Sample records for type specific pcr

  1. Comparison of MY09/11 consensus PCR and type-specific PCRs in the detection of oncogenic HPV types.

    PubMed

    Depuydt, C E; Boulet, G A V; Horvath, C A J; Benoy, I H; Vereecken, A J; Bogers, J J

    2007-01-01

    The causal relationship between persistent infection with high-risk HPV and cervical cancer has resulted in the development of HPV DNA detection systems. The widely used MY09/11 consensus PCR targets a 450bp conserved sequence in the HPV L1 gene, and can therefore amplify a broad spectrum of HPV types. However, limitations of these consensus primers are evident, particularly in regard to the variability in detection sensitivity among different HPV types. This study compared MY09/11 PCR with type-specific PCRs in the detection of oncogenic HPV types. The study population comprised 15, 774 patients. Consensus PCR failed to detect 522 (10.9%) HPV infections indicated by type-specific PCRs. A significant correlation between failure of consensus PCR and HPV type was found. HPV types 51, 68 and 45 were missed most frequently. The clinical relevance of the HPV infections missed by MY09/11 PCR was reflected in the fraction of cases with cytological abnormalities and in follow-up, showing 104 (25.4%) CIN2+ cases. The MY09/11 false negativity could be the result of poor sensitivity, mismatch of MY09/11 primers or disruption of L1 target by HPV integration or DNA degradation. Furthermore, MY09/11 PCR lacked specificity for oncogenic HPVs. Diagnostic accuracy of the PCR systems, in terms of sensitivity (MY09/11 PCR: 87.9%; type-specific PCRs: 98.3%) and specificity (MY09/11 PCR: 38.7%; type-specific PCRs: 76.14%), and predictive values for histologically confirmed CIN2+, suggest that type-specific PCRs could be used in a clinical setting as a reliable screening tool.

  2. Developing high throughput quantitative PCR assays for diagnosing Ikeda and other Theileria orientalis types common to New Zealand in bovine blood samples.

    PubMed

    Pulford, D J; Gias, E; Bueno, I M; McFadden, Amj

    2016-01-01

    To develop rapid, quantitative PCR (qPCR) assays using high resolution melt (HRM) analysis and type-specific TaqMan assays for identifying the prevalent types of Theileria orientalis found in New Zealand cattle; and to evaluate their analytical and diagnostic characteristics compared with other assays for T. orientalis. Nucleotide sequences aligned with T. orientalis Buffeli, Chitose and Ikeda types, obtained from DNA extracted from blood samples from infected cattle, were used to design HRM and type-specific probe-based qPCR assays. The three type-specific assays were also incorporated into a single-tube multiplex qPCR assay. These assays were validated using DNA extracted from blood samples from cattle in herds with or without clinical signs of T. orientalis infection, other veterinary laboratory samples, as well as plasmids containing T. orientalis type-specific sequences. Diagnostic specificity (DSp) and sensitivity (DSe) estimates for the qPCR assays were compared to blood smear piroplasm results, and other PCR assays for T. orientalis. Copy number estimates of Ikeda DNA in blood were determined from cattle exhibiting anaemia using the Ikeda-specific qPCR assay. The T. orientalis type-specific and the HRM qPCR assays displayed 100% analytical specificity. The Ikeda-specific qPCR assay exhibited linearity (R(2) = 0.997) with an efficiency of 94.3%. Intra-assay CV were ≤0.08 and inter-assay CV were ≤0.095. For blood samples from cows with signs of infection with T. orientalis, the DSp and DSe of the multiplex probe qPCR assay were 93 and 96%, respectively compared with blood smears, and 97 and 100%, respectively compared with conventional PCR assays. For the Ikeda-specific qPCR assay, the number of positive samples (n=66) was slightly higher than a conventional PCR assay (n=64). The concentration of Ikeda genomes in blood samples from 41 dairy cows with signs of infection with T. orientalis ranged between 5.6 × 10(4) and 3.3 × 10(6) genomes per µL of blood. All qPCR assays had improved specificity and sensitivity over existing conventional PCR assays for diagnosis of T. orientalis Ikeda. The burden of Ikeda DNA in blood was demonstrated using an Ikeda-specific qPCR assay with titrated synthetic gene target. Adoption of high-throughput DNA extraction and qPCR reduced T. orientalis and Ikeda diagnosis times. The Ikeda-specific qPCR assay provides a specific diagnosis for Ikeda in animals with signs of infection with T. orientalis and can be used to monitor the parasite load of Ikeda in blood.

  3. Real-time PCR for type-specific identification of herpes simplex in clinical samples: evaluation of type-specific results in the context of CNS diseases.

    PubMed

    Meylan, Sylvain; Robert, Daniel; Estrade, Christine; Grimbuehler, Valérie; Péter, Olivier; Meylan, Pascal R; Sahli, Roland

    2008-02-01

    HSV-1 and HSV-2 cause CNS infections of dissimilar clinico-pathological characteristics with prognostic and therapeutic implications. To validate a type-specific real-time PCR that uses MGB/LNA Taqman probes and to review the virologico-clinical data of 25 eligible patients with non-neonatal CNS infections. This real-time PCR was evaluated against conventional PCR (26 CSF and 20 quality controls), and LightCycler assay (51 mucocutaneous, 8 CSF and 32 quality controls) and culture/immunofluorescence (75 mucocutaneous) to assess typing with independent methods. Taqman real-time PCR detected 240 HSV genomes per ml CSF, a level appropriate for the management of patients, and provided unambiguous typing for the 104 positive (62 HSV-1 and 42 HSV-2) out the 160 independent clinical samples tested. HSV type diagnosed by Taqman real-time PCR predicted final diagnosis (meningitis versus encephalitis/meningoencephalitis, p<0.001) in 24/25 patients at time of presentation, in contrast to clinical evaluation. Our real-time PCR, as a sensitive and specific means for type-specific HSV diagnosis, provided rapid prognostic information for patient management.

  4. Strain-specific reverse transcriptase PCR assay: means to distinguish candidate vaccine from wild-type strains of respiratory syncytial virus.

    PubMed Central

    Zheng, H; Peret, T C; Randolph, V B; Crowley, J C; Anderson, L J

    1996-01-01

    Candidate live-virus vaccines for respiratory syncytial virus are being developed and are beginning to be evaluated in clinical trials. To distinguish candidate vaccine strains from wild-type strains isolated during these trials, we developed PCR assays specific to two sets of candidate vaccine strains. The two sets were a group A strain (3A), its three attenuated, temperature-sensitive variant strains, a group B strain (2B), and its four attenuated, temperature-sensitive variant strains. The PCR assays were evaluated by testing 18 group A wild-type strains, the 3A strains, 9 group B wild-type strains, and the 2B strains. PCR specific to group A wild-type strains amplified only group A wild-type strains, and 3A-specific PCR amplified only 3A strains. PCR specific to group B wild-type strains amplified all group A and group B strains but gave a 688-bp product for group B wild-type strains, a 279-bp product for 2B strains, a 547-bp product for all group A strains, and an additional 688-bp product for some group A strains, including 3A strains. These types of PCR assays can, in conjunction with other methods, be used to efficiently distinguish candidate vaccine strains from other respiratory syncytial virus strains. PMID:8789010

  5. A new double digestion ligation mediated suppression PCR method for simultaneous bacteria DNA-typing and confirmation of species: an Acinetobacter sp. model.

    PubMed

    Stojowska, Karolina; Krawczyk, Beata

    2014-01-01

    We have designed a new ddLMS PCR (double digestion Ligation Mediated Suppression PCR) method based on restriction site polymorphism upstream from the specific target sequence for the simultaneous identification and differentiation of bacterial strains. The ddLMS PCR combines a simple PCR used for species or genus identification and the LM PCR strategy for strain differentiation. The bacterial identification is confirmed in the form of the PCR product(s), while the length of the PCR product makes it possible to differentiate between bacterial strains. If there is a single copy of the target sequence within genomic DNA, one specific PCR product is created (simplex ddLMS PCR), whereas for multiple copies of the gene the fingerprinting patterns can be obtained (multiplex ddLMS PCR). The described ddLMS PCR method is designed for rapid and specific strain differentiation in medical and microbiological studies. In comparison to other LM PCR it has substantial advantages: enables specific species' DNA-typing without the need for pure bacterial culture selection, is not sensitive to contamination with other cells or genomic DNA, and gives univocal "band-based" results, which are easy to interpret. The utility of ddLMS PCR was shown for Acinetobacter calcoaceticus-baumannii (Acb) complex, the genetically closely related and phenotypically similar species and also important nosocomial pathogens, for which currently, there are no recommended methods for screening, typing and identification. In this article two models are proposed: 3' recA-ddLMS PCR-MaeII/RsaI for Acb complex interspecific typing and 5' rrn-ddLMS PCR-HindIII/ApaI for Acinetobacter baumannii intraspecific typing. ddLMS PCR allows not only for DNA-typing but also for confirmation of species in one reaction. Also, practical guidelines for designing a diagnostic test based on ddLMS PCR for genotyping different species of bacteria are provided.

  6. A New Double Digestion Ligation Mediated Suppression PCR Method for Simultaneous Bacteria DNA-Typing and Confirmation of Species: An Acinetobacter sp. Model

    PubMed Central

    Stojowska, Karolina; Krawczyk, Beata

    2014-01-01

    We have designed a new ddLMS PCR (double digestion Ligation Mediated Suppression PCR) method based on restriction site polymorphism upstream from the specific target sequence for the simultaneous identification and differentiation of bacterial strains. The ddLMS PCR combines a simple PCR used for species or genus identification and the LM PCR strategy for strain differentiation. The bacterial identification is confirmed in the form of the PCR product(s), while the length of the PCR product makes it possible to differentiate between bacterial strains. If there is a single copy of the target sequence within genomic DNA, one specific PCR product is created (simplex ddLMS PCR), whereas for multiple copies of the gene the fingerprinting patterns can be obtained (multiplex ddLMS PCR). The described ddLMS PCR method is designed for rapid and specific strain differentiation in medical and microbiological studies. In comparison to other LM PCR it has substantial advantages: enables specific species' DNA-typing without the need for pure bacterial culture selection, is not sensitive to contamination with other cells or genomic DNA, and gives univocal “band-based” results, which are easy to interpret. The utility of ddLMS PCR was shown for Acinetobacter calcoaceticus-baumannii (Acb) complex, the genetically closely related and phenotypically similar species and also important nosocomial pathogens, for which currently, there are no recommended methods for screening, typing and identification. In this article two models are proposed: 3′ recA-ddLMS PCR-MaeII/RsaI for Acb complex interspecific typing and 5′ rrn-ddLMS PCR-HindIII/ApaI for Acinetobacter baumannii intraspecific typing. ddLMS PCR allows not only for DNA-typing but also for confirmation of species in one reaction. Also, practical guidelines for designing a diagnostic test based on ddLMS PCR for genotyping different species of bacteria are provided. PMID:25522278

  7. Detection and Typing of Human Papilloma Viruses by Nested Multiplex Polymerase Chain Reaction Assay in Cervical Cancer

    PubMed Central

    Jalal Kiani, Seyed; Shatizadeh Malekshahi, Somayeh; Yousefi Ghalejoogh, Zohreh; Ghavvami, Nastaran; Shafiei Jandaghi, Nazanin Zahra; Shahsiah, Reza; Jahanzad, Isa; Yavarian, Jila

    2015-01-01

    Background: Cervical cancer is the leading cause of death from cancer in under-developed countries. Human papilloma virus (HPV) 16 and 18 are the most prevalent types associated with carcinogenesis in the cervix. Conventional Polymerase Chain Reaction (PCR), type-specific and consensus primer-based PCR followed by sequencing, Restriction Fragment Length Polymorphism (RFLP) or hybridization by specific probes are common methods for HPV detection and typing. In addition, some researchers have developed a multiplex PCR for simultaneous detection and typing of different HPVs. Objectives: The aim of the present study was to investigate the prevalence of HPV infection and its types in cervical Squamous Cell Carcinoma (SCC) using the Nested Multiplex PCR (NMPCR) assay. Patients and Methods: Sixty-six samples with histologically confirmed SCC were evaluated. Total DNA was isolated by phenol–chloroform extraction and ethanol precipitation. Nested multiplex PCR was performed with first-round PCR by GP-E6/E7 consensus primers for amplification of the genomic DNA of all known mucosal HPV genotypes and second-round PCR by type-specific multiplex PCR primer cocktails. Results: Human papilloma virus infection was detected in 78.8% of samples, with the highest prevalence of HPV 16 (60.6%) while concurrent infections with two types was detected in 10.6%. Conclusions: The NMPCR assay is more convenient and easy for analysis of results, which is important for fast diagnosis and patient management, in a type-specific manner. PMID:26865940

  8. [Comparative studies of serological typing and HLA-A, B antigen genotyping with PCR using sequence-specific primers].

    PubMed

    Wu, Da-lin; Ling, Han-xin; Tang, Hao

    2004-11-01

    To evaluate the accuracy of PCR with sequence-specific primers (PCR-SSP) for HLA-I genotyping and analyze the causes of the errors occurring in the genotyping. DNA samples and were obtained from 34 clinical patients, and serological typing with monoclonal antibody (mAb) and HLA-A and, B antigen genotyping with PCR-SSP were performed. HLA-A and, B alleles were successfully typed in 34 clinical samples by mAb and PCR-SSP. No false positive or false negative results were found, and the erroneous and missed diagnosis rates were obviously higher in serological detection, being 23.5% for HLA-A and 26.5% for HLA-B. Error or confusion was more likely to occur in the antigens of A2 and A68, A32 and A33, B5, B60 and B61. DNA typing for HLA-I class (A, B antigens) by PCR-SSP has high resolution, high specificity, and good reproducibility, which is more suitable for clinical application than serological typing. PCR-SSP may accurately detect the alleles that are easily missed or mistaken in serological typing.

  9. Comparison of Three Different Hepatitis C Virus Genotyping Methods: 5'NCR PCR-RFLP, Core Type-Specific PCR, and NS5b Sequencing in a Tertiary Care Hospital in South India.

    PubMed

    Daniel, Hubert D-J; David, Joel; Raghuraman, Sukanya; Gnanamony, Manu; Chandy, George M; Sridharan, Gopalan; Abraham, Priya

    2017-05-01

    Based on genetic heterogeneity, hepatitis C virus (HCV) is classified into seven major genotypes and 64 subtypes. In spite of the sequence heterogeneity, all genotypes share an identical complement of colinear genes within the large open reading frame. The genetic interrelationships between these genes are consistent among genotypes. Due to this property, complete sequencing of the HCV genome is not required. HCV genotypes along with subtypes are critical for planning antiviral therapy. Certain genotypes are also associated with higher progression to liver cirrhosis. In this study, 100 blood samples were collected from individuals who came for routine HCV genotype identification. These samples were used for the comparison of two different genotyping methods (5'NCR PCR-RFLP and HCV core type-specific PCR) with NS5b sequencing. Of the 100 samples genotyped using 5'NCR PCR-RFLP and HCV core type-specific PCR, 90% (κ = 0.913, P < 0.00) and 96% (κ = 0.794, P < 0.00) correlated with NS5b sequencing, respectively. Sixty percent and 75% of discordant samples by 5'NCR PCR-RFLP and HCV core type-specific PCR, respectively, belonged to genotype 6. All the HCV genotype 1 subtypes were classified accurately by both the methods. This study shows that the 5'NCR-based PCR-RFLP and the HCV core type-specific PCR-based assays correctly identified HCV genotypes except genotype 6 from this region. Direct sequencing of the HCV core region was able to identify all the genotype 6 from this region and serves as an alternative to NS5b sequencing. © 2016 Wiley Periodicals, Inc.

  10. Competitive RT-PCR Strategy for Quantitative Evaluation of the Expression of Tilapia (Oreochromis niloticus) Growth Hormone Receptor Type I

    PubMed Central

    2009-01-01

    Quantization of gene expression requires that an accurate measurement of a specific transcript is made. In this paper, a quantitative reverse transcription-polymerase chain reaction (RT-PCR) by competition for tilapia growth hormone receptor type I is designed and validated. This experimental procedure was used to determine the abundance of growth hormone receptor type I transcript in different tilapia tissues. The results obtained with this developed competitive RT-PCR were similar to real-time PCR results reported recently. This protocol provides a reliable alternative, but less expensive than real-time PCR to quantify specific genes. PMID:19495916

  11. Efficiency of MY09/11 consensus PCR in the detection of multiple HPV infections.

    PubMed

    Şahiner, Fatih; Kubar, Ayhan; Gümral, Ramazan; Ardıç, Medine; Yiğit, Nuri; Şener, Kenan; Dede, Murat; Yapar, Mehmet

    2014-09-01

    Human papillomavirus (HPV) DNA testing has become an important component of cervical cancer screening programs. In this study, we aimed to evaluate the efficiency of MY09/11 consensus polymerase chain reaction (PCR) for the detection of multiple HPV infections. For this purpose, MY09/11 PCR was compared to an original TaqMan-based type-specific real-time PCR assay, which can detect 20 different HPV types. Of the 654 samples, 34.1% (223/654) were HPV DNA positive according to at least one method. The relative sensitivities of MY09/11 PCR and type-specific PCR were 80.7% (180/223) and 97.8% (218/223), respectively. In all, 352 different HPV isolates (66 low-risk and 286 high-risk or probable high-risk types) were identified in 218 samples, but 5 samples, which were positive by consensus PCR only, could not be genotyped. The distribution of the 286 high-risk or probable high-risk HPVs were as follows: 24.5% HPV-16, 8.4% HPV-52, 7.7% HPV-51, 6.3% HPV-39, 6.3% HPV-82, 5.6% HPV-35, 5.6% HPV-58, 5.6% HPV-66, 5.2% HPV-18, 5.2% HPV-68, and 19.6% the other 8 types. A single HPV type was detected in 57.3% (125/218) of the genotyped samples, and multiple HPV types were found in the remaining 42.7% (93/218). The false-negative rates of MY09/11 PCR were found to be 17.4% in single infections, 23.3% in multiple infections, and 34.6% in multiple infections that contained 3 or more HPV types, with the condition that the low-risk types HPV-6 and HPV-11 be considered as a monotype. These data suggest that broad-range PCR assays may lead to significant data loss and that type-specific PCR assays can provide accurate and reliable results during cervical cancer screening. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Detection and quantitation of HPV in genital and oral tissues and fluids by real time PCR

    PubMed Central

    2010-01-01

    Background Human papillomaviruses (HPVs) remain a serious world health problem due to their association with anogenital/oral cancers and warts. While over 100 HPV types have been identified, a subset is associated with malignancy. HPV16 and 18 are the most prevalent oncogenic types, while HPV6 and 11 are most commonly responsible for anogenital warts. While other quantitative PCR (qPCR) assays detect oncogenic HPV, there is no single tube assay distinguishing the most frequent oncogenic types and the most common types found in warts. Results A Sybr Green-based qPCR assay was developed utilizing degenerate primers to the highly conserved HPV E1 theoretically detecting any HPV type. A single tube multiplex qPCR assay was also developed using type-specific primer pairs and TaqMan probes that allowed for detection and quantitation of HPV6,11,16,18. Each HPV type was detected over a range from 2 × 101 to 2 × 106copies/reaction providing a reliable method of quantitating type-specific HPV in 140 anogenital/cutaneous/oral benign and malignant specimens. 35 oncogenic and low risk alpha genus HPV types were detected. Concordance was detected in previously typed specimens. Comparisons to the gold standard detected an overall sensitivity of 89% (95% CI: 77% - 96%) and specificity of 90% (95%CI: 52% - 98%). Conclusion There was good agreement between the ability of the qPCR assays described here to identify HPV types in malignancies previously typed using standard methods. These novel qPCR assays will allow rapid detection and quantitation of HPVs to assess their role in viral pathogenesis. PMID:20723234

  13. Laser micro-dissection and qPCR for identifying specific HPV types responsible for malignancy in penile lesions.

    PubMed

    Lebelo, Ramokone L; Thys, Sofie; Benoy, Ina; Depuydt, Christophe E; Bogers, John-Paul; Bida, Meshack N; Mphahlele, M Jeffrey

    2015-10-01

    The aim of the study was to identify specific human papillomavirus (HPV) type responsible for malignancy in penile tissue samples using laser micro-dissection and TaqMan quantitative real-time PCR (qPCR). The study was based on two pre-malignant and seven malignant penile tissue samples and laser micro-dissection was performed on all. Genotyping was performed on whole tissue sections and laser micro-dissection samples using qPCR. Two whole tissue section samples were HPV negative while seven were HPV positive. In four samples that were single HPV infections with whole tissue section PCR, identical HPV types were confirmed with laser micro-dissection PCR. Clearly confirming that the single HPV type detected is responsible for malignancy. In two samples that had multiple HPV infections with whole tissue section PCR, only one HPV type with the highest viral load was detected with laser micro-dissection PCR, suggesting that the HPV type with the highest viral load is most likely the cause of that particular lesion. HPV 11 and/or HPV 16 were the only types detected with laser micro-dissection PCR in these cases, compared to multiple HPV types (HPV 11, HPV 16, HPV 18, HPV 31, HPV 33, HPV 35, and HPV 39) initially detected with whole tissue section PCR. HPV 11 was associated with verrucous lesions while HPV 16 was associated with squamous cell carcinoma and PIN 3 lesions. This study confirms that laser micro-dissection and qPCR are essential tools in identifying the HPV types responsible for malignancy in penile lesions, particularly in samples with multiple infections. © 2015 Wiley Periodicals, Inc.

  14. Human papillomavirus detection and typing using a nested-PCR-RFLP assay.

    PubMed

    Coser, Janaina; Boeira, Thaís da Rocha; Fonseca, André Salvador Kazantzi; Ikuta, Nilo; Lunge, Vagner Ricardo

    2011-01-01

    It is clinically important to detect and type human papillomavirus (HPV) in a sensitive and specific manner. Development of a nested-polymerase chain reaction-restriction fragment length polymorphism (nested-PCR-RFLP) assay to detect and type HPV based on the analysis of L1 gene. Analysis of published DNA sequence of mucosal HPV types to select sequences of new primers. Design of an original nested-PCR assay using the new primers pair selected and classical MY09/11 primers. HPV detection and typing in cervical samples using the nested-PCR-RFLP assay. The nested-PCR-RFLP assay detected and typed HPV in cervical samples. Of the total of 128 clinical samples submitted to simple PCR and nested-PCR for detection of HPV, 37 (28.9%) were positive for the virus by both methods and 25 samples were positive only by nested-PCR (67.5% increase in detection rate compared with single PCR). All HPV positive samples were effectively typed by RFLP assay. The method of nested-PCR proved to be an effective diagnostic tool for HPV detection and typing.

  15. A broad range assay for rapid detection and etiologic characterization of bacterial meningitis: performance testing in samples from sub-Sahara.

    PubMed

    Won, Helen; Yang, Samuel; Gaydos, Charlotte; Hardick, Justin; Ramachandran, Padmini; Hsieh, Yu-Hsiang; Kecojevic, Alexander; Njanpop-Lafourcade, Berthe-Marie; Mueller, Judith E; Tameklo, Tsidi Agbeko; Badziklou, Kossi; Gessner, Bradford D; Rothman, Richard E

    2012-09-01

    This study aimed to conduct a pilot evaluation of broad-based multiprobe polymerase chain reaction (PCR) in clinical cerebrospinal fluid (CSF) samples compared to local conventional PCR/culture methods used for bacterial meningitis surveillance. A previously described PCR consisting of initial broad-based detection of Eubacteriales by a universal probe, followed by Gram typing, and pathogen-specific probes was designed targeting variable regions of the 16S rRNA gene. The diagnostic performance of the 16S rRNA assay in "127 CSF samples was evaluated in samples from patients from Togo, Africa, by comparison to conventional PCR/culture methods. Our probes detected Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae. Uniprobe sensitivity and specificity versus conventional PCR were 100% and 54.6%, respectively. Sensitivity and specificity of uniprobe versus culture methods were 96.5% and 52.5%, respectively. Gram-typing probes correctly typed 98.8% (82/83) and pathogen-specific probes identified 96.4% (80/83) of the positives. This broad-based PCR algorithm successfully detected and provided species level information for multiple bacterial meningitis agents in clinical samples. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. A broad range assay for rapid detection and etiologic characterization of bacterial meningitis: performance testing in samples from sub-Sahara☆, ☆☆,★

    PubMed Central

    Won, Helen; Yang, Samuel; Gaydos, Charlotte; Hardick, Justin; Ramachandran, Padmini; Hsieh, Yu-Hsiang; Kecojevic, Alexander; Njanpop-Lafourcade, Berthe-Marie; Mueller, Judith E.; Tameklo, Tsidi Agbeko; Badziklou, Kossi; Gessner, Bradford D.; Rothman, Richard E.

    2012-01-01

    This study aimed to conduct a pilot evaluation of broad-based multiprobe polymerase chain reaction (PCR) in clinical cerebrospinal fluid (CSF) samples compared to local conventional PCR/culture methods used for bacterial meningitis surveillance. A previously described PCR consisting of initial broad-based detection of Eubacteriales by a universal probe, followed by Gram typing, and pathogen-specific probes was designed targeting variable regions of the 16S rRNA gene. The diagnostic performance of the 16S rRNA assay in “”127 CSF samples was evaluated in samples from patients from Togo, Africa, by comparison to conventional PCR/culture methods. Our probes detected Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae. Uniprobe sensitivity and specificity versus conventional PCR were 100% and 54.6%, respectively. Sensitivity and specificity of uniprobe versus culture methods were 96.5% and 52.5%, respectively. Gram-typing probes correctly typed 98.8% (82/83) and pathogen-specific probes identified 96.4% (80/83) of the positives. This broad-based PCR algorithm successfully detected and provided species level information for multiple bacterial meningitis agents in clinical samples. PMID:22809694

  17. Multiplex Amplification Refractory Mutation System PCR (ARMS-PCR) provides sequencing independent typing of canine parvovirus.

    PubMed

    Chander, Vishal; Chakravarti, Soumendu; Gupta, Vikas; Nandi, Sukdeb; Singh, Mithilesh; Badasara, Surendra Kumar; Sharma, Chhavi; Mittal, Mitesh; Dandapat, S; Gupta, V K

    2016-12-01

    Canine parvovirus-2 antigenic variants (CPV-2a, CPV-2b and CPV-2c) ubiquitously distributed worldwide in canine population causes severe fatal gastroenteritis. Antigenic typing of CPV-2 remains a prime focus of research groups worldwide in understanding the disease epidemiology and virus evolution. The present study was thus envisioned to provide a simple sequencing independent, rapid, robust, specific, user-friendly technique for detecting and typing of presently circulating CPV-2 antigenic variants. ARMS-PCR strategy was employed using specific primers for CPV-2a, CPV-2b and CPV-2c to differentiate these antigenic types. ARMS-PCR was initially optimized with reference positive controls in two steps; where first reaction was used to differentiate CPV-2a from CPV-2b/CPV-2c. The second reaction was carried out with CPV-2c specific primers to confirm the presence of CPV-2c. Initial validation of the ARMS-PCR was carried out with 24 sequenced samples and the results were matched with the sequencing results. ARMS-PCR technique was further used to screen and type 90 suspected clinical samples. Randomly selected 15 suspected clinical samples that were typed with this technique were sequenced. The results of ARMS-PCR and the sequencing matched exactly with each other. The developed technique has a potential to become a sequencing independent method for simultaneous detection and typing of CPV-2 antigenic variants in veterinary disease diagnostic laboratories globally. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Use of taxon-specific competitive-priming PCR to study host specificity, hybridization, and intergroup gene flow in intersterility groups of Heterobasidion annosum

    Treesearch

    M. Garbelotto; A. Ratcliff; T.D. Bruns; F.W. Cobb; W.J. Otrosina

    1996-01-01

    Two intersterility groups (ISGs) of the forest pathogen Heterobasidion annosum are found in California: S and P.We devised a polymerase chain reaction (PCR) method called taxon- specific competitive-priming (TSCP) PCR to differentiate the two ISGs.Using TSCP-PCR, we typed 537 live isolates and dry basidiocarps from 204 trees and 114 stumps from 60 sites in eight...

  19. Application of IS1311 locus 2 PCR-REA assay for the specific detection of 'Bison type' Mycobacterium avium subspecies paratuberculosis isolates of Indian origin.

    PubMed

    Singh, Ajay Vir; Chauhan, Devendra Singh; Singh, Abhinendra; Singh, Pravin Kumar; Sohal, Jagdip Singh; Singh, Shoor Vir

    2015-01-01

    Of the three major genotypes of Mycobacterium avium subspecies paratuberculosis (MAP), 'Bison type' is most prevalent genotype in the domestic livestock species of the country, and has also been recovered from patients suffering from Crohn's disease. Recently, a new assay based on IS1311 locus 2 PCR- restriction endonuclease analysis (REA) was designed to distinguish between 'Indian Bison type' and non-Indian genotypes. The present study investigated discriminatory potential of this new assay while screening of a panel of MAP isolates of diverse genotypes and from different geographical regions. A total of 53 mycobacterial isolates (41 MAP and 12 mycobacterium other than MAP), three MAP genomic DNA and 36 MAP positive faecal DNA samples from different livestock species (cattle, buffaloes, goat, sheep and bison) and geographical regions (India, Canada, USA, Spain and Portugal) were included in the study. The extracted DNA samples (n=92) were analyzed for the presence of MAP specific sequences (IS900, ISMav 2 and HspX) using PCR. DNA samples were further subjected to genotype differentiation using IS1311 PCR-REA and IS1311 L2 PCR-REA methods. All the DNA samples (except DNA from non-MAP mycobacterial isolates) were positive for all the three MAP specific sequences based PCRs. IS1311 PCR-REA showed that MAP DNA samples of Indian origin belonged to 'Bison type'. Whereas, of the total 19 non-Indian MAP DNA samples, 2, 15 and 2 were genotyped as 'Bison type', 'Cattle type' and 'Sheep type', respectively. IS1311 L2 PCR-REA method showed different restriction profiles of 'Bison type' genotype as compared to non-Indian DNA samples. IS1311 L2 PCR-REA method successfully discriminated 'Indian Bison type' from other non-Indian genotypes and showed potential to be future epidemiological tool and for genotyping of MAP isolates.

  20. Direct identification of Streptococcus agalactiae and capsular type by real-time PCR in vaginal swabs from pregnant women.

    PubMed

    Morozumi, Miyuki; Chiba, Naoko; Igarashi, Yuko; Mitsuhashi, Naoki; Wajima, Takeaki; Iwata, Satoshi; Ubukata, Kimiko

    2015-01-01

    Most group B streptococcus (GBS) infections in newborns are with capsular type Ia, Ib, or III. To prevent these infections more effectively, we developed a real-time PCR method to simultaneously detect GBS species and identify these 3 capsular types in vaginal swab samples from women at 36-39 weeks of gestation. DNA to be detected included those of the dltS gene (encoding a histidine kinase specific to GBS) and cps genes encoding capsular types. PCR sensitivity was 10 CFU/well for a 33-35 threshold cycle. Results were obtained within 2 h. Direct PCR results were compared with results obtained from cultures. Samples numbering 1226 underwent PCR between September 2008 and August 2012. GBS positivity rates by direct PCR and after routine culture were 15.7% (n = 192) and 12.6% (n = 154), respectively. Sensitivity and specificity of direct PCR relative to culture were 96.1% and 95.9%. Of GBS positive samples identified by PCR, capsular types determined directly by real-time PCR were Ia (n = 24), Ib (n = 32), and III (n = 26). Real-time PCR using our designed cycling probe is a practical, highly sensitive method for identification of GBS in pregnant carriers, allowing use of prophylactic intrapartum antibiotics in time to cover the possibility of unexpected premature birth. Copyright © 2014 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  1. Detection of influenza virus types A and B and type A subtypes (H1, H3, and H5) by multiplex polymerase chain reaction.

    PubMed

    Boonsuk, Pitirat; Payungporn, Sunchai; Chieochansin, Thaweesak; Samransamruajkit, Rujipat; Amonsin, Alongkorn; Songserm, Thaweesak; Chaisingh, Arunee; Chamnanpood, Pornchai; Chutinimitkul, Salin; Theamboonlers, Apiradee; Poovorawan, Yong

    2008-07-01

    Infections with influenza virus type A and B present serious public health problems on a global scale. However, only influenza A virus has been reported to cause fatal pandemic in many species. To provide suitable clinical management and prevent further virus transmission, efficient and effective clinical diagnosis is essential. Therefore, we developed multiplex PCR assays for detecting influenza types A and B and the subtypes of influenza A virus (H1, H3 and H5). Upon performing multiplex PCR assays with type-specific primer sets, the clearly distinguishable products representing influenza A and B virus were separated by agarose gel electrophoresis. In addition, the subtypes of influenza A virus (H1, H3 and H5), which are most common in humans, can be readily distinguished by PCR with subtype-specific primer sets, yielding PCR products of different sizes depending on which subtype has been amplified. This method was tested on 46 influenza virus positive specimens of avian and mammalian (dog and human) origins collected between 2006 and 2008. The sensitivity of this method, tested against known concentrations of each type and subtype specific plasmid, was established to detect 10(3) copies/microl. The method's specificity was determined by testing against other subtypes of influenza A virus (H2, H4 and H6-H15) and respiratory pathogens commonly found in humans. None of them could be amplified, thus excluding cross reactivity. In conclusion, the multiplex PCR assays developed are advantageous as to rapidity, specificity, and cost effectiveness.

  2. A multiplex reverse transcription-nested polymerase chain reaction for detection and differentiation of wild-type and vaccine strains of canine distemper virus

    PubMed Central

    2010-01-01

    A multiplex reverse transcription-nested polymerase chain reaction (RT-nPCR) method was developed for the detection and differentiation of wild-type and vaccine strains of canine distemper virus (CDV). A pair of primers (P1 and P4) specific for CDV corresponding to the highly conserved region of the CDV genome were used as a common primer pair in the first-round PCR of the nested PCR. Primers P2 specific for CDV wild-type strains, were used as the forward primer together with the common reverse primer P4 in the second round of nested PCR. Primers P3, P5 specific for CDV wild-type strain or vaccine strain, were used as the forward primer together with the common reverse primer P4+P6 in the second round of nested PCR. A fragment of 177 bp was amplified from vaccine strain genomic RNA, and a fragment of 247 bp from wild-type strain genomic RNA in the RT-nPCR, and two fragments of 247 bp and 177 bp were amplified from the mixed samples of vaccine and wild-type strains. No amplification was achieved for uninfected cells, or cells infected with Newcastle disease virus (NDV), canine parvovirus (CPV), canine coronavirus (CCV), rabies virus (RV), or canine adenovirus (CAV). The RT-nPCR method was used to detect 30 field samples suspected of canine distemper from Heilongjiang and Jilin Provinces, and 51 samples in Shandong province. As a result of 30 samples, were found to be wild-type-like, and 5 to be vaccine-strain-like. The RT-nPCR method can be used to effectively detect and differentiate wild-type CDV-infected dogs from dogs vaccinated with CDV vaccine, and thus can be used in clinical detection and epidemiological surveillance. PMID:20433759

  3. Application of PCR to a clinical and environmental investigation of a case of equine botulism.

    PubMed

    Szabo, E A; Pemberton, J M; Gibson, A M; Thomas, R J; Pascoe, R R; Desmarchelier, P M

    1994-08-01

    PCR for the detection of botulinum neurotoxin gene types A to E was used in the investigation of a case of equine botulism. Samples from a foal diagnosed with toxicoinfectious botulism in 1985 were reanalyzed by PCR and the mouse bioassay in conjunction with an environmental survey. Neurotoxin B was detected by mouse bioassay in culture enrichments of serum, spleen, feces, and intestinal contents. PCR results compared well with mouse bioassay results, detecting type B neurotoxin genes in these samples and also in a liver sample. Other neurotoxin types were not detected by either test. Clostridium botulinum type B was shown to be prevalent in soils collected from the area in which the foal was raised. Four methods were used to test for the presence of botulinum neurotoxin-producing organisms in 66 soil samples taken within a 5-km radius: PCR and agarose gel electrophoresis (types A to E), PCR and an enzyme-linked assay (type B), hybridization of crude alkaline cell lysates with a type B-specific probe, and the mouse bioassay (all types). Fewer soil samples were positive for C. botulinum type B by the mouse bioassay (15%) than by any of the DNA-based detection systems. Hybridization of a type B-specific probe to DNA dot blots (26% of the samples were positive) and PCR-enzyme-linked assay (77% of the samples were positive) were used for the rapid analysis of large numbers of samples, with sensitivity limits of 3 x 10(6) and 3,000 cells, respectively. Conventional detection of PCR products by gel electrophoresis was the most sensitive method (300-cell limit), and in the present environmental survey, neurotoxin B genes only were detected in 94% of the samples.

  4. Application of PCR to a clinical and environmental investigation of a case of equine botulism.

    PubMed Central

    Szabo, E A; Pemberton, J M; Gibson, A M; Thomas, R J; Pascoe, R R; Desmarchelier, P M

    1994-01-01

    PCR for the detection of botulinum neurotoxin gene types A to E was used in the investigation of a case of equine botulism. Samples from a foal diagnosed with toxicoinfectious botulism in 1985 were reanalyzed by PCR and the mouse bioassay in conjunction with an environmental survey. Neurotoxin B was detected by mouse bioassay in culture enrichments of serum, spleen, feces, and intestinal contents. PCR results compared well with mouse bioassay results, detecting type B neurotoxin genes in these samples and also in a liver sample. Other neurotoxin types were not detected by either test. Clostridium botulinum type B was shown to be prevalent in soils collected from the area in which the foal was raised. Four methods were used to test for the presence of botulinum neurotoxin-producing organisms in 66 soil samples taken within a 5-km radius: PCR and agarose gel electrophoresis (types A to E), PCR and an enzyme-linked assay (type B), hybridization of crude alkaline cell lysates with a type B-specific probe, and the mouse bioassay (all types). Fewer soil samples were positive for C. botulinum type B by the mouse bioassay (15%) than by any of the DNA-based detection systems. Hybridization of a type B-specific probe to DNA dot blots (26% of the samples were positive) and PCR-enzyme-linked assay (77% of the samples were positive) were used for the rapid analysis of large numbers of samples, with sensitivity limits of 3 x 10(6) and 3,000 cells, respectively. Conventional detection of PCR products by gel electrophoresis was the most sensitive method (300-cell limit), and in the present environmental survey, neurotoxin B genes only were detected in 94% of the samples. Images PMID:7989554

  5. Comparison of the AdvanSure human papillomavirus screening real-time PCR, the Abbott RealTime High Risk human papillomavirus test, and the Hybrid Capture human papillomavirus DNA test for the detection of human papillomavirus.

    PubMed

    Hwang, Yusun; Lee, Miae

    2012-05-01

    We evaluated the performance of various commercial assays for the molecular detection of human papillomavirus (HPV); the recently developed AdvanSure HPV Screening real-time PCR assay (AdvanSure PCR) and the Abbott RealTime High Risk HPV PCR assay (Abbott PCR) were compared with the Hybrid Capture 2 HPV DNA Test (HC2). All 3 tests were performed on 177 samples, and any sample that showed a discrepancy in any of the 3 tests was genotyped using INNO-LiPA HPV genotyping and/or sequencing. On the basis of these results, we obtained a consensus HPV result, and the performance of each test was evaluated. We also evaluated high-risk HPV 16/18 detection by using the 2 real-time PCR assays. Among the 177 samples, 65 were negative and 75 were positive in all 3 assays; however, the results of the 3 assays with 37 samples were discrepant. Compared with the consensus HPV result, the sensitivities and specificities of HC2, AdvanSure PCR, and Abbott PCR were 97.6%, 91.7%, and 86.9% and 83.9%, 98.8%, and 100.0%, respectively. For HPV type 16/18 detection, the concordance rate between the AdvanSure PCR and Abbott PCR assays was 98.3%; however, 3 samples were discrepant (positive in AdvanSure PCR and negative in Abbott PCR) and were confirmed as HPV type 16 by INNO-LiPA genotyping and/or sequencing. For HPV detection, the AdvanSure HPV Screening real-time PCR assay and the Abbott PCR assay are less sensitive but more specific than the HC2 assay, but can simultaneously differentiate type 16/18 HPV from other types.

  6. Differentiation of herpes simplex virus types 1 and 2 in clinical samples by a real-time taqman PCR assay.

    PubMed

    Corey, Lawrence; Huang, Meei-Li; Selke, Stacy; Wald, Anna

    2005-07-01

    While the clinical manifestations of HSV-1 and -2 overlap, the site of CNS infection, complications, response to antivirals, frequency of antiviral resistance, and reactivation rate on mucosal surfaces varies between HSV-1 and -2. Detection of HSV DNA by PCR has been shown to be the most sensitive method for detecting HSV in clinical samples. As such, we developed a PCR-based assay to accurately distinguish HSV-1 from HSV-2. Our initial studies indicated the assay using type specific primers was slightly less efficient for detecting HSV-1 and -2 DNA than the high throughput quantitative PCR assay we utilize that employs type common primers to gB. We subsequently evaluated the type specific assay on 3,131 specimens that had HSV DNA detected in the type common PCR assay. The typing results of these specimens were compared with the monoclonal antibody staining results of culture isolates collected from the same patients at the same time, and the HSV serologic status of the patient. The typing assay accurately identified both HSV-1 and -2 with a specificity of >99.5% and was significantly more sensitive than typing by culture and subsequent monoclonal antibody assays. Complete concordance was seen between the typing assay and HSV serologic status of the patient. Dual (HSV-1 and -2) infection in clinical samples was recognized in 2.6% of clinical samples using the new typing assay. This assay, when used in combination with the type common assay, can now accurately type almost all mucosal and visceral HSV isolates by molecular techniques. Copyright (c) 2005 Wiley-Liss, Inc.

  7. Development of chemiluminescent probe hybridization, RT-PCR and nucleic acid cycle sequencing assays of Sabin type 3 isolates to identify base pair 472 Sabin type 3 mutants associated with vaccine associated paralytic poliomyelitis.

    PubMed

    Old, M O; Logan, L H; Maldonado, Y A

    1997-11-01

    Sabin type 3 polio vaccine virus is the most common cause of poliovaccine associated paralytic poliomyelitis. Vaccine associated paralytic poliomyelitis cases have been associated with Sabin type 3 revertants containing a single U to C substitution at bp 472 of Sabin type 3. A rapid method of identification of Sabin type 3 bp 472 mutants is described. An enterovirus group-specific probe for use in a chemiluminescent dot blot hybridization assay was developed to identify enterovirus positive viral lysates. A reverse transcription-polymerase chain reaction (RT-PCR) assay producing a 319 bp PCR product containing the Sabin type 3 bp 472 mutation site was then employed to identify Sabin type 3 isolates. Chemiluminescent nucleic acid cycle sequencing of the purified 319 bp PCR product was then employed to identify nucleic acid sequences at bp 472. The enterovirus group probe hybridization procedure and isolation of the Sabin type 3 PCR product were highly sensitive and specific; nucleic acid cycle sequencing corresponded to the known sequence of stock Sabin type 3 isolates. These methods will be used to identify the Sabin type 3 reversion rate from sequential stool samples of infants obtained after the first and second doses of oral poliovirus vaccine.

  8. Comparison of the clinical performances of the AdvanSure HPV Screening Real-Time PCR, the Abbott Real-Time High-Risk HPV Test, and the Hybrid Capture High-Risk HPV DNA Test for Cervical Cancer Screening.

    PubMed

    Chung, Hae-Sun; Hahm, Chorong; Lee, Miae

    2014-09-01

    The clinical performance of three human papillomavirus (HPV) DNA commercial assays for cervical cancer screening was evaluated; the AdvanSure HPV Screening Real-Time PCR (AdvanSure PCR; LG Life Sciences) that was developed recently for the detection of both high-risk and low-risk genotypes, the Abbott RealTime High-Risk HPV Test (Abbott PCR; Abbott Molecular) and the Hybrid Capture High-Risk HPV DNA test (HC2; Qiagen). The three different HPV DNA tests were compared using cytology samples obtained from 619 women who underwent routine cervical cancer screening. The gold-standard assay was histopathological confirmation of cervical intraepithelial neoplasia of grade 2 or worse. The clinical sensitivities of the AdvanSure PCR, the Abbott PCR and the HC2 for the detection of cervical intraepithelial neoplasia of grade 2 or worse were 95.5%, 95.5% and 100%, respectively, while the clinical specificities were 61.6%, 86.4% and 83.3%, respectively. There were no significant differences in the clinical sensitivities of the Abbott PCR and the AdvanSure PCR compared to the HC2. The clinical specificities of the Abbott PCR and the AdvanSure PCR for the detection of HPV types 16/18 were 97.8% and 98.5%, respectively. For cervical cancer screening, all three tests showed relatively good clinical sensitivities, but the AdvanSure PCR had lower clinical specificity than the Abbott PCR and the HC2. The AdvanSure PCR and the Abbott PCR assays have the advantage of being automated and the ability to distinguish between HPV types 16/18 and other HPV types. The two real-time PCR assays could be useful tools in HPV testing for cervical cancer screening. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Use of PCR with Sequence-specific Primers for High-Resolution Human Leukocyte Antigen Typing of Patients with Narcolepsy

    PubMed Central

    Woo, Hye In; Joo, Eun Yeon; Lee, Kyung Wha

    2012-01-01

    Background Narcolepsy is a neurologic disorder characterized by excessive daytime sleepiness, symptoms of abnormal rapid eye movement (REM) sleep, and a strong association with HLA-DRB1*1501, -DQA1*0102, and -DQB1*0602. Here, we investigated the clinico-physical characteristics of Korean patients with narcolepsy, their HLA types, and the clinical utility of high-resolution PCR with sequence-specific primers (PCR-SSP) as a simple typing method for identifying DRB1*15/16, DQA1, and DQB1 alleles. Methods The study population consisted of 67 consecutively enrolled patients having unexplained daytime sleepiness and diagnosed narcolepsy based on clinical and neurological findings. Clinical data and the results of the multiple sleep latency test and polysomnography were reviewed, and HLA typing was performed using both high-resolution PCR-SSP and sequence-based typing (SBT). Results The 44 narcolepsy patients with cataplexy displayed significantly higher frequencies of DRB1*1501 (Pc= 0.003), DQA1*0102 (Pc=0.001), and DQB1*0602 (Pc=0.014) than the patients without cataplexy. Among patients carrying DRB1*1501-DQB1*0602 or DQA1*0102, the frequencies of a mean REM sleep latency of less than 20 min in nocturnal polysomnography and clinical findings, including sleep paralysis and hypnagogic hallucination were significantly higher. SBT and PCR-SSP showed 100% concordance for high-resolution typing of DRB1*15/16 alleles and DQA1 and DQB1 loci. Conclusions The clinical characteristics and somnographic findings of narcolepsy patients were associated with specific HLA alleles, including DRB1*1501, DQA1*0102, and DQB1*0602. Application of high-resolution PCR-SSP, a reliable and simple method, for both allele- and locus-specific HLA typing of DRB1*15/16, DQA1, and DQB1 would be useful for characterizing clinical status among subjects with narcolepsy. PMID:22259780

  10. Detection of foodborne pathogens using microarray technology

    USDA-ARS?s Scientific Manuscript database

    Assays based on the polymerase chain reaction (PCR) are now accepted methods for rapidly confirming the presence or absence of specific pathogens in foods and other types of samples. Conventional PCR requires the use of agarose gel electrophoresis to detect the PCR product; whereas, real-time PCR c...

  11. Polymeric LabChip Real-Time PCR as a Point-of-Care-Potential Diagnostic Tool for Rapid Detection of Influenza A/H1N1 Virus in Human Clinical Specimens

    PubMed Central

    Song, Hyun-Ok; Kim, Je-Hyoung; Ryu, Ho-Sun; Lee, Dong-Hoon; Kim, Sun-Jin; Kim, Deog-Joong; Suh, In Bum; Choi, Du Young; In, Kwang-Ho; Kim, Sung-Woo; Park, Hyun

    2012-01-01

    It is clinically important to be able to detect influenza A/H1N1 virus using a fast, portable, and accurate system that has high specificity and sensitivity. To achieve this goal, it is necessary to develop a highly specific primer set that recognizes only influenza A viral genes and a rapid real-time PCR system that can detect even a single copy of the viral gene. In this study, we developed and validated a novel fluidic chip-type real-time PCR (LabChip real-time PCR) system that is sensitive and specific for the detection of influenza A/H1N1, including the pandemic influenza strain A/H1N1 of 2009. This LabChip real-time PCR system has several remarkable features: (1) It allows rapid quantitative analysis, requiring only 15 min to perform 30 cycles of real-time PCR. (2) It is portable, with a weight of only 5.5 kg. (3) The reaction cost is low, since it uses disposable plastic chips. (4) Its high efficiency is equivalent to that of commercially available tube-type real-time PCR systems. The developed disposable LabChip is an economic, heat-transferable, light-transparent, and easy-to-fabricate polymeric chip compared to conventional silicon- or glass-based labchip. In addition, our LabChip has large surface-to-volume ratios in micro channels that are required for overcoming time consumed for temperature control during real-time PCR. The efficiency of the LabChip real-time PCR system was confirmed using novel primer sets specifically targeted to the hemagglutinin (HA) gene of influenza A/H1N1 and clinical specimens. Eighty-five human clinical swab samples were tested using the LabChip real-time PCR. The results demonstrated 100% sensitivity and specificity, showing 72 positive and 13 negative cases. These results were identical to those from a tube-type real-time PCR system. This indicates that the novel LabChip real-time PCR may be an ultra-fast, quantitative, point-of-care-potential diagnostic tool for influenza A/H1N1 with a high sensitivity and specificity. PMID:23285281

  12. A random PCR screening system for the identification of type 1 human herpes simplex virus.

    PubMed

    Yu, Xuelian; Shi, Bisheng; Gong, Yan; Zhang, Xiaonan; Shen, Silan; Qian, Fangxing; Gu, Shimin; Hu, Yunwen; Yuan, Zhenghong

    2009-10-01

    Several viral diseases exhibit measles-like symptoms. Differentiation of suspected cases of measles with molecular epidemiological techniques in the laboratory is useful for measles surveillance. In this study, a random PCR screening system was undertaken for the identification of isolates from patients with measles-like symptoms who exhibited cytopathic effects, but who had negative results for measles virus-specific reverse transcription (RT)-PCR and indirect immunofluorescence assays. Sequence analysis of random amplified PCR products showed that they were highly homologous to type 1 human herpes simplex virus (HSV-1). The results were further confirmed by an HSV-1-specific TaqMan real-time PCR assay. The random PCR screening system described in this study provides an efficient procedure for the identification of unknown viral pathogens. Measles-like symptoms can also be caused by HSV-1, suggesting the need to include HSV-1 in differential diagnoses of measles-like diseases.

  13. Identification of Novel Helicobacter Species in Pig Stomachs by PCR and Partial Sequencing

    PubMed Central

    Choi, Young K.; Han, Jeong H.; Joo, Han S.

    2001-01-01

    Evidence of infection with Helicobacter species in pig stomach was investigated by the use of a PCR with Helicobacter genus-specific primers. Forty pig stomachs, each of four different ulcer lesion grades, 0, 1, 2, and 3 in the pars esophagea area, were collected from a slaughterhouse in Minnesota. Of 160 stomach samples examined, 102 (63.8%) were positive by the PCR assay. The 40 samples each of lesion grades 0, 1, 2, and 3 showed 22.5, 52.5, 85.0, and 95.0% PCR-positive results, respectively. There was a significant trend (P ≤ 0.01) in the proportions of PCR-positive cases relative to severity of the lesion. About 80% of the 16S rRNA gene was amplified, and PCR-restriction fragment length polymorphism (RFLP) patterns were analyzed. Of 102 PCR-positive samples, the PCR-RFLP patterns resulted in four different types, 32 samples being classified into type MN 1, 16 samples into type MN 2, 43 samples into type MN 3, and 11 samples into type MN 4. When the sequences of each RFLP type were compared to those reported in databases by using BLAST software, types MN 1, MN 2, MN 3, and MN 4 showed homologies of 97.3, 95.4, 96.7, and 99.5% with the 16S ribosomal DNA of Helicobacter flexispira taxon 3, Helicobacter sp. strains MIT 94-022 and MZ 640285, and Helicobacter suis, respectively. None of the 102 samples positive for the Helicobacter genus were positive with a primer set specific for Helicobacter pylori. Attempts to culture the organisms from selected stomachs in vitro were unsuccessful. PMID:11526168

  14. Specific Detection of Enteroaggregative Hemorrhagic Escherichia coli O104:H4 Strains by Use of the CRISPR Locus as a Target for a Diagnostic Real-Time PCR

    PubMed Central

    Delannoy, Sabine; Beutin, Lothar; Burgos, Ylanna

    2012-01-01

    In 2011, a large outbreak of an unusual bacterial strain occurred in Europe. This strain was characterized as a hybrid of an enteroaggregative Escherichia coli (EAEC) and a Shiga toxin-producing E. coli (STEC) strain of the serotype O104:H4. Here, we present a single PCR targeting the clustered regularly interspaced short palindromic repeats locus of E. coli O104:H4 (CRISPRO104:H4) for specific detection of EAEC STEC O104:H4 strains from different geographical locations and time periods. The specificity of the CRISPRO104:H4 PCR was investigated using 1,321 E. coli strains, including reference strains for E. coli O serogroups O1 to O186 and flagellar (H) types H1 to H56. The assay was compared for specificity using PCR assays targeting different O104 antigen-encoding genes (wbwCO104, wzxO104, and wzyO104). The PCR assays reacted with all types of E. coli O104 strains (O104:H2, O104:H4, O104:H7, and O104:H21) and with E. coli O8 and O9 strains carrying the K9 capsular antigen and were therefore not specific for detection of the EAEC STEC O104:H4 type. A single PCR developed for the CRISPRO104:H4 target was sufficient for specific identification and detection of the 48 tested EAEC STEC O104:H4 strains. The 35 E. coli O104 strains expressing H types other than H4 as well as 8 E. coli strains carrying a K9 capsular antigen tested all negative for the CRISPRO104:H4 locus. Only 12 (0.94%) of the 1,273 non-O104:H4 E. coli strains (serotypes Ont:H2, O43:H2, O141:H2, and O174:H2) reacted positive in the CRISPRO104:H4 PCR (99.06% specificity). PMID:22895033

  15. Specific Identification and Targeted Characterization of Bifidobacterium lactis from Different Environmental Isolates by a Combined Multiplex-PCR Approach

    PubMed Central

    Ventura, Marco; Reniero, Roberto; Zink, Ralf

    2001-01-01

    The species Bifidobacterium lactis, with its main representative strain Bb12 (DSM 10140), is a yoghurt isolate used as a probiotic strain and is commercially applied in different types of yoghurts and infant formulas. In order to ensure the genetic identity and safety of this bacterial isolate, species- and strain-specific molecular tools for genetic fingerprinting must be available to identify isolated bifidobacteria or lactic acid bacteria from, e.g., various clinical environments of relevance in medical microbiology. Two opposing rRNA gene-targeted primers have been developed for specific detection of this microorganism by PCR. The specificity of this approach was evaluated and verified with DNA samples isolated from single and mixed cultures of bifidobacteria and lactobacilli (48 isolates, including the type strains of 29 Bifidobacterium and 9 Lactobacillus species). Furthermore, we performed a Multiplex-PCR using oligonucleotide primers targeting a specific region of the 16S rRNA gene for the genus Bifidobacterium and a conserved eubacterial 16S rDNA sequence. The specificity and sensitivity of this detection with a pure culture of B. lactis were, respectively, 100 bacteria/ml after 25 cycles of PCR and 1 to 10 bacteria/ml after a 50-cycle nested-PCR approach. PMID:11375192

  16. Comparison of Abbott RealTime High-Risk HPV and Hybrid Capture 2 Assays for Detection of HPV Infection.

    PubMed

    Ko, Kiwoong; Yu, Shinae; Lee, Eun Hee; Park, Hyosoon; Woo, Hee-Yeon; Kwon, Min-Jung

    2016-09-01

    Various assays for detecting high-risk human papillomavirus (HR HPV) have been introduced recently, including the Abbott RealTime High-Risk HPV assay. We sought to compare the performance of Abbott PCR to Hybrid Capture 2 for the detection of HR HPV. A total of 941 cervical swab specimens were obtained. We submitted all specimens for HR HPV detection with HC2 and Abbott PCR, and then additionally analyzed discordant and concordant positive results using restriction fragment mass polymorphism (RFMP) genotyping analysis. HC2 detected one of 13 HR HPV types in 12.3% (116/941) of cases, while Abbott PCR detected one of 14 detectable HR HPV types in 12.9% (121/941) of cases. The overall agreement rate was 97.3% with a kappa coefficient of 0.879. Discordant results between these two assays were observed in 25 cases. HC2 showed a sensitivity of 90.0% and specificity of 95.9%, while Abbott PCR showed a sensitivity of 98.0% and specificity of 96.8% when using RFMP results as the gold standard. For HPV 16/18 detection, Abbott PCR showed 95.8%/88.9% sensitivity and 99.2%/99.8% specificity, respectively. The overall coinfection rate between HPV 16, 18 and non-16/18 was 9.9% (12/121) in Abbott PCR analysis. Considering its high agreement rate with HC2, higher sensitivity/specificity compared to HC2, and ability to differentiate HPV 16/18 from other HPV types, Abbott PCR could be a reliable laboratory testing method for the screening of HPV infections. © 2016 by the Association of Clinical Scientists, Inc.

  17. Escherichia coli H-Genotyping PCR: a Complete and Practical Platform for Molecular H Typing.

    PubMed

    Banjo, Masaya; Iguchi, Atsushi; Seto, Kazuko; Kikuchi, Taisei; Harada, Tetsuya; Scheutz, Flemming; Iyoda, Sunao

    2018-06-01

    In Escherichia coli , more than 180 O groups and 53 H types have been recognized. The O:H serotyping of E. coli strains is an effective method for identifying strains with pathogenic potential and classifying them into clonal groups. In particular, the serotyping of Shiga toxin-producing E. coli (STEC) strains provides valuable information to evaluate the routes, sources, and prevalence of agents in outbreak investigations and surveillance. Here, we present a complete and practical PCR-based H-typing system, E. coli H-genotyping PCR, consisting of 10 multiplex PCR kits with 51 single PCR primer pairs. Primers were designed based on a detailed comparative analysis of sequences from all H-antigen (flagellin)-encoding genes, fliC and its homologs. The specificity of this system was confirmed by using all H type reference strains. Additionally, 362 serotyped wild strains were also used to evaluate its practicality. All 277 H-type-identified isolates gave PCR products that corresponded to the results of serological H typing. Moreover, 76 nonmotile and nine untypeable strains could be successfully subtyped into any H type by the PCR system. The E. coli H-genotyping PCR developed here allows broader, rapid, and low-cost subtyping of H types and will assist epidemiological studies as well as surveillance of pathogenic E. coli . Copyright © 2018 American Society for Microbiology.

  18. Novel Multiplex PCR Assay for Characterization and Concomitant Subtyping of Staphylococcal Cassette Chromosome mec Types I to V in Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Zhang, Kunyan; McClure, Jo-Ann; Elsayed, Sameer; Louie, Thomas; Conly, John M.

    2005-01-01

    Staphylococcal cassette chromosome mec (SCCmec) typing is essential for understanding the molecular epidemiology of methicillin-resistant Staphylococcus aureus (MRSA). SCCmec elements are currently classified into types I to V based on the nature of the mec and ccr gene complexes, and are further classified into subtypes according to their junkyard region DNA segments. Previously described traditional SCCmec PCR typing schemes require multiple primer sets and PCR experiments, while a previously published multiplex PCR assay is limited in its ability to detect recently discovered types and subtypes such as SCCmec type V and subtypes IVa, b, c, and d. We designed new sets of SCCmec type- and subtype-unique and specific primers and developed a novel multiplex PCR assay allowing for concomitant detection of the methicillin resistance (mecA gene) (also serving as an internal control) to facilitate detection and classification of all currently described SCCmec types and subtypes I, II, III, IVa, b, c, d, and V. Our assay demonstrated 100% sensitivity and specificity in accurately characterizing 54 MRSA strains belonging to the various known SCCmec types and subtypes, when compared with previously described typing methods. Further application of our assay in 453 randomly selected local clinical isolates confirmed its feasibility and practicality. This novel assay offers a rapid, simple, and feasible method for SCCmec typing of MRSA, and may serve as a useful tool for clinicians and epidemiologists in their efforts to prevent and control infections caused by this organism. PMID:16207957

  19. Microtiter format for simultaneous multianalyte detection and development of a PCR-chemiluminescent enzyme immunoassay for typing human papillomavirus DNAs.

    PubMed

    Roda, Aldo; Mirasoli, Mara; Venturoli, Simona; Cricca, Monica; Bonvicini, Francesca; Baraldini, Mario; Pasini, Patrizia; Zerbini, Marialuisa; Musiani, Monica

    2002-10-01

    To allow multianalyte binding assays, we have developed a novel polystyrene microtiter plate containing 24 main wells, each divided into 7 subwells. We explored its clinical potential by developing a PCR-chemiluminescent immunoassay (PCR-CLEIA) for simultaneous detection and typing of seven high oncogenic risk human papillomavirus (HPV) DNAs in one well. Seven different oligonucleotide probes, each specific for a high-risk HPV genotype, were separately immobilized in the subwells. Subsequently, a digoxigenin-labeled consensus PCR amplification product was added to the main well. The PCR product hybridized to the immobilized probe corresponding to its genotype and was subsequently detected by use of a peroxidase-labeled anti-digoxigenin antibody and chemiluminescence imaging with an ultrasensitive charge-coupled device camera. Results obtained for 50 cytologic samples were compared with those obtained with a conventional colorimetric PCR-ELISA. The method was specific and allowed detection of 50 genome copies of HPV 16, 18, 33, and 58, and 100 genome copies of HPV 31, 35, and 45. Intra- and interassay CVs for the method were 5.6% and 7.9%, respectively. All results obtained for clinical samples were confirmed by the conventional PCR-ELISA. PCR-CLEIA allows rapid, single-tube simultaneous detection and typing of seven high-risk HPV DNAs with small reagent volumes. The principle appears applicable to the development of other single-tube panels of tests.

