS Plasma; Plasma Instability in Electron Cyclotron Resonance Heated Ion Sources; The Hyperbolic Energy Analyzer; Status of ECR Source Development; The New 10 GHz CAPRICE Source; First Operation of the Texas A M ECR Ion Source; Recent Developmentsmore » of the RIKEN ECR Ion Sources; The 14 GHz CAPRICE Source; Characteristics and Potential Applications of an ORNL Microwave ECR Multicusp Plasma Ion Source; ECRIPAC: The Production and Acceleration of Multiply Charged Ions Using an ECR Plasma; ECR Source for the HHIRF Tandem Accelerator; Feasibility Studies for an ECR-Generated Plasma Stripper; Production of Ion Beams by using the ECR Plasmas Cathode; A Single Stage ECR Source for Efficient Production of Radioactive Ion Beams; The Single Staged ECR Source at the TRIUMF Isotope Separator TISOL; The Continuous Wave, Optically Pumped H{sup {minus}} Source; The H{sup +} ECR Source for the LAMPF Optically Pumped Polarized Ion Source; Present Status of the Warsaw CUSP ECR Ion Source; An ECR Source for Negative Ion Production; GYRAC-D: A Device for a 200 keV ECR Plasma Production and Accumulation; Status Report of the 14.4 GHZ ECR in Legnaro; Status of JYFL-ECRIS; Report on the Uppsala ECRIS Facility and Its Planned Use for Atomic Physics; A 10 GHz ECR Ion Source for Ion-Electron and Ion-Atom Collision Studies; and Status of the ORNL ECR Source Facility for Multicharged Ion Collision Research.« less

  20. Dependence of ion beam current on position of mobile plate tuner in multi-frequencies microwaves electron cyclotron resonance ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurisu, Yosuke; Kiriyama, Ryutaro; Takenaka, Tomoya

    2012-02-15

    We are constructing a tandem-type electron cyclotron resonance ion source (ECRIS). The first stage of this can supply 2.45 GHz and 11-13 GHz microwaves to plasma chamber individually and simultaneously. We optimize the beam current I{sub FC} by the mobile plate tuner. The I{sub FC} is affected by the position of the mobile plate tuner in the chamber as like a circular cavity resonator. We aim to clarify the relation between the I{sub FC} and the ion saturation current in the ECRIS against the position of the mobile plate tuner. We obtained the result that the variation of the plasmamore » density contributes largely to the variation of the I{sub FC} when we change the position of the mobile plate tuner.« less

  1. Source of polarized ions for the JINR accelerator complex

    NASA Astrophysics Data System (ADS)

    Belov, A. S.; Donets, D. E.; Fimushkin, V. V.; Kovalenko, A. D.; Kutuzova, L. V.; Prokofichev, Yu V.; Shutov, V. B.; Turbabin, A. V.; Zubets, V. N.

    2017-12-01

    The JINR atomic beam type polarized ion source is described. Results of tests of the plasma ionizer with a storage cell and of tuning of high frequency transition units are presented. The source was installed in a linac injector hall of NUCLOTRON in May 2016. The source has been commissioned and used in the NUCLOTRON runs in 2016 and February - March 2017. Polarized and unpolarized deuteron beams were produced as well as polarized protons for acceleration in the NUCLOTRON. Polarized deuteron beam with pulsed current up to 2 mA has been produced. Deuteron beam polarization of 0.6-0.9 of theoretical values for different modes of high frequency transition units operation has been measured with the NUCLOTRON ring internal polarimeter for the accelerated deuteron and proton beams.

  2. Visual colorimetry for trace antimony(V) by ion-pair solid-phase extraction with bis[2-(5-chloro-2-pyridylazo)-5-diethylaminophenolato]cobalt(III) on a PTFE type membrane filter.

    PubMed

    Mizuguchi, Hitoshi; Matsuda, Yuki; Mori, Takehito; Uehara, Atsushi; Ishikawa, Yuta; Endo, Masatoshi; Shida, Junichi

    2008-02-01

    A new visual colorimetry for trace antimony(V) based on ion-pair solid-phase extraction to a PTFE-type membrane filter with bis[2-(5-chloro-2-pyridylazo)-5-diethylaminophenolato]cobalt(III) ion ([Co(5-Cl-PADAP)(2)](+)) has been developed. Experiments showed that hexachloroantimonate(V) ion (SbCl(6)(-)) was adsorbed with [Co(5-Cl-PADAP)(2)](+) to the front surface of the PTFE filter. The adsorption of antimony(V) ion was promoted by the addition of lithium chloride as a source of chloride ion. The excess reagent of [Co(5-Cl-PADAP)(2)](+) was eluted by rinsing with a 10 wt% methanol aqueous solution. In this case, the slow rate of the hydrolysis reaction of SbCl(6)(-) and the difference of the hydrophobicity of the ion pairs were important for adsorption and separation with a PTFE-type membrane filter. The antimony(V) concentration was determined through a visual comparison with a standard series. The visual detection limit was 0.10 microg. The calibration curve assessed with the reflection spectrometric responses at 580 nm was linear in the concentration range of 0.10 - 1.2 microg (r = 0.996). The proposed method has been applied to the determination of sub-microgram levels of antimony(V) ion in water samples.

  3. Simulation of the electromagnetic field in a cylindrical cavity of an ECR ions source

    NASA Astrophysics Data System (ADS)

    Estupiñán, A.; Orozco, E. A.; Dugar-Zhabon, V. D.; Murillo Acevedo, M. T.

    2017-12-01

    Now there are numerous sources for multicharged ions production, each being designed for certain science or technological objectives. Electron cyclotron resonance ion sources (ECRIS) are best suited for designing heavy ion accelerators of very high energies, because they can generate multicharged ion beams at relatively great intensities. In these sources, plasma heating and its confinement are effected predominantly in minimum-B magnetic traps, this type of magnetic trap consist of two current coils used for the longitudinal magnetic confinement and a hexapole system around the cavity to generate a transversal confinement of the plasma. In an ECRIS, the electron cyclotron frequency and the microwave frequency are maintained equal on a quasi-ellipsoidal surface localized in the trap volume. It is crucial to heat electrons to energies sufficient to ionize K- and L-levels of heavy atoms. In this work, we present the preliminary numerical results concerning the space distribution of TE 111 microwave field in a cylindrical cavity. The 3D microwave field is calculated by solving the Maxwell equations through the Yee’s method. The magnetic field of minimum-B configuration is determined using the Biot-Savart law. The parameters of the magnetic system are that which guarantee the ECR surface location in a zone of a reasonably high microwave tension. Additionally, the accuracy of electric and magnetic fields calculations are checked.

  4. Characterization of Wax Esters by Electrospray Ionization Tandem Mass Spectrometry: Double Bond Effect and Unusual Product Ions

    PubMed Central

    Chen, Jianzhong; Green, Kari B; Nichols, Kelly K

    2015-01-01

    A series of different types of wax esters (represented by RCOOR′) were systematically studied by using electrospray ionization (ESI) collision-induced dissociation tandem mass spectrometry (MS/MS) along with pseudo MS3 (in-source dissociation combined with MS/MS) on a quadrupole time-of-flight (Q-TOF) mass spectrometer. The tandem mass spectra patterns resulting from dissociation of ammonium/proton adducts of these wax esters were influenced by the wax ester type and the collision energy applied. The product ions [RCOOH2]+, [RCO]+ and [RCO – H2O]+ that have been reported previously were detected; however, different primary product ions were demonstrated for the three wax ester types including: 1) [RCOOH2]+ for saturated wax esters, 2) [RCOOH2]+, [RCO]+ and [RCO – H2O]+ for unsaturated wax esters containing only one double bond in the fatty acid moiety or with one additional double bond in the fatty alcohol moiety, and 3) [RCOOH2]+ and [RCO]+ for unsaturated wax esters containing a double bond in the fatty alcohol moiety alone. Other fragments included [R′]+ and several series of product ions for all types of wax esters. Interestingly, unusual product ions were detected, such as neutral molecule (including water, methanol and ammonia) adducts of [RCOOH2]+ ions for all types of wax esters and [R′ – 2H]+ ions for unsaturated fatty acyl-containing wax esters. The patterns of tandem mass spectra for different types of wax esters will inform future identification and quantification approaches of wax esters in biological samples as supported by a preliminary study of quantification of isomeric wax esters in human meibomian gland secretions. PMID:26178197

  5. Characterization of Wax Esters by Electrospray Ionization Tandem Mass Spectrometry: Double Bond Effect and Unusual Product Ions.

    PubMed

    Chen, Jianzhong; Green, Kari B; Nichols, Kelly K

    2015-08-01

    A series of different types of wax esters (represented by RCOOR') were systematically studied by using electrospray ionization (ESI) collision-induced dissociation tandem mass spectrometry (MS/MS) along with pseudo MS(3) (in-source dissociation combined with MS/MS) on a quadrupole time-of-flight (Q-TOF) mass spectrometer. The tandem mass spectra patterns resulting from dissociation of ammonium/proton adducts of these wax esters were influenced by the wax ester type and the collision energy applied. The product ions [RCOOH2](+), [RCO](+) and [RCO-H2O](+) that have been reported previously were detected; however, different primary product ions were demonstrated for the three wax ester types including: (1) [RCOOH2](+) for saturated wax esters, (2) [RCOOH2](+), [RCO](+) and [RCO-H2O](+) for unsaturated wax esters containing only one double bond in the fatty acid moiety or with one additional double bond in the fatty alcohol moiety, and (3) [RCOOH2](+) and [RCO](+) for unsaturated wax esters containing a double bond in the fatty alcohol moiety alone. Other fragments included [R'](+) and several series of product ions for all types of wax esters. Interestingly, unusual product ions were detected, such as neutral molecule (including water, methanol and ammonia) adducts of [RCOOH2](+) ions for all types of wax esters and [R'-2H](+) ions for unsaturated fatty acyl-containing wax esters. The patterns of tandem mass spectra for different types of wax esters will inform future identification and quantification approaches of wax esters in biological samples as supported by a preliminary study of quantification of isomeric wax esters in human meibomian gland secretions.

  6. Development and analytical characterization of a Grimm-type glow discharge ion source operated with high gas flow rates and coupled to a mass spectrometer with high mass resolution1

    NASA Astrophysics Data System (ADS)

    Beyer, Claus; Feldmann, Ingo; Gilmour, Dave; Hoffmann, Volker; Jakubowski, Norbert

    2002-10-01

    A Grimm-type glow discharge ion source has been developed and was coupled to a commercial inductively coupled plasma mass spectrometer (ICP-MS) with high mass resolution (Axiom, ThermoElemental, Winsford, UK) by exchanging the front plate of the ICP-MS interface system only. In addition to high discharge powers of up to 70 W, which are typical for a Grimm-type design, this source could be operated with relative high gas flow rates of up to 240 ml min -1. In combination with a high discharge voltage the signal intensities are reaching a constant level within the first 20 s after the discharge has started. An analytical characterization of this source is given utilizing a calibration using the steel standard reference material NIST 1261A-1265A. The sensitivity for the investigated elements measured with a resolution of 4000 is in the range of 500-6000 cps μg -1 g -1, and a relative standard deviation (R.S.D.) of the measured isotope relative to Fe of less than 8% for the major and minor components of the sample has been achieved. Limits of detection at ng g -1 levels could be obtained.

  7. The formation of [M-H]+ ions in N-alkyl-substituted thieno[3,4-c]-pyrrole-4,6-dione derivatives during atmospheric pressure photoionization mass spectrometry.

    PubMed

    Sioud, Salim; Kharbatia, Najeh; Amad, Maan H; Zhu, Zhiyong; Cabanetos, Clement; Lesimple, Alain; Beaujuge, Pierre

    2014-11-30

    The formation of ions during atmospheric pressure photoionization (APPI) mass spectrometry in the positive mode usually provides radical cations and/or protonated species. Intriguingly, during the analysis of some N-alkyl-substituted thieno[3,4-c]pyrrole-4,6-dione (TPD) derivatives synthesized in our laboratory, unusual [M-H](+) ion peaks were observed. In this work we investigate the formation of [M-H](+) ions observed under APPI conditions. Multiple experimental parameters, including the type of ionization source, the composition of the solvent, the type of dopant, the infusion flow rate, and the length of the alkyl side chain were investigated to determine their effects on the formation of [M-H](+) ions. In addition, a comparison study of the gas-phase tandem mass spectrometric (MS/MS) fragmentation of [M + H](+) vs [M-H](+) ions and computational approaches were used. [M-H](+) ions were observed under APPI conditions. The type of dopant and the length of the alkyl chain affected the formation of these ions. MS/MS fragmentation of [M-H](+) and [M + H](+) ions exhibited completely different patterns. Theoretical calculations revealed that the loss of hydrogen molecules from the [M + H](+) ions is the most favourable condition under which to form [M-H](+) ions. [M-H](+) ions were detected in all the TPD derivatives studied here under the special experimental conditions during APPI, using a halogenated benzene dopant, and TPD containing substituted N-alkyl side chains with a minimum of four carbon atoms. Density functional theory calculations showed that for [M-H](+) ions to be formed under these conditions, the loss of hydrogen molecules from the [M + H](+)  ions is proposed to be necessary. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Ion beam sputtering of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.

    1978-01-01

    Etching and deposition of fluoropolymers are of considerable industrial interest for applications dealing with adhesion, chemical inertness, hydrophobicity, and dielectric properties. This paper describes ion beam sputter processing rates as well as pertinent characteristics of etched targets and films. An argon ion beam source was used to sputter etch and deposit the fluoropolymers PTFE, FEP, and CTFE. Ion beam energy, current density, and target temperature were varied to examine effects on etch and deposition rates. The ion etched fluoropolymers yield cone or spire-like surface structures which vary depending upon the type of polymer, ion beam power density, etch time, and target temperature. Also presented are sputter target and film characteristics which were documented by spectral transmittance measurements, X-ray diffraction, ESCA, and SEM photomicrographs.

  9. Single ICMEs and Complex Transient Structures in the Solar Wind in 2010 - 2011

    NASA Astrophysics Data System (ADS)

    Rodkin, D.; Slemzin, V.; Zhukov, A. N.; Goryaev, F.; Shugay, Y.; Veselovsky, I.

    2018-05-01

    We analyze the statistics, solar sources, and properties of interplanetary coronal mass ejections (ICMEs) in the solar wind. The total number of coronal mass ejections (CMEs) registered in the Coordinated Data Analysis Workshops catalog (CDAW) during the first eight years of Cycle 24 was 61% larger than in the same period of Cycle 23, but the number of X-ray flares registered by the Geostationary Operational Environmental Satellite (GOES) was 20 % smaller because the solar activity was lower. The total number of ICMEs in the given period of Cycle 24 in the Richardson and Cane list was 29% smaller than in Cycle 23, which may be explained by a noticeable number of non-classified ICME-like events in the beginning of Cycle 24. For the period January 2010 - August 2011, we identify solar sources of the ICMEs that are included in the Richardson and Cane list. The solar sources of ICME were determined from coronagraph observations of the Earth-directed CMEs, supplemented by modeling of their propagation in the heliosphere using kinematic models (a ballistic and drag-based model). A detailed analysis of the ICME solar sources in the period under study showed that in 11 cases out of 23 (48%), the observed ICME could be associated with two or more sources. For multiple-source events, the resulting solar wind disturbances can be described as complex (merged) structures that are caused by stream interactions, with properties depending on the type of the participating streams. As a reliable marker to identify interacting streams and their sources, we used the plasma ion composition because it freezes in the low corona and remains unchanged in the heliosphere. According to the ion composition signatures, we classify these cases into three types: complex ejecta originating from weak and strong CME-CME interactions, as well as merged interaction regions (MIRs) originating from the CME high-speed stream (HSS) interactions. We describe temporal profiles of the ion composition for the single-source and multi-source solar wind structures and compared them with the ICME signatures determined from the kinematic and magnetic field parameters of the solar wind. In single-source events, the ion charge state, as a rule, has a one-peak enhancement with an average duration of about one day, which is similar to the mean ICME duration of 1.12 days derived from the Richardson and Cane list. In the multi-source events, the total profile of the ion charge state consists of a sequence of enhancements that is associated with the interaction between the participating streams. On average, the total duration of the complex structures that appear as a result of the CME-CME and CME-HSS interactions as determined from their ion composition is 2.4 days, which is more than twice longer than that of the single-source events.

  10. Heavy ion fusion reactions in stars

    NASA Astrophysics Data System (ADS)

    Tang, X. D.

    2018-04-01

    Heavy ion fusion reactions play important roles in a wide variety of stellar burning scenarios. 12C+12C, 12C+16O and 16O+16O are the principle reactions during the advance burning stages of massive star. 12C+12C also triggers the happening of superburst and Type Ia supernovae. The heavy ion fusion reactions of the neutron-rich isotopes such as 24O are the major heating source in the crust of neutron star. In this talk, I will review the challenges and the recent progress in the study of these heavy ion fusion reactions at stellar energies. The outlook for the studies of the astrophysical heavy-ion fusion reactions will also be presented.

  11. An ion source for radiofrequency-pulsed glow discharge time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    González Gago, C.; Lobo, L.; Pisonero, J.; Bordel, N.; Pereiro, R.; Sanz-Medel, A.

    2012-10-01

    A Grimm-type glow discharge (GD) has been designed and constructed as an ion source for pulsed radiofrequency GD spectrometry when coupled to an orthogonal time of flight mass spectrometer. Pulse shapes of argon species and analytes were studied as a function of the discharge conditions using a new in-house ion source (UNIOVI GD) and results have been compared with a previous design (PROTOTYPE GD). Different behavior and shapes of the pulse profiles have been observed for the two sources evaluated, particularly for the plasma gas ionic species detected. In the more analytically relevant region (afterglow), signals for 40Ar+ with this new design were negligible, while maximum intensity was reached earlier in time for 41(ArH)+ than when using the PROTOTYPE GD. Moreover, while maximum 40Ar+ signals measured along the pulse period were similar in both sources, 41(ArH)+ and 80(Ar2)+ signals tend to be noticeable higher using the PROTOTYPE chamber. The UNIOVI GD design was shown to be adequate for sensitive direct analysis of solid samples, offering linear calibration graphs and good crater shapes. Limits of detection (LODs) are in the same order of magnitude for both sources, although the UNIOVI source provides slightly better LODs for those analytes with masses slightly higher than 41(ArH)+.

  12. Origin of threshold voltage fluctuation caused by ion implantation to source and drain extensions of silicon-on-insulator triple-gate fin-type field-effect transistors using three-dimensional process and device simulations

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Toshiyuki

    2018-06-01

    The threshold voltage (V th) fluctuation induced by ion implantation (I/I) in the source and drain extensions (SDEs) of a silicon-on-insulator (SOI) triple-gate (Tri-Gate) fin-type field-effect transistor (FinFET) was analyzed by both three-dimensional (3D) process and device simulations collaboratively. The origin of the V th fluctuation induced by the SDE I/I is basically a variation of a bottleneck barrier height (BBH) due to implanted arsenic (As+) ions. In particular, a very low and broad V th distribution in the saturation region is due to percolative conduction in addition to the BBH variation. Moreover, it is surprisingly found that the V th fluctuation is mostly characterized by the BBH of only a top surface center line of a Si fin of the device. Our collaborative approach by 3D process and device simulations is dispensable for the accurate investigation of variability-tolerant devices. The obtained results are beneficial for the research and development of such future devices.

  13. Pectin, Hemicellulose, or Lignin? Impact of the Biowaste Source on the Performance of Hard Carbons for Sodium-Ion Batteries.

    PubMed

    Dou, Xinwei; Hasa, Ivana; Hekmatfar, Maral; Diemant, Thomas; Behm, R Jürgen; Buchholz, Daniel; Passerini, Stefano

    2017-06-22

    Hard carbons are currently the most widely used negative electrode materials in Na-ion batteries. This is due to their promising electrochemical performance with capacities of 200-300 mAh g -1 and stable long-term cycling. However, an abundant and cheap carbon source is necessary in order to comply with the low-cost philosophy of Na-ion technology. Many biological or waste materials have been used to synthesize hard carbons but the impact of the precursors on the final properties of the anode material is not fully understood. In this study the impact of the biomass source on the structural and electrochemical properties of hard carbons is unraveled by using different, representative types of biomass as examples. The systematic structural and electrochemical investigation of hard carbons derived from different sources-namely corncobs, peanut shells, and waste apples, which are representative of hemicellulose-, lignin- and pectin-rich biomass, respectively-enables understanding and interlinking of the structural and electrochemical properties. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Plasma-surface interaction in negative hydrogen ion sources

    NASA Astrophysics Data System (ADS)

    Wada, Motoi

    2018-05-01

    A negative hydrogen ion source delivers more beam current when Cs is introduced to the discharge, but a continuous operation of the source reduces the beam current until more Cs is added to the source. This behavior can be explained by adsorption and ion induced desorption of Cs atoms on the plasma grid surface of the ion source. The interaction between the ion source plasma and the plasma grid surface of a negative hydrogen ion source is discussed in correlation to the Cs consumption of the ion source. The results show that operation with deuterium instead of hydrogen should require more Cs consumption and the presence of medium mass impurities as well as ions of the source wall materials in the arc discharge enlarges the Cs removal rate during an ion source discharge.

  15. A singly charged ion source for radioactive {sup 11}C ion acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katagiri, K.; Noda, A.; Nagatsu, K.

    2016-02-15

    A new singly charged ion source using electron impact ionization has been developed to realize an isotope separation on-line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive {sup 11}C ion beams. Low-energy electron beams are used in the electron impact ion source to produce singly charged ions. Ionization efficiency was calculated in order to decide the geometric parameters of the ion source and to determine the required electron emission current for obtaining high ionization efficiency. Based on these considerations, the singly charged ion source was designed and fabricated. In testing, the fabricated ion source wasmore » found to have favorable performance as a singly charged ion source.« less

  16. Nitrogen-doped carbon nanofibers derived from polypyrrole coated bacterial cellulose as high-performance electrode materials for supercapacitors and Li-ion batteries

    DOE PAGES

    Lei, Wen; Han, Lili; Xuan, Cuijuan; ...

    2016-05-24

    Here, nitrogen-doped carbon nanofiber (NDCN) was synthesized via carbonization of polypyrrole (PPy) coated bacterial cellulose (BC) composites, where BC serves as templates as well as precursor, and PPy serves as the nitrogen source. The synthesized NDCN was employed as electrode for both supercapacitors and Li-ion batteries. The large surface area exposed to electrolyte resulting from the 3D carbon networks leads to sufficient electrode/electrolyte interface and creates shorter transport paths of electrolyte ions and Li + ion. Besides, the three types of N dopants in NDCN improve the electronic conductivity, as well as superior electrochemical performance.

  17. Hydrogen ions associated with the dry deposition of pollen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noll, K.E.; Khalili, E.K.

    The data provided in this paper demonstrates that pollen can generate significant amounts of hydrogen ions when added to water and that the deposition of tree pollen in forested areas represents a significant hydrogen ion source. Measurements of dry deposition of pollen were made during the months of May and June, 1987 in Northern Wisconsin, using a smooth surrogate surface. Rain samples were also collected. Deposited particles were weighed to determine mass fluxes, then washed and ion chromatographed for SO {sub 4} = and NO {sub 3} {minus} analysis. Species of pollen collected from different types of trees during themore » sampling period were analyzed for SO{sub 4} = NO {sub 3} and other trace constituents. The micrograms of hydrogen ions (protons) generated per gram for different types of pollen added to water, were measured. From 56 to 566 gm were generated per gram or pollen added. The amount generated varied with pollen type. Based on this information, the equivalent protons from the dry deposition of pollen were calculated and compared with the wet deposition proton data. The sulfate, nitrate, and protons associated with dry deposition were of a magnitude comparable with wet deposition.« less

  18. Comparison of reactant and analyte ions for ⁶³Nickel, corona discharge, and secondary electrospray ionization sources with ion mobility-mass spectrometry.

    PubMed

    Crawford, C L; Hill, H H

    2013-03-30

    (63)Nickel radioactive ionization ((63)Ni) is the most common and widely used ion source for ion mobility spectrometry (IMS). Regulatory, financial, and operational concerns with this source have promoted recent development of non-radioactive sources, such as corona discharge ionization (CD), for stand-alone IMS systems. However, there has been no comparison of the negative ion species produced by all three sources in the literature. This study compares the negative reactant and analyte ions produced by three sources on an ion mobility-mass spectrometer: conventional (63)Ni, CD, and secondary electrospray ionization (SESI). Results showed that (63)Ni and SESI produced the same reactant ion species while CD produced only the nitrate monomer and dimer ions. The analyte ions produced by each ion source were the same except for the CD source which produced a different ion species for the explosive RDX than either the (63)Ni or SESI source. Accurate and reproducible reduced mobility (K0) values, including several values reported here for the first time, were found for each explosive with each ion source. Overall, the SESI source most closely reproduced the reactant ion species and analyte ion species profiles for (63)Ni. This source may serve as a non-radioactive, robust, and flexible alternative for (63)Ni. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Tunable Ionization Modes of a Flowing Atmospheric-Pressure Afterglow (FAPA) Ambient Ionization Source.

    PubMed

    Badal, Sunil P; Michalak, Shawn D; Chan, George C-Y; You, Yi; Shelley, Jacob T

    2016-04-05

    Plasma-based ambient desorption/ionization sources are versatile in that they enable direct ionization of gaseous samples as well as desorption/ionization of analytes from liquid and solid samples. However, ionization matrix effects, caused by competitive ionization processes, can worsen sensitivity or even inhibit detection all together. The present study is focused on expanding the analytical capabilities of the flowing atmospheric-pressure afterglow (FAPA) source by exploring additional types of ionization chemistry. Specifically, it was found that the abundance and type of reagent ions produced by the FAPA source and, thus, the corresponding ionization pathways of analytes, can be altered by changing the source working conditions. High abundance of proton-transfer reagent ions was observed with relatively high gas flow rates and low discharge currents. Conversely, charge-transfer reagent species were most abundant at low gas flows and high discharge currents. A rather nonpolar model analyte, biphenyl, was found to significantly change ionization pathway based on source operating parameters. Different analyte ions (e.g., MH(+) via proton-transfer and M(+.) via charge-transfer) were formed under unique operating parameters demonstrating two different operating regimes. These tunable ionization modes of the FAPA were used to enable or enhance detection of analytes which traditionally exhibit low-sensitivity in plasma-based ADI-MS analyses. In one example, 2,2'-dichloroquaterphenyl was detected under charge-transfer FAPA conditions, which were difficult or impossible to detect with proton-transfer FAPA or direct analysis in real-time (DART). Overall, this unique mode of operation increases the number and range of detectable analytes and has the potential to lessen ionization matrix effects in ADI-MS analyses.

  20. Particle acceleration

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

    1986-01-01

    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

  1. Do Ions Injected with the Dipolarizing Flux Bundles Provide the Free Energy for Waves in the Inner Magnetosphere?

    NASA Astrophysics Data System (ADS)

    Runov, A.; Angelopoulos, V.; Artemyev, A.; Lu, S.; Birn, J.; Pritchett, P. L.

    2017-12-01

    Electron interactions with Electromagnetic Ion Cyclotron (EMIC) amd Magnetosnic (MS) waves are considered as a mechanism of electron acceleration up to relativistic energies in the inner magnetosphere. The free energy for these waves is provided by ion populations with unstable energy distributions. It is established that the perpendicular anisotropy (T_perp > T_par) of energetic ions may provide the free energy for EMIC waves. The ring-type ion distributions are considered as the free energy source for the MS waves. Where and how do these distributions formed? To answer this question, we examined ion distribution functions within earthward-contracting dipolarizing flux bundles (DFBs) observed in the near-Earth plasma sheet at R 10 - 12 RE. It was found that ion distributions are often characterized by the perpendicular anisotropy at supra-thermal energies (at velocities V_thermal ≤ v ≤ 2*V_thermal). The effect was found to be stronger at largerbackground Bz (i.e., closer to the dipole). Similar characteristics wereobserved in particle-in-cell and test-particle simulations. Moreover, the simulations showed the ring-type ion distribution formation. These results suggest that ions, injected towards the inner magnetosphere with DFBs may indeed provide free energy for the EMIC and MS wave excitations.

  2. Laser ion source for high brightness heavy ion beam

    DOE PAGES

    Okamura, M.

    2016-09-01

    A laser ion source is known as a high current high charge state heavy ion source. But, we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. Furthermore, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory in 2014. Now most of all the solid based heavy ions are being provided from the laser ion sourcemore » for regular operation.« less

  3. Ultra-short ion and neutron pulse production

    DOEpatents

    Leung, Ka-Ngo; Barletta, William A.; Kwan, Joe W.

    2006-01-10

    An ion source has an extraction system configured to produce ultra-short ion pulses, i.e. pulses with pulse width of about 1 .mu.s or less, and a neutron source based on the ion source produces correspondingly ultra-short neutron pulses. To form a neutron source, a neutron generating target is positioned to receive an accelerated extracted ion beam from the ion source. To produce the ultra-short ion or neutron pulses, the apertures in the extraction system of the ion source are suitably sized to prevent ion leakage, the electrodes are suitably spaced, and the extraction voltage is controlled. The ion beam current leaving the source is regulated by applying ultra-short voltage pulses of a suitable voltage on the extraction electrode.

  4. Improved ion source

    DOEpatents

    Leung, K.N.; Ehlers, K.W.

    1982-05-04

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species,

  5. Ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.

    1984-01-01

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.

  6. DUAL HEATED ION SOURCE STRUCTURE HAVING ARC SHIFTING MEANS

    DOEpatents

    Lawrence, E.O.

    1959-04-14

    An ion source is presented for calutrons, particularly an electrode arrangement for the ion generator of a calutron ion source. The ion source arc chamber is heated and an exit opening with thermally conductive plates defines the margins of the opening. These plates are electrically insulated from the body of the ion source and are connected to a suitable source of voltage to serve as electrodes for shaping the ion beam egressing from the arc chamber.

  7. Investigation of the ion beam emission from a pulsed power plasma device

    NASA Astrophysics Data System (ADS)

    Henríquez, A.; Bhuyan, H.; Favre, M.; Retamal, M. J.; Volkmann, U.; Wyndham, E.; Chuaqui, H.

    2014-05-01

    Plasma Focus (PF) devices are well known as ion beam sources with characteristic energy among the hundreds of keV to tens of MeV. The information on ion beam energy, ion distribution and composition is essential from the viewpoint of understanding fundamental physics behind their production and acceleration and also their applications in various fields, such as surface properties modification, ion implantation, thin film deposition, semiconductor doping and ion assisted coating. An investigation from a low energy, 1.8 kJ 160 kA, Mather type plasma focus device operating with nitrogen using CR-39 detectors was conducted to study the emission of ions at different angular positions. Tracks on CR-39 detectors at different angular positions reveal the existence of angular ion anisotropy. The results obtained are comparable with the time integrated measurements using FC. Preliminary results of this work are presented.

  8. APPARATUS FOR CONTROLLING THE POSITION OF AN ION BEAM IN A CALUTRON

    DOEpatents

    Lawrence, E.O.

    1958-01-01

    ABS>This patent relates to improvements in electric discharge devices of the calutron type for separation of the isotopes of an element from the freely occurring composition. The improvement constitutes means for the continuous control of the path of an ion beam to obtain maximum reception in a receiver compartment. Withdrawal of the ions from the source is accomplished by an accelerator electrode placed at a positive potential with respect to the receiver. The ions are projected through a magnetic field perpendicular to the direction of motion towards a receiver. In order to obtain a signal representative of the magnitude of ions received from a particular ion-beam in its compartment, an electrode is disposed in the compartment. The signal from the compartment electrode controls the voltage of the acccleratimg electrodc through appropriate circuitry to maintain the path of the particular ion beam optimum for maximum ion current in the compartment.

  9. Production of needle-type liquid-metal ion sources and their application in a scanning ion muscope

    NASA Astrophysics Data System (ADS)

    Knapp, Helmut; Rübesame, Detlef; Niedrig, Heinz

    1991-07-01

    A tungsten wire is electrochemically etched in NaOH to produce tip radii of 4-10 μm for use in liquid-metal ion sources (LMIS). To ensure complete wetting of the needle with the liquid metal (Sn, Ga), the needle has to be annealed at 800-1000°C by electron bombardment in a vacuum. It is then immediately dipped into the liquid metal in the same vacuum chamber. An anode prepared in this way is part of a triode system, followed by an octupole stigmator, an electrostatic einzel lens and the scanning unit. Upon application of a high voltage the liquid metal will form a Taylor cone at the needle tip. In the resulting high electrical field ions are extracted through field evaporation. Typical beam current and spot size values during scanning ion muscope (SIM) operation are 2.5 μA and 10 μm respectively. An Everhart-Thornley detector and a quadrupole mass spectrometer are available to allow analysis of secondary particles emitted from the target.

  10. Material from the Internal Surface of Squid Axon Exhibits Excess Noise

    PubMed Central

    Fishman, Harvey M.

    1981-01-01

    A fluid material from a squid (Loligo pealei) axon was isolated by mechanical application of two types of microcapillary (1-3-μm Diam) to the internal surface of intact and cut-axon preparations. Current noise in the isolated material exceeded thermal levels and power spectra were 1/f in form in the frequency range 1.25-500 Hz with voltage-dependent intensities that were unrelated to specific ion channels. Whether conduction in this material is a significant source of excess noise during axon conduction remains to be determined. Nevertheless, a source of excess noise external to or within an ion channel may not be properly represented solely as an additive term to the spectrum of ion channel noise; a deconvolution of these spectral components may be required for modeling purposes. PMID:6266542

  11. A SIFT study of the reactions of H2ONO+ ions with several types of organic molecules

    NASA Astrophysics Data System (ADS)

    Smith, David; Wang, Tianshu; Spanel, Patrik

    2003-11-01

    A selected ion flow tube (SIFT) study has been carried out of the reactions of hydrated nitrosonium ions, NO+H2O, which theory has equated to protonated nitrous acid ions, H2ONO+. One objective of this study was to investigate if this ion exhibits the properties of both a cluster ion and a protonated acid in their reactions with a variety of organic molecules. The chosen reactant molecules comprise two each of the following types--amines, terpenes, aromatic hydrocarbons, esters, carboxylic acids, ketones, aldehydes and alcohols. The reactant H2ONO+ (NO+H2O) ions are formed in a discharge ion source and injected into helium carrier gas where they are partially vibrationally excited and partially dissociated to NO+ ions. Hence, the reactions of the H2ONO+ ions had to be studies simultaneously with NO+ ions, the reactions of the latter ions readily being studied by selectively injecting NO+ ions into the carrier gas. The results of this study indicate that the H2ONO+ ions undergo a wide variety of reaction processes that depend on the properties of the reactant molecules such as their ionisation energies and proton affinities. These processes include charge transfer with compounds, M, that have low ionisation energies (producing M+), proton transfer with compounds possessing large proton affinities (MH+), hydride ion transfer (M---H+), alkyl radical (M---R+), alkoxide radical transfer (M---OR+), ion-molecule association (NO+H2OM) and ligand switching (NO+M), producing the ions given in parentheses.

  12. Positive and negative ion beam merging system for neutral beam production

    DOEpatents

    Leung, Ka-Ngo; Reijonen, Jani

    2005-12-13

    The positive and negative ion beam merging system extracts positive and negative ions of the same species and of the same energy from two separate ion sources. The positive and negative ions from both sources pass through a bending magnetic field region between the pole faces of an electromagnet. Since the positive and negative ions come from mirror image positions on opposite sides of a beam axis, and the positive and negative ions are identical, the trajectories will be symmetrical and the positive and negative ion beams will merge into a single neutral beam as they leave the pole face of the electromagnet. The ion sources are preferably multicusp plasma ion sources. The ion sources may include a multi-aperture extraction system for increasing ion current from the sources.

  13. Protein Structural Studies by Traveling Wave Ion Mobility Spectrometry: A Critical Look at Electrospray Sources and Calibration Issues

    NASA Astrophysics Data System (ADS)

    Sun, Yu; Vahidi, Siavash; Sowole, Modupeola A.; Konermann, Lars

    2016-01-01

    The question whether electrosprayed protein ions retain solution-like conformations continues to be a matter of debate. One way to address this issue involves comparisons of collision cross sections (Ω) measured by ion mobility spectrometry (IMS) with Ω values calculated for candidate structures. Many investigations in this area employ traveling wave IMS (TWIMS). It is often implied that nanoESI is more conducive for the retention of solution structure than regular ESI. Focusing on ubiquitin, cytochrome c, myoglobin, and hemoglobin, we demonstrate that Ω values and collisional unfolding profiles are virtually indistinguishable under both conditions. These findings suggest that gas-phase structures and ion internal energies are independent of the type of electrospray source. We also note that TWIMS calibration can be challenging because differences in the extent of collisional activation relative to drift tube reference data may lead to ambiguous peak assignments. It is demonstrated that this problem can be circumvented by employing collisionally heated calibrant ions. Overall, our data are consistent with the view that exposure of native proteins to electrospray conditions can generate kinetically trapped ions that retain solution-like structures on the millisecond time scale of TWIMS experiments.

  14. Radio frequency source of a weakly expanding wedge-shaped xenon ion beam for contactless removal of large-sized space debris objects.

    PubMed

    Balashov, Victor; Cherkasova, Maria; Kruglov, Kirill; Kudriavtsev, Arseny; Masherov, Pavel; Mogulkin, Andrey; Obukhov, Vladimir; Riaby, Valentin; Svotina, Victoria

    2017-08-01

    A theoretical-experimental research has been carried out to determine the characteristics of a radio frequency (RF) ion source for the generation of a weakly expanding wedge-shaped xenon ion beam. Such ion beam geometry is of interest as a prototype of an on-board ion injector for contactless "ion shepherding" by service spacecraft to remove large space debris objects from geostationary orbits. The wedge shape of the ion beam increases its range. The device described herein comprises an inductive gas discharge chamber and a slit-type three-electrode ion extraction grid (IEG) unit. Calculations of accelerating cell geometries and ion trajectories determined the dependence of beam expansion half-angle on normalized perveance based on the measurements of the spatial distributions of the xenon plasma parameters at the IEG entrance for a xenon flow rate q ≈ 0.2 mg/s and an incident RF power P in ≤ 250 W at a driving frequency f = 2 MHz. Experimental studies showed that the ion beam, circular at the IEG exit, accepted the elliptical form at the distance of 580 mm with half-angle of beam expansion across IEG slits about 2°-3° and close to 0° along them. Thus, the obtained result proved the possibility of creating a new-generation on-board ion injector that could be used in spacecrafts for removal of debris.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erck, R.A.

    A blue-green glow was observed in the cold-plate section of a conventional cryogenic pump used in a vacuum-deposition chamber. The fluorescence is associated with operation of an electron-beam evaporator and is present at all gas pressures and evaporator voltages used, but cannot be made to occur during operation of a 1 kV Kaufman-type ion source or a 3 kV electron source.

  16. Transmission geometry laserspray ionization vacuum using an atmospheric pressure inlet.

    PubMed

    Lutomski, Corinne A; El-Baba, Tarick J; Inutan, Ellen D; Manly, Cory D; Wager-Miller, James; Mackie, Ken; Trimpin, Sarah

    2014-07-01

    This represents the first report of laserspray ionization vacuum (LSIV) with operation directly from atmospheric pressure for use in mass spectrometry. Two different types of electrospray ionization source inlets were converted to LSIV sources by equipping the entrance of the atmospheric pressure inlet aperture with a customized cone that is sealed with a removable glass plate holding the matrix/analyte sample. A laser aligned in transmission geometry (at 180° relative to the inlet) ablates the matrix/analyte sample deposited on the vacuum side of the glass slide. Laser ablation from vacuum requires lower inlet temperature relative to laser ablation at atmospheric pressure. However, higher inlet temperature is required for high-mass analytes, for example, α-chymotrypsinogen (25.6 kDa). Labile compounds such as gangliosides and cardiolipins are detected in the negative ion mode directly from mouse brain tissue as intact doubly deprotonated ions. Multiple charging enhances the ion mobility spectrometry separation of ions derived from complex tissue samples.

  17. Transmission Geometry Laserspray Ionization Vacuum Using an Atmospheric Pressure Inlet

    PubMed Central

    2015-01-01

    This represents the first report of laserspray ionization vacuum (LSIV) with operation directly from atmospheric pressure for use in mass spectrometry. Two different types of electrospray ionization source inlets were converted to LSIV sources by equipping the entrance of the atmospheric pressure inlet aperture with a customized cone that is sealed with a removable glass plate holding the matrix/analyte sample. A laser aligned in transmission geometry (at 180° relative to the inlet) ablates the matrix/analyte sample deposited on the vacuum side of the glass slide. Laser ablation from vacuum requires lower inlet temperature relative to laser ablation at atmospheric pressure. However, higher inlet temperature is required for high-mass analytes, for example, α-chymotrypsinogen (25.6 kDa). Labile compounds such as gangliosides and cardiolipins are detected in the negative ion mode directly from mouse brain tissue as intact doubly deprotonated ions. Multiple charging enhances the ion mobility spectrometry separation of ions derived from complex tissue samples. PMID:24896880

  18. Very-low-energy-spread ion sources

    NASA Astrophysics Data System (ADS)

    Lee, Y.

    1997-05-01

    Ion beams with low axial energy spread are required in many applications such as ion projection lithography, isobaric separation in radioactive ion beam experiments, and ion beam deposition processes. In an ion source, the spread of the axial ion energy is caused by the nonuniformity of the plasma potential distribution along the source axis. Multicusp ion sources are capable of production positive and negative ions with good beam quality and relatively low energy spread. By intorducing a magnetic filter inside the multicusp source chamber, the axial plasma potential distribution is modified and the energy spread of positive hydrogen ions can be reduced to as low as 1 eV. The energy spread measurements of multicusp sources have been conducted by employing three different techniques: an electrostatic energy analyzer at the source exit; a magnetic deflection spectrometer; and a retarding-field energy analyzer for the accelerated beam. These different measurements confirmed tha! t ! the axial energy spread of positive and negative ions generated in the filter-equipped multicusp sources are small. New ion source configurations are now being investigated at LBNL with the purpose of achieving enen lower energy spread (<1eV) and of maximizing source performance such as reliability and lifetime.

