Sample records for type iv cracking

  1. Assessment of AASHTO M 364 type II and type IV joint sealers.

    DOT National Transportation Integrated Search

    2014-11-01

    To address the issue of water infiltration and debris retention, bituminous crack sealers and fillers have been : developed to help prevent premature pavement distress. If applied appropriately, crack sealers and fillers can : significantly extend th...

  2. Assessment of ASTM D 6690-12 type II and type IV joint sealers.

    DOT National Transportation Integrated Search

    2014-11-01

    To address the issue of water infiltration and debris retention, bi : tuminous crack sealers and fillers have been : developed to help prevent premature pavement distress. If applied appropriately, crack sealers and fillers can : significantly extend...

  3. Electro-mechanical coupling of semiconductor film grown on stainless steel by oxidation

    NASA Astrophysics Data System (ADS)

    Lin, M. C.; Wang, G.; Guo, L. Q.; Qiao, L. J.; Volinsky, Alex A.

    2013-09-01

    Electro-mechanical coupling phenomenon in oxidation film on stainless steel has been discovered by using current-sensing atomic force microscopy, along with the I-V curves measurements. The oxidation films exhibit either ohmic, n-type, or p-type semiconductor properties, according to the obtained I-V curves. This technique allows characterizing oxidation films with high spatial resolution. Semiconductor properties of oxidation films must be considered as additional stress corrosion cracking mechanisms.

  4. Creep Strength Behavior of Boron Added P91 Steel and its Weld in the Temperature Range of 600-650°C

    NASA Astrophysics Data System (ADS)

    Swaminathan, J.; Das, C. R.; Baral, Jayashree; Phaniraj, C.; Ghosh, R. N.; Albert, S. K.; Bhaduri, A. K.

    One of the promising ways for mitigation of Type IV cracking — a failure by cracking at the intercritical /fine grained heat affected zone, a life limiting problem in advanced 9-12 Cr ferritic steel weld like that of P91 is through modification of alloy composition by addition of boron. Addition of boron was observed to improve the microstructure at the weld zone and hence the creep strength. In the present work, boron (100 ppm with controlled nitrogen) added P91 steel after normalizing at 1050°C and 1150°C and tempered at 760°C were studied for the creep behavior in the base metal and welded condition in the temperature range of 600-650°C. Creep strength was characterized in terms of stress and temperature dependence of creep rate and rupture time. Weld creep life was reduced compared to the base metal with rupture occurring at the ICHAZ (Type IV crack). However at longer time (at lower stress levels) exposure creep crack moves from weld metal to HAZ (Type II crack). Rupture life was found to superior for the base and weld in the boron containing steel when higher normalizing temperature is used. Estimation of 105 h was attempted based on short term rupture data available and weld strength factors were calculated. Observed values are better for P91BH condition than the values for P91BLcondition as well as those available for P91 in open literature

  5. The Effect of Fatigue Cracks on Fastener Flexibility, Load Distribution and Fatigue Crack Growth

    DTIC Science & Technology

    2012-05-01

    fastener will transfer within a given fastener pattern. iv iv However, current methods do not account for the change in flexibility at a fastener...affects the growth of the crack. Thus, as the effect of the crack starts to impact the load transfer of the joint there is a need to account for...not account for spectrum loading but typically were cycled from 1g to limit or maximum flight load and then correlated to measured usage using

  6. Type IV collagen is a novel DEJ biomarker that is reduced by radiotherapy.

    PubMed

    McGuire, J D; Gorski, J P; Dusevich, V; Wang, Y; Walker, M P

    2014-10-01

    The dental basement membrane (BM) is composed of collagen types IV, VI, VII, and XVII, fibronectin, and laminin and plays an inductive role in epithelial-mesenchymal interactions during tooth development. The BM is degraded and removed during later-stage tooth morphogenesis; however, its original position defines the location of the dentin-enamel junction (DEJ) in mature teeth. We recently demonstrated that type VII collagen is a novel component of the inner enamel organic matrix layer contiguous with the DEJ. Since it is frequently co-expressed with and forms functional complexes with type VII collagen, we hypothesized that type IV collagen should also be localized to the DEJ in mature human teeth. To identify collagen IV, we first evaluated defect-free erupted teeth from various donors. To investigate a possible stabilizing role, we also evaluated extracted teeth exposed to high-dose radiotherapy--teeth that manifest post-radiotherapy DEJ instability. We now show that type IV collagen is a component within the morphological DEJ of posterior and anterior teeth from individuals aged 18 to 80 yr. Confocal microscopy revealed that immunostained type IV collagen was restricted to the 5- to 10-µm-wide optical DEJ, while collagenase treatment or previous in vivo tooth-level exposure to > 60 Gray irradiation severely reduced immunoreactivity. This assignment was confirmed by Western blotting with whole-tooth crown and enamel extracts. Without reduction, type IV collagen contained macromolecular α-chains of 225 and 250 kDa. Compositionally, our results identify type IV collagen as the first macromolecular biomarker of the morphological DEJ of mature teeth. Given its network structure and propensity to stabilize the dermal-epidermal junction, we propose that a collagen-IV-enriched DEJ may, in part, explain its well-known fracture toughness, crack propagation resistance, and stability. In contrast, loss of type IV collagen may represent a biochemical rationale for the DEJ instability observed following oral cancer radiotherapy. © International & American Associations for Dental Research.

  7. Type IV Collagen is a Novel DEJ Biomarker that is Reduced by Radiotherapy

    PubMed Central

    McGuire, J.D.; Gorski, J.P.; Dusevich, V.; Wang, Y.; Walker, M.P.

    2014-01-01

    The dental basement membrane (BM) is composed of collagen types IV, VI, VII, and XVII, fibronectin, and laminin and plays an inductive role in epithelial-mesenchymal interactions during tooth development. The BM is degraded and removed during later-stage tooth morphogenesis; however, its original position defines the location of the dentin-enamel junction (DEJ) in mature teeth. We recently demonstrated that type VII collagen is a novel component of the inner enamel organic matrix layer contiguous with the DEJ. Since it is frequently co-expressed with and forms functional complexes with type VII collagen, we hypothesized that type IV collagen should also be localized to the DEJ in mature human teeth. To identify collagen IV, we first evaluated defect-free erupted teeth from various donors. To investigate a possible stabilizing role, we also evaluated extracted teeth exposed to high-dose radiotherapy – teeth that manifest post-radiotherapy DEJ instability. We now show that type IV collagen is a component within the morphological DEJ of posterior and anterior teeth from individuals aged 18 to 80 yr. Confocal microscopy revealed that immunostained type IV collagen was restricted to the 5- to 10-µm-wide optical DEJ, while collagenase treatment or previous in vivo tooth-level exposure to > 60 Gray irradiation severely reduced immunoreactivity. This assignment was confirmed by Western blotting with whole-tooth crown and enamel extracts. Without reduction, type IV collagen contained macromolecular α-chains of 225 and 250 kDa. Compositionally, our results identify type IV collagen as the first macromolecular biomarker of the morphological DEJ of mature teeth. Given its network structure and propensity to stabilize the dermal-epidermal junction, we propose that a collagen-IV-enriched DEJ may, in part, explain its well-known fracture toughness, crack propagation resistance, and stability. In contrast, loss of type IV collagen may represent a biochemical rationale for the DEJ instability observed following oral cancer radiotherapy. PMID:25146181

  8. Fatigue-Crack-Growth Structural Analysis

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1986-01-01

    Elastic and plastic deformations calculated under variety of loading conditions. Prediction of fatigue-crack-growth lives made with FatigueCrack-Growth Structural Analysis (FASTRAN) computer program. As cyclic loads are applied to initial crack configuration, FASTRAN predicts crack length and other parameters until complete break occurs. Loads are tensile or compressive and of variable or constant amplitude. FASTRAN incorporates linear-elastic fracture mechanics with modifications of load-interaction effects caused by crack closure. FASTRAN considered research tool, because of lengthy calculation times. FASTRAN written in FORTRAN IV for batch execution.

  9. 49 CFR 215.123 - Defective couplers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... automatically with the adjacent car; (b) The car has a coupler that has a crack in the highly stressed junction... knuckle that is broken or cracked on the inside pulling face of the knuckle. (d) The car has a knuckle pin...) Missing; (ii) Inoperative; (iii) Bent; (iv) Cracked; or (v) Broken. ...

  10. 49 CFR 215.123 - Defective couplers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... automatically with the adjacent car; (b) The car has a coupler that has a crack in the highly stressed junction... knuckle that is broken or cracked on the inside pulling face of the knuckle. (d) The car has a knuckle pin...) Missing; (ii) Inoperative; (iii) Bent; (iv) Cracked; or (v) Broken. ...

  11. 77 FR 56528 - Airworthiness Directives; Various Restricted Category Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-13

    ... use the phrase ``cracks in the bond lines between doublers or grip plates'' to describe a separation... defined as a separation of the detail parts along an edge. Note 3 to paragraph (e)(1)(iv): A crack in the..., doubler, or skin is cracked. If any parent material is removed during the sanding operation, replace the M...

  12. The influence of loading on the corrosion of steel in cracked ordinary Portland cement and high performance concretes

    NASA Astrophysics Data System (ADS)

    Jaffer, Shahzma Jafferali

    Most studies that have examined chloride-induced corrosion of steel in concrete have focused on sound concrete. However, reinforced concrete is seldom uncracked and very few studies have investigated the influence of cracked concrete on rebar corrosion. Furthermore, the studies that have examined the relationship between cracks and corrosion have focused on unloaded or statically loaded cracks. However, in practice, reinforced concrete structures (e.g. bridges) are often dynamically loaded. Hence, the cracks in such structures open and close which could influence the corrosion of the reinforcing steel. Consequently, the objectives of this project were (i) to examine the effect of different types of loading on the corrosion of reinforcing steel, (ii) the influence of concrete mixture design on the corrosion behaviour and (iii) to provide data that can be used in service-life modelling of cracked reinforced concretes. In this project, cracked reinforced concrete beams made with ordinary Portland cement concrete (OPCC) and high performance concrete (HPC) were subjected to no load, static loading and dynamic loading. They were immersed in salt solution to just above the crack level at their mid-point for two weeks out of every four (wet cycle) and, for the remaining two weeks, were left in ambient laboratory conditions to dry (dry cycle). The wet cycle led to three conditions of exposure for each beam: (i) the non-submerged region, (ii) the sound, submerged region and (iii) the cracked mid-section, which was also immersed in the solution. Linear polarization resistance and galvanostatic pulse techniques were used to monitor the corrosion in the three regions. Potentiodynamic polarization, electrochemical current noise and concrete electrical resistance measurements were also performed. These measurements illustrated that (i) rebar corroded faster at cracks than in sound concrete, (ii) HPC was more protective towards the rebar than OPCC even at cracks and (iii) there was a minor effect of the type of loading on rebar corrosion within the period of the project. These measurements also highlighted the problems associated with corrosion measurements, for example, identifying the actual corroding area and the influence of the length of rebar. The numbers of cracks and crack-widths in each beam were measured after the beam's initial exposure to salt solution and, again, after the final corrosion measurements. HPC beams had more cracks than the OPCC. Also, final measurements illustrated increased crack-widths in dynamically loaded beams, regardless of the concrete type. The cracks in both statically and dynamically loaded OPCC and HPC beams bifurcated at the rebar level and propagated parallel to the rebar. This project also examined the extent of corrosion on the rebars and the distribution of corrosion products in the concrete and on the concrete walls of the cracks. Corrosion occurred only at cracks in the concrete and was spread over a larger area on the rebars in HPC than those in OPCC. The damage due to corrosion was superficial in HPC and crater-like in OPCC. Regardless of the concrete type, there was a larger distribution of corrosion products on the crack walls of the dynamically loaded beams. Corrosion products diffused into the cement paste and the paste-aggregate interface in OPCC but remained in the crack in HPC. The most voluminous corrosion product identified was ferric hydroxide. Elemental analysis of mill-scale on rebar which was not embedded in concrete or exposed to chlorides was compared to that of the bars that had been embedded in uncontaminated concrete and in cracked concrete exposed to chlorides. In uncontaminated concrete, mill-scale absorbed calcium and silicon. At a crack, a layer, composed of a mixture of cement paste and corrosion products, developed between the mill-scale and the substrate steel. Based on the results, it was concluded that (i) corrosion occurred on the rebar only at cracks in the concrete, (ii) corrosion was initiated at the cracks immediately upon exposure to salt solution, (ii) the type of loading had a minor influence on the corrosion rates of reinforcing steel and (iv) the use of polarized area led to a significant underestimation of the current density at the crack. It is recommended that the effect of cover-depth on (i) the time to initiation of corrosion and (ii) the corrosion current density in cracked concrete be investigated.

  13. 18 CFR 12.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... work; (iv) Unusual concrete deterioration or cracking, including development of new cracks or the... ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT SAFETY OF WATER POWER PROJECTS AND PROJECT WORKS General Provisions § 12.3 Definitions. (a) General rule. For purposes of this part, terms defined in section 3 of the...

  14. Evaluation of E-Krete and resurf II IV for concrete spall repair.

    DOT National Transportation Integrated Search

    2000-09-01

    This report will focus on two products, E-Krete and RESURF II IV, for their performance in rehabilitating spalled cracks on : CRCP (Continuously Reinforced Concrete Pavement). E-Krete is a product manufactured by Polycon, Inc. and , prior to this : e...

  15. Three-Dimensional Analysis of Enamel Crack Behavior Using Optical Coherence Tomography.

    PubMed

    Segarra, M S; Shimada, Y; Sadr, A; Sumi, Y; Tagami, J

    2017-03-01

    The aim of this study was to nondestructively analyze enamel crack behavior on different areas of teeth using 3D swept source-optical coherence tomography (SS-OCT). Ten freshly extracted human teeth of each type on each arch ( n = 80 teeth) were inspected for enamel crack patterns on functional, contact and nonfunctional, or noncontact areas using 3D SS-OCT. The predominant crack pattern for each location on each specimen was noted and analyzed. The OCT observations were validated by direct observations of sectioned specimens under confocal laser scanning microscopy (CLSM). Cracks appeared as bright lines with SS-OCT, with 3 crack patterns identified: Type I - superficial horizontal cracks; Type II - vertically (occluso-gingival) oriented cracks; and Type III - hybrid or complicated cracks, a combination of a Type I and Type III cracks, which may or may not be confluent with each other. Type II cracks were predominant on noncontacting surfaces of incisors and canines and nonfunctional cusps of posterior teeth. Type I and III cracks were predominant on the contacting surfaces of incisors, cusps of canines, and functional cusps of posterior teeth. Cracks originating from the dental-enamel junction and enamel tufts, crack deflections, and the initiation of new cracks within the enamel (internal cracks) were observed as bright areas. CLSM observations corroborated the SS-OCT findings. We found that crack pattern, tooth type, and the location of the crack on the tooth exhibited a strong correlation. We show that the use of 3D SS-OCT permits for the nondestructive 3D imaging and analysis of enamel crack behavior in whole human teeth in vitro. 3D SS-OCT possesses potential for use in clinical studies for the analysis of enamel crack behavior.

  16. Structural, Optical and Electrical Properties of ZnS/Porous Silicon Heterostructures

    NASA Astrophysics Data System (ADS)

    Wang, Cai-Feng; Li, Qing-Shan; Lv, Lei; Zhang, Li-Chun; Qi, Hong-Xia; Chen, Hou

    2007-03-01

    ZnS films are deposited by pulsed laser deposition on porous silicon (PS) substrates formed by electrochemical anodization of p-type (100) silicon wafer. Scanning electron microscope images reveal that the surface of ZnS films is unsmoothed, and there are some cracks in the ZnS films due to the roughness of the PS surface. The x-ray diffraction patterns show that the ZnS films on PS surface are grown in preferring orientation along cubic phase β-ZnS (111) direction. White light emission is obtained by combining the blue-green emission from ZnS films with the orange-red emission from PS layers. Based on the I-V characteristic, the ZnS/PS heterojunction exhibits the rectifying junction behaviour, and an ideality factor n is calculated to be 77 from the I-V plot.

  17. 49 CFR 238.307 - Periodic mechanical inspection of passenger cars and unpowered vehicles used in passenger trains.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... body from separating in case of derailment. (9) All center castings on trucks are not cracked or broken... inspection of all center castings shall be conducted by jacking the equipment and rolling out the trucks at... component; (iii) A crack, break, excessive wear, structural defect, or weakness of a component; (iv) A leak...

  18. Control of Hydrogen Environment Embrittlement of Ultra-High Strength Steel for Naval Application

    DTIC Science & Technology

    2005-07-01

    load cracking behavior of maraging steels in hydrogen. Corrosion , 29, 1973, 299-304. D.A. Jones, A.F. Jankowski and G.A. Davidson, "Diffusion of...short crack case. This behavior is relevant to small surface cracks in coated UHSS components such as a landing gear. IV.B. Effect of Steel Composition ...PRESSURE (k N /m 2) Figure 26. The effect of H2 pressure on the HEAC growth rate for a ultra-high strength 18Ni Maraging steel stressed in a highly

  19. 49 CFR 238.307 - Periodic mechanical inspection of passenger cars and unpowered vehicles used in passenger trains.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... separating in case of derailment. (9) All center castings on trucks are not cracked or broken, to the extent... castings shall be conducted by jacking the equipment and rolling out the trucks at each COT&S cycle... crack, break, excessive wear, structural defect, or weakness of a component; (iv) A leak; (v) Use of a...

  20. Final Report for Project 13-4791: New Mechanistic Models of Creep-Fatigue Crack Growth Interactions for Advanced High Temperature Reactor Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruzic, Jamie J; Siegmund, Thomas; Tomar, Vikas

    This project developed and validated a novel, multi-scale, mechanism-based model to quantitatively predict creep-fatigue crack growth and failure for Ni-based Alloy 617 at 800°C. Alloy 617 is a target material for intermediate heat exchangers in Generation IV very high temperature reactor designs, and it is envisioned that this model will aid in the design of safe, long lasting nuclear power plants. The technical effectiveness of the model was shown by demonstrating that experimentally observed crack growth rates can be predicted under both steady state and overload crack growth conditions. Feasibility was considered by incorporating our model into a commercially availablemore » finite element method code, ABAQUS, that is commonly used by design engineers. While the focus of the project was specifically on an alloy targeted for Generation IV nuclear reactors, the benefits to the public are expected to be wide reaching. Indeed, creep-fatigue failure is a design consideration for a wide range of high temperature mechanical systems that rely on Ni-based alloys, including industrial gas power turbines, advanced ultra-super critical steam turbines, and aerospace turbine engines. It is envisioned that this new model can be adapted to a wide range of engineering applications.« less

  1. Fatigue crack growth at elevated temperature 316 stainless steel and H-13 steel

    NASA Technical Reports Server (NTRS)

    Chen, W. C.; Liu, H. W.

    1976-01-01

    Crack growths were measured at elevated temperatures under four types of loading: pp, pc, cp, and cc. In H-13 steel, all these four types of loading gave nearly the same crack growth rates, and the length of hold time had negligible effects. In AISI 316 stainless steel, the hold time effects on crack growth rate were negligible if the loading was tension-tension type; however, these effects were significant in reversed bending load, and the crack growth rates under these four types of loading varied considerably. Both tensile and compressive hold times caused increased crack growth rate, but the compressive hold period was more deleterious than the tensile one. Metallographic examination showed that all the crack paths under different types of loading were largely transgranular for both CTS tension-tension specimens and SEN reversed cantilever bending specimens. In addition, an electric potential technique was used to monitor crack growth at elevated temperature.

  2. Fundamental Understanding of Crack Growth in Structural Components of Generation IV Supercritical Light Water Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iouri I. Balachov; Takao Kobayashi; Francis Tanzella

    2004-11-17

    This work contributes to the design of safe and economical Generation-IV Super-Critical Water Reactors (SCWRs) by providing a basis for selecting structural materials to ensure the functionality of in-vessel components during the entire service life. During the second year of the project, we completed electrochemical characterization of the oxide film properties and investigation of crack initiation and propagation for candidate structural materials steels under supercritical conditions. We ranked candidate alloys against their susceptibility to environmentally assisted degradation based on the in situ data measure with an SRI-designed controlled distance electrochemistry (CDE) arrangement. A correlation between measurable oxide film properties andmore » susceptibility of austenitic steels to environmentally assisted degradation was observed experimentally. One of the major practical results of the present work is the experimentally proven ability of the economical CDE technique to supply in situ data for ranking candidate structural materials for Generation-IV SCRs. A potential use of the CDE arrangement developed ar SRI for building in situ sensors monitoring water chemistry in the heat transport circuit of Generation-IV SCWRs was evaluated and proved to be feasible.« less

  3. Thermal-mechanical fatigue behavior of nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Pelloux, R. M.; Marchand, N.

    1986-01-01

    The main achievements of a 36-month research program are presented. The main objective was to gain more insight into the problem of crack growth under thermal mechanical fatigue (TMF) conditions. This program was conducted at M.I.T. for the period of September 1982 to September 1985. The program was arranged into five technical tasks. Under Task I, the literature of TMF data was reviewed. The goal was to identify the crack propagation conditions in aircraft engines (hot section) and to assess the validity of conventional fracture mechanics parameters to address TMF crack growth. The second task defined the test facilities, test specimen and the testing conditions needed to establish the effectiveness of data correlation parameters identified in Task I. Three materials (Inconel X-750, Hastelloy-X, and B-1900) were chosen for the program. Task II was accomplished in collaboration with Pratt & Whitney Aircraft engineers. Under Task III, a computerized testing system to measure the TMF behavior (LCF and CG behaviors) of various alloys systems was built. The software used to run isothermal and TMF tests was also developed. Built around a conventional servohydraulic machine, the system is capable of push-pull tests under stress or strain and temperature controlled conditions in the temperature range of 25C to 1050C. A crack propagation test program was defined and conducted under Task IV. The test variables included strain range, strain rate (frequency) and temperature. Task V correlated and generalized the Task IV data for isothermal and variable temperature conditions so that several crack propagation parameters could be compared and evaluated. The structural damage (mode of cracking and dislocation substructure) under TMF cycling was identified and contrasted with the isothermal damage to achieve a sound fundamental mechanistic understanding of TMF.

  4. Vibration based algorithm for crack detection in cantilever beam containing two different types of cracks

    NASA Astrophysics Data System (ADS)

    Behzad, Mehdi; Ghadami, Amin; Maghsoodi, Ameneh; Michael Hale, Jack

    2013-11-01

    In this paper, a simple method for detection of multiple edge cracks in Euler-Bernoulli beams having two different types of cracks is presented based on energy equations. Each crack is modeled as a massless rotational spring using Linear Elastic Fracture Mechanics (LEFM) theory, and a relationship among natural frequencies, crack locations and stiffness of equivalent springs is demonstrated. In the procedure, for detection of m cracks in a beam, 3m equations and natural frequencies of healthy and cracked beam in two different directions are needed as input to the algorithm. The main accomplishment of the presented algorithm is the capability to detect the location, severity and type of each crack in a multi-cracked beam. Concise and simple calculations along with accuracy are other advantages of this method. A number of numerical examples for cantilever beams including one and two cracks are presented to validate the method.

  5. Among long-term crack smokers, who avoids and who succumbs to cocaine addiction?

    PubMed

    Falck, Russel S; Wang, Jichuan; Carlson, Robert G

    2008-11-01

    Crack cocaine is a highly addictive drug. To learn more about crack addiction, long-term crack smokers who had never met the DSM-IV criteria for lifetime cocaine dependence were compared with those who had. The study sample consisted of crack users (n=172) from the Dayton, Ohio, area who were interviewed periodically over 8 years. Data were collected on a range of variables including age of crack initiation, frequency of recent use, and lifetime cocaine dependence. Cocaine dependence was common with 62.8% of the sample having experienced it. There were no statistically significant differences between dependent and non-dependent users for age of crack initiation or frequency of crack use. In terms of sociodemographics, only race/ethnicity was significant, with proportionally fewer African-Americans than whites meeting the criteria for cocaine dependence. Controlling for sociodemographics, partial correlation analysis showed positive, statistically significant relationships between lifetime cocaine dependence and anti-social personality disorder, attention deficit/hyperactivity disorder, and lifetime dependence on alcohol, cannabis, amphetamine, sedative-hypnotics, and opioids. These results highlight the importance addressing race/ethnicity and comorbid disorders when developing, implementing, and evaluating interventions targeting people who use crack cocaine. Additional research is needed to better understand the role of race/ethnicity in the development of cocaine dependence resulting from crack use.

  6. 49 CFR Appendix A to Part 238 - Schedule of Civil Penalties 1

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... straight plate wheels 2,500 5,000 238.121Emergency communication 2,500 5,000 238.123Emergency roof access 2...) Wheel not in proper condition: (i), (iv) Flat spot(s) and shelled spot(s): (A) One spot 21/2″ or more... in flange, tread, rim, plate, or hub: (A) Crack of less than 1″ 2,500 5,000 (B) Crack of 1″ or more 5...

  7. 49 CFR Appendix A to Part 238 - Schedule of Civil Penalties 1

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... straight plate wheels 2,500 5,000 238.121Emergency communication 2,500 5,000 238.123Emergency roof access 2...) Wheel not in proper condition: (i), (iv) Flat spot(s) and shelled spot(s): (A) One spot 21/2″ or more... in flange, tread, rim, plate, or hub: (A) Crack of less than 1″ 2,500 5,000 (B) Crack of 1″ or more 5...

  8. Performance degradation of grid-tied photovoltaic modules in a hot-dry climatic condition

    NASA Astrophysics Data System (ADS)

    Suleske, Adam; Singh, Jaspreet; Kuitche, Joseph; Tamizh-Mani, Govindasamy

    2011-09-01

    The crystalline silicon photovoltaic (PV) modules under open circuit conditions typically degrade at a rate of about 0.5% per year. However, it is suspected that the modules in an array level may degrade, depending on equipment/frame grounding and array grounding, at higher rates because of higher string voltage and increased module mismatch over the years of operation in the field. This paper compares and analyzes the degradation rates of grid-tied photovoltaic modules operating over 10-17 years in a desert climatic condition of Arizona. The nameplate open-circuit voltages of the arrays ranged between 400 and 450 V. Six different types/models of crystalline silicon modules with glass/glass and glass/polymer constructions were evaluated. About 1865 modules were inspected using an extended visual inspection checklist and infrared (IR) scanning. The visual inspection checklist included encapsulant discoloration, cell/interconnect cracks, delamination and corrosion. Based on the visual inspection and IR studies, a large fraction of these modules were identified as allegedly healthy and unhealthy modules and they were electrically isolated from the system for currentvoltage (I-V) measurements of individual modules. The annual degradation rate for each module type is determined based on the I-V measurements.

  9. Application of the Boundary Element Method to Fatigue Crack Growth Analysis

    DTIC Science & Technology

    1988-09-01

    III, and Noetic PROBE in Section IV. Correlation of the boundary element method and modeling techniques employed in this study were shown with the...distribution unlimited I I I Preface! 3 The purpose of this study was to apply the boundary element method (BEM) to two dimensional fracture mechanics...problems, and to use the BEM to analyze the interference effects of holes on cracks through a parametric study of a two hole 3 tension strip. The study

  10. Natural Crack Sizing Based on Eddy Current Image and Electromagnetic Field Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Endo, H.; Uchimoto, T.; Takagi, T.

    2006-03-06

    An eddy current testing (ECT) system with multi-coil type probes is applied to size up cracks fabricated on austenite stainless plates. We have developed muti-channel ECT system to produce data as digital images. The probes consist of transmit-receive type sensors as elements to classify crack directions, working as two scan direction modes simultaneously. Template matching applied to the ECT images determines regions of interest in sizing up cracks. Finite element based inversion sizes up the crack depth from the measured ECT signal. The present paper demonstrates this approach for fatigue crack and stress corrosion cracking.

  11. A Floating Node Method for the Modelling of Discontinuities Within a Finite Element

    NASA Technical Reports Server (NTRS)

    Pinho, Silvestre T.; Chen, B. Y.; DeCarvalho, Nelson V.; Baiz, P. M.; Tay, T. E.

    2013-01-01

    This paper focuses on the accurate numerical representation of complex networks of evolving discontinuities in solids, with particular emphasis on cracks. The limitation of the standard finite element method (FEM) in approximating discontinuous solutions has motivated the development of re-meshing, smeared crack models, the eXtended Finite Element Method (XFEM) and the Phantom Node Method (PNM). We propose a new method which has some similarities to the PNM, but crucially: (i) does not introduce an error on the crack geometry when mapping to natural coordinates; (ii) does not require numerical integration over only part of a domain; (iii) can incorporate weak discontinuities and cohesive cracks more readily; (iv) is ideally suited for the representation of multiple and complex networks of (weak, strong and cohesive) discontinuities; (v) leads to the same solution as a finite element mesh where the discontinuity is represented explicitly; and (vi) is conceptually simpler than the PNM.

  12. Effects of External Hydrogen on Hydrogen Transportation and Distribution Around the Fatigue Crack Tip in Type 304 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Chen, Xingyang; Zhou, Chengshuang; Cai, Xiao; Zheng, Jinyang; Zhang, Lin

    2017-10-01

    The effects of external hydrogen on hydrogen transportation and distribution around the fatigue crack tip in type 304 stainless steel were investigated by using hydrogen microprint technique (HMT) and thermal desorption spectrometry. HMT results show that some silver particles induced by hydrogen release are located near the fatigue crack and more silver particles are concentrated around the crack tip, which indicates that hydrogen accumulates in the vicinity of the crack tip during the crack growth in hydrogen gas environment. Along with the crack propagation, strain-induced α' martensite forms around the crack tip and promotes hydrogen invasion into the matrix, which will cause the crack initiation and propagation at the austenite/ α' martensite interface. In addition, the hydrogen content in the vicinity of the crack tip is higher than that at the crack edge far away from the crack tip, which is related to the stress state and strain-induced α' martensite.

  13. Simplified moment tensor analysis and unified decomposition of acoustic emission source: Application to in situ hydrofracturing test

    NASA Astrophysics Data System (ADS)

    Ohtsu, Masayasu

    1991-04-01

    An application of a moment tensor analysis to acoustic emission (AE) is studied to elucidate crack types and orientations of AE sources. In the analysis, simplified treatment is desirable, because hundreds of AE records are obtained from just one experiment and thus sophisticated treatment is realistically cumbersome. Consequently, a moment tensor inversion based on P wave amplitude is employed to determine six independent tensor components. Selecting only P wave portion from the full-space Green's function of homogeneous and isotropic material, a computer code named SiGMA (simplified Green's functions for the moment tensor analysis) is developed for the AE inversion analysis. To classify crack type and to determine crack orientation from moment tensor components, a unified decomposition of eigenvalues into a double-couple (DC) part, a compensated linear vector dipole (CLVD) part, and an isotropic part is proposed. The aim of the decomposition is to determine the proportion of shear contribution (DC) and tensile contribution (CLVD + isotropic) on AE sources and to classify cracks into a crack type of the dominant motion. Crack orientations determined from eigenvectors are presented as crack-opening vectors for tensile cracks and fault motion vectors for shear cracks, instead of stereonets. The SiGMA inversion and the unified decomposition are applied to synthetic data and AE waveforms detected during an in situ hydrofracturing test. To check the accuracy of the procedure, numerical experiments are performed on the synthetic waveforms, including cases with 10% random noise added. Results show reasonable agreement with assumed crack configurations. Although the maximum error is approximately 10% with respect to the ratios, the differences on crack orientations are less than 7°. AE waveforms detected by eight accelerometers deployed during the hydrofracturing test are analyzed. Crack types and orientations determined are in reasonable agreement with a predicted failure plane from borehole TV observation. The results suggest that tensile cracks are generated first at weak seams and then shear cracks follow on the opened joints.

  14. Variations of a global constraint factor in cracked bodies under tension and bending loads

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Crews, J. H., Jr.; Bigelow, C. A.; Dawicke, D. S.

    1994-01-01

    Elastic-plastic finite-element analyses were used to calculate stresses and displacements around a crack in finite-thickness plates for an elastic-perfectly plastic material. Middle- and edge-crack specimens were analyzed under tension and bending loads. Specimens were 1.25 to 20 mm thick with various widths and crack lengths. A global constraint factor alpha(sub g), an averaged normal-stress to flow-stress ratio over the plastic region, was defined to simulate three-dimensional (3D) effects in two-dimensional (2D) models. For crack lengths and uncracked ligament lengths greater than four times the thickness, the global constraint factor was found to be nearly a unique function of a normalized stress-intensity factor (related to plastic-zone size to thickness ratio) from small- to large-scale yielding conditions for various specimen types and thickness. For crack length-to-thickness ratios less than four, the global constraint factor was specimen type, crack length and thickness dependent. Using a 2D strip-yield model and the global constraint factors, plastic-zone sizes and crack-tip displacements agreed reasonably well with the 3D analyses. For a thin sheet aluminum alloy, the critical crack-tip-opening angle during stable tearing was found to be independent of specimen type and crack length for crack length-to-thickness ratios greater than 4.

  15. How do subcritical cracking rates and styles influence rock erosion? A test case from the Blue Ridge Mountains of Virginia.

    NASA Astrophysics Data System (ADS)

    Eppes, M. C.; Hancock, G. S.; Dewers, T. A.; Chen, X.; Eichhubl, P.

    2017-12-01

    There is a disconnect between measured rates of rock erosion and regolith production and our understanding of the factors and processes that drive them. Here we examine the mechanical weathering (cracking) characteristics of natural, bare bedrock outcrops characterized by 10Be derived erosion rates that vary from 2 to 40 m/my in the Blue Ridge Mountains, VA. Observed erosion rate variance generally correlates with rock type; we seek to characterize and quantify to what extent the mechanical weathering properties of the different rock types drive erosion rates. We assert that subcritical cracking constitutes the primary mechanism by which the outcrops increase their porosity and subsequently weather and erode. We therefore hypothesize that rock parameters that control rates and styles of subcritical cracking set the outcrop erosion rates. For each outcrop, we measured crack characteristics along transects: for every crack >2 cm length, we measured its length, width, orientation, and weathering characteristics (rounded vs sharp edges); and we measured the thickness of all `steps' (spallation remnants) encountered in the transects. For most outcrops, we collected surface samples in order to characterize their mineralogy and microcracking characteristics through thin section analysis. For each rock type, we collected samples for which we measured fracture toughness, as well as the subcritical crack growth index under different moisture conditions. Preliminary analysis of the field crack data indicates that each rock type (granite, sandstone, quartzite) is characterized by unique macro- and micro-scale crack characteristics consistent with known generic subcritical cracking parameters for those rocks. Crack density and length correlate with erosion rates in faster eroding rock types, but not slowly eroding ones. Overall, we hope these data will help to shed light on the driving and limiting factors for the mechanical production of porosity in rock at and near Earth's surface.

  16. In vitro fatigue tests and in silico finite element analysis of dental implants with different fixture/abutment joint types using computer-aided design models.

    PubMed

    Yamaguchi, Satoshi; Yamanishi, Yasufumi; Machado, Lucas S; Matsumoto, Shuji; Tovar, Nick; Coelho, Paulo G; Thompson, Van P; Imazato, Satoshi

    2018-01-01

    The aim of this study was to evaluate fatigue resistance of dental fixtures with two different fixture-abutment connections by in vitro fatigue testing and in silico three-dimensional finite element analysis (3D FEA) using original computer-aided design (CAD) models. Dental implant fixtures with external connection (EX) or internal connection (IN) abutments were fabricated from original CAD models using grade IV titanium and step-stress accelerated life testing was performed. Fatigue cycles and loads were assessed by Weibull analysis, and fatigue cracking was observed by micro-computed tomography and a stereomicroscope with high dynamic range software. Using the same CAD models, displacement vectors of implant components were also analyzed by 3D FEA. Angles of the fractured line occurring at fixture platforms in vitro and of displacement vectors corresponding to the fractured line in silico were compared by two-way ANOVA. Fatigue testing showed significantly greater reliability for IN than EX (p<0.001). Fatigue crack initiation was primarily observed at implant fixture platforms. FEA demonstrated that crack lines of both implant systems in vitro were observed in the same direction as displacement vectors of the implant fixtures in silico. In silico displacement vectors in the implant fixture are insightful for geometric development of dental implants to reduce complex interactions leading to fatigue failure. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  17. A study of the progression of damage in an axially loaded Branta leucopsis femur using X-ray computed tomography and digital image correlation

    PubMed Central

    Manning, Phillip Lars; Lowe, Tristan; Withers, Philip J.

    2017-01-01

    This paper uses X-ray computed tomography to track the mechanical response of a vertebrate (Barnacle goose) long bone subjected to an axial compressive load, which is increased gradually until failure. A loading rig was mounted in an X-ray computed tomography system so that a time-lapse sequence of three-dimensional (3D) images of the bone’s internal (cancellous or trabecular) structure could be recorded during loading. Five distinct types of deformation mechanism were observed in the cancellous part of the bone. These were (i) cracking, (ii) thinning (iii) tearing of cell walls and struts, (iv) notch formation, (v) necking and (vi) buckling. The results highlight that bone experiences brittle (notch formation and cracking), ductile (thinning, tearing and necking) and elastic (buckling) modes of deformation. Progressive deformation, leading to cracking was studied in detail using digital image correlation. The resulting strain maps were consistent with mechanisms occurring at a finer-length scale. This paper is the first to capture time-lapse 3D images of a whole long bone subject to loading until failure. The results serve as a unique reference for researchers interested in how bone responds to loading. For those using computer modelling, the study not only provides qualitative information for verification and validation of their simulations but also highlights that constitutive models for bone need to take into account a number of different deformation mechanisms. PMID:28652932

  18. A study of the progression of damage in an axially loaded Branta leucopsis femur using X-ray computed tomography and digital image correlation.

    PubMed

    Mustansar, Zartasha; McDonald, Samuel A; Sellers, William Irvin; Manning, Phillip Lars; Lowe, Tristan; Withers, Philip J; Margetts, Lee

    2017-01-01

    This paper uses X-ray computed tomography to track the mechanical response of a vertebrate (Barnacle goose) long bone subjected to an axial compressive load, which is increased gradually until failure. A loading rig was mounted in an X-ray computed tomography system so that a time-lapse sequence of three-dimensional (3D) images of the bone's internal (cancellous or trabecular) structure could be recorded during loading. Five distinct types of deformation mechanism were observed in the cancellous part of the bone. These were (i) cracking, (ii) thinning (iii) tearing of cell walls and struts, (iv) notch formation, (v) necking and (vi) buckling. The results highlight that bone experiences brittle (notch formation and cracking), ductile (thinning, tearing and necking) and elastic (buckling) modes of deformation. Progressive deformation, leading to cracking was studied in detail using digital image correlation. The resulting strain maps were consistent with mechanisms occurring at a finer-length scale. This paper is the first to capture time-lapse 3D images of a whole long bone subject to loading until failure. The results serve as a unique reference for researchers interested in how bone responds to loading. For those using computer modelling, the study not only provides qualitative information for verification and validation of their simulations but also highlights that constitutive models for bone need to take into account a number of different deformation mechanisms.

  19. [The effect of notch's angle and depth on crack propagation of zirconia ceramics].

    PubMed

    Chen, Qingya; Chen, Xinmin

    2012-10-01

    This paper is aimed to study the effect of notch's angle and depth on crack propagation of zirconia ceramics. We fabricated cuboid-shaped zirconia ceramics samples with the standard sizes of 4. 4 mm x 2. 2 mm x 18 mm for the experiments, divided the samples into 6 groups, and prepared notches on these samples with different angles and depth. We placed the samples with loads until they were broke, and observe the fracture curve of each sample. We then drew coordinates and described the points of the fracture curve under a microscope, and made curve fitting by the software-Origin. When the notch angle beta = 90 degrees, the crack propagation is pure type I; when beta = 60 degrees, the crack propagation is mainly type I; and when beta = 30 degrees, the crack propagation is a compound of type I and type III. With the increasing of the notch depth, the effect of notch angles on crack propagation increases. In addition, Notch angle is a very important fracture mechanics parameter for crack propagation of zirconia ceramics. With the increasing of notch depth, the impact of notch angle increases.

  20. Attention and memory deficits in crack-cocaine users persist over four weeks of abstinence.

    PubMed

    Almeida, Priscila P; de Araujo Filho, Gerardo M; Malta, Stella M; Laranjeira, Ronaldo R; Marques, Ana Cecilia R P; Bressan, Rodrigo A; Lacerda, Acioly L T

    2017-10-01

    Crack-cocaine addiction is an important public health problem worldwide. Although there is not a consensus, preliminary evidence has suggested that cognitive impairments in patients with crack-cocaine dependence persist during abstinence, affecting different neuropsychological domains. However, few studies have prospectively evaluated those deficits in different phases of abstinence. The main aim of present study was to examine neuropsychological performance of patients with crack-cocaine dependence during early abstinence and after four weeks, comparing with matched controls. Thirty-five males with crack-cocaine dependence, aged 18 to 50years, who met DSM-IV criteria for cocaine dependence and a control group of 33 healthy men were enrolled. They were assessed through Block Design, Digit Span and Vocabulary of Wechsler Adult Intelligence Scale (WAIS-III), the Rey Auditory Learning Test (RAVLT) and the Verbal Fluency (FAS) between 3 and 10days (mean of 6.1±2.0days) and after 4weeks of abstinence. Compared to controls, the crack-cocaine dependent group exhibited deficits in cognitive performance affecting attention, verbal memory and learning tasks in early withdrawal. Most of the cognitive deficits persisted after four weeks of abstinence. Present results observed that the group of patients with crack-cocaine dependence presented persistent deficits affecting memory and attention even after four weeks of abstinence, confirming previous studies that had disclosed such cognitive impairments. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Transition Region for Corner Cracks at Holes.

    DTIC Science & Technology

    1984-12-01

    that ca<tastrophic failures are not caused by cracks ormin;i I i g f ro.m fast ener ho I es . This philosophy was introduced by \\;Lood aind im, l12...form throusgh- * hi fininit~ 1w b ouindaries of this reuiion is .1 , t nd rk . i’ It he l .iSclissed inT det ail in i r , -n Iv, rm ed u r es o(r (I ,i...or these results dealing strictly wi th part-t brougil c:ac k fat i que life pr-edictions in 1979, (see Chang [301). Peterson andl Vroman [31 1

  2. Associations of types of pain with crack-level, tooth-level and patient-level characteristics in posterior teeth with visible cracks: Findings from the National Dental Practice-Based Research Network.

    PubMed

    Hilton, Thomas J; Funkhouser, Ellen; Ferracane, Jack L; Gordan, Valeria V; Huff, Kevin D; Barna, Julie; Mungia, Rahma; Marker, Timothy; Gilbert, Gregg H

    2018-03-01

    The objective of this study was to determine which patient traits, behaviors, external tooth and/or crack characteristics correlate with the types of symptoms that teeth with visible cracks exhibit, namely pain on biting, pain due to cold stimuli, or spontaneous pain. Dentists in the National Dental Practice-Based Research Network enrolled a convenience sample of subjects each of whom had a single, vital posterior tooth with at least one observable external crack (cracked teeth); 2858 cracked teeth from 209 practitioners were enrolled. Data were collected at the patient-, tooth-, and crack-level. Generalized estimating equations were used to obtain significant (p < .05) independent odds ratios (OR) associated with teeth that were painful for 10 outcomes based on types of pain and combinations thereof. Overall, 45% of cracked teeth had one or more symptoms. Pain to cold was the most common symptom, which occurred in 37% of cracked teeth. Pain on biting (16%) and spontaneous pain (11%) were less common. Sixty-five percent of symptomatic cracked teeth had only one type of symptom, of these 78% were painful only to cold. No patient-, tooth- or crack-level characteristic was significantly associated with pain to cold alone. Positive associations for various combinations of pain symptoms were present with cracks that: (1) were on molars; (2) were in occlusion; (3) had a wear facet through enamel; (4) had caries; (5) were evident on a radiograph; (6) ran in more than one direction; (7) blocked transilluminated light; (8) connected with another crack; (9) extended onto the root; (10) extended in more than one direction; or (11) were on the distal surface. Persons who were <65 yo or who clench, grind, or press their teeth together also were more likely to have pain symptoms. Pain was less likely in teeth with stained cracks or exposed roots, or in non-Hispanic whites. Although pain to cold was the most commonly noted pain associated with symptomatic cracked teeth, no patient-, tooth- or crack-level characteristic was significantly associated with pain to cold alone. Characteristics were only associated with pain on biting and/or spontaneous pain with or without pain to cold. Although often considered the most reliable diagnosis for a cracked tooth, pain on biting is not the most common symptom of a tooth with a visible crack, but rather pain to cold. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Detection of asphalt pavement cracks using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Mettas, Christodoulos; Agapiou, Athos; Themistocleous, Kyriacos; Neocleous, Kyriacos; Hadjimitsis, Diofantos G.

    2016-10-01

    Deterioration of asphalt road pavements is inevitable throughout its life cycle. There are several types of deterioration that take place on these surfaces, like surface defects and deformations. One of the most common asphalt defects is cracking. Fatigue, transverse, longitudinal, reflective, edge, block and slippage are types of cracking that can be observed anywhere in the world. Monitoring and preventative/periodic maintenance of these types of wears are two very important actions that have to take place to avoid "costly" solutions. This paper aims to introduce the spectral characteristics of uncracked (healthy) and cracked asphalt surfaces which can give a new asphalt crack index. This is performed through remote sensing applications in the area of asphalt pavements. Multispectral images can be elaborated using the index to enhance crack marks on asphalt surfaces. Ground spectral signatures were acquired from both uncracked and cracked asphalted areas of Cyprus (Limassol). Evaluation separability indices can be used to identify the optimum wavelength regions that can distinguish better the uncracked and cracked asphalt surfaces. The results revealed that the spectral sensitivity for the enhancement of cracked asphalt was detected using the Euclidean, Mahalanobis and Cosine Distance Indices in the Vis range (approximately at 450 nm) and in the SWIR 1 range (approximately at 1750 nm).

  4. A multi-scale approach for near-surface pavement cracking and failure mechanisms

    DOT National Transportation Integrated Search

    2010-10-31

    Nearsurface cracking is one of the predominant distress types in flexible pavements. The occurrence of : nearsurface cracking, also sometimes referred to as topdown cracking, has increased in recent years : with the increased construction of...

  5. Bridge decks : mitigation of cracking and increased durability.

    DOT National Transportation Integrated Search

    2013-07-01

    This report discusses the application of expansive cements (Type K and Type G) and shrinkage-reducing admixtures (SRAs) in : reducing the cracking due to drying shrinkage. The Type K expansive cement contained portland cement and calcium : sulfoalumi...

  6. Fatigue crack closure: a review of the physical phenomena

    PubMed Central

    Pippan, R.

    2017-01-01

    Abstract Plasticity‐induced, roughness‐induced and oxide‐induced crack closures are reviewed. Special attention is devoted to the physical origin, the consequences for the experimental determination and the prediction of the effective crack driving force for fatigue crack propagation. Plasticity‐induced crack closure under plane stress and plane strain conditions require, in principle, a different explanation; however, both types are predictable. This is even the case in the transition region from the plane strain to the plane stress state and all types of loading conditions including constant and variable amplitude loading, the short crack case or the transition from small‐scale to large‐scale yielding. In contrast, the prediction of roughness‐induced and oxide‐induced closures is not as straightforward. PMID:28616624

  7. Influence of bitumen type on cracking resistance of asphalt mixtures used in pavement overlays

    NASA Astrophysics Data System (ADS)

    Jaskula, P.; Szydlowski, C.; Stienss, M.

    2018-05-01

    Cracking is one of the predominant distresses occurring in flexible pavements, especially in old pavements that were rehabilitated with an asphalt overlay. In such cases asphalt mixtures should be designed to ensure high resistance to reflective cracking because new asphalt layers are exposed to existing cracks of the old pavement. The nature of these cracks can be various (transverse, longitudinal as well as crazy cracking). One factor that minimizes this type of distress is the proper mix design process, which should involve selection of specific bitumen binder and mineral mix gradation. However, still there is no universally adopted laboratory test method that would allow to clearly assess resistance of asphalt mixtures to reflective cracking. This paper describes the usage of one of the devices developed to test asphalt mixtures in terms of such distress – Texas Overlay Tester. For this test, samples prepared in laboratory conditions (i.e. compacted with the use of Superpave Gyratory Compactor) as well as obtained in the field (by core drilling) can be used. The results are obtained not only quickly and easily, but also with sufficient repeatability. The described method characterizes both crack initiation and crack propagation properties of asphalt mixtures. In this work one type of mineral mixture was tested with 4 different types of bitumen (one neat bitumen, two ordinary polymer-modified and one polymer-modified with high polymer content). For selected cases extra additives (rubber and loose fibres) were also tested. In total, six asphalt mixtures were tested. A ranking of the used binders was created on the basis of the results in order to conclude which bitumen would ensure the best performance characteristics in terms of reflective cracking. The results have clearly shown that deliberate choice of the binder used in the asphalt mixture for the overlay will significantly improve its reflective cracking resistance or even fatigue resistance.

  8. Monitoring of pre-release cracks in prestressed concrete using fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Abdel-Jaber, Hiba; Glisic, Branko

    2015-04-01

    Prestressed concrete experiences low to no tensile stresses, which results in limiting the occurrence of cracks in prestressed concrete structures. However, the nature of construction of these structures requires the concrete not to be subjected to the compressive force from the prestressing tendons until after it has gained sufficient compressive strength. Although the structure is not subjected to any dead or live load during this period, it is influenced by shrinkage and thermal variations. Thus, the concrete can experience tensile stresses before the required compressive strength has been attained, which can result in the occurrence of "pre-release" cracks. Such cracks are visually closed after the transfer of the prestressing force. However, structural capacity and behavior can be impacted if cracks are not sufficiently closed. This paper researches a method for the verification of the status of pre-release cracks after transfer of the prestressing force, and it is oriented towards achievement of Level IV Structural Health Monitoring (SHM). The method relies on measurements from parallel long-gauge fiber optic sensors embedded in the concrete prior to pouring. The same sensor network is used for the detection and characterization of cracks, as well as the monitoring of the prestressing force transfer and the determination of the extent of closure of pre-release cracks. This paper outlines the researched method and presents its application to a real-life structure, the southeast leg of Streicker Bridge on the Princeton University campus. The application structure is a curved continuous girder that was constructed in 2009. Its deck experienced four pre-release cracks that were closed beyond the critical limits based on the results of this study.

  9. A multi\\0x2010scale approach for near\\0x2010surface pavement cracking and failure mechanisms.

    DOT National Transportation Integrated Search

    2010-11-30

    Nearsurface cracking is one of the predominant distress types in flexible pavements. The occurrence of : nearsurface cracking, also sometimes referred to as topdown cracking, has increased in recent years : with the increased construction of...

  10. Correlation Between Intercritical Heat-Affected Zone and Type IV Creep Damage Zone in Grade 91 Steel

    NASA Astrophysics Data System (ADS)

    Wang, Yiyu; Kannan, Rangasayee; Li, Leijun

    2018-04-01

    A soft zone in Cr-Mo steel weldments has been reported to accompany the infamous Type IV cracking, the highly localized creep damage in the heat-affected zone of creep-resistant steels. However, the microstructural features and formation mechanism of this soft zone are not well understood. In this study, using microhardness profiling and microstructural verification, the initial soft zone in the as-welded condition was identified to be located in the intercritical heat-affected zone of P91 steel weldments. It has a mixed structure, consisting of Cr-rich re-austenitized prior austenite grains and fine Cr-depleted, tempered martensite grains retained from the base metal. The presence of these further-tempered retained grains, originating from the base metal, is directly responsible for the hardness reduction of the identified soft zone in the as-welded condition. The identified soft zone exhibits a high location consistency at three thermal stages. Local chemistry analysis and thermodynamic calculation show that the lower chromium concentrations inside these retained grains thermodynamically decrease their potentials for austenitic transformation during welding. Heterogeneous grain growth is observed in the soft zone during postweld heat treatment. The mismatch of strengths between the weak Cr-depleted grains and strong Cr-rich grains enhances the creep damage. Local deformation of the weaker Cr-depleted grains accelerates the formation of creep cavities.

  11. Proceedings of the Triservice Corrosion of Military Equipment Conference (1974) held at Dayton, Ohio on 29-31 Oct 1974. Volume II. Sessions IV through VII

    DTIC Science & Technology

    1975-09-01

    Antonio, Texas Observations on the Stress Corrosion 305 Cracking of High Strength Aluminum Alloys : The Effect of Solution pH E. MacNamara Frankford...mental Fatigue Crack Growth Rates and Corrosion Characteristics of High-Toughness Aluminum Alloy Forgings Sheet and Plate",, Technical Report AFMIrTR-73...T7X51 AND 7075-T7351 ALLOY PLATE Fig. 8 21 I T51i T7X51 T7351 FRAC¶¶JBE SURFACES 0OF DOB SPECINENS SHCWMIU RRATIV SCC GROWTH FOR SEVERAL TEMPERS OF 7075

  12. Role of NSO compounds during primary cracking of a Type II kerogen and a Type III lignite

    USGS Publications Warehouse

    Behar, F.; Lorant, F.; Lewan, M.

    2008-01-01

    The aim of this work is to follow the generation of NSO compounds during the artificial maturation of an immature Type II kerogen and a Type III lignite in order to determine the different sources of the petroleum potential during primary cracking. Experiments were carried out in closed system pyrolysis in the temperature range from 225 to 350 ??C. Two types of NSOs were recovered: one is soluble in n-pentane and the second in dichloromethane. A kinetic scheme was optimised including both kerogen and NSO cracking. It was validated by complementary experiments carried out on isolated asphaltenes generated from the Type II kerogen and on the total n-pentane and DCM extracts generated from the Type III lignite. Results show that kerogen and lignite first decompose into DCM NSOs with minor generation of hydrocarbons. Then, the main source of petroleum potential originates from secondary cracking of both DCM and n-pentane NSOs through successive decomposition reactions. These results confirm the model proposed by Tissot [Tissot, B., 1969. Premie??res donne??es sur les me??canismes et la cine??tique de la formation du pe??trole dans les bassins se??dimentaires. Simulation d'un sche??ma re??actionnel sur ordinateur. Oil and Gas Science and Technology 24, 470-501] in which the main source of hydrocarbons is not the insoluble organic matter, but the NSO fraction. As secondary cracking of the NSOs largely overlaps that of the kerogen, it was demonstrated that bulk kinetics in open system is a result of both kerogen and NSO cracking. Thus, another kinetic scheme for primary cracking in open system was built as a combination of kerogen and NSO cracking. This new kinetic scheme accounts for both the rate and amounts of hydrocarbons generated in a closed pyrolysis system. Thus, the concept of successive steps for hydrocarbon generation is valid for the two types of pyrolysis system and, for the first time, a common kinetic scheme is available for extrapolating results to natural case studies. ?? 2007 Elsevier Ltd. All rights reserved.

  13. The Impact of In Vitro Accelerated Aging, Approximating 30 and 60 Years In Vivo, on Commercially Available Zirconia Dental Implants.

    PubMed

    Monzavi, Mona; Noumbissi, Sammy; Nowzari, Hessam

    2017-04-01

    Despite increased popularity of Zirconia dental implants, concerns have been raised regarding low temperature degradation (LTD) and its effect on micro-structural integrity. This study evaluated the effect of LTD on four types of Zirconia dental implants at 0, 30, and 60 years of artificial aging. The impact of aging on t-m transformation and micro crack formation was measured. Accelerated aging at 15 and 30 hours, approximating 30 and 60 years in vivo, aged 36 Zirconia dental implants: Z systems ® (A), Straumann ® (B), Ceraroot ® (C), and Zeramex ® (D). Focused ion beam-scanning electron microscopic analysis determined the micro structural features, phase transformation, and the formation of micro cracks. At 15 hours, type A implant presented with micro cracks and t-m transformation of 0.9 µm and 3.1 µm, respectively. At 30 hours, micro cracks remained shallow (1 µm). At 15 hours, type B implant presented micro cracks (0.7 µm) and grain transformation (1.2 µm). At 30 hours, these features remained superficial at 0.6 and 1.5 µm, respectively. Type C implant presented surface micro cracks of 0.3 µm at 15 hours. The depth of t-m transformation slightly increased to 1.4 µm. At 30 hours, number of micro cracks increased at the surface to an average depth of 1.5 µm. Depth of t-m transformation increased to an average of 2.5 µm. At 15 hours, micro cracks remained superficial (0.8 µm) for type D implant and depth of t-m transformation increased to 2.3 µm. At 30 hours, the depth of micro cracks increased to an average of 1.3 µm followed by increased t-m transformation to a depth of 4.1 µm. Depth of grain transformation remained within 1-4 µm from the surface. The effect of aging was minimal for all Zirconia implants. © 2016 Wiley Periodicals, Inc.

  14. Nano-cracks in a synthetic graphite composite for nuclear applications

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Cherns, David

    2018-05-01

    Mrozowski nano-cracks in nuclear graphite were studied by transmission electron microscopy and selected area diffraction. The material consisted of single crystal platelets typically 1-2 nm thick and stacked with large relative rotations around the c-axis; individual platelets had both hexagonal and cubic stacking order. The lattice spacing of the (0002) planes was about 3% larger at the platelet boundaries which were the source of a high fraction of the nano-cracks. Tilting experiments demonstrated that these cracks were empty, and not, as often suggested, filled by amorphous material. In addition to conventional Mrozowski cracks, a new type of nano-crack is reported, which originates from the termination of a graphite platelet due to crystallographic requirements. Both types are crucial to understanding the evolution of macro-scale graphite properties with neutron irradiation.

  15. Crack detection and leakage monitoring on reinforced concrete pipe

    NASA Astrophysics Data System (ADS)

    Feng, Qian; Kong, Qingzhao; Huo, Linsheng; Song, Gangbing

    2015-11-01

    Reinforced concrete underground pipelines are some of the most widely used types of structures in water transportation systems. Cracks and leakage are the leading causes of pipeline structural failures which directly results in economic losses and environmental hazards. In this paper, the authors propose a piezoceramic based active sensing approach to detect the cracks and the further leakage of concrete pipelines. Due to the piezoelectric properties, piezoceramic material can be utilized as both the actuator and the sensor in the active sensing approach. The piezoceramic patch, which is sandwiched between protective materials called ‘smart aggregates,’ can be safely embedded into concrete structures. Circumferential and axial cracks were investigated. A wavelet packet-based energy analysis was developed to distinguish the type of crack and determine the further leakage based on different stress wave energy attenuation propagated through the cracks.

  16. Crack-closing of cement mortar beams using NiTi cold-drawn SMA short fibers

    NASA Astrophysics Data System (ADS)

    Choi, Eunsoo; Kim, Dong Joo; Chung, Young-Soo; Kim, Hee Sun; Jung, Chungsung

    2015-01-01

    In this study, crack-closing tests of mortar beams reinforced by shape memory alloy (SMA) short fibers were performed. For this purpose, NiTi SMA fibers with a diameter of 0.965 mm and a length of 30 mm were made from SMA wires of 1.0 mm diameter by cold drawing. Four types of SMA fibers were prepared, namely, straight and dog-bone-shaped fiber and the two types of fibers with paper wrapping in the middle of the fibers. The paper provides an unbonded length of 15 mm. For bending tests, six types of mortar beams with the dimensions of 40 mm × 40 mm × 160 mm (B×H×L) were prepared. The SMA fibers were placed at the bottom center of the beams along with an artificial crack of 10 mm depth and 1 mm thickness. This study investigated the influence of SMA fibers on the flexural strength of the beams from the measured force- deflection curves. After cracking, the beams were heated at the bottom by fire to activate the SMA fibers. Then, the beams recovered the deflection, and the cracks were closed. This study evaluated crack-closing capacity using the degree of crack recovery and deflection-recovery factor. The first factor is estimated from the crack-width before and after crack-closing, and the second one is obtained from the downward deflection due to loading and the upward deflection due to the closing force of the SMA fibers.

  17. Experimental simulation of frost wedging-induced crack propagation in alpine rockwall

    NASA Astrophysics Data System (ADS)

    Jia, Hailiang; Leith, Kerry; Krautblatter, Michael

    2016-04-01

    Frost wedging is widely presumed to be the principal mechanism responsible for shattering jointed low-porosity rocks in high alpine rockwalls. The interaction of ice and rock physics regulates the efficacy of frost wedging. In order to better understand temporal aspects of this interaction, we present results of a series of laboratory experiments monitoring crack widening as a result of ice formation in an artificial crack (4mm wide, 80mm deep) cut 20 mm from the end of a rectangular granite block. Our results indicate that i) freezing direction plays a key role in determining the magnitude of crack widening; in short-term (1 day) experiments, maximum crack widening during top-down freezing (associated with 'autumn' conditions) was around 0.11mm, while inside-out freezing (resulting from 'spring' conditions) produced only 0.02 mm of deformation; ii) neither ice, nor water pressure (direct tension and hydraulic fracturing respectively) caused measurable irreversible crack widening during short-term tests, as the calculated maximum stress intensity at the crack tip was less than the fracture toughness of our granite sample; iii) development of ice pressure is closely related to the mechanical properties of the fracture in which it forms, and as such, the interaction of ice and rock is intrinsically dynamic; iv) irreversible crack widening (about 0.03mm) was only observed following a long-term (53 day) experiment representing a simplified transition from autumn to winter conditions. We suggest this is the result of stress corrosion aided by strong opening during freezing, and to a lesser degree by ice segregation up to one week after the initial freezing period, and downward migration of liquid water during the remainder of the test. Our results suggest the fundamental assumption of frost wedging, that rapid freezing from open ends of cracks can seal water inside the crack and thus cause damage through excessive stresses induced by volumetric expansion seems questionable.

  18. Gum formation tendencies of olefinic structures in gasoline and synergistic effect of sulphur compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagpal, J.M.; Joshi, G.C.; Aswal, D.S.

    1995-04-01

    The high octane gasoline pool contains varying amounts of cracked naphthas as an important ingredient in formulating high octane lead free gasoline. The cracked naphthas are largely from Fluidized Catalytic Cracking (FCC) units and to lesser extend from thermal cracking units. While the role of olefinic unsaturation in gum formation during storage of gasoline has been extensively studied, there is little published work on contribution of individual olefin types in storage stability and gum formation tendency of gasoline containing these compound types. In the present work we report our results on storage stability and gum formation tendency of different olefinmore » types present in cracked naphthas through model compound matrix. It is found that cyclic olefins and cyclic diolefins are the most prolific gum formers. We have also studied the role of sulfur compounds present in the gasolines on gum formation tendency of olefins. While thiols enhance gum formation from all olefinic types, sulfides and disulfides interact depending on the structure of olefins. These can have either an accelerating, or inhibiting effect on gum formation.« less

  19. Analysis of small crack behavior for airframe applications

    NASA Technical Reports Server (NTRS)

    Mcclung, R. C.; Chan, K. S.; Hudak, S. J., Jr.; Davidson, D. L.

    1994-01-01

    The small fatigue crack problem is critically reviewed from the perspective of airframe applications. Different types of small cracks-microstructural, mechanical, and chemical-are carefully defined and relevant mechanisms identified. Appropriate analysis techniques, including both rigorous scientific and practical engineering treatments, are briefly described. Important materials data issues are addressed, including increased scatter in small crack data and recommended small crack test methods. Key problems requiring further study are highlighted.

  20. Effectiveness of Fiber Reinforcement on the Mechanical Properties and Shrinkage Cracking of Recycled Fine Aggregate Concrete.

    PubMed

    Nam, Jeongsoo; Kim, Gyuyong; Yoo, Jaechul; Choe, Gyeongcheol; Kim, Hongseop; Choi, Hyeonggil; Kim, Youngduck

    2016-02-26

    This paper presents an experimental study conducted to investigate the effect of fiber reinforcement on the mechanical properties and shrinkage cracking of recycled fine aggregate concrete (RFAC) with two types of fiber-polyvinyl alcohol (PVA) and nylon. A small fiber volume fraction, such as 0.05% or 0.1%, in RFAC with polyvinyl alcohol or nylon fibers was used for optimum efficiency in minimum quantity. Additionally, to make a comparative evaluation of the mechanical properties and shrinkage cracking, we examined natural fine aggregate concrete as well. The test results revealed that the addition of fibers and fine aggregates plays an important role in improving the mechanical performance of the investigated concrete specimens as well as controlling their cracking behavior. The mechanical properties such as compressive strength, splitting tensile strength, and flexural strength of fiber-reinforced RFAC were slightly better than those of non-fiber-reinforced RFAC. The shrinkage cracking behavior was examined using plat-ring-type and slab-type tests. The fiber-reinforced RFAC showed a greater reduction in the surface cracks than non-fiber-reinforced concrete. The addition of fibers at a small volume fraction in RFAC is more effective for drying shrinkage cracks than for improving mechanical performance.

  1. Effectiveness of Fiber Reinforcement on the Mechanical Properties and Shrinkage Cracking of Recycled Fine Aggregate Concrete

    PubMed Central

    Nam, Jeongsoo; Kim, Gyuyong; Yoo, Jaechul; Choe, Gyeongcheol; Kim, Hongseop; Choi, Hyeonggil; Kim, Youngduck

    2016-01-01

    This paper presents an experimental study conducted to investigate the effect of fiber reinforcement on the mechanical properties and shrinkage cracking of recycled fine aggregate concrete (RFAC) with two types of fiber—polyvinyl alcohol (PVA) and nylon. A small fiber volume fraction, such as 0.05% or 0.1%, in RFAC with polyvinyl alcohol or nylon fibers was used for optimum efficiency in minimum quantity. Additionally, to make a comparative evaluation of the mechanical properties and shrinkage cracking, we examined natural fine aggregate concrete as well. The test results revealed that the addition of fibers and fine aggregates plays an important role in improving the mechanical performance of the investigated concrete specimens as well as controlling their cracking behavior. The mechanical properties such as compressive strength, splitting tensile strength, and flexural strength of fiber-reinforced RFAC were slightly better than those of non-fiber-reinforced RFAC. The shrinkage cracking behavior was examined using plat-ring-type and slab-type tests. The fiber-reinforced RFAC showed a greater reduction in the surface cracks than non-fiber-reinforced concrete. The addition of fibers at a small volume fraction in RFAC is more effective for drying shrinkage cracks than for improving mechanical performance. PMID:28773256

  2. Intergranular tellurium cracking of nickel-based alloys in molten Li, Be, Th, U/F salt mixture

    NASA Astrophysics Data System (ADS)

    Ignatiev, Victor; Surenkov, Alexander; Gnidoy, Ivan; Kulakov, Alexander; Uglov, Vadim; Vasiliev, Alexander; Presniakov, Mikhail

    2013-09-01

    In Russia, R&D on Molten Salt Reactor (MSR) are concentrated now on fast/intermediate spectrum concepts which were recognized as long term alternative to solid fueled fast reactors due to their attractive features: strong negative feedback coefficients, easy in-service inspection, and simplified fuel cycle. For high-temperature MSR corrosion of the metallic container alloy in primary circuit is the primary concern. Key problem receiving current attention include surface fissures in Ni-based alloys probably arising from fission product tellurium attack. This paper summarizes results of corrosion tests conducted recently to study effect of oxidation state in selected fuel salt on tellurium attack and to develop means of controlling tellurium cracking in the special Ni-based alloys recently developed for molten salt actinide recycler and tranforming (MOSART) system. Tellurium corrosion of Ni-based alloys was tested at temperatures up to 750 °C in stressed and unloaded conditions in molten LiF-BeF2 salt mixture fueled by about 20 mol% of ThF4 and 2 mol% of UF4 at different [U(IV)]/[U(III)] ratios: 0.7, 4, 20, 100 and 500. Following Ni-based alloys (in mass%): HN80М-VI (Mo—12, Cr—7.6, Nb—1.5), HN80МТY (Mo—13, Cr—6.8, Al—1.1, Ti—0.9), HN80МТW (Mo—9.4, Cr—7.0, Ti—1.7, W—5.5) and ЕМ-721 (W—25.2, Cr—5.7, Ti—0.17) were used for the study in the corrosion facility. If the redox state the fuel salt is characterized by uranium ratio [U(IV)]/[U(III)] < 1 the alloys' specimens get a more negative stationary electrode potential than equilibrium electrode potentials of some uranium intermetallic compounds and alloys with nickel and molybdenum. This leads to spontaneous behavior of alloy formation processes on the specimens' surface and further diffusion of uranium deep into the metallic phase. As consequence of this films of intermetallic compounds and alloys of nickel, molybdenum, tungsten with uranium are formed on the alloys specimens' surface, and intergranular corrosion does not take place. In the fuel salt with [U(IV)]/[U(III)] = 4-20 the potentials of uranium alloy formation with the main components of the tested alloys are not reached, that's why alloys and intermetallic compounds are not formed on the surface of the investigated chromium-nickel alloys. Under such conditions any intergranular tellurium corrosion of the selected alloys does not occur. In the fuel salt with [U(IV)/]/[U(III)] = 100 the potentials of uranium alloy formation with the main components of the tested alloys are not also reached. Under such redox conditions any traces intergranular tellurium IGC on the HN80MTY and H80M-VI alloys specimens are not found. Certain signs of incipient IGC in the form of tellurium presence on the grain boundaries in the HN80MTB and EM-721 alloys surface layer and formation of not too deep cracks on HN80MTB alloy surface were revealed at [U(IV)/]/[U(III)] = 100. With this uranium ratio in the presence of corrosion products on the surface of all of the alloys films, containing tellurium, metals of the construction alloys and carbon, are formed. In the melt with [U(IV)]/[U(III)] = 500 in all of the alloys tested the tellurium IGC took place. The HN80MTY alloy shows the maximum resistance to tellurium IGC. The intensity of tellurium IGC of the alloy (the K parameter) is by 3-5 times lower as compared to other alloys. The EM-721 alloy has the minimal resistance to tellurium IGC (K = 9200 pc m/cm, the depth of cracks is up to 434 μm). The studies have shown, that the intensity of the nickel alloys IGC is controlled by the [U(IV)]/[U(III)] ratio, and its dependence on this parameter is of threshold character. Providing the uranium ratio value's monitoring and regulation, it is possible to control the tellurium corrosion and in such a way to eliminate IGC completely or to minimize its value. The alloys strength characteristics and their structure were changed insignificantly after testing within the [U(IV)]/[U(III)] range from 0.7 tо 100. The changes are not linked with the influence of fuel salt, containing tellurium additions, but are stipulated by alloys structure, temperature factor, exposure time and mechanical loads. Significant effect of tellurium cracking on the alloys (excepting HN80MTY) strength characteristics was established after corrosion testing with [U(IV)]/[U(III)] = 500. In the absence of IGC all of the alloys investigated have a good ductility at high strength characteristics. The disrupture of specimens under mechanical tests both before and after corrosion tests of all alloys except for ЕМ-721 proceeds on a ductile mechanism. On the EM-721 alloy specimens, both in their initial state and after corrosion testing, clear signs of brittle destruction, caused by heterogeneity of its structure due to the presence of tungsten phase, are very clearly observed. The presence of such phases increases the alloy IGC and leads to reduction of the alloy resistance tellurium damage. The HN80MTY alloy has the best corrosion and mechanical properties. It does not undergo tellurium IGC in the molten 75LiF-5BeF2-20ThF4 salt mixture fueled by about 2 mol% of UF4 with [U(IV)]/[U(III)] ratio ⩽ 100. The alloy has high resistance to tellurium cracking at [U(IV)]/[U(III)] = 500. The alloy can be recommended as the main construction material for the fuel circuit with selected salt composition up to temperature 750 °С.

  3. External stress-corrosion cracking of a 1.22-m-diameter type 316 stainless steel air valve

    NASA Technical Reports Server (NTRS)

    Moore, Thomas J.; Telesman, Jack; Moore, Allan S.; Johnson, Dereck F.; Kuivinen, David E.

    1993-01-01

    An investigation was conducted to determine the cause of the failure of a massive AISI Type 316 stainless steel valve which controlled combustion air to a jet engine test facility. Several through-the-wall cracks were present near welded joints in the valve skirt. The valve had been in outdoor service for 18 years. Samples were taken in the cracked regions for metallographic and chemical analyses. Insulating material and sources of water mist in the vicinity of the failed valve were analyzed for chlorides. A scanning electron microscope was used to determine whether foreign elements were present in a crack. On the basis of the information generated, the failure was characterized as external stress-corrosion cracking. The cracking resulted from a combination of residual tensile stress from welding and the presence of aqueous chlorides. Recommended countermeasures are included.

  4. Interaction of Cracks Between Two Adjacent Indents in Glass

    NASA Technical Reports Server (NTRS)

    Choi, S. R.; Salem, J. A.

    1993-01-01

    Experimental observations of the interaction behavior of cracks between two adjacent indents were made using an indentation technique in soda-lime glass. It was specifically demonstrated how one indent crack initiates and propagates in the vicinity of another indent crack. Several types of crack interactions were examined by changing the orientation and distance of one indent relative to the other. It was found that the residual stress field produced by elastic/plastic indentation has a significant influence on controlling the mode of crack interaction. The interaction of an indent crack with a free surface was also investigated for glass and ceramic specimens.

  5. Fatigue crack growth in fiber reinforced plastics

    NASA Technical Reports Server (NTRS)

    Mandell, J. F.

    1979-01-01

    Fatigue crack growth in fiber composites occurs by such complex modes as to frustrate efforts at developing comprehensive theories and models. Under certain loading conditions and with certain types of reinforcement, simpler modes of fatigue crack growth are observed. These modes are more amenable to modeling efforts, and the fatigue crack growth rate can be predicted in some cases. Thus, a formula for prediction of ligamented mode fatigue crack growth rate is available.

  6. Literature Survey on Weld-Metal Cracking

    DTIC Science & Technology

    1952-08-01

    quench cracking in cast steel. A statistical investigation was made into the causes of quench cracking in low-alloy-steel gun tubes (FlZ). A definite...decreased with increased pouring temperature, finishing temperature, and forging reduction. Spretnak and Wells(F2O) also made a statistical analysis of...per cent to avoid hot cracks and fissures. Lee(I20) made a statistical study of the bead-cracking susceptibility of weld metal deposited with Type 307

  7. 33 CFR 208.10 - Local flood protection works; maintenance and operation of structures and facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the levee and to repair the damaged section. (c) Flood walls—(1) Maintenance. Periodic inspections... accelerated seepage paths; (iv) The concrete has not undergone cracking, chipping, or breaking to an extent... that no fires are being built near them; (vii) No bank caving conditions exist riverward of the wall...

  8. 33 CFR 208.10 - Local flood protection works; maintenance and operation of structures and facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the levee and to repair the damaged section. (c) Flood walls—(1) Maintenance. Periodic inspections... accelerated seepage paths; (iv) The concrete has not undergone cracking, chipping, or breaking to an extent... that no fires are being built near them; (vii) No bank caving conditions exist riverward of the wall...