  20. Rapid identification of HPV 16 and 18 by multiplex nested PCR-immunochromatographic test.

    PubMed

    Kuo, Yung-Bin; Li, Yi-Shuan; Chan, Err-Cheng

    2015-02-01

    Human papillomavirus (HPV) types 16 and 18 are known to be high-risk viruses that cause cervical cancer. An HPV rapid testing kit that could help physicians to make early and more informed decisions regarding patient care is needed urgently but not yet available. This study aimed to develop a multiplex nested polymerase chain reaction-immunochromatographic test (PCR-ICT) for the rapid identification of HPV 16 and 18. A multiplex nested PCR was constructed to amplify the HPV 16 and 18 genotype-specific L1 gene fragments and followed by ICT which coated with antibodies to identify rapidly the different PCR products. The type-specific gene regions of high-risk HPV 16 and 18 could be amplified successfully by multiplex nested PCR at molecular sizes of approximately 99 and 101bp, respectively. The capture antibodies raised specifically against the moleculars labeled on the PCR products could be detected simultaneously both HPV 16 and 18 in one strip. Under optimal conditions, this PCR-ICT assay had the capability to detect HPV in a sample with as low as 100 copies of HPV viral DNA. The PCR-ICT system has the advantage of direct and simultaneous detection of two high-risk HPV 16 and 18 DNA targets in one sample, which suggested a significant potential of this assay for clinical application. Copyright © 2014. Published by Elsevier B.V.

  1. A Nested-Splicing by Overlap Extension PCR Improves Specificity of this Standard Method.

    PubMed

    Karkhane, Ali Asghar; Yakhchali, Bagher; Rastgar Jazii, Ferdous; Bambai, Bijan; Aminzadeh, Saeed; Rahimi, Fatemeh

    2015-06-01

    Splicing by overlap extension (SOE) PCR is used to create mutation in the coding sequence of an enzyme in order to study the role of specific residues in protein's structure and function. We introduced a nested-SOE-PCR (N -SOE-PCR) in order to increase the specificity and generating mutations in a gene by SOE-PCR. Genomic DNA from Bacillus thermocatenulatus was extracted. Nested PCR was used to amplify B. thermocatenulatus lipase gene variants, namely wild type and mutant, using gene specific and mutagenic specific primers, followed by cloning in a suitable vector. Briefly in N-SOE-PCR method, instead of two pairs of primers, three pairs of primers are used to amplify a mutagenic fragment. Moreover, the first and second PCR products are slightly longer than PCR products in a conventional SOE. PCR products obtained from the first round of PCR are used for the second PCR by applying the nested and mutated primers. Following to the purification of the amplified fragments, they will be subject of the further purification and will be used as template to perform the third round of PCR using gene specific primers. In the end, the products will be cloned into a suitable vector for subsequent application. In comparison to the conventional SOE-PCR, the improved method (i.e. N-SOE-PCR) increases the yield and specificity of the products. In addition, the proposed method shows a large reduction in the non-specific products. By applying two more primers in the conventional SOE, the specificity of the method will be improved. This would be in part due to annealing of the primers further inside the amplicon that increases both the efficiency and a better attachment of the primers. Positioning of the primer far from both ends of an amplicon leads to an enhanced binding as well as increased affinity in the third round of amplification in SOE.

  2. Type-Specific Detection of 30 Oncogenic Human Papillomaviruses by Genotyping both E6 and L1 Genes

    PubMed Central

    Peng, Junping; Gao, Lei; Guo, Junhua; Wang, Ting; Wang, Ling; Yao, Qing; Zhu, Haijun

    2013-01-01

    Human papillomavirus (HPV) is the principal cause of invasive cervical cancer and benign genital lesions. There are currently 30 HPV types linked to cervical cancer. HPV infection also leads to other types of cancer. We developed a 61-plex analysis of these 30 HPV types by examining two genes, E6 and L1, using MassARRAY matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) (PCR-MS). Two hundred samples from homosexual males (HM) were screened by PCR-MS and MY09/MY11 primer set-mediated PCR (MY-PCR) followed by sequencing. One hundred thirty-five formalin-fixed, paraffin-embedded (FFPE) cervical cancer samples were also analyzed by PCR-MS, and results were compared to those of the commercially available GenoArray (GA) assay. One or more HPV types were identified in 64.5% (129/200) of the samples from HM. Comprising all 30 HPV types, PCR-MS detected 51.9% (67/129) of samples with multiple HPV types, whereas MY-PCR detected only one single HPV type in these samples. All PCR-MS results were confirmed by MY-PCR. In the cervical cancer samples, PCR-MS and GA detected 97% (131/135) and 90.4% (122/135) of HPV-positive samples, respectively. PCR-MS and GA results were fully concordant for 122 positive and 4 negative samples. The sequencing results for the 9 samples that tested negative by GA were completely concordant with the positive PCR-MS results. Multiple HPV types were identified in 25.2% (34/135) and 55.6% (75/135) of the cervical cancer samples by GA and PCR-MS, respectively, and results were confirmed by sequencing. The new assay allows the genotyping of >1,000 samples per day. It provides a good alternative to current methods, especially for large-scale investigations of multiple HPV infections and degraded FFPE samples. PMID:23152557

  3. [Quantitative fluorogenic real-time PCR assay for respiratory syncytial virus detection].

    PubMed

    Zhang, Qi-wei; You, Shang-you; Sun, Ji-min; Wu, Qi; Yu, Chun-hua; Zhang, Chu-yu

    2005-07-01

    To Establish a rapid and objective quantitative fluorogenic real-time PCR assay for early detection of human respiratory syncytial virus (hRSV). Two pairs of primers and one TaqMan Fluorogenic probe that are specific for the recognition of the most conservative N gene of hRSV for virus detection with LighCycler PCR in 93 nasopharyngeal secretion specimens collected from infants and young children. The assay was compared with virus isolation, routine PCR, nested PCR, and enzyme-linked immunosorbent assay (ELISA). This TaqMan assay had a sensitivity of 1 x 10(2) cDNA copies/microl with a dynamic range between 1 x 10(2) and 1 x 10(7) cDNA copies/microl, which was the same as that of nested PCR, but 10 times more sensitive than routine PCR. The specificity of the assay was evaluated by comparing hRSV with polivirus type 1, coxsackie virus type 2, influenza A, influenza B and adenovirus type 7. A PCR product of the expected size (195 bp) was produced and fluorescence signal detected for hRSV, but not for any of the other viruses. The results in LightCycler and Rotor-Gene instrument were consistent. Forty-four specimens (43.9%) were hRSV-positive with this assay and 4 (4/93,4.3%) were hRSV-positive with ELISA, showing rather low correlation between the two methods. No visible relation was found between the concentration of hRSV RNA and severity of the disease. This assay is rapid, sensitive, specific and quantitative, and has the potential of wide application for early diagnosis of hRSV infection and evaluation of the therapeutic effect.

  4. Co-amplification at lower denaturation temperature-PCR: methodology and applications.

    PubMed

    Liang, Hui; Chen, Guo-Jie; Yu, Yan; Xiong, Li-Kuan

    2018-03-20

    Co-amplification at lower denaturation temperature-polymerase chain reaction (COLD-PCR) is a novel form of PCR that selectively denatures and amplifies low-abundance mutations from mixtures of wild-type and mutation-containing sequences, enriching the mutation 10 to 100 folds. Due to the slightly altered melting temperature (Tm) of the double-stranded DNA and the formation of the mutation/wild-type heteroduplex DNA, COLD-PCR methods are sensitive, specific, accurate, cost-effective and easy to maneuver, and can enrich mutations of any type and at any position, even unknown mutations within amplicons. COLD-PCR and its improved methods are now applied in cancer, microorganisms, prenatal screening, animals and plants. They are extremely useful for early diagnosis, monitoring the prognosis of disease and the efficiency of the treatment, drug selection, prediction of prognosis, plant breeding and etc. In this review, we introduce the principles, key techniques, derived methods and applications of COLD-PCR.

  5. Universal and specific quantitative detection of botulinum neurotoxin genes

    PubMed Central

    2010-01-01

    Background Clostridium botulinum, an obligate anaerobic spore-forming bacterium, produces seven antigenic variants of botulinum toxin that are distinguished serologically and termed "serotypes". Botulinum toxin blocks the release of acetylcholine at neuromuscular junctions resulting in flaccid paralysis. The potential lethality of the disease warrants a fast and accurate means of diagnosing suspected instances of food contamination or human intoxication. Currently, the Food and Drug Administration (FDA)-accepted assay to detect and type botulinum neurotoxins (BoNTs) is the mouse protection bioassay. While specific and sensitive, this assay requires the use of laboratory animals, may take up to four days to achieve a diagnosis, and is unsuitable for high-throughput analysis. We report here a two-step PCR assay that identifies all toxin types, that achieves the specificity of the mouse bioassay while surpassing it in equivalent sensitivity, that has capability for high-throughput analysis, and that provides quantitative results within hours. The first step of our assay consists of a conventional PCR that detects the presence of C. botulinum regardless of the neurotoxin type. The second step uses quantitative PCR (qPCR) technology to determine the specific serotype of the neurotoxin. Results We assayed purified C. botulinum DNA and crude toxin preparations, as well as food and stool from healthy individuals spiked with purified BoNT DNA, and one stool sample from a case of infant botulism for the presence of the NTNH gene, which is part of the BoNT gene cluster, and for the presence of serotype-specific BoNT genes. The PCR surpassed the mouse bioassay both in specificity and sensitivity, detecting positive signals in BoNT preparations containing well below the 1 LD50 required for detection via the mouse bioassay. These results were type-specific and we were reliably able to quantify as few as 10 genomic copies. Conclusions While other studies have reported conventional or quantitative PCR-based assays for the detection of C. botulinum genes, our procedure's high-throughput capability and its portability allows most laboratories to quickly assess the possible presence of BoNTs either in food processing samples or in suspected cases of botulism. Thus, this assay provides rapid and specific detection of BoNT and toxin complex genes and would enable the targeting of appropriate therapeutics to infected individuals in a timely manner. PMID:20961439

  6. A single tube PCR assay for simultaneous amplification of HSV-1/-2, VZV, CMV, HHV-6A/-6B, and EBV DNAs in cerebrospinal fluid from patients with virus-related neurological diseases.

    PubMed

    Yamamoto, T; Nakamura, Y

    2000-10-01

    Cerebrospinal fluid (CSF) specimens from 27 patients with encephalitis, meningitis, and other neurological diseases were studied for the presence of herpes simplex virus types 1 and 2 (HSV-1/-2), varicella-zoster virus (VZV), cytomegalovirus (CMV), human herpesviruses 6A and 6B (HHV-6A/-6B) and Epstein-Barr virus (EBV) DNA using the polymerase chain reaction (PCR) method. The DNAs were amplified using two sets of consensus primer pairs in a single tube, bringing simultaneous amplification of the herpesviruses. The PCR products were analyzed by agarose gel electrophoresis, and Southern blot hybridization with virus-type specific probes, thus allowing discrimination between the different types of herpesviruses to be made. Each virus-specific probe was highly specific for identifying the PCR product. Thirty CSF specimens from 13 patients with encephalitis and 10 specimens from 10 patients with meningitis, respectively, were examined using this method. Eight patients with encephalitis and six with meningitis were positive for different herpesviruses, including patients with coinfections (HSV-1/-2 and VZV, VZV and CMV). Among four CSF specimens from four patients with other neurological disorders, dual amplification of CMV and EBV was present. Since identification of the types of herpesviruses in this system requires a very small amount of CSF, and is completed with one PCR, it is useful for routine diagnosis of herpesvirus infections in diagnostic laboratories. The viruses responsible for central nervous system infection are easily detected with various coinfection and serial patterns of herpesviruses, by this consensus primer-based PCR method. This may give an insight into the relationship between virus-related neurological diseases (VRNDS) and herpesvirus infections.

  7. Transcriptional expression of type-I interferon response genes and stability of housekeeping genes in the human endometrium and endometriosis.

    PubMed

    Vestergaard, Anna L; Knudsen, Ulla B; Munk, Torben; Rosbach, Hanne; Martensen, Pia M

    2011-04-01

    Endometriosis is a painful chronic female disease defined by the presence of endometrial tissue implants in ectopic (Ec) locations. The pathogenesis is much debated, and type-I interferons (IFNs) could be involved. The expression of genes of the type-I IFN response were profiled by a specific PCR array of RNA obtained from Ec and eutopic (Eu) endometrium collected from nine endometriosis patients and nine healthy control women. Transcriptional expression levels of selected IFN-regulated and housekeeping genes (HKGs) were investigated by real-time quantitative reverse transcriptase PCR (qRT-PCR). Stably expressed HKGs for valid normalization of transcriptional studies of endometrium and endometriosis have not yet been published. Here, seven HKGs were evaluated for stability using the GeNorm and NormFinder software. A normalization factor based on HMBS, TBP and YWHAZ expression was suitable for normalization of qRT-PCR studies of Eu versus Ec endometrium. In the endometrial cell lines HEC1A, HEC1B, Ishikawa and RL95-2, HMBS and HPRT1 were the most stably expressed. The IFN-specific PCR array indicated significantly different expression of the genes BST2, COL16A1, HOXB2 and ISG20 between the endometrial tissue types. However, by correctly normalized qRT-PCR, levels of BST2, COL16A1 and the highly type-I IFN-stimulated genes ISG12A and 6-16 displayed insignificant variations. Conversely, HOXB2 and ISG20 transcriptions were significantly reduced in endometriosis lesions compared with endometrium from endometriosis patients and healthy controls. In conclusion, appropriate HKGs for normalization of qRT-PCR studies of endometrium and endometriosis have been identified here. Abolished expression of ISG20 and HOX genes could be important in endometriosis.

  8. Enrichment of individual KIR2DL4 sequences from genomic DNA using long-template PCR and allele-specific hybridization to magnetic bead-bound oligonucleotide probes.

    PubMed

    Roberts, C H; Turino, C; Madrigal, J A; Marsh, S G E

    2007-06-01

    DNA enrichment by allele-specific hybridization (DEASH) was used as a means to isolate individual alleles of the killer cell immunoglobulin-like receptor (KIR2DL4) gene from heterozygous genomic DNA. Using long-template polymerase chain reaction (LT-PCR), the complete KIR2DL4 gene was amplified from a cell line that had previously been characterized for its KIR gene content by PCR using sequence-specific primers (PCR-SSP). The whole gene amplicons were sequenced and we identified two heterozygous positions in accordance with the predictions of the PCR-SSP. The amplicons were then hybridized to allele-specific, biotinylated oligonucleotide probes and through binding to streptavidin-coated beads, the targeted alleles were enriched. A second PCR amplified only the exonic regions of the enriched allele, and these were then sequenced in full. We show DEASH to be capable of enriching single alleles from a heterozygous PCR product, and through sequencing the enriched DNA, we are able to produce complete coding sequences of the KIR2DL4 alleles in accordance with the typing predicted by PCR-SSP.

  9. Detection of pseudorabies virus by duplex droplet digital PCR assay.

    PubMed

    Ren, Meishen; Lin, Hua; Chen, Shijie; Yang, Miao; An, Wei; Wang, Yin; Xue, Changhua; Sun, Yinjie; Yan, Yubao; Hu, Juan

    2018-01-01

    Aujeszky's disease, caused by pseudorabies virus (PRV), has damaged the economy of the Chinese swine industry. A large number of PRV gene-deleted vaccines have been constructed based on deletion of the glycoprotein E ( gE) gene combined with other virulence-related gene deletions, such as thymidine kinase ( TK), whereas PRV wild-type strains contain an intact gE gene. We developed a sensitive duplex droplet digital PCR (ddPCR) assay to rapidly detect PRV wild-type isolates and gE gene-deleted viral vaccines. We compared this assay with a TaqMan real-time PCR (qPCR) using the same primers and probes. Both assays exhibited good linearity and repeatability; however, ddPCR maintained linearity at extremely low concentrations, whereas qPCR did not. Based on positive results for both gE and gB, the detection limit of ddPCR was found to be 4.75 copies/µL in contrast of 76 copies/µL for qPCR, showing that ddPCR provided a 16-fold improvement in sensitivity. In addition, no nonspecific amplification was shown in specificity testing, and the PRV wild-type was distinguished from a gE-deleted strain. The ddPCR was more sensitive when analyzing clinical serum samples. Thus, ddPCR may become an appropriate detection platform for PRV.

  10. An insulated isothermal PCR method on a field-deployable device for rapid and sensitive detection of canine parvovirus type 2 at points of need.

    PubMed

    Wilkes, Rebecca P; Lee, Pei-Yu A; Tsai, Yun-Long; Tsai, Chuan-Fu; Chang, Hsiu-Hui; Chang, Hsiao-Fen G; Wang, Hwa-Tang T

    2015-08-01

    Canine parvovirus type 2 (CPV-2), including subtypes 2a, 2b and 2c, causes an acute enteric disease in both domestic and wild animals. Rapid and sensitive diagnosis aids effective disease management at points of need (PON). A commercially available, field-deployable and user-friendly system, designed with insulated isothermal PCR (iiPCR) technology, displays excellent sensitivity and specificity for nucleic acid detection. An iiPCR method was developed for on-site detection of all circulating CPV-2 strains. Limit of detection was determined using plasmid DNA. CPV-2a, 2b and 2c strains, a feline panleukopenia virus (FPV) strain, and nine canine pathogens were tested to evaluate assay specificity. Reaction sensitivity and performance were compared with an in-house real-time PCR using serial dilutions of a CPV-2b strain and 100 canine fecal clinical samples collected from 2010 to 2014, respectively. The 95% limit of detection of the iiPCR method was 13 copies of standard DNA and detection limits for CPV-2b DNA were equivalent for iiPCR and real-time PCR. The iiPCR reaction detected CPV-2a, 2b and 2c and FPV. Non-targeted pathogens were not detected. Test results of real-time PCR and iiPCR from 99 fecal samples agreed with each other, while one real-time PCR-positive sample tested negative by iiPCR. Therefore, excellent agreement (k = 0.98) with sensitivity of 98.41% and specificity of 100% in detecting CPV-2 in feces was found between the two methods. In conclusion, the iiPCR system has potential to serve as a useful tool for rapid and accurate PON, molecular detection of CPV-2. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Real-Time PCR for the Detection and Quantification of Geodermatophilaceae from Stone Samples and Identification of New Members of the Genus Blastococcus†

    PubMed Central

    Salazar, Oscar; Valverde, Aranzazu; Genilloud, Olga

    2006-01-01

    Real-time PCR (RT-PCR) technology was used for the specific detection and quantification of members of the family Geodermatophilaceae in stone samples. Differences in the nucleotide sequences of the 16S rRNA gene region were used to design a pair of family-specific primers that were used to detect and quantify by RT-PCR DNA from members of this family in stone samples from different geographical origins in Spain. These primers were applied later to identify by PCR-specific amplification new members of the family Geodermatophilaceae isolated from the same stone samples. The diversity and taxonomic position of the wild-type strains identified from ribosomal sequence analysis suggest the presence of a new lineage within the genus Blastococcus. PMID:16391063

  12. Simultaneous detection, typing and quantitation of oncogenic human papillomavirus by multiplex consensus real-time PCR.

    PubMed

    Jenkins, Andrew; Allum, Anne-Gry; Strand, Linda; Aakre, Randi Kersten

    2013-02-01

    A consensus multiplex real-time PCR test (PT13-RT) for the oncogenic human papillomavirus (HPV) types 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59 and 66 is described. The test targets the L1 gene. Analytical sensitivity is between 4 and 400 GU (genomic units) in the presence of 500 ng of human DNA, corresponding to 75,000 human cells. HPV types are grouped into multiplex groups of 3 or 4 resulting in the use of 4 wells per sample and permitting up to 24 samples per run (including controls) in a standard 96-well real-time PCR instrument. False negative results are avoided by (a) measuring sample DNA concentration to control that sufficient cellular material is present and (b) including HPV type 6 as a homologous internal control in order to detect PCR inhibition or competition from other (non-oncogenic) HPV types. Analysis time from refrigerator to report is 8 h, including 2.5 h hands-on time. Relative to the HC2 test, the sensitivity and specificity were respectively 98% and 83%, the lower specificity being attributable to the higher analytical sensitivity of PT13-RT. To assess type determination comparison was made with a reversed line-blot test. Type concordance was high (κ=0.79) with discrepancies occurring mostly in multiple-positive samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Comparison of methods for in-house screening of HLA-B*57:01 to prevent abacavir hypersensitivity in HIV-1 care.

    PubMed

    De Spiegelaere, Ward; Philippé, Jan; Vervisch, Karen; Verhofstede, Chris; Malatinkova, Eva; Kiselinova, Maja; Trypsteen, Wim; Bonczkowski, Pawel; Vogelaers, Dirk; Callens, Steven; Ruelle, Jean; Kabeya, Kabamba; De Wit, Stephane; Van Acker, Petra; Van Sandt, Vicky; Emonds, Marie-Paule; Coucke, Paul; Sermijn, Erica; Vandekerckhove, Linos

    2015-01-01

    Abacavir is a nucleoside reverse transcriptase inhibitor used as part of combination antiretroviral therapy in HIV-1-infected patients. Because this drug can cause a hypersensitivity reaction that is correlated with the presence of the HLA-B*57:01 allotype, screening for the presence of HLA-B*57:01 is recommended before abacavir initiation. Different genetic assays have been developed for HLA-B*57:01 screening, each with specific sensitivity, turnaround time and assay costs. Here, a new real-time PCR (qPCR) based analysis is described and compared to sequence specific primer PCR with capillary electrophoresis (SSP PCR CE) on 149 patient-derived samples, using sequence specific oligonucleotide hybridization combined with high resolution SSP PCR as gold standard. In addition to these PCR based methods, a complementary approach was developed using flow cytometry with an HLA-B17 specific monoclonal antibody as a pre-screening assay to diminish the number of samples for genetic testing. All three assays had a maximum sensitivity of >99. However, differences in specificity were recorded, i.e. 84.3%, 97.2% and >99% for flow cytometry, qPCR and SSP PCR CE respectively. Our data indicate that the most specific and sensitive of the compared methods is the SSP PCR CE. Flow cytometry pre-screening can substantially decrease the number of genetic tests for HLA-B*57:01 typing in a clinical setting.

  14. Direct detection and characterization of foot-and-mouth disease virus in East Africa using a field-ready real-time PCR platform.

    PubMed

    Howson, E L A; Armson, B; Lyons, N A; Chepkwony, E; Kasanga, C J; Kandusi, S; Ndusilo, N; Yamazaki, W; Gizaw, D; Cleaveland, S; Lembo, T; Rauh, R; Nelson, W M; Wood, B A; Mioulet, V; King, D P; Fowler, V L

    2018-02-01

    Effective control and monitoring of foot-and-mouth disease (FMD) relies upon rapid and accurate disease confirmation. Currently, clinical samples are usually tested in reference laboratories using standardized assays recommended by The World Organisation for Animal Health (OIE). However, the requirements for prompt and serotype-specific diagnosis during FMD outbreaks, and the need to establish robust laboratory testing capacity in FMD-endemic countries have motivated the development of simple diagnostic platforms to support local decision-making. Using a portable thermocycler, the T-COR™ 8, this study describes the laboratory and field evaluation of a commercially available, lyophilized pan-serotype-specific real-time RT-PCR (rRT-PCR) assay and a newly available FMD virus (FMDV) typing assay (East Africa-specific for serotypes: O, A, Southern African Territories [SAT] 1 and 2). Analytical sensitivity, diagnostic sensitivity and specificity of the pan-serotype-specific lyophilized assay were comparable to that of an OIE-recommended laboratory-based rRT-PCR (determined using a panel of 57 FMDV-positive samples and six non-FMDV vesicular disease samples for differential diagnosis). The FMDV-typing assay was able to correctly identify the serotype of 33/36 FMDV-positive samples (no cross-reactivity between serotypes was evident). Furthermore, the assays were able to accurately detect and type FMDV RNA in multiple sample types, including epithelial tissue suspensions, serum, oesophageal-pharyngeal (OP) fluid and oral swabs, both with and without the use of nucleic acid extraction. When deployed in laboratory and field settings in Tanzania, Kenya and Ethiopia, both assays reliably detected and serotyped FMDV RNA in samples (n = 144) collected from pre-clinical, clinical and clinically recovered cattle. These data support the use of field-ready rRT-PCR platforms in endemic settings for simple, highly sensitive and rapid detection and/or characterization of FMDV. © 2017 The Authors. Transboundary and Emerging Diseases Published by Blackwell Verlag GmbH.

  15. A multiplex PCR assay for determination of mating type in isolates of the honey bee fungal pathogen, Ascosphaera apis

    USDA-ARS?s Scientific Manuscript database

    In this study we developed a multiplex PCR for identification of mating type idiomorphs in the filamentous fungus, Ascosphaera apis, the causative agent of chalkbrood disease in the honey bee (Apis melliffera). A combination of gene-specific primers was designed to amplify Mat1-1 and Mat1-2 gene fra...

  16. Detection, differentiation, and VP1 sequencing of duck hepatitis A virus type 1 and type 3 by a 1-step duplex reverse-transcription PCR assay.

    PubMed

    Wen, X J; Cheng, A C; Wang, M S; Jia, R Y; Zhu, D K; Chen, S; Liu, M F; Liu, F; Chen, X Y

    2014-09-01

    Duck hepatitis A virus (DHAV) is an infectious pathogen causing fatal duck viral hepatitis in ducklings. Although both the inactivated vaccines and live attenuated vaccines have been used to protect ducklings, DHAV-1 and DHAV-3 still cause significant serious damage to the duck industry in China and South Korea. For rapid detection, differentiation, and epidemic investigation of DHAV in China, a genotype-specific 1-step duplex reverse-transcription (RT) PCR assay was established in this study. The sensitivity and specificity of the developed RT-PCR assay was evaluated with nucleic acids extracted from 2 DHAV reference strains, and 9 other infectious viruses and bacteria. The genotype-specific primers amplified different size DNA fragments encompassing the complete VP1 gene of the DHAV-1 or DHAV-3. The assay detected the liver samples collected from experimentally infected ducklings and dead ducklings collected from different regions of China. Sequence analysis of these DNA fragments indicated that VP1 sequences of DHAV-1 can be used to distinguish wild type and vaccine strains. The phylogenetic analysis of VP1 sequences indicated that the developed RT-PCR assay can be used for epidemic investigation of DHAV-1 and DHAV-3. The developed RT-PCR assay can be used as a specific molecular tool for simultaneous detection, differentiation, and sequencing the VP1 gene of DHAV-1 and DHAV-3, which can be used for understanding the epidemiology and evolution of DHAV. © 2014 Poultry Science Association Inc.

  17. Development of a Real-Time Reverse Transcription-PCR Assay for Global Differentiation of Yellow Fever Virus Vaccine-Related Adverse Events from Natural Infections.

    PubMed

    Hughes, Holly R; Russell, Brandy J; Mossel, Eric C; Kayiwa, John; Lutwama, Julius; Lambert, Amy J

    2018-06-01

    Yellow fever (YF) is a reemerging public health threat, with frequent outbreaks prompting large vaccination campaigns in regions of endemicity in Africa and South America. Specific detection of vaccine-related adverse events is resource-intensive, time-consuming, and difficult to achieve during an outbreak. To address this, we have developed a highly transferable rapid yellow fever virus (YFV) vaccine-specific real-time reverse transcription-PCR (RT-PCR) assay that distinguishes vaccine from wild-type lineages. The assay utilizes a specific hydrolysis probe that includes locked nucleic acids to enhance specific discrimination of the YFV17D vaccine strain genome. Promisingly, sensitivity and specificity analyses reveal this assay to be highly specific to vaccine strain(s) when tested on clinical samples and YFV cell culture isolates of global origin. Taken together, our data suggest the utility of this assay for use in laboratories of varied capacity for the identification and differentiation of vaccine-related adverse events from wild-type infections of both African and South American origin. Copyright © 2018 American Society for Microbiology.

  18. DNA typing by microbead arrays and PCR-SSP: apparent false-negative or -positive hybridization or amplification signals disclose new HLA-B and -DRB1 alleles.

    PubMed

    Rahal, M; Kervaire, B; Villard, J; Tiercy, J-M

    2008-03-01

    Human leukocyte antigen (HLA) typing by polymerase chain reaction-sequence-specific oligonucleotide (PCR-SSO) hybridization on solid phase (microbead assay) or polymerase chain reaction-sequence-specific primers (PCR-SSP) requires interpretation softwares to detect all possible allele combinations. These programs propose allele calls by taking into account false-positive or false-negative signal(s). The laboratory has the option to validate typing results in the presence of strongly cross-reacting or apparent false-negative signals. Alternatively, these seemingly aberrant signals may disclose novel variants. We report here four new HLA-B (B*5620 and B*5716) and HLA-DRB1 alleles (DRB1*110107 and DRB1*1474) that were detected by apparent false-negative or -positive hybridization or amplification patterns, and ultimately resolved by sequencing. To avoid allele misassignments, a comprehensive evaluation of acquired data as documented in a quality assurance system is therefore required to confirm unambiguous typing interpretation.

  19. The Role of PCR in the Diagnosis of Candida Vulvovaginitis-a New Gold Standard?

    PubMed

    Sobel, J D; Akins, Robert A

    2015-06-01

    PCR is recognized as a reliable technique for detection of all types of microorganisms. Being highly objective and reproducible also sensitive and specific, PCR is now widely used for sexually transmitted infection (STI) diagnosis. Potential, however, exists for detecting non-pathogens, and not identifying a pathogenic state decreases specificity or clinical significance. PCR Candida tests of vaginal specimens are now widely available and frequently used offering a modest to moderate increase in sensitivity and are likely to replace traditional culture and DNA homology testing. Nevertheless, there remain considerable gaps in our knowledge regarding the usefulness and applications of these expensive tests.

  20. Rapid detection and typing of pathogenic nonpneumophila Legionella spp. isolates using a multiplex real-time PCR assay.

    PubMed

    Benitez, Alvaro J; Winchell, Jonas M

    2016-04-01

    We developed a single tube multiplex real-time PCR assay that allows for the rapid detection and typing of 9 nonpneumophila Legionella spp. isolates that are clinically relevant. The multiplex assay is capable of simultaneously detecting and discriminating L. micdadei, L. bozemanii, L. dumoffii, L. longbeachae, L. feeleii, L. anisa, L. parisiensis, L. tucsonensis serogroup (sg) 1 and 3, and L. sainthelensis sg 1 and 2 isolates. Evaluation of the assay with nucleic acid from each of these species derived from both clinical and environmental isolates and typing strains demonstrated 100% sensitivity and 100% specificity when tested against 43 other Legionella spp. Typing of L. anisa, L. parisiensis, and L. tucsonensis sg 1 and 3 isolates was accomplished by developing a real-time PCR assay followed by high-resolution melt (HRM) analysis targeting the ssrA gene. Further typing of L. bozemanii, L. longbeachae, and L. feeleii isolates to the serogroup level was accomplished by developing a real-time PCR assay followed by HRM analysis targeting the mip gene. When used in conjunction with other currently available diagnostic tests, these assays may aid in rapidly identifying specific etiologies associated with Legionella outbreaks, clusters, sporadic cases, and potential environmental sources. Published by Elsevier Inc.

  1. Enterovirus D68 detection in respiratory specimens: Association with severe disease.

    PubMed

    Engelmann, Ilka; Fatoux, Marie; Lazrek, Mouna; Alidjinou, Enagnon K; Mirand, Audrey; Henquell, Cécile; Dewilde, Anny; Hober, Didier

    2017-07-01

    Molecular techniques increased the number of documented respiratory infections. In a substantial number of cases the causative agent remains undetected. Since August 2014, an increase in Enterovirus(EV)-D68 infections was reported. We aimed to investigate epidemiology and clinical relevance of EV-D68. From June to December 2014 and from September to December 2015, 803 and 847 respiratory specimens, respectively, were tested for respiratory viruses with a multiplex RT-PCR. This multiplex RT-PCR does not detect EV-D68. Therefore, 457 (2014) and 343 (2015) specimens with negative results were submitted to an EV-specific-RT-PCR. EV-positive specimens were tested with an EV-D68-specific-RT-PCR and genotyped. Eleven specimens of 2014 tested positive in the EV-specific-RT-PCR and of these seven were positive in the EV-D68-specific-RT-PCR. Typing confirmed these as EV-D68. Median age of EV-D68-positive patients was 3 years (1 month-91 years). Common symptoms included fever (n = 6, 86%), respiratory distress (n = 5, 71%), and cough (n = 4, 57%). All EV-D68-positive patients were admitted to hospital, 4 (57%) were admitted to intensive care units and 6 (86%) received oxygen. One patient suffered from acute flaccid paralysis. Seven specimens of 2015 were positive in the EV-specific-RT-PCR but negative in the EV-D68-specific-RT-PCR. In conclusion, use of an EV-specific-RT-PCR allowed us to detect EV-D68 circulation in autumn 2014 that was not detected by the multiplex RT-PCR and was associated with severe disease. © 2017 Wiley Periodicals, Inc.

  2. The genotyping of infectious bronchitis virus in Taiwan by a multiplex amplification refractory mutation system reverse transcription polymerase chain reaction.

    PubMed

    Huang, Shr-Wei; Ho, Chia-Fang; Chan, Kun-Wei; Cheng, Min-Chung; Shien, Jui-Hung; Liu, Hung-Jen; Wang, Chi-Young

    2014-11-01

    Infectious bronchitis virus (IBV; Avian coronavirus) causes acute respiratory and reproductive and urogenital diseases in chickens. Following sequence alignment of IBV strains, a combination of selective primer sets was designed to individually amplify the IBV wild-type and vaccine strains using a multiplex amplification refractory mutation system reverse transcription polymerase chain reaction (ARMS RT-PCR) approach. This system was shown to discriminate the IBV wild-type and vaccine strains. Moreover, an ARMS real-time RT-PCR (ARMS qRT-PCR) was combined with a high-resolution analysis (HRMA) to establish a melt curve analysis program. The specificity of the ARMS RT-PCR and the ARMS qRT-PCR was verified using unrelated avian viruses. Different melting temperatures and distinct normalized and shifted melting curve patterns for the IBV Mass, IBV H120, IBV TW-I, and IBV TW-II strains were detected. The new assays were used on samples of lung and trachea as well as virus from allantoic fluid and cell culture. In addition to being able to detect the presence of IBV vaccine and wild-type strains by ARMS RT-PCR, the IBV Mass, IBV H120, IBV TW-I, and IBV TW-II strains were distinguished using ARMS qRT-PCR by their melting temperatures and by HRMA. These approaches have acceptable sensitivities and specificities and therefore should be able to serve as options when carrying out differential diagnosis of IBV in Taiwan and China. © 2014 The Author(s).

  3. Comparison of Performance Characteristics of Aspergillus PCR in Testing a Range of Blood-Based Samples in Accordance with International Methodological Recommendations.

    PubMed

    Springer, Jan; White, P Lewis; Hamilton, Shanna; Michel, Denise; Barnes, Rosemary A; Einsele, Hermann; Löffler, Juergen

    2016-03-01

    Standardized methodologies for the molecular detection of invasive aspergillosis (IA) have been established by the European Aspergillus PCR Initiative for the testing of whole blood, serum, and plasma. While some comparison of the performance of Aspergillus PCR when testing these different sample types has been performed, no single study has evaluated all three using the recommended protocols. Standardized Aspergillus PCR was performed on 423 whole-blood pellets (WBP), 583 plasma samples, and 419 serum samples obtained from hematology patients according to the recommendations. This analysis formed a bicenter retrospective anonymous case-control study, with diagnosis according to the revised European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) consensus definitions (11 probable cases and 36 controls). Values for clinical performance using individual and combined samples were calculated. For all samples, PCR positivity was significantly associated with cases of IA (for plasma, P = 0.0019; for serum, P = 0.0049; and for WBP, P = 0.0089). Plasma PCR generated the highest sensitivity (91%); the sensitivities for serum and WBP PCR were 80% and 55%, respectively. The highest specificity was achieved when testing WBP (96%), which was significantly superior to the specificities achieved when testing serum (69%, P = 0.0238) and plasma (53%, P = 0.0002). No cases were PCR negative in all specimen types, and no controls were PCR positive in all specimens. This study confirms that Aspergillus PCR testing of plasma provides robust performance while utilizing commercial automated DNA extraction processes. Combining PCR testing of different blood fractions allows IA to be both confidently diagnosed and excluded. A requirement for multiple PCR-positive plasma samples provides similar diagnostic utility and is technically less demanding. Time to diagnosis may be enhanced by testing multiple contemporaneously obtained sample types. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. A simple approach to the generation of heterologous competitive internal controls for real-time PCR assays on the LightCycler.

    PubMed

    Stöcher, Markus; Leb, Victoria; Hölzl, Gabriele; Berg, Jörg

    2002-12-01

    The real-time PCR technology allows convenient detection and quantification of virus derived DNA. This approach is used in many PCR based assays in clinical laboratories. Detection and quantification of virus derived DNA is usually performed against external controls or external standards. Thus, adequacy within a clinical sample is not monitored for. This can be achieved using internal controls that are co-amplified with the specific target within the same reaction vessel. We describe a convenient way to prepare heterologous internal controls as competitors for real-time PCR based assays. The internal controls were devised as competitors in real-time PCR, e.g. LightCycler-PCR. The bacterial neomycin phosphotransferase gene (neo) was used as source for heterologous DNA. Within the neo gene a box was chosen containing sequences for four differently spaced forward primers, one reverse primer, and a pair of neo specific hybridization probes. Pairs of primers were constructed to compose of virus-specific primer sequences and neo box specific primer sequences. Using those composite primers in conventional preparative PCR four types of internal controls were amplified from the neo box and subsequently cloned. A panel of the four differently sized internal controls was generated and tested by LightCycler PCR using their virus-specific primers. All four different PCR products were detected with the single pair of neo specific FRET-hybridization probes. The presented approach to generate competitive internal controls for use in LightCycler PCR assays proved convenient und rapid. The obtained internal controls match most PCR product sizes used in clinical routine molecular assays and will assist to discriminate true from false negative results.

  5. Semiquantitative Multiplexed Tandem PCR for Detection and Differentiation of Four Theileria orientalis Genotypes in Cattle

    PubMed Central

    Perera, Piyumali K.; Gasser, Robin B.; Firestone, Simon M.; Smith, Lee; Roeber, Florian

    2014-01-01

    Oriental theileriosis is an emerging, tick-borne disease of bovines in the Asia-Pacific region and is caused by one or more genotypes of the Theileria orientalis complex. This study aimed to establish and validate a multiplexed tandem PCR (MT-PCR) assay using three distinct markers (major piroplasm surface protein, 23-kDa piroplasm membrane protein, and the first internal transcribed spacer of nuclear DNA), for the simultaneous detection and semiquantification of four genotypes (Buffeli, Chitose, Ikeda, and type 5) of the T. orientalis complex. Analytical specificity, analytical sensitivity, and repeatability of the established MT-PCR assay were assessed in a series of experiments. Subsequently, the assay was evaluated using 200 genomic DNA samples collected from cattle from farms on which oriental theileriosis outbreaks had occurred, and 110 samples from a region where no outbreaks had been reported. The results showed the MT-PCR assay specifically and reproducibly detected the expected genotypes (i.e., genotypes Buffeli, Chitose, Ikeda, and type 5) of the T. orientalis complex, reliably differentiated them, and was able to detect as little as 1 fg of genomic DNA from each genotype. The diagnostic specificity and sensitivity of the MT-PCR were estimated at 94.0% and 98.8%, respectively. The MT-PCR assay established here is a practical and effective diagnostic tool for the four main genotypes of T. orientalis complex in Australia and should assist studies of the epidemiology and pathophysiology of oriental theileriosis in the Asia-Pacific region. PMID:25339402

  6. Single-tube nested PCR assay for the detection of avian botulism in cecal contents of chickens.

    PubMed

    Jang, Il; Lee, Jae-Il; Kwon, Yong-Kuk; Kang, Min-Su; Kim, Hye-Ryoung; Park, Ji-Young; Lee, Song-Hyun; Lee, Hee-Soo; Bae, You-Chan

    2015-10-01

    This paper describes a novel diagnostic method for the detection of avian botulism caused by Clostridium botulinum type C and C/D, using single-tube nested PCR assay. This assay was developed to overcome the disadvantages of bioassays used in experiments with mice. Three primer pairs including an antisense primer were designed to target the N-terminal of the toxin gene from C. botulinum types C and C/D. The specificity of the PCR assay was confirmed by using 33 bacterial strains and chicken cecal contents from farms that experienced botulism outbreaks. The detection limit for purified DNA was 1.1 fg/μl, and for bacterial spores was 4.3 spores/200 mg of cecal contents. While checking for specificity of the PCR assay, the reactions with the templates form C. botulinum type C and C/D which were tested became positive, but the rest of the reactions turned negative. However, the results for all clinical samples (n = 8) were positive. The PCR assay results for cecal samples obtained from 300 healthy chickens (150 Korean native chickens and 150 broilers) were all negative. This assay is rapid and straightforward and evades ethical issues associated with mouse bioassay. Moreover, it is more economical than real-time PCR. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Three new sensitive and specific heat-shock protein 70 PCRs for global Leishmania species identification.

    PubMed

    Montalvo, A M; Fraga, J; Maes, I; Dujardin, J-C; Van der Auwera, G

    2012-07-01

    The heat-shock protein 70 gene (hsp70) has been exploited for Leishmania species identification in the New and Old World, using PCR followed by restriction fragment length polymorphism (RFLP) analysis. Current PCR presents limitations in terms of sensitivity, which hampers its use for analyzing clinical and biological samples, and specificity, which makes it inappropriate to discriminate between Leishmania and other trypanosomatids. The aim of the study was to improve the sensitivity and specificity of a previously reported hsp70 PCR using alternative PCR primers and RFLPs. Following in silico analysis of available sequences, three new PCR primer sets and restriction digest schemes were tested on a globally representative panel of 114 Leishmania strains, various other infectious agents, and clinical samples. The largest new PCR fragment retained the discriminatory power from RFLP, while two smaller fragments discriminated less species. The detection limit of the new PCRs was between 0.05 and 0.5 parasite genomes, they amplified clinical samples more efficiently, and were Leishmania specific. We succeeded in significantly improving the specificity and sensitivity of the PCRs for hsp70 Leishmania species typing. The improved PCR-RFLP assays can impact diagnosis, treatment, and epidemiological studies of leishmaniasis in any setting worldwide.

  8. Multiplex PCR identification of Taenia spp. in rodents and carnivores.

    PubMed

    Al-Sabi, Mohammad N S; Kapel, Christian M O

    2011-11-01

    The genus Taenia includes several species of veterinary and public health importance, but diagnosis of the etiological agent in definitive and intermediate hosts often relies on labor intensive and few specific morphometric criteria, especially in immature worms and underdeveloped metacestodes. In the present study, a multiplex PCR, based on five primers targeting the 18S rDNA and ITS2 sequences, produced a species-specific banding patterns for a range of Taenia spp. Species typing by the multiplex PCR was compared to morphological identification and sequencing of cox1 and/or 12S rDNA genes. As compared to sequencing, the multiplex PCR identified 31 of 32 Taenia metacestodes from rodents, whereas only 14 cysts were specifically identified by morphology. Likewise, the multiplex PCR identified 108 of 130 adult worms, while only 57 were identified to species by morphology. The tested multiplex PCR system may potentially be used for studies of Taenia spp. transmitted between rodents and carnivores.

  9. Typing of mutans streptococci by arbitrarily primed polymerase chain reaction.

    PubMed

    Saarela, M; Hannula, J; Mättö, J; Asikainen, S; Alaluusua, S

    1996-01-01

    The discriminative power of the arbitrarily primed polymerase chain reaction (AP-PCR) in differentiating between Streptococcus mutans and Strep. sobrinus species, serotypes and clones was investigated. Mutans streptococcal isolates (12(7)) obtained from 65 individuals (1-10 isolates per individual) were AP-PCR typed separately with two random primers, OPA-05 and OPA-13. Bacterial cell lysates were used as a template in PCR reactions, which made AP-PCR easy and fast to perform. Eighty-one isolates from 19 individuals were also ribotyped to compare the discriminative ability of ribotyping and AP-PCR techniques. AP-PCR performed with the two primers differentiated between Strep. mutans and Strep. sobrinus isolates, but neither primer detected serotype-specific amplification products. OPA-05 distinguished two main AP-PCR patterns among Strep. mutans isolates and one main pattern among Strep. sobrinus isolates, whereas OPA-13 found one main AP-PCR pattern among Strep. mutans isolates and two main patterns among Strep. sobrinus isolates. Ribotyping and AP-PCR revealed 40 and 33 different types among 81 selected isolates, respectively. Both techniques detected intra-individual heterogeneity in 16 out of 19 participants. The results indicate that AP-PCR has good discriminative ability in differentiating between mutans streptococcal clones and that the technique is suitable for epidemiological studies on mutans streptococci.

  10. Expression of human papillomavirus 6 in inverted papilloma arising in a renal transplant recipient.

    PubMed

    Harris, M O; Beck, J C; Terrell, J E; McClatchey, K D; Carey, T E; Bradford, C R

    1998-01-01

    A 36-year-old renal transplant recipient taking cyclosporin A presented with bilateral nasal polypoid lesions involving the nasal septum and lateral nasal walls. Pathologic findings from surgical excision demonstrated inverted papilloma (IP) with focal atypia and mild dysplasia. DNA extracted from the tissue was tested with the polymerase chain reaction (PCR) using human papillomavirus (HPV) E6 and L1 consensus primers. This revealed amplification of the expected size fragment consistent with the presence of HPV DNA. Hybridization of PCR products with HPV type-specific oligonucleotide probes revealed a strong signal with only HPV 6. This result was confirmed by PCR amplification with HPV 6 type-specific primers. RNA extracted from the tissue was subjected to reverse transcription PCR (RT-PCR) with a primer pair specific for viral E6/E7 transcripts. The HPV early proteins, E6 and E7, are the transforming proteins implicated as critical for tumorigenesis. RT-PCR experiments generated products representing the E1/E4 spliced transcript originating from the E6/E6 promoter and a smaller unclassified fragment. These results provide evidence for HPV 6 E6/E7 expression in IP, lending credence to the concept that HPV may play a role in the origin of this neoplasm. Histologically normal nasal tissue from the same patient contained HPV DNA and similar transcripts to those described in the IP specimen.

  11. Detection of group a streptococcal pharyngitis by quantitative PCR.

    PubMed

    Dunne, Eileen M; Marshall, Julia L; Baker, Ciara A; Manning, Jayne; Gonis, Gena; Danchin, Margaret H; Smeesters, Pierre R; Satzke, Catherine; Steer, Andrew C

    2013-07-11

    Group A streptococcus (GAS) is the most common bacterial cause of sore throat. School-age children bear the highest burden of GAS pharyngitis. Accurate diagnosis is difficult: the majority of sore throats are viral in origin, culture-based identification of GAS requires 24-48 hours, and up to 15% of children are asymptomatic throat carriers of GAS. The aim of this study was to develop a quantitative polymerase chain reaction (qPCR) assay for detecting GAS pharyngitis and assess its suitability for clinical diagnosis. Pharyngeal swabs were collected from children aged 3-18 years (n = 91) and adults (n = 36) located in the Melbourne area who presented with sore throat. Six candidate PCR assays were screened using a panel of reference isolates, and two of these assays, targeting speB and spy1258, were developed into qPCR assays. The qPCR assays were compared to standard culture-based methods for their ability to detect GAS pharyngitis. GAS isolates from culture positive swabs underwent emm-typing. Clinical data were used to calculate McIsaac scores as an indicator of disease severity. Twenty-four of the 127 samples (18.9%) were culture-positive for GAS, and all were in children (26%). The speB qPCR had 100% sensitivity and 100% specificity compared with gold-standard culture, whereas the spy1258 qPCR had 87% sensitivity and 100% specificity. Nine different emm types were found, of which emm 89, 3, and 28 were most common. Bacterial load as measured by qPCR correlated with culture load. There were no associations between symptom severity as indicated by McIsaac scores and GAS bacterial load. The speB qPCR displayed high sensitivity and specificity and may be a useful tool for GAS pharyngitis diagnosis and research.

  12. Diagnostic multiplex PCR for toxin genotyping of Clostridium perfringens isolates.

    PubMed

    Baums, Christoph G; Schotte, Ulrich; Amtsberg, Gunter; Goethe, Ralph

    2004-05-20

    In this study we provide a protocol for genotyping Clostridium perfringens with a new multiplex PCR. This PCR enables reliable and specific detection of the toxin genes cpa, cpb, etx, iap, cpe and cpb2 from heat lysed bacterial suspensions. The efficiency of the protocol was demonstrated by typing C. perfringens reference strains and isolates from veterinary bacteriological routine diagnostic specimens.

  13. Hybrid capture-II and LCR-E7 PCR assays for HPV typing in cervical cytologic samples.

    PubMed

    Yamazaki, H; Sasagawa, T; Basha, W; Segawa, T; Inoue, M

    2001-10-15

    As part of an ongoing cohort study in the Hokuriku region of Japan, cervical cell samples from histologically confirmed normal (n = 114) or abnormal (n = 286) women were examined for the presence of HPV DNA using a second-generation hybrid capture assay (HCA-II) and LCR-E7 PCR. HCA-II detected low-risk (HPV-6, -11, -42, 43 and -44) and high-risk (HPV-16, -18, -31, -33, -35, -39, -45, -51, -52, -56, -58, -59 and -68) HPV types, while LCR-E7 PCR detected an additional 7 HPV types and some uncharacterized types. In screening of high-grade squamous intraepithelial lesions (HSILs) and invasive cervical cancer, the sensitivities of HCA-II and LCR-E7 PCR testing the high-risk HPV types were 83% and 81%, respectively, while the specificity of both assays was 93%. The sensitivity of LCR-E7 PCR increased to 87%, which was significantly higher than that in HCA-II, when testing both high-risk and other HPV types. Sixty-eight inconsistent results (17% of total tested) from HCA-II and LCR-E7 PCR were due to (i) low copy number of HPV genome (false-negative for HCA-II, 5.3% and for LCR-E7 PCR, 1.3%), (ii) infection with HPV types undetectable by HCA-II (4.8%), (iii) multiple HPV infections (5%) or (iv) unknown reasons (0.8%). LCR-E7 PCR revealed that infections with HPV-16, -18, -31, -33, -35, -51, -52, -56, -58 or -67 was a high risk for cancer since these types predominated in HSIL and invasive cervical cancer. Samples showing high relative light units (>20) with a high-risk probe in HCA-II also gave positive results in LCR-E7 PCR and were generally associated with abnormal cervical lesions. Thus, we propose that both HCA-II and LCR-E7 PCR are valuable screening tests for premalignant and malignant cervical lesions. Copyright 2001 Wiley-Liss, Inc.

  14. Characterization of the interferon genes in homozygous rainbow trout reveals two novel genes, alternate splicing and differential regulation of duplicated genes

    USGS Publications Warehouse

    Purcell, M.K.; Laing, K.J.; Woodson, J.C.; Thorgaard, G.H.; Hansen, J.D.

    2009-01-01

    The genes encoding the type I and type II interferons (IFNs) have previously been identified in rainbow trout and their proteins partially characterized. These previous studies reported a single type II IFN (rtIFN-??) and three rainbow trout type I IFN genes that are classified into either group I (rtIFN1, rtIFN2) or group II (rtIFN3). In this present study, we report the identification of a novel IFN-?? gene (rtIFN-??2) and a novel type I group II IFN (rtIFN4) in homozygous rainbow trout and predict that additional IFN genes or pseudogenes exist in the rainbow trout genome. Additionally, we provide evidence that short and long forms of rtIFN1 are actively and differentially transcribed in homozygous trout, and likely arose due to alternate splicing of the first exon. Quantitative reverse transcriptase PCR (qRT-PCR) assays were developed to systematically profile all of the rainbow trout IFN transcripts, with high specificity at an individual gene level, in na??ve fish and after stimulation with virus or viral-related molecules. Cloned PCR products were used to ensure the specificity of the qRT-PCR assays and as absolute standards to assess transcript abundance of each gene. All IFN genes were modulated in response to Infectious hematopoietic necrosis virus (IHNV), a DNA vaccine based on the IHNV glycoprotein, and poly I:C. The most inducible of the type I IFN genes, by all stimuli tested, were rtIFN3 and the short transcript form of rtIFN1. Gene expression of rtIFN-??1 and rtIFN-??2 was highly up-regulated by IHNV infection and DNA vaccination but rtIFN-??2 was induced to a greater magnitude. The specificity of the qRT-PCR assays reported here will be useful for future studies aimed at identifying which cells produce IFNs at early time points after infection. ?? 2008 Elsevier Ltd.

  15. A new highly sensitive and specific real-time PCR assay targeting the malate dehydrogenase gene of Kingella kingae and application to 201 pediatric clinical specimens.

    PubMed

    Houmami, Nawal El; Durand, Guillaume André; Bzdrenga, Janek; Darmon, Anne; Minodier, Philippe; Seligmann, Hervé; Raoult, Didier; Fournier, Pierre-Edouard

    2018-06-06

    Kingella kingae is a significant pediatric pathogen responsible for bone and joint infections, occult bacteremia, and endocarditis in early childhood. Past efforts to detect this bacterium by culture and broad-range 16S rRNA gene polymerase chain reaction (PCR) assays from clinical specimens have proven unsatisfactory and were gradually let out for the benefit of specific real-time PCR tests targeting the groEL gene and RTX locus of K. kingae by the late 2000s. However, recent studies showed that real-time PCR (RT-PCR) assays targeting the Kingella sp. RTX locus that are currently available for the diagnosis of K. kingae infection lack of specificity because they could not distinguish between K. kingae and the recently described K. negevensis species. Furthermore, in silico analysis of the groEL gene from a large collection of 45 K. kingae strains showed that primers and probes from K. kingae groEL -based RT-PCR assays display a few mismatches with K. kingae groEL variations that may result in a decreased detection sensitivity, especially in paucibacillary clinical specimens. In order to provide an alternative to groEL - and RTX-targeting RT-PCR assays that may suffer from suboptimal specificity and sensitivity, a K. kingae -specific RT-PCR assay targeting the malate dehydrogenase ( mdh ) gene was developed for predicting no mismatch against 18 variants of the K. kingae mdh gene from 20 distinct sequences types of K. kingae This novel K. kingae -specific RT-PCR assay demonstrated a high specificity and sensitivity and was successfully used to diagnose K. kingae infections and carriage in 104 clinical specimens from children aged between 7 months and 7 years old. Copyright © 2018 American Society for Microbiology.

  16. Rapid and Accurate Diagnosis of Acute Pyogenic Meningitis Due to Streptococcus Pneumoniae, Haemophilus influenzae Type b and Neisseria meningitidis Using A Multiplex PCR Assay.

    PubMed

    Seth, Rajeev; Murthy, Peela Sree Ramchandra; Sistla, Sujatha; Subramanian, Mahadevan; Tamilarasu, Kadhiravan

    2017-09-01

    Acute bacterial meningitis is one of the major causes of morbidity and mortality in children and geriatric population, especially in developing countries. Methods of identification are standard culture and other phenotypic tests in many resource poor settings. To use molecular methods for the improvement of aetiological diagnosis of acute pyogenic meningitis in patients. CSF samples of 125 patients were included for the study. Gram staining and culture were performed according to standard procedures. Antigen was detected using commercial latex agglutination test kit. Multiplex PCR was performed using previously published primers and protocols. Fischer's exact test was used for finding association between presence of the disease and clinical/biochemical parameters, considering two tailed p<0.05 as statistically significant. Sensitivity, specificity, positive and negative predictive values were calculated using Graphpad QuicCalc software. A total of 39 cases (31.2%) were confirmed to be of acute pyogenic meningitis based on biochemical methods. Only 10/39 was positive for the three organisms tested. Multiplex PCR was able to detect one additional isolate each of Streptococcus pneumoniae and Haemophilus influenzae type b. When compared with multiplex PCR as the gold standard, culture and latex agglutination tests had same sensitivity (80%), specificity (100%), PPV (100%) and NPV (97.8%), whereas Gram stain had poor sensitivity (40%) and good specificity (95.6%). Detection rates were higher in multiplex PCR for the two organisms Streptococcus pneumoniae and Haemophilus influenzae type b. Multiplex PCR was more sensitive than culture or antigen detection, and employing this assay can significantly increase the speed and accuracy of identification of the pathogen.

  17. Comparison of two PCR-based methods and automated DNA sequencing for prop-1 genotyping in Ames dwarf mice.

    PubMed

    Gerstner, Arpad; DeFord, James H; Papaconstantinou, John

    2003-07-25

    Ames dwarfism is caused by a homozygous single nucleotide mutation in the pituitary specific prop-1 gene, resulting in combined pituitary hormone deficiency, reduced growth and extended lifespan. Thus, these mice serve as an important model system for endocrinological, aging and longevity studies. Because the phenotype of wild type and heterozygous mice is undistinguishable, it is imperative for successful breeding to accurately genotype these animals. Here we report a novel, yet simple, approach for prop-1 genotyping using PCR-based allele-specific amplification (PCR-ASA). We also compare this method to other potential genotyping techniques, i.e. PCR-based restriction fragment length polymorphism analysis (PCR-RFLP) and fluorescence automated DNA sequencing. We demonstrate that the single-step PCR-ASA has several advantages over the classical PCR-RFLP because the procedure is simple, less expensive and rapid. To further increase the specificity and sensitivity of the PCR-ASA, we introduced a single-base mismatch at the 3' penultimate position of the mutant primer. Our results also reveal that the fluorescence automated DNA sequencing has limitations for detecting a single nucleotide polymorphism in the prop-1 gene, particularly in heterozygotes.

  18. Diagnostic Application of IS900 PCR Using Blood as a Source Sample for the Detection of Mycobacterium avium Subspecies Paratuberculosis in Early and Subclinical Cases of Caprine Paratuberculosis.

    PubMed

    Singh, P K; Singh, S V; Kumar, H; Sohal, J S; Singh, A V

    2010-01-01

    Efficacy of IS900 blood PCR was evaluated for the presence of MAP infection. Serum, fecal, and blood samples of kids, young, and adult goats from farm and farmer's herds in Mathura district were also screened by ELISA, microscopy and culture. Of 111 goats (kids: 40, young: 14, adults: 57) screened, 77.5% were positive by blood PCR. Of 76 goats, 90.8% (kids: 87.5% and adults: 94.4%) were positive by PCR. From 21 kids and 14 young goats, 42.8 and 57.1% were positive. gDNA from goats was genotyped as MAP "Indian Bison type". Of 21 fecal samples of kids examined by microscopy, 66.7% were positive. In ELISA, 9.5 and 57.1% kids were positives as "type I" and "type II" reactors, respectively. Screening 14 young goats by culture of blood clots, 28.6% were positive. Agreement was substantial between PCR and microscopy. It was fair and moderate when PCR and microscopy were compared with type I and type II reactors, respectively. Presence of MAP in non-clinical kids and young goats indicate early or subclinical infection. Blood PCR was rapid, sensitive, and specific assay for detection of MAP in any stage (early, subclinical, and clinical) and age (kids, young, and adult) of goats.

  19. Analysis of the Type IV Fimbrial-Subunit Gene fimA of Xanthomonas hyacinthi: Application in PCR-Mediated Detection of Yellow Disease in Hyacinths

    PubMed Central

    van Doorn, J.; Hollinger, T. C.; Oudega, B.

    2001-01-01

    A sensitive and specific detection method was developed for Xanthomonas hyacinthi; this method was based on amplification of a subsequence of the type IV fimbrial-subunit gene fimA from strain S148. The fimA gene was amplified by PCR with degenerate DNA primers designed by using the N-terminal and C-terminal amino acid sequences of trypsin fragments of FimA. The nucleotide sequence of fimA was determined and compared with the nucleotide sequences coding for the fimbrial subunits in other type IV fimbria-producing bacteria, such as Xanthomonas campestris pv. vesicatoria, Neisseria gonorrhoeae, and Moraxella bovis. In a PCR internal primers JAAN and JARA, designed by using the nucleotide sequences of the variable central and C-terminal region of fimA, amplified a 226-bp DNA fragment in all X. hyacinthi isolates. This PCR was shown to be pathovar specific, as assessed by testing 71 Xanthomonas pathovars and bacterial isolates belonging to other genera, such as Erwinia and Pseudomonas. Southern hybridization experiments performed with the labelled 226-bp DNA amplicon as a probe suggested that there is only one structural type IV fimbrial-gene cluster in X. hyacinthi. Only two Xanthomonas translucens pathovars cross-reacted weakly in PCR. Primers amplifying a subsequence of the fimA gene of X. campestris pv. vesicatoria (T. Ojanen-Reuhs, N. Kalkkinen, B. Westerlund-Wikström, J. van Doorn, K. Haahtela, E.-L. Nurmiaho-Lassila, K. Wengelink, U. Bonas, and T. K. Korhonen, J. Bacteriol. 179: 1280–1290, 1997) were shown to be pathovar specific, indicating that the fimbrial-subunit sequences are more generally applicable in xanthomonads for detection purposes. Under laboratory conditions, approximately 1,000 CFU of X. hyacinthi per ml could be detected. In inoculated leaves of hyacinths the threshold was 5,000 CFU/ml. The results indicated that infected hyacinths with early symptoms could be successfully screened for X. hyacinthi with PCR. PMID:11157222

  20. Salmonella spp. contamination in commercial layer hen farms using different types of samples and detection methods.

    PubMed

    Soria, M C; Soria, M A; Bueno, D J; Godano, E I; Gómez, S C; ViaButron, I A; Padin, V M; Rogé, A D

    2017-08-01

    The performance of detection methods (culture methods and polymerase chain reaction assay) and plating media used in the same type of samples were determined as well as the specificity of PCR primers to detected Salmonella spp. contamination in layer hen farms. Also, the association of farm characteristics with Salmonella presence was evaluated. Environmental samples (feces, feed, drinking water, air, boot-swabs) and eggs were taken from 40 layer hen houses. Salmonella spp. was most detected in boot-swabs taken around the houses (30% and 35% by isolation and PCR, respectively) follow by fecal samples (15.2% and 13.6% by isolation and PCR, respectively). Eggs, drinking water, and air samples were negative for Salmonella detection. Salmonella Schwarzengrund and S. Enteritidis were the most isolated serotypes. For plating media, relative specificity was 1, and the relative sensitivity was greater for EF-18 agar than XLDT agar in feed and fecal samples. However, relative sensitivity was greater in XLDT agar than EF-18 agar for boot-swab samples. Agreement was between fair to good depending on the sample, and it was good between isolation and PCR (feces and boot-swabs), without agreement for feed samples. Salmonella spp. PCR was positive for all strains, while S. Typhimurium PCR was negative. Salmonella Enteritidis PCR used was not specific. Based in the multiple logistic regression analyses, categorization by counties was significant for Salmonella spp. presence (P-value = 0.010). This study shows the importance of considering different types of samples, plating media and detection methods during a Salmonella spp. monitoring study. In addition, it is important to incorporate the sampling of floors around the layer hen houses to learn if biosecurity measures should be strengthened to minimize the entry and spread of Salmonella in the houses. Also, the performance of some PCR methods and S. Enteritidis PCR should be improved, and biosecurity measures in hen farms must be reinforced in the region of more concentrated layer hen houses to reduce the probability of Salmonella spp. presence. © 2017 Poultry Science Association Inc.