  19. Temporal Dependence of Chromosomal Aberration on Radiation Quality and Cellular Genetic Background

    NASA Technical Reports Server (NTRS)

    Lu, Tao; Zhang, Ye; Krieger, Stephanie; Yeshitla, Samrawit; Goss, Rosalin; Bowler, Deborah; Kadhim, Munira; Wilson, Bobby; Wu, Honglu

    2017-01-01

    Radiation induced cancer risks are driven by genetic instability. It is not well understood how different radiation sources induce genetic instability in cells with different genetic background. Here we report our studies on genetic instability, particularly chromosome instability using fluorescence in situ hybridization (FISH), in human primary lymphocytes, normal human fibroblasts, and transformed human mammary epithelial cells in a temporal manner after exposure to high energy protons and Fe ions. The chromosome spread was prepared 48 hours, 1 week, 2 week, and 1 month after radiation exposure. Chromosome aberrations were analyzed with whole chromosome specific probes (chr. 3 and chr. 6). After exposure to protons and Fe ions of similar cumulative energy (??), Fe ions induced more chromosomal aberrations at early time point (48 hours) in all three types of cells. Over time (after 1 month), more chromosome aberrations were observed in cells exposed to Fe ions than in the same type of cells exposed to protons. While the mammary epithelial cells have higher intrinsic genetic instability and higher rate of initial chromosome aberrations than the fibroblasts, the fibroblasts retained more chromosomal aberration after long term cell culture (1 month) in comparison to their initial frequency of chromosome aberration. In lymphocytes, the chromosome aberration frequency at 1 month after exposure to Fe ions was close to unexposed background, and the chromosome aberration frequency at 1 month after exposure to proton was much higher. In addition to human cells, mouse bone marrow cells isolated from strains CBA/CaH and C57BL/6 were irradiated with proton or Fe ions and were analyzed for chromosome aberration at different time points. Cells from CBA mice showed similar frequency of chromosome aberration at early and late time points, while cells from C57 mice showed very different chromosome aberration rate at early and late time points. Our results suggest that relative biological effectiveness (RBE) of radiation are different for different radiation sources, for different cell types, and for the same cell type with different genetic background at different times after radiation exposure. Caution must be taken in using RBE value to estimate biological effects from radiation exposure.

  20. The development of a new type of rechargeable batteries based on hybrid electrolytes.

    PubMed

    Zhou, Haoshen; Wang, Yonggang; Li, Huiqiao; He, Ping

    2010-09-24

    Lithium ion batteries (LIBs), which have the highest energy density among all currently available rechargeable batteries, have recently been considered for use in hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and pure electric vehicles (PEV). A major challenge in this effort is to increase the energy density of LIBs to satisfy the industrial needs of HEVs, PHEVs, and PEVs. Recently, new types of lithium-air and lithium-copper batteries that employ hybrid electrolytes have attracted significant attention; these batteries are expected to succeed lithium ion batteries as next-generation power sources. Herein, we review the concept of hybrid electrolytes, as well as their advantages and disadvantages. In addition, we examine new battery types that use hybrid electrolytes.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, N.C.; Limbach, P.A.; Shomo, R.E. II

    The coupling of an autoneutralizing SF{sup {minus}}{sub 6} fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis (e.g., production of abundant pseudomolecular (M+H){sup +} ions) of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with {ital tetra}-butylammonium bromide and a Tylenol{sup ( )} sample.more » The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon{sup ( )}. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.« less

  2. Dense plasma focus (DPF) accelerated non radio isotopic radiological source

    DOEpatents

    Rusnak, Brian; Tang, Vincent

    2017-01-31

    A non-radio-isotopic radiological source using a dense plasma focus (DPF) to produce an intense z-pinch plasma from a gas, such as helium, and which accelerates charged particles, such as generated from the gas or injected from an external source, into a target positioned along an acceleration axis and of a type known to emit ionizing radiation when impinged by the type of accelerated charged particles. In a preferred embodiment, helium gas is used to produce a DPF-accelerated He2+ ion beam to a beryllium target, to produce neutron emission having a similar energy spectrum as a radio-isotopic AmBe neutron source. Furthermore, multiple DPFs may be stacked to provide staged acceleration of charged particles for enhancing energy, tunability, and control of the source.

  3. REE enrichment in granite-derived regolith deposits of the southeast United States: Prospective source rocks and accumulation processes

    USGS Publications Warehouse

    Foley, Nora K.; Ayuso, Robert A.; Simandl, G.J.; Neetz, M.

    2015-01-01

    The Southeastern United States contains numerous anorogenic, or A-type, granites, which constitute promising source rocks for REE-enriched ion adsorption clay deposits due to their inherently high concentrations of REE. These granites have undergone a long history of chemical weathering, resulting in thick granite-derived regoliths, akin to those of South China, which supply virtually all heavy REE and Y, and a significant portion of light REE to global markets. Detailed comparisons of granite regolith profiles formed on the Stewartsville and Striped Rock plutons, and the Robertson River batholith (Virginia) indicate that REE are mobile and can attain grades comparable to those of deposits currently mined in China. A REE-enriched parent, either A-type or I-type (highly fractionated igneous type) granite, is thought to be critical for generating the high concentrations of REE in regolith profiles. One prominent feature we recognize in many granites and mineralized regoliths is the tetrad behaviour displayed in REE chondrite-normalized patterns. Tetrad patterns in granite and regolith result from processes that promote the redistribution, enrichment, and fractionation of REE, such as late- to post- magmatic alteration of granite and silicate hydrolysis in the regolith. Thus, REE patterns showing tetrad effects may be a key for discriminating highly prospective source rocks and regoliths with potential for REE ion adsorption clay deposits.

  4. Composition analyzer for microparticles using a spark ion source

    NASA Technical Reports Server (NTRS)

    Auer, S.; Berg, O. E.

    1975-01-01

    Iron microparticles were fired onto a capacitor-type microparticle detector which responded to an impact with a spark discharge. Ion currents were extracted from the spark and analyzed in a time-of-flight mass spectrometer. The mass spectra showed the elements of both detector and particle materials. The total extracted ion current was typically 10 A within a period of 100 nsec, indicating very efficient vaporization of the particle and ionization of the vapor. Potential applications include research on cosmic dust, atmospheric aerosols and cloud droplets, particles ejected by rocket or jet engines, by machining processes or by nuclear bomb explosions.

  5. Factors controlling groundwater quality in the Yeonjegu District of Busan City, Korea, using the hydrogeochemical processes and fuzzy GIS.

    PubMed

    Venkatramanan, Senapathi; Chung, Sang Yong; Selvam, Sekar; Lee, Seung Yeop; Elzain, Hussam Eldin

    2017-10-01

    The hydrogeochemical processes and fuzzy GIS techniques were used to evaluate the groundwater quality in the Yeonjegu district of Busan Metropolitan City, Korea. The highest concentrations of major ions were mainly related to the local geology. The seawater intrusion into the river water and municipal contaminants were secondary contamination sources of groundwater in the study area. Factor analysis represented the contamination sources of the mineral dissolution of the host rocks and domestic influences. The Gibbs plot exhibited that the major ions were derived from the rock weathering condition. Piper's trilinear diagram showed that the groundwater quality was classified into five types of CaHCO 3 , NaHCO 3 , NaCl, CaCl 2 , and CaSO 4 types in that order. The ionic relationship and the saturation mineral index of the ions indicated that the evaporation, dissolution, and precipitation processes controlled the groundwater chemistry. The fuzzy GIS map showed that highly contaminated groundwater occurred in the northeastern and the central parts and that the groundwater of medium quality appeared in most parts of the study area. It suggested that the groundwater quality of the study area was influenced by local geology, seawater intrusion, and municipal contaminants. This research clearly demonstrated that the geochemical analyses and fuzzy GIS method were very useful to identify the contaminant sources and the location of good groundwater quality.

  6. Focused electron and ion beam systems

    DOEpatents

    Leung, Ka-Ngo; Reijonen, Jani; Persaud, Arun; Ji, Qing; Jiang, Ximan

    2004-07-27

    An electron beam system is based on a plasma generator in a plasma ion source with an accelerator column. The electrons are extracted from a plasma cathode in a plasma ion source, e.g. a multicusp plasma ion source. The beam can be scanned in both the x and y directions, and the system can be operated with multiple beamlets. A compact focused ion or electron beam system has a plasma ion source and an all-electrostatic beam acceleration and focusing column. The ion source is a small chamber with the plasma produced by radio-frequency (RF) induction discharge. The RF antenna is wound outside the chamber and connected to an RF supply. Ions or electrons can be extracted from the source. A multi-beam system has several sources of different species and an electron beam source.

  7. Ion beam figuring of CVD silicon carbide mirrors

    NASA Astrophysics Data System (ADS)

    Gailly, P.; Collette, J.-P.; Fleury Frenette, K.; Jamar, C.

    2017-11-01

    Optical and structural elements made of silicon carbide are increasingly found in space instruments. Chemical vapor deposited silicon carbide (CVD-SiC) is used as a reflective coating on SiC optics in reason of its good behavior under polishing. The advantage of applying ion beam figuring (IBF) to CVD-SiC over other surface figure-improving techniques is discussed herein. The results of an IBF sequence performed at the Centre Spatial de Liège on a 100 mm CVD-SiC mirror are reported. The process allowed to reduce the mirror surface errors from 243 nm to 13 nm rms . Beside the surface figure, roughness is another critical feature to consider in order to preserve the optical quality of CVD-SiC . Thus, experiments focusing on the evolution of roughness were performed in various ion beam etching conditions. The roughness of samples etched at different depths down to 3 ≠m was determined with an optical profilometer. These measurements emphasize the importance of selecting the right combination of gas and beam energy to keep roughness at a low level. Kaufman-type ion sources are generally used to perform IBF but the performance of an end-Hall ion source in figuring CVD-SiC mirrors was also evaluated in this study. In order to do so, ion beam etching profiles obtained with the end-Hall source on CVD-SiC were measured and used as a basis for IBF simulations.

  8. Modulation instability and dissipative rogue waves in ion-beam plasma: Roles of ionization, recombination, and electron attachment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Shimin, E-mail: gsm861@126.com; Mei, Liquan, E-mail: lqmei@mail.xjtu.edu.cn

    The amplitude modulation of ion-acoustic waves is investigated in an unmagnetized plasma containing positive ions, negative ions, and electrons obeying a kappa-type distribution that is penetrated by a positive ion beam. By considering dissipative mechanisms, including ionization, negative-positive ion recombination, and electron attachment, we introduce a comprehensive model for the plasma with the effects of sources and sinks. Via reductive perturbation theory, the modified nonlinear Schrödinger equation with a dissipative term is derived to govern the dynamics of the modulated waves. The effect of the plasma parameters on the modulation instability criterion for the modified nonlinear Schrödinger equation is numericallymore » investigated in detail. Within the unstable region, first- and second-order dissipative ion-acoustic rogue waves are present. The effect of the plasma parameters on the characteristics of the dissipative rogue waves is also discussed.« less

  9. Microfabricated ion frequency standard

    DOEpatents

    Schwindt, Peter; Biedermann, Grant; Blain, Matthew G.; Stick, Daniel L.; Serkland, Darwin K.; Olsson, III, Roy H.

    2010-12-28

    A microfabricated ion frequency standard (i.e. an ion clock) is disclosed with a permanently-sealed vacuum package containing a source of ytterbium (Yb) ions and an octupole ion trap. The source of Yb ions is a micro-hotplate which generates Yb atoms which are then ionized by a ultraviolet light-emitting diode or a field-emission electron source. The octupole ion trap, which confines the Yb ions, is formed from suspended electrodes on a number of stacked-up substrates. A microwave source excites a ground-state transition frequency of the Yb ions, with a frequency-doubled vertical-external-cavity laser (VECSEL) then exciting the Yb ions up to an excited state to produce fluorescent light which is used to tune the microwave source to the ground-state transition frequency, with the microwave source providing a precise frequency output for the ion clock.

  10. Ion Beam And Plasma Jet Generated By A 3 kJ Plasma Focus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, L. K.; Ngoi, S. K.; Yap, S. L.

    The plasma focus device is well known as a copious source of X-ray, neutrons, ion and electron beams. In this work, the characteristics of energetic ion beam emission in a 3 kJ Mather-type plasma focus is studied. The plasma focus system is operated at low pressure with argon as the working gas. The objective of the project is to obtain the argon ion beam and the plasma jet. The ion beam and plasma jet are used for material processing. In order to investigate the effect of the ion beam and plasma jet, crystalline silicon substrates are placed above the anode.more » Samples obtained after irradiation with the plasma focus discharge are analyzed by using the Scanning electron microscopy (SEM) and Energy Dispersive X-ray spectroscopy (EDX).« less

  11. An ion source module for the Beijing Radioactive Ion-beam Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, B., E-mail: cui@ciae.ac.cn; Huang, Q.; Tang, B.

    2014-02-15

    An ion source module is developed for Beijing Radioactive Ion-beam Facility. The ion source module is designed to meet the requirements of remote handling. The connection and disconnection of the electricity, cooling and vacuum between the module and peripheral units can be executed without on-site manual work. The primary test of the target ion source has been carried out and a Li{sup +} beam has been extracted. Details of the ion source module and its primary test results are described.

  12. Ion source research and development at University of Jyväskylä: Studies of different plasma processes and towards the higher beam intensities.

    PubMed

    Koivisto, H; Kalvas, T; Tarvainen, O; Komppula, J; Laulainen, J; Kronholm, R; Ranttila, K; Tuunanen, J; Thuillier, T; Xie, D; Machicoane, G

    2016-02-01

    Several ion source related research and development projects are in progress at the Department of Physics, University of Jyväskylä (JYFL). The work can be divided into investigation of the ion source plasma and development of ion sources, ion beams, and diagnostics. The investigation covers the Electron Cyclotron Resonance Ion Source (ECRIS) plasma instabilities, vacuum ultraviolet (VUV) and visible light emission, photon induced electron emission, and the development of plasma diagnostics. The ion source development covers the work performed for radiofrequency-driven negative ion source, RADIS, beam line upgrade of the JYFL 14 GHz ECRIS, and the development of a new room-temperature-magnet 18 GHz ECRIS, HIISI.

  13. Rod-filter-field optimization of the J-PARC RF-driven H{sup −} ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, A., E-mail: akira.ueno@j-parc.jp; Ohkoshi, K.; Ikegami, K.

    2015-04-08

    In order to satisfy the Japan Proton Accelerator Research Complex (J-PARC) second-stage requirements of an H{sup −} ion beam of 60mA within normalized emittances of 1.5πmm•mrad both horizontally and vertically, a flat top beam duty factor of 1.25% (500μs×25Hz) and a life-time of longer than 1month, the J-PARC cesiated RF-driven H{sup −} ion source was developed by using an internal-antenna developed at the Spallation Neutron Source (SNS). Although rod-filter-field (RFF) is indispensable and one of the most beam performance dominative parameters for the RF-driven H{sup −} ion source with the internal-antenna, the procedure to optimize it is not established. Inmore » order to optimize the RFF and establish the procedure, the beam performances of the J-PARC source with various types of rod-filter-magnets (RFMs) were measured. By changing RFM’s gap length and gap number inside of the region projecting the antenna inner-diameter along the beam axis, the dependence of the H{sup −} ion beam intensity on the net 2MHz-RF power was optimized. Furthermore, the fine-tuning of RFM’s cross-section (magnetmotive force) was indispensable for easy operation with the temperature (T{sub PE}) of the plasma electrode (PE) lower than 70°C, which minimizes the transverse emittances. The 5% reduction of RFM’s cross-section decreased the time-constant to recover the cesium effects after an slightly excessive cesiation on the PE from several 10 minutes to several minutes for T{sub PE} around 60°C.« less

  14. Investigations on caesium-free alternatives for H{sup −} formation at ion source relevant parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurutz, U.; Fantz, U.; AG Experimentelle Plasmaphysik, Institut für Physik, Universität Augsburg, 86135 Augsburg

    2015-04-08

    Negative hydrogen ions are efficiently produced in ion sources by the application of caesium. Due to a thereby induced lowering of the work function of a converter surface a direct conversion of impinging hydrogen atoms and positive ions into negative ions is maintained. However, due to the complex caesium chemistry and dynamics a long-term behaviour is inherent for the application of caesium that affects the stability and reliability of negative ion sources. To overcome these drawbacks caesium-free alternatives for efficient negative ion formation are investigated at the flexible laboratory setup HOMER (HOMogenous Electron cyclotron Resonance plasma). By the usage ofmore » a meshed grid the tandem principle is applied allowing for investigations on material induced negative ion formation under plasma parameters relevant for ion source operation. The effect of different sample materials on the ratio of the negative ion density to the electron density n{sub H{sup −}} /n{sub e} is compared to the effect of a stainless steel reference sample and investigated by means of laser photodetachment in a pressure range from 0.3 to 3 Pa. For the stainless steel sample no surface induced effect on the negative ion density is present and the measured negative ion densities are resulting from pure volume formation and destruction processes. In a first step the dependency of n{sub H{sup −}} /n{sub e} on the sample distance has been investigated for a caesiated stainless steel sample. At a distance of 0.5 cm at 0.3 Pa the density ratio is 3 times enhanced compared to the reference sample confirming the surface production of negative ions. In contrast for the caesium-free material samples, tantalum and tungsten, the same dependency on pressure and distance n{sub H{sup −}} /n{sub e} like for the stainless steel reference sample were obtained within the error margins: A density ratio of around 14.5% is measured at 4.5 cm sample distance and 0.3 Pa, linearly decreasing with decreasing distance to 7% at 1.5 cm. Thus, tantalum and tungsten do not significantly affect the negative ion density. First measurements conducted with LaB{sub 6} as well as with two types of diamond like carbon (DLC) n{sub H{sup −}} /n{sub e} of about 15% at 1 Pa were measured, which is comparable to the density ratio obtained for the stainless steel reference sample. At HOMER a surface induced enhancement of n{sub H{sup −}} is only observed when it exceeds the volume formation of H{sup −} which is also realistic for negative hydrogen ion sources.« less

  15. Improved Multiple-Species Cyclotron Ion Source

    NASA Technical Reports Server (NTRS)

    Soli, George A.; Nichols, Donald K.

    1990-01-01

    Use of pure isotope 86Kr instead of natural krypton in multiple-species ion source enables source to produce krypton ions separated from argon ions by tuning cylcotron with which source used. Addition of capability to produce and separate krypton ions at kinetic energies of 150 to 400 MeV necessary for simulation of worst-case ions occurring in outer space.

  16. First beam measurements on the vessel for extraction and source plasma analyses (VESPA) at the Rutherford Appleton Laboratory (RAL)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrie, Scott R., E-mail: scott.lawrie@stfc.ac.uk; John Adams Institute for Accelerator Science, Department of Physics, University of Oxford; Faircloth, Daniel C.

    2015-04-08

    In order to facilitate the testing of advanced H{sup −} ion sources for the ISIS and Front End Test Stand (FETS) facilities at the Rutherford Appleton Laboratory (RAL), a Vessel for Extraction and Source Plasma Analyses (VESPA) has been constructed. This will perform the first detailed plasma measurements on the ISIS Penning-type H{sup −} ion source using emission spectroscopic techniques. In addition, the 30-year-old extraction optics are re-designed from the ground up in order to fully transport the beam. Using multiple beam and plasma diagnostics devices, the ultimate aim is improve H{sup −} production efficiency and subsequent transport for eithermore » long-term ISIS user operations or high power FETS requirements. The VESPA will also accommodate and test a new scaled-up Penning H{sup −} source design. This paper details the VESPA design, construction and commissioning, as well as initial beam and spectroscopy results.« less

  17. Testing the stand-alone microbeam at Columbia University.

    PubMed

    Garty, G; Ross, G J; Bigelow, A W; Randers-Pehrson, G; Brenner, D J

    2006-01-01

    The stand-alone microbeam at Columbia University presents a novel approach to biological microbeam irradiation studies. Foregoing a conventional accelerator as a source of energetic ions, a small, high-specific-activity, alpha emitter is used. Alpha particles emitted from this source are focused using a compound magnetic lens consisting of 24 permanent magnets arranged in two quadrupole triplets. Using a 'home made' 6.5 mCi polonium source, a 1 alpha particle s(-1), 10 microm diameter microbeam can, in principle, be realised. As the alpha source energy is constant, once the microbeam has been set up, no further adjustments are necessary apart from a periodic replacement of the source. The use of permanent magnets eliminates the need for bulky power supplies and cooling systems required by other types of ion lenses and greatly simplifies operation. It also makes the microbeam simple and cheap enough to be realised in any large lab. The Microbeam design as well as first tests of its performance, using an accelerator-based beam are presented here.

  18. Production, purification, and characterization of lipase from thermophilic and alkaliphilic Bacillus coagulans BTS-3.

    PubMed

    Kumar, Satyendra; Kikon, Khyodano; Upadhyay, Ashutosh; Kanwar, Shamsher S; Gupta, Reena

    2005-05-01

    A thermophilic isolate Bacillus coagulans BTS-3 produced an extracellular alkaline lipase, the production of which was substantially enhanced when the type of carbon source, nitrogen source, and the initial pH of culture medium were consecutively optimized. Lipase activity 1.16 U/ml of culture medium was obtained in 48 h at 55 degrees C and pH 8.5 with refined mustard oil as carbon source and a combination of peptone and yeast extract (1:1) as nitrogen sources. The enzyme was purified 40-fold to homogeneity by ammonium sulfate precipitation and DEAE-Sepharose column chromatography. Its molecular weight was 31 kDa on SDS-PAGE. The enzyme showed maximum activity at 55 degrees C and pH 8.5, and was stable between pH 8.0 and 10.5 and at temperatures up to 70 degrees C. The enzyme was found to be inhibited by Al3+, Co2+, Mn2+, and Zn2+ ions while K+, Fe3+, Hg2+, and Mg2+ ions enhanced the enzyme activity; Na+ ions have no effect on enzyme activity. The purified lipase showed a variable specificity/hydrolytic activity towards various 4-nitrophenyl esters.

  19. Self-focusing of a high current density ion beam extracted with concave electrodes in a low energy region around 150 eV.

    PubMed

    Hirano, Y; Kiyama, S; Koguchi, H; Sakakita, H

    2014-02-01

    Spontaneous self-focusing of ion beam with high current density (Jc ∼ 2 mA/cm(2), Ib ∼ 65 mA) in low energy region (∼150 eV) is observed in a hydrogen ion beam extracted from an ordinary bucket type ion source with three electrodes having concave shape (acceleration, deceleration, and grounded electrodes). The focusing appears abruptly in the beam energy region over ∼135-150 eV, and the Jc jumps up from 0.7 to 2 mA/cm(2). Simultaneously a strong electron flow also appears in the beam region. The electron flow has almost the same current density. Probably these electrons compensate the ion space charge and suppress the beam divergence.

  20. Production of intensive negative lithium beam with caesium sputter-type ion source

    NASA Astrophysics Data System (ADS)

    Lobanov, Nikolai R.

    2018-01-01

    Compounds of lithium oxide, hydroxide and carbonate, mixed with silver, were prepared for use as a cathode in caesium-sputter ion source. The intention was to determine the procedure which would produce the highest intensity negative lithium beams over extended period and with maximum stability. The chemical composition and properties of the samples were analysed using mass-spectrometry, optical microscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analyses (EDX) and Raman spectroscopy. These analyses showed that the chemical transformations with components resulted from pressing, storage and bake out were qualitatively in agreement with expectations. Intensive negative lithium ion beams >1 μA were delivered using cathodes fabricated from materials with multicomponent chemical composition when the following conditions were met: (i) use of components with moderate enthalpy of formation; (ii) low moisture content at final stage of cathode production and (iii) small concentration of water molecules in hydrate phase in the cathode mixture.

  1. Fragmentation Patterns and Mechanisms of Singly and Doubly Protonated Peptoids Studied by Collision Induced Dissociation

    NASA Astrophysics Data System (ADS)

    Ren, Jianhua; Tian, Yuan; Hossain, Ekram; Connolly, Michael D.

    2016-04-01

    Peptoids are peptide-mimicking oligomers consisting of N-alkylated glycine units. The fragmentation patterns for six singly and doubly protonated model peptoids were studied via collision-induced dissociation tandem mass spectrometry. The experiments were carried out on a triple quadrupole mass spectrometer with an electrospray ionization source. Both singly and doubly protonated peptoids were found to fragment mainly at the backbone amide bonds to produce peptoid B-type N-terminal fragment ions and Y-type C-terminal fragment ions. However, the relative abundances of B- versus Y-ions were significantly different. The singly protonated peptoids fragmented by producing highly abundant Y-ions and lesser abundant B-ions. The Y-ion formation mechanism was studied through calculating the energetics of truncated peptoid fragment ions using density functional theory and by controlled experiments. The results indicated that Y-ions were likely formed by transferring a proton from the C-H bond of the N-terminal fragments to the secondary amine of the C-terminal fragments. This proton transfer is energetically favored, and is in accord with the observation of abundant Y-ions. The calculations also indicated that doubly protonated peptoids would fragment at an amide bond close to the N-terminus to yield a high abundance of low-mass B-ions and high-mass Y-ions. The results of this study provide further understanding of the mechanisms of peptoid fragmentation and, therefore, are a valuable guide for de novo sequencing of peptoid libraries synthesized via combinatorial chemistry.

  2. Development of high intensity linear accelerator for heavy ion inertial fusion driver

    NASA Astrophysics Data System (ADS)

    Lu, Liang; Hattori, Toshiyuki; Hayashizaki, Noriyosu; Ishibashi, Takuya; Okamura, Masahiro; Kashiwagi, Hirotsugu; Takeuchi, Takeshi; Zhao, Hongwei; He, Yuan

    2013-11-01

    In order to verify the direct plasma injection scheme (DPIS), an acceleration test was carried out in 2001 using a radio frequency quadrupole (RFQ) heavy ion linear accelerator (linac) and a CO2-laser ion source (LIS) (Okamura et al., 2002) [1]. The accelerated carbon beam was observed successfully and the obtained current was 9.22 mA for C4+. To confirm the capability of the DPIS, we succeeded in accelerating 60 mA carbon ions with the DPIS in 2004 (Okamura et al., 2004; Kashiwagi and Hattori, 2004) [2,3]. We have studied a multi-beam type RFQ with an interdigital-H (IH) cavity that has a power-efficient structure in the low energy region. We designed and manufactured a two-beam type RFQ linac as a prototype for the multi-beam type linac; the beam acceleration test of carbon beams showed that it successfully accelerated from 5 keV/u up to 60 keV/u with an output current of 108 mA (2×54 mA/channel) (Ishibashi et al., 2011) [4]. We believe that the acceleration techniques of DPIS and the multi-beam type IH-RFQ linac are technical breakthroughs for heavy-ion inertial confinement fusion (HIF). The conceptual design of the RF linac with these techniques for HIF is studied. New accelerator-systems using these techniques for the HIF basic experiment are being designed to accelerate 400 mA carbon ions using four-beam type IH-RFQ linacs with DPIS. A model with a four-beam acceleration cavity was designed and manufactured to establish the proof of principle (PoP) of the accelerator.

  3. Liquid metal ion source and alloy

    DOEpatents

    Clark, Jr., William M.; Utlaut, Mark W.; Behrens, Robert G.; Szklarz, Eugene G.; Storms, Edmund K.; Santandrea, Robert P.; Swanson, Lynwood W.

    1988-10-04

    A liquid metal ion source and alloy, wherein the species to be emitted from the ion source is contained in a congruently vaporizing alloy. In one embodiment, the liquid metal ion source acts as a source of arsenic, and in a source alloy the arsenic is combined with palladium, preferably in a liquid alloy having a range of compositions from about 24 to about 33 atomic percent arsenic. Such an alloy may be readily prepared by a combustion synthesis technique. Liquid metal ion sources thus prepared produce arsenic ions for implantation, have long lifetimes, and are highly stable in operation.

  4. Preliminary study of urine metabolism in type two diabetic patients based on GC-MS

    PubMed Central

    Zhang, Ning; Geng, Fang; Hu, Zhong-Hua; Liu, Bin; Wang, Ye-Qiu; Liu, Jun-Cen; Qi, Yong-Hua; Li, Li-Jing

    2016-01-01

    Objective: Comparative study of type 2 diabetes and healthy controls by metabolomics methods to explore the pathogenesis of Type II diabetes. Methods: Gas chromatography - mass spectrometry (GC-MS) with a variety of multivariate statistical analysis methods to the healthy control group 58 cases, 68 cases of Type II diabetes group were analyzed. Chromatographic conditions: DB-5MS column; the carrier gas He; flow rate of 1 mL·min-1, the injection volume 1 uL; split ratio is 100: 1. MS conditions: electron impact (EI) ion source, an auxiliary temperature of 280°C, the ion source 230°C, quadrupole 150°C; mass scan range 30~600 mAu. Results: Established analytical method based on urine metabolomics GC-MS of Type II diabetes, determine the urine succinic acid, L-leucine, L-isoleucine, tyrosine, slanine, acetoace acid, mannose, L-isoleucine, L-threonine, Phenylalanine, fructose, D-glucose, palmi acid, oleic acid and arachidonic acid were significantly were significantly changed. Conclusion: Based on metabolomics of GC-MS detection and analysis metabolites can be found differences between type 2 diabetes and healthy control group, PCA diagram can effectively distinguish Type II diabetes and healthy control group, with load diagrams and PLS-DA VIP value metabolite screening, the resulting differences in metabolic pathways involved metabolites, including amino acid metabolism, lipid metabolism, glucose metabolism and energy metabolism. PMID:27508010

  5. The Narodny ion accelerator as an injector for a small cyclotron

    NASA Astrophysics Data System (ADS)

    Derenchuk, V.

    1985-01-01

    A 120 keV electrostatic accelerator is currently in use at the University of Manitoba as an ion implanter. It is proposed to use this accelerator (called the Narodny ion accelerator or NIA), upgraded to 200 keV, as an injector for a small light ion cyclotron. This "minicyclotron" will consist of 6 sectors with four dees operating at 60 kV and variable frequency. The ions will be extracted at about 50 cm radius. The types of ions to be accelerated are H -, H +, D -1, 3He 2+, 4He 2+, 6Li 3+, and 7Li 3+ with a maximum energy of about 4 MeV for the Li ions and between 2 and 3 MeV for the He ions. A beam current of close to 0.5 mA is anticipated for H + and D + ions and high energy resolution ( ΔE/ E ~ 10 -3) is expected for all ions. The marriage of these two accelerators will give a very wide range of ion implantation energies (for certain ion species) as well as a source of particles for Rutherford backscatter analysis.

  6. Ion Beam Propulsion Study

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Ion Beam Propulsion Study was a joint high-level study between the Applied Physics Laboratory operated by NASA and ASRC Aerospace at Kennedy Space Center, Florida, and Berkeley Scientific, Berkeley, California. The results were promising and suggested that work should continue if future funding becomes available. The application of ion thrusters for spacecraft propulsion is limited to quite modest ion sources with similarly modest ion beam parameters because of the mass penalty associated with the ion source and its power supply system. Also, the ion source technology has not been able to provide very high-power ion beams. Small ion beam propulsion systems were used with considerable success. Ion propulsion systems brought into practice use an onboard ion source to form an energetic ion beam, typically Xe+ ions, as the propellant. Such systems were used for steering and correction of telecommunication satellites and as the main thruster for the Deep Space 1 demonstration mission. In recent years, "giant" ion sources were developed for the controlled-fusion research effort worldwide, with beam parameters many orders of magnitude greater than the tiny ones of conventional space thruster application. The advent of such huge ion beam sources and the need for advanced propulsion systems for exploration of the solar system suggest a fresh look at ion beam propulsion, now with the giant fusion sources in mind.

  7. Development of the ion source for cluster implantation

    NASA Astrophysics Data System (ADS)

    Kulevoy, T. V.; Seleznev, D. N.; Kozlov, A. V.; Kuibeda, R. P.; Kropachev, G. N.; Alexeyenko, O. V.; Dugin, S. N.; Oks, E. M.; Gushenets, V. I.; Hershcovitch, A.; Jonson, B.; Poole, H. J.

    2014-02-01

    Bernas ion source development to meet needs of 100s of electron-volt ion implanters for shallow junction production is in progress in Institute for Theoretical and Experimental Physics. The ion sources provides high intensity ion beam of boron clusters under self-cleaning operation mode. The last progress with ion source operation is presented. The mechanism of self-cleaning procedure is described.

  8. Negative ion source with low temperature transverse divergence optical system

    DOEpatents

    Whealton, John H.; Stirling, William L.

    1986-01-01

    A negative ion source is provided which has extremely low transverse divergence as a result of a unique ion focusing system in which the focal line of an ion beam emanating from an elongated, concave converter surface is outside of the ion exit slit of the source and the path of the exiting ions. The beam source operates with a minimum ion temperature which makes possible a sharply focused (extremely low transverse divergence) ribbon like negative ion beam.

  9. Negative ion source with low temperature transverse divergence optical system

    DOEpatents

    Whealton, J.H.; Stirling, W.L.

    1985-03-04

    A negative ion source is provided which has extremely low transverse divergence as a result of a unique ion focusing system in which the focal line of an ion beam emanating from an elongated, concave converter surface is outside of the ion exit slit of the source and the path of the exiting ions. The beam source operates with a minimum ion temperature which makes possible a sharply focused (extremely low transverse divergence) ribbon like negative ion beam.

  10. Future carbon beams at SPIRAL1 facility: Which method is the most efficient?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maunoury, L., E-mail: maunoury@ganil.fr; Delahaye, P.; Dubois, M.

    2014-02-15

    Compared to in-flight facilities, Isotope Separator On-Line ones can in principle produce significantly higher radioactive ion beam intensities. On the other hand, they have to cope with delays for the release and ionization which make the production of short-lived isotopes ion beams of reactive and refractory elements particularly difficult. Many efforts are focused on extending the capabilities of ISOL facilities to those challenging beams. In this context, the development of carbon beams is triggering interest [H. Frånberg, M. Ammann, H. W. Gäggeler, and U. Köster, Rev. Sci. Instrum. 77, 03A708 (2006); M. Kronberger, A. Gottberg, T. M. Mendonca, J. P.more » Ramos, C. Seiffert, P. Suominen, and T. Stora, in Proceedings of the EMIS 2012 [Nucl. Instrum. Methods Phys. Res. B Production of molecular sideband radioisotope beams at CERN-ISOLDE using a Helicon-type plasma ion source (to be published)]: despite its refractory nature, radioactive carbon beams can be produced from molecules (CO or CO{sub 2}), which can subsequently be broken up and multi-ionized to the required charge state in charge breeders or ECR sources. This contribution will present results of experiments conducted at LPSC with the Phoenix charge breeder and at GANIL with the Nanogan ECR ion source for the ionization of carbon beams in the frame of the ENSAR and EMILIE projects. Carbon is to date the lightest condensable element charge bred with an ECR ion source. Charge breeding efficiencies will be compared with those obtained using Nanogan ECRIS and charge breeding times will be presented as well.« less

  11. Future carbon beams at SPIRAL1 facility: Which method is the most efficient?

    NASA Astrophysics Data System (ADS)

    Maunoury, L.; Delahaye, P.; Angot, J.; Dubois, M.; Dupuis, M.; Frigot, R.; Grinyer, J.; Jardin, P.; Leboucher, C.; Lamy, T.

    2014-02-01

    Compared to in-flight facilities, Isotope Separator On-Line ones can in principle produce significantly higher radioactive ion beam intensities. On the other hand, they have to cope with delays for the release and ionization which make the production of short-lived isotopes ion beams of reactive and refractory elements particularly difficult. Many efforts are focused on extending the capabilities of ISOL facilities to those challenging beams. In this context, the development of carbon beams is triggering interest [H. Frånberg, M. Ammann, H. W. Gäggeler, and U. Köster, Rev. Sci. Instrum. 77, 03A708 (2006); M. Kronberger, A. Gottberg, T. M. Mendonca, J. P. Ramos, C. Seiffert, P. Suominen, and T. Stora, in Proceedings of the EMIS 2012 [Nucl. Instrum. Methods Phys. Res. B Production of molecular sideband radioisotope beams at CERN-ISOLDE using a Helicon-type plasma ion source (to be published)]: despite its refractory nature, radioactive carbon beams can be produced from molecules (CO or CO2), which can subsequently be broken up and multi-ionized to the required charge state in charge breeders or ECR sources. This contribution will present results of experiments conducted at LPSC with the Phoenix charge breeder and at GANIL with the Nanogan ECR ion source for the ionization of carbon beams in the frame of the ENSAR and EMILIE projects. Carbon is to date the lightest condensable element charge bred with an ECR ion source. Charge breeding efficiencies will be compared with those obtained using Nanogan ECRIS and charge breeding times will be presented as well.

  12. Estimates of ion sources in deciduous and coniferous throughfall

    USGS Publications Warehouse

    Puckett, L.J.

    1990-01-01

    Estimates of external and internal sources of ions in net throughfall deposition were derived for a deciduous and coniferous canopy by use of multiple regression. The externel source component appears to be dominated by dry deposition of Ca2+, SO2 and NO3- during dormant and growing seasons for the two canopy types. Increases in the leaching rates of K+ and Mg2+ during the growing season reflect the presence of leaves in the deciduous canopy and increased physiological activity in both canopies. Internal leaching rates for SO42- doubled during the growing season presumably caused by increased physiological activity and uptake of SO2 through stomates. Net deposition of SO42- in throughfall during the growing season appears highly dependent on stomatal uptake of SO2. Estimates of SO2 deposition velocities were 0.06 cm s-1 and 0.13 cm s-1 for the deciduous and coniferous canopies, respectively, during the dormant season, and 0.30 cm s-1 and 0.43 cm s-1 for the deciduous and coniferous canopies, respectively, during the growing season. For the ions of major interest with respect to ecosystem effects, namely H+, NO3- and SO42-, precipitation inputs generally outweighed estimates of dry deposition input. However, net throughfall deposition of NO3- and SO42- accounted for 20-47 and 34-50 per cent, respectively, of total deposition of those ions. Error estimates of ion sources were at least 50-100 per cent and the method is subject to several assumptions and limitations.

  13. Future carbon beams at SPIRAL1 facility: which method is the most efficient?

    PubMed

    Maunoury, L; Delahaye, P; Angot, J; Dubois, M; Dupuis, M; Frigot, R; Grinyer, J; Jardin, P; Leboucher, C; Lamy, T

    2014-02-01

    Compared to in-flight facilities, Isotope Separator On-Line ones can in principle produce significantly higher radioactive ion beam intensities. On the other hand, they have to cope with delays for the release and ionization which make the production of short-lived isotopes ion beams of reactive and refractory elements particularly difficult. Many efforts are focused on extending the capabilities of ISOL facilities to those challenging beams. In this context, the development of carbon beams is triggering interest [H. Frånberg, M. Ammann, H. W. Gäggeler, and U. Köster, Rev. Sci. Instrum. 77, 03A708 (2006); M. Kronberger, A. Gottberg, T. M. Mendonca, J. P. Ramos, C. Seiffert, P. Suominen, and T. Stora, in Proceedings of the EMIS 2012 [Nucl. Instrum. Methods Phys. Res. B Production of molecular sideband radioisotope beams at CERN-ISOLDE using a Helicon-type plasma ion source (to be published)]: despite its refractory nature, radioactive carbon beams can be produced from molecules (CO or CO2), which can subsequently be broken up and multi-ionized to the required charge state in charge breeders or ECR sources. This contribution will present results of experiments conducted at LPSC with the Phoenix charge breeder and at GANIL with the Nanogan ECR ion source for the ionization of carbon beams in the frame of the ENSAR and EMILIE projects. Carbon is to date the lightest condensable element charge bred with an ECR ion source. Charge breeding efficiencies will be compared with those obtained using Nanogan ECRIS and charge breeding times will be presented as well.

  14. Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.

    PubMed

    Kondo, K; Kanesue, T; Tamura, J; Okamura, M

    2010-02-01

    Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koivisto, H., E-mail: hannu.koivisto@phys.jyu.fi; Kalvas, T.; Tarvainen, O.

    Several ion source related research and development projects are in progress at the Department of Physics, University of Jyväskylä (JYFL). The work can be divided into investigation of the ion source plasma and development of ion sources, ion beams, and diagnostics. The investigation covers the Electron Cyclotron Resonance Ion Source (ECRIS) plasma instabilities, vacuum ultraviolet (VUV) and visible light emission, photon induced electron emission, and the development of plasma diagnostics. The ion source development covers the work performed for radiofrequency-driven negative ion source, RADIS, beam line upgrade of the JYFL 14 GHz ECRIS, and the development of a new room-temperature-magnetmore » 18 GHz ECRIS, HIISI.« less

  16. ION SOURCE

    DOEpatents

    Martina, E.F.

    1958-04-22

    An improved ion source particularly adapted to provide an intense beam of ions with minimum neutral molecule egress from the source is described. The ion source structure includes means for establishing an oscillating electron discharge, including an apertured cathode at one end of the discharge. The egress of ions from the source is in a pencil like beam. This desirable form of withdrawal of the ions from the plasma created by the discharge is achieved by shaping the field at the aperture of the cathode. A tubular insulator is extended into the plasma from the aperture and in cooperation with the electric fields at the cathode end of the discharge focuses the ions from the source,

  17. Magnetic field design for a Penning ion source for a 200 keV electrostatic accelerator

    NASA Astrophysics Data System (ADS)

    Fathi, A.; Feghhi, S. A. H.; Sadati, S. M.; Ebrahimibasabi, E.

    2017-04-01

    In this study, the structure of magnetic field for a Penning ion source has been designed and constructed with the use of permanent magnets. The ion source has been designed and constructed for a 200 keV electrostatic accelerator. With using CST Studio Suite, the magnetic field profile inside the ion source was simulated and an appropriate magnetic system was designed to improve particle confinement. Designed system consists of two ring magnets with 9 mm distance from each other around the anode. The ion source was constructed and the cylindrical magnet and designed magnetic system were tested on the ion source. The results showed that the ignition voltage for ion source with the designed magnetic system is almost 300 V lower than the ion source with the cylindrical magnet. Better particle confinement causes lower voltage discharge to occur.

  18. Diagnosis of high-intensity pulsed heavy ion beam generated by a novel magnetically insulated diode with gas puff plasma gun.

    PubMed

    Ito, H; Miyake, H; Masugata, K

    2008-10-01

    Intense pulsed heavy ion beam is expected to be applied to materials processing including surface modification and ion implantation. For those applications, it is very important to generate high-purity ion beams with various ion species. For this purpose, we have developed a new type of a magnetically insulated ion diode with an active ion source of a gas puff plasma gun. When the ion diode was operated at a diode voltage of about 190 kV, a diode current of about 15 kA, and a pulse duration of about 100 ns, the ion beam with an ion current density of 54 A/cm(2) was obtained at 50 mm downstream from the anode. By evaluating the ion species and the energy spectrum of the ion beam via a Thomson parabola spectrometer, it was confirmed that the ion beam consists of nitrogen ions (N(+) and N(2+)) of energy of 100-400 keV and the proton impurities of energy of 90-200 keV. The purity of the beam was evaluated to be 94%. The high-purity pulsed nitrogen ion beam was successfully obtained by the developed ion diode system.