  9. 33 CFR 208.10 - Local flood protection works; maintenance and operation of structures and facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the levee and to repair the damaged section. (c) Flood walls—(1) Maintenance. Periodic inspections... accelerated seepage paths; (iv) The concrete has not undergone cracking, chipping, or breaking to an extent... that no fires are being built near them; (vii) No bank caving conditions exist riverward of the wall...

  10. Corrosion and stress corrosion cracking in supercritical water

    NASA Astrophysics Data System (ADS)

    Was, G. S.; Ampornrat, P.; Gupta, G.; Teysseyre, S.; West, E. A.; Allen, T. R.; Sridharan, K.; Tan, L.; Chen, Y.; Ren, X.; Pister, C.

    2007-09-01

    Supercritical water (SCW) has attracted increasing attention since SCW boiler power plants were implemented to increase the efficiency of fossil-based power plants. The SCW reactor (SCWR) design has been selected as one of the Generation IV reactor concepts because of its higher thermal efficiency and plant simplification as compared to current light water reactors (LWRs). Reactor operating conditions call for a core coolant temperature between 280 °C and 620 °C at a pressure of 25 MPa and maximum expected neutron damage levels to any replaceable or permanent core component of 15 dpa (thermal reactor design) and 100 dpa (fast reactor design). Irradiation-induced changes in microstructure (swelling, radiation-induced segregation (RIS), hardening, phase stability) and mechanical properties (strength, thermal and irradiation-induced creep, fatigue) are also major concerns. Throughout the core, corrosion, stress corrosion cracking, and the effect of irradiation on these degradation modes are critical issues. This paper reviews the current understanding of the response of candidate materials for SCWR systems, focusing on the corrosion and stress corrosion cracking response, and highlights the design trade-offs associated with certain alloy systems. Ferritic-martensitic steels generally have the best resistance to stress corrosion cracking, but suffer from the worst oxidation. Austenitic stainless steels and Ni-base alloys have better oxidation resistance but are more susceptible to stress corrosion cracking. The promise of grain boundary engineering and surface modification in addressing corrosion and stress corrosion cracking performance is discussed.

  11. Fracture toughness and fractography of dental cements, lining, build-up, and filling materials.

    PubMed

    Mueller, H J

    1990-06-01

    The plane strain fracture toughness (K1c) at 23 degrees C and the fractography of zinc phosphate and zinc polycarboxylate cements, buffered glass ionomer liner, amalgam alloy admixed glass ionomer build-up material, and glass ionomer, microfilled and conventionally filled bis-GMA resin composite filling materials were analyzed by elastic-plastic short-rod and scanning electron microscopy methodologies. Results indicated that significant differences occurred in their K1c's from the lowest to the highest in the following groups of materials, (i) buffered glass ionomer, (ii) zinc phosphate, glass ionomer, zinc polycarboxylate, and alloy mixed glass ionomer, (iii) microfilled resin, and (iv) conventionally filled resin. All materials except the microfilled resin, which fractured via crack jumping, fractured via smooth crack advance. Filler debonding without any crack inhibiting process was related to materials with low K1c values. The incorporation of either buffering compounds or alloy particles into glass ionomer had no beneficial effect upon fracture toughness. This was in contrast to microfilled and conventionally filled resins where either crack blunting or crack pinning processes, respectively, were likely involved with their increased K1c's. For microfilled resin, distinct radial zones positioned around the chevron apex and characterized by plastically deformed deposited material were related to distinct crack jumps that occurred in the load versus displacement behavior. Finally, for the two remaining materials of zinc phosphate and polycarboxylate, particle cleavage and matrix debonding for the former and shear yielding for the latter occurred.

  12. Indenter flaw geometry and fracture toughness estimates for a glass-ceramic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shetty, D.K.; Duckworth, W.H.; Rosenfield, A.R.

    1985-10-01

    Shapes of cracks associated with Vickers indenter flaws in a glass-ceramic were assessed by stepwise polishing and measuring surface traces as a function of depth. The cracks were of the Palmqvist type even at 200-N indentation load. The load dependence of crack lengths and fracture toughness estimates were examined in terms of relations proposed for Palmqvist and half-penny cracks. Estimates based on the half-penny crack analogy were in closer agreement with bulk fracture toughness measurements despite the Palmqvist nature of the cracks.

  13. Modelling and measurement of crack closure and crack growth following overloads and underloads

    NASA Technical Reports Server (NTRS)

    Dexter, R. J.; Hudak, S. J.; Davidson, D. L.

    1989-01-01

    Ignoring crack growth retardation following overloads can result in overly conservative life predictions in structures subjected to variable amplitude fatigue loading. Crack closure is believed to contribute to the crack growth retardation, although the specific closure mechanism is dabatable. The delay period and corresponding crack growth rate transients following overload and overload/underload cycles were systematically measured as a function of load ratio and overload magnitude. These responses are correlated in terms of the local 'driving force' for crack growth, i.e. the effective stress intensity factor range. Experimental results are compared with the predictions of a Dugdale-type (1960) crack closure model, and improvements in the model are suggested.

  14. An evaluation of interlayer stress absorbing composite (ISAC) reflective crack relief system

    DOT National Transportation Integrated Search

    2005-03-01

    Reflective cracking of bituminous concrete overlays has long been a problem in pavement rehabilitation. Various types of interlayer systems and fabrics have been used to eliminate or slow the development of reflective cracks. These methods and produc...

  15. Networks of channels for self-healing composite materials

    NASA Astrophysics Data System (ADS)

    Bejan, A.; Lorente, S.; Wang, K.-M.

    2006-08-01

    This is a fundamental study of how to vascularize a self-healing composite material so that healing fluid reaches all the crack sites that may occur randomly through the material. The network of channels is built into the material and is filled with pressurized healing fluid. When a crack forms, the pressure drops at the crack site and fluid flows from the network into the crack. The objective is to discover the network configuration that is capable of delivering fluid to all the cracks the fastest. The crack site dimension and the total volume of the channels are fixed. It is argued that the network must be configured as a grid and not as a tree. Two classes of grids are considered and optimized: (i) grids with one channel diameter and regular polygonal loops (square, triangle, hexagon) and (ii) grids with two channel sizes. The best architecture of type (i) is the grid with triangular loops. The best architecture of type (ii) has a particular (optimal) ratio of diameters that departs from 1 as the crack length scale becomes smaller than the global scale of the vascularized structure from which the crack draws its healing fluid. The optimization of the ratio of channel diameters cuts in half the time of fluid delivery to the crack.

  16. How Do Cracks Initiate and Grow in a Thin Glass Plate? A Peridynamic Analysis

    DTIC Science & Technology

    2014-06-17

    evolution of these cracks, and confirm these results with fractography experiments of post-mortem samples. The results provide evidence of the predictive...face Questions to be answered  Can we understand how and why each type of crack system forms?  Crack surface fractography can give indication of...Symmetrical cracks form on the lower-right quarter of the plate. Jared Wright (ARL) fractography results Conclusions • The simplest peridynamic model

  17. Crack Modelling for Radiography

    NASA Astrophysics Data System (ADS)

    Chady, T.; Napierała, L.

    2010-02-01

    In this paper, possibility of creation of three-dimensional crack models, both random type and based on real-life radiographic images is discussed. Method for storing cracks in a number of two-dimensional matrices, as well algorithm for their reconstruction into three-dimensional objects is presented. Also the possibility of using iterative algorithm for matching simulated images of cracks to real-life radiographic images is discussed.

  18. Plates and shells containing a surface crack under general loading conditions

    NASA Technical Reports Server (NTRS)

    Joseph, Paul F.; Erdogan, Fazil

    1987-01-01

    Various through and part-through crack problems in plates and shells are considered. The line-spring model of Rice and Levy is generalized to the skew-symmetric case to solve surface crack problems involving mixed-mode, coplanar crack growth. Compliance functions are introduced which are valid for crack depth to thickness ratios at least up to .95. This includes expressions for tension and bending as well as expressions for in-plane shear, out-of-plane shear, and twisting. Transverse shear deformation is taken into account in the plate and shell theories and this effect is shown to be important in comparing stress intensity factors obtained from the plate theory with three-dimensional solutions. Stress intensity factors for cylinders obtained by the line-spring model also compare well with three-dimensional solution. By using the line-spring approach, stress intensity factors can be obtained for the through crack and for part-through crack of any crack front shape, without recalculation integrals that take up the bulk of the computer time. Therefore, parameter studies involving crack length, crack depth, shell type, and shell curvature are made in some detail. The results will be useful in brittle fracture and in fatigue crack propagation studies. All problems considered are of the mixed boundary value type and are reducted to strongly singular integral equations which make use of the finite-part integrals of Hadamard. The equations are solved numerically in a manner that is very efficient.

  19. Growth model for large branched three-dimensional hydraulic crack system in gas or oil shale

    PubMed Central

    Chau, Viet T.

    2016-01-01

    Recent analysis of gas outflow histories at wellheads shows that the hydraulic crack spacing must be of the order of 0.1 m (rather than 1 m or 10 m). Consequently, the existing models, limited to one or several cracks, are unrealistic. The reality is 105–106 almost vertical hydraulic cracks per fracking stage. Here, we study the growth of two intersecting near-orthogonal systems of parallel hydraulic cracks spaced at 0.1 m, preferably following pre-existing rock joints. One key idea is that, to model lateral cracks branching from a primary crack wall, crack pressurization, by viscous Poiseuille-type flow, of compressible (proppant-laden) frac water must be complemented with the pressurization of a sufficient volume of micropores and microcracks by Darcy-type water diffusion into the shale, to generate tension along existing crack walls, overcoming the strength limit of the cohesive-crack or crack-band model. A second key idea is that enforcing the equilibrium of stresses in cracks, pores and water, with the generation of tension in the solid phase, requires a new three-phase medium concept, which is transitional between Biot’s two-phase medium and Terzaghi’s effective stress and introduces the loading of the solid by pressure gradients of diffusing pore water. A computer program, combining finite elements for deformation and fracture with volume elements for water flow, is developed to validate the new model. This article is part of the themed issue ‘Energy and the subsurface’. PMID:27597791

  20. Growth model for large branched three-dimensional hydraulic crack system in gas or oil shale.

    PubMed

    Chau, Viet T; Bažant, Zdeněk P; Su, Yewang

    2016-10-13

    Recent analysis of gas outflow histories at wellheads shows that the hydraulic crack spacing must be of the order of 0.1 m (rather than 1 m or 10 m). Consequently, the existing models, limited to one or several cracks, are unrealistic. The reality is 10(5)-10(6) almost vertical hydraulic cracks per fracking stage. Here, we study the growth of two intersecting near-orthogonal systems of parallel hydraulic cracks spaced at 0.1 m, preferably following pre-existing rock joints. One key idea is that, to model lateral cracks branching from a primary crack wall, crack pressurization, by viscous Poiseuille-type flow, of compressible (proppant-laden) frac water must be complemented with the pressurization of a sufficient volume of micropores and microcracks by Darcy-type water diffusion into the shale, to generate tension along existing crack walls, overcoming the strength limit of the cohesive-crack or crack-band model. A second key idea is that enforcing the equilibrium of stresses in cracks, pores and water, with the generation of tension in the solid phase, requires a new three-phase medium concept, which is transitional between Biot's two-phase medium and Terzaghi's effective stress and introduces the loading of the solid by pressure gradients of diffusing pore water. A computer program, combining finite elements for deformation and fracture with volume elements for water flow, is developed to validate the new model.This article is part of the themed issue 'Energy and the subsurface'. © 2016 The Author(s).

  1. Correlation between laboratory and plant produced high RAP/RAS mixtures : final report.

    DOT National Transportation Integrated Search

    2016-07-01

    Cracking is one of the most prevalent types of distresses in asphalt pavements. There are different cracking : index parameters that are determined from tests conducted on binders and mixtures to assess cracking : potential. The objective of this stu...

  2. The effect of crack blunting on the competition between dislocation nucleation and cleavage

    NASA Astrophysics Data System (ADS)

    Fischer, Lisa L.; Beltz, Glenn E.

    2001-03-01

    To better understand the ductile versus brittle fracture behavior of crystalline materials, attention should be directed towards physically realistic crack geometries. Currently, continuum models of ductile versus brittle behavior are typically based on the analysis of a pre-existing sharp crack in order to use analytical solutions for the stress fields around the crack tip. This paper examines the effects of crack blunting on the competition between dislocation nucleation and atomic decohesion using continuum methods. We accomplish this by assuming that the crack geometry is elliptical, which has the primary advantage that the stress fields are available in closed form. These stress field solutions are then used to calculate the thresholds for dislocation nucleation and atomic decohesion. A Peierls-type framework is used to obtain the thresholds for dislocation nucleation, in which the region of the slip plane ahead of the crack develops a distribution of slip discontinuity prior to nucleation. This slip distribution increases as the applied load is increased until an instability is reached and the governing integral equation can no longer be solved. These calculations are carried out for various crack tip geometries to ascertain the effects of crack tip blunting. The thresholds for atomic decohesion are calculated using a cohesive zone model, in which the region of the crack front develops a distribution of opening displacement prior to atomic decohesion. Again, loading of the elliptical crack tip eventually results in an instability, which marks the onset of crack advance. These calculations are carried out for various crack tip geometries. The results of these separate calculations are presented as the critical energy release rates versus the crack tip radius of curvature for a given crack length. The two threshold curves are compared simultaneously to determine which failure mode is energetically more likely at various crack tip curvatures. From these comparisons, four possible types of material fracture behavior are identified: intrinsically brittle, quasi-brittle, intrinsically ductile, and quasi-ductile. Finally, real material examples are discussed.

  3. Automatic Detection and Evaluation of Solar Cell Micro-Cracks in Electroluminescence Images Using Matched Filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    A method for detecting micro-cracks in solar cells using two dimensional matched filters was developed, derived from the electroluminescence intensity profile of typical micro-cracks. We describe the image processing steps to obtain a binary map with the location of the micro-cracks. Finally, we show how to automatically estimate the total length of each micro-crack from these maps, and propose a method to identify severe types of micro-cracks, such as parallel, dendritic, and cracks with multiple orientations. With an optimized threshold parameter, the technique detects over 90 % of cracks larger than 3 cm in length. The method shows great potentialmore » for quantifying micro-crack damage after manufacturing or module transportation for the determination of a module quality criterion for cell cracking in photovoltaic modules.« less

  4. Fracture Analysis of Semi-Elliptical Surface Cracks in Ductile Materials

    NASA Technical Reports Server (NTRS)

    Daniewicz, S. R.; Newman, J. C., Jr.; Leach, A. M.

    2004-01-01

    Accurate life assessment of structural components may require advanced life prediction criteria and methodologies. Structural components often exhibit several different types of defects, among the most prevalent being surface cracks. A semi-elliptical surface crack subjected to monotonic loading will exhibit stable crack growth until the crack has reached a critical size, at which the crack loses stability and fracture ensues (Newman, 2000). The shape and geometry of the flaw are among the most influential factors. When considering simpler crack configurations, such as a through-the-thickness crack, a three-dimensional (3D) geometry may be modeled under the approximation of two-dimensional (2D) plane stress or plane strain. The more complex surface crack is typically modeled numerically with the Finite Element Method (FEM). A semi-elliptical surface crack is illustrated in Figure 1-1.

  5. Edge-Cracking Behavior of CoCrFeMnNi High-Entropy Alloy During Hot Rolling

    NASA Astrophysics Data System (ADS)

    Won, Jong Woo; Kang, Minju; Kwon, Heoun-Jun; Lim, Ka Ram; Seo, Seong Moon; Na, Young Sang

    2018-05-01

    This work investigated edge-cracking behavior of equiatomic CoCrFeMnNi high-entropy alloy during hot rolling at rolling temperatures 500 ≤ T R ≤ 1000 °C. Edge cracks did not form in the material rolled at 500 °C, but widened and deepened into the inside of plate as T R increased from 500 °C. Edge cracks were most severe in the material rolled at 1000 °C. Mn-Cr-O type non-metallic inclusion and oxidation were identified as major factors that caused edge cracking. The inclusions near edge region acted as preferential sites for crack formation. Connection between inclusion cracks and surface cracks induced edge cracking. Rolling at T R ≥ 600 °C generated distinct inclusion cracks whereas they were not serious at T R = 500 °C, so noticeable edge cracks formed at T R ≥ 600 °C. At T R = 1000 °C, significant oxidation occurred at the crack surface. This accelerated edge crack penetration by embrittling the crack tip, so severe edge cracking occurred at T R = 1000 °C.

  6. New specimen design for studying the growth of small fatigue cracks with surface acoustic waves

    NASA Astrophysics Data System (ADS)

    London, Blair

    1985-08-01

    The study of small surface fatigue cracks in AISI 4140 quenched and tempered steel by a nondestructive surface acoustic wave technique is summarized. A novel cantilevered bending, plate-type fatigue specimen is described that is compatible with the acoustic method. Small cracks are initiated from a 25-μm deep surface pit produced by an electrospark machine. The importance of studying these cracks which closely approximate naturally occurring fatigue cracks is briefly discussed.

  7. Health Monitoring and Diagnosis of Solid Rocket Motors with Bore Cracks

    DTIC Science & Technology

    2015-11-01

    Bore Cracks 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Anhduong Q. Le, L. Z. Sun, and Timothy C. Miller 5d...element-based computational model is used to investigate the effects of bore cracking on the changes in stress distributions along the bondline of solid...between the crack depth and the sensor data to inversely estimate the size of bore cracks in the motor. It is shown that the proposed type of sensing

  8. Machine-vision-based roadway health monitoring and assessment : development of a shape-based pavement-crack-detection approach.

    DOT National Transportation Integrated Search

    2016-01-01

    State highway agencies (SHAs) routinely employ semi-automated and automated image-based methods for network-level : pavement-cracking data collection, and there are different types of pavement-cracking data collected by SHAs for reporting and : manag...

  9. Use of innovative concrete mixes for improved constructability and sustainability of bridge decks.

    DOT National Transportation Integrated Search

    2013-11-01

    Bridge deck crack surveys were performed on twelve bridges on US-59 south of Lawrence, Kansas, to determine the effects of : mixture proportions, concrete properties, deck type, and girder type on the crack density of reinforced concrete bridge decks...

  10. Type, origin, and reservoir characteristics of dolostones of the Ordovician Majiagou Group, Ordos, North China Platform

    NASA Astrophysics Data System (ADS)

    Feng Zengzhao; Zhang Yongsheng; Jin Zhenkui

    1998-06-01

    Dolostones are well developed in the Ordovician Majiagou Group in the Ordos area, North China Platform. These dolostones can be divided into four types: mud-sized to silt-sized crystalline dolostones not associated with gypsum and halite beds (type I), mud-sized to silt-sized crystalline dolostones associated with gypsum and halite beds (type II), mottled silt-sized to very fine sand-sized crystalline dolostones (fine saccharoidal dolostones) (type III), and mottled coarse silt-sized to fine sand-sized crystalline dolostones (coarse saccharoidal dolostones) (type IV). Type I dolostones consist of mud-sized to silt-sized dolomite crystals. Laminar stromatolites, ripple marks, mud cracks and birdseyes are common. Such dolostones are not associated with gypsum and halite beds, but lath-shaped pseudomorphs after gypsum are common. The ordering of dolomites averages 0.59, and molar concentration of CaCO 3 averages 51.44%. δ13C averages -0.8‰ (PDB Standard), δ18O averages -2.9‰, δCe averages 0.83. The above characteristics suggest that type I dolostones result from penecontemporaneous dolomitization of lime mud on supratidal flat environments by hypersaline sea water. Type II dolostones mainly consist of mud-sized to silt-sized dolomite crystals. They are commonly well laminated but show no desiccation structures. Such dolostones are intercalated within laminated gypsum and halite beds or are intermixed with them. Such dolostones resulted from dolomitization of lime mud by hypersaline sea water in gypsum and halite precipitating lagoons. Type III dolostones consist of coarse silt-sized to very fine sand-sized dolomite crystals. They commonly underlie type I dolostones and grade downwards to dolomite-mottled limestones and pure limestones. The ordering of dolomites averages 0.63, and molar concentration of CaCO 3 averages 55.64%. δ13C averages -0.2‰, δ18O averages -3.3‰, δCe averages 1.24. Such dolostones resulted from reflux dolomitization by hypersaline sea water. Type IV dolostones consist of coarse-silt-sized to fine-sand-sized dolomite crystals. In such dolostones, stylolites are cut by dolomite crystals. Fluid inclusions are present, and the homogenization temperature commonly ranges from 104°C to 203°C. The ordering of dolomites averages 0.85, and molar concentration of CaCO 3 averages 50.65%. δ13C averages 0.6‰, δ18O averages -7.4‰, and δCe averages 1.16. Such dolostones resulted from deep burial dolomitization. In the Ordos area, type I and II dolostones modified by palaeokarstification are the major gas reservoir rocks of the Ordos Gas Field at present. Type IV dolostones show good reservoir characteristics and may also be potential reservoir rocks.

  11. Use of innovative concrete mixes for improved constructability and sustainability of bridge decks : [technical summary].

    DOT National Transportation Integrated Search

    2013-11-01

    Bridge deck crack surveys were performed on twelve bridges on US-59 south of Lawrence, Kansas, to determine the effects of mixture proportions, concrete properties, deck type, and girder type on the crack density of reinforced concrete bridge decks.

  12. Dynamic analysis of a geared rotor system considering a slant crack on the shaft

    NASA Astrophysics Data System (ADS)

    Han, Qinkai; Zhao, Jingshan; Chu, Fulei

    2012-12-01

    The vibration problems associated with geared systems have been the focus of research in recent years. As the torque is mainly transmitted by the geared system, a slant crack is more likely to appear on the gear shaft. Due to the slant crack and its breathing mechanism, the dynamic behavior of cracked geared system would differ distinctly with that of uncracked system. Relatively less work is reported on slant crack in the geared rotor system during the past research. Thus, the dynamic analysis of a geared rotor-bearing system with a breathing slant crack is performed in the paper. The finite element model of a geared rotor with slant crack is presented. Based on fracture mechanics, the flexibility matrix for the slant crack is derived that accounts for the additional stress intensity factors. Three methods for whirling analysis, parametric instability analysis and steady-state response analysis are introduced. Then, by taking a widely used one-stage geared rotor-bearing system as an example, the whirling frequencies of the equivalent time-invariant system, two types of instability regions and steady-state response under the excitations of unbalance forces and tooth transmission errors, are computed numerically. The effects of crack depth, position and type (transverse or slant) on the system dynamic behaviors are considered in the discussion. The comparative study with slant cracked geared rotor is carried out to explore distinctive features in their modal, parametric instability and frequency response behaviors.

  13. Development of shrinkage resistant microfibre-reinforced cement-based composites

    NASA Astrophysics Data System (ADS)

    Hamedanimojarrad, P.; Adam, G.; Ray, A. S.; Thomas, P. S.; Vessalas, K.

    2012-06-01

    Different shrinkage types may cause serious durability dilemma on restrained concrete parts due to crack formation and propagation. Several classes of fibres are used by concrete industry in order to reduce crack size and crack number. In previous studies, most of these fibre types were found to be effective in reducing the number and sizes of the cracks, but not in shrinkage strain reduction. This study deals with the influence of a newly introduced type of polyethylene fibre on drying shrinkage reduction. The novel fibre is a polyethylene microfibre in a new geometry, which is proved to reduce the amount of total shrinkage in mortars. This special hydrophobic polyethylene microfibre also reduces moisture loss of mortar samples. The experimental results on short and long-term drying shrinkage as well as on several other properties are reported. The hydrophobic polyethylene microfibre showed promising improvement in shrinkage reduction even at very low concentrations (0.1% of cement weight).

  14. Effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue regime

    NASA Astrophysics Data System (ADS)

    Gu, Chao; Bao, Yan-ping; Gan, Peng; Wang, Min; He, Jin-shan

    2018-06-01

    This work aims to investigate the effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue (VHCF) regime. The size and type of inclusions in the steel were quantitatively analyzed, and VHCF tests were performed. Some fatigue cracks were found to be initiated in the gaps between inclusions (Al2O3, MgO-Al2O3) and the matrix, while other cracks originated from the interior of inclusions (TiN, MnS). To explain the related mechanism, the tessellated stresses between inclusions and the matrix were calculated and compared with the yield stress of the matrix. Results revealed that the inclusions could be classified into two types under VHCF; of these two, only one type could be regarded as holes. Findings in this research provide a better understanding of how inclusions affect the high cycle fatigue properties of bearing steel.

  15. Cracking of porcelain surfaces arising from abrasive grinding with a dental air turbine.

    PubMed

    Chang, Chee W; Waddell, J Neil; Lyons, Karl M; Swain, Michael V

    2011-12-01

    The purpose of this in vitro study was to evaluate porcelain cracking induced by abrasive grinding with a conventional dental air turbine and abrasive diamond burs. Four commercially available porcelains were examined-Wieland ALLUX, Wieland ZIROX, IPS e.max Ceram, and IPS Empress Esthetic Veneering porcelain. Sixty discs of each porcelain type were fabricated according to manufacturer instructions, followed by an auto-glaze cycle. Abrasive grinding using fine, extra-fine, and ultra-fine diamond burs was carried out, using a conventional dental air turbine. The grinding parameters were standardized with regard to the magnitude of the force applied, rotational speed of the diamond bur, and flow rate of the water coolant. A testing apparatus was used to control the magnitude of force applied during the grinding procedure. The ground surfaces were then examined under scanning electron microscope. Cracking was seen for all porcelain types when ground with the fine bur. Cracking was not seen for specimens ground with the extra-fine or the ultra-fine bur. Wet abrasive grinding with a conventional dental air turbine and fine grit diamond burs has the potential to cause cracking in the four porcelain types tested. Similar abrasive grinding with smaller grit size particles does not cause similar observable cracking. © 2011 by the American College of Prosthodontists.

  16. The surface and through crack problems in layered orthotropic plates

    NASA Technical Reports Server (NTRS)

    Erdogan, Fazil; Wu, Binghua

    1991-01-01

    An analytical method is developed for a relatively accurate calculation of Stress Intensity Factors in a laminated orthotropic plate containing a through or part-through crack. The laminated plate is assumed to be under bending or membrane loading and the mode 1 problem is considered. First three transverse shear deformation plate theories (Mindlin's displacement based first-order theory, Reissner's stress-based first-order theory, and a simple-higher order theory due to Reddy) are reviewed and examined for homogeneous, laminated and heterogeneous orthotropic plates. Based on a general linear laminated plate theory, a method by which the stress intensity factors can be obtained in orthotropic laminated and heterogeneous plates with a through crack is developed. Examples are given for both symmetrically and unsymmetrically laminated plates and the effects of various material properties on the stress intensity factors are studied. In order to implement the line-spring model which is used later to study the surface crack problem, the corresponding plane elasticity problem of a two-bonded orthotropic plated containing a crack perpendicular to the interface is also considered. Three different crack profiles: an internal crack, an edge crack, and a crack terminating at the interface are considered. The effect of the different material combinations, geometries, and material orthotropy on the stress intensity factors and on the power of stress singularity for a crack terminating at the interface is fully examined. The Line Spring model of Rice and Levy is used for the part-through crack problem. The surface crack is assumed to lie in one of the two-layered laminated orthotropic plates due to the limitation of the available plane strain results. All problems considered are of the mixed boundary value type and are reduced to Cauchy type of singular integral equations which are then solved numerically.

  17. Thermal fatigue behaviour for a 316 L type steel

    NASA Astrophysics Data System (ADS)

    Fissolo, A.; Marini, B.; Nais, G.; Wident, P.

    1996-10-01

    This paper deals with initiation and growth of cracks produced by thermal fatigue loadings on 316 L steel, which is a reference material for the first wall of the next fusion reactor ITER. Two types of facilities have been built. As for true components, thermal cycles have been repeatedly applied on the surface of the specimen. The first is mainly concerned with initiation, which is detected with a light microscope. The second allows one to determine the propagation of a single crack. Crack initiation is analyzed using the French RCC-MR code procedure, and the strain-controlled isothermal fatigue curves. To predict crack growth, a model previously proposed by Haigh and Skelton is applied. This is based on determination of effective stress intensity factors, which takes into account both plastic strain and crack closure phenomena. It is shown that estimations obtained with such methodologies are in good agreement with experimental data.

  18. New-type steel plate with ultra high crack-arrestability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishikawa, T.; Nomiyama, Y.; Hagiwara, Y.

    1995-12-31

    A new-type steel plate has been developed by controlling the microstructure of the surface layers. The surface layer consists of ultra fine grain ferrite microstructure, which provides excellent fracture toughness even at cryogenic temperature. When an unstable brittle crack propagates in the developed steel plate, shear-lips can be easily formed due to the surface layers with ultra fine grain microstructure. Since unstable running crack behavior is strongly affected by side-ligaments (shear-lips), which are associated with extensive plastic deformation, enhanced formation of the shear-lips can improve crack arrestability. This paper describes the developed steel plates of HT500MPa tensile strength class formore » shipbuilding use. Fracture mechanics investigations using large-scale fracture testings (including ultrawide duplex ESSO tests) clarified that the developed steel plates have ultra high crack-arrestability. It was also confirmed that the plates possess sufficient properties, including weldability and workability, for ship building use.« less

  19. Theoretical predicting of permeability evolution in damaged rock under compressive stress

    NASA Astrophysics Data System (ADS)

    Vu, M. N.; Nguyen, S. T.; To, Q. D.; Dao, N. H.

    2017-05-01

    This paper outlines an analytical model of crack growth induced permeability changes. A theoretical solution of effective permeability of cracked porous media is derived. The fluid flow obeys Poisseuille's law along the crack and Darcy's law in the porous matrix. This solution exhibits a percolation threshold for any type of crack distribution apart from a parallel crack distribution. The physical behaviour of fluid flow through a cracked porous material is well reproduced by the proposed model. The presence of this effective permeability coupling to analytical expression of crack growth under compression enables the modelling of the permeability variation due to stress-induced cracking in a porous rock. This incorporation allows the prediction of the permeability change of a porous rock embedding an anisotropic crack distribution from any initial crack density, that is, lower, around or upper to percolation threshold. The interaction between cracks is not explicitly taken into account. The model is well applicable both to micro- and macrocracks.

  20. Definitive diagnosis of early enamel and dentin cracks based on microscopic evaluation.

    PubMed

    Clark, David J; Sheets, Cherilyn G; Paquette, Jacinthe M

    2003-01-01

    The diagnoses of cracked teeth and incomplete coronal fracture have historically been symptom based. The dental operating microscope at 16x magnification can fundamentally change a clinician's ability to diagnose such conditions. Clinicians have been observing cracks under extreme magnification for nearly a decade. Patterns have become clear that can lead to appropriate treatment prior to symptoms or to devastation to tooth structure. Conversely, many cracks are not structural and can lead to misdiagnosis and overtreatment. Methodic microscopic examination, an understanding of crack progression, and an appreciation of the types of cracks will guide a doctor to make appropriate decisions. Teeth can have structural cracks in various stages. To date, diagnosis and treatment are very often at end stage of crack development. This article gives new guidelines for recognition, visualization, classification, and treatment of cracked teeth based on the routine use of 16x magnification. The significance of enamel cracks as they relate to dentinal cracks is detailed.

  1. Improved method for determining the stress relaxation at the crack tip

    NASA Astrophysics Data System (ADS)

    Grinevich, A. V.; Erasov, V. S.; Avtaev, V. V.

    2017-10-01

    A technique is suggested to determine the stress relaxation at the crack tip during tests of a specimen of a new type at a constant crack opening fixed by a stay bolt. The shape and geometry of the specimen make it possible to set the load and to determine the crack closure force after long-term exposure using the force transducer of a tensile-testing machine. The stress relaxation at the crack tip is determined in a V95pchT2 alloy specimen at elevated temperatures.

  2. Creep and Creep-Fatigue Crack Growth at Structural Discontinuities and Welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. F. W. Brust; Dr. G. M. Wilkowski; Dr. P. Krishnaswamy

    2010-01-27

    The subsection ASME NH high temperature design procedure does not admit crack-like defects into the structural components. The US NRC identified the lack of treatment of crack growth within NH as a limitation of the code and thus this effort was undertaken. This effort is broken into two parts. Part 1, summarized here, involved examining all high temperature creep-fatigue crack growth codes being used today and from these, the task objective was to choose a methodology that is appropriate for possible implementation within NH. The second part of this task, which has just started, is to develop design rules formore » possible implementation within NH. This second part is a challenge since all codes require step-by-step analysis procedures to be undertaken in order to assess the crack growth and life of the component. Simple rules for design do not exist in any code at present. The codes examined in this effort included R5, RCC-MR (A16), BS 7910, API 579, and ATK (and some lesser known codes). There are several reasons that the capability for assessing cracks in high temperature nuclear components is desirable. These include: (1) Some components that are part of GEN IV reactors may have geometries that have sharp corners - which are essentially cracks. Design of these components within the traditional ASME NH procedure is quite challenging. It is natural to ensure adequate life design by modeling these features as cracks within a creep-fatigue crack growth procedure. (2) Workmanship flaws in welds sometimes occur and are accepted in some ASME code sections. It can be convenient to consider these as flaws when making a design life assessment. (3) Non-destructive Evaluation (NDE) and inspection methods after fabrication are limited in the size of the crack or flaw that can be detected. It is often convenient to perform a life assessment using a flaw of a size that represents the maximum size that can elude detection. (4) Flaws that are observed using in-service detection methods often need to be addressed as plants age. Shutdown inspection intervals can only be designed using creep and creep-fatigue crack growth techniques. (5) The use of crack growth procedures can aid in examining the seriousness of creep damage in structural components. How cracks grow can be used to assess margins on components and lead to further safe operation. After examining the pros and cons of all these methods, the R5 code was chosen as the most up-to-date and validated high temperature creep and creep fatigue code currently used in the world at present. R5 is considered the leader because the code: (1) has well established and validated rules, (2) has a team of experts continually improving and updating it, (3) has software that can be used by designers, (4) extensive validation in many parts with available data from BE resources as well as input from Imperial college's database, and (5) was specifically developed for use in nuclear plants. R5 was specifically developed for use in gas cooled nuclear reactors which operate in the UK and much of the experience is based on materials and temperatures which are experienced in these reactors. If the next generation advanced reactors to be built in the US used these same materials within the same temperature ranges as these reactors, then R5 may be appropriate for consideration of direct implementation within ASME code NH or Section XI. However, until more verification and validation of these creep/fatigue crack growth rules for the specific materials and temperatures to be used in the GEN IV reactors is complete, ASME should consider delaying this implementation. With this in mind, it is this authors opinion that R5 methods are the best available for code use today. The focus of this work was to examine the literature for creep and creep-fatigue crack growth procedures that are well established in codes in other countries and choose a procedure to consider implementation into ASME NH. It is very important to recognize that all creep and creep fatigue crack growth procedures that are part of high temperature design codes are related and very similar. This effort made no attempt to develop a new creep-fatigue crack growth predictive methodology. Rather examination of current procedures was the only goal. The uncertainties in the R5 crack growth methods and recommendations for more work are summarized here also.« less

  3. Hydriding process

    DOEpatents

    Raymond, J.W.; Taketani, H.

    1973-12-01

    BS>A method is described for hydriding a body of a Group IV-B metal, preferably zirconium, to produce a crack-free metal-hydride bedy of high hydrogen content by cooling the body at the beta to beta + delta boundary, without further addition of hydrogen, to precipitate a fine-grained delta-phase metal hydride in the beta + delta phase region and then resuming the hydriding, preferably preceded by a reheating step. (Official Gazette)

  4. 76 FR 64038 - Airworthiness Directives; CPAC, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... airplane in the elevator spar area or that could have affected the elevator spar. (5) Type of operation... elevator spar for cracks and, if any crack is found, either replace with a serviceable elevator spar that is found free of cracks or repair/modify the elevator spar with an FAA-approved method. That AD also...

  5. Experimental and Finite Element Modeling of Near-Threshold Fatigue Crack Growth for the K-Decreasing Test Method

    NASA Technical Reports Server (NTRS)

    Smith, Stephen W.; Seshadri, Banavara R.; Newman, John A.

    2015-01-01

    The experimental methods to determine near-threshold fatigue crack growth rate data are prescribed in ASTM standard E647. To produce near-threshold data at a constant stress ratio (R), the applied stress-intensity factor (K) is decreased as the crack grows based on a specified K-gradient. Consequently, as the fatigue crack growth rate threshold is approached and the crack tip opening displacement decreases, remote crack wake contact may occur due to the plastically deformed crack wake surfaces and shield the growing crack tip resulting in a reduced crack tip driving force and non-representative crack growth rate data. If such data are used to life a component, the evaluation could yield highly non-conservative predictions. Although this anomalous behavior has been shown to be affected by K-gradient, starting K level, residual stresses, environmental assisted cracking, specimen geometry, and material type, the specifications within the standard to avoid this effect are limited to a maximum fatigue crack growth rate and a suggestion for the K-gradient value. This paper provides parallel experimental and computational simulations for the K-decreasing method for two materials (an aluminum alloy, AA 2024-T3 and a titanium alloy, Ti 6-2-2-2-2) to aid in establishing clear understanding of appropriate testing requirements. These simulations investigate the effect of K-gradient, the maximum value of stress-intensity factor applied, and material type. A material independent term is developed to guide in the selection of appropriate test conditions for most engineering alloys. With the use of such a term, near-threshold fatigue crack growth rate tests can be performed at accelerated rates, near-threshold data can be acquired in days instead of weeks without having to establish testing criteria through trial and error, and these data can be acquired for most engineering materials, even those that are produced in relatively small product forms.

  6. A Mechanism of Land Degradation in Turf-Mantled Slopes of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Okin, Gregory S.; D'Odorico, Paolo; Liu, Jianquan

    2018-05-01

    Kobresia pygmaea meadows are typical of Tibetan Plateau landscapes in the 3,000 to 5,500 m elevation range and constitute the most extensive alpine ecosystem in the world. Kobresia pygmaea forms turf mats that stabilize the surface and shelter the underlying soils from water erosion. Large tracts of the Plateau, however, exhibit signs of ongoing degradation of the turf and erosion of the underlying soil. Despite the crucial role played by K. pygmaea turf mats in the stabilization of the headwaters of major Asian rivers, the mechanisms responsible for their degradation remain poorly investigated. Here we develop a process-based model of land degradation of Tibetan Plateau slopes, which accounts for (i) turf cracking, (ii) water flow concentration in the cracks, (iii) crack widening by scouring, and (iv) sheet-flow erosion. As expected, soil erosion increases with the slope and drainage area (hence the observation of stronger erosion in relatively steep downhill sites). Model simulations indicate that with a sensible set of parameters representative of soil and hydrologic conditions in the region, Tibetan Plateau landscapes are vulnerable to turf mat degradation and soil erosion. As soon as polygonal cracks develop, water flow widens them until the landscape is completely barren. At this point sheet flow eventually erodes the mineral soil leaving behind a highly degraded landscape.

  7. Thermal Shock Damage and Microstructure Evolution of Thermal Barrier Coatings on Mar-M247 Superalloy in a Combustion Gas Environment

    NASA Astrophysics Data System (ADS)

    Mei, Hui

    2012-06-01

    The effect of preoxidation on the thermal shock of air plasma sprayed thermal barrier coatings (TBCs) was completely investigated in a combustion gas environment by burning jet fuel with high speed air. Results show that with increasing cycles, the as-oxidized TBCs lost more weight and enlarged larger spallation area than the as-sprayed ones. Thermally grown oxide (TGO) growth and thermal mismatch stress were proven to play critical roles on the as-oxidized TBC failure. Two types of significant cracks were identified: the type I crack was vertical to the TGO interface and the type II crack was parallel to the TGO interface. The former accelerated the TGO growth to develop the latter as long as the oxidizing gas continuously diffused inward and then oxidized the more bond coat (BC). The preoxidation treatment directly increased the TGO thickness, formed the parallel cracks earlier in the TGO during the thermal shocks, and eventually resulted in the worse thermal shock resistance.

  8. Understanding cracking failures of coatings: A fracture mechanics approach

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Ryong

    A fracture mechanics analysis of coating (paint) cracking was developed. A strain energy release rate (G(sub c)) expression due to the formation of a new crack in a coating was derived for bending and tension loadings in terms of the moduli, thicknesses, Poisson's ratios, load, residual strain, etc. Four-point bending and instrumented impact tests were used to determine the in-situ fracture toughness of coatings as functions of increasing baking (drying) time. The system used was a thin coating layer on a thick substrate layer. The substrates included steel, aluminum, polycarbonate, acrylonitrile-butadiene-styrene (ABS), and Noryl. The coatings included newly developed automotive paints. The four-point bending configuration promoted nice transversed multiple coating cracks on both steel and polymeric substrates. The crosslinked type automotive coatings on steel substrates showed big cracks without microcracks. When theoretical predictions for energy release rate were compared to experimental data for coating/steel substrate samples with multiple cracking, the agreement was good. Crosslinked type coatings on polymeric substrates showed more cracks than theory predicted and the G(sub c)'s were high. Solvent evaporation type coatings on polymeric substrates showed clean multiple cracking and the G(sub c)'s were higher than those obtained by tension analysis of tension experiments with the same substrates. All the polymeric samples showed surface embrittlement after long baking times using four-point bending tests. The most apparent surface embrittlement was observed in the acrylonitrile-butadiene-styrene (ABS) substrate system. The impact properties of coatings as a function of baking time were also investigated. These experiments were performed using an instrumented impact tester. There was a rapid decrease in G(sub c) at short baking times and convergence to a constant value at long baking times. The surface embrittlement conditions and an embrittlement toughness were found upon impact loading. This analysis provides a basis for a quantitative approach to measuring coating toughness.

  9. Microstructural indicators of transition mechanisms in time-dependent fatigue crack growth in nickel base superalloys

    NASA Astrophysics Data System (ADS)

    Heeter, Ann E.

    Gas turbine engines are an important part of power generation in modern society, especially in the field of aerospace. Aerospace engines are design to last approximately 30 years and the engine components must be designed to survive for the life of the engine or to be replaced at regular intervals to ensure consumer safety. Fatigue crack growth analysis is a vital component of design for an aerospace component. Crack growth modeling and design methods date back to an origin around 1950 with a high rate of accuracy. The new generation of aerospace engines is designed to be efficient as possible and require higher operating temperatures than ever seen before in previous generations. These higher temperatures place more stringent requirements on the material crack growth performance under creep and time dependent conditions. Typically the types of components which are subject to these requirements are rotating disk components which are made from advanced materials such as nickel base superalloys. Traditionally crack growth models have looked at high temperature crack growth purely as a function of temperature and assumed that all crack growth was either controlled by a cycle dependent or time dependent mechanism. This new analysis is trying to evaluate the transition between cycle-dependent and time-dependent mechanism and the microstructural markers that characterize this transitional behavior. The physical indications include both the fracture surface morphology as well as the shape of the crack front. The research will evaluate whether crack tunneling occurs and whether it consistently predicts a transition from cycle-dependent crack growth to time-dependent crack growth. The study is part of a larger research program trying to include the effects of geometry, mission profile and environmental effects, in addition to temperature effects, as a part of the overall crack growth system. The outcome will provide evidence for various transition types and correlate those physical attributes back to the material mechanisms to improve predictive modeling capability.

  10. Model based Inverse Methods for Sizing Cracks of Varying Shape and Location in Bolt hole Eddy Current (BHEC) Inspections (Postprint)

    DTIC Science & Technology

    2016-02-10

    using bolt hole eddy current (BHEC) techniques. Data was acquired for a wide range of crack sizes and shapes, including mid- bore , corner and through...to select the most appropriate VIC-3D surrogate model for subsequent crack sizing inversion step. Inversion results for select mid- bore , through and...the flaw. 15. SUBJECT TERMS Bolt hole eddy current (BHEC); mid- bore , corner and through-thickness crack types; VIC-3D generated surrogate models

  11. Exploring How Weathering Related Stresses and Subcritical Crack Growth May Influence the Size of Sediment Produced From Different Rock Types.

    NASA Astrophysics Data System (ADS)

    Eppes, M. C.; Hallet, B.; Hancock, G. S.; Mackenzie-Helnwein, P.; Keanini, R.

    2016-12-01

    The formation and diminution of rock debris, sediment and soil at and near Earth's surface is driven in large part by in situ, non-transport related, rock cracking. Given the relatively low magnitude stresses that arise in surface and near-surface settings, this production and diminution of granular material is likely strongly influenced and/or driven by subcritical crack growth (Eppes et al., 2016), cracking that occurs under stress loading conditions much lower than a rock's strength as typically measured in the laboratory under rapid loading. Despite a relatively sound understanding of subcritical crack growth through engineering and geophysical studies, its geomorphic and sedimentologic implications have only been minimally explored. Here, based on existing studies, we formulate several hypotheses to predict how weathering-induced stresses combined with the subcritical crack growth properties of rock may influence sediment size distribution. For example, subcritical crack growth velocity (v) can be described by v = CKIn where KI is the mode I (simple opening mode) stress intensity factor, a function of tensile stress at the crack tip and crack length; C is a rock- and environment-dependent constant; and n is material constant, the subcritical crack growth index. Fracture length and spacing in rock is strongly dependent on n, where higher n values result in fewer, more distally spaced cracks (e.g. Olsen, 1993). Thus, coarser sediment might be expected from rocks with higher n values. Weathering-related stresses such as thermal stresses and mineral hydration, however, can disproportionally stress boundaries between minerals with contrasting thermal or chemical properties and orientation, resulting in granular disintegration. Thus, rocks with properties favorable to inducing these stresses might produce sediment whose size is reflective of its constituent grains. We begin to test these hypotheses through a detailed examination of crack and rock characteristics in outcrops of granite, sandstone, and quartzite found in Shenandoah National Park, Virginia. Preliminary results reveal that many observed cracking characteristics are consistent with our hypotheses linking subcritical crack growth, weathering stresses and the production of different sized sediment from different rock types.

  12. Development of a High Chromium Ni-Base Filler Metal Resistant to Ductility Dip Cracking and Solidification Cracking

    NASA Astrophysics Data System (ADS)

    Hope, Adam T.

    Many nuclear reactor components previously constructed with Ni-based alloys containing 20 wt% Cr have been found to be susceptible to stress corrosion cracking. The nuclear power industry now uses high chromium (˜30wt%) Ni-based filler metals to mitigate stress corrosion cracking. Current alloys are plagued with weldability issues, either solidification cracking or ductility dip cracking (DDC). Solidification cracking is related to solidification temperature range and the DDC is related to the fraction eutectic present in the microstructure. It was determined that an optimal alloy should have a solidification temperature range less than 150°C and at least 2% volume fraction eutectic. Due to the nature of the Nb rich eutectic that forms, it is difficult to avoid both cracking types simultaneously. Through computational modeling, alternative eutectic forming elements, Hf and Ta, have been identified as replacements for Nb in such alloys. Compositions have been optimized through a combination of computational and experimental techniques combined with a design of experiment methodology. Small buttons were melted using commercially pure materials in a copper hearth to obtain the desired compositions. These buttons were then subjected to a gas tungsten arc spot weld. A type C thermocouple was used to acquire the cooling history during the solidification process. The cooling curves were processed using Single Sensor Differential Thermal Analysis to determine the solidification temperature range, and indicator of solidification cracking susceptibility. Metallography was performed to determine the fraction eutectic present, an indicator of DDC resistance. The optimal level of Hf to resist cracking was found to be 0.25 wt%. The optimal level of Ta was found to be 4 wt%. gamma/MC type eutectics were found to form first in all Nb, Ta, and Hf-bearing compositions. Depending on Fe and Cr content, gamma/Laves eutectic was sometimes found in Nb and Ta-bearing compositions, while Hf-bearing compositions had gamma/Ni7Hf2 as the final eutectic to solidify. This study found that the extra Cr in the current generation alloys promotes the gamma/Laves phase eutectic, which expands the solidification temperature range and promotes solidification cracking. Both Ta-bearing and Hf-bearing eutectics were found to solidify at higher temperatures than Nb-bearing eutectics, leading to narrower solidification temperature ranges. Weldability testing on the optimized Ta-bearing compositions revealed good resistance to both DDC and solidification cracking. Unexpectedly, the optimized Hf-bearing compositions were quite susceptible to solidification cracking. This led to an investigation on the possible wetting effect of eutectics on solidification cracking susceptibly, and a theory on how wetting affects the solidification crack susceptibility and the volume fraction of eutectic needed for crack healing has been proposed. Alloys with eutectics that easily wet the grain boundaries have increased solidification crack susceptibility at low volume fraction eutectics, but as the fraction eutectic is increased, experience crack healing at relatively lower fraction eutectics than alloys with eutectics that don't wet as easily. Hf rich eutectics were found to wet grain boundaries significantly more than Nb rich eutectics. Additions of Mo were also found to increase the wetting of eutectics in Nb-bearing alloys.

  13. Application of the line-spring model to a cylindrical shell containing a circumferential or axial part-through crack

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1981-01-01

    An approximate solution was obtained for a cylindrical shell containing a part-through surface crack. It was assumed that the shell contains a circumferential or axial semi-elliptic internal or external surface crack and was subjected to a uniform membrane loading or a uniform bending moment away from the crack region. A Reissner type theory was used to account for the effects of the transverse shear deformations. The stress intensity factor at the deepest penetration point of the crack was tabulated for bending and membrane loading by varying three dimensionless length parameters of the problem formed from the shell radius, the shell thickness, the crack length, and the crack depth. The upper bounds of the stress intensity factors are provided by the results of the elasticity solution obtained from the axisymmetric crack problem for the circumferential crack, and that found from the plane strain problem for a circular ring having a radial crack for the axial crack. The line-spring model gives the expected results in comparison with the elasticity solutions. Results also compare well with the existing finite element solution of the pressurized cylinder containing an internal semi-elliptic surface crack.

  14. Analytical and experimental studies on detection of longitudinal, L and inverted T cracks in isotropic and bi-material beams based on changes in natural frequencies

    NASA Astrophysics Data System (ADS)

    Ravi, J. T.; Nidhan, S.; Muthu, N.; Maiti, S. K.

    2018-02-01

    An analytical method for determination of dimensions of longitudinal crack in monolithic beams, based on frequency measurements, has been extended to model L and inverted T cracks. Such cracks including longitudinal crack arise in beams made of layered isotropic or composite materials. A new formulation for modelling cracks in bi-material beams is presented. Longitudinal crack segment sizes, for L and inverted T cracks, varying from 2.7% to 13.6% of length of Euler-Bernoulli beams are considered. Both forward and inverse problems have been examined. In the forward problems, the analytical results are compared with finite element (FE) solutions. In the inverse problems, the accuracy of prediction of crack dimensions is verified using FE results as input for virtual testing. The analytical results show good agreement with the actual crack dimensions. Further, experimental studies have been done to verify the accuracy of the analytical method for prediction of dimensions of three types of crack in isotropic and bi-material beams. The results show that the proposed formulation is reliable and can be employed for crack detection in slender beam like structures in practice.

  15. Characterization and optimization of spiral eddy current coils for in-situ crack detection

    NASA Astrophysics Data System (ADS)

    Mandache, Catalin

    2018-03-01

    In-situ condition-based maintenance is making strides in the aerospace industry and it is seen as an alternative to scheduled, time-based maintenance. With fatigue cracks originating from fastener holes as the main reason for structural failures, embedded eddy current coils are a viable non-invasive solution for their timely detection. The development and potential broad use of these coils are motivated by a few consistent arguments: (i) inspection of structures of complicated geometries and hard to access areas, that often require disassembly, (ii) alternative to regular inspection actions that could introduce inadvertent damage, (iii) for structures that have short inspection intervals, and (iv) for repaired structures where fastener holes contain bushings and prevent further bolt-hole inspections. Since the spiral coils are aiming at detecting radial cracks emanating from the fastener holes, their design parameters should allow for high inductance, low ohmic losses and power requirements, as well as optimal size and high sensitivity to discontinuities. In this study, flexible, surface conformable, spiral eddy current coils are empirically investigated on mock-up specimens, while numerical analysis is performed for their optimization and design improvement.

  16. High Strength Steel Weldment Reliability: Weld Metal Hydrogen Trapping.

    DTIC Science & Technology

    1998-02-01

    Reliability : Weld Metal Hydrogen Trapping submitted to : United States Army Research Office Materials Science Division P.O. Box 12211 Research Triangle...Conf. Proc. of Welding and Related Technologies for the XXIth Century, November 1998, Kiev, Ukraine : "Hydrogen Assisted Cracking in...appendices (see appendix IV). Next TTCP workshop will be held from 6th to 8th October 1998, at CANMET , Ottawa, Ontario, Canada. 20 III. Figures 18

  17. Adaptive road crack detection system by pavement classification.

    PubMed

    Gavilán, Miguel; Balcones, David; Marcos, Oscar; Llorca, David F; Sotelo, Miguel A; Parra, Ignacio; Ocaña, Manuel; Aliseda, Pedro; Yarza, Pedro; Amírola, Alejandro

    2011-01-01

    This paper presents a road distress detection system involving the phases needed to properly deal with fully automatic road distress assessment. A vehicle equipped with line scan cameras, laser illumination and acquisition HW-SW is used to storage the digital images that will be further processed to identify road cracks. Pre-processing is firstly carried out to both smooth the texture and enhance the linear features. Non-crack features detection is then applied to mask areas of the images with joints, sealed cracks and white painting, that usually generate false positive cracking. A seed-based approach is proposed to deal with road crack detection, combining Multiple Directional Non-Minimum Suppression (MDNMS) with a symmetry check. Seeds are linked by computing the paths with the lowest cost that meet the symmetry restrictions. The whole detection process involves the use of several parameters. A correct setting becomes essential to get optimal results without manual intervention. A fully automatic approach by means of a linear SVM-based classifier ensemble able to distinguish between up to 10 different types of pavement that appear in the Spanish roads is proposed. The optimal feature vector includes different texture-based features. The parameters are then tuned depending on the output provided by the classifier. Regarding non-crack features detection, results show that the introduction of such module reduces the impact of false positives due to non-crack features up to a factor of 2. In addition, the observed performance of the crack detection system is significantly boosted by adapting the parameters to the type of pavement.

  18. Adaptive Road Crack Detection System by Pavement Classification

    PubMed Central

    Gavilán, Miguel; Balcones, David; Marcos, Oscar; Llorca, David F.; Sotelo, Miguel A.; Parra, Ignacio; Ocaña, Manuel; Aliseda, Pedro; Yarza, Pedro; Amírola, Alejandro

    2011-01-01

    This paper presents a road distress detection system involving the phases needed to properly deal with fully automatic road distress assessment. A vehicle equipped with line scan cameras, laser illumination and acquisition HW-SW is used to storage the digital images that will be further processed to identify road cracks. Pre-processing is firstly carried out to both smooth the texture and enhance the linear features. Non-crack features detection is then applied to mask areas of the images with joints, sealed cracks and white painting, that usually generate false positive cracking. A seed-based approach is proposed to deal with road crack detection, combining Multiple Directional Non-Minimum Suppression (MDNMS) with a symmetry check. Seeds are linked by computing the paths with the lowest cost that meet the symmetry restrictions. The whole detection process involves the use of several parameters. A correct setting becomes essential to get optimal results without manual intervention. A fully automatic approach by means of a linear SVM-based classifier ensemble able to distinguish between up to 10 different types of pavement that appear in the Spanish roads is proposed. The optimal feature vector includes different texture-based features. The parameters are then tuned depending on the output provided by the classifier. Regarding non-crack features detection, results show that the introduction of such module reduces the impact of false positives due to non-crack features up to a factor of 2. In addition, the observed performance of the crack detection system is significantly boosted by adapting the parameters to the type of pavement. PMID:22163717

  19. Mode 1 crack surface displacements for a round compact specimen subject to a couple and force

    NASA Technical Reports Server (NTRS)

    Gross, B.

    1979-01-01

    Mode I displacement coefficients along the crack surface are presented for a radially cracked round compact specimen, treated as a plane elastostatic problem, subjected to two types of loading; a uniform tensile stress and a nominal bending stress distribution across the net section. By superposition the resultant displacement coefficient or the corresponding influence coefficient can be obtained for any practical load location. Load line displacements are presented for A/D ratios ranging from 0.40 to 0.95, where A is the crack length measured from the crack mouth to the crack tip and D is the specimen diameter. Through a linear extrapolation procedure crack mouth displacements are also obtained. Experimental evidence shows that the results are valid over the range of A/D ratios analyzed for a practical pin loaded round compact specimen.

  20. Experimental Study on the Growth, Coalescence and Wrapping Behaviors of 3D Cross-Embedded Flaws Under Uniaxial Compression

    NASA Astrophysics Data System (ADS)

    Zhou, Xiao-Ping; Zhang, Jian-Zhi; Wong, Louis Ngai Yuen

    2018-05-01

    The crack initiation, growth, wrapping and coalescence of two 3D pre-existing cross-embedded flaws in PMMA specimens under uniaxial compression are investigated. The stress-strain curves of PMMA specimens with 3D cross-embedded flaws are obtained. The tested PMMA specimens exhibit dominant elastic deformation and eventual brittle failure. The experimental results show that four modes of crack initiation and five modes of crack coalescence are observed. The initiations of oblique secondary crack and anti-wing crack in 3D cracking behaviors are first reported as well as the coalescence of anti-wing cracks. Moreover, two types of crack wrapping are found. Substantial wrapping of petal cracks, which includes open and closed modes of wrapping, appears to be the major difference between 2D and 3D cracking behaviors of pre-existing flaws, which are also first reported. Petal crack wraps symmetrically from either the propagated wing cracks or the coalesced wing cracks. Besides, only limited growth of petal cracks is observed, and ultimate failure of specimens is induced by the further growth of the propagated wing crack. The fracture mechanism of the tested PMMA specimens is finally revealed. In addition, the initiation stress and the peak stress versus the geometry of two 3D pre-existing cross-embedded flaws are also investigated in detail.

  1. Durability and life prediction modeling in polyimide composites

    NASA Technical Reports Server (NTRS)

    Binienda, Wieslaw K.

    1995-01-01

    Sudden appearance of cracks on a macroscopically smooth surface of brittle materials due to cooling or drying shrinkage is a phenomenon related to many engineering problems. Although conventional strength theories can be used to predict the necessary condition for crack appearance, they are unable to predict crack spacing and depth. On the other hand, fracture mechanics theory can only study the behavior of existing cracks. The theory of crack initiation can be summarized into three conditions, which is a combination of a strength criterion and laws of energy conservation, the average crack spacing and depth can thus be determined. The problem of crack initiation from the surface of an elastic half plane is solved and compares quite well with available experimental evidence. The theory of crack initiation is also applied to concrete pavements. The influence of cracking is modeled by the additional compliance according to Okamura's method. The theoretical prediction by this structural mechanics type of model correlates very well with the field observation. The model may serve as a theoretical foundation for future pavement joint design. The initiation of interactive cracks of quasi-brittle material is studied based on a theory of cohesive crack model. These cracks may grow simultaneously, or some of them may close during certain stages. The concept of crack unloading of cohesive crack model is proposed. The critical behavior (crack bifurcation, maximum loads) of the cohesive crack model are characterized by rate equations. The post-critical behavior of crack initiation is also studied.

  2. A circumferential crack in a cylindrical shell under tension.

    NASA Technical Reports Server (NTRS)

    Duncan-Fama, M. E.; Sanders, J. L., Jr.

    1972-01-01

    A closed cylindrical shell under uniform internal pressure has a slit around a portion of its circumference. Linear shallow shell theory predicts inverse square-root-type singularities in certain of the stresses at the crack tips. This paper reports the computed strength of these singularities for different values of a dimensionless parameter based on crack length, shell radius and shell thickness.

  3. Relationship Between Unusual High-Temperature Fatigue Crack Growth Threshold Behavior in Superalloys and Sudden Failure Mode Transitions

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Smith, T. M.; Gabb, T. P.; Ring, A. J.

    2017-01-01

    An investigation of high temperature cyclic fatigue crack growth (FCG) threshold behavior of two advanced nickel disk alloys was conducted. The focus of the study was the unusual crossover effect in the near-threshold region of these type of alloys where conditions which produce higher crack growth rates in the Paris regime, produce higher resistance to crack growth in the near threshold regime. It was shown that this crossover effect is associated with a sudden change in the fatigue failure mode from a predominant transgranular mode in the Paris regime to fully intergranular mode in the threshold fatigue crack growth region. This type of a sudden change in the fracture mechanisms has not been previously reported and is surprising considering that intergranular failure is typically associated with faster crack growth rates and not the slow FCG rates of the near-threshold regime. By characterizing this behavior as a function of test temperature, environment and cyclic frequency, it was determined that both the crossover effect and the onset of intergranular failure are caused by environmentally driven mechanisms which have not as yet been fully identified. A plausible explanation for the observed behavior is proposed.

  4. NASA/FLAGRO - FATIGUE CRACK GROWTH COMPUTER PROGRAM

    NASA Technical Reports Server (NTRS)

    Forman, R. G.

    1994-01-01

    Structural flaws and cracks may grow under fatigue inducing loads and, upon reaching a critical size, cause structural failure to occur. The growth of these flaws and cracks may occur at load levels well below the ultimate load bearing capability of the structure. The Fatigue Crack Growth Computer Program, NASA/FLAGRO, was developed as an aid in predicting the growth of pre-existing flaws and cracks in structural components of space systems. The earlier version of the program, FLAGRO4, was the primary analysis tool used by Rockwell International and the Shuttle subcontractors for fracture control analysis on the Space Shuttle. NASA/FLAGRO is an enhanced version of the program and incorporates state-of-the-art improvements in both fracture mechanics and computer technology. NASA/FLAGRO provides the fracture mechanics analyst with a computerized method of evaluating the "safe crack growth life" capabilities of structural components. NASA/FLAGRO could also be used to evaluate the damage tolerance aspects of a given structural design. The propagation of an existing crack is governed by the stress field in the vicinity of the crack tip. The stress intensity factor is defined in terms of the relationship between the stress field magnitude and the crack size. The propagation of the crack becomes catastrophic when the local stress intensity factor reaches the fracture toughness of the material. NASA/FLAGRO predicts crack growth using a two-dimensional model which predicts growth independently in two directions based on the calculation of stress intensity factors. The analyst can choose to use either a crack growth rate equation or a nonlinear interpolation routine based on tabular data. The growth rate equation is a modified Forman equation which can be converted to a Paris or Walker equation by substituting different values into the exponent. This equation provides accuracy and versatility and can be fit to data using standard least squares methods. Stress-intensity factor numerical values can be computed for making comparisons or checks of solutions. NASA/FLAGRO can check for failure of a part-through crack in the mode of a through crack when net ligament yielding occurs. NASA/FLAGRO has a number of special subroutines and files which provide enhanced capabilities and easy entry of data. These include crack case solutions, cyclic load spectrums, nondestructive examination initial flaw sizes, table interpolation, and material properties. The materials properties files are divided into two types, a user defined file and a fixed file. Data is entered and stored in the user defined file during program execution, while the fixed file contains already coded-in property value data for many different materials. Prompted input from CRT terminals consists of initial crack definition (which can be defined automatically), rate solution type, flaw type and geometry, material properties (if they are not in the built-in tables of material data), load spectrum data (if not included in the loads spectrum file), and design limit stress levels. NASA/FLAGRO output includes an echo of the input with any error or warning messages, the final crack size, whether or not critical crack size has been reached for the specified stress level, and a life history profile of the crack propagation. NASA/FLAGRO is modularly designed to facilitate revisions and operation on minicomputers. The program was implemented on a DEC VAX 11/780 with the VMS operating system. NASA/FLAGRO is written in FORTRAN77 and has a memory requirement of 1.4 MB. The program was developed in 1986.

  5. Enamel subsurface damage due to tooth preparation with diamonds.

    PubMed

    Xu, H H; Kelly, J R; Jahanmir, S; Thompson, V P; Rekow, E D

    1997-10-01

    In clinical tooth preparation with diamond burs, sharp diamond particles indent and scratch the enamel, causing material removal. Such operations may produce subsurface damage in enamel. However, little information is available on the mechanisms and the extent of subsurface damage in enamel produced during clinical tooth preparation. The aim of this study, therefore, was to investigate the mechanisms of subsurface damage produced in enamel during tooth preparation by means of diamond burs, and to examine the dependence of such damage on enamel rod orientation, diamond particle size, and removal rate. Subsurface damage was evaluated by a bonded-interface technique. Tooth preparation was carried out on two enamel rod orientations, with four clinical diamond burs (coarse, medium, fine, and superfine) used in a dental handpiece. The results of this study showed that subsurface damage in enamel took the form of median-type cracks and distributed microcracks, extending preferentially along the boundaries between the enamel rods. Microcracks within individual enamel rods were also observed. The median-type cracks were significantly longer in the direction parallel to the enamel rods than perpendicular to the rods. Preparation with the coarse diamond bur produced cracks as deep as 84 +/- 30 microns in enamel. Finishing with fine diamond burs was effective in crack removal. The crack lengths in enamel were not significantly different when the removal rate was varied. Based on these results, it is concluded that subsurface damage in enamel induced by tooth preparation takes the form of median-type cracks as well as inter- and intra-rod microcracks, and that the lengths of these cracks are sensitive to diamond particle size and enamel rod orientation, but insensitive to removal rate.

  6. An Application of a New Electromagnetic Sensor to Real-Time Monitoring of Fatigue Crack Growth in Thin Metal Plates

    NASA Technical Reports Server (NTRS)

    Namkung, M.; Fulton, J. P.; Wincheski, B.; Clendenin, C. G.

    1993-01-01

    A major part of fracture mechanics is concerned with studying the initiation and propagation of fatigue cracks. This typically requires constant monitoring of crack growth during fatigue cycles which necessitates automation of the whole process. If the rate of crack growth can be determined the experimenter can vary externally controlled parameters such as load level, load cycle frequency and so on. Hence, knowledge of the precise location of the crack tip at any given time is very valuable. One technique currently available for measuring fatigue crack length is the DC potential drop method. The method, however, may be inaccurate if the direction of crack growth deviates considerably from what was assumed initially or the curvature of the crack becomes significant. Another approach is to digitize an optical image of the test specimen surface and then apply a pattern recognition technique to locate the crack tip, but this method is still under development. The present work is an initial study on applying eddy current-type probes to monitoring fatigue crack growth. The performance of two types of electromagnetic probes, a conventional eddy current probe and a newly developed self-nulling probe, was evaluated for the detection characteristics at and near the tips of fatigue cracks. The scan results show that the latter probe provides a very well defined local maximum in its output in the crack tip region suggesting the definite possibility of precisely locating the tip, while the former provides a somewhat ambiguous distribution of the sensor output in the same region. The paper is organized as follows: We start by reviewing the design and performance characteristics of the self-nulling probe and then describe the scan results which demonstrate the basic properties of the self-nulling probe. Next, we provide a brief description of the software developed for tracing a simulated crack and give a brief discussion of the main results of the test. The final section summarizes the major accomplishments of the present work and the elements of the future R&D needs.

  7. Health monitoring and rehabilitation of a concrete structure using intelligent materials

    NASA Astrophysics Data System (ADS)

    Song, G.; Mo, Y. L.; Otero, K.; Gu, H.

    2006-04-01

    This paper presents the concept of an intelligent reinforced concrete structure (IRCS) and its application in structural health monitoring and rehabilitation. The IRCS has multiple functions which include self-rehabilitation, self-vibration damping, and self-structural health monitoring. These functions are enabled by two types of intelligent (smart) materials: shape memory alloys (SMAs) and piezoceramics. In this research, Nitinol type SMA and PZT (lead zirconate titanate) type piezoceramics are used. The proposed concrete structure is reinforced by martensite Nitinol cables using the method of post-tensioning. The martensite SMA significantly increases the concrete's damping property and its ability to handle large impact. In the presence of cracks due to explosions or earthquakes, by electrically heating the SMA cables, the SMA cables contract and close up the cracks. In this research, PZT patches are embedded in the concrete structure to detect possible cracks inside the concrete structure. The wavelet packet analysis method is then applied as a signal-processing tool to analyze the sensor signals. A damage index is defined to describe the damage severity for health monitoring purposes. In addition, by monitoring the electric resistance change of the SMA cables, the crack width can be estimated. To demonstrate this concept, a concrete beam specimen with reinforced SMA cables and with embedded PZT patches is fabricated. Experiments demonstrate that the IRC has the ability of self-sensing and self-rehabilitation. Three-point bending tests were conducted. During the loading process, a crack opens up to 0.47 inches. Upon removal of the load and heating the SMA cables, the crack closes up. The damage index formed by wavelet packet analysis of the PZT sensor data predicts and confirms the onset and severity of the crack during the loading. Also during the loading, the electrical resistance value of the SMA cable changes by up to 27% and this phenomenon is used to monitor the crack width.

  8. Paint removal using wheat starch blast media

    NASA Astrophysics Data System (ADS)

    Foster, Terry; Oestreich, John

    1993-03-01

    A review of the Wheat Starch Blasting technology is presented. Laboratory evaluations covering Almen Arc testing on bare 2024-T3 aluminum and magnesium, as well as crack detection on 7075-T6 bare aluminum, are discussed. Comparisons with Type V plastic media show lower residual stresses are achieved on aluminum and magnesium with wheat starch media. Dry blasting effects on the detection of cracks confirms better crack visibility with wheat starch media versus Type V or Type II plastic media. Testing of wheat starch media in several composite test programs, including fiberglass, Kevlar, and graphite-epoxy composites, showed no fiber damage. Process developments and production experience at the first U.S. aircraft stripping facility are also reviewed. Corporate and regional aircraft are being stripped in this three nozzle dry blast hanger.

  9. 78 FR 69595 - Airworthiness Directives; AgustaWestland S.p.A. (Type Certificate Formerly Held by Agusta S.p.A...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-20

    ... require recurring visual inspections of the tail rotor (T/R) blade retaining bolts (bolts) for a crack, corrosion, damage, or missing cadmium plating in the central part of the bolt. If a crack is not detected by.... Replacing a cracked or damaged bolt would be required before further flight. This proposed AD is prompted by...

  10. Mode I crack surface displacements for a round compact specimen subject to a couple and force

    NASA Technical Reports Server (NTRS)

    Gross, B.

    1979-01-01

    Mode I displacement coefficients along the crack surface are presented for a radially cracked round compact specimen, treated as a plane elastostatic problem, subjected to two types of loading; a uniform tensile stress and a nominal bending stress distribution across the net section. By superposition the resultant displacement coefficient or the corresponding influence coefficient can be obtained for any practical load location. Load line displacements are presented for A/D ratios ranging from 0.40 to 0.95, where A is the crack length measured from the crack mouth to the crack tip and D is the specimen diameter. Through a linear extrapolation procedure crack mouth displacements are also obtained. Experimental evidence shows that the results of this study are valid over the range of A/D ratios analyzed for a practical pin loaded round compact specimen.

  11. Prediction of Fatigue Crack Growth in Gas Turbine Engine Blades Using Acoustic Emission

    PubMed Central

    Zhang, Zhiheng; Yang, Guoan; Hu, Kun

    2018-01-01

    Fatigue failure is the main type of failure that occurs in gas turbine engine blades and an online monitoring method for detecting fatigue cracks in blades is urgently needed. Therefore, in this present study, we propose the use of acoustic emission (AE) monitoring for the online identification of the blade status. Experiments on fatigue crack propagation based on the AE monitoring of gas turbine engine blades and TC11 titanium alloy plates were conducted. The relationship between the cumulative AE hits and the fatigue crack length was established, before a method of using the AE parameters to determine the crack propagation stage was proposed. A method for predicting the degree of crack propagation and residual fatigue life based on the AE energy was obtained. The results provide a new method for the online monitoring of cracks in the gas turbine engine blade. PMID:29693556

  12. Prediction of Fatigue Crack Growth in Gas Turbine Engine Blades Using Acoustic Emission.

    PubMed

    Zhang, Zhiheng; Yang, Guoan; Hu, Kun

    2018-04-25

    Fatigue failure is the main type of failure that occurs in gas turbine engine blades and an online monitoring method for detecting fatigue cracks in blades is urgently needed. Therefore, in this present study, we propose the use of acoustic emission (AE) monitoring for the online identification of the blade status. Experiments on fatigue crack propagation based on the AE monitoring of gas turbine engine blades and TC11 titanium alloy plates were conducted. The relationship between the cumulative AE hits and the fatigue crack length was established, before a method of using the AE parameters to determine the crack propagation stage was proposed. A method for predicting the degree of crack propagation and residual fatigue life based on the AE energy was obtained. The results provide a new method for the online monitoring of cracks in the gas turbine engine blade.

  13. Correlation between average frequency and RA value (rise time/amplitude) for crack classification of reinforced concrete beam using acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Noorsuhada, M. N.; Abdul Hakeem, Z.; Soffian Noor, M. S.; Noor Syafeekha, M. S.; Azmi, I.

    2017-12-01

    Health monitoring of structures during their service life become a vital thing as it provides crucial information regarding the performance and condition of the structures. Acoustic emission (AE) is one of the non-destructive techniques (NDTs) that could be used to monitor the performance of the structures. Reinforced concrete (RC) beam associated with AE monitoring was monotonically loaded to failure under three-point loading. Correlation between average frequency and RA value (rise time / amplitude) was computed. The relationship was established to classify the crack types that propagated in the RC beam. The crack was classified as tensile crack and shear crack. It was found that the relationship is well matched with the actual crack pattern that appeared on the beam surface. Hence, this relationship is useful for prediction of the crack occurrence in the beam and its performance can be determined.

  14. Dynamic Rupture and Energy Partition in Models of Earthquake Faults

    NASA Astrophysics Data System (ADS)

    Shi, Z.; Needleman, A.; Ben-Zion, Y.

    2006-12-01

    We study properties of dynamic rupture and the partition of energy between radiation and dissipative mechanisms using 2D finite element calculations. The goal is to improve the understanding of these processes on faults at different evolutionary stages associated with different levels of geometrical complexity and possible presence of contrasting elastic properties across the fault. The initial calculations employ homogeneous media and a planar internal interface governed by a general rate- and state-dependent friction law that accounts for the gradual response of shear stress to abrupt changes of normal stress. Ruptures are initiated by gradually increasing the shear traction in a limited nucleation zone near the origin. By changing the rate dependency of the friction law and the size of the nucleation zone, we obtain four rupture modes: (i) supershear crack-like rupture; (ii) subshear crack-like rupture; (iii) subshear single pulse; and (iv) supershear train of pulses. Increasing the initial shear stress produces a transition from a subshear crack to a supershear crack, while increasing the rate dependency of the friction produces self-healing and the transition from a crack-like to a pulse mode of rupture. Properties of the nucleation process can strongly affect the rupture mode. In the cases examined, the total release of strain energy (over the same propagation distance) decreases following the order: supershear crack, subshear crack, train of pulses and single pulse. The ratio of the radiated kinetic energy to the energy dissipated in friction is about 5% for the supershear crack case and about 2% for the other three cases. Future work will involve similar calculations accounting for the generation of plastic strain in the bulk, the material contrast across the fault, and the addition of cohesive surfaces in the bulk to allow for the generation of new surfaces. The study may provide fundamental information on rupture processes in geologically-relevant circumstances and improve the understanding of physical limits on extreme ground motion. The results may be used to check assumptions made in observational works and may help to guide new observational research.