  1. Differentiation of closely related but biologically distinct cherry isolates of Prunus necrotic ringspot virus by polymerase chain reaction.

    PubMed

    Hammond, R W; Crosslin, J M; Pasini, R; Howell, W E; Mink, G I

    1999-07-01

    Prunus necrotic ringspot ilarvirus (PNRSV) exists as a number of biologically distinct variants which differ in host specificity, serology, and pathology. Previous nucleotide sequence alignment and phylogenetic analysis of cloned reverse transcription-polymerase chain reaction (RT-PCR) products of several biologically distinct sweet cherry isolates revealed correlations between symptom type and the nucleotide and amino acid sequences of the 3a (putative movement protein) and 3b (coat protein) open reading frames. Based upon this analysis, RT-PCR assays have been developed that can identify isolates displaying different symptoms and serotypes. The incorporation of primers in a multiplex PCR protocol permits rapid detection and discrimination among the strains. The results of PCR amplification using type-specific primers that amplify a portion of the coat protein gene demonstrate that the primer-selection procedure developed for PNRSV constitutes a reliable method of viral strain discrimination in cherry for disease control and will also be useful for examining biological diversity within the PNRSV virus group.

  2. Pandemic preparedness in Hawaii: a multicenter verification of real-time RT-PCR for the direct detection of influenza virus types A and B.

    PubMed

    Whelen, A Christian; Bankowski, Matthew J; Furuya, Glenn; Honda, Stacey; Ueki, Robert; Chan, Amelia; Higa, Karen; Kumashiro, Diane; Moore, Nathaniel; Lee, Roland; Koyamatsu, Terrie; Effler, Paul V

    2010-01-01

    We integrated multicenter, real-time (RTi) reverse transcription polymerase chain reaction (RT-PCR) screening into a statewide laboratory algorithm for influenza surveillance and response. Each of three sites developed its own testing strategy and was challenged with one randomized and blinded panel of 50 specimens previously tested for respiratory viruses. Following testing, each participating laboratory reported its results to the Hawaii State Department of Health, State Laboratories Division for evaluation and possible discrepant analysis. Two of three laboratories reported a 100% sensitivity and specificity, resulting in a 100% positive predictive value and a 100% negative predictive value (NPV) for influenza type A. The third laboratory showed a 71% sensitivity for influenza type A (83% NPV) with 100% specificity. All three laboratories were 100% sensitive and specific for the detection of influenza type B. Discrepant analysis indicated that the lack of sensitivity experienced by the third laboratory may have been due to the analyte-specific reagent probe used by that laboratory. Use of a newer version of the product with a secondary panel of 20 specimens resulted in a sensitivity and specificity of 100%. All three laboratories successfully verified their ability to conduct clinical testing for influenza using diverse nucleic acid extraction and RTi RT-PCR platforms. Successful completion of the verification by all collaborating laboratories paved the way for the integration of those facilities into a statewide laboratory algorithm for influenza surveillance and response.

  3. Microwell hybridization assay for detection of PCR products from Mycobacterium tuberculosis complex and the recombinant Mycobacterium smegmatis strain 1008 used as an internal control.

    PubMed Central

    Kox, L F; Noordhoek, G T; Kunakorn, M; Mulder, S; Sterrenburg, M; Kolk, A H

    1996-01-01

    A microwell hybridization assay was developed for the detection of the PCR products from both Mycobacterium tuberculosis complex bacteria and the recombinant Mycobacterium smegmatis strain 1008 that is used as an internal control to monitor inhibition in the PCR based on the M. tuberculosis complex-specific insertion sequence IS6110. The test is based on specific detection with digoxigenin-labeled oligonucleotide probes of biotinylated PCR products which are captured in a microtiter plate coated with streptavidin. The captured PCR products are hybridized separately with two probes, one specific for the PCR product from IS6110 from M. tuberculosis complex and the other specific for the PCR fragment from the modified IS6110 fragment from the recombinant M. smegmatis 1008. The microwell hybridization assay discriminates perfectly between the two types of amplicon. The amount of PCR product that can be detected by this assay is 10 times less than that which can be detected by agarose gel electrophoresis. The test can be performed in 2 h. It is much faster and less laborious than Southern blot hybridization. Furthermore, the interpretation of results is objective. The assay was used with 172 clinical samples in a routine microbiology laboratory, and the results were in complete agreement with those of agarose gel electrophoresis and Southern blot hybridization. PMID:8862568

  4. Discrimination of probiotic Lactobacillus strains for poultry by repetitive sequenced-based PCR fingerprinting.

    PubMed

    Lee, Chin Mei; Sieo, Chin Chin; Cheah, Yoke-Kqueen; Abdullah, Norhani; Ho, Yin Wan

    2012-02-01

    Four repetitive element sequence-based polymerase chain reaction (rep-PCR) methods, namely repetitive extragenic palindromic PCR (REP-PCR), enterobacterial repetitive intergenic consensus PCR (ERIC-PCR), polytrinucleotide (GTG)₅ -PCR and BOX-PCR, were evaluated for the molecular differentiation of 12 probiotic Lactobacillus strains previously isolated from the gastrointestinal tract of chickens and used as a multistrain probiotic. This study represents the first analysis of the comparative efficacy of these four rep-PCR methods and their combination (composite rep-PCR) in the molecular typing of Lactobacillus strains based on a discriminatory index (D). Species-specific and strain-specific profiles were observed from rep-PCR. From the numerical analysis of composite rep-PCR, BOX-PCR, (GTG)₅ -PCR, REP-PCR and ERIC-PCR, D values of 0.9118, 0.9044, 0.8897, 0.8750 and 0.8529 respectively were obtained. Composite rep-PCR analysis was the most discriminative method, with eight Lactobacillus strains, namely L. brevis ATCC 14869(T) , L. reuteri C 10, L. reuteri ATCC 23272(T) , L. gallinarum ATCC 33199(T) , L. salivarius ATCC 11741(T) , L. salivarius I 24, L. panis JCM 11053(T) and L. panis C 17, being differentiated at the strain level. Composite rep-PCR analysis is potentially a useful fingerprinting method to discriminate probiotic Lactobacillus strains isolated from the gastrointestinal tract of chickens. Copyright © 2011 Society of Chemical Industry.

  5. Echovirus 30 meningitis epidemic followed by an outbreak-specific RT-qPCR.

    PubMed

    Österback, Riikka; Kalliokoski, Teemu; Lähdesmäki, Tuire; Peltola, Ville; Ruuskanen, Olli; Waris, Matti

    2015-08-01

    An outbreak of enteroviral aseptic meningitis emerged in Southwestern Finland in August 2009. The same enterovirus reappeared with increasing incidence of meningitis in other parts of Finland in 2010. To identify the incidence and molecular epidemiology of enteroviral meningitis outbreak. The causative agent was identified as echovirus 30 (E-30) by sequencing partial viral protein 1 capsid genome, and a virus type-specific RT-qPCR was set up for sensitive detection of the virus in cerebrospinal fluid specimens. Enterovirus positive CSF specimens were subjected to the E-30-specific assay to investigate this unusual occurrence of aseptic meningitis and facilitate case confirmation during the outbreaks between August 2009 and September 2010. E-30 was detected in 106 (72%) enterovirus positive cerebrospinal fluid specimens. All the meningitis cases in 2009 and most of them in 2010 were among adolescents and several were members of sport teams. Between August 2009 and September 2010, E-30 caused an extensive outbreak with two peaks in Finland. Type-specific RT-PCR allowed rapid diagnostic follow-up of the epidemic. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Ultrasensitive Detection of RNA and DNA Viruses Simultaneously Using Duplex UNDP-PCR Assay

    PubMed Central

    Wang, Zengguo; Zhang, Xiujuan; Zhao, Xiaomin; Du, Qian; Chang, Lingling; Tong, Dewen

    2015-01-01

    Mixed infection of multiple viruses is common in modern intensive pig rearing. However, there are no methods available to detect DNA and RNA viruses in the same reaction system in preclinical level. In this study, we aimed to develop a duplex ultrasensitive nanoparticle DNA probe-based PCR assay (duplex UNDP-PCR) that was able to simultaneously detect DNA and RNA viruses in the same reaction system. PCV2 and TGEV are selected as representatives of the two different types of viruses. PCV2 DNA and TGEV RNA were simultaneously released from the serum sample by boiling with lysis buffer, then magnetic beads and gold nanoparticles coated with single and/or duplex specific probes for TGEV and PCV2 were added to form a sandwich-like complex with nucleic acids released from viruses. After magnetic separation, DNA barcodes specific for PCV2 and TGEV were eluted using DTT and characterized by specific PCR assay for specific DNA barcodes subsequently. The duplex UNDP-PCR showed similar sensitivity as that of single UNDP-PCR and was able to detect 20 copies each of PCV2 and TGEV in the serum, showing approximately 250-fold more sensitivity than conventional duplex PCR/RT-PCR assays. No cross-reaction was observed with other viruses. The positive detection rate of single MMPs- and duplex MMPs-based duplex UNDP-PCR was identical, with 29.6% for PCV2, 9.3% for TGEV and 3.7% for PCV2 and TGEV mixed infection. This duplex UNDP-PCR assay could detect TGEV (RNA virus) and PCV2 (DNA virus) from large-scale serum samples simultaneously without the need for DNA/RNA extraction, purification and reverse transcription of RNA, and showed a significantly increased positive detection rate for PCV2 (29%) and TGEV (11.7%) preclinical infection than conventional duplex PCR/RT-PCR. Therefore, the established duplex UNDP-PCR is a rapid and economical detection method, exhibiting high sensitivity, specificity and reproducibility. PMID:26544710

  7. Ultrasensitive Detection of RNA and DNA Viruses Simultaneously Using Duplex UNDP-PCR Assay.

    PubMed

    Huang, Yong; Xing, Na; Wang, Zengguo; Zhang, Xiujuan; Zhao, Xiaomin; Du, Qian; Chang, Lingling; Tong, Dewen

    2015-01-01

    Mixed infection of multiple viruses is common in modern intensive pig rearing. However, there are no methods available to detect DNA and RNA viruses in the same reaction system in preclinical level. In this study, we aimed to develop a duplex ultrasensitive nanoparticle DNA probe-based PCR assay (duplex UNDP-PCR) that was able to simultaneously detect DNA and RNA viruses in the same reaction system. PCV2 and TGEV are selected as representatives of the two different types of viruses. PCV2 DNA and TGEV RNA were simultaneously released from the serum sample by boiling with lysis buffer, then magnetic beads and gold nanoparticles coated with single and/or duplex specific probes for TGEV and PCV2 were added to form a sandwich-like complex with nucleic acids released from viruses. After magnetic separation, DNA barcodes specific for PCV2 and TGEV were eluted using DTT and characterized by specific PCR assay for specific DNA barcodes subsequently. The duplex UNDP-PCR showed similar sensitivity as that of single UNDP-PCR and was able to detect 20 copies each of PCV2 and TGEV in the serum, showing approximately 250-fold more sensitivity than conventional duplex PCR/RT-PCR assays. No cross-reaction was observed with other viruses. The positive detection rate of single MMPs- and duplex MMPs-based duplex UNDP-PCR was identical, with 29.6% for PCV2, 9.3% for TGEV and 3.7% for PCV2 and TGEV mixed infection. This duplex UNDP-PCR assay could detect TGEV (RNA virus) and PCV2 (DNA virus) from large-scale serum samples simultaneously without the need for DNA/RNA extraction, purification and reverse transcription of RNA, and showed a significantly increased positive detection rate for PCV2 (29%) and TGEV (11.7%) preclinical infection than conventional duplex PCR/RT-PCR. Therefore, the established duplex UNDP-PCR is a rapid and economical detection method, exhibiting high sensitivity, specificity and reproducibility.

  8. Combination of Multiplex PCR and PCR-Denaturing Gradient Gel Electrophoresis for Monitoring Common Sourdough-Associated Lactobacillus Species

    PubMed Central

    Settanni, Luca; Valmorri, Sara; van Sinderen, Douwe; Suzzi, Giovanna; Paparella, Antonello; Corsetti, Aldo

    2006-01-01

    A combination of denaturing gradient gel electrophoresis (DGGE) and a previously described multiplex PCR approach was employed to detect sourdough lactobacilli. Primers specific for certain groups of Lactobacillus spp. were used to amplify fragments, which were analyzed by DGGE. DGGE profiles obtained from Lactobacillus type strains acted as standards to analyze lactobacilli from four regional Abruzzo (central Italy) sourdoughs. PMID:16672538

  9. Loop-mediated isothermal amplification assay for detection of Haemophilus influenzae type b in cerebrospinal fluid.

    PubMed

    Kim, Dong Wook; Kilgore, Paul Evan; Kim, Eun Jin; Kim, Soon Ae; Anh, Dang Duc; Seki, Mitsuko

    2011-10-01

    Haemophilus influenzae type b (Hib) is one of the leading causes of meningitis in developing countries. To establish and evaluate a novel loop-mediated isothermal amplification (LAMP) assay for Hib, we designed a LAMP primer set targeting the Hib-specific capsulation locus. LAMP detected 10 copies of purified DNA in a 60-min reaction. This indicated that the detection limit of LAMP was >100-fold lower than the detection limits of both a PCR for the detection of bexA and a nested PCR for Hib (Hib PCR). No H. influenzae, other than Hib or control bacteria, was detected. Linear determination ranged from 10 to 1,000,000 microorganisms per reaction mixture using real-time turbidimetry. We evaluated the Hib LAMP assay using a set of 52 randomly selected cerebrospinal fluid (CSF) specimens obtained from children with suspected meningitis. For comparison, the CSF specimens were tested using a conventional Hib PCR assay. Hib was detected in 30 samples using LAMP and in 22 samples using the Hib PCR assay. The Hib PCR showed a clinical sensitivity of 73.3% and a clinical specificity of 100% relative to the Hib LAMP assay. These results suggest that further development and evaluation of the Hib LAMP will enhance the global diagnostic capability for Hib detection.

  10. [Identification of hepatitis B virus YMDD point mutation using peptide nucleic acid clamping PCR].

    PubMed

    Zhang, Yingying; He, Haitang; Yang, Jie; Hou, Jinlin

    2013-06-01

    To establish a peptide nucleic acid clamping PCR assay for detecting hepatitis B virus (HBV) drug resistance mutation. RtM204I (ATT) mutant, rtM204V (GTG) mutant and rtM204 (ATG) wild-type plasmids mixed at different ratios were detected for mutations by PNA clamping PCR assay and direct sequencing, and the sensitivity and specificity of the two methods were compared. Serum samples from 85 patients with chronic HBV infection were detected for drug resistance using the two methods. The sensitivity of PNA-PCR assay was 0.001% in a 10(5)-fold excess of wild-type HBV DNA with a detection limit of 10(1) copies. The sensitivity of direct sequencing was 10% with a detection limit of 10(4) copies. Mutants were detected in 73 of the 85 serum samples (85.9%), including YIDD in 40 samples, YVDD in 23 samples, and YIDD+YVDD in 10 samples. The agreement of PNA-PCR assay with direct sequencing was only 40% (34/85, YIDD in 21 samples, YVDD in 11 samples, and YIDD+YVDD in 2 samples). Neither of the two methods yielded positive results for the negative control samples, suggesting their good specificity. PNA-PCR assay appears to be a more sensitive and rapid assay for detection of HBV genotypic resistance.

  11. [Application of multiplex PCR for the screening of genotyping system for the rare blood groups Fy(a-), s-,k-,Di(b-) and Js(b-)].

    PubMed

    Jiao, Wei; Xie, Li; Li, Hailan; Lan, Jiao; Mo, Zhuning; Yang, Ziji; Liu, Fei; Xiao, Ruiping; He, Yunlei; Ye, Luyi; Zhu, Ziyan

    2014-04-01

    To screen rare blood groups Fy(a-), s-, k-, Di(b-) and Js(b-) in an ethnic Zhuang population. Sequence-specific primers were designed based on single nucleotide polymorphism (SNP) sites of blood group antigens Fy(b) and s. A specific multiplex PCR system I was established. Multiplex PCR system II was applied to detect alleles antigens Di(b), k, Js(b)1910 and Js(b) 2019 at the same time. The two systems was were used to screen for rare blood group antigens in 4490 randomly selected healthy donors of Guangxi Zhuang ethnic origin. We successfully made the multiplex PCR system I. We detected the rare blood group antigens using the two PCR system. There are five Fy(a-), three s(-), two Di(b-) in 4490 Guangxi zhuang random samples. The multiplex PCR system I has achieved good accuracy and stability. With multiplex PCR systems I and II, 4490 samples were screened. Five Fy(a-), three s(-) and two Di(b-) samples were discovered. Multiplex PCR is an effective methods, which can be used for high throughput screening of rare blood groups. The rare blood types of Guangxi Zhuang ethnic origin obtained through the screening can provide valuable information for compatible blood transfusion. Through screening we obtained precious rare blood type materials which can be used to improve the capability of compatible infusion and reduce the transfusion reactions.

  12. Detection of human papillomavirus (HPV) DNA in human prostatic tissues by polymerase chain reaction (PCR).

    PubMed

    Sarkar, F H; Sakr, W A; Li, Y W; Sreepathi, P; Crissman, J D

    1993-01-01

    Human papillomavirus (HPV) infections are strongly linked to the pathogenesis of uterine cervical neoplasms, and have been implicated in other cancers of the female genital tract. In contrast, the association of HPV with the cancers of the male urogenital tract is less evident, except in anal and penile cancers. However, recent studies reporting the prevalence of HPV infections in human prostate cancers (60-100% HPV 16 positive vs. no infection of HPV) have raised controversies regarding the prevalence of HPV in benign and neoplastic human prostate. We investigated the prevalence of HPV infections in prostatic intraepithelial neoplasia (PIN) and prostatic adenocarcinomas in 23 surgically resected prostates. Polymerase chain reaction (PCR) was used to amplify HPV 6b/11, 16, and 18 specific DNA sequences, using type specific HPV primers selected from the transforming gene E6-E7. The areas of PIN and cancer in 6 microns H&E stained tissue sections were identified, and respective areas of PIN and cancer were isolated from the adjacent serial sections and used for DNA amplification and HPV detection (Fig. 1). Our results demonstrated the presence of HPV 16 in three carcinomas (13%), using type specific primers in PCR amplified samples. We were not able to demonstrate the presence of other HPV types (HPV 6b/11 or HPV 18) in any of the samples using specific primers. Two of these prostates showed relatively strong positive signals by dot blot analysis, when hybridized with a 32P-labeled HPV 16 type specific oligonucleotide probe. One more sample showed weak positivity, when hybridized with a 32P-labeled HPV 16 type specific oligonucleotide probe. Subsequently, we have confirmed these results by Southern hybridization of the samples transferred to nylon membrane after agarose gel electrophoresis and detected by HPV 16 type specific oligonucleotide probe, using chemiluminescent assay. We, therefore, conclude that HPV infections of the prostate in general are not as common as has been previously claimed by other investigators.

  13. Development and evaluation of the quantitative real-time PCR assay in detection and typing of herpes simplex virus in swab specimens from patients with genital herpes.

    PubMed

    Liu, Junlian; Yi, Yong; Chen, Wei; Si, Shaoyan; Yin, Mengmeng; Jin, Hua; Liu, Jianjun; Zhou, Jinlian; Zhang, Jianzhong

    2015-01-01

    Genital herpes (GH), which is caused mainly by herpes simplex virus (HSV)-2 and HSV-1, remains a worldwide problem. Laboratory confirmation of GH is important, particularly as there are other conditions which present similarly to GH, while atypical presentations of GH also occur. Currently, virus culture is the classical method for diagnosis of GH, but it is time consuming and with low sensitivity. A major advance for diagnosis of GH is to use Real-time polymerase chain reaction (PCR). In this study, to evaluate the significance of the real-time PCR method in diagnosis and typing of genital HSV, the primers and probes targeted at HSV-1 DNA polymerase gene and HSV-2 glycoprotein D gene fraction were designed and applied to amplify DNA from HSV-1 or HSV-2 by employing the real-time PCR technique. Then the PCR reaction system was optimized and evaluated. HSV in swab specimens from patients with genital herpes was detected by real-time PCR. The real-time PCR assay showed good specificity for detection and typing of HSV, with good linear range (5×10(2)~5×10(8) copies/ml, r=0.997), a sensitivity of 5×10(2) copies/ml, and good reproducibility (intra-assay coefficients of variation 2.29% and inter-assay coefficients of variation 4.76%). 186 swab specimens were tested for HSV by real-time PCR, and the positive rate was 23.7% (44/186). Among the 44 positive specimens, 8 (18.2%) were positive for HSV-1 with a viral load of 8.5546×10(6) copies/ml and 36 (81.2%) were positive for HSV-2 with a viral load of 1.9861×10(6) copies/ml. It is concluded that the real-time PCR is a specific, sensitive and rapid method for the detection and typing of HSV, which can be widely used in clinical diagnosis of GH.

  14. Further interest of miniexon multiplex PCR for a rapid typing of Trypanosoma cruzi DTU groups.

    PubMed

    Aliaga, Claudia; Brenière, Simone Frédérique; Barnabé, Christian

    2011-07-01

    In order to validate a rapid typing of Trypanosoma cruzi DTUs, the miniexon multiplex PCR was tested for the first time, on a large and diversified sample of 70 strains belonging to all current DTUs (TcI to TcVI). Three DTU groups have been distinguished by specific PCR molecular weight, TcI (200bp), TcII, V, VI (250bp) and TcIII and IV (150bp) with no incorrect grouping. These groups are epidemiologically and genetically relevant; moreover the method is easy and cheap and allows direct identification of parasites from triatomine faeces. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Detection of infectious bronchitis virus with the use of real-time quantitative reverse transcriptase-PCR and correlation with virus detection in embryonated eggs.

    PubMed

    Roh, Ha-Jung; Hilt, Deborah A; Jackwood, Mark W

    2014-09-01

    Real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) assays have been used to detect the presence of challenge virus when the efficacy of infectious bronchitis virus (IBV) vaccine against field viruses is being experimentally evaluated. However, federal guidelines for licensing IBV vaccines indicate that challenge-virus detection following vaccination is to be conducted in embryonated eggs. In this study, we examined qRT-PCR data with the use of universal and type-specific primers and probe sets for IBV detection and compared those data with challenge-virus detection in embryonated eggs to determine if the two methods of evaluating vaccine efficacy are comparable. In addition, we tested the qRT-PCR assays on thermocyclers from two different manufacturers. We found the universal IBV primers and probe set to be comparable to challenge-virus detection in embryonated eggs. However, for some IBV types (Mass41 and Conn on the SmartCycler II and Ark, Mass41, Conn, and GA98 on the ABI 7500) the qRT-PCR assay was more sensitive than virus detection in embryonated eggs. This may simply be due to the universal IBV qRT-PCR assay being more sensitive than virus detection in eggs or to the assay detecting nucleic acid from nonviable virus. This finding is important and needs to be considered when evaluating challenge-virus detection for vaccination and challenge studies, because qRT-PCR could potentially identify positive birds that would otherwise be negative by virus detection in embryonated eggs; thus it could lead to a more stringent measure of vaccine efficacy. We also found that the IBV type-specific primers and probe sets designed in this study were in general less sensitive than the universal IBV primers and probe set. Only the Ark-DPI-spedcific assay on the SmartCycler II and the Ark-DPI-, Mass41-, and DE072/GA98- (for detection of GA98 virus only) specific assays on the ABI 7500 were comparable in sensitivity to virus detection in eggs. We found that a number of variables, including the virus type examined, primers and probe efficiency and stability, and assay conditions, including thermocycler platform, can affect the data obtained from qRT-PCR assays. These results indicate that qRT-PCR assays can be used to detect IBV challenge virus, but each assay, including the assay conditions and thermocycler, should be individually evaluated if those data are expected to be comparable to virus detection in embryonated eggs.

  16. Multiplex Real-Time PCR Method for Simultaneous Identification and Toxigenic Type Characterization of Clostridium difficile From Stool Samples

    PubMed Central

    Alam, Mohammad J.; Tisdel, Naradah L.; Shah, Dhara N.; Yapar, Mehmet; Lasco, Todd M.; Garey, Kevin W.

    2015-01-01

    Background The aim of this study was to develop and validate a multiplex real-time PCR assay for simultaneous identification and toxigenic type characterization of Clostridium difficile. Methods The multiplex real-time PCR assay targeted and simultaneously detected triose phosphate isomerase (tpi) and binary toxin (cdtA) genes, and toxin A (tcdA) and B (tcdB) genes in the first and sec tubes, respectively. The results of multiplex real-time PCR were compared to those of the BD GeneOhm Cdiff assay, targeting the tcdB gene alone. The toxigenic culture was used as the reference, where toxin genes were detected by multiplex real-time PCR. Results A total of 351 stool samples from consecutive patients were included in the study. Fifty-five stool samples (15.6%) were determined to be positive for the presence of C. difficile by using multiplex real-time PCR. Of these, 48 (87.2%) were toxigenic (46 tcdA and tcdB-positive, two positive for only tcdB) and 11 (22.9%) were cdtA-positive. The sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) of the multiplex real-time PCR compared with the toxigenic culture were 95.6%, 98.6%, 91.6%, and 99.3%, respectively. The analytical sensitivity of the multiplex real-time PCR assay was determined to be 103colonyforming unit (CFU)/g spiked stool sample and 0.0625 pg genomic DNA from culture. Analytical specificity determined by using 15 enteric and non-clostridial reference strains was 100%. Conclusions The multiplex real-time PCR assay accurately detected C. difficile isolates from diarrheal stool samples and characterized its toxin genes in a single PCR run. PMID:25932438

  17. Recognition of Clostridium difficile PCR-ribotypes 001, 027 and 126/078 using an extended MALDI-TOF MS system.

    PubMed

    Reil, M; Erhard, M; Kuijper, E J; Kist, M; Zaiss, H; Witte, W; Gruber, H; Borgmann, S

    2011-11-01

    During the last decade, Clostridium difficile infection (CDI) increased markedly inside as well as outside of hospitals. In association with the occurrence of new hypervirulent C. difficile strains, CDI became more important. Until now typing of C. difficile strains has been enabled by PCR-ribotyping. However, this method is restricted to specialized laboratories combined with high maintenance cost. Therefore, we tested MALDI-TOF mass spectrometry for typing of C. difficile to provide a fast method for surveillance of CDI. Using a standard set of 25 different C. difficile PCR ribotypes a database was made by different mass spectra recorded in the SARAMIS software (AnagnosTec, Zossen, Germany). The database was validated with 355 C. difficile strains belonging to 29 different PCR ribotypes collected prospectively from all submitted feces samples in 2009. The most frequent PCR ribotypes were type 001 (70%), 027 (4.8%) and 078/126 (4.7%). All three types were recognized by MALDI-TOF MS. We conclude that an extended MALDI-TOF system was capable to recognize specific markers for ribotypes 001, 027 and 078/126 allowing an effective identification of these strains.

  18. An immunomagnetic separation-real-time PCR system for the detection of Alicyclobacillus acidoterrestris in fruit products.

    PubMed

    Wang, Zhouli; Cai, Rui; Yuan, Yahong; Niu, Chen; Hu, Zhongqiu; Yue, Tianli

    2014-04-03

    Alicyclobacillus acidoterrestris is the most important spoilage species within the Alicyclobacillus genus and has become a major issue in the pasteurized fruit juice industry. The aim of this study was to develop a method combining immunomagnetic separation (IMS) with real-time PCR system (IMS-PCR) for rapid and specific detection of A. acidoterrestris in fruit products. A real-time PCR with the TaqMan system was designed to target the 16S rDNA genes with specific primer and probe set. The specificity of the assay was confirmed using 9 A. acidoterrestris strains and 21 non-A. acidoterrestris strains. The results indicated that no combination of the designed primers and probe was found in any Alicyclobacillus genus except A. acidoterrestris. The detection limit of the established IMS-PCR was less than 10CFU/mL and the testing process was accomplished in 2-3h. For the three types of samples (sterile water, apple juice and kiwi juice), the correlation coefficient of standard curves was greater than 0.991, and the calculated PCR efficiencies were from 108% to 109%. As compared with the standard culture method performed concurrently on the same set of samples, the sensitivity, specificity and accuracy of IMS-PCR for 196 naturally contaminated fruit products were 90.0%, 98.3% and 97.5%, respectively. The results exhibited that the proposed IMS-PCR method was effective for the rapid detection of A. acidoterrestris in fruit products. Copyright © 2014. Published by Elsevier B.V.

  19. Novel in Vitro Modification of Bone for an Allograft with Improved Toughness Osteoconductivity

    DTIC Science & Technology

    2014-04-01

    of bone-characteristic genes, osteocalcin, Runx2, and col1a1 by RT-PCR. High-performance liquid chromatography and fluorescence microscopy will be...of molecular markers of mineralization, osteocalcin, Runx2 and col1a1 using quantitative RT-PCR with specific primers. (Months 8-15.) The purpose...bone specific Collagen, type I, alpha 1 ( COL1A1 ) Associated with cell adhesion, proliferation and differentiation of the osteoblast phenotype and

  20. Novel in Vitro Modification of Bone for an Allograft with Improved Toughness Osteoconductivity

    DTIC Science & Technology

    2013-10-01

    col1a1 by RT-PCR. High-performance liquid chromatography and fluorescence microscopy will be used to quantify AGEs and crosslinks. BODY The...molecular markers of mineralization, osteocalcin, Runx2 and col1a1 using quantitative RT-PCR with specific primers. (Months 14-15.) 5a. Preperation of...cellular activity and differentiation but not bone specific Collagen, type I, alpha 1 ( COL1A1 ) Associated with cell adhesion, proliferation and

  1. Specific, sensitive, and rapid assay for human immunodeficiency virus type 1 pol mutations associated with resistance to zidovudine and didanosine.

    PubMed Central

    Frenkel, L M; Wagner, L E; Atwood, S M; Cummins, T J; Dewhurst, S

    1995-01-01

    The effectiveness of antiretroviral therapy may be limited by the development of human immunodeficiency virus type 1 (HIV-1) resistance. Monitoring for resistance will perhaps allow changes in therapy prior to deterioration in the patient's clinical or immunologic status. Our objective was to develop a rapid, specific, and sensitive genotypic assay for HIV-1 resistance to zidovudine (ZDV) and didanosine (ddI) which is simple to perform. In our assay the DNA of HIV-1 pol was amplified by PCR using two sets of nested oligonucleotide primers. Mutations of reverse transcriptase (RT) encoding amino acids (aa) 74 and 41, 70, and 215 which have been associated with HIV-1 resistance to ddI and ZDV, respectively, were detected with a ligase detection reaction (LDR) and indicated colorimetrically. The RT genotypes of 35 patient specimens (140 codons) blindly assessed for these mutations were in agreement by PCR-LDR and by dideoxynucleotide sequencing. To evaluate the limits of the assay, other specimens with mutations close to the ligation site were evaluated by PCR-LDR. The assay was sensitive and specific for all specimens except when mutations occurred within 2 bases on either side of the ligation site. In summary, this PCR-LDR assay specifically, sensitively, and rapidly detected pol mutations (RT aa 74, 41, 70, and 215) associated with HIV-1 resistance to ddI and ZDV. PMID:7714190

  2. Detection and Serotyping of Dengue Virus in Serum Samples by Multiplex Reverse Transcriptase PCR-Ligase Detection Reaction Assay▿ †

    PubMed Central

    Das, S.; Pingle, M. R.; Muñoz-Jordán, J.; Rundell, M. S.; Rondini, S.; Granger, K.; Chang, G.-J. J.; Kelly, E.; Spier, E. G.; Larone, D.; Spitzer, E.; Barany, F.; Golightly, L. M.

    2008-01-01

    The detection and successful typing of dengue virus (DENV) from patients with suspected dengue fever is important both for the diagnosis of the disease and for the implementation of epidemiologic control measures. A technique for the multiplex detection and typing of DENV serotypes 1 to 4 (DENV-1 to DENV-4) from clinical samples by PCR-ligase detection reaction (LDR) has been developed. A serotype-specific PCR amplifies the regions of genes C and E simultaneously. The two amplicons are targeted in a multiplex LDR, and the resultant fluorescently labeled ligation products are detected on a universal array. The assay was optimized using 38 DENV strains and was evaluated with 350 archived acute-phase serum samples. The sensitivity of the assay was 98.7%, and its specificity was 98.4%, relative to the results of real-time PCR. The detection threshold was 0.017 PFU for DENV-1, 0.004 PFU for DENV-2, 0.8 PFU for DENV-3, and 0.7 PFU for DENV-4. The assay is specific; it does not cross-react with the other flaviviruses tested (West Nile virus, St. Louis encephalitis virus, Japanese encephalitis virus, Kunjin virus, Murray Valley virus, Powassan virus, and yellow fever virus). All but 1 of 26 genotypic variants of DENV serotypes in a global DENV panel from different geographic regions were successfully identified. The PCR-LDR assay is a rapid, sensitive, specific, and high-throughput technique for the simultaneous detection of all four serotypes of DENV. PMID:18685000

  3. Livers provide a reliable matrix for real-time PCR confirmation of avian botulism.

    PubMed

    Le Maréchal, Caroline; Ballan, Valentine; Rouxel, Sandra; Bayon-Auboyer, Marie-Hélène; Baudouard, Marie-Agnès; Morvan, Hervé; Houard, Emmanuelle; Poëzevara, Typhaine; Souillard, Rozenn; Woudstra, Cédric; Le Bouquin, Sophie; Fach, Patrick; Chemaly, Marianne

    2016-04-01

    Diagnosis of avian botulism is based on clinical symptoms, which are indicative but not specific. Laboratory investigations are therefore required to confirm clinical suspicions and establish a definitive diagnosis. Real-time PCR methods have recently been developed for the detection of Clostridium botulinum group III producing type C, D, C/D or D/C toxins. However, no study has been conducted to determine which types of matrices should be analyzed for laboratory confirmation using this approach. This study reports on the comparison of different matrices (pooled intestinal contents, livers, spleens and cloacal swabs) for PCR detection of C. botulinum. Between 2013 and 2015, 63 avian botulism suspicions were tested and 37 were confirmed as botulism. Analysis of livers using real-time PCR after enrichment led to the confirmation of 97% of the botulism outbreaks. Using the same method, spleens led to the confirmation of 90% of botulism outbreaks, cloacal swabs of 93% and pooled intestinal contents of 46%. Liver appears to be the most reliable type of matrix for laboratory confirmation using real-time PCR analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A Novel Strategy for Human Papillomavirus Detection and Genotyping with SybrGreen and Molecular Beacon Polymerase Chain Reaction

    PubMed Central

    Szuhai, Károly; Sandhaus, Emily; Kolkman-Uljee, Sandra M.; Lemaître, Marc; Truffert, Jean-Christophe; Dirks, Roeland W.; Tanke, Hans J.; Fleuren, Gert Jan; Schuuring, Ed; Raap, Anton K.

    2001-01-01

    Human papillomaviruses (HPVs) play an important role in the pathogenesis of cervical cancer. For identification of the large number of different HPV types found in (pre)malignant lesions, a robust methodology is needed that combines general HPV detection with HPV genotyping. We have developed for formaldehyde-fixed samples a strategy that, in a homogenous, real-time fluorescence polymerase chain reaction (PCR)-based assay, accomplishes general HPV detection by SybrGreen reporting of HPV-DNA amplicons, and genotyping of seven prevalent HPV types (HPV-6, -11, -16, -18, -31, -33, -45) by real-time molecular beacon PCR. The false-positive rate of the HPV SybrGreen-PCR was 4%, making it well suited as a prescreening, general HPV detection technology. The type specificity of the seven selected HPV molecular beacons was 100% and double infections were readily identified. The multiplexing capacity of the HPV molecular beacon PCR was analyzed and up to three differently labeled molecular beacons could be used in one PCR reaction without observing cross talk. The inherent quantitation capacities of real-time fluorescence PCR allowed the determination of average HPV copy number per cell. We conclude that the HPV SybrGreen-PCR in combination with the HPV molecular beacon PCR provides a robust, sensitive, and quantitative general HPV detection and genotyping methodology. PMID:11696426

  5. Bovine Papillomavirus in Brazil: Detection of Coinfection of Unusual Types by a PCR-RFLP Method

    PubMed Central

    Carvalho, R. F.; Sakata, S. T.; Giovanni, D. N. S.; Mori, E.; Brandão, P. E.; Richtzenhain, L. J.; Pozzi, C. R.; Arcaro, J. R. P.; Miranda, M. S.; Mazzuchelli-de-Souza, J.; Melo, T. C.; Comenale, G.; Assaf, S. L. M. R.; Beçak, W.; Stocco, R. C.

    2013-01-01

    Bovine papillomavirus (BPV) is recognized as a causal agent of benign and malignant tumors in cattle. Thirteen types of BPV are currently characterized and classified into three distinct genera, associated with different pathological outcomes. The described BPV types as well as other putative ones have been demonstrated by molecular biology methods, mainly by the employment of degenerated PCR primers. Specifically, divergences in the nucleotide sequence of the L1 gene are useful for the identification and classification of new papillomavirus types. On the present work, a method based on the PCR-RFLP technique and DNA sequencing was evaluated as a screening tool, allowing for the detection of two relatively rare types of BPV in lesions samples from a six-year-old Holstein dairy cow, chronically affected with cutaneous papillomatosis. These findings point to the dissemination of BPVs with unclear pathogenic potential, since two relatively rare, new described BPV types, which were first characterized in Japan, were also detected in Brazil. PMID:23865043

  6. Development of a combined canine distemper virus specific RT-PCR protocol for the differentiation of infected and vaccinated animals (DIVA) and genetic characterization of the hemagglutinin gene of seven Chinese strains demonstrated in dogs.

    PubMed

    Yi, Li; Cheng, Shipeng; Xu, Hongli; Wang, Jianke; Cheng, Yuening; Yang, Shen; Luo, Bin

    2012-01-01

    A combined reverse-transcription polymerase chain reaction (RT-PCR) method was developed for the detection and differentiation of wild-type and vaccine strains of the canine distemper virus (CDV). A pair of primers (P1/P2) was used to detect both CDV wild-type strains and vaccines. Another pair (P3/P4) was used to detect only CDV wild-type strains. A 335bp fragment was amplified from the genomic RNA of the vaccine and wild-type strains. A 555bp fragment was amplified specifically from the genomic RNA of the wild-type strains. No amplification was achieved for the uninfected cells, cells infected with canine parvovirus, canine coronavirus, or canine adenovirus. The combined RT-PCR method detected effectively and differentiated the CDV wild-type and vaccine strains by two separate RT-PCRs. The method can be used for clinical detection and epidemiological surveillance. The phylogenetic analysis of the hemagglutinin gene of the local wild-type CDV strains revealed that the seven local isolates all belonged to the Asia-1 lineage, and were clustered closely with one another at the same location. These results suggested that the CDV genotype Asia-1 is circulating currently in domestic dogs in China. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Detection of α-thalassemia-1 Southeast Asian and Thai Type Deletions and β-thalassemia 3.5-kb Deletion by Single-tube Multiplex Real-time PCR with SYBR Green1 and High-resolution Melting Analysis

    PubMed Central

    Wiengkum, Thanatcha; Srithep, Sarinee; Chainoi, Isarapong; Singboottra, Panthong; Wongwiwatthananukit, Sanchai

    2011-01-01

    Background Prevention and control of thalassemia requires simple, rapid, and accurate screening tests for carrier couples who are at risk of conceiving fetuses with severe thalassemia. Methods Single-tube multiplex real-time PCR with SYBR Green1 and high-resolution melting (HRM) analysis were used for the identification of α-thalassemia-1 Southeast Asian (SEA) and Thai type deletions and β-thalassemia 3.5-kb gene deletion. The results were compared with those obtained using conventional gap-PCR. DNA samples were derived from 28 normal individuals, 11 individuals with α-thalassemia-1 SEA type deletion, 2 with α-thalassemia-1 Thai type deletion, and 2 with heterozygous β-thalassemia 3.5-kb gene deletion. Results HRM analysis indicated that the amplified fragments from α-thalassemia-1 SEA type deletion, α-thalassemia-1 Thai type deletion, β-thalassemia 3.5-kb gene deletion, and the wild-type β-globin gene had specific peak heights at mean melting temperature (Tm) values of 86.89℃, 85.66℃, 77.24℃, and 74.92℃, respectively. The results obtained using single-tube multiplex real-time PCR with SYBR Green1 and HRM analysis showed 100% consistency with those obtained using conventional gap-PCR. Conclusions Single-tube multiplex real-time PCR with SYBR Green1 and HRM analysis is a potential alternative for routine clinical screening of the common types of α- and β-thalassemia large gene deletions, since it is simple, cost-effective, and highly accurate. PMID:21779184

  8. [A new variant of the simian T-lymphotropic retrovirus type I (STLV-IF) in the Sukhumi colony of hamadryas baboons].

    PubMed

    Chikobaeva, M G; Schatzl, H; Rose, D; Bush, U; Iakovleva, L A; Deinhardt, F; Helm, K; Lapin, B A

    1993-01-01

    Polymerase chain reaction (PCR) was developed for the detection of simian T-lymphotropic virus type 1 (STLV-1) infection of P. hamadryas and direct sequencing using oligo-nucleotide primer pairs specific for the tax and env regions of the related human T-lymphotropic virus type 1 (HTLV-1). Excellent specificity was shown in the detection of STLV-1 provirus in infected baboons by PCR using HTLV-1-derived primers. The nucleotide sequences of env 467bp and tax 159bp of the proviral genome (env position 5700-6137, tax position 7373-7498 HTLV-1, according to Seiki et al., 1983) derived from STLV-1-infected P. hamadryas were analysed using PCR and direct sequencing techniques. Two STLV-1 isolates from different sources (Sukhumi main-SuTLV-1 and forest stocks-STLV-1F) were compared. Two variants of STLV-1 among P. hamadryas with different level of homology to HTLV-1 were wound (83.8% and 95.2%, respectively). A possible role of nucleotide changes in env and tax sequenced fragments and oncogenicity of STLV-1 variants is discussed.

  9. Detection and differentiation of wild-type and vaccine strains of canine distemper virus by a duplex reverse transcription polymerase chain reaction

    PubMed Central

    Dong, X. Y.; Li, W. H.; Zhu, J. L.; Liu, W. J.; Zhao, M. Q.; Luo, Y. W.; Chen, J. D.

    2015-01-01

    Canine distemper virus (CDV) is the cause of canine distemper (CD) which is a severe and highly contagious disease in dogs. In the present study, a duplex reverse transcription polymerase chain reaction (RT-PCR) method was developed for the detection and differentiation of wild-type and vaccine strains of CDV. Four primers were designed to detect and discriminate the two viruses by generating 638- and 781-bp cDNA products, respectively. Furthermore, the duplex RT-PCR method was used to detect 67 field samples suspected of CD from Guangdong province in China. Results showed that, 33 samples were to be wild-type-like. The duplex RT-PCR method exhibited high specificity and sensitivity which could be used to effectively detect and differentiate wild-type and vaccine CDV, indicating its use for clinical detection and epidemiological surveillance. PMID:27175171

  10. [A comparative analysis of Ungulata species by different molecular genetic markers (proteins, RAPD-PCR)].

    PubMed

    Glazko, V I; Zelenaia, L B; Iasinetskaia, N A

    1997-01-01

    The investigation of genetic interrelation between a number of Artiodactyla and Perissodactyla species with the use of different types of molecular-genetic markers (proteins, RAPD-PCR) were carried out. The marker-specific features of interspecific relations and their similarities on the groups of markers of both types were revealed. The distinctions between interspecies genetic relations and ones estimated from the phylogeny on the determined group of different types of markers were observed. It was supposed that these discrepancies may be related with common selection factors and involving this marker group in selection in some species.

  11. Identification of Type A, B, E, and F Botulinum Neurotoxin Genes and of Botulinum Neurotoxigenic Clostridia by Denaturing High-Performance Liquid Chromatography

    PubMed Central

    Franciosa, Giovanna; Pourshaban, Manoocheher; De Luca, Alessandro; Buccino, Anna; Dallapiccola, Bruno; Aureli, Paolo

    2004-01-01

    Denaturing high-performance liquid chromatography (DHPLC) is a recently developed technique for rapid screening of nucleotide polymorphisms in PCR products. We used this technique for the identification of type A, B, E, and F botulinum neurotoxin genes. PCR products amplified from a conserved region of the type A, B, E, and F botulinum toxin genes from Clostridium botulinum, neurotoxigenic C. butyricum type E, and C. baratii type F strains were subjected to both DHPLC analysis and sequencing. Unique DHPLC peak profiles were obtained with each different type of botulinum toxin gene fragment, consistent with nucleotide differences observed in the related sequences. We then evaluated the ability of this technique to identify botulinal neurotoxigenic organisms at the genus and species level. A specific short region of the 16S rRNA gene which contains genus-specific and in some cases species-specific heterogeneity was amplified from botulinum neurotoxigenic clostridia and from different food-borne pathogens and subjected to DHPLC analysis. Different peak profiles were obtained for each genus and species, demonstrating that the technique could be a reliable alternative to sequencing for the rapid identification of food-borne pathogens, specifically of botulinal neurotoxigenic clostridia most frequently implicated in human botulism. PMID:15240298

  12. Comparison of the sensitivity and specificity of real-time PCR and in situ hybridization in HPV16 and 18 detection in archival cervical cancer specimens.

    PubMed

    Biesaga, Beata; Szostek, Sława; Klimek, Małgorzata; Jakubowicz, Jerzy; Wysocka, Joanna

    2012-07-04

    The aim of this study was to analyze the correlation between real-time PCR (RT-PCR) treated as a reference method and in situ hybridization with tyramide amplification system (ISH-TSA) in the detection of HPV16 and 18 infection and the assessment of viral genome status. The study was performed on cervical cancer biopsies fixed in 10% neutral buffered formalin and embedded in paraffin obtained from 85 women. TaqMan-based 5'exonuclease RT-PCR with type-specific primers was used to assess HPV16 and 18 infections and genome status. Viral infection and genome status was also assessed by ISH-TSA. RT-PCR revealed 76 (89.4%), and ISH-TSA 81 (95.3%) cancers with HPV16 and 18 infections. The ISH-TSA sensitivity and specificity were: 96.1% and 11.1% compared to RT-PCR. The difference between these techniques in HPV detection was significant (p = 0.000). Among 76 HPV16/18 positive cancers in RT-PCR, there were 30 (39.5%) with integrated and 46 (60.5%) with mixed viral genome form. According to ISH-TSA, there were 39 (51.3%) samples with integrated and 37 with mixed form (48.7%). The sensitivity and specificity of ISH-TSA in genome status assessment were 70.0% and 60.9%, respectively. The difference between RT-PCR and ISH-TSA in genome state detection was not statistically significant (p = 0.391). These results suggest that ISH-TSA shows insufficient specificity in HPV detection for use in clinical practice. However, this assay could be applied for viral genome status assessment.

  13. A Real-Time PCR Assay to Identify and Discriminate Among Wild-Type and Vaccine Strains of Varicella-Zoster Virus and Herpes Simplex Virus in Clinical Specimens, and Comparison With the Clinical Diagnoses

    PubMed Central

    Harbecke, Ruth; Oxman, Michael N.; Arnold, Beth A.; Ip, Charlotte; Johnson, Gary R.; Levin, Myron J.; Gelb, Lawrence D.; Schmader, Kenneth E.; Straus, Stephen E.; Wang, Hui; Wright, Peter F.; Pachucki, Constance T.; Gershon, Anne A.; Arbeit, Robert D.; Davis, Larry E.; Simberkoff, Michael S.; Weinberg, Adriana; Williams, Heather M.; Cheney, Carol; Petrukhin, Luba; Abraham, Katalin G.; Shaw, Alan; Manoff, Susan; Antonello, Joseph M.; Green, Tina; Wang, Yue; Tan, Charles; Keller, Paul M.

    2014-01-01

    A real-time PCR assay was developed to identify varicella-zoster virus (VZV) and herpes simplex virus (HSV) DNA in clinical specimens from subjects with suspected herpes zoster (HZ; shingles). Three sets of primers and probes were used in separate PCR reactions to detect and discriminate among wild-type VZV (VZV-WT), Oka vaccine strain VZV (VZV-Oka), and HSV DNA, and the reaction for each virus DNA was multiplexed with primers and probe specific for the human β-globin gene to assess specimen adequacy. Discrimination of all VZV-WT strains, including Japanese isolates and the Oka parent strain, from VZV-Oka was based upon a single nucleotide polymorphism at position 106262 in ORF 62, resulting in preferential amplification by the homologous primer pair. The assay was highly sensitive and specific for the target virus DNA, and no cross-reactions were detected with any other infectious agent. With the PCR assay as the gold standard, the sensitivity of virus culture was 53% for VZV and 77% for HSV. There was 92% agreement between the clinical diagnosis of HZ by the Clinical Evaluation Committee and the PCR assay results. PMID:19475609

  14. Establishment of a nested-ASP-PCR method to determine the clarithromycin resistance of Helicobacter pylori.

    PubMed

    Luo, Xiao-Feng; Jiao, Jian-Hua; Zhang, Wen-Yue; Pu, Han-Ming; Qu, Bao-Jin; Yang, Bing-Ya; Hou, Min; Ji, Min-Jun

    2016-07-07

    To investigate clarithromycin resistance positions 2142, 2143 and 2144 of the 23SrRNA gene in Helicobacter pylori (H. pylori) by nested-allele specific primer-polymerase chain reaction (nested-ASP-PCR). The gastric tissue and saliva samples from 99 patients with positive results of the rapid urease test (RUT) were collected. The nested-ASP-PCR method was carried out with the external primers and inner allele-specific primers corresponding to the reference strain and clinical strains. Thirty gastric tissue and saliva samples were tested to determine the sensitivity of nested-ASP-PCR and ASP-PCR methods. Then, clarithromycin resistance was detected for 99 clinical samples by using different methods, including nested-ASP-PCR, bacterial culture and disk diffusion. The nested-ASP-PCR method was successfully established to test the resistance mutation points 2142, 2143 and 2144 of the 23SrRNA gene of H. pylori. Among 30 samples of gastric tissue and saliva, the H. pylori detection rate of nested-ASP-PCR was 90% and 83.33%, while the detection rate of ASP-PCR was just 63% and 56.67%. Especially in the saliva samples, nested-ASP-PCR showed much higher sensitivity in H. pylori detection and resistance mutation rates than ASP-PCR. In the 99 RUT-positive gastric tissue and saliva samples, the H. pylori-positive detection rate by nested-ASP-PCR was 87 (87.88%) and 67 (67.68%), in which there were 30 wild-type and 57 mutated strains in gastric tissue and 22 wild-type and 45 mutated strains in saliva. Genotype analysis showed that three-points mixed mutations were quite common, but different resistant strains were present in gastric mucosa and saliva. Compared to the high sensitivity shown by nested-ASP-PCR, the positive detection of bacterial culture with gastric tissue samples was 50 cases, in which only 26 drug-resistant strains were found through analyzing minimum inhibitory zone of clarithromycin. The nested-ASP-PCR assay showed higher detection sensitivity than ASP-PCR and drug sensitivity testing, which could be performed to evaluate clarithromycin resistance of H. pylori.

  15. Establishment of a nested-ASP-PCR method to determine the clarithromycin resistance of Helicobacter pylori

    PubMed Central

    Luo, Xiao-Feng; Jiao, Jian-Hua; Zhang, Wen-Yue; Pu, Han-Ming; Qu, Bao-Jin; Yang, Bing-Ya; Hou, Min; Ji, Min-Jun

    2016-01-01

    AIM: To investigate clarithromycin resistance positions 2142, 2143 and 2144 of the 23SrRNA gene in Helicobacter pylori (H. pylori) by nested-allele specific primer-polymerase chain reaction (nested-ASP-PCR). METHODS: The gastric tissue and saliva samples from 99 patients with positive results of the rapid urease test (RUT) were collected. The nested-ASP-PCR method was carried out with the external primers and inner allele-specific primers corresponding to the reference strain and clinical strains. Thirty gastric tissue and saliva samples were tested to determine the sensitivity of nested-ASP-PCR and ASP-PCR methods. Then, clarithromycin resistance was detected for 99 clinical samples by using different methods, including nested-ASP-PCR, bacterial culture and disk diffusion. RESULTS: The nested-ASP-PCR method was successfully established to test the resistance mutation points 2142, 2143 and 2144 of the 23SrRNA gene of H. pylori. Among 30 samples of gastric tissue and saliva, the H. pylori detection rate of nested-ASP-PCR was 90% and 83.33%, while the detection rate of ASP-PCR was just 63% and 56.67%. Especially in the saliva samples, nested-ASP-PCR showed much higher sensitivity in H. pylori detection and resistance mutation rates than ASP-PCR. In the 99 RUT-positive gastric tissue and saliva samples, the H. pylori-positive detection rate by nested-ASP-PCR was 87 (87.88%) and 67 (67.68%), in which there were 30 wild-type and 57 mutated strains in gastric tissue and 22 wild-type and 45 mutated strains in saliva. Genotype analysis showed that three-points mixed mutations were quite common, but different resistant strains were present in gastric mucosa and saliva. Compared to the high sensitivity shown by nested-ASP-PCR, the positive detection of bacterial culture with gastric tissue samples was 50 cases, in which only 26 drug-resistant strains were found through analyzing minimum inhibitory zone of clarithromycin. CONCLUSION: The nested-ASP-PCR assay showed higher detection sensitivity than ASP-PCR and drug sensitivity testing, which could be performed to evaluate clarithromycin resistance of H. pylori. PMID:27433095

  16. SNPase-ARMS qPCR: Ultrasensitive Mutation-Based Detection of Cell-Free Tumor DNA in Melanoma Patients

    PubMed Central

    Stadler, Julia; Eder, Johanna; Pratscher, Barbara; Brandt, Sabine; Schneller, Doris; Müllegger, Robert; Vogl, Claus; Trautinger, Franz; Brem, Gottfried; Burgstaller, Joerg P.

    2015-01-01

    Cell-free circulating tumor DNA in the plasma of cancer patients has become a common point of interest as indicator of therapy options and treatment response in clinical cancer research. Especially patient- and tumor-specific single nucleotide variants that accurately distinguish tumor DNA from wild type DNA are promising targets. The reliable detection and quantification of these single-base DNA variants is technically challenging. Currently, a variety of techniques is applied, with no apparent “gold standard”. Here we present a novel qPCR protocol that meets the conditions of extreme sensitivity and specificity that are required for detection and quantification of tumor DNA. By consecutive application of two polymerases, one of them designed for extreme base-specificity, the method reaches unprecedented sensitivity and specificity. Three qPCR assays were tested with spike-in experiments, specific for point mutations BRAF V600E, PTEN T167A and NRAS Q61L of melanoma cell lines. It was possible to detect down to one copy of tumor DNA per reaction (Poisson distribution), at a background of up to 200 000 wild type DNAs. To prove its clinical applicability, the method was successfully tested on a small cohort of BRAF V600E positive melanoma patients. PMID:26562020

  17. Detection and differentiation of Campylobacter jejuni and Campylobacter coli in broiler chicken samples using a PCR/DNA probe membrane based colorimetric detection assay.

    PubMed

    O'Sullivan, N A; Fallon, R; Carroll, C; Smith, T; Maher, M

    2000-02-01

    Campylobacter enteritis in humans has been linked to consumption of poultry meat. Surveys show that 30-100% of poultry harbour Campylobacter as normal flora of the digestive tract which indicates a need to identify prevalent organism types in flocks and trace their epidemiology. In this study we describe a Campylobacter genus specific polymerase chain reaction (PCR) assay, amplifying the 16 S-23 S rRNA intergenic spacer region with an internal Campylobacter genus specific DNA probe and species specific probes for Campylobacter jejuni and Campylobacter coli designed for confirmation of the amplified PCR products by Southern blot and colorimetric reverse hybridization assays. The specificity of this assay was established by testing a range of food pathogens. Broiler chicken samples were tested following presumptive positive identification by the Malthus System V analyser (Malthus Instruments, UK). The combined PCR and colorimetric reverse hybridization assay is easy to perform and faster than conventional methods for confirmation and identification of Campylobacter species. Copyright 2000 Academic Press.

  18. Avian-specific real-time PCR assay for authenticity control in farm animal feeds and pet foods.

    PubMed

    Pegels, Nicolette; González, Isabel; García, Teresa; Martín, Rosario

    2014-01-01

    A highly sensitive TaqMan real-time PCR assay targeting the mitochondrial 12S rRNA gene was developed for detection of an avian-specific DNA fragment (68bp) in farm animal and pet feeds. The specificity of the assay was verified against a wide representation of animal and plant species. Applicability assessment of the avian real-time PCR was conducted through representative analysis of two types of compound feeds: industrial farm animal feeds (n=60) subjected to extreme temperatures, and commercial dog and cat feeds (n=210). Results obtained demonstrated the suitability of the real-time PCR assay to detect the presence of low percentages of highly processed avian material in the feed samples analysed. Although quantification results were well reproducible under the experimental conditions tested, an accurate estimation of the target content in feeds is impossible in practice. Nevertheless, the method may be useful as an alternative tool for traceability purposes within the framework of feed control. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Molecular Analysis of Spinal Muscular Atrophy: A genotyping protocol based on TaqMan(®) real-time PCR.

    PubMed

    de Souza Godinho, Fernanda Marques; Bock, Hugo; Gheno, Tailise Conte; Saraiva-Pereira, Maria Luiza

    2012-12-01

    Spinal muscular atrophy (SMA) is an autosomal recessive inherited disorder caused by alterations in the survival motor neuron I (SMN1) gene. SMA patients are classified as type I-IV based on severity of symptoms and age of onset. About 95% of SMA cases are caused by the homozygous absence of SMN1 due to gene deletion or conversion into SMN2. PCR-based methods have been widely used in genetic testing for SMA. In this work, we introduce a new approach based on TaqMan(®)real-time PCR for research and diagnostic settings. DNA samples from 100 individuals with clinical signs and symptoms suggestive of SMA were analyzed. Mutant DNA samples as well as controls were confirmed by DNA sequencing. We detected 58 SMA cases (58.0%) by showing deletion of SMN1 exon 7. Considering clinical information available from 56 of them, the patient distribution was 26 (46.4%) SMA type I, 16 (28.6%) SMA type II and 14 (25.0%) SMA type III. Results generated by the new method was confirmed by PCR-RFLP and by DNA sequencing when required. In conclusion, a protocol based on real-time PCR was shown to be effective and specific for molecular analysis of SMA patients.

  20. Lineage-Specific Real-Time RT-PCR for Yellow Fever Virus Outbreak Surveillance, Brazil.

    PubMed

    Fischer, Carlo; Torres, Maria C; Patel, Pranav; Moreira-Soto, Andres; Gould, Ernest A; Charrel, Rémi N; de Lamballerie, Xavier; Nogueira, Rita Maria Ribeiro; Sequeira, Patricia C; Rodrigues, Cintia D S; Kümmerer, Beate M; Drosten, Christian; Landt, Olfert; Bispo de Filippis, Ana Maria; Drexler, Jan Felix

    2017-11-01

    The current yellow fever outbreak in Brazil prompted widespread yellow fever virus (YFV) vaccination campaigns, imposing a responsibility to distinguish between vaccine- and wild-type YFV-associated disease. We developed novel multiplex real-time reverse transcription PCRs that differentiate between vaccine and American wild-type YFV. We validated these highly specific and sensitive assays in an outbreak setting.

  1. STITCHER: A web resource for high-throughput design of primers for overlapping PCR applications.

    PubMed

    O'Halloran, Damien M

    2015-06-01

    Overlapping PCR is routinely used in a wide number of molecular applications. These include stitching PCR fragments together, generating fluorescent transcriptional and translational fusions, inserting mutations, making deletions, and PCR cloning. Overlapping PCR is also used for genotyping by traditional PCR techniques and in detection experiments using techniques such as loop-mediated isothermal amplification (LAMP). STITCHER is a web tool providing a central resource for researchers conducting all types of overlapping PCR experiments with an intuitive interface for automated primer design that's fast, easy to use, and freely available online (http://ohalloranlab.net/STITCHER.html). STITCHER can handle both single sequence and multi-sequence input, and specific features facilitate numerous other PCR applications, including assembly PCR, adapter PCR, and primer walking. Field PCR, and in particular, LAMP, offers promise as an on site tool for pathogen detection in underdeveloped areas, and STITCHER includes off-target detection features for pathogens commonly targeted using LAMP technology.

  2. Multiplex Droplet Digital PCR Quantification of Recurrent Somatic Mutations in Diffuse Large B-Cell and Follicular Lymphoma.

    PubMed

    Alcaide, Miguel; Yu, Stephen; Bushell, Kevin; Fornika, Daniel; Nielsen, Julie S; Nelson, Brad H; Mann, Koren K; Assouline, Sarit; Johnson, Nathalie A; Morin, Ryan D

    2016-09-01

    A plethora of options to detect mutations in tumor-derived DNA currently exist but each suffers limitations in analytical sensitivity, cost, or scalability. Droplet digital PCR (ddPCR) is an appealing technology for detecting the presence of specific mutations based on a priori knowledge and can be applied to tumor biopsies, including formalin-fixed paraffin embedded (FFPE) tissues. More recently, ddPCR has gained popularity in its utility in quantifying circulating tumor DNA. We have developed a suite of novel ddPCR assays for detecting recurrent mutations that are prevalent in common B-cell non-Hodgkin lymphomas (NHLs), including diffuse large B-cell lymphoma, follicular lymphoma, and lymphoplasmacytic lymphoma. These assays allowed the differentiation and counting of mutant and wild-type molecules using one single hydrolysis probe. We also implemented multiplexing that allowed the simultaneous detection of distinct mutations and an "inverted" ddPCR assay design, based on employing probes matching wild-type alleles, capable of detecting the presence of multiple single nucleotide polymorphisms. The assays successfully detected and quantified somatic mutations commonly affecting enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) (Y641) and signal transducer and activator of transcription 6 (STAT6) (D419) hotspots in fresh tumor, FFPE, and liquid biopsies. The "inverted" ddPCR approach effectively reported any single nucleotide variant affecting either of these 2 hotspots as well. Finally, we could effectively multiplex hydrolysis probes targeting 2 additional lymphoma-related hotspots: myeloid differentiation primary response 88 (MYD88; L265P) and cyclin D3 (CCND3; I290R). Our suite of ddPCR assays provides sufficient analytical sensitivity and specificity for either the invasive or noninvasive detection of multiple recurrent somatic mutations in B-cell NHLs. © 2016 American Association for Clinical Chemistry.