  19. Sources and geochemical evolution of cyanide and formaldehyde

    NASA Technical Reports Server (NTRS)

    Arrhenius, G.

    1991-01-01

    The major source of cyanide has, in current paleoatmospheric models, been assumed to be the reaction of photodissociated thermospheric nitrogen with a limiting supply of stratospheric methane. Formaldehyde may be produced with more ease from an atmosphere of carbon dioxide as the dominant carbon species, and from carbonate in solution or sorbed in double layer hydroxide minerals. Potentially more important sources for cyanide and other carbon containing molecules are the partially photoprotected northern and southern auroral ovals where continuous currents reaching several mega-amperes induce ion-molecule reactions, extending into the lower stratosphere. In simulated environments of this kind, the cyanide ion is known to be produced from oxidized carbon species potentially more abundant than methane. Rainout of cyanide and formaldehyde place them in two different geochemical reaction reservoirs. In the anoxic Archean hydrosphere, about 1mM in Fe2(+), the cyanide ion would have been efficiently converted to the stable ferrocyanide complex Fe(CN) sub 6(4-), protecting it from the commonly considered fate of decomposition by hydrolysis, and eventually incorporating it in pyroaurite type minerals, most efficiently in green rust where it converts to insoluble ferriferrocyanide, prussian blue.

  20. Versatile plasma ion source with an internal evaporator

    NASA Astrophysics Data System (ADS)

    Turek, M.; Prucnal, S.; Drozdziel, A.; Pyszniak, K.

    2011-04-01

    A novel construction of an ion source with an evaporator placed inside a plasma chamber is presented. The crucible is heated to high temperatures directly by arc discharge, which makes the ion source suitable for substances with high melting points. The compact ion source enables production of intense ion beams for wide spectrum of solid elements with typical separated beam currents of ˜100-150 μA for Al +, Mn +, As + (which corresponds to emission current densities of 15-25 mA/cm 2) for the extraction voltage of 25 kV. The ion source works for approximately 50-70 h at 100% duty cycle, which enables high ion dose implantation. The typical power consumption of the ion source is 350-400 W. The paper presents detailed experimental data (e.g. dependences of ion currents and anode voltages on discharge and filament currents and magnetic flux densities) for Cr, Fe, Al, As, Mn and In. The discussion is supported by results of Monte Carlo method based numerical simulation of ionisation in the ion source.

  1. Industrial ion source technology

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1976-01-01

    A 30 cm electron bombardment ion source was designed and fabricated for micromachining and sputtering applications. This source has a multipole magnetic field that employs permanent magnets between permeable pole pieces. An average ion current density of 1 ma/sq cm with 500 eV argon ions was selected as a design operating condition. The ion beam at this operating condition was uniform and well collimated, with an average variation of plus or minus 5 percent over the center 20 cm of the beam at distances up to 30 cm from the ion source. A variety of sputtering applications were undertaken with a small 10 cm ion source to better understand the ion source requirements in these applications. The results of these experimental studies are also included.

  2. Development progresses of radio frequency ion source for neutral beam injector in fusion devices.

    PubMed

    Chang, D H; Jeong, S H; Kim, T S; Park, M; Lee, K W; In, S R

    2014-02-01

    A large-area RF (radio frequency)-driven ion source is being developed in Germany for the heating and current drive of an ITER device. Negative hydrogen ion sources are the major components of neutral beam injection systems in future large-scale fusion experiments such as ITER and DEMO. RF ion sources for the production of positive hydrogen (deuterium) ions have been successfully developed for the neutral beam heating systems at IPP (Max-Planck-Institute for Plasma Physics) in Germany. The first long-pulse ion source has been developed successfully with a magnetic bucket plasma generator including a filament heating structure for the first NBI system of the KSTAR tokamak. There is a development plan for an RF ion source at KAERI to extract the positive ions, which can be applied for the KSTAR NBI system and to extract the negative ions for future fusion devices such as the Fusion Neutron Source and Korea-DEMO. The characteristics of RF-driven plasmas and the uniformity of the plasma parameters in the test-RF ion source were investigated initially using an electrostatic probe.

  3. Low energy spread ion source with a coaxial magnetic filter

    DOEpatents

    Leung, Ka-Ngo; Lee, Yung-Hee Yvette

    2000-01-01

    Multicusp ion sources are capable of producing ions with low axial energy spread which are necessary in applications such as ion projection lithography (IPL) and radioactive ion beam production. The addition of a radially extending magnetic filter consisting of a pair of permanent magnets to the multicusp source reduces the energy spread considerably due to the improvement in the uniformity of the axial plasma potential distribution in the discharge region. A coaxial multicusp ion source designed to further reduce the energy spread utilizes a cylindrical magnetic filter to achieve a more uniform axial plasma potential distribution. The coaxial magnetic filter divides the source chamber into an outer annular discharge region in which the plasma is produced and a coaxial inner ion extraction region into which the ions radially diffuse but from which ionizing electrons are excluded. The energy spread in the coaxial source has been measured to be 0.6 eV. Unlike other ion sources, the coaxial source has the capability of adjusting the radial plasma potential distribution and therefore the transverse ion temperature (or beam emittance).

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murzin, I.H.; Tompa, G.S.; Wei, J.

    The authors report the results of using sputtering and negative carbon ion sources to prepare thin films of carbon nitride. In this work, they compare the structural, tribological, and optical properties of the carbon nitride films that were prepared by two different ion assisted techniques. In the first approach they used a magnetron gun to sputter deposit carbon in a nitrogen atmosphere. The second method utilized a beam of negatively charged carbon ions of 1 to 5 {micro}A/cm{sup 2} current density impinging the substrate simultaneously with a positive nitrogen ion beam produced by a Kaufman source. They were able tomore » synthesize microscopically smooth coatings with the carbon to nitrogen ratio of 1:0.47. These films possess wear rates lower than 5 {times} 10{sup {minus}7} mm{sup 3}/Nm and friction coefficients in the range of 0.16 to 0.6. Raman spectroscopy revealed that the magnetron sputtered films are more structurally disordered than those formed with the negative carbon ion gun. FTIR showed the presence of the C{triple_bond}N stretching mode in both types of films. Finally, spectroscopic ellipsometry produced films with dielectric constants as low as 2.3 in the photon energy range from 1.2 to 5 eV.« less

  5. Major-ion and selected trace-metal chemistry of the Biscayne Aquifer, Southeast Florida

    USGS Publications Warehouse

    Radell, M.J.; Katz, B.G.

    1991-01-01

    The major-ion and selected trace-metal chemistry of the Biscayne aquifer was characterized as part of the Florida Ground-Water Quality Monitoring Network Program, a multiagency cooperative effort concerned with delineating baseline water quality for major aquifer systems in the State. The Biscayne aquifer is unconfined and serves as the sole source of drinking water for more than 3 million people in southeast Florida. The Biscayne aquifer consists of highly permeable interbedded limestone and sandstone of Pleistocene and Pliocene age underlying most of Dade and Broward Counties and parts of Palm Beach and Monroe Counties. The high permeability is largely caused by extensive carbonate dissolution. Water sampled from 189 wells tapping the Biscayne aquifer was predominantly a calcium bicarbonate type with some mixed types occurring in coastal areas and near major canals. Major - ion is areally uniform throughout the aquifer. According to nonparametric statistical tests of major ions and dissolved solids, the concentrations of calcium, sodium, bicarbonate, and dissolved solids increased significantly with well depth ( 0.05 significance level ), probably a result of less circulation at depth. Potassium and nitrate concentrations decreased significantly with depth. Although the source of recharge to the aquifer varies seasonally, there was no statistical difference in the concentration of major ions in pared water samples from 27 shallow wells collected during wet and dry seasons. Median concentrations for barium, chromium, copper, lead, and manganese were below maximum or secondary maximum contaminant levels set by the US Environmental Protection Agency. The median iron concentration only slightly exceeded the secondary maximum contaminant level. The concentration of barium was significantly related (0.05 significance level) to calcium and bicarbonate concentration. No distinct areal pattern or vertical distribution of the selected trace metals was evident in water from the Biscayne aquifer. Sources for trace metals found in water from the Biscayne aquifer may include local contamination, well-construction techniques, canal - aquifer interactions, and natural occurrence in area soils and rock.

  6. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion source.

    PubMed

    Kondo, K; Yamamoto, T; Sekine, M; Okamura, M

    2012-02-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (∼100 μA) with high charge (∼10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  7. Electron cyclotron resonance heating by magnetic filter field in a negative hydrogen ion source.

    PubMed

    Kim, June Young; Cho, Won-Hwi; Dang, Jeong-Jeung; Chung, Kyoung-Jae; Hwang, Y S

    2016-02-01

    The influence of magnetic filter field on plasma properties in the heating region has been investigated in a planar-type inductively coupled radio-frequency (RF) H(-) ion source. Besides filtering high energy electrons near the extraction region, the magnetic filter field is clearly observed to increase the electron temperature in the heating region at low pressure discharge. With increasing the operating pressure, enhancement of electron temperature in the heating region is reduced. The possibility of electron cyclotron resonance (ECR) heating in the heating region due to stray magnetic field generated by a filter magnet located at the extraction region is examined. It is found that ECR heating by RF wave field in the discharge region, where the strength of an axial magnetic field is approximately ∼4.8 G, can effectively heat low energy electrons. Depletion of low energy electrons in the electron energy distribution function measured at the heating region supports the occurrence of ECR heating. The present study suggests that addition of axial magnetic field as small as several G by an external electromagnet or permanent magnets can greatly increase the generation of highly ro-vibrationally excited hydrogen molecules in the heating region, thus improving the performance of H(-) ion generation in volume-produced negative hydrogen ion sources.

  8. Laser ion source for isobaric heavy ion collider experiment.

    PubMed

    Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M

    2016-02-01

    Heavy-ion collider experiment in isobaric system is under investigation at Relativistic Heavy Ion Collider. For this experiment, ion source is required to maximize the abundance of the intended isotope. The candidate of the experiment is (96)Ru + (96)Zr. Since the natural abundance of particular isotope is low and composition of isotope from ion source depends on the composites of the target, an isotope enriched material may be needed as a target. We studied the performance of the laser ion source required for the experiment for Zr ions.

  9. Liquid metal ion source and alloy for ion emission of multiple ionic species

    DOEpatents

    Clark, Jr., William M.; Utlaut, Mark W.; Wysocki, Joseph A.; Storms, Edmund K.; Szklarz, Eugene G.; Behrens, Robert G.; Swanson, Lynwood W.; Bell, Anthony E.

    1987-06-02

    A liquid metal ion source and alloy for the simultaneous ion evaporation of arsenic and boron, arsenic and phosphorus, or arsenic, boron and phosphorus. The ionic species to be evaporated are contained in palladium-arsenic-boron and palladium-arsenic-boron-phosphorus alloys. The ion source, including an emitter means such as a needle emitter and a source means such as U-shaped heater element, is preferably constructed of rhenium and tungsten, both of which are readily fabricated. The ion sources emit continuous beams of ions having sufficiently high currents of the desired species to be useful in ion implantation of semiconductor wafers for preparing integrated circuit devices. The sources are stable in operation, experience little corrosion during operation, and have long operating lifetimes.

  10. A composition analyzer for microparticles using a spark ion source. [using time of flight spectrometers

    NASA Technical Reports Server (NTRS)

    Auer, S. O.; Berg, O. E.

    1975-01-01

    Iron microparticles were fired onto a capacitor-type microparticle detector which responded to an impact with a spark discharge. Ion currents were extracted from the spark and analyzed in a time-of-flight mass spectrometer. The mass spectra showed the element of both detector and particle materials. The total extracted ion currents was typically 10A within a period of 100ns, indicating very efficient vaporization of the particle and ionization of the vapor. Potential applications include research on cosmic dust, atmospheric aerosols and cloud droplets, particles ejected by rocket or jet engines, by machining processes, or by nuclear bomb explosions.

  11. Correlating DMSP and NOAA Ion Precipitation Observations with Low Altitude ENA Emissions During the Declining Phase of Solar Cycle 23

    NASA Astrophysics Data System (ADS)

    Mackler, D. A.; Jahn, J. M.; Perez, J. D.; Pollock, C. J.

    2014-12-01

    Plasma sheet particles with sufficiently low mirror points will interact with thermospheric neutrals through charge exchange. The resulting ENAs are no longer magnetically bound and can therefore be detected by remote platforms outside the ionosphere/lower atmosphere. These ENAs closely associated with ion precipitation are termed Low Altitude Emissions (LAEs). They are non-isotropic in velocity space and mimic the corresponding ion pitch angle distribution. In this study we present a statistical correlation between remote observations of the LAE emission characteristics and ion precipitation maps determined in situ over the declining phase of solar cycle 23 (2000-2005). We discuss the strength and derived location (MLT, iMLAT) of LAEs as a function of geomagnetic activity levels in relation to the simultaneously measured strength, location, and spectral characteristics of in situ ion precipitation. These comparisons may allow us to use ENA images to assess where and how much energy is deposited during any type of enhanced geomagnetic activity. The precipitating ion differential directional flux maps are built up from combining NOAA-14/15/16 TED and DMSP-13/14/15 SSJ4 data. Low altitude ENA source locations are identified algorithmically using IMAGE/MENA images. ENA flux maps are derived by computing the LAE source locations assuming an ENA emission altitude (h) of 650 km, then projecting each image pixel onto a sphere with radius Re+h to determine the local time and latitude extent of the ENA source. The IGRF magnetic field model is used in combination with the Solar Magnetic coordinates of LAE pixels to compute the pitch angle of the escaping neutrals (previously ion before charge exchanging). Pitch angles larger than 90° will have a mirror point further into the atmosphere than the assumed emission altitude.

  12. Improvement of a plasma uniformity of the 2nd ion source of KSTAR neutral beam injector.

    PubMed

    Jeong, S H; Kim, T S; Lee, K W; Chang, D H; In, S R; Bae, Y S

    2014-02-01

    The 2nd ion source of KSTAR (Korea Superconducting Tokamak Advanced Research) NBI (Neutral Beam Injector) had been developed and operated since last year. A calorimetric analysis revealed that the heat load of the back plate of the ion source is relatively higher than that of the 1st ion source of KSTAR NBI. The spatial plasma uniformity of the ion source is not good. Therefore, we intended to identify factors affecting the uniformity of a plasma density and improve it. We estimated the effects of a direction of filament current and a magnetic field configuration of the plasma generator on the plasma uniformity. We also verified that the operation conditions of an ion source could change a uniformity of the plasma density of an ion source.

  13. Sequencing of Oligourea Foldamers by Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bathany, Katell; Owens, Neil W.; Guichard, Gilles; Schmitter, Jean-Marie

    2013-03-01

    This study is focused on sequence analysis of peptidomimetic helical oligoureas by means of tandem mass spectrometry, to build a basis for de novo sequencing for future high-throughput combinatorial library screening of oligourea foldamers. After the evaluation of MS/MS spectra obtained for model compounds with either MALDI or ESI sources, we found that the MALDI-TOF-TOF instrument gave more satisfactory results. MS/MS spectra of oligoureas generated by decay of singly charged precursor ions show major ion series corresponding to fragmentation across both CO-NH and N'H-CO urea bonds. Oligourea backbones fragment to produce a pattern of a, x, b, and y type fragment ions. De novo decoding of spectral information is facilitated by the occurrence of low mass reporter ions, representative of constitutive monomers, in an analogous manner to the use of immonium ions for peptide sequencing.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharp, D.J.; Panitz, J.K.G.; Mattox, D.M.

    The erosion of materials by low energy ions is of concern in fusion reactors since high Z impurities in the plasma cause radiation cooling. Ion bombardment of the fusion reactor chamber walls arises from ions of fuel (D, T) material, gaseous impurities (O, C), and impurities from eroded components (Fe, Co, Ni, C, Mo, etc.) being accelerated across the wall sheath potential (0.1 to 1 keV). A Kaufman type ion source has been characterized for use with hydrogen, and subsequently used to determine the relative erosion rates of bulk Mo, C, Cu, coating of TiB/sub 2/, B/sub 4/C, Be, VBe/submore » 12/ and other materials. Ions of hydrogen (Z=1), argon (Z=18), and xenon (Z=54) at acceleration potentials of 250, 500, and 1000 V have been used to determine erosion yields.« less

  15. Molecular-Flow Properties of RIB Type Vapor-Transport Systems Using a Fast-Valve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alton, Gerald D; Bilheux, Hassina Z; Zhang, Y.

    2014-01-01

    The advent of the fast-valve device, described previously, permits measurement of molecular-flow times of chemically active or inactive gaseous species through radioactive ion beam (RIB) target ion source systems, independent of size, geometry and materials of construction. Thus, decay losses of short-half-life RIBs can be determined for a given target/vapor-transport system in advance of on-line operation, thereby ascertaining the feasibility of the system design for successful processing of a given isotope. In this article, molecular-flow-time theory and experimentally measured molecular-flow time data are given for serial- and parallel-coupled Ta metal RIB vapor-transport systems similar to those used at ISOL basedmore » RIB facilities. In addition, the effect of source type on the molecular-flow time properties of a given system is addressed, and a chemical passivation method for negating surface adsorption enthalpies for chemically active gaseous species on Ta surfaces is demonstrated.« less

  16. The energetic ion signature of an O-type neutral line in the geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Martin, R. F., Jr.; Johnson, D. F.; Speiser, T. W.

    1991-01-01

    An energetic ion signature is presented which has the potential for remote sensing of an O-type neutral line embedded in a current sheet. A source plasma with a tailward flowing Kappa distribution yields a strongly non-Kappa distribution after interacting with the neutral line: sharp jumps, or ridges, occur in the velocity space distribution function f(nu-perpendicular, nu-parallel) associated with both increases and decreases in f. The jumps occur when orbits are reversed in the x-direction: a reversal causing initially earthward particles (low probability in the source distribution) to be observed results in a decrease in f, while a reversal causing initially tailward particles to be observed produces an increase in f. The reversals, and hence the jumps, occur at approximately constant values of perpendicular velocity in both the positive nu parallel and negative nu parallel half planes. The results were obtained using single particle simulations in a fixed magnetic field model.

  17. Laser ion source with solenoid field

    NASA Astrophysics Data System (ADS)

    Kanesue, Takeshi; Fuwa, Yasuhiro; Kondo, Kotaro; Okamura, Masahiro

    2014-11-01

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.

  18. Manufacturing of a superconducting magnet system for 28 GHz electron cyclotron resonance ion source at KBSI.

    PubMed

    Lee, B S; Choi, S; Yoon, J H; Park, J Y; Won, M S

    2012-02-01

    A magnet system for a 28 GHz electron cyclotron resonance ion source is being developed by the Korea Basic Science Institute. The configuration of the magnet system consists of 3 solenoid coils for a mirror magnetic field and 6 racetrack coils for a hexapole magnetic field. They can generate axial magnetic fields of 3.6 T at the beam injection part and 2.2 T at the extraction part. A radial magnetic field of 2.1 T is achievable at the plasma chamber wall. A step type winding process was employed in fabricating the hexapole coil. The winding technique was confirmed through repeated cooling tests. Superconducting magnets and a cryostat system are currently being manufactured.

  19. Ion-source modeling and improved performance of the CAMS high-intensity Cs-sputter ion source

    NASA Astrophysics Data System (ADS)

    Brown, T. A.; Roberts, M. L.; Southon, J. R.

    2000-10-01

    The interior of the high-intensity Cs-sputter source used in routine operations at the Center for Accelerator Mass Spectrometry (CAMS) has been computer modeled using the program NEDLab, with the aim of improving negative ion output. Space charge effects on ion trajectories within the source were modeled through a successive iteration process involving the calculation of ion trajectories through Poisson-equation-determined electric fields, followed by calculation of modified electric fields incorporating the charge distribution from the previously calculated ion trajectories. The program has several additional features that are useful in ion source modeling: (1) averaging of space charge distributions over successive iterations to suppress instabilities, (2) Child's Law modeling of space charge limited ion emission from surfaces, and (3) emission of particular ion groups with a thermal energy distribution and at randomized angles. The results of the modeling effort indicated that significant modification of the interior geometry of the source would double Cs + ion production from our spherical ionizer and produce a significant increase in negative ion output from the source. The results of the implementation of the new geometry were found to be consistent with the model results.

  20. New progress of high current gasdynamic ion source (invited).

    PubMed

    Skalyga, V; Izotov, I; Golubev, S; Sidorov, A; Razin, S; Vodopyanov, A; Tarvainen, O; Koivisto, H; Kalvas, T

    2016-02-01

    The experimental and theoretical research carried out at the Institute of Applied Physics resulted in development of a new type of electron cyclotron resonance ion sources (ECRISs)-the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller's ECRIS confinement, i.e., the quasi-gasdynamic one similar to that in fusion mirror traps. Experimental studies of gasdynamic ECRIS were performed at Simple Mirror Ion Source (SMIS) 37 facility. The plasma was created by 37.5 and 75 GHz gyrotron radiation with power up to 100 kW. High frequency microwaves allowed to create and sustain plasma with significant density (up to 8 × 10(13) cm(-3)) and to maintain the main advantages of conventional ECRIS such as high ionization degree and low ion energy. Reaching such high plasma density relies on the fact that the critical density grows with the microwave frequency squared. High microwave power provided the average electron energy on a level of 50-300 eV enough for efficient ionization even at neutral gas pressure range of 10(-4)-10(-3) mbar. Gasdynamic ECRIS has demonstrated a good performance producing high current (100-300 mA) multi-charged ion beams with moderate average charge (Z = 4-5 for argon). Gasdynamic ECRIS has appeared to be especially effective in low emittance hydrogen and deuterium beams formation. Proton beams with current up to 500 emA and RMS emittance below 0.07 π ⋅ mm ⋅ mrad have been demonstrated in recent experiments.

  1. DUHOCAMIS: a dual hollow cathode ion source for metal ion beams.

    PubMed

    Zhao, W J; Müller, M W O; Janik, J; Liu, K X; Ren, X T

    2008-02-01

    In this paper we describe a novel ion source named DUHOCAMIS for multiply charged metal ion beams. This ion source is derived from the hot cathode Penning ion gauge ion source (JINR, Dubna, 1957). A notable characteristic is the modified Penning geometry in the form of a hollow sputter electrode, coaxially positioned in a compact bottle-magnetic field along the central magnetic line of force. The interaction of the discharge geometry with the inhomogeneous but symmetrical magnetic field enables this device to be operated as hollow cathode discharge and Penning discharge as well. The main features of the ion source are the very high metal ion efficiency (up to 25%), good operational reproducibility, flexible and efficient operations for low charged as well as highly charged ions, compact setup, and easy maintenance. For light ions, e.g., up to titanium, well-collimated beams in the range of several tens of milliamperes of pulsed ion current (1 ms, 10/s) have been reliably performed in long time runs.

  2. Investigation of ISIS and Brookhaven National Laboratory ion source electrodes after extended operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lettry J.; Alessi J.; Faircloth, D.

    2012-02-23

    Linac4 accelerator of Centre Europeen de Recherches Nucleaires is under construction and a RF-driven H{sup -} ion source is being developed. The beam current requirement for Linac4 is very challenging: 80 mA must be provided. Cesiated plasma discharge ion sources such as Penning or magnetron sources are also potential candidates. Accelerator ion sources must achieve typical reliability figures of 95% and above. Investigating and understanding the underlying mechanisms involved with source failure or ageing is critical when selecting the ion source technology. Plasma discharge driven surface ion sources rely on molybdenum cathodes. Deformation of the cathode surfaces is visible aftermore » extended operation periods. A metallurgical investigation of an ISIS ion source is presented. The origin of the deformation is twofold: Molybdenum sputtering by cesium ions digs few tenths of mm cavities while a growth of molybdenum is observed in the immediate vicinity. The molybdenum growth under hydrogen atmosphere is hard and loosely bound to the bulk. It is, therefore, likely to peel off and be transported within the plasma volume. The observation of the cathode, anode, and extraction electrodes of the magnetron source operated at BNL for two years are presented. A beam simulation of H{sup -}, electrons, and Cs{sup -} ions was performed with the IBSimu code package to qualitatively explain the observations. This paper describes the operation conditions of the ion sources and discusses the metallurgical analysis and beam simulation results.« less

  3. Investigation of ISIS and Brookhaven National Laboratory ion source electrodes after extended operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lettry, J.; Gerardin, A.; Pereira, H.

    2012-02-15

    Linac4 accelerator of Centre Europeen de Recherches Nucleaires is under construction and a RF-driven H{sup -} ion source is being developed. The beam current requirement for Linac4 is very challenging: 80 mA must be provided. Cesiated plasma discharge ion sources such as Penning or magnetron sources are also potential candidates. Accelerator ion sources must achieve typical reliability figures of 95% and above. Investigating and understanding the underlying mechanisms involved with source failure or ageing is critical when selecting the ion source technology. Plasma discharge driven surface ion sources rely on molybdenum cathodes. Deformation of the cathode surfaces is visible aftermore » extended operation periods. A metallurgical investigation of an ISIS ion source is presented. The origin of the deformation is twofold: Molybdenum sputtering by cesium ions digs few tenths of mm cavities while a growth of molybdenum is observed in the immediate vicinity. The molybdenum growth under hydrogen atmosphere is hard and loosely bound to the bulk. It is, therefore, likely to peel off and be transported within the plasma volume. The observation of the cathode, anode, and extraction electrodes of the magnetron source operated at BNL for two years are presented. A beam simulation of H{sup -}, electrons, and Cs{sup -} ions was performed with the IBSimu code package to qualitatively explain the observations. This paper describes the operation conditions of the ion sources and discusses the metallurgical analysis and beam simulation results.« less

  4. Upgrade of the BATMAN test facility for H- source development

    NASA Astrophysics Data System (ADS)

    Heinemann, B.; Fröschle, M.; Falter, H.-D.; Fantz, U.; Franzen, P.; Kraus, W.; Nocentini, R.; Riedl, R.; Ruf, B.

    2015-04-01

    The development of a radio frequency (RF) driven source for negative hydrogen ions for the neutral beam heating devices of fusion experiments has been successfully carried out at IPP since 1996 on the test facility BATMAN. The required ITER parameters have been achieved with the prototype source consisting of a cylindrical driver on the back side of a racetrack like expansion chamber. The extraction system, called "Large Area Grid" (LAG) was derived from a positive ion accelerator from ASDEX Upgrade (AUG) using its aperture size (ø 8 mm) and pattern but replacing the first two electrodes and masking down the extraction area to 70 cm2. BATMAN is a well diagnosed and highly flexible test facility which will be kept operational in parallel to the half size ITER source test facility ELISE for further developments to improve the RF efficiency and the beam properties. It is therefore planned to upgrade BATMAN with a new ITER-like grid system (ILG) representing almost one ITER beamlet group, namely 5 × 14 apertures (ø 14 mm). Additionally to the standard three grid extraction system a repeller electrode upstream of the grounded grid can optionally be installed which is positively charged against it by 2 kV. This is designated to affect the onset of the space charge compensation downstream of the grounded grid and to reduce the backstreaming of positive ions from the drift space backwards into the ion source. For magnetic filter field studies a plasma grid current up to 3 kA will be available as well as permanent magnets embedded into a diagnostic flange or in an external magnet frame. Furthermore different source vessels and source configurations are under discussion for BATMAN, e.g. using the AUG type racetrack RF source as driver instead of the circular one or modifying the expansion chamber for a more flexible position of the external magnet frame.

  5. Effects of Solvent and Ion Source Pressure on the Analysis of Anabolic Steroids by Low Pressure Photoionization Mass Spectrometry.

    PubMed

    Liu, Chengyuan; Zhu, Yanan; Yang, Jiuzhong; Zhao, Wan; Lu, Deen; Pan, Yang

    2017-04-01

    Solvent and ion source pressure were two important factors relating to the photon induced ion-molecule reactions in low pressure photoionization (LPPI). In this work, four anabolic steroids were analyzed by LPPI mass spectrometry. Both the ion species present and their relative abundances could be controlled by switching the solvent and adjusting the ion source pressure. Whereas M •+ , MH + , [M - H 2 O] + , and solvent adducts were observed in positive LPPI, [M - H] - and various oxidation products were abundant in negative LPPI. Changing the solvent greatly affected formation of the ion species in both positive and negative ion modes. The ion intensities of the solvent adduct and oxygen adduct were selectively enhanced when the ion source pressure was elevated from 68 to 800 Pa. The limit of detection could be decreased by increasing the ion source pressure. Graphical Abstract ᅟ.

  6. Effects of Solvent and Ion Source Pressure on the Analysis of Anabolic Steroids by Low Pressure Photoionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Liu, Chengyuan; Zhu, Yanan; Yang, Jiuzhong; Zhao, Wan; Lu, Deen; Pan, Yang

    2017-04-01

    Solvent and ion source pressure were two important factors relating to the photon induced ion-molecule reactions in low pressure photoionization (LPPI). In this work, four anabolic steroids were analyzed by LPPI mass spectrometry. Both the ion species present and their relative abundances could be controlled by switching the solvent and adjusting the ion source pressure. Whereas M•+, MH+, [M - H2O]+, and solvent adducts were observed in positive LPPI, [M - H]- and various oxidation products were abundant in negative LPPI. Changing the solvent greatly affected formation of the ion species in both positive and negative ion modes. The ion intensities of the solvent adduct and oxygen adduct were selectively enhanced when the ion source pressure was elevated from 68 to 800 Pa. The limit of detection could be decreased by increasing the ion source pressure.

  7. Ion sources for electric propulsion

    NASA Technical Reports Server (NTRS)

    Stuhlinger, E.

    1971-01-01

    Ion systems, which accelerate ions of Cs, Hg, or colloid particles by electrostatic fields, are furthest advanced and ready for application. Four kinds of ion sources have been developed: The contact ionization source for Cs as propellants, the electron bombardment source for Cs or Hg, the RF ionization source for Hg, and the hollow needle spray nozzle for colloidal glycerol particles. In each case, the ion beam must be neutralized by injection of electrons shortly behind the exit orifice to avoid adverse space charge effects.

  8. Preliminary Tests of a Paul ion Trap as an Ion Source

    NASA Astrophysics Data System (ADS)

    Sadat Kiai, S. M.; Zirak, A. R.; Elahi, M.; Adlparvar, S.; Mortazavi, B. N.; Safarien, A.; Farhangi, S.; Sheibani, S.; Alhooie, S.; Khalaj, M. M. A.; Dabirzadeh, A. A.; Ruzbehani, M.; Zahedi, F.

    2010-10-01

    The paper reports on the design and construction of a Paul ion trap as an ion source by using an impact electron ionization technique. Ions are produced in the trap and confined for the specific time which is then extracted and detected by a Faraday cup. Especial electronic configurations are employed between the end caps, ring electrodes, electron gun and a negative voltage for the detector. This configuration allows a constant low level of pure ion source between the pulsed confined ion sources. The present experimental results are based on the production and confinement of Argon ions with good stability and repeatability, but in principle, the technique can be used for various Argon like ions.

  9. Laser ion source with solenoid field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanesue, Takeshi, E-mail: tkanesue@bnl.gov; Okamura, Masahiro; Fuwa, Yasuhiro

    2014-11-10

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 10{sup 11}, which was provided by a single 1 J Nd-YAGmore » laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.« less

  10. Laser ion source with solenoid field

    DOE PAGES

    Kanesue, Takeshi; Fuwa, Yasuhiro; Kondo, Kotaro; ...

    2014-11-12

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. In this study, the laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 10 11,more » which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.« less

  11. Recent Development of IMP LECR3 Ion Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z.M.; Zhao, H.W.; Li, J.Y.

    2005-03-15

    18GHz microwave has been fed to the LECR3 ion source to produce intense highly charged ion beams although this ion source was designed for 14.5GHz. Then 1.1 emA Ar8+ and 325 e{mu}A Ar11+ were obtained at 18GHz. During the source running for atomic physics experiment, some higher charge state ion beams such as Ar17+ and Ar18+ were detected and have been validated by atomic physics method. Furthermore, a few special gases, e.g. SiH4 and SF6, were tested on LECR3 ion source to produce required ion beams to satisfy the requirements of atomic physics experiments.

  12. Liquid metal ion source assembly for external ion injection into an electron string ion source (ESIS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segal, M. J., E-mail: mattiti@gmail.com; University of Cape Town, Rondebosch, Cape Town 7700; Bark, R. A.

    An assembly for a commercial Ga{sup +} liquid metal ion source in combination with an ion transportation and focusing system, a pulse high-voltage quadrupole deflector, and a beam diagnostics system has been constructed in the framework of the iThemba LABS (Cape Town, South Africa)—JINR (Dubna, Russia) collaboration. First, results on Ga{sup +} ion beam commissioning will be presented. Outlook of further experiments for measurements of charge breeding efficiency in the electron string ion source with the use of external injection of Ga{sup +} and Au{sup +} ion beams will be reported as well.

  13. A hollow cathode ion source for production of primary ions for the BNL electron beam ion source.

    PubMed

    Alessi, James; Beebe, Edward; Carlson, Charles; McCafferty, Daniel; Pikin, Alexander; Ritter, John

    2014-02-01

    A hollow cathode ion source, based on one developed at Saclay, has been modified significantly and used for several years to produce all primary 1+ ions injected into the Relativistic Heavy Ion Collider Electron Beam Ion Source (EBIS) at Brookhaven. Currents of tens to hundreds of microamperes have been produced for 1+ ions of He, C, O, Ne, Si, Ar, Ti, Fe, Cu, Kr, Xe, Ta, Au, and U. The source is very simple, relying on a glow discharge using a noble gas, between anode and a solid cathode containing the desired species. Ions of both the working gas and ionized sputtered cathode material are extracted, and then the desired species is selected using an ExB filter before being transported into the EBIS trap for charge breeding. The source operates pulsed with long life and excellent stability for most species. Reliable ignition of the discharge at low gas pressure is facilitated by the use of capacitive coupling from a simple toy plasma globe. The source design, and operating experience for the various species, is presented.

  14. A 1D ion species model for an RF driven negative ion source

    NASA Astrophysics Data System (ADS)

    Turner, I.; Holmes, A. J. T.

    2017-08-01

    A one-dimensional model for an RF driven negative ion source has been developed based on an inductive discharge. The RF source differs from traditional filament and arc ion sources because there are no primary electrons present, and is simply composed of an antenna region (driver) and a main plasma discharge region. However the model does still make use of the classical plasma transport equations for particle energy and flow, which have previously worked well for modelling DC driven sources. The model has been developed primarily to model the Small Negative Ion Facility (SNIF) ion source at CCFE, but may be easily adapted to model other RF sources. Currently the model considers the hydrogen ion species, and provides a detailed description of the plasma parameters along the source axis, i.e. plasma temperature, density and potential, as well as current densities and species fluxes. The inputs to the model are currently the RF power, the magnetic filter field and the source gas pressure. Results from the model are presented and where possible compared to existing experimental data from SNIF, with varying RF power, source pressure.

  15. Detection of explosives using negative ion mobility spectrometry in air based on dopant-assisted thermal ionization.

    PubMed

    Shahraki, Hassan; Tabrizchi, Mahmoud; Farrokhpor, Hossein

    2018-05-26

    The ionization source is an essential component of most explosive detectors based on negative ion mobility spectrometry. Conventional ion sources suffer from such inherent limitations as special safety regulations on radioactive sources or generating interfering ions (for non-radioactive sources) such as corona discharge operating in the air. In this study, a new negative ion source is introduced for ion mobility spectrometry that is based on thermal ionization and operates in the air, applicable to explosives detection. Our system consists of a heating filament powered by an isolated power supply connected to negative high voltage. The ionization is assisted by doping chlorinated compounds in the gas phase using chlorinated hydrocarbons in contact with the heating element to yield Cl - reactant ions. Several chlorinated hydrocarbons are evaluated as the reagent chemicals for providing Cl- reactant ions, of which CCl 4 is identified as the best ionizing reagent. The ion source is evaluated by recording the ion mobility spectra of common explosives, including TNT, RDX, and PETN in the air. A detection limit of 150 pg is obtained for TNT. Compared to other ionization sources, the new source is found to be low-cost, simple, and long-lived, making it suited to portable explosives detection devices. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Numerical Simulation of Ion Transport in a Nano-Electrospray Ion Source at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Bajic, Steve; John, Benzi; Emerson, David R.

    2018-03-01

    Understanding ion transport properties from the ion source to the mass spectrometer (MS) is essential for optimizing device performance. Numerical simulation helps in understanding of ion transport properties and, furthermore, facilitates instrument design. In contrast to previously reported numerical studies, ion transport simulations in a continuous injection mode whilst considering realistic space-charge effects have been carried out. The flow field was solved using Reynolds-averaged Navier-Stokes (RANS) equations, and a particle-in-cell (PIC) method was applied to solve a time-dependent electric field with local charge density. A series of ion transport simulations were carried out at different cone gas flow rates, ion source currents, and capillary voltages. A force evaluation analysis reveals that the electric force, the drag force, and the Brownian force are the three dominant forces acting on the ions. Both the experimental and simulation results indicate that cone gas flow rates of ≤250 slph (standard liter per hour) are important for high ion transmission efficiency, as higher cone gas flow rates reduce the ion signal significantly. The simulation results also show that the ion transmission efficiency reduces exponentially with an increased ion source current. Additionally, the ion loss due to space-charge effects has been found to be predominant at a higher ion source current, a lower capillary voltage, and a stronger cone gas counterflow. The interaction of the ion driving force, ion opposing force, and ion dispersion is discussed to illustrate ion transport mechanism in the ion source at atmospheric pressure. [Figure not available: see fulltext.

  17. Numerical Simulation of Ion Transport in a Nano-Electrospray Ion Source at Atmospheric Pressure.

    PubMed

    Wang, Wei; Bajic, Steve; John, Benzi; Emerson, David R

    2018-03-01

    Understanding ion transport properties from the ion source to the mass spectrometer (MS) is essential for optimizing device performance. Numerical simulation helps in understanding of ion transport properties and, furthermore, facilitates instrument design. In contrast to previously reported numerical studies, ion transport simulations in a continuous injection mode whilst considering realistic space-charge effects have been carried out. The flow field was solved using Reynolds-averaged Navier-Stokes (RANS) equations, and a particle-in-cell (PIC) method was applied to solve a time-dependent electric field with local charge density. A series of ion transport simulations were carried out at different cone gas flow rates, ion source currents, and capillary voltages. A force evaluation analysis reveals that the electric force, the drag force, and the Brownian force are the three dominant forces acting on the ions. Both the experimental and simulation results indicate that cone gas flow rates of ≤250 slph (standard liter per hour) are important for high ion transmission efficiency, as higher cone gas flow rates reduce the ion signal significantly. The simulation results also show that the ion transmission efficiency reduces exponentially with an increased ion source current. Additionally, the ion loss due to space-charge effects has been found to be predominant at a higher ion source current, a lower capillary voltage, and a stronger cone gas counterflow. The interaction of the ion driving force, ion opposing force, and ion dispersion is discussed to illustrate ion transport mechanism in the ion source at atmospheric pressure. Graphical Abstract.

  18. An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy.

    PubMed

    Cao, Yun; Li, Jia Qing; Sun, Liang Ting; Zhang, Xue Zhen; Feng, Yu Cheng; Wang, Hui; Ma, Bao Hua; Li, Xi Xia

    2014-02-01

    A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C(5+) ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C(5+) ion beam was got when work gas was CH4 while about 262 eμA of C(5+) ion beam was obtained when work gas was C2H2 gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.

  19. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole

    NASA Astrophysics Data System (ADS)

    Rodrigues, G.; Becker, R.; Hamm, R. W.; Baskaran, R.; Kanjilal, D.; Roy, A.

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged 238U40+ (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  20. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole.

    PubMed

    Rodrigues, G; Becker, R; Hamm, R W; Baskaran, R; Kanjilal, D; Roy, A

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged (238)U(40+) (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  1. Inner Source Pickup Ions Observed by Ulysses

    NASA Astrophysics Data System (ADS)

    Gloeckler, G.

    2016-12-01

    The existence of an inner source of pickup ions close to the Sun was proposed in order to explain the unexpected discovery of C+ in the high-speed polar solar wind. Here I report on detailed analyses of the composition and the radial and latitudinal variations of inner source pickup ions measured with the Solar Wind Ion Composition Spectrometer on Ulysses from 1991 to 1998, approaching and during solar minimum. We find that the C+ intensity drops off with radial distance R as R-1.53, peaks at mid latitudes and drops to its lowest value in the ecliptic. Not only was C+ observed, but also N+, O+, Ne+, Na+, Mg+, Ar+, S+, K+, CH+, NH+, OH+, H2O+, H3O+, MgH+, HCN+, C2H4+, SO+ and many other singly-charged heavy ions and molecular ions. The measured velocity distributions of inner source pickup C+ and O+ indicate that these inner source pickup ions are most likely produced by charge exchange, photoionization and electron impact ionization of neutrals close to the Sun (within 10 to 30 solar radii). Possible causes for the unexpected latitudinal variations and the neutral source(s) producing the inner source pickup ions as well as plausible production mechanisms for inner source pickup ions will be discussed.

  2. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion sourcea)

    NASA Astrophysics Data System (ADS)

    Kondo, K.; Yamamoto, T.; Sekine, M.; Okamura, M.

    2012-02-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (˜100 μA) with high charge (˜10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  3. Application of ion thruster technology to a 30-cm multipole sputtering ion source

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.; Kaufman, H. R.

    1976-01-01

    A 30-cm electron-bombardment ion source has been designed and fabricated for micromachining and sputtering applications. This source has a multipole magnetic field that employs permanent magnets between permeable pole pieces. An average ion current density of 1 ma/sq cm with 500-eV argon ions was selected as a design operating condition. The ion beam at this operating condition was uniform and well collimated, with an average variation of + or -5 percent over the center 20 cm of the beam at a distance up to 30 cm from the ion source.

  4. Simulation of RF power and multi-cusp magnetic field requirement for H- ion sources

    NASA Astrophysics Data System (ADS)

    Pathak, Manish; Senecha, V. K.; Kumar, Rajnish; Ghodke, Dharmraj. V.