  15. A comparison of pure mode I and mixed mode I-III cracking of an adhesive containing an open knit cloth carrier

    NASA Technical Reports Server (NTRS)

    Ripling, E. J.; Crosley, P. B.; Johnson, W. S.

    1988-01-01

    Static and fatigue tests were carried out on two commercial modified epoxy film adhesives with a wide open knit polyester carrier in order to compare crack resistance in mode I and mixed mode I-III loading. The carrier cloth is found to have a significant influence on the cracking behavior of the adhesives. The open air net carrier used in this study separates from the adhesive in mode I cracking but shreds during mixed-mode crack extension. This decreases the opening mode toughness but increases the mixed-mode toughness as compared with results obtained earlier using a heavier knit carrier. The results suggest that the type of carrier may have a far larger influence on crack resistance than is generally recognized.

  16. Extension of the classical classification of β-turns

    PubMed Central

    de Brevern, Alexandre G.

    2016-01-01

    The functional properties of a protein primarily depend on its three-dimensional (3D) structure. These properties have classically been assigned, visualized and analysed on the basis of protein secondary structures. The β-turn is the third most important secondary structure after helices and β-strands. β-turns have been classified according to the values of the dihedral angles φ and ψ of the central residue. Conventionally, eight different types of β-turns have been defined, whereas those that cannot be defined are classified as type IV β-turns. This classification remains the most widely used. Nonetheless, the miscellaneous type IV β-turns represent 1/3rd of β-turn residues. An unsupervised specific clustering approach was designed to search for recurrent new turns in the type IV category. The classical rules of β-turn type assignment were central to the approach. The four most frequently occurring clusters defined the new β-turn types. Unexpectedly, these types, designated IV1, IV2, IV3 and IV4, represent half of the type IV β-turns and occur more frequently than many of the previously established types. These types show convincing particularities, in terms of both structures and sequences that allow for the classical β-turn classification to be extended for the first time in 25 years. PMID:27627963

  17. Extension of the classical classification of β-turns.

    PubMed

    de Brevern, Alexandre G

    2016-09-15

    The functional properties of a protein primarily depend on its three-dimensional (3D) structure. These properties have classically been assigned, visualized and analysed on the basis of protein secondary structures. The β-turn is the third most important secondary structure after helices and β-strands. β-turns have been classified according to the values of the dihedral angles φ and ψ of the central residue. Conventionally, eight different types of β-turns have been defined, whereas those that cannot be defined are classified as type IV β-turns. This classification remains the most widely used. Nonetheless, the miscellaneous type IV β-turns represent 1/3(rd) of β-turn residues. An unsupervised specific clustering approach was designed to search for recurrent new turns in the type IV category. The classical rules of β-turn type assignment were central to the approach. The four most frequently occurring clusters defined the new β-turn types. Unexpectedly, these types, designated IV1, IV2, IV3 and IV4, represent half of the type IV β-turns and occur more frequently than many of the previously established types. These types show convincing particularities, in terms of both structures and sequences that allow for the classical β-turn classification to be extended for the first time in 25 years.

  18. The dual boundary element formulation for elastoplastic fracture mechanics

    NASA Astrophysics Data System (ADS)

    Leitao, V.; Aliabadi, M. H.; Rooke, D. P.

    1993-08-01

    The extension of the dual boundary element method (DBEM) to the analysis of elastoplastic fracture mechanics (EPFM) problems is presented. The dual equations of the method are the displacement and the traction boundary integral equations. When the displacement equation is applied to one of the crack surfaces and the traction equation on the other, general mixed-mode crack problems can be solved with a single-region formulation. In order to avoid collocation at crack tips, crack kinks, and crack-edge corners, both crack surfaces are discretized with discontinuous quadratic boundary elements. The elastoplastic behavior is modeled through the use of an approximation for the plastic component of the strain tensor on the region expected to yield. This region is discretized with internal quadratic, quadrilateral, and/or triangular cells. A center-cracked plate and a slant edge-cracked plate subjected to tensile load are analyzed and the results are compared with others available in the literature. J-type integrals are calculated.

  19. 40 CFR 63.1564 - What are my requirements for metal HAP emissions from catalytic cracking units?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with the PM emission limit (Option 2); (iii) You can elect to comply with the Nickel (Ni) lb/hr emission limit (Option 3); or (iv) You can elect to comply with the Ni lb/1,000 lbs of coke burn-off... coke burn. ER11AP02.004 (iii) If you elect Option 3 in paragraph (a)(1)(iii) of this section, the Ni lb...

  20. 40 CFR 63.1564 - What are my requirements for metal HAP emissions from catalytic cracking units?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with the PM emission limit (Option 2); (iii) You can elect to comply with the Nickel (Ni) lb/hr emission limit (Option 3); or (iv) You can elect to comply with the Ni lb/1,000 lbs of coke burn-off... coke burn. ER11AP02.004 (iii) If you elect Option 3 in paragraph (a)(1)(iii) of this section, the Ni lb...

  1. Grain boundary oxidation and an analysis of the effects of oxidation on fatigue crack nucleation life

    NASA Technical Reports Server (NTRS)

    Oshida, Y.; Liu, H. W.

    1988-01-01

    The effects of preoxidation on subsequent fatigue life were studied. Surface oxidation and grain boundary oxidation of a nickel-base superalloy (TAZ-8A) were studied at 600 to 1000 C for 10 to 1000 hours in air. Surface oxides were identified and the kinetics of surface oxidation was discussed. Grain boundary oxide penetration and morphology were studied. Pancake type grain boundary oxide penetrates deeper and its size is larger, therefore, it is more detrimental to fatigue life than cone-type grain boundary oxide. Oxide penetration depth, a (sub m), is related to oxidation temperature, T, and exposure time, t, by an empirical relation of the Arrhenius type. Effects of T and t on statistical variation of a (sub m) were analyzed according to the Weibull distribution function. Once the oxide is cracked, it serves as a fatigue crack nucleus. Statistical variation of the remaining fatigue life, after the formation of an oxide crack of a critical length, is related directly to the statistical variation of grain boundary oxide penetration depth.

  2. Muscle RAS oncogene homolog (MRAS) recurrent mutation in Borrmann type IV gastric cancer.

    PubMed

    Yasumoto, Makiko; Sakamoto, Etsuko; Ogasawara, Sachiko; Isobe, Taro; Kizaki, Junya; Sumi, Akiko; Kusano, Hironori; Akiba, Jun; Torimura, Takuji; Akagi, Yoshito; Itadani, Hiraku; Kobayashi, Tsutomu; Hasako, Shinichi; Kumazaki, Masafumi; Mizuarai, Shinji; Oie, Shinji; Yano, Hirohisa

    2017-01-01

    The prognosis of patients with Borrmann type IV gastric cancer (Type IV) is extremely poor. Thus, there is an urgent need to elucidate the molecular mechanisms underlying the oncogenesis of Type IV and to identify new therapeutic targets. Although previous studies using whole-exome and whole-genome sequencing have elucidated genomic alterations in gastric cancer, none has focused on comprehensive genetic analysis of Type IV. To discover cancer-relevant genes in Type IV, we performed whole-exome sequencing and genome-wide copy number analysis on 13 patients with Type IV. Exome sequencing identified 178 somatic mutations in protein-coding sequences or at splice sites. Among the mutations, we found a mutation in muscle RAS oncogene homolog (MRAS), which is predicted to cause molecular dysfunction. MRAS belongs to the Ras subgroup of small G proteins, which includes the prototypic RAS oncogenes. We analyzed an additional 46 Type IV samples to investigate the frequency of MRAS mutation. There were eight nonsynonymous mutations (mutation frequency, 17%), showing that MRAS is recurrently mutated in Type IV. Copy number analysis identified six focal amplifications and one homozygous deletion, including insulin-like growth factor 1 receptor (IGF1R) amplification. The samples with IGF1R amplification had remarkably higher IGF1R mRNA and protein expression levels compared with the other samples. This is the first report of MRAS recurrent mutation in human tumor samples. Our results suggest that MRAS mutation and IGF1R amplification could drive tumorigenesis of Type IV and could be new therapeutic targets. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  3. AtlA functions as a peptidoglycan lytic transglycosylase in the Neisseria gonorrhoeae type IV secretion system.

    PubMed

    Kohler, Petra L; Hamilton, Holly L; Cloud-Hansen, Karen; Dillard, Joseph P

    2007-08-01

    Type IV secretion systems require peptidoglycan lytic transglycosylases for efficient secretion, but the function of these enzymes is not clear. The type IV secretion system gene cluster of Neisseria gonorrhoeae encodes two peptidoglycan transglycosylase homologues. One, LtgX, is similar to peptidoglycan transglycosylases from other type IV secretion systems. The other, AtlA, is similar to endolysins from bacteriophages and is not similar to any described type IV secretion component. We characterized the enzymatic function of AtlA in order to examine its role in the type IV secretion system. Purified AtlA was found to degrade macromolecular peptidoglycan and to produce 1,6-anhydro peptidoglycan monomers, characteristic of lytic transglycosylase activity. We found that AtlA can functionally replace the lambda endolysin to lyse Escherichia coli. In contrast, a sensitive measure of lysis demonstrated that AtlA does not lyse gonococci expressing it or gonococci cocultured with an AtlA-expressing strain. The gonococcal type IV secretion system secretes DNA during growth. A deletion of ltgX or a substitution in the putative active site of AtlA severely decreased DNA secretion. These results indicate that AtlA and LtgX are actively involved in type IV secretion and that AtlA is not involved in lysis of gonococci to release DNA. This is the first demonstration that a type IV secretion peptidoglycanase has lytic transglycosylase activity. These data show that AtlA plays a role in type IV secretion of DNA that requires peptidoglycan breakdown without cell lysis.

  4. [Diagnostic values of serum type III procollagen N-terminal peptide in type IV gastric cancer].

    PubMed

    Akazawa, S; Fujiki, T; Kanda, Y; Kumai, R; Yoshida, S

    1985-04-01

    Since increased synthesis of collagen has been demonstrated in tissue of type IV gastric cancer, we attempted to distinguish type IV gastric cancer from other cancers by measuring serum levels of type III procollagen N-terminal peptide (type III-N-peptide). Mean serum levels in type IV gastric cancer patients without metastasis were found to be elevated above normal values and developed a tendency to be higher than those in types I, II and III gastric cancer patients without metastasis. Highly positive ratios were found in patients with liver diseases including hepatoma and colon cancer, biliary tract cancer, and esophageal cancer patients with liver, lung or bone metastasis, but only 2 out of 14 of these cancer patients without such metastasis showed positive serum levels of type III-N-peptide. Positive cases in patients with type IV gastric cancer were obtained not only in the group with clinical stage IV but also in the groups with clinical stages II and III. In addition, high serum levels of type III-N-peptide in patients with type IV gastric cancer were seen not only in the cases with liver, lung or bone metastasis but also in cases with disseminated peritoneal metastasis alone. These results suggest that if the serum level of type III-N-peptide is elevated above normal values, type IV gastric cancer should be suspected after ruling out liver diseases, myelofibrosis and liver, lung or bone metastasis.

  5. Residual Strength Pressure Tests and Nonlinear Analyses of Stringer- and Frame-Stiffened Aluminum Fuselage Panels with Longitudinal Cracks

    NASA Technical Reports Server (NTRS)

    Young, Richard D.; Rouse, Marshall; Ambur, Damodar R.; Starnes, James H., Jr.

    1999-01-01

    The results of residual strength pressure tests and nonlinear analyses of stringer- and frame-stiffened aluminum fuselage panels with longitudinal cracks are presented. Two types of damage are considered: a longitudinal crack located midway between stringers, and a longitudinal crack adjacent to a stringer and along a row of fasteners in a lap joint that has multiple-site damage (MSD). In both cases, the longitudinal crack is centered on a severed frame. The panels are subjected to internal pressure plus axial tension loads. The axial tension loads are equivalent to a bulkhead pressure load. Nonlinear elastic-plastic residual strength analyses of the fuselage panels are conducted using a finite element program and the crack-tip-opening-angle (CTOA) fracture criterion. Predicted crack growth and residual strength results from nonlinear analyses of the stiffened fuselage panels are compared with experimental measurements and observations. Both the test and analysis results indicate that the presence of MSD affects crack growth stability and reduces the residual strength of stiffened fuselage shells with long cracks.

  6. Residual Strength Pressure Tests and Nonlinear Analyses of Stringer-and Frame-Stiffened Aluminum Fuselage Panels with Longitudinal Cracks

    NASA Technical Reports Server (NTRS)

    Young, Richard D.; Rouse, Marshall; Ambur, Damodar R.; Starnes, James H., Jr.

    1998-01-01

    The results of residual strength pressure tests and nonlinear analyses of stringer- and frame-stiffened aluminum fuselage panels with longitudinal cracks are presented. Two types of damage are considered: a longitudinal crack located midway between stringers, and a longitudinal crack adjacent to a stringer and along a row of fasteners in a lap joint that has multiple-site damage (MSD). In both cases, the longitudinal crack is centered on a severed frame. The panels are subjected to internal pressure plus axial tension loads. The axial tension loads are equivalent to a bulkhead pressure load. Nonlinear elastic-plastic residual strength analyses of the fuselage panels are conducted using a finite element program and the crack-tip-opening-angle (CTOA) fracture criterion. Predicted crack growth and residual strength results from nonlinear analyses of the stiffened fuselage panels are compared with experimental measurements and observations. Both the test and analysis results indicate that the presence of MSD affects crack growth stability and reduces the residual strength of stiffened fuselage shells with long cracks.

  7. Strain distribution in thin concrete pavement panels under three-point loading to failure with pre-pulse-pump Brillouin optical time domain analysis (Presentation Video)

    NASA Astrophysics Data System (ADS)

    Bao, Yi; Cain, John; Chen, Yizheng; Huang, Ying; Chen, Genda; Palek, Leonard

    2015-04-01

    Thin concrete panels reinforced with alloy polymer macro-synthetic fibers have recently been introduced to rapidly and cost-effectively improve the driving condition of existing roadways by laying down a fabric sheet on the roadways, casting a thin layer of concrete, and then cutting the layer into panels. This study is aimed to understand the strain distribution and potential crack development of concrete panels under three-point loading. To this end, six full-size 6ft×6ft×3in concrete panels were tested to failure in the laboratory. They were instrumented with three types of single-mode optical fiber sensors whose performance and ability to measure the strain distribution and detect cracks were compared. Each optical fiber sensor was spliced and calibrated, and then attached to a fabric sheet using adhesive. A thin layer of mortar (0.25 ~ 0.5 in thick) was cast on the fabric sheet. The three types of distributed sensors were bare SM-28e+ fiber, SM-28e+ fiber with a tight buffer, and concrete crack cable, respectively. The concrete crack cable consisted of one SM-28e+ optical fiber with a tight buffer, one SM-28e+ optical fiber with a loose buffer for temperature compensation, and an outside protective tight sheath. Distributed strains were collected from the three optical fiber sensors with pre-pulse-pump Brillouin optical time domain analysis in room temperature. Among the three sensors, the bare fiber was observed to be most fragile during construction and operation, but most sensitive to strain change or micro-cracks. The concrete crack cable was most rugged, but not as sensitive to micro-cracks and robust in micro-crack measurement as the bare fiber. The ruggedness and sensitivity of the fiber with a tight buffer were in between the bare fiber and the concrete crack cable. The strain distribution resulted from the three optical sensors are in good agreement, and can be applied to successfully locate cracks in the concrete panels. It was observed that the three types of fibers were functional until the concrete panels have experienced inelastic deformation, making the distributed strain sensing technology promising for real applications in pavement engineering.

  8. Laboratory Investigation of a Leaking Type 316 Socket Weld in a Boron Injection Tank Sampling Line

    NASA Astrophysics Data System (ADS)

    Xu, Hongqing; Fyfitch, Steve; Hosier, Ryan; Hyres, James

    A leak was discovered in a Type 316 stainless steel socket weld in the sampling line for the boron injection tank. A section of the pipeline containing the leaking weld was removed for laboratory investigation that included visual and Stereovisual inspections, liquid penetrant (PT) testing, metallography, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and ferrite content determinations. The leak path was a through-wall transgranular crack in the socket weld. Cracking initiated along the weld-metal-to-base-metal interface at the tip of the crevice between the socket and pipe. The crevice was exposed to oxygenated boron solution at <180°F. Shallow intergranular attack (IGA) was found in the exposed base metal inside the crevice. Based on the investigation results, it was concluded that transgranular stress corrosion cracking (TGSCC) is the primary cracking mechanism.

  9. Fatigue crack initiation and microcrack propagation in X7091 type aluminum P/M alloys

    NASA Astrophysics Data System (ADS)

    Hirose, S.; Fine, M. E.

    1983-06-01

    Fatigu crack initiation in extruded X7091 RSP-P/M aluminum type alloys o°Curs at grain boundaries at both low and high stresses. By a process of elimination this grain boundary embrittlement was attributed to Al2O3 particles formed mainly during atomization and segregated to some grain boundaries. It is not due to the small grain size, to Co2Al9, to η precipitates at grain boundaries, nor to a precipitate free zone. Thermomechanical processing after extrusion of X7091 with 0.8 pct Co was done by Alcoa to produce large recrystallized grains. This resulted in initiation of fatigue cracks at slip bands, and the resistance to initiation of fatigue cracks at low stresses was much greater. Microcrack growth is, however, much faster in the thermomechanically treated samples, as well as in ingot alloys, than in extruded and aged X7091.

  10. Electromagnetic MUSIC-type imaging of perfectly conducting, arc-like cracks at single frequency

    NASA Astrophysics Data System (ADS)

    Park, Won-Kwang; Lesselier, Dominique

    2009-11-01

    We propose a non-iterative MUSIC (MUltiple SIgnal Classification)-type algorithm for the time-harmonic electromagnetic imaging of one or more perfectly conducting, arc-like cracks found within a homogeneous space R2. The algorithm is based on a factorization of the Multi-Static Response (MSR) matrix collected in the far-field at a single, nonzero frequency in either Transverse Magnetic (TM) mode (Dirichlet boundary condition) or Transverse Electric (TE) mode (Neumann boundary condition), followed by the calculation of a MUSIC cost functional expected to exhibit peaks along the crack curves each half a wavelength. Numerical experimentation from exact, noiseless and noisy data shows that this is indeed the case and that the proposed algorithm behaves in robust manner, with better results in the TM mode than in the TE mode for which one would have to estimate the normal to the crack to get the most optimal results.

  11. On cracking of charged anisotropic polytropes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azam, M.; Mardan, S.A., E-mail: azam.math@ue.edu.pk, E-mail: syedalimardanazmi@yahoo.com

    2017-01-01

    Recently in [1], the role of electromagnetic field on the cracking of spherical polytropes has been investigated without perturbing charge parameter explicitly. In this study, we have examined the occurrence of cracking of anisotropic spherical polytropes through perturbing parameters like anisotropic pressure, energy density and charge. We consider two different types of polytropes in this study. We discuss the occurrence of cracking in two different ways ( i ) by perturbing polytropic constant, anisotropy and charge parameter ( ii ) by perturbing polytropic index, anisotropy and charge parameter for each case. We conclude that cracking appears for a wide rangemore » of parameters in both cases. Also, our results are reduced to [2] in the absence of charge.« less

  12. Distributed coaxial cable crack sensors for crack mapping in RC

    NASA Astrophysics Data System (ADS)

    Greene, Gary G.; Belarbi, Abdeldjelil; Chen, Genda; McDaniel, Ryan

    2005-05-01

    New type of distributed coaxial cable sensors for health monitoring of large-scale civil infrastructure was recently proposed and developed by the authors. This paper shows the results and performance of such sensors mounted on near surface of two flexural beams and a large scale reinforced concrete box girder that was subjected to twenty cycles of combined shear and torsion. The main objectives of this health monitoring study was to correlate the sensor's response to strain in the member, and show that magnitude of the signal's reflection coefficient is related to increases in applied load, repeated cycles, cracking, crack mapping, and yielding. The effect of multiple adjacent cracks, and signal loss was also investigated.

  13. Development of non-destructive testing technology for the crack of steam generator tubes

    NASA Astrophysics Data System (ADS)

    Cheong, Yong Moo; Chung, Tae Eon; Yim, Chang Jae; Kang, Ki Won

    1993-01-01

    The artificial defects of slot type with width of 0.2 mm were manufactured by EDM to simulate the axial and the circumferential cracks located at the region of expansion transition of the steam generator tubes. The defect signals of ECT using MRPC were analyzed. It is possible to suppress satisfactorily the malign effects of the variation of the geometry of the tubes on the inspection of cracks by using the MRPC probe. The optimum exciting frequency for the detection of cracks by MRPC is greater than 200 kHz and is less than 400 kHz. The direction of crack has little effect on the detectability of the defect.

  14. Photoelastic Analysis of Cracked Thick Walled Cylinders

    NASA Astrophysics Data System (ADS)

    Pastramă, Ştefan Dan

    2017-12-01

    In this paper, the experimental determination of the stress intensity factor in thick walled cylinders subject to uniform internal pressure and having longitudinal non-penetrating cracks is presented. Photoelastic measurements were used together with the expressions of the stress field near the crack tip for Mode I crack extension and a specific methodology for stress intensity factor determination. Two types of longitudinal cracks - internal and external - were considered. Four plane models were manufactured and analyzed in a plane polariscope at different values of the applied internal pressure. The values of the normalized stress intensity factor were calculated and the results were compared to those reported by other authors. A good accuracy was noticed, showing the reliability of the experimental procedure.

  15. Electrochemical model of local corrosion at the tip of a loaded crack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreikiv, O.E.; Tym`yak, N.I.

    1994-07-01

    A model of electrochemical processes near a crack tip in a stressed metal subjected to corrosion with hydrogen depolarization is suggested. It is shown that, in order to describe the kinetics of hydrogenation of the prefracture area, it is necessary to take into account the type of passivation layer on the newly formed metal surface near the crack tip and the mechanism of its formation.

  16. The effect of fatigue cracks on fastener flexibility, load distribution, and fatigue crack growth

    NASA Astrophysics Data System (ADS)

    Whitman, Zachary Layne

    Fatigue cracks typically occur at stress risers such as geometry changes and holes. This type of failure has serious safety and economic repercussions affecting structures such as aircraft. The need to prevent catastrophic failure due to fatigue cracks and other discontinuities has led to durability and damage tolerant methodologies influencing the design of aircraft structures. Holes in a plate or sheet filled with a fastener are common fatigue critical locations in aircraft structure requiring damage tolerance analysis (DTA). Often, the fastener is transferring load which leads to a loading condition involving both far-field stresses such as tension and bending, and localized bearing at the hole. The difference between the bearing stress and the tensile field at the hole is known as load transfer. The ratio of load transfer as well as the magnitude of the stresses plays a significant part in how quickly a crack will progress to failure. Unfortunately, the determination of load transfer in a complex joint is far from trivial. Many methods exist in the open literature regarding the analysis of splices, doublers and attachment joints to determine individual fastener loads. These methods work well for static analyses but greater refinement is needed for crack growth analysis. The first fastener in a splice or joint is typically the most critical but different fastener flexibility equations will all give different results. The constraint of the fastener head and shop end, along with the type of fastener, affects the stiffness or flexibility of the fastener. This in turn will determine the load that the fastener will transfer within a given fastener pattern. However, current methods do not account for the change in flexibility at a fastener as the crack develops. It is put forth that a crack does indeed reduce the stiffness of a fastener by changing its constraint, thus lessening the load transfer. A crack growth analysis utilizing reduced load transfer will result in a slower growing crack versus an analysis that ignores the effect.

  17. Distribution of Basement Membrane Molecules, Laminin and Collagen Type IV, in Normal and Degenerated Cartilage Tissues.

    PubMed

    Foldager, Casper Bindzus; Toh, Wei Seong; Gomoll, Andreas H; Olsen, Bjørn Reino; Spector, Myron

    2014-04-01

    The objective of the present study was to investigate the presence and distribution of 2 basement membrane (BM) molecules, laminin and collagen type IV, in healthy and degenerative cartilage tissues. Normal and degenerated tissues were obtained from goats and humans, including articular knee cartilage, the intervertebral disc, and meniscus. Normal tissue was also obtained from patella-tibial enthesis in goats. Immunohistochemical analysis was performed using anti-laminin and anti-collagen type IV antibodies. Human and goat skin were used as positive controls. The percentage of cells displaying the pericellular presence of the protein was graded semiquantitatively. When present, laminin and collagen type IV were exclusively found in the pericellular matrix, and in a discrete layer on the articulating surface of normal articular cartilage. In normal articular (hyaline) cartilage in the human and goat, the proteins were found co-localized pericellularly. In contrast, in human osteoarthritic articular cartilage, collagen type IV but not laminin was found in the pericellular region. Nonpathological fibrocartilaginous tissues from the goat, including the menisci and the enthesis, were also positive for both laminin and collagen type IV pericellularly. In degenerated fibrocartilage, including intervertebral disc, as in degenerated hyaline cartilage only collagen type IV was found pericellularly around chondrocytes but with less intense staining than in non-degenerated tissue. In calcified cartilage, some cells were positive for laminin but not type IV collagen. We report differences in expression of the BM molecules, laminin and collagen type IV, in normal and degenerative cartilaginous tissues from adult humans and goats. In degenerative tissues laminin is depleted from the pericellular matrix before collagen type IV. The findings may inform future studies of the processes underlying cartilage degeneration and the functional roles of these 2 extracellular matrix proteins, normally associated with BM.

  18. The crack problem for a nonhomogeneous plane

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1982-01-01

    The plane elasticity problem for a nonhomogeneous medium containing a crack is considered. It is assumed that the Poisson's ratio of the medium is constant and the Young's modulus E varies exponentially with the coordinate parallel to the crack. First the half plane problem is formulated and the solution is given for arbitrary tractions along the boundary. Then the integral equation for the crack problem is derived. It is shown that the integral equation having the derivative of the crack surface displacement as the density function has a simple Cauchy type kernel. Hence, its solution and the stresses around the crack tips have the conventional square root singularity. The solution is given for various loading conditions. The results show that the effect of the Poisson's ratio and consequently that of the thickness constraint on the stress intensity factors are rather negligible.

  19. The crack problem for a nonhomogeneous plane

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1983-01-01

    The plane elasticity problem for a nonhomogeneous medium containing a crack is considered. It is assumed that the Poisson's ratio of the medium is constant and the Young's modulus E varies exponentially with the coordinate parallel to the crack. First the half plane problem is formulated and the solution is given for arbitrary tractions along the boundary. Then the integral equation for the crack problem is derived. It is shown that the integral equation having the derivative of the crack surface displacement as the density function has a simple Cauchy type kernel. Hence, its solution and the stresses around the crack tips have the conventional square root singularity. The solution is given for various loading conditions. The results show that the effect of the Poisson's ratio and consequently that of the thickness constraint on the stress intensity factors are rather negligible.

  20. The crack effect on instability in a machine tool spindle with gas bearings

    NASA Astrophysics Data System (ADS)

    Huang, Bo-Wun

    2005-09-01

    Gas-bearing spindles are required for increased spindle speed in precise machining. Due to manufacturing flaws or cyclic loading, cracks frequently appear in a rotating spindle systems. Cracks markedly affect the dynamic characteristics of rotating machinery. Hence, in this study, high-speed spindles with gas bearings and the crack effect on the instability dynamics are considered. Most investigations on dynamic characteristics of the spindle system were confined to ball-bearing-type spindles. This work examines the dynamic instability in a cracked rotating spindle system with gas bearings. A round Euler-Bernoulli beam is used to approximate the spindle. The Hamilton principle is applied to derive the equation of motion for the spindle system. The effects of crack depth, rotation speed and provided air pressure on the dynamic instability of a rotating spindle system are studied

  1. The relationship between community structural characteristics, the context of crack use and HIV risk behaviors in San Salvador, El Salvador1

    PubMed Central

    Dickson-Gomez, Julia; McAuliffe, Timothy; de Mendoza, Lorena Rivas; Glasman, Laura; Gaborit, Mauricio

    2012-01-01

    This paper explores community structural factors in different low-income communities in the San Salvador, El Salvador that account for differences in the social context in which crack is used and in the HIV risk behaviors among crack users. Results suggest that both more distal (type of low-income community, level of violent crime and poverty) and proximate structural factors (type of site where drugs are used, and whether drugs are used within or outside of community of residence) influence HIV risk behaviors among drug users. Additionally, our results suggest that community structural factors influence the historical and geographic variation in drug use sites. PMID:22217125

  2. Elastic-Plastic Finite Element Analysis of Fatigue Crack Growth in Mode 1 and Mode 2 Conditions

    NASA Technical Reports Server (NTRS)

    Nakagaki, M.; Atluri, S. N.

    1978-01-01

    Presented is an alternate cost-efficient and accurate elastic-plastic finite element procedure to analyze fatigue crack closure and its effects under general spectrum loading. Both Modes 1 and 2 type cycling loadings are considered. Also presented are the results of an investigation, using the newly developed procedure, of various factors that cause crack growth acceleration or retardation and delay effects under high-to-low, low-to-high, single overload, and constant amplitude type cyclic loading in a Mode 1 situation. Further, the results of an investigation of a centercracked panel under external pure shear (Mode 2) cyclic loading, of constant amplitude, are reported.

  3. Microstructural characterization of hydrogen induced cracking in TRIP-assisted steel by EBSD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laureys, A., E-mail: Aurelie.Laureys@UGent.be; Depover, T.; Petrov, R.

    2016-02-15

    The present work evaluates hydrogen induced cracking by performing an elaborate EBSD (Electron BackScatter Diffraction) study in a steel with transformation induced plasticity (TRIP-assisted steel). This type of steel exhibits a multiphase microstructure which undergoes a deformation induced phase transformation. Additionally, each microstructural constituent displays a different behavior in the presence of hydrogen. The aim of this study is to obtain a better understanding on the mechanisms governing hydrogen induced crack initiation and propagation in the hydrogen saturated multiphase structure. Tensile tests on notched samples combined with in-situ electrochemical hydrogen charging were conducted. The tests were interrupted at stresses justmore » after reaching the tensile strength, i.e. before macroscopic failure of the material. This allowed to study hydrogen induced crack initiation and propagation by SEM (Scanning Electron Microscopy) and EBSD. A correlation was found between the presence of martensite, which is known to be very susceptible to hydrogen embrittlement, and the initiation of hydrogen induced cracks. Initiation seems to occur mostly by martensite decohesion. High strain regions surrounding the hydrogen induced crack tips indicate that further crack propagation may have occurred by the HELP (hydrogen-enhanced localized plasticity) mechanism. Small hydrogen induced cracks located nearby the notch are typically S-shaped and crack propagation was dominantly transgranularly. The second stage of crack propagation consists of stepwise cracking by coalescence of small hydrogen induced cracks. - Highlights: • Hydrogen induced cracking in TRIP-assisted steel is evaluated by EBSD. • Tensile tests were conducted on notched hydrogen saturated samples. • Crack initiation occurs by a H-Enhanced Interface DEcohesion (HEIDE) mechanism. • Crack propagation involves growth and coalescence of small cracks. • Propagation is governed by the characteristics of phases on the crack path.« less

  4. Some observations on loss of static strength due to fatigue cracks

    NASA Technical Reports Server (NTRS)

    Illg, Walter; Hardrath, Herbert F

    1955-01-01

    Static tensile tests were performed on simple notched specimens containing fatigue cracks. Four types of aluminum alloys were investigated: 2024-T3(formerly 24S-T3) and 7075-T6(formerly 75S-T6) in sheet form, and 2024-T4(formerly 24S-T4) and 7075-T6(formerly 75S-T6) in extruded form. The cracked specimens were tested statically under four conditions: unmodified and with reduced eccentricity of loading by three methods. Results of static tests on C-46 wings containing fatigue cracks are also reported.

  5. Interaction between a crack and a soft inclusion

    NASA Technical Reports Server (NTRS)

    Xue-Hui, L.; Erdogan, F.

    1985-01-01

    With the application to weld defects in mind, the interaction problem between a planar-crack and a flat inclusion in an elastic solid is considered. The elastic inclusion is assumed to be sufficiently thin so that the thickness distribution of the stresses in the inclusion may be neglected. The problem is reduced to a system of four integral equations having Cauchy-type dominant kernels. The stress intensity factors are calculated and tabulated for various crack-inclusion geometries and the inclusion to matrix modulus ratios, and for general homogeneous loadiong conditions away from the crack-inclusion region.

  6. Assessment of surface relief and short cracks under cyclic creep in a type 316LN austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Sarkar, Aritra; Nagesha, A.; Parameswaran, P.; Sandhya, R.; Laha, K.

    2015-12-01

    Formation of surface relief and short cracks under cyclic creep (stress-controlled fatigue) in type 316LN stainless steel was studied at temperatures ranging from ambient to 923 K using scanning electron microscopy technique. The surface topography and crack distribution behaviour under cyclic creep were found to be strong functions of testing temperature due to the difference in strain accumulation. At 823 K, surface relief mainly consisted of fine slip markings due to negligible accumulation of strain as a consequence of dynamic strain ageing (DSA) which led to an increase in the cyclic life. Persistent slip markings (PSM) with distinct extrusions containing minute cracks were seen to prevail in the temperature range 873-923 K, indicating a higher slip activity causing higher strain accumulation in the absence of DSA. Besides, a large number of secondary cracks (both transgranular and intergranular) which were partially accentuated by severe oxidation, were observed. Extensive cavitation-induced grain boundary cracking took place at 923 K, which coalesced with PSM-induced transgranular cracks resulting in failure dominated by creep that in turn led to a drastic reduction in cyclic life. Investigations on the influence of stress rate were also carried out which underlined the presence of DSA at 823 K. At 923 K, lowering the stress rate caused further strengthening of the contribution from creep damage marked by a shift in the damage mechanism from cyclic slip to diffusion.

  7. Testing and analysis of flat and curved panels with multiple cracks

    DOT National Transportation Integrated Search

    1994-08-01

    An experimental and analytical investigation of multiple cracking in various types of test specimens is described in this paper. The testing phase is comprised of a flat unstiffened panel series and curved stiffened and unstiffened panel series. The ...

  8. Genetics Home Reference: familial porencephaly

    MedlinePlus

    ... one component of a protein called type IV collagen. Type IV collagen molecules attach to each other to form complex ... and support cells in many tissues. Type IV collagen networks play an important role in the basement ...

  9. A type IV burst associated with a coronal streamer disruption event

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.

    1987-01-01

    A type IV burst was observed on February 17, 1985 with the Clark Lake Radio Observatory multifrequency radioheliograph operating in the frequency range 20-125 MHz. This burst was associated with a coronal streamer disruption event. From two-dimensional images produced at 50 MHz, evidence of a type II burst and a slow moving type IV burst are shown. The observations of the moving type IV burst suggests that a plasmoid containing energetic electrons can result from the disruption of a coronal streamer.

  10. Unified nano-mechanics based probabilistic theory of quasibrittle and brittle structures: I. Strength, static crack growth, lifetime and scaling

    NASA Astrophysics Data System (ADS)

    Le, Jia-Liang; Bažant, Zdeněk P.; Bazant, Martin Z.

    2011-07-01

    Engineering structures must be designed for an extremely low failure probability such as 10 -6, which is beyond the means of direct verification by histogram testing. This is not a problem for brittle or ductile materials because the type of probability distribution of structural strength is fixed and known, making it possible to predict the tail probabilities from the mean and variance. It is a problem, though, for quasibrittle materials for which the type of strength distribution transitions from Gaussian to Weibullian as the structure size increases. These are heterogeneous materials with brittle constituents, characterized by material inhomogeneities that are not negligible compared to the structure size. Examples include concrete, fiber composites, coarse-grained or toughened ceramics, rocks, sea ice, rigid foams and bone, as well as many materials used in nano- and microscale devices. This study presents a unified theory of strength and lifetime for such materials, based on activation energy controlled random jumps of the nano-crack front, and on the nano-macro multiscale transition of tail probabilities. Part I of this study deals with the case of monotonic and sustained (or creep) loading, and Part II with fatigue (or cyclic) loading. On the scale of the representative volume element of material, the probability distribution of strength has a Gaussian core onto which a remote Weibull tail is grafted at failure probability of the order of 10 -3. With increasing structure size, the Weibull tail penetrates into the Gaussian core. The probability distribution of static (creep) lifetime is related to the strength distribution by the power law for the static crack growth rate, for which a physical justification is given. The present theory yields a simple relation between the exponent of this law and the Weibull moduli for strength and lifetime. The benefit is that the lifetime distribution can be predicted from short-time tests of the mean size effect on strength and tests of the power law for the crack growth rate. The theory is shown to match closely numerous test data on strength and static lifetime of ceramics and concrete, and explains why their histograms deviate systematically from the straight line in Weibull scale. Although the present unified theory is built on several previous advances, new contributions are here made to address: (i) a crack in a disordered nano-structure (such as that of hydrated Portland cement), (ii) tail probability of a fiber bundle (or parallel coupling) model with softening elements, (iii) convergence of this model to the Gaussian distribution, (iv) the stress-life curve under constant load, and (v) a detailed random walk analysis of crack front jumps in an atomic lattice. The nonlocal behavior is captured in the present theory through the finiteness of the number of links in the weakest-link model, which explains why the mean size effect coincides with that of the previously formulated nonlocal Weibull theory. Brittle structures correspond to the large-size limit of the present theory. An important practical conclusion is that the safety factors for strength and tolerable minimum lifetime for large quasibrittle structures (e.g., concrete structures and composite airframes or ship hulls, as well as various micro-devices) should be calculated as a function of structure size and geometry.

  11. Application of the line-spring model to a cylindrical shell containing a circumferential or axial part-through crack

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1982-01-01

    The line-spring model developed by Rice and Levy (1972) is used to obtain an approximate solution for a cylindrical shell containing a part-through surface crack. A Reissner type theory is used to account for the effects of the transverse shear deformations, and the stress intensity factor at the deepest penetration point of the crack is tabulated for bending and membrane loading by varying three-dimensionless length parameters of the problem formed from the shell radius, the shell thickness, the crack length, and the crack depth. The upper bounds of the stress intensity factors are provided, and qualitatively the line-spring model gives the expected results in comparison with elasticity solutions.

  12. Molecular dynamics simulation of propagating cracks

    NASA Technical Reports Server (NTRS)

    Mullins, M.

    1982-01-01

    Steady state crack propagation is investigated numerically using a model consisting of 236 free atoms in two (010) planes of bcc alpha iron. The continuum region is modeled using the finite element method with 175 nodes and 288 elements. The model shows clear (010) plane fracture to the edge of the discrete region at moderate loads. Analysis of the results obtained indicates that models of this type can provide realistic simulation of steady state crack propagation.

  13. The Influence of Process Equipment on the Properties of Suspension Plasma Sprayed Yttria-Stabilized Zirconia Coatings

    NASA Astrophysics Data System (ADS)

    Marr, Michael; Waldbillig, David; Kesler, Olivera

    2013-03-01

    Suspension plasma-sprayed YSZ coatings were deposited at lab-scale and production-type facilities to investigate the effect of process equipment on coating properties. The target application for these coatings is solid oxide fuel cell (SOFC) electrolytes; hence, dense microstructures with low permeability values were preferred. Both facilities had the same torch but different suspension feeding systems, torch robots, and substrate holders. The lab-scale facility had higher torch-substrate relative speeds compared with the production-type facility. On porous stainless steel substrates, permeabilities and microstructures were comparable for coatings from both facilities, and no segmentation cracks were observed. Coating permeability was further reduced by increasing substrate temperatures during deposition or reducing suspension feed rates. On SOFC cathode substrates, coatings made in the production-type facility had higher permeabilities and more segmentation cracks compared with coatings made in the lab-scale facility. Increased cracking in coatings from the production-type facility was likely caused mainly by its lower torch-substrate relative speed.

  14. Crack Nucleation in β Titanium Alloys under High Cycle Fatigue Conditions - A Review

    NASA Astrophysics Data System (ADS)

    Benjamin, Rohit; Nageswara Rao, M.

    2017-05-01

    Beta titanium (β-Ti) alloys have emerged over the last 3 to 4 decades as an important class of titanium alloys. Many of the applications that they found, particularly in aerospace sector, are such that their high cycle fatigue (HCF) behavior becomes critical. In HCF regime, crack nucleation accounts for major part of the life. Consequently it becomes important to understand the mechanisms underlying the nucleation of cracks under HCF type loading conditions. The purpose of this review is to document the best understanding we have on date on crack nucleation in β-Ti alloys under HCF conditions. Role of various microstructural features encountered in β-Ti alloys in influencing the crack nucleation under HCF conditions has been reviewed. It has been brought out that changes in processing can result in changes in microstructure which in turn influence the time for crack nucleation/fatigue life and fatigue limit. While majority of fatigue failures originate at the surface, subsurface cracking is not uncommon with β-Ti alloys and the factors leading to subsurface cracking have been discussed in this review.

  15. Dual boundary element formulation for elastoplastic fracture mechanics

    NASA Astrophysics Data System (ADS)

    Leitao, V.; Aliabadi, M. H.; Rooke, D. P.

    1995-01-01

    In this paper the extension of the dual boundary element method (DBEM) to the analysis of elastoplastic fracture mechanics (EPFM) problems is presented. The dual equations of the method are the displacement and the traction boundary integral equations. When the displacement equation is applied on one of the crack surfaces and the traction equation on the other, general mixed-mode crack problems can be solved with a single-region formulation. In order to avoid collocation at crack tips, crack kinks and crack-edge corners, both crack surfaces are discretized with discontinuous quadratic boundary elements. The elasto-plastic behavior is modelled through the use of an approximation for the plastic component of the strain tensor on the region expected to yield. This region is discretized with internal quadratic, quadrilateral and/or triangular cells. This formulation was implemented for two-dimensional domains only, although there is no theoretical or numerical limitation to its application to three-dimensional ones. A center-cracked plate and a slant edge-cracked plate subjected to tensile load are analysed and the results are compared with others available in the literature. J-type integrals are calculated.

  16. Microstructurally-sensitive fatigue crack nucleation in Ni-based single and oligo crystals

    NASA Astrophysics Data System (ADS)

    Chen, Bo; Jiang, Jun; Dunne, Fionn P. E.

    2017-09-01

    An integrated experimental, characterisation and computational crystal plasticity study of cyclic plastic beam loading has been carried out for nickel single crystal (CMSX4) and oligocrystal (MAR002) alloys in order to assess quantitatively the mechanistic drivers for fatigue crack nucleation. The experimentally validated modelling provides knowledge of key microstructural quantities (accumulated slip, stress and GND density) at experimentally observed fatigue crack nucleation sites and it is shown that while each of these quantities is potentially important in crack nucleation, none of them in its own right is sufficient to be predictive. However, the local (elastic) stored energy density, measured over a length scale determined by the density of SSDs and GNDs, has been shown to predict crack nucleation sites in the single and oligocrystals tests. In addition, once primary nucleated cracks develop and are represented in the crystal model using XFEM, the stored energy correctly identifies where secondary fatigue cracks are observed to nucleate in experiments. This (Griffith-Stroh type) quantity also correctly differentiates and explains intergranular and transgranular fatigue crack nucleation.

  17. Chemistry and petrography of calcite in the KTB pilot borehole, Bavarian Oberpfalz, Germany

    USGS Publications Warehouse

    Komor, S.C.

    1995-01-01

    The KTB pilot borehole in northeast Bavaria, Germany, penetrates 4000 m of gneiss, amphibolite, and subordinate calc-silicate, lamprophyre and metagabbro. There are three types of calcite in the drilled section: 1) metamorphic calcite in calc-silicate and marble; 2) crack-filling calcite in all lithologies; and 3) replacement calcite in altered minerals. Crack-filling and replacement calcite postdate metamorphic calcite. Multiple calcite generations in individual cracks suggest that different generations of water repeatedly flowed through the same cracks. Crack-filling mineral assemblages that include calcite originally formed at temperatures of 150-350??C. Presently, crack-filling calcite is in chemical and isotopic equilibrium with saline to brackish water in the borehole at temperatures of ???120??C. The saline to brackish water contains a significant proportion of meteoric water. Re-equilibration of crack-filling calcite to lower temperatures means that calcite chemistry tells us little about water-rock interactions in the crystal section of temperatures higher than ~120??C. -from Author

  18. Un Jalón, Un Volteón, y Otra Vez: High-Risk Crack Smoking Paraphernalia in México City.

    PubMed

    Valdez, Avelardo; Nowotny, Kathryn M; Negi, Nalini; Mora, Eduardo Zafra; Cepeda, Alice

    2016-01-01

    During the past decade, crack smoking has increased in Mexico among poor urban populations. Despite this increasing prevalence, little is known about the types of paraphernalia used and related sharing practices and physical harms. Data come from in-depth semi-structured interviews and observations with 156 current crack smokers in Mexico City. Findings reveal a complex, crack-smoking process in Mexico City that represents an interconnected structure of paraphernalia items and pipes that could contribute to detrimental health consequences. Specifically, we identify essential paraphernalia items that make the smoking of crack possible; describe the homemade construction of two categories of pipes; and detail the sharing practices and physical harms associated with these paraphernalia. Results point towards a smoking process that is embedded in impoverished urban neighborhoods sustained by an accessible street-level crack market. Discussed are the policy and intervention implications associated with reducing crack-related health consequences in Mexico and other Latin American countries.

  19. Un Jalón, Un Volteón, y Otra Vez: High-Risk Crack Smoking Paraphernalia in México City

    PubMed Central

    Valdez, Avelardo; Cepeda, Alice; Nowotny, Kathryn M.; Mora, Eduardo Zafra; Negi, Nalini

    2016-01-01

    During the past decade, crack smoking has increased in Mexico among poor urban populations. Despite this increasing prevalence, little is known about the types of paraphernalia used and related sharing practices and physical harms. Data come from in-depth semi-structured interviews and observations with 156 current crack smokers in Mexico City. Findings reveal a complex, crack-smoking process in Mexico City that represents an interconnected structure of paraphernalia items and pipes that could contribute to detrimental health consequences. Specifically, we identify essential paraphernalia items that make the smoking of crack possible; describe the home- made construction of two categories of pipes; and the sharing practices and physical harms associated with these paraphernalia. Results point towards a smoking process that is embedded in impoverished urban neighborhoods sustained by an accessible street-level crack market. Discussed are the policy and intervention implications associated with reducing crack related health consequences in Mexico and other Latin American countries. PMID:27356211

  20. Genetics Home Reference: multicentric osteolysis, nodulosis, and arthropathy

    MedlinePlus

    ... to cut (cleave) a protein called type IV collagen. Type IV collagen is a major structural component of basement membranes, ... enzyme, preventing the normal cleavage of type IV collagen. It is unclear how a loss of enzyme ...

  1. viking: identification and characterization of a second type IV collagen in Drosophila.

    PubMed

    Yasothornsrikul, S; Davis, W J; Cramer, G; Kimbrell, D A; Dearolf, C R

    1997-10-01

    We have taken an enhancer trap approach to identify genes that are expressed in hematopoietic cells and tissues of Drosophila. We conducted a molecular analysis of two P-element insertion strains that have reporter gene expression in embryonic hemocytes, strain 197 and vikingICO. This analysis has determined that viking encodes a collagen type IV gene, alpha2(IV). The viking locus is located adjacent to the previously described DCg1, which encodes collagen alpha1(IV), and in the opposite orientation. The alpha2(IV) and alpha1(IV) collagens are structurally very similar to one another, and to vertebrate type IV collagens. In early development, viking and DCg1 are transcribed in the same tissue-specific pattern, primarily in the hemocytes and fat body cells. Our results suggest that both the alpha1 and alpha2 collagen IV chains may contribute to basement membranes in Drosophila. This work also provides the foundation for a more complete genetic dissection of collagen type IV molecules and their developmental function in Drosophila.

  2. Evaluation of cracks with different hidden depths and shapes using surface magnetic field measurements based on semi-analytical modelling

    NASA Astrophysics Data System (ADS)

    Jiang, Feng; Liu, Shulin

    2018-03-01

    In this paper, we present a feasibility study for detecting cracks with different hidden depths and shapes using information contained in the magnetic field excited by a rectangular coil with a rectangular cross section. First, we solve for the eigenvalues and the unknown coefficients of the magnetic vector potential by imposing artificial and natural boundary conditions. Thus, a semi-analytical solution for the magnetic field distribution around the surface of a conducting plate that contains a long hidden crack is formulated. Next, based on the proposed modelling, the influences of the different hidden depth cracks on the surface magnetic field are analysed. The results show that the horizontal and vertical components of the magnetic field near the crack are becoming weaker and that the phase information of the magnetic field can be used to qualitatively determine the hidden depth of the crack. In addition, the model is optimised to improve its accuracy in classifying crack types. The relationship between signal features and crack shapes is subsequently established. The modified model is validated by using finite element simulations, visually indicating the change in the magnetic field near the crack.

  3. Simulating the effect of slab features on vapor intrusion of crack entry

    PubMed Central

    Yao, Yijun; Pennell, Kelly G.; Suuberg, Eric M.

    2012-01-01

    In vapor intrusion screening models, a most widely employed assumption in simulating the entry of contaminant into a building is that of a crack in the building foundation slab. Some modelers employed a perimeter crack hypothesis while others chose not to identify the crack type. However, few studies have systematically investigated the influence on vapor intrusion predictions of slab crack features, such as the shape and distribution of slab cracks and related to this overall building foundation footprint size. In this paper, predictions from a three-dimensional model of vapor intrusion are used to compare the contaminant mass flow rates into buildings with different foundation slab crack features. The simulations show that the contaminant mass flow rate into the building does not change much for different assumed slab crack shapes and locations, and the foundation footprint size does not play a significant role in determining contaminant mass flow rate through a unit area of crack. Moreover, the simulation helped reveal the distribution of subslab contaminant soil vapor concentration beneath the foundation, and the results suggest that in most cases involving no biodegradation, the variation in subslab concentration should not exceed an order of magnitude, and is often significantly less than this. PMID:23359620

  4. An experimental study of non-destructive testing on glass fibre reinforced polymer composites after high velocity impact event

    NASA Astrophysics Data System (ADS)

    Razali, N.; Sultan, M. T. H.; Cardona, F.

    2016-10-01

    A non-destructive testing method on Glass Fibre Reinforced Polymer (GFRP) after high velocity impact event using single stage gas gun (SSGG) is presented. Specimens of C- type and E-type fibreglass reinforcement, which were fabricated with 6mm, 8mm, 10mm and 12mm thicknesses and size 100 mm x 100 mm, were subjected to a high velocity impact with three types of bullets: conical, hemispherical and blunt at various gas gun pressure levels from 6 bar to 60 bar. Visual observation techniques using a lab microscope were used to determine the infringed damage by looking at the crack zone. Dye penetrants were used to inspect the area of damage, and to evaluate internal and external damages on the specimens after impact. The results from visual analysis of the impacted test laminates were discussed and presented. It was found that the impact damage started with induced delamination, fibre cracking and then failure, simultaneously with matrix cracking and breakage, and finally followed by the fibres pulled out. C-type experienced more damaged areas compared to E-type of GFRP.

  5. An experimental study on fatigue performance of cryogenic metallic materials for IMO type B tank

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Sung; You, Won-Hyo; Yoo, Chang-Hyuk; Kim, Kyung-Su; Kim, Yooil

    2013-12-01

    Three materials SUS304, 9% Ni steel and Al 5083-O alloy, which are considered possible candidate for International Maritime Organization (IMO) type B Cargo Containment System, were studied. Monotonic tensile, fatigue, fatigue crack growth rate and Crack Tip Opening Displacement tests were carried out at room, intermediate low (-100 °C) and cryogenic (-163 °C) temperatures. The initial yield and tensile strengths of all materials tended to increase with decreasing temperature, whereas the change in elastic modulus was not as remarkable. The largest and smallest improvement ratio of the initial yield strengths due to a temperature reduction were observed in the SUS304 and Al 5083- O alloy, respectively. The fatigue strengths of the three materials increased with decreasing temperature. The largest increase in fatigue strength was observed in the Al 5083-O alloy, whereas the 9% Ni steel sample showed the smallest increase. In the fatigue crack growth rate test, SUS304 and Al 5083-O alloy showed a decrease in the crack propagation rate, due to decrease in temperature, but no visible improvement in da/dN was observed in the case of 9% Ni steel. In the Crack Tip Opening Displacement (CTOD) test, CTOD values were converted to critical crack length for the comparison with different thickness specimens. The critical crack length tended to decrease in the case of SUS304 and increase for the Al 5083-O alloy with decreasing temperature. In case of 9% Ni steel, change of critical crack length was not observed due to temperature decrease. In addition, the changing material properties according to the temperature of the LNG tank were analyzed according to the international code for the construction and equipment of ships carrying liquefied gases in bulk (IGC code) and the rules of classifications.

  6. Sensing sheets based on large area electronics for fatigue crack detection

    NASA Astrophysics Data System (ADS)

    Yao, Yao; Glisic, Branko

    2015-03-01

    Reliable early-stage damage detection requires continuous structural health monitoring (SHM) over large areas of structure, and with high spatial resolution of sensors. This paper presents the development stage of prototype strain sensing sheets based on Large Area Electronics (LAE), in which thin-film strain gauges and control circuits are integrated on the flexible electronics and deposited on a polyimide sheet that can cover large areas. These sensing sheets were applied for fatigue crack detection on small-scale steel plates. Two types of sensing-sheet interconnects were designed and manufactured, and dense arrays of strain gauge sensors were assembled onto the interconnects. In total, four (two for each design type) strain sensing sheets were created and tested, which were sensitive to strain at virtually every point over the whole sensing sheet area. The sensing sheets were bonded to small-scale steel plates, which had a notch on the boundary so that fatigue cracks could be generated under cyclic loading. The fatigue tests were carried out at the Carleton Laboratory of Columbia University, and the steel plates were attached through a fixture to the loading machine that applied cyclic fatigue load. Fatigue cracks then occurred and propagated across the steel plates, leading to the failure of these test samples. The strain sensor that was close to the notch successfully detected the initialization of fatigue crack and localized the damage on the plate. The strain sensor that was away from the crack successfully detected the propagation of fatigue crack based on the time history of measured strain. Overall, the results of the fatigue tests validated general principles of the strain sensing sheets for crack detection.

  7. Micromechanisms of Crack Growth in Ceramics and Glasses in Corrosive Environments.

    DTIC Science & Technology

    1980-05-01

    Resistance Mecanique du Verre et les Moyens de l’Amelioree, Union Scientifique Continentale du Verre , Charleroix, Belgium, (1962). 8. B. A. Proctor, I...exhibit similar types of delayed failure curves. Failure occurs most rapidly at high loads. Below a critical value of the load known as the stress...fracture for the three types of materials differ greatly. Polymers and metals have plastic zones at their crack tips, so that stress corrosion

  8. Crack propagation and the material removal mechanism of glass-ceramics by the scratch test.

    PubMed

    Qiu, Zhongjun; Liu, Congcong; Wang, Haorong; Yang, Xue; Fang, Fengzhou; Tang, Junjie

    2016-12-01

    To eliminate the negative effects of surface flaws and subsurface damage of glass-ceramics on clinical effectiveness, crack propagation and the material removal mechanism of glass-ceramics were studied by single and double scratch experiments conducted using an ultra-precision machine. A self-manufactured pyramid shaped single-grit tool with a small tip radius was used as the scratch tool. The surface and subsurface crack propagations and interactions, surface morphology and material removal mechanism were investigated. The experimental results showed that the propagation of lateral cracks to the surface and the interaction between the lateral cracks and radial cracks are the two main types of material peeling, and the increase of the scratch depth increases the propagation angle of the radial cracks and the interaction between the cracks. In the case of a double scratch, the propagation of lateral cracks and radial cracks between paired scratches results in material peeling. The interaction between adjacent scratches depends on the scratch depth and separation distance. There is a critical separation distance where the normalized material removal volume reaches its peak. These findings can help reduce surface flaws and subsurface damage induced by the grinding process and improve the clinical effectiveness of glass-ceramics used as biological substitute and repair materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Automatic quantification framework to detect cracks in teeth

    PubMed Central

    Shah, Hina; Hernandez, Pablo; Budin, Francois; Chittajallu, Deepak; Vimort, Jean-Baptiste; Walters, Rick; Mol, André; Khan, Asma; Paniagua, Beatriz

    2018-01-01

    Studies show that cracked teeth are the third most common cause for tooth loss in industrialized countries. If detected early and accurately, patients can retain their teeth for a longer time. Most cracks are not detected early because of the discontinuous symptoms and lack of good diagnostic tools. Currently used imaging modalities like Cone Beam Computed Tomography (CBCT) and intraoral radiography often have low sensitivity and do not show cracks clearly. This paper introduces a novel method that can detect, quantify, and localize cracks automatically in high resolution CBCT (hr-CBCT) scans of teeth using steerable wavelets and learning methods. These initial results were created using hr-CBCT scans of a set of healthy teeth and of teeth with simulated longitudinal cracks. The cracks were simulated using multiple orientations. The crack detection was trained on the most significant wavelet coefficients at each scale using a bagged classifier of Support Vector Machines. Our results show high discriminative specificity and sensitivity of this method. The framework aims to be automatic, reproducible, and open-source. Future work will focus on the clinical validation of the proposed techniques on different types of cracks ex-vivo. We believe that this work will ultimately lead to improved tracking and detection of cracks allowing for longer lasting healthy teeth. PMID:29769755

  10. Rock-Salt Growth-Induced (003) Cracking in a Layered Positive Electrode for Li-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hanlei; Omenya, Fredrick; Yan, Pengfei

    For the first time, the (003) cracking is observed and determined to be the major cracking mechanism for the primary particles of Ni-rich layered dioxides as the positive electrode for Li-ion batteries. Using transmission electron microscopy techniques, here we show that the propagation and fracturing of platelet-like rock-salt phase along the (003) plane of the layered oxide are the leading cause for the cracking of primary particles. The fracturing of the rock-salt platelet is induced by the stress discontinuity between the parent layered oxide and the rock-salt phase. The high nickel content is considered to be the key factor formore » the formation of the rock-salt platelet and thus the (003) cracking. The (003)-type cracking can be a major factor for the structural degradation and associated capacity fade of the layered positive electrode.« less

  11. The dependence of acoustic properties of a crack on the resonance mode and geometry

    USGS Publications Warehouse

    Kumagai, H.; Chouet, B.A.

    2001-01-01

    We examine the dependence of the acoustic properties of a crack containing magmatic or hydrothermal fluids on the resonance mode and geometry to quantify the source properties of long-period (LP) events observed in volcanic areas. Our results, based on spectral analyses of synthetic waveforms generated with a fluid-driven crack model, indicate that the basic features of the dimensionless frequency (??) and quality factor (Qr) for a crack containing various types of fluids are not strongly affected by the choice of mode, although the actual ranges of Q?? and ?? both depend on the mode. The dimensionless complex frequency systematically varies with changes in the crack geometry, showing increases in both Qr and ?? as the crack length to aperture ratio decreases. The present results may be useful for the interpretation of spatial and temporal variations in the observed complex frequencies of LP events.

  12. Characteristics of microearthquakes accompanying hydraulic fracturing as determined from studies of spectra of seismic waveforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fehler, M.; Bame, D.

    1985-03-01

    A study of the spectral properties of the waveforms recorded during hydraulic fracturing earthquakes has been carried out to obtain information about the physical dimensions of the earthquakes. We find two types of events. The first type has waveforms with clear P and S arrivals and spectra that are very similar to earthquakes occurring in tectonic regions. These events are interpreted as being due to shear slip along fault planes. The second type of event has waveforms that are similar in many ways to long period earthquakes observed at volcanoes and is called long period. Many waveforms of these eventsmore » are identical, which implies that these events represent repeated activation of a given source. We propose that the source of these long period events is the sudden opening of a channel that connects two cracks filled with fluid at different pressures. The sizes of the two cracks differ, which causes two or more peaks to appear in the spectra, each peak being associated with one physical dimension of the crack. From the frequencies at which spectral peaks occur, we estimate crack dimensions of between 3 and 22m. 13 refs., 8 figs.« less

  13. Study of the Microstructure and Cracking Mechanisms of Hastelloy X Produced by Laser Powder Bed Fusion.

    PubMed

    Marchese, Giulio; Basile, Gloria; Bassini, Emilio; Aversa, Alberta; Lombardi, Mariangela; Ugues, Daniele; Fino, Paolo; Biamino, Sara

    2018-01-11

    Hastelloy X (HX) is a Ni-based superalloy which suffers from high crack susceptibility during the laser powder bed fusion (LPBF) process. In this work, the microstructure of as-built HX samples was rigorously investigated to understand the main mechanisms leading to crack formation. The microstructural features of as-built HX samples consisted of very fine dendrite architectures with dimensions typically less than 1 µm, coupled with the formation of sub-micrometric carbides, the largest ones were mainly distributed along the interdendritic regions and grain boundaries. From the microstructural analyses, it appeared that the formation of intergranular carbides provided weaker zones, which combined with high thermal residual stresses resulted in hot cracks formation along the grain boundaries. The carbides were extracted from the austenitic matrix and characterized by combining different techniques, showing the formation of various types of Mo-rich carbides, classified as M₆C, M 12 C and M n C m type. The first two types of carbides are typically found in HX alloy, whereas the last one is a metastable carbide probably generated by the very high cooling rates of the process.

  14. Study of the Microstructure and Cracking Mechanisms of Hastelloy X Produced by Laser Powder Bed Fusion

    PubMed Central

    Basile, Gloria; Bassini, Emilio; Ugues, Daniele; Fino, Paolo

    2018-01-01

    Hastelloy X (HX) is a Ni-based superalloy which suffers from high crack susceptibility during the laser powder bed fusion (LPBF) process. In this work, the microstructure of as-built HX samples was rigorously investigated to understand the main mechanisms leading to crack formation. The microstructural features of as-built HX samples consisted of very fine dendrite architectures with dimensions typically less than 1 µm, coupled with the formation of sub-micrometric carbides, the largest ones were mainly distributed along the interdendritic regions and grain boundaries. From the microstructural analyses, it appeared that the formation of intergranular carbides provided weaker zones, which combined with high thermal residual stresses resulted in hot cracks formation along the grain boundaries. The carbides were extracted from the austenitic matrix and characterized by combining different techniques, showing the formation of various types of Mo-rich carbides, classified as M6C, M12C and MnCm type. The first two types of carbides are typically found in HX alloy, whereas the last one is a metastable carbide probably generated by the very high cooling rates of the process. PMID:29324658

  15. The instantaneous rate dependence in low temperature laboratory rock friction and rock deformation experiments

    USGS Publications Warehouse

    Beeler, N.M.; Tullis, T.E.; Kronenberg, A.K.; Reinen, L.A.

    2007-01-01

    Earthquake occurrence probabilities that account for stress transfer and time-dependent failure depend on the product of the effective normal stress and a lab-derived dimensionless coefficient a. This coefficient describes the instantaneous dependence of fault strength on deformation rate, and determines the duration of precursory slip. Although an instantaneous rate dependence is observed for fracture, friction, crack growth, and low temperature plasticity in laboratory experiments, the physical origin of this effect during earthquake faulting is obscure. We examine this rate dependence in laboratory experiments on different rock types using a normalization scheme modified from one proposed by Tullis and Weeks [1987]. We compare the instantaneous rate dependence in rock friction with rate dependence measurements from higher temperature dislocation glide experiments. The same normalization scheme is used to compare rate dependence in friction to rock fracture and to low-temperature crack growth tests. For particular weak phyllosilicate minerals, the instantaneous friction rate dependence is consistent with dislocation glide. In intact rock failure tests, for each rock type considered, the instantaneous rate dependence is the same size as for friction, suggesting a common physical origin. During subcritical crack growth in strong quartzofeldspathic and carbonate rock where glide is not possible, the instantaneous rate dependence measured during failure or creep tests at high stress has long been thought to be due to crack growth; however, direct comparison between crack growth and friction tests shows poor agreement. The crack growth rate dependence appears to be higher than the rate dependence of friction and fracture by a factor of two to three for all rock types considered. Copyright 2007 by the American Geophysical Union.

  16. The Effect of Interface Cracks on the Electrical Performance of Solar Cells

    NASA Astrophysics Data System (ADS)

    Kim, Hansung; Tofail, Md. Towfiq; John, Ciby

    2018-04-01

    Among a variety of solar cell types, thin-film solar cells have been rigorously investigated as cost-effective and efficient solar cells. In many cases, flexible solar cells are also fabricated as thin films and undergo frequent stress due to the rolling and bending modes of applications. These frequent motions result in crack initiation and propagation (including delamination) in the thin-film solar cells, which cause degradation in efficiency. Reliability evaluation of solar cells is essential for developing a new type of solar cell. In this paper, we investigated the effect of layer delamination and grain boundary crack on 3D thin-film solar cells. We used finite element method simulation for modeling of both electrical performance and cracked structure of 3D solar cells. Through simulations, we quantitatively calculated the effect of delamination length on 3D copper indium gallium diselenide (CIGS) solar cell performance. Moreover, it was confirmed that the grain boundary of CIGS could improve the solar cell performance and that grain boundary cracks could decrease cell performance by altering the open circuit voltage. In this paper, the investigated material is a CIGS solar cell, but our method can be applied to general polycrystalline solar cells.

  17. Distribution of type IV collagen in pancreatic adenocarcinoma and chronic pancreatitis.

    PubMed Central

    Lee, C. S.; Montebello, J.; Georgiou, T.; Rode, J.

    1994-01-01

    Changes in the basement membrane are present in various neoplastic conditions such as neurofibrosarcoma, cervical carcinoma, colorectal cancers and hepatoblastoma. This study examines the expression of type IV collagen in the basement membrane, using an immunohistochemical method, in the normal pancreas (n = 10), chronic pancreatitis (n = 15) and pancreatic adenocarcinoma (n = 30). The formalin fixed, paraffin embedded tissue was sectioned and pretreated with protease prior to immunostaining for type IV collagen. There was a statistically significant difference in type IV collagen expression between pancreatic carcinoma and chronic pancreatitis (P = 0.0001; chi 2 test with continuity correction). In pancreatic adenocarcinoma, type IV collagen distribution in the basement membrane was discontinuous and irregular or absent around individual or groups of neoplastic cells (n = 30). Most cases of chronic pancreatitis showed continuous pattern of basement membrane type IV collagen around residual ducts (n = 10). In the normal pancreas, only one of the ten cases showed discontinuous basement membrane around pancreatic ducts, while in the rest of the cases, the pattern was continuous. This study suggests that there is abnormal distribution of type IV collagen in the basement membrane in pancreatic carcinoma, which may be related to either abnormal deposition or degradation of the collagen. Immunostaining for type IV collagen may be of some diagnostic use for distinguishing pancreatic adenocarcinoma from problematic cases of chronic pancreatitis. Images Figure 1 Figure 2 Figure 3 PMID:8199008

  18. A Study of the Fatigue Behavior of Small Cracks in Nickel-Base Superalloys

    DTIC Science & Technology

    1988-02-24

    PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION (if applicable ) Massachusetts Inst of Tech .AFOSR/NE 15c. ADDRESS (City, State...FUNDING/iSPONSORING I8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IUENTIFICATION NUMBER ORGANIZAT:ON (if applicable ) AFOSRINE I AFOSR-84-0075 8?c...requires tie application of a fracture mechamucs type approach to very short cracks. This entails the determination of threshold and fatigue crack growth

  19. Genetics Home Reference: hereditary angiopathy with nephropathy, aneurysms, and muscle cramps syndrome

    MedlinePlus

    ... one component of a protein called type IV collagen . Type IV collagen molecules attach to each other to form complex ... and support cells in many tissues. Type IV collagen networks play an important role in the basement ...

  20. Remote reactor repair: GTA (gas tungsten Arc) weld cracking caused by entrapped helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanne, Jr, W R

    1988-01-01

    A repair patch was welded to the wall of a nuclear reactor tank using remotely controlled thirty-foot long robot arms. Further repair was halted when gas tungsten arc (GTA) welds joining type 304L stainless steel patches to the 304 stainless steel wall developed toe cracks in the heat-affected zone (HAZ). The role of helium in cracking was investigated using material with entrapped helium from tritium decay. As a result of this investigation, and of an extensive array of diagnostic tests performed on reactor tank wall material, helium embrittlement was shown to be the cause of the toe cracks.

  1. Distribution of Basement Membrane Molecules, Laminin and Collagen Type IV, in Normal and Degenerated Cartilage Tissues

    PubMed Central

    Toh, Wei Seong; Gomoll, Andreas H.; Olsen, Bjørn Reino; Spector, Myron

    2014-01-01

    Objective: The objective of the present study was to investigate the presence and distribution of 2 basement membrane (BM) molecules, laminin and collagen type IV, in healthy and degenerative cartilage tissues. Design: Normal and degenerated tissues were obtained from goats and humans, including articular knee cartilage, the intervertebral disc, and meniscus. Normal tissue was also obtained from patella-tibial enthesis in goats. Immunohistochemical analysis was performed using anti-laminin and anti–collagen type IV antibodies. Human and goat skin were used as positive controls. The percentage of cells displaying the pericellular presence of the protein was graded semiquantitatively. Results: When present, laminin and collagen type IV were exclusively found in the pericellular matrix, and in a discrete layer on the articulating surface of normal articular cartilage. In normal articular (hyaline) cartilage in the human and goat, the proteins were found co-localized pericellularly. In contrast, in human osteoarthritic articular cartilage, collagen type IV but not laminin was found in the pericellular region. Nonpathological fibrocartilaginous tissues from the goat, including the menisci and the enthesis, were also positive for both laminin and collagen type IV pericellularly. In degenerated fibrocartilage, including intervertebral disc, as in degenerated hyaline cartilage only collagen type IV was found pericellularly around chondrocytes but with less intense staining than in non-degenerated tissue. In calcified cartilage, some cells were positive for laminin but not type IV collagen. Conclusions: We report differences in expression of the BM molecules, laminin and collagen type IV, in normal and degenerative cartilaginous tissues from adult humans and goats. In degenerative tissues laminin is depleted from the pericellular matrix before collagen type IV. The findings may inform future studies of the processes underlying cartilage degeneration and the functional roles of these 2 extracellular matrix proteins, normally associated with BM. PMID:26069692

  2. Characterization of cracking behavior using posttest fractographic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, T.; Shockey, D.A.

    A determination of time to initiation of stress corrosion cracking in structures and test specimens is important for performing structural failure analysis and for setting inspection intervals. Yet it is seldom possible to establish how much of a component's lifetime represents the time to initiation of fracture and how much represents postinitiation crack growth. This exploratory research project was undertaken to examine the feasibility of determining crack initiation times and crack growth rates from posttest examination of fracture surfaces of constant-extension-rate-test (CERT) specimens by using the fracture reconstruction applying surface topography analysis (FRASTA) technique. The specimens used in this studymore » were Type 304 stainless steel fractured in several boiling water reactor (BWR) aqueous environments. 2 refs., 25 figs., 2 tabs.« less

  3. Influence of Crack-Tip Configurations on the Fracture Response of 0.04-Inch Thick 2024-T3 Aluminum Alloy Sheet

    NASA Technical Reports Server (NTRS)

    Johnston, William M.; Newman, James C. (Technical Monitor)

    2002-01-01

    A series of fracture tests were conducted on Middle-crack tension M(T) and compact tension C(T) specimens to determine the effects of specimen type, specimen width, notch tip sharpness and buckling on the fracture behavior of cracked thin sheet (0.04 inch thick) 2024-T3 aluminum alloy material. A series of M(T) specimens were tested with three notch tip configurations: (1) a fatigue pre-cracked notch, (2) a 0.010-inch-diameter wire electrical discharge machined (EDM) notch, and (3) a EDM notch sharpened with a razor blade. The test procedures are discussed and the experimental results for failure stress, load vs. crack extension and the material stress-strain response are reported.

  4. Tensile cracking of a brittle conformal coating on a rough substrate

    DOE PAGES

    Reedy, Jr., E. D.

    2016-04-07

    This note examines the effect of interfacial roughness on the initiation and growth of channel cracks in a brittle film. A conformal film with cusp-like surface flaws that replicate the substrate roughness is investigated. This type of surface flaw is relatively severe in the sense that stress diverges as the cusp-tip is approached (i.e., there is a power-law stress singularity). For the geometry and range of film properties considered, the analysis suggests that smoothing the substrate could substantially increase the film’s resistance to the formation of the through-the-thickness cracks that precede channel cracking. Furthermore, smoothing the substrate’s surface has amore » relatively modest effect on the film stress needed to propagate a channel crack.« less

  5. Effect of Ply Orientation and Crack Location on SIFs in Finite Multilayers with Aligned Cracks

    NASA Astrophysics Data System (ADS)

    Chen, Linfeng; Pindera, Marek-Jerzy

    2008-02-01

    An exact elasticity solution is presented for arbitrarily laminated finite multilayers in a state of generalized plane deformation under horizontally pinned end constraints that are weakened by aligned cracks. Based on half-range Fourier series and the local/global stiffness matrix approach, the mixed boundary-value problem is reduced to Cauchy-type singular integral equations in the unknown displacement discontinuities. Solution to these equations is obtained using the approach developed by Erdogan and co-workers. Numerical results quantify the thus-far undocumented geometric and material effects on Mode I, II and III stress intensity factors in composite multilayers with interacting cracks under uniform vertical displacement. These effects include finite dimensions, crack location, material anisotropy due to a unidirectional fiber-reinforced layer/s orientation, and orientational grading.

  6. Crack Detection in Concrete Tunnels Using a Gabor Filter Invariant to Rotation.

    PubMed

    Medina, Roberto; Llamas, José; Gómez-García-Bermejo, Jaime; Zalama, Eduardo; Segarra, Miguel José

    2017-07-20

    In this article, a system for the detection of cracks in concrete tunnel surfaces, based on image sensors, is presented. Both data acquisition and processing are covered. Linear cameras and proper lighting are used for data acquisition. The required resolution of the camera sensors and the number of cameras is discussed in terms of the crack size and the tunnel type. Data processing is done by applying a new method called Gabor filter invariant to rotation, allowing the detection of cracks in any direction. The parameter values of this filter are set by using a modified genetic algorithm based on the Differential Evolution optimization method. The detection of the pixels belonging to cracks is obtained to a balanced accuracy of 95.27%, thus improving the results of previous approaches.

  7. Frequency domain analysis of the random loading of cracked panels

    NASA Technical Reports Server (NTRS)

    Doyle, James F.