  3. SYBR Green Real-Time PCR Method To Detect Clostridium botulinum Type A▿

    PubMed Central

    Fenicia, Lucia; Anniballi, Fabrizio; De Medici, Dario; Delibato, Elisabetta; Aureli, Paolo

    2007-01-01

    Botulinum toxins (BoNTs) are classically produced by Clostridium botulinum but rarely also from neurotoxigenic strains of Clostridium baratii and Clostridium butyricum. BoNT type A (BoNT/A), BoNT/B, BoNT/E, and very rarely BoNT/F are mainly responsible for human botulism. Standard microbiological methods take into consideration only the detection of C. botulinum. The presumptive identification of the toxigenic strains together with the typing of BoNT has to be performed by mouse bioassay. The development of PCR-based methods for the detection and typing of BoNT-producing clostridia would be an ideal alternative to the mouse bioassay. The objective of this study was to develop a rapid and robust real-time PCR method for detecting C. botulinum type A. Four different techniques for the extraction and purification of DNA from cultured samples were initially compared. Of the techniques used, Chelex 100, DNeasy tissue kit, InstaGene matrix DNA, and boiling, the boiling technique was significantly less efficient than the other three. These did not give statistically different results, and Chelex 100 was chosen because it was less expensive than the others. In order to eliminate any false-negative results, an internal amplification control was synthesized and included in the amplification mixture according to ISO 22174. The specificity of the method was tested against 75 strains of C. botulinum type A, 4 strains of C. botulinum type Ab, and 101 nontarget strains. The detection limit of the reaction was less than 6 × 101 copies of C. botulinum type A DNA. The robustness of the method was confirmed using naturally contaminated stool specimens to evaluate the tolerance of inhibitor substances. SYBR green real-time PCR showed very high specificity for the detection of C. botulinum types A and Ab (inclusivity and exclusivity, 100%). PMID:17369349

  4. Comparison of the performance in detection of HPV infections between the high-risk HPV genotyping real time PCR and the PCR-reverse dot blot assays.

    PubMed

    Zhang, Lahong; Dai, Yibei; Chen, Jiahuan; Hong, Liquan; Liu, Yuhua; Ke, Qiang; Chen, Yiwen; Cai, Chengsong; Liu, Xia; Chen, Zhaojun

    2018-01-01

    A new multiplex real-time PCR assay, the high-risk HPV genotyping real time PCR assay (HR HPV RT-PCR), has been developed to detect 15 high-risk HPV types with respective viral loads. In this report, a total of 684 cervical specimens from women diagnosed with vaginitis were assessed by the HR HPV RT-PCR and the PCR reaction and reverse dot blot (PCR-RDB) assays, using a PCR-sequencing method as a reference standard. A total coincidence of 97.7% between the HR HPV RT PCR and the PCR-RDB assays was determined with a Kappa value of 0.953. The HR HPV RT PCR assay had sensitivity, specificity, and concordance rates (accuracy) of 99.7%, 99.7%, and 99.7%, respectively, as confirmed by PCR-sequencing, while the PCR-RDB assay had respective rates of 98.8%, 97.1%, and 98.0%. The overall rate of HPV infection, determined by PCR-sequencing, in women diagnosed with vaginitis was 49.85%, including 36.26% of single infection and 13.6% of multiple infections. The most common infections among the 15 high-risk HPV types in women diagnosed with vaginitis were HPV-52, HPV-16, and HPV-58, with a total detection rate of 10.23%, 7.75%, and 5.85%, respectively. We conclude that the HR HPV RT PCR assay exhibits better clinical performance than the PCR-RDB assay, and is an ideal alternative method for HPV genotyping. In addition, the HR HPV RT PCR assay provides HPV DNA viral loads, and could serve as a quantitative marker in the diagnosis and treatment of single and multiple HPV infections. © 2017 Wiley Periodicals, Inc.

  5. Methicillin-Resistant Staphylococcus aureus (MRSA) Detection: Comparison of Two Molecular Methods (IDI-MRSA PCR Assay and GenoType MRSA Direct PCR Assay) with Three Selective MRSA Agars (MRSA ID, MRSASelect, and CHROMagar MRSA) for Use with Infection-Control Swabs▿

    PubMed Central

    van Hal, S. J.; Stark, D.; Lockwood, B.; Marriott, D.; Harkness, J.

    2007-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is an increasing problem. Rapid detection of MRSA-colonized patients has the potential to limit spread of the organism. We evaluated the sensitivities and specificities of MRSA detection by two molecular methods (IDI-MRSA PCR assay and GenoType MRSA Direct PCR assay) and three selective MRSA agars (MRSA ID, MRSASelect, and CHROMagar MRSA), using 205 (101 nasal, 52 groin, and 52 axillary samples) samples from consecutive known MRSA-infected and/or -colonized patients. All detection methods had higher MRSA detection rates for nasal swabs than for axillary and groin swabs. Detection of MRSA by IDI-MRSA was the most sensitive method, independent of the site (94% for nasal samples, 80% for nonnasal samples, and 90% overall). The sensitivities of the GenoType MRSA Direct assay and the MRSA ID, MRSASelect, and CHROMagar MRSA agars with nasal swabs were 70%, 72%, 68%, and 75%, respectively. All detection methods had high specificities (95 to 99%), independent of the swab site. Extended incubation for a further 24 h with selective MRSA agars increased the detection of MRSA, with a corresponding decline in specificity secondary to a significant increase in false-positive results. There was a noticeable difference in test performance of the GenoType MRSA Direct assay in detection of MRSA (28/38 samples [74%]) compared with detection of nonmultiresistant MRSA (17/31 samples [55%]) (susceptible to two or more non-β-lactam antibiotics). This was not observed with selective MRSA agar plates or IDI-MRSA. Although it is more expensive, in addition to rapid turnaround times of 2 to 4 h, IDI-MRSA offers greater detection of MRSA colonization, independent of the swab site, than do conventional selective agars and GenoType MRSA Direct. PMID:17537949

  6. Specific PCR primers directed to identify cryI and cryIII genes within a Bacillus thuringiensis strain collection.

    PubMed Central

    Cerón, J; Ortíz, A; Quintero, R; Güereca, L; Bravo, A

    1995-01-01

    In this paper we describe a PCR strategy that can be used to rapidly identify Bacillus thuringiensis strains that harbor any of the known cryI or cryIII genes. Four general PCR primers which amplify DNA fragments from the known cryI or cryIII genes were selected from conserved regions. Once a strain was identified as an organism that contains a particular type of cry gene, it could be easily characterized by performing additional PCR with specific cryI and cryIII primers selected from variable regions. The method described in this paper can be used to identify the 10 different cryI genes and the five different cryIII genes. One feature of this screening method is that each cry gene is expected to produce a PCR product having a precise molecular weight. The genes which produce PCR products having different sizes probably represent strains that harbor a potentially novel cry gene. Finally, we present evidence that novel crystal genes can be identified by the method described in this paper. PMID:8526493

  7. Single tube multiplex real-time PCR for the rapid detection of herpesvirus infections of the central nervous system.

    PubMed

    Sankuntaw, Nipaporn; Sukprasert, Saovaluk; Engchanil, Chulapan; Kaewkes, Wanlop; Chantratita, Wasun; Pairoj, Vantanit; Lulitanond, Viraphong

    2011-01-01

    Human herpesvirus infection of immunocompromised hosts may lead to central nervous system (CNS) infection and diseases. In this study, a single tube multiplex real-time PCR was developed for the detection of five herpesviruses (HSV-1, HSV-2, VZV, EBV and CMV) in clinical cerebrospinal fluid (CSF) specimens. Two primer pairs specific for the herpesvirus polymerase gene and five hybridization probe pairs for the specific identification of the herpesvirus types were used in a LightCycler multiplex real-time PCR. A singleplex real-time PCR was first optimized and then applied to the multiplex real-time PCR. The singleplex and multiplex real-time PCRs showed no cross-reactivity. The sensitivity of the singleplex real-time PCR was 1 copy per reaction for each herpesvirus, while that of the multiplex real-time PCR was 1 copy per reaction for HSV-1 and VZV and 10 copies per reaction for HSV-2, EBV and CMV. Intra and inter-assay variations of the single tube multiplex assay were in the range of 0.02%-3.67% and 0.79%-4.35%, respectively. The assay was evaluated by testing 62 clinical CSF samples and was found to have equivalent sensitivity, specificity and agreement as the routine real-time PCR, but reducing time, cost and amount of used sample. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. First detection of canine parvovirus type 2b from diarrheic dogs in Himachal Pradesh.

    PubMed

    Sharma, Shalini; Dhar, Prasenjit; Thakur, Aneesh; Sharma, Vivek; Sharma, Mandeep

    2016-09-01

    The present study was conducted to detect the presence of canine parvovirus (CPV) among diarrheic dogs in Himachal Pradesh and to identify the most prevalent antigenic variant of CPV based on molecular typing and sequence analysis of VP2 gene. A total of 102 fecal samples were collected from clinical cases of diarrhea or hemorrhagic gastroenteritis from CPV vaccinated or non-vaccinated dogs. Samples were tested using CPV-specific polymerase chain reaction (PCR) targeting VP2 gene, multiplex PCR for detection of CPV-2a and CPV-2b antigenic variants, and a PCR for the detection of CPV-2c. CPV-2b isolate was cultured on Madin-Darby canine kidney (MDCK) cell lines and sequenced using VP2 structural protein gene. Multiple alignment and phylogenetic analysis was done using ClustalW and MEGA6 and inferred using the Neighbor-Joining method. No sample was found positive for the original CPV strain usually present in the vaccine. However, about 50% (52 out of 102) of the samples were found to be positive with CPV-2ab PCR assay that detects newer variants of CPV circulating in the field. In addition, multiplex PCR assay that identifies both CPV-2ab and CPV-2b revealed that CPV-2b was the major antigenic variant present in the affected dogs. A PCR positive isolate of CPV-2b was adapted to grow in MDCK cells and produced characteristic cytopathic effect after 5 th passage. Multiple sequence alignment of VP2 structural gene of CPV-2b isolate (Accession number HG004610) used in the study was found to be similar to other sequenced isolates in NCBI sequence database and showed 98-99% homology. This study reports the first detection of CPV-2b in dogs with hemorrhagic gastroenteritis in Himachal Pradesh and absence of other antigenic types of CPV. Further, CPV-specific PCR assay can be used for rapid confirmation of circulating virus strains under field conditions.

  9. Rapid PCR-mediated synthesis of competitor molecules for accurate quantification of beta(2) GABA(A) receptor subunit mRNA.

    PubMed

    Vela, J; Vitorica, J; Ruano, D

    2001-12-01

    We describe a fast and easy method for the synthesis of competitor molecules based on non-specific conditions of PCR. RT-competitive PCR is a sensitive technique that allows quantification of very low quantities of mRNA molecules in small tissue samples. This technique is based on the competition established between the native and standard templates for nucleotides, primers or other factors during PCR. Thus, the most critical parameter is the use of good internal standards to generate a standard curve from which the amount of native sequences can be properly estimated. At the present time different types of internal standards and methods for their synthesis have been described. Normally, most of these methods are time-consuming and require the use of different sets of primers, different rounds of PCR or specific modifications, such as site-directed mutagenesis, that need subsequent analysis of the PCR products. Using our method, we obtained in a single round of PCR and with the same primer pair, competitor molecules that were successfully used in RT-competitive PCR experiments. The principal advantage of this method is high versatility and economy. Theoretically it is possible to synthesize a specific competitor molecule for each primer pair used. Finally, using this method we have been able to quantify the increase in the expression of the beta(2) GABA(A) receptor subunit mRNA that occurs during rat hippocampus development.

  10. Comparison of culture and a multiplex probe PCR for identifying Mycoplasma species in bovine milk, semen and swab samples

    PubMed Central

    Parker, Alysia M.; House, John K.; Hazelton, Mark S.; Bosward, Katrina L.; Sheehy, Paul A.

    2017-01-01

    Mycoplasma spp. are a major cause of mastitis, arthritis and pneumonia in cattle, and have been associated with reproductive disorders in cows. While culture is the traditional method of identification the use of PCR has become more common. Several investigators have developed PCR protocols to detect M. bovis in milk, yet few studies have evaluated other sample types or other important Mycoplasma species. Therefore the objective of this study was to develop a multiplex PCR assay to detect M. bovis, M. californicum and M. bovigenitalium, and evaluate its analytical performance against traditional culture of bovine milk, semen and swab samples. The PCR specificity was determined and the limit of detection evaluated in spiked milk, semen and swabs. The PCR was then compared to culture on 474 field samples from individual milk, bulk tank milk (BTM), semen and swab (vaginal, preputial, nose and eye) samples. Specificity analysis produced appropriate amplification for all M. bovis, M. californicum and M. bovigenitalium isolates. Amplification was not seen for any of the other Mollicutes or eubacterial isolates. The limit of detection of the PCR was best in milk, followed by semen and swabs. When all three Mycoplasma species were present in a sample, the limit of detection increased. When comparing culture and PCR, overall there was no significant difference in the proportion of culture and PCR positive samples. Culture could detect significantly more positive swab samples. No significant differences were identified for semen, individual milk or BTM samples. PCR identified five samples with two species present. Culture followed by 16S-23S rRNA sequencing did not enable identification of more than one species. Therefore, the superior method for identification of M. bovis, M. californicum and M. bovigenitalium may be dependent on the sample type being analysed, and whether the identification of multiple target species is required. PMID:28264012

  11. Competitive amplification of differentially melting amplicons (CADMA) enables sensitive and direct detection of all mutation types by high-resolution melting analysis.

    PubMed

    Kristensen, Lasse S; Andersen, Gitte B; Hager, Henrik; Hansen, Lise Lotte

    2012-01-01

    Sensitive and specific mutation detection is of particular importance in cancer diagnostics, prognostics, and individualized patient treatment. However, the majority of molecular methodologies that have been developed with the aim of increasing the sensitivity of mutation testing have drawbacks in terms of specificity, convenience, or costs. Here, we have established a new method, Competitive Amplification of Differentially Melting Amplicons (CADMA), which allows very sensitive and specific detection of all mutation types. The principle of the method is to amplify wild-type and mutated sequences simultaneously using a three-primer system. A mutation-specific primer is designed to introduce melting temperature decreasing mutations in the resulting mutated amplicon, while a second overlapping primer is designed to amplify both wild-type and mutated sequences. When combined with a third common primer very sensitive mutation detection becomes possible, when using high-resolution melting (HRM) as detection platform. The introduction of melting temperature decreasing mutations in the mutated amplicon also allows for further mutation enrichment by fast coamplification at lower denaturation temperature PCR (COLD-PCR). For proof-of-concept, we have designed CADMA assays for clinically relevant BRAF, EGFR, KRAS, and PIK3CA mutations, which are sensitive to, between 0.025% and 0.25%, mutated alleles in a wild-type background. In conclusion, CADMA enables highly sensitive and specific mutation detection by HRM analysis. © 2011 Wiley Periodicals, Inc.

  12. Genotype analysis, using PCR with type-specific primers, of hepatitis B virus isolates from patients coinfected with hepatitis delta virus genotype II from Miyako Island, Japan.

    PubMed

    Moriyama, Moriyama; Taira, Masaaki; Matsumura, Hiroshi; Aoki, Hiroshi; Mikuni, Morio; Kaneko, Miki; Shioda, Atsuo; Iwaguchi, Kayo; Arai, Shinobu; Ichijima, Sagiri; Iwasaki, Hiroko; Tanaka, Naohide; Abe, Kenji; Arakawa, Yasuyuki

    2003-01-01

    The aims of this study were to determine the hepatitis B virus (HBV) genotypes in hepatitis delta virus (HDV) RNA-positive patients and to characterize the HBV nucleotide sequences that may be found on a distant island of Japan. This study included three patients with chronic hepatitis who were positive for hepatitis B surface antigen (enzyme-linked immunosorbent assay; ELISA), HDV antibody (ELISA) and HDV RNA by polymerase chain reaction (PCR). The HBV genotype was determined by nested PCR using type-specific primers. The first-round PCR products from two patients were sequenced, followed by an investigation of nucleotide homology. Viruses from all three patients in this study were classified as HBV genotype B. Comparison with HBV isolates from geographically neighboring regions revealed that the two HBV isolates had 97.9-98.6% identity at the nucleotide level to a Chinese isolate, 98.3-98.6% identity to the Okinawa isolate and 98.6-98.8% identity to a Japanese isolate of genotype B. On phylogenetic analysis, the HBV isolates from the two patients were classified as HBV genotype B. The HBV isolates of cases 1 and 3 clustered in the same group as isolates from the Chinese mainland and Japanese mainland, which are geographically near Miyako Island. The HBV isolates coinfected with HDV found on Miyako Island were of genotype B. The PCR method based on genotype-specific primers was useful in determining HBV genotypes. Copyright 2003 S. Karger AG, Basel

  13. Type II and III Taste Bud Cells Preferentially Expressed Kainate Glutamate Receptors in Rats.

    PubMed

    Lee, Sang-Bok; Lee, Cil-Han; Kim, Se-Nyun; Chung, Ki-Myung; Cho, Young-Kyung; Kim, Kyung-Nyun

    2009-12-01

    Glutamate-induced cobalt uptake reveals that non-NMDA glutamate receptors (GluRs) are present in rat taste bud cells. Previous studies involving glutamate induced cobalt staining suggest this uptake mainly occurs via kainate type GluRs. It is not known which of the 4 types of taste bud cells express subunits of kainate GluR. Circumvallate and foliate papillae of Sprague-Dawley rats (45~60 days old) were used to search for the mRNAs of subunits of non-NMDA GluRs using RT-PCR with specific primers for GluR1-7, KA1 and KA2. We also performed RT-PCR for GluR5, KA1, PLCbeta2, and NCAM/SNAP 25 in isolated single cells from taste buds. Taste epithelium, including circumvallate or foliate papilla, express mRNAs of GluR5 and KA1. However, non-taste tongue epithelium expresses no subunits of non-NMDA GluRs. Isolated single cell RT-PCR reveals that the mRNAs of GluR5 and KA1 are preferentially expressed in Type II and Type III cells over Type I cells.

  14. A candidate pheromone receptor and two odorant receptors of the hawkmoth Manduca sexta.

    PubMed

    Patch, Harland M; Velarde, Rodrigo A; Walden, Kimberly K O; Robertson, Hugh M

    2009-05-01

    In this study, we cloned and characterized three Manduca sexta odorant receptors (ORs). One receptor is a putative pheromone receptor expressed exclusively in a cell associated with male-specific type-I trichoid sensilla. We describe the results of real-time PCR (RT-PCR) and quantitative real-time PCR (qRT-PCR) experiments that show MsextaOR1 is expressed only in male antennae. In situ hybridization labels a single cell associated with type-1 trichoid sensilla, which houses two neurons that have been previously determined to respond to the major components of the pheromone blend. The second receptor, MsextaOR2, was discovered using degenerate primers designed to conserved motifs of a unique group ORs that share as much as 88% identity. Comparison of RT-PCR, qRT-PCR, and in situ hybridization results with those of ORs in the Drosophila melanogaster Or83b subfamily shows a strong sequence and expression pattern similarity. The third receptor, MsextaOR3, was found by 5'-end sequencing of a normalized and subtracted cDNA library from male M. sexta antennae. RT-PCR and qRT-PCR show that this receptor is expressed only in male and female antennae. These are the first ORs, including a putative pheromone receptor, to be described from M. sexta.

  15. A new method for simultaneous detection and discrimination of Bovine herpesvirus types 1 (BoHV-1) and 5 (BoHV-5) using real time PCR with high resolution melting (HRM) analysis.

    PubMed

    Marin, M S; Quintana, S; Leunda, M R; Recavarren, M; Pagnuco, I; Späth, E; Pérez, S; Odeón, A

    2016-01-01

    Bovine herpesvirus types 1 (BoHV-1) and 5 (BoHV-5) are antigenically and genetically similar. The aim of this study was to develop a simple and reliable one-step real time PCR assay with high resolution melting (HRM) analysis for the simultaneous detection and differentiation of BoHV-1 and BoHV-5. Optimization of assay conditions was performed with DNA from reference strains. Then, DNA from field isolates, clinical samples and tissue samples of experimentally infected animals were studied by real time PCR-HRM. An efficient amplification of real time PCR products was obtained, and a clear melting curve and appropriate melting peaks for both viruses were achieved in the HRM curve analysis for BoHV type identification. BoHV was identified in all of the isolates and clinical samples, and BoHV types were properly differentiated. Furthermore, viral DNA was detected in 12/18 and 7/18 samples from BoHV-1- and BoHV-5-infected calves, respectively. Real time PCR-HRM achieved a higher sensitivity compared with virus isolation or conventional PCR. In this study, HRM was used as a novel procedure. This method provides rapid, sensitive, specific and simultaneous detection of bovine alpha-herpesviruses DNA. Thus, this technique is an excellent tool for diagnosis, research and epidemiological studies of these viruses in cattle. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. A serotype-specific polymerase chain reaction for identification of Pasteurella multocida serotype 1

    USGS Publications Warehouse

    Rocke, T.E.; Smith, S.R.; Miyamoto, A.; Shadduck, D.J.

    2002-01-01

    A serotype-specific polymerase chain reaction (PCR) assay was developed for detection and identification of Pasteurella multocida serotype 1, the causative agent of avian cholera in wild waterfowl. Arbitrarily primed PCR was used to detect DNA fragments that distinguish serotype 1 from the other 15 serotypes of P. multocida (with the exception of serotype 14). Oligonucleotide primers were constructed from these sequences, and a PCR assay was optimized and evaluated. PCR reactions consistently resulted in amplification products with reference strains 1 and 14 and all other serotype 1 strains tested, with cell numbers as low as 2.3 cells/ml. No amplification products were produced with other P. multocida serotypes or any other bacterial species tested. To compare the sensitivity and further test the specificity of this PCR assay with traditional culturing and serotyping techniques, tissue samples from 84 Pekin ducks inoculated with field strains of P. multocida and 54 wild lesser snow geese collected during an avian cholera outbreak were provided by other investigators working on avian cholera. PCR was as sensitive (58/64) as routine isolation (52/64) in detecting and identifying P. multocida serotype 1 from the livers of inoculated Pekins that became sick or died from avian cholera. No product was amplified from tissues of 20 other Pekin ducks that received serotypes other than type 1 (serotype 3, 12 × 3, or 10) or 12 control birds. Of the 54 snow geese necropsied and tested for P. multocida, our PCR detected and identified the bacteria from 44 compared with 45 by direct isolation. The serotype-specific PCR we developed was much faster and less labor intensive than traditional culturing and serotyping procedures and could result in diagnosis of serotype 1 pasteurellosis within 24 hr of specimen submission.

  17. Identification of Cell Type-Specific Differences in Erythropoietin Receptor Signaling in Primary Erythroid and Lung Cancer Cells

    PubMed Central

    Salopiata, Florian; Depner, Sofia; Wäsch, Marvin; Böhm, Martin E.; Mücke, Oliver; Plass, Christoph; Lehmann, Wolf D.; Kreutz, Clemens; Timmer, Jens; Klingmüller, Ursula

    2016-01-01

    Lung cancer, with its most prevalent form non-small-cell lung carcinoma (NSCLC), is one of the leading causes of cancer-related deaths worldwide, and is commonly treated with chemotherapeutic drugs such as cisplatin. Lung cancer patients frequently suffer from chemotherapy-induced anemia, which can be treated with erythropoietin (EPO). However, studies have indicated that EPO not only promotes erythropoiesis in hematopoietic cells, but may also enhance survival of NSCLC cells. Here, we verified that the NSCLC cell line H838 expresses functional erythropoietin receptors (EPOR) and that treatment with EPO reduces cisplatin-induced apoptosis. To pinpoint differences in EPO-induced survival signaling in erythroid progenitor cells (CFU-E, colony forming unit-erythroid) and H838 cells, we combined mathematical modeling with a method for feature selection, the L1 regularization. Utilizing an example model and simulated data, we demonstrated that this approach enables the accurate identification and quantification of cell type-specific parameters. We applied our strategy to quantitative time-resolved data of EPO-induced JAK/STAT signaling generated by quantitative immunoblotting, mass spectrometry and quantitative real-time PCR (qRT-PCR) in CFU-E and H838 cells as well as H838 cells overexpressing human EPOR (H838-HA-hEPOR). The established parsimonious mathematical model was able to simultaneously describe the data sets of CFU-E, H838 and H838-HA-hEPOR cells. Seven cell type-specific parameters were identified that included for example parameters for nuclear translocation of STAT5 and target gene induction. Cell type-specific differences in target gene induction were experimentally validated by qRT-PCR experiments. The systematic identification of pathway differences and sensitivities of EPOR signaling in CFU-E and H838 cells revealed potential targets for intervention to selectively inhibit EPO-induced signaling in the tumor cells but leave the responses in erythroid progenitor cells unaffected. Thus, the proposed modeling strategy can be employed as a general procedure to identify cell type-specific parameters and to recommend treatment strategies for the selective targeting of specific cell types. PMID:27494133

  18. Comparison of the performance of three PCR assays for the detection and differentiation of Theileria orientalis genotypes.

    PubMed

    Perera, Piyumali K; Gasser, Robin B; Pulford, David J; Stevenson, Mark A; Firestone, Simon M; McFadden, Andrew M J; Jabbar, Abdul

    2015-03-31

    Oriental theileriosis is a tick-borne disease of bovines caused by the members of the Theileria orientalis complex. Recently, we developed a multiplexed tandem (MT) PCR to detect, differentiate and quantitate four genotypes (i.e., buffeli, chitose, ikeda and type 5) of T. orientalis. In this study, we used MT PCR to assess the prevalence and infection intensity of four T. orientalis genotypes in selected cattle herds that experienced oriental theileriosis outbreaks in New Zealand, and compared the sensitivities and specificities of MT PCR, PCR-high resolution melting (PCR-HRM) and a TaqMan qPCR. MT PCR, PCR-HRM analysis for T. orientalis and a TaqMan qPCR assay for ikeda genotype were employed to test 154 and 88 cattle blood samples from North (where oriental theileriosis outbreaks had occurred; designated as Group 1) and South (where no outbreaks had been reported; Group 2) Islands of New Zealand, respectively. Quantitative data from MT PCR assay were analyzed using generalized linear model and paired-sample t-test. The diagnostic specificity and sensitivity of the assays were estimated using a Bayesian latent class modeling approach. In Group 1, 99.4% (153/154) of cattle were test-positive for T. orientalis in both the MT PCR and PCR-HRM assays. The apparent prevalences of genotype ikeda in Group 1 were 87.6% (134/153) and 87.7% (135/154) using the MT PCR and Ikeda TaqMan qPCR assays, respectively. Using the MT PCR test, all four genotypes of T. orientalis were detected. The infection intensity estimated for genotype ikeda was significantly higher (P = 0.009) in severely anaemic cattle than in those without anaemia, and this intensity was significantly higher than that of buffeli (P < 0.001) in the former cattle. Bayesian latent class analysis showed that the diagnostic sensitivities (97.1-98.9%) and specificities (96.5-98.9%) of the three PCR assays were very comparable. The present findings show the advantages of using the MT PCR assay as a useful tool for in-depth epidemiological and transmission studies of T. orientalis worldwide.

  19. CRISPR Is an Optimal Target for the Design of Specific PCR Assays for Salmonella enterica Serotypes Typhi and Paratyphi A

    PubMed Central

    Fabre, Laetitia; Le Hello, Simon; Roux, Chrystelle; Issenhuth-Jeanjean, Sylvie; Weill, François-Xavier

    2014-01-01

    Background Serotype-specific PCR assays targeting Salmonella enterica serotypes Typhi and Paratyphi A, the causal agents of typhoid and paratyphoid fevers, are required to accelerate formal diagnosis and to overcome the lack of typing sera and, in some situations, the need for culture. However, the sensitivity and specificity of such assays must be demonstrated on large collections of strains representative of the targeted serotypes and all other bacterial populations producing similar clinical symptoms. Methodology Using a new family of repeated DNA sequences, CRISPR (clustered regularly interspaced short palindromic repeats), as a serotype-specific target, we developed a conventional multiplex PCR assay for the detection and differentiation of serotypes Typhi and Paratyphi A from cultured isolates. We also developed EvaGreen-based real-time singleplex PCR assays with the same two sets of primers. Principal findings We achieved 100% sensitivity and specificity for each protocol after validation of the assays on 188 serotype Typhi and 74 serotype Paratyphi A strains from diverse genetic groups, geographic origins and time periods and on 70 strains of bacteria frequently encountered in bloodstream infections, including 29 other Salmonella serotypes and 42 strains from 38 other bacterial species. Conclusions The performance and convenience of our serotype-specific PCR assays should facilitate the rapid and accurate identification of these two major serotypes in a large range of clinical and public health laboratories with access to PCR technology. These assays were developed for use with DNA from cultured isolates, but with modifications to the assay, the CRISPR targets could be used in the development of assays for use with clinical and other samples. PMID:24498453

  20. [Detection of KRAS mutation in colorectal cancer patients' cfDNA with droplet digital PCR].

    PubMed

    Luo, Yuwen; Li, Yao

    2018-03-25

    This study aims to develop a new method for the detection of KRAS mutations related to colorectal cancer in cfDNA, and to evaluate the sensitivity and accuracy of the detection. We designed a method of cfDNA based KRAS detection by droplets digital PCR (ddPCR). The theoretical performance of the method is evaluated by reference standard and compared to the ARMS PCR method. Two methods, ddPCR and qPCR, were successfully established to detect KRAS wild type and 7 mutants. Both methods were validated using plasmid standards and actual samples. The results were evaluated by false positive rate, linearity, and limit of detection. Finally, 52 plasma cfDNA samples from patients and 20 samples from healthy people were tested, the clinical sensitivity is 97.64%, clinical specificity is 81.43%. ddPCR method shows higher performance than qPCR. The LOD of ddPCR method reached single digits of cfDNA copies, it can detect as low as 0.01% to 0.04% mutation abundance.

  1. Rapid real-time diagnostic PCR for Trichophyton rubrum and Trichophyton mentagrophytes in patients with tinea unguium and tinea pedis using specific fluorescent probes.

    PubMed

    Miyajima, Yoshiharu; Satoh, Kazuo; Uchida, Takao; Yamada, Tsuyoshi; Abe, Michiko; Watanabe, Shin-ichi; Makimura, Miho; Makimura, Koichi

    2013-03-01

    Trichophyton rubrum and Trichophyton mentagrophytes human-type (synonym, Trichophyton interdigitale (anthropophilic)) are major causative pathogens of tinea unguium. For suitable diagnosis and treatment, rapid and accurate identification of etiologic agents in clinical samples using reliable molecular based method is required. For identification of organisms causing tinea unguium, we developed a new real-time polymerase chain reaction (PCR) with a pan-fungal primer set and probe, as well as specific primer sets and probes for T. rubrum and T. mentagrophytes human-type. We designed two sets of primers from the internal transcribed spacer 1 (ITS1) region of fungal ribosomal DNA (rDNA) and three quadruple fluorescent probes, one for detection wide range pathogenic fungi and two for classification of T. rubrum and T. mentagrophytes by specific binding to different sites in the ITS1 region. We investigated the specificity of these primer sets and probes using fungal genomic DNA, and also examined 42 clinical specimens with our real-time PCR. The primers and probes specifically detected T. rubrum, T. mentagrophytes, and a wide range of pathogenic fungi. The causative pathogens were identified in 42 nail and skin samples from 32 patients. The total time required for identification of fungal species in each clinical specimen was about 3h. The copy number of each fungal DNA in the clinical specimens was estimated from the intensity of fluorescence simultaneously. This PCR system is one of the most rapid and sensitive methods available for diagnosing dermatophytosis, including tinea unguium and tinea pedis. Copyright © 2012 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Distribution of Diego blood group alleles and identification of four novel mutations on exon 19 of SLC4A1 gene in the Chinese Han population by polymerase chain reaction sequence-based typing.

    PubMed

    Xu, X G; He, J; He, Y M; Tao, S D; Ying, Y L; Zhu, F M; Lv, H J; Yan, L X

    2011-04-01

    The Diego blood group system plays an important role in transfusion medicine. Genotyping of DI1 and DI2 alleles is helpful for the investigation into haemolytic disease of the newborn (HDN) and for the development of rare blood group databases. Here, we set up a polymerase chain reaction sequence-based typing (PCR-SBT) method for genotyping of Diego blood group alleles. Specific primers for exon 19 of the solute carrier family 4, anion exchanger, member1 (SLC4A1) gene were designed, and our PCR-SBT method was established and optimized for Diego genotyping. A total of 1053 samples from the Chinese Han population and the family members of a rare proband with DI1/DI1 genotype were investigated by the PCR-SBT method. An allele-specific primer PCR (PCR-ASP) was used to verify the reliability of the PCR-SBT method. The frequencies of DI1 and DI2 alleles in the Chinese Han population were 0.0247 and 0.9753, respectively. Six new single nucleotide polymorphisms (SNPs) were found in the sequenced regions of the SLC4A1 gene, and four novel SNPs located in the exon 19, in which one SNP could cause an amino acid alteration of Ala858Ser on erythrocyte anion exchanger protein 1. The genotypes for Diego blood group were identical among 41 selected samples with PCR-ASP and PCR-SBT. The PCR-SBT method can be used in Diego genotyping as a substitute of serological technique when the antisera is lacking and was suitable for screening large numbers of donors in rare blood group databases. © 2010 The Author(s). Vox Sanguinis © 2010 International Society of Blood Transfusion.

  3. Human T-cell lymphotropic virus type 1 provirus and phylogenetic analysis in patients with mycosis fungoides and their family relatives.

    PubMed

    Shohat, M; Shohat, B; Mimouni, D; Pauli, G; Ellerbrok, H; David, M; Hodak, E

    2006-08-01

    Mycosis fungoides (MF) is a cutaneous T-cell lymphoma of unknown aetiology. A pathogenic role of human T-cell lymphotropic virus type 1 (HTLV-1) has been suggested but remains controversial. To determine whether MF is linked to HTLV-1. Blood samples were collected from 60 patients, 15 family relatives of patients with MF (MFRs), 20 healthy controls and 10 patients with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The presence of HTLV-1 antibodies in serum was tested by the Western blot rp21e-enhanced test. DNA was extracted from the blood with the Qiagen blood kit. We used 500 ng of DNA either in conventional HTLV-1-specific polymerase chain reaction (PCR) or in real-time PCR using primers sk43 and sk44 together with a tax-specific fluorescent probe. In Western blot, antibodies against three to four HTLV-1 antigens were detected in 52% of patients with MF. All of the patients with HAM/TSP were positive, while only 7% of the MFRs and none of the 20 healthy controls reacted with HTLV-1 antigens in Western blot. One of 60 patients with MF and one of 15 MFRs were positive in HTLV-1 PCR. These two PCR-positive samples which were quantified in real-time PCR showed that fewer than five in 10(6) cells were HTLV-1 infected. We succeeded in amplifying and sequencing the 5' end of the provirus from the blood of the PCR-positive MFR by seminested PCR. A positive result was also obtained in this test. Phylogenetic tree analyses revealed a high homology of this sequence with other HTLV-1 sequences from the Middle East. The above PCR-positive MFR was the brother of a PCR-negative patient with MF. These findings demonstrate that HTLV-1 is probably not the aetiological agent of MF. However, it may play a role in immunosuppression and in the spreading of the disease.

  4. [Molecular typing of 12 Brucella strains isolated in Guizhou province in 2010-2013].

    PubMed

    Wang, Yue; Chen, Hong; Liu, Ying; Zhou, Jingzhu; Li, Shijun; Hang, Yan; Tang, Guangpeng; Wang, Dingming; Chen, Guichun

    2015-09-01

    To identify and characterize the Brucella strains from Guizhou province in 2010-2013. A total of 12 strains of Brucella suspicious bacteria were isolated in Guizhou province from 2010 to 2013. Four strains (GZLL3, GZLL4, GZLL11 and SH2) were isolated from goat blood samples and eight strains (SH4, GZZY, GZSQ, GZZA, BR13001, BR13004, BR13005 and BR13006) were isolated from blood samples of patient 12 Brucella suspicious strains were identified and characterized using conventional methods. Brucella genus specific gene BCSP31-based PCR (BCSP31-PCR) was used to identify the genus of Brucella and IS711 insert sequence-based PCR (AMOS-PCR) was applied to identify the species of Brucella strains. Goats and patients originated Brucella strains were comparatively analysed using Pulse-field Gel Electrophoresis (PFGE). Both of conventional methods and PCR identified the 12 Brucella suspicious strains as B. melitensis biotype 3. BCSP31-PCR identification results showed that a specific DNA bands (223 bp) were detected in all the 12 strains and positive control samples with no DNA band in negative samples. AMOS-PCR amplified a 731 bp-DNA bands in all the 12 strains, with 731 bp, 498 bp and 275 bp in M5, S2 and A19 strains, respectively, and no DNA band was detected in the negative control samples. PFGE analysis showed that 12 Brucella isolates from patients and goats showed consistent PFGE patterns with the digestion of restriction enzyme Xba I. The epidemic species/type of Brucella in both human and animal in Guizhou province was B. melitensis biotype 3 and goat was the main animal source of infection of brucellosis in Guizhou province.

  5. An outbreak of duck hepatitis A virus type 1 infection in Japan.

    PubMed

    Kamomae, Masahiro; Kameyama, Mamoru; Ishii, Jun; Nabe, Mikoto; Ogura, Yuji; Iseki, Hiroshi; Yamamoto, Yu; Mase, Masaji

    2017-05-23

    In June 2015, a highly fatal and acute disease broke out in a duckling farm in Hyogo Prefecture, Japan. The birds exhibited poor growth, reduced movement, lying in a dorsal recumbent position, depression, lethargy, ataxia and opisthotonus, with a high mortality rate of approximately 76%. By performing a reverse transcription-polymerase chain reaction (RT-PCR) using primers specific for duck hepatitis A virus type 1 (DHAV-1), we obtained the PCR products of a predicted size. The nucleotide sequences of the PCR products showed a >96% identity with that of the DHAV-1, HB02 strain, which was isolated in China. To our knowledge, this is the first time that the DHAV-1 virus has been isolated since its outbreak in Japan in 1963.

  6. Droplet digital PCR for detection and quantification of circulating tumor DNA in plasma of head and neck cancer patients.

    PubMed

    van Ginkel, Joost H; Huibers, Manon M H; van Es, Robert J J; de Bree, Remco; Willems, Stefan M

    2017-06-19

    During posttreatment surveillance of head and neck cancer patients, imaging is insufficiently accurate for the early detection of relapsing disease. Free circulating tumor DNA (ctDNA) may serve as a novel biomarker for monitoring tumor burden during posttreatment surveillance of these patients. In this exploratory study, we investigated whether low level ctDNA in plasma of head and neck cancer patients can be detected using Droplet Digital PCR (ddPCR). TP53 mutations were determined in surgically resected primary tumor samples from six patients with high stage (II-IV), moderate to poorly differentiated head and neck squamous cell carcinoma (HNSCC). Subsequently, mutation specific ddPCR assays were designed. Pretreatment plasma samples from these patients were examined on the presence of ctDNA by ddPCR using the mutation-specific assays. The ddPCR results were evaluated alongside clinicopathological data. In all cases, plasma samples were found positive for targeted TP53 mutations in varying degrees (absolute quantification of 2.2-422 mutational copies/ml plasma). Mutations were detected in wild-type TP53 background templates of 7667-156,667 copies/ml plasma, yielding fractional abundances of down to 0.01%. Our results show that detection of tumor specific TP53 mutations in low level ctDNA from HNSCC patients using ddPCR is technically feasible and provide ground for future research on ctDNA quantification for the use of diagnostic biomarkers in the posttreatment surveillance of HNSCC patients.

  7. Rapid identification of dairy lactic acid bacteria by M13-generated, RAPD-PCR fingerprint databases.

    PubMed

    Rossetti, Lia; Giraffa, Giorgio

    2005-11-01

    About a thousand lactic acid bacteria (LAB) isolated from dairy products, especially cheeses, were identified and typed by species-specific PCR and RAPD-PCR, respectively. RAPD-PCR profiles, which were obtained by using the M13 sequence as a primer, allowed us to implement a large database of different fingerprints, which were analysed by BioNumerics software. Cluster analysis of the combined RAPD-PCR fingerprinting profiles enabled us to implement a library, which is a collection of library units, which in turn is a selection of representative database entries. A library unit, in this case, can be considered to be a definable taxon. The strains belonged to 11 main RAPD-PCR fingerprinting library units identified as Lactobacillus casei/paracasei, Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacillus helveticus, Lactobacillus delbrueckii, Lactobacillus fermentum, Lactobacillus brevis, Enterococcus faecium, Enterococcus faecalis, Streptococcus thermophilus and Lactococcus lactis. The possibility to routinely identify newly typed, bacterial isolates by consulting the library of the software was valued. The proposed method could be suggested to refine previous strain identifications, eliminate redundancy and dispose of a technologically useful LAB strain collection. The same approach could also be applied to identify LAB strains isolated from other food ecosystems.

  8. Diagnosis of genital herpes simplex virus infection in the clinical laboratory

    PubMed Central

    2014-01-01

    Since the type of herpes simplex virus (HSV) infection affects prognosis and subsequent counseling, type-specific testing to distinguish HSV-1 from HSV-2 is always recommended. Although PCR has been the diagnostic standard method for HSV infections of the central nervous system, until now viral culture has been the test of choice for HSV genital infection. However, HSV PCR, with its consistently and substantially higher rate of HSV detection, could replace viral culture as the gold standard for the diagnosis of genital herpes in people with active mucocutaneous lesions, regardless of anatomic location or viral type. Alternatively, antigen detection—an immunofluorescence test or enzyme immunoassay from samples from symptomatic patients--could be employed, but HSV type determination is of importance. Type-specific serology based on glycoprotein G should be used for detecting asymptomatic individuals but widespread screening for HSV antibodies is not recommended. In conclusion, rapid and accurate laboratory diagnosis of HSV is now become a necessity, given the difficulty in making the clinical diagnosis of HSV, the growing worldwide prevalence of genital herpes and the availability of effective antiviral therapy. PMID:24885431

  9. PCR-in situ hybridization detection of human T-cell lymphotropic virus type 1 (HTLV-1) tax proviral DNA in peripheral blood lymphocytes of patients with HTLV-1-associated neurologic disease.

    PubMed Central

    Levin, M C; Fox, R J; Lehky, T; Walter, M; Fox, C H; Flerlage, N; Bamford, R; Jacobson, S

    1996-01-01

    PCR-in situ hybridization (PCR-ISH) was developed and utilized to determine the distribution of human T-cell lymphotropic virus type 1 (HTLV-1) tax proviral DNA in peripheral blood lymphocytes (PBL) from patients with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). PCR-ISH of HTLV-1 tax DNA in PBL from patients with HAM/TSP revealed that 1 in 5,000 to 1 in 10,000 PBL contained virus. PCR-ISH was sensitive, because a positive signal was consistently demonstrated from the HTLV-1-infected cell lines HUT-102 (which contains four to six copies of HTLV-1 proviral DNA per cell) and MT-1 (which contains one to three copies of HTLV-1 proviral DNA per cell). Also, intracellular amplification by PCR-ISH significantly increased sensitivity compared with conventional ISH and was shown to be specific for HTLV-1 tax DNA. These results are in contrast to solution-phase PCR amplification in which greater than 1% of cells were estimated to be infected. The discordance between these results is discussed and may indicate that more than one copy of HTLV-1 tax proviral DNA is present in an individual PBL. PMID:8551632

  10. Development, validation and field evaluation of a quantitative real-time PCR able to differentiate between field Mycoplasma synoviae and the MS-H-live vaccine strain.

    PubMed

    Dijkman, R; Feberwee, A; Landman, W J M

    2017-08-01

    A quantitative PCR (qPCR) able to differentiate between field Mycoplasma synoviae and MS-H vaccine strain was developed, validated and evaluated. It was developed using nucleotide differences in the obg gene. Analytical specificity and sensitivity assessed using DNA from 194 M. synoviae field samples, three different batches of MS-H vaccine and from 43 samples representing four other avian Mycoplasma species proved to be 100%. The detection limit for field M. synoviae and MS-H vaccine strain was 10 2-3 and 10 2 colony-forming units PCR equivalents/g trachea mucus, respectively. The qPCR was able to detect both, field M. synoviae and MS-H vaccine strain in ratios of 1:100 determined both using spiked and field samples. One hundred and twenty samples from M. synoviae-infected non-vaccinated birds, 110 samples from M. synoviae-vaccinated birds from a bird experiment and 224 samples from M. synoviae negative (serology and PCR) birds were used to determine the relative sensitivity and specificity using a previously described M. synoviae PCR as reference. The relative sensitivity and specificity for field M. synoviae were 95.0% and 99.6%, respectively, and 94.6% and 100% for the MS-H-live vaccine, respectively. Field validation and confirmation by multi locus sequence typing revealed that the qPCR correctly distinguished between MS-H and field M. synoviae. Evaluation of the differentiating M. synoviae qPCR in three commercial flocks suggested transmission of MS-H-live vaccine from vaccinated to non-vaccinated flocks at the same farm. Furthermore, it showed evidence for the colonization with field M. synoviae in MS-H-vaccinated flocks.

  11. Evaluation of LSSP-PCR for identification of Leptospira spp. in urine samples of cattle with clinical suspicion of leptospirosis.

    PubMed

    Bomfim, Maria Rosa Quaresma; Koury, Matilde Cota

    2006-12-20

    We evaluated the use of low-stringency single specific primer PCR (LSSP-PCR) for genetically typing Leptospira directly from urine samples of cattle with clinical suspicion of leptospirosis. Urine samples obtained from 40 cattle with clinical suspicion of leptospirosis were amplified by specific PCR using the following primers: Internal 1/Internal 2 and G1/G2. The internal primers were designed from the gene sequence of the outer membrane lipoprotein Lip32 from Leptospira kirschneri, strain RM52. The PCR products were amplified with these two pairs of primers, which had approximately 497 and 285bp, respectively, and were subsequently used as a template for LSSP-PCR analysis. The genetic signatures from the leptospires which were present in the urine samples allowed us to make a preliminary identification of the leptospires by comparing the LSSP-PCR profiles obtained directly from urine samples with those from reference leptospires. The LSSP-PCR profiles obtained with the Internal 1 primer or with the G1 primer allowed the grouping of the leptospires into serogroups. LSSP-PCR was found to be a useful and sensitive approach capable of identifying leptospires directly from biological samples without the need for prior bacterial isolation. In conclusion, the LSSP-PCR technique may still be helpful in discriminating serogroups of Leptospira from different animal reservoirs, since the early identification of carrier animals and information on the shedding state are crucial to prevent the spread of leptospiral infection to other animals and humans.

  12. Degenerate and Nested PCR: a Highly Sensitive and Specific Method for Detection of Human Papillomavirus Infection in Cutaneous Warts

    PubMed Central

    Harwood, Catherine A.; Spink, Patricia J.; Surentheran, T.; Leigh, Irene M.; de Villiers, Ethel-Michele; McGregor, Jane M.; Proby, Charlotte M.; Breuer, Judith

    1999-01-01

    The role of human papillomavirus (HPV) in anogenital carcinogenesis is firmly established, but evidence that supports a similar role in skin remains speculative. Immunosuppressed renal transplant recipients have an increased incidence of viral warts and nonmelanoma skin cancer, and the presence of HPV DNA in these lesions, especially types associated with the condition epidermodysplasia verruciformis (EV), has led to suggestions that HPV may play a pathogenic role. However, differences in the specificities and sensitivities of techniques used to detect HPV in skin have led to wide discrepancies in the spectrum of HPV types reported. We describe a degenerate nested PCR technique with the capacity to detect a broad spectrum of cutaneous, mucosal, and EV HPV types. In a series of 51 warts from 23 renal transplant recipients, this method detected HPV DNA in all lesions, representing a significant improvement over many previously published studies. Cutaneous types were found in 84.3% of warts and EV types were found in 80.4% of warts, whereas mucosal types were detected in 27.4% of warts. In addition, the method allowed codetection of two or more distinct HPV types in 94.1% of lesions. In contrast, single HPV types were detected in all but 1 of 20 warts from 15 immunocompetent individuals. In summary, we have established a highly sensitive and comprehensive degenerate PCR methodology for detection and genotyping of HPV from the skin and have demonstrated a diverse spectrum of multiple HPV types in cutaneous warts from transplant recipients. Studies designed to assess the significance of these findings to cutaneous carcinogenesis are under way. PMID:10523550

  13. Role of type-specific herpes simplex virus-1 and 2 serology as a diagnostic modality in patients with clinically suspected genital herpes: A comparative study in Indian population from a tertiary care hospital.

    PubMed

    Patwardhan, Vrushali; Bhalla, Preena

    2016-01-01

    Type-specific serology (TSS) test for herpes simplex virus (HSV) have been used as a research tool in seroepidemiological studies for some years. However, TSS as a diagnostic modality for diagnosis of current episode of genital herpes is not well documented. To measure the seroprevalence of type-specific HSV Type 1 (HSV-1) and Type 2 (HSV-2) IgG antibodies in cases provisionally diagnosed as primary and recurrent genital herpes and to evaluate the role of TSS as a diagnostic modality for diagnosis of genital herpes versus polymerase chain reaction (PCR). A cross-sectional study was performed over a period of 10 months in which 44 adult patients with clinically suspected genital herpes were recruited. An in-house glycoprotein G gene base PCR was performed directly from the genital lesion specimen for simultaneous detection and typing of HSV. TSS was performed to detect IgG antibody against HSV-1 and 2 in all patients using commercially available kits, and the results were compared. Seroprevalence of HSV-1 IgG was 43% among primary and 65% among recurrent genital herpes cases (P = 0.22). Whereas that of HSV-2 IgG was found to be 14% and 83% in respective patient group (P = 0.0001). When compared to PCR results HSV-1 IgG detection in both primary and recurrent genital herpes diagnosis had poor specificity, positive predictive value, and sensitivity. Whereas, HSV-2 serology had a sensitivity of 13.33% and 73.33% in primary and recurrent genital herpes and specificity of 83.33% and 85.71%, respectively. HSV-2 IgG detection helps in strengthening the diagnosis of recurrent HSV-2 disease, whereas the absence of HSV-2 IgG antibody helps in excluding genital herpes as a likely cause of recurrent genital ulceration. However, detection of HSV-1 IgG antibody may not be useful for diagnosis in patients of genital ulcer disease.

  14. Evaluation of a nested-PCR for mycobacterium tuberculosis detection in blood and urine samples.

    PubMed

    da Cruz, Heidi Lacerda Alves; de Albuquerque Montenegro, Rosana; de Araújo Lima, Juliana Falcão; da Rocha Poroca, Diogo; da Costa Lima, Juliana Figueirêdo; Maria Lapa Montenegro, Lílian; Crovella, Sergio; Charifker Schindler, Haiana

    2011-01-01

    The polymerase chain reaction (PCR) and its variations, such as the nested-PCR, have been described as promising techniques for rapid diagnosis of tuberculosis (TB). With the aim of evaluating the usefulness of a nested-PCR method on samples of blood and urine of patients suspected of tuberculosis we analyzed 192 clinical samples, using as a molecular target the insertion element IS6110 specific of M. tuberculosis genome. Nested-PCR method showed higher sensitivity in patients with extrapulmonary tuberculosis (47.8% and 52% in blood and urine) when compared to patients with the pulmonary form of the disease (sensitivity of 29% and 26.9% in blood and urine), regardless of the type of biological sample used. The nested-PCR is a rapid technique that, even if not showing a good sensitivity, should be considered as a helpful tool especially in the extrapulmonary cases or in cases where confirmatory diagnosis is quite difficult to be achieved by routine methods. The performance of PCR-based techniques should be considered and tested in future works on other types of biological specimens besides sputum, like blood and urine, readily obtainable in most cases. The improving of M. tuberculosis nested-PCR detection in TB affected patients will give the possibility of an earlier detection of bacilli thus interrupting the transmission chain of the disease.

  15. Real-time PCR array as a universal platform for the detection of genetically modified crops and its application in identifying unapproved genetically modified crops in Japan.

    PubMed

    Mano, Junichi; Shigemitsu, Natsuki; Futo, Satoshi; Akiyama, Hiroshi; Teshima, Reiko; Hino, Akihiro; Furui, Satoshi; Kitta, Kazumi

    2009-01-14

    We developed a novel type of real-time polymerase chain reaction (PCR) array with TaqMan chemistry as a platform for the comprehensive and semiquantitative detection of genetically modified (GM) crops. Thirty primer-probe sets for the specific detection of GM lines, recombinant DNA (r-DNA) segments, endogenous reference genes, and donor organisms were synthesized, and a 96-well PCR plate was prepared with a different primer-probe in each well as the real-time PCR array. The specificity and sensitivity of the array were evaluated. A comparative analysis with the data and publicly available information on GM crops approved in Japan allowed us to assume the possibility of unapproved GM crop contamination. Furthermore, we designed a Microsoft Excel spreadsheet application, Unapproved GMO Checker version 2.01, which helps process all the data of real-time PCR arrays for the easy assumption of unapproved GM crop contamination. The spreadsheet is available free of charge at http://cse.naro.affrc.go.jp/jmano/index.html .

  16. Identification of Staphylococcus spp. using (GTG)₅-PCR fingerprinting.

    PubMed

    Svec, Pavel; Pantůček, Roman; Petráš, Petr; Sedláček, Ivo; Nováková, Dana

    2010-12-01

    A group of 212 type and reference strains deposited in the Czech Collection of Microorganisms (Brno, Czech Republic) and covering 41 Staphylococcus species comprising 21 subspecies was characterised using rep-PCR fingerprinting with the (GTG)₅ primer in order to evaluate this method for identification of staphylococci. All strains were typeable using the (GTG)₅ primer and generated PCR products ranging from 200 to 4500 bp. Numerical analysis of the obtained fingerprints revealed (sub)species-specific clustering corresponding with the taxonomic position of analysed strains. Taxonomic position of selected strains representing the (sub)species that were distributed over multiple rep-PCR clusters was verified and confirmed by the partial rpoB gene sequencing. Staphylococcus caprae, Staphylococcus equorum, Staphylococcus sciuri, Staphylococcus piscifermentans, Staphylococcus xylosus, and Staphylococcus saprophyticus revealed heterogeneous fingerprints and each (sub)species was distributed over several clusters. However, representatives of the remaining Staphylococcus spp. were clearly separated in single (sub)species-specific clusters. These results showed rep-PCR with the (GTG)₅ primer as a fast and reliable method applicable for differentiation and straightforward identification of majority of Staphylococcus spp. Copyright © 2010 Elsevier GmbH. All rights reserved.

  17. One-step multiplex real-time RT-PCR assay for detecting and genotyping wild-type group A rotavirus strains and vaccine strains (Rotarix® and RotaTeq®) in stool samples.

    PubMed

    Gautam, Rashi; Mijatovic-Rustempasic, Slavica; Esona, Mathew D; Tam, Ka Ian; Quaye, Osbourne; Bowen, Michael D

    2016-01-01

    Background. Group A rotavirus (RVA) infection is the major cause of acute gastroenteritis (AGE) in young children worldwide. Introduction of two live-attenuated rotavirus vaccines, RotaTeq® and Rotarix®, has dramatically reduced RVA associated AGE and mortality in developed as well as in many developing countries. High-throughput methods are needed to genotype rotavirus wild-type strains and to identify vaccine strains in stool samples. Quantitative RT-PCR assays (qRT-PCR) offer several advantages including increased sensitivity, higher throughput, and faster turnaround time. Methods. In this study, a one-step multiplex qRT-PCR assay was developed to detect and genotype wild-type strains and vaccine (Rotarix® and RotaTeq®) rotavirus strains along with an internal processing control (Xeno or MS2 RNA). Real-time RT-PCR assays were designed for VP7 (G1, G2, G3, G4, G9, G12) and VP4 (P[4], P[6] and P[8]) genotypes. The multiplex qRT-PCR assay also included previously published NSP3 qRT-PCR for rotavirus detection and Rotarix® NSP2 and RotaTeq® VP6 qRT-PCRs for detection of Rotarix® and RotaTeq® vaccine strains respectively. The multiplex qRT-PCR assay was validated using 853 sequence confirmed stool samples and 24 lab cultured strains of different rotavirus genotypes. By using thermostable rTth polymerase enzyme, dsRNA denaturation, reverse transcription (RT) and amplification (PCR) steps were performed in single tube by uninterrupted thermocycling profile to reduce chances of sample cross contamination and for rapid generation of results. For quantification, standard curves were generated using dsRNA transcripts derived from RVA gene segments. Results. The VP7 qRT-PCRs exhibited 98.8-100% sensitivity, 99.7-100% specificity, 85-95% efficiency and a limit of detection of 4-60 copies per singleplex reaction. The VP7 qRT-PCRs exhibited 81-92% efficiency and limit of detection of 150-600 copies in multiplex reactions. The VP4 qRT-PCRs exhibited 98.8-100% sensitivity, 100% specificity, 86-89% efficiency and a limit of detection of 12-400 copies per singleplex reactions. The VP4 qRT-PCRs exhibited 82-90% efficiency and limit of detection of 120-4000 copies in multiplex reaction. Discussion. The one-step multiplex qRT-PCR assay will facilitate high-throughput rotavirus genotype characterization for monitoring circulating rotavirus wild-type strains causing rotavirus infections, determining the frequency of Rotarix® and RotaTeq® vaccine strains and vaccine-derived reassortants associated with AGE, and help to identify novel rotavirus strains derived by reassortment between vaccine and wild-type strains.

  18. One-step multiplex real-time RT-PCR assay for detecting and genotyping wild-type group A rotavirus strains and vaccine strains (Rotarix® and RotaTeq®) in stool samples

    PubMed Central

    Mijatovic-Rustempasic, Slavica; Esona, Mathew D.; Tam, Ka Ian; Quaye, Osbourne; Bowen, Michael D.

    2016-01-01

    Background. Group A rotavirus (RVA) infection is the major cause of acute gastroenteritis (AGE) in young children worldwide. Introduction of two live-attenuated rotavirus vaccines, RotaTeq® and Rotarix®, has dramatically reduced RVA associated AGE and mortality in developed as well as in many developing countries. High-throughput methods are needed to genotype rotavirus wild-type strains and to identify vaccine strains in stool samples. Quantitative RT-PCR assays (qRT-PCR) offer several advantages including increased sensitivity, higher throughput, and faster turnaround time. Methods. In this study, a one-step multiplex qRT-PCR assay was developed to detect and genotype wild-type strains and vaccine (Rotarix® and RotaTeq®) rotavirus strains along with an internal processing control (Xeno or MS2 RNA). Real-time RT-PCR assays were designed for VP7 (G1, G2, G3, G4, G9, G12) and VP4 (P[4], P[6] and P[8]) genotypes. The multiplex qRT-PCR assay also included previously published NSP3 qRT-PCR for rotavirus detection and Rotarix® NSP2 and RotaTeq® VP6 qRT-PCRs for detection of Rotarix® and RotaTeq® vaccine strains respectively. The multiplex qRT-PCR assay was validated using 853 sequence confirmed stool samples and 24 lab cultured strains of different rotavirus genotypes. By using thermostable rTth polymerase enzyme, dsRNA denaturation, reverse transcription (RT) and amplification (PCR) steps were performed in single tube by uninterrupted thermocycling profile to reduce chances of sample cross contamination and for rapid generation of results. For quantification, standard curves were generated using dsRNA transcripts derived from RVA gene segments. Results. The VP7 qRT-PCRs exhibited 98.8–100% sensitivity, 99.7–100% specificity, 85–95% efficiency and a limit of detection of 4–60 copies per singleplex reaction. The VP7 qRT-PCRs exhibited 81–92% efficiency and limit of detection of 150–600 copies in multiplex reactions. The VP4 qRT-PCRs exhibited 98.8–100% sensitivity, 100% specificity, 86–89% efficiency and a limit of detection of 12–400 copies per singleplex reactions. The VP4 qRT-PCRs exhibited 82–90% efficiency and limit of detection of 120–4000 copies in multiplex reaction. Discussion. The one-step multiplex qRT-PCR assay will facilitate high-throughput rotavirus genotype characterization for monitoring circulating rotavirus wild-type strains causing rotavirus infections, determining the frequency of Rotarix® and RotaTeq® vaccine strains and vaccine-derived reassortants associated with AGE, and help to identify novel rotavirus strains derived by reassortment between vaccine and wild-type strains. PMID:26839745

  19. Evaluation of endogenous control genes for gene expression studies across multiple tissues and in the specific sets of fat- and muscle-type samples of the pig.

    PubMed

    Gu, Y R; Li, M Z; Zhang, K; Chen, L; Jiang, A A; Wang, J Y; Li, X W

    2011-08-01

    To normalize a set of quantitative real-time PCR (q-PCR) data, it is essential to determine an optimal number/set of housekeeping genes, as the abundance of housekeeping genes can vary across tissues or cells during different developmental stages, or even under certain environmental conditions. In this study, of the 20 commonly used endogenous control genes, 13, 18 and 17 genes exhibited credible stability in 56 different tissues, 10 types of adipose tissue and five types of muscle tissue, respectively. Our analysis clearly showed that three optimal housekeeping genes are adequate for an accurate normalization, which correlated well with the theoretical optimal number (r ≥ 0.94). In terms of economical and experimental feasibility, we recommend the use of the three most stable housekeeping genes for calculating the normalization factor. Based on our results, the three most stable housekeeping genes in all analysed samples (TOP2B, HSPCB and YWHAZ) are recommended for accurate normalization of q-PCR data. We also suggest that two different sets of housekeeping genes are appropriate for 10 types of adipose tissue (the HSPCB, ALDOA and GAPDH genes) and five types of muscle tissue (the TOP2B, HSPCB and YWHAZ genes), respectively. Our report will serve as a valuable reference for other studies aimed at measuring tissue-specific mRNA abundance in porcine samples. © 2011 Blackwell Verlag GmbH.