    2016-12-01

    A computer simulation study for multi-cusp RF based H- ion source has been carried out using energy and particle balance equation for inductively coupled uniformly dense plasma considering sheath formation near the boundary wall of the plasma chamber for RF ion source used as high current injector for 1 Gev H- Linac project for SNS applications. The average reaction rates for different reactions responsible for H- ion production and destruction have been considered in the simulation model. The RF power requirement for the caesium free H- ion source for a maximum possible H- ion beam current has been derived by evaluating the required current and RF voltage fed to the coil antenna using transformer model for Inductively Coupled Plasma (ICP). Different parameters of RF based H- ion source like excited hydrogen molecular density, H- ion density, RF voltage and current of RF antenna have been calculated through simulations in the presence and absence of multicusp magnetic field to distinctly observe the effect of multicusp field. The RF power evaluated for different H- ion current values have been compared with the experimental reported results showing reasonably good agreement considering the fact that some RF power will be reflected from the plasma medium. The results obtained have helped in understanding the optimum field strength and field free regions suitable for volume emission based H- ion sources. The compact RF ion source exhibits nearly 6 times better efficiency compare to large diameter ion source.

  5. Combined corona discharge and UV photoionization source for ion mobility spectrometry.

    PubMed

    Bahrami, Hamed; Tabrizchi, Mahmoud

    2012-08-15

    An ion mobility spectrometer is described which is equipped with two non-radioactive ion sources, namely an atmospheric pressure photoionization and a corona discharge ionization source. The two sources cannot only run individually but are additionally capable of operating simultaneously. For photoionization, a UV lamp was mounted parallel to the axis of the ion mobility cell. The corona discharge electrode was mounted perpendicular to the UV radiation. The total ion current from the photoionization source was verified as a function of lamp current, sample flow rate, and drift field. Simultaneous operation of the two ionization sources was investigated by recording ion mobility spectra of selected samples. The design allows one to observe peaks from either the corona discharge or photoionization individually or simultaneously. This makes it possible to accurately compare peaks in the ion mobility spectra from each individual source. Finally, the instrument's capability for discriminating two peaks appearing in approximately identical drift times using each individual ionization source is demonstrated. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. New Cs sputter ion source with polyatomic ion beams for secondary ion mass spectrometry applications

    NASA Astrophysics Data System (ADS)

    Belykh, S. F.; Palitsin, V. V.; Veryovkin, I. V.; Kovarsky, A. P.; Chang, R. J. H.; Adriaens, A.; Dowsett, M. G.; Adams, F.

    2007-08-01

    A simple design for a cesium sputter ion source compatible with vacuum and ion-optical systems as well as with electronics of the commercially available Cameca IMS-4f instrument is reported. This ion source has been tested with the cluster primary ions of Sin- and Cun-. Our experiments with surface characterization and depth profiling conducted to date demonstrate improvements of the analytical capabilities of the secondary ion mass spectrometry instrument due to the nonadditive enhancement of secondary ion emission and shorter ion ranges of polyatomic projectiles compared to atomic ones with the same impact energy.

  7. "Trunk-like" heavy ion structures observed by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Zhang, J.-C.; Kistler, L. M.; Spence, H. E.; Wolf, R. A.; Reeves, G.; Skoug, R.; Funsten, H.; Larsen, B. A.; Niehof, J. T.; MacDonald, E. A.; Friedel, R.; Ferradas, C. P.; Luo, H.

    2015-10-01

    Dynamic ion spectral features in the inner magnetosphere are the observational signatures of ion acceleration, transport, and loss in the global magnetosphere. We report "trunk-like" ion structures observed by the Van Allen Probes on 2 November 2012. This new type of ion structure looks like an elephant's trunk on an energy-time spectrogram, with the energy of the peak flux decreasing Earthward. The trunks are present in He+ and O+ ions but not in H+. During the event, ion energies in the He+ trunk, located at L = 3.6-2.6, magnetic local time (MLT) = 9.1-10.5, and magnetic latitude (MLAT) = -2.4-0.09°, vary monotonically from 3.5 to 0.04 keV. The values at the two end points of the O+ trunk are energy = 4.5-0.7 keV, L = 3.6-2.5, MLT = 9.1-10.7, and MLAT = -2.4-0.4°. Results from backward ion drift path tracings indicate that the trunks are likely due to (1) a gap in the nightside ion source or (2) greatly enhanced impulsive electric fields associated with elevated geomagnetic activity. Different ion loss lifetimes cause the trunks to differ among ion species.

  8. Pectin/zein microspheres as a sustained drug delivery system

    USDA-ARS?s Scientific Manuscript database

    A series of microspheres were prepared from pectins and corn proteins from various sources in the presence of the divalent ions calcium or zinc. The results showed that the yield of microsphere and the efficiency of drug incorporation were dependent on the type and ratio of biopolymers, the size of ...

  9. Characterization and Performance of a High-Current-Density Ion Implanter with Magnetized Hollow-Cathode Plasma Source

    NASA Astrophysics Data System (ADS)

    Falkenstein, Zoran; Rej, Donald; Gavrilov, Nikolai

    1998-10-01

    In a collaboration between the Institute of Electrophysics (IEP) and the Los Alamos National Laboratory (LANL), the IEP has developed an industrial scalable, high-power, large-area ion source for the surface modification of materials. The plasma source of the ion beam source can be described as a pulsed glow discharge with a cold, hollow-cathode in a weak magnetic field. Extraction and focusing of positive ions by an acceleration and ion-optical plate system renders the generation of a homogeneous, large-area ion beam with an averaged total ion current of up to 50 mA at acceleration voltages of up to 50 kV. The principle set-up of the ion beam source as well as some electrical characteristics (gas discharge current and the extracted ion beam current) are presented for a lab-scale prototype. Measurements of the radial ion current density profiles within the ion beam for various discharge parameters, as well as results on surface modification by ion implantation of nitrogen into aluminum and chromium are presented. Finally, a comparison of the applied ion dose with the retained ion doses is given.

  10. Electron cyclotron resonance ion sources in use for heavy ion cancer therapy.

    PubMed

    Tinschert, K; Iannucci, R; Lang, R

    2008-02-01

    The use of electron cyclotron resonance (ECR) ion sources for producing ion beams for heavy ion cancer therapy has been established for more than ten years. After the Heavy Ion Medical Accelerator (HIMAC) at Chiba, Japan started therapy of patients with carbon ions in 1994 the first carbon ion beam for patient treatment at the accelerator facility of GSI was delivered in 1997. ECR ion sources are the perfect tool for providing the required ion beams with good stability, high reliability, and easy maintenance after long operating periods. Various investigations were performed at GSI with different combinations of working gas and auxiliary gas to define the optimal beam conditions for an extended use of further ion species for the dedicated Heidelberg Ion Beam Therapy (HIT) facility installed at the Radiological University Hospital Heidelberg, Germany. Commercially available compact all permanent magnet ECR ion sources operated at 14.5 GHz were chosen for this facility. Besides for (12)C(4+) these ion sources are used to provide beams of (1)H(3)(1+), (3)He(1+), and (16)O(6+). The final commissioning at the HIT facility could be finished at the end of 2006.

  11. Characterization of the ITER model negative ion source during long pulse operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemsworth, R.S.; Boilson, D.; Crowley, B.

    2006-03-15

    It is foreseen to operate the neutral beam system of the International Thermonuclear Experimental Reactor (ITER) for pulse lengths extending up to 1 h. The performance of the KAMABOKO III negative ion source, which is a model of the source designed for ITER, is being studied on the MANTIS test bed at Cadarache. This article reports the latest results from the characterization of the ion source, in particular electron energy distribution measurements and the comparison between positive ion and negative ion extraction from the source.

  12. Radio frequency multicusp ion source development (invited)

    NASA Astrophysics Data System (ADS)

    Leung, K. N.

    1996-03-01

    The radio-frequency (rf) driven multicusp source was originally developed for use in the Superconducting Super Collider injector. It has been demonstrated that the source can meet the H- beam current and emittance requirements for this application. By employing a porcelain-coated antenna, a clean plasma discharge with very long-life operation can be achieved. Today, the rf source is used to generate both positive and negative hydrogen ion beams and has been tested in various particle accelerator laboratories throughout the world. Applications of this ion source have been extended to other fields such as ion beam lithography, oil-well logging, ion implantation, accelerator mass spectrometry and medical therapy machines. This paper summarizes the latest rf ion source technology and development at the Lawrence Berkeley National Laboratory.

  13. PULSED ION SOURCE

    DOEpatents

    Ford, F.C.; Ruff, J.W.; Zizzo, S.G.; Cook, B.

    1958-11-11

    An ion source is described adapted for pulsed operation and producing copious quantities of ions with a particular ion egress geometry. The particular source construction comprises a conical member having a conducting surface formed of a metal with a gas occladed therein and narrow non-conducting portions hereon dividing the conducting surface. A high voltage pulse is applied across the conducting surface or producing a discharge across the surface. After the gas ions have been produced by the discharge, the ions are drawn from the source in a diverging conical beam by a specially constructed accelerating electrode.

  14. Simulation study on ion extraction from electron cyclotron resonance ion sources

    NASA Astrophysics Data System (ADS)

    Fu, S.; Kitagawa, A.; Yamada, S.

    1994-04-01

    In order to study beam optics of NIRS-ECR ion source used in the HIMAC project, the EGUN code has been modified to make it capable of modeling ion extraction from a plasma. Two versions of the modified code are worked out with two different methods in which 1D and 2D sheath theories are used, respectively. Convergence problem of the strong nonlinear self-consistent equations is investigated. Simulations on NIRS-ECR ion source and HYPER-ECR ion source are presented in this paper, exhibiting an agreement with the experiment results.

  15. Atomic Data and Spectral Line Intensities for Be-like Ions

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand; Landi, E.

    2008-01-01

    Atomic data and collision rates are needed to model the spectrum of optically thin astrophysical sources. Recent observations from solar instrumentation such as SOH0 and Hinode have revealed the presence of hosts of lines emitted by high-energy configurations from ions belonging to the Be-like to the 0-like isoelectronic sequences. Data for such configurations are often unavailable in the literature. We have started a program to calculate the atomic parameters and rates for the high-energy configurations of Be-like ions of the type ls2.21.nl' where n=3,4,5. We report on the results of this project and on the diagnostic application of the predicted spectral lines.

  16. RF synchronized short pulse laser ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuwa, Yasuhiro, E-mail: fuwa@kyticr.kuicr.kyoto-u.ac.jp; Iwashita, Yoshihisa; Tongu, Hiromu

    A laser ion source that produces shortly bunched ion beam is proposed. In this ion source, ions are extracted immediately after the generation of laser plasma by an ultra-short pulse laser before its diffusion. The ions can be injected into radio frequency (RF) accelerating bucket of a subsequent accelerator. As a proof-of-principle experiment of the ion source, a RF resonator is prepared and H{sub 2} gas was ionized by a short pulse laser in the RF electric field in the resonator. As a result, bunched ions with 1.2 mA peak current and 5 ns pulse length were observed at themore » exit of RF resonator by a probe.« less

  17. Timeframe Dependent Fragment Ions Observed in In-Source Decay Experiments with β-Casein Using MALDI MS.

    PubMed

    Sekiya, Sadanori; Nagoshi, Keishiro; Iwamoto, Shinichi; Tanaka, Koichi; Takayama, Mitsuo

    2015-09-01

    The fragment ions observed with time-of-flight (TOF) and quadrupole ion trap (QIT) TOF mass spectrometers (MS) combined with matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) experiments of phosphorylated analytes β-casein and its model peptide were compared from the standpoint of the residence timeframe of analyte and fragment ions in the MALDI ion source and QIT cell. The QIT-TOF MS gave fragment c-, z'-, z-ANL, y-, and b-ions, and further degraded fragments originating from the loss of neutrals such as H(2)O, NH(3), CH(2)O (from serine), C2H4O (from threonine), and H(3)PO(4), whereas the TOF MS merely showed MALDI source-generated fragment c-, z'-, z-ANL, y-, and w-ions. The fragment ions observed in the QIT-TOF MS could be explained by the injection of the source-generated ions into the QIT cell or a cooperative effect of a little internal energy deposition, a long residence timeframe (140 ms) in the QIT cell, and specific amino acid effects on low-energy CID, whereas the source-generated fragments (c-, z'-, z-ANL, y-, and w-ions) could be a result of prompt radical-initiated fragmentation of hydrogen-abundant radical ions [M + H + H](+) and [M + H - H](-) within the 53 ns timeframe, which corresponds to the delayed extraction time. The further degraded fragment b/y-ions produced in the QIT cell were confirmed by positive- and negative-ion low-energy CID experiments performed on the source-generated ions (c-, z'-, and y-ions). The loss of phosphoric acid (98 u) from analyte and fragment ions can be explained by a slow ergodic fragmentation independent of positive and negative charges.

  18. Timeframe Dependent Fragment Ions Observed in In-Source Decay Experiments with β-Casein Using MALDI MS

    NASA Astrophysics Data System (ADS)

    Sekiya, Sadanori; Nagoshi, Keishiro; Iwamoto, Shinichi; Tanaka, Koichi; Takayama, Mitsuo

    2015-09-01

    The fragment ions observed with time-of-flight (TOF) and quadrupole ion trap (QIT) TOF mass spectrometers (MS) combined with matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) experiments of phosphorylated analytes β-casein and its model peptide were compared from the standpoint of the residence timeframe of analyte and fragment ions in the MALDI ion source and QIT cell. The QIT-TOF MS gave fragment c-, z'-, z-ANL, y-, and b-ions, and further degraded fragments originating from the loss of neutrals such as H2O, NH3, CH2O (from serine), C2H4O (from threonine), and H3PO4, whereas the TOF MS merely showed MALDI source-generated fragment c-, z'-, z-ANL, y-, and w-ions. The fragment ions observed in the QIT-TOF MS could be explained by the injection of the source-generated ions into the QIT cell or a cooperative effect of a little internal energy deposition, a long residence timeframe (140 ms) in the QIT cell, and specific amino acid effects on low-energy CID, whereas the source-generated fragments (c-, z'-, z-ANL, y-, and w-ions) could be a result of prompt radical-initiated fragmentation of hydrogen-abundant radical ions [M + H + H]+ and [M + H - H]- within the 53 ns timeframe, which corresponds to the delayed extraction time. The further degraded fragment b/y-ions produced in the QIT cell were confirmed by positive- and negative-ion low-energy CID experiments performed on the source-generated ions (c-, z'-, and y-ions). The loss of phosphoric acid (98 u) from analyte and fragment ions can be explained by a slow ergodic fragmentation independent of positive and negative charges.

  19. Development of a plug-type IMS-MS instrument and its applications in resolving problems existing in in-situ detection of illicit drugs and explosives by IMS.

    PubMed

    Du, Zhenxia; Sun, Tangqiang; Zhao, Jianan; Wang, Di; Zhang, Zhongxia; Yu, Wenlian

    2018-07-01

    Ion mobility spectrometry (IMS) which acts as a rapid analysis technique is widely used in the field detection of illicit drugs and explosives. Due to limited separation abilities of the pint-sized IMS challenges and problems still exist regarding high false positive and false negative responses due to the interference of the matrix. In addition, the gas-phase ion chemistry and special phenomena in the IMS spectra, such one substance showing two peaks, were not identified unambiguously. In order to explain or resolve these questions, in this paper, an ion mobility spectrometry was coupled to a mass spectrometry (IMS-MS). A commercial IMS is embedded in a custom-built ion chamber shell was attached to the mass spectrometer. The faraday plate of IMS was fabricated with a hole for the ions to passing through to the mass spectrometer. The ion transmission efficiency of IMS-MS was optimized by optimizing the various parameters, especially the distance between the faraday plate and the cone of mass spectrum. This design keeps the integrity of the two original instruments and the mass spectrometry still works with multimode ionization source (i.e., IMS-MS, ESI-MS, APCI-MS modes). The illicit drugs and explosive samples were analyzed by the IMS-MS with 63 Ni source. The results showed that the IMS-MS is of high sensitivity. The ionization mechanism of the illicit drug and explosive samples with 63 Ni source were systematically studied. In addition, the interferent which interfered the detection of cocaine was identified as dibutyl phthalate (DBP) by this platform. The reason why the acetone solution of amphetamine showed two peaks was explained. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. New design for a time-of-flight mass spectrometer with a liquid beam laser desorption ion source for the analysis of biomolecules

    NASA Astrophysics Data System (ADS)

    Charvat, A.; Lugovoj, E.; Faubel, M.; Abel, B.

    2004-05-01

    We describe a novel liquid beam mass spectrometer, based on a recently discovered nanosecond laser desorption phenomenon, [W. Kleinekofort, J. Avdiev, and B. Brutschy, Int. J. Mass Ion. Processes 152, 135 (1996)] which allows the liquid-to-vacuum transfer, and subsequent mass analysis of pre-existing ions and ionic associates from liquid microjets of aqueous solutions. The goal of our novel technical approach is to establish a system with good mass resolution that implements improvements on critical components that make the system more reliable and easier to operate. For laser desorption pulsed dye-laser difference frequency mixing is used that provides tunable infrared light near the absorption maximum of liquid water around 3 μm. Different types of liquid beam glass nozzles (convergent capillary and aperture plate nozzles) are investigated and characterized. Starting from theoretical considerations of hydrodynamic drag forces on micrometer size droplets in supersonic rarefied gas flows we succeeded in capturing efficiently the liquid beam in a liquid beam recycling trap operating at the vapor pressure of liquid water. For improving the pollution resistance, the liquid jet high vacuum ion source region is spatially separated from the reflectron time-of-flight mass spectrometer (TOF-MS) working behind a gate valve in an ultrahigh vacuum environment. A simple (simulation optimized) ion optics is employed for the ion transfer from the source to the high vacuum region. This new feature is also mostly responsible for the improved mass resolution. With the present tandem-TOF-MS setup a resolution of m/Δm≈1800 for the low and m/Δm≈700 in the high mass region has been obtained for several biomolecules of different mass and complexity (amino acids, insulin, and cytochrome c).

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Z; Jiang, W; Stuart, B

    Purpose: Since electrons are easily scattered, the virtual source position for electrons is expected to locate below the x-ray target of Medical Linacs. However, the effective SSD method yields the electron virtual position above the x-ray target for some applicators for some energy in Siemens Linacs. In this study, we propose to use IC Profiler (Sun Nuclear) for evaluating the electron virtual source position for the standard electron applicators for various electron energies. Methods: The profile measurements for various nominal source-to-detector distances (SDDs) of 100–115 cm were carried out for electron beam energies of 6–18 MeV. Two methods were used:more » one was to use a 0.125 cc ion chamber (PTW, Type 31010) with buildup mounted in a PTW water tank without water filled; and the other was to use IC Profiler with a buildup to achieve charge particle equilibrium. The full width at half-maximum (FWHM) method was used to determine the field sizes for the measured profiles. Backprojecting (by a straight line) the distance between the 50% points on the beam profiles for the various SDDs, yielded the virtual source position for each applicator. Results: The profiles were obtained and the field sizes were determined by FWHM. The virtual source positions were determined through backprojection of profiles for applicators (5, 10, 15, 20, 25). For instance, they were 96.415 cm (IC Profiler) vs 95.844 cm (scanning ion chamber) for 9 MeV electrons with 10×10 cm applicator and 97.160 cm vs 97.161 cm for 12 MeV electrons with 10×10 cm applicator. The differences in the virtual source positions between IC profiler and scanning ion chamber were within 1.5%. Conclusion: IC Profiler provides a practical method for determining the electron virtual source position and its results are consistent with those obtained by profiles of scanning ion chamber with buildup.« less

  2. Compact 2.45 GHz ECR Ion Source for generation of singly-charged ions

    NASA Astrophysics Data System (ADS)

    Fatkullin, Riyaz; Bogomolov, Sergey; Kuzmenkov, Konstantin; Efremov, Andrey

    2018-04-01

    2.45 GHz ECR ion sources are widely used for production of protons, single charged heavy ions and secondary radioactive ion beams. This paper describes the development of a compact ECR ion source based on 2.45 GHz coaxial resonator. The first results of extracted current measurements at different resonator configuration as a function of UHF frequency, power and gas flow are presented.

  3. Tandem-Mirror Ion Source

    NASA Technical Reports Server (NTRS)

    Biddle, A.; Stone, N.; Reasoner, D.; Chisholm, W.; Reynolds, J.

    1986-01-01

    Improved ion source produces beam of ions at any kinetic energy from 1 to 1,000 eV, with little spread in energy or angle. Such ion beams useful in studies of surface properties of materials, surface etching, deposition, and development of plasma-diagnostic instrumentation. Tandemmirror ion source uses electrostatic and magnetic fields to keep electrons in ionization chamber and assure uniform output ion beam having low divergence in energy and angle.

  4. Light ion production for a future radiobiological facility at CERN: Preliminary studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stafford-Haworth, Joshua, E-mail: Joshua.Stafford-Haworth@cern.ch; John Adams Institute at Royal Holloway, University of London, Egham, Surrey TW20 0EX; Bellodi, Giulia

    2014-02-15

    Recent medical applications of ions such as carbon and helium have proved extremely effective for the treatment of human patients. However, before now a comprehensive study of the effects of different light ions on organic targets has not been completed. There is a strong desire for a dedicated facility which can produce ions in the range of protons to neon in order to perform this study. This paper will present the proposal and preliminary investigations into the production of light ions, and the development of a radiobiological research facility at CERN. The aims of this project will be presented alongmore » with the modifications required to the existing linear accelerator (Linac3), and the foreseen facility, including the requirements for an ion source in terms of some of the specification parameters and the flexibility of operation for different ion types. Preliminary results from beam transport simulations will be presented, in addition to some planned tests required to produce some of the required light ions (lithium, boron) to be conducted in collaboration with the Helmholtz-Zentrum für Materialien und Energie, Berlin.« less

  5. Light ion production for a future radiobiological facility at CERN: preliminary studies.

    PubMed

    Stafford-Haworth, Joshua; Bellodi, Giulia; Küchler, Detlef; Lombardi, Alessandra; Röhrich, Jörg; Scrivens, Richard

    2014-02-01

    Recent medical applications of ions such as carbon and helium have proved extremely effective for the treatment of human patients. However, before now a comprehensive study of the effects of different light ions on organic targets has not been completed. There is a strong desire for a dedicated facility which can produce ions in the range of protons to neon in order to perform this study. This paper will present the proposal and preliminary investigations into the production of light ions, and the development of a radiobiological research facility at CERN. The aims of this project will be presented along with the modifications required to the existing linear accelerator (Linac3), and the foreseen facility, including the requirements for an ion source in terms of some of the specification parameters and the flexibility of operation for different ion types. Preliminary results from beam transport simulations will be presented, in addition to some planned tests required to produce some of the required light ions (lithium, boron) to be conducted in collaboration with the Helmholtz-Zentrum für Materialien und Energie, Berlin.

  6. System integration of RF based negative ion experimental facility at IPR

    NASA Astrophysics Data System (ADS)

    Bansal, G.; Bandyopadhyay, M.; Singh, M. J.; Gahlaut, A.; Soni, J.; Pandya, K.; Parmar, K. G.; Sonara, J.; Chakraborty, A.

    2010-02-01

    The setting up of RF based negative ion experimental facility shall witness the beginning of experiments on the negative ion source fusion applications in India. A 1 MHz RF generator shall launch 100 kW RF power into a single driver on the plasma source to produce a plasma of density ~5 × 1012 cm-3. The source can deliver a negative ion beam of ~10 A with a current density of ~30 mA/cm2 and accelerated to 35 kV through an electrostatic ion accelerator. The experimental system is similar to a RF based negative ion source, BATMAN, presently operating at IPP. The subsystems for source operation are designed and procured principally from indigenous resources, keeping the IPP configuration as a base line. The operation of negative ion source is supported by many subsystems e.g. vacuum pumping system with gate valves, cooling water system, gas feed system, cesium delivery system, RF generator, high voltage power supplies, data acquisition and control system, and different diagnostics. The first experiments of negative ion source are expected to start at IPR from the middle of 2009.

  7. Laser-ablation-based ion source characterization and manipulation for laser-driven ion acceleration

    NASA Astrophysics Data System (ADS)

    Sommer, P.; Metzkes-Ng, J.; Brack, F.-E.; Cowan, T. E.; Kraft, S. D.; Obst, L.; Rehwald, M.; Schlenvoigt, H.-P.; Schramm, U.; Zeil, K.

    2018-05-01

    For laser-driven ion acceleration from thin foils (∼10 μm–100 nm) in the target normal sheath acceleration regime, the hydro-carbon contaminant layer at the target surface generally serves as the ion source and hence determines the accelerated ion species, i.e. mainly protons, carbon and oxygen ions. The specific characteristics of the source layer—thickness and relevant lateral extent—as well as its manipulation have both been investigated since the first experiments on laser-driven ion acceleration using a variety of techniques from direct source imaging to knife-edge or mesh imaging. In this publication, we present an experimental study in which laser ablation in two fluence regimes (low: F ∼ 0.6 J cm‑2, high: F ∼ 4 J cm‑2) was applied to characterize and manipulate the hydro-carbon source layer. The high-fluence ablation in combination with a timed laser pulse for particle acceleration allowed for an estimation of the relevant source layer thickness for proton acceleration. Moreover, from these data and independently from the low-fluence regime, the lateral extent of the ion source layer became accessible.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, W.; Zhao, H.W.; Liu, Zh.W.

    To study the injection of additional electrons from an external electron gun into the plasma of a Penning ionization gauge (PIG) ion source, a test bench for the external electron-beam enhancement of the PIG (E-PIG) ion source was set up. A source magnet assembly was built to satisfy the request for magnetic field configuration of the E-PIG ion source. Numerical calculations have been done to optimize the magnetic field configuration so as to fit the primary electrons to be fed into the PIG discharge chamber along the spreading magnetic field lines. Many possible methods for improving the performance and stabilitymore » of the PIG ion source have been used in the E-PIG ion source, including the use of multicrystal LaB{sub 6} cathode and optimized axial magnetic field. This article presents a detailed design of the E-PIG ion source. Substantial enhancement of ion charge state is expected to be observed which demonstrates that the E-PIG is a viable alternative to other much more costly and difficult to operate devices for the production of intense ion beams of higher charge state.« less

  9. Review on heavy ion radiotherapy facilities and related ion sources (invited)a)

    NASA Astrophysics Data System (ADS)

    Kitagawa, A.; Fujita, T.; Muramatsu, M.; Biri, S.; Drentje, A. G.

    2010-02-01

    Heavy ion radiotherapy awakens worldwide interest recently. The clinical results obtained by the Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences in Japan have clearly demonstrated the advantages of carbon ion radiotherapy. Presently, there are four facilities for heavy ion radiotherapy in operation, and several new facilities are under construction or being planned. The most common requests for ion sources are a long lifetime and good stability and reproducibility. Sufficient intensity has been achieved by electron cyclotron resonance ion sources at the present facilities.

  10. Exploration of dysprosium: the most critical element for Japan

    NASA Astrophysics Data System (ADS)

    Watanabe, Y.

    2012-04-01

    Dysprosium (Dy), one of the heavy rare earth elements, is used mainly as an additive for NdFeB permanent magnets which are installed in various modern industrial products such as voice coil motors in computers, factory automation machinery, hybrid and electric vehicles, home electronics, and wind turbine, to improve heat resistance of the magnets. Dy has been produced about 2,000t per year from the ores from ion adsorption type deposits in southern China. However, the produced amount of Dy was significantly reduced in 2011 in China due to reservation of heavy rare earth resources and protection of natural environment, resulting in soaring of Dy price in the world. In order to respond the increasing demand of Dy, unconventional supply sources are inevitably developed, in addition to heavy rare earth enriched ion adsorption type deposits outside China. Heavy rare earth elements including Dy are dominantly hosted in xenotime, fergusonite, zircon, eudialyte, keiviite, kainosite, iimoriite, etc. Concentration of xenotime is found in placer deposits in Malaysia and India, hydrothermal deposits associated with unconformity-type uranium mineralization (Athabasca basin in Canada, Western Australia), iron-oxide fluorite mineralization (South Africa) and Sn-bearing alkaline granite (Brazil). Zircon and fergusontie concentration is found as igneous and hydrothermal products in peralkaline syenite, alkaline granite and pegmatite (e.g., Nechalacho in Canada). Eudialyte concentration is found in some peralkaline syenite bodies in Greenland, Canada, Sweden and Russia. Among these sources, large Dy resources are estimated in the deposits hosted in peralkaline rocks (Nechalacho: 79,000t, Kvanefjeld: 49,000t, Norra Karr: 15,700t, etc.) compared to the present demand of Dy. Thus, Dy will be supplied from the deposits associated with peralkaline and alkaline deposits in future instead of ion adsorption type deposits in southern China.

  11. Negative ion source with external RF antenna

    DOEpatents

    Leung, Ka-Ngo; Hahto, Sami K.; Hahto, Sari T.

    2007-02-13

    A radio frequency (RF) driven plasma ion source has an external RF antenna, i.e. the RF antenna is positioned outside the plasma generating chamber rather than inside. The RF antenna is typically formed of a small diameter metal tube coated with an insulator. An external RF antenna assembly is used to mount the external RF antenna to the ion source. The RF antenna tubing is wound around the external RF antenna assembly to form a coil. The external RF antenna assembly is formed of a material, e.g. quartz, which is essentially transparent to the RF waves. The external RF antenna assembly is attached to and forms a part of the plasma source chamber so that the RF waves emitted by the RF antenna enter into the inside of the plasma chamber and ionize a gas contained therein. The plasma ion source is typically a multi-cusp ion source. A converter can be included in the ion source to produce negative ions.

  12. An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yun, E-mail: caoyun@impcas.ac.cn; Li, Jia Qing; Sun, Liang Ting

    2014-02-15

    A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C{sup 5+} ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C{sup 5+} ion beam was got when work gasmore » was CH{sub 4} while about 262 eμA of C{sup 5+} ion beam was obtained when work gas was C{sub 2}H{sub 2} gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.« less

  13. High frequency plasma generator for ion thrusters

    NASA Technical Reports Server (NTRS)

    Goede, H.; Divergilio, W. F.; Fosnight, V. V.; Komatsu, G.

    1984-01-01

    The results of a program to experimentally develop two new types of plasma generators for 30 cm electrostatic argon ion thrusters are presented. The two plasma generating methods selected for this study were by radio frequency induction (RFI), operating at an input power frequency of 1 MHz, and by electron cyclotron heating (ECH) at an operating frequency of 5.0 GHz. Both of these generators utilize multiline cusp permanent magnet configurations for plasma confinement and beam profile optimization. The program goals were to develop a plasma generator possessing the characteristics of high electrical efficiency (low eV/ion) and simplicity of operation while maintaining the reliability and durability of the conventional hollow cathode plasma sources. The RFI plasma generator has achieved minimum discharge losses of 120 eV/ion while the ECH generator has obtained 145 eV/ion, assuming a 90% ion optical transparency of the electrostatic acceleration system. Details of experimental tests with a variety of magnet configurations are presented.

  14. Multipole gas thruster design. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Isaacson, G. C.

    1977-01-01

    The development of a low field strength multipole thruster operating on both argon and xenon is described. Experimental results were obtained with a 15-cm diameter multipole thruster and are presented for a wide range of discharge-chamber configurations. Minimum discharge losses were 300-350 eV/ion for argon and 200-250 eV/ion for xenon. Ion beam flatness parameters in the plane of the accelerator grid ranged from 0.85 to 0.93 for both propellants. Thruster performance is correlated for a range of ion chamber sizes and operating conditions as well as propellant type and accelerator system open area. A 30-cm diameter ion source designed and built using the procedure and theory presented here-in is shown capable of low discharge losses and flat ion-beam profiles without optimization. This indicates that by using the low field strength multipole design, as well as general performance correlation information provided herein, it should be possible to rapidly translate initial performance specifications into easily fabricated, high performance prototypes.

  15. A multicentre audit of HDR/PDR brachytherapy absolute dosimetry in association with the INTERLACE trial (NCT015662405).

    PubMed

    Díez, P; Aird, E G A; Sander, T; Gouldstone, C A; Sharpe, P H G; Lee, C D; Lowe, G; Thomas, R A S; Simnor, T; Bownes, P; Bidmead, M; Gandon, L; Eaton, D; Palmer, A L

    2017-11-09

    A UK multicentre audit to evaluate HDR and PDR brachytherapy has been performed using alanine absolute dosimetry. This is the first national UK audit performing an absolute dose measurement at a clinically relevant distance (20 mm) from the source. It was performed in both INTERLACE (a phase III multicentre trial in cervical cancer) and non-INTERLACE brachytherapy centres treating gynaecological tumours. Forty-seven UK centres (including the National Physical Laboratory) were visited. A simulated line source was generated within each centre's treatment planning system and dwell times calculated to deliver 10 Gy at 20 mm from the midpoint of the central dwell (representative of Point A of the Manchester system). The line source was delivered in a water-equivalent plastic phantom (Barts Solid Water) encased in blocks of PMMA (polymethyl methacrylate) and charge measured with an ion chamber at 3 positions (120° apart, 20 mm from the source). Absorbed dose was then measured with alanine at the same positions and averaged to reduce source positional uncertainties. Charge was also measured at 50 mm from the source (representative of Point B of the Manchester system). Source types included 46 HDR and PDR 192 Ir sources, (7 Flexisource, 24 mHDR-v2, 12 GammaMed HDR Plus, 2 GammaMed PDR Plus, 1 VS2000) and 1 HDR 60 Co source, (Co0.A86). Alanine measurements when compared to the centres' calculated dose showed a mean difference (±SD) of  +1.1% (±1.4%) at 20 mm. Differences were also observed between source types and dose calculation algorithm. Ion chamber measurements demonstrated significant discrepancies between the three holes mainly due to positional variation of the source within the catheter (0.4%-4.9% maximum difference between two holes). This comprehensive audit of absolute dose to water from a simulated line source showed all centres could deliver the prescribed dose to within 5% maximum difference between measurement and calculation.

  16. Ion source for high-precision mass spectrometry

    DOEpatents

    Todd, Peter J.; McKown, Henry S.; Smith, David H.

    1984-01-01

    The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit.

  17. A vacuum spark ion source: High charge state metal ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yushkov, G. Yu., E-mail: gyushkov@mail.ru; Nikolaev, A. G.; Frolova, V. P.

    2016-02-15

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less thanmore » 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.« less

  18. Electron beam ion source and electron beam ion trap (invited).

    PubMed

    Becker, Reinard; Kester, Oliver

    2010-02-01

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not "sorcery" but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  19. New progress of high current gasdynamic ion source (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skalyga, V., E-mail: skalyga@ipfran.ru; Sidorov, A.; Vodopyanov, A.

    2016-02-15

    The experimental and theoretical research carried out at the Institute of Applied Physics resulted in development of a new type of electron cyclotron resonance ion sources (ECRISs)—the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller’s ECRIS confinement, i.e., the quasi-gasdynamic one similar to that in fusion mirror traps. Experimental studies of gasdynamic ECRIS were performed at Simple Mirror Ion Source (SMIS) 37 facility. The plasma was created by 37.5 and 75 GHz gyrotron radiation with power up to 100 kW. High frequency microwaves allowed to create and sustain plasma withmore » significant density (up to 8 × 10{sup 13} cm{sup −3}) and to maintain the main advantages of conventional ECRIS such as high ionization degree and low ion energy. Reaching such high plasma density relies on the fact that the critical density grows with the microwave frequency squared. High microwave power provided the average electron energy on a level of 50-300 eV enough for efficient ionization even at neutral gas pressure range of 10{sup −4}–10{sup −3} mbar. Gasdynamic ECRIS has demonstrated a good performance producing high current (100-300 mA) multi-charged ion beams with moderate average charge (Z = 4-5 for argon). Gasdynamic ECRIS has appeared to be especially effective in low emittance hydrogen and deuterium beams formation. Proton beams with current up to 500 emA and RMS emittance below 0.07 π ⋅ mm ⋅ mrad have been demonstrated in recent experiments.« less

  20. The ionization length in plasmas with finite temperature ion sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jelic, N.; Kos, L.; Duhovnik, J.

    2009-12-15

    The ionization length is an important quantity which up to now has been precisely determined only in plasmas which assume that the ions are born at rest, i.e., in discharges known as 'cold ion-source' plasmas. Presented here are the results of our calculations of the ionization lengths in plasmas with an arbitrary ion source temperature. Harrison and Thompson (H and T) [Proc. Phys. Soc. 74, 145 (1959)] found the values of this quantity for the cases of several ion strength potential profiles in the well-known Tonks-Langmuir [Phys. Rev. 34, 876 (1929)] discharge, which is characterized by 'cold' ion temperature. Thismore » scenario is also known as the 'singular' ion-source discharge. The H and T analytic result covers cases of ion sources proportional to exp(betaPHI) with PHI the normalized plasma potential and beta=0,1,2 values, which correspond to particular physical scenarios. Many years following H and T's work, Bissell and Johnson (B and J) [Phys. Fluids 30, 779 (1987)] developed a model with the so-called 'warm' ion-source temperature, i.e., 'regular' ion source, under B and J's particular assumption that the ionization strength is proportional to the local electron density. However, it appears that B and J were not interested in determining the ionization length at all. The importance of this quantity to theoretical modeling was recognized by Riemann, who recently answered all the questions of the most advanced up-to-date plasma-sheath boundary theory with cold ions [K.-U. Riemann, Phys. Plasmas 13, 063508 (2006)] but still without the stiff warm ion-source case solution, which is highly resistant to solution via any available analytic method. The present article is an extension of H and T's results obtained for a single point only with ion source temperature T{sub n}=0 to arbitrary finite ion source temperatures. The approach applied in this work is based on the method recently developed by Kos et al. [Phys. Plasmas 16, 093503 (2009)].« less

  1. Inductively generated streaming plasma ion source

    DOEpatents

    Glidden, Steven C.; Sanders, Howard D.; Greenly, John B.

    2006-07-25

    A novel pulsed, neutralized ion beam source is provided. The source uses pulsed inductive breakdown of neutral gas, and magnetic acceleration and control of the resulting plasma, to form a beam. The beam supplies ions for applications requiring excellent control of ion species, low remittance, high current density, and spatial uniformity.

  2. Ion Sources

    NASA Astrophysics Data System (ADS)

    Haseroth, Helmut; Hora, Heinrich

    1993-03-01

    Ion sources for accelerators are based on plasma configurations with an extraction system in order to gain a very high number of ions within an appropriately short pulse and of sufficiently high charge number Z for advanced research. Beginning with the duoplasmatron, all established ion sources are based on low-density plasmas, of which the electron beam ionization source (EBIS) and the electron cyclotron resonance (ECR) source are the most advanced; for example they result in pulses of nearly 6 × 108 fully stripped sulfur ions per pulse in the Super Proton Synchrotron (SPS) at CERN with energies of 200 GeV/u. As an example of a forthcoming development, we are reporting about the lead ion source for the same purpose. Contrary to these cases of low-density plasmas, where a rather long time is always necessary to generate sufficiently high charge states, the laser ion source uses very high density plasmas and therefore produced, for example in 1983, single shots of Au51+ ions of high directivity with energies above 300 MeV within 2 ns irradiation time of a gold target with a medium-to-large CO2 laser. Experiments at Dubna and Moscow, using small-size lasers, produced up to one million shots with 1 Hz sequence. After acceleration by a linac or otherwise, ion pulses of up to nearly 5 × 1010 ions of C4+ or Mg12+ with energies in the synchrotrons of up to 2 GeV/u were produced. The physics of the laser generation of the ions is most complex, as we know from laser fusion studies, including non-linear dynamic and dielectric effects, resonances, self-focusing, instabilities, double layers, and an irregular pulsation in the 20 ps range. This explains not only what difficulties are implied with the laser ion source, but also why it opens up a new direction of ion sources.

  3. Use of predissociation to enhance the atomic hydrogen ion fraction in ion sources

    DOEpatents

    Kim, Jinchoon

    1979-01-01

    A duopigatron ion source is modified by replacing the normal oxide-coated wire filament cathode of the ion source with a hot tungsten oven through which hydrogen gas is fed into the arc chamber. The hydrogen gas is predissociated in the hot oven prior to the arc discharge, and the recombination rate is minimized by hot walls inside of the arc chamber. With the use of the above modifications, the atomic H.sub.1.sup.+ ion fraction output can be increased from the normal 50% to greater than 70% with a corresponding decrease in the H.sub.2.sup.+ and H.sub.3.sup.+ molecular ion fraction outputs from the ion source.

  4. Ion energy spread and current measurements of the rf-driven multicusp ion source

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Gough, R. A.; Kunkel, W. B.; Leung, K. N.; Perkins, L. T.; Pickard, D. S.; Sun, L.; Vujic, J.; Williams, M. D.; Wutte, D.

    1997-03-01

    Axial energy spread and useful beam current of positive ion beams have been carried out using a radio frequency (rf)-driven multicusp ion source. Operating the source with a 13.56 MHz induction discharge, the axial energy spread is found to be approximately 3.2 eV. The extractable beam current of the rf-driven source is found to be comparable to that of filament-discharge sources. With a 0.6 mm diameter extraction aperture, a positive hydrogen ion beam current density of 80 mA/cm2 can be obtained at a rf input power of 2.5 kW. The expected source lifetime is much longer than that of filament discharges.

  5. A compact ion source for intense neutron generation

    NASA Astrophysics Data System (ADS)

    Perkins, Luke Torrilhon

    Today, numerous applications for neutrons, beyond those of the nuclear power industry, are beginning to emerge and become viable. From neutron radiography which, not unlike conventional X-rays, can provide an in-depth image through various materials, to neutron radiotherapy, for the treatment of certain forms of cancer, all these applications promise to improve our quality of life. To meet the growing need for neutrons, greater demands are being made on the neutron 'generator' technology, demands for improved neutron output and reliability at reduced physical sizes and costs. One such example in the field of borehole neutron generators, where, through neutron activation analysis, the elemental composition, concentration and location in the surrounding borehole media can be ascertained. These generators, which commonly rely on the fusion of deuterium (D) and tritium (T) at energies of the order of one hundred thousand Volts, seem to defy their physical limitations to provide neutron outputs approaching a billion per second in packages no greater than two inches in diameter. In an attempt to answer this demand, we, at Lawrence Berkeley National Laboratory (LBNL), have begun developing a new generation of neutron generators making use of recent developments in ion source technology. The specific application which motivates this development is in the environmental monitoring field, where pollutants and their concentrations in the subsurface must be assessed. To achieve the desired direction of low-level concentrations and obtain a better directional sensitivity, a neutron output of 109 to 1010 D-T neutrons per second was targeted for generator package which can fit inside a ~5 cm diameter borehole. To accomplish this performance, a radio-frequency (RF)- driven ion source developed at LBNL was adapted to the requirements of this application. The advantages of this type of ion source are its intrinsic ability to tailor the delivery of RF power to the ion source and therefore control the neutron output (pulse width, repetition rate and magnitude) while operating at low pressures (~5 mTorr). In the experimental testing presented herein, a prototype, 5 cm-diameter, inductively driven ion source has produced unsaturated hydrogen beam current densities in excess of 1 A/cm2 and monatomic species fractions in excess of 90%. This satisfactory performance, with respect to the targeted neutron output, was achieved with a 2 MHz, 60 kW pulse of RF to produce a ~20μs plasma pulse at <100 Hz.