    1994-01-01

    The primary effort concerned the development of analytical methods for the accurate prediction of the effect of random loading on a panel with a crack. Of particular concern was the influence of frequency on the stress intensity factor behavior. Many modern structures, such as those found in advanced aircraft, are lightweight and susceptible to critical vibrations, and consequently dynamic response plays a very important role in their analysis. The presence of flaws and cracks can have catastrophic consequences. The stress intensity factor, K, emerges as a very significant parameter that characterizes the crack behavior. In analyzing the dynamic response of panels that contain cracks, the finite element method is used, but because this type of problem is inherently computationally intensive, a number of ways of calculating K more efficiently are explored.

  8. Mechanical Characterization of High-Performance Steel-Fiber Reinforced Cement Composites with Self-Healing Effect

    PubMed Central

    Kim, Dong Joo; Kang, Seok Hee; Ahn, Tae-Ho

    2014-01-01

    The crack self-healing behavior of high-performance steel-fiber reinforced cement composites (HPSFRCs) was investigated. High-strength deformed steel fibers were employed in a high strength mortar with very fine silica sand to decreasing the crack width by generating higher interfacial bond strength. The width of micro-cracks, strongly affected by the type of fiber and sand, clearly produced the effects on the self-healing behavior. The use of fine silica sand in HPSFRCs with high strength deformed steel fibers successfully led to rapid healing owing to very fine cracks with width less than 20 μm. The use of very fine silica sand instead of normal sand produced 17%–19% higher tensile strength and 51%–58% smaller width of micro-cracks. PMID:28788471

  9. Characterization of Delaminations and Transverse Matrix Cracks in Composite Laminates Using Multiple-Angle Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick H.; Appleget, Chelsea D.; Odarczenko, Michael T.

    2012-01-01

    Delaminations and transverse matrix cracks often appear concurrently in composite laminates. Normal-incidence ultrasound is excellent at detecting delaminations, but is not optimum for matrix cracks. Non-normal incidence, or polar backscattering, has been shown to optimally detect matrix cracks oriented perpendicular to the ultrasonic plane of incidence. In this work, a series of six composite laminates containing slots were loaded in tension to achieve various levels of delamination and ply cracking. Ultrasonic backscattering was measured over a range of incident polar and azimuthal angles, in order to characterize the relative degree of damage of the two types. Sweptpolar- angle measurements were taken with a curved phased array, as a step toward an array-based approach to simultaneous measurement of combined flaws.

  10. Detection of freeze-thaw weathering effect using X-ray micro computed tomography

    NASA Astrophysics Data System (ADS)

    Park, J.; Hyun, C.; Park, H.

    2011-12-01

    Physical weathering caused by repeated freeze-thaw action of water inside rock pores or cracks was artificially simulated in laboratory. The tests were conducted on three rock types, i.e. diorite, basalt, and tuff, which are the major rock types around King Sejong Station of Korea located in Barton Peninsula, King George Island, Antarctica. The temperature of freeze-thaw cycle was also set with simulated the air temperature of the station, i.e. the maximum temperature was + 10 °C and the minimum temperature was - 20 °C. Three cylindrical specimens composed of one for each rock type with 24.6 mm diameter and 14.5 ~ 17.7 mm length were prepared, and 2 mm diameter and 7 mm shallow depth hole was drilled on the center of the specimens. To exaggerate the effect of the freeze-thaw weathering, all tests were conducted under completely saturated condition. 50 cycles of the freeze-thaw test was carried, and X-ray micro computed tomography (CT) images of each rock specimen were obtained after every 10 cycles. Using X-ray micro CT images, 3D structure was rendered and pore and crack structures were extracted. The changes of porosity, absorption rate and pore and crack structure were detected. Porosity of all specimens was decreased linearly and absorption rate of all specimens was increased linearly as weathering processes; the pore connection and crack propagation was detected in 3D rendering pore and crack structure. The change of tuff specimen is the most remarkable among three rock types used in the research, because of its relatively high initial absorption rate and low strength. This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST) (No. 2011-0027520).

  11. Static and Dynamic Behavior of High Modulus Hybrid Boron/Glass/Aluminum Fiber Metal Laminates

    NASA Astrophysics Data System (ADS)

    Yeh, Po-Ching

    2011-12-01

    This dissertation presents the investigation of a newly developed hybrid fiber metal laminates (FMLs) which contains commingled boron fibers, glass fibers, and 2024-T3 aluminum sheets. Two types of hybrid boron/glass/aluminum FMLs are developed. The first, type I hybrid FMLs, contained a layer of boron fiber prepreg in between two layers of S2-glass fiber prepreg, sandwiched by two aluminum alloy 2024-T3 sheets. The second, type II hybrid FMLs, contained three layer of commingled hybrid boron/glass fiber prepreg layers, sandwiched by two aluminum alloy 2024-T3 sheets. The mechanical behavior and deformation characteristics including blunt notch strength, bearing strength and fatigue behavior of these two types of hybrid boron/glass/aluminum FMLs were investigated. Compared to traditional S2-glass fiber reinforced aluminum laminates (GLARE), the newly developed hybrid boron/glass/aluminum fiber metal laminates possess high modulus, high yielding stress, and good blunt notch properties. From the bearing test result, the hybrid boron/glass/aluminum fiber metal laminates showed outstanding bearing strength. The high fiber volume fraction of boron fibers in type II laminates lead to a higher bearing strength compared to both type I laminates and traditional GLARE. Both types of hybrid FMLs have improved fatigue crack initiation lives and excellent fatigue crack propagation resistance compared to traditional GLARE. The incorporation of the boron fibers improved the Young's modulus of the composite layer in FMLs, which in turn, improved the fatigue crack initiation life and crack propagation rates of the aluminum sheets. Moreover, a finite element model was established to predict and verify the properties of hybrid boron/glass/aluminum FMLs. The simulated results showed good agreement with the experimental results.

  12. The Application of a Nonlinear Fracture Mechanics Parameter to Ductile Fatigue Crack Growth

    DTIC Science & Technology

    1982-12-01

    ADAl I4~ � AFWAL-TR-83-4023 0 THE APPLICATION OF A NONLINEAR FRACTURE MECHANICS PARAMETER TO DUCTILE FATIGUE CRACK GROW4TH University of Dayton...SubtSle) S. TYPE OF REPORT & PERIOD COVERED The Application of a Nonlinear Fracture Final Report Mechanics Parameter to Ductile Fatigue Sept. 1978...5, and 6. To date, no single elastic-plastic fracture mechanics ( EPFM ) "type parameter has achieved universal acceptance for its corre- lation

  13. Stress/Strain Ratio Effects on Fatigue Response of a SCS-6/Ti-15-3 Metal Matrix Composite at Elevated Temperature.

    DTIC Science & Technology

    1995-12-01

    consisted of a titanium alloy matrix, Figure 1. Turbine Blade Load History [19] Ti-15-3, reinforced with silicon carbide fibers, SCS-6. For this...Composite Science and Technology 1994. 19. Pernot, J. J., Crack Growth Rate Modeling of a Titanium Aluminide Alloy Under Thermal Mechanical Cycling. PhD...Appendix B: Additional Unidirectional, [0]8, Data 102 7. Bibliography 109 8. Vita 112 IV List of Fieures Figure Page 1. Turbine Blade Load

  14. Failures in Hybrid Microcircuits During Environmental Testing. History Cases

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2008-01-01

    This purpose of this viewgraph presentation is to discuss failures in hermetic hybrids observed at the GSFC PA Lab during environmental stress testing. The cases discussed are: Case I. Substrate metallization failures during Thermal cycling (TC). Case II. Flex lid-induced failure. Case Ill. Hermeticity failures during TC. Case IV. Die metallization cracking during TC. and how many test cycles and parts is necessary? Case V. Wire Bond failures after life test. Case VI. Failures caused by Au/In IMC growth.

  15. Stress-Corrosion Cracking of Metallic Materials. Part III. Hydrogen Entry and Embrittlement in Steel

    DTIC Science & Technology

    1975-04-01

    calculated the energy requirements for the reaction. The energy of the absorbed hydrogen should be the same regardless of its source (aqueous solution...Properties of AISI 43140 Steel As Functions of Tempering Temperature 11 Ś Effect of Temipering, Parameters on the Transition Carbides and Impact ...Temperature on Impact Toughness of 4340, 30(iV, ruad 11-11 Steels [From. the work of Bucher W "et ൓. (2a)] 16 11. Schematic Illustration of Temperature

  16. A Study of Failure in Small Pressurized Cylindrical Shells Containing a Crack

    NASA Technical Reports Server (NTRS)

    Barwell, Craig A.; Eber, Lorenz; Fyfe, Ian M.

    1998-01-01

    The deformation in the vicinity of axial cracks in thin pressurized cylinders is examined using small experimental The deformation in the vicinity of axial cracks in thin pressurized cylinders is examined using small experimental models. The loading applied was either symmetric or unsymmetric about the crack plane, the latter being caused by structural constraints such as stringers. The objective was two fold - one, to provide the experimental results which will allow computer modeling techniques to be evaluated for deformations that are significantly different from that experienced by flat plates, and the other to examine the deformations and conditions associated with the onset of crack kinking which often precedes crack curving. The stresses which control crack growth in a cylindrical geometry depend on conditions introduced by the axial bulging, which is an integral part of this type of failure. For the symmetric geometry, both the hoop and radial strain just ahead off the crack, r = a, were measured and these results compared with those obtained from a variety of structural analysis codes, in particular STAGS [1], ABAQUS and ANSYS. In addition to these measurements, the pressures at the onset of stable and unstable crack growth were obtained and the corresponding crack deformations measured as the pressures were increased to failure. For the unsymmetric cases, measurements were taken of the crack kinking angle, and the displacements in the vicinity of the crack. In general, the strains ahead of the crack showed good agreement between the three computer codes and between the codes and the experiments. In the case of crack behavior, it was determined that modeling stable tearing with a crack-tip opening displacement fracture criterion could be successfully combined with the finite-element analysis techniques as used in structural analysis codes. The analytic results obtained in this study were very compatible with the experimental observations of crack growth. Measured crack kinking angles also showed good agreement with theories based on the maximum principle stress criterion.

  17. Fatigue crack sizing in rail steel using crack closure-induced acoustic emission waves

    NASA Astrophysics Data System (ADS)

    Li, Dan; Kuang, Kevin Sze Chiang; Ghee Koh, Chan

    2017-06-01

    The acoustic emission (AE) technique is a promising approach for detecting and locating fatigue cracks in metallic structures such as rail tracks. However, it is still a challenge to quantify the crack size accurately using this technique. AE waves can be generated by either crack propagation (CP) or crack closure (CC) processes and classification of these two types of AE waves is necessary to obtain more reliable crack sizing results. As the pre-processing step, an index based on wavelet power (WP) of AE signal is initially established in this paper in order to distinguish between the CC-induced AE waves and their CP-induced counterparts. Here, information embedded within the AE signal was used to perform the AE wave classification, which is preferred to the use of real-time load information, typically adopted in other studies. With the proposed approach, it renders the AE technique more amenable to practical implementation. Following the AE wave classification, a novel method to quantify the fatigue crack length was developed by taking advantage of the CC-induced AE waves, the count rate of which was observed to be positively correlated with the crack length. The crack length was subsequently determined using an empirical model derived from the AE data acquired during the fatigue tests of the rail steel specimens. The performance of the proposed method was validated by experimental data and compared with that of the traditional crack sizing method, which is based on CP-induced AE waves. As a significant advantage over other AE crack sizing methods, the proposed novel method is able to estimate the crack length without prior knowledge of the initial crack length, integration of AE data or real-time load amplitude. It is thus applicable to the health monitoring of both new and existing structures.

  18. Micro-indentation fracture behavior of human enamel.

    PubMed

    Padmanabhan, Sanosh Kunjalukkal; Balakrishnan, Avinash; Chu, Min-Cheol; Kim, Taik Nam; Cho, Seong Jai

    2010-01-01

    The purpose of this study was to determine the crack resistance behavior (K(R)) of human enamel in relation to its microstructure. Human molar teeth were precision cut, polished and tested using Vickers micro-indentation at different loads ranging from 0.98 to 9.8 N. Five indentation load levels were considered, 20 indentation cracks for each load level were introduced on the surface of the test specimen (10 indentations per tooth) and their variability was evaluated using Weibull statistics and an empirical model. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to analyze the crack morphology and propagation mechanisms involved. The results showed that enamel exhibited increasing cracking resistance (K(R)) with increasing load. It was found that the crack propagation mainly depended on the location and the microstructure it encountered. SEM showed the formation of crack bridges and crack deflection near the indentation crack tip. The crack mode was of Palmqvist type even at larger loads of 9.8 N. This was mainly attributed to the large process zone created by the interwoven lamellar rod like microstructure exhibited by the enamel surface. This study shows that there are still considerable prospects for improving dental ceramics and for mimicking the enamel structure developed by nature.

  19. Effect of crack on natural frequency for beam type of structures

    NASA Astrophysics Data System (ADS)

    Sawant, Saurabh U.; Chauhan, Santosh J.; Deshmukh, Nilaj N.

    2017-07-01

    Detection of damage in early stages reduces chances of sudden failure of that structure which is important from safety and economic point of view. Crack or damage affects dynamic behavior of structure. In last few decades many researchers have been developing different approaches to detect the damage based on its dynamic behavior. This paper focuses on effect on natural frequency of cantilever beam due to the presence of crack at different locations and with different depths. Cantilever beam is selected for analysis because these beams are most common structures used in many industrial applications. In the present study, modeling of healthy and damaged cantilever beam is done using ANSYSsoftware. Crack at 38 different locations with 1 mm, 2 mm and 3 mm crack depth were created for each of these locations. The effect of these cracks on natural frequency were analyzed over the healthy beam for the first four mode shapes. It is found that the presence of crack decreases the natural frequency of the beam and at some particular locations, the natural frequency of the cracked beam is found to be almost the same as that of the healthy beam.

  20. Type IV Ehlers-Danlos Syndrome: A Surgical Emergency? A Case of Massive Retroperitoneal Hemorrhage

    PubMed Central

    Chun, Stephen G; Pedro, Patrick; Yu, Mihae; Takanishi, Danny M

    2011-01-01

    Retroperitoneal hemorrhagic bleeding is a known manifestation of Type-IV Ehlers-Danlos Syndrome that is caused by loss-of-function mutations of the pro-alpha-1 chains of type III pro-collagen (COL3A1) resulting in vascular fragility. A number of previous reports describe futile surgical intervention for retroperitoneal bleeding in Type-IV Ehlers-Danlos Syndrome with high post-operative mortality, although the rarity of retroperitoneal bleeding associated with Type-IV Ehlers-Danlos Syndrome precludes an evidence-based approach to clinical management. We report a 23-year-old male with history of Type-IV Ehlers-Danlos Syndrome who presented with severe abdominal pain and tachycardia following an episode of vomiting. Further work-up of his abdominal pain revealed massive retroperitoneal bleeding by CT-scan of the abdomen. Given numerous cases of catastrophic injury caused by surgical intervention in Type-IV Ehlers-Danlos Syndrome, the patient was treated non-operatively, and the patient made a full recovery. This case suggests that even in cases of large retroperitoneal hemorrhages associated with Ehlers-Danlos Syndrome, it may not truly represent a surgical emergency. PMID:21966332

  1. Crack branching in cross-ply composites

    NASA Astrophysics Data System (ADS)

    La Saponara, Valeria

    2001-10-01

    The purpose of this research work is to examine the behavior of an interface crack in a cross-ply laminate which is subject to static and fatigue loading. The failure mechanism analyzed here is crack branching (or crack kinking or intra-layer crack): the delamination located between two different plies starts growing as an interface crack and then may branch into the less tough ply. The specimens were manufactured from different types of Glass/Epoxy and Graphite/Epoxy, by hand lay-up, vacuum bagging and cure in autoclave. Each specimen had a delamination starter. Static mixed mode tests and compressive fatigue tests were performed. Experiments showed the scale of the problem, one ply thickness, and some significant features, like contact in the branched crack. The amount of scatter in the experiments required use of statistics. Exploratory Data Analysis and a factorial design of experiments based on a 8 x 8 Hadamard matrix were used. Experiments and statistics show that there is a critical branching angle above which crack growth is greatly accelerated. This angle seems: (1) not to be affected by the specimens' life; (2) not to depend on the specimen geometry and loading conditions; (3) to strongly depend on the amount of contact in the branched crack. Numerical analysis was conducted to predict crack propagation based on the actual displacement/load curves for static tests. This method allows us to predict the total crack propagation in 2D conditions, while neglecting branching. Finally, the existence of a solution based on analytic continuation is discussed.

  2. Self-repair of cracks in brittle material systems

    NASA Astrophysics Data System (ADS)

    Dry, Carolyn M.

    2016-04-01

    One of the most effective uses for self repair is in material systems that crack because the cracks can allow the repair chemical to flow into the crack damage sites in all three dimensions. In order for the repair chemical to stay in the damage site and flow along to all the crack and repair there must be enough chemical to fill the entire crack. The repair chemical must be designed appropriately for the particular crack size and total volume of cracks. In each of the three examples of self repair in crackable brittle systems, the viscosity and chemical makeup and volume of the repair chemicals used is different for each system. Further the chemical delivery system has to be designed for each application also. Test results from self repair of three brittle systems are discussed. In "Self Repair of Concrete Bridges and Infrastructure" two chemicals were used due to different placements in bridges to repair different types of cracks- surface shrinkage and shear cracks, In "Airplane Wings and Fuselage, in Graphite" the composite has very different properties than the concrete bridges. In the graphite for airplane components the chemical also had to survive the high processing temperatures. In this composite the cracks were so definite and deep and thin that the repair chemical could flow easily and repair in all layers of the composite. In "Ceramic/Composite Demonstrating Self Repair" the self repair system not only repaired the broken ceramic but also rebounded the composite to the ceramic layer

  3. The deformation of the front of a 3D interface crack propagating quasistatically in a medium with random fracture properties

    NASA Astrophysics Data System (ADS)

    Pindra, Nadjime; Lazarus, Véronique; Leblond, Jean-Baptiste

    One studies the evolution in time of the deformation of the front of a semi-infinite 3D interface crack propagating quasistatically in an infinite heterogeneous elastic body. The fracture properties are assumed to be lower on the interface than in the materials so that crack propagation is channelled along the interface, and to vary randomly within the crack plane. The work is based on earlier formulae which provide the first-order change of the stress intensity factors along the front of a semi-infinite interface crack arising from some small but otherwise arbitrary in-plane perturbation of this front. The main object of study is the long-time behavior of various statistical measures of the deformation of the crack front. Special attention is paid to the influences of the mismatch of elastic properties, the type of propagation law (fatigue or brittle fracture) and the stable or unstable character of 2D crack propagation (depending on the loading) upon the development of this deformation.

  4. Creep Behavior and Durability of Cracked CMC

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Fox, Dennis; Smith, Craig

    2015-01-01

    To understand failure mechanisms and durability of cracked Ceramic matrix composites (CMCs), Melt Infiltration (MI) SiCSiC composites with Sylramic-iBN fibers and full Chemical vapour infiltration SiCSiC composites with Sylramic-ion bombarded BN (iBN) and Hi-Nicalon -S fibers were pre-cracked between 150 to 200 megapascal and then creep and Sustained Peak Low Cycle Fatigue (SPLCF) tested at 13150 C at stress levels from 35 to 103 megapascal for up to 200 hours under furnace and burner rig conditions. In addition creep testing was also conducted on pre-cracked full Chemical vapour infiltration SiCSiC composites at 14500 C between 35 and 103 megapascal for up to 200 hours under furnace conditions. If the specimens survived the 200 hour durability tests, then they were tensile tested at room temperature to determine their residual tensile properties. The failed specimens were examined by Scanning electron microscope (SEM) to determine the failure modes and mechanisms. The influence of crack healing matrix, fiber types, crack density, testing modes and interface oxidation on durability of cracked Ceramic matrix composites (CMCs) will be discussed.

  5. Application of in situ thermography for evaluating the high-cycle and very high-cycle fatigue behaviour of cast aluminium alloy AlSi7Mg (T6).

    PubMed

    Krewerth, D; Weidner, A; Biermann, H

    2013-12-01

    The present paper illustrates the application of infrared thermal measurements for the investigation of crack initiation point and crack propagation in the high-cycle and the very high-cycle fatigue range of cast AlSi7Mg alloy (A356). The influence of casting defects, their location, size and amount was studied both by fractography and thermography. Besides internal and surface fatigue crack initiation as a further crack initiation type multiple fatigue crack initiation was observed via in situ thermography which can be well correlated with the results from fractography obtained by SEM investigations. In addition, crack propagation was studied by the development of the temperature measured via thermography. Moreover, the frequency influence on high-cycle fatigue behaviour was investigated. The presented results demonstrate well that the combination of fractography and thermography can give a significant contribution to the knowledge of crack initiation and propagation in the VHCF regime. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Detection, discrimination, and real-time tracking of cracks in rotating disks

    NASA Astrophysics Data System (ADS)

    Haase, Wayne C.; Drumm, Michael J.

    2002-06-01

    The purpose of this effort was to develop a system* to detect, discriminate and track fatigue cracks in rotating disks. Aimed primarily at jet engines in flight applications, the system also has value for detecting cracks in a spin pit during low cycle fatigue testing, and for monitoring the health of steam turbines and land-based gas turbine engines for maintenance purposes. The results of this effort produced: a physics-based model that describes the change in the center of mass of a rotating disk using damping ratio, initial unbalance and crack size as parameters; the development of a data acquisition and analysis system that can detect and discriminate a crack using a single cycle of data; and initial validation of the model through testing in a spin pit. The development of the physics-based model also pointed to the most likely regimes for crack detection; identified specific powers of (omega) search for in specific regimes; dictated a particular type of data acquisition for crack discrimination; and demonstrated a need for a higher signal-to-noise ratio in the measurement of the basic vibration signal.

  7. Test using expansive cement in cement stabilized base to eliminate or prevent cracking : experimental projects.

    DOT National Transportation Integrated Search

    1975-08-01

    The purpose of this study was to determine the feasibility of using an : expansive cement, TXI 4C Chem Comp, in lieu of the regular Type I Portland : Cement in a cement stabilized gravel screenings base so as to eliminate : or reduce cracks associate...

  8. Damage assessment, characterization, and modeling for enhanced design of concrete bridge decks in cold regions : [project brief].

    DOT National Transportation Integrated Search

    2015-07-01

    Freeze-thaw and fatigue-type loading processes degrade concrete materials and reduce the load carrying capacity of concrete decks. Damage to concrete decks is caused by the formation of cracks and micro-cracks during fatigue and freeze-thaw cycles. T...

  9. SCC analysis of Alloy 600 tubes from a retired steam generator

    NASA Astrophysics Data System (ADS)

    Hwang, Seong Sik; Kim, Hong Pyo

    2013-09-01

    Steam generators (SG) equipped with Alloy 600 tubes of a Korean nuclear power plants were replaced with a new one having Alloy 690 tubes in 1998 after 20 years of operation. To set up a guide line for an examination of the other SG tubes, a metallographic examination of the defected tubes was carried out. A destructive analysis on 71 tubes was addressed, and a relation among the stress corrosion crack (SCC) defect location, defect depth, and location of the sludge pile was obtained. Tubes extracted from the retired SG were transferred to a hot laboratory. Detailed nondestructive analysis examinations were taken again at the laboratory, and the tubes were then destructively examined. The types and sizes of the cracks were characterized. The location and depth of the SCC were evaluated in terms of the location and height of the sludge. Most axial cracks were in the sludge pile, whereas the circumferential ones were around the top of the tube sheet (TTS) or below the TTS. Average defect depth of the axial cracks was deeper than that of the circumferential ones. Axial cracks at tube support plate (TSP) seem to be related with corrosion/sludge in crevice like at the TTS region. Circumferential cracks at TSP seem to be caused by tube denting at the upper part of the TSP. Tubes not having clear ECT signals for quantifying an ECT data-base. Tubes having no ECT signal. Tubes with a large ECT signal. Tubes with various types and sizes of flaws (primary water stress corrosion cracking (PWSCC), outside diameter stress corrosion cracking (ODSCC), Pit). Tubes with distinct PWSCC or ODSCC. Tubes were extracted from the RSG based on the field ECT with the criteria, and transferred to a hot laboratory at the Korea Atomic Energy Research Institute (KAERI) for destructive examination. A comprehensive ECT inspection was performed again at the hot laboratory to confirm the location of the cracks obtained from a field inspection. These exact locations of the defects were marked on the tube specimens for subsequent destructive examinations.Metallography on a tube section was examined by standard metallographic techniques. The mounted specimens were ground and polished. For a chemical activation of the polished surface, the samples were soaked in hydrochloric acid for 20 s then followed by cleaning in methanol. Chemical etching in a bromine etchant (98% Methanol + 2% Bromine) was applied for 3 to 4 s in an ultrasound cleaner.Destructive examinations were carried out using the procedures in accordance with the Electric Power Research Institute (EPRI) tube examination guidelines [2]. The types of defects were characterized and their sizes were measured using a high magnification contact camera and a scanning electron microscope (SEM). The surface deposit compositions on the outer diameter of the tubes were also analyzed using energy dispersive X-ray spectroscopy (EDS). The relation among the SCC defect location, defect depth, and sludge height was explored. Denting, pitting, PWSCC and ODSCC were observed on the RSG tubes as time went on. The analyzed Alloy 600 tube showed a typical LTMA microstructure, and the severe SCC of the RSG was attributed to the microstructure and slightly alkaline crevice environment in some respects. Most axial cracks were observed inside the sludge pile up region, which suggests that sludge may have a role in accelerating the growth of the axial cracks. No correlation was seen in the circumferential cracks and sludge pile, and dents in the tube sheet and phosphate chemistry might cause OD circumferential cracks at the TTS region. The average depth of the axial cracks was higher than that of the circumferential cracks. Axial ID cracks 4 mm long or over at the TTS showed 90%-100% tube wall penetration. On the contrary, the length of the axial OD cracks was not closely related with the depth OD axial cracks around the TSP appeared to be much shallower than those of the TTS region. This implies that the same length of TSP region cracks may have higher structural safety than that of cracks of the TTS region.

  10. Numerical simulation on residual stress in Y-slit type cracking test of Q690E

    NASA Astrophysics Data System (ADS)

    Huang, Wenjian; Lin, Guozhen; Chen, Zhanglan; Chen, Wu

    2018-03-01

    Numerical simulation on residual stress in Y-slit type cracking test of Q690E is carried out by using ANSYS. First, the dynamic distribution of welding temperature field is calculated; second, the results of the temperature field are converted into corresponding stress by the method of indirect coupling. The testing results show that the longitudinal residual stress of the weld is greater than the transverse residual stress and the peak of transverse residual stress is on the weld groove.

  11. Hydrogen-induced slow crack growth of a plain carbon pipeline steel under conditions of cyclic loading

    NASA Technical Reports Server (NTRS)

    Nelson, H. G.

    1976-01-01

    The investigation described was aimed at establishing the degree of compatibility between a plain carbon pipeline-type steel and hydrogen and also hydrogen-rich environments containing small additions of H2S, O2, H2O, CO, CO2, CH4, and natural gas at pressures near 1 atm. Test were carried out under conditions of static and cyclic loading; the subcritical crack growth was monitored. The rates of crack growth observed in the hydrogen and hydrogen-rich environments are compared with the crack rate observed in a natural gas environment to determine the compatibility of the present natural gas transmission system with gaseous hydrogen transport.

  12. Study of Near-Threshold Fatigue Crack Propagation in Pipeline Steels in High Pressure Environments

    NASA Technical Reports Server (NTRS)

    Mitchell, M.

    1981-01-01

    Near threshold fatigue crack propagation in pipeline steels in high pressure environments was studied. The objective was to determine the level of threshold stress intensity for fatigue crack growth rate behavior in a high strength low alloy X60 pipeline-type steel. Complete results have been generated for gaseous hydrogen at ambient pressure, laboratory air at ambient pressure and approximately 60% relative humidity as well as vacuum of 0.000067 Pa ( 0.0000005 torr) at R-ratios = K(min)/K(max) of 0.1, 0.5, and 0.8. Fatigue crack growth rate behavior in gaseous hydrogen, methane, and methane plus 10 percent hydrogen at 6.89 MPa (100 psi) was determined.

  13. Simulation-Aided Design of Tubular Polymeric Capsules for Self-Healing Concrete.

    PubMed

    Šavija, Branko; Feiteira, João; Araújo, Maria; Chatrabhuti, Sutima; Raquez, Jean-Marie; Van Tittelboom, Kim; Gruyaert, Elke; De Belie, Nele; Schlangen, Erik

    2016-12-24

    Polymeric capsules can have an advantage over glass capsules used up to now as proof-of-concept carriers in self-healing concrete. They allow easier processing and afford the possibility to fine tune their mechanical properties. Out of the multiple requirements for capsules used in this context, the capability of rupturing when crossed by a crack in concrete of a typical size is one of the most relevant, as without it no healing agent is released into the crack. This study assessed the fitness of five types of polymeric capsules to fulfill this requirement by using a numerical model to screen the best performing ones and verifying their fitness with experimental methods. Capsules made of a specific type of poly(methyl methacrylate) (PMMA) were considered fit for the intended application, rupturing at average crack sizes of 69 and 128 μm, respectively for a wall thickness of ~0.3 and ~0.7 mm. Thicker walls were considered unfit, as they ruptured for crack sizes much higher than 100 μm. Other types of PMMA used and polylactic acid were equally unfit for the same reason. There was overall good fitting between model output and experimental results and an elongation at break of 1.5% is recommended regarding polymers for this application.

  14. Simulation-Aided Design of Tubular Polymeric Capsules for Self-Healing Concrete

    PubMed Central

    Šavija, Branko; Feiteira, João; Araújo, Maria; Chatrabhuti, Sutima; Raquez, Jean-Marie; Van Tittelboom, Kim; Gruyaert, Elke; De Belie, Nele; Schlangen, Erik

    2016-01-01

    Polymeric capsules can have an advantage over glass capsules used up to now as proof-of-concept carriers in self-healing concrete. They allow easier processing and afford the possibility to fine tune their mechanical properties. Out of the multiple requirements for capsules used in this context, the capability of rupturing when crossed by a crack in concrete of a typical size is one of the most relevant, as without it no healing agent is released into the crack. This study assessed the fitness of five types of polymeric capsules to fulfill this requirement by using a numerical model to screen the best performing ones and verifying their fitness with experimental methods. Capsules made of a specific type of poly(methyl methacrylate) (PMMA) were considered fit for the intended application, rupturing at average crack sizes of 69 and 128 μm, respectively for a wall thickness of ~0.3 and ~0.7 mm. Thicker walls were considered unfit, as they ruptured for crack sizes much higher than 100 μm. Other types of PMMA used and polylactic acid were equally unfit for the same reason. There was overall good fitting between model output and experimental results and an elongation at break of 1.5% is recommended regarding polymers for this application. PMID:28772370

  15. Acoustic emission analysis of crack resistance and fracture behavior of 20GL steel having the gradient microstructure and strength

    NASA Astrophysics Data System (ADS)

    Nikulin, S.; Nikitin, A.; Belov, V.; Rozhnov, A.; Turilina, V.; Anikeenko, V.; Khatkevich, V.

    2017-07-01

    The crack resistances as well as fracture behavior of 20GL steel quenched with a fast-moving water stream and having gradient microstructure and strength are analyzed. Crack resistance tests with quenched and normalized flat rectangular specimens having different cut lengths loaded by three-point bending with acoustic emission measurements have been performed. The critical J-integral has been used as the crack resistance parameter of the material. Quenching with a fast moving water stream leads to gradient (along a specimen wall thickness) strengthening of steel due to highly refined gradient microstructure formation of the troostomartensite type. Quenching with a fast-moving water stream increases crack resistance Jc , of 20GL steel by a factor of ∼ 1.5. The fracture accrues gradually with the load in the normalized specimens while the initiated crack is hindered in the variable ductility layer and further arrested in the more ductile core in the quenched specimens.

  16. Ductile Crack Initiation Criterion with Mismatched Weld Joints Under Dynamic Loading Conditions.

    PubMed

    An, Gyubaek; Jeong, Se-Min; Park, Jeongung

    2018-03-01

    Brittle failure of high toughness steel structures tends to occur after ductile crack initiation/propagation. Damages to steel structures were reported in the Hanshin Great Earthquake. Several brittle failures were observed in beam-to-column connection zones with geometrical discontinuity. It is widely known that triaxial stresses accelerate the ductile fracture of steels. The study examined the effects of geometrical heterogeneity and strength mismatches (both of which elevate plastic constraints due to heterogeneous plastic straining) and loading rate on critical conditions initiating ductile fracture. This involved applying the two-parameter criterion (involving equivalent plastic strain and stress triaxiality) to estimate ductile cracking for strength mismatched specimens under static and dynamic tensile loading conditions. Ductile crack initiation testing was conducted under static and dynamic loading conditions using circumferentially notched specimens (Charpy type) with/without strength mismatches. The results indicated that the condition for ductile crack initiation using the two parameter criterion was a transferable criterion to evaluate ductile crack initiation independent of the existence of strength mismatches and loading rates.

  17. Active Brazilian crack cocaine users: nutritional, anthropometric, and drug use profiles.

    PubMed

    Escobar, Mariana; Scherer, Juliana N; Soares, Cassia M; Guimarães, Luciano S P; Hagen, Martine E; von Diemen, Lisia; Pechansky, Flavio

    2018-02-15

    To evaluate the nutritional status of crack users and to analyze its correlation with drug use profiles. Cross-sectional study with 108 crack users. Anthropometric data were assessed through body mass index (BMI) and bioimpedance (BIA) measurements. A blood test to analyze hematocrit, hemoglobin, glucose, and lipid profiles was also performed. Crack use was determined through a standardized interview. Based on BMI and BIA, most individuals were eutrophic (about 70%). Regarding hematological parameters, we found that hemoglobin and hematocrit levels were below normal for 32.4 and 30.6% of patients, respectively. Considering normal parameters, a large part of the sample (60.2%) had low levels of HDL cholesterol and high levels of triglycerides (38%). There were no significant correlations between drug profile and nutritional variables. This is a pioneering study that examines the nutritional status of crack users. Our results showed that most crack users present normal anthropometric findings and the prevalence of underweight is low. However, blood analysis showed changes and a specific type of malnutrition.

  18. Testing and analysis of flat and curved panels with multiple cracks

    NASA Technical Reports Server (NTRS)

    Broek, David; Jeong, David Y.; Thomson, Douglas

    1994-01-01

    An experimental and analytical investigation of multiple cracking in various types of test specimens is described in this paper. The testing phase is comprised of a flat unstiffened panel series and curved stiffened and unstiffened panel series. The test specimens contained various configurations for initial damage. Static loading was applied to these specimens until ultimate failure, while loads and crack propagation were recorded. This data provides the basis for developing and validating methodologies for predicting linkup of multiple cracks, progression to failure, and overall residual strength. The results from twelve flat coupon and ten full scale curved panel tests are presented. In addition, an engineering analysis procedure was developed to predict multiple crack linkup. Reasonable agreement was found between predictions and actual test results for linkup and residual strength for both flat and curved panels. The results indicate that an engineering analysis approach has the potential to quantitatively assess the effect of multiple cracks in the arrest capability of an aircraft fuselage structure.

  19. Application of chaotic attractor analysis in crack assessment of plates

    NASA Astrophysics Data System (ADS)

    Jalili, Sina; Daneshmehr, A. R.

    2018-03-01

    Part-through crack presence with limited length is one of the prevalent defects in plate structures. However, this type of damage has only a slight effect on the dynamic response of the structures. In this paper the modified line spring method (MLSM) is used to develop a nonlinear multi-degree of freedom model of part through cracked rectangular plate and chaotic interrogation is implemented to assess crack-induced degradation in the nonlinear model. After a convergence study of the proposed model in time series domain in which the plate subjected to Lorenz-type chaotic excitation, the tuning of interrogation is conducted by crossing the Lyapunov exponents' spectrums of the nonlinear model of the plate and chaotic signal. In this research nonlinear prediction error (NPE) is proposed as a damage sensitive feature which deals with the chaotic attractor of the excited system response. It is found that there are ranges of tuning parameter that result in higher damage sensitivity of the NPE. Damage characteristics such as: length, angle, location and depth of crack are considered as parameters to be varied to scrutinize the response of the plates. Results show that NPE generally has significantly higher sensitivity in comparison with conventional frequency-based methods; however this property has different levels for various boundary conditions.

  20. Consensus in controversy: The modified Delphi method applied to Gynecologic Oncology practice.

    PubMed

    Cohn, David E; Havrilesky, Laura J; Osann, Kathryn; Lipscomb, Joseph; Hsieh, Susie; Walker, Joan L; Wright, Alexi A; Alvarez, Ronald D; Karlan, Beth Y; Bristow, Robert E; DiSilvestro, Paul A; Wakabayashi, Mark T; Morgan, Robert; Mukamel, Dana B; Wenzel, Lari

    2015-09-01

    To determine the degree of consensus regarding the probabilities of outcomes associated with IP/IV and IV chemotherapy. A survey was administered to an expert panel using the Delphi method. Ten ovarian cancer experts were asked to estimate outcomes for patients receiving IP/IV or IV chemotherapy. The clinical estimates were: 1) probability of completing six cycles of chemotherapy, 2) probability of surviving five years, 3) median survival, and 4) probability of ER/hospital visits during treatment. Estimates for two patients, one with a low comorbidity index (patient 1) and the other with a moderate index (patient 2), were included. The survey was administered in three rounds, and panelists could revise their subsequent responses based on review of the anonymous opinions of their peers. The ranges were smaller for IV compared with IP/IV therapy. Ranges decreased with each round. Consensus converged around outcomes related to IP/IV chemotherapy for: 1) completion of 6 cycles of therapy (type 1 patient, 62%, type 2 patient, 43%); 2) percentage of patients surviving 5 years (type 1 patient, 66%, type 2 patient, 47%); and 3) median survival (type 1 patient, 83 months, type 2 patient, 58 months). The group required three rounds to achieve consensus on the probabilities of ER/hospital visits (type 1 patient, 24%, type 2 patient, 35%). Initial estimates of survival and adverse events associated with IP/IV chemotherapy differ among experts. The Delphi process works to build consensus and may be a pragmatic tool to inform patients of their expected outcomes. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Change in genotype of methicillin-resistant Staphylococcus aureus (MRSA) affects the antibiogram of hospital-acquired MRSA.

    PubMed

    Harada, Dai; Nakaminami, Hidemasa; Miyajima, Eri; Sugiyama, Taku; Sasai, Nao; Kitamura, Yoshinobu; Tamura, Taku; Kawakubo, Takashi; Noguchi, Norihisa

    2018-07-01

    Recently, the dissemination of community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) into hospitals has frequently been reported worldwide. Hospital-acquired MRSA (HA-MRSA) strains exhibit high-level resistance to multiple antimicrobial agents, whereas CA-MRSA strains are usually susceptible to non-β-lactams. Thus, it is predicted that the antibiogram of the HA-MRSA population would change along with the change in genotype of MRSA. Here, we investigated the changes in the MRSA population along with the MRSA antibiogram in a hospital between 2010 and 2016. Staphylococcal cassette chromosome (SCC) mec typing showed that the predominant HA-MRSA strains in the hospital dramatically changed from SCCmec type II, which is the major type of HA-MRSA, to SCCmec type IV, which is the major type of CA-MRSA. Multilocus sequence typing revealed that the predominant SCCmec type IV strain was a clonal complex (CC) 8 clone, which is mainly found among CA-MRSA. Furthermore, the CC1-SCCmec type IV (CC1-IV) clone significantly increased. Both the CC8-IV and CC1-IV clones exhibited high antimicrobial susceptibility. The antibiogram change of the HA-MRSA population was consistent with the antimicrobial susceptibilities and increased prevalence of the CC8-IV and CC1-IV clones. Our data reveal that the change in the genotypes of MRSA strains could impact the antibiogram of HA-MRSA population. Copyright © 2018 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  2. Final Report on Initial Samples Supplied by LLNL for Task 3.3 Binder Burnout and Sintering Schedule Optimisation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walls, P

    Sixteen of the twenty-one samples have been investigated using the scanning laser dilatometer. This includes all three types of samples with different preparation routes and organic content. Cracks were observed in all samples, even those only heated to 300 C. It was concluded that the cracking was occurring in the early part of the heat treatment before the samples reached 300 C. Increase in the rate of dilation of the samples occurred above 170 C which coincided with the decomposition of the binder/wax additives as determined by differential thermal analysis. A comparison was made with SYNROC C material (Powder Runmore » 143), samples of which had been CIPed and green machined to a similar diameter and thickness as the 089mm SRTC pucks. These samples contained neither binder nor other organic processing aids and had been kept in the same desiccator as the SRTC samples. The CIPed Synroc C samples sintered to high density with zero cracks. As the cracks made up only a small contribution to the change in diameter of the sample compared to the sintering shrinkage, useful information could still be gained from the runs. The sintering curves showed that there was much greater shrinkage of the Type III samples containing only the 5% PEG binder compared to the Type I which contained polyolefin wax as processing aid. Slight changes in gradient of the sintering curve were observed, however, due to the masking effect of the cracking, full analysis of the sintering kinetics cannot be conducted. Even heating the samples to 300 C at 1.0 or 0.5 C/min could not prevent crack formation. This indicated that heating rate was not the critical parameter causing cracking of the samples. Sectioning of green bodies revealed the inhomogeneous nature of the binder/lubricant distribution in the samples. Increased homogeneity would reduce the amount of binder/lubricant required, which should in turn, reduce the degree of cracking observed during heating to the binder burnout temperature. A combination of: (1) use of a higher forming pressure, (2) reduction of organics content, (3) improvement in the distribution of the organic wax and binder components throughout the green body, could possibly alleviate cracking. Ultrasonic emulsification of the binder and wax with a small quantity of water prior to adding to the ball or attrition mill is advised to ensure more even distribution of the wax/binder system. This would also reduce the proportion of organic additives required. The binder burnout stage of the operation must first be optimized (i.e. production of pucks with no cracks) prior to optimization of the sintering stage.« less

  3. Differential expression of basement membrane type IV collagen α2 and α6 chains as a prognostic factor in patients with extrahepatic bile duct carcinoma.

    PubMed

    Hirashima, Kotaro; Iyama, Ken-Ichi; Baba, Yoshifumi; Honda, Yumi; Sado, Yoshikazu; Ninomiya, Yoshifumi; Watanabe, Masayuki; Takamori, Hiroshi; Beppu, Toru; Baba, Hideo

    2013-03-01

    The destruction of the basement membrane (BM) is the first step in cancer invasion and metastasis. Type IV collagen is a major component of the BM, and is composed of six genetically distinct α(IV) chains; α1(IV) to α6(IV). The loss of α5(IV) and α6(IV) chains from the epithelial BM at the early stage of cancer invasion has been reported in several types of cancers. However, the expression of α5(IV) and α6(IV) chains in extrahepatic bile duct carcinoma (EBDC) remains unclear. We examined the expression of α(IV) chains by immunohistochemistry using 71 resected EBDC specimens. Prognostic significance of α(IV) chains was examined by Cox regression and Kaplan-Meier analyses. In the invasive cancer, the expression of α6(IV) chain in the BM was lost partially or completely preceded by the loss of α2(IV) chain. The loss of α6(IV) chain in the BM of the invasive cancer was related to the tumor classification, TNM stages, and the expression of α2(IV) chain. The patients with α2(IV)-negative and α6(IV)-negative chains had significantly poorer prognosis than those with α2(IV)-positive and α6(IV)-positive/negative chains (P = 0.04). The loss of α2(IV) and α6(IV) chains might be a useful prognostic factor in patients with EBDC. Copyright © 2012 Wiley Periodicals, Inc.

  4. The role of Shewanella oneidensis MR-1 outer surface structures in extracellular electron transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouhenni, Rachida; Vora, Gary J.; Biffinger, Justin C.

    2010-04-20

    Shewanella oneidensis is a facultative anaerobe that uses more than 14 different terminal electron acceptors for respiration. These include metal oxides and hydroxyoxides, and toxic metals such as uranium and chromium. Mutants deficient in metal reduction were isolated using the mariner transposon derivative, minihimar RB1. These included mutants with transposon insertions in the prepilin peptidase and type II secretion system genes. All mutants were deficient in Fe(III) and Mn(IV) reduction, and exhibited slow growth when DMSO was used as the electron acceptor. The genome sequence of S. oneidensis contains one prepilin peptidase gene, pilD. A similar prepilin peptidase that maymore » function in the processing of type II secretion prepilins was not found. Single and multiple chromosomal deletions of four putative type IV pilin genes did not affect Fe(III) and Mn(IV) reduction. These results indicate that PilD in S. oneidensis is responsible for processing both type IV and type II secretion prepilin proteins. Type IV pili do not appear to be required for Fe(III) and Mn(IV) reduction.« less

  5. Cracking and aromatization of C{sub 6}-C{sub 10} n-alkanes and n-alkenes on a zeolite-containing catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gairbekov, T.M.; Takaeva, M.I.; Khadzhiev, S.N.

    1992-05-10

    Despite the extensive studies on catalysis on zeolites, the question of the mechanism of the reactions of cracking and aromatization of hydrocarbons is still debated. The classic Whitmore theory hypothesizes that cracking of alkanes and alkenes takes place through the formation of the same intermediate trivalent carbenium ions of the (C{sub n}H{sub 2n+1}){sup +} type. Ola`s protolytic mechanism hypothesizes nonclassic five- (four-)coordinated ions of the (C{sub n}H{sub 2n+3}){sup +} type for cracking of alkanes and classic carbenium ions for alkenes. When the classic mechanism occurs on zeolites, an analogous effect on the rate of the reactions of alkanes and alkenesmore » with the molecular weight of the starting hydrocarbons and similar compositions of the products obtained should be predicted. The authors investigated the transformation of individual n-alkanes and n-1-alkenes of C{sub 6}-C{sub 10} composition in the presence of a catalyst synthesized by addition of 30 wt.% decationized ultrahigh-silicon zeolite of the ZSM type (Si/Al - 16) modified with 1 wt.% zinc on {gamma}-Al{sub 2}O{sub 3}. The experiment was conducted on a flow-type laboratory setup at 425{degrees}C in conditions of the minimum effect of diffusion factors with the method described in detail previously. 13 refs., 4 figs., 1 tab.« less

  6. Identification of Damaged Wheat Kernels and Cracked-Shell Hazelnuts with Impact Acoustics Time-Frequency Patterns

    USDA-ARS?s Scientific Manuscript database

    A new adaptive time-frequency (t-f) analysis and classification procedure is applied to impact acoustic signals for detecting hazelnuts with cracked shells and three types of damaged wheat kernels. Kernels were dropped onto a steel plate, and the resulting impact acoustic signals were recorded with ...

  7. 78 FR 57049 - Airworthiness Directives; the Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-17

    ... discrepancy other than cracking is found (e.g., corrosion) during any inspection required by paragraph (g) of... other than cracking is found (e.g., corrosion) during any inspection required by paragraph (h) of this... per hour = $255. nut type. According to the manufacturer, some of the costs of this AD may be covered...

  8. Effects of Coatings on the High-Cycle Fatigue Life of Threaded Steel Samples

    NASA Astrophysics Data System (ADS)

    Eder, M. A.; Haselbach, P. U.; Mishin, O. V.

    2018-05-01

    In this work, high-cycle fatigue is studied for threaded cylindrical high-strength steel samples coated using three different industrial processes: black oxidation, normal-temperature galvanization and high-temperature galvanization. The fatigue performance in air is compared with that of uncoated samples. Microstructural characterization revealed the abundant presence of small cracks in the zinc coating partially penetrating into the steel. This is consistent with the observation of multiple crack initiation sites along the thread in the galvanized samples, which led to crescent type fracture surfaces governed by circumferential growth. In contrast, the black oxidized and uncoated samples exhibited a semicircular segment type fracture surface governed by single-sided growth with a significantly longer fatigue life. Numerical fatigue life prediction based on an extended Paris-law formulation has been conducted on two different fracture cases: 2D axisymmetric multisided crack growth and 3D single-sided crack growth. The results of this upper-bound and lower-bound approach are in good agreement with experimental data and can potentially be used to predict the lifetime of bolted components.

  9. Numerical analysis of a main crack interactions with micro-defects/inhomogeneities using two-scale generalized/extended finite element method

    NASA Astrophysics Data System (ADS)

    Malekan, Mohammad; Barros, Felício B.

    2017-12-01

    Generalized or extended finite element method (G/XFEM) models the crack by enriching functions of partition of unity type with discontinuous functions that represent well the physical behavior of the problem. However, this enrichment functions are not available for all problem types. Thus, one can use numerically-built (global-local) enrichment functions to have a better approximate procedure. This paper investigates the effects of micro-defects/inhomogeneities on a main crack behavior by modeling the micro-defects/inhomogeneities in the local problem using a two-scale G/XFEM. The global-local enrichment functions are influenced by the micro-defects/inhomogeneities from the local problem and thus change the approximate solution of the global problem with the main crack. This approach is presented in detail by solving three different linear elastic fracture mechanics problems for different cases: two plane stress and a Reissner-Mindlin plate problems. The numerical results obtained with the two-scale G/XFEM are compared with the reference solutions from the analytical, numerical solution using standard G/XFEM method and ABAQUS as well, and from the literature.

  10. Identification of breathing cracks in a beam structure with entropy

    NASA Astrophysics Data System (ADS)

    Wimarshana, Buddhi; Wu, Nan; Wu, Christine

    2016-04-01

    A cantilever beam with a breathing crack is studied to detect and evaluate the crack using entropy measures. Closed cracks in engineering structures lead to proportional complexities to their vibration responses due to weak bi-linearity imposed by the crack breathing phenomenon. Entropy is a measure of system complexity and has the potential in quantifying the complexity. The weak bi-linearity in vibration signals can be amplified using wavelet transformation to increase the sensitivity of the measurements. A mathematical model of harmonically excited unit length steel cantilever beam with a breathing crack located near the fixed end is established, and an iterative numerical method is applied to generate accurate time domain dynamic responses. The bi-linearity in time domain signals due to the crack breathing are amplified by wavelet transformation first, and then the complexities due to bi-linearity is quantified using sample entropy to detect the possible crack and estimate the crack depth. It is observed that the method is capable of identifying crack depths even at very early stages of 3% with the increase in the entropy values more than 10% compared with the healthy beam. The current study extends the entropy based damage detection of rotary machines to structural analysis and takes a step further in high-sensitivity structural health monitoring by combining wavelet transformation with entropy calculations. The proposed technique can also be applied to other types of structures, such as plates and shells.

  11. Essential core of the Hawking–Ellis types

    NASA Astrophysics Data System (ADS)

    Martín-Moruno, Prado; Visser, Matt

    2018-06-01

    The Hawking–Ellis (Segre–Plebański) classification of possible stress–energy tensors is an essential tool in analyzing the implications of the Einstein field equations in a more-or-less model-independent manner. In the current article the basic idea is to simplify the Hawking–Ellis type I, II, III, and IV classification by isolating the ‘essential core’ of the type II, type III, and type IV stress–energy tensors; this being done by subtracting (special cases of) type I to simplify the (Lorentz invariant) eigenvalue structure as much as possible without disturbing the eigenvector structure. We will denote these ‘simplified cores’ type II0, type III0, and type IV0. These ‘simplified cores’ have very nice and simple algebraic properties. Furthermore, types I and II0 have very simple classical interpretations, while type IV0 is known to arise semi-classically (in renormalized expectation values of standard stress–energy tensors). In contrast type III0 stands out in that it has neither a simple classical interpretation, nor even a simple semi-classical interpretation. We will also consider the robustness of this classification considering the stability of the different Hawking–Ellis types under perturbations. We argue that types II and III are definitively unstable, whereas types I and IV are stable.

  12. Association between oral mucosal lesions and crack and cocaine addiction in men: a cross-sectional study.

    PubMed

    Cury, Patricia Ramos; Araujo, Nara Santos; das Graças Alonso Oliveira, Maria; Dos Santos, Jean Nunes

    2018-05-08

    The aim of this cross-sectional study was to evaluate the prevalence of oral mucosal lesions (OMLs) and their association with crack/cocaine addiction in men. Clinical oral examination was performed in 161 adult male patients at the School of Dentistry of the Federal University of Bahia, Brazil. Crack/cocaine addiction was determined from the medical records, and all drug-addicted individuals used both crack and cocaine. All participants (40 crack/cocaine-addicted men and 121 non-addicted men) underwent a systematic evaluation of the lips, labial mucosa, commissures, buccal mucosa and sulcus, gingiva and alveolar ridge, tongue, floor of the mouth, and soft and hard palate by a single examiner. Bivariate and regression analyses were conducted to assess for the presence of OMLs and the association of OMLs with crack/cocaine addiction. OMLs were found in 22 participants with a significantly greater prevalence in the crack/cocaine-addicted group (25 vs. 9.9%; p = 0.01). The most prevalent types of lesions in the addicted group were traumatic ulcer and actinic cheilitis (7.5% for each) followed by fistulae associated with a retained dental root (5%). After adjusting for covariates, crack/cocaine addiction was significantly associated with OMLs (OR = 2.87; 95% CI = 1.08-7.67; p = 0.03). The prevalence of OMLs was higher in crack/cocaine-addicted individuals, and crack/cocaine addiction was significantly associated with OMLs. A public health program aimed at the early diagnosis and treatment of OMLs is vital to improving the oral health status of individuals addicted to crack/cocaine.

  13. Acoustic Emission Behavior of Early Age Concrete Monitored by Embedded Sensors.

    PubMed

    Qin, Lei; Ren, Hong-Wei; Dong, Bi-Qin; Xing, Feng

    2014-10-02

    Acoustic emission (AE) is capable of monitoring the cracking activities inside materials. In this study, embedded sensors were employed to monitor the AE behavior of early age concrete. Type 1-3 cement-based piezoelectric composites, which had lower mechanical quality factor and acoustic impedance, were fabricated and used to make sensors. Sensors made of the composites illustrated broadband frequency response. In a laboratory, the cracking of early age concrete was monitored to recognize different hydration stages. The sensors were also embedded in a mass concrete foundation to localize the temperature gradient cracks.

  14. Mode I analysis of a cracked circular disk subject to a couple and a force

    NASA Technical Reports Server (NTRS)

    Gross, B.

    1978-01-01

    Mode I stress intensity coefficients were obtained for an edge-cracked disk (round compact specimen). Results for this plane elastostatic problem, obtained by a boundary collocation analysis are presented for A/D ratios of 0.35 to 1, where A is the crack length and D is the disk diameter. The results presented are for two complementary types of loading. By superposition of these results the stress intensity factor for any practical load line location of a pin-loaded round compact specimen can be obtained.

  15. New Surface-Treatment Technique of Concrete Structures Using Crack Repair Stick with Healing Ingredients

    PubMed Central

    Ahn, Tae-Ho; Kim, Hong-gi; Ryou, Jae-Suk

    2016-01-01

    This study focused on the development of a crack repair stick as a new repair method along with self-healing materials that can be used to easily repair the cracks in a concrete structure at the construction site. In developing this new repair technique, the self-healing efficiency of various cementitious materials was considered. Likewise, a crack repair stick was developed to apply to concrete structures with 0.3 mm or lower crack widths. The crack repair stick was made with different materials, such as cement, an expansive material (C12A7), a swelling material, and calcium carbonate, to endow it with a self-healing property. To verify the performance of the crack repair stick for concrete structures, two types of procedures (field experiment and field absorption test) were carried out. As a result of such procedures, it was concluded that the developed crack repair stick could be used on concrete structures to reduce repair expenses and for the improved workability, usability, and serviceability of such structures. On the other hand, to evaluate the self-healing performance of the crack repair stick, various tests were conducted, such as the relative dynamic modulus of elasticity test, the water tightness test, the water permeability test, observation via a microscope, and scanning electron microscope (SEM) analysis. From the results, it is found that water leakage can be prevented and that the durability of a concrete structure can be improved through self-healing. Also, it was verified that the cracks were perfectly closed after 28 days due to application of the crack repair stick. These results indicate the usability of the crack repair stick for concrete structures, and its self-healing efficiency. PMID:28773776

  16. The crack problem in a reinforced cylindrical shell

    NASA Technical Reports Server (NTRS)

    Yahsi, O. S.; Erdogan, F.

    1986-01-01

    In this paper a partially reinforced cylinder containing an axial through crack is considered. The reinforcement is assumed to be fully bonded to the main cylinder. The composite cylinder is thus modelled by a nonhomogeneous shell having a step change in the elastic properties at the z=0 plane, z being the axial coordinate. Using a Reissner type transverse shear theory the problem is reduced to a pair of singular integral equations. In the special case of a crack tip touching the bimaterial interface it is shown that the dominant parts of the kernels of the integral equations associated with both membrane loading and bending of the shell reduce to the generalized Cauchy kernel obtained for the corresponding plane stress case. The integral equations are solved and the stress intensity factors are given for various crack and shell dimensions. A bonded fiberglass reinforcement which may serve as a crack arrestor is used as an example.

  17. The crack problem in a reinforced cylindrical shell

    NASA Technical Reports Server (NTRS)

    Yahsi, O. S.; Erdogan, F.

    1986-01-01

    A partially reinforced cylinder containing an axial through crack is considered. The reinforcement is assumed to be fully bonded to the main cylinder. The composite cylinder is thus modelled by a nonhomogeneous shell having a step change in the elastic properties at the z = 0 plane, z being the axial coordinate. Using a Reissner type transverse shear theory the problem is reduced to a pair of singular integral equations. In the special case of a crack tip touching the bimaterial interface it is shown that the dominant parts of the kernels of the integral equations associated with both membrane loading and bending of the shell reduce to the generalized Cauchy kernel obtained for the corresponding plane stress case. The integral equations are solved and the stress intensity factors are given for various crack and shell dimensions. A bonded fiberglass reinforcement which may serve as a crack arrestor is used as an example.

  18. Absorption Voltages and Insulation Resistance in Ceramic Capacitors with Cracks

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2016-01-01

    Time dependence of absorption voltages (Vabs) in different types of low-voltage X5R and X7R ceramic capacitors was monitored for a maximum duration of hundred hours after polarization. To evaluate the effect of mechanical defects on Vabs, cracks in the dielectric were introduced either mechanically or by thermal shock. The maximum absorption voltage, time to roll-off, and the rate of voltage decrease are shown to depend on the crack-related leakage currents and insulation resistance in the parts. A simple model that is based on the Dow equivalent circuit for capacitors with absorption has been developed to assess the insulation resistance of capacitors. Standard measurements of the insulation resistance, contrary to the measurements based on Vabs, are not sensitive to the presence of mechanical defects and fail to reveal capacitors with cracks. Index Terms: Ceramic capacitor, insulation resistance, dielectric absorption, cracking.

  19. Methyl methacrylate as a healing agent for self-healing cementitious materials

    NASA Astrophysics Data System (ADS)

    Van Tittelboom, K.; Adesanya, K.; Dubruel, P.; Van Puyvelde, P.; De Belie, N.

    2011-12-01

    Different types of healing agents have already been tested on their efficiency for use in self-healing cementitious materials. Generally, commercial healing agents are used while their properties are adjusted for manual crack repair and not for autonomous crack healing. Consequently, the amount of regain in properties due to self-healing of cracks is limited. In this research, a methyl methacrylate (MMA)-based healing agent was developed specifically for use in self-healing cementitious materials. Various parameters were optimized including the viscosity, curing time, strength, etc. After the desired properties were obtained, the healing agent was encapsulated and screened for its self-healing efficiency. The decrease in water permeability due to autonomous crack healing using MMA as a healing agent was similar to the results obtained for manually healed cracks. First results seem promising: however, further research needs to be undertaken in order to obtain an optimal healing agent ready for use in practice.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preston, Daniel N; Peterson, Paul D; Kien - Yin, Lee

    Structural damage in energetic materials plays a significant role in the probability of nonshock initiation events. Damage may occur in the form of voids or cracks either within crystals or in binder-rich regions between crystals. These cracks affect whether hotspots generated by impact will quench or propagate under non-shock insult. For this study, we have separately engineered intracrystalline and inter-crystalline cracks in to the HMX-based PBX 9501. Intra-crystalline cracks were created by subjecting HMX to forward and reverse solid-to-solid phase transformations prior to formulation. Inter-crystalline cracks were induced by compressing formulated samples of PBX 9501 at an average strain ratemore » of 0.00285 S{sup -1}. Both sets of pre-damaged explosives were then impact tested using the LANL Type 12 Drop Weight-Impact Machine and their sensitivities compared to nondamaged PBX 9501. Results of these tests clearly show significant differences in sensitivity between damaged and non-damaged PBX 9501.« less

  1. Variations in enamel damage after debonding of two different bracket base designs: An in vitro study.

    PubMed

    Ahangar Atashi, Mohammad Hossein; Sadr Haghighi, Amir Hooman; Nastarin, Parastou; Ahangar Atashi, Sina

    2018-01-01

    Background. Bracket base design is a factor influencing shear bond strength. High shear bond strength leads to enamel crack formation during debonding. The aim of this study was to compare enamel damage variations, including the number and length of enamel cracks after debonding of two different base designs. Methods. Eighty-eight extracted human premolars were randomly divided into2 groups (n=44). The teeth in each group were bonded by two types of brackets with different base designs: 80-gauge mesh design versus anchor pylon design with pylons for adhesive retention. The number and length of enamel cracks before bonding and after debonding were evaluated under an optical stereomicroscope ×40 in both groups. Mann-Whitney U test was used to compare the number of cracks between the two groups. ANCOVA was used for comparison of crack lengths after and before debonding in each group and between the two groups. Results. There was a significant increase in enamel crack length and numbers in each group after debonding. There was no significant difference in enamel crack numbers after debonding between the two groups, whereas the length of enamel cracks was significantly greater in anchor pylon base design after debonding. Conclusion. Bracket bases with pylon design for adhesive retention caused more iatrogenic debonding damage to enamel surface.

  2. Observational properties of decameter type IV bursts

    NASA Astrophysics Data System (ADS)

    Melnik, Valentin; Brazhenko, Anatoly; Rucker, Helmut; Konovalenko, Alexander; Briand, Carine; Dorovskyy, Vladimir; Zarka, Philippe; Frantzusenko, Anatoly; Panchenko, Michael; Poedts, Stefan; Zaqarashvili, Teimuraz; Shergelashvili, Bidzina

    2013-04-01

    Oscillations of decameter type IV bursts were registered during observations of solar radio emission by UTR-2, URAN-2 and NDA in 2011-2012. Large majority of these bursts were accompanied by coronal mass ejections (CMEs), which were observed by SOHO and STEREO in the visible light. Only in some cases decameter type IV bursts were not associated with CMEs. The largest periods of oscillations P were some tens of minutes. There were some modes of long periods of oscillations simultaneously. Periods of oscillations in flux and in polarization profiles were close. Detailed properties of oscillations at different frequencies were analyzed on the example of two type IV bursts. One of them was observed on April 7, 2011 when a CME happened. Another one (August 1, 2011) was registered without any CME. The 7 April type IV burst had two periods in the frames 75-85 and 35-85 minutes. Interesting feature of these oscillations is decreasing periods with time. The observed decreasing rates dP/dt equaled 0.03-0.07. Concerning type IV burst observed on August 1, 2011 the period of its oscillations increases from 17 min. at 30 MHz to 44 min. at 10 MHz. Connection of type IV burst oscillations with oscillations of magnetic arches and CMEs at corresponding altitudes are discussed. The work is fulfilled in the frame of FP7 project "SOLSPANET".

  3. Endovascular repair of an iliac artery aneurysm in a patient with Ehlers-Danlos syndrome type IV.

    PubMed

    Tonnessen, Britt H; Sternbergh, W Charles; Mannava, Krishna; Money, Samuel R

    2007-01-01

    Ehlers-Danlos type IV (EDS-IV) is an inherited condition most notable for its associated vascular complications. Patients are prone to aneurysm formation, arterial dissection, and spontaneous vessel rupture. Intervention for the vascular pathology of EDS-IV carries high morbidity and mortality. We describe a case of a 57-year-old man with EDS-IV and an expanding iliac aneurysm who underwent successful endovascular repair with a stent-graft. Endovascular aneurysm repair is feasible and should be considered for patients with EDS-IV.

  4. Urinary type IV collagen is related to left ventricular diastolic function and brain natriuretic peptide in hypertensive patients with prediabetes.

    PubMed

    Iida, Masato; Yamamoto, Mitsuru; Ishiguro, Yuko S; Yamazaki, Masatoshi; Ueda, Norihiro; Honjo, Haruo; Kamiya, Kaichirou

    2014-01-01

    Urinary type IV collagen is an early biomarker of diabetic nephropathy. Concomitant prediabetes (the early stage of diabetes) was associated with left ventricular (LV) diastolic dysfunction and increased brain natriuretic peptide (BNP) in hypertensive patients. We hypothesized that urinary type IV collagen may be related to these cardiac dysfunctions. We studied hypertensive patients with early prediabetes (HbA1c <5.7% and fasting glucose >110, n=18), those with prediabetes (HbA1c 5.7-6.4, n=98), and those with diabetes (HbA1c>6.5 or on diabetes medications, n=92). The participants underwent echocardiography to assess left atrial volume/body surface area (BSA) and the ratio of early mitral flow velocity to mitral annular velocity (E/e'). Left ventricular diastolic dysfunction (LVDD) was defined if patients had E/e'≥15, or E/e'=9-14 accompanied by left atrial volume/BSA≥32ml/mm(2). Urinary samples were collected for type IV collagen and albumin, and blood samples were taken for BNP and HbA1c. Urinary type IV collagen and albumin increased in parallel with the deterioration of glycemic status. In hypertensive patients with prediabetes, subjects with LVDD had higher levels of BNP and urinary type IV collagen than those without LVDD. In contrast, in hypertensive patients with diabetes, subjects with LVDD had higher urinary albumin and BNP than those without LVDD. Urinary type IV collagen correlated positively with BNP in hypertensive patients with prediabetes, whereas it correlated with HbA1c in those with diabetes. In hypertensive patients with prediabetes, urinary type IV collagen was associated with LV diastolic dysfunction and BNP. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Creep crack growth by grain boundary cavitation under monotonic and cyclic loading

    NASA Astrophysics Data System (ADS)

    Wen, Jian-Feng; Srivastava, Ankit; Benzerga, Amine; Tu, Shan-Tung; Needleman, Alan

    2017-11-01

    Plane strain finite deformation finite element calculations of mode I crack growth under small scale creep conditions are carried out. Attention is confined to isothermal conditions and two time histories of the applied stress intensity factor: (i) a monononic increase to a plateau value subsequently held fixed; and (ii) a cyclic time variation. The crack growth calculations are based on a micromechanics constitutive relation that couples creep deformation and damage due to grain boundary cavitation. Grain boundary cavitation, with cavity growth due to both creep and diffusion, is taken as the sole failure mechanism contributing to crack growth. The influence on the crack growth rate of loading history parameters, such as the magnitude of the applied stress intensity factor, the ratio of the applied minimum to maximum stress intensity factors, the loading rate, the hold time and the cyclic loading frequency, are explored. The crack growth rate under cyclic loading conditions is found to be greater than under monotonic creep loading with the plateau applied stress intensity factor equal to its maximum value under cyclic loading conditions. Several features of the crack growth behavior observed in creep-fatigue tests naturally emerge, for example, a Paris law type relation is obtained for cyclic loading.

  6. A comparative study of percutaneous atherectomy for femoropopliteal arterial occlusive disease.

    PubMed

    Gu, Yongquan; Malas, Mahmoud B; Qi, Lixing; Guo, Lianrui; Guo, Jianming; Yu, Hengxi; Tong, Zhu; Gao, Xixiang; Zhang, Jian; Wang, Zhonggao

    2017-08-01

    SilverHawk™ directional atherectomy has been used to treat more than 300 thousand cases of lower extremity atherosclerotic occlusive disease in the world since it was approved by FDA in 2003. This study aimed to analyze the safety and effectiveness of symptomatic femoral popliteal atherosclerotic disease treated by directional atherectomy (DA). Clinical data of all consecutive patients treated with percutaneous atherectomy utilizing the SilverHawk™ plaque excision was retrospectively analyzed. The anatomic criteria of the atherosclerotic lesions were divided into four types: type I stenosis; type II occlusion; type III in-stent restenosis; type IV stent occlusion. There were 160 patients treated during the study period. Intermittent claudication in 75 patients (47%), rest pain in 55 patients (34.5%) and tissue loss in 30 patients (18.5%). The number of patients was 72, 15, 49 and 24 in type I, II, III and IV lesions, respectively. Technical success rate was 98.6%, 93.3%, 97.9% and 91.7% in type I, II, III and IV lesions, respectively. Debris of intimal plaque was captured by protection device in 92 patients (71.3%). The mean follow-up period was 23.5±10.4 months. Restenosis rate of type I to IV lesions was 21%, 36%, 36% and 40% respectively. Restenosis rate in type I lesion was significantly lower than that in type III and IV lesions (P<0.05). Patients with tissue loss responded to revascularization as follow: type I, 11/13 healed or reduced (84.6%), type II, 3/3 patients improved (100%), type III, 5/6 patients improved (83.3%) and type IV 4/4 healed (100%). In type IV group, four patients had in-stent thrombosis found by postoperative Duplex ultrasonography. They all underwent DA after catheter-directed thrombolysis with good angiographic results. Percutaneous DA is safe and effective for both de-novo atherosclerotic and in-stent stenotic or occlusive lesions. Thrombolysis before plaque excision is recommended in case of in-stenting thrombosis.

  7. Genetic ablation or pharmacological blockade of dipeptidyl peptidase IV does not impact T cell-dependent immune responses

    PubMed Central

    Vora, Kalpit A; Porter, Gene; Peng, Roche; Cui, Yan; Pryor, Kellyann; Eiermann, George; Zaller, Dennis M

    2009-01-01

    Background Current literature suggests that dipeptidyl peptidase IV (DPP-IV; CD26) plays an essential role in T-dependent immune responses, a role that could have important clinical consequences. To rigorously define the role of DPP-IV in the immune system, we evaluated genetic and pharmacological inhibition of the enzyme on T-dependent immune responses in vivo. Results The DPP-IV null animals mounted robust primary and secondary antibody responses to the T dependent antigens, 4-hydroxy-3-nitrophenylacetyl-ovalbumin (NP-Ova) and 4-hydroxy-3-nitrophenylacetyl-chicken gamma globulin (NP-CGG), which were comparable to wild type mice. Serum levels of antigen specific IgM, IgG1, IgG2a, IgG2b and IgG3 were similar between the two groups of animals. DPP-IV null animals mounted an efficient germinal center reaction by day 10 after antigen stimulation that was comparable to wild type mice. Moreover, the antibodies produced by DPP-IV null animals after repeated antigenic challenge were affinity matured. Similar observations were made using wild type animals treated with a highly selective DPP-IV inhibitor during the entire course of the experiments. T cell recall responses to ovalbumin and MOG peptide, evaluated by measuring proliferation and IL-2 release from cells isolated from draining lymph nodes, were equivalent in DPP-IV null and wild type animals. Furthermore, mice treated with DPP-IV inhibitor had intact T-cell recall responses to MOG peptide. In addition, female DPP-IV null and wild type mice treated with DPP-IV inhibitor exhibited normal and robust in vivo cytotoxic T cell responses after challenge with cells expressing the male H-Y minor histocompatibility antigen. Conclusion These data indicate Selective inhibition of DPP-IV does not impair T dependent immune responses to antigenic challenge. PMID:19358731

  8. Life Assessment for Cr-Mo Steel Dissimilar Joints by Various Filler Metals Using Accelerated Creep Testing

    NASA Astrophysics Data System (ADS)

    Petchsang, S.; Phung-on, I.; Poopat, B.

    2016-12-01

    Accelerated creep rupture tests were performed on T22/T91 dissimilar metal joints to determine the fracture location and rupture time of different weldments. Four configurations of deposited filler metal were tested using gas tungsten arc welding to estimate the service life for Cr-Mo steel dissimilar joints at elevated temperatures in power plants. Results indicated that failure in all configurations occurred in the tempered original microstructure and tempered austenite transformation products (martensite or bainite structure) as type IV cracking at the intercritical area of the heat-affected zone (ICHAZ) for both T22 and T91 sides rather than as a consequence of the different filler metals. Creep damage occurred with the formation of precipitations and microvoids. The correlation between applied stress and the Larson-Miller parameter (PLM) was determined to predict the service life of each material configuration. Calculated time-to-failure based on the PLM and test results for both temperature and applied stress parameters gave a reasonable fit. The dissimilar joints exhibited lower creep rupture compared to the base material indicating creep degradation of the weldment.

  9. Oven rack having integral lubricious, dry porcelain surface

    DOEpatents

    Ambrose, Jeffrey A; Mackiewicz-Ludtka, Gail; Sikka, Vinod K; Qu, Jun

    2014-06-03

    A lubricious glass-coated metal cooking article capable of withstanding repeated heating and cooling between room temperature and at least 500.degree. F. without chipping or cracking the glass coating, wherein the glass coating includes about 0.1 to about 20% by weight of a homogeneously distributed dry refractory lubricant material having a particle size less than about 200 .mu.m. The lubricant material is selected from the group consisting of carbon; graphite; boron nitride; cubic boron nitride; molybdenum (FV) sulfide; molybdenum sulfide; molybdenum (IV) selenide; molybdenum selenide, tungsten (IV) sulfide; tungsten disulfide; tungsten sulfide; silicon nitride (Si.sub.3N.sub.4); TiN; TiC; TiCN; TiO.sub.2; TiAlN; CrN; SiC; diamond-like carbon; tungsten carbide (WC); zirconium oxide (ZrO.sub.2); zirconium oxide and 0.1 to 40 weight % aluminum oxide; alumina-zirconia; antimony; antimony oxide; antimony trioxide; and mixtures thereof.