  20. Comparison of strategies for the isolation of PCR-compatible, genomic DNA from a municipal biogas plants.

    PubMed

    Weiss, Agnes; Jérôme, Valérie; Freitag, Ruth

    2007-06-15

    The goal of the project was the extraction of PCR-compatible genomic DNA representative of the entire microbial community from municipal biogas plant samples (mash, bioreactor content, process water, liquid fertilizer). For the initial isolation of representative DNA from the respective lysates, methods were used that employed adsorption, extraction, or precipitation to specifically enrich the DNA. Since no dedicated method for biogas plant samples was available, preference was given to kits/methods suited to samples that resembled either the bioreactor feed, e.g. foodstuffs, or those intended for environmental samples including wastewater. None of the methods succeeded in preparing DNA that was directly PCR-compatible. Instead the DNA was found to still contain considerable amounts of difficult-to-remove enzyme inhibitors (presumably humic acids) that hindered the PCR reaction. Based on the isolation method that gave the highest yield/purity for all sample types, subsequent purification was attempted by agarose gel electrophoresis followed by electroelution, spermine precipitation, or dialysis through nitrocellulose membrane. A combination of phenol/chloroform extraction followed by purification via dialysis constituted the most efficient sample treatment. When such DNA preparations were diluted 1:100 they did no longer inhibit PCR reactions, while they still contained sufficient genomic DNA to allow specific amplification of specific target sequences.

  1. Real-time RT-PCR assays to differentiate wild-type group A rotavirus strains from Rotarix(®) and RotaTeq(®) vaccine strains in stool samples.

    PubMed

    Gautam, Rashi; Esona, Mathew D; Mijatovic-Rustempasic, Slavica; Ian Tam, Ka; Gentsch, Jon R; Bowen, Michael D

    2014-01-01

    Group A rotaviruses (RVA) are the leading cause of severe diarrhea in young children worldwide. Two live-attenuated RVA vaccines, Rotarix(®) and RotaTeq(®) are recommended by World Health Organization (WHO) for routine immunization of all infants. Rotarix(®) and RotaTeq(®) vaccines have substantially reduced RVA associated mortality but occasionally have been associated with acute gastroenteritis (AGE) cases identified in vaccinees and their contacts. High-throughput assays are needed to monitor the prevalence of vaccine strains in AGE cases and emergence of new vaccine-derived strains following RVA vaccine introduction. In this study, we have developed quantitative real-time RT-PCR (qRT-PCR) assays for detection of Rotarix(®) and RotaTeq(®) vaccine components in stool samples. Real-time RT-PCR assays were designed for vaccine specific targets in the genomes of Rotarix(®) (NSP2, VP4) and RotaTeq(®) (VP6, VP3-WC3, VP3-human) and validated on sequence confirmed stool samples containing vaccine strains, wild-type RVA strains, and RVA-negative stools. For quantification, standard curves were generated using dsRNA transcripts derived from RVA gene segments. Rotarix(®) NSP2 and VP4 qRT-PCR assays exhibited 92-100% sensitivity, 99-100% specificity, 94-105% efficiency, and a limit of detection of 2-3 copies per reaction. RotaTeq(®) VP6, VP3-WC3, and VP3-human qRT-PCR assays displayed 100% sensitivity, 94-100% specificity, 91-102% efficiency and limits of detection of 1 copy, 2 copies, and 140 copies, respectively. These assays permit rapid identification of Rotarix(®) and RotaTeq(®) vaccine components in stool samples from clinical and surveillance studies and will be helpful in determining the frequency of vaccine strain-associated AGE.

  2. Real-time RT-PCR assays to differentiate wild-type group A rotavirus strains from Rotarix® and RotaTeq® vaccine strains in stool samples

    PubMed Central

    Gautam, Rashi; Esona, Mathew D; Mijatovic-Rustempasic, Slavica; Ian Tam, Ka; Gentsch, Jon R; Bowen, Michael D

    2014-01-01

    Group A rotaviruses (RVA) are the leading cause of severe diarrhea in young children worldwide. Two live-attenuated RVA vaccines, Rotarix® and RotaTeq® are recommended by World Health Organization (WHO) for routine immunization of all infants. Rotarix® and RotaTeq® vaccines have substantially reduced RVA associated mortality but occasionally have been associated with acute gastroenteritis (AGE) cases identified in vaccinees and their contacts. High-throughput assays are needed to monitor the prevalence of vaccine strains in AGE cases and emergence of new vaccine-derived strains following RVA vaccine introduction. In this study, we have developed quantitative real-time RT-PCR (qRT-PCR) assays for detection of Rotarix® and RotaTeq® vaccine components in stool samples. Real-time RT-PCR assays were designed for vaccine specific targets in the genomes of Rotarix® (NSP2, VP4) and RotaTeq® (VP6, VP3-WC3, VP3-human) and validated on sequence confirmed stool samples containing vaccine strains, wild-type RVA strains, and RVA-negative stools. For quantification, standard curves were generated using dsRNA transcripts derived from RVA gene segments. Rotarix® NSP2 and VP4 qRT-PCR assays exhibited 92–100% sensitivity, 99–100% specificity, 94–105% efficiency, and a limit of detection of 2–3 copies per reaction. RotaTeq® VP6, VP3-WC3, and VP3-human qRT-PCR assays displayed 100% sensitivity, 94–100% specificity, 91–102% efficiency and limits of detection of 1 copy, 2 copies, and 140 copies, respectively. These assays permit rapid identification of Rotarix® and RotaTeq® vaccine components in stool samples from clinical and surveillance studies and will be helpful in determining the frequency of vaccine strain-associated AGE. PMID:24342877

  3. A triplex quantitative real-time PCR assay for differential detection of human adenovirus serotypes 2, 3 and 7.

    PubMed

    Qiu, Fang-Zhou; Shen, Xin-Xin; Zhao, Meng-Chuan; Zhao, Li; Duan, Su-Xia; Chen, Chen; Qi, Ju-Ju; Li, Gui-Xia; Wang, Le; Feng, Zhi-Shan; Ma, Xue-Jun

    2018-05-02

    Human adenovirus (HAdV) serotypes 2, 3 and 7 are more prevalent than other serotypes and have been associated with severe pneumonia in pediatric children. Molecular typing of HAdV is not routinely performed in clinical diagnostic laboratories as it is time-consuming and labor-intensive. In the present study, we developed a triplex quantitative real-time PCR assay (tq-PCR) in a single closed tube for differential detection and quantitative analysis of HAdV serotypes 2, 3 and 7. The sensitivity, specificity, reproducibility and clinical performance of tq-PCR were evaluated. The analytical sensitivity of the tq-PCR was 100 copies/reaction for each of HAdV serotypes 2, 3 and 7, and no cross-reaction with other common respiratory viruses or HAdV serotypes 1,4,5,6,31,55 and 57 was observed. The coefficients of variation (CV) of intra-assay and inter-assay were between 0.6% to 3.6%. Of 138 previously-defined HAdV-positive nasopharyngeal aspirates samples tested, the detection agreement between tq-PCR and nested PCR was 96.38% (133/138). The proposed tq-PCR assay is a sensitive, specific and reproducible method and has the potential for clinical use in the rapid and differential detection and quantitation of HAdV serotypes 2, 3 and 7.

  4. Use of PCR To Demonstrate Presence of Adenovirus Species B, C, or F as Well as Coinfection with Two Adenovirus Species in Children with Flu-Like Symptoms

    PubMed Central

    Echavarria, Marcela; Maldonado, Daniela; Elbert, Gabriela; Videla, Cristina; Rappaport, Ruth; Carballal, Guadalupe

    2006-01-01

    Adenovirus (AdV) respiratory infections have usually been associated with species B, C, and E. In this study, we detected 9.4% of AdVs by PCR in 500 nasal swabs from 319 children with influenza-like symptoms. AdV typing by PCR with specific probes showed species C, B, and F as well as coinfection with two species. Coinfection with two AdV species and the presence of species F in respiratory samples are novel findings that should be further investigated. PMID:16455929

  5. Polymerase chain reaction: A molecular diagnostic tool in periodontology

    PubMed Central

    Maheaswari, Rajendran; Kshirsagar, Jaishree Tukaram; Lavanya, Nallasivam

    2016-01-01

    This review discusses the principles of polymerase chain reaction (PCR) and its application as a diagnostic tool in periodontology. The relevant MEDLINE and PubMed indexed journals were searched manually and electronically by typing PCR, applications of PCR, PCR in periodontics, polymorphism studies in periodontitis, and molecular techniques in periodontology. The searches were limited to articles in English language and the articles describing PCR process and its relation to periodontology were collected and used to prepare a concise review. PCR has now become a standard diagnostic and research tool in periodontology. Various studies reveal that its sensitivity and specificity allow it as a rapid, efficient method of detecting, identifying, and quantifying organism. Different immune and inflammatory markers can be identified at the mRNA expression level, and also the determination of genetic polymorphisms, thus providing the deeper insight into the mechanisms underlying the periodontal disease. PMID:27143822

  6. Polymerase chain reaction: A molecular diagnostic tool in periodontology.

    PubMed

    Maheaswari, Rajendran; Kshirsagar, Jaishree Tukaram; Lavanya, Nallasivam

    2016-01-01

    This review discusses the principles of polymerase chain reaction (PCR) and its application as a diagnostic tool in periodontology. The relevant MEDLINE and PubMed indexed journals were searched manually and electronically by typing PCR, applications of PCR, PCR in periodontics, polymorphism studies in periodontitis, and molecular techniques in periodontology. The searches were limited to articles in English language and the articles describing PCR process and its relation to periodontology were collected and used to prepare a concise review. PCR has now become a standard diagnostic and research tool in periodontology. Various studies reveal that its sensitivity and specificity allow it as a rapid, efficient method of detecting, identifying, and quantifying organism. Different immune and inflammatory markers can be identified at the mRNA expression level, and also the determination of genetic polymorphisms, thus providing the deeper insight into the mechanisms underlying the periodontal disease.

  7. Isolation of Cryptococcus gattii molecular type VGIII, from Corymbia ficifolia detritus in Colombia.

    PubMed

    Escandón, P; Sánchez, A; Firacative, C; Castañeda, E

    2010-06-01

    An environmental sampling survey was carried out in different areas of Bogotá, Colombia, to obtain isolates of members of the Cryptococcus neoformans/C. gattii species complex from Corymbia ficifolia trees. During a 6-month period in 2007, 128 samples consisting of bark, soil around trunk bases, detritus, seeds and flowers were collected from 91 trees and processed according to standard procedures. The molecular type was determined using URA5 restriction fragment length polymorphism (RFLP) analysis and the mating type was established by PCR using specific primers for Mfalpha and Mfa C. gattii was isolated from 15 of the 128 (11.7%) samples, of which three (20%) were recovered from the red flower extract and the remaining 12 from C. ficifolia detritus. URA5 RFLP analysis revealed that all 15 isolates belonged to the molecular type VGIII and mating type specific PCR revealed that all were mating type a. The isolation of C. gattii from C. ficifolia represents an important finding since this is the first report revealing C. ficifolia as a habitat for C. gattii and adds additional information to the ever growing spectrum of tree species from which C. gattii can be recovered.

  8. Streptococcus pyogenes strains containing emm12 and emm55 possess a novel gene coding for distantly related SIC protein.

    PubMed

    Hartas, J; Sriprakash, K S

    1999-01-01

    Streptococcus pyogenes infection and acute glomerulonephritis (AGN), a non-suppurtave disease, are endemic in the Aboriginal people of the Northern Territory (NT) of Australia. Vir typing, a locus-specific polymerase chain reaction (PCR)-based typing method [Gardiner, Hartas, Currie et al PCR Meth Appl 1995 4: 288-93], has revealed high divergence among the NT streptococcal strains. A total of 76 Vir types (VTs) representing about 95% of the NT isolates were screened for sic, a gene for streptococcal inhibitor of complement function, by PCR and hybridization. This revealed that seven VTs are positive for sic, and there are two classes of the gene: those closely related to sic (CRS) originally described by Akesson, Sjoholm & Bjorck [ J. Biol. Chem. 1996 271: 1081-8] and those distantly related to sic (DRS). Among the CRS-positive VTs, VT16, VT78 and VT91 have emm (gene for M protein) encoding type 1 M protein or related specificity, and VT8 and VT101 contain emm57 or related alleles. Chromosomal location of CRS in emm57 is different from that in emm1 or related strains. The DRS-positive VT18 and VT52 contained emm55 and emm12 respectively, which are phylogenetically related. Strains of S. pyogenes types 1, 12, 55 and 57 are known to be associated with AGN. Restricted distribution of CRS and DRS among the M types historically associated with AGN suggests that these sic alleles may have a role in AGN pathogenesis. Copyright 1999 Academic Press.

  9. Development of a screening method for genetically modified soybean by plasmid-based quantitative competitive polymerase chain reaction.

    PubMed

    Shimizu, Eri; Kato, Hisashi; Nakagawa, Yuki; Kodama, Takashi; Futo, Satoshi; Minegishi, Yasutaka; Watanabe, Takahiro; Akiyama, Hiroshi; Teshima, Reiko; Furui, Satoshi; Hino, Akihiro; Kitta, Kazumi

    2008-07-23

    A novel type of quantitative competitive polymerase chain reaction (QC-PCR) system for the detection and quantification of the Roundup Ready soybean (RRS) was developed. This system was designed based on the advantage of a fully validated real-time PCR method used for the quantification of RRS in Japan. A plasmid was constructed as a competitor plasmid for the detection and quantification of genetically modified soy, RRS. The plasmid contained the construct-specific sequence of RRS and the taxon-specific sequence of lectin1 (Le1), and both had 21 bp oligonucleotide insertion in the sequences. The plasmid DNA was used as a reference molecule instead of ground seeds, which enabled us to precisely and stably adjust the copy number of targets. The present study demonstrated that the novel plasmid-based QC-PCR method could be a simple and feasible alternative to the real-time PCR method used for the quantification of genetically modified organism contents.

  10. Detection of adulterated murine components in meat products by TaqMan© real-time PCR.

    PubMed

    Fang, Xin; Zhang, Chi

    2016-02-01

    Using murine meat to substitute mutton has been identified as a new type of meat fraud in China, yet no detection method for murine species has been reported. Here, three kinds of rodent were used as target species to establish a murine-specific real-time PCR method of detection. The mitochondrial cytochrome b gene (cytb) of each target was sequenced and a TaqMan probe was designed based on the cytb. Simultaneously, an internal positive control (IPC) plasmid along with its respective probe were designed to monitor the PCR reaction. As a result, the duplex real-time PCR system was verified to be specific. The limit of detection (LOD) was lower than 1 pg of DNA per reaction and 0.1% murine contamination in meat mixtures. Standard curves were generated for a quantitative analysis. Thus, this study provided a new tool to control the quality of meat products for official and third-party laboratories. Copyright © 2015. Published by Elsevier Ltd.

  11. Reverse transcription-polymerase chain reaction molecular testing of cytology specimens: Pre-analytic and analytic factors.

    PubMed

    Bridge, Julia A

    2017-01-01

    The introduction of molecular testing into cytopathology laboratory practice has expanded the types of samples considered feasible for identifying genetic alterations that play an essential role in cancer diagnosis and treatment. Reverse transcription-polymerase chain reaction (RT-PCR), a sensitive and specific technical approach for amplifying a defined segment of RNA after it has been reverse-transcribed into its DNA complement, is commonly used in clinical practice for the identification of recurrent or tumor-specific fusion gene events. Real-time RT-PCR (quantitative RT-PCR), a technical variation, also permits the quantitation of products generated during each cycle of the polymerase chain reaction process. This review addresses qualitative and quantitative pre-analytic and analytic considerations of RT-PCR as they relate to various cytologic specimens. An understanding of these aspects of genetic testing is central to attaining optimal results in the face of the challenges that cytology specimens may present. Cancer Cytopathol 2017;125:11-19. © 2016 American Cancer Society. © 2016 American Cancer Society.

  12. Comparison of IHC, FISH and RT-PCR methods for detection of ALK rearrangements in 312 non-small cell lung cancer patients in Taiwan.

    PubMed

    Wu, Yi-Cheng; Chang, Il-Chi; Wang, Chi-Liang; Chen, Tai-Di; Chen, Ya-Ting; Liu, Hui-Ping; Chu, Yen; Chiu, Yu-Ting; Wu, Tzu-Hua; Chou, Li-Hui; Chen, Yi-Rong; Huang, Shiu-Feng

    2013-01-01

    Recently Echinoderm microtubule-associated protein-like 4- anaplastic lymphoma kinase (EML4-ALK) fusion gene has become an important biomarker for ALK tyrosine kinase inhibitor (crizotinib) treatment in NSCLC. However, the best detection method and the significance of EML4-ALK variant types remain uncertain. Reverse transcriptase-polymerase chain reaction (RT-PCR), fluorescence in Situ hybridization (FISH) and Immunohistochemical (IHC) stain were performed on tumor tissues of 312 NSCLC patients for detection of ALK rearrangements. Mutation analyses for EGFR and KRAS genes were also performed. Thirteen of the 312 patients (4.17%) had ALK rearrangements detected by RT-PCR. If RT-PCR data was used as the gold standard, FISH tests had a low sensitivity (58.33%), but very good specificity (99.32%). IHC stain had better sensitivity (91.67%) than FISH, but lower specificity (79.52%), when the cut off was IHC2+. All of the 8 patients with high abundance of EML4-ALK positive cells in tumor tissues (assessed by the signal intensities of the RT-PCR product), were also have high expression of ALK protein (IHC3+), and positive for FISH, except one failed in FISH. Variants 3a+3b (4/5, 80%) of EML4-ALK fusion gene were more common to have high abundance of EML4-ALK positive cells in tumor tissues than variant 1 (1/3, 33.3%). Meta-analysis of the published data of 2273 NSCLC patients revealed that variant 3 (23/44, 52.3%) was the most common type in Chinese population, while variant 1 (28/37, 75.7%) was most common in Caucasian. Among the three detection methods, RT-PCR could detect not only the presence of EML4-ALK fusion gene and their variant types, but also the abundance of EML4-ALK positive cells in NSCLC tumor tissues. The latter two factors might affect the treatment response to anti-ALK inhibitor. Including RT-PCR as a diagnostic test for ALK inhibitor treatment in the prospective clinical trials is recommended.

  13. Comparison of IHC, FISH and RT-PCR Methods for Detection of ALK Rearrangements in 312 Non-Small Cell Lung Cancer Patients in Taiwan

    PubMed Central

    Wang, Chi-Liang; Chen, Tai-Di; Chen, Ya-Ting; Liu, Hui-Ping; Chu, Yen; Chiu, Yu-Ting; Wu, Tzu-Hua; Chou, Li-Hui; Chen, Yi-Rong; Huang, Shiu-Feng

    2013-01-01

    Background Recently Echinoderm microtubule-associated protein-like 4- anaplastic lymphoma kinase (EML4-ALK) fusion gene has become an important biomarker for ALK tyrosine kinase inhibitor (crizotinib) treatment in NSCLC. However, the best detection method and the significance of EML4-ALK variant types remain uncertain. Methods Reverse transcriptase-polymerase chain reaction (RT-PCR), fluorescence in Situ hybridization (FISH) and Immunohistochemical (IHC) stain were performed on tumor tissues of 312 NSCLC patients for detection of ALK rearrangements. Mutation analyses for EGFR and KRAS genes were also performed. Results Thirteen of the 312 patients (4.17%) had ALK rearrangements detected by RT-PCR. If RT-PCR data was used as the gold standard, FISH tests had a low sensitivity (58.33%), but very good specificity (99.32%). IHC stain had better sensitivity (91.67%) than FISH, but lower specificity (79.52%), when the cut off was IHC2+. All of the 8 patients with high abundance of EML4-ALK positive cells in tumor tissues (assessed by the signal intensities of the RT-PCR product), were also have high expression of ALK protein (IHC3+), and positive for FISH, except one failed in FISH. Variants 3a+3b (4/5, 80%) of EML4-ALK fusion gene were more common to have high abundance of EML4-ALK positive cells in tumor tissues than variant 1 (1/3, 33.3%). Meta-analysis of the published data of 2273 NSCLC patients revealed that variant 3 (23/44, 52.3%) was the most common type in Chinese population, while variant 1 (28/37, 75.7%) was most common in Caucasian. Conclusions Among the three detection methods, RT-PCR could detect not only the presence of EML4-ALK fusion gene and their variant types, but also the abundance of EML4-ALK positive cells in NSCLC tumor tissues. The latter two factors might affect the treatment response to anti-ALK inhibitor. Including RT-PCR as a diagnostic test for ALK inhibitor treatment in the prospective clinical trials is recommended. PMID:23951022

  14. Exploring target-specific primer extension in combination with a bead-based suspension array for multiplexed detection and typing using Streptococcus suis as a model pathogen

    PubMed Central

    van der Wal, Fimme J.; Achterberg, René P.; van Solt-Smits, Conny; Bergervoet, Jan H. W.; de Weerdt, Marjanne; Wisselink, Henk J.

    2017-01-01

    We investigated the feasibility of an assay based on target-specific primer extension, combined with a suspension array, for the multiplexed detection and typing of a veterinary pathogen in animal samples, using Streptococcus suis as a model pathogen. A procedure was established for simultaneous detection of 6 S. suis targets in pig tonsil samples (i.e., 4 genes associated with serotype 1, 2, 7, or 9, the generic S. suis glutamate dehydrogenase gene [gdh], and the gene encoding the extracellular protein factor [epf]). The procedure was set up as a combination of protocols: DNA isolation from porcine tonsils, a multiplex PCR, a multiplex target-specific primer extension, and finally a suspension array as the readout. The resulting assay was compared with a panel of conventional PCR assays. The proposed multiplex assay can correctly identify the serotype of isolates and is capable of simultaneous detection of multiple targets in porcine tonsillar samples. The assay is not as sensitive as the current conventional PCR assays, but with the correct sampling strategy, the assay can be useful for screening pig herds to establish which S. suis serotypes are circulating in a pig population. PMID:28980519

  15. Genotype-specific signal generation based on digestion of 3-way DNA junctions: application to KRAS variation detection.

    PubMed

    Amicarelli, Giulia; Adlerstein, Daniel; Shehi, Erlet; Wang, Fengfei; Makrigiorgos, G Mike

    2006-10-01

    Genotyping methods that reveal single-nucleotide differences are useful for a wide range of applications. We used digestion of 3-way DNA junctions in a novel technology, OneCutEventAmplificatioN (OCEAN) that allows sequence-specific signal generation and amplification. We combined OCEAN with peptide-nucleic-acid (PNA)-based variant enrichment to detect and simultaneously genotype v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) codon 12 sequence variants in human tissue specimens. We analyzed KRAS codon 12 sequence variants in 106 lung cancer surgical specimens. We conducted a PNA-PCR reaction that suppresses wild-type KRAS amplification and genotyped the product with a set of OCEAN reactions carried out in fluorescence microplate format. The isothermal OCEAN assay enabled a 3-way DNA junction to form between the specific target nucleic acid, a fluorescently labeled "amplifier", and an "anchor". The amplifier-anchor contact contains the recognition site for a restriction enzyme. Digestion produces a cleaved amplifier and generation of a fluorescent signal. The cleaved amplifier dissociates from the 3-way DNA junction, allowing a new amplifier to bind and propagate the reaction. The system detected and genotyped KRAS sequence variants down to approximately 0.3% variant-to-wild-type alleles. PNA-PCR/OCEAN had a concordance rate with PNA-PCR/sequencing of 93% to 98%, depending on the exact implementation. Concordance rate with restriction endonuclease-mediated selective-PCR/sequencing was 89%. OCEAN is a practical and low-cost novel technology for sequence-specific signal generation. Reliable analysis of KRAS sequence alterations in human specimens circumvents the requirement for sequencing. Application is expected in genotyping KRAS codon 12 sequence variants in surgical specimens or in bodily fluids, as well as single-base variations and sequence alterations in other genes.

  16. Direct Application of Rep-PCR on Type I Sourdough Matrix to Monitor the Dominance and Persistence of a Lactobacillus plantarum Starter Throughout Back-Slopping.

    PubMed

    Dolci, Paola; Cocolin, Luca

    2017-08-01

    This study describes the optimization and application of repetitive element-PCR (rep-PCR) technique directly on microbial DNA extracted from type I sourdoughs for fast monitoring of a Lb. plantarum starter strain (P1FMC) throughout daily back-slopping. The challenge was to follow and study the performance of a starter culture directly in sourdoughs without cultivation on selective media. The extraction of good quality microbial DNA suitable for amplification from a complex matrix such as dough was the first target. In addition, the objective to obtain a clear rep-PCR profile referable to a specific starter strain among a microbial community was pursued. Co-inoculum trials, in flour matrix, with Lb. plantarum P1FMC and L. lactis LC71 strains and, subsequently, type I sourdough back-slopping trials were performed. The rep-PCR amplification profiles obtained were clearly referable to that of Lb. plantarum P1FMC starter in both co-inoculum trials (also when it was present with one order of magnitude less with respect to L. lactis LC71) and back-slopping trials where it dominated the fermentation process with loads of 10 8 cfu g -1 and prevailed on the autochthonous microbiota. Thus, the approach proposed in this paper could be considered a methodological advancement, based on a culture-independent one-step rep-PCR, suitable for fast monitoring of starter performance. © 2017 Institute of Food Technologists®.

  17. Rapid genetic typing of diarrheagenic Escherichia coli using a two-tube modified molecular beacon based multiplex real-time PCR assay and its clinical application

    PubMed Central

    2014-01-01

    Background Diarrheagenic Escherichia coli (DEC), including Enterotoxigenic E.coli (ETEC), Enteroaggregative E.coli (EAEC), Enteropathogenic E.coli (EPEC), Enterohemolysin E.coli (EHEC) and Enteroinvasive E.coli (EIEC) causes diarrhea or hemolytic uremic syndromes among infants and travelers around the world. A rapid, reliable and repeatable method is urgent for identifying DEC so as to provide the reference for responding to diarrheal disease outbreak and the treatment of the diarrheal patients associated with DEC. Methods In this study, specific primers and modified molecular beacon probes of nine specific virulence genes, whose 5′end were added with homo tail sequence, were designed; and a two-tube modified molecular beacon based multiplex real–time PCR (rtPCR) assay for the identification of five Escherichia coli pathotypes, including ETEC, EAEC, EPEC, EHEC and EIEC was developed and optimized. Totally 102 bacterial strains, including 52 reference bacterial strains and 50 clinical strains were detected to confirm whether the target genes selected were specific. Then detection limits of the assay were tested. Lastly, the assay was applied to the detection of 11860 clinical samples to evaluate the specificity and sensitivity of the developed assay compared with the conventional PCR. Results The target genes were 100% specific as assessed on 102 bacterial strains since no cross-reactions were observed. The detection limits ranged from 88 CFU/mL (EHEC) to 880 CFU/mL (EPEC). Compared with the conventional PCR, the specificity and sensitivity of the multiplex rtPCR was 100% and over 99%, respectively. The coefficient of variation (CV) for each target gene ranged from 0.45% to 1.53%. 171 positive clinical samples were mostly identified as ETEC (n = 111, 64.9%) and EPEC (n = 38, 22.2%), which were the dominating pathotypes of DEC strains. Conclusion The developed multiplex rtPCR assay for the identification of DEC was high sensitive and specific and could be applied to the rapid identification of DEC in clinical and public health laboratories. PMID:25023669

  18. Real-time reverse transcription-polymerase chain reaction assays for identification of wild poliovirus 1 & 3.

    PubMed

    Sharma, Deepa K; Nalavade, Uma P; Deshpande, Jagadish M

    2015-10-01

    The poliovirus serotype identification and intratypic differentiation by real-time reverse transcription-polymerase chain reaction (rRT-PCR) assay is suitable for serotype mixtures but not for intratypic mixtures of wild and vaccine poliovirus strains. This study was undertaken to develop wild poliovirus 1 and 3 (WPV1 and WPV3) specific rRT-PCR assays for use. Specific primers and probes for rRT-PCR were designed based on VP1 sequences of WPV1 and WPV3 isolated in India since 2000. The specificity of the rRT-PCR assays was evaluated using WPV1 and WPV3 of different genetic lineages, non-polio enteroviruses (NPEVs) and mixtures of wild/wild and wild/Sabin vaccine strains. The sensitivity of the assays was determined by testing serial 10-fold dilutions of wild poliovirus 1 and 3 stock suspensions of known titre. No cross-reactivity with Sabin strains, intertypic wild poliovirus isolates or 27 types of NPEVs across all the four Enterovirus species was found for both the wild poliovirus 1 and 3 rRT-PCR assays. All WPV1 and WPV3 strains isolated since 2000 were successfully amplified. The rRT-PCR assays detected 10 4.40 CCID 50 /ml of WPV1 and 10 4.00 CCID 50 /ml of WPV3, respectively either as single isolate or mixture with Sabin vaccine strains or intertypic wild poliovirus. rRT-PCR assays for WPV1 and WPV3 have been validated to detect all the genetic variations of the WPV1 and WPV3 isolated in India for the last decade. When used in combination with the current rRT-PCR assay testing was complete for confirmation of the presence of wild poliovirus in intratypic mixtures.

  19. Quantification of simian immunodeficiency virus cytotoxic T lymphocyte escape mutant viruses.

    PubMed

    Loh, Liyen; Kent, Stephen J

    2008-08-01

    Escape from cytotoxic T-lymphocyte (CTL) pressure is common in HIV-1 infection of humans and simian immunodeficiency virus (SIV) infections of macaques. CTL escape typically incurs a fitness cost as reversion back to wild-type can occur upon transmission. We utilized sequence-specific primers and DNA probes with real-time polymerase chain reaction (PCR) to sensitively and specifically track wild-type and escape mutant viremia at the Mane-A*17-restricted SIV Gag(371379) epitope AF9 in pigtail macaques. The generation of minor escape mutant populations is detected by the real-time PCR 2 weeks earlier than observed using standard sequencing techniques. We passaged the AF9 CTL escape mutant virus into two naïve Mane-A*17-negative pigtail macaques and showed that reversion to wild-type was rapid during acute infection and then slowed considerably at later stages of the infection. These data help refine our understanding of how CTL escape mutant viruses evolve.

  20. A serotype-specific polymerase chain reaction for identification of Pasteurella multocida serotype 1

    USGS Publications Warehouse

    Rocke, Tonie E.; Smith, Susan R.; Miyamoto, Amy; Shadduck, Daniel J.

    2002-01-01

    A serotype-specific polymerase chain reaction (PCR) assay was developed for detection and identification of Pasteurella multocida serotype 1, the causative agent of avian cholera in wild waterfowl. Arbitrarily primed PCR was used to detect DNA fragments that distinguish serotype 1 from the other 15 serotypes of P. multocida (with the exception of serotype 14). Oligonucleotide primers were constructed from these sequences, and a PCR assay was optimized and evaluated. PCR reactions consistently resulted in amplification products with reference strains 1 and 14 and all other serotype 1 strains tested, with cell numbers as low as 2.3 cells/ml. No amplification products were produced with other P. multocida serotypes or any other bacterial species tested. To compare the sensitivity and further test the specificity of this PCR assay with traditional culturing and serotyping techniques, tissue samples from 84 Pekin ducks inoculated with field strains of P. multocida and 54 wild lesser snow geese collected during an avian cholera outbreak were provided by other investigators working on avian cholera. PCR was as sensitive (58/64) as routine isolation (52/64) in detecting and identifying P. multocida serotype 1 from the livers of inoculated Pekins that became sick or died from avian cholera. No product was amplified from tissues of 20 other Pekin ducks that received serotypes other than type 1 (serotype 3, 12 × 3, or 10) or 12 control birds. Of the 54 snow geese necropsied and tested for P. multocida, our PCR detected and identified the bacteria from 44 compared with 45 by direct isolation. The serotype-specific PCR we developed was much faster and less labor intensive than traditional culturing and serotyping procedures and could result in diagnosis of serotype 1 pasteurellosis within 24 hr of specimen submission.

  1. Specific primers design based on the superoxide dismutase b gene for Trypanosoma cruzi as a screening tool: Validation method using strains from Colombia classified according to their discrete typing unit.

    PubMed

    Olmo, Francisco; Escobedo-Orteg, Javier; Palma, Patricia; Sánchez-Moreno, Manuel; Mejía-Jaramillo, Ana; Triana, Omar; Marín, Clotilde

    2014-11-01

    To classify 21 new isolates of Trypanosoma cruzi (T. cruzi) according to the Discrete Typing Unit (DTU) which they belong to, as well as tune up a new pair of primers designed to detect the parasite in biological samples. Strains were isolated, DNA extracted, and classified by using three Polymerase Chain Reactions (PCR). Subsequently this DNA was used along with other isolates of various biological samples, for a new PCR using primers designed. Finally, the amplified fragments were sequenced. It was observed the predominance of DTU I in Colombia, as well as the specificity of our primers for detection of T. cruzi, while no band was obtained when other species were used. This work reveals the genetic variability of 21 new isolates of T. cruzi in Colombia.Our primers confirmed their specificity for detecting the presence of T. cruzi. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  2. Clinical sensitivity and specificity of the Check-Points Check-Direct ESBL Screen for BD MAX, a real-time PCR for direct ESBL detection from rectal swabs.

    PubMed

    Souverein, Dennis; Euser, Sjoerd M; van der Reijden, Wil A; Herpers, Bjorn L; Kluytmans, Jan; Rossen, John W A; Den Boer, Jeroen W

    2017-09-01

    To determine the diagnostic accuracy of the Check-Direct ESBL Screen for BD MAX (ESBL qPCR) and an ESBL culture method to identify ESBLs directly from rectal swabs. Rectal swabs were obtained from clinical patients by performing cross-sectional (point)prevalence measurements in three regional hospitals. Rectal swabs were analysed by direct culture (ChromID ESBL agar) and with the ESBL qPCR. Suspected ESBL-producing isolates were confirmed with the combination disc method and analysed by WGS. Out of 354 rectal swabs and 351 patients, 21 rectal swabs and 20 patients were positive for ESBL-producing isolates, resulting in a regional ESBL colonization prevalence of 5.7%. One rectal swab was false negative with the ESBL qPCR (blaTEM-12) and not covered by the ESBL qPCR. Eight ESBL qPCR-positive rectal swabs could not be confirmed by culture and were classified as false ESBL qPCR positive. The sensitivity and specificity of the ESBL qPCR were 95.2% (n = 20) and 97.6% (n = 323), respectively. When an optimal cycle threshold cut-off value of 37 was used, the ESBL qPCR displayed a sensitivity and specificity of 95.2% (n = 20) and 98.8% (n = 327), respectively (AUC = 0.975, 95% CI = 0.922-1). This ESBL qPCR offers rapid direct detection of the most prevalent ESBL types (blaCTX-M group and blaSHV group) from rectal swabs. The relatively high false-positive rate renders this test the most suitable as a screening test in high-prevalence regions or in an outbreak setting where a fast result is essential. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Development of a PCR assay to detect cyprinid herpesvirus 1 in koi and common carp.

    PubMed

    Viadanna, Pedro H O; Miller-Morgan, Tim; Peterson, Trace; Way, Keith; Stone, David M; Marty, Gary D; Pilarski, Fabiana; Hedrick, Ronald P; Waltzek, Thomas B

    2017-02-08

    Cyprinid herpesvirus 1 (CyHV1) infects all scaled and color varieties of common carp Cyprinus carpio, including koi. While it is most often associated with unsightly growths known as 'carp pox,' the underlying lesion (epidermal hyperplasia) can arise from a variety of disease processes. CyHV1-induced epidermal hyperplasia may occur transiently in response to water temperature, and thus histopathology cannot be used in isolation to assess CyHV1 infection status. To address this problem, here we describe a PCR assay targeted to the putative thymidine kinase gene of CyHV1. The PCR assay generates a 141 bp amplicon and reliably detects down to 10 copies of control plasmid DNA sequence (analytic sensitivity). The PCR does not cross-detect genomic DNA from cyprinid herpesvirus 2 and 3 (analytic specificity). The CyHV1 PCR effectively detected viral DNA in koi and common carp sampled from various locations in the UK, USA, Brazil, and Japan. Viral DNA was detected in both normal appearing and grossly affected epidermal tissues from koi experiencing natural epizootics. The new CyHV1 PCR provides an additional approach to histopathology for the rapid detection of CyHV1. Analysis of the thymidine kinase gene sequences determined for 7 PCR-positive carp originating from disparate geographical regions identified 3 sequence types, with 1 type occurring in both koi and common carp.

  4. Nanoparticles Affect PCR Primarily via Surface Interactions with PCR Components: Using Amino-Modified Silica-Coated Magnetic Nanoparticles as a Main Model.

    PubMed

    Bai, Yalong; Cui, Yan; Paoli, George C; Shi, Chunlei; Wang, Dapeng; Shi, Xianming

    2015-06-24

    Nanomaterials have been widely reported to affect the polymerase chain reaction (PCR). However, many studies in which these effects were observed were not comprehensive, and many of the proposed mechanisms have been primarily speculative. In this work, we used amino-modified silica-coated magnetic nanoparticles (ASMNPs, which can be collected very easily using an external magnetic field) as a model and compared them with gold nanoparticles (AuNPs, which have been studied extensively) to reveal the mechanisms by which nanoparticles affect PCR. We found that nanoparticles affect PCR primarily by binding to PCR components: (1) inhibition, (2) specifity, and (3) efficiency and yield of PCR are impacted. (1) Excess nanomaterials inhibit PCR by adsorbing to DNA polymerase, Mg(2+), oligonucleotide primers, or DNA templates. Nanoparticle surface-active groups are particularly important to this effect. (2, a) Nanomaterials do not inhibit nonspecific amplification products caused by false priming as previously surmised. It was shown that relatively low concentrations of nanoparticles inhibited the amplification of long amplicons, and increasing the amount of nanoparticles inhibited the amplification of short amplicons. This concentration phenomenon appears to be the result of the formation of "joints" upon the adsorption of ASMNPs to DNA templates. (b) Nanomaterials are able to inhibit nonspecific amplification products due to incomplete amplification by preferably adsorbing single-stranded incomplete amplification products. (3) Some types of nanomaterials, such as AuNPs, enhance the efficiency and yield of PCR because these types of nanoparticles can adsorb to single-stranded DNA more strongly than to double-stranded DNA. This behavior assists in the rapid and thorough denaturation of double-stranded DNA templates. Therefore, the interaction between the surface of nanoparticles and PCR components is sufficient to explain most of the effects of nanoparticles on PCR.

  5. Multicenter Evaluation of Epidemiological Typing of Methicillin-Resistant Staphylococcus aureus Strains by Repetitive-Element PCR Analysis

    PubMed Central

    Deplano, Ariane; Schuermans, Annette; Van Eldere, Johan; Witte, Wolfgang; Meugnier, Hèléne; Etienne, Jerome; Grundmann, Hajo; Jonas, Daniel; Noordhoek, Gerda T.; Dijkstra, Jolanda; van Belkum, Alex; van Leeuwen, Willem; Tassios, Panayotis T.; Legakis, Nicholas J.; van der Zee, Anneke; Bergmans, Anneke; Blanc, Dominique S.; Tenover, Fred C.; Cookson, Barry C.; O'Neil, Gael; Struelens, Marc J.

    2000-01-01

    Rapid and efficient epidemiologic typing systems would be useful to monitor transmission of methicillin-resistant Staphylococcus aureus (MRSA) at both local and interregional levels. To evaluate the intralaboratory performance and interlaboratory reproducibility of three recently developed repeat-element PCR (rep-PCR) methods for the typing of MRSA, 50 MRSA strains characterized by pulsed-field gel electrophoresis (PFGE) (SmaI) analysis and epidemiological data were blindly typed by inter-IS256, 16S-23S ribosomal DNA (rDNA), and MP3 PCR in 12 laboratories in eight countries using standard reagents and protocols. Performance of typing was defined by reproducibility (R), discriminatory power (D), and agreement with PFGE analysis. Interlaboratory reproducibility of pattern and type classification was assessed visually and using gel analysis software. Each typing method showed a different performance level in each center. In the center performing best with each method, inter-IS256 PCR typing achieved R = 100% and D = 100%; 16S-23S rDNA PCR, R = 100% and D = 82%; and MP3 PCR, R = 80% and D = 83%. Concordance between rep-PCR type and PFGE type ranged by center: 70 to 90% for inter-IS256 PCR, 44 to 57% for 16S-23S rDNA PCR, and 53 to 54% for MP3 PCR analysis. In conclusion, the performance of inter-IS256 PCR typing was similar to that of PFGE analysis in some but not all centers, whereas other rep-PCR protocols showed lower discrimination and intralaboratory reproducibility. None of these assays, however, was sufficiently reproducible for interlaboratory exchange of data. PMID:11015358

  6. Riems influenza a typing array (RITA): An RT-qPCR-based low density array for subtyping avian and mammalian influenza a viruses.

    PubMed

    Hoffmann, Bernd; Hoffmann, Donata; Henritzi, Dinah; Beer, Martin; Harder, Timm C

    2016-06-03

    Rapid and sensitive diagnostic approaches are of the utmost importance for the detection of humans and animals infected by specific influenza virus subtype(s). Cascade-like diagnostics starting with the use of pan-influenza assays and subsequent subtyping devices are normally used. Here, we demonstrated a novel low density array combining 32 TaqMan(®) real-time RT-PCR systems in parallel for the specific detection of the haemagglutinin (HA) and neuraminidase (NA) subtypes of avian and porcine hosts. The sensitivity of the newly developed system was compared with that of the pan-influenza assay, and the specificity of all RT-qPCRs was examined using a broad panel of 404 different influenza A virus isolates representing 45 different subtypes. Furthermore, we analysed the performance of the RT-qPCR assays with diagnostic samples obtained from wild birds and swine. Due to the open format of the array, adaptations to detect newly emerging influenza A virus strains can easily be integrated. The RITA array represents a competitive, fast and sensitive subtyping tool that requires neither new machinery nor additional training of staff in a lab where RT-qPCR is already established.

  7. Comparative evaluation of two Rickettsia typhi-specific quantitative real-time PCRs for research and diagnostic purposes.

    PubMed

    Papp, Stefanie; Rauch, Jessica; Kuehl, Svenja; Richardt, Ulricke; Keller, Christian; Osterloh, Anke

    2017-02-01

    Rickettsioses are caused by intracellular bacteria of the family of Rickettsiaceae. Rickettsia (R.) typhi is the causative agent of endemic typhus. The disease occurs worldwide and is one of the most prevalent rickettsioses. Rickettsial diseases, however, are generally underdiagnosed which is mainly due to the lack of sensitive and specific methods. In addition, methods for quantitative detection of the bacteria for research purposes are rare. We established two qPCRs for the detection of R. typhi by amplification of the outer membrane protein B (ompB) and parvulin-type PPIase (prsA) genes. Both qPCRs are specific and exclusively recognize R. typhi but no other rickettsiae including the closest relative, R. prowazekii. The prsA-based qPCR revealed to be much more sensitive than the amplification of ompB and provided highly reproducible results in the detection of R. typhi in organs of infected mice. Furthermore, as a nested PCR the prsA qPCR was applicable for the detection of R. typhi in human blood samples. Collectively, the prsA-based qPCR represents a reliable method for the quantitative detection of R. typhi for research purposes and is a promising candidate for differential diagnosis.

  8. Comprehensive Multiplex One-Step Real-Time TaqMan qRT-PCR Assays for Detection and Quantification of Hemorrhagic Fever Viruses

    PubMed Central

    Li, Jiandong; Qu, Jing; He, Chengcheng; Zhang, Shuo; Li, Chuan; Zhang, Quanfu; Liang, Mifang; Li, Dexin

    2014-01-01

    Background Viral hemorrhagic fevers (VHFs) are a group of animal and human illnesses that are mostly caused by several distinct families of viruses including bunyaviruses, flaviviruses, filoviruses and arenaviruses. Although specific signs and symptoms vary by the type of VHF, initial signs and symptoms are very similar. Therefore rapid immunologic and molecular tools for differential diagnosis of hemorrhagic fever viruses (HFVs) are important for effective case management and control of the spread of VHFs. Real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) assay is one of the reliable and desirable methods for specific detection and quantification of virus load. Multiplex PCR assay has the potential to produce considerable savings in time and resources in the laboratory detection. Results Primers/probe sets were designed based on appropriate specific genes for each of 28 HFVs which nearly covered all the HFVs, and identified with good specificity and sensitivity using monoplex assays. Seven groups of multiplex one-step real-time qRT-PCR assays in a universal experimental system were then developed by combining all primers/probe sets into 4-plex reactions and evaluated with serial dilutions of synthesized viral RNAs. For all the multiplex assays, no cross-reactivity with other HFVs was observed, and the limits of detection were mainly between 45 and 150 copies/PCR. The reproducibility was satisfactory, since the coefficient of variation of Ct values were all less than 5% in each dilution of synthesized viral RNAs for both intra-assays and inter-assays. Evaluation of the method with available clinical serum samples collected from HFRS patients, SFTS patients and Dengue fever patients showed high sensitivity and specificity of the related multiplex assays on the clinical specimens. Conclusions Overall, the comprehensive multiplex one-step real-time qRT-PCR assays were established in this study, and proved to be specific, sensitive, stable and easy to serve as a useful tool for rapid detection of HFVs. PMID:24752452

  9. Detection of clinically relevant copy number alterations in oral cancer progression using multiplexed droplet digital PCR.

    PubMed

    Hughesman, Curtis B; Lu, X J David; Liu, Kelly Y P; Zhu, Yuqi; Towle, Rebecca M; Haynes, Charles; Poh, Catherine F

    2017-09-19

    Copy number alterations (CNAs), a common genomic event during carcinogenesis, are known to affect a large fraction of the genome. Common recurrent gains or losses of specific chromosomal regions occur at frequencies that they may be considered distinctive features of tumoral cells. Here we introduce a novel multiplexed droplet digital PCR (ddPCR) assay capable of detecting recurrent CNAs that drive tumorigenesis of oral squamous cell carcinoma. Applied to DNA extracted from oral cell lines and clinical samples of various disease stages, we found good agreement between CNAs detected by our ddPCR assay with those previously reported using comparative genomic hybridization or single nucleotide polymorphism arrays. Furthermore, we demonstrate that the ability to target specific locations of the genome permits detection of clinically relevant oncogenic events such as small, submicroscopic homozygous deletions. Additional capabilities of the multiplexed ddPCR assay include the ability to infer ploidy level, quantify the change in copy number of target loci with high-level gains, and simultaneously assess the status and viral load for high-risk human papillomavirus types 16 and 18. This novel multiplexed ddPCR assay therefore may have clinical value in differentiating between benign oral lesions from those that are at risk of progressing to oral cancer.

  10. A seminested PCR assay for detection and typing of human papillomavirus based on E1 gene sequences.

    PubMed

    Cavalcante, Gustavo Henrique O; de Araújo, Josélio M G; Fernandes, José Veríssimo; Lanza, Daniel C F

    2018-05-01

    HPV infection is considered one of the leading causes of cervical cancer in the world. To date, more than 180 types of HPV have been described and viral typing is critical for defining the prognosis of cancer. In this work, a seminested PCR which allow fast and inexpensively detection and typing of HPV is presented. The system is based on the amplification of a variable length region within the viral gene E1, using three primers that potentially anneal in all HPV genomes. The amplicons produced in the first step can be identified by high resolution electrophoresis or direct sequencing. The seminested step includes nine specific primers which can be used in multiplex or individual reactions to discriminate the main types of HPV by amplicon size differentiation using agarose electrophoresis, reducing the time spent and cost per analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. [Molecular diagnosis of spinal muscular atrophy by multiplex ligation-dependent probe amplification].

    PubMed

    Zeng, Jian; Ke, Long-feng; Deng, Xiao-jun; Cai, Mei-ying; Tu, Xiang-dong; Lan, Feng-hua

    2008-12-16

    To investigate the effect of multiplex ligation-dependent probe amplification (MLPA) in molecular diagnosis of spinal muscular atrophy (SMA). Peripheral blood samples were collected from 13 SMA patients, 31 parents of SMA patients, 50 healthy individuals without family history of SMA, and 10 specimens of amniotic fluid from these families were collected too. Genomic DNA was analyzed by MLPA, conventional PCR-RFLP, and allele-specific PCR. In complete agreement with the results of conventional PCR-RFLP and allele-specific PCR, MLPA analysis showed that all of the 13 patients had homozygous deletion of the survival of motor neuron 1 (SMN1) gene, and there was significant difference between the SMA severity (type I to type III) and SMN2 copy number (P < 0.05). Of the 31 parents 29 (93.5%) had 1 copy of SMN1, 2 (6.5%) had 2 copies of SMN1. Of the 50 healthy individuals, 1 (2.0%) had 1 copy of SMN1, 48 (96.0%) had 2 copies of SMN1, and 1 (2.0%) had 3 copies. The SMN1 copy number of the parents was significantly higher than that of the healthy individuals (P < 0.01). Two of the 10 fetuses had homozygous deletion of SMN1. The MLPA technique has proved to be an accurate and reliable tool for the molecular diagnosis of SMA, both in patients and in healthy carriers.

  12. A molecular survey of bovine Theileria parasites among apparently healthy cattle and with a note on the distribution of ticks in eastern Turkey.

    PubMed

    Aktas, Munir; Altay, Kursat; Dumanli, Nazir

    2006-06-15

    A survey of Theileria parasites in cattle in eastern Turkey was carried out using specific polymerase chain reaction. A total of 252 blood samples were collected from clinically healthy cattle between June and July 2004. Of 252 blood samples examined, 41 (16%) were positive for piroplasms by microscopy, whereas 114 (45%) were positive for the presence of at least one species of Theileria by PCR. The percentages of positive animals for Theileria annulata and benign Theileria species (Theileria sergenti/buffeli/orientalis) were 39% (99/252) and 7% (18/252), respectively. By allele-specific PCR examination of 18 field isolates which were positive for benign Theileria parasites, 8 samples were only amplified by B-type specific primers and 10 samples were amplified by both of the B and C-type specific primers, indicating a mixed infection with B and C-type of the parasite. None of the field isolates was amplified by I-type specific primers. Three samples were co-infected with T. annulata and benign Theileria parasites. Two of them which were infected with B-type parasite were also infected with T. annulata, the other sample which was infected both of B and C-type parasites was also infected with T. annulata. A total of 724 ixodid ticks were collected from the cattle. Hyalomma anatolicum anatolicum was the dominant species with 32% (230/724) in the region. H. a. excavatum, Boophylus annulatus and Rhipicephalus bursa represented 25% (183/724), 19% (140/724) and 15% (112/724) of the total number of ticks, respectively. R. sanguineus was the minor species and represented 8% (59/724) of the tick population.

  13. Analysis of ELA-DQB exon 2 polymorphism in Argentine Creole horses by PCR-RFLP and PCR-SSCP.

    PubMed

    Villegas-Castagnasso, E E; Díaz, S; Giovambattista, G; Dulout, F N; Peral-García, P

    2003-08-01

    The second exon of equine leucocyte antigen (ELA)-DQB genes was amplified from genomic DNA of 32 Argentine Creole horses by PCR. Amplified DNA was analysed by PCR-restriction fragment length polymorphism (RFLP) and PCR-single-strand conformation polymorphism (SSCP). The PCR-RFLP analysis revealed two HaeIII patterns, four RsaI patterns, five MspI patterns and two HinfI patterns. EcoRI showed no variation in the analysed sample. Additional patterns that did not account for known exon 2 DNA sequences were observed, suggesting the existence of novel ELA-DQB alleles. PCR-SSCP analysis exhibited seven different band patterns, and the number of bands per animal ranged from four to nine. Both methods indicated that at least two DQB genes are present. The presence of more than two alleles in each animal showed that the primers employed in this work are not specific for a unique DQB locus. The improvement of this PCR-RFLP method should provide a simple and rapid technique for an accurate definition of ELA-DQB typing in horses.

  14. Optimization of polymerase chain reaction for detection of Clostridium botulinum type C and D in bovine samples.

    PubMed

    Prévot, V; Tweepenninckx, F; Van Nerom, E; Linden, A; Content, J; Kimpe, A

    2007-01-01

    Botulism is a rare but serious paralytic illness caused by a nerve toxin that is produced by the bacterium Clostridium botulinum. The economic, medical and alimentary consequences can be catastrophic in case of an epizooty. A polymerase chain reaction (PCR)-based assay was developed for the detection of C. botulinum toxigenic strains type C and D in bovine samples. This assay has proved to be less expensive, faster and simpler to use than the mouse bioassay, the current reference method for diagnosis of C. botulinum toxigenic strains. Three pairs of primers were designed, one for global detection of C. botulinum types C and D (primer pair Y), and two strain-specific pairs specifically designed for types C (primer pair VC) and D (primer pair VD). The PCR amplification conditions were optimized and evaluated on 13 bovine and two duck samples that had been previously tested by the mouse bioassay. In order to assess the impact of sample treatment, both DNA extracted from crude samples and three different enrichment broths (TYG, CMM, CMM followed by TYG) were tested. A 100% sensitivity was observed when samples were enriched for 5 days in CMM followed by 1 day in TYG broth. False-negative results were encountered when C. botulinum was screened for in crude samples. These findings indicate that the current PCR is a reliable method for the detection of C. botulinum toxigenic strains type C and D in bovine samples but only after proper enrichment in CMM and TYG broth.

  15. Molecular Diagnosis of Invasive Aspergillosis and Detection of Azole Resistance by a Newly Commercialized PCR Kit

    PubMed Central

    Gabriel, Frédéric; Gaboyard, Manuel; Lagardere, Gaëlle; Audebert, Lucile; Quesne, Gilles; Godichaud, Sandrine; Verweij, Paul E.; Accoceberry, Isabelle

    2017-01-01

    ABSTRACT Aspergillus fumigatus is the main species responsible for aspergillosis in humans. The diagnosis of aspergillosis remains difficult, and the rapid emergence of azole resistance in A. fumigatus is worrisome. The aim of this study was to validate the new MycoGENIE A. fumigatus real-time PCR kit and to evaluate its performance on clinical samples for the detection of A. fumigatus and its azole resistance. This multiplex assay detects DNA from the A. fumigatus species complex by targeting the multicopy 28S rRNA gene and specific TR34 and L98H mutations in the single-copy-number cyp51A gene of A. fumigatus. The specificity of cyp51A mutation detection was assessed by testing DNA samples from 25 wild-type or mutated clinical A. fumigatus isolates. Clinical validation was performed on 88 respiratory samples obtained from 62 patients and on 69 serum samples obtained from 16 patients with proven or probable aspergillosis and 13 patients without aspergillosis. The limit of detection was <1 copy for the Aspergillus 28S rRNA gene and 6 copies for the cyp51A gene harboring the TR34 and L98H alterations. No cross-reactivity was detected with various fungi and bacteria. All isolates harboring the TR34 and L98H mutations were accurately detected by quantitative PCR (qPCR) analysis. With respiratory samples, qPCR results showed a sensitivity and specificity of 92.9% and 90.1%, respectively, while with serum samples, the sensitivity and specificity were 100% and 84.6%, respectively. Our study demonstrated that this new real-time PCR kit enables sensitive and rapid detection of A. fumigatus DNA and azole resistance due to TR34 and L98H mutations in clinical samples. PMID:28814586

  16. Deep Sequencing to Identify the Causes of Viral Encephalitis

    PubMed Central

    Chan, Benjamin K.; Wilson, Theodore; Fischer, Kael F.; Kriesel, John D.

    2014-01-01

    Deep sequencing allows for a rapid, accurate characterization of microbial DNA and RNA sequences in many types of samples. Deep sequencing (also called next generation sequencing or NGS) is being developed to assist with the diagnosis of a wide variety of infectious diseases. In this study, seven frozen brain samples from deceased subjects with recent encephalitis were investigated. RNA from each sample was extracted, randomly reverse transcribed and sequenced. The sequence analysis was performed in a blinded fashion and confirmed with pathogen-specific PCR. This analysis successfully identified measles virus sequences in two brain samples and herpes simplex virus type-1 sequences in three brain samples. No pathogen was identified in the other two brain specimens. These results were concordant with pathogen-specific PCR and partially concordant with prior neuropathological examinations, demonstrating that deep sequencing can accurately identify viral infections in frozen brain tissue. PMID:24699691

  17. Quantitative detection of pork in commercial meat products by TaqMan® real-time PCR assay targeting the mitochondrial D-loop region.

    PubMed

    Kim, Miju; Yoo, Insuk; Lee, Shin-Young; Hong, Yeun; Kim, Hae-Yeong

    2016-11-01

    The TaqMan® real-time PCR assay using the mitochondrial D-loop region was developed for the quantitative detection of pork in processed meat products. The newly designed primers and probe specifically amplified pork without any cross-reactivity with non-target animal species. The limit of detection of the real-time PCR assay was 0.1pg of heat-treated pork meat and 0.1% (w/w) pork meat in beef and chicken meat mixtures. The quantitative real-time PCR assay was applied to analyze the pork meat content in 22 commercial processed meat products including jerkies, press hams, sausages, hamburger patties and steaks, grilled short rib patties, and nuggets. The developed real-time PCR method was able to detect pork meat in various types of processed meat products that declared the use of pork meat on their label. All processed meat products that declared no use of pork meat showed a negative result in the assay. The method developed in this study showed sensitivity and specificity in the quantification of pork meat in commercial processed meat products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Molecular analysis of the AGXT gene in Italian patients with primary hyperoxaluria type 1 (PH1).

    PubMed

    Ferrettini, C; Pirulli, D; Cosseddu, D; Marangella, M; Petrarulo, M; Mazzola, G; Vatta, S; Amoroso, A

    1998-01-01

    Specimens were collected from 22 Italian patients with primary hyperoxaluria type 1 (PH1). Ten of them had already been analyzed by molecular biology. To clarify the molecular characteristics of the AGXT gene disease responsible for PH1, DNA samples were examined for known mutations by hybridisation of PCR products with Sequence Specific Oligonucleotides (PCR-SSO). We planned to identify new mutations of the AGXT gene by heteroduplex analysis followed by direct sequencing. We had already standardized a) the conditions for the amplification of the 11 exons of AGXT, b) the PCR-SSO technique and c) the heteroduplex analysis of amplified products. Preliminary results demonstrated that the AGXT mutations described in previous studies were found only in 40% of the examined Italian patients with PH1. The remaining 60% of mutations should be characterised in future studies.

  19. Multiplex PCR Targeting tpi (Triose Phosphate Isomerase), tcdA (Toxin A), and tcdB (Toxin B) Genes for Toxigenic Culture of Clostridium difficile

    PubMed Central

    Lemee, Ludovic; Dhalluin, Anne; Testelin, Sabrina; Mattrat, Marie-Andre; Maillard, Karine; Lemeland, Jean-François; Pons, Jean-Louis

    2004-01-01

    A multiplex PCR toxigenic culture approach was designed for simultaneous identification and toxigenic type characterization of Clostridium difficile isolates. Three pairs of primers were designed for the amplification of (i) a species-specific internal fragment of the tpi (triose phosphate isomerase) gene, (ii) an internal fragment of the tcdB (toxin B) gene, and (iii) an internal fragment of the tcdA (toxin A) gene allowing distinction between toxin A-positive, toxin B-positive (A+B+) strains and toxin A-negative, toxin B-positive (A−B+) variant strains. The reliability of the multiplex PCR was established by using a panel of 72 C. difficile strains including A+B+, A−B−, and A−B+ toxigenic types and 11 other Clostridium species type strains. The multiplex PCR assay was then included in a toxigenic culture approach for the detection, identification, and toxigenic type characterization of C. difficile in 1,343 consecutive human and animal stool samples. Overall, 111 (15.4%) of 721 human samples were positive for C. difficile; 67 (60.4%) of these samples contained A+B+ toxigenic isolates, and none of them contained A−B+ variant strains. Fifty (8%) of 622 animal samples contained C. difficile strains, which were toxigenic in 27 (54%) cases, including 1 A−B+ variant isolate. Eighty of the 721 human stool samples (37 positive and 43 negative for C. difficile culture) were comparatively tested by Premier Toxins A&B (Meridian Bioscience) and Triage C. difficile Panel (Biosite) immunoassays, the results of which were found concordant with toxigenic culture for 82.5 and 92.5% of the samples, respectively. The multiplex PCR toxigenic culture scheme described here allows combined diagnosis and toxigenic type characterization for human and animal C. difficile intestinal infections. PMID:15583303

  20. Pertuzumab/Trastuzumab/CT Versus Trastuzumab/CT Therapy for HER2+ Breast Cancer: Results from the Prospective Neoadjuvant Breast Registry Symphony Trial (NBRST).

    PubMed

    Beitsch, Peter; Whitworth, Pat; Baron, Paul; Rotkis, Michael C; Mislowsky, Angela M; Richards, Paul D; Murray, Mary K; Pellicane, James V; Dul, Carrie L; Nash, Charles H; Stork-Sloots, Lisette; de Snoo, Femke; Untch, Sarah; Lee, Laura A

    2017-09-01

    Pertuzumab became a standard part of neoadjuvant therapy for human epidermal growth factor receptor 2-positive (HER2+) breast cancers approximately halfway through Neoadjuvant Breast Registry Symphony Trial (NBRST) enrollment, providing a unique opportunity to determine biologically which clinical HER2+ patients benefit most from dual targeting. As a neoadjuvant phase 4 study, NBRST classifies patients by both conventional and molecular subtyping. Of 308 clinical HER2+ patients enrolled in NBRST between 2011 and 2014 from 62 U.S. institutions, 297 received neoadjuvant chemotherapy (NCT) with HER2-targeted therapy and underwent surgery. This study compared the pathologic complete response (pCR) rate of BluePrint versus clinical subtypes with treatment, specifically differences between trastuzumab (T) treatment and trastuzumab and pertuzumab (T/P) treatment. In this study, 60% of the patients received NCT-T, and 40% received NCT-T/P. The overall pCR rate (ypT0/isN0) was 47%. BluePrint classified 161 tumors (54%) as HER2 type, with a pCR rate of 65%. This was significantly higher than the pCR rate for the 91 HER2+ tumors (31%) classified as luminal (18%) (p = 0.00001) and the 45 tumors (15%) classified as basal (44%) (p = 0.0166). The patients treated with T/P had higher pCR rates than those treated with trastuzumab alone. The difference was most pronounced in the BluePrint luminal patients (8 vs. 31%). The highest pCR was reached by the BluePrint HER2-type patients treated with T/P (76%). The addition of pertuzumab leads to increased pCR rates for all HER2+ patient groups except for the BluePrint basal-type patients. This better response was most pronounced for the BluePrint luminal-type patients.

  1. Antigenic typing of canine parvovirus using differential PCR.

    PubMed

    Kaur, Gurpreet; Chandra, Mudit; Dwivedi, P N; Sharma, N S

    2014-12-01

    Canine parvovirus (CPV) is an enteric pathogen causing hemorrhagic enteritis in pups of 3-6 months of age and is mainly transmitted via feco-oral route. In the present study, a total of 85 animals rectal swabs suspected of CPV were tested using a PCR, nested PCR and a newly designed differential PCR. Using PCR 7 (8.23 %) animals were positive whereas 39 (45.88 %) were positive by using nested PCR and 40 (47.05 %) were positive for either one or more than one antigenic types of CPV using differential PCR. Using differential PCR it was found that CPV-2a and CPV-2b were the most prevailing antigenic types. Also it was found that dogs that were vaccinated too yielded positive CPV indicating a possible presence of additional CPV antigenic types. Thus, the primers used in differential PCR can be used in a single PCR reaction to detect various antigenic types of CPV.