  6. Preparation of dilute magnetic semiconductor films by metalorganic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Nouhi, Akbar (Inventor); Stirn, Richard J. (Inventor)

    1988-01-01

    A method for preparation of a dilute magnetic semiconductor (DMS) film is provided, in which a Group II metal source, a Group VI metal source and a transition metal magnetic ion source are pyrolyzed in the reactor of a metalorganic chemical vapor deposition (MOCVD) system by contact with a heated substrate. As an example, the preparation of films of Cd(sub 1-x)Mn(sub x)Te, in which 0 is less than or equal to x less than or equal to 0.7, on suitable substrates (e.g., GaAs) is described. As a source of manganese, tricarbonyl (methylcyclopentadienyl) manganese (TCPMn) is employed. To prevent TCPMn condensation during its introduction into the reactor, the gas lines, valves and reactor tubes are heated. A thin-film solar cell of n-i-p structure, in which the i-type layer comprises a DMS, is also described; the i-type layer is suitably prepared by MOCVD.

  7. Preparation of dilute magnetic semiconductor films by metalorganic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Nouhi, Akbar (Inventor); Stirn, Richard J. (Inventor)

    1990-01-01

    A method for preparation of a dilute magnetic semiconductor (DMS) film is provided, wherein a Group II metal source, a Group VI metal source and a transition metal magnetic ion source are pyrolyzed in the reactor of a metalorganic chemical vapor deposition (MOCVD) system by contact with a heated substrate. As an example, the preparation of films of Cd.sub.1-x Mn.sub.x Te, wherein 0.ltoreq..times..ltoreq.0.7, on suitable substrates (e.g., GaAs) is described. As a source of manganese, tricarbonyl (methylcyclopentadienyl) maganese (TCPMn) is employed. To prevent TCPMn condensation during the introduction thereof int the reactor, the gas lines, valves and reactor tubes are heated. A thin-film solar cell of n-i-p structure, wherein the i-type layer comprises a DMS, is also described; the i-type layer is suitably prepared by MOCVD.

  8. Axial energy spread measurements of an accelerated positive ion beam

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Gough, R. A.; Kunkel, W. B.; Leung, K. N.; Perkins, L. T.; Pickard, D. S.; Sun, L.; Vujic, J.; Williams, M. D.; Wutte, D.; Mondelli, Alfred A.; Stengl, Gerhard

    1997-01-01

    A multicusp ion source has been designed for use in ion projection lithography. Longitudinal energy spreads of the extracted positive hydrogen ion beam have been studied using a retarding field energy analyzer. It has been found that the filament-discharge multicusp ion source can deliver a beam with an energy spread less than 3 eV which is required for the ALG-1000 machine. The multicusp ion source can also deliver the current required for the application.

  9. Means for obtaining a metal ion beam from a heavy-ion cyclotron source

    DOEpatents

    Hudson, E.D.; Mallory, M.L.

    1975-08-01

    A description is given of a modification to a cyclotron ion source used in producing a high intensity metal ion beam. A small amount of an inert support gas maintains the usual plasma arc, except that it is necessary for the support gas to have a heavy mass, e.g., xenon or krypton as opposed to neon. A plate, fabricated from the metal (or anything that can be sputtered) to be ionized, is mounted on the back wall of the ion source arc chamber and is bombarded by returning energetic low-charged gas ions that fail to cross the initial accelerating gap between the ion source and the accelerating electrode. Some of the atoms that are dislodged from the plate by the returning gas ions become ionized and are extracted as a useful beam of heavy ions. (auth)

  10. An atmospheric pressure ionization source using a high voltage target compared to electrospray ionization for the LC/MS analysis of pharmaceutical compounds.

    PubMed

    Lubin, Arnaud; De Vries, Ronald; Cabooter, Deirdre; Augustijns, Patrick; Cuyckens, Filip

    2017-08-05

    The type and design of an ionization source can have a significant influence on the performances of a bioanalytical method. It is, therefore, of high interest to evaluate the performances of newly introduced sources to highlight their benefits and limitations in comparison to other well established sources. In this paper, liquid chromatography - mass spectrometry (LC/MS) performances of a new atmospheric pressure ionization (API) source, commercialized as UniSpray, is evaluated. The dynamic range of 24 pharmaceutical and biological compounds is compared between the new API source and electrospray ionization (ESI) for 3 different mobile phase conditions. Matrix effects are also compared with ESI on a refined selection of 19 pharmaceutical and biological compounds in 4 matrices commonly encountered in bioanalysis. A slightly better dynamic range towards lower concentrations was often observed with the new API source. Matrix effects were quite similar between the two sources with a small, but statistically significant, lower percentage of matrix effects observed for the new API source in plasma and bile in the positive ion mode, and bile in negative ion mode for ESI. Finally, the sensitivity of late eluting compounds could be improved on the new API source by post-column addition of water. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Ion source for high-precision mass spectrometry

    DOEpatents

    Todd, P.J.; McKown, H.S.; Smith, D.H.

    1982-04-26

    The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit. 2 figures, 3 tables.

  12. Sample inlet tube for ion source

    DOEpatents

    Prior, David [Hermiston, OR; Price, John [Richland, WA; Bruce, Jim [Oceanside, CA

    2002-09-24

    An improved inlet tube is positioned within an aperture through the device to allow the passage of ions from the ion source, through the improved inlet tube, and into the interior of the device. The inlet tube is designed with a larger end and a smaller end wherein the larger end has a larger interior diameter than the interior diameter of the smaller end. The inlet tube is positioned within the aperture such that the larger end is pointed towards the ion source, to receive ions therefrom, and the smaller end is directed towards the interior of the device, to deliver the ions thereto. Preferably, the ion source utilized in the operation of the present invention is a standard electrospray ionization source. Similarly, the present invention finds particular utility in conjunction with analytical devices such as mass spectrometers.

  13. A 5 x 40 cm rectangular-beam multipole ion source

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.; Kaufman, H. R.; Haynes, C. M.

    1981-01-01

    A rectangular ion source particularly suited for the continuous sputter processing of materials over a wide area is discussed. A multipole magnetic field configuration was used to design an ion source with a 5 x 40 cm beam area, while a three-grid ion optics system was used to maximize ion current density at the design ion energy of 500 eV. An average extracted current density of about 4 mA/sq cm could be obtained from 500 eV Ar ions. The difference between the experimental performance and the design value of 6 mA/sq cm is attributed to grid misalignment due to thermal expansion. The discharge losses at typical operating conditions ranged from about 600 to 1000 eV/ion, in reasonable agreement with the design value of 800 eV/ion. The use of multiple rectangular-beam ion sources to process wider areas than would be possible with a single source was also studied, and the most uniform coverage was found to be obtainable with a 0 to 2 cm overlap.

  14. Static time-of-flight secondary ion mass spectrometry analysis of microelectronics related substrates using a polyatomic ion source

    NASA Astrophysics Data System (ADS)

    Ravanel, X.; Trouiller, C.; Juhel, M.; Wyon, C.; Kwakman, L. F. Tz.; Léonard, D.

    2008-12-01

    Recent time-of-flight secondary ion mass spectrometry studies using primary ion cluster sources such as Au n+, SF 5+, Bi n+ or C 60+ have shown the great advantages in terms of secondary ion yield enhancement and ion formation efficiency of polyatomic ion sources as compared to monoatomic ion sources like the commonly used Ga +. In this work, the effective gains provided by such a source in the static ToF-SIMS analysis of microelectronics devices were investigated. Firstly, the influence of the number of atoms in the primary cluster ion on secondary ion formation was studied for physically adsorbed di-isononyl phthalate (DNP) (plasticizer) and perfluoropolyether (PFPE). A drastic increase in secondary ion formation efficiency and a much lower detection limit were observed when using a polyatomic primary ion. Moreover, the yield of the higher mass species was much enhanced indicating a lower degree of fragmentation that can be explained by the fact that the primary ion energy is spread out more widely, or that there is a lower energy per incoming ion. Secondly, the influence of the number of Bi atoms in the Bi n primary ion on the information depth was studied using reference thermally grown silicon oxide samples. The information depth provided by a Bi n cluster was shown to be lowered when the number of atoms in the aggregate was increased.

  15. Operation Status of the J-PARC Negative Hydrogen Ion Source

    NASA Astrophysics Data System (ADS)

    Oguri, H.; Ikegami, K.; Ohkoshi, K.; Namekawa, Y.; Ueno, A.

    2011-09-01

    A cesium-free negative hydrogen ion source driven with a lanthanum hexaboride (LaB6) filament is being operated without any serious trouble for approximately four years in J-PARC. Although the ion source is capable of producing an H- ion current of more than 30 mA, the current is routinely restricted to approximately 16 mA at present for the stable operation of the RFQ linac which has serious discharge problem from September 2008. The beam run is performed during 1 month cycle, which consisted of a 4-5 weeks beam operation and a few days down-period interval. At the recent beam run, approximately 700 h continuous operation was achieved. At every runs, the beam interruption time due to the ion source failure is a few hours, which correspond to the ion source availability of more than 99%. The R&D work is being performed in parallel with the operation in order to enhance the further beam current. As a result, the H- ion current of 61 mA with normalized rms emittance of 0.26 πmm.mrad was obtained by adding a cesium seeding system to a J-PARC test ion source which has the almost same structure with the present J-PARC ion source.

  16. A Collison nebulizer as an ion source for mass spectrometry analysis

    NASA Astrophysics Data System (ADS)

    Pervukhin, V. V.; Sheven', D. G.; Kolomiets, Yu. N.

    2014-12-01

    It is proposed to use a Collison nebulizer as a source of ionization for mass-spectrometry with ionization at atmospheric pressure. This source does not require an electric voltage, radioactive sources, heaters, or liquid pumps. It is shown that the number of ions produced by the Collison nebulizer is ten times greater than the quantity of ions produced by the 63Ni radioactive source and three to four times greater than the number of ions produced with sonic ionization devices.

  17. Colour and stability assessment of blue ferric anthocyanin chelates in liquid pectin-stabilised model systems.

    PubMed

    Buchweitz, M; Brauch, J; Carle, R; Kammerer, D R

    2013-06-01

    The formation of blue coloured ferric anthocyanin chelates and their colour stability during storage and thermal treatment were monitored in a pH range relevant to food (3.6-5.0). Liquid model systems were composed of different types of Citrus pectins, juices (J) and the respective phenolic extracts (E) from elderberry (EB), black currant (BC), red cabbage (RC) and purple carrot (PC) in the presence of ferric ions. For EB, BC and PC, pure blue colours devoid of a violet tint were exclusively observed for the phenolic extracts and at pH values ≥ 4.5 in model systems containing high methoxylated and amidated pectins, respectively. Colour and its stability strongly depended on the amount of ferric ions and the plant source; however, colour decay could generally be described as a pseudo-first-order kinetics. Despite optimal colour hues for RC-E and RC-J, storage and heat stabilities were poor. Highest colour intensities and best stabilities were observed for model systems containing PC-E at a molar anthocyanin:ferric ion ratio of 1:2. Ascorbic and lactic acids interfered with ferric ions, thus significantly affecting blue colour evolution and stability. Colour loss strongly depended on heat exposure with activation energies ranging between 60.5 and 78.4 kJ/mol. The comprehensive evaluation of the interrelationship of pigment source, pH conditions and pectin type on chelate formation and stability demonstrated that ferric anthocyanin chelates are promising natural blue food colourants. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Method and source for producing a high concentration of positively charged molecular hydrogen or deuterium ions

    DOEpatents

    Ehlers, Kenneth W.; Leung, Ka-Ngo

    1988-01-01

    A high concentration of positive molecular ions of hydrogen or deuterium gas is extracted from a positive ion source having a short path length of extracted ions, relative to the mean free path of the gas molecules, to minimize the production of other ion species by collision between the positive ions and gas molecules. The ion source has arrays of permanent magnets to produce a multi-cusp magnetic field in regions remote from the plasma grid and the electron emitters, for largely confining the plasma to the space therebetween. The ion source has a chamber which is short in length, relative to its transverse dimensions, and the electron emitters are at an even shorter distance from the plasma grid, which contains one or more extraction apertures.

  19. Double gate graphene nanoribbon field effect transistor with single halo pocket in channel region

    NASA Astrophysics Data System (ADS)

    Naderi, Ali

    2016-01-01

    A new structure for graphene nanoribbon field-effect transistors (GNRFETs) is proposed and investigated using quantum simulation with a nonequilibrium Green's function (NEGF) method. Tunneling leakage current and ambipolar conduction are known effects for MOSFET-like GNRFETs. To minimize these issues a novel structure with a simple change of the GNRFETs by using single halo pocket in the intrinsic channel region, "Single Halo GNRFET (SH-GNRFET)", is proposed. An appropriate halo pocket at source side of channel is used to modify potential distribution of the gate region and weaken band to band tunneling (BTBT). In devices with materials like Si in channel region, doping type of halo and source/drain regions are different. But, here, due to the smaller bandgap of graphene, the mentioned doping types should be the same to reduce BTBT. Simulations have shown that in comparison with conventional GNRFET (C-GNRFET), an SH-GNRFET with appropriately halo doping results in a larger ON current (Ion), smaller OFF current (Ioff), a larger ON-OFF current ratio (Ion/Ioff), superior ambipolar characteristics, a reduced power-delay product and lower delay time.

  20. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL.

    PubMed

    Zhao, H W; Sun, L T; Zhang, X Z; Guo, X H; Cao, Y; Lu, W; Zhang, Z M; Yuan, P; Song, M T; Zhao, H Y; Jin, T; Shang, Y; Zhan, W L; Wei, B W; Xie, D Z

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e microA of O(7+), 505 e microA of Xe(20+), 306 e microA of Xe(27+), and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.

  1. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL (invited)a)

    NASA Astrophysics Data System (ADS)

    Zhao, H. W.; Sun, L. T.; Zhang, X. Z.; Guo, X. H.; Cao, Y.; Lu, W.; Zhang, Z. M.; Yuan, P.; Song, M. T.; Zhao, H. Y.; Jin, T.; Shang, Y.; Zhan, W. L.; Wei, B. W.; Xie, D. Z.

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6T at injection, 2.2T at extraction, and a radial sextupole field of 2.0T at plasma chamber wall. During the commissioning phase at 18GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5kW by two 18GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810eμA of O7+, 505eμA of Xe20+, 306eμA of Xe27+, and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.

  2. Composition of inner-source heavy pickup ions at 1 AU: SOHO/CELIAS/CTOF observations. Implications for the production mechanisms

    NASA Astrophysics Data System (ADS)

    Taut, A.; Berger, L.; Drews, C.; Wimmer-Schweingruber, R. F.

    2015-04-01

    Context. Pickup ions in the inner heliosphere mainly originate in two sources, one interstellar and one in the inner solar system. In contrast to the interstellar source that is comparatively well understood, the nature of the inner source has not been clearly identified. Former results obtained with the Solar Wind Ion Composition Spectrometer on-board the Ulysses spacecraft revealed that the composition of inner-source pickup ions is similar, but not equal, to the elemental solar-wind composition. These observations suffered from very low counting statistics of roughly one C+ count per day. Aims: Because the composition of inner-source pickup ions could lead to identifying their origin, we used data from the Charge-Time-Of-Flight sensor on-board the Solar and Heliospheric Observatory. It offers a large geometry factor that results in about 100 C+ counts per day combined with an excellent mass-per-charge resolution. These features enable a precise determination of the inner-source heavy pickup ion composition at 1 AU. To address the production mechanisms of inner-source pickup ions, we set up a toy model based on the production scenario involving the passage of solar-wind ions through thin dust grains to explain the observed deviations of the inner-source PUI and the elemental solar-wind composition. Methods: An in-flight calibration of the sensor allows identification of heavy pickup ions from pulse height analysis data by their mass-per-charge. A statistical analysis was performed to derive the inner-source heavy pickup ion relative abundances of N+, O+, Ne+, Mg+, Mg2+, and Si+ compared to C+. Results: Our results for the inner-source pickup ion composition are in good agreement with previous studies and confirm the deviations from the solar-wind composition. The large geometry factor of the Charge-Time-of-Flight sensor even allowed the abundance ratios of the two most prominent pickup ions, C+ and O+, to be investigated at varying solar-wind speeds. We found that the O+/C+ ratio increases systematically with higher solar-wind speeds. This observation is an unprecedented feature characterising the production of inner-source pickup ions. Comparing our observations to the toy model results, we find that both the deviation from the solar-wind composition and the solar-wind-speed dependent O+/C+ ratio can be explained.

  3. p-type zinc-blende GaN on GaAs substrates

    NASA Astrophysics Data System (ADS)

    Lin, M. E.; Xue, G.; Zhou, G. L.; Greene, J. E.; Morkoç, H.

    1993-08-01

    We report p-type cubic GaN. The Mg-doped layers were grown on vicinal (100) GaAs substrates by plasma-enhanced molecular beam epitaxy. Thermally sublimed Mg was, with N2 carrier gas, fed into an electron-cyclotron resonance source. p-type zinc-blende-structure GaN films were achieved with hole mobilities as high as 39 cm2/V s at room temperature. The cubic nature of the films were confirmed by x-ray diffractometry. The depth profile of Mg was investigated by secondary ions mass spectroscopy.

  4. Simulation of cesium injection and distribution in rf-driven ion sources for negative hydrogen ion generation.

    PubMed

    Gutser, R; Fantz, U; Wünderlich, D

    2010-02-01

    Cesium seeded sources for surface generated negative hydrogen ions are major components of neutral beam injection systems in future large-scale fusion experiments such as ITER. Stability and delivered current density depend highly on the cesium conditions during plasma-on and plasma-off phases of the ion source. The Monte Carlo code CSFLOW3D was used to study the transport of neutral and ionic cesium in both phases. Homogeneous and intense flows were obtained from two cesium sources in the expansion region of the ion source and from a dispenser array, which is located 10 cm in front of the converter surface.

  5. Evolution of Instrumentation for the Study of Gas-Phase Ion/Ion Chemistry via Mass Spectrometry

    PubMed Central

    Xia, Yu; McLuckey, Scott A.

    2008-01-01

    The scope of gas phase ion/ion chemistry accessible to mass spectrometry is largely defined by the available tools. Due to the development of novel instrumentation, a wide range of reaction phenomenologies have been noted, many of which have been studied extensively and exploited for analytical applications. This perspective presents the development of mass spectrometry-based instrumentation for the study of the gas phase ion/ion chemistry in which at least one of the reactants is multiply-charged. The instrument evolution is presented within the context of three essential elements required for any ion/ion reaction study: the ionization source(s), the reaction vessel or environment, and the mass analyzer. Ionization source arrangements have included source combinations that allow for reactions between multiply charged ions of one polarity and singly charged ions of opposite polarity, arrangements that enable the study of reactions of multiply charged ions of opposite polarity, and most recently, arrangements that allow for ion formation from more than two ion sources. Gas phase ion/ion reaction studies have been performed at near atmospheric pressure in flow reactor designs and within electrodynamic ion traps operated in the mTorr range. With ion trap as a reaction vessel, ionization and reaction processes can be independently optimized and ion/ion reactions can be implemented within the context of MSn experiments. Spatial separation of the reaction vessel from the mass analyzer allows for the use of any form of mass analysis in conjunction with ion/ion reactions. Time-of-flight mass analysis, for example, has provided significant improvements in mass analysis figures of merit relative to mass filters and ion traps. PMID:18083527

  6. Recent operation of the FNAL magnetron H- ion source

    NASA Astrophysics Data System (ADS)

    Karns, P. R.; Bollinger, D. S.; Sosa, A.

    2017-08-01

    This paper will detail changes in the operational paradigm of the Fermi National Accelerator Laboratory (FNAL) magnetron H- ion source due to upgrades in the accelerator system. Prior to November of 2012 the H- ions for High Energy Physics (HEP) experiments were extracted at ˜18 keV vertically downward into a 90 degree bending magnet and accelerated through a Cockcroft-Walton accelerating column to 750 keV. Following the upgrade in the fall of 2012 the H- ions are now directly extracted from a magnetron at 35 keV and accelerated to 750 keV by a Radio Frequency Quadrupole (RFQ). This change in extraction energy as well as the orientation of the ion source required not only a redesign of the ion source, but an updated understanding of its operation at these new values. Discussed in detail are the changes to the ion source timing, arc discharge current, hydrogen gas pressure, and cesium delivery system that were needed to maintain consistent operation at >99% uptime for HEP, with an increased ion source lifetime of over 9 months.

  7. Development and characterization of a high-reliability, extended-lifetime H- ion source

    NASA Astrophysics Data System (ADS)

    Becerra, Gabriel; Barrows, Preston; Sherman, Joseph

    2015-11-01

    Phoenix Nuclear Labs (PNL) has designed and constructed a long-lifetime, negative hydrogen (H-) ion source, in partnership with Fermilab for an ion beam injector servicing future Intensity Frontier particle accelerators. The specifications for the low-energy beam transport (LEBT) section are 5-10 mA of continuous H- ion current at 30 keV with <0.2 π-mm-mrad emittance. Existing ion sources at Fermilab rely on plasma-facing electrodes, limiting their lifetime to a few hundred hours, while requiring relatively high gas loads on downstream components. PNL's design features an electron cyclotron resonance (ECR) microwave plasma driver which has been extensively developed in positive ion source systems, having demonstrated 1000+ hours of operation and >99% continuous uptime at PNL. Positive ions and hyperthermal neutrals drift toward a low-work-function surface, where a fraction is converted into H- hydrogen ions, which are subsequently extracted into a low-energy beam using electrostatic lenses. A magnetic filter preferentially removes high-energy electrons emitted by the source plasma, in order to mitigate H- ion destruction via electron-impact detachment. The design of the source subsystems and preliminary diagnostic results will be presented.

  8. Design of a compact all-permanent magnet ECR ion source injector for ReA at the MSU NSCL

    NASA Astrophysics Data System (ADS)

    Pham, Alfonse N.; Leitner, Daniela; Glennon, Patrick; Ottarson, Jack; Lawton, Don; Portillo, Mauricio; Machicoane, Guillaume; Wenstrom, John; Lajoie, Andrew

    2016-06-01

    The design of a compact all-permanent magnet electron cyclotron resonance (ECR) ion source injector for the ReAccelerator Facility (ReA) at the Michigan State University (MSU) National Superconducting Cyclotron Laboratory (NSCL) is currently being carried out. The ECR ion source injector will complement the electron beam ion trap (EBIT) charge breeder as an off-line stable ion beam injector for the ReA linac. The objective of the ECR ion source injector is to provide continuous-wave beams of heavy ions from hydrogen to masses up to 136Xe within the ReA charge-to-mass ratio (Q / A) operational range from 0.2 to 0.5. The ECR ion source will be mounted on a high-voltage platform that can be adjusted to obtain the required 12 keV/u injection energy into a room temperature radio-frequency quadrupole (RFQ) for further acceleration. The beam line consists of a 30 kV tetrode extraction system, mass analyzing section, and optical matching section for injection into the existing ReA low energy beam transport (LEBT) line. The design of the ECR ion source and the associated beam line are discussed.

  9. Interlaboratory study of the ion source memory effect in 36Cl accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pavetich, Stefan; Akhmadaliev, Shavkat; Arnold, Maurice; Aumaître, Georges; Bourlès, Didier; Buchriegler, Josef; Golser, Robin; Keddadouche, Karim; Martschini, Martin; Merchel, Silke; Rugel, Georg; Steier, Peter

    2014-06-01

    Understanding and minimization of contaminations in the ion source due to cross-contamination and long-term memory effect is one of the key issues for accurate accelerator mass spectrometry (AMS) measurements of volatile elements. The focus of this work is on the investigation of the long-term memory effect for the volatile element chlorine, and the minimization of this effect in the ion source of the Dresden accelerator mass spectrometry facility (DREAMS). For this purpose, one of the two original HVE ion sources at the DREAMS facility was modified, allowing the use of larger sample holders having individual target apertures. Additionally, a more open geometry was used to improve the vacuum level. To evaluate this improvement in comparison to other up-to-date ion sources, an interlaboratory comparison had been initiated. The long-term memory effect of the four Cs sputter ion sources at DREAMS (two sources: original and modified), ASTER (Accélérateur pour les Sciences de la Terre, Environnement, Risques) and VERA (Vienna Environmental Research Accelerator) had been investigated by measuring samples of natural 35Cl/37Cl-ratio and samples highly-enriched in 35Cl (35Cl/37Cl ∼ 999). Besides investigating and comparing the individual levels of long-term memory, recovery time constants could be calculated. The tests show that all four sources suffer from long-term memory, but the modified DREAMS ion source showed the lowest level of contamination. The recovery times of the four ion sources were widely spread between 61 and 1390 s, where the modified DREAMS ion source with values between 156 and 262 s showed the fastest recovery in 80% of the measurements.

  10. Incorporating sequence information into the scoring function: a hidden Markov model for improved peptide identification.

    PubMed

    Khatun, Jainab; Hamlett, Eric; Giddings, Morgan C

    2008-03-01

    The identification of peptides by tandem mass spectrometry (MS/MS) is a central method of proteomics research, but due to the complexity of MS/MS data and the large databases searched, the accuracy of peptide identification algorithms remains limited. To improve the accuracy of identification we applied a machine-learning approach using a hidden Markov model (HMM) to capture the complex and often subtle links between a peptide sequence and its MS/MS spectrum. Our model, HMM_Score, represents ion types as HMM states and calculates the maximum joint probability for a peptide/spectrum pair using emission probabilities from three factors: the amino acids adjacent to each fragmentation site, the mass dependence of ion types and the intensity dependence of ion types. The Viterbi algorithm is used to calculate the most probable assignment between ion types in a spectrum and a peptide sequence, then a correction factor is added to account for the propensity of the model to favor longer peptides. An expectation value is calculated based on the model score to assess the significance of each peptide/spectrum match. We trained and tested HMM_Score on three data sets generated by two different mass spectrometer types. For a reference data set recently reported in the literature and validated using seven identification algorithms, HMM_Score produced 43% more positive identification results at a 1% false positive rate than the best of two other commonly used algorithms, Mascot and X!Tandem. HMM_Score is a highly accurate platform for peptide identification that works well for a variety of mass spectrometer and biological sample types. The program is freely available on ProteomeCommons via an OpenSource license. See http://bioinfo.unc.edu/downloads/ for the download link.

  11. High sensitivity pulse-counting mass spectrometer system for noble gas analysis

    NASA Technical Reports Server (NTRS)

    Hohenberg, C. M.

    1980-01-01

    A pulse-counting mass spectrometer is described which is comprised of a new ion source of cylindrical geometry, with exceptional optical properties (the Baur source), a dual focal plane externally adjustable collector slits, and a 17-stage Allen-type electron multiplier, all housed in a metal 21 cm radius, 90 deg magnetic sector flight tube. Mass discrimination of the instrument is less than 1 per mil per mass unit; the optical transmission is more than 90%; the source sensitivity (Faraday collection) is 4 ma/torr at 250 micron emission; and the abundance sensitivity is 30,000.

  12. Large area multiarc ion beam source {open_quote}MAIS{close_quote}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engelko, V.; Giese, H.; Schalk, S.

    1996-12-31

    A pulsed large area intense ion beam source is described, in which the ion emitting plasma is built up by an array of individual discharge units, homogeneously distributed over the surface of a common discharge electrode. A particularly advantageous feature of the source is that for plasma generation and subsequent acceleration of the ions only one common energy supply is necessary. This allows to simplify the source design and provides inherent synchronization of plasma production and ion extraction. The homogeneity of the plasma density was found to be superior to plasma sources using plasma expanders. Originally conceived for the productionmore » of proton beams, the source can easily be modified for the production of beams composed of carbon and metal ions or mixed ion species. Results of investigations of the source performance for the production of a proton beam are presented. The maximum beam current achieved to date is of the order of 100 A, with a particle kinetic energy of 15 - 30 keV and a pulse length in the range of 10 {mu}s.« less

  13. Progress of superconducting electron cyclotron resonance ion sources at Institute of Modern Physics (IMP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, L., E-mail: sunlt@impcas.ac.cn; Feng, Y. C.; Zhang, W. H.

    2014-02-15

    Superconducting ECR ion sources can produce intense highly charged ion beams for the application in heavy ion accelerators. Superconducting Electron Resonance ion source with Advanced Design (SECRAL) is one of the few fully superconducting ECR ion sources that has been successfully built and put into routine operation for years. With enormous efforts and R and D work, promising results have been achieved with the ion source. Heated by the microwave power from a 7 kW/24 GHz gyrotron microwave generator, very intense highly charged gaseous ion beams have been produced, such as 455 eμA Xe{sup 27+}, 236 eμA Xe{sup 30+}, andmore » 64 eμA Xe{sup 35+}. Since heavy metallic ion beams are being more and more attractive and important for many accelerator projects globally, intensive studies have been made to produce highly charged heavy metal ion beams, such as those from bismuth and uranium. Recently, 420 eμA Bi{sup 30+} and 202 eμA U{sup 33+} have been produced with SECRAL source. This paper will present the latest results with SECRAL, and the operation status will be discussed as well. An introduction of recently started SECRAL II project will also be given in the presentation.« less

  14. Progress of superconducting electron cyclotron resonance ion sources at Institute of Modern Physics (IMP).

    PubMed

    Sun, L; Lu, W; Feng, Y C; Zhang, W H; Zhang, X Z; Cao, Y; Zhao, Y Y; Wu, W; Yang, T J; Zhao, B; Zhao, H W; Ma, L Z; Xia, J W; Xie, D

    2014-02-01

    Superconducting ECR ion sources can produce intense highly charged ion beams for the application in heavy ion accelerators. Superconducting Electron Resonance ion source with Advanced Design (SECRAL) is one of the few fully superconducting ECR ion sources that has been successfully built and put into routine operation for years. With enormous efforts and R&D work, promising results have been achieved with the ion source. Heated by the microwave power from a 7 kW/24 GHz gyrotron microwave generator, very intense highly charged gaseous ion beams have been produced, such as 455 eμA Xe(27+), 236 eμA Xe(30+), and 64 eμA Xe(35+). Since heavy metallic ion beams are being more and more attractive and important for many accelerator projects globally, intensive studies have been made to produce highly charged heavy metal ion beams, such as those from bismuth and uranium. Recently, 420 eμA Bi(30+) and 202 eμA U(33+) have been produced with SECRAL source. This paper will present the latest results with SECRAL, and the operation status will be discussed as well. An introduction of recently started SECRAL II project will also be given in the presentation.

  15. Analysis of solar X-ray data

    NASA Technical Reports Server (NTRS)

    Teske, R. G.

    1972-01-01

    Type III solar bursts occurring in the absence of solar flares were observed to be accompanied by weak X-radiation. The energy scale of an OSO-3 soft X-ray ion chamber was assessed using realistic theoretical X-ray spectra. Relationships between soft solar X-rays and solar activity were investigated. These included optical studies, the role of the Type III acceleration mechanism in establishing the soft X-ray source volume, H alpha flare intensity variations, and gross magnetic field structure.

  16. Development of C⁶⁺ laser ion source and RFQ linac for carbon ion radiotherapy.

    PubMed

    Sako, T; Yamaguchi, A; Sato, K; Goto, A; Iwai, T; Nayuki, T; Nemoto, K; Kayama, T; Takeuchi, T

    2016-02-01

    A prototype C(6+) injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  17. Development of C6+ laser ion source and RFQ linac for carbon ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Sako, T.; Yamaguchi, A.; Sato, K.; Goto, A.; Iwai, T.; Nayuki, T.; Nemoto, K.; Kayama, T.; Takeuchi, T.

    2016-02-01

    A prototype C6+ injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  18. Unexpected Link between Metal Ion Deficiency and Autophagy in Aspergillus fumigatus▿ †

    PubMed Central

    Richie, Daryl L.; Fuller, Kevin K.; Fortwendel, Jarrod; Miley, Michael D.; McCarthy, Jason W.; Feldmesser, Marta; Rhodes, Judith C.; Askew, David S.

    2007-01-01

    Autophagy is the major cellular pathway for bulk degradation of cytosolic material and is required to maintain viability under starvation conditions. To determine the contribution of autophagy to starvation stress responses in the filamentous fungus Aspergillus fumigatus, we disrupted the A. fumigatus atg1 gene, encoding a serine/threonine kinase required for autophagy. The ΔAfatg1 mutant showed abnormal conidiophore development and reduced conidiation, but the defect could be bypassed by increasing the nitrogen content of the medium. When transferred to starvation medium, wild-type hyphae were able to undergo a limited amount of growth, resulting in radial expansion of the colony. In contrast, the ΔAfatg1 mutant was unable to grow under these conditions. However, supplementation of the medium with metal ions rescued the ability of the ΔAfatg1 mutant to grow in the absence of a carbon or nitrogen source. Depleting the medium of cations by using EDTA was sufficient to induce autophagy in wild-type A. fumigatus, even in the presence of abundant carbon and nitrogen, and the ΔAfatg1 mutant was severely growth impaired under these conditions. These findings establish a role for autophagy in the recycling of internal nitrogen sources to support conidiophore development and suggest that autophagy also contributes to the recycling of essential metal ions to sustain hyphal growth when exogenous nutrients are scarce. PMID:17921348

  19. Chemical sensors for space applications

    NASA Technical Reports Server (NTRS)

    Bonting, Sjoerd L.

    1992-01-01

    The payload of the Space Station Freedom will include sensors for frequent monitoring of the water recycling process and for measuring the many biochemical parameters related to onboard experiments. This paper describes the sensor technologies and the types of transducers and selectors considered for these sensors. Particular attention is given to such aspects of monitoring of the water recycling process as the types of water use, the sources of water and their hazards, the sensor systems for monitoring, microbial monitoring, and monitoring toxic metals and organics. An approach for monitoring water recycling is suggested, which includes microbial testing with a potentiometric device (which should be in first line of tests), the use of an ion-selective electrode for inorganic ion determinations, and the use of optic fiber techniques for the determination of total organic carbon.

  20. Numerical Analysis of Plasma Transport in Tandem Volume Magnetic Multicusp Ion Sources

    DTIC Science & Technology

    1992-03-01

    the results of the model are qualitatively correct. Boltzmann Equation, Ion Sources, Plasma Simulation, Electron Temperature, Plasma Density, Ion Temperature, Hydrogen Ions, Magnetic Filters, Hydrogen Plasma Chemistry .

  1. “Trunk-like” heavy ion structures observed by the Van Allen Probes

    DOE PAGES

    Zhang, J. -C.; Kistler, L. M.; Spence, H. E.; ...

    2015-10-27

    Dynamic ion spectral features in the inner magnetosphere are the observational signatures of ion acceleration, transport, and loss in the global magnetosphere. Here, we report “trunk-like” ion structures observed by the Van Allen Probes on 2 November 2012. This new type of ion structure looks like an elephant's trunk on an energy-time spectrogram, with the energy of the peak flux decreasing Earthward. The trunks are present in He + and O + ions but not in H +. During the event, ion energies in the He+ trunk, located at L=3.6–2.6, magnetic local time (MLT)=9.1–10.5, and magnetic latitude (MLAT) =-2.4–0.09°, varymore » monotonically from 3.5 to 0.04 keV. Values at the two end points of the O + trunk are energy=4.5–0.7keV, L=3.6–2.5, MLT=9.1–10.7, and MLAT=-2.4–0.4°. Our results from backward ion drift path tracings indicate that the trunks are likely due to (1) a gap in the nightside ion source or (2) greatly enhanced impulsive electric fields associated with elevated geomagnetic activity. Different ion loss lifetimes cause the trunks to differ among ion species.« less

  2. Computer Modeling of High-Intensity Cs-Sputter Ion Sources

    NASA Astrophysics Data System (ADS)

    Brown, T. A.; Roberts, M. L.; Southon, J. R.

    The grid-point mesh program NEDLab has been used to computer model the interior of the high-intensity Cs-sputter source used in routine operations at the Center for Accelerator Mass Spectrometry (CAMS), with the goal of improving negative ion output. NEDLab has several features that are important to realistic modeling of such sources. First, space-charge effects are incorporated in the calculations through an automated ion-trajectories/Poissonelectric-fields successive-iteration process. Second, space charge distributions can be averaged over successive iterations to suppress model instabilities. Third, space charge constraints on ion emission from surfaces can be incorporate under Child's Law based algorithms. Fourth, the energy of ions emitted from a surface can be randomly chosen from within a thermal energy distribution. And finally, ions can be emitted from a surface at randomized angles The results of our modeling effort indicate that significant modification of the interior geometry of the source will double Cs+ ion production from our spherical ionizer and produce a significant increase in negative ion output from the source.

  3. Performance test of electron cyclotron resonance ion sources for the Hyogo Ion Beam Medical Center

    NASA Astrophysics Data System (ADS)

    Sawada, K.; Sawada, J.; Sakata, T.; Uno, K.; Okanishi, K.; Harada, H.; Itano, A.; Higashi, A.; Akagi, T.; Yamada, S.; Noda, K.; Torikoshi, M.; Kitagawa, A.

    2000-02-01

    Two electron cyclotron resonance (ECR) ion sources were manufactured for the accelerator facility at the Hyogo Ion Beam Medical Center. H2+, He2+, and C4+ were chosen as the accelerating ions because they have the highest charge to mass ratio among ion states which satisfy the required intensity and quality. The sources have the same structure as the 10 GHz ECR source at the Heavy Ion Medical Accelerator in Chiba except for a few improvements in the magnetic structure. Their performance was investigated at the Sumitomo Heavy Industries factory before shipment. The maximum intensity was 1500 μA for H2+, 1320 μA for He2+, and 580 μA for C4+ at the end of the ion source beam transport line. These are several times higher than required. Sufficient performance was also observed in the flatness and long-term stability of the pulsed beams. These test results satisfy the requirements for medical use.

  4. High-voltage terminal test of a test stand for a 1-MV electrostatic accelerator

    NASA Astrophysics Data System (ADS)

    Park, Sae-Hoon; Kim, Yu-Seok

    2015-10-01

    The Korea Multipurpose Accelerator Complex has been developing a 300-kV test stand for a 1-MV electrostatic accelerator ion source. The ion source and accelerating tube will be installed in a high-pressure vessel. The ion source in the high-pressure vessel is required to have a high reliability. The test stand has been proposed and developed to confirm the stable operating conditions of the ion source. The ion source will be tested at the test stand to verify the long-time operating conditions. The test stand comprises a 300-kV high-voltage terminal, a battery for the ion-source power, a 60-Hz inverter, 200-MHz radio-frequency power supply, a 5-kV extraction power supply, a 300-kV accelerating tube, and a vacuum system. The results of the 300-kV high-voltage terminal tests are presented in this paper.

  5. Electron cyclotron resonance ion source for high currents of mono- and multicharged ion and general purpose unlimited lifetime application on implantation devices

    NASA Astrophysics Data System (ADS)

    Bieth, C.; Bouly, J. L.; Curdy, J. C.; Kantas, S.; Sortais, P.; Sole, P.; Vieux-Rochaz, J. L.

    2000-02-01

    The electron cyclotron resonance (ECR) ion sources were originally developed for high energy physic applications. They are used as injectors on linear accelerators and cyclotrons to further increase the particle energy via high charge state ions. This ECR technology is well suited for sources placed on a high voltage platform where ac power available is limited by insulated transformers. The PANTECHNIK family of ion source with its wide range of ion beam (various charge states with various beam currents) offers new possibilities and perspectives in the field of ion implantation. In addition to all these possibilities, the PANTECHNIK ion sources have many other advantages like: a very long lifetime without maintenance expense, good stability, efficiency of ionization close to 100% (this improves the lifetime of the pumping system and other equipment), the possibility of producing ion beams with different energies, and a very good reproducibility. The main characteristics of sources like Nanogan or SuperNanogan will be recalled. We will especially present the results obtained with the new Microgan 10 GHz source that can be optimized for the production of high currents of monocharged ion, including reactive gas like BF3 (2 mA e of B+) or medium currents of low charge state like 0.5 mA e of Ar4+. The latest results obtained with Microgan 10 GHz show that it is possible to drive the source up to 30 mA e of total current, with an emittance of 150 π mm mrad at 40 kV and also to maintain the production of multicharged ions like Ar8+.

  6. A Penning sputter ion source with very low energy spread

    NASA Astrophysics Data System (ADS)

    Nouri, Z.; Li, R.; Holt, R. A.; Rosner, S. D.

    2010-03-01

    We have developed a version of the Frankfurt Penning ion source that produces ion beams with very low energy spreads of ˜3 eV, while operating in a new discharge mode characterized by very high pressure, low voltage, and high current. The extracted ions also comprise substantial metastable and doubly charged species. Detailed studies of the operating parameters of the source showed that careful adjustment of the magnetic field and gas pressure is critical to achieving optimum performance. We used a laser-fluorescence method of energy analysis to characterize the properties of the extracted ion beam with a resolving power of 1×10 4, and to measure the absolute ion beam energy to an accuracy of 4 eV in order to provide some insight into the distribution of plasma potential within the ion source. This characterization method is widely applicable to accelerator beams, though not universal. The low energy spread, coupled with the ability to produce intense ion beams from almost any gas or conducting solid, make this source very useful for high-resolution spectroscopic measurements on fast-ion beams.

  7. Selective ion source

    DOEpatents

    Leung, K.N.

    1996-05-14

    A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P{sup +} from PH{sub 3}. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P{sup +}, As{sup +}, and B{sup +} without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices. 6 figs.

  8. Selective ion source

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P.sup.+ from PH.sub.3. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P.sup.+, AS.sup.+, and B.sup.+ without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices.

  9. A combined thermal dissociation and electron impact ionization source for radioactive ion beam generation{sup a}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alton, G.D.; Williams, C.

    1996-04-01

    The probability for simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecular feed materials with conventional, hot-cathode, electron-impact ion sources is low and consequently, the ion beams from these sources often appear as mixtures of several molecular sideband beams. This fragmentation process leads to dilution of the intensity of the species of interest for radioactive ion beam (RIB) applications where beam intensity is at a premium. We have conceived an ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high ionization efficiency characteristics of an electron impact ionization source that will, inmore » principle, overcome this handicap. The source concept will be evaluated as a potential candidate for use for RIB generation at the Holifield Radioactive Ion Beam Facility, now under construction at the Oak Ridge National Laboratory. The design features and principles of operation of the source are described in this article. {copyright} {ital 1996 American Institute of Physics.}« less

  10. A combined thermal dissociation and electron impact ionization source for radioactive ion beam generation (abstract){sup a}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alton, G.D.; Williams, C.