  10. A Phase II Study of Cetuximab (Erbitux®) plus FOLFIRI for Irinotecan and Oxaliplatin-refractory Metastatic Colorectal Cancer

    PubMed Central

    Koo, Dong Hoe; Lee, Jae-Lyun; Kim, Tae Won; Chang, Heung Moon; Ryu, Min-Hee; Lee, Sung Sook; Kim, Min Kyoung; Sym, Sun Jin; Lee, Jung Shin

    2007-01-01

    We have evaluated the efficacy and safety of cetuximab plus FOLFIRI for irinotecan and oxaliplatin-refractory colorectal cancers. From September 2004 to February 2006, 31 patients with metastatic colorectal cancer were treated with cetuximab (400 mg/m2 intravenously [IV] over 2 hr on day 1 followed by weekly 1-hr infusions of 250 mg/m2) plus bi-weekly FOLFIRI (irinotecan 150 mg/m2 IV over 90 min, and leucovorin 100 mg/m2 IV over 2 hr, followed by 5-FU 400 mg/m2 IV bolus on day 1, and followed by 5-FU 2,400 mg/m2 by continuous IV over 46 hrs). Patients received a median of four cycles (range: 1-23). Eight (25.8%) patients had confirmed partial responses and 10 (32.2%) had stable disease. After a median follow-up of 13.2 months for surviving patients, the median time to progression was 2.9 months, the median duration of response was 5.4 months, and the median overall survival was 10.9 months. Skin toxicity was observed in 25 patients (80.4%) including grade 3 in 6 patients (19.4%). Other common non-hematologic toxicities of all grades were mucositis (32.3%), asthenia (22.6%), diarrhea (12.9%), and paronychial cracking (12.9%). The combination of cetuximab with FOLFIRI was effective and tolerable in colorectal cancer patients heavily pretreated with a number of chemotherapy regimens. PMID:17923763

  11. Data on the application of Functional Data Analysis in food fermentations.

    PubMed

    Ruiz-Bellido, M A; Romero-Gil, V; García-García, P; Rodríguez-Gómez, F; Arroyo-López, F N; Garrido-Fernández, A

    2016-12-01

    This article refers to the paper "Assessment of table olive fermentation by functional data analysis" (Ruiz-Bellido et al., 2016) [1]. The dataset include pH, titratable acidity, yeast count and area values obtained during fermentation process (380 days) of Aloreña de Málaga olives subjected to five different fermentation systems: i) control of acidified cured olives, ii) highly acidified cured olives, iii) intermediate acidified cured olives, iv) control of traditional cracked olives, and v) traditional olives cracked after 72 h of exposure to air. Many of the Tables and Figures shown in this paper were deduced after application of Functional Data Analysis to raw data using a routine executed under R software for comparison among treatments by the transformation of raw data into smooth curves and the application of a new battery of statistical tools (functional pointwise estimation of the averages and standard deviations, maximum, minimum, first and second derivatives, functional regression, and functional F and t-tests).

  12. Secretion of TcpF by the Vibrio cholerae Toxin-Coregulated Pilus Biogenesis Apparatus Requires an N-Terminal Determinant

    PubMed Central

    Megli, Christina J.

    2013-01-01

    Type IV pili are important for microcolony formation, biofilm formation, twitching motility, and attachment. We and others have shown that type IV pili are important for protein secretion across the outer membrane, similar to type II secretion systems. This study explored the relationship between protein secretion and pilus formation in Vibrio cholerae. The toxin-coregulated pilus (TCP), a type IV pilus required for V. cholerae pathogenesis, is necessary for the secretion of the colonization factor TcpF (T. J. Kirn, N. Bose, and R. K. Taylor, Mol. Microbiol. 49:81–92, 2003). This phenomenon is not unique to V. cholerae; secreted virulence factors that are dependent on the presence of components of the type IV pilus biogenesis apparatus for secretion have been reported with Dichelobacter nodosus (R. M. Kennan, O. P. Dhungyel, R. J. Whittington, J. R. Egerton, and J. I. Rood, J. Bacteriol. 183:4451–4458, 2001) and Francisella tularensis (A. J. Hager et al., Mol. Microbiol. 62:227–237, 2006). Using site-directed mutagenesis, we demonstrated that the secretion of TcpF is dependent on the presence of selected amino acid R groups at position five. We were unable to find other secretion determinants, suggesting that Y5 is the major secretion determinant within TcpF. We also report that proteins secreted in a type IV pilus biogenesis apparatus-dependent manner have a YXS motif within the first 15 amino acids following the Sec cleavage site. The YXS motif is not present in proteins secreted by type II secretion systems, indicating that this is unique to type IV pilus-mediated secretion. Moreover, we show that TcpF interacts with the pilin TcpA, suggesting that these proteins are secreted by the type IV pilus biogenesis system. These data provide a starting point for understanding how type IV pili can mediate secretion of virulence factors important for bacterial pathogenesis. PMID:23564177

  13. Exterior egg quality as affected by enrichment resources layout in furnished laying-hen cages.

    PubMed

    Li, Xiang; Chen, Donghua; Meng, Fanyu; Su, Yingying; Wang, Lisha; Zhang, Runxiang; Li, Jianhong; Bao, Jun

    2017-10-01

    This study aimed to investigate the effects of enrichment resources (a perch, dustbath, and nest) layout in furnished laying-hen cages (FC) on exterior quality of eggs. One hundred and sixty-eight (168) Hy-Line Brown laying hens at 16 weeks of age were randomly distributed to four treatments: small furnished cages (SFC), medium furnished cages type I (MFC-I), medium furnished cages type II (MFC-II), and medium furnished cages type III (MFC-III). Each treatment had 4 replicates or cages with 6 hens for SFC (24 birds for each SFC) and 12 hen/cage for MFC-I, -II, and -III (48 birds for each MFC-I, -II and -III). Following a 2-week acclimation, data collection started at 18 weeks of age and continued till 52 weeks of age. Dirtiness of egg surface or cracked shell as indicators of the exterior egg quality were recorded each week. The results showed that the proportion of cracked or dirty eggs was significantly affected by the FC type (p<0.01) in that the highest proportion of cracked or dirty eggs was found in MFC-I and the lowest proportion of dirty eggs in SFC. The results of this showed that furnished cage types affected both dirty eggs and cracked eggs (p<0.01). The results also indicated that not nest but dustbath lead to more dirty eggs. Only MFC-I had higher dirty eggs at nest than other FC (p< 0.01). The results of dirty eggs in MFC-I and MFC-II compared with SFC and MFC-III seemed suggest that a low position of dustbath led to more dirty eggs. SFC design affected exterior egg quality and the low position of dustbath in FC resulted in higher proportion of dirty eggs.

  14. THE DISTRIBUTION OF CHLORPYRIFOS FOLLOWING A CRACK AND CREVICE TYPE APPLICATION IN THE U.S. EPA INDOOR AIR QUALITY RESEARCH HOUSE

    EPA Science Inventory

    A study was conducted in the U.S. EPA Indoor Air Quality Research House to determine the spatial and temporal distribution of chlorpyrifos following a professional crack and crevice application in the kitchen. Following the application, measurements were made in the kitchen, de...

  15. THE DISTRIBUTION OF CHLORPYRIFOS FOLLOWING A CRACK AND CREVICE TYPE APPLICATION IN THE U.S. EPA INDOOR AIR QUALITY RESEARCH HOUSE

    EPA Science Inventory

    The paper gives results of a study to determine the spatial and temporal distribution of chlorpyrifos following a professional crack-and-crevice application in the kitchen of the U.S. EPA's indoor air quality research house in North Carolina. Following the application, measuremen...

  16. THE DISTRIBUTION OF CHLORPYRIFOS FOLLOWING A CRACK AND CREVICE TYPE APPLICATION IN THE U.S. EPA INDOOR AIR QUALITY TEST HOUSE

    EPA Science Inventory

    A study was conducted in the U.S. EPA Indoor Air Quality Test House to determine the spatial and temporal distribution of chlorpyrifos following a professional crack and crevice application in the kitchen. Following the application, measurements were made in the kitchen, den a...

  17. An investigation of reheat cracking in the weld heat affected zone of type 347 stainless steel

    NASA Astrophysics Data System (ADS)

    Phung-On, Isaratat

    2007-12-01

    Reheat cracking has been a persistent problem for welding of many alloys such as the stabilized stainless steels: Types 321 and 347 as well as Cr-Mo-V steels. Similar problem occurs in Ni-base superalloys termed "strain-age cracking". Cracking occurs during the post weld heat treatment. The HAZ is the most susceptible area due to metallurgical reactions in solid state during both heating and cooling thermal cycle. Many investigations have been conducted to understand the RHC mechanism. There is still no comprehensive mechanism to explain its underlying mechanism. In this study, there were two proposed cracking mechanisms. The first is the formation of a PFZ resulting in local weakening and strain localization. The second is the creep-like grain boundary sliding that causes microvoid formation at the grain boundaries and the triple point junctions. Cracking occurs due to the coalescence of the microvoids that form. In this study, stabilized grade stainless steel, Type 347, was selected for investigation of reheat cracking mechanism due to the simplicity of its microstructure and understanding of its metallurgical behavior. The Gleeble(TM) 3800 system was employed due to its capability for precise control of both thermal and mechanical simulation. Cylindrical samples were subjected to thermal cycles for the HAZ simulation followed by PWHT as the reheat cracking test. "Susceptibility C-curves" were plotted as a function of PWHT temperatures and time to failure at applied stress levels of 70% and 80% yield strength. These C-curves show the possible relationship of the reheat cracking susceptibility and carbide precipitation behavior. To identify the mechanism, the sample shape was modified containing two flat surfaces at the center section. These flat surfaces were electro-polished and subjected to the HAZ simulation followed by the placement of the micro-indentation arrays. Then, the reheat cracking test was performed. The cracking mechanism was identified by tracing the shifting of the micro-indentations compared to their original locations. At the 80% stress level, the cracking mechanism was identified as the PFZ weakening, while at the 70% stress as the creep-like grain boundary sliding. A design of experiment (DOE) using a D-optimal design was successfully employed in this study to investigate the effects of microstructures on the reheat cracking susceptibility. The microstructures were modified by heat treatment prior to the reheat cracking test. The grain size and cooling rate were found to have moderate effects on cracking susceptibility. The amount (volume fraction) of MC carbide (NbC) had a significant effect on time to failure. The more NbC formed prior to test, the longer time to failure, and the more resistance to reheat cracking. On the other hand, the amount of GB carbide (M23C6) had an insignificant effect. The statistical interaction between MC carbide with other testing parameters also had strong effect. The PWHT temperature also had significant effect as can be predicted from the susceptibility C-curves. The heat treatment schedules, during cooling and during heating schedules, were also investigated. During cooling schedule was the same schedule done earlier in this study. On the other hand, during heating schedule allowed the sample cool to room temperature prior microstructure modification followed by the reheat cracking test. During heating schedule showed an improvement in resistance to reheat cracking. Microstructure of the crack samples showed the intergranular cracking path and wedge shapes along cracking boundaries. There was also the evidence of grain boundary sliding as a result of the creep-like grain boundary sliding cracking mechanism. SEM showed the intergranular cracking and grain separation with precipitates decorated on the fracture surfaces. The precipitates were identified as Nb-rich, MC carbide (NbC). The fracture surfaces showed micro-ductility and microvoid coalescence. The size of microvoid corresponds to the size of precipitate that forms. In addition, there was intragranular cracking in some location indicating that another failure mechanism may also be possible. It was believed that failure may occur along a precipitate free zone. However, the distinct PFZ could not be detected. A SS-DTA technique was also implemented in order to determine precipitation temperatures of the material. The results showed the possible precipitation temperatures in the range of 850°C to 650°C. However, the results were not confidently reliable due to the small amount of carbide formed that affects the sensitivity of the SS-DTA. A simple grain boundary sliding model was generated proposing that the sliding is operated by the shear stress resulting from the formation of precipitate in the grain interior. Then, the sliding results in the microvoid formation and coalescence followed by cracking. In addition, a simple finite element model was generated to provide the illustration of the shear stress built up by the formation of precipitate. The model showed that shear stress can cause the grain boundary movement/sliding. Based on the results from this study, the recommendation for the selection of post weld heat treatment schedule as well as welding procedures can be determined for the prevention of the reheat cracking. A residual stress should be kept below the critical value during welding and post weld heat treating. The testing procedures used in this study can be applied as the guidelines to conduct the reheat cracking susceptibility test for material selection.

  18. Plastic damage induced fracture behaviors of dental ceramic layer structures subjected to monotonic load.

    PubMed

    Wang, Raorao; Lu, Chenglin; Arola, Dwayne; Zhang, Dongsheng

    2013-08-01

    The aim of this study was to compare failure modes and fracture strength of ceramic structures using a combination of experimental and numerical methods. Twelve specimens with flat layer structures were fabricated from two types of ceramic systems (IPS e.max ceram/e.max press-CP and Vita VM9/Lava zirconia-VZ) and subjected to monotonic load to fracture with a tungsten carbide sphere. Digital image correlation (DIC) and fractography technology were used to analyze fracture behaviors of specimens. Numerical simulation was also applied to analyze the stress distribution in these two types of dental ceramics. Quasi-plastic damage occurred beneath the indenter in porcelain in all cases. In general, the fracture strength of VZ specimens was greater than that of CP specimens. The crack initiation loads of VZ and CP were determined as 958 ± 50 N and 724 ± 36 N, respectively. Cracks were induced by plastic damage and were subsequently driven by tensile stress at the elastic/plastic boundary and extended downward toward to the veneer/core interface from the observation of DIC at the specimen surface. Cracks penetrated into e.max press core, which led to a serious bulk fracture in CP crowns, while in VZ specimens, cracks were deflected and extended along the porcelain/zirconia core interface without penetration into the zirconia core. The rupture loads for VZ and CP ceramics were determined as 1150 ± 170 N and 857 ± 66 N, respectively. Quasi-plastic deformation (damage) is responsible for crack initiation within porcelain in both types of crowns. Due to the intrinsic mechanical properties, the fracture behaviors of these two types of ceramics are different. The zirconia core with high strength and high elastic modulus has better resistance to fracture than the e.max core. © 2013 by the American College of Prosthodontists.

  19. Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa.

    PubMed

    Persat, Alexandre; Inclan, Yuki F; Engel, Joanne N; Stone, Howard A; Gitai, Zemer

    2015-06-16

    Bacteria have evolved a wide range of sensing systems to appropriately respond to environmental signals. Here we demonstrate that the opportunistic pathogen Pseudomonas aeruginosa detects contact with surfaces on short timescales using the mechanical activity of its type IV pili, a major surface adhesin. This signal transduction mechanism requires attachment of type IV pili to a solid surface, followed by pilus retraction and signal transduction through the Chp chemosensory system, a chemotaxis-like sensory system that regulates cAMP production and transcription of hundreds of genes, including key virulence factors. Like other chemotaxis pathways, pili-mediated surface sensing results in a transient response amplified by a positive feedback that increases type IV pili activity, thereby promoting long-term surface attachment that can stimulate additional virulence and biofilm-inducing pathways. The methyl-accepting chemotaxis protein-like chemosensor PilJ directly interacts with the major pilin subunit PilA. Our results thus support a mechanochemical model where a chemosensory system measures the mechanically induced conformational changes in stretched type IV pili. These findings demonstrate that P. aeruginosa not only uses type IV pili for surface-specific twitching motility, but also as a sensor regulating surface-induced gene expression and pathogenicity.

  20. Fatigue crack growth behavior in equine cortical bone

    NASA Astrophysics Data System (ADS)

    Shelton, Debbie Renee

    2001-07-01

    Objectives for this research were to experimentally determine crack growth rates, da/dN, as a function of alternating stress intensity factor, DeltaK, for specimens from lateral and dorsal regions of equine third metacarpal cortical bone tissue, and to determine if the results were described by the Paris law. In one set of experiments, specimens were oriented for crack propagation in the circumferential direction with the crack plane transverse to the long axis of the bone. In the second set of experiments, specimens were oriented for radial crack growth with the crack plane parallel to the long axis of the bone. Results of fatigue tests from the latter specimens were used to evaluate the hypothesis that crack growth rates differ regionally. The final experiments were designed to determine if crack resistance was dependent on region, proportion of hooped osteons (those with circumferentially oriented collagen fibers in the outer lamellae) or number of osteons penetrated by the crack, and to address the hypothesis that hooped osteons resist invasion by cracks better than other osteonal types. The transverse crack growth data for dorsal specimens were described by the Paris law with an exponent of 10.4 and suggested a threshold stress intensity factor, DeltaKth, of 2.0 MPa·m1/2 and fracture toughness of 4.38 MPa·m 1/2. Similar results were not obtained for lateral specimens because the crack always deviated from the intended path and ran parallel to the loading direction. Crack growth for the dorsal and lateral specimens in the radial orientation was described by the Paris law with exponents of 8.7 and 10.2, respectively, and there were no regional differences in the apparent DeltaK th (0.5 MPa·m1/2) or fracture toughness (1.2 MPa·m 1/2). Crack resistance was not associated with cortical region, proportion of hooped osteons or the number of osteons penetrated by the crack. The extent to which cracks penetrate osteons was influenced by whether the collagen fiber orientation in the outer osteon layers was circumferential or longitudinal. The majority of hooped osteons were skirted by the crack. The angle of interaction between the osteon and the crack was also significant in determining whether an osteon was penetrated.

  1. Laser weldability of 21Cr-6Ni-9Mn stainless steel: Part II - Weldability diagrams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tate, Stephen B.; Javernick, Daniel Anthony; Lienert, Thomas J.

    In this second part of the study, weldability diagrams developed to relate solidification crack susceptibility and chemical composition for laser welded type 21Cr-6Ni-9Mn (21-6-9) stainless steel are presented. Sigmajig testing on 14 commercial 21-6-9 alloys, 20 experimental 21-6-9 alloys, and 7 other high-N, high-Mn austenitic stainless steels was used to develop weldability diagrams for solidification crack susceptibility for laser welding of type 21-6-9. Three travel speeds were used to show the changes in minimum Cr eq/Ni eq for primary ferrite solidification as solidification rate increase d with travel speed . Primary austenite solidification was observed below 1.55 Cr eq/Ni eqmore » (Espy equivalents) at 21 mm/s travel speed. At 42 mm/s travel speed , a mix of solidification modes were displayed for alloys from 1.55-1.75 Cr eq/Ni eq. Primary ferrite solidification was observed above 1.75 Cr eq/Ni eq at both 42 and 85 mm/s travel speeds. No solidification cracking was observed for alloys with primary ferrite solidification. Lastly, variable cracking behavior was found in alloys with primary austenite solidification, but in general cracking was observed in alloys with greater than 0.02 wt-% combined impurity content according to (P+0.2S).« less

  2. Laser weldability of 21Cr-6Ni-9Mn stainless steel: Part II - Weldability diagrams

    DOE PAGES

    Tate, Stephen B.; Javernick, Daniel Anthony; Lienert, Thomas J.; ...

    2016-11-02

    In this second part of the study, weldability diagrams developed to relate solidification crack susceptibility and chemical composition for laser welded type 21Cr-6Ni-9Mn (21-6-9) stainless steel are presented. Sigmajig testing on 14 commercial 21-6-9 alloys, 20 experimental 21-6-9 alloys, and 7 other high-N, high-Mn austenitic stainless steels was used to develop weldability diagrams for solidification crack susceptibility for laser welding of type 21-6-9. Three travel speeds were used to show the changes in minimum Cr eq/Ni eq for primary ferrite solidification as solidification rate increase d with travel speed . Primary austenite solidification was observed below 1.55 Cr eq/Ni eqmore » (Espy equivalents) at 21 mm/s travel speed. At 42 mm/s travel speed , a mix of solidification modes were displayed for alloys from 1.55-1.75 Cr eq/Ni eq. Primary ferrite solidification was observed above 1.75 Cr eq/Ni eq at both 42 and 85 mm/s travel speeds. No solidification cracking was observed for alloys with primary ferrite solidification. Lastly, variable cracking behavior was found in alloys with primary austenite solidification, but in general cracking was observed in alloys with greater than 0.02 wt-% combined impurity content according to (P+0.2S).« less

  3. An electro-mechanical impedance model of a cracked composite beam with adhesively bonded piezoelectric patches

    NASA Astrophysics Data System (ADS)

    Yan, Wei; Cai, J. B.; Chen, W. Q.

    2011-01-01

    A model of a laminated composite beam including multiple non-propagating part-through surface cracks as well as installed PZT transducers is presented based on the method of reverberation-ray matrix (MRRM) in this paper. Toward determining the local flexibility characteristics induced by the individual cracks, the concept of the massless rotational spring is applied. A Timoshenko beam theory is then used to simulate the behavior of the composite beam with open cracks. As a result, transverse shear and rotatory inertia effects are included in the model. Only one-dimensional axial vibration of the PZT wafer is considered and the imperfect interfacial bonding between PZT patches and the host beam is further investigated based on a Kelvin-type viscoelastic model. Then, an accurate electro-mechanical impedance (EMI) model can be established for crack detection in laminated beams. In this model, the effects of various parameters such as the ply-angle, fibre volume fraction, crack depth and position on the EMI signatures are highlighted. Furthermore, comparison with existent numerical results is presented to validate the present analysis.

  4. Bioconcrete: next generation of self-healing concrete.

    PubMed

    Seifan, Mostafa; Samani, Ali Khajeh; Berenjian, Aydin

    2016-03-01

    Concrete is one of the most widely used construction materials and has a high tendency to form cracks. These cracks lead to significant reduction in concrete service life and high replacement costs. Although it is not possible to prevent crack formation, various types of techniques are in place to heal the cracks. It has been shown that some of the current concrete treatment methods such as the application of chemicals and polymers are a source of health and environmental risks, and more importantly, they are effective only in the short term. Thus, treatment methods that are environmentally friendly and long-lasting are in high demand. A microbial self-healing approach is distinguished by its potential for long-lasting, rapid and active crack repair, while also being environmentally friendly. Furthermore, the microbial self-healing approach prevails the other treatment techniques due to the efficient bonding capacity and compatibility with concrete compositions. This study provides an overview of the microbial approaches to produce calcium carbonate (CaCO3). Prospective challenges in microbial crack treatment are discussed, and recommendations are also given for areas of future research.

  5. Fatigue cracking in road pavement

    NASA Astrophysics Data System (ADS)

    Mackiewicz, P.

    2018-05-01

    The article presents the problem of modelling fatigue phenomena occurring in the road pavement. The example of two selected pavements shows the changes occurring under the influence of the load in different places of the pavement layers. Attention is paid to various values of longitudinal and transverse strains generated at the moment of passing the wheel on the pavement. It was found that the key element in the crack propagation analysis is the method of transferring the load to the pavement by the tire and the strain distribution in the pavement. During the passage of the wheel in the lower layers of the pavement, a complex stress state arises. Then vertical, horizontal and tangent stresses with various values appear. The numerical analyses carried out with the use of finite element methods allowed to assess the strain and stress changes occurring in the process of cracking road pavement. It has been shown that low-thickness pavements are susceptible to fatigue cracks arising "bottom to top", while pavements thicker are susceptible to "top to bottom" cracks. The analysis of the type of stress allowed to determine the cracking mechanism.

  6. Hot cracking susceptibility of Alloy 52M weld overlays onto CF8 stainless steel

    NASA Astrophysics Data System (ADS)

    Chu, H. A.; Young, M. C.; Chu, H. C.; Tsay, L. W.; Chen, C.

    2013-02-01

    In this study, weld overlays of Alloy 52M (a nickel-based filler metal) onto CF8 stainless steel (SS) were performed using the gas tungsten arc welding process. Hot cracking in the weld overlays was observed particularly near the interfacial region of the Alloy 52M/CF8 weld overlay. In general, the hot cracks were most likely to occur at the sites with high dilution rates, e.g., at the weld start/end locations of a single pass or in the first and second passes in multi-pass overlays. The region near the weld interface between Alloy 52M and the CF8 SS had a higher hot cracking tendency than the other regions. It was found that the dilution rate and the formation of eutectic-type constituents (i.e., γ/NbC) both played significant roles in the determination of the hot cracking susceptibility of these weld overlays. Nevertheless, hot cracks were entirely eliminated by proper deposition of a SS buffer layer prior to overlaying with Alloy 52M.

  7. Study of fatigue crack propagation in Ti-1Al-1Mn based on the calculation of cold work evolution

    NASA Astrophysics Data System (ADS)

    Plekhov, O. A.; Kostina, A. A.

    2017-05-01

    The work proposes a numerical method for lifetime assessment for metallic materials based on consideration of energy balance at crack tip. This method is based on the evaluation of the stored energy value per loading cycle. To calculate the stored and dissipated parts of deformation energy an elasto-plastic phenomenological model of energy balance in metals under the deformation and failure processes was proposed. The key point of the model is strain-type internal variable describing the stored energy process. This parameter is introduced based of the statistical description of defect evolution in metals as a second-order tensor and has a meaning of an additional strain due to the initiation and growth of the defects. The fatigue crack rate was calculated in a framework of a stationary crack approach (several loading cycles for every crack length was considered to estimate the energy balance at crack tip). The application of the proposed algorithm is illustrated by the calculation of the lifetime of the Ti-1Al-1Mn compact tension specimen under cyclic loading.

  8. Nondestructive estimation of depth of surface opening cracks in concrete beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arne, Kevin; In, Chiwon; Kurtis, Kimberly

    Concrete is one of the most widely used construction materials and thus assessment of damage in concrete structures is of the utmost importance from both a safety point of view and a financial point of view. Of particular interest are surface opening cracks that extend through the concrete cover, as this can expose the steel reinforcement bars underneath and induce corrosion in them. This corrosion can lead to significant subsequent damage in concrete such as cracking and delamination of the cover concrete as well as rust staining on the surface of concrete. Concrete beams are designed and constructed in suchmore » a way to provide crack depths up to around 13 cm. Two different types of measurements are made in-situ to estimate depths of real surface cracks (as opposed to saw-cut notches) after unloading: one based on the impact-echo method and the other one based on the diffuse ultrasonic method. These measurements are compared to the crack depth visually observed on the sides of the beams. Discussions are given as to the advantages and disadvantages of each method.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoynov, Y.; Dineva, P.

    The stress, magnetic and electric field analysis of multifunctional composites, weakened by impermeable cracks, is of fundamental importance for their structural integrity and reliable service performance. The aim is to study dynamic behavior of a plane of functionally graded magnetoelectroelastic composite with more than one crack. The coupled material properties vary exponentially in an arbitrary direction. The plane is subjected to anti-plane mechanical and in-plane electric and magnetic load. The boundary value problem described by the partial differential equations with variable coefficients is reduced to a non-hypersingular traction boundary integral equation based on the appropriate functional transform and frequency-dependent fundamentalmore » solution derived in a closed form by Radon transform. Software code based on the boundary integral equation method (BIEM) is developed, validated and inserted in numerical simulations. The obtained results show the sensitivity of the dynamic stress, magnetic and electric field concentration in the cracked plane to the type and characteristics of the dynamic load, to the location and cracks disposition, to the wave-crack-crack interactions and to the magnitude and direction of the material gradient.« less

  10. Functional classification of mitochondrion-rich cells in euryhaline Mozambique tilapia (Oreochromis mossambicus) embryos, by means of triple immunofluorescence staining for Na+/K+-ATPase, Na +/K+/2Cl- cotransporter and CFTR anion channel

    USGS Publications Warehouse

    Hiroi, J.; McCormick, S.D.; Ohtani-Kaneko, R.; Kaneko, T.

    2005-01-01

    Mozambique tilapia Oreochromis mossambicus embryos were transferred from freshwater to seawater and vice versa, and short-term changes in the localization of three major ion transport proteins, Na+/K +-ATPase, Na+/K+/2Cl- cotransporter (NKCC) and cystic fibrosis transmembrane conductance regulator (CFTR) were examined within mitochondrion-rich cells (MRCs) in the embryonic yolk-sac membrane. Triple-color immunofluorescence staining allowed us to classify MRCs into four types: type I, showing only basolateral Na+/K +-ATPase staining; type II, basolateral Na+/K +-ATPase and apical NKCC; type III, basolateral Na+/K +-ATPase and basolateral NKCC; type IV, basolateral Na +/K+-ATPase, basolateral NKCC and apical CFTR. In freshwater, type-I, type-II and type-III cells were observed. Following transfer from freshwater to seawater, type-IV cells appeared at 12 h and showed a remarkable increase in number between 24 h and 48 h, whereas type-III cells disappeared. When transferred from seawater back to freshwater, type-IV cells decreased and disappeared at 48 h, type-III cells increased, and type-II cells, which were not found in seawater, appeared at 12 h and increased in number thereafter. Type-I cells existed consistently irrespective of salinity changes. These results suggest that type I is an immature MRC, type II is a freshwater-type ion absorptive cell, type III is a dormant type-IV cell and/or an ion absorptive cell (with a different mechanism from type II), and type IV is a seawater-type ion secretory cell. The intracellular localization of the three ion transport proteins in type-IV cells is completely consistent with a widely accepted model for ion secretion by MRCs. A new model for ion absorption is proposed based on type-II cells possessing apical NKCC.

  11. Modulation of type I immediate and type IV delayed immunoreactivity using direct suggestion and guided imagery during hypnosis.

    PubMed

    Zachariae, R; Bjerring, P; Arendt-Nielsen, L

    1989-11-01

    Cutaneous reactivity against histamine skin prick test (Type I) and purified tuberculin protein derivative (Mantoux reaction, Type IV) was studied in eight volunteers under hypnosis. Types I and IV immunoreactivity were modulated by direct suggestion (Type I) and guided imagery (Type IV). The volunteers were highly susceptible subjects, selected by means of the Harvard Group Scale of Hypnotic Susceptibility, Form A. When the volunteers underwent hypnotic suggestion to decrease the cutaneous reaction to histamine prick test, a significant (P less than 0.02) reduction of the flare reaction (area of erythema) was observed compared with control histamine skin prick tests. The wheal reaction did not respond to hypnotic suggestion. Neither wheal nor flare reaction could be increased in size by hypnotic suggestion compared with control histamine skin prick tests. A hypnotic suggestion of increasing the Type IV reaction on one arm and decreasing the reaction on the other revealed a significant difference in both erythema size (P less than 0.02) and palpable induration (P less than 0.01). In two cases the reactions were monitored by laser doppler blood flowmetry and skin thickness measurement by ultrasound. The difference between the suggested increased and decreased reaction was 19% for the laser doppler bloodflow (in favor of the augmented side), and 44% for the dermal infiltrate thickness. This study objectively supports the numerous uncontrolled case reports of modulation of immunoreactivity in allergic diseases involving both Type I and Type IV skin reactions following hypnotic suggestions.

  12. Emerging patterns of crack use in Mexico City.

    PubMed

    Valdez, Avelardo; Kaplan, Charles; Nowotny, Kathryn M; Natera-Rey, Guillermina; Cepeda, Alice

    2015-08-01

    Recent studies in Mexico have documented a significant increase in crack cocaine use, indicating the potential for an emerging drug epidemic. Ethnographic observations and interviews were used describe the profiles and patterns of use among street-recruited crack users in Mexico City. The data came from an international research collaboration funded by the National Institutes of Health. A polythetic typology was developed based on five dimensions central to categorizing patterns of crack use behavior: frequency of use, duration of use, context, social networks, and social contracts. Four types of users were discovered applying these dimensions: dabblers, stable users, crack heads, and old heads. Although several similarities were documented between patterns of crack use in Mexico and those in the United States and Western Europe, several key aspects distinguished crack users in this population: (1) self-regulated use; (2) non-linear progression of crack; and (3) the influence of the dimensions pertaining to setting, social networks, and social contract as contributing to understanding of the previous two. Further, we provide a discussion of how specific contextual factors in Mexico may be giving rise to these emerging patterns. Compared to the U.S. and Europe, this study finds that the majority of crack users were able to self-regulate their use without major disruption to daily social functioning. As crack use spreads in Mexico and other Latin American countries, we need to recognize the importance of social context in developing more tailored health and social responses that are specific to these developing countries. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Amplified QCM biosensor for type IV collagenase based on collagenase-cleavage of gold nanoparticles functionalized peptide.

    PubMed

    Dong, Zong-Mu; Jin, Xin; Zhao, Guang-Chao

    2018-05-30

    The present study develops a rapid, simple and efficient method for the determination of type IV collagenase by using a specific peptide-modified quartz crystal microbalance (QCM). A small peptide (P1), contains a specific sequence (Pro-Gly) and a terminal cysteine, was synthetized and immobilized to the surface of QCM electrode via the reaction between Au and thiol of the cysteine. The peptide bond between proline and glycine can be specific hydrolyzed cleavage by type IV collagenase, which enabled the modified electrode with a high selectivity toward type IV collagenase. The cleaving process caused a frequency change of QCM to give a signal related to the concentration of type IV collagenase. The morphologies of the modified electrodes were characterized by scanning electron microscope (SEM) and the specific hydrolyzed cleavage process was monitored by QCM. When P1 was modified with gold nanoparticles (P1-Au NPs), the signal could be amplified to further enhance the sensitivity of the designed sensor due to the high-mass of the modified Au NPs. Compared the direct unamplified assay, the values obtained for the limit of detection for type IV collagenase was 0.96 ng mL -1 , yielding about 6.5 times of magnitude improvement in sensitivity. This signal enhanced peptide based QCM biosensor for type IV collagenase also showed good selectivity and sensitivity in complex matrix. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Development and field application of a nonlinear ultrasonic modulation technique for fatigue crack detection without reference data from an intact condition

    NASA Astrophysics Data System (ADS)

    Lim, Hyung Jin; Kim, Yongtak; Koo, Gunhee; Yang, Suyoung; Sohn, Hoon; Bae, In-hwan; Jang, Jeong-Hwan

    2016-09-01

    In this study, a fatigue crack detection technique, which detects a fatigue crack without relying on any reference data obtained from the intact condition of a target structure, is developed using nonlinear ultrasonic modulation and applied to a real bridge structure. Using two wafer-type lead zirconate titanate (PZT) transducers, ultrasonic excitations at two distinctive frequencies are applied to a target inspection spot and the corresponding ultrasonic response is measured by another PZT transducer. Then, the nonlinear modulation components produced by a breathing-crack are extracted from the measured ultrasonic response, and a statistical classifier, which can determine if the nonlinear modulation components are statistically significant in comparison with the background noise level, is proposed. The effectiveness of the proposed fatigue crack detection technique is experimentally validated using the data obtained from aluminum plates and aircraft fitting-lug specimens under varying temperature and loading conditions, and through a field testing of Yeongjong Grand Bridge in South Korea. The uniqueness of this study lies in that (1) detection of a micro fatigue crack with less than 1 μm width and fatigue cracks in the range of 10-20 μm in width using nonlinear ultrasonic modulation, (2) automated detection of fatigue crack formation without using reference data obtained from an intact condition, (3) reliable and robust diagnosis under varying temperature and loading conditions, (4) application of a local fatigue crack detection technique to online monitoring of a real bridge.

  15. Self-similar crack-generation effects in the fracture process in brittle materials

    NASA Astrophysics Data System (ADS)

    Hilarov, V. L.

    1998-07-01

    Using acoustic-emission data banks we have computed time and space correlation functions for the purpose of investigation of crack-propagation self-similarity during the fracture process in brittle materials. It is shown that the whole fracture process may be represented as a two-stage process. In the first stage, the crack propagation is uniform and uncorrelated in space, having a time spectral density of the white-noise type and a correlation fractal dimension approximately equal to that of 3D Euclidean space. In the second stage, this fractal dimension decreases significantly, reaching the value of 2.2-2.4, characteristic for the fracture surfaces, while the time spectral density exhibits a significant low-frequency increase becoming of 0965-0393/6/4/002/img1-noise type. The resulting fractal shows no multifractal behaviour, appearing to be a single fractal.

  16. Oxidation study by Mössbauer and optic microscopy of steels from boiler tubes used in sugar industry

    NASA Astrophysics Data System (ADS)

    Fajardo, M.; Pérez Alcázar, G. A.; Aguilar, Y.

    1998-08-01

    Optic microscopy and Mössbauer spectroscopy were used to study the fail and the inner rusted surface of two boiler tubes used in the sugar industry, respectively. The studied tubes, of the type ASTM A 192, were found to have cracks. By optic microscopy it was observed that the failure begins in the inner surface with circumferential cracking. Also, inside and around the surface close to the cracks a rusted layer was detected. Powder from these layers was collected for Mössbauer spectroscopy analysis. By this method the presence of two or three types of Fe oxides such as wüstite, magnetite and hematite, was proved. These results permit to conclude that the failure mechanism was the thermal fatigue due to a hot work in an O2 -rich vapor atmosphere. The rusted products are stable at high temperatures.

  17. Mode I analysis of a cracked circular disk subject to a couple and a force

    NASA Technical Reports Server (NTRS)

    Gross, B.

    1977-01-01

    Mode 1 stress intensity coefficients were obtained for an edge-cracked disk (round compact specimen). Results for this plane elastostatic problem, obtained by a boundary collocation analysis are presented for ratios 0.35 less than A/D less than 1, where A is the crack length and D is the disk diameter. The results presented are for two complementary types of loading. By superposition of these results the stress intensity factor K sub I for any practical load line location of a pin-loaded round compact specimen can be obtained.

  18. Brittle fracture in viscoelastic materials as a pattern-formation process

    NASA Astrophysics Data System (ADS)

    Fleck, M.; Pilipenko, D.; Spatschek, R.; Brener, E. A.

    2011-04-01

    A continuum model of crack propagation in brittle viscoelastic materials is presented and discussed. Thereby, the phenomenon of fracture is understood as an elastically induced nonequilibrium interfacial pattern formation process. In this spirit, a full description of a propagating crack provides the determination of the entire time dependent shape of the crack surface, which is assumed to be extended over a finite and self-consistently selected length scale. The mechanism of crack propagation, that is, the motion of the crack surface, is then determined through linear nonequilibrium transport equations. Here we consider two different mechanisms, a first-order phase transformation and surface diffusion. We give scaling arguments showing that steady-state solutions with a self-consistently selected propagation velocity and crack shape can exist provided that elastodynamic or viscoelastic effects are taken into account, whereas static elasticity alone is not sufficient. In this respect, inertial effects as well as viscous damping are identified to be sufficient crack tip selection mechanisms. Exploring the arising description of brittle fracture numerically, we study steady-state crack propagation in the viscoelastic and inertia limit as well as in an intermediate regime, where both effects are important. The arising free boundary problems are solved by phase field methods and a sharp interface approach using a multipole expansion technique. Different types of loading, mode I, mode III fracture, as well as mixtures of them, are discussed.

  19. Ultrastructural sinusoidal changes in extrahepatic cholestasis. Light and electron microscopic immunohistochemical localization of collagen type III and type IV.

    PubMed

    Gulubova, M V

    1996-07-01

    Extrahepatic cholestasis causes excessive extracellular matrix formation perisinusoidally. Ito cells, transitional and endothelial cells are considered to be a source of extracellular matrix proteins in experimental cholestasis. The localization of collagens type III and type IV in human liver in extrahepatic cholestasis was investigated immunohistochemically in the present study. Immersion fixation was used after modification to be applied to surgical biopsies with commercially available kits. Sinusoidal changes were observed that indicated excessive collagen and matrix formation. Light microscopically, increased immunostaining with the two collagen antibodies was found perisinusoidally and portally. Ultrastructurally, collagen type III positive fibres were found beneath basement membranes of vessels, in collagen bundles and as a fibrillar network in the space of Disse. Collagen type IV immunostaining was located in portal tracts and near hepatocyte microvilli. Intracellular staining with collagen type IV was detected in the rough endoplasmic reticulum of some transitional cells. Immunostaining was located around transitional cells, Ito cells or endothelial cells mainly. Our study indicates that Ito cells, transitional and endothelial cells are the main source of collagens type III and IV in the space of Disse in extrahepatic cholestasis in humans.

  20. Post-test examination of a pool boiler receiver

    NASA Technical Reports Server (NTRS)

    Dreshfield, Robert L.; Moore, Thomas J.; Bartolotta, Paul A.

    1992-01-01

    A subscale pool boiler test apparatus to evaluate boiling stability developed a leak after being operated with boiling NaK for 791.4 hr at temperatures from 700 to 750 C. The boiler was constructed using Inconel 625 with a type 304L stainless steel wick for the boiler and type 316 stainless steel for the condenser. The boiler assembly was metallurgically evaluated to determine the cause of the leak and to assess the effects of the NaK on the materials. It was found that the leak was caused by insufficient (about 30 pct.) joint penetration in a butt joint. There was no general corrosion of the construction materials, but the room temperature ductility of the Inconel 625 was only about 6.5 pct. A crack in the heat affected zone of the Inconel 625 near the Inconel 625 to type 316 stainless steel butt joint was probably caused by excessive heat input. The crack was observed to have a zone depleted of iron at the crack surface and porosity below that zone. The mechanism of the iron depletion was not conclusively determined.

  1. Grain boundary oxidation and an analysis of the effects of pre-oxidation on subsequent fatigue life

    NASA Technical Reports Server (NTRS)

    Oshida, Y.; Liu, H. W.

    1986-01-01

    The effects of preoxidation on subsequent fatigue life were studied. Surface oxidation and grain boundary oxidation of a nickel-base superalloy (TAZ-8A) were studied at 600 to 1000 C for 10 to 1000 hours in air. Surface oxides were identified and the kinetics of surface oxidation was discussed. Grain boundary oxide penetration and morphology were studied. Pancake type grain boundary oxide penetrates deeper and its size is larger, therefore, it is more detrimental to fatigue life than cone-type grain boundary oxide. Oxide penetration depth, a (sub m), is related to oxidation temperature, T, and exposure time, t, by an empirical relation of the Arrhenius type. Effects of T and t on statistical variation of a (sub m) were analyzed according to the Weibull distribution function. Once the oxide is cracked, it serves as a fatigue crack nucleus. Statistical variation of the remaining fatigue life, after the formation of an oxide crack of a critical length, is related directly to the statistical variation of grain boundary oxide penetration depth.

  2. Oxygen microprofile in the prepared sediments and its implication for the sediment oxygen consuming process in a heavily polluted river of China.

    PubMed

    Wang, Chao; Zhai, Wanying; Shan, Baoqing

    2016-05-01

    Dissolved oxygen (DO) microprofiles of prepared sediments from 24 sampling sites in the Fuyang River were measured using a gold amalgam microelectrode in this study. The measured microprofiles can be divided into four types. In type I profiles, DO kept constant in the overlying water and decreased smoothly in the pore water; in type II profile, DO showed fluctuation in the pore water; in type III profiles, DO showed peak in the SWI; in type IV profiles, DO decreased obviously in the overlying water. Type I profiles indicated the absence of benthic organisms and thus the degradation of the sediment habitat. Type II and III profiles indicated the activity of benthic animal and epipelic algae, which is common in the healthy aquatic sediment. Type IV profiles indicated that the excessive accumulation of pollutants in the sediment and thus the serious sediment pollution. There are nine sites showing type I profile, three sites showing type II profile, nine sites showing type III profile, and three sites showing type IV profile in the Fuyang River. The dominance of type I and appearance of type IV indicated that sediment oxygen consumption processes in the Fuyang River were strongly influenced by the sediment pollutants release and the vanish of benthic organisms. The pharmacy, metallurgy, and curriery industries may contribute to the sediment deterioration and thus to the occurrence of type I and type IV oxygen profiles in the Fuyang River.

  3. Spontaneous Carotid-Cavernous Fistula in the Type IV Ehlers-Danlos Syndrome

    PubMed Central

    Kim, Jeong Gyun; Cho, Won-Sang; Kim, Jeong Eun

    2014-01-01

    Ehlers-Danlos syndrome (EDS) is a rare inherited connective disease. Among several subgroups, type IV EDS is frequently associated with spontaneous catastrophic bleeding from a vascular fragility. We report on a case of carotid-cavernous fistula (CCF) in a patient with type IV EDS. A 46-year-old female presented with an ophthalmoplegia and chemosis in the right eye. Subsequently, seizure and cerebral infarction with micro-bleeds occurred. CCF was completely occluded with transvenous coil embolization without complications. Thereafter, the patient was completely recovered. Transvenous coil embolization can be a good treatment of choice for spontaneous CCF with type IV EDS. However, every caution should be kept during invasive procedure. PMID:24653803

  4. Spontaneous Carotid-Cavernous Fistula in the Type IV Ehlers-Danlos Syndrome.

    PubMed

    Kim, Jeong Gyun; Cho, Won-Sang; Kang, Hyun-Seung; Kim, Jeong Eun

    2014-02-01

    Ehlers-Danlos syndrome (EDS) is a rare inherited connective disease. Among several subgroups, type IV EDS is frequently associated with spontaneous catastrophic bleeding from a vascular fragility. We report on a case of carotid-cavernous fistula (CCF) in a patient with type IV EDS. A 46-year-old female presented with an ophthalmoplegia and chemosis in the right eye. Subsequently, seizure and cerebral infarction with micro-bleeds occurred. CCF was completely occluded with transvenous coil embolization without complications. Thereafter, the patient was completely recovered. Transvenous coil embolization can be a good treatment of choice for spontaneous CCF with type IV EDS. However, every caution should be kept during invasive procedure.

  5. 78 FR 40640 - Airworthiness Directives; Agusta S.p.A. (Type Certificate Currently Held by AgustaWestland S.p.A...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-08

    ... AW139 helicopters. The existing AD currently requires inspecting the fuselage frame to detect fatigue... interval for inspecting the fuselage frame for a fatigue crack. This proposed AD would require inspecting... detect a fatigue crack that could result in failure of the fuselage frame and subsequent loss of control...

  6. Cracks in Complex Bodies: Covariance of Tip Balances

    NASA Astrophysics Data System (ADS)

    Mariano, Paolo Maria

    2008-04-01

    In complex bodies, actions due to substructural changes alter (in some cases drastically) the force driving the tip of macroscopic cracks in quasi-static and dynamic growth, and must be represented directly. Here it is proven that tip balances of standard and substructural interactions are covariant. In fact, the former balance follows from the Lagrangian density’s requirement of invariance with respect to the action of the group of diffeomorphisms of the ambient space to itself, the latter balance accrues from an analogous invariance with respect to the action of a Lie group over the manifold of substructural shapes. The evolution equation of the crack tip can be obtained by exploiting invariance with respect to relabeling the material elements in the reference place. The analysis is developed by first focusing on general complex bodies that admit metastable states with substructural dissipation of viscous-like type inside each material element. Then we account for gradient dissipative effects that induce nonconservative stresses; the covariance of tip balances in simple bodies follows as a corollary. When body actions and boundary data of Dirichlet type are absent, the standard variational description of quasi-static crack growth is simply extended to the case of complex materials.

  7. High and low torque handpieces: cutting dynamics, enamel cracking and tooth temperature.

    PubMed

    Watson, T F; Flanagan, D; Stone, D G

    2000-06-24

    The aim of these experiments was to compare the cutting dynamics of high-speed high-torque (speed-increasing) and high-speed low-torque (air-turbine) handpieces and evaluate the effect of handpiece torque and bur type on sub-surface enamel cracking. Temperature changes were also recorded in teeth during cavity preparation with high and low torque handpieces with diamond and tungsten carbide (TC) burs. The null hypothesis of this study was that high torque handpieces cause more damage to tooth structure during cutting and lead to a rise in temperature within the pulp-chamber. Images of the dynamic interactions between burs and enamel were recorded at video rate using a confocal microscope. Central incisors were mounted on a specially made servomotor driven stage for cutting with a type 57 TC bur. The two handpiece types were used with simultaneous recording of cutting load and rate. Sub-surface enamel cracking caused by the use of diamond and TC burs with high and low torque was also examined. Lower third molars were sectioned horizontally to remove the cusp tips and then the two remaining crowns cemented together with cyanoacrylate adhesive, by their flat surfaces. Axial surfaces of the crowns were then prepared with the burs and handpieces. The teeth were then separated and the original sectioned surface examined for any cracks using a confocal microscope. Heat generation was measured using thermocouples placed into the pulp chambers of extracted premolars, with diamond and TC burs/high-low torque handpiece variables, when cutting occlusal and cervical cavities. When lightly loaded the two handpiece types performed similarly. However, marked differences in cutting mechanisms were noted when increased forces were applied to the handpieces with, generally, an increase in cutting rate. The air turbine could not cope with steady heavy loads, tending to stall. 'Rippling' was seen in the interface as this stall developed, coinciding with the bur 'clearing' itself. No differences were noted between different handpieces and burs, in terms of sub-surface enamel cracking. Similarly, no differences were recorded for temperature rise during cavity preparation. Differences in cutting mechanisms were seen between handpieces with high and low torque, especially when the loads and cutting rates were increased. The speed increasing handpiece was better able to cope with increased loading. Nevertheless, there was no evidence of increased tooth cracking or heating with this type handpiece, indicating that these do not have any deleterious effects on the tooth.

  8. A new system for cultivation of human keratinocytes on acellular dermal matrix substitute with the use of human fibroblast feeder layer.

    PubMed

    Xiao, S; Zhu, S; Ma, B; Xia, Z-F; Yang, J; Wang, G

    2008-01-01

    To improve the proliferative potential of human keratinocytes (HK) cultured on acellular dermal matrix (ADM), HK and mitomycin C-treated human fibroblasts (MMC-HF) were seeded onto ADM to form four types of composite skin: type I, HK were seeded onto the epidermal side of ADM; type II, both HK and MMC-HF were seeded onto the epidermal side; type III, MMC-HF were preseeded onto the dermal side of ADM, and then HK were seeded onto the epidermal side, and type IV, where MMC-HF were preseeded onto both sides, and then HK were seeded onto the epidermal side. Compared with type I and III, the proliferative potential of HK of type II and IV was significantly higher on day 3, 5, 7 and 9 in vitro. In type I and III, HK grew into one layer on day 7-9, while in type II and IV keratinocytes grew into a confluent monolayer by day 4-6. The adherence to ADM of HK in types II and IV was stronger than that in type I and III. The take rate of type II and IV composite skin was also significantly higher. In conclusion, when MMC-HF and HK were cocultured on the epidermal side of ADM, MMC-HF could serve as excellent feeder cells. Copyright 2007 S. Karger AG, Basel.

  9. Polyphase serpentinization history of Mariana forearc mantle: observations on the microfabric of ultramafic clasts from ODP Leg 195, Site 1200

    NASA Astrophysics Data System (ADS)

    Kahl, Wolf-Achim; Jöns, Niels; Bach, Wolfgang; Klein, Frieder

    2013-04-01

    In the forearc of the Mariana subduction zone system, a number of seamounts form from extrusion of blueschist and serpentine mud. Ocean Drilling Program Leg 195 drilled the South Chamorro seamount, where ultramafic clasts occur within the mud matrix. These clasts show a complex serpentinization history, which bears the potential for tracking the alteration history during uplift and cooling of mantle wedge rocks to the seafloor. Moreover, the microfabrics of the highly serpentinized harzburgite and dunite clasts exhibit evidence for multiple fracturing events in the forearc mantle. These, in turn, lead to fluid influx and varied styles of serpentinization of harzburgite and dunite. The serpentinized ultramafic clasts exhibit a variety of microfabrics that range from virtually undeformed to strongly deformed samples. Pervasively serpentinized harzburgites feature either an equigranular fabric of serpentinized olivine and orthopyroxene crystals, or different vein generations related to multiple stages of serpentinization. Several types of fluid pathways in harzburgites are present: (i) veins containing brucite and iron oxides, developed linearly without marked conformance with the rock fabric. In places, these veins developed mm-cm wide halos with finger-shaped serpentinization fronts. Veins of type (i) are either developed as syntaxial veins from a single crack-seal event with large magnetite crystals growing from one wall to the other (as confirmed with high-resolution X-ray microtomography), or formed by multiple fluid events. (ii) serpentine veins that encompass regions of marginally serpentinized, microgranular olivine and large orthopyroxene crystals. (iii) extensional serpentine veins (known as "Frankenstein" type). In the clasts studied, their occurrence is restricted to the halo region of type (i) veins. (iv) as a late-stage feature, extensional veins documenting multiple crack-seal events can be present in the serpentinites (either in undeformed regions with preserved equigranular fabric, or in serpentinites of type (i) and (ii) where they crosscut and offset earlier vein generations). In addition, serpentinized dunites can host syntaxial serpentine veins (ribbons). The ribbons separate regions, where recrystallization of serpentine and brucite can be observed. Presumably the lack of orthopyroxene locally influences the rheology and thus enable ribbon formation. The serpentine and/or brucite assemblages formed during these different stages show distinct trace element patterns suggesting a diminished influence of slab-related fluids during later stages of serpentinization. Ongoing work is aimed at reconciling textural and geochemical co-evolution during serpentinization of the mantle wedge. In particular, deciphering deformation-related pathways for serpentinizing fluids and identifying their geochemical signatures may foster our understanding of shallow subduction-related mass transfer in supra-subduction zones.

  10. Roughness of biopores and cracks in Bt-horizons by confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Leue, Martin; Gerke, Horst H.

    2016-04-01

    During preferential flow events in structured soils, the movement of water and reactive solutes is mostly restricted to larger inter-aggregate pores, cracks, and biopores. The micro-topography of such macropores in terms of pore shapes, geometry, and roughness is crucial for describing the exchange of water and solutes between macropores and the soil matrix. The objective of this study was to determine the surface roughness of intact structural surfaces from the Bt-horizon of Luvisols by confocal laser scanning microscopy. For this purpose, samples with the structural surface types including cracks with and without clay-organic coatings from Bt-horizons developed on loess and glacial till were compared. The surface roughness of these structures was calculated in terms of three parameters from selected surface regions of 0.36 mm² determined with a confocal laser scanning microscope of the type Keyence VK-X100K. These data were evaluated in terms of the root-mean-squared roughness, Rq, the curvature, Rku, and the ratio between surface area and base area, RA. Values of Rq and RA were smaller for coated as compared to uncoated cracks and earthworm burrows of the Bt-horizons from both parent materials. The results indicated that the illuviation of clayey material led to a "smoothing" of the crack surfaces, which was similar for the coarser textured till-Bt and the finer-textured loess-Bt surfaces. The roughness indicated by Rq and RA values was only slightly smaller and that indicated by Rku slightly higher for the structural surfaces from the loess as compared to those from the glacial till. These results suggest a minor importance of the parent material on the roughness of structural surfaces in the Bt-horizon. The similarity of Rq, RA, and Rku values between surfaces of earthworm burrows and uncoated cracks did not confirm an expected smoothing effect of the burrow walls by the earthworm. In contrast to burrow walls, root channels from the loess-Bt were smoother than the surfaces of the other structure types, suggesting that the two types of biopores have to be distinguished when describing preferential flow and macropore-matrix exchange. Nevertheless, the confocal laser microscopy technique proved useful for characterizing the roughness of intact structural surfaces.

  11. Ultraviolet properties of IRAS-selected Be stars

    NASA Technical Reports Server (NTRS)

    Bjorkman, Karen S.; Snow, Theodore P.

    1988-01-01

    New IUE observations were obtained of 35 Be stars from a list of stars which show excess infrared fluxes in IRAS data. The IRAS-selected Be stars show larger C IV and Si IV equivalent widths than other Be stars. Excess C IV and Si IV absorption seems to be independent of spectral type for IRAS-selected Be stars later than spectral type B4. This is interpreted as evidence for a possible second mechanism acting in conjunction with radiation pressure for producing the winds in Be stars. No clear correlation of IR excess of v sin i with C IV or Si IV equivalent widths is seen, although a threshold for the occurrence of excess C IV and Si IV absorption appears at a v sin i of 150 km/sec.

  12. Chiral nematic porous germania and germanium/carbon films

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Nguyen, Thanh-Dinh; Xie, Kai; Hamad, Wadood Y.; MacLachlan, Mark J.

    2015-07-01

    We report our extensive attempts and, ultimately, success to produce crack-free, chiral nematic GeO2/cellulose nanocrystal (CNC) composite films with tunable photonic properties from the controlled assembly of germanium(iv) alkoxides with the lyotropic liquid-crystalline CNCs in a mixed solvent of water/DMF. With different pyrolysis conditions, the photonic GeO2/CNC composites can be converted into freestanding chiral nematic films of amorphous GeO2, and semiconducting mesoporous GeO2/C and Ge/C replicas. These new materials are promising for chiral separation, enantioselective adsorption, catalysis, sensing, optoelectronics, and lithium ion batteries. Furthermore, the new, reproducible synthesis strategies developed may be applicable for constructing other composites and porous materials with chiral nematic ordering.We report our extensive attempts and, ultimately, success to produce crack-free, chiral nematic GeO2/cellulose nanocrystal (CNC) composite films with tunable photonic properties from the controlled assembly of germanium(iv) alkoxides with the lyotropic liquid-crystalline CNCs in a mixed solvent of water/DMF. With different pyrolysis conditions, the photonic GeO2/CNC composites can be converted into freestanding chiral nematic films of amorphous GeO2, and semiconducting mesoporous GeO2/C and Ge/C replicas. These new materials are promising for chiral separation, enantioselective adsorption, catalysis, sensing, optoelectronics, and lithium ion batteries. Furthermore, the new, reproducible synthesis strategies developed may be applicable for constructing other composites and porous materials with chiral nematic ordering. Electronic supplementary information (ESI) available: TGA, IR, Raman, TEM, SEM, BET. See DOI: 10.1039/c5nr02520f

  13. Individual and Network Correlates of Antisocial Personality Disorder Among Rural Nonmedical Prescription Opioid Users.

    PubMed

    Smith, Rachel V; Young, April M; Mullins, Ursula L; Havens, Jennifer R

    2017-04-01

    Examination of the association of antisocial personality disorder (ASPD) with substance use and HIV risk behaviors within the social networks of rural people who use drugs. Interviewer-administered questionnaires were used to assess substance use, HIV risk behavior, and social network characteristics of drug users (n = 503) living in rural Appalachia. The MINI International Psychiatric Interview was used to determine whether participants met DSM-IV criteria for ASPD and Axis-I psychological comorbidities (eg, major depressive disorder, posttraumatic stress disorder, generalized anxiety disorder). Participants were also tested for herpes simplex 2, hepatitis C, and HIV. Multivariate generalized linear mixed modeling was used to determine the association between ASPD and risk behaviors, substance use, and social network characteristics. Approximately one-third (31%) of participants met DSM-IV criteria for ASPD. In multivariate analysis, distrust and conflict within an individual's social networks, as well as past 30-day use of heroin and crack, male gender, younger age, lesser education, heterosexual orientation, and comorbid MDD were associated with meeting diagnostic criteria for ASPD. Participants meeting criteria for ASPD were more likely to report recent heroin and crack use, which are far less common drugs of abuse in this population in which the predominant drug of abuse is prescription opioids. Greater discord within relationships was also identified among those with ASPD symptomatology. Given the elevated risk for blood-borne infection (eg, HIV) and other negative social and health consequences conferred by this high-risk subgroup, exploration of tailored network-based interventions with mental health assessment is recommended. © 2016 National Rural Health Association.

  14. Genetics Home Reference: congenital insensitivity to pain with anhidrosis

    MedlinePlus

    ... is also known as hereditary sensory and autonomic neuropathy type IV. The signs and symptoms of CIPA ... to pain with anhidrosis hereditary sensory and autonomic neuropathy type IV hereditary sensory and autonomic neuropathy, type ...

  15. Acoustic properties of a crack containing magmatic or hydrothermal fluids

    USGS Publications Warehouse

    Kumagai, H.; Chouet, B.A.

    2000-01-01

    We estimate the acoustic properties of a crack containing maginatic or hydrothermal fluids to quantify the source properties of long-period (LP) events observed in volcanic areas assuming that a crack-like structure is the source of LP events. The tails of synthetic waveforms obtained from a model of a fluid-driven crack are analyzed by the Sompi method to determine the complex frequencies of one of the modes of crack resonance over a wide range of the model parameters ??/a and ??f/??s, where ?? is the P wave velocity of the rock matrix, a is the sound speed of the fluid, and ??f and ??s are the densities of the fluid and rock matrix, respectively. The quality factor due to radiation loss (Qr) for the selected mode almost monotonically increases with increasing ??/a, while the dimensionless frequency (??) of the mode decreases with increasing ??/a and ??f/??s. These results are used to estimate Q and ?? for a crack containing various types of fluids (gas-gas mixtures, liquid-gas mixtures, and dusty and misty gases) for values of a, ??f, and quality factor due to intrinsic losses (Qi) appropriate for these types of fluids, in which Q is given by Q-1 = Qr-1 + Qi-1. For a crack containing such fluids, we obtain Q ranging from almost unity to several hundred, which consistently explains the wide variety of quality factors measured in LP events observed at various volcanoes. We underscore the importance of dusty and misty gases containing small-size particles with radii around 1 ??m to explain long-lasting oscillations with Q significantly larger than 100. Our results may provide a basis for the interpretation of spatial and temporal variations in the observed complex frequencies of LP events in terms of fluid compositions beneath volcanoes. Copyright 2000 by the American Geophysical Union.

  16. Time-Dependent Fatigue Crack Propagation Behavior of Two Solid-Solution-Strengthened Ni-Based Superalloys—INCONEL 617 and HAYNES 230

    NASA Astrophysics Data System (ADS)

    Ma, Longzhou; Roy, Shawoon K.; Hasan, Muhammad H.; Pal, Joydeep; Chatterjee, Sudin

    2012-02-01

    The fatigue crack propagation (FCP) as well as the sustained loading crack growth (SLCG) behavior of two solid-solution-strengthened Ni-based superalloys, INCONEL 617 (Special Metals Corporation Family of Companies) and HAYNES 230 (Haynes International, Inc., Kokomo, IN), were studied at increased temperatures in laboratory air under a constant stress-intensity-factor ( K) condition. The crack propagation tests were conducted using a baseline cyclic triangular waveform with a frequency of 1/3 Hz. Various hold times were imposed at the maximum load of a fatigue cycle to study the hold time effect. The results show that a linear elastic fracture mechanics (LEFM) parameter, stress intensity factor ( K), is sufficient to describe the FCP and SLCG behavior at the testing temperatures ranging from 873 K to 1073 K (600 °C to 800 °C). As observed in the precipitation-strengthened superalloys, both INCONEL 617 and HAYNES 230 exhibited the time-dependent FCP, steady SLCG behavior, and existence of a damage zone ahead of crack tip. A thermodynamic equation was adapted to correlate the SLCG rates to determine thermal activation energy. The fracture modes associated with crack propagation behavior were discussed, and the mechanism of time-dependent FCP as well as SLCG was identified. Compared with INCONEL 617, the lower crack propagation rates of HAYNES 230 under the time-dependent condition were ascribed to the different fracture mode and the presence of numerous W-rich M6C-type and Cr-rich M23C6-type carbides. Toward the end, a phenomenological model was employed to correlate the FCP rates at cycle/time-dependent FCP domain. All the results suggest that an environmental factor, the stress assisted grain boundary oxygen embrittlement (SAGBOE) mechanism, is mainly responsible for the accelerated time-dependent FCP rates of INCONEL 617 and HAYNES 230.

  17. Collagen type IV at the fetal-maternal interface.

    PubMed

    Oefner, C M; Sharkey, A; Gardner, L; Critchley, H; Oyen, M; Moffett, A

    2015-01-01

    Extracellular matrix proteins play a crucial role in influencing the invasion of trophoblast cells. However the role of collagens and collagen type IV (col-IV) in particular at the implantation site is not clear. Immunohistochemistry was used to determine the distribution of collagen types I, III, IV and VI in endometrium and decidua during the menstrual cycle and the first trimester of pregnancy. Expression of col-IV alpha chains during the reproductive cycle was determined by qPCR and protein localisation by immunohistochemistry. The structure of col-IV in placenta was examined using transmission electron microscopy. Finally, the expression of col-IV alpha chain NC1 domains and collagen receptors was localised by immunohistochemistry. Col-IV alpha chains were selectively up-regulated during the menstrual cycle and decidualisation. Primary extravillous trophoblast cells express collagen receptors and secrete col-IV in vitro and in vivo, resulting in the increased levels found in decidua basalis compared to decidua parietalis. A novel expression pattern of col-IV in the mesenchyme of placental villi, as a three-dimensional network, was found. NC1 domains of col-IV alpha chains are known to regulate tumour cell migration and the selective expression of these domains in decidua basalis compared to decidua parietalis was determined. Col-IV is expressed as novel forms in the placenta. These findings suggest that col-IV not only represents a structural protein providing tissue integrity but also influences the invasive behaviour of trophoblast cells at the implantation site. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Modeling Cyclic Fatigue Hysteresis Loops of 2D Woven Ceramic Matrix Composites at Elevated Temperatures in Steam

    PubMed Central

    Li, Longbiao

    2016-01-01

    In this paper, the cyclic fatigue hysteresis loops of 2D woven SiC/SiC ceramic matrix composites (CMCs) at elevated temperatures in steam have been investigated. The interface slip between fibers and the matrix existing in matrix cracking modes 3 and 5, in which matrix cracking and interface debonding occurred in longitudinal yarns, is considered as the major reason for hysteresis loops of 2D woven CMCs. The hysteresis loops of 2D SiC/SiC composites corresponding to different peak stresses, test conditions, and loading frequencies have been predicted using the present analysis. The damage parameter, i.e., the proportion of matrix cracking mode 3 in the entire matrix cracking modes of the composite, and the hysteresis dissipated energy increase with increasing fatigue peak stress. With increasing cycle number, the interface shear stress in the longitudinal yarns decreases, leading to transition of interface slip types of matrix cracking modes 3 and 5. PMID:28773544

  19. Erasure of memory in paste by irradiation of ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Nakahara, Akio; Yoneyama, Ryota; Ito, Maruto; Matsuo, Yousuke; Kitsunezaki, So

    2017-06-01

    Densely packed colloidal suspension, called paste, remembers the direction of applied forces, such as vibration and flow, and these memories kept in paste can be visualized as morphology of desiccation crack patterns. For example, when the paste remembers the direction of vibration, all primary cracks propagate in the direction perpendicular to the direction of initial vibration. On the other hand, when the paste remembers the direction of flow, all primary cracks propagate along the direction of initial flow. These results indicate that external forces imprint easy-breakable direction into paste as memories. Therefore, by controlling memories in paste, we can tune to produce various types of crack patterns, such as cellular, radial, lamellar, ring, spiral and lattice structures. Recently we have found that memories in paste can be erased by the irradiation of ultrasonic waves to paste as we obtain only isotropic and cellular crack patterns without any anisotropy related to memory effect. This method can be applied to increase the breaking strength of dried paste by homogenizing microstructure in paste.

  20. Laplace-SGBEM analysis of the dynamic stress intensity factors and the dynamic T-stress for the interaction between a crack and auxetic inclusions

    NASA Astrophysics Data System (ADS)

    Kwon, Kibum

    A dynamic analysis of the interaction between a crack and an auxetic (negative Poisson ratio)/non-auxetic inclusion is presented. The two most important fracture parameters, namely the stress intensity factors and the T-stress are analyzed by using the symmetric Galerkin boundary element method in the Laplace domain for three different models of crack-inclusion interaction. To investigate the effects of auxetic inclusions on the fracture behavior of composites reinforced by this new type of material, comparisons of the dynamic stress intensity factors and the dynamic T-stress are made between the use of auxetic inclusions as opposed to the use of traditional inclusions. Furthermore, the technique presented in this research can be employed to analyze for the interaction between a crack and a cluster of auxetic/non-auxetic inclusions. Results from the latter models can be employed in crack growth analysis in auxetic-fiber-reinforced composites.

  1. Research on Soft Reduction Amount Distribution to Eliminate Typical Inter-dendritic Crack in Continuous Casting Slab of X70 Pipeline Steel by Numerical Model

    NASA Astrophysics Data System (ADS)

    Liu, Ke; Wang, Chang; Liu, Guo-liang; Ding, Ning; Sun, Qi-song; Tian, Zhi-hong

    2017-04-01

    To investigate the formation of one kind of typical inter-dendritic crack around triple point region in continuous casting(CC) slab during the operation of soft reduction, fully coupled 3D thermo-mechanical finite element models was developed, also plant trials were carried out in a domestic continuous casting machine. Three possible types of soft reduction amount distribution (SRAD) in the soft reduction region were analyzed. The relationship between the typical inter-dendritic cracks and soft reduction conditions is presented and demonstrated in production practice. Considering the critical strain of internal crack formation, a critical tolerance for the soft reduction amount distribution and related casing parameters have been proposed for better contribution of soft reduction to the internal quality of slabs. The typical inter-dendritic crack around the triple point region had been eliminated effectively through the application of proposed suggestions for continuous casting of X70 pipeline steel in industrial practice.

  2. 7 CFR 1463.106 - Base quota levels for eligible tobacco producers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...)—.952381 (iv) Virginia Sun-cured (type 37) 1.0000 3 Multiply the sum from Step 2 times the farm's average... (35-36)—.952381 (iv) Virginia Sun-cured (type 37) 1.0000 6 Multiply the sum from Step 5 times the farm... (35-36)—.94264 (iv) Virginia Sun-cured (type 37) 1.0000 3 Multiply the sum from Step 2 times the farm...

  3. 7 CFR 1463.106 - Base quota levels for eligible tobacco producers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...)—.952381 (iv) Virginia Sun-cured (type 37) 1.0000 3 Multiply the sum from Step 2 times the farm's average... (35-36)—.952381 (iv) Virginia Sun-cured (type 37) 1.0000 6 Multiply the sum from Step 5 times the farm... (35-36)—.94264 (iv) Virginia Sun-cured (type 37) 1.0000 3 Multiply the sum from Step 2 times the farm...

  4. 7 CFR 1463.106 - Base quota levels for eligible tobacco producers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...)—.952381 (iv) Virginia Sun-cured (type 37) 1.0000 3 Multiply the sum from Step 2 times the farm's average... (35-36)—.952381 (iv) Virginia Sun-cured (type 37) 1.0000 6 Multiply the sum from Step 5 times the farm... (35-36)—.94264 (iv) Virginia Sun-cured (type 37) 1.0000 3 Multiply the sum from Step 2 times the farm...

  5. 7 CFR 1463.106 - Base quota levels for eligible tobacco producers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...)—.952381 (iv) Virginia Sun-cured (type 37) 1.0000 3 Multiply the sum from Step 2 times the farm's average... (35-36)—.952381 (iv) Virginia Sun-cured (type 37) 1.0000 6 Multiply the sum from Step 5 times the farm... (35-36)—.94264 (iv) Virginia Sun-cured (type 37) 1.0000 3 Multiply the sum from Step 2 times the farm...

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiu-Li, E-mail: usually.158@163.com; Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, No 169 Donghu Road, Wuchang District, Wuhan 430071; Peng, Chun-Wei, E-mail: pqc278@163.com

    Highlights: {yields} HER2 level is closely related to the biologic behaviors of breast cancer cells. {yields} A new method to simultaneously image HER2 and type IV collagen was established. {yields} HER2 status and type IV collagen degradation predict breast cancer invasion. {yields} The complex interactions between tumor and its environment were revealed. -- Abstract: It has been well recognized that human epidermal growth factor receptor 2 (HER2) level in breast cancer (BC) is closely related to the malignant biologic behaviors of the tumor, including invasion and metastasis. Yet, there has been a lack of directly observable evidence to support suchmore » notion. Here we report a quantum dots (QDs)-based double-color imaging technique to simultaneously show the HER2 level on BC cells and the type IV collagen in the tumor matrix. In benign breast tumor, the type IV collagen was intact. With the increasing of HER2 expression level, there has been a progressive decrease in type IV collagen around the cancer nest. At HER2 (3+) expression level, there has virtually been a total destruction of type IV collagen. Moreover, HER2 (3+) BC cells also show direct invasion into the blood vessels. This novel imaging method provides direct observable evidence to support the theory that the HER2 expression level is directly related to BC invasion.« less

  7. Crack curving in a ductile pressurized fuselage

    NASA Astrophysics Data System (ADS)

    Lam, Paul W.

    Moire interferometry was used to study crack tip displacement fields of a biaxially loaded cruciform type 0.8mm thick 2024-T3 aluminum specimen with various tearstrap reinforcement configurations: Unreinforced, Bonded, Bonded+Riveted, and Machined Pad-up. A program was developed using the commercially available code Matlab to derive strain, stress, and integral parameters from the experimental displacements. An FEM model of the crack tip area, with experimental displacements as boundary conditions, was used to validate FEM calculations of crack tip parameters. The results indicate that T*-integral parameter reaches a value of approximately 120 MPa-m0.5 during stable crack propagation which agrees with previously published values for straight cracks in the same material. The approximate computation method employed in this study uses a partial contour around the crack tip that neglects the contribution from the portion behind the crack tip where there is significant unloading. Strain distributions around the crack tip were obtained from experimental displacements and indicate that Maximum Principal Strain or Equivalent Strain can predict the direction of crack propagation, and is generally comparable with predictions using the Erdogan-Sih and Kosai-Ramulu-Kobayashi criteria. The biaxial tests to failure showed that the Machined Pad-up specimen carried the highest load, with the Bonded specimen next, at 78% of the Machined Pad-up value. The Bonded+Riveted specimen carried a lower load than the Bonded, at 67% of the Machined Pad-up value, which was the same as that carried by the Unreinforced specimen. The tearstraps of the bonded specimens remained intact after the specimen failed while the integrally machined reinforcement broke with the specimen. FEM studies were also made of skin flapping in typical Narrow and Wide-body fuselage sections, both containing the same crack path from a full-scale fatigue test of a Narrow-body fuselage. Results indicate that the magnitude of CTOA and CTOD depends on the structural geometry, and including plasticity increases the crack tip displacements. An estimate of the strain in the skin flaps at the crack tip may indicate the tendency for flapping. Out-of-plane effects become significant as the crack propagates and curves.

  8. On the Directivity of Low-Frequency Type IV Radio Bursts

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Akiyama, S.; Makela, P.; Yashiro, S.; Cairns, I. H.

    2016-01-01

    An intense type IV radio burst was observed by the STEREO Behind (STB) spacecraft located about 144 deg. behind Earth. The burst was associated with a large solar eruption that occurred on the backside of the Sun (N05E151) close to the disk center in the STB view. The eruption was also observed by the STEREO Ahead (STA) spacecraft (located at 149 deg. ahead of Earth) as an eruption close to the west limb (N05W60) in that view. The type IV burst was complete in STB observations in that the envelope reached the lowest frequency and then receded to higher frequencies. The burst was partial viewed from STA, revealing only the edge coming down to the lowest frequency. The type IV burst was not observed at all near Earth because the source was 61 deg. behind the east limb. The eruption was associated with a low-frequency type II burst observed in all three views, although it was not very intense. Solar energetic particles were also observed at both STEREOs and at SOHO, suggesting that the shock was much extended, consistent with the very high speed of the CME (2048 km/s). These observations suggest that the type IV emission is directed along a narrow cone above the flare site. We confirm this result statistically using the type IV bursts of solar cycle 23.

  9. Diffuse reticuloendothelial system involvement in type IV glycogen storage disease with a novel GBE1 mutation: a case report and review.