  2. Capsule Typing of Haemophilus influenzae by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry.

    PubMed

    Månsson, Viktor; Gilsdorf, Janet R; Kahlmeter, Gunnar; Kilian, Mogens; Kroll, J Simon; Riesbeck, Kristian; Resman, Fredrik

    2018-03-01

    Encapsulated Haemophilus influenzae strains belong to type-specific genetic lineages. Reliable capsule typing requires PCR, but a more efficient method would be useful. We evaluated capsule typing by using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Isolates of all capsule types (a-f and nontypeable; n = 258) and isogenic capsule transformants (types a-d) were investigated. Principal component and biomarker analyses of mass spectra showed clustering, and mass peaks correlated with capsule type-specific genetic lineages. We used 31 selected isolates to construct a capsule typing database. Validation with the remaining isolates (n = 227) showed 100% sensitivity and 92.2% specificity for encapsulated strains (a-f; n = 61). Blinded validation of a supplemented database (n = 50) using clinical isolates (n = 126) showed 100% sensitivity and 100% specificity for encapsulated strains (b, e, and f; n = 28). MALDI-TOF mass spectrometry is an accurate method for capsule typing of H. influenzae.

  3. Determination of ABO genotypes with DNA extracted from formalin-fixed, paraffin-embedded tissues.

    PubMed

    Yamada, M; Yamamoto, Y; Tanegashima, A; Kane, M; Ikehara, Y; Fukunaga, T; Nishi, K

    1994-01-01

    The gene encoding the specific glycosyltransferases which catalyze the conversion of the H antigen to A or B antigens shows a slight but distinct variation in its allelic nucleotide sequence and can be divided into 6 genotypes when digested with specific restriction enzymes. We extracted DNA from formalin-fixed, paraffin-embedded tissues using SDS/proteinase K treatment followed by phenol/chloroform extraction. The sequence of nucleotides for the A, B and O genes was amplified by the polymerase chain reaction (PCR). DNA fragments of 128 bp and 200 bp could be amplified in the second round of PCR, using an aliquot of the first round PCR product as template. Degraded DNA from paraffin blocks stored for up to 10.7 years could be successfully typed. The ABO genotype was deduced from the digestion patterns with an appropriate combination of restriction enzymes and was compatible with the phenotype obtained from the blood sample.

  4. Single nucleotide polymorphism-based molecular typing of M. leprae from multicase families of leprosy patients and their surroundings to understand the transmission of leprosy.

    PubMed

    Turankar, R P; Lavania, M; Chaitanya, V S; Sengupta, U; Darlong, J; Darlong, F; Siva Sai, K S R; Jadhav, R S

    2014-03-01

    The exact mode of transmission of leprosy is not clearly understood; however, many studies have demonstrated active transmission of leprosy around a source case. Families of five active leprosy cases and their household contacts were chosen from a high endemic area in Purulia. Fifty-two soil samples were also collected from different areas of their houses. DNA was extracted from slit-skin smears (SSS) and soil samples and the Mycobacterium leprae-specific RLEP (129 bp) region was amplified using PCR. Molecular typing of M. leprae was performed for all RLEP PCR-positive samples by single nucleotide polymorphism (SNP) typing and confirmation by DNA sequencing. SSS of these five patients and six out of the total 28 contacts were PCR positive for RLEP whereas 17 soil samples out of 52 showed the presence of M. leprae DNA. SNP typing of M. leprae from all RLEP PCR-positive subjects (patients and smear-positive contacts) and 10 soil samples showed the SNP type 1 genotype. M. leprae DNA from the five leprosy patients and the six contacts was further subtyped and the D subtype was noted in all patients and contacts, except for one contact where the C subtype was identified. Typing followed by subtyping of M. leprae clearly revealed that either the contacts were infected by the patients or both patients and contacts had the same source of infection. It also revealed that the type of M. leprae in the soil in the inhabited areas where patients resided was also of the same type as that found in patients. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  5. PCR Methods for Rapid Identification and Characterization of Actinobacillus seminis Strains

    PubMed Central

    Appuhamy, S.; Coote, J. G.; Low, J. C.; Parton, R.

    1998-01-01

    Twenty-four isolates of Actinobacillus seminis were typed by PCR ribotyping, repetitive extragenic palindromic element (REP)-based PCR, and enterobacterial repetitive intergenic consensus (ERIC)-based PCR. Five types were distinguished by REP-PCR, and nine types were distinguished by ERIC-PCR. PCR ribotyping produced the simplest pattern and could be useful for identification of A. seminis and for its differentiation from related species. REP- and ERIC-PCR could be used for strain differentiation in epidemiological studies of A. seminis. PMID:9508320

  6. Quantitative PCR high-resolution melting (qPCR-HRM) curve analysis, a new approach to simultaneously screen point mutations and large rearrangements: application to MLH1 germline mutations in Lynch syndrome.

    PubMed

    Rouleau, Etienne; Lefol, Cédrick; Bourdon, Violaine; Coulet, Florence; Noguchi, Tetsuro; Soubrier, Florent; Bièche, Ivan; Olschwang, Sylviane; Sobol, Hagay; Lidereau, Rosette

    2009-06-01

    Several techniques have been developed to screen mismatch repair (MMR) genes for deleterious mutations. Until now, two different techniques were required to screen for both point mutations and large rearrangements. For the first time, we propose a new approach, called "quantitative PCR (qPCR) high-resolution melting (HRM) curve analysis (qPCR-HRM)," which combines qPCR and HRM to obtain a rapid and cost-effective method suitable for testing a large series of samples. We designed PCR amplicons to scan the MLH1 gene using qPCR HRM. Seventy-six patients were fully scanned in replicate, including 14 wild-type patients and 62 patients with known mutations (57 point mutations and five rearrangements). To validate the detected mutations, we used sequencing and/or hybridization on a dedicated MLH1 array-comparative genomic hybridization (array-CGH). All point mutations and rearrangements detected by denaturing high-performance liquid chromatography (dHPLC)+multiplex ligation-dependent probe amplification (MLPA) were successfully detected by qPCR HRM. Three large rearrangements were characterized with the dedicated MLH1 array-CGH. One variant was detected with qPCR HRM in a wild-type patient and was located within the reverse primer. One variant was not detected with qPCR HRM or with dHPLC due to its proximity to a T-stretch. With qPCR HRM, prescreening for point mutations and large rearrangements are performed in one tube and in one step with a single machine, without the need for any automated sequencer in the prescreening process. In replicate, its reagent cost, sensitivity, and specificity are comparable to those of dHPLC+MLPA techniques. However, qPCR HRM outperformed the other techniques in terms of its rapidity and amount of data provided.

  7. Changes in content and synthesis of collagen types and proteoglycans in osteoarthritis of the knee joint and comparison of quantitative analysis with Photoshop-based image analysis.

    PubMed

    Lahm, Andreas; Mrosek, Eike; Spank, Heiko; Erggelet, Christoph; Kasch, Richard; Esser, Jan; Merk, Harry

    2010-04-01

    The different cartilage layers vary in synthesis of proteoglycan and of the distinct types of collagen with the predominant collagen Type II with its associated collagens, e.g. types IX and XI, produced by normal chondrocytes. It was demonstrated that proteoglycan decreases in degenerative tissue and a switch from collagen type II to type I occurs. The aim of this study was to evaluate the correlation of real-time (RT)-PCR and Photoshop-based image analysis in detecting such lesions and find new aspects about their distribution. We performed immunohistochemistry and histology with cartilage tissue samples from 20 patients suffering from osteoarthritis compared with 20 healthy biopsies. Furthermore, we quantified our results on the gene expression of collagen type I and II and aggrecan with the help of real-time (RT)-PCR. Proteoglycan content was measured colorimetrically. Using Adobe Photoshop the digitized images of histology and immunohistochemistry stains of collagen type I and II were stored on an external data storage device. The area occupied by any specific colour range can be specified and compared in a relative manner directly from the histogram using the "magic wand tool" in the select similar menu. In the image grow menu gray levels or luminosity (colour) of all pixels within the selected area, including mean, median and standard deviation, etc. are depicted. Statistical Analysis was performed using the t test. With the help of immunohistochemistry, RT-PCR and quantitative RT- PCR we found that not only collagen type II, but also collagen type I is synthesized by the cells of the diseased cartilage tissue, shown by increasing amounts of collagen type I mRNA especially in the later stages of osteoarthritis. A decrease of collagen type II is visible especially in the upper fibrillated area of the advanced osteoarthritic samples, which leads to an overall decrease. Analysis of proteoglycan showed a loss of the overall content and a quite uniform staining in the different zones compared to the healthy cartilage with a classical zonal formation. Correlation analysis of the proteoglycan Photoshop measurements with the RT-PCR using Spearman correlation analysis revealed strong correlation for Safranin O and collagen type I, medium for collagen type II and glycoprotein but weak correlation between PCR aggrecan results. Photoshop-based image analysis might become a valuable supplement for well known histopathological grading systems of lesioned articular cartilage.

  8. [Use of nested PCR in detection of the plague pathogen].

    PubMed

    Glukhov, A I; Gordeev, S A; Al'tshuler, M L; Zykova, I E; Severin, S E

    2003-07-01

    Causative agents of plague, i.e. bacterium Yersina pestis (in the subcutaneous tissues of rodents) and their cutaneous parasites need to be isolated to enable plague prevention. A comparatively new method of polymerase chain reaction (PCR) opens up new possibilities of determining Y. pestis just within several hours and without any cultivation. The article contains a description of the PCR-method, which makes it possible to distinguish the culture of Y. pestis from cultures of other microorganism, including speci of Yersina. The method is of the cluster-type, i.e. it is made up of subsequent PC reactions with the substrate for the second reaction being the product of the first one. The cluster nature of the method preconditions a higher sensitivity and specificity versus the ordinary PCR.

  9. Genetic variability in isolates of Chromobacterium violaceum from pulmonary secretion, water, and soil.

    PubMed

    Santini, A C; Magalhães, J T; Cascardo, J C M; Corrêa, R X

    2016-04-28

    Chromobacterium violaceum is a free-living Gram-negative bacillus usually found in the water and soil in tropical regions, which causes infections in humans. Chromobacteriosis is characterized by rapid dissemination and high mortality. The aim of this study was to detect the genetic variability among C. violaceum type strain ATCC 12472, and seven isolates from the environment and one from a pulmonary secretion from a chromobacteriosis patient from Ilhéus, Bahia. The molecular characterization of all samples was performed by polymerase chain reaction (PCR) sequencing and 16S rDNA analysis. Primers specific for two ATCC 12472 pathogenicity genes, hilA and yscD, as well as random amplified polymorphic DNA (RAPD), were used for PCR amplification and comparative sequencing of the products. For a more specific approach, the PCR products of 16S rDNA were digested with restriction enzymes. Seven of the samples, including type-strain ATCC 12472, were amplified by the hilA primers; these were subsequently sequenced. Gene yscD was amplified only in type-strain ATCC 12472. MspI and AluI digestion revealed 16S rDNA polymorphisms. This data allowed the generation of a dendogram for each analysis. The isolates of C. violaceum have variability in random genomic regions demonstrated by RAPD. Also, these isolates have variability in pathogenicity genes, as demonstrated by sequencing and restriction enzyme digestion.

  10. Real-time PCR for differential quantification of CVI988 vaccine virus and virulent strains of Marek’s disease virus

    PubMed Central

    Baigent, Susan J.; Nair, Venugopal K.; Le Galludec, Hervé

    2016-01-01

    CVI988/Rispens vaccine, the ‘gold standard’ vaccine against Marek’s disease in poultry, is not easily distinguishable from virulent strains of Marek’s disease herpesvirus (MDV). Accurate differential measurement of CVI988 and virulent MDV is commercially important to confirm successful vaccination, to diagnose Marek’s disease, and to investigate causes of vaccine failure. A real-time quantitative PCR assay to distinguish CVI988 and virulent MDV based on a consistent single nucleotide polymorphism in the pp38 gene, was developed, optimised and validated using common primers to amplify both viruses, but differential detection of PCR products using two short probes specific for either CVI988 or virulent MDV. Both probes showed perfect specificity for three commercial preparations of CVI988 and 12 virulent MDV strains. Validation against BAC-sequence-specific and US2-sequence-specific q-PCR, on spleen samples from experimental chickens co-infected with BAC-cloned pCVI988 and wild-type virulent MDV, demonstrated that CVI988 and virulent MDV could be quantified very accurately. The assay was then used to follow kinetics of replication of commercial CVI988 and virulent MDV in feather tips and blood of vaccinated and challenged experimental chickens. The assay is a great improvement in enabling accurate differential quantification of CVI988 and virulent MDV over a biologically relevant range of virus levels. PMID:26973285

  11. Nonisotopic detection of human papillomavirus DNA in clinical specimens using a consensus PCR and a generic probe mix in an enzyme-linked immunosorbent assay format.

    PubMed

    Kornegay, J R; Shepard, A P; Hankins, C; Franco, E; Lapointe, N; Richardson, H; Coutleé, F

    2001-10-01

    We assessed the value of a new digoxigenin (DIG)-labeled generic probe mix in a PCR-enzyme-linked immunosorbent assay format to screen for the presence of human papillomavirus (HPV) DNA amplified from clinical specimens. After screening with this new generic assay is performed, HPV DNA-positive samples can be directly genotyped using a reverse blotting method with product from the same PCR amplification. DNA from 287 genital specimens was amplified via PCR using biotin-labeled consensus primers directed to the L1 gene. HPV amplicons were captured on a streptavidin-coated microwell plate (MWP) and detected with a DIG-labeled HPV generic probe mix consisting of nested L1 fragments from types 11, 16, 18, and 51. Coamplification and detection of human DNA with biotinylated beta-globin primers served as a control for both sample adequacy and PCR amplification. All specimens were genotyped using a reverse line blot assay (13). Results for the generic assay using MWPs and a DIG-labeled HPV generic probe mix (DIG-MWP generic probe assay) were compared with results from a previous analysis using dot blots with a radiolabeled nested generic probe mix and type-specific probes for genotyping. The DIG-MWP generic probe assay resulted in high intralaboratory concordance in genotyping results (88% versus 73% agreement using traditional methods). There were 207 HPV-positive results using the DIG-MWP method and 196 positives using the radiolabeled generic probe technique, suggesting slightly improved sensitivity. Only one sample failed to test positive with the DIG-MWP generic probe assay in spite of a positive genotyping result. Concordance between the two laboratories was nearly 87%. Approximately 6% of samples that were positive or borderline when tested with the DIG-MWP generic probe assay were not detected with the HPV type-specific panel, perhaps representing very rare or novel HPV types. This new method is easier to perform than traditional generic probe techniques and uses more objective interpretation criteria, making it useful in studies of HPV natural history.

  12. Transfer and targeted overexpression of γ-tocopherol methyltransferase (γ-TMT) gene using seed-specific promoter improves tocopherol composition in Indian soybean cultivars.

    PubMed

    Arun, Muthukrishnan; Subramanyam, Kondeti; Theboral, Jeevaraj; Sivanandhan, Ganeshan; Rajesh, Manoharan; Kapil Dev, Gnanajothi; Jaganath, Balusamy; Manickavasagam, Markandan; Girija, Shanmugam; Ganapathi, Andy

    2014-02-01

    Soybean oil contains high levels of tocopherols which are an important source of vitamin E in human diet. The conversion of γ- to α-tocopherol catalyzed by γ-tocopherol methyltransferase (γ-TMT) is found to be the rate limiting factor in soybean which influences the tocopherol composition. Using Agrobacterium-mediated transformation, we overexpressed the γ-TMT gene of Perilla frutescens under the control of the seed-specific promoter vicillin in cultivar Pusa 16. Transgene integration and expression was confirmed in five independently transformed GUS positive soybean plants by polymerase chain reaction (PCR), Southern hybridization, and reverse transcriptase-PCR (RT-PCR). High-performance liquid chromatography (HPLC) analysis showed that overexpression of Pf-γ-TMT resulted in efficient conversion of γ-tocopherol to α-tocopherol and concomitant increase in seed α-tocopherol content in RT-PCR positive plants. The protocol was successfully applied to three more cultivars PK 416, Gujarat soybean 1, and VL soya 1 in which seeds of transformed plants showed elevated level of α-tocopherol than wild-type seeds.

  13. Molecular Properties of Poliovirus Isolates: Nucleotide Sequence Analysis, Typing by PCR and Real-Time RT-PCR.

    PubMed

    Burns, Cara C; Kilpatrick, David R; Iber, Jane C; Chen, Qi; Kew, Olen M

    2016-01-01

    Virologic surveillance is essential to the success of the World Health Organization initiative to eradicate poliomyelitis. Molecular methods have been used to detect polioviruses in tissue culture isolates derived from stool samples obtained through surveillance for acute flaccid paralysis. This chapter describes the use of realtime PCR assays to identify and serotype polioviruses. In particular, a degenerate, inosine-containing, panpoliovirus (panPV) PCR primer set is used to distinguish polioviruses from NPEVs. The high degree of nucleotide sequence diversity among polioviruses presents a challenge to the systematic design of nucleic acid-based reagents. To accommodate the wide variability and rapid evolution of poliovirus genomes, degenerate codon positions on the template were matched to mixed-base or deoxyinosine residues on both the primers and the TaqMan™ probes. Additional assays distinguish between Sabin vaccine strains and non-Sabin strains. This chapter also describes the use of generic poliovirus specific primers, along with degenerate and inosine-containing primers, for routine VP1 sequencing of poliovirus isolates. These primers, along with nondegenerate serotype-specific Sabin primers, can also be used to sequence individual polioviruses in mixtures.

  14. COLD-PCR Technologies in the Area of Personalized Medicine: Methodology and Applications.

    PubMed

    Mauger, Florence; How-Kit, Alexandre; Tost, Jörg

    2017-06-01

    Somatic mutations bear great promise for use as biomarkers for personalized medicine, but are often present only in low abundance in biological material and are therefore difficult to detect. Many assays for mutation analysis in cancer-related genes (hotspots) have been developed to improve diagnosis, prognosis, prediction of drug resistance, and monitoring of the response to treatment. Two major approaches have been developed: mutation-specific amplification methods and methods that enrich and detect mutations without prior knowledge on the exact location and identity of the mutation. CO-amplification at Lower Denaturation temperature Polymerase Chain Reaction (COLD-PCR) methods such as full-, fast-, ice- (improved and complete enrichment), enhanced-ice, and temperature-tolerant COLD-PCR make use of a critical temperature in the polymerase chain reaction to selectively denature wild-type-mutant heteroduplexes, allowing the enrichment of rare mutations. Mutations can subsequently be identified using a variety of laboratory technologies such as high-resolution melting, digital polymerase chain reaction, pyrosequencing, Sanger sequencing, or next-generation sequencing. COLD-PCR methods are sensitive, specific, and accurate if appropriately optimized and have a short time to results. A large variety of clinical samples (tumor DNA, circulating cell-free DNA, circulating cell-free fetal DNA, and circulating tumor cells) have been studied using COLD-PCR in many different applications including the detection of genetic changes in cancer and infectious diseases, non-invasive prenatal diagnosis, detection of microorganisms, or DNA methylation analysis. In this review, we describe in detail the different COLD-PCR approaches, highlighting their specificities, advantages, and inconveniences and demonstrating their use in different fields of biological and biomedical research.

  15. Direct detection of the multidrug resistance genome of Haemophilus influenzae in cerebrospinal fluid of children: implications for treatment of meningitis.

    PubMed

    Saha, Samir K; Darmstadt, Gary L; Baqui, Abdullah H; Islam, Nurul; Qazi, Shamim; Islam, Maksuda; El Arifeen, Shams; Santosham, Mathuram; Black, Robert E; Crook, Derrick W

    2008-01-01

    Multidrug resistance (MDR), specifically to ampicillin and chloramphenicol, has complicated the treatment of Haemophilus influenzae type b (Hib) meningitis. This is worsened by use of prior antibiotics, which limits identification of the causative agent by culture and increases reliance on antigen detection. We aimed to develop a PCR assay for detecting the family of Haemophilus integrating and conjugative elements (ICEs) represented by ICEHin1056 among antibiotic resistant Hib, and then apply this directly to CSF to diagnose Hib meningitis and predict organism susceptibility, irrespective of culture results. Primers specific for orf 51 of ICEHin1056 were designed and multiplexed with Bex primers, specific for H. influenzae, and tested on culture positive and negative cases. Of 73 Hib isolates, orf 51 PCR amplicons, predicting the presence of ICEs, were found in all 33 MDR isolates while only in 1 of 33 sensitive strains. The remaining 7 ampicillin susceptible, chloramphenicol and tetracycline resistant strains did not produce a PCR product to orf 51. PCR amplification from CSF specimens of these culture positive cases produced identical results with 100% and 97% positive and negative predictive values, respectively. Multiplex PCR to detect Bex and orf 51 identified another 16 MDR Hib cases among 81 culture-negative CSF samples. Direct PCR for orf 51 in CSF identified resistance pattern of 51% more Hib strains than culture alone (110 versus 73). The ability to detect MDR, in culture negative Hib meningitis cases has significant implications for better directing antibiotic treatment of meningitis cases and thus for preventing disability and death.

  16. [Identification of Clonorchis sinensis metacercariae based on PCR targeting ribosomal DNA ITS regions and COX1 gene].

    PubMed

    Yang, Qing-Li; Shen, Ji-Qing; Jiang, Zhi-Hua; Yang, Yi-Chao; Li, Hong-Mei; Chen, Ying-Dan; Zhou, Xiao-Nong

    2014-06-01

    To identify Clonorchis sinensis metacercariae using PCR targeting ribosomal DNA ITS region and COX1 gene. Pseudorasbora parva were collected from Hengxian County of Guangxi at the end of May 2013. Single metacercaria of C. sinensis and other trematodes were separated from muscle tissue of P. parva by digestion method. Primers targeting ribosomal DNA ITS region and COX1 gene of C. sinensis were designed for PCR and the universal primers were used as control. The sensitivity and specificity of the PCR detection were analyzed. C. sinensis metacercariae at different stages were identified by PCR. DNA from single C. sinensis metacercaria was detected by PCR targeting ribosomal DNA ITS region and COX1 gene. The specific amplicans have sizes of 437/549, 156/249 and 195/166 bp, respectively. The ratio of the two positive numbers in PCR with universal primers and specific primers targeting C. sinensis ribosomal DNA ITS1 and ITS2 regions was 0.905 and 0.952, respectively. The target gene fragments were amplified by PCR using COX1 gene-specific primers. The PCR with specific primers did not show any non-specific amplification. However, the PCR with universal primers targeting ribosomal DNA ITS regions performed serious non-specific amplification. C. sinensis metacercariae at different stages are identified by morphological observation and PCR method. Species-specific primers targeting ribosomal DNA ITS region show higher sensitivity and specificity than the universal primers. PCR targeting COX1 gene shows similar sensitivity and specificity to PCR with specific primers targeting ribosomal DNA ITS regions.

  17. PCR performance of a thermostable heterodimeric archaeal DNA polymerase

    PubMed Central

    Killelea, Tom; Ralec, Céline; Bossé, Audrey; Henneke, Ghislaine

    2014-01-01

    DNA polymerases are versatile tools used in numerous important molecular biological core technologies like the ubiquitous polymerase chain reaction (PCR), cDNA cloning, genome sequencing, and nucleic acid based diagnostics. Taking into account the multiple DNA amplification techniques in use, different DNA polymerases must be optimized for each type of application. One of the current tendencies is to reengineer or to discover new DNA polymerases with increased performance and broadened substrate spectra. At present, there is a great demand for such enzymes in applications, e.g., forensics or paleogenomics. Current major limitations hinge on the inability of conventional PCR enzymes, such as Taq, to amplify degraded or low amounts of template DNA. Besides, a wide range of PCR inhibitors can also impede reactions of nucleic acid amplification. Here we looked at the PCR performances of the proof-reading D-type DNA polymerase from P. abyssi, Pab-polD. Fragments, 3 kilobases in length, were specifically PCR-amplified in its optimized reaction buffer. Pab-polD showed not only a greater resistance to high denaturation temperatures than Taq during cycling, but also a superior tolerance to the presence of potential inhibitors. Proficient proof-reading Pab-polD enzyme could also extend a primer containing up to two mismatches at the 3' primer termini. Overall, we found valuable biochemical properties in Pab-polD compared to the conventional Taq, which makes the enzyme ideally suited for cutting-edge PCR-applications. PMID:24847315

  18. Common rs5918 (PlA1/A2) polymorphism in the ITGB3 gene and risk of coronary artery disease

    PubMed Central

    Heidari, Mohammad Mehdi; Soheilyfar, Sorour

    2016-01-01

    Introduction The T to C transition at nucleotide 1565 of the human glycoprotein IIIa (ITGB3) gene represents a genetic polymorphism (PlA1/A2) that can influence both platelet activation and aggregation and that has been associated with many types of disease. Here, we present a newly designed multiplex tetra-primer amplification refractory mutation system – polymerase chain reaction (T-ARMS-PCR) for genotyping a single nucleotide polymorphism (SNP) (dbSNP ID: rs5918) in the human ITGB3 gene. Material and methods We set up T-ARMS-PCR for the rs5918 SNP in a single-step PCR and the results were validated by the PCR-RFLP method in 132 coronary artery disease (CAD) patients and 122 unrelated healthy individuals. Results Full accordance was found for genotype determination by the PCR-RFLP method. The multiple logistic regression analysis showed a significant association of the rs5918 polymorphism and CAD according to dominant and recessive models (dominant model OR: 2.40, 95% CI: 1.33–4.35; p = 0.003, recessive model OR: 4.71, 95% CI: 1.32–16.80; p = 0.0067). Conclusions Our T-ARMS-PCR in comparison with RFLP and allele-specific PCR is more advantageous because this PCR method allows the evaluation of both the wild type and the mutant allele in the same tube. Our results suggest that the rs5918 (PlA1/A2) polymorphism in the ITGB3 gene may contribute to the susceptibility of sporadic Iranian coronary artery disease (CAD) patients. PMID:28905013

  19. Selection and validation of reference genes for gene expression analysis in apomictic and sexual Cenchrus ciliaris

    PubMed Central

    2013-01-01

    Background Apomixis is a naturally occurring asexual mode of seed reproduction resulting in offspring genetically identical to the maternal plant. Identifying differential gene expression patterns between apomictic and sexual plants is valuable to help deconstruct the trait. Quantitative RT-PCR (qRT-PCR) is a popular method for analyzing gene expression. Normalizing gene expression data using proper reference genes which show stable expression under investigated conditions is critical in qRT-PCR analysis. We used qRT-PCR to validate expression and stability of six potential reference genes (EF1alpha, EIF4A, UBCE, GAPDH, ACT2 and TUBA) in vegetative and reproductive tissues of B-2S and B-12-9 accessions of C. ciliaris. Findings Among tissue types evaluated, EF1alpha showed the highest level of expression while TUBA showed the lowest. When all tissue types were evaluated and compared between genotypes, EIF4A was the most stable reference gene. Gene expression stability for specific ovary stages of B-2S and B-12-9 was also determined. Except for TUBA, all other tested reference genes could be used for any stage-specific ovary tissue normalization, irrespective of the mode of reproduction. Conclusion Our gene expression stability assay using six reference genes, in sexual and apomictic accessions of C. ciliaris, suggests that EIF4A is the most stable gene across all tissue types analyzed. All other tested reference genes, with the exception of TUBA, could be used for gene expression comparison studies between sexual and apomictic ovaries over multiple developmental stages. This reference gene validation data in C. ciliaris will serve as an important base for future apomixis-related transcriptome data validation. PMID:24083672

  20. Fingerprinting of HLA class I genes for improved selection of unrelated bone marrow donors.

    PubMed

    Martinelli, G; Farabegoli, P; Buzzi, M; Panzica, G; Zaccaria, A; Bandini, G; Calori, E; Testoni, N; Rosti, G; Conte, R; Remiddi, C; Salvucci, M; De Vivo, A; Tura, S

    1996-02-01

    The degree of matching of HLA genes between the selected donor and recipient is an important aspect of the selection of unrelated donors for allogeneic bone marrow transplantation (UBMT). The most sensitive methods currently used are serological typing of HLA class I genes, mixed lymphocyte culture (MLC), IEF and molecular genotyping of HLA class II genes by direct sequencing of PCR products. Serological typing of class I antigenes (A, B and C) fails to detect minor differences demonstrated by direct sequencing of DNA polymorphic regions. Molecular genotyping of HLA class I genes by DNA analysis is costly and work-intensive. To improve compatibility between donor and recipient, we have set up a new rapid and non-radioisotopic application of the 'fingerprinting PCR' technique for the analysis of the polymorphic second exon of the HLA class I A, B and C genes. This technique is based on the formation of specific patterns (PCR fingerprints) of homoduplexes and heteroduplexes between heterologous amplified DNA sequences. After an electrophoretic run on non-denaturing polyacrylamide gel, different HLA class I types give allele-specific banding patterns. HLA class I matching is performed, after the gel has been soaked in ethidium bromide or silver-stained, by visual comparison of patients' fingerprints with those of donors. Identity can be confirmed by mixing donor and recipient DNAs in an amplification cross-match. To assess the technique, 10 normal samples, 22 related allogeneic bone marrow transplanted pairs and 10 unrelated HLA-A and HLA-B serologically matched patient-donor pairs were analysed for HLA class I polymorphic regions. In all the related pairs and in 1/10 unrelated pairs, matched donor-recipient patterns were identified. This new application of PCR fingerprinting may confirm the HLA class I serological selection of unrelated marrow donors.

  1. Diversity of Cronobacter spp. isolates from the vegetables in the middle-east coastline of China.

    PubMed

    Chen, Wanyi; Yang, Jielin; You, Chunping; Liu, Zhenmin

    2016-06-01

    Cronobacter spp. has caused life-threatening neonatal infections mainly resulted from consumption of contaminated powdered infant formula. A total of 102 vegetable samples from retail markets were evaluated for the presence of Cronobacter spp. Thirty-five presumptive Cronobacter isolates were isolated and identified using API 20E and 16S rDNA sequencing analyses. All isolates and type strains were characterized using enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR), and genetic profiles of cluster analysis from this molecular typing test clearly showed that there were differences among isolates from different vegetables. A polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) based on the amplification of the gyrB gene (1258 bp) was developed to differentiate among Cronobacter species. A new PCR-RFLP assay based on the amplification of the gyrB gene using Alu I and Hinf I endonuclease combination is established and it has been confirmed an accurate and rapid subtyping method to differentiate Cronobacter species. Sequence analysis of the gyrB gene was proven to be suitable for the phylogenetic analysis of the Cronobacter strains, which has much better resolution based on SNPs in the identification of Cronobacter species specificity than PCR-RFLP and ERIC-PCR. Our study further confirmed that vegetables are one of the most common habitats or sources of Cronobacter spp. contamination in the middle-east coastline of China.

  2. Utility of a stressed-SNP real-time PCR assay for the rapid identification of measles vaccine strain in patient samples.

    PubMed

    Tran, Thomas; Kostecki, Renata; Catton, Michael; Druce, Julian

    2018-05-09

    Rapid differentiation of wild-type measles virus from measles vaccine strains is crucial during a measles outbreak and in a measles elimination setting. A real-time RT-PCR for the rapid detection of measles vaccine strains was developed with high specificity and greater sensitivity than when compared to traditional measles genotyping methods. The "stressed" minor grove binder TaqMan probe design approach achieves specificity to vaccine strains only, without compromising sensitivity. This assay has proven to be extremely useful in outbreak settings, without requiring sequence genotyping, for over 4 years at the Regional Measles Reference Laboratory for the Western Pacific Region. Copyright © 2018 Tran et al.

  3. Highly sensitive detection of the group A Rotavirus using Apolipoprotein H-coated ELISA plates compared to quantitative real-time PCR.

    PubMed

    Adlhoch, Cornelia; Kaiser, Marco; Hoehne, Marina; Mas Marques, Andreas; Stefas, Ilias; Veas, Francisco; Ellerbrok, Heinz

    2011-02-10

    The principle of a capture ELISA is binding of specific capture antibodies (polyclonal or monoclonal) to the surface of a suitable 96 well plate. These immobilized antibodies are capable of specifically binding a virus present in a clinical sample. Subsequently, the captured virus is detected using a specific detection antibody. The drawback of this method is that a capture ELISA can only function for a single virus captured by the primary antibody. Human Apolipoprotein H (ApoH) or β2-glycoprotein 1 is able to poly-specifically bind viral pathogens. Replacing specific capture antibodies by ApoH should allow poly-specific capture of different viruses that subsequently could be revealed using specific detection antibodies. Thus, using a single capture ELISA format different viruses could be analysed depending on the detection antibody that is applied. In order to demonstrate that this is a valid approach we show detection of group A rotaviruses from stool samples as a proof of principle for a new method of capture ELISA that should also be applicable to other viruses. Stool samples of different circulating common human and potentially zoonotic group A rotavirus strains, which were pretested in commercial EIAs and genotyped by PCR, were tested in parallel in an ApoH-ELISA set-up and by quantitative real-time PCR (qPCR). Several control samples were included in the analysis. The ApoH-ELISA was suitable for the capture of rotavirus-particles and the detection down to 1,000 infectious units (TCID(50/ml)). Subsets of diagnostic samples of different G- and P-types were tested positive in the ApoH-ELISA in different dilutions. Compared to the qPCR results, the analysis showed high sensitivity, specificity and low cross-reactivity for the ApoH-ELISA, which was confirmed in receiver operating characteristics (ROC) analysis. In this study the development of a highly sensitive and specific capture ELISA was demonstrated by combining a poly-specific ApoH capture step with specific detection antibodies using group A rotaviruses as an example.

  4. Different DNA methylation patterns detected by the Amplified Methylation Polymorphism Polymerase Chain Reaction (AMP PCR) technique among various cell types of bulls.

    PubMed

    Phutikanit, Nawapen; Suwimonteerabutr, Junpen; Harrison, Dion; D'Occhio, Michael; Carroll, Bernie; Techakumphu, Mongkol

    2010-03-05

    The purpose of this study was to apply an arbitrarily primed methylation sensitive polymerase chain reaction (PCR) assay called Amplified Methylation Polymorphism Polymerase Chain Reaction (AMP PCR) to investigate the methylation profiles of somatic and germ cells obtained from Holstein bulls. Genomic DNA was extracted from sperm, leukocytes and fibroblasts obtained from three bulls and digested with a methylation sensitive endonuclease (HpaII). The native genomic and enzyme treated DNA samples were used as templates in an arbitrarily primed-PCR assay with 30 sets of single short oligonucleotide primer. The PCR products were separated on silver stained denaturing polyacrylamide gels. Three types of PCR markers; digestion resistant-, digestion sensitive-, and digestion dependent markers, were analyzed based on the presence/absence polymorphism of the markers between the two templates. Approximately 1,000 PCR markers per sample were produced from 27 sets of primer and most of them (>90%) were digestion resistant markers. The highest percentage of digestion resistant markers was found in leukocytic DNA (94.8%) and the lowest in fibroblastic DNA (92.3%, P < or = 0.05). Spermatozoa contained a higher number of digestion sensitive markers when compared with the others (3.6% vs. 2.2% and 2.6% in leukocytes and fibroblasts respectively, P < or = 0.05). The powerfulness of the AMP PCR assay was the generation of methylation-associated markers without any prior knowledge of the genomic sequence. The data obtained from different primers provided an overview of genome wide DNA methylation content in different cell types. By using this technique, we found that DNA methylation profile is tissue-specific. Male germ cells were hypomethylated at the HpaII locations when compared with somatic cells, while the chromatin of the well-characterized somatic cells was heavily methylated when compared with that of the versatile somatic cells.

  5. d-Ala-d-Ser VanN-Type Transferable Vancomycin Resistance in Enterococcus faecium▿

    PubMed Central

    Lebreton, François; Depardieu, Florence; Bourdon, Nancy; Fines-Guyon, Marguerite; Berger, Pierre; Camiade, Sabine; Leclercq, Roland; Courvalin, Patrice; Cattoir, Vincent

    2011-01-01

    Enterococcus faecium UCN71, isolated from a blood culture, was resistant to low levels of vancomycin (MIC, 16 μg/ml) but susceptible to teicoplanin (MIC, 0.5 μg/ml). No amplification was observed with primers specific for the previously described glycopeptide resistance ligase genes, but a PCR product corresponding to a gene called vanN was obtained using degenerate primers and was sequenced. The deduced VanN protein was related (65% identity) to the d-alanine:d-serine VanL ligase. The organization of the vanN gene cluster, determined using degenerate primers and by thermal asymmetric interlaced (TAIL)-PCR, was similar to that of the vanC operons. A single promoter upstream from the resistance operon was identified by rapid amplification of cDNA ends (RACE)-PCR. The presence of peptidoglycan precursors ending in d-serine and d,d-peptidase activities in the absence of vancomycin indicated constitutive expression of the resistance operon. VanN-type resistance was transferable by conjugation to E. faecium. This is the first report of transferable d-Ala-d-Ser-type resistance in E. faecium. PMID:21807981

  6. Type-specific identification of anogenital herpes simplex virus infections by use of a commercially available nucleic acid amplification test.

    PubMed

    Van Der Pol, Barbara; Warren, Terri; Taylor, Stephanie N; Martens, Mark; Jerome, Keith R; Mena, Leandro; Lebed, Joel; Ginde, Savita; Fine, Paul; Hook, Edward W

    2012-11-01

    Herpes infections are among the most common sexually transmitted infections (STI), but diagnostic methods for genital herpes have not kept pace with the movement toward molecular testing. Here, we describe an FDA-approved molecular assay that identifies and types herpes simplex virus (HSV) infections for use in routine clinical settings. Paired samples from anogenital lesions were tested using the BD ProbeTec HSV Q(x) (HSVQ(x)) system, HSV culture and, a laboratory-developed PCR assay. Family planning, obstetrics/gynecology (OB/GYN), or sexually transmitted disease (STD) clinics in the United States served as recruitment sites. Sensitivity and specificity estimates, head-to-head comparisons, measures of agreement, and latent-class analyses were performed to provide robust estimates of performance. A total of 508 participants (174 men and 334 women) with anogenital lesions were included; 260 HSV-2 and 73 HSV-1 infections were identified. No differences in test performance based on gender, clinic type, location of the lesion, or type of lesion were observed. The sensitivity of HSV-2 detection ranged from 98.4 to 100% depending on the analytical approach, while the specificity ranged from 80.6%, compared to the less sensitive culture method, to 97.0%, compared to PCR. For HSV-1, the sensitivity and specificity ranges were 96.7 to 100% and 95.1 to 99.4%, respectively. This assay may improve our ability to accurately diagnose anogenital lesions due to herpes infection.

  7. Genomic Knockout of Endogenous Canine P-Glycoprotein in Wild-Type, Human P-Glycoprotein and Human BCRP Transfected MDCKII Cell Lines by Zinc Finger Nucleases.

    PubMed

    Gartzke, Dominik; Delzer, Jürgen; Laplanche, Loic; Uchida, Yasuo; Hoshi, Yutaro; Tachikawa, Masanori; Terasaki, Tetsuya; Sydor, Jens; Fricker, Gert

    2015-06-01

    To investigate whether it is possible to specifically suppress the expression and function of endogenous canine P-glycoprotein (cPgp) in Madin-Darby canine kidney type II cells (MDCKII) transfected with hPGP and breast cancer resistance protein (hBCRP) by zinc finger nuclease (ZFN) producing sequence specific DNA double strand breaks. Wild-type, hPGP-transfected, and hBCRP-transfected MDCKII cells were transfected with ZFN targeting for cPgp. Net efflux ratios (NER) of Pgp and Bcrp substrates were determined by dividing efflux ratios (basal-to-apical / apical-to-basal) in over-expressing cell monolayers by those in wild-type ones. From ZFN-transfected cells, cell populations (ko-cells) showing knockout of cPgp were selected based on genotyping by PCR. qRT-PCR analysis showed the significant knock-downs of cPgp and interestingly also cMrp2 expressions. Specific knock-downs of protein expression for cPgp were shown by western blotting and quantitative targeted absolute proteomics. Endogenous canine Bcrp proteins were not detected. For PGP-transfected cells, NERs of 5 Pgp substrates in ko-cells were significantly greater than those in parental cells not transfected with ZFN. Similar result was obtained for BCRP-transfected cells with a dual Pgp and Bcrp substrate. Specific efflux mediated by hPGP or hBCRP can be determined with MDCKII cells where cPgp has been knocked out by ZFN.

  8. Quantitative Detection and Genotyping of Helicobacter pylori from Stool using Droplet Digital PCR Reveals Variation in Bacterial Loads that Correlates with cagA Virulence Gene Carriage.

    PubMed

    Talarico, Sarah; Safaeian, Mahboobeh; Gonzalez, Paula; Hildesheim, Allan; Herrero, Rolando; Porras, Carolina; Cortes, Bernal; Larson, Ann; Fang, Ferric C; Salama, Nina R

    2016-08-01

    Epidemiologic studies of the carcinogenic stomach bacterium Helicobacter pylori have been limited by the lack of noninvasive detection and genotyping methods. We developed a new stool-based method for detection, quantification, and partial genotyping of H. pylori using droplet digital PCR (ddPCR), which allows for increased sensitivity and absolute quantification by PCR partitioning. Stool-based ddPCR assays for H. pylori 16S gene detection and cagA virulence gene typing were tested using a collection of 50 matched stool and serum samples from Costa Rican volunteers and 29 H. pylori stool antigen-tested stool samples collected at a US hospital. The stool-based H. pylori 16S ddPCR assay had a sensitivity of 84% and 100% and a specificity of 100% and 71% compared to serology and stool antigen tests, respectively. The stool-based cagA genotyping assay detected cagA in 22 (88%) of 25 stools from CagA antibody-positive individuals and four (16%) of 25 stools from CagA antibody-negative individuals from Costa Rica. All 26 of these samples had a Western-type cagA allele. Presence of serum CagA antibodies was correlated with a significantly higher load of H. pylori in the stool. The stool-based ddPCR assays are a sensitive, noninvasive method for detection, quantification, and partial genotyping of H. pylori. The quantitative nature of ddPCR-based H. pylori detection revealed significant variation in bacterial load among individuals that correlates with presence of the cagA virulence gene. These stool-based ddPCR assays will facilitate future population-based epidemiologic studies of this important human pathogen. © 2015 John Wiley & Sons Ltd.

  9. Prevalence of equine herpesvirus-1 and equine herpesvirus-4 infections in equidae species in Turkey as determined by ELISA and multiplex nested PCR.

    PubMed

    Ataseven, Veysel S; Dağalp, Seval B; Güzel, Murat; Başaran, Zeynep; Tan, Mehmet T; Geraghty, Bob

    2009-04-01

    In this report we examined the presence of specific antibodies against equine herpesvirus type 1 (EHV-1), and equine herpesvirus type 4 (EHV-4) in several equidae, including mules, donkeys, horses. The presence of EHV-1 and EHV-4 in respiratory diseases of equids, and ability of multiplex nested polymerase chain reaction (PCR) screening in simultaneous diagnosis of horses acutely infected by EHV-1 and EHV-4 were also investigated. Sera from 504 horses, mules and donkeys sampled were tested for the presence of EHV-1 and EHV-4 specific antibodies. Blood samples taken from 21 symptomatic horses and nasal swabs taken from 40 symptomatic horses were tested for the presence of EHV-1 and EHV-4 by a multiplex nested PCR. A total of 14.3% (3/21) of buffy coat samples and 32.5% (13/40) nasal swab samples were found to contain EHV-1 DNA, while 19% (4/21) buffy coat samples and 22.5% (9/40) nasal swab samples were found to be positive for EHV-4 DNA. By species, 14.5% of horses, 37.2% of mules and 24.2% of donkeys tested were EHV-1 seropositive. EHV-4 specific antibodies were detected in 237 (81.7%) of 290 horse sera tested. Results from this investigation demonstrate that EHV-1 and EHV-4 are prevalent throughout the equid population, and that donkeys and mules might also represent an important source of infection for other equids. We also showed that the multiplex nested PCR assay might be useful for diagnosis of mixed respiratory infections in horses due to EHV-1 and EHV-4.

  10. Detection and quantification of genetically modified organisms using very short, locked nucleic acid TaqMan probes.

    PubMed

    Salvi, Sergio; D'Orso, Fabio; Morelli, Giorgio

    2008-06-25

    Many countries have introduced mandatory labeling requirements on foods derived from genetically modified organisms (GMOs). Real-time quantitative polymerase chain reaction (PCR) based upon the TaqMan probe chemistry has become the method mostly used to support these regulations; moreover, event-specific PCR is the preferred method in GMO detection because of its high specificity based on the flanking sequence of the exogenous integrant. The aim of this study was to evaluate the use of very short (eight-nucleotide long), locked nucleic acid (LNA) TaqMan probes in 5'-nuclease PCR assays for the detection and quantification of GMOs. Classic TaqMan and LNA TaqMan probes were compared for the analysis of the maize MON810 transgene. The performance of the two types of probes was tested on the maize endogenous reference gene hmga, the CaMV 35S promoter, and the hsp70/cryIA(b) construct as well as for the event-specific 5'-integration junction of MON810, using plasmids as standard reference molecules. The results of our study demonstrate that the LNA 5'-nuclease PCR assays represent a valid and reliable analytical system for the detection and quantification of transgenes. Application of very short LNA TaqMan probes to GMO quantification can simplify the design of 5'-nuclease assays.

  11. Rapid Diagnosis of Bloodstream Infections with PCR Followed by Mass Spectrometry

    PubMed Central

    Jordana-Lluch, Elena; Carolan, Heather E.; Giménez, Montserrat; Sampath, Rangarajan; Ecker, David J.; Quesada, M. Dolores; Mòdol, Josep M.; Arméstar, Fernando; Blyn, Lawrence B.; Cummins, Lendell L.; Ausina, Vicente; Martró, Elisa

    2013-01-01

    Achieving a rapid microbiological diagnosis is crucial for decreasing morbidity and mortality of patients with a bloodstream infection, as it leads to the administration of an appropriate empiric antimicrobial therapy. Molecular methods may offer a rapid alternative to conventional microbiological diagnosis involving blood culture. In this study, the performance of a new technology that uses broad-spectrum PCR coupled with mass spectrometry (PCR/ESI-MS) was evaluated for the detection of microorganisms directly from whole blood. A total of 247 whole blood samples and paired blood cultures were prospectively obtained from 175 patients with a suspicion of sepsis. Both sample types were analyzed using the PCR/ESI-MS technology, and the results were compared with those obtained by conventional identification methods. The overall agreement between conventional methods and PCR/ESI-MS performed in blood culture aliquots was 94.2% with 96.8% sensitivity and 98.5% specificity for the molecular method. When comparing conventional methods with PCR/ESI-MS performed in whole blood specimens, the overall agreement was 77.1% with 50% sensitivity and 93.8% specificity for the molecular method. Interestingly, the PCR/ESI-MS technology led to the additional identification of 13 pathogens that were not found by conventional methods. Using the PCR/ESI-MS technology the microbiological diagnosis of bloodstream infections could be anticipated in about half of the patients in our setting, including a small but significant proportion of patients newly diagnosed. Thus, this promising technology could be very useful for the rapid diagnosis of sepsis in combination with traditional methods. PMID:23626775

  12. Rapid detection of porcine circovirus type 2 using a TaqMan-based real-time PCR.

    PubMed

    Zhao, Kai; Han, Fangting; Zou, Yong; Zhu, Lianlong; Li, Chunhua; Xu, Yan; Zhang, Chunling; Tan, Furong; Wang, Jinbin; Tao, Shiru; He, Xizhong; Zhou, Zongqing; Tang, Xueming

    2010-12-31

    Porcine circovirus type 2 (PCV2) and the associated disease postweaning multisystemic wasting syndrome (PMWS) have caused heavy losses in global agriculture in recent decades. Rapid detection of PCV2 is very important for the effective prophylaxis and treatment of PMWS. To establish a sensitive, specific assay for the detection and quantitation of PCV2, we designed and synthesized specific primers and a probe in the open reading frame 2. The assay had a wide dynamic range with excellent linearity and reliable reproducibility, and detected between 102 and 1010 copies of the genomic DNA per reaction. The coefficient of variation for Ct values varied from 0.59% to 1.05% in the same assay and from 1.9% to 4.2% in 10 different assays. The assay did not cross-react with porcine circovirus type 1, porcine reproductive and respiratory, porcine epidemic diarrhea, transmissible gastroenteritis of pigs and rotavirus. The limits of detection and quantitation were 10 and 100 copies, respectively. Using the established real-time PCR system, 39 of the 40 samples we tested were detected as positive.

  13. Development of a molecular method for the typing of Brettanomyces bruxellensis (Dekkera bruxellensis) at the strain level.

    PubMed

    Miot-Sertier, C; Lonvaud-Funel, A

    2007-02-01

    In recent years, Brettanomyces/Dekkera bruxellensis has caused increasingly severe quality problems in the wine industry. A typing method at the strain level is needed for a better knowledge of the dispersion and the dynamics of these yeasts from grape to wine. Three molecular tools, namely random-amplified polymorphic DNA, PCR fingerprinting with microsatellite oligonucleotide primers and SAU-PCR, were explored for their relevance to typing strains of Brettanomyces bruxellensis. The results indicated that discrimination of each individual strain was not possible with a single PCR typing technique. We described a typing method for B. bruxellensis based on restriction enzyme analysis and pulse field gel electrophoresis (REA-PFGE). Results showed that electrophoretic profiles were reproducible and specific for each strain under study. Consequently, REA-PFGE should be considered for the discrimination of B. bruxellensis strains. This technique allowed a fine discrimination of B. bruxellensis, as strains were identified by a particular profile. This study constitutes a prerequisite for accurate and appropriate investigations on the diversity of strains throughout the winemaking and ageing process. Such studies will probably give clearer and more up-to-date information on the origin of the presence of Brettanomyces in wine after vinification when they are latent spoilage agents.

  14. Optimization of Trichomonas vaginalis Diagnosis during Pregnancy at a University Hospital, Argentina.

    PubMed

    Testardini, Pamela; Vaulet, María Lucía Gallo; Entrocassi, Andrea Carolina; Menghi, Claudia; Eliseht, Martha Cora; Gatta, Claudia; Losada, Mirta; Touzón, María Sol; Corominas, Ana; Vay, Carlos; Tatti, Silvio; Famiglietti, Angela; Fermepin, Marcelo Rodriguez; Perazzi, Beatriz

    2016-04-01

    The aim of this study was to evaluate different methods for Trichomonas vaginalis diagnosis during pregnancy in order to prevent maternal and perinatal complications. A total of 386 vaginal exudates from pregnant women were analyzed. T. vaginalis was investigated by 3 types of microscopic examinations direct wet mount with physiologic saline solution, prolonged May-Grunwald Giemsa (MGG) staining, and wet mount with sodium-acetate-formalin (SAF)/methylene blue method. PCR for 18S rRNA gene as well as culture in liquid medium were performed. The sensitivity and specificity of the microscopic examinations were evaluated considering the culture media positivity or the PCR techniques as gold standard. The frequency of T. vaginalis infection was 6.2% by culture and/or PCR, 5.2% by PCR, 4.7% by culture, 3.1% by SAF/methylene blue method and 2.8% by direct wet smear and prolonged MGG staining. The sensitivities were 83.3%, 75.0%, 50.0%, and 45.8% for PCR, culture, SAF/methylene blue method, and direct wet smear-prolonged MGG staining, respectively. The specificity was 100% for all the assessed methods. Microscopic examinations showed low sensitivity, mainly in asymptomatic pregnant patients. It is necessary to improve the detection of T. vaginalis using combined methods providing higher sensitivity, such as culture and PCR, mainly in asymptomatic pregnant patients, in order to prevent maternal and perinatal complications.

  15. Establishment of a nanoparticle-assisted RT-PCR assay to distinguish field strains and attenuated strains of porcine epidemic diarrhea virus.

    PubMed

    Zhu, Yu; Wang, Gui-Hua; Cui, Yu-Dong; Cui, Shang-Jin

    2016-09-01

    Porcine epidemic diarrhea virus (PEDV) can cause serious disease and even death in neonatal piglets, resulting in serious damage to the swine industry worldwide. Open reading frame 3 (ORF3) is the only accessory gene in the PEDV genome. Previous studies have indicated that PEDV vaccine strains have a partial deletion in ORF3. In this study, a nanoparticle-assisted polymerase chain reaction (nanoparticle-assisted RT-PCR) assay targeting the ORF3 of PEDV was developed to distinguish PEDV field strains from attenuated strains by using a specific pair of primers. The PCR products of field strains and attenuated strains were 264 bp and 215 bp in length, respectively. The sensitivity and specificity of this assay were also assessed. The nanoparticle-assisted RT-PCR assay was 10-100 times more sensitive than the conventional RT-PCR assay, with no cross-reactions when amplifying porcine pseudorabies virus (PRV), porcine circovirus type 2 (PCV2), classical swine fever virus (CSFV), porcine parvovirus (PPV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine rotavirus (RV), and porcine transmissible gastroenteritis virus (TGEV). The nanoparticle-assisted RT-PCR assay we describe here can be used to distinguish field strains from vaccine strains of PEDV, and it shows promise for reducing economic loss due to PEDV infection.

  16. Evaluation of RIDA®GENE norovirus GI/GII real time RT-PCR using stool specimens collected from children and adults with acute gastroenteritis.

    PubMed

    Kanwar, N; Hassan, F; Barclay, L; Langley, C; Vinjé, J; Bryant, P W; George, K St; Mosher, L; Matthews-Greer, J M; Rocha, M A; Beenhouwer, D O; Harrison, C J; Moffatt, M; Shastri, N; Selvarangan, R

    2018-04-10

    Norovirus is the leading cause of epidemic and sporadic acute gastroenteritis (AGE) in the United States. Widespread prevalence necessitates implementation of accurate norovirus detection assays in clinical diagnostic laboratories. To evaluate RIDA ® GENE norovirus GI/GII real-time RT-PCR assay (RGN RT-PCR) using stool samples from patients with sporadic AGE. Patients between 14 days to 101 years of age with symptoms of AGE were enrolled prospectively at four sites across the United States during 2014-2015. Stool specimens were screened for the presence of norovirus RNA by the RGN RT-PCR assay. Results were compared with a reference method that included conventional RT-PCR and sequencing of a partial region of the 5'end of the norovirus ORF2 gene. A total of 259 (36.0%) of 719 specimens tested positive for norovirus by the reference method. The RGN RT-PCR assay detected norovirus in 244 (94%) of these 259 norovirus positive specimens. The sensitivity and specificity (95% confidence interval) of the RGN RT-PCR assay for detecting norovirus genogroup (G) I was 82.8% (63.5-93.5) and 99.1% (98.0-99.6) and for GII was 94.8% (90.8-97.2) and 98.6% (96.9-99.4), respectively. Seven specimens tested positive by the RGN-RT PCR that were negative by the reference method. The fifteen false negative samples were typed as GII.4 Sydney, GII.13, GI.3, GI.5, GI.2, GII.1, and GII.3 in the reference method. The RGN RT-PCR assay had a high sensitivity and specificity for the detection of norovirus in stool specimens from patients with sporadic AGE. Copyright © 2018. Published by Elsevier B.V.

  17. Identifying of meat species using polymerase chain reaction (PCR)

    NASA Astrophysics Data System (ADS)

    Foong, Chow Ming; Sani, Norrakiah Abdullah

    2013-11-01

    Meat has been widely consumed as an important protein source in daily life of human. Furthermore, with busy and intense urban lifestyle, processed food is now one of the main protein sources of one's diet. Consumers rely on the food labeling to decide if the meat product purchased is safe and reliable. Therefore, it is important to ensure the food labeling is done in a correct manner to avoid consumer fraud. More consumers are now concern about the food quality and safety as compared to before. This study described the meat species identification and detection method using Polymerase Chain Reaction (PCR) in 8 types of meats (cattle, buffalo, goat, sheep, chicken, duck, pork and horse). The objective of this study is to decide on the specificity of oligonucleotide sequences obtained from previous study. There were 5 proposed oligonucleotide primer in this study. The main important finding in this work is the specificity of oligonucleotide primers to raw meats. It if found that the oligonucleotide primers proposed were not specific to the local raw meat species. Therefore, further study is needed to obtain a species-specific oligonucletide primers for PCR, in order to be applied in food product testing.

  18. Identifying of meat species using polymerase chain reaction (PCR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foong, Chow Ming; Sani, Norrakiah Abdullah

    Meat has been widely consumed as an important protein source in daily life of human. Furthermore, with busy and intense urban lifestyle, processed food is now one of the main protein sources of one’s diet. Consumers rely on the food labeling to decide if the meat product purchased is safe and reliable. Therefore, it is important to ensure the food labeling is done in a correct manner to avoid consumer fraud. More consumers are now concern about the food quality and safety as compared to before. This study described the meat species identification and detection method using Polymerase Chain Reactionmore » (PCR) in 8 types of meats (cattle, buffalo, goat, sheep, chicken, duck, pork and horse). The objective of this study is to decide on the specificity of oligonucleotide sequences obtained from previous study. There were 5 proposed oligonucleotide primer in this study. The main important finding in this work is the specificity of oligonucleotide primers to raw meats. It if found that the oligonucleotide primers proposed were not specific to the local raw meat species. Therefore, further study is needed to obtain a species-specific oligonucletide primers for PCR, in order to be applied in food product testing.« less

  19. Nuclease-mediated double-strand break (DSB) enhancement of small fragment homologous recombination (SFHR) gene modification in human-induced pluripotent stem cells (hiPSCs).

    PubMed

    Sargent, R Geoffrey; Suzuki, Shingo; Gruenert, Dieter C

    2014-01-01

    Recent developments in methods to specifically modify genomic DNA using sequence-specific endonucleases and donor DNA have opened the door to a new therapeutic paradigm for cell and gene therapy of inherited diseases. Sequence-specific endonucleases, in particular transcription activator-like (TAL) effector nucleases (TALENs), have been coupled with polynucleotide small/short DNA fragments (SDFs) to correct the most common mutation in the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene, a 3-base-pair deletion at codon 508 (delF508), in induced pluripotent stem (iPS) cells. The studies presented here describe the generation of candidate TALENs and their co-transfection with wild-type (wt) CFTR-SDFs into CF-iPS cells homozygous for the delF508 mutation. Using an allele-specific PCR (AS-PCR)-based cyclic enrichment protocol, clonal populations of corrected CF-iPS cells were isolated and expanded.

  20. Xylella fastidiosa: Host Range and Advance in Molecular Identification Techniques

    PubMed Central

    Baldi, Paolo; La Porta, Nicola

    2017-01-01

    In the never ending struggle against plant pathogenic bacteria, a major goal is the early identification and classification of infecting microorganisms. Xylella fastidiosa, a Gram-negative bacterium belonging to the family Xanthmonadaceae, is no exception as this pathogen showed a broad range of vectors and host plants, many of which may carry the pathogen for a long time without showing any symptom. Till the last years, most of the diseases caused by X. fastidiosa have been reported from North and South America, but recently a widespread infection of olive quick decline syndrome caused by this fastidious pathogen appeared in Apulia (south-eastern Italy), and several cases of X. fastidiosa infection have been reported in other European Countries. At least five different subspecies of X. fastidiosa have been reported and classified: fastidiosa, multiplex, pauca, sandyi, and tashke. A sixth subspecies (morus) has been recently proposed. Therefore, it is vital to develop fast and reliable methods that allow the pathogen detection during the very early stages of infection, in order to prevent further spreading of this dangerous bacterium. To this purpose, the classical immunological methods such as ELISA and immunofluorescence are not always sensitive enough. However, PCR-based methods exploiting specific primers for the amplification of target regions of genomic DNA have been developed and are becoming a powerful tool for the detection and identification of many species of bacteria. The aim of this review is to illustrate the application of the most commonly used PCR approaches to X. fastidiosa study, ranging from classical PCR, to several PCR-based detection methods: random amplified polymorphic DNA (RAPD), quantitative real-time PCR (qRT-PCR), nested-PCR (N-PCR), immunocapture PCR (IC-PCR), short sequence repeats (SSRs, also called VNTR), single nucleotide polymorphisms (SNPs) and multilocus sequence typing (MLST). Amplification and sequence analysis of specific targets is also mentioned. The fast progresses achieved during the last years in the DNA-based classification of this pathogen are described and discussed and specific primers designed for the different methods are listed, in order to provide a concise and useful tool to all the researchers working in the field. PMID:28642764

  1. Detection, Characterization, and Typing of Shiga Toxin-Producing Escherichia coli.

    PubMed

    Parsons, Brendon D; Zelyas, Nathan; Berenger, Byron M; Chui, Linda

    2016-01-01

    Shiga toxin-producing Escherichia coli (STEC) are responsible for gastrointestinal diseases reported in numerous outbreaks around the world. Given the public health importance of STEC, effective detection, characterization and typing is critical to any medical laboratory system. While non-O157 serotypes account for the majority of STEC infections, frontline microbiology laboratories may only screen for STEC using O157-specific agar-based methods. As a result, non-O157 STEC infections are significantly under-reported. This review discusses recent advances on the detection, characterization and typing of STEC with emphasis on work performed at the Alberta Provincial Laboratory for Public Health (ProvLab). Candidates for the detection of all STEC serotypes include chromogenic agars, enzyme immunoassays (EIA) and quantitative real time polymerase chain reaction (qPCR). Culture methods allow further characterization of isolates, whereas qPCR provides the greatest sensitivity and specificity, followed by EIA. The virulence gene profiles using PCR arrays and stx gene subtypes can subsequently be determined. Different non-O157 serotypes exhibit markedly different virulence gene profiles and a greater prevalence of stx1 than stx2 subtypes compared to O157:H7 isolates. Finally, recent innovations in whole genome sequencing (WGS) have allowed it to emerge as a candidate for the characterization and typing of STEC in diagnostic surveillance isolates. Methods of whole genome analysis such as single nucleotide polymorphisms and k-mer analysis are concordant with epidemiological data and standard typing methods, such as pulsed-field gel electrophoresis and multiple-locus variable number tandem repeat analysis while offering additional strain differentiation. Together these findings highlight improved strategies for STEC detection using currently available systems and the development of novel approaches for future surveillance.