    1996-03-01

    The probability for simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecular feed materials with conventional, hot-cathode, electron-impact ion sources is low and consequently, the ion beams from these sources often appear as mixtures of several molecular sideband beams. This fragmentation process leads to dilution of the intensity of the species of interest for radioactive ion beam (RIB) applications where beam intensity is at a premium. We have conceived an ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high ionization efficiency characteristics of an electron impact ionization source that will, inmore » principle, overcome this handicap. The source concept will be evaluated as a potential candidate for use for RIB generation at the Holifield Radioactive Ion Beam Facility, now under construction at the Oak Ridge National Laboratory. The design features and principles of operation of the source are described in this article. {copyright} {ital 1996 American Institute of Physics.}« less

  11. RF H-minus ion source development in China spallation neutron source

    NASA Astrophysics Data System (ADS)

    Chen, W.; Ouyang, H.; Xiao, Y.; Liu, S.; Lü, Y.; Cao, X.; Huang, T.; Xue, K.

    2017-08-01

    China Spallation Neutron Source (CSNS) phase-I project currently uses a Penning surface plasma H- ion source, which has a life time of several weeks with occasional sparks between high voltage electrodes. To extend the life time of the ion source and prepare for the CSNS phase-II, we are trying to develop a RF negative hydrogen ion source with external antenna. The configuration of the source is similar to the DESY external antenna ion source and SNS ion source. However several changes are made to improve the stability and the life time. Firstly, Si3N4 ceramic with high thermal shock resistance, and high thermal conductivity is used for plasma chamber, which can endure an average power of 2000W. Secondly, the water-cooled antenna is brazed on the chamber to improve the energy efficiency. Thirdly, cesium is injected directly to the plasma chamber if necessary, to simplify the design of the converter and the extraction. Area of stainless steel exposed to plasma is minimized to reduce the sputtering and degassing. Instead Mo, Ta, and Pt coated materials are used to face the plasma, which makes the self-cleaning of the source possible.

  12. A high repetition deterministic single ion source

    NASA Astrophysics Data System (ADS)

    Sahin, C.; Geppert, P.; Müllers, A.; Ott, H.

    2017-12-01

    We report on a deterministic single ion source with high repetition rate and high fidelity. The source employs a magneto-optical trap, where ultracold rubidium atoms are photoionized. The electrons herald the creation of a corresponding ion, whose timing information is used to manipulate its trajectory in flight. We demonstrate an ion rate of up to 4× {10}4 {{{s}}}-1 and achieve a fidelity for single ion operation of 98%. The technique can be used for all atomic species, which can be laser-cooled, and opens up new applications in ion microscopy, ion implantation and surface spectroscopy.

  13. Delineation of brine contamination in and near the East Poplar oil field, Fort Peck Indian Reservation, northeastern Montana, 2004-09

    USGS Publications Warehouse

    Thamke, Joanna N.; Smith, Bruce D.

    2014-01-01

    The extent of brine contamination in the shallow aquifers in and near the East Poplar oil field is as much as 17.9 square miles and appears to be present throughout the entire saturated zone in contaminated areas. The brine contamination affects 15–37 billion gallons of groundwater. Brine contamination in the shallow aquifers east of the Poplar River generally moves to the southwest toward the river and then southward in the Poplar River valley. The likely source of brine contamination in the shallow aquifers is brine that is produced with crude oil in the East Poplar oil field study area. Brine contamination has not only affected the water quality from privately owned wells in and near the East Poplar oil field, but also the city of Poplar’s public water-supply wells. Three water-quality types characterize water in the shallow aquifers; a fourth water-quality type in the study area characterizes the brine. Type 1 is uncontaminated water that is suitable for most domestic purposes and typically contains sodium bicarbonate and sodium/magnesium sulfate as the dominant ions. Type 2 is moderately contaminated water that is suitable for some domestic purposes, but not used for drinking water, and typically contains sodium and chloride as the dominant ions. Type 3 is considerably contaminated water that is unsuitable for any domestic purpose and always contains sodium and chloride as the dominant ions. Type 3 quality of water in the shallow aquifers is similar to Type 4, which is the brine that is produced with crude oil. Electromagnetic apparent conductivity data were collected in the 106 square-mile area and used to determine extent of brine contamination. These data were collected and interpreted in conjunction with water-quality data collected through 2009 to delineate brine plumes in the shallow aquifers. Monitoring wells subsequently were drilled in some areas without existing water wells to confirm most of the delineated brine plumes; however, several possible plumes do not contain either existing water wells or monitoring wells. Analysis of groundwater samples from wells confirms the presence of 12.1 square miles of contamination, as much as 1.7 square miles of which is considerably contaminated (Type 3). Electromagnetic apparent conductivity data in areas with no wells delineate an additional 5.8 square miles of possible contamination, 2.1 square miles of which might be considerably contaminated (Type 3). Storage-tank facilities, oil wells, brine-injection wells, pipelines, and pits are likely sources of brine in the study area. It is not possible to identify discrete oil-related features as likely sources of brine plumes because several features commonly are co-located. During the latter half of the twentieth century, many brine plumes migrated beyond the immediate source area and likely mix together in modern and ancestral Poplar River valley subareas.

  14. Hollow cathodes as electron emitting plasma contactors Theory and computer modeling

    NASA Technical Reports Server (NTRS)

    Davis, V. A.; Katz, I.; Mandell, M. J.; Parks, D. E.

    1987-01-01

    Several researchers have suggested using hollow cathodes as plasma contactors for electrodynamic tethers, particularly to prevent the Shuttle Orbiter from charging to large negative potentials. Previous studies have shown that fluid models with anomalous scattering can describe the electron transport in hollow cathode generated plasmas. An improved theory of the hollow cathode plasmas is developed and computational results using the theory are compared with laboratory experiments. Numerical predictions for a hollow cathode plasma source of the type considered for use on the Shuttle are presented, as are three-dimensional NASCAP/LEO calculations of the emitted ion trajectories and the resulting potentials in the vicinity of the Orbiter. The computer calculations show that the hollow cathode plasma source makes vastly superior contact with the ionospheric plasma compared with either an electron gun or passive ion collection by the Orbiter.

  15. A high brightness source for nano-probe secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Smith, N. S.; Tesch, P. P.; Martin, N. P.; Kinion, D. E.

    2008-12-01

    The two most prevalent ion source technologies in the field of surface analysis and surface machining are the Duoplasmatron and the liquid metal ion source (LMIS). There have been many efforts in this area of research to develop an alternative source [ S.K. Guharay, J. Orloff, M. Wada, IEEE Trans. Plasma Sci. 33 (6) (2005) 1911; N.S. Smith, W.P. Skoczylas, S.M. Kellogg, D.E. Kinion, P.P. Tesch, O. Sutherland, A. Aanesland, R.W. Boswell, J. Vac. Sci. Technol. B 24 (6) (2006) 2902-2906] with the brightness of a LMIS and yet the ability to produce secondary ion yield enhancing species such as oxygen. However, to date a viable alternative has not been realized. The high brightness and small virtual source size of the LMIS are advantageous for forming high resolution probes but a significant disadvantage when beam currents in excess of 100 nA are required, due to the effects of spherical aberration from the optical column. At these higher currents a source with a high angular intensity is optimal and in fact the relatively moderate brightness of today's plasma ion sources prevail in this operating regime. Both the LMIS and Duoplasmatron suffer from a large axial energy spread resulting in further limitations when forming focused beams at the chromatic limit where the figure-of-merit is inversely proportional to the square of the energy spread. Also, both of these ion sources operate with a very limited range of ion species. This article reviews some of the latest developments and some future potential in this area of instrument development. Here we present an approach to source development that could lead to oxygen ion beam SIMS imaging with 10 nm resolution, using a 'broad area' RF gas phase ion source.

  16. Improving quantitative gas chromatography-electron ionization mass spectrometry results using a modified ion source: demonstration for a pharmaceutical application.

    PubMed

    D'Autry, Ward; Wolfs, Kris; Hoogmartens, Jos; Adams, Erwin; Van Schepdael, Ann

    2011-07-01

    Gas chromatography-mass spectrometry is a well established analytical technique. However, mass spectrometers with electron ionization sources may suffer from signal drifts, hereby negatively influencing quantitative performance. To demonstrate this phenomenon for a real application, a static headspace-gas chromatography method in combination with electron ionization-quadrupole mass spectrometry was optimized for the determination of residual dichloromethane in coronary stent coatings. Validating the method, the quantitative performance of an original stainless steel ion source was compared to that of a modified ion source. Ion source modification included the application of a gold coating on the repeller and exit plate. Several validation aspects such as limit of detection, limit of quantification, linearity and precision were evaluated using both ion sources. It was found that, as expected, the stainless steel ion source suffered from signal drift. As a consequence, non-linearity and high RSD values for repeated analyses were obtained. An additional experiment was performed to check whether an internal standard compound would lead to better results. It was found that the signal drift patterns of the analyte and internal standard were different, consequently leading to high RSD values for the response factor. With the modified ion source however, a more stable signal was observed resulting in acceptable linearity and precision. Moreover, it was also found that sensitivity improved compared to the stainless steel ion source. Finally, the optimized method with the modified ion source was applied to determine residual dichloromethane in the coating of coronary stents. The solvent was detected but found to be below the limit of quantification. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Quadrupole ion traps and trap arrays: geometry, material, scale, performance.

    PubMed

    Ouyang, Z; Gao, L; Fico, M; Chappell, W J; Noll, R J; Cooks, R G

    2007-01-01

    Quadrupole ion traps are reviewed, emphasizing recent developments, especially the investigation of new geometries, guided by multiple particle simulations such as the ITSIM program. These geometries include linear ion traps (LITs) and the simplified rectilinear ion trap (RIT). Various methods of fabrication are described, including the use of rapid prototyping apparatus (RPA), in which 3D objects are generated through point-by-point laser polymerization. Fabrication in silicon using multilayer semi-conductor fabrication techniques has been used to construct arrays of micro-traps. The performance of instruments containing individual traps as well as arrays of traps of various sizes and geometries is reviewed. Two types of array are differentiated. In the first type, trap arrays constitute fully multiplexed mass spectrometers in which multiple samples are examined using multiple sources, analyzers and detectors, to achieve high throughput analysis. In the second, an array of individual traps acts collectively as a composite trap to increase trapping capacity and performance for a single sample. Much progress has been made in building miniaturized mass spectrometers; a specific example is a 10 kg hand-held tandem mass spectrometer based on the RIT mass analyzer. The performance of this instrument in air and water analysis, using membrane sampling, is described.

  18. Operation of Lanzhou all permanent electron cyclotron resonance ion source No. 2 on 320 kV platform with highly charged ions.

    PubMed

    Lu, W; Li, J Y; Kang, L; Liu, H P; Li, H; Li, J D; Sun, L T; Ma, X W

    2014-02-01

    The 320 kV platform for multi-discipline research with highly charged ions is a heavy ion beam acceleration instrument developed by Institute of Modern Physics, which is dedicated to basic scientific researches such as plasma, atom, material physics, and astrophysics, etc. The platform has delivered ion beams of 400 species for 36,000 h. The average operation time is around 5000 h/year. With the beams provided by the platform, lots of outstanding progresses were made in various research fields. The ion source of the platform is an all-permanent magnet electron cyclotron resonance ion source, LAPECR2 (Lanzhou All Permanent ECR ion source No. 2). The maximum axial magnetic fields are 1.28 T at injection and 1.07 T at extraction, and the radial magnetic field is up to 1.21 T at the inner wall of the plasma chamber. The ion source is capable to produce low, medium, and high charge state gaseous and metallic ion beams, such as H(+), (40)Ar(8+), (129)Xe(30+), (209)Bi(33+), etc. This paper will present the latest result of LAPECR2 and the routine operation status for the high voltage platform.

  19. Nb3Sn superconducting magnets for electron cyclotron resonance ion sources.

    PubMed

    Ferracin, P; Caspi, S; Felice, H; Leitner, D; Lyneis, C M; Prestemon, S; Sabbi, G L; Todd, D S

    2010-02-01

    Electron cyclotron resonance (ECR) ion sources are an essential component of heavy-ion accelerators. Over the past few decades advances in magnet technology and an improved understanding of the ECR ion source plasma physics have led to remarkable performance improvements of ECR ion sources. Currently third generation high field superconducting ECR ion sources operating at frequencies around 28 GHz are the state of the art ion injectors and several devices are either under commissioning or under design around the world. At the same time, the demand for increased intensities of highly charged heavy ions continues to grow, which makes the development of even higher performance ECR ion sources a necessity. To extend ECR ion sources to frequencies well above 28 GHz, new magnet technology will be needed in order to operate at higher field and force levels. The superconducting magnet program at LBNL has been developing high field superconducting magnets for particle accelerators based on Nb(3)Sn superconducting technology for several years. At the moment, Nb(3)Sn is the only practical conductor capable of operating at the 15 T field level in the relevant configurations. Recent design studies have been focused on the possibility of using Nb(3)Sn in the next generation of ECR ion sources. In the past, LBNL has worked on the VENUS ECR, a 28 GHz source with solenoids and a sextupole made with NbTi operating at fields of 6-7 T. VENUS has now been operating since 2004. We present in this paper the design of a Nb(3)Sn ECR ion source optimized to operate at an rf frequency of 56 GHz with conductor peak fields of 13-15 T. Because of the brittleness and strain sensitivity of Nb(3)Sn, particular care is required in the design of the magnet support structure, which must be capable of providing support to the coils without overstressing the conductor. In this paper, we present the main features of the support structure, featuring an external aluminum shell pretensioned with water-pressurized bladders, and we analyze the expected coil stresses with a two-dimensional finite element mechanical model.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanesue, Takeshi; Ikeda, Shunsuke

    A laser ion source is a promising candidate as an ion source for heavy ion inertial fusion (HIF), where a pulsed ultra-intense and low-charged heavy ion beam is required. It is a key development for a laser ion source to transport laser-produced plasma with a magnetic field to achieve a high current beam. The effect of a tapered magnetic field on laser produced plasma is demonstrated by comparing the results with a straight solenoid magnet. The magnetic field of interest is a wider aperture on a target side and narrower aperture on an extraction side. Furthermore, based on the experimentallymore » obtained results, the performance of a scaled laser ion source for HIF was estimated.« less

  1. Collision-induced dissociation of aminophospholipids (PE, MMPE, DMPE, PS): an apparently known fragmentation process revisited.

    PubMed

    Pittenauer, Ernst; Rehulka, Pavel; Winkler, Wolfgang; Allmaier, Günter

    2015-07-01

    A new type of low-mass substituted 4-oxazolin product ions of [M + H](+) precursor ions of aminophospholipids (glycerophosphatidylethanolamine, glycerophosphatidyl-N-methylethanolamine, glycerophosphatidyl-N,N-dimethylethanolamine, glycerophosphatidylserine) resulting from high-energy collision-induced dissociation (matrix-assisted laser desorption/ionization time-of-flight/reflectron time-of-flight mass spectrometry) and low-energy collision-induced dissociation (e.g., electrospray ionization quadrupole reflectron time-of-flight mass spectrometry) with accurate mass determination is described; these were previously misidentified as CHO-containing radical cationic product ions. The mechanism for the formation of these ions is proposed to be via rapid loss of water followed by cyclization to an 11-membered-ring transition state for the sn-1 fatty acid substituent and to a ten-membered-ring transition state for the sn-2 fatty acid substituent, and via final loss of monoacylglycerol phosphate, leading to substituted 4-oxazolin product ions. The minimum structural requirement for this interesting skeletal rearrangement fragmentation is an amino group linked to at least one hydrogen atom (i.e., ethanolamine, N-methylethanolamine, serine). Therefore, N,N-dimethylethanolamine derivates do not exhibit this type of fragmentation. The analytical value of these product ions is given by the fact that by post source decay and particularly high-energy collision-induced dissociation achieved via matrix-assisted laser desorption/ionization time-of-flight/reflectron time-of-flight mass spectrometry, the sn-2-related substituted 4-oxazolin product ion is always significantly more abundant than the sn-1-related one, which is quite helpful for detailed structural analysis of complex lipids. All other important product ions found are described in detail (following our previously published glycerophospholipid product ion nomenclature; Pittenauer and Allmaier, Int. J. Mass. Spectrom. 301:90-1012, 2011).

  2. A tandem-based compact dual-energy gamma generator.

    PubMed

    Persaud, A; Kwan, J W; Leitner, M; Leung, K-N; Ludewigt, B; Tanaka, N; Waldron, W; Wilde, S; Antolak, A J; Morse, D H; Raber, T

    2010-02-01

    A dual-energy tandem-type gamma generator has been developed at E. O. Lawrence Berkeley National Laboratory and Sandia National Laboratories. The tandem accelerator geometry allows higher energy nuclear reactions to be reached, thereby allowing more flexible generation of MeV-energy gammas for active interrogation applications. Both positively charged ions and atoms of hydrogen are created from negative ions via a gas stripper. In this paper, we show first results of the working tandem-based gamma generator and that a gas stripper can be utilized in a compact source design. Preliminary results of monoenergetic gamma production are shown.

  3. Online Parameterization of Lumped Thermal Dynamics in Cylindrical Lithium Ion Batteries for Core Temperature Estimation and Health Monitoring

    DTIC Science & Technology

    2012-01-01

    Experiments have been conducted to validate the de- signed parameterization scheme. A 2.3Ah A123TM 26650 LiFePO4 /graphite battery is cycled with a BitrodeTM...management strategy. The type of battery used in the experiment ( LiFePO4 26650) is different from the one in Fig. 3. Schematics of the Flow Chamber [23...of a cylindrical lifepo4 /graphite lithium-ion battery,” Journal of Power Sources, vol. 195, pp. 2961–2968, 2010. [9] C. W. Park and A. K. Jaura

  4. ION ACCELERATION SYSTEM

    DOEpatents

    Luce, J.S.; Martin, J.A.

    1960-02-23

    Well focused, intense ion beams are obtained by providing a multi- apertured source grid in front of an ion source chamber and an accelerating multi- apertured grid closely spaced from and in alignment with the source grid. The longest dimensions of the elongated apertures in the grids are normal to the direction of the magnetic field used with the device. Large ion currents may be withdrawn from the source, since they do not pass through any small focal region between the grids.

  5. Scintillation screen applications in a vacuum arc ion source with composite hydride cathode

    NASA Astrophysics Data System (ADS)

    Wang, X. H.; Tuo, X. G.; Yang, Z.; Peng, Y. F.; Li, J.; Lv, H. Y.; Li, J. H.; Long, J. D.

    2018-05-01

    Vacuum arc ion source with composite hydride cathode was developed to produce intense ion beams which can be applied in particle accelerator injections. Beam profile and beam composition are two fundamental parameters of the beam for the vacuum arc ion source in such specific applications. An aluminum-coated scintillation screen with an ICCD camera readout was used to show the space-time distribution of the beam directly. A simple magnetic analysis assembly with the scintillation screen shows the beam composition information of this kind ion source. Some physical and technical issues are discussed and analyzed in the text.

  6. Point-like neutron source based on high-current electron cyclotron resonance ion source with powerful millimeter wave plasma heating

    NASA Astrophysics Data System (ADS)

    Golubev, S. V.; Skalyga, V. A.; Izotov, I. V.; Sidorov, A. V.

    2018-01-01

    A possibility of an intense deuterium ion beam creation for a compact powerful point-like neutron source is discussed. The fusion takes place due to bombardment of deuterium (or tritium) loaded target by high-current focused deuterium ion beam with energy of 100 keV. The ways of high-current and low emittance ion beam formation from the plasma of quasi-gasdynamic ion source of a new generation based on an electron cyclotron resonance discharge in an open magnetic trap sustained by powerful microwave radiation are investigated.

  7. Universal main magnetic focus ion source for production of highly charged ions

    NASA Astrophysics Data System (ADS)

    Ovsyannikov, V. P.; Nefiodov, A. V.; Levin, A. A.

    2017-10-01

    A novel room-temperature compact ion source has been developed for the efficient production of atomic ions by means of an electron beam with energy Ee and current density je controllable within wide ranges (100 eV ≲Ee ≲ 60 keV, 10 A/cm2 ≲je ≲ 20 kA/cm2). In the first experiments, the X-ray emission of Ir64+ ions has been measured. Based on a combination of two different techniques, the device can operate both as conventional Electron Beam Ion Source/Trap and novel Main Magnetic Focus Ion Source. The tunable electron-optical system allows for realizing laminar and turbulent electron flows in a single experimental setup. The device is intended primarily for fundamental and applied research at standard university laboratories.

  8. Effect of tapered magnetic field on expanding laser-produced plasma for heavy-ion inertial fusion

    DOE PAGES

    Kanesue, Takeshi; Ikeda, Shunsuke

    2016-12-20

    A laser ion source is a promising candidate as an ion source for heavy ion inertial fusion (HIF), where a pulsed ultra-intense and low-charged heavy ion beam is required. It is a key development for a laser ion source to transport laser-produced plasma with a magnetic field to achieve a high current beam. The effect of a tapered magnetic field on laser produced plasma is demonstrated by comparing the results with a straight solenoid magnet. The magnetic field of interest is a wider aperture on a target side and narrower aperture on an extraction side. Furthermore, based on the experimentallymore » obtained results, the performance of a scaled laser ion source for HIF was estimated.« less

  9. Thermal-electric numerical simulation of a surface ion source for the production of radioactive ion beams

    NASA Astrophysics Data System (ADS)

    Manzolaro, Mattia; Meneghetti, Giovanni; Andrighetto, Alberto

    2010-11-01

    In a facility for the production of radioactive ion beams (RIBs), the target system and the ion source are the most critical objects. In the context of the Selective Production of Exotic Species (SPES) project, a proton beam directly impinges a Uranium Carbide production target, generating approximately 10 13 fissions per second. The radioactive isotopes produced by the 238U fissions are then directed to the ion source to acquire a charge state. After that, the radioactive ions obtained are transported electrostatically to the subsequent areas of the facility. In this work the surface ion source at present adopted for the SPES project is studied by means of both analytical and numerical thermal-electric models. The theoretical results are compared with temperature and electric potential difference measurements.

  10. Note: Ion source design for ion trap systems

    NASA Astrophysics Data System (ADS)

    Noriega, J. R.; Quevedo, M.; Gnade, B.; Vasselli, J.

    2013-06-01

    A small plasma (glow discharge) based ion source and circuit are described in this work. The ion source works by producing a high voltage pulsed discharge between two electrodes in a pressure range of 50-100 mTorr. A third mesh electrode is used for ion extraction. The electrodes are small stainless steel screws mounted in a MACOR ionization chamber in a linear arrangement. The electrode arrangement is driven by a circuit, design for low power operation. This design is a proof of concept intended for applications on small cylindrical ion traps.

  11. Brightness measurement of an electron impact gas ion source for proton beam writing applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, N.; Santhana Raman, P.; Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583

    We are developing a high brightness nano-aperture electron impact gas ion source, which can create ion beams from a miniature ionization chamber with relatively small virtual source sizes, typically around 100 nm. A prototype source of this kind was designed and successively micro-fabricated using integrated circuit technology. Experiments to measure source brightness were performed inside a field emission scanning electron microscope. The total output current was measured to be between 200 and 300 pA. The highest estimated reduced brightness was found to be comparable to the injecting focused electron beam reduced brightness. This translates into an ion reduced brightness thatmore » is significantly better than that of conventional radio frequency ion sources, currently used in single-ended MeV accelerators.« less

  12. Brightness measurement of an electron impact gas ion source for proton beam writing applications.

    PubMed

    Liu, N; Xu, X; Pang, R; Raman, P Santhana; Khursheed, A; van Kan, J A

    2016-02-01

    We are developing a high brightness nano-aperture electron impact gas ion source, which can create ion beams from a miniature ionization chamber with relatively small virtual source sizes, typically around 100 nm. A prototype source of this kind was designed and successively micro-fabricated using integrated circuit technology. Experiments to measure source brightness were performed inside a field emission scanning electron microscope. The total output current was measured to be between 200 and 300 pA. The highest estimated reduced brightness was found to be comparable to the injecting focused electron beam reduced brightness. This translates into an ion reduced brightness that is significantly better than that of conventional radio frequency ion sources, currently used in single-ended MeV accelerators.

  13. Molecular carbon nitride ion beams for enhanced corrosion resistance of stainless steel

    NASA Astrophysics Data System (ADS)

    Markwitz, A.; Kennedy, J.

    2017-10-01

    A novel approach is presented for molecular carbon nitride beams to coat stainless surfaces steel using conventional safe feeder gases and electrically conductive sputter targets for surface engineering with ion implantation technology. GNS Science's Penning type ion sources take advantage of the breaking up of ion species in the plasma to assemble novel combinations of ion species. To test this phenomenon for carbon nitride, mixtures of gases and sputter targets were used to probe for CN+ ions for simultaneous implantation into stainless steel. Results from mass analysed ion beams show that CN+ and a variety of other ion species such as CNH+ can be produced successfully. Preliminary measurements show that the corrosion resistance of stainless steel surfaces increased sharply when implanting CN+ at 30 keV compared to reference samples, which is interesting from an application point of view in which improved corrosion resistance, surface engineering and short processing time of stainless steel is required. The results are also interesting for novel research in carbon-based mesoporous materials for energy storage applications and as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost.

  14. Negative hydrogen ion sources for accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moehs, D.P.; /Fermilab; Peters, J.

    2005-08-01

    A variety of H{sup -} ion sources are in use at accelerator laboratories around the world. A list of these ion sources includes surface plasma sources with magnetron, Penning and surface converter geometries as well as magnetic-multipole volume sources with and without cesium. Just as varied is the means of igniting and maintaining magnetically confined plasmas. Hot and cold cathodes, radio frequency, and microwave power are all in use, as well as electron tandem source ignition. The extraction systems of accelerator H{sup -} ion sources are highly specialized utilizing magnetic and electric fields in their low energy beam transport systemsmore » to produce direct current, as well as pulsed and/or chopped beams with a variety of time structures. Within this paper, specific ion sources utilized at accelerator laboratories shall be reviewed along with the physics of surface and volume H{sup -} production in regard to source emittance. Current research trends including aperture modeling, thermal modeling, surface conditioning, and laser diagnostics will also be discussed.« less

  15. Microwave ion source

    DOEpatents

    Leung, Ka-Ngo; Reijonen, Jani; Thomae, Rainer W.

    2005-07-26

    A compact microwave ion source has a permanent magnet dipole field, a microwave launcher, and an extractor parallel to the source axis. The dipole field is in the form of a ring. The microwaves are launched from the middle of the dipole ring using a coaxial waveguide. Electrons are heated using ECR in the magnetic field. The ions are extracted from the side of the source from the middle of the dipole perpendicular to the source axis. The plasma density can be increased by boosting the microwave ion source by the addition of an RF antenna. Higher charge states can be achieved by increasing the microwave frequency. A xenon source with a magnetic pinch can be used to produce intense EUV radiation.

  16. Formation of a high intensity low energy positron string

    NASA Astrophysics Data System (ADS)

    Donets, E. D.; Donets, E. E.; Syresin, E. M.; Itahashi, T.; Dubinov, A. E.

    2004-05-01

    The possibility of a high intensity low energy positron beam production is discussed. The proposed Positron String Trap (PST) is based on the principles and technology of the Electron String Ion Source (ESIS) developed in JINR during the last decade. A linear version of ESIS has been used successfully for the production of intense highly charged ion beams of various elements. Now the Tubular Electron String Ion Source (TESIS) concept is under study and this opens really new promising possibilities in physics and technology. In this report, we discuss the application of the tubular-type trap for the storage of positrons cooled to the cryogenic temperatures of 0.05 meV. It is intended that the positron flux at the energy of 1-5 eV, produced by the external source, is injected into the Tubular Positron Trap which has a similar construction as the TESIS. Then the low energy positrons are captured in the PST Penning trap and are cooled down because of their synchrotron radiation in the strong (5-10 T) applied magnetic field. It is expected that the proposed PST should permit storing and cooling to cryogenic temperature of up to 5×109 positrons. The accumulated cooled positrons can be used further for various physics applications, for example, antihydrogen production.

  17. Beam production of a laser ion source with a rotating hollow cylinder target for low energy positive and negative ions

    NASA Astrophysics Data System (ADS)

    Saquilayan, G. Q.; Wada, M.

    2017-08-01

    A laser ion source that utilizes a hollow cylinder target is being developed for the production of positive and negative ions. Continuous operation of the laser ion source is possible through the design of a rotating target. Ion extraction through a grounded circular aperture was tested for positive and negative ions up to 1 kV. Time-of-flight measurements for the mass separation of ions were made by placing a Faraday cup at locations 0 and 15 mm from the beam extraction axis. Signals corresponding to slow and massive ions were detected with mass at least 380 amu. Investigation on the beam profile suggests a geometrical optimization of the beam forming system is necessary.

  18. Optical properties of ion beam textured metals. [using copper, silicon, aluminum, titanium and stainless steels

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.; Weigand, A. J.; Mirtich, M. J.

    1977-01-01

    Copper, silicon, aluminum, titanium and 316 stainless steel were textured by 1000 eV xenon ions from an 8 cm diameter electron bombardment ion source. Simultaneously sputter-deposited tantalum was used to facilitate the development of the surface microstructure. Scanning electron microscopy of the ion textured surfaces revealed two types of microstructure. Copper, silicon, and aluminum developed a cone structure with an average peak-to-peak distance ranging from 1 micron for silicon to 6 microns for aluminum. Titanium and 316 stainless steel developed a serpentine ridge structure. The average peak-to-peak distance for both of these materials was 0.5 micron. Spectral reflectance was measured using an integrating sphere and a holraum reflectometer. Total reflectance for air mass 0 and 2, solar absorptance and total emittance normalized for a 425 K black body were calculated from the reflectance measurements.

  19. Beam Profile Studies for a One Eighth Betatron Wavelength Final Focusing Cell Following Phase Mixed Transport

    DTIC Science & Technology

    1988-10-26

    concentrated into this off- axis peak is then considered. Estimates of the source brightness ( extraction ion diode source current density divided by the square...radioactive contamination of the accelerator. One possible scheme for avoiding this problem is to use extraction geometry ion diodes to focus the ion beams...annular region. These results will be coupled to two simple models of extraction ion diodes to determihe the ion source brightness requirements. These

  20. Cleaning techniques for intense ion beam sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menge, P.R.; Cuneo, M.E.; Bailey, J.E.

    Generation of high power lithium ion beams on the SABRE (1TW) and PBFA-X (20 TW) accelerators have been limited by the parallel acceleration of contaminant ions. during the beam pulse lithium is replaced by protons and carbon ions. This replacement is accompanied by rapid impedance decay of the diode. The contaminant hydrogen and carbon is believed to originate from impurity molecules on the surface and in the bulk of the lithium ion source and its substrate material. Cleaning techniques designed to remove hydrocarbons from the ion source have been employed with some success in test stand experiments and on SABRE.more » The test stand experiments have shown that a lithium fluoride (LiF) ion source film can accrue dozens of hydrocarbon monolayers on its surface while sitting in vacuum. Application of 13.5 MHz RF discharge cleaning with 90% Ar/10% O{sub 2} can significantly reduce the surface hydrocarbon layers on the LiF film. On SABRE, combinations of RF discharge cleaning, anode heating, layering gold between the source film (LiF) and its substrate, and cryogenic cathode cooling produced an increase by a factor of 1.5--2 in the quantity of high energy lithium in the ion beam. A corresponding decrease in protons and carbon ions was also observed. Cleaning experiments on PBFA-X are underway. New designs of contamination resistant films and Li ion sources are currently being investigated.« less

  1. Improvements for extending the time between maintenance periods for the Heidelberg ion beam therapy center (HIT) ion sources.

    PubMed

    Winkelmann, Tim; Cee, Rainer; Haberer, Thomas; Naas, Bernd; Peters, Andreas; Schreiner, Jochen

    2014-02-01

    The clinical operation at the Heidelberg Ion Beam Therapy Center (HIT) started in November 2009; since then more than 1600 patients have been treated. In a 24/7 operation scheme two 14.5 GHz electron cyclotron resonance ion sources are routinely used to produce protons and carbon ions. The modification of the low energy beam transport line and the integration of a third ion source into the therapy facility will be shown. In the last year we implemented a new extraction system at all three sources to enhance the lifetime of extraction parts and reduce preventive and corrective maintenance. The new four-electrode-design provides electron suppression as well as lower beam emittance. Unwanted beam sputtering effects which typically lead to contamination of the insulator ceramics and subsequent high-voltage break-downs are minimized by the beam guidance of the new extraction system. By this measure the service interval can be increased significantly. As a side effect, the beam emittance can be reduced allowing a less challenging working point for the ion sources without reducing the effective beam performance. This paper gives also an outlook to further enhancements at the HIT ion source testbench.

  2. VUV spectroscopic observations on the SABRE applied-B ion diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filuk, A.B.; Nash, T.J.; Noack, D.D.

    We are using VUV spectroscopy to study the ion source region on the SABRE applied-B extraction ion diode. The VUV diagnostic views the anode-cathode gap perpendicular to the ion acceleration direction, and images a region 0--1 mm from the anode onto the entrance slit of a I m normal-incidence spectrometer. Time resolution is obtained by gating multiple striplines of a CuI- or MgF{sub 2} -coated micro-channel plate intensifier. We report on results with a passive proton/carbon ion source. Lines of carbon and oxygen are observed over 900--1600 {angstrom}. The optical depths of most of the lines are less than ormore » of order 1. Unfolding the Doppler broadening of the ion lines in the source plasma, we calculate the contribution of the source to the accelerated C IV ion micro-divergence as 4 mrad at peak power. Collisional-radiative modeling of oxygen line intensities provides the source plasma average electron density of 7{times}10{sup 16} cm{sup {minus}3} and temperature of 10 eV Measurements are planned with a lithium ion source and with VUV absorption spectroscopy.« less

  3. The selective and efficient laser ion source and trap project LIST for on-line production of exotic nuclides

    NASA Astrophysics Data System (ADS)

    Wendt, Klaus; Gottwald, Tina; Hanstorp, Dag; Mattolat, Christoph; Raeder, Sebastian; Rothe, Sebastian; Schwellnus, Fabio; Havener, Charles; Lassen, Jens; Liu, Yuan

    2010-02-01

    Laser ion sources based on resonant excitation and ionization of atoms are well-established tools for selective and efficient production of radioactive ion beams. A recent trend is the complementary installation of reliable state-of-the-art all solid-state Ti:Sapphire laser systems. To date, 35 elements of the Periodic Table are available at laser ion sources by using these novel laser systems, which complements the overall accessibility to 54 elements including use of traditional dye lasers. Recent progress in the field concerns the identification of suitable optical excitation schemes for Ti:Sapphire laser excitation as well as technical developments of the source in respect to geometry, cavity material as well as by incorporation of an ion guide system in the form of the laser ion source trap LIST.

  4. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited).

    PubMed

    Zhao, H Y; Zhang, J J; Jin, Q Y; Liu, W; Wang, G C; Sun, L T; Zhang, X Z; Zhao, H W

    2016-02-01

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 10(13) W cm(-2) in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.

  5. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, H. Y., E-mail: zhaohy@impcas.ac.cn; Zhang, J. J.; Jin, Q. Y.

    2016-02-15

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production ofmore » highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 10{sup 13} W cm{sup −2} in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.« less

  6. Electron energy recovery system for negative ion sources

    DOEpatents

    Dagenhart, W.K.; Stirling, W.L.

    1979-10-25

    An electron energy recovery system for negative ion sources is provided. The system, employing crossed electric and magnetic fields, separates the electrons from the ions as they are extracted from the ion source plasma generator and before the ions are accelerated to their full energy. With the electric and magnetic fields oriented 90/sup 0/ to each other, the electrons remain at approximately the electrical potential at which they were generated. The electromagnetic forces cause the ions to be accelerated to the full accelerating supply voltage energy while being deflected through an angle of less than 90/sup 0/. The electrons precess out of the accelerating field region into an electron recovery region where they are collected at a small fraction of the full accelerating supply energy. It is possible, by this method, to collect > 90% of the electrons extracted along with the negative ions from a negative ion source beam at < 4% of full energy.

  7. Development of high intensity ion sources for a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy.

    PubMed

    Bergueiro, J; Igarzabal, M; Sandin, J C Suarez; Somacal, H R; Vento, V Thatar; Huck, H; Valda, A A; Repetto, M; Kreiner, A J

    2011-12-01

    Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Preparation and characterization of core-shell structured LiFePO4/C composite using a novel carbon source for lithium-ion battery cathode

    NASA Astrophysics Data System (ADS)

    Huang, Zan; Luo, Peifang; Wang, Daxiang

    2017-03-01

    Core-shell structured LiFePO4/C1 cathode material is synthesized via a rapid microwave irradiation route using ethylene diamine tetraacetic acid (EDTA) as the novel carbon source. XRD results reveal that all the patterns can be indexed as the olivine-type structured LiFePO4 with the space group of Pnma. TEM images show that the obtained carbon is an amorphous layer with a thickness of about 3-4 nm. When the LiFePO4/C1 used as cathode material for lithium-ion battery, it delivers an initial discharge capacity of 163.1 mAh g-1 at 0.1 C which is about 96% of the theoretical capacity. Moreover, it also shows excellent rate performance and good cycle stability due to the enhanced electronic conductivity as proved by the electrochemical impedance spectroscopy (EIS). Thus, this carbon decorated LiFePO4 composite synthesized via the rapid microwave irradiation method is a promising cathode material for high-performance lithium-ion battery.

  9. Comparison of the effects of high energy carbon heavy ion irradiation and Eucommia ulmoides Oliv. on biosynthesis butyric acid efficiency in Clostridium tyrobutyricum.

    PubMed

    Zhou, Xiang; Wang, Shu-Yang; Lu, Xi-Hong; Liang, Jian-Ping

    2014-06-01

    Clostridium tyrobutyricum is well documented as a fermentation strain for the production of butyric acid. In this work, using high-energy carbon heavy ion irradiated C. tyrobutyricum, then butyric acid fermentation using glucose or alkali and acid pretreatments of Eucommia ulmoides Oliv. as a carbon source was carried out. Initially, the modes at pH 5.7-6.5 and 37°C were compared using a model medium containing glucose as a carbon source. When the 72gL(-1) glucose concentration was found to be the highest yield, the maximum butyric acid production from glucose increased significantly, from 24gL(-1) for the wild type strains to 37gL(-1) for the strain irradiated at 126AMeV and a dose of 35Gy and a 10(7)ions/pulse. By feeding 100gL(-1) acid pretreatments of E. ulmoides Oliv. into the fermentations, butyrate yields (5.8gL(-1)) and butyrate/acetate (B/A) ratio (4.32) were achieved. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. HIGH VOLTAGE ION SOURCE

    DOEpatents

    Luce, J.S.

    1960-04-19

    A device is described for providing a source of molecular ions having a large output current and with an accelerated energy of the order of 600 kv. Ions are produced in an ion source which is provided with a water-cooled source grid of metal to effect maximum recombination of atomic ions to molecular ions. A very high accelerating voltage is applied to withdraw and accelerate the molecular ions from the source, and means are provided for dumping the excess electrons at the lowest possible potentials. An accelerating grid is placed adjacent to the source grid and a slotted, grounded accelerating electrode is placed adjacent to the accelerating grid. A potential of about 35 kv is maintained between the source grid and accelerating grid, and a potential of about 600 kv is maintained between the accelerating grid and accelerating electrode. In order to keep at a minimum the large number of oscillating electrons which are created when such high voltages are employed in the vicinity of a strong magnetic field, a plurality of high voltage cascaded shields are employed with a conventional electron dumping system being employed between each shield so as to dump the electrons at the lowest possible potential rather than at 600 kv.

  11. Development of the Long Pulse Negative Ion Source for ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemsworth, R.S.; Svensson, L.; Esch, H.P.L. de

    2005-04-06

    A model of the ion source designed for the neutral beam injectors of the International Thermonuclear Experimental Reactor (ITER), the KAMABOKO III ion source, is being tested on the MANTIS test stand at the DRFC Cadarache in collaboration with JAERI, Japan, who designed and supplied the ion source. The ion source is attached to a 3 grid 30 keV accelerator (also supplied by JAERI) and the accelerated negative ion current is determined from the energy deposited on a calorimeter located 1.6 m from the source.During experiments on MANTIS three adverse effects of long pulse operation were found: The negative ionmore » current to the calorimeter is {approx_equal}50% of that obtained from short pulse operation Increasing the plasma grid (PG) temperature results in {<=}40% enhancement in negative ion yield, substantially below that reported for short pulse operation, {>=}100%. The caesium 'consumption' is up to 1500 times that expected.Results presented here indicate that each of these is, at least partially, explained by thermal effects. Additionally presented are the results of a detailed characterisation of the source, which enable the most efficient mode of operation to be identified.« less

  12. Development of a Compact Neutron Generator to be Used For Associated Particle Imaging Utilizing a RF-Driven Ion Source

    NASA Astrophysics Data System (ADS)

    Wu, Ying

    2009-11-01

    The development of a prototype compact neutron generator for the application of associated particle imaging (API) to be used for explosive and contraband detection will be presented. The API technique makes use of the 3.5 MeV alpha particles that are produced simultaneously with the 14 MeV neutrons in the deuterium-tritium (^2D(^3T,n)^4α) fusion reaction to determine the direction of the neutrons and reduce background noise. This method determines the spatial position of each neutron interaction and requires the neutrons to be generated from a small spot in order to achieve high spatial resolution. In this work an axial type neutron generator was designed and built with a predicted neutron yield of 10^8 n/s for a 50 μA D/T ion beam current accelerated to 80 kV. It was shown that the measured yield for a D/D gas filled generator was 2x10^5n/s, which scales to 2x10^7 n/s if a D/T gas fill is used. The generator utilizes an RF planar spiral antenna at 13.56 MHz to create a highly efficient inductively coupled plasma at the ion source. Experimental results show that beams with an atomic ion fraction of > 80% can be obtained with only 100 watts of RF power in the ion source. A single acceleration gap with a secondary electron suppression electrode is used in the acceleration column, to suppress secondary backscattered electrons produced at the target. Initial measurements of the neutron generator performance including the beam spot size and neutron yield under sealed operation will be discussed, along with suggestions for future improvements.

  13. The effect of cavity tuning on oxygen beam currents of an A-ECR type 14 GHz electron cyclotron resonance ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarvainen, O., E-mail: olli.tarvainen@jyu.fi; Orpana, J.; Kronholm, R.