    PubMed

    Magoulas, Pilar L; El-Hattab, Ayman W; Roy, Angshumoy; Bali, Deeksha S; Finegold, Milton J; Craigen, William J

    2012-06-01

    Glycogen storage disease type IV is a rare autosomal recessive disorder of glycogen metabolism caused by mutations in the GBE1 gene that encodes the 1,4-alpha-glucan-branching enzyme 1. Its clinical presentation is variable, with the most common form presenting in early childhood with primary hepatic involvement. Histologic manifestations in glycogen storage disease type IV typically consist of intracytoplasmic non-membrane-bound inclusions containing abnormally branched glycogen (polyglucosan bodies) within hepatocytes and myocytes. We report a female infant with classic hepatic form of glycogen storage disease type IV who demonstrated diffuse reticuloendothelial system involvement with the spleen, bone marrow, and lymph nodes infiltrated by foamy histiocytes with intracytoplasmic polyglucosan deposits. Sequence analysis of the GBE1 gene revealed compound heterozygosity for a previously described frameshift mutation (c.1239delT) and a novel missense mutation (c.1279G>A) that is predicted to alter a conserved glycine residue. GBE enzyme analysis revealed no detectable activity. A review of the literature for glycogen storage disease type IV patients with characterized molecular defects and deficient enzyme activity reveals most GBE1 mutations to be missense mutations clustering in the catalytic enzyme domain. Individuals with the classic hepatic form of glycogen storage disease type IV tend to be compound heterozygotes for null and missense mutations. Although the extensive reticuloendothelial system involvement that was observed in our patient is not typical of glycogen storage disease type IV, it may be associated with severe enzymatic deficiency and a poor outcome. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. A modified Gurson-type plasticity model at finite strains: formulation, numerical analysis and phase-field coupling

    NASA Astrophysics Data System (ADS)

    Aldakheel, Fadi; Wriggers, Peter; Miehe, Christian

    2017-12-01

    The modeling of failure in ductile materials must account for complex phenomena at the micro-scale, such as nucleation, growth and coalescence of micro-voids, as well as the final rupture at the macro-scale, as rooted in the work of Gurson (J Eng Mater Technol 99:2-15, 1977). Within a top-down viewpoint, this can be achieved by the combination of a micro-structure-informed elastic-plastic model for a porous medium with a concept for the modeling of macroscopic crack discontinuities. The modeling of macroscopic cracks can be achieved in a convenient way by recently developed continuum phase field approaches to fracture, which are based on the regularization of sharp crack discontinuities, see Miehe et al. (Comput Methods Appl Mech Eng 294:486-522, 2015). This avoids the use of complex discretization methods for crack discontinuities, and can account for complex crack patterns. In this work, we develop a new theoretical and computational framework for the phase field modeling of ductile fracture in conventional elastic-plastic solids under finite strain deformation. It combines modified structures of Gurson-Tvergaard-Needelman GTN-type plasticity model outlined in Tvergaard and Needleman (Acta Metall 32:157-169, 1984) and Nahshon and Hutchinson (Eur J Mech A Solids 27:1-17, 2008) with a new evolution equation for the crack phase field. An important aspect of this work is the development of a robust Explicit-Implicit numerical integration scheme for the highly nonlinear rate equations of the enhanced GTN model, resulting with a low computational cost strategy. The performance of the formulation is underlined by means of some representative examples, including the development of the experimentally observed cup-cone failure mechanism.

  11. Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC + NiCr

    NASA Astrophysics Data System (ADS)

    Lee, Changmin; Park, Hyungkwon; Yoo, Jaehong; Lee, Changhee; Woo, WanChuck; Park, Sunhong

    2015-08-01

    Although laser cladding process has been widely used to improve the wear and corrosion resistance, there are unwanted cracking issues during and/or after laser cladding. This study investigates the tendency of Co-based WC + NiCr composite layers to cracking during the laser cladding process. Residual stress distributions of the specimen are measured using neutron diffraction and elucidate the correlation between the residual stress and the cracking in three types of cylindrical specimens; (i) no cladding substrate only, (ii) cladding with 100% stellite#6, and (iii) cladding with 55% stellite#6 and 45% technolase40s. The microstructure of the clad layer was composed of Co-based dendrite and brittle eutectic phases at the dendritic boundaries. And WC particles were distributed on the matrix forming intermediate composition region by partial melting of the surface of particles. The overlaid specimen exhibited tensile residual stress, which was accumulated through the beads due to contraction of the coating layer generated by rapid solidification, while the non-clad specimen showed compressive. Also, the specimen overlaid with 55 wt% stellite#6 and 45 wt% technolase40s showed a tensile stress higher than the specimen overlaid with 100% stellite#6 possibly, due to the difference between thermal expansion coefficients of the matrix and WC particles. Such tensile stresses can be potential driving force to provide an easy crack path ways for large brittle fractures combined with the crack initiation sites such as the fractured WC particles, pores and solidification cracks. WC particles directly caused clad cracks by particle fracture under the tensile stress. The pores and solidification cracks also affected as initiation sites and provided an easy crack path ways for large brittle fractures.

  12. Measurement of Kirchhoff's stress intensity factors in bending plates

    NASA Astrophysics Data System (ADS)

    Bäcker, D.; Kuna, M.; Häusler, C.

    2014-03-01

    A measurement method of the stress intensity factors defined by KIRCHHOFF's theory for a crack in a bending plate is shown. For this purpose, a thin piezoelectric polyvinylidene fluoride film (PVDF) is attached to the surface of the cracked plate. The measured electrical voltages are coupled with the load type and the crack tip position relative to the sensor film. Stress intensity factors and the crack tip position can be determined by solving the non-linear inverse problem based on the measured signals. To guarantee solvability of the problem, more measuring electrodes on the film have to be taken in to account. To the developed sensor concept the KIRCHHOFF's plate theory has been applied. In order to connect the electrical signals and the stress intensity factors the stresses near the crack tip have to be written in eigenfunctions (see WILLIAMS [1]). The presented method was verified by means of the example of a straight crack of the length 2a in an infinite isotropic plate under all- side bending. It was found that the positioning of the electrodes is delimited by two radii. On one hand, the measurement points should not be too close to the crack tip. In this area, the Kirchhoff's plate theory cannot be used effectively. On the other hand, the measuring electrodes should be placed at a smaller distance to each other and not too far from the crack tip regarding the convergence radius of the WILLIAMS series expansion. Test calculations on a straight crack in an infinite isotropic plate showed the general applicability of the measurement method.

  13. Fatigue crack monitoring with coupled piezoelectric film acoustic emission sensors

    NASA Astrophysics Data System (ADS)

    Zhou, Changjiang

    Fatigue-induced cracking is a commonly seen problem in civil infrastructures reaching their original design life. A number of high-profile accidents have been reported in the past that involved fatigue damage in structures. Such incidences often happen without prior warnings due to lack of proper crack monitoring technique. In order to detect and monitor the fatigue crack, acoustic emission (AE) technique, has been receiving growing interests recently. AE can provide continuous and real-time monitoring data on damage progression in structures. Piezoelectric film AE sensor measures stress-wave induced strain in ultrasonic frequency range and its feasibility for AE signal monitoring has been demonstrated recently. However, extensive work in AE monitoring system development based on piezoelectric film AE sensor and sensor characterization on full-scale structures with fatigue cracks, have not been done. A lack of theoretical formulations for understanding the AE signals also hinders the use of piezoelectric film AE sensors. Additionally, crack detection and source localization with AE signals is a very important area yet to be explored for this new type of AE sensor. This dissertation presents the results of both analytical and experimental study on the signal characteristics of surface stress-wave induced AE strain signals measured by piezoelectric film AE sensors in near-field and an AE source localization method based on sensor couple theory. Based on moment tensor theory, generalized expression for AE strain signal is formulated. A special case involving the response of piezoelectric film AE sensor to surface load is also studied, which could potentially be used for sensor calibration of this type of sensor. A new concept of sensor couple theory based AE source localization technique is proposed and validated with both simulated and experimental data from fatigue test and field monitoring. Two series of fatigue tests were conducted to perform fatigue crack monitoring on large-scale steel test specimens using piezoelectric film AE sensors. Continuous monitoring of fatigue crack growth in steel structures is demonstrated in these fatigue test specimens. The use of piezoelectric film AE sensor for field monitoring of existing fatigue crack is also demonstrated in a real steel I-girder bridge located in Maryland. The sensor couple theory based AE source localization is validated using a limited number of piezoelectric film AE sensor data from both fatigue test specimens and field monitoring bridge. Through both laboratory fatigue test and field monitoring of steel structures with active fatigue cracks, the signal characteristics of piezoelectric film AE sensor have been studied in real-world environment.

  14. Type IV carbonic anhydrase is present in the gills of spiny dogfish (Squalus acanthias).

    PubMed

    Gilmour, K M; Bayaa, M; Kenney, L; McNeill, B; Perry, S F

    2007-01-01

    Physiological and biochemical studies have provided indirect evidence for a membrane-associated carbonic anhydrase (CA) isoform, similar to mammalian type IV CA, in the gills of dogfish (Squalus acanthias). This CA isoform is linked to the plasma membrane of gill epithelial cells by a glycosylphosphatidylinositol anchor and oriented toward the plasma, such that it can catalyze the dehydration of plasma HCO(3)(-) ions. The present study directly tested the hypothesis that CA IV is present in dogfish gills in a location amenable to catalyzing plasma HCO(3)(-) dehydration. Homology cloning techniques were used to assemble a 1,127 base pair cDNA that coded for a deduced protein of 306 amino acids. Phylogenetic analysis suggested that this protein was a type IV CA. For purposes of comparison, a second cDNA (1,107 base pairs) was cloned from dogfish blood; it encoded a deduced protein of 260 amino acids that was identified as a cytosolic CA through phylogenetic analysis. Using real-time PCR and in situ hybridization, mRNA expression for the dogfish type IV CA was detected in gill tissue and specifically localized to pillar cells and branchial epithelial cells that flanked the pillar cells. Immunohistochemistry using a polyclonal antibody raised against rainbow trout type IV CA revealed a similar pattern of CA IV immunoreactivity and demonstrated a limited degree of colocalization with Na(+)-K(+)-ATPase immunoreactivity. The presence and localization of a type IV CA isoform in the gills of dogfish is consistent with the hypothesis that branchial membrane-bound CA with an extracellular orientation contributes to CO(2) excretion in dogfish by catalyzing the dehydration of plasma HCO(3)(-) ions.

  15. Clinical application of antenatal genetic diagnosis of osteogenesis imperfecta type IV.

    PubMed

    Yuan, Jing; Li, Song; Xu, YeYe; Cong, Lin

    2015-04-02

    Clinical analysis and genetic testing of a family with osteogenesis imperfecta type IV were conducted, aiming to discuss antenatal genetic diagnosis of osteogenesis imperfecta type IV. Preliminary genotyping was performed based on clinical characteristics of the family members and then high-throughput sequencing was applied to rapidly and accurately detect the changes in candidate genes. Genetic testing of the III5 fetus and other family members revealed missense mutation in c.2746G>A, pGly916Arg in COL1A2 gene coding region and missense and synonymous mutation in COL1A1 gene coding region. Application of antenatal genetic diagnosis provides fast and accurate genetic counseling and eugenics suggestions for patients with osteogenesis imperfecta type IV and their families.

  16. From vein precipitates to deformation and fluid rock interaction within a SSZ: Insights from the Izu-Bonin-Mariana fore arc

    NASA Astrophysics Data System (ADS)

    Micheuz, Peter; Quandt, Dennis; Kurz, Walter

    2017-04-01

    International Ocean Discovery Program (IODP) expeditions 352 and 351 drilled through oceanic crust of the Philippine Sea plate. The two study areas are located near the outer Izu-Bonin-Mariana (IBM) fore arc and in the Amami Sankaku Basin. The primary objective was to improve our understanding of supra-subduction zones (SSZ) and the process of subduction initiation. The recovered drill cores during IODP expedition 352 represent approximately 50 Ma old fore arc basalts (FAB) and boninites revealing an entire volcanic sequence of a SSZ. Expedition 351 drilled FAB like oceanic crust similar in age to the FABs of expedition 352. In this study we present data on vein microstructures, geochemical data and isotopic signatures of vein precipitates to give new insights into fluid flow and precipitation processes and deformation within the Izu-Bonin fore arc. Veins formed predominantly as a consequence of hydrofracturing resulting in the occurrence of branched vein systems and brecciated samples. Along these hydrofractures the amount of altered host rock fragments varies and locally alters the host rock completely to zeolites and carbonates. Subordinately extensional veins released after the formation of the host rocks. Cross-cutting relationships of different vein types point to multiple fracturing events subsequently filled with minerals originating from a fluid with isotopic seawater signature. Based on vein precipitates, their morphology and their growth patterns four vein types have been defined. Major vein components are (Mg-) calcite and various zeolites determined by Raman spectra and electron microprobe analyses. Zeolites result from alteration of volcanic glass during interaction with a seawaterlike fluid. Type I veins which are characterized by micritic infill represent neptunian dykes. They predominantly occur in the upper levels of drill cores being the result of an initial volume change subsequently to crystallization of the host rocks. Type II veins are characterized by blocky carbonates and idiomorphic to blocky zeolites. Blocky carbonates locally exhibit zonation patterns. Type III and type IV veins are both assumed to be extensional veins. Type III is characterized by syntaxial growth and elongate blocky carbonate minerals. They predominantly occur as asymmetric syntaxial veins, locally exhibiting more than one crack-seal event. Type IV veins are defined as antitaxial fibrous carbonates. Type II veins commonly show deformation microstructures like twinning (type I/II twins), slightly curved twins, and subgrain boundaries indicative of incipient plastic deformation. Based on these observations differential stresses around 50 MPa were needed to deform vein minerals, presumably related to IBM fore arc extension due to the retreat of the subducted Pacific plate. We acknowledge financial support by the Austrian Research Fund (P27982-N29) to W. Kurz

  17. Humidity Testing of PME and BME Ceramic Capacitors with Cracks

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.; Herzberger, Jaemi

    2014-01-01

    Cracks in ceramic capacitors are one of the major causes of failures during operation of electronic systems. Humidity testing has been successfully used for many years to verify the absence of cracks and assure quality of military grade capacitors. Traditionally, only precious metal electrode (PME) capacitors were used in high reliability applications and the existing requirements for humidity testing were developed for this type of parts. With the advance of base metal electrode (BME) capacitors, there is a need for assessment of the applicability of the existing techniques for the new technology capacitors. In this work, variety of different PME and BME capacitors with introduced cracks were tested in humid environments at different voltages and temperatures. Analysis of the test results indicates differences in the behavior and failure mechanisms for BME and PME capacitors and the need for different testing conditions.

  18. Quasi-Brittle Fracture of Compact Specimens with Sharp Notches and U-Shaped Cuts

    NASA Astrophysics Data System (ADS)

    Kornev, V. M.; Demeshkin, A. G.

    2018-01-01

    A two-parameter (coupled) discrete-integral criterion of fracture is proposed. It can be used to construct fracture diagrams for compact specimens with sharp cracks. Curves separating the stress-crack length plane into three domains are plotted. These domains correspond to the absence of fracture, damage accumulation in the pre-fracture region under repeated loading, and specimen fragmentation under monotonic loading. Constants used for the analytical description of fracture diagrams for quasi-brittle materials with cracks are selected with the use of approximation of the classical stress-strain diagrams for the initial material and the critical stress intensity factor. Predictions of the proposed theory are compared with experimental results on fracture of compact specimens with different radii made of polymethylmethacrylate (PMMA) and solid rubber with crack-type effects in the form of U-shaped cuts.

  19. Advanced quantitative magnetic nondestructive evaluation methods - Theory and experiment

    NASA Technical Reports Server (NTRS)

    Barton, J. R.; Kusenberger, F. N.; Beissner, R. E.; Matzkanin, G. A.

    1979-01-01

    The paper reviews the scale of fatigue crack phenomena in relation to the size detection capabilities of nondestructive evaluation methods. An assessment of several features of fatigue in relation to the inspection of ball and roller bearings suggested the use of magnetic methods; magnetic domain phenomena including the interaction of domains and inclusions, and the influence of stress and magnetic field on domains are discussed. Experimental results indicate that simplified calculations can be used to predict many features of these results; the data predicted by analytic models which use finite element computer analysis predictions do not agree with respect to certain features. Experimental analyses obtained on rod-type fatigue specimens which show experimental magnetic measurements in relation to the crack opening displacement and volume and crack depth should provide methods for improved crack characterization in relation to fracture mechanics and life prediction.

  20. Synthesis of prolyl 4-hydroxylase alpha subunit and type IV collagen in hemocytic granular cells of silkworm, Bombyx mori: Involvement of type IV collagen in self-defense reaction and metamorphosis.

    PubMed

    Adachi, Takahiro; Tomita, Masahiro; Yoshizato, Katsutoshi

    2005-04-01

    The present study shows that hemocytic granular cells synthesize and secrete type IV collagen (ColIV) in the silkworm Bombyx mori (B. mori) and suggests that these cells play roles in the formation of basement membrane, the encapsulation of foreign bodies, and the metamorphic remodeling of the gut. The full- and partial-length cDNA of B. mori prolyl 4-hydroxylase alpha subunit (BmP4Halpha) and B. mori ColIV (BmColIV) were cloned, respectively. In situ hybridization and immunocytochemistry on larval tissues and cells identified hemocytic granular cells as the cells that express mRNAs and proteins of both BmP4Halpha and BmColIV. Immunohistochemistry and immunocytochemistry demonstrated that BmColIV was present in the basement membrane and in the secretory granules of granular cells, respectively. Granular cells in culture secreted BmColIV without accompanying the degranulation and discharged it from the granules when the cells were degranulated. Nylon threads were inserted into the hemocoel of larvae. Granular cells concentrated around the nylon threads and encapsulated them as a self-defense reaction. BmColIV was found to be a component of the capsules. Furthermore, the present study showed that actively BmColIV-expressing granular cells accumulated around the midgut epithelium and formed BmColIV-rich thick basal lamina-like structures there in larval to pupal metamorphosis.

  1. A unified phase-field theory for the mechanics of damage and quasi-brittle failure

    NASA Astrophysics Data System (ADS)

    Wu, Jian-Ying

    2017-06-01

    Being one of the most promising candidates for the modeling of localized failure in solids, so far the phase-field method has been applied only to brittle fracture with very few exceptions. In this work, a unified phase-field theory for the mechanics of damage and quasi-brittle failure is proposed within the framework of thermodynamics. Specifically, the crack phase-field and its gradient are introduced to regularize the sharp crack topology in a purely geometric context. The energy dissipation functional due to crack evolution and the stored energy functional of the bulk are characterized by a crack geometric function of polynomial type and an energetic degradation function of rational type, respectively. Standard arguments of thermodynamics then yield the macroscopic balance equation coupled with an extra evolution law of gradient type for the crack phase-field, governed by the aforesaid constitutive functions. The classical phase-field models for brittle fracture are recovered as particular examples. More importantly, the constitutive functions optimal for quasi-brittle failure are determined such that the proposed phase-field theory converges to a cohesive zone model for a vanishing length scale. Those general softening laws frequently adopted for quasi-brittle failure, e.g., linear, exponential, hyperbolic and Cornelissen et al. (1986) ones, etc., can be reproduced or fit with high precision. Except for the internal length scale, all the other model parameters can be determined from standard material properties (i.e., Young's modulus, failure strength, fracture energy and the target softening law). Some representative numerical examples are presented for the validation. It is found that both the internal length scale and the mesh size have little influences on the overall global responses, so long as the former can be well resolved by sufficiently fine mesh. In particular, for the benchmark tests of concrete the numerical results of load versus displacement curve and crack paths both agree well with the experimental data, showing validity of the proposed phase-field theory for the modeling of damage and quasi-brittle failure in solids.

  2. Recent progress to understand stress corrosion cracking in sodium borosilicate glasses: linking the chemical composition to structural, physical and fracture properties

    NASA Astrophysics Data System (ADS)

    Rountree, Cindy L.

    2017-08-01

    This topical review is dedicated to understanding stress corrosion cracking in oxide glasses and specifically the SiO_2{\\text-B_2O_3{\\text-}Na_2O} (SBN) ternary glass systems. Many review papers already exist on the topic of stress corrosion cracking in complex oxide glasses or overly simplified glasses (pure silica). These papers look at how systematically controlling environmental factors (pH, temperature...) alter stress corrosion cracking, while maintaining the same type of glass sample. Many questions still exist, including: What sets the environmental limit? What sets the velocity versus stress intensity factor in the slow stress corrosion regime (Region I)? Can researchers optimize these two effects to enhance a glass’ resistance to failure? To help answer these questions, this review takes a different approach. It looks at how systemically controlling the glass’ chemical composition alters the structure and physical properties. These changes are then compared and contrasted to the fracture toughness and the stress corrosion cracking properties. By taking this holistic approach, researchers can begin to understand the controlling factors in stress corrosion cracking and how to optimize glasses via the initial chemical composition.

  3. Thermo-mechanical simulations of early-age concrete cracking with durability predictions

    NASA Astrophysics Data System (ADS)

    Havlásek, Petr; Šmilauer, Vít; Hájková, Karolina; Baquerizo, Luis

    2017-09-01

    Concrete performance is strongly affected by mix design, thermal boundary conditions, its evolving mechanical properties, and internal/external restraints with consequences to possible cracking with impaired durability. Thermo-mechanical simulations are able to capture those relevant phenomena and boundary conditions for predicting temperature, strains, stresses or cracking in reinforced concrete structures. In this paper, we propose a weakly coupled thermo-mechanical model for early age concrete with an affinity-based hydration model for thermal part, taking into account concrete mix design, cement type and thermal boundary conditions. The mechanical part uses B3/B4 model for concrete creep and shrinkage with isotropic damage model for cracking, able to predict a crack width. All models have been implemented in an open-source OOFEM software package. Validations of thermo-mechanical simulations will be presented on several massive concrete structures, showing excellent temperature predictions. Likewise, strain validation demonstrates good predictions on a restrained reinforced concrete wall and concrete beam. Durability predictions stem from induction time of reinforcement corrosion, caused by carbonation and/or chloride ingress influenced by crack width. Reinforcement corrosion in concrete struts of a bridge will serve for validation.

  4. Fatigue and Fracture Characterization of GlasGridRTM Reinforced Asphalt Concrete Pavement

    NASA Astrophysics Data System (ADS)

    Safavizadeh, Seyed Amirshayan

    The purpose of this research is to develop an experimental and analytical framework for describing, modeling, and predicting the reflective cracking patterns and crack growth rates in GlasGridRTM-reinforced asphalt pavements. In order to fulfill this objective, the effects of different interfacial conditions (mixture and tack coat type, and grid opening size) on reflective cracking-related failure mechanisms and the fatigue and fracture characteristics of fiberglass grid-reinforced asphalt concrete beams were studied by means of four- and threepoint bending notched beam fatigue tests (NBFTs) and cyclic and monotonic interface shear tests. The digital image correlation (DIC) technique was utilized for obtaining the displacement and strain contours of specimen surfaces during each test. The DIC analysis results were used to develop crack tip detection methods that were in turn used to determine interfacial crack lengths in the shear tests, and vertical and horizontal (interfacial) crack lengths in the notched beam fatigue tests. Linear elastic fracture mechanics (LEFM) principles were applied to the crack length data to describe the crack growth. In the case of the NBFTs, a finite element (FE) code was developed and used for modeling each beam at different stages of testing and back-calculating the stress intensity factors (SIFs) for the vertical and horizontal cracks. The local effect of reinforcement on the stiffness of the system at a vertical crack-interface intersection or the resistance of the grid system to the deflection differential at the joint/crack (hereinafter called joint stiffness) for GlasGrid-reinforced asphalt concrete beams was determined by implementing a joint stiffness parameter into the finite element code. The strain level dependency of the fatigue and fracture characteristics of the GlasGrid-reinforced beams was studied by performing four-point bending notched beam fatigue tests at strain levels of 600, 750, and 900 microstrain. These beam tests were conducted at 15°C, 20°C, and 23°C, with the main focus being to find the characteristics at 20°C. The results obtained from the tests at the different temperatures were used to investigate the effects of temperature on the reflective cracking performance of the gridreinforced beam specimens. The temperature tests were also used to investigate the validity of the time-temperature superposition (t-TS) principle in shear and the beam fatigue performance of the grid-reinforced specimens. The NBFT results suggest that different interlayer conditions do not reflect a unique failure mechanism, and thus, in order to predict and model the performance of grid-reinforced pavement, all the mechanisms involved in weakening its structural integrity, including damage within the asphalt layers and along the interface, must be considered. The shear and beam fatigue test results suggest that the grid opening size, interfacial bond quality, and mixture type play important roles in the reflective cracking performance of GlasGrid-reinforced asphalt pavements. According to the NBTF results, GlasGrid reinforcement retards reflective crack growth by stiffening the composite system and introducing a joint stiffness parameter. The results also show that the higher the bond strength and interlayer stiffness values, the higher the joint stiffness and retardation effects. The t-TS studies proved the validity of this principle in terms of the reflective crack growth of the grid-reinforced beam specimens and the shear modulus and shear strength of the grid-reinforced interfaces.

  5. Structures associated with strike-slip faults that bound landslide elements

    USGS Publications Warehouse

    Fleming, R.W.; Johnson, A.M.

    1989-01-01

    Large landslides are bounded on their flanks and on elements within the landslides by structures analogous to strike-slip faults. We observed the formation of thwse strike-slip faults and associated structures at two large landslides in central Utah during 1983-1985. The strike-slip faults in landslides are nearly vertical but locally may dip a few degrees toward or away from the moving ground. Fault surfaces are slickensided, and striations are subparallel to the ground surface. Displacement along strike-slip faults commonly produces scarps; scarps occur where local relief of the failure surface or ground surface is displaced and becomes adjacent to higher or lower ground, or where the landslide is thickening or thinning as a result of internal deformation. Several types of structures are formed at the ground surface as a strike-slip fault, which is fully developed at some depth below the ground surface, propagates upward in response to displacement. The simplest structure is a tension crack oriented at 45?? clockwise or counterclockwise from the trend of an underlying right- or left-lateral strike-slip fault, respectively. The tension cracks are typically arranged en echelon with the row of cracks parallel to the trace of the underlying strike-slip fault. Another common structure that forms above a developing strike-slip fault is a fault segment. Fault segments are discontinuous strike-slip faults that contain the same sense of slip but are turned clockwise or counterclockwise from a few to perhaps 20?? from the underlying strike-slip fault. The fault segments are slickensided and striated a few centimeters below the ground surface; continued displacement of the landslide causes the fault segments to open and a short tension crack propagates out of one or both ends of the fault segments. These structures, open fault segments containing a short tension crack, are termed compound cracks; and the short tension crack that propagates from the tip of the fault segment is typically oriented 45?? to the trend of the underlying fault. Fault segments are also typically arranged en echelon above the upward-propagating strike-slip fault. Continued displacement of the landslide causes the ground to buckle between the tension crack portions of the compound cracks. Still more displacement produces a thrust fault on one or both limbs of the buckle fold. These compressional structures form at right angles to the short tension cracks at the tips of the fault segments. Thus, the compressional structures are bounded on their ends by one face of a tension crack and detached from underlying material by thrusting or buckling. The tension cracks, fault segments, compound cracks, folds, and thrusts are ephemeral; they are created and destroyed with continuing displacement of the landslide. Ultimately, the structures are replaced by a throughgoing strike-slip fault. At one landslide, we observed the creation and destruction of the ephemeral structures as the landslide enlarged. Displacement of a few centimeters to about a decimeter was sufficient to produce scattered tension cracks and fault segments. Sets of compound cracks with associated folds and thrusts were produced by displacements of up to 1 m, and 1 to 2 m of displacement was required to produce a throughgoing strike-slip fault. The type of first-formed structure above an upward-propagating strike-slip fault is apparently controlled by the rheology of the material. Brittle material such as dry topsoil or the compact surface of a gravel road produces echelon tension cracks and sets of tension cracks and compressional structures, wherein the cracks and compressional structures are normal to each other and 45?? to the strike-slip fault at depth. First-formed structures in more ductile material such as moist cohesive soil are fault segments. In very ductile material such as soft clay and very wet soil in swampy areas, the first-formed structure is a throughgoing strike-slip fault. There are othe

  6. The Role of Dipeptidyl Peptidase IV in Lung Metastasis of Breast Cancer Cells

    DTIC Science & Technology

    1999-05-01

    Our studies focused on (1) cloning and sequencing of wild-type endothelial DPP IV (wtDPP IV) and preparation of truncated DPP IV ( tDPP IV); (2...that was identical to hepatic DPP IV. Acid extraction of rat lung yielded a tDPP IV, which was an effective inhibitor of breast cancer cell adhesion to

  7. Control Design Strategies to Enhance Long-Term Aircraft Structural Integrity

    NASA Technical Reports Server (NTRS)

    Newman, Brett A.

    1999-01-01

    Over the operational lifetime of both military and civil aircraft, structural components are exposed to hundreds of thousands of low-stress repetitive load cycles and less frequent but higher-stress transient loads originating from maneuvering flight and atmospheric gusts. Micro-material imperfections in the structure, such as cracks and debonded laminates, expand and grow in this environment, reducing the structural integrity and shortening the life of the airframe. Extreme costs associated with refurbishment of critical load-bearing structural components in a large fleet, or altogether reinventoring the fleet with newer models, indicate alternative solutions for life extension of the airframe structure are highly desirable. Increased levels of operational safety and reliability are also important factors influencing the desirability of such solutions. One area having significant potential for impacting crack growth/fatigue damage reduction and structural life extension is flight control. To modify the airframe response dynamics arising from command inputs and gust disturbances, feedback loops are routinely applied to vehicles. A dexterous flight control system architecture senses key vehicle motions and generates critical forces/moments at multiple points distributed throughout the airframe to elicit the desired motion characteristics. In principle, these same control loops can be utilized to influence the level of exposure to harmful loads during flight on structural components. Project objectives are to investigate and/or assess the leverage control has on reducing fatigue damage and enhancing long-term structural integrity, without degrading attitude control and trajectory guidance performance levels. In particular, efforts have focused on the effects inner loop control parameters and architectures have on fatigue damage rate. To complete this research, an actively controlled flexible aircraft model and a new state space modeling procedure for crack growth have been utilized. Analysis of the analytical state space model for crack growth revealed the critical mathematical factors, and hence the physical mechanism they represent, that influenced high rates of airframe crack growth. The crack model was then exercised with simple load inputs to uncover and expose key crack growth behavior. To characterize crack growth behavior, both "short-term" laboratory specimen test type inputs and "long-term" operational flight type inputs were considered. Harmonic loading with a single overload revealed typical exponential crack growth behavior until the overload application, after which time the crack growth was retarded for a period of time depending on the overload strength. An optimum overload strength was identified which leads to maximum retardation of crack growth. Harmonic loading with a repeated overload of varying strength and frequency again revealed an optimum overload trait for maximizing growth retardation. The optimum overload strength ratio lies near the range of 2 to 3 with dependency on frequency. Experimental data was found to correlate well with the analytical predictions.

  8. Elasto-plastic flow in cracked bodies using a new finite element model. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Karabin, M. E., Jr.

    1977-01-01

    Cracked geometries were studied by finite element techniques with the aid of a new special element embedded at the crack tip. This model seeked to accurately represent the singular stresses and strains associated with the elasto-plastic flow process. The present model was not restricted to a material type and did not predetermine a singularity. Rather the singularity was treated as an unknown. For each step of the incremental process the nodal degrees of freedom and the unknown singularity were found through minimization of an energy-like functional. The singularity and nodal degrees of freedom were determined by means of an iterative process.

  9. Displacement coefficients along the inner boundaries of radially cracked ring segments subject to forces and couples

    NASA Technical Reports Server (NTRS)

    Gross, B.

    1978-01-01

    Displacement results of plane boundary collocation analysis are given for various locations on the inner boundaries of radially cracked ring segments (C-shaped specimens) subject to two complementary types of loading. Results are presented for ratios of outer to inner radius in the range of 1.1 to 2.5 and ratios a/W in the range 0.1 to 0.8, where a is the crack length for a specimen of wall thickness W. By combination of these results the resultant displacement coefficient or the corresponding influence coefficient can be obtained for any practical load line location of a pin-loaded specimen.

  10. Crack detection in fastener holes using surface acoustic wave

    NASA Astrophysics Data System (ADS)

    Bao, Xiao-Qi; Varadan, Vasundara V.; Varadan, Vijay K.

    1995-05-01

    This paper presents an investigation of the monitoring of cracks at the edge of fastener holes on plates using an ultrasonic pulse-echo technique. Our studies show that, if the surface of the plate surrounding the hold is free, an acoustic wave on the surface of the plate is able to detect the cracks located in an arc of 60 degree(s). When the inner surface of the hole is free, surface acoustic waves on the inner surface are alternate choices. For the case when all these surfaces are in tight contact with other parts, hence unavailable for mounting transducers, a particular type of Lamb wave mode is presented.

  11. Fatigue of Self-Healing Nanofiber-based Composites: Static Test and Subcritical Crack Propagation.

    PubMed

    Lee, Min Wook; Sett, Soumyadip; Yoon, Sam S; Yarin, Alexander L

    2016-07-20

    Here, we studied the self-healing of composite materials filled with epoxy-containing nanofibers. An initial incision in the middle of a composite sample stretched in a static fatigue test can result in either crack propagation or healing. In this study, crack evolution was observed in real time. A binary epoxy, which acted as a self-healing agent, was encapsulated in two separate types of interwoven nano/microfibers formed by dual-solution blowing, with the core containing either epoxy or hardener and the shell being formed from poly(vinylidene fluoride)/ poly(ethylene oxide) mixture. The core-shell fibers were encased in a poly(dimethylsiloxane) matrix. When the fibers were damaged by a growing crack in this fiber-reinforced composite material because of static stretching in the fatigue test, they broke and released the healing agent into the crack area. The epoxy used in this study was cured and solidified for approximately an hour at room temperature, which then conglutinated and healed the damaged location. The observations were made for at least several hours and in some cases up to several days. It was revealed that the presence of the healing agent (the epoxy) in the fibers successfully prevented the propagation of cracks in stretched samples subjected to the fatigue test. A theoretical analysis of subcritical cracks was performed, and it revealed a jumplike growth of subcritical cracks, which was in qualitative agreement with the experimental results.

  12. Matrix metalloproteinase-2 and its correlation with basal membrane components laminin-5 and collagen type IV in paediatric burn patients measured with Surface Plasmon Resonance Imaging (SPRI) biosensors.

    PubMed

    Weremijewicz, Artur; Matuszczak, Ewa; Sankiewicz, Anna; Tylicka, Marzena; Komarowska, Marta; Tokarzewicz, Anna; Debek, Wojciech; Gorodkiewicz, Ewa; Hermanowicz, Adam

    2018-06-01

    The purpose of this study was the determination of matrix metalloproteinase-2 and its correlation with basal membrane components laminin-5 and collagen type IV in the blood plasma of burn patients measured with Surface Plasmon Resonance Imaging (SPRI) biosensors. 31 children scalded by hot water who were managed at the Department of Paediatric Surgery between 2014-2015, after primarily presenting with burns in 4-20% TBSA were included into the study (age 9 months up to 14 years, mean age 2,5+1 years). There were 10 girls and 21 boys. Venous blood samples were drawn 2-6h, and 12-16h after the thermal injury, and on the subsequent days 3, 5 and 7. The matrix metalloproteinase-2, collagen type IV and laminin-5 concentrations were assessed using Surface Plasmon Resonance Imaging by the investigators blinded to the other data. The MMP-2, laminin-5 and collagen type IV concentrations in the blood plasma of patients with burns, were highest 12-16h after thermal injury, the difference was statistically significant. The MMP-2, laminin-5 and collagen type IV concentrations measured 3 days, 5 days and 7 days after the thermal injury, slowly decreased over time, and on the 7th day reached the normal range, when compared with the concentration measured in controls. Current work is the first follow-up study regarding MMP-2 in burns. MMP-2, laminin-5 and collagen type IV levels were elevated early after burn injury in the plasma of studied patients, and were highest 12-16h after the injury. MMP-2, laminin-5 and collagen type IV levels were not proportional to the severity of the burn. We believe in the possibility that the gradual decrease of MMP-2, collagen type IV and laminin-5 concentrations could be connected with the process of healing, but to prove it, more investigation is needed in this area. The SPR imaging biosensor is a good diagnostic tool for determination of MMP-2, laminin-5 and collagen type IV in blood plasma of patients with burns. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  13. Endovascular Treatment of a Carotid Dissecting Pseudoaneurysm in a Patient with Ehlers-Danlos Syndrome Type IV with Fatal Outcome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Siok Ping, E-mail: siokpinglim@yahoo.co.uk; Duddy, Martin J.

    2008-01-15

    We present a patient with Ehlers-Danlos syndrome type IV (EDS IV) with a carotid dissecting pseudoaneurysm causing severe carotid stenosis. This lesion was treated endovascularly. Unfortunately, the patient died of remote vascular catastrophes (intracranial hemorrhage and abdominal aortic rupture). This unique case illustrates the perils of endovascular treatment of EDS IV patients and the need for preoperative screening for concomitant lesions. It also shows that a dissecting pseudoaneurysm can feasibly be treated with a covered stent and that closure is effective using Angioseal in patients with EDS IV.

  14. Impact initiation of explosives and propellants via statistical crack mechanics

    NASA Astrophysics Data System (ADS)

    Dienes, J. K.; Zuo, Q. H.; Kershner, J. D.

    2006-06-01

    A statistical approach has been developed for modeling the dynamic response of brittle materials by superimposing the effects of a myriad of microcracks, including opening, shear, growth and coalescence, taking as a starting point the well-established theory of penny-shaped cracks. This paper discusses the general approach, but in particular an application to the sensitivity of explosives and propellants, which often contain brittle constituents. We examine the hypothesis that the intense heating by frictional sliding between the faces of a closed crack during unstable growth can form a hot spot, causing localized melting, ignition, and fast burn of the reactive material adjacent to the crack. Opening and growth of a closed crack due to the pressure of burned gases inside the crack and interactions of adjacent cracks can lead to violent reaction, with detonation as a possible consequence. This approach was used to model a multiple-shock experiment by Mulford et al. [1993. Initiation of preshocked high explosives PBX-9404, PBX-9502, PBX-9501, monitored with in-material magnetic gauging. In: Proceedings of the 10th International Detonation Symposium, pp. 459-467] involving initiation and subsequent quenching of chemical reactions in a slab of PBX 9501 impacted by a two-material flyer plate. We examine the effects of crack orientation and temperature dependence of viscosity of the melt on the response. Numerical results confirm our theoretical finding [Zuo, Q.H., Dienes, J.K., 2005. On the stability of penny-shaped cracks with friction: the five types of brittle behavior. Int. J. Solids Struct. 42, 1309-1326] that crack orientation has a significant effect on brittle behavior, especially under compressive loading where interfacial friction plays an important role. With a reasonable choice of crack orientation and a temperature-dependent viscosity obtained from molecular dynamics calculations, the calculated particle velocities compare well with those measured using embedded velocity gauges.

  15. Damage Tolerant Design Handbook. A Compilation of Fracture and Crack- Growth Data for High-Strength Alloys. Volume 1

    DTIC Science & Technology

    1983-12-01

    34. Report MCR -74-43, Martin Marietta Corp.. Denver Division, Deaver, CO. Contract HAS 9-13599 (Jamnary 1974). 0981" T!-6AL-IV da/dN ’ rI-6L-6V-2Sn KIc...34Lockheed-Palo Alto M. J. Rebholz Martin Marietta Alumi•um D. Mellem Materials Laboratory C. Harmsworth, J. Larsen, and T. Nicholas (Wright-Patterson AFB...Applications,’ Report AFML- TR-73-182, Boeing Comercial Airplane Co., Seattle, WA., Contract ?33615- 71 -C-1550, September 1973. 88136 PH 13-8 Mo KIc Dill

  16. Role of 17 beta-estradiol on type IV collagen fibers volumetric density in the basement membrane of bladder wall.

    PubMed

    de Fraga, Rogerio; Dambros, Miriam; Miyaoka, Ricardo; Riccetto, Cássio Luís Zanettini; Palma, Paulo César Rodrigues

    2007-10-01

    The authors quantified the type IV collagen fibers volumetric density in the basement membrane of bladder wall of ovariectomized rats with and without estradiol replacement. This study was conducted on 40 Wistar rats (3 months old) randomly divided in 4 groups: group 1, remained intact (control); group 2, submitted to bilateral oophorectomy and daily replacement 4 weeks later of 17 beta-estradiol for 12 weeks; group 3, sham operated and daily replacement 4 weeks later of sesame oil for 12 weeks; and group 4, submitted to bilateral oophorectomy and killed after 12 weeks. It was used in immunohistochemistry evaluation using type IV collagen polyclonal antibody to stain the fibers on paraffin rat bladder sections. The M-42 stereological grid system was used to analyze the fibers. Ovariectomy had an increase effect on the volumetric density of the type IV collagen fibers in the basement membrane of rat bladder wall. Estradiol replacement in castrated animals demonstrated a significative difference in the stereological parameters when compared to the castrated group without hormonal replacement. Surgical castration performed on rats induced an increasing volumetric density of type IV collagen fibers in the basement membrane of rats bladder wall and the estradiol treatment had a significant effect in keeping a low volumetric density of type IV collagen fibers in the basement membrane of rats bladder wall.

  17. Characterization of Staphylococcus aureus faecal isolates associated with food-borne disease in Korea.

    PubMed

    Shin, E; Hong, H; Park, J; Oh, Y; Jung, J; Lee, Y

    2016-07-01

    To characterize Staphylococcus aureus faecal isolates from people suspected to be infected with food poisoning by using antimicrobial susceptibility testing and molecular techniques. A total of 340 Staph. aureus isolates from 6226 people suspected to be infected with food poisoning were identified and characterized by biochemical methods, antimicrobial susceptibility testing and PCR. Samples were obtained from January 2006 to December 2008 from the National Notifiable Diseases Surveillance System at the Research Institute of Public Health and Environment in Seoul Metropolitan, Korea. All strains carried at least one of the eight staphylococcal enterotoxin (se) genes tested and a total of 27 se profiles were produced; the most frequent se profile was seg-sei and the next was sea. Among the total isolates, 36 methicillin-resistant Staphylococcus aureus (MRSAs) isolates were further analysed by multilocus sequence typing (MLST), Staphylococcal cassette chromosome mec (SCCmec) typing, pulsed-field gel electrophoresis (PFGE) and PCR detection for pvl. ST72-SCCmec type IV was the most predominant clone (27 isolates, 75%) followed by ST1-SCCmec type IV (five isolates, 13·8%), ST20-SCCmec type IV (one isolate, 2·8%), ST493-SCCmec type IV (one isolate, 2·8%), ST903-SCCmec type IV (one isolate, 2·8%) and ST5-SCCmec type II (one isolate, 2·8%). By PFGE typing, MRSAs isolated during the same period were grouped together although they were isolated from different regions. None of MRSAs had PVL gene and nine MRSAs were multidrug resistant. Analysis of MRSAs by MLST, SCCmec typing, PFGE and pvl detection showed that the majority of strain associated with food-borne diseases belonged to a Korean community-acquired (CA) MRSA clone with ST72-SCCmec type IV-PVL negative-SEG/SEI and its variations while one strain was hospital-acquired (HA) MRSA. CA-MRSA clone which possessed ST72-SCCmec type IV-PVL negative-SEG/SEI was spread most commonly among MRSAs that were associated with food-borne diseases. This is the first report of ST903 strain in Korea. © 2016 The Society for Applied Microbiology.

  18. Adenocarcinoma of the lung with scattered consolidation: radiological-pathological correlation and prognosis.

    PubMed

    Jiang, Binghu; Takashima, Shodayu; Hakucho, Tomoaki; Hodaka, Numasaki; Yasuhiko, Tomita; Masahiko, Higashiyama

    2013-10-01

    To investigate the clinicopathological features and prognosis in patients with adenocarcinoma of the lung with scattered consolidation (ALSC). Between January 2006 and March 2010, 139 consecutive patients with lung adenocarcinoma of ≤3 cm, who underwent pulmonary resection for lung cancer, were investigated retrospectively. Radiologic classification was based on the findings of thin-section CT such as the presence of consolidation or ground-glass opacity (GGO). Type I (n=15) and Type II (n=14), showed a pure GGO and a mixed GGO with consolidation <50%, respectively. Type IV (n=38) and Type V (n=52) showed a mixed GGO with consolidation ≥50% and a pure consolidation, respectively. Type III (n=20) was the adenocarcinoma of the lung with scattered consolidation (ALSC). The clinicopathological features and prognosis of ALSC was investigated with comparative analysis and survival analysis. Because of the similar recurrence rate for Type I and Type II (P=1.000), Type IV and Type V (P=0.343), we merged Type I and Type II as Type I+II, Type IV and Type V as Type IV+V, respectively. In the 20 (14.4%) patients with ALSC, lymph node metastasis was not observed, and it was rare in lymphatic invasion and vascular invasion. On the basis of IASLC/ATS/ERS 2011 classification, 80% of the ALSC were preinvasive lesions. In Noguchi classification, there was no significant difference between Type I+II and ALSC (P=0.260). The prognosis of ALSC was similar to Type I+II (P=0.408), but better than Type IV+V (P=0.040). Adenocarcinoma of the lung with scattered consolidation (ALSC) on thin-section CT was a relatively favorable prognostic factor. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. 46 CFR 164.019-3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Guard-approved PFDs. Commandant means the Chief of the Lifesaving and Fire Safety Division, Office of... code PFD type acceptable for use 1 I, II, and III. 2 II and III. 3 III. 4B IV (all Ring Buoys). 4BC IV (Buoyant Cushions). 4RB IV (Recreational Ring Buoys only). 5 Wearable Type V (intended use must be...

  20. Metachronous Bilateral Posterior Tibial Artery Aneurysms in Ehlers-Danlos Syndrome Type IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagspiel, Klaus D., E-mail: kdh2n@virginia.edu; Bonatti, Hugo; Sabri, Saher

    2011-04-15

    Ehlers-Danlos syndrome type IV is a life-threatening genetic connective tissue disorder. We report a 24-year-old woman with EDS-IV who presented with metachronous bilateral aneurysms/pseudoaneurysms of the posterior tibial arteries 15 months apart. Both were treated successfully with transarterial coil embolization from a distal posterior tibial approach.

  1. 2014 Accomplishments-Tritium aging studies on stainless steel: Fracture toughness properties of forged stainless steels-Effect of hydrogen, forging strain rate, and forging temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Michael J.

    Forged stainless steels are used as the materials of construction for tritium reservoirs. During service, tritium diffuses into the reservoir walls and radioactively decays to helium-3. Tritium and decay helium cause a higher propensity for cracking which could lead to a tritium leak or delayed failure of a tritium reservoir. The factors that affect the tendency for crack formation and propagation include: Environment; steel type and microstructure; and, vessel configuration (geometry, pressure, residual stress). Fracture toughness properties are needed for evaluating the long-term effects of tritium on their structural properties. Until now, these effects have been characterized by measuring themore » effects of tritium on the tensile and fracture toughness properties of specimens fabricated from experimental forgings in the form of forward-extruded cylinders. A key result of those studies is that the long-term cracking resistance of stainless steels in tritium service depends greatly on the interaction between decay helium and the steels’ forged microstructure. New experimental research programs are underway and are designed to measure tritium and decay helium effects on the cracking properties of stainless steels using actual tritium reservoir forgings instead of the experimental forgings of past programs. The properties measured should be more representative of actual reservoir properties because the microstructure of the specimens tested will be more like that of the tritium reservoirs. The programs are designed to measure the effects of key forging variables on tritium compatibility and include three stainless steels, multiple yield strengths, and four different forging processes. The effects on fracture toughness of hydrogen and crack orientation were measured for type 316L forgings. In addition, hydrogen effects on toughness were measured for Type 304L block forgings having two different yield strengths. Finally, fracture toughness properties of type 304L stainless steel were measured for four different forging strain rates which and two forging temperatures. Tritium exposures have been and are being conducted on companion specimens for property measurements in the upcoming years.« less

  2. Interstellar C IV and Si IV column densities toward early-type stars

    NASA Technical Reports Server (NTRS)

    Bruhweiler, F. C.; Kondo, Y.; Mccluskey, G. E.

    1980-01-01

    Equivalent widths and deduced column densities of Si IV and C IV are examined for 18 early-type close binaries, and physical processes responsible for the origin of these ions in the interstellar medium are investigated. The available C IV/Si IV column density ratios typically lie within a narrow range from 0.8 to 4.5, and there is evidence that the column density of C IV is higher than that of N V along most lines of sight, suggesting that C IV is not formed in the same hot region as O VI. In addition, the existence of regions with a narrowly defined new temperature range around 50,000 deg K is indicated. The detection of the semitorrid gas of Bruhweiler, Kondo, and McCluskey (1978, 1979) is substantiated, and the relation of this gas to the observations of coronal gas in the galactic halo is discussed.

  3. Statistical study of ductility-dip cracking induced plastic deformation in polycrystalline laser 3D printed Ni-based superalloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Dan; Xue, Jiawei; Zhang, Anfeng

    Ductility-dip cracking in Ni-based superalloy, resulting from heat treatment, is known to cause disastrous failure, but its mechanism is still not completely clear. A statistical study of the cracking behavior as a function of crystal orientation in a laser 3D-printed DL125L Ni-based superalloy polycrystal is investigated here using the synchrotron X-ray microdiffraction. The dislocation slip system in each of the forty crystal grains adjacent to the 300 μm long crack has been analyzed through Laue diffraction peak shapes. In all these grains, edge-type geometrically necessary dislocations (GNDs) dominate, and their dislocation line directions are almost parallel to the crack plane.more » Based on Schmid's law, the equivalent uniaxial tensile force direction is revealed normal to the trace of the crack. A qualitative mechanism is thus proposed. Thermal tensile stress perpendicular to the laser scanning direction is elevated due to a significant temperature gradient, and thus locations in the materials where the thermal stress exceeds the yield stress undergo plastic deformation mediated by GND activations. As the dislocations slip inside the crystal grains and pile up at the grain boundaries, local strain/stress keeps increasing, until the materials in these regions fail to sustain further deformation, leading to voids formation and cracks propagation.« less

  4. Statistical study of ductility-dip cracking induced plastic deformation in polycrystalline laser 3D printed Ni-based superalloy

    DOE PAGES

    Qian, Dan; Xue, Jiawei; Zhang, Anfeng; ...

    2017-06-06

    Ductility-dip cracking in Ni-based superalloy, resulting from heat treatment, is known to cause disastrous failure, but its mechanism is still not completely clear. A statistical study of the cracking behavior as a function of crystal orientation in a laser 3D-printed DL125L Ni-based superalloy polycrystal is investigated here using the synchrotron X-ray microdiffraction. The dislocation slip system in each of the forty crystal grains adjacent to the 300 μm long crack has been analyzed through Laue diffraction peak shapes. In all these grains, edge-type geometrically necessary dislocations (GNDs) dominate, and their dislocation line directions are almost parallel to the crack plane.more » Based on Schmid's law, the equivalent uniaxial tensile force direction is revealed normal to the trace of the crack. A qualitative mechanism is thus proposed. Thermal tensile stress perpendicular to the laser scanning direction is elevated due to a significant temperature gradient, and thus locations in the materials where the thermal stress exceeds the yield stress undergo plastic deformation mediated by GND activations. As the dislocations slip inside the crystal grains and pile up at the grain boundaries, local strain/stress keeps increasing, until the materials in these regions fail to sustain further deformation, leading to voids formation and cracks propagation.« less

  5. Serotype IV and invasive group B Streptococcus disease in neonates, Minnesota, USA, 2000-2010.

    PubMed

    Ferrieri, Patricia; Lynfield, Ruth; Creti, Roberta; Flores, Aurea E

    2013-04-01

    Group B Streptococcus (GBS) is a major cause of invasive disease in neonates in the United States. Surveillance of invasive GBS disease in Minnesota, USA, during 2000-2010 yielded 449 isolates from 449 infants; 257 had early-onset (EO) disease (by age 6 days) and 192 late-onset (LO) disease (180 at age 7-89 days, 12 at age 90-180 days). Isolates were characterized by capsular polysaccharide serotype and surface-protein profile; types III and Ia predominated. However, because previously uncommon serotype IV constitutes 5/31 EO isolates in 2010, twelve type IV isolates collected during 2000-2010 were studied further. By pulsed-field gel electrophoresis, they were classified into 3 profiles; by multilocus sequence typing, representative isolates included new sequence type 468. Resistance to clindamycin or erythromycin was detected in 4/5 serotype IV isolates. Emergence of serotype IV GBS in Minnesota highlights the need for serotype prevalence monitoring to detect trends that could affect prevention strategies.

  6. Automated predesign of aircraft

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.; Kruse, G. S.; Tanner, C. J.; Wilson, P. J.

    1978-01-01

    Program uses multistation structural-synthesis to size and design box-beam structures for transport aircraft. Program optimizes static strength and scales up to satisfy fatigue and fracture criteria. It has multimaterial capability and library of materials properties, including advanced composites. Program can be used to evaluate impact on weight of variables such as materials, types of construction, structural configurations, minimum gage limits, applied loads, fatigue lives, crack-growth lives, initial crack sizes, and residual strengths.

  7. The creation of racks and nanopores creation in various allotropes of boron due to the mechanical loads

    NASA Astrophysics Data System (ADS)

    Sadeghzadeh, S.

    2017-11-01

    Two-dimensional (2D) materials have recently attracted a great attraction. This paper provides a detailed discussion on the rupture mechanisms of different allotropes of boron. As a new 2D material by using a reactive molecular dynamics model, probable types of rupture for borophene sheets were studied, among which two dominant mechanisms were observed: creation of the cracks and formation of nanopores. The results obtained are compared to those for graphene and h-BN nano sheets, although the rupture mechanism was completely different from the graphene and h-BN sheets. The simulations suggested that borophene might remain more stable against external mechanical loads than graphene and BN sheets. Cracking leads to larger strain along the loading direction, whereas the creation of local pores spends the imposed energy for breaking the internal bonds and so flowing the external energy into the various bonds increases the number of pores. For the armchair-types, cracking is a dominant mechanism while for the zigzag-type the common mechanism is the creation of nanopores. These interesting results may help to design a new class of semiconductors that remain stable even when are sustaining uncontrollable external stresses.

  8. Corrosion fatigue of alloys 600 and 690 in simulated LWR environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruther, W.E.; Soppett, W.K.; Kassner, T.F.

    1996-04-01

    Crack growth data were obtained on fracture-mechanics specimens of Alloys 600 and 690 to investigate environmentally assisted cracking (EAC) in simulated boiling water reactor and pressurized water reactor environments at 289 and 320 C. Preliminary information was obtained on the effect of temperature, load ratio, stress intensity (K), and the dissolved-oxygen and -hydrogen concentrations of the water on EAC. Specimens of Type 316NG and sensitized Type 304 stainless steel (SS) were included in several of the experiments to assess the behavior of these materials and Alloy 600 under the same water chemistry and loading conditions. The experimental data are comparedmore » with predictions from an Argonne National Laboratory (ANL) model for crack growth rates (CGRs) of SSs in water and the ASME Code Section 11 correlation for CGRs in air at the K{sub max} and load-ratio values in the various tests. The data for all of the materials were bounded by ANL model predictions and the ASME Section 11 ``air line.``« less

  9. Strength gradient enhances fatigue resistance of steels

    NASA Astrophysics Data System (ADS)

    Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian

    2016-02-01

    Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility.

  10. Microcapsule-Type Self-Healing Protective Coating for Cementitious Composites with Secondary Crack Preventing Ability.

    PubMed

    Kim, Dong-Min; Yu, Hwan-Chul; Yang, Hye-In; Cho, Yu-Jin; Lee, Kwang-Myong; Chung, Chan-Moon

    2017-01-26

    A microcapsule-type self-healing protective coating with secondary crack preventing capability has been developed using a silanol-terminated polydimethylsiloxane (STP)/dibutyltin dilaurate (DD) healing agent. STP undergoes condensation reaction in the presence of DD to give a viscoelastic substance. STP- and DD-containing microcapsules were prepared by in-situ polymerization and interfacial polymerization methods, respectively. The microcapsules were characterized by Fourier-transform infrared (FT-IR) spectroscopy, optical microscopy, and scanning electron microscopy (SEM). The microcapsules were integrated into commercial enamel paint or epoxy coating formulations, which were applied on silicon wafers, steel panels, and mortar specimens to make dual-capsule self-healing protective coatings. When the STP/DD-based coating was scratched, self-healing of the damaged region occurred, which was demonstrated by SEM, electrochemical test, and water permeability test. It was also confirmed that secondary crack did not occur in the healed region upon application of vigorous vibration to the self-healing coating.

  11. Strength gradient enhances fatigue resistance of steels

    PubMed Central

    Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian

    2016-01-01

    Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility. PMID:26907708

  12. Microcapsule-Type Self-Healing Protective Coating for Cementitious Composites with Secondary Crack Preventing Ability

    PubMed Central

    Kim, Dong-Min; Yu, Hwan-Chul; Yang, Hye-In; Cho, Yu-Jin; Lee, Kwang-Myong; Chung, Chan-Moon

    2017-01-01

    A microcapsule-type self-healing protective coating with secondary crack preventing capability has been developed using a silanol-terminated polydimethylsiloxane (STP)/dibutyltin dilaurate (DD) healing agent. STP undergoes condensation reaction in the presence of DD to give a viscoelastic substance. STP- and DD-containing microcapsules were prepared by in-situ polymerization and interfacial polymerization methods, respectively. The microcapsules were characterized by Fourier-transform infrared (FT-IR) spectroscopy, optical microscopy, and scanning electron microscopy (SEM). The microcapsules were integrated into commercial enamel paint or epoxy coating formulations, which were applied on silicon wafers, steel panels, and mortar specimens to make dual-capsule self-healing protective coatings. When the STP/DD-based coating was scratched, self-healing of the damaged region occurred, which was demonstrated by SEM, electrochemical test, and water permeability test. It was also confirmed that secondary crack did not occur in the healed region upon application of vigorous vibration to the self-healing coating. PMID:28772475

  13. Experimental and Numerical Study on the Cracked Chevron Notched Semi-Circular Bend Method for Characterizing the Mode I Fracture Toughness of Rocks

    NASA Astrophysics Data System (ADS)

    Wei, Ming-Dong; Dai, Feng; Xu, Nu-Wen; Liu, Jian-Feng; Xu, Yuan

    2016-05-01

    The cracked chevron notched semi-circular bending (CCNSCB) method for measuring the mode I fracture toughness of rocks combines the merits (e.g., avoidance of tedious pre-cracking of notch tips, ease of sample preparation and loading accommodation) of both methods suggested by the International Society for Rock Mechanics, which are the cracked chevron notched Brazilian disc (CCNBD) method and the notched semi-circular bend (NSCB) method. However, the limited availability of the critical dimensionless stress intensity factor (SIF) values severely hinders the widespread usage of the CCNSCB method. In this study, the critical SIFs are determined for a wide range of CCNSCB specimen geometries via three-dimensional finite element analysis. A relatively large support span in the three point bending configuration was considered because the fracture of the CCNSCB specimen in that situation is finely restricted in the notch ligament, which has been commonly assumed for mode I fracture toughness measurements using chevron notched rock specimens. Both CCNSCB and NSCB tests were conducted to measure the fracture toughness of two different rock types; for each rock type, the two methods produce similar toughness values. Given the reported experimental results, the CCNSCB method can be reliable for characterizing the mode I fracture toughness of rocks.

  14. Impact tensile properties and strength development mechanism of glass for reinforcement fiber

    NASA Astrophysics Data System (ADS)

    Kim, T.; Oshima, K.; Kawada, H.

    2013-07-01

    In this study, impact tensile properties of E-glass were investigated by fiber bundle testing under a high strain rate. The impact tests were performed employing two types of experiments. One is the tension-type split Hopkinson pressure bar system, and the other is the universal high-speed tensile-testing machine. As the results, it was found that not only the tensile strength but also the fracture strain of E-glass fiber improved with the strain rate. The absorbed strain energy of this material significantly increased. It was also found that the degree of the strain rate dependency of E-glass fibers on the tensile strength was varied according to fiber diameter. As for the strain rate dependency of the glass fiber under tensile loading condition, change of the small crack-propagation behaviour was considered to clarify the development of the fiber strength. The tensile fiber strength was estimated by employing the numerical simulation based on the slow crack-growth model (SCG). Through the parametric study against the coefficient of the crack propagation rate, the numerical estimation value was obtained for the various testing conditions. It was concluded that the slow crack-growth behaviour in the glass fiber was an essential for the increase in the strength of this material.

  15. The effects of wearing Passenger Protective Breathing Equipment on evacuation times through type III and type IV emergency aircraft exits in clear air and smoke.

    DOT National Transportation Integrated Search

    1989-11-01

    The effects of Passenger Protective Breathing Equipment (PPBE) on the time required for simulated emergency evacuations through Type III and Type IV overwing aircraft exits were studied in two quasi-independent experiments, one in clear air and anoth...

  16. Damage Accumulation in SiC/SiC Composites with 3D Architectures

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Yun, Hee-Mann; DiCarlo, James A.

    2003-01-01

    The formation and propagation of multiple matrix cracks in relatively dense ceramic matrix composites when subjected to increasing tensile stress is necessary for high strength and tough composites. However, the occurrence of matrix cracks at low stresses may limit the usefulness of some non-oxide composite systems when subjected to oxidizing environments for long times at stresses sufficient to cause matrix cracking. For SiC fiber-reinforced composites with two-dimensional woven architectures and chemically vapor infiltrated (CVI) SiC matrix and melt-infiltrated (MI) Si/SiC matrix composites, the matrix cracking behavior has been fairly well characterized for different fiber-types and woven architectures. It was found that the occurrence, degree, and growth of matrix cracks depends on the material properties of the composite constituents as well as other physical properties of the composite or architecture, e.g., matrix porosity and size of the fiber bundle. In this study, matrix cracking in SiC fiber reinforced, melt-infiltrated SiC composites with a 3D orthogonal architecture was determined for specimens tested in tension at room temperature. Acoustic emission (AE) was used to monitor the matrix cracking activity, which was later confirmed by microscopic examination of specimens that had failed. The determination of the exact location of AE demonstrated that initial cracking occurred in the matrix rich regions when a large z-direction fiber bundle was used. For specimens with large z-direction fiber tows, the earliest matrix cracking could occur at half the stress for standard 2D woven composites with similar constituents. Damage accumulation in 3D architecture composites will be compared to damage accumulation in 2D architecture composites and discussed with respect to modeling composite stress-strain behavior and use of these composites at elevated temperatures.

  17. Fracture toughness of brittle materials determined with chevron notch specimens

    NASA Technical Reports Server (NTRS)

    Shannon, J. L., Jr.; Bubsey, R. T.; Pierce, W. S.; Munz, D.

    1981-01-01

    Short bar, short rod, and four-point-bend chevron-notch specimens were used to determine the plane strain fracture toughness of hot-pressed silicon nitride and sintered aluminum oxide brittle ceramics. The unique advantages of this specimen type are: (1) the production of a sharp natural crack during the early stage of test loading, so that no precracking is required, and (2) the load passes through a maximum at a constant, material-independent crack length-to-width ratio for a specific geometry, so that no post-test crack measurement is required. The plane strain fracture toughness is proportional to the maximum test load and functions of the specimen geometry and elastic compliance. Although results obtained for silicon nitride are in good mutual agreement and relatively free of geometry and size effects, aluminum oxide results were affected in both these respects by the rising crack growth resistance curve of the material.

  18. Fnk Model of Cracking Rate Calculus for a Variable Asymmetry Coefficient

    NASA Astrophysics Data System (ADS)

    Roşca, Vâlcu; Miriţoiu, Cosmin Mihai

    2017-12-01

    In the process of materials fracture, a very important parameter to study is the cracking rate growth da/dN. This paper proposes an analysis of the cracking rate, in a comparative way, by using four mathematical models:1 - polynomial method, by using successive iterations according to the ASTM E647 standard; 2 - model that uses the Paris formula; 3 - Walker formula method; 4 - NASGRO model or Forman - Newman - Konig equation, abbreviated as FNK model. This model is used in the NASA programs studies. For the tests, CT type specimens were made from stainless steel, V2A class, 10TiNiCr175 mark, and loaded to a variable tensile test axial - eccentrically, with the asymmetry coefficients: R= 0.1, 0.3 and 0.5; at the 213K (-60°C) temperature. There are analyzed the cracking rates variations according to the above models, especially through FNK method, highlighting the asymmetry factor variation.

  19. Mixed mode stress-intensity-factors in mode-3 loaded middle crack tension specimen

    NASA Technical Reports Server (NTRS)

    Shivakumar, Kunigal N.

    1992-01-01

    A three dimensional stress analysis of a middle-crack tension specimen subjected to mode-3 type loading was performed using fracture mechanics based finite element code FRAC3D. Three-dimensional stress intensity factors were calculated for a range of specimen thicknesses that represent the structures used in aerospace and nuclear industries. Calculated SIF for very thick specimen (thickness-to-crack length b/a greater than or equal to 30) agreed very well with the antiplane solution in the literature. The K(sub II) stress field exists near the intersection of the crack front and free surface in a boundary-layer region covers the complete thickness of the plate and K(sub II) dominates all through the thickness. For very thin plates (b/a is less than .1), the average K(sub II) is larger than K(sub III) (about 25% for b/a = 0.1).

  20. [Knowledge derived from studies on crack: an incursion into Brazilian dissertations and theses].

    PubMed

    Rodrigues, Diego Schaurich; Backes, Dirce Stein; Freitas, Hilda Maria Barbosa de; Zamberlan, Claudia; Gelhen, Maria Helena; Colomé, Juliana Silveira

    2012-05-01

    This is a systematic review based on the integrative review method, which sought to analyze the characteristics of knowledge produced by studies on crack, in Brazilian Master's and Doctoral courses. The investigation comprised 33 studies (18 dissertations and 15 theses). Among them, 51.5% were from the Health Science area with emphasis on the Postgraduate Program in Psychiatry (and Medical Psychology), which provided five dissertations/theses. Most of the knowledge on the epidemic (51.5%) are from the Universidade Federal de São Paulo and Universidade de São Paulo, with the largest number of studies (81.8%) concentrated in the southeast. The themes most analyzed were: organic alterations, drug trafficking and crack use, HIV/Aids, types and strategies of treatment. The results showed that Brazilian stricto sensu knowledge about crack is still incipient, sketchy and ineffectual, albeit promising due to demands and implications that this epidemic imposes upon society.

  1. Absorption Voltages and Insulation Resistance in Ceramic Capacitors with Cracks

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2014-01-01

    Time dependence of absorption voltages (V(sub abs)) in different types of low-voltage X5R and X7R ceramic capacitors was monitored for a maximum duration of hundred hours after polarization. To evaluate the effect of mechanical defects on V(sub abs)), cracks in the dielectric were introduced either mechanically or by thermal shock. The maximum absorption voltage, time to roll-off, and the rate of voltage decrease are shown to depend on the crack-related leakage currents and insulation resistance in the parts. A simple model that is based on the Dow equivalent circuit for capacitors with absorption has been developed to assess the insulation resistance of capacitors. Standard measurements of the insulation resistance, contrary to the measurements based on V(sub abs)), are not sensitive to the presence of mechanical defects and fail to reveal capacitors with cracks.

  2. Crack depth profiling using guided wave angle dependent reflectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volker, Arno, E-mail: arno.volker@tno.nl; Pahlavan, Lotfollah, E-mail: arno.volker@tno.nl; Blacquiere, Gerrit, E-mail: arno.volker@tno.nl

    2015-03-31

    Tomographic corrosion monitoring techniques have been developed, using two rings of sensors around the circumference of a pipe. This technique is capable of providing a detailed wall thickness map, however this might not be the only type of structural damage. Therefore this concept is expanded to detect and size cracks and small corrosion defects like root corrosion. The expanded concept uses two arrays of guided-wave transducers, collecting both reflection and transmission data. The data is processed such that the angle-dependent reflectivity is obtained without using a baseline signal of a defect-free situation. The angle-dependent reflectivity is the input of anmore » inversion scheme that calculates a crack depth profile. From this profile, the depth and length of the crack can be determined. Preliminary experiments show encouraging results. The depth sizing accuracy is in the order of 0.5 mm.« less

  3. Fracture properties of concrete specimens made from alkali activated binders

    NASA Astrophysics Data System (ADS)

    Šimonová, Hana; Kucharczyková, Barbara; Topolář, Libor; Bílek, Vlastimil, Jr.; Keršner, Zbyněk

    2017-09-01

    The aim of this paper is to quantify crack initiation and other fracture properties - effective fracture toughness and specific fracture energy - of two types of concrete with an alkali activated binder. The beam specimens with a stress concentrator were tested in a three-point bending test after 28, 90, and 365 days of maturing. Records of fracture tests in the form of load versus deflection (P-d) diagrams were evaluated using effective crack model and work-of-fracture method and load versus mouth crack opening displacement (P-CMOD) diagrams were evaluated using the Double-K fracture model. The initiation of cracks during the fracture tests for all ages was also monitored by the acoustic emission method. The higher value of monitored mechanical fracture parameters of concrete with alkali activated blast furnace slag were achieved with substitution blast furnace slag by low calcium fly ash in comparison with substitution by cement kiln dust.

  4. Determination of babbit mechanical properties based on tin under static and cyclic loading

    NASA Astrophysics Data System (ADS)

    Zernin, M. V.

    2018-03-01

    Based on the results of studies of babbitt on the basis of tin under static loading under three types of stress state, the parameters of the criterion for the equivalence of stressed states were refined and a single diagram of the babbitt deformation was obtained. It is shown that the criterion of equivalence for static loading should contain the first principal stress and stress intensity. With cyclic loading, the first main voltage can be used as a criterion. The stages of development of fatigue cracks are described and it is logical to use a statistical approach to reveal the boundary of the transition from short cracks to macrocracks, based on a significant difference in the characteristics of the dispersion of the crack speeds at these two stages. The results of experimental studies of the cyclic crack resistance of babbitt are presented and the parameters of this boundary are obtained.

  5. An Analysis of Type IV Precision Measurement Equipment Laboratory Logistical Support Relative to the Implementation of F-15/F-16 Two-Level Maintenance

    DTIC Science & Technology

    1994-09-01

    wife, Margie, for her patience and understanding. Graduate school definitely affects the family . Margie allowed me to use many valuable family hours...Consolidations and reorganizations, in which the face of logistics is changing day -by- day , are taking place throughout the Department of Defense. Two...will focus on Type IV F-15 and Type IV F-16 PMELs. Imporane of Research The two-level maintenance concept significantly alters the structure of

  6. Collagen IV Diseases: A Focus on the Glomerular Basement Membrane in Alport Syndrome

    PubMed Central

    Cosgrove, Dominic; Liu, Shiguang

    2016-01-01

    Alport syndrome is the result of mutations in any of three type IV collagen genes, COL4A3, COL4A4, or COL4A5. Because the three collagen chains form heterotrimers, there is an absence of all three proteins in the basement membranes where they are expressed. In the glomerulus, the mature glomerular basement membrane type IV collagen network, normally comprised of two separate networks, α3(IV)/α4(IV)/α5(IV) and α1(IV)/α2(IV), is comprised entirely of collagen α1(IV)/α2. This review addresses the current state of our knowledge regarding the consequence of this change in basement membrane composition, including both the direct, via collagen receptor binding, and indirect, regarding influences on glomerular biomechanics. The state of our current understanding regarding mechanisms of glomerular disease initiation and progression will be examined, as will the current state of the art regarding emergent therapeutic approaches to slow or arrest glomerular disease in Alport patients. PMID:27576055

  7. Glomerular basement membrane injuries in IgA nephropathy evaluated by double immunostaining for α5(IV) and α2(IV) chains of type IV collagen and low-vacuum scanning electron microscopy.

    PubMed

    Masuda, Yukinari; Yamanaka, Nobuaki; Ishikawa, Arimi; Kataoka, Mitue; Arai, Takashi; Wakamatsu, Kyoko; Kuwahara, Naomi; Nagahama, Kiyotaka; Ichikawa, Kaori; Shimizu, Akira

    2015-06-01

    The glomerulus contains well-developed capillaries, which are at risk of injury due to high hydrostatic pressure, hyperfiltration, hypertension and inflammation. However, the pathological alterations of the injured glomerular basement membrane (GBM), the main component of the glomerular filtration barrier, are still uncertain in cases of glomerulonephritis. We examined the alterations of the GBM in 50 renal biopsy cases with IgA nephropathy (31.8 ± 17.6 years old) using double immunostaining for the α2(IV) and α5(IV) chains of type IV collagen, and examining the ultrastructural alterations by transmission electron microscopy (TEM) and low-vacuum scanning electron microscopy (LV-SEM). The GBM of IgA nephropathy cases showed various morphological and qualitative alterations. In the TEM findings, thinning, gaps, rupture, thickening with a lamellar and reticular structure and double contours were detected in the GBM. Double immunostaining for α5(IV) and α2(IV) showed thickening of the GBM with reduced α5(IV) and increased α2(IV), or mosaic images of α5(IV) and α2(IV), and holes, fractures, spiny projections and rupture of α5(IV) in the GBM. In addition, LV-SEM showed an etched image and multiple holes in a widening and wavy GBM. These findings might be associated with the development of a brittle GBM in IgA nephropathy. Glomerular basement membrane alterations were frequently noted in IgA nephropathy, and were easily evaluated by double immunostaining for α2(IV) and α5(IV) of type IV collagen and LV-SEM. The application of these analyses to human renal biopsy specimens may enhance our understanding of the alterations of the GBM that occur in human glomerular diseases.

  8. The effect of thermal processing on microstructure and mechanical properties in a nickel-iron alloy

    NASA Astrophysics Data System (ADS)

    Yang, Ling

    The correlation between processing conditions, resulted microstructure and mechanical properties is of interest in the field of metallurgy for centuries. In this work, we investigated the effect of thermal processing parameters on microstructure, and key mechanical properties to turbine rotor design: tensile yield strength and crack growth resistance, for a nickel-iron based superalloy Inconel 706. The first step of the designing of experiments is to find parameter ranges for thermal processing. Physical metallurgy on superalloys was combined with finite element analysis to estimate variations in thermal histories for a large Alloy 706 forging, and the results were adopted for designing of experiments. Through the systematic study, correlation was found between the processing parameters and the microstructure. Five different types of grain boundaries were identified by optical metallography, fractography, and transmission electron microscopy, and they were found to be associated with eta precipitation at the grain boundaries. Proportions of types of boundaries, eta size, spacing and angle respect to the grain boundary were found to be dependent on processing parameters. Differences in grain interior precipitates were also identified, and correlated with processing conditions. Further, a strong correlation between microstructure and mechanical properties was identified. The grain boundary precipitates affect the time dependent crack propagation resistance, and different types of boundaries have different levels of resistance. Grain interior precipitates were correlated with tensile yield strength. It was also found that there is a strong environmental effect on time dependent crack propagation resistance, and the sensitivity to environmental damage is microstructure dependent. The microstructure with eta decorated on grain boundaries by controlled processing parameters is more resistant to environmental damage through oxygen embrittlement than material without eta phase on grain boundaries. Effort was made to explore the mechanisms of improving the time dependent crack propagation resistance through thermal processing, several mechanisms were identified in both environment dependent and environment independent category, and they were ranked based on their contributions in affecting crack propagation.

  9. Genetics Home Reference: glycogen storage disease type IV

    MedlinePlus

    ... 000 to 800,000 individuals worldwide. Type IV accounts for roughly 3 percent of all cases of glycogen storage disease. Related Information What information about a genetic condition can statistics ...