  2. Detection, Characterization, and Typing of Shiga Toxin-Producing Escherichia coli

    PubMed Central

    Parsons, Brendon D.; Zelyas, Nathan; Berenger, Byron M.; Chui, Linda

    2016-01-01

    Shiga toxin-producing Escherichia coli (STEC) are responsible for gastrointestinal diseases reported in numerous outbreaks around the world. Given the public health importance of STEC, effective detection, characterization and typing is critical to any medical laboratory system. While non-O157 serotypes account for the majority of STEC infections, frontline microbiology laboratories may only screen for STEC using O157-specific agar-based methods. As a result, non-O157 STEC infections are significantly under-reported. This review discusses recent advances on the detection, characterization and typing of STEC with emphasis on work performed at the Alberta Provincial Laboratory for Public Health (ProvLab). Candidates for the detection of all STEC serotypes include chromogenic agars, enzyme immunoassays (EIA) and quantitative real time polymerase chain reaction (qPCR). Culture methods allow further characterization of isolates, whereas qPCR provides the greatest sensitivity and specificity, followed by EIA. The virulence gene profiles using PCR arrays and stx gene subtypes can subsequently be determined. Different non-O157 serotypes exhibit markedly different virulence gene profiles and a greater prevalence of stx1 than stx2 subtypes compared to O157:H7 isolates. Finally, recent innovations in whole genome sequencing (WGS) have allowed it to emerge as a candidate for the characterization and typing of STEC in diagnostic surveillance isolates. Methods of whole genome analysis such as single nucleotide polymorphisms and k-mer analysis are concordant with epidemiological data and standard typing methods, such as pulsed-field gel electrophoresis and multiple-locus variable number tandem repeat analysis while offering additional strain differentiation. Together these findings highlight improved strategies for STEC detection using currently available systems and the development of novel approaches for future surveillance. PMID:27148176

  3. Genomic diversity in Mycobacterium leprae isolates from leprosy cases in South India.

    PubMed

    Das, Madhusmita; Chaitanya, V Sundeep; Kanmani, K; Rajan, Lakshmi; Ebenezer, Mannam

    2016-11-01

    The Objective of this study was to identify the strain diversity of Mycobacterium leprae in terms of SNP types and subtypes stratified as per genomic single nucleotide polymorphisms, in clinical isolates of leprosy patients from a tertiary care leprosy center in South India. Further, the associations of SNP types with clinical outcomes in leprosy were also investigated. DNA was extracted from excisional skin biopsies of a total of 172 newly diagnosed untreated leprosy patients from a clinic in Tamil Nadu, in south India, that also serves patients from neighboring states. All the leprosy patients were those who voluntarily reported at the clinic during the study period of one year i.e., 2015. Clinical and histopathological details were collected at diagnosis and leprosy was confirmed through bacteriological smear examination and PCR for M. leprae specific RLEP region. SNP types and subtypes were determined by PCR amplification and Sanger sequencing of PCR products. M. leprae specific RLEP gene amplification was achieved in 160 out of 172 patients. Among 160 specimens 118(73.75%) were type 1 and 42 (26.25%) were type 2 and on subtyping it was noted that 88/160 (55.00%) were 1D, 25/160 (15.62%) 1C, 5/160 (3.12%) 1A, 33/160 (20.62%) 2G and 9/160 (5.62%) were 2H. Our results indicated that subtype 1D is predominant in the south Indian population. We also noted 2G, 1C and 1A in the patient sample tested. Additionally we identified subtype 2H for the first time in India. Copyright © 2016. Published by Elsevier B.V.

  4. Next-generation sequencing is a robust strategy for the high-throughput detection of zygosity in transgenic maize.

    PubMed

    Fritsch, Leonie; Fischer, Rainer; Wambach, Christoph; Dudek, Max; Schillberg, Stefan; Schröper, Florian

    2015-08-01

    Simple and reliable, high-throughput techniques to detect the zygosity of transgenic events in plants are valuable for biotechnology and plant breeding companies seeking robust genotyping data for the assessment of new lines and the monitoring of breeding programs. We show that next-generation sequencing (NGS) applied to short PCR products spanning the transgene integration site provides accurate zygosity data that are more robust and reliable than those generated by PCR-based methods. The NGS reads covered the 5' border of the transgenic events (incorporating part of the transgene and the flanking genomic DNA), or the genomic sequences flanking the unfilled transgene integration site at the wild-type locus. We compared the NGS method to competitive real-time PCR with transgene-specific and wild-type-specific primer/probe pairs, one pair matching the 5' genomic flanking sequence and 5' part of the transgene and the other matching the unfilled transgene integration site. Although both NGS and real-time PCR provided useful zygosity data, the NGS technique was favorable because it needed fewer optimization steps. It also provided statistically more-reliable evidence for the presence of each allele because each product was often covered by more than 100 reads. The NGS method is also more suitable for the genotyping of large panels of plants because up to 80 million reads can be produced in one sequencing run. Our novel method is therefore ideal for the rapid and accurate genotyping of large numbers of samples.

  5. Evaluation and Comparison of Multiple Test Methods, Including Real-time PCR, for Legionella Detection in Clinical Specimens

    PubMed Central

    Peci, Adriana; Winter, Anne-Luise; Gubbay, Jonathan B.

    2016-01-01

    Legionella is a Gram-negative bacterium that can cause Pontiac fever, a mild upper respiratory infection and Legionnaire’s disease, a more severe illness. We aimed to compare the performance of urine antigen, culture, and polymerase chain reaction (PCR) test methods and to determine if sputum is an acceptable alternative to the use of more invasive bronchoalveolar lavage (BAL). Data for this study included specimens tested for Legionella at Public Health Ontario Laboratories from 1st January, 2010 to 30th April, 2014, as part of routine clinical testing. We found sensitivity of urinary antigen test (UAT) compared to culture to be 87%, specificity 94.7%, positive predictive value (PPV) 63.8%, and negative predictive value (NPV) 98.5%. Sensitivity of UAT compared to PCR was 74.7%, specificity 98.3%, PPV 77.7%, and NPV 98.1%. Out of 146 patients who had a Legionella-positive result by PCR, only 66 (45.2%) also had a positive result by culture. Sensitivity for culture was the same using either sputum or BAL (13.6%); sensitivity for PCR was 10.3% for sputum and 12.8% for BAL. Both sputum and BAL yield similar results regardless testing methods (Fisher Exact p-values = 1.0, for each test). In summary, all test methods have inherent weaknesses in identifying Legionella; therefore, more than one testing method should be used. Obtaining a single specimen type from patients with pneumonia limits the ability to diagnose Legionella, particularly when urine is the specimen type submitted. Given ease of collection and similar sensitivity to BAL, clinicians are encouraged to submit sputum in addition to urine when BAL submission is not practical from patients being tested for Legionella. PMID:27630979

  6. Development and evaluation of a real-time fluorescent polymerase chain reaction assay for the detection of bovine contaminates in cattle feed.

    PubMed

    Rensen, Gabriel; Smith, Wayne; Ruzante, Juliana; Sawyer, Mary; Osburn, Bennie; Cullor, James

    2005-01-01

    A real-time fluorescent polymerase chain reaction assay for detecting prohibited ruminant materials such as bovine meat and bone meal (BMBM) in cattle feed using primers and FRET probes targeting the ruminant specific mitochondrial cytochrome b gene was developed and evaluated on two different types of cattle feed. Common problems involved with PCR based testing of cattle feed include the presence of high levels of PCR inhibitors and the need for certain pre-sample processing techniques in order to perform DNA extractions. We have developed a pre-sample processing technique for extracting DNA from cattle feed which does not require the feed sample to be ground to a fine powder and utilizes materials that are disposed of between samples, thus, reducing the potential of cross contamination. The DNA extraction method utilizes Whatman FTA card technology, is adaptable to high sample throughput analysis and allows for room temperature storage with established archiving of samples of up to 14 years. The Whatman FTA cards are subsequently treated with RNAse and undergo a Chelex-100 extraction (BioRad, Hercules, CA), thus removing potential PCR inhibitors and eluting the DNA from the FTA card for downstream PCR analysis. The detection limit was evaluated over a period of 30 trials on calf starter mix and heifer starter ration feed samples spiked with known concentrations of BMBM. The PCR detection assay detected 0.05% wt/wt BMBM contamination with 100% sensitivity, 100% specificity, and 100% confidence. Concentrations of 0.005% and 0.001% wt/wt BMBM contamination were also detected in both feed types but with varying levels of confidence.

  7. Rapid Detection of Chlamydia trachomatis and Typing of the Lymphogranuloma venereum associated L-Serovars by TaqMan PCR

    PubMed Central

    Schaeffer, Anke; Henrich, Birgit

    2008-01-01

    Background Infection due to Chlamydia trachomatis is the most common sexually transmitted bacterial disease of global health significance, and especially the L-serovars causing lymphogranuloma venereum are increasingly being found in Europe in men who have sex with men. Results The design and evaluation of a rapid, multiplex, real-time PCR targeting the major outer membrane protein (omp-1) -gene and a L-serovar-specific region of the polymorphic protein H (pmp-H) -gene for the detection of Chlamydia trachomatis is reported here. The PCR takes place as a single reaction with an internal control. For L1-, L2- and L3-serovar differentiation a second set of real-time PCRs was evaluated based on the amplification of serovar-specific omp-1-regions. The detection limit of each real-time PCR, multiplexed or not, was 50 genome copies per reaction with an efficiency ranging from 90,5–95,2%. In a retrospective analysis of 50 ocular, rectal and urogenital specimens formerly tested to be positive for C. trachomatis we identified six L2-serovars in rectal specimens of HIV-positive men, one in a double-infection with L3, and one L2 in a urethral specimen of an HIV-negative male. Conclusion This unique real-time PCR is specific and convenient for the rapid routine-diagnostic detection of lymphogranuloma venereum-associated L-serovars and enables the subsequent differentiation of L1, L2 and L3 for epidemiologic studies. PMID:18447917

  8. Human papillomavirus in normal conjunctival tissue and in conjunctival papilloma: types and frequencies in a large series.

    PubMed

    Sjö, Nicolai Christian; von Buchwald, Christian; Cassonnet, Patricia; Norrild, Bodil; Prause, Jan Ulrik; Vinding, Troels; Heegaard, Steffen

    2007-08-01

    To examine conjunctival papilloma and normal conjunctival tissue for the presence of human papillomavirus (HPV). Archival paraffin wax-embedded tissue from 165 conjunctival papillomas and from 20 histological normal conjunctival biopsy specimens was analysed for the presence of HPV by PCR. Specimens considered HPV positive using consensus primers, but with a negative or uncertain PCR result using type-specific HPV probes, were analysed with DNA sequencing. HPV was present in 86 of 106 (81%) beta-globin-positive papillomas. HPV type 6 was positive in 80 cases, HPV type 11 was identified in 5 cases and HPV type 45 was present in a single papilloma. All the 20 normal conjunctival biopsy specimens were beta-globin positive and HPV negative. There is a strong association between HPV and conjunctival papilloma. The study presents the largest material of conjunctival papilloma investigated for HPV and the first investigation of HPV in normal conjunctival tissue. HPV types 6 and 11 are the most common HPV types in conjunctival papilloma. This also is the first report of HPV type 45 in conjunctival papilloma.

  9. Detection of BRAF-V600E and V600K in melanoma circulating tumour cells by droplet digital PCR.

    PubMed

    Reid, Anna L; Freeman, James B; Millward, Michael; Ziman, Melanie; Gray, Elin S

    2015-10-01

    Defining the BRAF mutation status in metastatic melanoma patients is critical to selecting patients for therapeutic treatment with targeted therapies. Circulating tumour cells (CTCs) can provide an alternative source of contemporaneous tumour genetic material. However methodologies to analyse the presence of rare mutations in a background of wild-type DNA requires a detailed assessment. Here we evaluate the sensitivity of two technologies for cancer mutation detection and the suitability of whole genome amplified DNA as a template for the detection of BRAF-V600 mutations. Serial dilutions of mutant BRAF-V600E DNA in wild-type DNA were tested using both competitive allele-specific PCR (castPCR) and droplet digital PCR (ddPCR), with and without previous whole genome amplification (WGA). Using immunomagnetic beads, we partially enriched CTCs from blood obtained from metastatic melanoma patients with confirmed BRAF mutation positive tumours and extracted RNA and DNA from the CTCs. We used RT-PCR of RNA to confirm the presence of melanoma cells in the CTC fraction then the DNAs of CTC positive fractions were WGA and tested for BRAF V600E or V600K mutations by ddPCRs. WGA DNA produced lower than expected fractional abundances by castPCR analysis but not by ddPCR. Moreover, ddPCR was found to be 200 times more sensitive than castPCR and in combination with WGA produced the most concordant results, with a limit of detection of 0.0005%. BRAF-V600E or V600K mutated DNA was detected in 77% and 44%, respectively, of enriched CTC fractions from metastatic melanoma patients carrying the corresponding mutations. Our results demonstrate that using ddPCR in combination with WGA DNA allows the detection with high sensitivity of cancer mutations in partially enriched CTC fractions. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  10. [Genital herpes and pregnancy: Serological and molecular diagnostic tools. Guidelines for clinical practice from the French College of Gynecologists and Obstetricians (CNGOF)].

    PubMed

    Vauloup-Fellous, C

    2017-12-01

    To describe serological and molecular tools available for genital and neonatal herpes, and their use in different clinical situations. Bibliographic investigations from MedLine database and consultation of international clinical practice guidelines. Virological confirmation of genital herpes during pregnancy or neonatal herpes must rely on PCR (Professional consensus). HSV type-specific serology (IgG) will allow determining the immune status of a patient (in the absence of clinical lesions). However, there is currently no evidence to justify universal HSV serological testing during pregnancy (Professional consensus). In case of genital lesions in a pregnant woman that do not report any genital herpes before, it is recommended to perform a virological confirmation by PCR and HSV type-specific IgG in order to distinguish a true primary infection, a non-primary infection associated with first genital manifestation, from a recurrence (Grade C). HSV IgM is useless for diagnosis of genital herpes (Grade C). If a pregnant woman has personal history of genital herpes but no lesions, whatever the gestational age, it is not recommended to perform genital sampling nor serology (Professional consensus). In case of recurrence, if the lesion is characteristic of herpes, virological confirmation is not necessary (Professional Agreement). However, if the lesion is not characteristic, virological confirmation by PCR should be performed (Professional consensus). At birth, HSV PCR samples should be collected as soon as neonatal herpes is suspected (symptomatic neonate) (best before beginning antiviral treatment but must not delay the treatment), or after 24hours of life in case of asymptomatic neonate born to a mother with herpes lesions at delivery (Professional consensus). Clinical samples for virological confirmation should include at least blood and a peripheral location. In case of clinical manifestations of herpes in the neonate, first samples PCR positive, preterm birth, or maternal primary infection or non-primary infection associated with first genital manifestation at delivery, CSF should also be collected as well as samples of lesions in the neonate if present (Professional consensus). Sampling should be repeated in case of PCR negative but strong evidence of neonatal herpes (Professional consensus). HSV serology is useless for diagnosis of neonatal herpes (Grade C). Virological confirmation for diagnosis of genital herpes during pregnancy or neonatal herpes must rely on PCR. PCR assays available in France are very reliable. Specific IgG are dedicated to restricted indications. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Elimination of endogenous aberrant kappa chain transcripts from sp2/0-derived hybridoma cells by specific ribozyme cleavage: utility in genetic therapy of HIV-1 infections.

    PubMed Central

    Duan, L; Pomerantz, R J

    1994-01-01

    The pooled degenerate-primer polymerase chain reaction (PCR) technology is now widely used in the amplification and cloning of murine hybridoma-specific immunoglobulin gene cDNAs. The design of primers is mainly based on the highly conserved 5' terminus of immunoglobulin gene variable regions and the constant region in the 3' terminus. Of note, most murine hybridoma cell lines are derived from the Sp2/0 cell line, which is demonstrated to express endogenous aberrant kappa chains (abV kappa). This high-level endogenous abV kappa mixes with specific kappa chains in the hybridomas and interferes with the efficiency of the reverse transcriptase (RT)-PCR cloning strategy. In this report, during the cloning of murine anti-human immunodeficiency virus type I (HIV-1) hybridoma immunoglobulin cDNAs, a specific primer-PCR screening system was developed, based on the abV kappa complementarity-defining region (CDR), to eliminate abV kappa-carrying plasmids. Furthermore, an abV kappa sequence-specific derived ribozyme was developed and packaged in a retroviral expression vector system. This abV kappa ribozyme can be transduced into different murine hybridomas, and expressed intracellularly to potently eliminate endogenous abV kappa RNA. Images PMID:7816635

  12. High-resolution melting genotyping of Enterococcus faecium based on multilocus sequence typing derived single nucleotide polymorphisms.

    PubMed

    Tong, Steven Y C; Xie, Shirley; Richardson, Leisha J; Ballard, Susan A; Dakh, Farshid; Grabsch, Elizabeth A; Grayson, M Lindsay; Howden, Benjamin P; Johnson, Paul D R; Giffard, Philip M

    2011-01-01

    We have developed a single nucleotide polymorphism (SNP) nucleated high-resolution melting (HRM) technique to genotype Enterococcus faecium. Eight SNPs were derived from the E. faecium multilocus sequence typing (MLST) database and amplified fragments containing these SNPs were interrogated by HRM. We tested the HRM genotyping scheme on 85 E. faecium bloodstream isolates and compared the results with MLST, pulsed-field gel electrophoresis (PFGE) and an allele specific real-time PCR (AS kinetic PCR) SNP typing method. In silico analysis based on predicted HRM curves according to the G+C content of each fragment for all 567 sequence types (STs) in the MLST database together with empiric data from the 85 isolates demonstrated that HRM analysis resolves E. faecium into 231 "melting types" (MelTs) and provides a Simpson's Index of Diversity (D) of 0.991 with respect to MLST. This is a significant improvement on the AS kinetic PCR SNP typing scheme that resolves 61 SNP types with D of 0.95. The MelTs were concordant with the known ST of the isolates. For the 85 isolates, there were 13 PFGE patterns, 17 STs, 14 MelTs and eight SNP types. There was excellent concordance between PFGE, MLST and MelTs with Adjusted Rand Indices of PFGE to MelT 0.936 and ST to MelT 0.973. In conclusion, this HRM based method appears rapid and reproducible. The results are concordant with MLST and the MLST based population structure.

  13. Rapid detection of avian influenza virus a and subtype H5N1 by single step multiplex reverse transcription-polymerase chain reaction.

    PubMed

    Wei, Hui-Ling; Bai, Gui-Rong; Mweene, Aaron S; Zhou, Ying-Chun; Cong, Yan-Long; Pu, Juan; Wang, Shuai; Kida, Hiroshi; Liu, Jin-Hua

    2006-06-01

    Outbreaks of H5N1 highly pathogenic avian influenza (HPAI) virus caused great economic losses to the poultry industry and resulted in human deaths in Thailand and Viet Nam in 2004. Rapid typing and subtyping of H5N1 viruses, especially from clinical specimens, are desirable for taking prompt control measures to prevent the spread of the disease. Here, we developed a set of oligonucleotide primers able to detect, type and subtype H5 and N1 influenza viruses in a single step multiplex reverse transcription-polymerase chain reaction (RT-PCR). RNA was extracted from allantoic fluid or from specimens with guanidinium isothiocyanate reagent. Reverse transcription and PCR were carried out with a mixture of primers specific for influenza viruses of type A, subtype H5 and N1 in a single reaction system under identical conditions. The amplified DNA fragments were analyzed by agarose gel electrophoresis. All the H5N1 viruses tested in the study and the experimental specimens presented three specific bands by the method established here. The results presented here suggest that the method described below is rapid and specific and, therefore, could be valuable in the rapid detection of H5N1 influenza viruses in clinics.

  14. Species identification and molecular typing of human Brucella isolates from Kuwait.

    PubMed

    Mustafa, Abu S; Habibi, Nazima; Osman, Amr; Shaheed, Faraz; Khan, Mohd W

    2017-01-01

    Brucellosis is a zoonotic disease of major concern in Kuwait and the Middle East. Human brucellosis can be caused by several Brucella species with varying degree of pathogenesis, and relapses are common after apparently successful therapy. The classical biochemical methods for identification of Brucella are time-consuming, cumbersome, and provide information limited to the species level only. In contrast, molecular methods are rapid and provide differentiation at intra-species level. In this study, four molecular methods [16S rRNA gene sequencing, real-time PCR, enterobacterial repetitive intergenic consensus (ERIC)-PCR and multilocus variable-number tandem-repeat analysis (MLVA)-8, MLVA-11 and MLVA-16 were evaluated for the identification and typing of 75 strains of Brucella isolated in Kuwait. 16S rRNA gene sequencing of all isolates showed 90-99% sequence identity with B. melitensis and real-time PCR with genus- and species- specific primers identified all isolates as B. melitensis. The results of ERIC-PCR suggested the existence of 75 ERIC genotypes of B. melitensis with a discriminatory index of 0.997. Cluster classification of these genotypes divided them into two clusters, A and B, diverging at ~25%. The maximum number of genotypes (n = 51) were found in cluster B5. MLVA-8 analysis identified all isolates as B. melitensis, and MLVA-8, MLVA-11 and MLVA-16 typing divided the isolates into 10, 32 and 71 MLVA types, respectively. Furthermore, the combined minimum spanning tree analysis demonstrated that, compared to MLVA types discovered all over the world, the Kuwaiti isolates were a distinct group of MLVA-11 and MLVA-16 types in the East Mediterranean Region.

  15. Species identification and molecular typing of human Brucella isolates from Kuwait

    PubMed Central

    Osman, Amr; Shaheed, Faraz; Khan, Mohd W.

    2017-01-01

    Brucellosis is a zoonotic disease of major concern in Kuwait and the Middle East. Human brucellosis can be caused by several Brucella species with varying degree of pathogenesis, and relapses are common after apparently successful therapy. The classical biochemical methods for identification of Brucella are time-consuming, cumbersome, and provide information limited to the species level only. In contrast, molecular methods are rapid and provide differentiation at intra-species level. In this study, four molecular methods [16S rRNA gene sequencing, real-time PCR, enterobacterial repetitive intergenic consensus (ERIC)-PCR and multilocus variable-number tandem-repeat analysis (MLVA)-8, MLVA-11 and MLVA-16 were evaluated for the identification and typing of 75 strains of Brucella isolated in Kuwait. 16S rRNA gene sequencing of all isolates showed 90–99% sequence identity with B. melitensis and real-time PCR with genus- and species- specific primers identified all isolates as B. melitensis. The results of ERIC-PCR suggested the existence of 75 ERIC genotypes of B. melitensis with a discriminatory index of 0.997. Cluster classification of these genotypes divided them into two clusters, A and B, diverging at ~25%. The maximum number of genotypes (n = 51) were found in cluster B5. MLVA-8 analysis identified all isolates as B. melitensis, and MLVA-8, MLVA-11 and MLVA-16 typing divided the isolates into 10, 32 and 71 MLVA types, respectively. Furthermore, the combined minimum spanning tree analysis demonstrated that, compared to MLVA types discovered all over the world, the Kuwaiti isolates were a distinct group of MLVA-11 and MLVA-16 types in the East Mediterranean Region. PMID:28800594

  16. International Study to Evaluate PCR Methods for Detection of Trypanosoma cruzi DNA in Blood Samples from Chagas Disease Patients

    PubMed Central

    Schijman, Alejandro G.; Bisio, Margarita; Orellana, Liliana; Sued, Mariela; Duffy, Tomás; Mejia Jaramillo, Ana M.; Cura, Carolina; Auter, Frederic; Veron, Vincent; Qvarnstrom, Yvonne; Deborggraeve, Stijn; Hijar, Gisely; Zulantay, Inés; Lucero, Raúl Horacio; Velazquez, Elsa; Tellez, Tatiana; Sanchez Leon, Zunilda; Galvão, Lucia; Nolder, Debbie; Monje Rumi, María; Levi, José E.; Ramirez, Juan D.; Zorrilla, Pilar; Flores, María; Jercic, Maria I.; Crisante, Gladys; Añez, Néstor; De Castro, Ana M.; Gonzalez, Clara I.; Acosta Viana, Karla; Yachelini, Pedro; Torrico, Faustino; Robello, Carlos; Diosque, Patricio; Triana Chavez, Omar; Aznar, Christine; Russomando, Graciela; Büscher, Philippe; Assal, Azzedine; Guhl, Felipe; Sosa Estani, Sergio; DaSilva, Alexandre; Britto, Constança; Luquetti, Alejandro; Ladzins, Janis

    2011-01-01

    Background A century after its discovery, Chagas disease still represents a major neglected tropical threat. Accurate diagnostics tools as well as surrogate markers of parasitological response to treatment are research priorities in the field. The purpose of this study was to evaluate the performance of PCR methods in detection of Trypanosoma cruzi DNA by an external quality evaluation. Methodology/Findings An international collaborative study was launched by expert PCR laboratories from 16 countries. Currently used strategies were challenged against serial dilutions of purified DNA from stocks representing T. cruzi discrete typing units (DTU) I, IV and VI (set A), human blood spiked with parasite cells (set B) and Guanidine Hidrochloride-EDTA blood samples from 32 seropositive and 10 seronegative patients from Southern Cone countries (set C). Forty eight PCR tests were reported for set A and 44 for sets B and C; 28 targeted minicircle DNA (kDNA), 13 satellite DNA (Sat-DNA) and the remainder low copy number sequences. In set A, commercial master mixes and Sat-DNA Real Time PCR showed better specificity, but kDNA-PCR was more sensitive to detect DTU I DNA. In set B, commercial DNA extraction kits presented better specificity than solvent extraction protocols. Sat-DNA PCR tests had higher specificity, with sensitivities of 0.05–0.5 parasites/mL whereas specific kDNA tests detected 5.10−3 par/mL. Sixteen specific and coherent methods had a Good Performance in both sets A and B (10 fg/µl of DNA from all stocks, 5 par/mL spiked blood). The median values of sensitivities, specificities and accuracies obtained in testing the Set C samples with the 16 tests determined to be good performing by analyzing Sets A and B samples varied considerably. Out of them, four methods depicted the best performing parameters in all three sets of samples, detecting at least 10 fg/µl for each DNA stock, 0.5 par/mL and a sensitivity between 83.3–94.4%, specificity of 85–95%, accuracy of 86.8–89.5% and kappa index of 0.7–0.8 compared to consensus PCR reports of the 16 good performing tests and 63–69%, 100%, 71.4–76.2% and 0.4–0.5, respectively compared to serodiagnosis. Method LbD2 used solvent extraction followed by Sybr-Green based Real time PCR targeted to Sat-DNA; method LbD3 used solvent DNA extraction followed by conventional PCR targeted to Sat-DNA. The third method (LbF1) used glass fiber column based DNA extraction followed by TaqMan Real Time PCR targeted to Sat-DNA (cruzi 1/cruzi 2 and cruzi 3 TaqMan probe) and the fourth method (LbQ) used solvent DNA extraction followed by conventional hot-start PCR targeted to kDNA (primer pairs 121/122). These four methods were further evaluated at the coordinating laboratory in a subset of human blood samples, confirming the performance obtained by the participating laboratories. Conclusion/Significance This study represents a first crucial step towards international validation of PCR procedures for detection of T. cruzi in human blood samples. PMID:21264349

  17. PCR-based 'serotyping' of Legionella pneumophila.

    PubMed

    Thürmer, Alexander; Helbig, Jürgen Herbert; Jacobs, Enno; Lück, Paul Christian

    2009-05-01

    Currently, several PCR assays based on 16S rRNA and virulence-associated genes are available for detection of Legionella pneumophila. So far, no genotyping method has been published that can discriminate between serogroups and monoclonal subgroups of the most common L. pneumophila serogroup 1. Our first approach was to analyse LPS-associated genes of seven L. pneumophila serogroup 1 strains, and we developed two PCR-based methods specific for serogroup 1. Specific DNA fragments could be amplified from all the serogroup 1 strains (n=43) including the strains from the American Type Culture Collection. In contrast, none of the strains from serogroups 2-15 (n=41) contained these specific gene regions. In a second approach, primers specific for the lag-1 gene, encoding an O-acetyltransferase, which is responsible for the presence of the LPS epitope recognized by mAb 3/1, were designed and tested for their ability to differentiate between mAb 3/1-positive and -negative strains. All mAb 3/1-positive strains (n=30) contained the lag-1 gene, but in turn 4 of 13 tested mAb 3/1-negative strains were also positive in the PCR. Thus, the discrimination between mAb 3/1-positive and mAb 3/1-negative subgroups could not be achieved for all strains. In a third approach, two intergenic regions expected to be specific for monoclonal subgroup Knoxville and closely related subgroups Benidorm/Bellingham were identified and used for selective genotyping. These intergenic regions could not only be amplified in every tested strain belonging to the subgroups Knoxville, Benidorm and Bellingham, but also in some strains of other unrelated subgroups. The two PCR approaches with primers specific for serogroup 1 genes definitely represent a valuable tool in outbreak investigations and for risk assessment. They also might be used for culture-independent diagnosis of legionellosis caused by L. pneumophila serogroup 1.

  18. Papular dermatitis due to Leishmania infantum infection in seventeen dogs: diagnostic features, extent of the infection and treatment outcome

    PubMed Central

    2014-01-01

    Background This study describes immunological responses, diagnostic features, follow up and treatment outcomes from seventeen dogs with papular dermatitis due to Leishmania infection diagnosed by cytology or real time-PCR. Methods Specific Leishmania humoral and cellular immune responses were evaluated by means of an immunofluorescence antibody test in all cases and a delayed-type hypersensitivity (DTH) reaction to leishmanin in eight cases. The extent of infection was studied in several tissues including blood, lymph node, conjunctival and oral swabs, by means of PCR, at the time of diagnosis and during follow-up. Culture was performed on nine dogs from cutaneous lesions and lymph node aspirates and molecular typing was carried out on isolates based on ITS-1, ITS-2 and Haspb gene sequencing analysis. Results Cytological and molecular results from fine needle aspirates of papules were diagnostic in 8 out of 13 (61.5%) cases and in 14 out of 15 dogs (93.3%), respectively. In all dogs, specific anti-Leishmania antibody levels were low or absent. Blood and lymph node PCRs and lymph node culture were negative in all dogs. Three out of the nine dogs (33%) were positive by culture from cutaneous lesions. The three isolates were identified as ITS type A, however, polymorphism was observed in the Haspb gene (PCR products of 626 bp, 962 bp and 371 bp). DTH response was positive in all tested dogs at the time of diagnosis. The majority of dogs were successfully treated with only N-methylglucamine antimoniate, after which cutaneous lesions disappeared or were reduced to depigmented, flattened scars. All dogs remained seronegative and the majority of dogs were negative by PCR in several tissues during follow-up. Conclusions This study points out that papular dermatitis due to L. infantum is probably an underestimated benign cutaneous problem, associated with a parasite specific cell mediated immunity and a poor humoral immune response. Papular dermatitis is seen in young dogs, and appears to be a mild disease with restricted parasite dissemination and a good prognosis. PCR can be used as a non-invasive method to routinely evaluate papules if Leishmania infection is suspected in cases in which parasites are not visualized by cytology. PMID:24661822

  19. Papular dermatitis due to Leishmania infantum infection in seventeen dogs: diagnostic features, extent of the infection and treatment outcome.

    PubMed

    Lombardo, Gabriella; Pennisi, Maria Grazia; Lupo, Tiziana; Chicharro, Carmen; Solano-Gallego, Laia

    2014-03-24

    : This study describes immunological responses, diagnostic features, follow up and treatment outcomes from seventeen dogs with papular dermatitis due to Leishmania infection diagnosed by cytology or real time-PCR. Specific Leishmania humoral and cellular immune responses were evaluated by means of an immunofluorescence antibody test in all cases and a delayed-type hypersensitivity (DTH) reaction to leishmanin in eight cases. The extent of infection was studied in several tissues including blood, lymph node, conjunctival and oral swabs, by means of PCR, at the time of diagnosis and during follow-up. Culture was performed on nine dogs from cutaneous lesions and lymph node aspirates and molecular typing was carried out on isolates based on ITS-1, ITS-2 and Haspb gene sequencing analysis. Cytological and molecular results from fine needle aspirates of papules were diagnostic in 8 out of 13 (61.5%) cases and in 14 out of 15 dogs (93.3%), respectively. In all dogs, specific anti-Leishmania antibody levels were low or absent. Blood and lymph node PCRs and lymph node culture were negative in all dogs. Three out of the nine dogs (33%) were positive by culture from cutaneous lesions. The three isolates were identified as ITS type A, however, polymorphism was observed in the Haspb gene (PCR products of 626 bp, 962 bp and 371 bp). DTH response was positive in all tested dogs at the time of diagnosis. The majority of dogs were successfully treated with only N-methylglucamine antimoniate, after which cutaneous lesions disappeared or were reduced to depigmented, flattened scars. All dogs remained seronegative and the majority of dogs were negative by PCR in several tissues during follow-up. This study points out that papular dermatitis due to L. infantum is probably an underestimated benign cutaneous problem, associated with a parasite specific cell mediated immunity and a poor humoral immune response. Papular dermatitis is seen in young dogs, and appears to be a mild disease with restricted parasite dissemination and a good prognosis. PCR can be used as a non-invasive method to routinely evaluate papules if Leishmania infection is suspected in cases in which parasites are not visualized by cytology.

  20. COLD-PCR enriches low-level variant DNA sequences and increases the sensitivity of genetic testing.

    PubMed

    Castellanos-Rizaldos, Elena; Milbury, Coren A; Guha, Minakshi; Makrigiorgos, G Mike

    2014-01-01

    Detection of low-level mutations is important for cancer biomarker and therapy targets discovery, but reliable detection remains a technical challenge. The newly developed method of CO-amplification at Lower Denaturation temperature PCR (COLD-PCR) helps to circumvent this issue. This PCR-based technology preferentially enriches minor known or unknown variants present in samples with a high background of wild type DNA which often hampers the accurate identification of these minority alleles. This is a simple process that consists of lowering the temperature at the denaturation step during the PCR-cycling protocol (critical denaturation temperature, T c) and inducing DNA heteroduplexing during an intermediate step. COLD-PCR in its simplest forms does not need additional reagents or specific instrumentation and thus, can easily replace conventional PCR and at the same time improve the mutation detection sensitivity limit of downstream technologies. COLD-PCR can be applied in two basic formats: fast-COLD-PCR that can enrich T m-reducing mutations and full-COLD-PCR that can enrich all mutations, though it requires an intermediate cross-hybridization step that lengthens the thermocycling program. An improved version of full-COLD-PCR (improved and complete enrichment, ice-COLD-PCR) has also been described. Finally, most recently, we developed yet another form of COLD-PCR, temperature-tolerant-COLD-PCR, which gradually increases the denaturation temperature during the COLD-PCR reaction, enriching diverse targets using a single cycling program. This report describes practical considerations for application of fast-, full-, ice-, and temperature-tolerant-COLD-PCR for enrichment of mutations prior to downstream screening.

  1. PCR-based methods for the detection of L1014 kdr mutation in Anopheles culicifacies sensu lato

    PubMed Central

    Singh, Om P; Bali, Prerna; Hemingway, Janet; Subbarao, Sarala K; Dash, Aditya P; Adak, Tridibes

    2009-01-01

    Background Anopheles culicifacies s.l., a major malaria vector in India, has developed widespread resistance to DDT and is becoming resistant to pyrethroids–the only insecticide class recommended for the impregnation of bed nets. Knock-down resistance due to a point mutation in the voltage gated sodium channel at L1014 residue (kdr) is a common mechanism of resistance to DDT and pyrethroids. The selection of this resistance may pose a serious threat to the success of the pyrethroid-impregnated bed net programme. This study reports the presence of kdr mutation (L1014F) in a field population of An. culicifacies s.l. and three new PCR-based methods for kdr genotyping. Methods The IIS4-IIS5 linker to IIS6 segments of the para type voltage gated sodium channel gene of DDT and pyrethroid resistant An. culicifacies s.l. population from the Surat district of India was sequenced. This revealed the presence of an A-to-T substitution at position 1014 leading to a leucine-phenylalanine mutation (L1014F) in a few individuals. Three molecular methods viz. Allele Specific PCR (AS-PCR), an Amplification Refractory Mutation System (ARMS) and Primer Introduced Restriction Analysis-PCR (PIRA-PCR) were developed and tested for kdr genotyping. The specificity of the three assays was validated following DNA sequencing of the samples genotyped. Results The genotyping of this An. culicifacies s.l. population by the three PCR based assays provided consistent result and were in agreement with DNA sequencing result. A low frequency of the kdr allele mostly in heterozygous condition was observed in the resistant population. Frequencies of the different genotypes were in Hardy-Weinberg equilibrium. Conclusion The Leu-Phe mutation, which generates the kdr phenotype in many insects, was detected in a pyrethroid and DDT resistant An. culicifacies s.l. population. Three PCR-based methods were developed for kdr genotyping. All the three assays were specific. The ARMS method was refractory to non-specific amplification in non-stringent amplification conditions. The PIRA-PCR assay is able to detect both the codons for the phenylalanine mutation at kdr locus, i.e., TTT and TTC, in a single assay, although the latter codon was not found in the population genotyped. PMID:19594947

  2. Direct Fluorescence Detection of Allele-Specific PCR Products Using Novel Energy-Transfer Labeled Primers.

    PubMed

    Winn-Deen

    1998-12-01

    Background: Currently analysis of point mutations can be done by allele-specific polymerase chain reaction (PCR) followed by gel analysis or by gene-specific PCR followed by hybridization with an allele-specific probe. Both of these mutation detection methods require post-PCR laboratory time and run the risk of contaminating subsequent experiments with the PCR product liberated during the detection step. The author has combined the PCR amplification and detection steps into a single procedure suitable for closed-tube analysis. Methods and Results: Allele-specific PCR primers were designed as Sunrise energy-transfer primers and contained a 3' terminal mismatch to distinguish between normal and mutant DNA. Cloned normal (W64) and mutant (R64) templates of the beta3-adrenergic receptor gene were tested to verify amplification specificity and yield. A no-target negative control was also run with each reaction. After PCR, each reaction was tested for fluorescence yield by measuring fluorescence on a spectrofluorimeter or fluorescent microtitreplate reader. The cloned controls and 24 patient samples were tested for the W64R mutation by two methods. The direct fluorescence results with the Sunrise allele-specific PCR method gave comparable genotypes to those obtained with the PCR/ restriction digest/gel electrophoresis control method. No PCR artifacts were observed in the negative controls or in the PCR reactions run with the mismatched target. Conclusions: The results of this pilot study indicate good PCR product and fluorescence yield from allele-specific energy-transfer labeled primers, and the capability of distinguishing between normal and mutant alleles based on fluorescence alone, without the need for restriction digestion, gel electrophoresis, or hybridization with an allele-specific probe.

  3. Comparison of PCR, culturing and Pap smear microscopy for accurate diagnosis of genital Actinomyces.

    PubMed

    Kaya, Dilek; Demirezen, Şayeste; Hasçelik, Gülşen; Gülmez Kivanç, Dolunay; Beksaç, Mehmet Sinan

    2013-05-01

    Members of the genus Actinomyces, Gram-positive, non-spore-forming anaerobic bacteria, are normal inhabitants of the mucosal surfaces of the oral, gastrointestinal and genital tracts. Identification of these bacteria using conventional methods is generally difficult because of their complex transport and growth requirements and their fastidious and slow-growing nature. However, in recent years, the advancement of molecular techniques has provided much improved identification and differentiation of closely related Actinomyces species. The aim of the present study was to evaluate the efficacy of the PCR technique in the diagnosis of genital Actinomyces in comparison with culturing and Papanicolaou (Pap) smear microscopy. Multiple sampling was conducted from 200 women using smear microscopy, culturing and PCR. Cyto-brushes were smeared on glass slides and stained using the routine Pap technique. Culturing was performed from a sterile swab, and Actinomyces were determined using the BBL Crystal ANR ID kit. PCR was performed from a second swab, and the Actinomyces type was determined using type-specific primers designed in our laboratory. Only one vaginal fluid sample (0.5%) revealed Actinomyces-like organisms on Pap smear examination. Actinomyces were detected in nine samples (4.5%) using the BBL Crystal ANR ID kit. Using PCR, eight samples (4%) were found positive for Actinomyces. No specimens that gave positive results by Pap smear microscopy and culturing could be confirmed by PCR. Pap smear microscopy and culturing were both found to have zero sensitivity for Actinomyces. PCR appears to be a sensitive and reliable diagnostic method for the detection of Actinomyces, which are difficult to cultivate from genital samples. PCR can be used for diagnostic confirmation in cases diagnosed by conventional methods, to prevent false-positive results.

  4. An SSP-PCR method for the rapid detection of disease-associated alleles HLA-A*29 and HLA-B*51.

    PubMed

    Amstutz, U; Schaerer, D; Andrey, G; Wirthmueller, U; Largiadèr, C R

    2018-05-15

    HLA-A*29 and HLA-B*51 are associated with birdshot uveitis and Behçet's disease, respectively, and are used as a diagnostic criterion in patients with suspected disease, requiring their detection in diagnostic laboratories. While commercial tests for individual HLA alleles are available for other disease-associated HLA variants, no similar allele-specific assays are available for HLA-A*29 and -B*51. Here, we report SSP-PCR methods for the detection of HLA-A*29 and -B*51 using a single PCR reaction per allele. The assays were tested in 30 and 32 previously HLA-typed samples, respectively, representing >97% of HLA-A alleles and >93% of HLA-B alleles in a European population. A concordance of 100% was observed with previous typing results, validating these methods for use in a diagnostic or research context. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Gene expression analysis of immunostained endothelial cells isolated from formaldehyde-fixated paraffin embedded tumors using laser capture microdissection--a technical report.

    PubMed

    Kaneko, Tomoatsu; Okiji, Takashi; Kaneko, Reika; Suda, Hideaki; Nör, Jacques E

    2009-12-01

    Laser capture microdissection (LCM) allows microscopic procurement of specific cell types from tissue sections that can then be used for gene expression analysis. In conventional LCM, frozen tissues stained with hematoxylin are normally used to the molecular analysis. Recent studies suggested that it is possible to carry out gene expression analysis of formaldehyde-fixated paraffin embedded (FFPE) tissues that were stained with hematoxylin. However, it is still unclear if quantitative gene expression analyses can be performed from LCM cells from FFPE tissues that were subjected to immunostaining to enhance identification of target cells. In this proof-of-principle study, we analyzed by reverse transcription-PCR (RT-PCR) and real time PCR the expression of genes in factor VIII immunostained human endothelial cells that were dissected from FFPE tissues by LCM. We observed that immunostaining should be performed at 4 degrees C to preserve the mRNA from the cells. The expression of Bcl-2 in the endothelial cells was evaluated by RT-PCR and by real time PCR. Glyceraldehyde-3-phosphate dehydrogenase and 18S were used as house keeping genes for RT-PCR and real time PCR, respectively. This report unveils a method for quantitative gene expression analysis in cells that were identified by immunostaining and retrieved by LCM from FFPE tissues. This method is ideally suited for the analysis of relatively rare cell types within a tissue, and should improve on our ability to perform differential diagnosis of pathologies as compared to conventional LCM.

  6. [Three cases of herpes simplex virus type 2 myelitis--detection of HSV2 DNA in cerebrospinal fluid].

    PubMed

    Nakajima, H; Furutama, D; Shinoda, K; Ohsawa, N; Nakagawa, T

    1993-07-01

    Polymerase chain reaction (PCR) technique has been successfully used to detect herpes simplex virus (HSV) from patients with HSV encephalitis. By PCR assay capable of differentiating HSV1 and 2, we detected HSV 2 DNA in cerebrospinal fluid (CSF) from patients with HSV myelitis and discussed the clinical findings. Three cases of HSV myelitis (a 49-year-old female, two 38- and 44-year-old males) were studied. All cases were characterized by transverse myelopathy of the thoracic cord, and two patients had recurrence. In all cases HSV1 antibodies were significantly elevated in serum and CSF. We used 500 microliters of CSF for PCR, and prepared one common upstream primer and two type specific downstream primers for HSV1 and HSV2. Using three primers simultaneously different sizes of PCR products were amplified from HSV1 and HSV2 DNA. PCR products subjected to electrophoresis on 1.2% agarose and stained with ethidium bromide. Still more southern blot hybridization was performed to detect DNA by 35S-end-labelled oligonucleotide prove. HSV2 DNA was amplified from CSF in all cases by PCR, and HSV2 DNA was detected at both first and second episode in two relapsing myelitis. No case of relapsing myelitis by HSV2 has been reported. The PCR technique is useful for diagnosis of HSV1 and 2 myelitis, and its would suggest that some patients of idiopathic myelopathy could be due to HSV2 myelitis and HSV2 myelitis may not be rare.

  7. Establishment of reverse transcription loop-mediated isothermal amplification for rapid detection and differentiation of canine distemper virus infected and vaccinated animals.

    PubMed

    Liu, Da-Fei; Liu, Chun-Guo; Tian, Jin; Jiang, Yi-Tong; Zhang, Xiao-Zhan; Chai, Hong-Liang; Yang, Tian-Kuo; Yin, Xiu-Chen; Zhang, Hong-Ying; Liu, Ming; Hua, Yu-Ping; Qu, Lian-Dong

    2015-06-01

    Although widespread vaccination against canine distemper virus (CDV) has been conducted for many decades, several canine distemper outbreaks in vaccinated animals have been reported frequently. In order to detect and differentiate the wild-type and vaccine strains of the CDV from the vaccinated animals, a novel reverse transcription loop-mediated isothermal amplification (RT-LAMP) method was developed. A set of four primers-two internal and two external-were designed to target the H gene for the specific detection of wild-type CDV variants. The CDV-H RT-LAMP assay rapidly amplified the target gene, within 60 min, using a water bath held at a constant temperature of 65°C. The assay was 100-fold more sensitive than conventional RT-PCR, with a detection limit of 10(-1)TCID50ml(-1). The system showed a preference for wild-type CDV, and exhibited less sensitivity to canine parvovirus, canine adenovirus type 1 and type 2, canine coronavirus, and canine parainfluenza virus. The assay was validated using 102 clinical samples obtained from vaccinated dog farms, and the results were comparable to a multiplex nested RT-PCR assay. The specific CDV-H RT-LAMP assay provides a simple, rapid, and sensitive tool for the detection of canines infected with wild-type CDV from canines vaccinated with attenuated vaccine. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Development and validation of a real-time PCR assay for specific and sensitive detection of canid herpesvirus 1.

    PubMed

    Decaro, Nicola; Amorisco, Francesca; Desario, Costantina; Lorusso, Eleonora; Camero, Michele; Bellacicco, Anna Lucia; Sciarretta, Rossana; Lucente, Maria Stella; Martella, Vito; Buonavoglia, Canio

    2010-10-01

    A TaqMan-based real-time PCR assay targeting the glycoprotein B-encoding gene was developed for diagnosis of canid herpesvirus 1 (CHV-1) infection. The established assay was highly specific, since no cross-reactions were observed with other canine DNA viruses, including canine parvovirus type 2, canine minute virus, or canine adenovirus types 1 and 2. The detection limit was 10(1) and 1.20 x 10(1) DNA copies per 10 microl(-1) of template for standard DNA and a CHV-1-positive kidney sample, respectively: about 1-log higher than a gel-based PCR assay targeting the thymidine kinase gene. The assay was also reproducible, as shown by satisfactory low intra-assay and inter-assay coefficients of variation. CHV-1 isolates of different geographical origins were recognised by the TaqMan assay. Tissues and clinical samples collected from three pups which died of CHV-1 neonatal infection were also tested, displaying a wide distribution of CHV-l DNA in their organs. Unlike other CHV-1-specific diagnostic methods, this quantitative assay permits simultaneous detection and quantitation of CHV-1 DNA in a wide range of canine tissues and body fluids, thus providing a useful tool for confirmation of a clinical diagnosis, for the study of viral pathogenesis and for evaluation of the efficacy of vaccines and antiviral drugs. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  9. Genotyping of Chromobacterium violaceum isolates by recA PCR-RFLP analysis.

    PubMed

    Scholz, Holger Christian; Witte, Angela; Tomaso, Herbert; Al Dahouk, Sascha; Neubauer, Heinrich

    2005-03-15

    Intraspecies variation of Chromobacterium violaceum was examined by comparative sequence - and by restriction fragment length polymorphism analysis of the recombinase A gene (recA-PCR-RFLP). Primers deduced from the known recA gene sequence of the type strain C. violaceum ATCC 12472(T) allowed the specific amplification of a 1040bp recA fragment from each of the 13 C. violaceum strains investigated, whereas other closely related organisms tested negative. HindII-PstI-recA RFLP analysis generated from 13 representative C. violaceum strains enabled us to identify at least three different genospecies. In conclusion, analysis of the recA gene provides a rapid and robust nucleotide sequence-based approach to specifically identify and classify C. violaceum on genospecies level.

  10. Miltenberger blood group typing by real-time polymerase chain reaction (qPCR) melting curve analysis in Thai population.

    PubMed

    Vongsakulyanon, A; Kitpoka, P; Kunakorn, M; Srikhirin, T

    2015-12-01

    To develop reliable and convenient methods for Miltenberger (Mi(a) ) blood group typing. To apply real-time polymerase chain reaction (qPCR) melting curve analysis to Mi(a) blood group typing. The Mi(a) blood group is the collective set of glycophorin hybrids in the MNS blood group system. Mi(a+) blood is common among East Asians and is also found in the Thai population. Incompatible Mi(a) blood transfusions pose the risk of life-threatening haemolysis; therefore, Mi(a) blood group typing is necessary in ethnicities where the Mi(a) blood group is prevalent. One hundred and forty-three blood samples from Thai blood donors were used in the study. The samples included 50 Mi(a+) samples and 93 Mi(a-) samples, which were defined by serology. The samples were typed by Mi(a) typing qPCR, and 50 Mi(a+) samples were sequenced to identify the Mi(a) subtypes. Mi(a) subtyping qPCR was performed to define GP.Mur. Both Mi(a) typing and Mi(a) subtyping were tested on a conventional PCR platform. The results of Mi(a) typing qPCR were all concordant with serology. Sequencing of the 50 Mi(a+) samples revealed 47 GP.Mur samples and 3 GP.Hop or Bun samples. Mi(a) subtyping qPCR was the supplementary test used to further define GP.Mur from other Mi(a) subtypes. Both Mi(a) typing and Mi(a) subtyping performed well using a conventional PCR platform. Mi(a) typing qPCR correctly identified Mi(a) blood groups in a Thai population with the feasibility of Mi(a) subtype discrimination, and Mi(a) subtyping qPCR was able to further define GP.Mur from other Mi(a) subtypes. © 2015 British Blood Transfusion Society.

  11. Serotype and mating type characterization of Cryptococcus neoformans by multiplex PCR.

    PubMed

    Carvalho, Vívian Gonçalves; Terceti, Mateus Souza; Dias, Amanda Latercia Tranches; Paula, Claudete Rodrigues; Lyon, Juliana Pereira; de Siqueira, Antônio Martins; Franco, Marília Caixeta

    2007-01-01

    Cryptococcus neoformans is an encapsulated yeast, etiological agent of cryptococcosis. The species is commonly associated with pigeon droppings and plant materials. The aim of the present work was to verify the presence of the yeast in pigeon droppings, and to identify the isolates obtained in serotypes and mating types (MAT). Ten samples of pigeon droppings were collected in the rural area of the city of Alfenas, Brazil. Samples were inoculated in agar Niger medium for fungal isolation and 22 isolates with characteristics of C. neoformans were obtained. The serotypes and MAT were determined by multiplex PCR using specific primers. Serotypes were also determined by using the Kit Crypto Check. Among the 22 samples evaluated, eight were identified as C. neoformans by classic identification tests. These samples were characterized as serotype A by the Kit Crypto check and as serotype A MAT alpha by the multiplex PCR. The present study reinforces the evidence that pigeon droppings are a reservoir for C. neoformans and confirms the prevalence of C. neoformans var. grubii (A alpha) among environmental isolates. It also demonstrates that multiplex PCR is an acceptable alternative for serotype analysis because it reduces the costs for each reaction and analyses serotype and MAT simultaneously.

  12. Development of a multiplex RT-PCR assay for the identification of recombination types at different genomic regions of vaccine-derived polioviruses.

    PubMed

    Dimitriou, T G; Kyriakopoulou, Z; Tsakogiannis, D; Fikatas, A; Gartzonika, C; Levidiotou-Stefanou, S; Markoulatos, P

    2016-08-01

    Polioviruses (PVs) are the causal agents of acute paralytic poliomyelitis. Since the 1960s, poliomyelitis has been effectively controlled by the use of two vaccines containing all three serotypes of PVs, the inactivated poliovirus vaccine and the live attenuated oral poliovirus vaccine (OPV). Despite the success of OPV in polio eradication programme, a significant disadvantage was revealed: the emergence of vaccine-associated paralytic poliomyelitis (VAPP). VAPP is the result of accumulated mutations and putative recombination events located at the genome of attenuated vaccine Sabin strains. In the present study, ten Sabin isolates derived from OPV vaccinees and environmental samples were studied in order to identify recombination types located from VP1 to 3D genomic regions of virus genome. The experimental procedure that was followed was virus RNA extraction, reverse transcription to convert the virus genome into cDNA, PCR and multiplex-PCR using specific designed primers able to localize and identify each recombination following agarose gel electrophoresis. This multiplex RT-PCR assay allows for the immediate detection and identification of multiple recombination types located at the viral genome of OPV derivatives. After the eradication of wild PVs, the remaining sources of poliovirus infection worldwide would be the OPV derivatives. As a consequence, the immediate detection and molecular characterization of recombinant derivatives are important to avoid epidemics due to the circulation of neurovirulent viral strains.

  13. Molecular Diagnosis of Invasive Aspergillosis and Detection of Azole Resistance by a Newly Commercialized PCR Kit.

    PubMed

    Dannaoui, Eric; Gabriel, Frédéric; Gaboyard, Manuel; Lagardere, Gaëlle; Audebert, Lucile; Quesne, Gilles; Godichaud, Sandrine; Verweij, Paul E; Accoceberry, Isabelle; Bougnoux, Marie-Elisabeth

    2017-11-01

    Aspergillus fumigatus is the main species responsible for aspergillosis in humans. The diagnosis of aspergillosis remains difficult, and the rapid emergence of azole resistance in A. fumigatus is worrisome. The aim of this study was to validate the new MycoGENIE A. fumigatus real-time PCR kit and to evaluate its performance on clinical samples for the detection of A. fumigatus and its azole resistance. This multiplex assay detects DNA from the A. fumigatus species complex by targeting the multicopy 28S rRNA gene and specific TR 34 and L98H mutations in the single-copy-number cyp51A gene of A. fumigatus The specificity of cyp51A mutation detection was assessed by testing DNA samples from 25 wild-type or mutated clinical A. fumigatus isolates. Clinical validation was performed on 88 respiratory samples obtained from 62 patients and on 69 serum samples obtained from 16 patients with proven or probable aspergillosis and 13 patients without aspergillosis. The limit of detection was <1 copy for the Aspergillus 28S rRNA gene and 6 copies for the cyp51A gene harboring the TR 34 and L98H alterations. No cross-reactivity was detected with various fungi and bacteria. All isolates harboring the TR 34 and L98H mutations were accurately detected by quantitative PCR (qPCR) analysis. With respiratory samples, qPCR results showed a sensitivity and specificity of 92.9% and 90.1%, respectively, while with serum samples, the sensitivity and specificity were 100% and 84.6%, respectively. Our study demonstrated that this new real-time PCR kit enables sensitive and rapid detection of A. fumigatus DNA and azole resistance due to TR 34 and L98H mutations in clinical samples. Copyright © 2017 American Society for Microbiology.

  14. New strategy for rapid diagnosis and characterization of fungal infections: the example of corneal scrapings.

    PubMed

    Goldschmidt, Pablo; Degorge, Sandrine; Che Sarria, Patricia; Benallaoua, Djida; Semoun, Oudy; Borderie, Vincent; Laroche, Laurent; Chaumeil, Christine

    2012-01-01

    The prognosis of people infected with Fungi especially immunocompromised depends on rapid and accurate diagnosis to capitalize on time administration of specific treatments. However, cultures produce false negative results and nucleic-acid amplification techniques require complex post-amplification procedures to differentiate relevant fungal types. The objective of this work was to develop a new diagnostic strategy based on real-time polymerase-chain reaction high-resolution melting analysis (PCR-HRM) that a) detects yeasts and filamentous Fungi, b) differentiates yeasts from filamentous Fungi, and c) discriminates among relevant species of yeasts. PCR-HRM detection limits and specificity were assessed with a) isolated strains; b) human blood samples experimentally infected with Fungi; c) blood experimentally infected with other infectious agents; d) corneal scrapings from patients with suspected fungal keratitis (culture positive and negative) and e) scrapings from patients with suspected bacterial, viral or Acanthamoeba infections. The DNAs were extracted and mixed with primers diluted in the MeltDoctor® HRM Master Mix in 2 tubes, the first for yeasts, containing the forward primer CandUn (5'CATGCCTGTTTGAGCGTC) and the reverse primer FungUn (5'TCCTCCGCTT ATTGATATGCT) and the second for filamentous Fungi, containing the forward primer FilamUn (5'TGCCTGTCCGAGCGTCAT) and FungUn. Molecular probes were not necessary. The yields of DNA extraction and the PCR inhibitors were systematically monitored. PCR-HRM detected 0.1 Colony Forming Units (CFU)/µl of yeasts and filamentous Fungi, differentiated filamentous Fungi from yeasts and discriminated among relevant species of yeasts. PCR-HRM performances were higher than haemoculture and sensitivity and specificity was 100% for culture positive samples, detecting and characterizing Fungi in 7 out 10 culture negative suspected fungal keratitis. PCR-HRM appears as a new, sensitive, specific and inexpensive test that detects Fungi and differentiates filamentous Fungi from yeasts. It allows direct fungal detection from clinical samples and experimentally infected blood in less than 2.30 h after DNA extraction.

  15. Detection of human papillomavirus type 16 in oropharyngeal squamous cell carcinoma using droplet digital polymerase chain reaction.

    PubMed

    Biron, Vincent L; Kostiuk, Morris; Isaac, Andre; Puttagunta, Lakshmi; O'Connell, Daniel A; Harris, Jeffrey; Côté, David W J; Seikaly, Hadi

    2016-05-15

    The incidence of oropharyngeal squamous cell carcinoma caused by oncogenic HPV (HPV-OPSCC) is rising worldwide. HPV-OPSCC is commonly diagnosed by RT-qPCR of HPV-16 E6 and E7 oncoproteins or by cyclin-dependent kinase inhibitor 2A, multiple tumor suppressor 1 (p16) immunohistochemistry (IHC). Droplet digital PCR (ddPCR) has been recently reported as ultra-sensitive and highly precise method of nucleic acid quantification for biomarker analysis. We aimed to validate this method for the detection of HPV-16 E6 and E7 in HPV-OPSCC. Participants were recruited from January 2015-November 2015 at initial presentation to the University of Alberta Head and Neck Oncology Clinic. RNA was extracted, purified and quantified from prospectively collected participant tissues, and ddPCR was performed with fluorescent probes detecting HPV-16 E6 and E7. Results from ddPCR were compared with p16 IHC performed by clinical pathology as standard of care. Head and neck tissues were prospectively obtained from 68 participants including 29 patients with OPSCC, 29 patients with non-OPSCC and 10 patients without carcinoma. 79.2% of patients with OPSCC were p16 positive. The sensitivity and specificity of ddPCR HPV E6/E7 compared with p16 IHC in OPSCC was 91.3 and 100%, respectively. The amount of target RNA used was ≤1 ng, 20-50 times lower than reported by other for RT-qPCR HPV E6/E7. The ddPCR of HPV E6/E7 is a novel and highly specific method of detecting HPV-16 in OPSCC. Cancer 2016;122:1544-51. © 2016 American Cancer Society. © 2016 American Cancer Society.

  16. Evaluation of a Campylobacter fetus subspecies venerealis real-time quantitative polymerase chain reaction for direct analysis of bovine preputial samples

    PubMed Central

    Chaban, Bonnie; Chu, Shirley; Hendrick, Steven; Waldner, Cheryl; Hill, Janet E.

    2012-01-01

    The detection and subspeciation of Campylobacter fetus subsp. venerealis (CFV) from veterinary samples is important for both clinical and economic reasons. Campylobacter fetus subsp. venerealis is the causative agent of bovine genital campylobacteriosis, a venereal disease that can lead to serious reproductive problems in cattle, and strict international regulations require animals and animal products to be CFV-free for trade. This study evaluated methods reported in the literature for CFV detection and reports the translation of an extensively tested CFV-specific polymerase chain reaction (PCR) primer set; including the VenSF/VenSR primers and a real-time, quantitative PCR (qPCR) platform using SYBR Green chemistry. Three methods of preputial sample preparation for direct qPCR were evaluated and a heat lysis DNA extraction method was shown to allow for CFV detection at the level of approximately one cell equivalent per reaction (or 1.0 × 103 CFU/mL) from prepuce. The optimized sample preparation and qPCR protocols were then used to evaluate 3 western Canadian bull cohorts, which included 377 bulls, for CFV. The qPCR assay detected 11 positive bulls for the CFV-specific parA gene target. DNA sequence data confirmed the identity of the amplified product and revealed that positive samples were comprised of 2 sequence types; one identical to previously reported CFV parA gene sequences and one with a 9% sequence divergence. These results add valuable information towards our understanding of an important CFV subspeciation target and offer a significantly improved format for an internationally recognized PCR test. PMID:23277694

  17. A statistical approach to detection of copy number variations in PCR-enriched targeted sequencing data.

    PubMed

    Demidov, German; Simakova, Tamara; Vnuchkova, Julia; Bragin, Anton

    2016-10-22

    Multiplex polymerase chain reaction (PCR) is a common enrichment technique for targeted massive parallel sequencing (MPS) protocols. MPS is widely used in biomedical research and clinical diagnostics as the fast and accurate tool for the detection of short genetic variations. However, identification of larger variations such as structure variants and copy number variations (CNV) is still being a challenge for targeted MPS. Some approaches and tools for structural variants detection were proposed, but they have limitations and often require datasets of certain type, size and expected number of amplicons affected by CNVs. In the paper, we describe novel algorithm for high-resolution germinal CNV detection in the PCR-enriched targeted sequencing data and present accompanying tool. We have developed a machine learning algorithm for the detection of large duplications and deletions in the targeted sequencing data generated with PCR-based enrichment step. We have performed verification studies and established the algorithm's sensitivity and specificity. We have compared developed tool with other available methods applicable for the described data and revealed its higher performance. We showed that our method has high specificity and sensitivity for high-resolution copy number detection in targeted sequencing data using large cohort of samples.