    2016-09-15

    The efficiency of the microwave-plasma coupling plays a significant role in the production of highly charged ion beams with electron cyclotron resonance ion sources (ECRISs). The coupling properties are affected by the mechanical design of the ion source plasma chamber and microwave launching system, as well as damping of the microwave electric field by the plasma. Several experiments attempting to optimize the microwave-plasma coupling characteristics by fine-tuning the frequency of the injected microwaves have been conducted with varying degrees of success. The inherent difficulty in interpretation of the frequency tuning results is that the effects of microwave coupling system andmore » the cavity behavior of the plasma chamber cannot be separated. A preferable approach to study the effect of the cavity properties of the plasma chamber on extracted beam currents is to adjust the cavity dimensions. The results of such cavity tuning experiments conducted with the JYFL 14 GHz ECRIS are reported here. The cavity properties were adjusted by inserting a conducting tuner rod axially into the plasma chamber. The extracted beam currents of oxygen charge states O{sup 3+}–O{sup 7+} were recorded at various tuner positions and frequencies in the range of 14.00–14.15 GHz. It was observed that the tuner position affects the beam currents of high charge state ions up to several tens of percent. In particular, it was found that at some tuner position / frequency combinations the plasma exhibited “mode-hopping” between two operating regimes. The results improve the understanding of the role of plasma chamber cavity properties on ECRIS performances.« less

  14. High voltage holding in the negative ion sources with cesium deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belchenko, Yu.; Abdrashitov, G.; Ivanov, A.

    High voltage holding of the large surface-plasma negative ion source with cesium deposition was studied. It was found that heating of ion-optical system electrodes to temperature >100 °C facilitates the source conditioning by high voltage pulses in vacuum and by beam shots. The procedure of electrode conditioning and the data on high-voltage holding in the negative ion source with small cesium seed are described. The mechanism of high voltage holding improvement by depletion of cesium coverage is discussed.

  15. Ionization source utilizing a jet disturber in combination with an ion funnel and method of operation

    DOEpatents

    Smith, Richard D.; Kim, Taeman; Tang, Keqi; Udseth, Harold R.

    2003-06-24

    A jet disturber used in combination with an ion funnel to focus ions and other charged particles generated at or near atmospheric pressure into a relatively low pressure region, which allows increased conductance of the ions and other charged particles. The jet disturber is positioned within an ion funnel and may be interfaced with a multi-capillary inlet juxtaposed between an ion source and the interior of an instrument maintained at near atmospheric pressure. The invention finds particular advantages when deployed to improve the ion transmission between an electrospray ionization source and the first vacuum stage of a mass spectrometer.

  16. The study towards high intensity high charge state laser ion sources.

    PubMed

    Zhao, H Y; Jin, Q Y; Sha, S; Zhang, J J; Li, Z M; Liu, W; Sun, L T; Zhang, X Z; Zhao, H W

    2014-02-01

    As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible.

  17. Very Large Area/Volume Microwave ECR Plasma and Ion Source

    NASA Technical Reports Server (NTRS)

    Foster, John E. (Inventor); Patterson, Michael J. (Inventor)

    2009-01-01

    The present invention is an apparatus and method for producing very large area and large volume plasmas. The invention utilizes electron cyclotron resonances in conjunction with permanent magnets to produce dense, uniform plasmas for long life ion thruster applications or for plasma processing applications such as etching, deposition, ion milling and ion implantation. The large area source is at least five times larger than the 12-inch wafers being processed to date. Its rectangular shape makes it easier to accommodate to materials processing than sources that are circular in shape. The source itself represents the largest ECR ion source built to date. It is electrodeless and does not utilize electromagnets to generate the ECR magnetic circuit, nor does it make use of windows.

  18. Ion current detector for high pressure ion sources for monitoring separations

    DOEpatents

    Smith, R.D.; Wahl, J.H.; Hofstadler, S.A.

    1996-08-13

    The present invention relates generally to any application involving the monitoring of signal arising from ions produced by electrospray or other high pressure (>100 torr) ion sources. The present invention relates specifically to an apparatus and method for the detection of ions emitted from a capillary electrophoresis (CE) system, liquid chromatography, or other small-scale separation methods. And further, the invention provides a very simple diagnostic as to the quality of the separation and the operation of an electrospray source. 7 figs.

  19. Ion current detector for high pressure ion sources for monitoring separations

    DOEpatents

    Smith, Richard D.; Wahl, Jon H.; Hofstadler, Steven A.

    1996-01-01

    The present invention relates generally to any application involving the monitoring of signal arising from ions produced by electrospray or other high pressure (>100 torr) ion sources. The present invention relates specifically to an apparatus and method for the detection of ions emitted from a capillary electrophoresis (CE) system, liquid chromatography, or other small-scale separation methods. And further, the invention provides a very simple diagnostic as to the quality of the separation and the operation of an electrospray source.

  20. Kinetic modeling of particle dynamics in H- negative ion sources (invited)

    NASA Astrophysics Data System (ADS)

    Hatayama, A.; Shibata, T.; Nishioka, S.; Ohta, M.; Yasumoto, M.; Nishida, K.; Yamamoto, T.; Miyamoto, K.; Fukano, A.; Mizuno, T.

    2014-02-01

    Progress in the kinetic modeling of particle dynamics in H- negative ion source plasmas and their comparisons with experiments are reviewed, and discussed with some new results. Main focus is placed on the following two topics, which are important for the research and development of large negative ion sources and high power H- ion beams: (i) Effects of non-equilibrium features of EEDF (electron energy distribution function) on H- production, and (ii) extraction physics of H- ions and beam optics.

  1. Ion source design for industrial applications

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1981-01-01

    The design of broad-beam industrial ion sources is described. The approach used emphasizes refractory metal cathodes and permanent-magnet multipole discharge chambers. Design procedures and sample calculations are given for the discharge chamber, ion optics, cathodes, and magnetic circuit. Hardware designs are included for the isolator, cathode supports, anode supports, pole-piece assembly, and ion-optics supports. There are other ways of designing most ion source components, but the designs presented are representative of current technology and adaptable to a wide range of configurations.

  2. Development of the negative ion beams relevant to ITER and JT-60SA at Japan Atomic Energy Agency.

    PubMed

    Hanada, M; Kojima, A; Tobari, H; Nishikiori, R; Hiratsuka, J; Kashiwagi, M; Umeda, N; Yoshida, M; Ichikawa, M; Watanabe, K; Yamano, Y; Grisham, L R

    2016-02-01

    In order to realize negative ion sources and accelerators to be applicable to International Thermonuclear Experimental Reactor and JT-60 Super Advanced, a large cesium (Cs)-seeded negative ion source and a multi-aperture and multi-stage electric acceleration have been developed at Japan Atomic Energy Agency (JAEA). Long pulse production and acceleration of the negative ion beams have been independently carried out. The long pulse production of the high current beams has achieved 100 s at the beam current of 15 A by modifying the JT-60 negative ion source. The pulse duration time is increased three times longer than that before the modification. As for the acceleration, a pulse duration time has been also extended two orders of magnitudes from 0.4 s to 60 s. The developments of the negative ion source and acceleration at JAEA are well in progress towards the realization of the negative ion sources and accelerators for fusion applications.

  3. Status of ion sources at National Institute of Radiological Sciences.

    PubMed

    Kitagawa, A; Fujita, T; Goto, A; Hattori, T; Hamano, T; Hojo, S; Honma, T; Imaseki, H; Katagiri, K; Muramatsu, M; Sakamoto, Y; Sekiguchi, M; Suda, M; Sugiura, A; Suya, N

    2012-02-01

    The National Institute of Radiological Sciences (NIRS) maintains various ion accelerators in order to study the effects of radiation of the human body and medical uses of radiation. Two electrostatic tandem accelerators and three cyclotrons delivered by commercial companies have offered various life science tools; these include proton-induced x-ray emission analysis (PIXE), micro beam irradiation, neutron exposure, and radioisotope tracers and probes. A duoplasmatron, a multicusp ion source, a penning ion source (PIG), and an electron cyclotron resonance ion source (ECRIS) are in operation for these purposes. The Heavy-Ion Medical Accelerator in Chiba (HIMAC) is an accelerator complex for heavy-ion radiotherapy, fully developed by NIRS. HIMAC is utilized not only for daily treatment with the carbon beam but also for fundamental experiments. Several ECRISs and a PIG at HIMAC satisfy various research and clinical requirements.

  4. Ring current dynamics and plasma sheet sources. [magnetic storms

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.

    1984-01-01

    The source of the energized plasma that forms in geomagnetic storm ring currents, and ring current decay are discussed. The dominant loss processes for ring current ions are identified as charge exchange and resonant interactions with ion-cyclotron waves. Ring current ions are not dominated by protons. At L4 and energies below a few tens of keV, O+ is the most abundant ion, He+ is second, and protons are third. The plasma sheet contributes directly or indirectly to the ring current particle population. An important source of plasma sheet ions is earthward streaming ions on the outer boundary of the plasma sheet. Ion interactions with the current across the geomagnetic tail can account for the formation of this boundary layer. Electron interactions with the current sheet are possibly an important source of plasma sheet electrons.

  5. Status of ion sources at National Institute of Radiological Sciencesa)

    NASA Astrophysics Data System (ADS)

    Kitagawa, A.; Fujita, T.; Goto, A.; Hattori, T.; Hamano, T.; Hojo, S.; Honma, T.; Imaseki, H.; Katagiri, K.; Muramatsu, M.; Sakamoto, Y.; Sekiguchi, M.; Suda, M.; Sugiura, A.; Suya, N.

    2012-02-01

    The National Institute of Radiological Sciences (NIRS) maintains various ion accelerators in order to study the effects of radiation of the human body and medical uses of radiation. Two electrostatic tandem accelerators and three cyclotrons delivered by commercial companies have offered various life science tools; these include proton-induced x-ray emission analysis (PIXE), micro beam irradiation, neutron exposure, and radioisotope tracers and probes. A duoplasmatron, a multicusp ion source, a penning ion source (PIG), and an electron cyclotron resonance ion source (ECRIS) are in operation for these purposes. The Heavy-Ion Medical Accelerator in Chiba (HIMAC) is an accelerator complex for heavy-ion radiotherapy, fully developed by NIRS. HIMAC is utilized not only for daily treatment with the carbon beam but also for fundamental experiments. Several ECRISs and a PIG at HIMAC satisfy various research and clinical requirements.

  6. Super-atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Chen, Lee Chuin; Rahman, Md Matiur; Hiraoka, Kenzo

    2013-03-01

    Super-atmospheric pressure chemical ionization (APCI) mass spectrometry was performed using a commercial mass spectrometer by pressurizing the ion source with compressed air up to 7 atm. Similar to typical APCI source, reactant ions in the experiment were generated with corona discharge using a needle electrode. Although a higher needle potential was necessary to initiate the corona discharge, discharge current and detected ion signal were stable at all tested pressures. A Roots booster pump with variable pumping speed was installed between the evacuation port of the mass spectrometer and the original rough pumps to maintain a same pressure in the first pumping stage of the mass spectrometer regardless of ion source pressure. Measurement of gaseous methamphetamine and research department explosive showed an increase in ion intensity with the ion source pressure until an optimum pressure at around 4-5 atm. Beyond 5 atm, the ion intensity decreased with further increase of pressure, likely due to greater ion losses inside the ion transport capillary. For benzene, it was found that besides molecular ion and protonated species, ion due to [M + 2H](+) which was not so common in APCI, was also observed with high ion abundance under super-atmospheric pressure condition. Copyright © 2013 John Wiley & Sons, Ltd.

  7. Recent developments of ion sources for life-science studies at the Heavy Ion Medical Accelerator in Chiba (invited)

    NASA Astrophysics Data System (ADS)

    Kitagawa, A.; Drentje, A. G.; Fujita, T.; Muramatsu, M.; Fukushima, K.; Shiraishi, N.; Suzuki, T.; Takahashi, K.; Takasugi, W.; Biri, S.; Rácz, R.; Kato, Y.; Uchida, T.; Yoshida, Y.

    2016-02-01

    With about 1000-h of relativistic high-energy ion beams provided by Heavy Ion Medical Accelerator in Chiba, about 70 users are performing various biology experiments every year. A rich variety of ion species from hydrogen to xenon ions with a dose rate of several Gy/min is available. Carbon, iron, silicon, helium, neon, argon, hydrogen, and oxygen ions were utilized between 2012 and 2014. Presently, three electron cyclotron resonance ion sources (ECRISs) and one Penning ion source are available. Especially, the two frequency heating techniques have improved the performance of an 18 GHz ECRIS. The results have satisfied most requirements for life-science studies. In addition, this improved performance has realized a feasible solution for similar biology experiments with a hospital-specified accelerator complex.

  8. Development of electron beam ion source for nanoprocess using highly charged ions

    NASA Astrophysics Data System (ADS)

    Sakurai, Makoto; Nakajima, Fumiharu; Fukumoto, Takunori; Nakamura, Nobuyuki; Ohtani, Shunsuke; Mashiko, Shinro; Sakaue, Hiroyuki

    2005-07-01

    Highly charged ion is useful to produce nanostructure on various materials, and is key tool to realize single ion implantation technique. On such demands for the application to nanotechnology, we have designed an electron bean ion source. The design stresses on the volume of drift tubes where highly charged ions are confined and the efficiency of ion extraction from the drift tube through collector electrode in order to obtain intense ion beam as much as possible. The ion source uses a discrete superconducting magnet cooled by a closed-cycle refrigerator in order to reduce the running costs and to simplify the operating procedures. The electrodes of electron gun, drift tubes, and collector are enclosed in ultrahigh vacuum tube that is inserted into the bore of the magnet system.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanada, M., E-mail: hanada.masaya@jaea.go.jp; Kojima, A.; Tobari, H.

    In order to realize negative ion sources and accelerators to be applicable to International Thermonuclear Experimental Reactor and JT-60 Super Advanced, a large cesium (Cs)-seeded negative ion source and a multi-aperture and multi-stage electric acceleration have been developed at Japan Atomic Energy Agency (JAEA). Long pulse production and acceleration of the negative ion beams have been independently carried out. The long pulse production of the high current beams has achieved 100 s at the beam current of 15 A by modifying the JT-60 negative ion source. The pulse duration time is increased three times longer than that before the modification.more » As for the acceleration, a pulse duration time has been also extended two orders of magnitudes from 0.4 s to 60 s. The developments of the negative ion source and acceleration at JAEA are well in progress towards the realization of the negative ion sources and accelerators for fusion applications.« less

  10. Development of a compact filament-discharge multi-cusp H- ion source.

    PubMed

    Jia, XianLu; Zhang, TianJue; Zheng, Xia; Qin, JiuChang

    2012-02-01

    A 14 MeV medical cyclotron with the external ion source has been designed and is being constructed at China Institute of Atomic Energy. The H(-) ion will be accelerated by this machine and the proton beam will be extracted by carbon strippers in dual opposite direction. The compact multi-cusp H(-) ion source has been developed for the cyclotron. The 79.5 mm long ion source is 48 mm in diameter, which is consisting of a special shape filament, ten columns of permanent magnets providing a multi-cusp field, and a three-electrode extraction system. So far, the 3 mA∕25 keV H(-) beam with an emittance of 0.3 π mm mrad has been obtained from the ion source. The paper gives the design details and the beam test results. Further experimental study is under way and an extracted beam of 5 mA is expected.

  11. Thermal-electric coupled-field finite element modeling and experimental testing of high-temperature ion sources for the production of radioactive ion beams

    NASA Astrophysics Data System (ADS)

    Manzolaro, M.; Meneghetti, G.; Andrighetto, A.; Vivian, G.; D'Agostini, F.

    2016-02-01

    In isotope separation on line facilities the target system and the related ion source are two of the most critical components. In the context of the selective production of exotic species (SPES) project, a 40 MeV 200 μA proton beam directly impinges a uranium carbide target, generating approximately 1013 fissions per second. The radioactive isotopes produced in this way are then directed to the ion source, where they can be ionized and finally accelerated to the subsequent areas of the facility. In this work both the surface ion source and the plasma ion source adopted for the SPES facility are presented and studied by means of numerical thermal-electric models. Then, numerical results are compared with temperature and electric potential difference measurements, and finally the main advantages of the proposed simulation approach are discussed.

  12. Negative ion-driven associated particle neutron generator

    DOE PAGES

    Antolak, A. J.; Leung, K. N.; Morse, D. H.; ...

    2015-10-09

    We describe an associated particle neutron generator that employs a negative ion source to produce high neutron flux from a small source size. Furthermore, negative ions produced in an rf-driven plasma source are extracted through a small aperture to form a beam which bombards a positively biased, high voltage target electrode. Electrons co-extracted with the negative ions are removed by a permanent magnet electron filter. The use of negative ions enables high neutron output (100% atomic ion beam), high quality imaging (small neutron source size), and reliable operation (no high voltage breakdowns). Finally, the neutron generator can operate in eithermore » pulsed or continuous-wave (cw) mode and has been demonstrated to produce 10 6 D-D n/s (equivalent to similar to 10 8 D-T n/s) from a 1 mm-diameter neutron source size to facilitate high fidelity associated particle imaging.« less

  13. Operation of Lanzhou all permanent electron cyclotron resonance ion source No. 2 on 320 kV platform with highly charged ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, W., E-mail: luwang@impcas.ac.cn; University of Chinese Academy of Sciences, Beijing 100049; Li, J. Y.

    2014-02-15

    The 320 kV platform for multi-discipline research with highly charged ions is a heavy ion beam acceleration instrument developed by Institute of Modern Physics, which is dedicated to basic scientific researches such as plasma, atom, material physics, and astrophysics, etc. The platform has delivered ion beams of 400 species for 36 000 h. The average operation time is around 5000 h/year. With the beams provided by the platform, lots of outstanding progresses were made in various research fields. The ion source of the platform is an all-permanent magnet electron cyclotron resonance ion source, LAPECR2 (Lanzhou All Permanent ECR ion source No.more » 2). The maximum axial magnetic fields are 1.28 T at injection and 1.07 T at extraction, and the radial magnetic field is up to 1.21 T at the inner wall of the plasma chamber. The ion source is capable to produce low, medium, and high charge state gaseous and metallic ion beams, such as H{sup +}, {sup 40}Ar{sup 8+}, {sup 129}Xe{sup 30+}, {sup 209}Bi{sup 33+}, etc. This paper will present the latest result of LAPECR2 and the routine operation status for the high voltage platform.« less

  14. Operation and development status of the J-PARC ion source

    NASA Astrophysics Data System (ADS)

    Yamazaki, S.; Ikegami, K.; Ohkoshi, K.; Ueno, A.; Koizumi, I.; Takagi, A.; Oguri, H.

    2014-02-01

    A cesium-free H- ion source driven with a LaB6 filament is being operated at the Japan Proton Accelerator Research Complex (J-PARC) without any serious trouble since the restoration from the March 2011 earthquake. The H- ion current from the ion source is routinely restricted approximately 19 mA for the lifetime of the filament. In order to increase the beam power at the linac beam operation (January to February 2013), the beam current from the ion source was increased to 22 mA. At this operation, the lifetime of the filament was estimated by the reduction in the filament current. According to the steep reduction in the filament current, the break of the filament was predicted. Although the filament has broken after approximately 10 h from the steep current reduction, the beam operation was restarted approximately 8 h later by the preparation for the exchange of new filament. At the study time for the 3 GeV rapid cycling synchrotron (April 2013), the ion source was operated at approximately 30 mA for 8 days. As a part of the beam current upgrade plan for the J-PARC, the front end test stand consisting of the ion source and the radio frequency quadrupole is under preparation. The RF-driven H- ion source developed for the J-PARC 2nd stage requirements will be tested at this test stand.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierret, C.; Maunoury, L.; Biri, S.

    The goal of this article is to present simulations on the extraction from an electron cyclotron resonance ion source (ECRIS). The aim of this work is to find out an extraction system, which allows one to reduce the emittances and to increase the current of the extracted ion beam at the focal point of the analyzing dipole. But first, we should locate the correct software which is able to reproduce the specific physics of an ion beam. To perform the simulations, the following softwares have been tested: SIMION 3D, AXCEL, CPO 3D, and especially, for the magnetic field calculation, MATHEMATICAmore » coupled with the RADIA module. Emittance calculations have been done with two types of ECRIS: one with a hexapole and one without a hexapole, and the difference will be discussed.« less

  16. Relativistic effects in the photoionization of hydrogen-like ions with screened Coulomb interaction

    NASA Astrophysics Data System (ADS)

    Xie, L. Y.; Wang, J. G.; Janev, R. K.

    2014-06-01

    The relativistic effects in the photoionization of hydrogen-like ion with screened Coulomb interaction of Yukawa type are studied for a broad range of screening lengths and photoelectron energies. The bound and continuum wave functions have been determined by solving the Dirac equation. The study is focused on the relativistic effects manifested in the characteristic features of photoionization cross section for electric dipole nl →ɛ,l±1 transitions: shape resonances, Cooper minima and cross section enhancements due to near-zero-energy states. It is shown that the main source of relativistic effects in these cross section features is the fine-structure splitting of bound state energy levels. The relativistic effects are studied in the photoionization of Fe25+ ion, as an example.

  17. Relativistic effects in the photoionization of hydrogen-like ions with screened Coulomb interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, L. Y.; Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P.O. Box 8009-26, Beijing 100088; Wang, J. G.

    2014-06-15

    The relativistic effects in the photoionization of hydrogen-like ion with screened Coulomb interaction of Yukawa type are studied for a broad range of screening lengths and photoelectron energies. The bound and continuum wave functions have been determined by solving the Dirac equation. The study is focused on the relativistic effects manifested in the characteristic features of photoionization cross section for electric dipole nl→ε,l±1 transitions: shape resonances, Cooper minima and cross section enhancements due to near-zero-energy states. It is shown that the main source of relativistic effects in these cross section features is the fine-structure splitting of bound state energy levels.more » The relativistic effects are studied in the photoionization of Fe{sup 25+} ion, as an example.« less

  18. Multiscale modeling and characterization for performance and safety of lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pannala, Sreekanth; Turner, John A.; Allu, Srikanth

    Lithium-ion batteries are highly complex electrochemical systems whose performance and safety are governed by coupled nonlinear electrochemical-electrical-thermal-mechanical processes over a range of spatiotemporal scales. In this paper we describe a new, open source computational framework for Lithium-ion battery simulations that is designed to support a variety of model types and formulations. This framework has been used to create three-dimensional cell and battery pack models that explicitly simulate all the battery components (current collectors, electrodes, and separator). The models are used to predict battery performance under normal operations and to study thermal and mechanical safety aspects under adverse conditions. The modelmore » development and validation are supported by experimental methods such as IR-imaging, X-ray tomography and micro-Raman mapping.« less

  19. Multiscale modeling and characterization for performance and safety of lithium-ion batteries

    DOE PAGES

    Pannala, Sreekanth; Turner, John A.; Allu, Srikanth; ...

    2015-08-19

    Lithium-ion batteries are highly complex electrochemical systems whose performance and safety are governed by coupled nonlinear electrochemical-electrical-thermal-mechanical processes over a range of spatiotemporal scales. In this paper we describe a new, open source computational framework for Lithium-ion battery simulations that is designed to support a variety of model types and formulations. This framework has been used to create three-dimensional cell and battery pack models that explicitly simulate all the battery components (current collectors, electrodes, and separator). The models are used to predict battery performance under normal operations and to study thermal and mechanical safety aspects under adverse conditions. The modelmore » development and validation are supported by experimental methods such as IR-imaging, X-ray tomography and micro-Raman mapping.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pak, S.; Sites, J.R.

    A Kaufman-type broad beam ion source, used for sputtering and etching purposes, has been operated with Ar, Kr,O/sub 2/ and N/sub 2/ gas inputs over a wide range of beam energies (200-1200 eV) and gas flow rates (1-10 sccm). The maximum ion beam current density for each gas saturates at about 2.5 mA/sq. cm. as gas flow is increased. The discharge threshold voltage necessary to produce a beam and the beam efficiency (beam current/molecular current), however, varied considerably. Kr had the lowest threshold and highest efficiency, Ar next, then N/sub 2/ and O/sub 2/. The ion beam current varied onlymore » weakly with beam energy for low gas flow rates, but showed a factor of two increase when the gas flow was higher.« less

  1. Plasma Ion Sources for Atmospheric Pressure Ionization Mass Spectrometry.

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-Guo

    1994-01-01

    Atmospheric pressure ionization (API) sources using direct-current (DC) and radio-frequency (RF) plasma have been developed in this thesis work. These ion sources can provide stable discharge currents of ~ 1 mA, 2-3 orders of magnitude larger than that of the corona discharge, a widely used API source. The plasmas can be generated and maintained in 1 atm of various buffer gases by applying -500 to -1000 V (DC plasma) or 1-15 W with a frequency of 165 kHz (RF plasma) on the needle electrode. These ion sources have been used with liquid injection to detect various organic compounds of pharmaceutical, biotechnological and environmental interest. Key features of these ion sources include soft ionization with the protonated molecule as the largest peak, and superb sensitivity with detection limits in the low picogram or femtomole range and a linear dynamic range over ~4 orders of magnitude. The RF plasma has advantages over the DC plasma in its ability to operate in various buffer gases and to produce a more stable plasma. Factors influencing the performance of the ion sources have been studied, including RF power level, liquid flow rate, chamber temperature, solvent composition, and voltage affecting the collision induced dissociation (CID). Ionization of hydrocarbons by the RF plasma API source was also studied. Soft ionization is generally produced. To obtain high sensitivity, the ion source must be very dry and the needle-to-orifice distance must be small. Nitric oxide was used to enhance the sensitivity. The RF plasma source was then used for the analysis of hydrocarbons in auto emissions. Comparisons between the corona discharge and the RF plasma have been made in terms of discharge current, ion residence time, and the ion source model. The RF plasma source provides larger linear dynamic range and higher sensitivity than the corona discharge, due to its much larger discharge current. The RF plasma was also observed to provide longer ion residence times and was not limited by space-charge effect as in the corona source.

  2. CALUTRON ION SOURCE

    DOEpatents

    Oppenheimer, F.F.

    1959-06-01

    A shielding arrangement for eliminating oscillating electrons in the ion source region of calutrons is offered. Metal plates are attached to the ion generator so as to intercept the magnetic field between ion generator and accelerating electrode. The oscillating electrons are discharged on the plates. (T.R.H.)

  3. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Zhao, H. W.; Sun, L. T.; Guo, J. W.; Lu, W.; Xie, D. Z.; Hitz, D.; Zhang, X. Z.; Yang, Y.

    2017-09-01

    The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24-28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of 40Ar+ and 129Xe26+ have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL), China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24 +18 GHz ) heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  4. Charge exchange molecular ion source

    DOEpatents

    Vella, Michael C.

    2003-06-03

    Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.

  5. Polarized negative ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haeberli, W.

    1981-04-01

    This paper presents a survey of methods, commonly in use or under development, to produce beams of polarized negative ions for injection into accelerators. A short summary recalls how the hyperfine interaction is used to obtain nuclear polarization in beams of atoms. Atomic-beam sources for light ions are discussed. If the best presently known techniques are incorporated in all stages of the source, polarized H/sup -/ and D/sup -/ beams in excess of 10 ..mu..A can probably be achieved. Production of polarized ions from fast (keV) beams of polarized atoms is treated separately for atoms in the H(25) excited statemore » (Lamb-Shift source) and atoms in the H(1S) ground state. The negative ion beam from Lamb-Shift sources has reached a plateau just above 1 ..mu..A, but this beam current is adequate for many applications and the somewhat lower beam current is compensated by other desirable characteristics. Sources using fast polarized ground state atoms are in a stage of intense development. The next sections summarize production of polarized heavy ions by the atomic beam method, which is well established, and by optical pumping, which has recently been demonstrated to yield very large nuclear polarization. A short discussion of proposed ion sources for polarized /sup 3/He/sup -/ ions is followed by some concluding remarks.« less

  6. High current H2(+) and H3(+) beam generation by pulsed 2.45 GHz electron cyclotron resonance ion source.

    PubMed

    Xu, Yuan; Peng, Shixiang; Ren, Haitao; Zhao, Jie; Chen, Jia; Zhang, Ailin; Zhang, Tao; Guo, Zhiyu; Chen, Jia'er

    2014-02-01

    The permanent magnet 2.45 GHz electron cyclotron resonance ion source at Peking University can produce more than 100 mA hydrogen ion beam working at pulsed mode. For the increasing requirements of cluster ions (H2(+) and H3(+)) in linac and cyclotron, experimental study was carried out to further understand the hydrogen plasma processes in the ion source for the generation of cluster ions. The constituents of extracted beam have been analyzed varying with the pulsed duration from 0.3 ms to 2.0 ms (repetition frequency 100 Hz) at different operation pressure. The fraction of cluster ions dramatically increased when the pulsed duration was lower than 0.6 ms, and more than 20 mA pure H3(+) ions with fraction 43.2% and 40 mA H2(+) ions with fraction 47.7% were obtained when the operation parameters were adequate. The dependence of extracted ion fraction on microwave power was also measured at different pressure as the energy absorbed by plasma will greatly influence electron temperature and electron density then the plasma processes in the ion source. More details will be presented in this paper.

  7. A new method to discriminate secondary organic aerosols from different sources using high-resolution aerosol mass spectra

    NASA Astrophysics Data System (ADS)

    Heringa, M. F.; Decarlo, P. F.; Chirico, R.; Tritscher, T.; Clairotte, M.; Mohr, C.; Crippa, M.; Slowik, J. G.; Pfaffenberger, L.; Dommen, J.; Weingartner, E.; Prévôt, A. S. H.; Baltensperger, U.

    2011-10-01

    Organic aerosol (OA) represents a significant and often major fraction of the non-refractory PM1 (particulate matter with an aerodynamic diameter da < 1 μm) mass. Secondary organic aerosol (SOA) is an important contributor to the OA and can be formed from biogenic and anthropogenic precursors. Here we present results from the characterization of SOA produced from the emissions of three different anthropogenic sources. SOA from a log wood burner, a Euro 2 diesel car and a two-stroke Euro 2 scooter were characterized with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and compared to SOA from α-pinene. The emissions were sampled from the chimney/tailpipe by a heated inlet system and filtered before injection into a smog chamber. The gas phase emissions were irradiated by xenon arc lamps to initiate photo-chemistry which led to nucleation and subsequent particle growth by SOA production. Duplicate experiments were performed for each SOA type, with the averaged organic mass spectra in the m/z range 12-250 showing Pearson's r values >0.94 for the correlations between the different SOA types after 5 h of aging. High-resolution mass spectra (HR-MS) showed that the dominant peaks in the MS, m/z 43 and 44, are dominated by the oxygenated ions C2H3O+ and CO2+, respectively, similarly to the relatively fresh semi-volatile oxidized OA (SV-OOA) observed in the ambient aerosol. The atomic O : C ratios were found to be in the range of 0.25-0.55 with no major increase during the first 5 h of aging. On average, the diesel SOA showed the lowest O : C ratio followed by SOA from wood burning, α-pinene and the scooter emissions. Grouping the fragment ions based on their carbon number revealed that the SOA source with the highest O : C ratio had the largest fraction of small ions. Fragment ions containing up to 3 carbon atoms accounted for 66%, 68%, 72% and 76% of the organic spectrum of the SOA produced by the diesel car, wood burner, α-pinene and the scooter, respectively. The HR data of the four sources could be clustered and separated using principal component analysis (PCA). The model showed a significant separation of the four SOA types and clustering of the duplicate experiments on the first two principal components (PCs), which explained 79% of the total variance. Projection of ambient SV-OOA spectra resolved by positive matrix factorization (PMF) showed that this approach could be useful to identify large contributions of the tested SOA sources to SV-OOA. The first results from this study indicate that the SV-OOA in Barcelona is strongly influenced by diesel emissions in winter while in summer at SIRTA at the southwestern edge of Paris SV-OOA is more similar to alpha-pinene SOA. However, contributions to the ambient SV-OOA from SOA sources that are not covered by the model can cause major interference and therefore future expansions of the PCA model with additional SOA sources is recommended.

  8. Ionization based multi-directional flow sensor

    DOEpatents

    Chorpening, Benjamin T [Morgantown, WV; Casleton, Kent H [Morgantown, WV

    2009-04-28

    A method, system, and apparatus for conducting real-time monitoring of flow (airflow for example) in a system (a hybrid power generation system for example) is disclosed. The method, system and apparatus measure at least flow direction and velocity with minimal pressure drop and fast response. The apparatus comprises an ion source and a multi-directional collection device proximate the ion source. The ion source is configured to generate charged species (electrons and ions for example). The multi-directional collection source is configured to determine the direction and velocity of the flow in real-time.

  9. Electrical-thermal-structural finite element simulation and experimental study of a plasma ion source for the production of radioactive ion beams

    NASA Astrophysics Data System (ADS)

    Manzolaro, M.; Meneghetti, G.; Andrighetto, A.; Vivian, G.

    2016-03-01

    The production target and the ion source constitute the core of the selective production of exotic species (SPES) facility. In this complex experimental apparatus for the production of radioactive ion beams, a 40 MeV, 200 μA proton beam directly impinges a uranium carbide target, generating approximately 1013 fissions per second. The transfer line enables the unstable isotopes generated by the 238U fissions in the target to reach the ion source, where they can be ionized and finally accelerated to the subsequent areas of the facility. In this work, the plasma ion source currently adopted for the SPES facility is analyzed in detail by means of electrical, thermal, and structural numerical models. Next, theoretical results are compared with the electric potential difference, temperature, and displacement measurements. Experimental tests with stable ion beams are also presented and discussed.

  10. Demonstration of Ion Kinetic Effects in Inertial Confinement Fusion Implosions and Investigation of Magnetic Reconnection Using Laser-Produced Plasmas

    NASA Astrophysics Data System (ADS)

    Rosenberg, M. J.

    2016-10-01

    Shock-driven laser inertial confinement fusion (ICF) implosions have demonstrated the presence of ion kinetic effects in ICF implosions and also have been used as a proton source to probe the strongly driven reconnection of MG magnetic fields in laser-generated plasmas. Ion kinetic effects arise during the shock-convergence phase of ICF implosions when the mean free path for ion-ion collisions (λii) approaches the size of the hot-fuel region (Rfuel) and may impact hot-spot formation and the possibility of ignition. To isolate and study ion kinetic effects, the ratio of N - K =λii /Rfuel was varied in D3He-filled, shock-driven implosions at the Omega Laser Facility and the National Ignition Facility, from hydrodynamic-like conditions (NK 0.01) to strongly kinetic conditions (NK 10). A strong trend of decreasing fusion yields relative to the predictions of hydrodynamic models is observed as NK increases from 0.1 to 10. Hydrodynamics simulations that include basic models of the kinetic effects that are likely to be present in these experiments-namely, ion diffusion and Knudsen-layer reduction of the fusion reactivity-are better able to capture the experimental results. This type of implosion has also been used as a source of monoenergetic 15-MeV protons to image magnetic fields driven to reconnect in laser-produced plasmas at conditions similar to those encountered at the Earth's magnetopause. These experiments demonstrate that for both symmetric and asymmetric magnetic-reconnection configurations, when plasma flows are much stronger than the nominal Alfvén speed, the rate of magnetic-flux annihilation is determined by the flow velocity and is largely insensitive to initial plasma conditions. This work was supported by the Department of Energy Grant Number DENA0001857.

  11. Accelerator-based BNCT.

    PubMed

    Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O

    2014-06-01

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases. © 2013 Elsevier Ltd. All rights reserved.

  12. Electrospray ion source with reduced analyte electrochemistry

    DOEpatents

    Kertesz, Vilmos [Knoxville, TN; Van Berkel, Gary [Clinton, TN

    2011-08-23

    An electrospray ion (ESI) source and method capable of ionizing an analyte molecule without oxidizing or reducing the analyte of interest. The ESI source can include an emitter having a liquid conduit, a working electrode having a liquid contacting surface, a spray tip, a secondary working electrode, and a charge storage coating covering partially or fully the liquid contacting surface of the working electrode. The liquid conduit, the working electrode and the secondary working electrode can be in liquid communication. The electrospray ion source can also include a counter electrode proximate to, but separated from, said spray tip. The electrospray ion source can also include a power system for applying a voltage difference between the working electrodes and a counter-electrode. The power system can deliver pulsed voltage changes to the working electrodes during operation of said electrospray ion source to minimize the surface potential of the charge storage coating.

  13. Electrospray ion source with reduced analyte electrochemistry

    DOEpatents

    Kertesz, Vilmos; Van Berkel, Gary J

    2013-07-30

    An electrospray ion (ESI) source and method capable of ionizing an analyte molecule without oxidizing or reducing the analyte of interest. The ESI source can include an emitter having a liquid conduit, a working electrode having a liquid contacting surface, a spray tip, a secondary working electrode, and a charge storage coating covering partially or fully the liquid contacting surface of the working electrode. The liquid conduit, the working electrode and the secondary working electrode can be in liquid communication. The electrospray ion source can also include a counter electrode proximate to, but separated from, said spray tip. The electrospray ion source can also include a power system for applying a voltage difference between the working electrodes and a counter-electrode. The power system can deliver pulsed voltage changes to the working electrodes during operation of said electrospray ion source to minimize the surface potential of the charge storage coating.

  14. Ion source with external RF antenna

    DOEpatents

    Leung, Ka-Ngo; Ji, Qing; Wilde, Stephen

    2005-12-13

    A radio frequency (RF) driven plasma ion source has an external RF antenna, i.e. the RF antenna is positioned outside the plasma generating chamber rather than inside. The RF antenna is typically formed of a small diameter metal tube coated with an insulator. An external RF antenna assembly is used to mount the external RF antenna to the ion source. The RF antenna tubing is wound around the external RF antenna assembly to form a coil. The external RF antenna assembly is formed of a material, e.g. quartz, which is essentially transparent to the RF waves. The external RF antenna assembly is attached to and forms a part of the plasma source chamber so that the RF waves emitted by the RF antenna enter into the inside of the plasma chamber and ionize a gas contained therein. The plasma ion source is typically a multi-cusp ion source.

  15. Pulsed ion beam source

    DOEpatents

    Greenly, John B.

    1997-01-01

    An improved pulsed ion beam source having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center.

  16. A multicentre audit of HDR/PDR brachytherapy absolute dosimetry in association with the INTERLACE trial (NCT015662405)

    NASA Astrophysics Data System (ADS)

    Díez, P.; Aird, E. G. A.; Sander, T.; Gouldstone, C. A.; Sharpe, P. H. G.; Lee, C. D.; Lowe, G.; Thomas, R. A. S.; Simnor, T.; Bownes, P.; Bidmead, M.; Gandon, L.; Eaton, D.; Palmer, A. L.

    2017-12-01

    A UK multicentre audit to evaluate HDR and PDR brachytherapy has been performed using alanine absolute dosimetry. This is the first national UK audit performing an absolute dose measurement at a clinically relevant distance (20 mm) from the source. It was performed in both INTERLACE (a phase III multicentre trial in cervical cancer) and non-INTERLACE brachytherapy centres treating gynaecological tumours. Forty-seven UK centres (including the National Physical Laboratory) were visited. A simulated line source was generated within each centre’s treatment planning system and dwell times calculated to deliver 10 Gy at 20 mm from the midpoint of the central dwell (representative of Point A of the Manchester system). The line source was delivered in a water-equivalent plastic phantom (Barts Solid Water) encased in blocks of PMMA (polymethyl methacrylate) and charge measured with an ion chamber at 3 positions (120° apart, 20 mm from the source). Absorbed dose was then measured with alanine at the same positions and averaged to reduce source positional uncertainties. Charge was also measured at 50 mm from the source (representative of Point B of the Manchester system). Source types included 46 HDR and PDR 192Ir sources, (7 Flexisource, 24 mHDR-v2, 12 GammaMed HDR Plus, 2 GammaMed PDR Plus, 1 VS2000) and 1 HDR 60Co source, (Co0.A86). Alanine measurements when compared to the centres’ calculated dose showed a mean difference (±SD) of  +1.1% (±1.4%) at 20 mm. Differences were also observed between source types and dose calculation algorithm. Ion chamber measurements demonstrated significant discrepancies between the three holes mainly due to positional variation of the source within the catheter (0.4%-4.9% maximum difference between two holes). This comprehensive audit of absolute dose to water from a simulated line source showed all centres could deliver the prescribed dose to within 5% maximum difference between measurement and calculation.

  17. Studies in High Current Density Ion Sources for Heavy Ion Fusion Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chacon-Golcher, Edwin

    This dissertation develops diverse research on small (diameter ~ few mm), high current density (J ~ several tens of mA/cm 2) heavy ion sources. The research has been developed in the context of a programmatic interest within the Heavy Ion Fusion (HIF) Program to explore alternative architectures in the beam injection systems that use the merging of small, bright beams. An ion gun was designed and built for these experiments. Results of average current density yield () at different operating conditions are presented for K + and Cs + contact ionization sources and potassium aluminum silicate sources. Maximum valuesmore » for a K + beam of ~90 mA/cm 2 were observed in 2.3 μs pulses. Measurements of beam intensity profiles and emittances are included. Measurements of neutral particle desorption are presented at different operating conditions which lead to a better understanding of the underlying atomic diffusion processes that determine the lifetime of the emitter. Estimates of diffusion times consistent with measurements are presented, as well as estimates of maximum repetition rates achievable. Diverse studies performed on the composition and preparation of alkali aluminosilicate ion sources are also presented. In addition, this work includes preliminary work carried out exploring the viability of an argon plasma ion source and a bismuth metal vapor vacuum arc (MEVVA) ion source. For the former ion source, fast rise-times (~ 1 μs), high current densities (~ 100 mA/cm +) and low operating pressures (< 2 mtorr) were verified. For the latter, high but acceptable levels of beam emittance were measured (ε n ≤ 0.006 π· mm · mrad) although measured currents differed from the desired ones (I ~ 5mA) by about a factor of 10.« less

  18. ION SOURCE WITH SPACE CHARGE NEUTRALIZATION

    DOEpatents

    Flowers, J.W.; Luce, J.S.; Stirling, W.L.