  10. Influence of crack opening and incident wave angle on second harmonic generation of Lamb waves

    NASA Astrophysics Data System (ADS)

    Yang, Yi; Ng, Ching-Tai; Kotousov, Andrei

    2018-05-01

    Techniques utilising second harmonic generation (SHG) have proven their great potential in detecting contact-type damage. However, the gap between the practical applications and laboratory studies is still quite large. The current work is aimed to bridge this gap by investigating the effects of the applied load and incident wave angle on the detectability of fatigue cracks at various lengths. Both effects are critical for practical implementations of these techniques. The present experimental study supported by three-dimensional (3D) finite element (FE) modelling has demonstrated that the applied load, which changes the crack opening and, subsequently, the contact nonlinearity, significantly affects the amplitude of the second harmonic generated by the fundamental symmetric mode (S0) of Lamb wave. This amplitude is also dependent on the length of the fatigue crack as well as the incident wave angle. The experimental and FE results correlate well, so the modelling approach can be implemented for practical design of damage monitoring systems as well as for the evaluation of the severity of the fatigue cracks.

  11. Autonomous Robotic Inspection in Tunnels

    NASA Astrophysics Data System (ADS)

    Protopapadakis, E.; Stentoumis, C.; Doulamis, N.; Doulamis, A.; Loupos, K.; Makantasis, K.; Kopsiaftis, G.; Amditis, A.

    2016-06-01

    In this paper, an automatic robotic inspector for tunnel assessment is presented. The proposed platform is able to autonomously navigate within the civil infrastructures, grab stereo images and process/analyse them, in order to identify defect types. At first, there is the crack detection via deep learning approaches. Then, a detailed 3D model of the cracked area is created, utilizing photogrammetric methods. Finally, a laser profiling of the tunnel's lining, for a narrow region close to detected crack is performed; allowing for the deduction of potential deformations. The robotic platform consists of an autonomous mobile vehicle; a crane arm, guided by the computer vision-based crack detector, carrying ultrasound sensors, the stereo cameras and the laser scanner. Visual inspection is based on convolutional neural networks, which support the creation of high-level discriminative features for complex non-linear pattern classification. Then, real-time 3D information is accurately calculated and the crack position and orientation is passed to the robotic platform. The entire system has been evaluated in railway and road tunnels, i.e. in Egnatia Highway and London underground infrastructure.

  12. A review on recent contribution of meshfree methods to structure and fracture mechanics applications.

    PubMed

    Daxini, S D; Prajapati, J M

    2014-01-01

    Meshfree methods are viewed as next generation computational techniques. With evident limitations of conventional grid based methods, like FEM, in dealing with problems of fracture mechanics, large deformation, and simulation of manufacturing processes, meshfree methods have gained much attention by researchers. A number of meshfree methods have been proposed till now for analyzing complex problems in various fields of engineering. Present work attempts to review recent developments and some earlier applications of well-known meshfree methods like EFG and MLPG to various types of structure mechanics and fracture mechanics applications like bending, buckling, free vibration analysis, sensitivity analysis and topology optimization, single and mixed mode crack problems, fatigue crack growth, and dynamic crack analysis and some typical applications like vibration of cracked structures, thermoelastic crack problems, and failure transition in impact problems. Due to complex nature of meshfree shape functions and evaluation of integrals in domain, meshless methods are computationally expensive as compared to conventional mesh based methods. Some improved versions of original meshfree methods and other techniques suggested by researchers to improve computational efficiency of meshfree methods are also reviewed here.

  13. Predicting overload-affected fatigue crack growth in steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skorupa, M.; Skorupa, A.; Ladecki, B.

    1996-12-01

    The ability of semi-empirical crack closure models to predict the effect of overloads on fatigue crack growth in low-alloy steels has been investigated. With this purpose, the CORPUS model developed for aircraft metals and spectra has been checked first through comparisons between the simulated and observed results for a low-alloy steel. The CORPUS predictions of crack growth under several types of simple load histories containing overloads appeared generally unconservative which prompted the authors to formulate a new model, more suitable for steels. With the latter approach, the assumed evolution of the crack opening stress during the delayed retardation stage hasmore » been based on experimental results reported for various steels. For all the load sequences considered, the predictions from the proposed model appeared to be by far more accurate than those from CORPUS. Based on the analysis results, the capability of semi-empirical prediction concepts to cover experimentally observed trends that have been reported for sequences with overloads is discussed. Finally, possibilities of improving the model performance are considered.« less

  14. Demonstrating damage tolerance of composite airframes

    NASA Technical Reports Server (NTRS)

    Poe, Clarence C., Jr.

    1993-01-01

    Commercial transport aircraft operating in the United States are certified by the Federal Aviation Authority to be damage tolerant. On 28 April 1988, Aloha Airlines Flight 243, a Boeing 727-200 airplane, suffered an explosive decompression of the fuselage but landed safely. This event provides very strong justification for the damage tolerant design criteria. The likely cause of the explosive decompression was the linkup of numerous small fatigue cracks that initiated at adjacent fastener holes in the lap splice joint at the side of the body. Actually, the design should have limited the damage size to less than two frame spacings (about 40 inches), but this type of 'multi-site damage' was not originally taken into account. This cracking pattern developed only in the high-time airplanes (many flights). After discovery in the fleet, a stringent inspection program using eddy current techniques was inaugurated to discover these cracks before they linked up. Because of concerns about safety and the maintenance burden, the lap-splice joints of these high-time airplanes are being modified to remove cracks and prevent new cracking; newer designs account for 'multi-site damage'.

  15. Smart Crack Control in Concrete through Use of Phase Change Materials (PCMs): A Review.

    PubMed

    Šavija, Branko

    2018-04-24

    Cracks in concrete structures present a threat to their durability. Therefore, numerous research studies have been devoted to reducing concrete cracking. In recent years, a new approach has been proposed for controlling temperature related cracking—utilization of phase change materials (PCMs) in concrete. Through their ability to capture heat, PCMs can offset temperature changes and reduce gradients in concrete structures. Nevertheless, they can also influence concrete properties. This paper presents a comprehensive overview of the literature devoted to using PCMs to control temperature related cracking in concrete. First, types of PCMs and ways of incorporation in concrete are discussed. Then, possible uses of PCMs in concrete technology are discussed. Further, the influences of PCMs on concrete properties (fresh, hardened, durability) are discussed in detail. This is followed by a discussion of modelling techniques for PCM-concrete composites and their performance. Finally, a summary and the possible research directions for future work are given. This overview aims to assure the researchers and asset owners of the potential of this maturing technology and bring it one step closer to practical application.

  16. Type 4 pili are dispensable for biofilm development in the cyanobacterium Synechococcus elongatus.

    PubMed

    Nagar, Elad; Zilberman, Shaul; Sendersky, Eleonora; Simkovsky, Ryan; Shimoni, Eyal; Gershtein, Diana; Herzberg, Moshe; Golden, Susan S; Schwarz, Rakefet

    2017-07-01

    The hair-like cell appendages denoted as type IV pili are crucial for biofilm formation in diverse eubacteria. The protein complex responsible for type IV pilus assembly is homologous with the type II protein secretion complex. In the cyanobacterium Synechococcus elongatus PCC 7942, the gene Synpcc7942_2071 encodes an ATPase homologue of type II/type IV systems. Here, we report that inactivation of Synpcc7942_2071 strongly affected the suite of proteins present in the extracellular milieu (exo-proteome) and eliminated pili observable by electron microscopy. These results support a role for this gene product in protein secretion as well as in pili formation. As we previously reported, inactivation of Synpcc7942_2071 enables biofilm formation and suppresses the planktonic growth of S. elongatus. Thus, pili are dispensable for biofilm development in this cyanobacterium, in contrast to their biofilm-promoting function in type IV pili-producing heterotrophic bacteria. Nevertheless, pili removal is not required for biofilm formation as evident by a piliated mutant of S. elongatus that develops biofilms. We show that adhesion and timing of biofilm development differ between the piliated and non-piliated strains. The study demonstrates key differences in the process of biofilm formation between cyanobacteria and well-studied type IV pili-producing heterotrophic bacteria. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. 10 CFR Appendix IV to Part 960 - Types of Information for the Nomination of Sites as Suitable for Characterization

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Types of Information for the Nomination of Sites as Suitable for Characterization IV Appendix IV to Part 960 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR..., diapirism, tilting, subsidence, faulting, and volcanism. • Estimate of the geothermal gradient. • Estimate...

  18. The Microstructural Evolution of Fatigue Cracks in FCC Metals

    NASA Astrophysics Data System (ADS)

    Gross, David William

    The microstructural evolution during fatigue crack propagation was investigated in a variety of planar and wavy slip FCC metals. The planar materials included Haynes 230, Nitronic 40, and 316 stainless steel, and the wavy materials included pure nickel and pure copper. Three different sets of experiments were performed to fully characterize the microstructural evolution. The first, performed on Haynes 230, mapped the strain field ahead a crack tip using digital image correlation and electron backscatter diffraction techniques. Focused ion beam (FIB) lift-out techniques were then utilized to extract transmission electron microscopy (TEM) samples at specific distances from the crack tip. TEM investigations compared the measured strain to the microstructure. Overall, the strain measured via DIC and EBSD was only weakly correlated to the density of planar slip bands in the microstructure. The second set of experiments concerned the dislocation structure around crack tips. This set of experiments was performed on all the materials. The microstructure at arrested fatigue cracks on the free surface was compared to the microstructure found beneath striations on the fracture surfaces by utilizing FIB micromachining to create site-specific TEM samples. The evolved microstructure depended on the slip type. Strong agreement was found between the crack tip microstructure at the free surface and the fracture surface. In the planar materials, the microstructure in the plastic zone consisted of bands of dislocations or deformation twins, before transitioning to a refined sub-grain microstructure near the crack flank. The sub-grain structure extended 300-500 nm away from the crack flank in all the planar slip materials studied. In contrast, the bulk structure in the wavy slip material consisted of dislocation cells and did not transition to a different microstructure as the crack tip was approached. The strain in wavy slip was highest near the crack tip, as the misorientations between the dislocation cells increased and the cell size decreased as the crack flank was approached. The final set of experiments involved reloading the arrested crack tips in monotonic tension. This was performed on both the Haynes 230 and 316 stainless steel. This technique exposed the fracture surface and location of the arrested crack tip away from the free surface, allowing for a sample to be extracted via FIB micromachining and TEM evaluation of the microstructure. This permitted the crack tip microstructure to be investigated without exposing the microstructure to crack closure or free surface effects. These experiments confirmed what was inferred from the earlier experiments, namely that the banded structure was a product of the crack tip plastic zone and the refined structure was a product of the strain associated with crack advance. Overall the microstructural complexity presented in this work was much higher than would be predicted by current models of fatigue crack propagation. It is recommended that future models attempt to simulate interactions between the dislocations emitted during fatigue crack growth and the pre-existing microstructure to more accurately simulate the processes occurring at the crack tip during crack growth.

  19. Evaluation of the need for longitudinal median joints in bridge decks on dual structures.

    DOT National Transportation Integrated Search

    2015-09-01

    The primary objective of this project was to determine the effect of bridge width on deck cracking in bridges. Other parameters, : such as bridge skew, girder spacing and type, abutment type, pier type, and number of bridge spans, were also studied. ...

  20. Treatment of singularities in cracked bodies

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Raju, I. S.

    1990-01-01

    Three-dimensional finite-element analyses of middle-crack tension (M-T) and bend specimens subjected to mode I loadings were performed to study the stress singularity along the crack front. The specimen was modeled using 20-node isoparametric elements. The displacements and stresses from the analysis were used to estimate the power of singularities using a log-log regression analysis along the crack front. The analyses showed that finite-sized cracked bodies have two singular stress fields of the form rho = C sub o (theta, z) r to the -1/2 power + D sub o (theta, phi) R to the lambda rho power. The first term is the cylindrical singularity with the power -1/2 and is dominant over the middle 96 pct (for Poisson's ratio = 0.3) of the crack front and becomes nearly zero at the free surface. The second singularity is a vertex singularity with the vertex point located at the intersection of the crack front and the free surface. The second term is dominant at the free surface and becomes nearly zero away from the boundary layer. The thickness of the boundary layer depends on Poisson's ratio of the material and is independent of the specimen type. The thickness of the boundary layer varied from 0 pct to about 5 pct of the total specimen thickness as Poisson's ratio varied from 0.0 to 0.45. Because there are two singular stress fields near the free surface, the strain energy release rate (G) is an appropriate parameter to measure the severity of the crack.

  1. Treatment of singularities in cracked bodies

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Raju, I. S.

    1989-01-01

    Three-dimensional finite-element analyses of middle-crack tension (M-T) and bend specimens subjected to mode I loadings were performed to study the stress singularity along the crack front. The specimen was modeled using 20-node isoparametric elements. The displacements and stresses from the analysis were used to estimate the power of singularities using a log-log regression analysis along the crack front. The analyses showed that finite-sized cracked bodies have two singular stress fields of the form rho = C sub o (theta, z) r to the -1/2 power + D sub o (theta, phi) R to the lambda rho power. The first term is the cylindrical singularity with the power -1/2 and is dominant over the middle 96 pct (for Poisson's ratio = 0.3) of the crack front and becomes nearly zero at the free surface. The second singularity is a vertex singularity with the vertex point located at the intersection of the crack front and the free surface. The second term is dominant at the free surface and becomes nearly zero away from the the boundary layer. The thickness of the boundary layer depends on Poisson's ratio of the material and is independent of the specimen type. The thickness of the boundary layer varied from 0 pct to about 5 pct of the total specimen thickness as Poisson's ratio varied from 0.0 to 0.45. Because there are two singular stress fields near the free surface, the strain energy release rate (G) is an appropriate parameter to measure the severity of the crack.

  2. Environmentally assisted cracking in light water reactors. Semiannual report, July 1998-December 1998.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chopra, O. K.; Chung, H. M.; Gruber, E. E.

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors from July 1998 to December 1998. Topics that have been investigated include (a) environmental effects on fatigue S-N behavior of primary pressure boundary materials, (b) irradiation-assisted stress corrosion cracking of austenitic stainless steels (SSs), and (c) EAC of Alloys 600 and 690. Fatigue tests have been conducted to determine the crack initiation and crack growth characteristics of austenitic SSs in LWR environments. Procedures are presented for incorporating the effects of reactor coolant environments on the fatigue life of pressure vesselmore » and piping steels. Slow-strain-rate tensile tests and posttest fractographic analyses were conducted on several model SS alloys irradiated to {approx}0.3 and 0.9 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV) in helium at 289 C in the Halden reactor. The results have been used to determine the influence of alloying and impurity elements on the susceptibility of these steels to irradiation-assisted stress corrosion cracking. Fracture toughness J-R curve tests were also conducted on two heats of Type 304 SS that were irradiated to {approx}0.3 x 10{sup 21} n {center_dot} cm{sup -2} in the Halden reactor. Crack-growth-rate tests have been conducted on compact-tension specimens of Alloys 600 and 690 under constant load to evaluate the resistance of these alloys to stress corrosion cracking in LWR environments.« less

  3. Mechanical weathering and rock erosion by climate-dependent subcritical cracking

    NASA Astrophysics Data System (ADS)

    Eppes, Martha-Cary; Keanini, Russell

    2017-06-01

    This work constructs a fracture mechanics framework for conceptualizing mechanical rock breakdown and consequent regolith production and erosion on the surface of Earth and other terrestrial bodies. Here our analysis of fracture mechanics literature explicitly establishes for the first time that all mechanical weathering in most rock types likely progresses by climate-dependent subcritical cracking under virtually all Earth surface and near-surface environmental conditions. We substantiate and quantify this finding through development of physically based subcritical cracking and rock erosion models founded in well-vetted fracture mechanics and mechanical weathering, theory, and observation. The models show that subcritical cracking can culminate in significant rock fracture and erosion under commonly experienced environmental stress magnitudes that are significantly lower than rock critical strength. Our calculations also indicate that climate strongly influences subcritical cracking—and thus rock weathering rates—irrespective of the source of the stress (e.g., freezing, thermal cycling, and unloading). The climate dependence of subcritical cracking rates is due to the chemophysical processes acting to break bonds at crack tips experiencing these low stresses. We find that for any stress or combination of stresses lower than a rock's critical strength, linear increases in humidity lead to exponential acceleration of subcritical cracking and associated rock erosion. Our modeling also shows that these rates are sensitive to numerous other environment, rock, and mineral properties that are currently not well characterized. We propose that confining pressure from overlying soil or rock may serve to suppress subcritical cracking in near-surface environments. These results are applicable to all weathering processes.

  4. Simulation of Crack Propagation in Engine Rotating Components under Variable Amplitude Loading

    NASA Technical Reports Server (NTRS)

    Bonacuse, P. J.; Ghosn, L. J.; Telesman, J.; Calomino, A. M.; Kantzos, P.

    1998-01-01

    The crack propagation life of tested specimens has been repeatedly shown to strongly depend on the loading history. Overloads and extended stress holds at temperature can either retard or accelerate the crack growth rate. Therefore, to accurately predict the crack propagation life of an actual component, it is essential to approximate the true loading history. In military rotorcraft engine applications, the loading profile (stress amplitudes, temperature, and number of excursions) can vary significantly depending on the type of mission flown. To accurately assess the durability of a fleet of engines, the crack propagation life distribution of a specific component should account for the variability in the missions performed (proportion of missions flown and sequence). In this report, analytical and experimental studies are described that calibrate/validate the crack propagation prediction capability ]or a disk alloy under variable amplitude loading. A crack closure based model was adopted to analytically predict the load interaction effects. Furthermore, a methodology has been developed to realistically simulate the actual mission mix loading on a fleet of engines over their lifetime. A sequence of missions is randomly selected and the number of repeats of each mission in the sequence is determined assuming a Poisson distributed random variable with a given mean occurrence rate. Multiple realizations of random mission histories are generated in this manner and are used to produce stress, temperature, and time points for fracture mechanics calculations. The result is a cumulative distribution of crack propagation lives for a given, life limiting, component location. This information can be used to determine a safe retirement life or inspection interval for the given location.

  5. Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals.

    PubMed

    Maher, K D; Bressler, D C

    2007-09-01

    Conversion of vegetable oils and animal fats composed predominantly of triglycerides using pyrolysis type reactions represents a promising option for the production of renewable fuels and chemicals. The purpose of this article was to collect and review literature on the thermo-chemical conversion of triglyceride based materials. The literature was divided and discussed as (1) direct thermal cracking and (2) combination of thermal and catalytic cracking. Typically, four main catalyst types are used including transition metal catalysts, molecular sieve type catalysts, activated alumina, and sodium carbonate. Reaction products are heavily dependant on the catalyst type and reaction conditions and can range from diesel like fractions to gasoline like fractions. Research in this area is not as advanced as bio-oil and bio-diesel research and there is opportunity for further study in the areas of reaction optimization, detailed characterization of products and properties, and scale-up.

  6. Displacement coefficients along the inner boundaries of radially cracked ring segments subject to forces and couples

    NASA Technical Reports Server (NTRS)

    Gross, B.

    1977-01-01

    Displacement results of plane boundary collocation analysis are given for various locations on the inner boundaries of radially cracked ring segments (C-shaped specimens) subject to two complementary types of loading. Results are presented for ratios of outer to inner radius R sub o/R sub i in the range of 1.1 to 2.5, and ratios a/W in the range 0.1 to 0.8 where a is the crack length for a specimen of wall thickness W. By combination of these results the resultant displacement coefficient delta or the corresponding influence coefficient, can be obtained for any practical load line location of a pin loaded specimen.

  7. Repair and Strengthening by Use of Superficial Fixed Laminates of Cracked Masonry Walls Sheared Horizontally-Laboratory Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubica, Jan; Kwiecien, Arkadiusz; Zajac, Boguslaw

    2008-07-08

    There are many methods of crack repairing in masonry structures. One of them is repair and strengthening by using of superficial fixed laminates, especially in case of masonry walls with plastering on their both sides. The initial laboratory tests of three different types of strengthening of diagonal cracked masonry wallettes are presented. Tests concerned three clay brick masonry walls subjected to horizontal shearing with two levels of precompression and strengthened by flexible polymer injection, superficial glass fixed by polymer fibre laminate plates and using of CRFP strips stiff fixed to the wall surface by polymer and stiff resin epoxy fixingmore » are presented and discussed.« less

  8. Very low density lipoprotein triglyceride transport in type IV hyperlipoproteinemia and the effects of carbohydrate-rich diets.

    PubMed

    Quarfordt, S H; Frank, A; Shames, D M; Berman, M; Steinberg, D

    1970-12-01

    Transport of plasma-free fatty acids (FFA) and of fatty acids in triglycerides of plasma very low density lipoproteins (VLDL-TGFA) was studied in two normal subjects, five patients with type IV hyperlipoproteinemia, and two patients with type I hyperlipoproteinemia. After intravenous pulse-labeling with albumin-bound 1-palmitate-(14)C, specific radioactivity of plasma FFA and VLDL-TGFA were determined at intervals up to 24 hr. The results were analyzed using several different multicompartmental models each compatible with the experimental data. Fractional transport of VLDL-TGFA was distinctly lower (no overlap) in the type IV patients than in the control subjects, both on a usual balanced diet (40% of calories from carbohydrate) and on a high-carbohydrate diet (80% of calories). However, net or total transport of VLDL-TGFA in the type IV patients was not clearly distinguishable from that in the control subjects, there being considerable overlap on either diet. The results suggest that in this group of type IV patients the underlying defect leading to the increased pool size of VLDL-TGFA is not overproduction but a relative defect in mechanisms for removal of VLDL-TGFA. Since some of these type IV patients had only a moderate degree of hypertriglyceridemia at the time they were studied, and since it is not established that patients with the type IV phenotype constitute a biochemically homogeneous population, the present results should not be generalized. Four studies were done (in two control subjects and two type IV patients) in which the kinetic parameters in the same individual were determined on the balanced diet and on the high-carbohydrate diet. All subjects showed an increase in VLDL-TGFA pool size. Using two of the models for analysis, all showed an increase in net transport of VLDL-TGFA; using the third model, three of the four studies showed an increase in VLDL-TGFA transport. The results are compatible with the interpretation that the carbohydrate-induced increase in VLDL-TGFA, both in controls and type IV patients, is at least in part due to an increased rate of production of VLDL-TGFA. The magnitude of the increase was approximately the same in controls and patients. Thus, metabolic adjustment to a high-carbohydrate regimen in these type IV patients may not be basically different from that in normal controls; the higher levels of VLDL-TGFA reached may simply be another reflection of a defective removal mechanism. An alternative interpretation, compatible with the data, would involve both a carbohydrate-induced increase in fractional rate of release of VLDL-TGFA from liver to plasma and a decrease in fractional removal of VLDL-TGFA from plasma without increase in net production rate. The simpler hypothesis of a single primary effect on net VLDL-TGFA production from FFA seems more likely.

  9. Alport Syndrome Diagnosis

    MedlinePlus

    ... the presence or absence of the type IV collagen alpha-3, alpha-4 and alpha-5 chains ( ... linked Alport syndrome) is suspected. The type IV collagen alpha-5 chain (COL4A5) is normally present in ...

  10. Crack detection and fatigue related delamination in FRP composites applied to concrete

    NASA Astrophysics Data System (ADS)

    Brown, Jeff; Baker, Rebecca; Kallemeyn, Lisa; Zendler, Andrew

    2008-03-01

    Reinforced concrete beams are designed to allow minor concrete cracking in the tension zone. The severity of cracking in a beam element is a good indicator of how well a structure is performing and whether or not repairs are needed to prevent structural failure. FRP composites are commonly used to increase the flexural and shear capacity of RC beam elements, but one potential disadvantage of this method is that strengthened surfaces are no longer visible and cracks or delaminations that result from excessive loading or fatigue may go undetected. This research investigated thermal imaging techniques for detecting load induced cracking in the concrete substrate and delamination of FRP strengthening systems applied to reinforced concrete (RC). One small-scale RC beam (5 in. x 6 in. x 60 in.) was strengthened with FRP and loaded to failure monotonically. An infrared thermography inspection was performed after failure. A second strengthened beam was loaded cyclically for 1,750,000 cycles to investigate how fatigue might affect substrate cracking and delamination growth throughout the service-life of a repaired element. No changes were observed in the FRP bond during/after the cyclic loading. The thermal imaging component of this research included pixel normalization to enhance detectability and characterization of this specific type of damage.

  11. A crack-like rupture model for the 19 September 1985 Michoacan, Mexico, earthquake

    NASA Astrophysics Data System (ADS)

    Ruppert, Stanley D.; Yomogida, Kiyoshi

    1992-09-01

    Evidence supporting a smooth crack-like rupture process of the Michoacan earthquake of 1985 is obtained from a major earthquake for the first time. Digital strong motion data from three stations (Caleta de Campos, La Villita, and La Union), recording near-field radiation from the fault, show unusually simple ramped displacements and permanent offsets previously only seen in theoretical models. The recording of low frequency (0 to 1 Hz) near-field waves together with the apparently smooth rupture favors a crack-like model to a step or Haskell-type dislocation model under the constraint of the slip distribution obtained by previous studies. A crack-like rupture, characterized by an approximated dynamic slip function and systematic decrease in slip duration away from the point of rupture nucleation, produces the best fit to the simple ramped displacements observed. Spatially varying rupture duration controls several important aspects of the synthetic seismograms, including the variation in displacement rise times between components of motion observed at Caleta de Campos. Ground motion observed at Caleta de Campos can be explained remarkably well with a smoothly propagating crack model. However, data from La Villita and La Union suggest a more complex rupture process than the simple crack-like model for the south-eastern portion of the fault.

  12. "Dentinal microcracks after root canal preparation" a comparative evaluation with hand, rotary and reciprocating instrumentation.

    PubMed

    Priya, N Tulasi; Chandrasekhar, Veeramachaneni; Anita, S; Tummala, Muralidhar; Raj, T B Phanindhar; Badami, Vijetha; Kumar, Pradeep; Soujanya, E

    2014-12-01

    The purpose of this study was to compare the incidence of dentinal micro cracks after instrumentation with various types of NiTi files in rotary and reciprocating motion. One hundred human extracted mandibular central incisors were taken and divided into 10 groups (n=10 teeth per group). Group 1- No preparation, Group 2 - Hand instrumentation, Groups 3,4 - ProTaper files in rotary and reciprocating motion, Groups 5,6 - ProTaper Next files in rotary and reciprocating motion, Groups 7,8 - Oneshape files in rotary and reciprocating motion, Groups 9,10 - Reciproc files in rotary and reciprocating motion. Specimens were sectioned horizontally at 3,6 and 9 mm from the apex and dentinal micro cracks were observed under a stereomicroscope. There was a statistically significant difference between the groups (p<0.05). There were no significant differences in crack formation between the groups (Protaper Next - Rot, Protaper Next - Rec, Reciproc - Rec); (ProTaper - Rot, ProTaper - Rec, Oneshape - Rot), (Oneshape - Rot, Reciproc - Rot), (One shape Reciproc, Reciproc - Rec); (p >.05). Least cracks were seen in canals instrumented with Pro Taper Next files both in rotary and reciprocating motion. Full sequence rotary systems showed less cracks than single file systems and full sequence rotary systems showed less cracks in reciprocating motion than in rotary motion.

  13. Shell cracking strength in almond (Prunus dulcis [Mill.] D.A. Webb.) and its implication in uses as a value-added product.

    PubMed

    Ledbetter, C A

    2008-09-01

    Researchers are currently developing new value-added uses for almond shells, an abundant agricultural by-product. Almond varieties are distinguished by processors as being either hard or soft shelled, but these two broad classes of almond also exhibit varietal diversity in shell morphology and physical characters. By defining more precisely the physical and chemical characteristics of almond shells from different varieties, researchers will better understand which specific shell types are best suited for specific industrial processes. Eight diverse almond accessions were evaluated in two consecutive harvest seasons for nut and kernel weight, kernel percentage and shell cracking strength. Shell bulk density was evaluated in a separate year. Harvest year by almond accession interactions were highly significant (p0.01) for each of the analyzed variables. Significant (p0.01) correlations were noted for average nut weight with kernel weight, kernel percentage and shell cracking strength. A significant (p0.01) negative correlation for shell cracking strength with kernel percentage was noted. In some cases shell cracking strength was independent of the kernel percentage which suggests that either variety compositional differences or shell morphology affect the shell cracking strength. The varietal characterization of almond shell materials will assist in determining the best value-added uses for this abundant agricultural by-product.

  14. Quantitative Index and Abnormal Alarm Strategy Using Sensor-Dependent Vibration Data for Blade Crack Identification in Centrifugal Booster Fans

    PubMed Central

    Chen, Jinglong; Sun, Hailiang; Wang, Shuai; He, Zhengjia

    2016-01-01

    Centrifugal booster fans are important equipment used to recover blast furnace gas (BFG) for generating electricity, but blade crack faults (BCFs) in centrifugal booster fans can lead to unscheduled breakdowns and potentially serious accidents, so in this work quantitative fault identification and an abnormal alarm strategy based on acquired historical sensor-dependent vibration data is proposed for implementing condition-based maintenance for this type of equipment. Firstly, three group dependent sensors are installed to acquire running condition data. Then a discrete spectrum interpolation method and short time Fourier transform (STFT) are applied to preliminarily identify the running data in the sensor-dependent vibration data. As a result a quantitative identification and abnormal alarm strategy based on compound indexes including the largest Lyapunov exponent and relative energy ratio at the second harmonic frequency component is proposed. Then for validation the proposed blade crack quantitative identification and abnormality alarm strategy is applied to analyze acquired experimental data for centrifugal booster fans and it has successfully identified incipient blade crack faults. In addition, the related mathematical modelling work is also introduced to investigate the effects of mistuning and cracks on the vibration features of centrifugal impellers and to explore effective techniques for crack detection. PMID:27171083

  15. An investigation on die crack detection using Temperature Sensitive Parameter for high speed LED mass production

    NASA Astrophysics Data System (ADS)

    Annaniah, Luruthudass; Devarajan, Mutharasu; San, Teoh Kok

    To ensure the highest quality & long-term reliability of LED components it is necessary to examine LED dice that have sustained mechanical damage during the manufacturing process. This paper has demonstrated that detection of die crack in mass manufactured LEDs can be achieved by measuring Temperature Sensitive Parameters (TSPs) during final testing. A newly-designed apparatus and microcontroller was used for this investigation in order to achieve the millisecond switching time needed for detecting thermal transient effects and at the same time meet the expected speed for mass manufacturing. Evaluations conducted at lab scale shows that thermal transient behaviour of cracked die is significantly different than that of an undamaged die. Having an established test limits to differentiate cracked dice, large volume tests in a production environment were used to confirm the effectiveness of this test method. Failure Bin Analysis (FBA) of this high volume experiment confirmed that all the cracked die LEDs were detected and the undamaged LEDs passed this test without over-rejection. The work verifies that tests based on TSP are effective in identifying die cracks and it is believed that the method could be extended to other types of rejects that have thermal transient signatures such as die delamination.

  16. Opening of an interface flaw in a layered elastic half-plane under compressive loading

    NASA Technical Reports Server (NTRS)

    Kennedy, J. M.; Fichter, W. B.; Goree, J. G.

    1984-01-01

    A static analysis is given of the problem of an elastic layer perfectly bonded, except for a frictionless interface crack, to a dissimilar elastic half-plane. The free surface of the layer is loaded by a finite pressure distribution directly over the crack. The problem is formulated using the two dimensional linear elasticity equations. Using Fourier transforms, the governing equations are converted to a pair of coupled singular integral equations. The integral equations are reduced to a set of simultaneous algebraic equations by expanding the unknown functions in a series of Jacobi polynomials and then evaluating the singular Cauchy-type integrals. The resulting equations are found to be ill-conditioned and, consequently, are solved in the least-squares sense. Results from the analysis show that, under a normal pressure distribution on the free surface of the layer and depending on the combination of geometric and material parameters, the ends of the crack can open. The resulting stresses at the crack-tips are singular, implying that crack growth is possible. The extent of the opening and the crack-top stress intensity factors depend on the width of the pressure distribution zone, the layer thickness, and the relative material properties of the layer and half-plane.

  17. Electric and magnetic polarization saturations for a thermally loaded penny-shaped crack in a magneto-electro-thermo-elastic medium

    NASA Astrophysics Data System (ADS)

    Li, P.-D.; Li, X.-Y.; Kang, G.-Z.; Müller, R.

    2017-09-01

    This paper is devoted to investigating the thermal-induced electric and magnetic polarization saturations (PS) at the tip of a penny-shaped crack embedded in an infinite space of magneto-electro-thermo-elastic medium. In view of the symmetry with respect to the cracked plane, this crack problem is formulated by a mixed boundary value problem. By virtue of the solution to the Abel type integral equation, the governing equations corresponding to the present problem are analytically solved and the generalized crack surface displacement and field intensity factors are obtained in closed-forms. Applying the hypothesis of the electric and magnetic PS model to the analytical results, the sizes of the electric and magnetic yielding zones are determined. Numerical calculations are carried out to reveal the influences of the thermal load and the electric and magnetic yielding strengths on the results, and to show the distributions of the electric and magnetic potentials on the crack surfaces. It is found that the sizes of electric and magnetic yielding zones are mainly dependent on the electric and magnetic yielding strengths, respectively. Since the multi-ferroic media are widely used in various complex thermal environments, the present work could serve as a reference for the designs of various magneto-electric composite structures.

  18. Fatigue Crack Length Sizing Using a Novel Flexible Eddy Current Sensor Array.

    PubMed

    Xie, Ruifang; Chen, Dixiang; Pan, Mengchun; Tian, Wugang; Wu, Xuezhong; Zhou, Weihong; Tang, Ying

    2015-12-21

    The eddy current probe, which is flexible, array typed, highly sensitive and capable of quantitative inspection is one practical requirement in nondestructive testing and also a research hotspot. A novel flexible planar eddy current sensor array for the inspection of microcrack presentation in critical parts of airplanes is developed in this paper. Both exciting and sensing coils are etched on polyimide films using a flexible printed circuit board technique, thus conforming the sensor to complex geometric structures. In order to serve the needs of condition-based maintenance (CBM), the proposed sensor array is comprised of 64 elements. Its spatial resolution is only 0.8 mm, and it is not only sensitive to shallow microcracks, but also capable of sizing the length of fatigue cracks. The details and advantages of our sensor design are introduced. The working principal and the crack responses are analyzed by finite element simulation, with which a crack length sizing algorithm is proposed. Experiments based on standard specimens are implemented to verify the validity of our simulation and the efficiency of the crack length sizing algorithm. Experimental results show that the sensor array is sensitive to microcracks, and is capable of crack length sizing with an accuracy within ±0.2 mm.

  19. Fatigue Crack Length Sizing Using a Novel Flexible Eddy Current Sensor Array

    PubMed Central

    Xie, Ruifang; Chen, Dixiang; Pan, Mengchun; Tian, Wugang; Wu, Xuezhong; Zhou, Weihong; Tang, Ying

    2015-01-01

    The eddy current probe, which is flexible, array typed, highly sensitive and capable of quantitative inspection is one practical requirement in nondestructive testing and also a research hotspot. A novel flexible planar eddy current sensor array for the inspection of microcrack presentation in critical parts of airplanes is developed in this paper. Both exciting and sensing coils are etched on polyimide films using a flexible printed circuit board technique, thus conforming the sensor to complex geometric structures. In order to serve the needs of condition-based maintenance (CBM), the proposed sensor array is comprised of 64 elements. Its spatial resolution is only 0.8 mm, and it is not only sensitive to shallow microcracks, but also capable of sizing the length of fatigue cracks. The details and advantages of our sensor design are introduced. The working principal and the crack responses are analyzed by finite element simulation, with which a crack length sizing algorithm is proposed. Experiments based on standard specimens are implemented to verify the validity of our simulation and the efficiency of the crack length sizing algorithm. Experimental results show that the sensor array is sensitive to microcracks, and is capable of crack length sizing with an accuracy within ±0.2 mm. PMID:26703608

  20. Confocal examination of subsurface cracking in ceramic materials.

    PubMed

    Etman, Maged K

    2009-10-01

    The original ceramic surface finish and its microstructure may have an effect on crack propagation. The purpose of this study was to investigate the relation between crack propagation and ceramic microstructure following cyclic fatigue loading, and to qualitatively evaluate and quantitatively measure the surface and subsurface crack depths of three types of ceramic restorations with different microstructures using a Confocal Laser Scanning Microscope (CLSM) and Scanning Electron Microscope (SEM). Twenty (8 x 4 x 2 mm(3)) blocks of AllCeram (AC), experimental ceramic (EC, IPS e.max Press), and Sensation SL (SSL) were prepared, ten glazed and ten polished of each material. Sixty antagonist enamel specimens were made from the labial surfaces of permanent incisors. The ceramic abraders were attached to a wear machine, so that each enamel specimen presented at 45 degrees to the vertical movement of the abraders, and immersed in artificial saliva. Wear was induced for 80K cycles at 60 cycles/min with a load of 40 N and 2-mm horizontal deflection. The specimens were examined for cracks at baseline, 5K, 10K, 20K, 40K, and 80K cycles. Twenty- to 30-microm deep subsurface cracking appeared in SSL, with 8 to 10 microm in AC, and 7 microm close to the margin of the wear facets in glazed EC after 5K cycles. The EC showed no cracks with increasing wear cycles. Seventy-microm deep subsurface cracks were detected in SSL and 45 microm in AC after 80K cycles. Statistically, there was significant difference among the three materials (p < 0.05). Bonferroni multiple comparison of means test confirmed the ANOVA test and showed that there was no statistical difference (p > 0.05) in crack depth within the same ceramic material with different surface finishes. The ceramic materials with different microstructures showed different patterns of subsurface cracking.

  1. Post-cracking characteristics of high performance fiber reinforced cementitious composites

    NASA Astrophysics Data System (ADS)

    Suwannakarn, Supat W.

    The application of high performance fiber reinforced cement composites (HPFRCC) in structural systems depends primarily on the material's tensile response, which is a direct function of fiber and matrix characteristics, the bond between them, and the fiber content or volume fraction. The objective of this dissertation is to evaluate and model the post-cracking behavior of HPFRCC. In particular, it focused on the influential parameters controlling tensile behavior and the variability associated with them. The key parameters considered include: the stress and strain at first cracking, the stress and strain at maximum post-cracking, the shape of the stress-strain or stress-elongation response, the multiple cracking process, the shape of the resistance curve after crack localization, the energy associated with the multiple cracking process, and the stress versus crack opening response of a single crack. Both steel fibers and polymeric fibers, perceived to have the greatest potential for current commercial applications, are considered. The main variables covered include fiber type (Torex, Hooked, PVA, and Spectra) and fiber volume fraction (ranging from 0.75% to 2.0%). An extensive experimental program is carried out using direct tensile tests and stress-versus crack opening displacement tests on notched tensile prisms. The key experimental results were analysed and modeled using simple prediction equations which, combined with a composite mechanics approach, allowed for predicting schematic simplified stress-strain and stress-displacement response curves for use in structural modeling. The experimental data show that specimens reinforced with Torex fibers performs best, follows by Hooked and Spectra fibers, then PVA fibers. Significant variability in key parameters was observed througout suggesting that variability must be studied further. The new information obtained can be used as input for material models for finite element analysis and can provide greater confidence in using the HPFRC composites in structural applications. It also provides a good foundation to integrate these composites in conventional structural analysis and design.

  2. Urinary type IV collagen excretion predicts subsequent declining renal function in type 2 diabetic patients with proteinuria.

    PubMed

    Katavetin, Pisut; Katavetin, Paravee; Susantitaphong, Paweena; Townamchai, Natavudh; Tiranathanagul, Khajohn; Tungsanga, Kriang; Eiam-Ong, Somchai

    2010-08-01

    Baseline urinary type IV collagen excretion was negatively correlated with the subsequent GFR change (r(s)=-0.39, p=0.04) in our cohort of 30 type 2 diabetic patients with proteinuria. Therefore, it could be used to predict subsequent declining renal function in type 2 diabetic patients with proteinuria. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Damage Tolerant Design Handbook. A Compilation of Fracture and Crack- Growth Data for High-Strength Alloys. Volume 4

    DTIC Science & Technology

    1983-12-01

    DAMAGTE (aduiTOLEATDSG ANBO.A TYPE OF REPORT 6 PERIOD COVERED DAMAE TLERAT DSIG HANBOO. ACOMPILATION OF FRACTURE AND CRACK GROWTH...4 Volumes (No copies furnished by DTIC) 13 KEY WORDS (Conitnue ate reverse side it necessa.ry and idenn’fy by. black flueoebr) * Fracture (Mechanics...Handbooks, *Titanium Alloys, *Nickel Alloys, *Stainless Steel, *Aluminum Alloys, High Strength Alloys, Structural Steel, Fracture Toughness, Damage

  4. 75 FR 63050 - Airworthiness Directives; Eurocopter France (Eurocopter) Model AS350B, BA, B1, B2, B3, D, AS355E...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-14

    ... point of the yaw channel ball-type control sheath stop, of a Model AS355N helicopter fitted with the... the non-modified cross- member may cause it to crack. A crack can reduce the yaw control travel. This... discovered in the area of the center cross-member at station X 2325, at the attachment point of the yaw...

  5. A Computational Efficient Physics Based Methodology for Modeling Ceramic Matrix Composites (Preprint)

    DTIC Science & Technology

    2011-11-01

    elastic range, and with some simple forms of progressing damage . However, a general physics-based methodology to assess the initial and lifetime... damage evolution in the RVE for all possible load histories. Microstructural data on initial configuration and damage progression in CMCs were...the damaged elements will have changed, hence, a progressive damage model. The crack opening for each crack type in each element is stored as a

  6. Two type IV pili of Vibrio parahaemolyticus play different roles in biofilm formation.

    PubMed

    Shime-Hattori, Akiko; Iida, Tetsuya; Arita, Michiko; Park, Kwon-Sam; Kodama, Toshio; Honda, Takeshi

    2006-11-01

    Vibrio parahaemolyticus RIMD2210633 has two sets of type IV-A pilus genes. One set is similar to that found in other Gram-negative bacteria, such as Pseudomonas aeruginosa, Vibrio cholerae (chitin-regulated pilus; ChiRP), and Vibrio vulnificus. The other is homologous to the genes for the mannose-sensitive hemagglutinin (MSHA) pilus. In this study, we analyzed the effects of the deletions in the pilin genes for each type IV pilus (the ChiRP and the MSHA pilus) on biofilm formation. Although the MSHA pilin mutant formed aggregates, the number of bacteria that attached directly to the coverslip was reduced, suggesting that this pilus contributes to the bacterial attachment to the surface of the coverslip. In contrast, the ChiRP mutant attached to the surface of the coverslip, but did not form aggregates, suggesting that ChiRP plays a role in bacterial agglutination during biofilm formation. These results suggest that the two type IV pili of V. parahaemolyticus contribute to biofilm formation in different ways. Both mutants showed a lower fitness for adsorption onto chitin particles than that of the wild type. Collectively, these data suggest that the use of two type IV pili is a refined strategy of V. parahaemolyticus for survival in natural environments.

  7. A Split-Luciferase-Based Trimer Formation Assay as a High-throughput Screening Platform for Therapeutics in Alport Syndrome.

    PubMed

    Omachi, Kohei; Kamura, Misato; Teramoto, Keisuke; Kojima, Haruka; Yokota, Tsubasa; Kaseda, Shota; Kuwazuru, Jun; Fukuda, Ryosuke; Koyama, Kosuke; Matsuyama, Shingo; Motomura, Keishi; Shuto, Tsuyoshi; Suico, Mary Ann; Kai, Hirofumi

    2018-05-17

    Alport syndrome is a hereditary glomerular disease caused by mutation in type IV collagen α3-α5 chains (α3-α5(IV)), which disrupts trimerization, leading to glomerular basement membrane degeneration. Correcting the trimerization of α3/α4/α5 chain is a feasible therapeutic approach, but is hindered by lack of information on the regulation of intracellular α(IV) chain and the absence of high-throughput screening (HTS) platforms to assess α345(IV) trimer formation. Here, we developed sets of split NanoLuc-fusion α345(IV) proteins to monitor α345(IV) trimerization of wild-type and clinically associated mutant α5(IV). The α345(IV) trimer assay, which satisfied the acceptance criteria for HTS, enabled the characterization of intracellular- and secretion-dependent defects of mutant α5(IV). Small interfering RNA-based and chemical screening targeting the ER identified several chemical chaperones that have potential to promote α345(IV) trimer formation. This split luciferase-based trimer formation assay is a functional HTS platform that realizes the feasibility of targeting α345(IV) trimers to treat Alport syndrome. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Diversity, assembly and regulation of archaeal type IV pili-like and non-type-IV pili-like surface structures.

    PubMed

    Lassak, Kerstin; Ghosh, Abhrajyoti; Albers, Sonja-Verena

    2012-01-01

    Archaea have evolved fascinating surface structures allowing rapid adaptation to changing environments. The archaeal surface appendages display such diverse biological roles as motility, adhesion, biofilm formation, exchange of genetic material and species-specific interactions and, in turn, increase fitness of the cells. Intriguingly, despite sharing the same functions with their bacterial counterparts, the assembly mechanism of many archaeal surface structures is rather related to assembly of bacterial type IV pili. This review summarizes our state-of-the-art knowledge about unique structural and biochemical properties of archaeal surface appendages with a particular focus on archaeal type IV pili-like structures. The latter comprise not only widely distributed archaella (formerly known as archaeal flagella), but also different highly specialized archaeal pili, which are often restricted to certain species. Recent findings regarding assembly mechanisms, structural aspects and physiological roles of these type IV pili-like structures will be discussed in detail. Recently, first regulatory proteins involved in transition from both planktonic to sessile lifestyle and in assembly of archaella were identified. To conclude, we provide novel insights into regulatory mechanisms underlying the assembly of archaeal surface structures. Copyright © 2012. Published by Elsevier Masson SAS.

  9. Minor Type IV Collagen α5 Chain Promotes Cancer Progression through Discoidin Domain Receptor-1

    PubMed Central

    Xiao, Qian; Jiang, Yan; Liu, Qingbo; Yue, Jiao; Liu, Chunying; Zhao, Xiaotong; Qiao, Yuemei; Ji, Hongbin; Chen, Jianfeng; Ge, Gaoxiang

    2015-01-01

    Type IV collagens (Col IV), components of basement membrane, are essential in the maintenance of tissue integrity and proper function. Alteration of Col IV is related to developmental defects and diseases, including cancer. Col IV α chains form α1α1α2, α3α4α5 and α5α5α6 protomers that further form collagen networks. Despite knowledge on the functions of major Col IV (α1α1α2), little is known whether minor Col IV (α3α4α5 and α5α5α6) plays a role in cancer. It also remains to be elucidated whether major and minor Col IV are functionally redundant. We show that minor Col IV α5 chain is indispensable in cancer development by using α5(IV)-deficient mouse model. Ablation of α5(IV) significantly impeded the development of KrasG12D-driven lung cancer without affecting major Col IV expression. Epithelial α5(IV) supports cancer cell proliferation, while endothelial α5(IV) is essential for efficient tumor angiogenesis. α5(IV), but not α1(IV), ablation impaired expression of non-integrin collagen receptor discoidin domain receptor-1 (DDR1) and downstream ERK activation in lung cancer cells and endothelial cells. Knockdown of DDR1 in lung cancer cells and endothelial cells phenocopied the cells deficient of α5(IV). Constitutively active DDR1 or MEK1 rescued the defects of α5(IV)-ablated cells. Thus, minor Col IV α5(IV) chain supports lung cancer progression via DDR1-mediated cancer cell autonomous and non-autonomous mechanisms. Minor Col IV can not be functionally compensated by abundant major Col IV. PMID:25992553

  10. Root canal morphology of South Asian Indian maxillary molar teeth

    PubMed Central

    Singh, Shishir; Pawar, Mansing

    2015-01-01

    Objective: The objective was to study the root canal morphology of South Asian Indian Maxillary molars using a tooth clearing technique. Materials and Methods: Hundred teeth each comprising of first, second, and third molars collected from different dental schools and clinics in India were subjected to standard dye penetration, decalcification and clearing procedure before being studied. Results: The first molar mesiobuccal roots exhibited 69% Type I, 24% Type II, 4% Type IV, 2% Type V, and 1% exhibited a Vertuccis Type VIII canal anatomy. In the group with three separate roots the second molar mesiobuccal roots in exhibited 80.6% Type I, 15.3% Type II, 2.7% Type IV, and 1.4% Type V canal anatomy while the third molars mesiobuccal roots exhibited 57.4% Type I, 32% Type II, 2.1% Type III, 8.5% Type IV, 1% had a Type V canal anatomy in the similar group. Conclusion: A varied root canal anatomy was seen in the mesiobuccal root canal of the maxillary molars. PMID:25713497

  11. Field investigation of low-temperature cracking and stiffness moduli on selected roads with conventional and high modulus asphalt concrete

    NASA Astrophysics Data System (ADS)

    Judycki, Józef; Jaczewski, Mariusz; Ryś, Dawid; Pszczoła, Marek; Jaskuła, Piotr; Glinicki, Adam

    2017-09-01

    High Modulus Asphalt Concrete (HMAC) was introduced in Poland as a one of the solutions to the problem of rutting, type of deterioration common in the 1990s. After first encouraging trials in 2002 HMAC was widely used for heavily loaded national roads and motorways. However some concerns were raised about low-temperature cracking of HMAC. This was the main reason of the studies presented in this article were started. The article presents the comparison of performance of pavements constructed in typical contract conditions with the road bases made of HMAC and conventional asphalt concrete (AC). The field investigation was focused on the number of low-temperature cracks, bearing capacity (based on FWD test) of road sections localized in coldest region of Poland. Also load transfer efficiency of selected low-temperature cracks was assessed. FWD test confirmed lower deflections of pavements with HMAC and two times higher stiffness modulus of asphalt courses in comparison to pavements constructed with conventional AC mixtures. Relation of stiffness of asphalt layers and amount of low-temperature cracks showed that the higher stiffness modulus of asphalt layers could lead to increase of the number of low-temperature cracks. FWD test results showed that the load transfer efficiency of low-temperature cracks on pavements with HMAC presents very low values, very close to lack of load transfer. It was surprising as section with HMAC road base were aged from 2 to 5 years and presented very good bearing capacity.

  12. Detection of Steel Fatigue Cracks with Strain Sensing Sheets Based on Large Area Electronics

    PubMed Central

    Yao, Yao; Glisic, Branko

    2015-01-01

    Reliable early-stage damage detection requires continuous monitoring over large areas of structure, and with sensors of high spatial resolution. Technologies based on Large Area Electronics (LAE) can enable direct sensing and can be scaled to the level required for Structural Health Monitoring (SHM) of civil structures and infrastructure. Sensing sheets based on LAE contain dense arrangements of thin-film strain sensors, associated electronics and various control circuits deposited and integrated on a flexible polyimide substrate that can cover large areas of structures. This paper presents the development stage of a prototype strain sensing sheet based on LAE for crack detection and localization. Two types of sensing-sheet arrangements with size 6 × 6 inch (152 × 152 mm) were designed and manufactured, one with a very dense arrangement of sensors and the other with a less dense arrangement of sensors. The sensing sheets were bonded to steel plates, which had a notch on the boundary, so the fatigue cracks could be generated under cyclic loading. The sensors within the sensing sheet that were close to the notch tip successfully detected the initialization of fatigue crack and localized the damage on the plate. The sensors that were away from the crack successfully detected the propagation of fatigue cracks based on the time history of the measured strain. The results of the tests have validated the general principles of the proposed sensing sheets for crack detection and identified advantages and challenges of the two tested designs. PMID:25853407

  13. Native structure of a type IV secretion system core complex essential for Legionella pathogenesis.

    PubMed

    Kubori, Tomoko; Koike, Masafumi; Bui, Xuan Thanh; Higaki, Saori; Aizawa, Shin-Ichi; Nagai, Hiroki

    2014-08-12

    Bacterial type IV secretion systems are evolutionarily related to conjugation systems and play a pivotal role in infection by delivering numerous virulence factors into host cells. Using transmission electron microscopy, we report the native molecular structure of the core complex of the Dot/Icm type IV secretion system encoded by Legionella pneumophila, an intracellular human pathogen. The biochemically isolated core complex, composed of at least five proteins--DotC, DotD, DotF, DotG, and DotH--has a ring-shaped structure. Intriguingly, morphologically distinct premature complexes are formed in the absence of DotG or DotF. Our data suggest that DotG forms a central channel spanning inner and outer membranes. DotF, a component dispensable for type IV secretion, plays a role in efficient embedment of DotG into the functional core complex. These results highlight a common scheme for the biogenesis of transport machinery.

  14. Polyvalent type IV sensitizations to multiple fragrances and a skin protection cream in a metal worker.

    PubMed

    Tanko, Zita; Shab, Arna; Diepgen, Thomas Ludwig; Weisshaar, Elke

    2009-06-01

    Fragrances are very common in everyday products. A metalworker with chronic hand eczema and previously diagnosed type IV sensitizations to epoxy resin, balsam of Peru, fragrance mix and fragrance mix II was diagnosed with additional type IV sensitizations to geraniol, hydroxycitronellal, lilial, tree moss, oak moss absolute, citral, citronellol, farnesol, Lyral, fragrance mix II and fragrance mix (with sorbitan sesquioleate). In addition, a type IV sensitization to the skin protection cream containing geraniol and citronellol used at the workplace was detected, and deemed occupationally relevant in this case. The patient could have had contact to fragrances through private use of cosmetics and detergents. On the other hand, the fragrance-containing skin protection cream supports occupational exposure. This case report demonstrates that fragrance contact allergy has to be searched for and clarified individually, which requires a thorough history and a detailed analysis of the work place.

  15. Crystal Structure of the Minor Pilin CofB, the Initiator of CFA/III Pilus Assembly in Enterotoxigenic Escherichia coli*

    PubMed Central

    Kolappan, Subramania; Ng, Dixon; Yang, Guixiang; Harn, Tony; Craig, Lisa

    2015-01-01

    Type IV pili are extracellular polymers of the major pilin subunit. These subunits are held together in the pilus filament by hydrophobic interactions among their N-terminal α-helices, which also anchor the pilin subunits in the inner membrane prior to pilus assembly. Type IV pilus assembly involves a conserved group of proteins that span the envelope of Gram-negative bacteria. Among these is a set of minor pilins, so named because they share their hydrophobic N-terminal polymerization/membrane anchor segment with the major pilins but are much less abundant. Minor pilins influence pilus assembly and retraction, but their precise functions are not well defined. The Type IV pilus systems of enterotoxigenic Escherichia coli and Vibrio cholerae are among the simplest of Type IV pilus systems and possess only a single minor pilin. Here we show that the enterotoxigenic E. coli minor pilins CofB and LngB are required for assembly of their respective Type IV pili, CFA/III and Longus. Low levels of the minor pilins are optimal for pilus assembly, and CofB can be detected in the pilus fraction. We solved the 2.0 Å crystal structure of N-terminally truncated CofB, revealing a pilin-like protein with an extended C-terminal region composed of two discrete domains connected by flexible linkers. The C-terminal region is required for CofB to initiate pilus assembly. We propose a model for CofB-initiated pilus assembly with implications for understanding filament growth in more complex Type IV pilus systems as well as the related Type II secretion system. PMID:26324721

  16. Crystal Structure of the Minor Pilin CofB, the Initiator of CFA/III Pilus Assembly in Enterotoxigenic Escherichia coli.

    PubMed

    Kolappan, Subramania; Ng, Dixon; Yang, Guixiang; Harn, Tony; Craig, Lisa

    2015-10-23

    Type IV pili are extracellular polymers of the major pilin subunit. These subunits are held together in the pilus filament by hydrophobic interactions among their N-terminal α-helices, which also anchor the pilin subunits in the inner membrane prior to pilus assembly. Type IV pilus assembly involves a conserved group of proteins that span the envelope of Gram-negative bacteria. Among these is a set of minor pilins, so named because they share their hydrophobic N-terminal polymerization/membrane anchor segment with the major pilins but are much less abundant. Minor pilins influence pilus assembly and retraction, but their precise functions are not well defined. The Type IV pilus systems of enterotoxigenic Escherichia coli and Vibrio cholerae are among the simplest of Type IV pilus systems and possess only a single minor pilin. Here we show that the enterotoxigenic E. coli minor pilins CofB and LngB are required for assembly of their respective Type IV pili, CFA/III and Longus. Low levels of the minor pilins are optimal for pilus assembly, and CofB can be detected in the pilus fraction. We solved the 2.0 Å crystal structure of N-terminally truncated CofB, revealing a pilin-like protein with an extended C-terminal region composed of two discrete domains connected by flexible linkers. The C-terminal region is required for CofB to initiate pilus assembly. We propose a model for CofB-initiated pilus assembly with implications for understanding filament growth in more complex Type IV pilus systems as well as the related Type II secretion system. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Ultimate Strength of Ferro-Geopolymer Composite Built-Up I Joist

    NASA Astrophysics Data System (ADS)

    Vipin, K. T.; Ganesan, N.; Indira, P. V.

    2017-07-01

    An experimental study was carried out to study the behaviour of ferro-geopolymer built-up I- joist with different types of mesh reinforcements under flexure. Mesh reinforcements considered in this study are square welded meshes, square woven meshes and hexagonal meshes. First crack load as well as ultimate strength of ferro-geopolymer built-up I-joist in flexure was obtained. An attempt was made to predict the first crack load and ultimate moment capacity of the specimen.

  18. Inroads in the Non-Invasive Diagnostics of Ballistic Impact Damage

    DTIC Science & Technology

    2006-11-01

    2004; Wells, et al., 2002), Ti - 6Al - 4V metallic armor materials (Wells, et al., 2004) and, most recently, on a ballistic gelatin target (Wells, 2006...spiral cracking outside of the penetration cavity in a Ti - 6Al - 4V sample disk. This type of volumetric damage characterization information, otherwise...visualization of the penetration cavity and spiral cracking in a Ti - 6Al - 4V sample. 4 Figure 8. Quantitative 3-D unit damage fraction

  19. Demonstration of Smart Fluorescent and Self-Healing Coatings for Severely Corrosive Environments at Vehicle Wash Facilities

    DTIC Science & Technology

    2009-08-01

    as well as pipe and tank exteriors providing early detection of coating erosion, cracks , and intercoat blistering. A fluorescing coating used ERDC...poor with widespread areas of peeling and cracking on the exterior siding. Areas of exposed galvanizing were rusting. Structural steel elements...and application of TT-P-86 Type 2 red lead paint and red and white colored alkyd enamel topcoats. The average dry film thickness on the exterior

  20. Laser Peening for Mitigation of Stress Corrosion Cracking at Welds in Marine Aluminum

    DTIC Science & Technology

    2011-06-01

    therefore leaving the welded area and the HAZ in tension and the surround base metal in compression [ 6 ]. Figure 4 shows the residual stress of a MIG...either by electropolishing or vibratory polishing. The samples were electropolished in a Buehler Electromet 4 Electropolisher using a solution of...REPORT TYPE AND DATES COVERED Master’s Thesis 4 . TITLE AND SUBTITLE Laser Peening for Mitigation of Stress Corrosion Cracking at Welds in Marine

  1. Accelerated Aging Experiments for Prognostics of Damage Growth in Composite Materials

    DTIC Science & Technology

    2011-09-01

    possible resource to collect such data is an accelerated aging platform. To that end this paper describes a fatigue cycling experiment with the goal to...possible resource to collect such data is an accelerated aging platform. To that end this paper describes a fatigue cycling experiment with the goal to...suffer from two damage types: matrix micro-cracks and inter- laminar delamination. When subject to fatigue loading matrix micro-cracks develop in the

  2. Crack propagation and coalescence due to dual non-penetrating surface flaws and their effect on the strength of rock-like material

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Zheng, Zheyuan; Xiao, Xiaochun; Li, Zhaoxia

    2018-06-01

    Non-penetrating surface flaws play a key role in the fracture process of rock-like material, and could cause localized collapse and even failure of the materials. Until now, the mechanism and the effect of surface crack propagation have remained unclear. In this paper, compression tests on gypsum (a soft rock material) are conducted to investigate crack propagation and coalescence due to non-penetrating surface flaws and their effect on the material strength. Specimens are tested under dual pre-existing surface flaws with various combinations of depth and spacing. The results show that when the pre-existing flaws are non-penetrating, the d/t ratio (flaw depth ratio, d is the pre-existing flaw cutting depth and t is the specimen thickness) and the spacing (the distance between the two flaw internal tips) have a strong influence on surface crack patterns and specimen strength. Few cracks emanate from the pre-existing flaws when the flaw depth ratio is equal to 1/3, and more cracks occur with the increase of the flaw depth ratio. When the pre-existing flaw penetrates completely through the specimen, the spacing has a small effect on the specimen strength. A larger flaw depth ratio could advance the occurrence of the peak load (PL) and result in a smaller specimen residual strength. The failure process of the specimen is divided into several stages featured by a stepped decline of the load value after PL, which is closely related to the initiation and propagation of secondary cracks. In addition, the spalling (failure of a portion of the surface caused by coalescence of cracks) can be regarded as indicating the failure of the specimen, and two possible types of spalling formation are briefly discussed.

  3. Instability in dynamic fracture

    NASA Astrophysics Data System (ADS)

    Fineberg, J.; Marder, M.

    1999-05-01

    The fracture of brittle amorphous materials is an especially challenging problem, because the way a large object shatters is intimately tied to details of cohesion at microscopic scales. This subject has been plagued by conceptual puzzles, and to make matters worse, experiments seemed to contradict the most firmly established theories. In this review, we will show that the theory and experiments fit within a coherent picture where dynamic instabilities of a crack tip play a crucial role. To accomplish this task, we first summarize the central results of linear elastic dynamic fracture mechanics, an elegant and powerful description of crack motion from the continuum perspective. We point out that this theory is unable to make predictions without additional input, information that must come either from experiment, or from other types of theories. We then proceed to discuss some of the most important experimental observations, and the methods that were used to obtain the them. Once the flux of energy to a crack tip passes a critical value, the crack becomes unstable, and it propagates in increasingly complicated ways. As a result, the crack cannot travel as quickly as theory had supposed, fracture surfaces become rough, it begins to branch and radiate sound, and the energy cost for crack motion increases considerably. All these phenomena are perfectly consistent with the continuum theory, but are not described by it. Therefore, we close the review with an account of theoretical and numerical work that attempts to explain the instabilities. Currently, the experimental understanding of crack tip instabilities in brittle amorphous materials is fairly detailed. We also have a detailed theoretical understanding of crack tip instabilities in crystals, reproducing qualitatively many features of the experiments, while numerical work is beginning to make the missing connections between experiment and theory.

  4. Effect of chloride contamination in MON-1 propellant on crack growth properties of metals

    NASA Technical Reports Server (NTRS)

    Moran, C. M.; Toth, L. R.

    1981-01-01

    The effect of a high level of chloride content (800 ppm) in MON-1 propellant on the crack growth properties of seven materials was investigated. Sustained load tests were conducted at 49 C (120 F) temperature with thin gauge tensile specimens having a semi-elliptical surface flaw. Alloys included aluminum 1100, 3003, 5086 and 6061; corrosion resistant steel types A286 and 347; and titanium 6Al-4V. The configurations tested with precracked flaws exposed to MON-1 were: parent or base metal, center weld, and heat affected zone. It was concluded that this chloride level in MON-1 does not affect the stress corrosion, crack growth properties of these alloys after 1000 hour exposure duration under high stresses.

  5. Nonlinear fracture of concrete and ceramics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Albert S.; Du, Jia-Ji; Hawkins, Niel M.; Bradt, Richard C.

    1989-01-01

    The nonlinear fracture process zones in an impacted unnotched concrete bend specimen, a prenotched ceramic bend specimen, and an unnotched ceramic/ceramic composite bend specimen were estimated through hybrid experimental numerical analysis. Aggregate bridging in concrete, particulate bridging in ceramics, and fiber bridging in ceramic/ceramic composite are modeled by Barenblatt-type cohesive zones which are incorporated into the finite-element models of the bend specimens. Both generation and propagation analyses are used to estimate the distribution of crack closure stresses in the nonlinear fracture process zones. The finite-element models are then used to simulate fracture tests consisting of rapid crack propagation in an impacted concrete bend specimen, and stable crack growth and strain softening in a ceramic and ceramic/ceramic composite bend specimens.

  6. An Experimental Study of a Stitched Composite with a Notch Subjected to Combined Bending and Tension Loading

    NASA Technical Reports Server (NTRS)

    Palmer, Susan O.; Nettles, Alan T.; Poe, C. C., Jr.

    1999-01-01

    A series of tests was conducted to measure the strength of stitched carbon/epoxy composites containing through-thickness damage in the form of a crack-like notch. The specimens were subjected to three types of loading: pure bending, pure tension, and combined bending and tension loads. Measurements of applied loads, strains near crack tips, and crack opening displacements (COD) were monitored in all tests. The transverse displacement at the center of the specimen was measured using a Linear Variable Differential Transformer (LVDT). The experimental data showed that the outer surface of the pure tension specimen failed at approximately 6,000 microstrain, while in combined bending and tension loads the measured tensile strains reached 10,000 microstrain.

  7. Development of a chromium-free consumable for joining stainless steels

    NASA Astrophysics Data System (ADS)

    Sowards, Jeffrey William

    Government regulations in the United States (OSHA Standards: 1910; 1915; 1917; 1918; 1926) and abroad are decreasing allowable exposure levels of hexavalent chromium to welding related personnel. The latest OSHA ruling in 2006 reduced the permissible exposure limit of airborne hexavalent chromium from 52 to 5 mug m-3. Achieving the new level may not be practical from an engineering controls standpoint during the fabrication of tightly enclosed stainless steel components such as the inside of ship hulls and boiler vessels. One method of addressing this problem is to implement a chromium-free welding consumable that provides equivalent mechanical performance and corrosion characteristics to current stainless steel welding consumables. This project was aimed at developing such a consumable and evaluating its suitability for replacement of current stainless steel consumables such as E308L-16. A new shielded metal arc welding (SMAW) consumable based on the Ni-Cu-Ru system was developed for austenitic stainless steel welding. The focus of this work was evaluating the mechanical properties, weldability, and fume formation characteristics of the various iterations of consumables developed. Welds deposited on Type 304 stainless steel were evaluated with weldability tests including: mechanical testing, hot ductility testing, Strain-to-fracture testing, Transverse Varestraint testing, and button melting. Mechanical properties of weld deposits of each consumable were found to exceed minimum values of Type 304 stainless steel based on tensile testing. Guide bend testing showed that weld deposits met minimum weld ductility requirements for stainless steel consumables, such as E308-16. Hot ductility testing revealed a narrow crack susceptible region (33 to 54°C) indicating a low susceptibility to weld metal liquation cracking. GTA welds exhibited superior ductility when compared to SMA welds. This was attributed to a lack of slag inclusions in the weld deposit, which are effective weld strengtheners. Varestraint testing revealed that weld deposits have a higher solidification cracking susceptibility than stainless steel consumables used to join Type 304. Higher cracking susceptibility was attributed to austenitic solidification of the weld metal resulting in increased weld segregation and stabilization of a TiC eutectic reaction at the end of solidification. No solidification cracks were observed in actual weld deposits. Evaluation of weld microsegregation patterns showed higher dilutions of Type 304 increased segregation of Ti, promoting a TiC eutectic reaction at the end of solidification. Thermodynamic modeling techniques were used to describe the solidification the Ni-Cu weld deposits as a function of dilution with Type 304. Solidification cracking susceptibility was shown to increase with dilution during evaluation with the Cast Pin Tear Test indicating high dilution welds should be avoided to minimize solidification cracking during welding. The Strain-to-fracture test was used to examine DDC cracking susceptibility, and revealed that this alloy has a higher susceptibility to solid-state weld cracking than austenitic stainless alloys such as 304. Threshold strain levels necessary to initiate cracking in the weld deposits were in the range of 2 to 3%. These values are comparable to other Ni-base alloys with a moderate to high susceptibility to DDC. Fume generation rates (FGR) of the new consumable were measured and bulk fume phases were analyzed with X-ray diffraction. FGR values were found to be similar to current SMAW and flux cored arc welding consumables. No chromium bearing compounds were observed during X-ray diffraction measurements, and the bulk fume consisted primarily of halides and metallic-oxides. Fume generated by the new consumable was subjected to colorimetric testing showing hexavalent Cr content (0.02 wt-%) was reduced by two orders of magnitude compared to E308-16 (2.6 wt-%). The source of this hexavalent chromium was from evaporation of the base metal due to the welding heat source. The consumable developed in this study, having a nominal composition of Ni-7.5Cu-1Ru-0.5Al-0.5Ti-0.02C, met virtually all the design criteria that were initially established. Work performed by the Fontana Corrosion Center showed that the weld deposits met corrosion design criteria to prevent localized attack of the weld metal. Work performed in this study showed that mechanical properties were comparable to stainless steel consumables, and weld cracking susceptibility was comparable to Ni-base welding consumables. The consumable was also found to have good operability characteristics. (Abstract shortened by UMI.)

  8. Spatial and Functional Relationships Among Pol V-Associated loci, Pol IV-Dependent siRNAs, and Cytosine Methylation in the Arabidopsis Epigenome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wierzbicki, A. T.; Cocklin, Ross; Mayampurath, Anoop

    2012-08-15

    Multisubunit RNA polymerases IV and V (Pols IV and V) mediate RNA-directed DNA methylation and transcriptional silencing of retrotransposons and heterochromatic repeats in plants. We identified genomic sites of Pol V occupancy in parallel with siRNA deep sequencing and methylcytosine mapping, comparing wild-type plants with mutants defective for Pol IV, Pol V, or both Pols IV and V. Approximately 60% of Pol V-associated regions encompass regions of 24-nucleotide (nt) siRNA complementarity and cytosine methylation, consistent with cytosine methylation being guided by base-pairing of Pol IV-dependent siRNAs with Pol V transcripts. However, 27% of Pol V peaks do not overlap sitesmore » of 24-nt siRNA biogenesis or cytosine methylation, indicating that Pol V alone does not specify sites of cytosine methylation. Surprisingly, the number of methylated CHH motifs, a hallmark of RNA-directed de novo methylation, is similar in wild-type plants and Pol IV or Pol V mutants. In the mutants, methylation is lost at 50%-60% of the CHH sites that are methylated in the wild type but is gained at new CHH positions, primarily in pericentromeric regions. These results indicate that Pol IV and Pol V are not required for cytosine methyltransferase activity but shape the epigenome by guiding CHH methylation to specific genomic sites.« less

  9. Fracture Toughness to Understand Stretch-Flangeability and Edge Cracking Resistance in AHSS

    NASA Astrophysics Data System (ADS)

    Casellas, Daniel; Lara, Antoni; Frómeta, David; Gutiérrez, David; Molas, Sílvia; Pérez, Lluís; Rehrl, Johannes; Suppan, Clemens

    2017-01-01

    The edge fracture is considered as a high risk for automotive parts, especially for parts made of advanced high strength steels (AHSS). The limited ductility of AHSS makes them more sensitive to the edge damage. The traditional approaches, such as those based on ductility measurements or forming limit diagrams, are unable to predict this type of fractures. Thus, stretch-flangeability has become an important formability parameter in addition to tensile and formability properties. The damage induced in sheared edges in AHSS parts affects stretch-flangeability, because the generated microcracks propagate from the edge. Accordingly, a fracture mechanics approach may be followed to characterize the crack propagation resistance. With this aim, this work addresses the applicability of fracture toughness as a tool to understand crack-related problems, as stretch-flangeability and edge cracking, in different AHSS grades. Fracture toughness was determined by following the essential work of fracture methodology and stretch-flangeability was characterized by means of hole expansions tests. Results show a good correlation between stretch-flangeability and fracture toughness. It allows postulating fracture toughness, measured by the essential work of fracture methodology, as a key material property to rationalize crack propagation phenomena in AHSS.

  10. The detection of tightly closed flaws by nondestructive testing (NDT) methods. [fatigue crack formation in aluminum alloy test specimens

    NASA Technical Reports Server (NTRS)

    Rummel, W. D.; Rathke, R. A.; Todd, P. H., Jr.; Mullen, S. J.

    1975-01-01

    Liquid penetrant, ultrasonic, eddy current and X-radiographic techniques were optimized and applied to the evaluation of 2219-T87 aluminum alloy test specimens in integrally stiffened panel, and weld panel configurations. Fatigue cracks in integrally stiffened panels, lack-of-fusion in weld panels, and fatigue cracks in weld panels were the flaw types used for evaluation. A 2319 aluminum alloy weld filler rod was used for all welding to produce the test specimens. Forty seven integrally stiffened panels containing a total of 146 fatigue cracks, ninety three lack-of-penetration (LOP) specimens containing a total of 239 LOP flaws, and one-hundred seventeen welded specimens containing a total of 293 fatigue cracks were evaluated. Nondestructive test detection reliability enhancement was evaluated during separate inspection sequences in the specimens in the 'as-machined or as-welded', post etched and post proof loaded conditions. Results of the nondestructive test evaluations were compared to the actual flaw size obtained by measurement of the fracture specimens after completing all inspection sequences. Inspection data were then analyzed to provide a statistical basis for determining the flaw detection reliability.

  11. Contraction fracture: From 90° to 120° crack intersections

    NASA Astrophysics Data System (ADS)

    Lazarus, V.; Gauthier, G.; Pauchard, L.

    2009-12-01

    Giant's Causeway, Port Arthur tessellated pavement, Bimini Road, Mars polygons (whose presence indicated past occurrence of water), fracture networks in permafrost, septarias are some more or less known examples of self-organized crack patterns that have intrigued people through out history. Even now, they are sometimes attributed to legendary figures : Giant's, Atlantis mythical citizens. These pavements are in fact formed by constrained shrinking of the media due, for instance, to cooling or drying leading to fracture. The crack networks form mostly 90° or 120° angles. Here, we report experiments allowing to control the transition between 90° and 120°. We show that the transition is governed by the linear elastic fracture mechanics energy minimization principle, hence by two parameters: the cell size and the Griffith's length (minimum crack length beyond which the bulk energy is not sufficient to allow its propagation). This was achieved by measuring the Griffith's length directly on the same type of experiments by changing the cell geometry. Example of 90 degree and 120 crack intersections. Top-left : Giant's Causeway hexagonal tessellated pavement, Ireland (courtesy A. Davaille). Top-right: Port Arthur rectangular tessellated pavement, Tasmania (courtesy Wayne Bentley). Bottom : septarias (courtesy A. Rifki and M. Toussaint)

  12. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, J.C.; Van Konynenburg, R.A.; McCright, R.D.

    1988-04-01

    Three iron- to nickel-based austenitic alloys (Types 304L and 316L stainless steels and Alloy 825) are being considered as candidate materials for the fabrication of high-level radioactive-waste containers. Waste will include fuel assemblies from reactors as well as high-level waste in borosilicate glass forms, and will be sent to the prospective repository at Yucca Mountain, Nevada. The decay of radionuclides in the repository will result in the generation of substantial heat and in fluences of gamma radiation. Container materials may undergo any of several modes of degradation in this environment, including atmospheric oxidation; uniform aqueous phase corrosion; pitting; crevice corrosion;more » sensitization and intergranular stress corrosion cracking (IGSCC); and transgranular stress corrosion cracking (TGSCC). This report is an analysis of data relevant to the pitting, crevice corrosion, and stress corrosion cracking (SCC) of the three austenitic candidate alloys. The candidates are compared in terms of their susceptibilities to these forms of corrosion. Although all three candidates have demonstrated pitting and crevice corrosion in chloride-containing environments, Alloy 825 has the greatest resistance to these types of localized corrosion (LC); such resistance is important because pits can penetrate the metal and serve as crack initiation sites. Both Types 304L and 316L stainless steels are susceptible to SCC in acidic chloride media. In contrast, SCC has not been documented in Alloy 825 under comparable conditions. Gamma radiation has been found to enhance SCC in Types 304 and 304L stainless steels, but it has no detectable effect on the resistance of Alloy 825 to SCC. Furthermore, while the effects of microbiologically induced corrosion have been observed for 300-series stainless steels, nickel-based alloys such as Alloy 825 seem to be immune to such problems. 211 refs., 49 figs., 10 tabs.« less

  13. Effect of ferrite transformation on the tensile and stress corrosion properties of type 316 L stainless steel weld metal thermally aged at 873 K

    NASA Astrophysics Data System (ADS)

    Shaikh, H.; Khatak, H. S.; Seshadri, S. K.; Gnanamoorthy, J. B.; Rodriguez, P.

    1995-07-01

    This article deals with the effect of the microstructural changes, due to transformation of delta ferrite, on the associated variations that take place in the tensile and stress corrosion properties of type 316 L stainless steel weld deposits when subjected to postweld heat treatment at 873 K for prolonged periods (up to 2000 hours). On aging for short durations (up to 20 hours), carbide/ carbonitride was the dominant transformation product, whereas sigma phase was dominant at longer aging times. The changes in the tensile and stress corrosion behavior of the aged weld metal have been attributed to the two competitive processes of matrix softening and hardening. Yield strength (YS) was found to depend predominantly on matrix softening only, while sig-nificant changes in the ultimate tensile strength (UTS) and the work-hardening exponent, n, occurred due to matrix hardening. Ductility and stress corrosion properties were considerably affected by both factors. Fractographic observations on the weld metal tested for stress-corrosion cracking (SCC) indicated a combination of transgranular cracking of the austenite and interface cracking.

  14. Progress in Developing Transfer Functions for Surface Scanning Eddy Current Inspections

    NASA Astrophysics Data System (ADS)

    Shearer, J.; Heebl, J.; Brausch, J.; Lindgren, E.

    2009-03-01

    As US Air Force (USAF) aircraft continue to age, additional inspections are required for structural components. The validation of new inspections typically requires a capability demonstration of the method using representative structure with representative damage. To minimize the time and cost required to prepare such samples, Electric Discharge machined (EDM) notches are commonly used to represent fatigue cracks in validation studies. However, the sensitivity to damage typically changes as a function of damage type. This requires a mathematical relationship to be developed between the responses from the two different flaw types to enable the use of EDM notched samples to validate new inspections. This paper reviews progress to develop transfer functions for surface scanning eddy current inspections of aluminum and titanium alloys found in structural aircraft components. Multiple samples with well characterized grown fatigue cracks and master gages with EDM notches, both with a range of flaw sizes, were used to collect flaw signals with USAF field inspection equipment. Analysis of this empirical data was used to develop a transfer function between the response from the EDM notches and grown fatigue cracks.

  15. Laser weldability of 21Cr-6Ni-9Mn stainless steel: Part I - Impurity effects and solidifcation mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tate, Stephen B.; Javernick, Daniel Anthony; Lienert, Thomas J.

    For laser welded type 21Cr-6Ni-9Mn (21-6-9) stainless steels, the relationship between solidification cracking susceptibility and chemical composition was examined, and primary solidification mode (PSM) diagrams were developed to predict solidification mode. Sigmajig testing was used with experimental heats of type 21-6-9 to determine the effect of P and S on solidification cracking w hen primary austenite solidification occurred. Phosphorus showed a larger influence on solidification cracking relative to S, and a relationship of (P+0.2S ) was found for total impurity content. PSM diagrams to predict solidification mode were developed by analyzing welds made at three travel speeds for a widemore » range of 21-6-9 alloys and some other similar alloys. The minimum Cr eq/Ni eq required for primary ferrite solidification increased as travel speed increased, with more alloys showing primary austenite solidification at higher travel rates. Furthermore, as travel speed increased from 21 to 85 mm/s, the average solidification rate increased from 6 to 25 mm/s.« less

  16. Laser weldability of 21Cr-6Ni-9Mn stainless steel: Part I - Impurity effects and solidifcation mode

    DOE PAGES

    Tate, Stephen B.; Javernick, Daniel Anthony; Lienert, Thomas J.; ...

    2016-11-02

    For laser welded type 21Cr-6Ni-9Mn (21-6-9) stainless steels, the relationship between solidification cracking susceptibility and chemical composition was examined, and primary solidification mode (PSM) diagrams were developed to predict solidification mode. Sigmajig testing was used with experimental heats of type 21-6-9 to determine the effect of P and S on solidification cracking w hen primary austenite solidification occurred. Phosphorus showed a larger influence on solidification cracking relative to S, and a relationship of (P+0.2S ) was found for total impurity content. PSM diagrams to predict solidification mode were developed by analyzing welds made at three travel speeds for a widemore » range of 21-6-9 alloys and some other similar alloys. The minimum Cr eq/Ni eq required for primary ferrite solidification increased as travel speed increased, with more alloys showing primary austenite solidification at higher travel rates. Furthermore, as travel speed increased from 21 to 85 mm/s, the average solidification rate increased from 6 to 25 mm/s.« less

  17. Neurons of human nucleus accumbens.

    PubMed

    Sazdanović, Maja; Sazdanović, Predrag; Zivanović-Macuzić, Ivana; Jakovljević, Vladimir; Jeremić, Dejan; Peljto, Amir; Tosevski, Jovo

    2011-08-01

    Nucleus accumbens is a part of the ventral striatum also known as a drug active brain region, especially related with drug addiction. The aim of the study was to investigate the Golgi morphology of the nucleus accumbens neurons. The study was performed on the frontal and sagittal sections of 15 human brains by the Golgi Kopsch method. We classified neurons in the human nucleus accumbens according to their morphology and size into four types: type I--fusiform neurons; type II--fusiform neurons with lateral dendrite, arising from a part of the cell body; type III--pyramidal-like neuron; type IV--multipolar neuron. The medium spiny neurons, which are mostly noted regarding to the drug addictive conditions of the brain, correspond to the type IV--multipolar neurons. Two regions of human nucleus accumbens could be clearly recognized on Nissl and Golgi preparations each containing different predominant neuronal types. Central part of nucleus accumbens, core region, has a low density of impregnated neurons with predominant type III, pyramidal-like neurons, with spines on secondary branches and rare type IV, multipolar neurons. Contrary to the core, peripheral region, shell of nucleus, has a high density of impregnated neurons predominantly contained of type I and type IV--multipolar neurons, which all are rich in spines on secondary and tertiary dendritic branches. Our results indicate great morphological variability of human nucleus accumbens neurons. This requires further investigations and clarifying clinical significance of this important brain region.

  18. Fracture spacing in tensile brittle layers adhering to a rigid substrate

    NASA Astrophysics Data System (ADS)

    Lazarus, Véronique

    2017-01-01

    A natural question arising when observing crack networks in brittle layers such as, e.g., paints, muds, skins, pottery glazes, coatings, ceramics, is what determines the distance between cracks. This apparently simple question received a wealth of more or less complex and appropriate answers, but no consensus has emerged. Here, we show that the cracks interact mutually as soon as the spacing between them is smaller than ten times the thickness of the layer. Then, a simple Griffith-type balance between the elastic deformation energy and the fracture bulk and debonding costs captures a broad number of observations, going from the square-root or linear increase of the spacing with the thickness, to its decrease with loading until saturation. The adhesion strength is identified as playing a key role in these behaviour changes. As illustration, we show how the model can be applied to study the influence of the layer thickness on crack patterns. We believe that the versatility of the approach should permit wide applicability, from geosciences to engineering.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, Natalie M.; Zok, Frank W.

    One route for producing fiber-reinforced ceramic-matrix composites entails repeated impregnation and pyrolysis of a preceramic polymer in a fiber preform. The process relies crucially on the development of networks of contiguous cracks during pyrolysis, thereby allowing further impregnation to attain nearly-full densification. The present study employs in-situ x-ray computed tomography (XCT) to reveal in three dimensions the evolution of matrix structure during pyrolysis of a SiC-based preceramic polymer to 1200 °C. Observations are used to guide the development of a taxonomy of crack geometries and crack structures and to identify the temporal sequence of their formation. A quantitative analysis ismore » employed to characterize effects of local microstructural dimensions on the conditions required to form cracks of various types. Complementary measurements of gas evolution and mass loss of the preceramic polymer during pyrolysis as well as changes in mass density and Young's modulus provide context for the physical changes revealed by XCT. Furthermore, the findings provide a foundation for future development of physics-based models to guide composite fabrication processes.« less

  20. Thermal fatigue and oxidation data for alloy/braze combinations

    NASA Technical Reports Server (NTRS)

    Hill, V. L.; Humphreys, V. E.

    1977-01-01

    Thermal fatigue and oxidation data were obtained for 62 brazed specimens of 3 iron-, 3 nickel-, and 1 cobalt-base alloy. Fluidized bed thermal cycling was conducted over the range 740/25 C employing 10 cm long single-edge wedge specimens. Immersion time was always 4 minutes in each bed. Types of test specimens employed in the program include those with brazed overlays on the specimen radius, those butt brazed at midspan and those with a brazed foil overlay on the specimen radius. Of the 18 braze overlay specimens, 5 generated fatigue cracks by 7000 cycles. Thermal cracking of butt brazed specimens occurred exclusively through the butt braze. Of the 23 butt brazed specimens, 7 survived 11,000 thermal cycles without cracking. Only 2 of the 21 foil overlaid specimens exhibiting cracking in 7,000 cycles. Blistering of the foil did occur for 2 alloys by 500 cycles. Oxidation of the alloy/braze combination was limited at the test maximum test temperature of 740 C.

  1. Chloride-induced corrosion of steel in cracked concrete – Part I: Experimental studies under accelerated and natural marine environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otieno, M., E-mail: Mike.Otieno@wits.ac.za; Beushausen, H.; Alexander, M.

    Parallel corrosion experiments were carried out for 2¼ years by exposing one half of 210 beam specimens (120 × 130 × 375 mm long) to accelerated laboratory corrosion (cyclic wetting and drying) while the other half underwent natural corrosion in a marine tidal zone. Experimental variables were crack width w{sub cr} (0, incipient crack, 0.4, 0.7 mm), cover c (20, 40 mm), binder type (PC, PC/GGBS, PC/FA) and w/b ratio (0.40, 0.55). Results show that corrosion rate (i{sub corr}) was affected by the experimental variables in the following manner: i{sub corr} increased with increase in crack width, and decreased withmore » increase in concrete quality and cover depth. The results also show that the corrosion performance of concretes in the field under natural corrosion cannot be inferred from its performance in the laboratory under accelerated corrosion. Other factors such as corrosion process should be taken into account.« less

  2. The relative stress-corrosion-cracking susceptibility of candidate aluminum-lithium alloys for aerospace applications

    NASA Technical Reports Server (NTRS)

    Pizzo, P. P.

    1982-01-01

    Stress corrosion tests of Al-Li-Cu powder metallurgy alloys are described. Alloys investigated were Al-2.6% Li-1.4% and Al-2.6% Li-1.4% Cu-1.6% Mg. The base properties of the alloys were characterized. Process, heat treatment, and size/orientational effects on the tensile and fracture behavior were investigated. Metallurgical and electrochemical conditions are identified which provide reproducible and controlled parameters for stress corrosion evaluation. Preliminary stress corrosion test results are reported. Both Al-Li-Cu alloys appear more susceptible to stress corrosion crack initiation than 7075-T6 aluminum, with the magnesium bearing alloy being the most susceptible. Tests to determine the threshold stress intensity for the base and magnesium bearing alloys are underway. Twelve each, bolt loaded DCB type specimens are under test (120 days) and limited crack growth in these precracked specimens has been observed. General corrosion in the aqueous sodium chloride environment is thought to be obscuring results through crack tip blunting.

  3. Factors affecting stress assisted corrosion cracking of carbon steel under industrial boiler conditions

    NASA Astrophysics Data System (ADS)

    Yang, Dong

    Failure of carbon steel boiler tubes from waterside has been reported in the utility boilers and industrial boilers for a long time. In industrial boilers, most waterside tube cracks are found near heavy attachment welds on the outer surface and are typically blunt, with multiple bulbous features indicating a discontinuous growth. These types of tube failures are typically referred to as stress assisted corrosion (SAC). For recovery boilers in the pulp and paper industry, these failures are particularly important as any water leak inside the furnace can potentially lead to smelt-water explosion. Metal properties, environmental variables, and stress conditions are the major factors influencing SAC crack initation and propagation in carbon steel boiler tubes. Slow strain rate tests (SSRT) were conducted under boiler water conditions to study the effect of temperature, oxygen level, and stress conditions on crack initation and propagation on SA-210 carbon steel samples machined out of boiler tubes. Heat treatments were also performed to develop various grain size and carbon content on carbon steel samples, and SSRTs were conducted on these samples to examine the effect of microstructure features on SAC cracking. Mechanisms of SAC crack initation and propagation were proposed and validated based on interrupted slow strain tests (ISSRT). Water chemistry guidelines are provided to prevent SAC and fracture mechanics model is developed to predict SAC failure on industrial boiler tubes.

  4. Skin phototyping in a Chinese female population: analysis of four hundred and four cases from four major cities of China.

    PubMed

    Liu, W; Lai, W; Wang, X M; Li, L; Tian, Y; Lu, Y; Wu, Y Y; Li, Y; Zhang, P; Wu, Y; Chen, L

    2006-08-01

    The sun-reactive skin types in 404 Chinese females living in different cities were investigated in this study. A questionnaire was designed according to the original concept of skin types proposed by Fitzpatrick and the investigation was conducted in two ways: self-administered reporting and then a personal interview. Minimal erythema dose (MED) and minimal persistent pigmentation dose (MPPD) were also measured in part of the volunteers with a standard solar simulator. The results show that in the way of personal interview, the predominant skin type of the investigated group is type III (71.4%), and then type II (14.7%) and type IV (14.2%), while in the self-reporting manner, the result is as follows: type III, 74.3%, type II, 25.6% and type IV, 1%. There are no skin type I, V or VI in the studied group. MED and MPPD from the same population show some relevance to the skin types, e.g. with the change of skin type from Type II to IV, the mean value of MED increases gradually and the MPPD decreases slightly. From the study we concluded that the skin types of the investigated Chinese females are principally type III (more than 70%), and then type II and type IV. The different ways of answering the questionnaire did not affect the results remarkably. The measurements of photobiology parameters confirmed that there is a certain correlation between skin types and MED or MPPD determined in this group of volunteers.

  5. Proposal for a histopathological consensus classification of the periprosthetic interface membrane

    PubMed Central

    Morawietz, L; Classen, R‐A; Schröder, J H; Dynybil, C; Perka, C; Skwara, A; Neidel, J; Gehrke, T; Frommelt, L; Hansen, T; Otto, M; Barden, B; Aigner, T; Stiehl, P; Schubert, T; Meyer‐Scholten, C; König, A; Ströbel, P; Rader, C P; Kirschner, S; Lintner, F; Rüther, W; Bos, I; Hendrich, C; Kriegsmann, J; Krenn, V

    2006-01-01

    Aims The introduction of clearly defined histopathological criteria for a standardised evaluation of the periprosthetic membrane, which can appear in cases of total joint arthroplasty revision surgery. Methods Based on histomorphological criteria, four types of periprosthetic membrane were defined: wear particle induced type (detection of foreign body particles; macrophages and multinucleated giant cells occupy at least 20% of the area; type I); infectious type (granulation tissue with neutrophilic granulocytes, plasma cells and few, if any, wear particles; type II); combined type (aspects of type I and type II occur simultaneously; type III); and indeterminate type (neither criteria for type I nor type II are fulfilled; type IV). The periprosthetic membranes of 370 patients (217 women, 153 men; mean age 67.6 years, mean period until revision surgery 7.4 years) were analysed according to the defined criteria. Results Frequency of histopathological membrane types was: type I 54.3%, type II 19.7%, type III 5.4%, type IV 15.4%, and not assessable 5.1%. The mean period between primary arthroplasty and revision surgery was 10.1 years for type I, 3.2 years for type II, 4.5 years for type III and 5.4 years for type IV. The correlation between histopathological and microbiological diagnosis was high (89.7%), and the inter‐observer reproducibility sufficient (85%). Conclusion The classification proposed enables standardised typing of periprosthetic membranes and may serve as a tool for further research on the pathogenesis of the loosening of total joint replacement. The study highlights the importance of non‐infectious, non‐particle induced loosening of prosthetic devices in orthopaedic surgery (membrane type IV), which was observed in 15.4% of patients. PMID:16731601

  6. Proposal for a histopathological consensus classification of the periprosthetic interface membrane.

    PubMed

    Morawietz, L; Classen, R-A; Schröder, J H; Dynybil, C; Perka, C; Skwara, A; Neidel, J; Gehrke, T; Frommelt, L; Hansen, T; Otto, M; Barden, B; Aigner, T; Stiehl, P; Schubert, T; Meyer-Scholten, C; König, A; Ströbel, P; Rader, C P; Kirschner, S; Lintner, F; Rüther, W; Bos, I; Hendrich, C; Kriegsmann, J; Krenn, V

    2006-06-01

    The introduction of clearly defined histopathological criteria for a standardised evaluation of the periprosthetic membrane, which can appear in cases of total joint arthroplasty revision surgery. Based on histomorphological criteria, four types of periprosthetic membrane were defined: wear particle induced type (detection of foreign body particles; macrophages and multinucleated giant cells occupy at least 20% of the area; type I); infectious type (granulation tissue with neutrophilic granulocytes, plasma cells and few, if any, wear particles; type II); combined type (aspects of type I and type II occur simultaneously; type III); and indeterminate type (neither criteria for type I nor type II are fulfilled; type IV). The periprosthetic membranes of 370 patients (217 women, 153 men; mean age 67.6 years, mean period until revision surgery 7.4 years) were analysed according to the defined criteria. Frequency of histopathological membrane types was: type I 54.3%, type II 19.7%, type III 5.4%, type IV 15.4%, and not assessable 5.1%. The mean period between primary arthroplasty and revision surgery was 10.1 years for type I, 3.2 years for type II, 4.5 years for type III and 5.4 years for type IV. The correlation between histopathological and microbiological diagnosis was high (89.7%), and the inter-observer reproducibility sufficient (85%). The classification proposed enables standardised typing of periprosthetic membranes and may serve as a tool for further research on the pathogenesis of the loosening of total joint replacement. The study highlights the importance of non-infectious, non-particle induced loosening of prosthetic devices in orthopaedic surgery (membrane type IV), which was observed in 15.4% of patients.

  7. Crack Growth of a Titanium-Aluminide Alloy under Thermal-Mechanical Fatigue

    DTIC Science & Technology

    1988-12-01

    the elastic-plastic fracture mechanics ( EPFM ) relations such as the J-integral or crack tip opening displacement (CTOD) must be used. Much more work...has been done in the area of LEFM, using stress intensity factor range AK as a correlating factor, than in EPFM . No matter which type of analysis is...thus obvious that a simple linear summation model such as Heil’s might not be applicable to this material. Other damage mechanisms were then investigated

  8. Metallurgical Aspects of Layered Cracks in Hot-Rolled Plates

    NASA Astrophysics Data System (ADS)

    Farber, V. M.; Arabey, A. B.; Khotinov, V. A.; Morozova, A. N.; Karabanalov, M. S.

    2018-03-01

    The nature of separations arising in hot-rolled plates from high-toughness steels of the new generation like 05G2B and of cleavages arising in traditional building steels of type 09G2S is studied. Like and unlike features of separations and cleavages are determined. The concept of "critical stress σb^{cr} " describing the strength of the interlayer boundaries responsible for formation of layered cracks is used to analyze various factors responsible for the susceptibility of rolled plates to layered fracture.

  9. An investigation of the elevated temperature cracking susceptibility of alloy C-22 weld-metal

    NASA Astrophysics Data System (ADS)

    Gallagher, Morgan Leo

    Alloy C-22 is one of the most corrosion resistant Ni-Cr-Mo alloys available today, and is particularly versatile. As a result, Alloy C-22 is being considered for use in the construction of storage canisters for permanent disposal of radioactive waste in the Yucca Mountain Project. However, in such a critical application, weld related defects (such as these two forms of cracking) are simply unacceptable. Solidification cracking occurs when weld shrinkage strains are applied to liquid films that result from microsegregation during solidification. Many nickel-base alloys are susceptible to solidification cracking since they solidify as austenite and many of their alloying additions partition during solidification and form low melting eutectic constituents. The transvarestraint test was used to quantify the susceptibility of Alloy C-22 to solidification cracking. The solidification cracking temperature range (SCTR) was found to be approximately 50°C (90°F); this SCTR predicts that Alloy-C-22 will have only slightly higher susceptibility than known crack-resistant alloys, such as duplex stainless-steel 2205 and austenitic stainless-steel Type 304 (FN6). Ductility-dip cracking (DDC) is a solid-state cracking phenomenon that occurs below the effective solidus temperature in highly restrained austenitic alloys. Although this type of cracking is relatively uncommon, it can be costly in critical applications where there is a low tolerance for defects. This investigation used two separate tests to quantify the susceptibility of the alloy to DDC: the hot-ductility test and the strain-to-fracture (STF) test. The hot-ductility test revealed that Alloy C-22 weld-metal exhibits an intermediate temperature ductility-dip, with ductility recovery at the upper end of the testing temperature range. The ductility minimum in the hot-ductility tests occurred around 950°C (1742°F) in both the on-heating and on-cooling tests. The strain-to-fracture test also revealed Alloy C-22 to be susceptible to ductility-dip cracking. Alloy C-22 displayed a low threshold strain necessary to initiate cracking, a wide temperature range over which cracking occurred, and no recovery of ductility at the upper end of the testing temperature range. The recovery of ductility at the upper end of the testing temperature range in the hotductility test, and the absence of this recovery in the STF test, is explained by the recrystallization behavior of the metal. Alloy C-22 has a low stacking-fault-energy, as compared to other DDC susceptible nickel-base alloys, and accordingly requires higher levels of deformation before recrystallization begins. With the relatively low strains experienced by the samples in the STF test (less than ten-percent), cracking will occur before enough strain is accumulated to cause recrystallization. In the hot-ductility test, where the sample is pulled to failure, sufficient strain (forty-percent or greater) is applied such that recrystallization occurs. This recrystallization is responsible for the recovery of ductility at the high end of the testing temperature range in the hot-ductility test. The low threshold strain that is observed in the STF test is in part explained by the behavior of the metal during the thermal cycle of the test. Experimental observations indicate that tortuous (wavy) solidification grain boundaries (SGB) migrate, or straighten, during the temperature upslope and hold period of the STF test. This migration of the grain boundaries reduces the mechanical locking effect that tortuous grain boundaries provide, allowing cracking to occur at lower applied strains. Button-melting experiments were conducted to examine the effect of compositional variation on both solidification cracking and ductility-dip cracking susceptibility of the alloy. Molybdenum, tungsten, and iron were selected for variation, as previous research has shown these three elements to be significantly enriched or depleted in the terminal solidification products of Alloy C-22 weld-metal. The solidification temperature range and volume fraction of secondary phases were used as indicators of the susceptibility of the experimental alloys to solidification cracking and ductility-dip cracking, respectively. Previous research on nickel-base alloys has demonstrated that the solidification temperature range of an alloy is directly proportional to the susceptibility of the alloy to solidification cracking. Experiments conducted within this investigation indicate that increasing the volume fraction of secondary phases in Alloy C-22 acts to increase the elevated temperature cracking-resistance and ductility of the alloy. The solidification temperature ranges of the Alloy C-22 variants examined within the button-melting experiments did not significantly widen or narrow with increases in composition. These same compositional variations demonstrated that increasing amounts of molybdenum, tungsten, and iron increased the volume fraction of secondary phases, with each element having relatively the same potency. Based on the button melting experiments and thermodynamic simulations, it is expected that Alloy C-22 will have good resistance to weld solidification cracking over its entire composition range. (Abstract shortened by UMI.)

  10. Environmentally Safe and Effective Processes for Paint Removal

    DTIC Science & Technology

    1995-04-01

    Urea Formaldehyde 3.5 1.5 Type III Melamine Formaldehyde 4.0 1.5 Type IV Phenol Formaldehyde 3.5 1.5...Polyester 3.0 34 - 42 1.04 - 1.46 Type II Urea Formaldehyde 3.5 54 - 62 1.47- 1.54 Type III Melamine Formaldehyde 4.0 64- 72 1.47- 1.52 Type IV Phenol... Melamine Formaldehyde electronics industry and to remove coatings from fibreglass and composite materials. Melamine formaldehyde resin is produced

  11. Ehlers-Danlos syndrome type IV

    PubMed Central

    Germain, Dominique P

    2007-01-01

    Ehlers-Danlos syndrome type IV, the vascular type of Ehlers-Danlos syndromes (EDS), is an inherited connective tissue disorder defined by characteristic facial features (acrogeria) in most patients, translucent skin with highly visible subcutaneous vessels on the trunk and lower back, easy bruising, and severe arterial, digestive and uterine complications, which are rarely, if at all, observed in the other forms of EDS. The estimated prevalence for all EDS varies between 1/10,000 and 1/25,000, EDS type IV representing approximately 5 to 10% of cases. The vascular complications may affect all anatomical areas, with a tendency toward arteries of large and medium diameter. Dissections of the vertebral arteries and the carotids in their extra- and intra-cranial segments (carotid-cavernous fistulae) are typical. There is a high risk of recurrent colonic perforations. Pregnancy increases the likelihood of a uterine or vascular rupture. EDS type IV is inherited as an autosomal dominant trait that is caused by mutations in the COL3A1 gene coding for type III procollagen. Diagnosis is based on clinical signs, non-invasive imaging, and the identification of a mutation of the COL3A1 gene. In childhood, coagulation disorders and Silverman's syndrome are the main differential diagnoses; in adulthood, the differential diagnosis includes other Ehlers-Danlos syndromes, Marfan syndrome and Loeys-Dietz syndrome. Prenatal diagnosis can be considered in families where the mutation is known. Choriocentesis or amniocentesis, however, may entail risk for the pregnant woman. In the absence of specific treatment for EDS type IV, medical intervention should be focused on symptomatic treatment and prophylactic measures. Arterial, digestive or uterine complications require immediate hospitalisation, observation in an intensive care unit. Invasive imaging techniques are contraindicated. Conservative approach is usually recommended when caring for a vascular complication in a patient suffering from EDS type IV. Surgery may, however, be required urgently to treat potentially fatal complications. PMID:17640391

  12. Computational prediction of secretion systems and secretomes of Brucella: identification of novel type IV effectors and their interaction with the host.

    PubMed

    Sankarasubramanian, Jagadesan; Vishnu, Udayakumar S; Dinakaran, Vasudevan; Sridhar, Jayavel; Gunasekaran, Paramasamy; Rajendhran, Jeyaprakash

    2016-01-01

    Brucella spp. are facultative intracellular pathogens that cause brucellosis in various mammals including humans. Brucella survive inside the host cells by forming vacuoles and subverting host defence systems. This study was aimed to predict the secretion systems and the secretomes of Brucella spp. from 39 complete genome sequences available in the databases. Furthermore, an attempt was made to identify the type IV secretion effectors and their interactions with host proteins. We predicted the secretion systems of Brucella by the KEGG pathway and SecReT4. Brucella secretomes and type IV effectors (T4SEs) were predicted through genome-wide screening using JVirGel and S4TE, respectively. Protein-protein interactions of Brucella T4SEs with their hosts were analyzed by HPIDB 2.0. Genes coding for Sec and Tat pathways of secretion and type I (T1SS), type IV (T4SS) and type V (T5SS) secretion systems were identified and they are conserved in all the species of Brucella. In addition to the well-known VirB operon coding for the type IV secretion system (T4SS), we have identified the presence of additional genes showing homology with T4SS of other organisms. On the whole, 10.26 to 14.94% of total proteomes were found to be either secreted (secretome) or membrane associated (membrane proteome). Approximately, 1.7 to 3.0% of total proteomes were identified as type IV secretion effectors (T4SEs). Prediction of protein-protein interactions showed 29 and 36 host-pathogen specific interactions between Bos taurus (cattle)-B. abortus and Ovis aries (sheep)-B. melitensis, respectively. Functional characterization of the predicted T4SEs and their interactions with their respective hosts may reveal the secrets of host specificity of Brucella.

  13. Development and application of rail defect fracture models to assess remedial actions

    DOT National Transportation Integrated Search

    1993-08-01

    The fracture mechanics models were refined for two types of rail defects - the bolt hole crack and the vertical split head. Beam-type finite element analysis was conducted to determine the effects of joint bar looseness, rail height mismatch and trai...

  14. Comparative study: Degree of sensitization and intergranular stress corrosion cracking susceptibility of type 304 stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muraleedharan, P.; Gnanamoorthy, J.B.; Rodriguez, P.

    1996-10-01

    An attempt was made to correlate the susceptibility of type 304 stainless steel sensitized by isothermal exposures from 500 C to 700 C to intergranular stress corrosion cracking (IGSCC) in boiling 20% sodium chloride solution to the degree of sensitization (DOS) measured using the electrochemical potentiokinetic reactivation (EPR) test. No systematic correlation was detected over the entire time-temperature regime. However, for a given sensitizing temperature, IGSCC susceptibility increased with increasing DOS up to a certain value, with no further increase thereafter. This behavior was attributed to the difference in sensitivities of the EPR and IGSCC tests to chromium depletion atmore » the grain boundaries (GB) during the sensitizing heat treatments.« less

  15. Numerical calculation and experimental research on crack arrest by detour effect and joule heating of high pulsed current in remanufacturing

    NASA Astrophysics Data System (ADS)

    Yu, Jing; Zhang, Hongchao; Deng, Dewei; Hao, Shengzhi; Iqbal, Asif

    2014-07-01

    The remanufacturing blanks with cracks were considered as irreparable. With utilization of detour effect and Joule heating of pulsed current, a technique to arrest the crack in martensitic stainless steel FV520B is developed. According to finite element theory, the finite element(FE) model of the cracked rectangular specimen is established firstly. Then, based on electro-thermo-structure coupled theory, the distributions of current density, temperature field, and stress field are calculated for the instant of energizing. Furthermore, the simulation results are verified by some corresponding experiments performed on high pulsed current discharge device of type HCPD-I. Morphology and microstructure around the crack tip before and after electro pulsing treatment are observed by optical microscope(OM) and scanning electron microscope(SEM), and then the diameters of fusion zone and heat affected zone(HAZ) are measured in order to contrast with numerical calculation results. Element distribution, nano-indentation hardness and residual stress in the vicinity of the crack tip are surveyed by energy dispersive spectrometer(EDS), scanning probe microscopy(SPM) and X-ray stress gauge, respectively. The results show that the obvious partition and refined grain around the crack tip can be observed due to the violent temperature change. The contents of carbon and oxygen in fusion zone and HAZ are higher than those in matrix, and however the hardness around the crack tip decreases. Large residual compressive stress is induced in the vicinity of the crack tip and it has the same order of magnitude for measured results and numerical calculation results that is 100 MPa. The relational curves between discharge energies and diameters of the fusion zone and HAZ are obtained by experiments. The difference of diameter of fusion zone between measured and calculated results is less than 18.3%. Numerical calculation is very useful to define the experimental parameters. An effective method to prevent further extension of the crack is presented and can provide a reference for the compressor rotor blade remanufacturing.

  16. Study of the relationship between mononuclear inflammatory infiltrate and Ki-67 and basement membrane and extracellular matrix protein expression in radicular cysts.

    PubMed

    Mourão, R V C; Júnior, E C Pinheiro; Barros Silva, P G; Turatti, E; Mota, M R L; Alves, A P N N

    2016-05-01

    To evaluate the relationship between mononuclear inflammatory infiltrate and the expression of a proliferative immunomarker (Ki-67) as well as to evaluate basement membrane and extracellular matrix proteins (laminin and collagen type IV) in radicular cysts and dentigerous cysts (DC). Immunohistochemical analyses were performed in heavily inflamed radicular cysts (HIRC), slightly inflamed radicular cysts (SIRC) and DC (n = 20) using Ki-67 (Dako(®) , 1 : 50), anticollagen type IV (DBS(®) , 1 : 40) and antilaminin (DBS(®) , 1 : 20). The data were analysed using anova/Tukey's test (Ki-67) and Kruskal-Wallis/Dunn's test (collagen type IV and laminin) (P < 0.05). The immunoexpression of Ki-67 was significantly greater in the SIRC group compared with the HIRC and DC (P = 0.0040). Likewise, the immunoexpression of collagen type IV in the basement membrane of the SIRC group was significantly more continuous (P = 0.0475) than in the HIRC group. DC had significantly less collagen type IV in extracellular matrix immunoexpression than HIRC and SIRC (P = 0.0246). Laminin was absent in the basement membrane in the SIRC and DC groups, and the extracellular matrix of the HIRC was weak and punctate. The presence of inflammatory factors in the radicular cyst wall modified the expression of proliferation factors in the epithelial lining and the expression of collagen type IV and laminin in the basement membrane, but did not modify extracellular matrix behaviour in radicular cysts. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  17. [Elective reconstruction of thoracoabdominal aortic aneurysm type IV by transabdominal approach].

    PubMed

    Marjanović, Ivan; Jevtić, Miodrag; Misović, Sidor; Sarac, Momir

    2012-01-01

    Thoracoabdominal aortic aneurysm (TAAA) type IV represents an aortic dilatation from the level of the diaphragmatic hiatus to the iliac arteries branches, including visceral branches of the aorta. In the traditional procedure of TAAA type IV repair, the body is opened using thoractomy and laparotomy in order to provide adequate exposure of the descending thoracic and abdominal aorta for safe aortic reconstruction. We reported a 71-year-old man with elective reconstruction of the TAAA type IV performed by transabdominal approach. Computed tomography scans angiography revealed a TAAA type IV with diameter of 62 mm in the region of celiac trunk andsuperior mesenteric artery branching, and the largest diameter of 75 mm in the infrarenal aortic level. The patient comorbidity included a chronic obstructive pulmonary disease and hypertension, therefore he was treated for a prolonged period. In preparation for the planned aortic reconstruction asymptomatic carotid disease (occlusion of the left internal carotid artery and subtotal stenosis of the right internal carotid artery) was diagnosed. Within the same intervention percutaneous transluminal angioplasty with stent placement in right internal carotid artery was made. In general, under endotracheal anesthesia and epidural analgesia, with transabdominal approach performed aortic reconstruction with tubular dakron graft 24 mm were, and reimplantation of visceral aortic branches into the graft performed. Postoperative course was uneventful, and the patient was discharged on the postoperative day 17. Control computed tomography scan angiography performed three months after the operation showed vascular state of the patient to be in order. Complete transabdominal approach to TAAA type IV represents an appropriate substitute for thoracoabdominal approach, without compromising safety of the patient. This approach is less traumatic, especially in patients with impaired pulmonary function, because there is no thoracotomy and any complications that could follow this approach.

  18. Differential routes of Ca2+ influx in Swiss 3T3 fibroblasts in response to receptor stimulation.

    PubMed Central

    Miyakawa, T; Kojima, M; Ui, M

    1998-01-01

    Ca2+ influx into cells in response to stimulation of various receptors was studied with Swiss 3T3 fibroblasts. The mechanisms involved were found to be so diverse that they were classified into four groups, Type I to IV. Type-I influx occurred, via pertussis toxin-susceptible G-proteins, immediately after internal Ca2+ mobilization by bradykinin, thrombin, endothelin, vasopressin or angiotensin II. Type-II influx induced by bombesin differed from Type I in its insusceptibility to pertussis toxin treatment. Ca2+ influx induced by prostaglandin E1, referred to as Type-III influx, was unique in that phospholipase C was apparently not activated without extracellular Ca2+, strongly suggesting that the Ca2+ influx preceded and was responsible for InsP3 generation and internal Ca2+ mobilization. More Ca2+ entered the cells more slowly via the Type-IV route opened by platelet-derived and other growth factors. These types of Ca2+ influx could be differentiated by their different susceptibilities to protein kinase C maximally activated by 1 h of exposure of cells to PMA, which inhibited phospholipase Cbeta coupled to receptors involved in Type-I and -II influx but did not inhibit growth-factor-receptor-coupled phospholipase Cgamma. Type-I and -II Ca2+ influxes, together with store-operated influx induced by thapsigargin, were not directly inhibited by exposure of cells to PMA, but Type-III and -IV influxes were completely inhibited. In addition, stimulation of receptors involved in Type-I and -IV Ca2+ influx, but not Type-II and -III influx, led to phospholipase A2 activation in the presence of extracellular Ca2+. Inhibition of Type-I and -IV Ca2+ influxes by their respective inhibitors, diltiazem and nifedipine, resulted in abolition of phospholipase A2 activation induced by the respective receptor agonists, in agreement with the notion that Ca2+ influx via these routes is responsible for receptor-mediated phospholipase A2 activation. PMID:9405282

  19. Differential routes of Ca2+ influx in Swiss 3T3 fibroblasts in response to receptor stimulation.

    PubMed

    Miyakawa, T; Kojima, M; Ui, M

    1998-01-01

    Ca2+ influx into cells in response to stimulation of various receptors was studied with Swiss 3T3 fibroblasts. The mechanisms involved were found to be so diverse that they were classified into four groups, Type I to IV. Type-I influx occurred, via pertussis toxin-susceptible G-proteins, immediately after internal Ca2+ mobilization by bradykinin, thrombin, endothelin, vasopressin or angiotensin II. Type-II influx induced by bombesin differed from Type I in its insusceptibility to pertussis toxin treatment. Ca2+ influx induced by prostaglandin E1, referred to as Type-III influx, was unique in that phospholipase C was apparently not activated without extracellular Ca2+, strongly suggesting that the Ca2+ influx preceded and was responsible for InsP3 generation and internal Ca2+ mobilization. More Ca2+ entered the cells more slowly via the Type-IV route opened by platelet-derived and other growth factors. These types of Ca2+ influx could be differentiated by their different susceptibilities to protein kinase C maximally activated by 1 h of exposure of cells to PMA, which inhibited phospholipase Cbeta coupled to receptors involved in Type-I and -II influx but did not inhibit growth-factor-receptor-coupled phospholipase Cgamma. Type-I and -II Ca2+ influxes, together with store-operated influx induced by thapsigargin, were not directly inhibited by exposure of cells to PMA, but Type-III and -IV influxes were completely inhibited. In addition, stimulation of receptors involved in Type-I and -IV Ca2+ influx, but not Type-II and -III influx, led to phospholipase A2 activation in the presence of extracellular Ca2+. Inhibition of Type-I and -IV Ca2+ influxes by their respective inhibitors, diltiazem and nifedipine, resulted in abolition of phospholipase A2 activation induced by the respective receptor agonists, in agreement with the notion that Ca2+ influx via these routes is responsible for receptor-mediated phospholipase A2 activation.

  20. Alterations of type IV collagen alpha chains in patients with chronic acquired glomerulopathies: mRNA levels, protein expression and urinary loss.

    PubMed

    Sanna-Cherchi, Simone; Carnevali, Maria Luisa; Martorana, Davide; Cravedi, Paolo; Maggiore, Umberto; Alinovi, Rossella; Bovino, Achiropita; Mattei, Silvia; Orlandini, Guido; Gatti, Rita; Savi, Mario; Sado, Yoshikazu; Neri, Tauro M; Allegri, Landino

    2007-01-01

    Type IV collagen is a major structural component of the normal kidney glomerulus. However, its role in chronic acquired glomerulopathies has been only partially elucidated. Urinary levels of col(IV)alpha1, col(IV)alpha3 and col(IV)alpha5 collagen chains were analyzed in 107 patients with chronic acquired glomerulopathies. In a subgroup of 33 patients, tissue mRNA levels, protein expression and urinary excretion were evaluated for all col(IV)alpha chains, from col(IV)alpha1 to col(IV)alpha5. The renal specimens were examined to get a semiquantitative score of the acute and chronic activity of the histological lesions. Urines obtained from 13 healthy subjects and 10 normal renal tissue samples were used as controls. Urinary levels of col(IV)alpha1, col(IV)alpha3, col(IV)alpha5 chains were significantly higher in patients than in controls [p < 0.01 for all], while only col(IV)alpha1 and col(IV)alpha3 urinary excretion correlated with the degree of chronic histological damage [col(IV)alpha1 R = 0.44, p < 0.001; col(IV)alpha3: R = 0.47, p < 0.001]. Compared with controls, patients showed a renal expression of mRNA for col(IV)alpha5 chain significantly higher [p = 0.001], while having a significantly lower protein expression of col(IV)alpha3, col(IV)alpha4 and col(IV)alpha5 chains [p < 0.01 for all]. Patients with chronic acquired glomerulopathies show important alterations in the col(IV)alpha chain network mimicking some molecular features of the X-linked Alport's syndrome. Further studies are needed to show whether urinary levels of the col(IV)alpha chains may be used as markers for monitoring renal injury. Copyright 2007 S. Karger AG, Basel.

  1. Mechanisms of chiral discrimination by topoisomerase IV

    PubMed Central

    Neuman, K. C.; Charvin, G.; Bensimon, D.; Croquette, V.

    2009-01-01

    Topoisomerase IV (Topo IV), an essential ATP-dependent bacterial type II topoisomerase, transports one segment of DNA through a transient double-strand break in a second segment of DNA. In vivo, Topo IV unlinks catenated chromosomes before cell division and relaxes positive supercoils generated during DNA replication. In vitro, Topo IV relaxes positive supercoils at least 20-fold faster than negative supercoils. The mechanisms underlying this chiral discrimination by Topo IV and other type II topoisomerases remain speculative. We used magnetic tweezers to measure the relaxation rates of single and multiple DNA crossings by Topo IV. These measurements allowed us to determine unambiguously the relative importance of DNA crossing geometry and enzymatic processivity in chiral discrimination by Topo IV. Our results indicate that Topo IV binds and passes DNA strands juxtaposed in a nearly perpendicular orientation and that relaxation of negative supercoiled DNA is perfectly distributive. Together, these results suggest that chiral discrimination arises primarily from dramatic differences in the processivity of relaxing positive and negative supercoiled DNA: Topo IV is highly processive on positively supercoiled DNA, whereas it is perfectly distributive on negatively supercoiled DNA. These results provide fresh insight into topoisomerase mechanisms and lead to a model that reconciles contradictory aspects of previous findings while providing a framework to interpret future results. PMID:19359479

  2. Microcracks induced during dilatancy and compaction in a porous oolithic carbonate rock

    NASA Astrophysics Data System (ADS)

    Fortin, Jérôme; Stanchits, Sergei; Dresen, Georg; Guéguen, Yves

    2010-05-01

    Reservoir rocks can undergo irreversible deformation (dilatancy or compaction) as a result of a change in effective stress during production of hydrocarbon or during CO2 storage; and whether deformation occurs in conjunction with dilatation or compaction, it has important implications on fluid transport processes. In this study, we investigated the mechanical behavior of the Chauvigny limestone. This porous limestone is one of the rocks, which constitutes the Dogger, a deep saline aquifer, one of the favorable geological reservoirs for CO2 storage in France. This limestone is an oolithic one and is characterized by a dual porosity: a micro-porosity (inside the ooliths) of ~13% and a macro-porosity of ~4%. The total porosity is ~17%. Previous studies performed on limestone, even the ones with very low porosity like Carrara marble, show at room temperature, a transition with increasing pressure from brittle regime to catalastic flow. Two mechanisms are involved during failure of limestone: cracking, and crystal plasticity, which can be activated at room temperature. To investigate the brittle-ductile transition in this porous limestone, we performed 8 conventional triaxial experiments, at confining pressure in the range of 5-100 MPa, at room temperature and at a constant strain rate of 2.10-4s-1. In addition, the evolutions of elastic wave velocities were measured periodically with loading. The elastic wave velocities are affected by two competing mechanisms: porosity reduction -which increases the velocities-, and cracking -which decreases the velocities-. However the elastic wave velocities are much more sensitive to cracking than to porosity reduction. Our results show that diltatant (nucleation and propagation of cracks) and compaction micro-mechanisms (plastic pore collapse) compete. Two limit cases can be distinguished. During hydrostatic compression, the inelastic volumetric strain seems to be mainly associated with plastic pore collapse, whereas for the triaxial experiments at confining pressure < 30 MPa, the inelastic volumetric strain seems to be mainly associated with the development of shear-induced cracks. For the triaxial experiments at confining pressure > 30 MPa, we are able to distinguish a first critical stress state where plastic pore collapse occurs, and a second stress state where shear-induced cracks are initiated. Reference: J. Fortin, S. Stanchits, G. Dresen and Y. Gueguen, 2009. Micro-mechanisms involved during inelastic deformation of porous carbonate rocks. Poromechanics IV, Proceedings of the fourth Biot conference, edited by H. Ling, A. Smyth, and R. Betti, 378-38

  3. Serotype IV Sequence Type 468 Group B Streptococcus Neonatal Invasive Disease, Minnesota, USA.

    PubMed

    Teatero, Sarah; Ferrieri, Patricia; Fittipaldi, Nahuel

    2016-11-01

    To further understand the emergence of serotype IV group B Streptococcus (GBS) invasive disease, we used whole-genome sequencing to characterize 3 sequence type 468 strains isolated from neonates in Minnesota, USA. We found that strains of tetracycline-resistant sequence type 468 GBS have acquired virulence genes from a putative clonal complex 17 GBS donor by recombination.

  4. Diagnostic Accuracy of History and Physical Examination of Superior Labrum Anterior-Posterior Lesions

    PubMed Central

    Michener, Lori A.; Doukas, William C.; Murphy, Kevin P.; Walsworth, Matthew K.

    2011-01-01

    Context: Type I superior labrum anterior-posterior (SLAP) lesions involve degenerative fraying and probably are not the cause of shoulder pain. Type II to IV SLAP lesions are tears of the labrum. Objective: To determine the diagnostic accuracy of patient history and the active compression, anterior slide, and crank tests for type I and type II to IV SLAP lesions. Design: Cohort study. Setting: Clinic. Patients or Other Participants: Fifty-five patients (47 men, 8 women; age = 40.6 ± 15.1 years) presenting with shoulder pain. Intervention(s): For each patient, an orthopaedic surgeon conducted a clinical examination of history of trauma; sudden onset of symptoms; history of popping, clicking, or catching; age; and active compression, crank, and anterior slide tests. The reference standard was the intraoperative diagnosis. The operating surgeon was blinded to the results of the clinical examination. Main Outcome Measure(s): Diagnostic utility was calculated using the receiver operating characteristic curve and area under the curve (AUC), sensitivity, specificity, positive likelihood ratio (+LR), and negative likelihood ratio (−LR). Forward stepwise binary regression was used to determine a combination of tests for diagnosis. Results: No history item or physical examination test had diagnostic accuracy for type I SLAP lesions (n = 13). The anterior slide test had utility (AUC = 0.70, +LR = 2.25, −LR = 0.44) to confirm and exclude type II to IV SLAP lesions (n = 10). The combination of a history of popping, clicking, or catching and the anterior slide test demonstrated diagnostic utility for confirming type II to IV SLAP lesions (+LR = 6.00). Conclusions: The anterior slide test had limited diagnostic utility for confirming and excluding type II to IV SLAP lesions; diagnostic values indicated only small shifts in probability. However, the combination of the anterior slide test with a history of popping, clicking, or catching had moderate diagnostic utility for confirming type II to IV SLAP lesions. No single item or combination of history items and physical examination tests had diagnostic utility for type I SLAP lesions. PMID:21944065

  5. Terminal ileum gangrene secondary to a type IV paraesophageal hernia.

    PubMed

    Hsu, Ching Tsai; Hsiao, Po Jen; Chiu, Chih Chien; Chan, Jenq Shyong; Lin, Yee Fung; Lo, Yuan Hung; Hsiao, Chia Jen

    2016-02-28

    Type IV paraesophageal hernia (PEH) is very rare, and is characterized by the intrathoracic herniation of the abdominal viscera other than the stomach into the chest. We describe a 78-year-old woman who presented at our emergency department because of epigastric pain that she had experienced over the past 24 h. On the day after admission, her pain became severe and was accompanied by right chest pain and dyspnea. Chest radiography revealed an intrathoracic intestinal gas bubble occupying the right lower lung field. Emergency explorative laparotomy identified a type IV PEH with herniation of only the terminal ileum through a hiatal defect into the right thoracic cavity. In this report, we also present a review of similar cases in the literature published between 1980 and 2015 in PubMed. There were four published cases of small bowel herniation into the thoracic cavity during this period. Our patient represents a rare case of an individual diagnosed with type IV PEH with incarceration of only the terminal ileum.

  6. Atypical hereditary sensory and autonomic neuropathy type IV with neither mental retardation nor pain insensitivity.

    PubMed

    Jung, Chae Lim; Ki, Chang-Seok; Kim, Byoung Joon; Lee, Jong-Hyuck; Sung, Ki-Sun; Kim, Jong-Won; Park, Youn-Soo

    2013-12-01

    Hereditary sensory and autonomic neuropathy type IV is an autosomal recessive disorder characterized by severe mental retardation and self-mutilation-related complications. Recently, we investigated a 16-year-old Korean boy with normal intelligence. He had preserved pain sensation but was suspected of having hereditary sensory and autonomic neuropathy type IV because of the recurrent bone fractures and painless joint destruction in the absence of any predisposing medical conditions. Genetic analysis of the NTRK1 gene revealed compound heterozygous mutations including c.851-33T>A and c.2303C>T (p.Pro768Leu) in the NTRK1 gene. The p.Pro768Leu mutation has been identified in 2 Japanese patients with a mild phenotype. Therefore, although it is rare, hereditary sensory and autonomic neuropathy type IV should be considered in patients with recurrent bone fractures and painless joint destruction who do not have any predisposing conditions even when they do not have typical clinical features such as mental retardation or pain insensitivity.

  7. Type IV Hypersensitivity to Gold Weight Upper-Eyelid Implant: Case Report and Review of the Literature.

    PubMed

    Kilduff, Caroline L S; Casswell, Edward J; Imonikhe, Richard; Marjanovic, Branka

    2017-05-04

    Complications associated with gold-weight insertion for lagophthalmos are uncommon, recent reports have provided evidence to suggest that type IV hypersensitivity to gold can cause a persistent inflammatory reaction. We present a case of a 46-year-old man who experienced persistent post-operative inflammation, and summarize previously documented cases. This patient underwent uncomplicated insertion of an upper eyelid gold weight for right-sided facial nerve palsy. He had no allergies or implanted metalwork. Post-operatively erythema was noted at seven-weeks and did not resolve. The weight was removed after six-months. The histopathological findings were in keeping with type IV hypersensitivity and similar to previous cases. Although infrequent, this complication has poor outcomes. The definitive management is removal of the weight. Information regarding implanted gold, and previous reactions should be elicited pre-operatively. Type IV hypersensitivity should be considered in patients with persistent inflammation that do not respond to antibiotic or steroid therapy.

  8. [Clinical study on vocal cords spontaneous rehabilitation after CO2 laser surgery].

    PubMed

    Zhang, Qingxiang; Hu, Huiying; Sun, Guoyan; Yu, Zhenkun

    2014-10-01

    To study the spontaneous rehabilitation and phonation quality of vocal cords after different types of CO2 laser microsurgery. Surgical procedures based on Remacle system Type I, Type II, Type III, Type IV and Type V a respectively. Three hundred and fifteen cases with hoarseness based on strobe laryngoscopy results were prospectively assigned to different group according to vocal lesions apperence,vocal vibration and imaging of larynx CT/MRI. Each group holded 63 cases. The investigation included the vocal cords morphological features,the patients' subjective feelings and objective results of vocal cords. There are no severe complications for all patients in perioperative period. Vocal scar found in Type I ,1 case; Type II, 9 cases ;Type III, 47 cases; Type IV, 61 cases and Type Va 63 cases respectively after surgery. The difference of Vocal scar formation after surgery between surgical procedures are statistical significance (χ2 = 222.24, P < 0.05). Hoarseness improved after the surgery in 59 cases of Type I , 51 cases of Type II, 43 cases of Type III, 21 cases of Type IV and 17 cases of Type Va. There are statistically significance (χ2 = 89.46, P < 0.05) between different surgical procedures. The parameters of strobe laryngoscope: there are statistical significance on jitter between procedures (F 44.51, P < 0.05), but without difference within Type I and Type II (P > 0.05). This happened in shimmer parameter and the maximum phonation time (MPT) as jitter. There are no statistical significance between Type IV and Type Va on MPT (P > 0.05). Morphological and functional rehabilitation of vocal cord will be affected obviously when the body layer is injured. The depth and range of the CO2 laser microsurgery are the key factors affecting the vocal rehabilitation.

  9. Identification of Surprisingly Diverse Type IV Pili, across a Broad Range of Gram-Positive Bacteria

    PubMed Central

    Roos, David S.; Pohlschröder, Mechthild

    2011-01-01

    Background In Gram-negative bacteria, type IV pili (TFP) have long been known to play important roles in such diverse biological phenomena as surface adhesion, motility, and DNA transfer, with significant consequences for pathogenicity. More recently it became apparent that Gram-positive bacteria also express type IV pili; however, little is known about the diversity and abundance of these structures in Gram-positives. Computational tools for automated identification of type IV pilins are not currently available. Results To assess TFP diversity in Gram-positive bacteria and facilitate pilin identification, we compiled a comprehensive list of putative Gram-positive pilins encoded by operons containing highly conserved pilus biosynthetic genes (pilB, pilC). A surprisingly large number of species were found to contain multiple TFP operons (pil, com and/or tad). The N-terminal sequences of predicted pilins were exploited to develop PilFind, a rule-based algorithm for genome-wide identification of otherwise poorly conserved type IV pilins in any species, regardless of their association with TFP biosynthetic operons (http://signalfind.org). Using PilFind to scan 53 Gram-positive genomes (encoding >187,000 proteins), we identified 286 candidate pilins, including 214 in operons containing TFP biosynthetic genes (TBG+ operons). Although trained on Gram-positive pilins, PilFind identified 55 of 58 manually curated Gram-negative pilins in TBG+ operons, as well as 53 additional pilin candidates in operons lacking biosynthetic genes in ten species (>38,000 proteins), including 27 of 29 experimentally verified pilins. False positive rates appear to be low, as PilFind predicted only four pilin candidates in eleven bacterial species (>13,000 proteins) lacking TFP biosynthetic genes. Conclusions We have shown that Gram-positive bacteria contain a highly diverse set of type IV pili. PilFind can be an invaluable tool to study bacterial cellular processes known to involve type IV pilus-like structures. Its use in combination with other currently available computational tools should improve the accuracy of predicting the subcellular localization of bacterial proteins. PMID:22216142

  10. Accentuated hyperparathyroidism in type II Bartter syndrome.

    PubMed

    Landau, Daniel; Gurevich, Evgenia; Sinai-Treiman, Levana; Shalev, Hannah

    2016-07-01

    Bartter syndrome (BS) may be associated with different degrees of hypercalciuria, but marked parathyroid hormone (PTH) abnormalities have not been described. We compared clinical and laboratory data of patients with either ROMK-deficient type II BS (n = 14) or Barttin-deficient type IV BS (n = 20). Only BS-IV patients remained mildly hypokalemic in spite of a higher need for potassium supplementation. Estimated glomerular filtration rate (eGFR) was mildly decreased in only four BS-IV patients. Average PTH values were significantly higher in BS-II (160.6 ± 85.8 vs. 92.5 ± 48 pg/ml in BS-IV, p = 0.006). In both groups, there was a positive correlation between age and log(PTH). Levels of 25(OH) vitamin D were not different. Total serum calcium was lower (within normal limits) and age-related serum phosphate (Pi)-SDS was increased in BS-II (1.19 ± 0.71 vs. 0.01 ± 1.04 in BS-IV, p < 0.001). The GFR threshold for Pi reabsorption was higher in BS-II (5.63 ± 1.25 vs. 4.36 ± 0.98, p = 0.002). Spot urine calcium/creatinine ratio and nephrocalcinosis rate (100 vs. 16 %) were higher in the BS-II group. PTH, serum Pi levels, and urinary threshold for Pi reabsorption are significantly elevated in type II vs. type IV BS, suggesting a PTH resistance state. This may be a response to more severe long-standing hypercalciuria, leading to a higher rate of nephrocalcinosis in BS-II.

  11. Prediction of Central Burst Defects in Copper Wire Drawing Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vega, G.; NEXANS France, NMC Nexans Metallurgy Centre, Boulevard du Marais, BP39, F-62301 Lens; Haddi, A.

    2011-01-17

    In this study, the prediction of chevron cracks (central bursts) in copper wire drawing process is investigated using experimental and numerical approaches. The conditions of the chevron cracks creation along the wire axis depend on (i) the die angle, the friction coefficient between the die and the wire, (ii) the reduction in crosssectional area of the wire, (iii) the material properties and (iv) the drawing velocity or strain rate. Under various drawing conditions, a numerical simulation for the prediction of central burst defects is presented using an axisymmetric finite element model. This model is based on the application of themore » Cockcroft and Latham fracture criterion. This criterion was used as the damage value to estimate if and where defects will occur during the copper wire drawing. The critical damage value of the material is obtained from a uniaxial tensile test. The results show that the die angle and the reduction ratio have a significant effect on the stress distribution and the maximum damage value. The central bursts are expected to occur when the die angle and reduction ratio reach a critical value. Numerical predictions are compared with experimental observations.« less

  12. Properties of the highly ionized disk and halo gas toward two distant high-latitude stars

    NASA Technical Reports Server (NTRS)

    Savage, Blair D.; Sembach, K. R.

    1994-01-01

    Goddard High Resolution Spectrograph (GHRS) intermediate -resolution observations of S III, Si III, Al III, Si IV, C IV, and N V absorption along the sight lines to HD 18100 (l = 217.9 deg, b = -62.7, d = 3.1 kpc, z = -2.8 kpc) and HD 100340 (l = 258.9 deg, b = +61.2 deg, d = 5.3 kpc, z = 4.6 kpc) are presented. These small science aperture spectra have resolutions ranging from 11 to 20 km/s full width at half maximum (FWHM) and S/N from 30 to 65 per diode substep. Strong absorption by moderately and highly ionized gas is seen in each direction. The absorption in the direction of the south Galactic polar region (HD 18100) is kinematically simple, while the absorption in the direction of north Galactic polar region (HD 100304) is kinematically complex. In each case the absorption by the highly ionized gas lies within the velocity range of absorption by neutral and weakly ionized gas. Along each sight line, the velocity dispersion determined from the unsaturated absorption lines increases with the energy required to create each ion. The logarithmic column densities for Al III, Si IV, C IV, and N V are log N(atoms/sq cm = 12.71, 13.10, 13.58, and 12.75 toward HD 18100 and log N = 12.88, 13.31, 13.83, and 13.04 toward HD 100340. Average ionic ratios among these species are very similar along the two sight lines. Differences in profile shape between the absorption for AL II, Si IV, C IV, and N V provide additional support for the claim of Savage, Sembach, & Cardelli (1994) that there exists two types of highly ionized gas in the interstellar medium. One type of highly ionized gas is responsible for the structured Si IV absorption and part of the C IV absorption. In this gas N(C IV)/N(Si IV) approximately 3.0 and N(C IV)/N(N V) greater than 6. The absorption by this gas seems to be associated with some type of self-regulating interface or mixing layer between the warm and hot interstellar medium. The other type of highly ionized gas is responsible for most of the N V absorption, part of the C IV absorption, and has very little associated Si IV absorption. In this gas N(C IV)/N(N V) is approximately 1 to 3. This gas is hot (T greater than 2 x 10(exp 5) K) and may be tracing the cooling gas of supernova (SN) bubbles or a Galactic fountain. The relative mixture of these two types of highly ionized gas varies from one sight line to the next. The two sight lines in this study sample halo gas in the solar neighborhood and have a smaller percentage of the more highly ionized gas than inner Galaxy sight lines.

  13. Catalytic pyrolysis of oil fractions separated from food waste leachate over nanoporous acid catalysts.

    PubMed

    Kim, Seung-Soo; Heo, Hyeon Su; Kim, Sang Guk; Ryoo, Ryong; Kim, Jeongnam; Jeon, Jong-Ki; Park, Sung Hoon; Park, Young-Kwon

    2011-07-01

    Oil fractions, separated from food waste leachate, can be used as an energy source. Especially, high quality oil can be obtained by catalytic cracking. In this study, nanoporous catalysts such as Al-MCM-41 and mesoporous MFI type zeolite were applied to the catalytic cracking of oil fractions using the pyrolysis gas chromatography/mass spectrometry. Mesoporous MFI type zeolite showed better textural porosity than Al-MCM-41. In addition, mesoporous MFI type zeolite had strong Brönsted acidity while Al-MCM-41 had weak acidity. Significant amount of acid components in the food waste oil fractions were converted to mainly oxygenates and aromatics. As a result of its well-defined nanopores and strong acidity, the use of a mesoporous MFI type zeolite produced large amounts of gaseous and aromatic compounds. High yields of hydrocarbons within the gasoline range were also obtained in the case of mesoporous MFI type zeolite, whereas the use of Al-MCM-41, which exhibits relatively weak acidity, resulted in high yields of oxygenates and diesel range hydrocarbons.

  14. Influence of the inlet air temperature in a fluid bed coating process on drug release from shellac-coated pellets.

    PubMed

    Farag, Yassin; Leopold, Claudia Sabine

    2011-03-01

    Since the introduction of aqueous ammoniacal solutions, shellac regained importance for pharmaceutical applications. However, as shellac is a material obtained from natural resources, its quality and thus its physicochemical properties may vary depending on its origin and the type of refining. In this study theophylline pellets were coated with aqueous solutions of three different commercially available shellac types. The inlet air temperature of the coating process was varied, and its influence on drug release from the coated pellet formulations was investigated. Film formation was correlated to the physicochemical and mechanical properties of the investigated shellac types. Pellets coated at lower temperatures showed distinct cracks in the coating film resulting in a loss of the barrier function during dissolution testing. These cracks were nonreversible by additional curing. The physicochemical and mechanical properties of the investigated shellac types varied significantly and could hardly be related to the drug release performance of the investigated formulations. Obviously, with shellac a minimum inlet air temperature must be exceeded to achieve a coherent coating film. This temperature was dependent on the investigated shellac type.

  15. Selective thoracic surgery in the Lenke type 1A: King III and King IV type curves.

    PubMed

    Parisini, P; Di Silvestre, M; Lolli, F; Bakaloudis, G

    2009-06-01

    Pedicle screw fixation enables enhanced three-dimensional correction of spinal deformities and effectively shortens the distal fusion level. However, the choice of distal fusion level is still controversial in single thoracic idiopathic scoliosis with the lumbar compensatory curve not crossing the middle line (Lenke type 1 with modifier A or King type III and IV curves).The authors retrospectively analyzed 31 patients treated by segmental pedicular instrumentation alone, affected by a single thoracic adolescent idiopathic scoliosis with a compensatory lumbar curve not crossing the midline (Lenke 1A), with an average age of 16.3 years (range 10-22 years). The patients with regard to the King classification were also assessed. A statistical analysis was performed to determine whether the two groups (King III, King IV) presented differences concerning the level of the stable vertebra (SV), end vertebra (EV), and neutral vertebra (NV) and were also analyzed the results at follow-up regarding the relationships between the SV, EV, and lowest instrumented vertebra (LIV). The statistical analysis showed a significant difference between the two curve types. In the King III type curve the SV, EV, and NV appeared to be more proximal than those of the King IV type curve and the segments between the SV, EV, and NV appeared to be reduced in King III curves compared with King IV curves. At a follow-up of 3.2 years (range 2.2-5) the thoracic curve showed a correction of 58.4% (from 62.3 degrees to 26.6 degrees ) and compensatory lumbar curve an average spontaneous correction of 52.4% (from 38.1 degrees to 18.1 degrees ).The position of the LIV was shorter than the position of the SV in 30 patients (97%) with an average "salvage" of 2.1 (from 1 to 4) distal fusion levels. Four cases (13%), all affected by a King IV type curve, presented at follow-up an unsatisfactory results due to an "adding on" phenomenon. The statistical analysis confirmed that this phenomenon was correlated with The King IV curve (P = 0.043; Chi-square test) and that the only predictive parameter for its onset was the LIV-SV difference (odds ratio = 0.093; with a confidence interval of 0.008-1): every time that in King IV curve type the LIV was three or more levels shorter than the stable vertebra at follow-up the "adding on" phenomenon was present. The authors conclude that Lenke's type 1 with modifier A includes two kinds of curves, King III and King IV and that the Lenke's type 2 curves and King V with the lumbar curve not crossing the middle line have a similar behavior. Therefore, it is of authors' opinion that "the adding on phenomenon" could be prevented by more rigidly defining K. IV versus K. III curves. In Lenke's 1/2 A-K. IV/V type with the rotation of the first vertebra just below the thoracic lower EV in the same direction as the thoracic curve, and when SV and EV show more than two levels of difference, it is necessary to extend the lower fusion down to L2 or L3 (not more than two levels shorter than the SV). Whereas in Lenke's 1/2 A-K. III/V with the rotation of the first proximal vertebra of lumbar curve in the opposite direction to the thoracic apex and when SV and EV show not more than two level gap differences, the position of the lowest instrumented vertebra can be two or three levels shorter than the stable vertebra with satisfactory postoperative spinal balance. Therefore, the stable vertebra and the rotation of lumbar curve are considered to be a reliable guide for selecting the lower level of fusion.

  16. Specific Accumulation of Tumor-Derived Adhesion Factor in Tumor Blood Vessels and in Capillary Tube-Like Structures of Cultured Vascular Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Akaogi, Kotaro; Okabe, Yukie; Sato, Junji; Nagashima, Yoji; Yasumitsu, Hidetaro; Sugahara, Kazuyuki; Miyazaki, Kaoru

    1996-08-01

    Tumor-derived adhesion factor (TAF) was previously identified as a cell adhesion molecule secreted by human bladder carcinoma cell line EJ-1. To elucidate the physiological function of TAF, we examined its distribution in human normal and tumor tissues. Immunochemical staining with an anti-TAF monoclonal antibody showed that TAF was specifically accumulated in small blood vessels and capillaries within and adjacent to tumor nests, but not in those in normal tissues. Tumor blood vessel-specific staining of TAF was observed in various human cancers, such as esophagus, brain, lung, and stomach cancers. Double immunofluorescent staining showed apparent colocalization of TAF and type IV collagen in the vascular basement membrane. In vitro experiments demonstrated that TAF preferentially bound to type IV collagen among various extracellular matrix components tested. In cell culture experiments, TAF promoted adhesion of human umbilical vein endothelial cells to type IV collagen substrate and induced their morphological change. Furthermore, when the endothelial cells were induced to form capillary tube-like structures by type I collagen, TAF and type IV collagen were exclusively detected on the tubular structures. The capillary tube formation in vitro was prevented by heparin, which inhibited the binding of TAF to the endothelial cells. These results strongly suggest that TAF contributes to the organization of new capillary vessels in tumor tissues by modulating the interaction of endothelial cells with type IV collagen.

  17. Microstructure characterization of advanced protective Cr/CrN+a-C:H/a-C:H:Cr multilayer coatings on carbon fibre composite (CFC).

    PubMed

    Major, L; Janusz, M; Lackner, J M; Kot, M; Major, B

    2016-06-01

    Studies of advanced protective chromium-based coatings on the carbon fibre composite (CFC) were performed. Multidisciplinary examinations were carried out comprising: microstructure transmission electron microscopy (TEM, HREM) studies, micromechanical analysis and wear resistance. Coatings were prepared using a magnetron sputtering technique with application of high-purity chromium and carbon (graphite) targets deposited on the CFC substrate. Selection of the CFC for surface modification in respect to irregularities on the surface making the CFC surface more smooth was performed. Deposited coatings consisted of two parts. The inner part was responsible for the residual stress compensation and cracking initiation as well as resistance at elevated temperatures occurring namely during surgical tools sterilization process. The outer part was responsible for wear resistance properties and biocompatibility. Experimental studies revealed that irregularities on the substrate surface had a negative influence on the crystallites growth direction. Chromium implanted into the a-C:H structure reacted with carbon forming the cubic nanocrystal chromium carbides of the Cr23 C6 type. The cracking was initiated at the coating/substrate interface and the energy of brittle cracking was reduced because of the plastic deformation at each Cr interlayer interface. The wear mechanism and cracking process was described in micro- and nanoscale by means of transmission electron microscope studies. Examined materials of coated CFC type would find applications in advanced surgical tools. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  18. Successful Multiresistant Community-Associated Methicillin-Resistant Staphylococcus aureus Lineage from Taipei, Taiwan, That Carries Either the Novel Staphylococcal Chromosome Cassette mec (SCCmec) Type VT or SCCmec Type IV

    PubMed Central

    Boyle-Vavra, Susan; Ereshefsky, Ben; Wang, Chih-Chien; Daum, Robert S.

    2005-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) isolates carry the methicillin resistance gene (mecA) on a horizontally transferred genetic element called the staphylococcal chromosome cassette mec (SCCmec). Community-acquired MRSA (CAMRSA) isolates usually carry SCCmec type IV. We previously reported that 76% of 17 CAMRSA isolates (multilocus sequence type 59) obtained from pediatric patients with skin and soft tissue infections (SSTI) from Taipei did not carry SCCmec types I to IV. We used DNA sequence analysis to determine that the element harbored by these nontypeable isolates is a novel subtype of SCCmec V called SCCmec VT. It contains a ccrC recombinase gene variant (ccrC2) and mec complex C2. One SSTI isolate contained molecular features of SCCmec IV but also contained ccrC2 (a feature of SCCmec VT), suggesting that it may harbor a composite SCCmec element. The genes lukS-PV and lukF-PV encoding the Panton-Valentine leukocidin (PVL) were present in all CAMRSA SSTI isolates whether they contained SCCmec type IV or VT. SCCmec VT was also present in 5 of 34 (14.7%) CAMRSA colonization isolates collected from healthy children from Taipei who lacked MRSA risk factors. Four (80%) of the these isolates contained lukS-PV and lukF-PV, as did 1 of 27 (3.7%) SCCmec IV-containing colonization isolates. A total of 63% (10 of 16) of the SSTI isolates and 61.7% (21 of 34) of the colonization isolates tested were resistant to at least four classes of non-β-lactam antimicrobials. SCCmec VT is a novel SCCmec variant that is found in multiply resistant CAMRSA strains with sequence type 59 in Taipei in association with the PVL leukotoxin genes. PMID:16145133

  19. Examination of coating failure by acoustic emission

    NASA Technical Reports Server (NTRS)

    Berndt, Christopher C.

    1985-01-01

    Coatings of NiCrAlY bond coat with a zirconia - 12 wt percent yttria overlay were applied to disc-shaped specimens of U-700 alloy. A waveguide of 1 mm diameter platinum was TIG welded to the specimen and allowed it to be suspended in a tubular furnace. The specimen was thermally cycled to 1150 C, and the acoustic emission (AE) monitored. The weight gain per thermal cycle was also measured. A computer system based on the IBM-XT microcomputer was used extensively to acquire the AE data with respect to temperature. This system also controlled the temperature by using a PD software loop. Several different types of AE analyses were performed. A major feature of these tests, not addressed by previous work in this area, was that the coatings covered 100 percent of the specimen and also that the AE was amplified at two different levels. It is believed that this latter feature allows a qualitative appraisal of the relative number of cracks per AE event. The difference in AE counts between the two channels is proportional to the number of cracks per AE event, and this parameter may be thought of as the crack density. The ratio of the AE count difference to the AE count magnitude of one channel is inversely proportional to the crack growth. Both of these parameters allow the crack distribution and crack growth within each specimen to be qualitatively followed during the thermal cycling operation. Recent results which used these principles will be presented.

  20. Thermal behavior of crumb-rubber modified asphalt concrete mixtures

    NASA Astrophysics Data System (ADS)

    Epps, Amy Louise

    Thermal cracking is one of the primary forms of distress in asphalt concrete pavements, resulting from either a single drop in temperature to an extreme low or from multiple temperature cycles above the fracture temperature of the asphalt-aggregate mixture. The first mode described is low temperature cracking; the second is thermal fatigue. The addition of crumb-rubber, manufactured from scrap tires, to the binder in asphalt concrete pavements has been suggested to minimize both types of thermal cracking. Four experiments were designed and completed to evaluate the thermal behavior of crumb-rubber modified (CRM) asphalt-aggregate mixtures. Modified and unmodified mixture response to thermal stresses was measured in four laboratory tests. The Thermal Stress Restrained Specimen Test (TSRST) and the Indirect Tensile Test (IDT) were used to compare mixture resistance to low temperature cracking. Modified mixtures showed improved performance, and cooling rate did not affect mixture resistance according to the statistical analysis. Therefore results from tests with faster rates can predict performance under slower field rates. In comparison, predicted fracture temperatures and stresses (IDT) were generally higher than measured values (TSRST). In addition, predicted fracture temperatures from binder test results demonstrated that binder testing alone is not sufficient to evaluate CRM mixtures. Thermal fatigue was explored in the third experiment using conventional load-induced fatigue tests with conditions selected to simulate daily temperature fluctuations. Test results indicated that thermal fatigue may contribute to transverse cracking in asphalt pavements. Both unmodified and modified mixtures had a finite capacity to withstand daily temperature fluctuations coupled with cold temperatures. Modified mixtures again exhibited improved performance. The fourth experiment examined fracture properties of modified and unmodified mixtures using a common fracture toughness test. Results showed no effect from modification, but the small experiment size may have masked this effect. Reliability concepts were introduced to include risk and uncertainty in a comparison of mixture response measured in the laboratory and estimated environmental conditions. This comparison provided evidence that CRM mixtures exhibit improved resistance to both types of thermal cracking at high levels of reliability. In conclusion, a mix design and analysis framework for evaluating thermal behavior was recommended.

Top