    1963-01-22

    This patent relates to a space charge neutralized ion source in which a refluxing gas-fed arc discharge is provided between a cathode and a gas-fed anode to provide ions. An electron gun directs a controlled, monoenergetic electron beam through the discharge. A space charge neutralization is effected in the ion source and accelerating gap by oscillating low energy electrons, and a space charge neutralization of the source exit beam is effected by the monoenergetic electron beam beyond the source exit end. The neutralized beam may be accelerated to any desired energy at densities well above the limitation imposed by Langmuir-Child' s law. (AEC)

  19. Recent Development of IMP ECR Ion Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, H.W.; Zhang, Z.M.; Sun, L.T.

    2005-03-15

    Great efforts have been made to develop highly charged ECR ion sources for application of heavy ion accelerator and atomic physics research at IMP in the past few years. The latest development of ECR ion sources at IMP is briefly reviewed. Intense beams with high and intermediate charge states have been produced from IMP LECR3 by optimization of the ion source conditions including rf frequency extended up to 18GHz. 1.1 emA of Ar8+ and 325 e{mu} A of Ar11+ were produced. Dependence of beam emittance on those key parameters of ECR ion source, beam extraction and space charge compensation weremore » experimentally studied at LECR3. Furthermore, an advanced superconducting ECR ion source named SECRAL is being constructed. SECRAL is designed to operate at rf frequency 18-28GHz with axial mirror magnetic fields 3.6-4.0 Tesla at injection, 2.2 Tesla at extraction and sextupole field 2.0 Tesla at the wall. The superconducting magnet with sextupole and three solenoids was tested in a test-cryostat and 95% of designed fields were reached. Construction status and planed schedule of SECRAL are presented.« less

  20. Finite Gyroradius Effects Observed in Pickup Oxygen Ions at Venus

    NASA Technical Reports Server (NTRS)

    Hartle, Richard E.; Intriligator, Devrie; Grebowsky, Joseph M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    On the dayside of Venus, the hot oxygen corona extending above the ionopause is the principal source of pickup oxygen ions. The ions are born here and picked up by the ionosheath plasma as it is deflected around the planet. These pickup ions have been observed by the Orbiter Plasma Analyzer (OPA) throughout the Pioneer Venus Orbiter (PVO) mission. They were observed over a region extending from their dayside source to great distances downstream (about 10 Venus radii), in the solar wind wake, as PVO passed through apoapsis. Finite gyroradius effects in the velocity distribution of the oxygen pickup ions are expected in the source region because the gyroradius is several times larger than the scale height of the hot oxygen source. Such effects are also expected in those regions of the ionosheath where the scale lengths of the magnetic field and the ambient plasma velocity field are less than the pickup ion gyroradius. While explicitly accounting for the spatial distribution of the hot oxygen source, an analytic expression for the pickup oxygen ion velocity distribution is developed to study how it is affected by finite gyroradii. The analysis demonstrates that as the gyroradius increases by factors of three to six above the hot oxygen scale height, the peak of the pickup oxygen ion flux distribution decreases 25 to 50% below the maximum allowed speed, which is twice the speed of the ambient plasma times the sine of the angle between the magnetic field and the flow velocity. The pickup oxygen ion flux distribution observed by OPA is shown to follow this behavior in the source region. It is also shown that this result is consistent with the pickup ion distributions observed in the wake, downstream of the source, where the flux peaks are usually well below the maximum allowed speed.

  1. A comparative study on the analytical utility of atmospheric and low-pressure MALDI sources for the mass spectrometric characterization of peptides.

    PubMed

    Moskovets, Eugene; Misharin, Alexander; Laiko, Viktor; Doroshenko, Vladimir

    2016-07-15

    A comparative MS study was conducted on the analytical performance of two matrix-assisted laser desorption/ionization (MALDI) sources that operated at either low pressure (∼1Torr) or at atmospheric pressure. In both cases, the MALDI sources were attached to a linear ion trap mass spectrometer equipped with a two-stage ion funnel. The obtained results indicate that the limits of detection, in the analysis of identical peptide samples, were much lower with the source that was operated slightly below the 1-Torr pressure. In the low-pressure (LP) MALDI source, ion signals were observed at a laser fluence that was considerably lower than the one determining the appearance of ion signals in the atmospheric pressure (AP) MALDI source. When the near-threshold laser fluences were used to record MALDI MS spectra at 1-Torr and 750-Torr pressures, the level of chemical noise at the 1-Torr pressure was much lower compared to that at AP. The dependency of the analyte ion signals on the accelerating field which dragged the ions from the MALDI plate to the MS analyzer are presented for the LP and AP MALDI sources. The study indicates that the laser fluence, background gas pressure, and field accelerating the ions away from a MALDI plate were the main parameters which determined the ion yield, signal-to-noise (S/N) ratios, the fragmentation of the analyte ions, and adduct formation in the LP and AP MALDI MS methods. The presented results can be helpful for a deeper insight into the mechanisms responsible for the ion formation in MALDI. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Recent developments of ion sources for life-science studies at the Heavy Ion Medical Accelerator in Chiba (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitagawa, A.; Drentje, A. G.; Fujita, T.

    With about 1000-h of relativistic high-energy ion beams provided by Heavy Ion Medical Accelerator in Chiba, about 70 users are performing various biology experiments every year. A rich variety of ion species from hydrogen to xenon ions with a dose rate of several Gy/min is available. Carbon, iron, silicon, helium, neon, argon, hydrogen, and oxygen ions were utilized between 2012 and 2014. Presently, three electron cyclotron resonance ion sources (ECRISs) and one Penning ion source are available. Especially, the two frequency heating techniques have improved the performance of an 18 GHz ECRIS. The results have satisfied most requirements for life-sciencemore » studies. In addition, this improved performance has realized a feasible solution for similar biology experiments with a hospital-specified accelerator complex.« less

  3. High brilliance negative ion and neutral beam source

    DOEpatents

    Compton, Robert N.

    1991-01-01

    A high brilliance mass selected (Z-selected) negative ion and neutral beam source having good energy resolution. The source is based upon laser resonance ionization of atoms or molecules in a small gaseous medium followed by charge exchange through an alkali oven. The source is capable of producing microampere beams of an extremely wide variety of negative ions, and milliampere beams when operated in the pulsed mode.

  4. Portable Tandem Mass Spectrometer Analyzer

    DTIC Science & Technology

    1991-07-01

    The planned instrument was to be small enough to be portable in small vehicles and was to be able to use either an atmospheric pressure ion source or a...conventional electron impact/chemical ionization ion source. In order to accomplish these developments an atmospheric pressure ionization source was...developed for a compact, commercially available tandem quadrupole mass spectrometer. This ion source could be readily exchanged with the conventional

  5. Plasma formed ion beam projection lithography system

    DOEpatents

    Leung, Ka-Ngo; Lee, Yung-Hee Yvette; Ngo, Vinh; Zahir, Nastaran

    2002-01-01

    A plasma-formed ion-beam projection lithography (IPL) system eliminates the acceleration stage between the ion source and stencil mask of a conventional IPL system. Instead a much thicker mask is used as a beam forming or extraction electrode, positioned next to the plasma in the ion source. Thus the entire beam forming electrode or mask is illuminated uniformly with the source plasma. The extracted beam passes through an acceleration and reduction stage onto the resist coated wafer. Low energy ions, about 30 eV, pass through the mask, minimizing heating, scattering, and sputtering.

  6. Negative ion beam injection apparatus with magnetic shield and electron removal means

    DOEpatents

    Anderson, Oscar A.; Chan, Chun F.; Leung, Ka-Ngo

    1994-01-01

    A negative ion source is constructed to produce H.sup.- ions without using Cesium. A high percentage of secondary electrons that typically accompany the extracted H.sup.- are trapped and eliminated from the beam by permanent magnets in the initial stage of acceleration. Penetration of the magnetic field from the permanent magnets into the ion source is minimized. This reduces the destructive effect the magnetic field could have on negative ion production and extraction from the source. A beam expansion section in the extractor results in a strongly converged final beam.

  7. COASTING ARC ION SOURCE

    DOEpatents

    Foster, J.S. Jr.

    1957-09-10

    An improved ion source is described and in particular a source in which the ions are efficiently removed. The plasma is generated in a tubular amode structure by the oscillation of electrons in an axial magnetic field, as in the Phillips Ion Gage. The novel aspect of the source is the expansion of the plasma as it leaves the anode structure, so as to reduce the ion density at the axis of the anode and present a uniform area of plasma to an extraction grid. The structure utilized in the present patent to expand the plasma comprises flange members of high permeability at the exitgrid end of the amode to diverge the magnetic field adjacent the exit.

  8. Modeling of surface-dominated plasmas: from electric thruster to negative ion source.

    PubMed

    Taccogna, F; Schneider, R; Longo, S; Capitelli, M

    2008-02-01

    This contribution shows two important applications of the particle-in-cell/monte Carlo technique on ion sources: modeling of the Hall thruster SPT-100 for space propulsion and of the rf negative ion source for ITER neutral beam injection. In the first case translational degrees of freedom are involved, while in the second case inner degrees of freedom (vibrational levels) are excited. Computational results show how in both cases, plasma-wall and gas-wall interactions play a dominant role. These are secondary electron emission from the lateral ceramic wall of SPT-100 and electron capture from caesiated surfaces by positive ions and atoms in the rf negative ion source.

  9. Constricted glow discharge plasma source

    DOEpatents

    Anders, Andre; Anders, Simone; Dickinson, Michael; Rubin, Michael; Newman, Nathan

    2000-01-01

    A constricted glow discharge chamber and method are disclosed. The polarity and geometry of the constricted glow discharge plasma source is set so that the contamination and energy of the ions discharged from the source are minimized. The several sources can be mounted in parallel and in series to provide a sustained ultra low source of ions in a plasma with contamination below practical detection limits. The source is suitable for applying films of nitrides such as gallium nitride and oxides such as tungsten oxide and for enriching other substances in material surfaces such as oxygen and water vapor, which are difficult process as plasma in any known devices and methods. The source can also be used to assist the deposition of films such as metal films by providing low-energy ions such as argon ions.

  10. H(-) ion source developments at the SNS.

    PubMed

    Welton, R F; Stockli, M P; Murray, S N; Pennisi, T R; Han, B; Kang, Y; Goulding, R H; Crisp, D W; Sparks, D O; Luciano, N P; Carmichael, J R; Carr, J

    2008-02-01

    The U.S. Spallation Neutron Source (SNS) will require substantially higher average and pulse H(-) beam currents than can be produced from conventional ion sources such as the base line SNS source. H(-) currents of 40-50 mA (SNS operations) and 70-100 mA (power upgrade project) with a rms emittance of 0.20-0.35pi mm mrad and a approximately 7% duty factor will be needed. We are therefore investigating several advanced ion source concepts based on rf plasma excitation. First, the performance characteristics of an external antenna source based on an Al(2)O(3) plasma chamber combined with an external multicusp magnetic configuration, an elemental Cs system, and plasma gun will be discussed. Second, the first plasma measurements of a helicon-driven H(-) ion source will also be presented.

  11. H- ion source developments at the SNSa)

    NASA Astrophysics Data System (ADS)

    Welton, R. F.; Stockli, M. P.; Murray, S. N.; Pennisi, T. R.; Han, B.; Kang, Y.; Goulding, R. H.; Crisp, D. W.; Sparks, D. O.; Luciano, N. P.; Carmichael, J. R.; Carr, J.

    2008-02-01

    The U.S. Spallation Neutron Source (SNS) will require substantially higher average and pulse H- beam currents than can be produced from conventional ion sources such as the base line SNS source. H- currents of 40-50mA (SNS operations) and 70-100mA (power upgrade project) with a rms emittance of 0.20-0.35πmmmrad and a ˜7% duty factor will be needed. We are therefore investigating several advanced ion source concepts based on rf plasma excitation. First, the performance characteristics of an external antenna source based on an Al2O3 plasma chamber combined with an external multicusp magnetic configuration, an elemental Cs system, and plasma gun will be discussed. Second, the first plasma measurements of a helicon-driven H- ion source will also be presented.

  12. Fabrication of hydroxyapatite block from gypsum block based on (NH4)2HPO4 treatment.

    PubMed

    Suzuki, Yumiko; Matsuya, Shigeki; Udoh, Koh-ichi; Nakagawa, Masaharu; Tsukiyama, Yoshihiro; Koyano, Kiyoshi; Ishikawa, Kunio

    2005-12-01

    The aim of this study was to evaluate the feasibility of fabricating low-crystalline, porous apatite block using set gypsum as a precursor based on the fact that apatite is thermodynamically more stable than gypsum. When the set gypsum was immersed in 1 mol/L diammonium hydrogen phosphate aqueous solution at 100 degrees C, it transformed to low-crystalline porous apatite retaining its original shape. The transformation reaction caused a release of sulfate ions due to an ion exchange with phosphate ions, thus leading to a decrease in the pH of the solution. Then, due to decreased pH, dicalcium phosphate anhydrous--which has similar thermodynamic stability at lower pH--was also produced as a by-product. Apatite formed in the present method was low-crystalline, porous B-type carbonate apatite that contained approximately 0.5 wt% CO3, even though no carbonate sources--except carbon dioxide from air--were added to the reaction system. We concluded therefore that this is a useful bone filler fabrication method since B-type carbonate apatite is the biological apatite contained in bone.

  13. Geochemical signatures of groundwater in the coastal aquifers of Thiruvallur district, south India

    NASA Astrophysics Data System (ADS)

    Senthilkumar, S.; Balasubramanian, N.; Gowtham, B.; Lawrence, J. F.

    2017-03-01

    An attempt has been made to identify the chemical processes that control the hydrochemistry of groundwater in the coastal aquifers of Thiruvallur coastal village of Thiruvallur district, Tamil Nadu, south India. The parameters such as pH, EC, TDS and major ion concentrations of Na, K, Ca, Mg, Cl, HCO3, SO4 and NO3 of the groundwater were analyzed. Abundances of these ions are in the following order Na > Ca > Mg > K and HCO3 > Cl > SO4 > NO3. The dominant water types are in the order of NaCl> mixed CaMgCl > CaHCO3 > CaNaHCO3. Water types (mixed CaHCO3, mixed CaMgCl and NaCl) suggest that the mixing of high salinity water caused from surface contamination sources such as irrigation return flow, domestic wastewater and septic tank effluents with existing water followed by ion exchange reaction processes, silicate weathering and evaporation are responsible for the groundwater chemistry of the study area. The above statement is further supported by Gibbs plot where most of the samples fall within the evaporation zone.

  14. Preliminary result of rapid solenoid for controlling heavy-ion beam parameters of laser ion source

    DOE PAGES

    Okamura, M.; Sekine, M.; Ikeda, S.; ...

    2015-03-13

    To realize a heavy ion inertial fusion driver, we have studied a possibility of laser ion source (LIS). A LIS can provide high current high brightness heavy ion beams, however it was difficult to manipulate the beam parameters. To overcome the issue, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The rapid ramping magnetic field could enhance limited time slice of the current and simultaneously the beam emittance changed accordingly. This approach may also useful to realize an ion source for HIF power plant.

  15. Compact permanent magnet H⁺ ECR ion source with pulse gas valve.

    PubMed

    Iwashita, Y; Tongu, H; Fuwa, Y; Ichikawa, M

    2016-02-01

    Compact H(+) ECR ion source using permanent magnets is under development. Switching the hydrogen gas flow in pulse operations can reduce the gas loads to vacuum evacuation systems. A specially designed piezo gas valve chops the gas flow quickly. A 6 GHz ECR ion source equipped with the piezo gas valve is tested. The gas flow was measured by a fast ion gauge and a few ms response time is obtained.

  16. Identification and quantification of cardiac glycosides in blood and urine samples by HPLC/MS/MS.

    PubMed

    Guan, F; Ishii, A; Seno, H; Watanabe-Suzuki, K; Kumazawa, T; Suzuki, O

    1999-09-15

    Cardiac glycosides (CG) are of forensic importance because of their toxicity and the fact that very limited methods are available for identification of CG in biological samples. In this study, we have developed an identification and quantification method for digoxin, digitoxin, deslanoside, digoxigenin, and digitoxigenin by high-performance liquid chromatography tandem mass spectrometry (HPLC/MS/MS). CG formed abundant [M + NH4]+ ions and much less abundant [M + H]+ ions as observed with electrospray ionization (ESI) source and ammonium formate buffer. Under mild conditions for collision-induced dissociation (CID), each [M + NH4]+ ion fragmented to produce a dominant daughter ion, which was essential to the sensitive method of selected reaction monitoring (SRM) quantification of CG achieved in this study. SRM was compared with selected ion monitoring (SIM) regarding the effects of sample matrixes on the methodology. SRM produced lower detection limits with biological samples than SIM, while both methods produced equal detection limits with CG standards. On the basis of the HPLC/MS/MS results for CG, we have proposed some generalized points for conducting sensitive SRM measurements, in view of the property of analytes as well as instrumental conditions such as the type of HPLC/MS interface and CID parameters. Analytes of which the molecular ion can produce one abundant daughter ion with high yield under CID conditions may be sensitively measured by SRM. ESI is the most soft ionization source developed so far and can afford formation of the fragile molecular ions that are necessary for sensitive SRM detection. Mild CID conditions such as low collision energy and low pressure of collision gas favor production of an abundant daughter ion that is essential to sensitive SRM detection. This knowledge may provide some guidelines for conducting sensitive SRM measurements of very low concentrations of drugs or toxicants in biological samples.

  17. Low pressure and high power rf sources for negative hydrogen ions for fusion applications (ITER neutral beam injection).

    PubMed

    Fantz, U; Franzen, P; Kraus, W; Falter, H D; Berger, M; Christ-Koch, S; Fröschle, M; Gutser, R; Heinemann, B; Martens, C; McNeely, P; Riedl, R; Speth, E; Wünderlich, D

    2008-02-01

    The international fusion experiment ITER requires for the plasma heating and current drive a neutral beam injection system based on negative hydrogen ion sources at 0.3 Pa. The ion source must deliver a current of 40 A D(-) for up to 1 h with an accelerated current density of 200 Am/(2) and a ratio of coextracted electrons to ions below 1. The extraction area is 0.2 m(2) from an aperture array with an envelope of 1.5 x 0.6 m(2). A high power rf-driven negative ion source has been successfully developed at the Max-Planck Institute for Plasma Physics (IPP) at three test facilities in parallel. Current densities of 330 and 230 Am/(2) have been achieved for hydrogen and deuterium, respectively, at a pressure of 0.3 Pa and an electron/ion ratio below 1 for a small extraction area (0.007 m(2)) and short pulses (<4 s). In the long pulse experiment, equipped with an extraction area of 0.02 m(2), the pulse length has been extended to 3600 s. A large rf source, with the width and half the height of the ITER source but without extraction system, is intended to demonstrate the size scaling and plasma homogeneity of rf ion sources. The source operates routinely now. First results on plasma homogeneity obtained from optical emission spectroscopy and Langmuir probes are very promising. Based on the success of the IPP development program, the high power rf-driven negative ion source has been chosen recently for the ITER beam systems in the ITER design review process.

  18. A Simple Analytical Model for Predicting the Detectable Ion Current in Ion Mobility Spectrometry Using Corona Discharge Ionization Sources

    NASA Astrophysics Data System (ADS)

    Kirk, Ansgar Thomas; Kobelt, Tim; Spehlbrink, Hauke; Zimmermann, Stefan

    2018-05-01

    Corona discharge ionization sources are often used in ion mobility spectrometers (IMS) when a non-radioactive ion source with high ion currents is required. Typically, the corona discharge is followed by a reaction region where analyte ions are formed from the reactant ions. In this work, we present a simple yet sufficiently accurate model for predicting the ion current available at the end of this reaction region when operating at reduced pressure as in High Kinetic Energy Ion Mobility Spectrometers (HiKE-IMS) or most IMS-MS instruments. It yields excellent qualitative agreement with measurement results and is even able to calculate the ion current within an error of 15%. Additional interesting findings of this model are the ion current at the end of the reaction region being independent from the ion current generated by the corona discharge and the ion current in High Kinetic Energy Ion Mobility Spectrometers (HiKE-IMS) growing quadratically when scaling down the length of the reaction region. [Figure not available: see fulltext.

  19. A Simple Analytical Model for Predicting the Detectable Ion Current in Ion Mobility Spectrometry Using Corona Discharge Ionization Sources.

    PubMed

    Kirk, Ansgar Thomas; Kobelt, Tim; Spehlbrink, Hauke; Zimmermann, Stefan

    2018-05-08

    Corona discharge ionization sources are often used in ion mobility spectrometers (IMS) when a non-radioactive ion source with high ion currents is required. Typically, the corona discharge is followed by a reaction region where analyte ions are formed from the reactant ions. In this work, we present a simple yet sufficiently accurate model for predicting the ion current available at the end of this reaction region when operating at reduced pressure as in High Kinetic Energy Ion Mobility Spectrometers (HiKE-IMS) or most IMS-MS instruments. It yields excellent qualitative agreement with measurement results and is even able to calculate the ion current within an error of 15%. Additional interesting findings of this model are the ion current at the end of the reaction region being independent from the ion current generated by the corona discharge and the ion current in High Kinetic Energy Ion Mobility Spectrometers (HiKE-IMS) growing quadratically when scaling down the length of the reaction region. Graphical Abstract ᅟ.

  20. RF-driven ion source with a back-streaming electron dump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwan, Joe; Ji, Qing

    A novel ion source is described having an improved lifetime. The ion source, in one embodiment, is a proton source, including an external RF antenna mounted to an RF window. To prevent backstreaming electrons formed in the beam column from striking the RF window, a back streaming electron dump is provided, which in one embodiment is formed of a cylindrical tube, open at one end to the ion source chamber and capped at its other end by a metal plug. The plug, maintained at the same electrical potential as the source, captures these backstreaming electrons, and thus prevents localized heatingmore » of the window, which due to said heating, might otherwise cause window damage.« less

  1. Development and Evaluation of a Reverse-Entry Ion Source Orbitrap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Poltash, Michael L.; McCabe, Jacob W.; Patrick, John W.; Laganowsky, Arthur; Russell, David H.

    2018-05-01

    As a step towards development of a high-resolution ion mobility mass spectrometer using the orbitrap mass analyzer platform, we describe herein a novel reverse-entry ion source (REIS) coupled to the higher-energy C-trap dissociation (HCD) cell of an orbitrap mass spectrometer with extended mass range. Development of the REIS is a first step in the development of a drift tube ion mobility-orbitrap MS. The REIS approach retains the functionality of the commercial instrument ion source which permits the uninterrupted use of the instrument during development as well as performance comparisons between the two ion sources. Ubiquitin (8.5 kDa) and lipid binding to the ammonia transport channel (AmtB, 126 kDa) protein complex were used as model soluble and membrane proteins, respectively, to evaluate the performance of the REIS instrument. Mass resolution obtained with the REIS is comparable to that obtained using the commercial ion source. The charge state distributions for ubiquitin and AmtB obtained on the REIS are in agreement with previous studies which suggests that the REIS-orbitrap EMR retains native structure in the gas phase.

  2. TH-AB-201-06: Examining the Influence of Humidity On Reference Ion Chamber Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taank, J; McEwen, M

    2016-06-15

    Purpose: International dosimetry protocols require measurements made with a vented ionization chamber to be corrected for the influence of air density by using the standard temperature-pressure correction factor. The effect of humidity, on the other hand, is generally ignored with the provision that the relative humidity is between certain limits (15% to 80%). However, there is little experimental data in the published literature as to the true effect of humidity on modern reference-class ion chambers. This investigation used two different radiation beams – a Co-60 irradiator and a Sr-90 check source – to examine the effect of humidity on severalmore » versions of the standard Farmer-type ion chamber. Methods: An environmental cabinet controlled the humidity. For the Co-60 beam, the irradiation was external, whereas for the Sr-90 measurements, the source itself was placed within the cabinet. Extensive measurements were carried out to ensure that the experimental setup provided reproducible readings. Four chamber types were investigated: IBA FC65-G (×2), IBA FC65-P, PTW30013 & Exradin A19. The different wall materials provided potentially different mechanical responses (i.e., in terms of expansion/contraction) to the water content in the air. The relative humidity was varied between 8 % and 97 % and measurements were made with increasing and decreasing humidity to investigate possible hysteresis effects. Results: Measurements in Co-60 were consistent with the published data obtained with primary standard cavity chambers in ICRU Report 31. Ionization currents with Sr-90 showed no dependence with the relative humidity, within the measurement uncertainties. Very good repeatability of the ionization current was obtained over successive wet/dry cycles, no hysteresis was observed, and there was no dependence on chamber type. Conclusion: This null result is very encouraging as it indicates that humidity has no significant effect on these particular types of ionization chambers, consistent with recommendations in current megavoltage dosimetry protocols.« less

  3. Ion microprobe magnesium isotope analysis of plagioclase and hibonite from ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Hinton, R. W.; Bischoff, A.

    1984-01-01

    Ion and electron microprobes were used to examine Mg-26 excesses from Al-26 decay in four Al-rich objects from the type 3 ordinary hibonite clast in the Dhajala chondrite. The initial Al-26/Al-27 ratio was actually significantly lower than Al-rich inclusions in carbonaceous chondrites. Also, no Mg-26 excesses were found in three plagioclase-bearing chondrules that were also examined. The Mg-26 excesses in the hibonite chondrites indicated a common origin for chondrites with the excesses. The implied Al-26 content in a proposed parent body could not, however, be confirmed as a widespread heat source in the early solar system.

  4. A novel radial anode layer ion source for inner wall pipe coating and materials modification--hydrogenated diamond-like carbon coatings from butane gas.

    PubMed

    Murmu, Peter P; Markwitz, Andreas; Suschke, Konrad; Futter, John

    2014-08-01

    We report a new ion source development for inner wall pipe coating and materials modification. The ion source deposits coatings simultaneously in a 360° radial geometry and can be used to coat inner walls of pipelines by simply moving the ion source in the pipe. Rotating parts are not required, making the source ideal for rough environments and minimizing maintenance and replacements of parts. First results are reported for diamond-like carbon (DLC) coatings on Si and stainless steel substrates deposited using a novel 360° ion source design. The ion source operates with permanent magnets and uses a single power supply for the anode voltage and ion acceleration up to 10 kV. Butane (C4H10) gas is used to coat the inner wall of pipes with smooth and homogeneous DLC coatings with thicknesses up to 5 μm in a short time using a deposition rate of 70 ± 10 nm min(-1). Rutherford backscattering spectrometry results showed that DLC coatings contain hydrogen up to 30 ± 3% indicating deposition of hydrogenated DLC (a-C:H) coatings. Coatings with good adhesion are achieved when using a multiple energy implantation regime. Raman spectroscopy results suggest slightly larger disordered DLC layers when using low ion energy, indicating higher sp(3) bonds in DLC coatings. The results show that commercially interesting coatings can be achieved in short time.

  5. Beam current controller for laser ion source

    DOEpatents

    Okamura, Masahiro

    2014-10-28

    The present invention relates to the design and use of an ion source with a rapid beam current controller for experimental and medicinal purposes. More particularly, the present invention relates to the design and use of a laser ion source with a magnetic field applied to confine a plasma flux caused by laser ablation.

  6. A CW radiofrequency ion source for production of negative hydrogen ion beams for cyclotrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalvas, T.; Tarvainen, O.; Komppula, J.

    2015-04-08

    A CW 13.56 MHz radiofrequency-driven ion source RADIS for production of H{sup −} and D{sup −} beams is under development for replacing the filament-driven ion source of the MCC30/15 cyclotron. The RF ion source has a 16-pole multicusp plasma chamber, an electromagnet-based magnetic filter and an external planar spiral RF antenna behind an AlN window. The extraction is a 5-electrode system with an adjustable puller electrode voltage for optimizing the beam formation, a water-cooled electron dump electrode and an accelerating einzel lens. At 2650 W of RF power, the source produces 1 mA of H{sup −} (2.6 mA/cm{sup 2}), which is the intensity neededmore » at injection for production of 200 µA H{sup +} with the filament-driven ion source. A simple pepperpot device has been developed for characterizing the beam emittance. Plans for improving the power efficiency with the use of a new permanent magnet front plate is discussed.« less

  7. RF Negative Ion Source Development at IPP Garching

    NASA Astrophysics Data System (ADS)

    Kraus, W.; McNeely, P.; Berger, M.; Christ-Koch, S.; Falter, H. D.; Fantz, U.; Franzen, P.; Fröschle, M.; Heinemann, B.; Leyer, S.; Riedl, R.; Speth, E.; Wünderlich, D.

    2007-08-01

    IPP Garching is heavily involved in the development of an ion source for Neutral Beam Heating of the ITER Tokamak. RF driven ion sources have been successfully developed and are in operation on the ASDEX-Upgrade Tokamak for positive ion based NBH by the NB Heating group at IPP Garching. Building on this experience a RF driven H- ion source has been under development at IPP Garching as an alternative to the ITER reference design ion source. The number of test beds devoted to source development for ITER has increased from one (BATMAN) by the addition of two test beds (MANITU, RADI). This paper contains descriptions of the three test beds. Results on diagnostic development using laser photodetachment and cavity ringdown spectroscopy are given for BATMAN. The latest results for long pulse development on MANITU are presented including the to date longest pulse (600 s). As well, details of source modifications necessitated for pulses in excess of 100 s are given. The newest test bed RADI is still being commissioned and only technical details of the test bed are included in this paper. The final topic of the paper is an investigation into the effects of biasing the plasma grid.

  8. ZnS Buffer Layers Grown by Modified Chemical Bath Deposition for CIGS Solar Cells

    NASA Astrophysics Data System (ADS)

    Lee, Dongchan; Ahn, Heejin; Shin, Hyundo; Um, Youngho

    2018-03-01

    ZnS thin films were prepared by the chemical bath deposition method using disodium ethylene-diaminetetraacetic acid and hexamethylenetetramine as complexing agents in acidic conditions. The film prepared using a preheated S-ion source showed full surface coverage, but some clusters were found that were generated by the cluster-by-cluster reaction mechanism. On the other hand, the film prepared without this source had a uniform, dense, and smooth surface and showed fewer clusters than the film prepared using a preheated S-ion source. The x-ray photoelectron spectroscopy spectra showed the energy core levels of Zn, O, and S components, and Zn-OH bonding decreased on the film using the preheated S-ion source. Especially, various binding energy peaks were found in the Zn 2p 3/2 spectrum by Gaussian function fitting, and no peak corresponding to Zn-OH bonding was found for the film prepared using a preheated S-ion source. Moreover, the x-ray diffraction spectrum of the ZnS thin film using a non-preheated S-ion source showed amorphous or nanoscale crystallinity, but the emission peaks indicated that the structure of the film using preheated S-ion source was zincblende.

  9. ZnS Buffer Layers Grown by Modified Chemical Bath Deposition for CIGS Solar Cells

    NASA Astrophysics Data System (ADS)

    Lee, Dongchan; Ahn, Heejin; Shin, Hyundo; Um, Youngho

    2018-07-01

    ZnS thin films were prepared by the chemical bath deposition method using disodium ethylene-diaminetetraacetic acid and hexamethylenetetramine as complexing agents in acidic conditions. The film prepared using a preheated S-ion source showed full surface coverage, but some clusters were found that were generated by the cluster-by-cluster reaction mechanism. On the other hand, the film prepared without this source had a uniform, dense, and smooth surface and showed fewer clusters than the film prepared using a preheated S-ion source. The x-ray photoelectron spectroscopy spectra showed the energy core levels of Zn, O, and S components, and Zn-OH bonding decreased on the film using the preheated S-ion source. Especially, various binding energy peaks were found in the Zn 2 p 3/2 spectrum by Gaussian function fitting, and no peak corresponding to Zn-OH bonding was found for the film prepared using a preheated S-ion source. Moreover, the x-ray diffraction spectrum of the ZnS thin film using a non-preheated S-ion source showed amorphous or nanoscale crystallinity, but the emission peaks indicated that the structure of the film using preheated S-ion source was zincblende.

  10. Power Transmission From The ITER Model Negative Ion Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boilson, D.; Esch, H. P. L. de; Grand, C.

    2007-08-10

    In Cadarache development on negative ion sources is being carried out on the KAMABOKO III ion source on the MANTIS test bed. This is a model of the ion source designed for the neutral beam injectors of ITER. This ion source has been developed in collaboration with JAERI, Japan, who also designed and supplied the ion source. Its target performance is to accelerate a D- beam, with a current density of 200 A/m2 and <1 electron extracted per accelerated D- ion, at a source filling pressure of 0.3 Pa. For ITER a continuous ion beam must be assured for pulsemore » lengths of 1000 s, but beams of up to 3,600 s are also envisaged. The ion source is attached to a 3 grid 30 keV accelerator (also supplied by JAERI) and the accelerated negative ion current is determined from the energy deposited on a calorimeter. During long pulse operation ({<=}1000 s) it was found that the current density of both D- and H- beams, measured at the calorimeter was lower than expected and that a large discrepancy existed between the accelerated currents measured electrically and those transmitted to the calorimeter. The possibility that this discrepancy arose because the accelerated current included electrons (which would not be able to reach the calorimeter) was investigated and subsequently eliminated. Further studies have shown that the fraction of the electrical current reaching the calorimeter varies with the pulse length, which led to the suggestion that one or more of the accelerator grids were distorting due to the incident power during operation, leading to a progressive deterioration in the beam quality.. New extraction and acceleration grids have been designed and installed, which should have a better tolerance to thermal loads than those previously used. This paper describes the measurements of the power transmission and distribution using these grids.« less

  11. Analysis of the spatial non-uniformity of negative ion production in surface-produced negative ion sources

    NASA Astrophysics Data System (ADS)

    Fujita, S.; Yamamoto, T.; Yoshida, M.; Onai, M.; Kojima, A.; Hatayama, A.; Kashiwagi, M.

    2017-08-01

    In order to improve the uniformity of the negative ion production, the KEIO-MARC code has been applied to the QST's JT60SA negative ion source in three different magnetic configurations (i) MC-PGMF (Multi-Cusp and PG Magnetic Filter), (ii) TNT-MF (TeNT Magnetic Filter) and (iii) MTNT-MF (Modified TeNT Magnetic Filter). From the results, we have confirmed that the electron rotation inside the negative ion source is an essential element in order to obtain a uniform production of the negative ions. By adding extra tent magnets on the longitudinal sides, the electron rotation has been enhanced, and a uniform production of negative ions has been realized.

  12. Performance on the low charge state laser ion source in BNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamura, M.; Alessi, J.; Beebe, E.

    On March 2014, a Laser Ion Source (LIS) was commissioned which delivers high-brightness, low-charge-state heavy ions for the hadron accelerator complex in Brookhaven National Laboratory (BNL). Since then, the LIS has provided many heavy ion species successfully. The low-charge-state (mostly singly charged) beams are injected to the Electron Beam Ion Source (EBIS), where ions are then highly ionized to fit to the following accelerator’s Q/M acceptance, like Au 32+. Recently we upgraded the LIS to be able to provide two different beams into EBIS on a pulse-to-pulse basis. Now the LIS is simultaneously providing beams for both the Relativistic Heavymore » Ion Collider (RHIC) and NASA Space Radiation Laboratory (NSRL).« less

  13. Mixed clusters from the coexpansion of C2F6 and n2 in a pulsed, supersonic expansion cluster ion source and beam deflection time-of-flight mass spectrometer: A first application

    NASA Astrophysics Data System (ADS)

    Thompson, Steven D.

    The following topics are discussed: (1) cluster ion genesis; (2) cluster ion detection; (3) Ion source; (4) pulse valve; (5) e-gun; (6) Ion optics; (7) a first order model; and (8) a modified Bakker's model.

  14. Influence of frequency tuning and double-frequency heating on ions extracted from an electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Maimone, F.; Celona, L.; Lang, R.; Mäder, J.; Roßbach, J.; Spädtke, P.; Tinschert, K.

    2011-12-01

    The electromagnetic field within the plasma chamber of an electron cyclotron resonance ion source (ECRIS) and the properties of the plasma waves affect the plasma properties and ion beam production. We have experimentally investigated the "frequency tuning effect" and "double frequency heating" on the CAPRICE ECRIS device. A traveling wave tube amplifier, two microwave sweep generators, and a dedicated experimental set-up were used to carry out experiments in the 12.5-16.5 GHz frequency range. During the frequency sweeps the evolution of the intensity and shape of the extracted argon beam were measured together with the microwave reflection coefficient. A range of different ion source parameter settings was used. Here we describe these experiments and the resultant improved understanding of these operational modes of the ECR ion source.

  15. Influence of frequency tuning and double-frequency heating on ions extracted from an electron cyclotron resonance ion source.

    PubMed

    Maimone, F; Celona, L; Lang, R; Mäder, J; Rossbach, J; Spädtke, P; Tinschert, K

    2011-12-01

    The electromagnetic field within the plasma chamber of an electron cyclotron resonance ion source (ECRIS) and the properties of the plasma waves affect the plasma properties and ion beam production. We have experimentally investigated the "frequency tuning effect" and "double frequency heating" on the CAPRICE ECRIS device. A traveling wave tube amplifier, two microwave sweep generators, and a dedicated experimental set-up were used to carry out experiments in the 12.5-16.5 GHz frequency range. During the frequency sweeps the evolution of the intensity and shape of the extracted argon beam were measured together with the microwave reflection coefficient. A range of different ion source parameter settings was used. Here we describe these experiments and the resultant improved understanding of these operational modes of the ECR ion source.

  16. Mass spectrometer with electron source for reducing space charge effects in sample beam

    DOEpatents

    Houk, Robert S.; Praphairaksit, Narong

    2003-10-14

    A mass spectrometer includes an ion source which generates a beam including positive ions, a sampling interface which extracts a portion of the beam from the ion source to form a sample beam that travels along a path and has an excess of positive ions over at least part of the path, thereby causing space charge effects to occur in the sample beam due to the excess of positive ions in the sample beam, an electron source which adds electrons to the sample beam to reduce space charge repulsion between the positive ions in the sample beam, thereby reducing the space charge effects in the sample beam and producing a sample beam having reduced space charge effects, and a mass analyzer which analyzes the sample beam having reduced space charge effects.

  17. Development of Remote Sampling ESI Mass Spectrometry for the Rapid and Automatic Analysis of Multiple Samples

    PubMed Central

    Yamada, Yuki; Ninomiya, Satoshi; Hiraoka, Kenzo; Chen, Lee Chuin

    2016-01-01

    We report on combining a self-aspirated sampling probe and an ESI source using a single metal capillary which is electrically grounded and safe for use by the operator. To generate an electrospray, a negative H.V. is applied to the counter electrode of the ESI emitter to operate in positive ion mode. The sampling/ESI capillary is enclosed within another concentric capillary similar to the arrangement for a standard pneumatically assisted ESI source. The suction of the liquid sample is due to the Venturi effect created by the high-velocity gas flow near the ESI tip. In addition to serving as the mechanism for suction, the high-velocity gas flow also assists in the nebulization of charged droplets, thus producing a stable ion signal. Even though the potential of the ion source counter electrode is more negative than the mass spectrometer in the positive ion mode, the electric field effect is not significant if the ion source and the mass spectrometer are separated by a sufficient distance. Ion transmission is achieved by the viscous flow of the carrier gas. Using the present arrangement, the user can hold the ion source in a bare hand and the ion signal appears almost immediately when the sampling capillary is brought into contact with the liquid sample. The automated analysis of multiple samples can also be achieved by using motorized sample stage and an automated ion source holder. PMID:28616373

  18. Development of Remote Sampling ESI Mass Spectrometry for the Rapid and Automatic Analysis of Multiple Samples.

    PubMed

    Yamada, Yuki; Ninomiya, Satoshi; Hiraoka, Kenzo; Chen, Lee Chuin

    2016-01-01

    We report on combining a self-aspirated sampling probe and an ESI source using a single metal capillary which is electrically grounded and safe for use by the operator. To generate an electrospray, a negative H.V. is applied to the counter electrode of the ESI emitter to operate in positive ion mode. The sampling/ESI capillary is enclosed within another concentric capillary similar to the arrangement for a standard pneumatically assisted ESI source. The suction of the liquid sample is due to the Venturi effect created by the high-velocity gas flow near the ESI tip. In addition to serving as the mechanism for suction, the high-velocity gas flow also assists in the nebulization of charged droplets, thus producing a stable ion signal. Even though the potential of the ion source counter electrode is more negative than the mass spectrometer in the positive ion mode, the electric field effect is not significant if the ion source and the mass spectrometer are separated by a sufficient distance. Ion transmission is achieved by the viscous flow of the carrier gas. Using the present arrangement, the user can hold the ion source in a bare hand and the ion signal appears almost immediately when the sampling capillary is brought into contact with the liquid sample. The automated analysis of multiple samples can also be achieved by using motorized sample stage and an automated ion source holder.

  19. Flexible ion conduit for use under rarefied atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Hars, Gyorgy; Meuzelaar, Henk LC.

    1997-09-01

    A tubular ion conduit has been constructed, which transports ions by convection by means of a carrier gas. Typical inlet pressures are in the 10-100 Torr range, with outlet pressures as low as 10-3 Torr. The 20-30 cm, 1-2-mm-i.d., capillary tube, made of an electrically insulating material, is surrounded by a specifically configured pair of helical electrodes ("helical dipole"), which are supplied with symmetrical voltages in the tens of volt amplitude and in 1 MHz frequency range. The vibrational average force field generated reduces the tendency of ions to hit the inner wall of the tube. This way ions can be transported with minimal loss. Previously, known ion guides are operated under molecular flow (high vacuum) conditions only, as opposed to the method described here, where the carrier gas enters under viscous flow conditions and exits as molecular flow. In addition, existing ion guides are stiff in contrast to the flexible construction described here, which can be easily and inexpensively manufactured. The ion conduit is expected to have important applications in connecting ambient or near-ambient pressure electrospray ionization or atmospheric pressure ionization type ion sources to mass spectrometers, while reducing pumping requirements, e.g., field portable equipment. Furthermore, the device may provide a means for connecting electron multiplier detectors to near ambient pressure analyzers such as ion mobility spectrometers.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, D.C.; Tepermeister, I.; Sawin, H.H.

    A multiple beam apparatus has been constructed to facilitate the study of ion-enhanced fluorine chemistry on undoped polysilicon and silicon dioxide surfaces by allowing the fluxes of fluorine (F) atoms and argon (Ar{sup +}) ions to be independently varied over several orders of magnitude. The chemical nature of the etching surfaces has been investigated following the vacuum transfer of the sample dies to an adjoining x-ray photoelectron spectroscopy facility. The etching {open_quotes}enhancement{close_quotes} effect of normally incident Ar{sup +} ions has been quantified over a wide range of ion energy through the use of Kaufman and electron cyclotron resonance-type ion sources.more » The increase in per ion etching yield of fluorine saturated silicon and silicon dioxide surfaces with increasing ion energy (E{sub ion}) was found to scale as (E{sub ion}{sup 1/2}-E{sub th}{sup 1/2}), where E{sub th} is the etching threshold energy for the process. Simple near-surface site occupation models have been proposed for the quantification of the ion-enhanced etching kinetics in these systems. Acceptable agreement has been found in comparison of these Ar{sup +}/F etching model predictions with similar Ar{sup +}/XeF{sub 2} studies reported in the literature, as well as with etching rate measurements made in F-based plasmas of gases such as SF{sub 6} and NF{sub 3}. 69 refs., 12 figs., 6 tabs.« less

Top