  18. Authentication of Botanical Origin in Herbal Teas by Plastid Noncoding DNA Length Polymorphisms.

    PubMed

    Uncu, Ali Tevfik; Uncu, Ayse Ozgur; Frary, Anne; Doganlar, Sami

    2015-07-01

    The aim of this study was to develop a DNA barcode assay to authenticate the botanical origin of herbal teas. To reach this aim, we tested the efficiency of a PCR-capillary electrophoresis (PCR-CE) approach on commercial herbal tea samples using two noncoding plastid barcodes, the trnL intron and the intergenic spacer between trnL and trnF. Barcode DNA length polymorphisms proved successful in authenticating the species origin of herbal teas. We verified the validity of our approach by sequencing species-specific barcode amplicons from herbal tea samples. Moreover, we displayed the utility of PCR-CE assays coupled with sequencing to identify the origin of undeclared plant material in herbal tea samples. The PCR-CE assays proposed in this work can be applied as routine tests for the verification of botanical origin in herbal teas and can be extended to authenticate all types of herbal foodstuffs.

  19. Application of COLD-PCR for improved detection of KRAS mutations in clinical samples.

    PubMed

    Zuo, Zhuang; Chen, Su S; Chandra, Pranil K; Galbincea, John M; Soape, Matthew; Doan, Steven; Barkoh, Bedia A; Koeppen, Hartmut; Medeiros, L Jeffrey; Luthra, Rajyalakshmi

    2009-08-01

    KRAS mutations have been detected in approximately 30% of all human tumors, and have been shown to predict response to some targeted therapies. The most common KRAS mutation-detection strategy consists of conventional PCR and direct sequencing. This approach has a 10-20% detection sensitivity depending on whether pyrosequencing or Sanger sequencing is used. To improve detection sensitivity, we compared our conventional method with the recently described co-amplification-at-lower denaturation-temperature PCR (COLD-PCR) method, which selectively amplifies minority alleles. In COLD-PCR, the critical denaturation temperature is lowered to 80 degrees C (vs 94 degrees C in conventional PCR). The sensitivity of COLD-PCR was determined by assessing serial dilutions. Fifty clinical samples were used, including 20 fresh bone-marrow aspirate specimens and the formalin-fixed paraffin-embedded (FFPE) tissue of 30 solid tumors. Implementation of COLD-PCR was straightforward and required no additional cost for reagents or instruments. The method was specific and reproducible. COLD-PCR successfully detected mutations in all samples that were positive by conventional PCR, and enhanced the mutant-to-wild-type ratio by >4.74-fold, increasing the mutation detection sensitivity to 1.5%. The enhancement of mutation detection by COLD-PCR inversely correlated with the tumor-cell percentage in a sample. In conclusion, we validated the utility and superior sensitivity of COLD-PCR for detecting KRAS mutations in a variety of hematopoietic and solid tumors using either fresh or fixed, paraffin-embedded tissue.

  20. Angiotensin-converting enzyme insertion/deletion polymorphism genotyping error: the cause and a possible solution to the problem.

    PubMed

    Saracevic, Andrea; Simundic, Ana-Maria; Celap, Ivana; Luzanic, Valentina

    2013-07-01

    Rigat and colleagues were the first ones to develop a rapid PCR-based assay for identifying the angiotensin converting enzyme insertion/deletion (I/D) polymorphism. Due to a big difference between the length of the wild-type and mute alleles the PCR method is prone to mistyping because of preferential amplification of the D allele causing depicting I/D heterozygotes as D/D homozygotes. The aim of this study was to investigate whether this preferential amplification can be repressed by amplifying a longer DNA fragment in a so called Long PCR protocol. We also aimed to compare the results of genotyping using five different PCR protocols and to estimate the mistyping rate. The study included 200 samples which were genotyped using standard method used in our laboratory, a stepdown PCR, PCR protocol with the inclusion of 4 % DMSO, PCR with the use of insertion specific primers and new Long PCR method. The results of this study have shown that accurate ACE I/D polymorphism genotyping can be accomplished with the standard and the Long PCR method. Also, as of our results, accurate ACE I/D polymorphism genotyping can be accomplished regardless of the method used. Therefore, if the standard method is optimized more cautiously, accurate results can be obtained by this simple, inexpensive and rapid PCR protocol.

  1. Application of Digital PCR in Detecting Human Diseases Associated Gene Mutation.

    PubMed

    Tong, Yu; Shen, Shizhen; Jiang, Hui; Chen, Zhi

    2017-01-01

    Gene mutation has been considered a research hotspot, and the rapid development of biomedicine has enabled significant advances in the evaluation of gene mutations. The advent of digital polymerase chain reaction (dPCR) elevates the detection of gene mutations to unprecedented levels of precision, especially in cancer-associated genes. dPCR has been utilized in the detection of tumor markers in cell-free DNA (cfDNA) samples from patients with different types of cancer in samples such as plasma, cerebrospinal fluid, urine and sputum, which confers significant value for dPCR in both clinical applications and basic research. Moreover, dPCR is extensively used in detecting pathogen mutations related to typical features of infectious diseases (e.g., drug resistance) and mutation status of heteroplasmic mitochondrial DNA, which determines the manifestation and progression of mtDNA-related diseases, as well as allows for the prenatal diagnosis of monogenic diseases and the assessment of the genome editing effects. Compared with real-time PCR (qPCR) and sequencing, the higher sensitivity and accuracy of dPCR indicates a great advantage in the detection of rare mutation. As a new technique, dPCR has some limitations, such as the necessity of highly allele-specific probes and a large sample volume. In this review, we summarize the application of dPCR in the detection of human disease-associated gene mutations. © 2017 The Author(s). Published by S. Karger AG, Basel.

  2. Quantification of mRNA expression by competitive PCR using non-homologous competitors containing a shifted restriction site

    PubMed Central

    Watzinger, Franz; Hörth, Elfriede; Lion, Thomas

    2001-01-01

    Despite the recent introduction of real-time PCR methods, competitive PCR techniques continue to play an important role in nucleic acid quantification because of the significantly lower cost of equipment and consumables. Here we describe a shifted restriction-site competitive PCR (SRS-cPCR) assay based on a modified type of competitor. The competitor fragments are designed to contain a recognition site for a restriction endonuclease that is also present in the target sequence to be quantified, but in a different position. Upon completion of the PCR, the amplicons are digested in the same tube with a single restriction enzyme, without the need to purify PCR products. The generated competitor- and target-specific restriction fragments display different sizes, and can be readily separated by electrophoresis and quantified by image analysis. Suboptimal digestion affects competitor- and target-derived amplicons to the same extent, thus eliminating the problem of incorrect quantification as a result of incomplete digestion of PCR products. We have established optimized conditions for a panel of 20 common restriction endonucleases permitting efficient digestion in PCR buffer. It is possible, therefore, to find a suitable restriction site for competitive PCR in virtually any sequence of interest. The assay presented is inexpensive, widely applicable, and permits reliable and accurate quantification of nucleic acid targets. PMID:11376164

  3. A novel method for simultaneous Enterococcus species identification/typing and van genotyping by high resolution melt analysis.

    PubMed

    Gurtler, Volker; Grando, Danilla; Mayall, Barrie C; Wang, Jenny; Ghaly-Derias, Shahbano

    2012-09-01

    In order to develop a typing and identification method for van gene containing Enterococcus faecium, two multiplex PCR reactions were developed for use in HRM-PCR (High Resolution Melt-PCR): (i) vanA, vanB, vanC, vanC23 to detect van genes from different Enterococcus species; (ii) ISR (intergenic spacer region between the 16S and 23S rRNA genes) to detect all Enterococcus species and obtain species and isolate specific HRM curves. To test and validate the method three groups of isolates were tested: (i) 1672 Enterococcus species isolates from January 2009 to December 2009; (ii) 71 isolates previously identified and typed by PFGE (pulsed-field gel electrophoresis) and MLST (multi-locus sequence typing); and (iii) 18 of the isolates from (i) for which ISR sequencing was done. As well as successfully identifying 2 common genotypes by HRM from the Austin Hospital clinical isolates, this study analysed the sequences of all the vanB genes deposited in GenBank and developed a numerical classification scheme for the standardised naming of these vanB genotypes. The identification of Enterococcus faecalis from E. faecium was reliable and stable using ISR PCR. The typing of E. faecium by ISR PCR: (i) detected two variable peaks corresponding to different copy numbers of insertion sequences I and II corresponding to peak I and II respectively; (ii) produced 7 melt profiles for E. faecium with variable copy numbers of sequences I and II; (iii) demonstrated stability and instability of peak heights with equal frequency within the patient sample (36.4±4.5 days and 38.6±5.8 days respectively for 192 patients); (iv) detected ISR-HRM types with as much discrimination as PFGE and more than MLST; and (v) detected ISR-HRM types that differentiated some isolates that were identical by PFGE and MLST. In conjunction with the rapid and accurate van genotyping method described here, this ISR-HRM typing and identification method can be used as a stable identification and typing method with predictable instability based on recombination and concerted evolution of the rrn operon that will complement existing typing methods. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  4. Using a bayesian latent class model to evaluate the utility of investigating persons with negative polymerase chain reaction results for pertussis.

    PubMed

    Tarr, Gillian A M; Eickhoff, Jens C; Koepke, Ruth; Hopfensperger, Daniel J; Davis, Jeffrey P; Conway, James H

    2013-07-15

    Pertussis remains difficult to control. Imperfect sensitivity of diagnostic tests and lack of specific guidance regarding interpretation of negative test results among patients with compatible symptoms may contribute to its spread. In this study, we examined whether additional pertussis cases could be identified if persons with negative pertussis test results were routinely investigated. We conducted interviews among 250 subjects aged ≤18 years with pertussis polymerase chain reaction (PCR) results reported from 2 reference laboratories in Wisconsin during July-September 2010 to determine whether their illnesses met the Centers for Disease Control and Prevention's clinical case definition (CCD) for pertussis. PCR validity measures were calculated using the CCD as the standard for pertussis disease. Two Bayesian latent class models were used to adjust the validity measures for pertussis detectable by 1) culture alone and 2) culture and/or more sensitive measures such as serology. Among 190 PCR-negative subjects, 54 (28%) had illnesses meeting the CCD. In adjusted analyses, PCR sensitivity and the negative predictive value were 1) 94% and 99% and 2) 43% and 87% in the 2 types of models, respectively. The models suggested that public health follow-up of reported pertussis patients with PCR-negative results leads to the detection of more true pertussis cases than follow-up of PCR-positive persons alone. The results also suggest a need for a more specific pertussis CCD.

  5. DNA typing revealing high HLA-Cw polymorphism completes availability of major histocompatibility complex loci in forensic medicine.

    PubMed

    Keresztury, L; Rajczy, K; Tauszik, T; Gyódi, E; Petrányi, G G; Falus, A

    2003-03-01

    Studies of human population genetics in Hungary have revealed relevant heterogeneity in the major histocompatibility complex. In the present studies, two isolated ethnic groups were chosen: people living in the Káli Basin westward from the Danube River, and those living in Opusztaszer, a village eastward from Danube, who are known as native ancient Hungarians. Blood samples were collected from 70 people in the Káli Basin and from 45 people in Opusztaszer. The frequency of HLA-Cw alleles was determined by serology as well as by DNA typing in 46 and 32 samples of the two populations, respectively, and in 44 randomly selected subjects of Hungarian origin. Compared with a random population of cadaver donors (the deaths having resulted mostly from accidents or, in a smaller number, strokes or heart infarcts) and voluntary bone marrow donors (typed in the last 10 years) recruited from all parts of Hungary and representing the mixed Hungarian population, remarkable differences were found in haplotype and allele frequencies. HLA-A, -B, -Cw typing was performed by serology and, in the case of the HLA-Cw locus, by polymerase chain reaction (PCR)-SSP and/or PCR-SSOP techniques, as well. The PCR-SSO oligotyping procedure allowed the identification of 32 Cw alleles in contrast with the 9 serologically detectable types. Because of the combination of low antigen expression and the lack of specific serologic reagents of good quality, no HLA-Cw antigens were detectable in 41%, and only one was detected in 48%, of the investigated individuals by standard serologic typing. With PCR-SSO typing, however, 97% of the investigated individuals proved to be heterozygous for HLA-Cw alleles. The two isolated populations differed from each other, from mixed Hungarian and other Caucasian populations in HLA-Cw* allele frequencies, as well as in haplotype distribution. This newly recognized polymorphism at the HLA-Cw locus completes the availability of major histocompatibility complex typing in forensic science and practice.

  6. New, Improved Version of the mCOP-PCR Screening System for Detection of Spinal Muscular Atrophy Gene (SMN1) Deletion.

    PubMed

    Shinohara, Masakazu; Ar Rochmah, Mawaddah; Nakanishi, Kenta; Harahap, Nur Imma Fatimah; Niba, Emma Tabe Eko; Saito, Toshio; Saito, Kayoko; Takeuchi, Atsuko; Bouike, Yoshihiro; Nishio, Hisahide

    2017-09-07

    Spinal muscular atrophy (SMA) is a frequent autosomal recessive disorder, characterized by lower motor neuron loss in the spinal cord. More than 95% of SMA patients show homozygous survival motor neuron 1 (SMN1) deletion. We previously developed a screening system for SMN1 deletion based on a modified competitive oligonucleotide priming-PCR (mCOP-PCR) technique. However, non-specific amplification products were observed with mCOP-PCR, which might lead to erroneous interpretation of the screening results. To establish an improved version of the mCOP-PCR screening system without non-specific amplification. DNA samples were assayed using a new version of the mCOP-PCR screening system. DNA samples had already been genotyped by PCR-restriction fragment length polymorphism (PCR-RFLP), showing the presence or absence of SMN1 exon 7. The new mCOP-PCR method contained a targeted pre-amplification step of the region, including an SMN1-specific nucleotide, prior to the mCOP-PCR step. mCOP-PCR products were electrophoresed on agarose gels. No non-specific amplification products were detected in electrophoresis gels with the new mCOP-PCR screening system. An additional targeted pre-amplification step eliminated non-specific amplification from mCOP-PCR screening.

  7. Multiplex Amplification Coupled with COLD-PCR and High Resolution Melting Enables Identification of Low-Abundance Mutations in Cancer Samples with Low DNA Content

    PubMed Central

    Milbury, Coren A.; Chen, Clark C.; Mamon, Harvey; Liu, Pingfang; Santagata, Sandro; Makrigiorgos, G. Mike

    2011-01-01

    Thorough screening of cancer-specific biomarkers, such as DNA mutations, can require large amounts of genomic material; however, the amount of genomic material obtained from some specimens (such as biopsies, fine-needle aspirations, circulating-DNA or tumor cells, and histological slides) may limit the analyses that can be performed. Furthermore, mutant alleles may be at low-abundance relative to wild-type DNA, reducing detection ability. We present a multiplex-PCR approach tailored to amplify targets of interest from small amounts of precious specimens, for extensive downstream detection of low-abundance alleles. Using 3 ng of DNA (1000 genome-equivalents), we amplified the 1 coding exons (2-11) of TP53 via multiplex-PCR. Following multiplex-PCR, we performed COLD-PCR (co-amplification of major and minor alleles at lower denaturation temperature) to enrich low-abundance variants and high resolution melting (HRM) to screen for aberrant melting profiles. Mutation-positive samples were sequenced. Evaluation of mutation-containing dilutions revealed improved sensitivities after COLD-PCR over conventional-PCR. COLD-PCR improved HRM sensitivity by approximately threefold to sixfold. Similarly, COLD-PCR improved mutation identification in sequence-chromatograms over conventional PCR. In clinical specimens, eight mutations were detected via conventional-PCR-HRM, whereas 12 were detected by COLD-PCR-HRM, yielding a 33% improvement in mutation detection. In summary, we demonstrate an efficient approach to increase screening capabilities from limited DNA material via multiplex-PCR and improve mutation detection sensitivity via COLD-PCR amplification. PMID:21354058

  8. Novel high-speed droplet-allele specific-polymerase chain reaction: application in the rapid genotyping of single nucleotide polymorphisms.

    PubMed

    Taira, Chiaki; Matsuda, Kazuyuki; Yamaguchi, Akemi; Sueki, Akane; Koeda, Hiroshi; Takagi, Fumio; Kobayashi, Yukihiro; Sugano, Mitsutoshi; Honda, Takayuki

    2013-09-23

    Single nucleotide alterations such as single nucleotide polymorphisms (SNP) and single nucleotide mutations are associated with responses to drugs and predisposition to several diseases, and they contribute to the pathogenesis of malignancies. We developed a rapid genotyping assay based on the allele-specific polymerase chain reaction (AS-PCR) with our droplet-PCR machine (droplet-AS-PCR). Using 8 SNP loci, we evaluated the specificity and sensitivity of droplet-AS-PCR. Buccal cells were pretreated with proteinase K and subjected directly to the droplet-AS-PCR without DNA extraction. The genotypes determined using the droplet-AS-PCR were then compared with those obtained by direct sequencing. Specific PCR amplifications for the 8 SNP loci were detected, and the detection limit of the droplet-AS-PCR was found to be 0.1-5.0% by dilution experiments. Droplet-AS-PCR provided specific amplification when using buccal cells, and all the genotypes determined within 9 min were consistent with those obtained by direct sequencing. Our novel droplet-AS-PCR assay enabled high-speed amplification retaining specificity and sensitivity and provided ultra-rapid genotyping. Crude samples such as buccal cells were available for the droplet-AS-PCR assay, resulting in the reduction of the total analysis time. Droplet-AS-PCR may therefore be useful for genotyping or the detection of single nucleotide alterations. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Specific capture and detection of Staphylococcus aureus with high-affinity modified aptamers to cell surface components

    PubMed Central

    Baumstummler, A; Lehmann, D; Janjic, N; Ochsner, UA

    2014-01-01

    Slow off-rate modified aptamer (SOMAmer) reagents were generated to several Staphylococcus aureus cell surface-associated proteins via SELEX with multiple modified DNA libraries using purified recombinant or native proteins. High-affinity binding agents with sub-nanomolar Kd's were obtained for staphylococcal protein A (SpA), clumping factors (ClfA, ClfB), fibronectin-binding proteins (FnbA, FnbB) and iron-regulated surface determinants (Isd). Further screening revealed several SOMAmers that specifically bound to Staph. aureus cells from all strains that were tested, but not to other staphylococci or other bacteria. SpA and ClfA SOMAmers proved useful for the selective capture and enrichment of Staph. aureus cells, as shown by culture and PCR, leading to improved limits of detection and efficient removal of PCR inhibitors. Detection of Staph. aureus cells was enhanced by several orders of magnitude when the bacterial cell surface was coated with SOMAmers followed by qPCR of the SOMAmers. Furthermore, fluorescence-labelled SpA SOMAmers demonstrated their utility as direct detection agents in flow cytometry. Significance and Impact of the Study Monitoring for microbial contamination of food, water, nonsterile products or the environment is typically based on culture, PCR or antibodies. Aptamers that bind with high specificity and affinity to well-conserved cell surface epitopes represent a promising novel type of reagents to detect bacterial cells without the need for culture or cell lysis, including for the capture and enrichment of bacteria present at low cell densities and for the direct detection via qPCR or fluorescent staining. PMID:24935714

  10. Multiplex Preamplification of Serum DNA to Facilitate Reliable Detection of Extremely Rare Cancer Mutations in Circulating DNA by Digital PCR.

    PubMed

    Jackson, Jennifer B; Choi, Daniel S; Luketich, James D; Pennathur, Arjun; Ståhlberg, Anders; Godfrey, Tony E

    2016-03-01

    Tumor-specific mutations can be identified in circulating, cell-free DNA in plasma or serum and may serve as a clinically relevant alternative to biopsy. Detection of tumor-specific mutations in the plasma, however, is technically challenging. First, mutant allele fractions are typically low in a large background of wild-type circulating, cell-free DNA. Second, the amount of circulating, cell-free DNA acquired from plasma is also low. Even when using digital PCR (dPCR), rare mutation detection is challenging because there is not enough circulating, cell-free DNA to run technical replicates and assay or instrument noise does not easily allow for mutation detection <0.1%. This study was undertaken to improve on the robustness of dPCR for mutation detection. A multiplexed, preamplification step using a high-fidelity polymerase before dPCR was developed to increase total DNA and the number of targets and technical replicates that can be assayed from a single sample. We were able to detect multiple cancer-relevant mutations within tumor-derived samples down to 0.01%. Importantly, the signal/noise ratio was improved for all preamplified targets, allowing for easier discrimination of low-abundance mutations against false-positive signal. Furthermore, we used this protocol on clinical samples to detect known, tumor-specific mutations in patient sera. This study provides a protocol for robust, sensitive detection of circulating tumor DNA for future clinical applications. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  11. A multiplex PCR/LDR assay for simultaneous detection and identification of the NIAID category B bacterial food and water-borne pathogens.

    PubMed

    Rundell, Mark S; Pingle, Maneesh; Das, Sanchita; Hussain, Aashiq; Ocheretina, Oksana; Charles, Macarthur; Larone, Davise H; Spitzer, Eric D; Golightly, Linnie; Barany, Francis

    2014-06-01

    Enteric pathogens that cause gastroenteritis remain a major global health concern. The goal of this study was to develop a multiplex PCR/ligation detection reaction (LDR) assay for the detection of all NIAID category B bacterial food and water-borne pathogens directly from stool specimens. To validate the PCR/LDR assay, clinical isolates of Campylobacter spp., Vibrio spp., Shigella spp., Salmonella spp., Listeria monocytogenes, Yersinia enterocolitica, and diarrheagenic Escherichia coli were tested. The sensitivity and specificity of the assay were assessed using a large number of seeded culture-negative stool specimens and a smaller set of clinical specimens from Haiti. The overall sensitivity ranged from 91% to 100% (median 100%) depending on the species. For the majority of organisms, the sensitivity was 100%. The overall specificity based on initial testing ranged from 98% to 100% depending on the species. After additional testing of discordant samples, the lowest specificity was 99.4%. PCR/LDR detected additional category B agents (particularly diarrheagenic E. coli) in 11/40 specimens from Haiti that were culture-positive for V. cholerae and in approximately 1% of routine culture-negative stool specimens from a hospital in New York. This study demonstrated the ability of the PCR/LDR assay to detect a large comprehensive panel of category B enteric bacterial pathogens as well as mixed infections. This type of assay has the potential to provide earlier warnings of possible public health threats and more accurate surveillance of food and water-borne pathogens. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. A Multiplex PCR/LDR Assay for Simultaneous Detection and Identification of the NIAID Category B Bacterial Food and Water-borne Pathogens

    PubMed Central

    Rundell, Mark S.; Pingle, Maneesh; Das, Sanchita; Hussain, Aashiq; Ocheretina, Oksana; Charles, Macarthur; Larone, Davise H.; Spitzer, Eric D.; Golightly, Linnie; Barany, Francis

    2014-01-01

    Enteric pathogens that cause gastroenteritis remain a major global health concern. The goal of this study was to develop a multiplex PCR/LDR assay for the detection of all NIAID category B bacterial food and water-borne pathogens directly from stool specimens. To validate the PCR/LDR assay, clinical isolates of Campylobacter spp., Vibrio spp., Shigella spp., Salmonella spp., Listeria monocytogenes, Yersinia enterocolitica, and diarrheagenic Escherichia coli were tested. The sensitivity and specificity of the assay was assessed using a large number of seeded culture-negative stool specimens and a smaller set of clinical specimens from Haiti. The overall sensitivity ranged from 91 to 100% (median 100%) depending on the species. For the majority of organisms the sensitivity was 100%. The overall specificity based on initial testing ranged from 98% to 100% depending on the species. After additional testing of discordant samples the lowest specificity was 99.4%. PCR/LDR detected additional category B agents (particularly diarrheagenic E. coli) in 11/40 specimens from Haiti that were culture-positive for V. cholerae and in approximately 1% of routine culture-negative stool specimens from a hospital in New York. This study demonstrated the ability of the PCR/LDR assay to detect a large comprehensive panel of category B enteric bacterial pathogens as well as mixed infections. This type of assay has the potential to provide earlier warnings of possible public health threats and more accurate surveillance of food and water-borne pathogens. PMID:24709368

  13. Quantitative Monitoring of Microbial Species during Bioleaching of a Copper Concentrate.

    PubMed

    Hedrich, Sabrina; Guézennec, Anne-Gwenaëlle; Charron, Mickaël; Schippers, Axel; Joulian, Catherine

    2016-01-01

    Monitoring of the microbial community in bioleaching processes is essential in order to control process parameters and enhance the leaching efficiency. Suitable methods are, however, limited as they are usually not adapted to bioleaching samples and often no taxon-specific assays are available in the literature for these types of consortia. Therefore, our study focused on the development of novel quantitative real-time PCR (qPCR) assays for the quantification of Acidithiobacillus caldus, Leptospirillum ferriphilum, Sulfobacillus thermosulfidooxidans , and Sulfobacillus benefaciens and comparison of the results with data from other common molecular monitoring methods in order to evaluate their accuracy and specificity. Stirred tank bioreactors for the leaching of copper concentrate, housing a consortium of acidophilic, moderately thermophilic bacteria, relevant in several bioleaching operations, served as a model system. The microbial community analysis via qPCR allowed a precise monitoring of the evolution of total biomass as well as abundance of specific species. Data achieved by the standard fingerprinting methods, terminal restriction fragment length polymorphism (T-RFLP) and capillary electrophoresis single strand conformation polymorphism (CE-SSCP) on the same samples followed the same trend as qPCR data. The main added value of qPCR was, however, to provide quantitative data for each species whereas only relative abundance could be deduced from T-RFLP and CE-SSCP profiles. Additional value was obtained by applying two further quantitative methods which do not require nucleic acid extraction, total cell counting after SYBR Green staining and metal sulfide oxidation activity measurements via microcalorimetry. Overall, these complementary methods allow for an efficient quantitative microbial community monitoring in various bioleaching operations.

  14. Quantitative Monitoring of Microbial Species during Bioleaching of a Copper Concentrate

    PubMed Central

    Hedrich, Sabrina; Guézennec, Anne-Gwenaëlle; Charron, Mickaël; Schippers, Axel; Joulian, Catherine

    2016-01-01

    Monitoring of the microbial community in bioleaching processes is essential in order to control process parameters and enhance the leaching efficiency. Suitable methods are, however, limited as they are usually not adapted to bioleaching samples and often no taxon-specific assays are available in the literature for these types of consortia. Therefore, our study focused on the development of novel quantitative real-time PCR (qPCR) assays for the quantification of Acidithiobacillus caldus, Leptospirillum ferriphilum, Sulfobacillus thermosulfidooxidans, and Sulfobacillus benefaciens and comparison of the results with data from other common molecular monitoring methods in order to evaluate their accuracy and specificity. Stirred tank bioreactors for the leaching of copper concentrate, housing a consortium of acidophilic, moderately thermophilic bacteria, relevant in several bioleaching operations, served as a model system. The microbial community analysis via qPCR allowed a precise monitoring of the evolution of total biomass as well as abundance of specific species. Data achieved by the standard fingerprinting methods, terminal restriction fragment length polymorphism (T-RFLP) and capillary electrophoresis single strand conformation polymorphism (CE-SSCP) on the same samples followed the same trend as qPCR data. The main added value of qPCR was, however, to provide quantitative data for each species whereas only relative abundance could be deduced from T-RFLP and CE-SSCP profiles. Additional value was obtained by applying two further quantitative methods which do not require nucleic acid extraction, total cell counting after SYBR Green staining and metal sulfide oxidation activity measurements via microcalorimetry. Overall, these complementary methods allow for an efficient quantitative microbial community monitoring in various bioleaching operations. PMID:28066365

  15. Evaluation of Type-Specific Real-Time PCR Assays Using the LightCycler and J.B.A.I.D.S. for Detection of Adenoviruses in Species HAdV-C

    DTIC Science & Technology

    2011-10-27

    ATCC 97), Mycoplasma pneumonia, and Legionella Pneumophila (ATCC 33152) were acquired from the American Type Culture Collection (ATCC; Manassas, VA...Mycoplasma pneumoniae Legionella Pneumophila a – Low levels of HAdV-C1 was detected with the HAdV-C2 primers and probes after 35 cycles. b – Low

  16. Locus-specific oligonucleotide probes increase the usefulness of inter-Alu polymorphisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarnik, M.; Tang, J.Q.; Korab-Laskowska, M.

    1994-09-01

    Most of the mapping approaches are based on single-locus codominant markers of known location. Their multiplex ratio, defined as the number of loci that can be simultaneously tested, is typically one. An increased multiplex ratio was obtained by typing anonymous polymorphisms using PCR primers anchored in ubiquitous Alu-repeats. These so called alumorphs are revealed by inter-Alu-PCR and seen as the presence or absence of an amplified band of a given length. We decided to map alumorphs and to develop locus-specific oligonucleotide (LSO) probes to facilitate their use and transfer among different laboratories. We studied the segregation of alumorphs in eightmore » CEPH families, using two distinct Alu-primers, both directing PCR between the repeats in a tail-to-tail orientation. The segregating bands were assigned to chromosomal locations by two-point linkage analysis with CEPH markers (V6.0). They were excised from dried gels, reamplified, cloned and sequenced. The resulting LSOs were used as hybridization probes (i) to confirm chromosomal assignments in a human/hamster somatic cell hybrid panel, and (ii) to group certain allelic length variants, originally coded as separate dominant markres, into more informative codominant loci. These codominants were then placed by multipoint analysis on a microsatellite Genethon map. Finally, the LSO probes were used as polymorphic STSs, to identify by hybridization the corresponding markers among products of inter-Alu-PCR. The use of LSOs converts alumorphs into a system of non-anonymous, often multiallelic codominant markes which can be simultaneously typed, thus achieving the goal of high multiplex ratio.« less

  17. Evaluation of the line probe assay for the rapid detection of bacterial meningitis pathogens in cerebrospinal fluid samples from children.

    PubMed

    Soysal, Ahmet; Toprak, Demet Gedikbasi; Türkoğlu, Salih; Bakir, Mustafa

    2017-01-11

    The aim of this study is to compare the diagnostic performance of the line probe assay (LPA) with conventional multiplex polymerase chain reaction (PCR) for Streptococcus pneumoniae as well as real-time PCR for Neisseria meningitidis and Haemophilus influenzae type b (Hib) in cerebrospinal fluid (CSF) samples from children during the multicenter national surveillance of bacterial meningitis between the years 2006 and 2009 in Turkey. During the study period 1460 subjects were enrolled and among them 841 (57%) met the criteria for probable bacterial meningitis. The mean age of subjects was 51 ± 47 months (range, 1-212 months). We performed the line probe assay in 751 (89%) CSF samples of 841 probable bacterial meningitis cases, of whom 431 (57%) were negative, 127 (17%) were positive for S. pneumoniae, 53 (7%) were positive for H. influenzae type b, and 41 (5%) were positive for N. meningitidis. The LPA was positive in 19 of 23 (82%) S. pneumoniae samples, 4 of 6 (67%) N. meningitidis samples and 2 of 2 (100%) Hib samples in CSF culture-positive cases. The specificity of the LPA for all of S. pneumoniae, H. influenzae type b, and N. meningitidis was 88% (95% CI: 85-91%), when using the standard PCR as a reference. The specificity of LPA for each of S. pneumoniae, H. influenzae type b, and N. meningitidis was 93% (95% CI: 89-95%), 96% (95% CI: 94-98%), and 99% (95% CI: 97-99%), respectively. For all of S. pneumoniae, H. influenzae type b and N. meningitidis the sensitivity of the LPA was 76% (95% CI: 70-82%) and for each of S. pneumoniae, H. influenzae type b and N. meningitidis was 72% (95% CI:63-79%), 88% (95% CI: 73-95%), and 81% (95% CI:67-92%), respectively. The LPA assay can be used to detect common bacterial meningitis pathogens in CSF samples, but the assay requires further improvement.

  18. Identification of Haemophilus influenzae Type b Isolates by Use of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry.

    PubMed

    Månsson, Viktor; Resman, Fredrik; Kostrzewa, Markus; Nilson, Bo; Riesbeck, Kristian

    2015-07-01

    Haemophilus influenzae type b (Hib) is, in contrast to non-type b H. influenzae, associated with severe invasive disease, such as meningitis and epiglottitis, in small children. To date, accurate H. influenzae capsule typing requires PCR, a time-consuming and cumbersome method. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) provides rapid bacterial diagnostics and is increasingly used in clinical microbiology laboratories. Here, MALDI-TOF MS was evaluated as a novel approach to separate Hib from other H. influenzae. PCR-verified Hib and non-Hib reference isolates were selected based on genetic and spectral characteristics. Mass spectra of reference isolates were acquired and used to generate different classification algorithms for Hib/non-Hib differentiation using both ClinProTools and the MALDI Biotyper software. A test series of mass spectra from 33 Hib and 77 non-Hib isolates, all characterized by PCR, was used to evaluate the algorithms. Several algorithms yielded good results, but the two best were a ClinProTools model based on 22 separating peaks and subtyping main spectra (MSPs) using MALDI Biotyper. The ClinProTools model had a sensitivity of 100% and a specificity of 99%, and the results were 98% reproducible using a different MALDI-TOF MS instrument. The Biotyper subtyping MSPs had a sensitivity of 97%, a specificity of 100%, and 93% reproducibility. Our results suggest that it is possible to use MALDI-TOF MS to differentiate Hib from other H. influenzae. This is a promising method for rapidly identifying Hib in unvaccinated populations and for the screening and surveillance of Hib carriage in vaccinated populations. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Dissemination of IMP-6 metallo-β-lactamase-producing Pseudomonas aeruginosa sequence type 235 in Korea.

    PubMed

    Seok, Yoonmi; Bae, Il Kwon; Jeong, Seok Hoon; Kim, Soo Hyun; Lee, Hyukmin; Lee, Kyungwon

    2011-12-01

    To investigate the epidemiological traits of Pseudomonas aeruginosa clinical isolates producing metallo-β-lactamases (MBLs) in Korea. A total of 386 non-duplicate P. aeruginosa clinical isolates were collected from Korea in 2009. Detection of MBL genes was performed by PCR. The genetic organization of class 1 integrons carrying the MBL gene cassette was investigated by PCR mapping and sequencing. The epidemiological relationships of the isolates were investigated by multilocus sequence typing and PFGE. Of 386 P. aeruginosa isolates, 30 (7.8%) isolates carried the bla(IMP-6) gene and 1 (0.3%) isolate carried the bla(VIM-2) gene. A probe specific for the bla(IMP-6) gene was hybridized to an ∼950 kbp I-CeuI-macrorestriction fragment from all 30 isolates and a probe specific for the bla(VIM-2) gene also hybridized to an ∼500 kbp I-CeuI-macrorestriction fragment from 1 isolate (BDC10). All 31 MBL-producing isolates shared an identical sequence type (ST), ST235, and they carried the same bla(OXA-50) allelic type, bla(OXA-50g). All MBL-producing isolates showed similar XbaI-macrorestriction patterns (similarity >85%), irrespective of MBL genotype. P. aeruginosa ST235 carrying the chromosomally located bla(IMP-6) gene is widely disseminated in Korea.

  20. Efficiency of peracetic acid in inactivating bacteria, viruses, and spores in water determined with ATP bioluminescence, quantitative PCR, and culture-based methods.

    PubMed

    Park, Eunyoung; Lee, Cheonghoon; Bisesi, Michael; Lee, Jiyoung

    2014-03-01

    The disinfection efficiency of peracetic acid (PAA) was investigated on three microbial types using three different methods (filtration-based ATP (adenosine-triphosphate) bioluminescence, quantitative polymerase chain reaction (qPCR), culture-based method). Fecal indicator bacteria (Enterococcus faecium), virus indicator (male-specific (F(+)) coliphages (coliphages)), and protozoa disinfection surrogate (Bacillus subtilis spores (spores)) were tested. The mode of action for spore disinfection was visualized using scanning electron microscopy. The results indicated that PAA concentrations of 5 ppm (contact time: 5 min), 50 ppm (10 min), and 3,000 ppm (5 min) were needed to achieve 3-log reduction of E. faecium, coliphages, and spores, respectively. Scanning electron microscopy observation showed that PAA targets the external layers of spores. The lower reduction rates of tested microbes measured with qPCR suggest that qPCR may overestimate the surviving microbes. Collectively, PAA showed broad disinfection efficiency (susceptibility: E. faecium > coliphages > spores). For E. faecium and spores, ATP bioluminescence was substantially faster (∼5 min) than culture-based method (>24 h) and qPCR (2-3 h). This study suggests PAA as an effective alternative to inactivate broad types of microbial contaminants in water. Together with the use of rapid detection methods, this approach can be useful for urgent situations when timely response is needed for ensuring water quality.

  1. Development and validation of a real-time PCR assay for the detection of anguillid herpesvirus 1.

    PubMed

    van Beurden, S J; Voorbergen-Laarman, M A; Roozenburg, I; van Tellingen, J; Haenen, O L M; Engelsma, M Y

    2016-01-01

    Anguillid herpesvirus 1 (AngHV1) causes a haemorrhagic disease with increased mortality in wild and farmed European eel, Anguilla anguilla (L.) and Japanese eel Anguilla japonica, Temminck & Schlegel). Detection of AngHV1 is currently based on virus isolation in cell culture, antibody-based typing assays or conventional PCR. We developed, optimized and concisely validated a diagnostic TaqMan probe based real-time PCR assay for the detection of AngHV1. The primers and probe target AngHV1 open reading frame 57, encoding the capsid protease and scaffold protein. Compared to conventional PCR, the developed real-time PCR is faster, less labour-intensive and has a reduced risk of cross-contamination. The real-time PCR assay was shown to be analytically sensitive and specific and has a high repeatability, efficiency and r(2) -value. The diagnostic performance of the assay was determined by testing 10% w/v organ suspensions and virus cultures from wild and farmed European eels from the Netherlands by conventional and real-time PCR. The developed real-time PCR assay is a useful tool for the rapid and sensitive detection of AngHV1 in 10% w/v organ suspensions from wild and farmed European eels. © 2015 John Wiley & Sons Ltd.

  2. Rapid molecular identification and characteristics of Lactobacillus strains.

    PubMed

    Markiewicz, L H; Biedrzycka, E; Wasilewska, E; Bielecka, M

    2010-09-01

    Eleven type strains and 24 Lactobacillus isolates, preliminarily classified to the species due to phenotypic features, were investigated. Standard methods of identification with species-specific PCRs and typing with PFGE (with ApaI, NotI and SmaI restriction enzymes) allowed us to distinguish 16 unique strains belonging to 5 species (L. acidophilus, L. delbrueckii ssp. bulgaricus, L. plantarum, L. rhamnosus, L. salivarius). Alternative approach with 16S-23S rDNA ARDRA identification (with merely two restrictases, BsuRI and TaqI) and PCR-based typing (RAPD with two random- and rep-PCR with (GTG)(5) primers) showed to be more discriminative, i.e. 21 unique strains were classified in the same species as above. As a result, 7 out of 24 phenotypically species-assigned isolates were reclassified. The alternative procedure of rapid identification and typing of Lactobacillus isolates appeared to be equally effective and shortened from 1 week to 2-3 d (in comparison to the standard methods).

  3. Single-Color Digital PCR Provides High-Performance Detection of Cancer Mutations from Circulating DNA.

    PubMed

    Wood-Bouwens, Christina; Lau, Billy T; Handy, Christine M; Lee, HoJoon; Ji, Hanlee P

    2017-09-01

    We describe a single-color digital PCR assay that detects and quantifies cancer mutations directly from circulating DNA collected from the plasma of cancer patients. This approach relies on a double-stranded DNA intercalator dye and paired allele-specific DNA primer sets to determine an absolute count of both the mutation and wild-type-bearing DNA molecules present in the sample. The cell-free DNA assay uses an input of 1 ng of nonamplified DNA, approximately 300 genome equivalents, and has a molecular limit of detection of three mutation DNA genome-equivalent molecules per assay reaction. When using more genome equivalents as input, we demonstrated a sensitivity of 0.10% for detecting the BRAF V600E and KRAS G12D mutations. We developed several mutation assays specific to the cancer driver mutations of patients' tumors and detected these same mutations directly from the nonamplified, circulating cell-free DNA. This rapid and high-performance digital PCR assay can be configured to detect specific cancer mutations unique to an individual cancer, making it a potentially valuable method for patient-specific longitudinal monitoring. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  4. Development of a multiplex PCR assay for rapid and simultaneous detection of four genera of fish pathogenic bacteria.

    PubMed

    Zhang, D F; Zhang, Q Q; Li, A H

    2014-11-01

    Species of genus Aeromonas, Vibrio, Edwardsiella and Streptococcus are the most common fish pathogenic bacteria that cause economically devastating losses in aquaculture. A multiplex polymerase chain reaction (mPCR) was developed for the simultaneous detection and differentiation of the four genera of fish pathogenic bacteria. Through the use of genus-specific primers instead of species-specific ones, the current mPCR covered much more target bacterial species compared with previously reported species-specific mPCR methods. The specificity of the four putative genus-specific primers was validated experimentally while used exclusively (uniplex PCR) or combined (mPCR) against bacterial genomic DNA templates of the target bacteria and nontarget bacteria. The PCR amplicons for the following genera were obtained as expected: Aeromonas (875 bp), Vibrio (524 bp), Edwardsiella (302 bp) and Streptococcus (197 bp), and the fragments could be separated clearly on the agarose gel electrophoresis. The mPCR did not produce nonspecific amplification products when used to amplify 21 nontarget species of bacteria. The mPCR detection limits for each target bacterial genera were 50 colony-forming units (CFU) in pure culture and 100 CFU in fish tissue samples. In conclusion, the mPCR assay was proven to be a powerful alternative to the conventional culture-based method, given its rapid, specific, sensitive and reliable detection of target pathogens. The fish pathogenic bacteria of genus Aeromonas, Vibrio, Edwardsiella and Streptococcus frequently cause severe outbreaks of diseases in cultured fish, and the genus-specific multiplex PCR assay developed in this study can detect the bacteria of the four genera when present in the samples either alone or mixed. The mPCR assay is expected to identify the causative agents more efficiently than uniplex PCR or species-specific multiplex PCR for clinical diagnosis, resulting in the earlier implementation of control measures. This mPCR assay provides a rapid, specific and sensitive tool for the detection or identification of common fish pathogenic bacteria in aquaculture practice. © 2014 The Society for Applied Microbiology.

  5. Establishment and application of cross-priming isothermal amplification coupled with lateral flow dipstick (CPA-LFD) for rapid and specific detection of red-spotted grouper nervous necrosis virus.

    PubMed

    Su, Zi Dan; Shi, Cheng Yin; Huang, Jie; Shen, Gui Ming; Li, Jin; Wang, Sheng Qiang; Fan, Chao

    2015-09-26

    Red-spotted grouper nervous necrosis virus (RGNNV) is an important pathogen that causes diseases in many species of fish in marine aquaculture. The larvae and juveniles are more easily infected by RGNNV and the cumulative mortality is as high as 100 % after being infected with RGNNV. This virus imposes a serious threat to aquaculture of grouper fry. This study aimed to establish a simple, accurate and highly sensitive method for rapid detection of RGNNV on the spot. In this study, the primers specifically targeting RGNNV were designed and cross-priming isothermal amplification (CPA) system was established. The product amplified by CPA was detected through visualization with lateral flow dipstick (LFD). Three important parameters, including the amplification temperature, the concentration of dNTPs and the concentration of Mg(2+) for the CPA system, were optimized. The sensitivity and specificity of this method for RGNNV were tested and compared with those of the conventional RT-PCR and real-time quantitative RT-PCR (qRT-PCR). The optimized conditions for the CPA amplification system were determined as follows: the optimal amplification temperature, the optimized concentration of dNTPs and the concentration for Mg(2+) were 69 °C, 1.2 mmol/L and 5 mmol/L, respectively. The lowest limit of detection (LLOD) of this method for RGNNV was 10(1) copies/μL of RNA sample, which was 10 times lower than that of conventional RT-PCR and comparable to that of RT-qPCR. This method was specific for RGNNV in combination with SJNNV and had no cross-reactions with 8 types of virus and bacterial strains tested. This method was successfully applied to detect RGNNV in fish samples. This study established a CPA-LFD method for detection of RGNNV. This method is simple and rapid with high sensitivity and good specificity and can be widely applied for rapid detection of this virus on the spot.

  6. Non-invasive prenatal diagnosis.

    PubMed

    Meaney, Cathy; Norbury, Gail

    2011-01-01

    The discovery of cell-free fetal DNA in the maternal plasma of pregnant women has facilitated the development of non-invasive prenatal diagnosis (NIPD). This has been successfully implemented in diagnostic laboratories for Rhesus typing and fetal sex determination for X-linked disorders and congenital adrenal hyperplasia (CAH) from 7 weeks gestation. Using real-time PCR, fluorescently labelled target gene specific probes can identify and quantify low copy number fetal-specific sequences in a high background of maternal DNA in the cell-free DNA extracted from maternal plasma.NIPD to detect specific fetal mutations in single gene disorders, currently by standard PCR techniques, can only be undertaken for paternally derived or de novo mutations because of the background maternal DNA. For routine use, this testing is limited by the large amounts of cell-free maternal DNA in the sample, the lack of universal fetal markers, and appropriate reference materials.

  7. Comparison of the effects between animal-derived trypsin and recombinant trypsin on human skin cells proliferation, gene and protein expression.

    PubMed

    Manira, Maarof; Khairul Anuar, Khairoji; Seet, Wan Tai; Ahmad Irfan, Abd Wahab; Ng, Min Hwei; Chua, Kien Hui; Mohd Heikal, Mohd Yunus; Aminuddin, Bin Saim; Ruszymah, Bt Hj Idrus

    2014-03-01

    Animal-derivative free reagents are preferred in skin cell culture for clinical applications. The aim of this study was to compare the performance and effects between animal-derived trypsin and recombinant trypsin for skin cells culture and expansion. Full thickness human skin was digested in 0.6 % collagenase for 6 h to liberate the fibroblasts, followed by treatment with either animal-derived trypsin; Trypsin EDTA (TE) or recombinant trypsin; TrypLE Select (TS) to liberate the keratinocytes. Both keratinocytes and fibroblasts were then culture-expanded until passage 2. Trypsinization for both cell types during culture-expansion was performed using either TE or TS. Total cells yield was determined using a haemocytometer. Expression of collagen type I, collagen type III (Col-III), cytokeratin 10, and cytokeratin 14 genes were quantified via RT-PCR and further confirmed with immunocytochemical staining. The results of our study showed that the total cell yield for both keratinocytes and fibroblasts treated with TE or TS were comparable. RT-PCR showed that expression of skin-specific genes except Col-III was higher in the TS treated group compared to that in the TE group. Expression of proteins specific to the two cell types were confirmed by immunocytochemical staining in both TE and TS groups. In conclusion, the performance of the recombinant trypsin is comparable with the well-established animal-derived trypsin for human skin cell culture expansion in terms of cell yield and expression of specific cellular markers.

  8. Accurate and Phenol Free DNA Sexing of Day 30 Porcine Embryos by PCR.

    PubMed

    Blanes, Milena S; Tsoi, Stephen C M; Dyck, Michael K

    2016-02-14

    Research into prenatal programming in the pig has shown that the sex of the developing embryo or fetus can influence the developmental outcome. Therefore, the ability to determine an embryo's sex is necessary in many experiments particularly regarding early development. The present protocol demonstrates an inexpensive, rapid and non-toxic preparation of pig genomic DNA for use with PCR. Day 30 embryos must be humanely collected according to the guidelines established by Institutional Animal Policy and Welfare Committees for the present protocol. The preparation of the whole embryo for this PCR based sexing technique simply involves grinding the frozen embryo to a fine powder using a pre-chilled mortar and pestle. PCR-quality DNA is released from a small amount of embryo powder by applying a hot incubation in an alkaline lysis reagent. Next, the DNA solution is mixed with neutralization buffer and used directly for PCR. Two primer pairs are generated to detect specific sex determining region of the Y- chromosome (SRY) and ZFX region of the X- chromosome with high accuracy and specificity. The same protocol can be applied to other elongated embryos (Day 10 to Day 14) earlier than Day 30. Also, this protocol can be carried with 96-welled plates when screening a large number of embryos, making it feasible for automation and high-throughput sex typing.

  9. Accurate and Phenol Free DNA Sexing of Day 30 Porcine Embryos by PCR

    PubMed Central

    Dyck, Michael K.

    2016-01-01

    Research into prenatal programming in the pig has shown that the sex of the developing embryo or fetus can influence the developmental outcome. Therefore, the ability to determine an embryo's sex is necessary in many experiments particularly regarding early development. The present protocol demonstrates an inexpensive, rapid and non-toxic preparation of pig genomic DNA for use with PCR. Day 30 embryos must be humanely collected according to the guidelines established by Institutional Animal Policy and Welfare Committees for the present protocol. The preparation of the whole embryo for this PCR based sexing technique simply involves grinding the frozen embryo to a fine powder using a pre-chilled mortar and pestle. PCR-quality DNA is released from a small amount of embryo powder by applying a hot incubation in an alkaline lysis reagent. Next, the DNA solution is mixed with neutralization buffer and used directly for PCR. Two primer pairs are generated to detect specific sex determining region of the Y- chromosome (SRY) and ZFX region of the X- chromosome with high accuracy and specificity. The same protocol can be applied to other elongated embryos (Day 10 to Day 14) earlier than Day 30. Also, this protocol can be carried with 96-welled plates when screening a large number of embryos, making it feasible for automation and high-throughput sex typing. PMID:26966900

  10. Real-time PCR method applied to seafood products for authentication of European sole (Solea solea) and differentiation of common substitute species.

    PubMed

    Herrero, Beatriz; Lago, Fátima C; Vieites, Juan M; Espiñeira, Montserrat

    2012-01-01

    Judged by quality and taste, the European sole (Solea solea) is considered one of the finest flatfish and is, thus, of considerable commercial value. In the present work, a specific fast real-time PCR was developed for the authentication of S. solea, i.e. to distinguish it from other related species and avoid substitution of this species, either deliberately or unintentionally. The method is based on a species-specific set of primers and MGB Taqman probe which amplifies a 116-bp fragment of the internal transcribed spacer 1 (ITS 1) ribosomal DNA region. This assay combines the high specificity and sensitivity of real-time PCR with the rapidity of the fast mode, allowing the detection of S. solea in a short period of time. The present methodology was validated for application to all types of manufactured products for the presence of S. solea, with successful results. Subsequently, the method was applied to 40 commercial samples to determine whether correct labeling had been employed in the market. It was demonstrated that the assay is a useful tool in monitoring and verifying food labeling regulations.

  11. A PCR-Based Method for RNA Probes and Applications in Neuroscience.

    PubMed

    Hua, Ruifang; Yu, Shanshan; Liu, Mugen; Li, Haohong

    2018-01-01

    In situ hybridization (ISH) is a powerful technique that is used to detect the localization of specific nucleic acid sequences for understanding the organization, regulation, and function of genes. However, in most cases, RNA probes are obtained by in vitro transcription from plasmids containing specific promoter elements and mRNA-specific cDNA. Probes originating from plasmid vectors are time-consuming and not suitable for the rapid gene mapping. Here, we introduce a simplified method to prepare digoxigenin (DIG)-labeled non-radioactive RNA probes based on polymerase chain reaction (PCR) amplification and applications in free-floating mouse brain sections. Employing a transgenic reporter line, we investigate the expression of the somatostatin (SST) mRNA in the adult mouse brain. The method can be applied to identify the colocalization of SST mRNA and proteins including corticotrophin-releasing hormone (CRH) and protein kinase C delta type (PKC-δ) using double immunofluorescence, which is useful for understanding the organization of complex brain nuclei. Moreover, the method can also be incorporated with retrograde tracing to visualize the functional connection in the neural circuitry. Briefly, the PCR-based method for non-radioactive RNA probes is a useful tool that can be substantially utilized in neuroscience studies.

  12. Description of Campylobacter fetus subsp. testudinum subsp. nov., isolated from humans and reptiles

    USDA-ARS?s Scientific Manuscript database

    A polyphasic study was undertaken to determine the taxonomic position of 13 Campylobacter fetus-like isolates from humans (n=8) and reptiles (n=5). Phenotypic characterization, Genusgenus-specific and sap insertion-PCR initially identified all human isolates as type A Campylobacter fetus. Phylogenet...

  13. Standardization of a two-step real-time polymerase chain reaction based method for species-specific detection of medically important Aspergillus species.

    PubMed

    Das, P; Pandey, P; Harishankar, A; Chandy, M; Bhattacharya, S; Chakrabarti, A

    2017-01-01

    Standardization of Aspergillus polymerase chain reaction (PCR) poses two technical challenges (a) standardization of DNA extraction, (b) optimization of PCR against various medically important Aspergillus species. Many cases of aspergillosis go undiagnosed because of relative insensitivity of conventional diagnostic methods such as microscopy, culture or antigen detection. The present study is an attempt to standardize real-time PCR assay for rapid sensitive and specific detection of Aspergillus DNA in EDTA whole blood. Three nucleic acid extraction protocols were compared and a two-step real-time PCR assay was developed and validated following the recommendations of the European Aspergillus PCR Initiative in our setup. In the first PCR step (pan-Aspergillus PCR), the target was 28S rDNA gene, whereas in the second step, species specific PCR the targets were beta-tubulin (for Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus), gene and calmodulin gene (for Aspergillus niger). Species specific identification of four medically important Aspergillus species, namely, A. fumigatus, A. flavus, A. niger and A. terreus were achieved by this PCR. Specificity of the PCR was tested against 34 different DNA source including bacteria, virus, yeast, other Aspergillus sp., other fungal species and for human DNA and had no false-positive reactions. The analytical sensitivity of the PCR was found to be 102 CFU/ml. The present protocol of two-step real-time PCR assays for genus- and species-specific identification for commonly isolated species in whole blood for diagnosis of invasive Aspergillus infections offers a rapid, sensitive and specific assay option and requires clinical validation at multiple centers.

  14. Human neuronal changes in brain edema and increased intracranial pressure.

    PubMed

    Faragó, Nóra; Kocsis, Ágnes Katalin; Braskó, Csilla; Lovas, Sándor; Rózsa, Márton; Baka, Judith; Kovács, Balázs; Mikite, Katalin; Szemenyei, Viktor; Molnár, Gábor; Ozsvár, Attila; Oláh, Gáspár; Piszár, Ildikó; Zvara, Ágnes; Patócs, Attila; Barzó, Pál; Puskás, László G; Tamás, Gábor

    2016-08-04

    Functional and molecular changes associated with pathophysiological conditions are relatively easily detected based on tissue samples collected from patients. Population specific cellular responses to disease might remain undiscovered in samples taken from organs formed by a multitude of cell types. This is particularly apparent in the human cerebral cortex composed of a yet undefined number of neuron types with a potentially different involvement in disease processes. We combined cellular electrophysiology, anatomy and single cell digital PCR in human neurons identified in situ for the first time to assess mRNA expression and corresponding functional changes in response to edema and increased intracranial pressure. In single pyramidal cells, mRNA copy numbers of AQP1, AQP3, HMOX1, KCNN4, SCN3B and SOD2 increased, while CACNA1B, CRH decreased in edema. In addition, single pyramidal cells increased the copy number of AQP1, HTR5A and KCNS1 mRNAs in response to increased intracranial pressure. In contrast to pyramidal cells, AQP1, HMOX1and KCNN4 remained unchanged in single cell digital PCR performed on fast spiking cells in edema. Corroborating single cell digital PCR results, pharmacological and immunohistochemical results also suggested the presence of KCNN4 encoding the α-subunit of KCa3.1 channels in edema on pyramidal cells, but not on interneurons. We measured the frequency of spontaneous EPSPs on pyramidal cells in both pathophysiological conditions and on fast spiking interneurons in edema and found a significant decrease in each case, which was accompanied by an increase in input resistances on both cell types and by a drop in dendritic spine density on pyramidal cells consistent with a loss of excitatory synapses. Our results identify anatomical and/or physiological changes in human pyramidal and fast spiking cells in edema and increased intracranial pressure revealing cell type specific quantitative changes in gene expression. Some of the edema/increased intracranial pressure modulated and single human pyramidal cell verified gene products identified here might be considered as novel pharmacological targets in cell type specific neuroprotection.

  15. A multiplex allele-specific real-time PCR assay for screening of ESR1 mutations in metastatic breast cancer.

    PubMed

    Wang, Ting; Liu, Jin-Hui; Zhang, Jie; Wang, Le; Chen, Chao; Dai, Peng-Gao

    2015-04-01

    Acquired resistance to endocrine-based therapies occurs in virtually all estrogen receptor-α (ERα, encoded by ESR1) positive breast cancer patients. The underlying molecular mechanism is attributed to the activating mutations in ESR1. These mutations provide an exciting opportunity for the development of new antagonists that specifically inhibit the mutant proteins. Therefore, accurate detection of ESR1 mutations is of critical importance in clinical practice. We carried out a single tube, multiplex allele-specific real-time PCR assay for the detection of four ESR1 mutations (Y537S, Y537C, Y537N, and D538G). The assay was found to be highly specific and sensitive. With this assay, as low as 1% mutant DNA template in wild type DNA could be detected. Fifteen DNA samples were prepared from archived formalin-fixed paraffin-embedded metastatic breast cancer biopsies. They were further screened with this assay, and three samples were identified as ESR1 mutant. The results were validated with pyrosequencing and complete concordance was observed between the two assays. The multiplex allele-specific real-time PCR assay provides a rapid and reliable diagnostic tool for accurate detection of ESR1 mutations. This procedure may be used in the clinical treatment of breast cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Identification of Novel Tissue-Specific Genes by Analysis of Microarray Databases: A Human and Mouse Model

    PubMed Central

    Suh, Yeunsu; Davis, Michael E.; Lee, Kichoon

    2013-01-01

    Understanding the tissue-specific pattern of gene expression is critical in elucidating the molecular mechanisms of tissue development, gene function, and transcriptional regulations of biological processes. Although tissue-specific gene expression information is available in several databases, follow-up strategies to integrate and use these data are limited. The objective of the current study was to identify and evaluate novel tissue-specific genes in human and mouse tissues by performing comparative microarray database analysis and semi-quantitative PCR analysis. We developed a powerful approach to predict tissue-specific genes by analyzing existing microarray data from the NCBI′s Gene Expression Omnibus (GEO) public repository. We investigated and confirmed tissue-specific gene expression in the human and mouse kidney, liver, lung, heart, muscle, and adipose tissue. Applying our novel comparative microarray approach, we confirmed 10 kidney, 11 liver, 11 lung, 11 heart, 8 muscle, and 8 adipose specific genes. The accuracy of this approach was further verified by employing semi-quantitative PCR reaction and by searching for gene function information in existing publications. Three novel tissue-specific genes were discovered by this approach including AMDHD1 (amidohydrolase domain containing 1) in the liver, PRUNE2 (prune homolog 2) in the heart, and ACVR1C (activin A receptor, type IC) in adipose tissue. We further confirmed the tissue-specific expression of these 3 novel genes by real-time PCR. Among them, ACVR1C is adipose tissue-specific and adipocyte-specific in adipose tissue, and can be used as an adipocyte developmental marker. From GEO profiles, we predicted the processes in which AMDHD1 and PRUNE2 may participate. Our approach provides a novel way to identify new sets of tissue-specific genes and to predict functions in which they may be involved. PMID:23741331

  17. Detection of SEA-type α-thalassemia in embryo biopsies by digital PCR.

    PubMed

    Lee, Ta-Hsien; Hsu, Ya-Chiung; Chang, Chia Lin

    2017-08-01

    Accurate and efficient pre-implantation genetic diagnosis (PGD) based on the analysis of single or oligo-cells is needed for timely identification of embryos that are affected by deleterious genetic traits in in vitro fertilization (IVF) clinics. Polymerase chain reaction (PCR) is the backbone of modern genetic diagnoses, and a spectrum of PCR-based techniques have been used to detect various thalassemia mutations in prenatal diagnosis (PND) and PGD. Among thalassemias, SEA-type α-thalassemia is the most common variety found in Asia, and can lead to Bart's hydrops fetalis and serious maternal complications. To formulate an efficient digital PCR for clinical diagnosis of SEA-type α-thalassemia in cultured embryos, we conducted a pilot study to detect the α-globin and SEA-type deletion alleles in blastomere biopsies with a highly sensitive microfluidics-based digital PCR method. Genomic DNA from embryo biopsy samples were extracted, and crude DNA extracts were first amplified by a conventional PCR procedure followed by a nested PCR reaction with primers and probes that are designed for digital PCR amplification. Analysis of microfluidics-based PCR reactions showed that robust signals for normal α-globin and SEA-type deletion alleles, together with an internal control gene, can be routinely generated using crude embryo biopsies after a 10 6 -fold dilution of primary PCR products. The SEA-type deletion in cultured embryos can be sensitively diagnosed with the digital PCR procedure in clinics. The adoption of this robust PGD method could prevent the implantation of IVF embryos that are destined to develop Bart's hydrops fetalis in a timely manner. The results also help inform future development of a standard digital PCR procedure for cost-effective PGD of α-thalassemia in a standard IVF clinic. Copyright © 2017. Published by Elsevier B.V.

  18. Comparison of semi-automated commercial rep-PCR fingerprinting, spoligotyping, 12-locus MIRU-VNTR typing and single nucleotide polymorphism analysis of the embB gene as molecular typing tools for Mycobacterium bovis.

    PubMed

    Armas, Federica; Camperio, Cristina; Coltella, Luana; Selvaggini, Serena; Boniotti, Maria Beatrice; Pacciarini, Maria Lodovica; Di Marco Lo Presti, Vincenzo; Marianelli, Cinzia

    2017-08-04

    Highly discriminatory genotyping strategies are essential in molecular epidemiological studies of tuberculosis. In this study we evaluated, for the first time, the efficacy of the repetitive sequence-based PCR (rep-PCR) DiversiLab Mycobacterium typing kit over spoligotyping, 12-locus mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) typing and embB single nucleotide polymorphism (SNP) analysis for Mycobacterium bovis typing. A total of 49 M. bovis animal isolates were used. DNA was extracted and genomic DNA was amplified using the DiversiLab Mycobacterium typing kit. The amplified fragments were separated and detected using a microfluidics chip with Agilent 2100. The resulting rep-PCR-based DNA fingerprints were uploaded to and analysed using web-based DiversiLab software through Pearson's correlation coefficient. Rep-PCR DiversiLab grouped M. bovis isolates into ten different clusters. Most isolates sharing identical spoligotype, MIRU-VNTR profile or embB gene polymorphism were grouped into different rep-PCR clusters. Rep-PCR DiversiLab displayed greater discriminatory power than spoligotyping and embB SNP analysis but a lower resolution power than the 12-locus MIRU-VNTR analysis. MIRU-VNTR confirmed that it is superior to the other PCR-based methods tested here. In combination with spoligotyping and 12-locus MIRU-VNTR analysis, rep-PCR improved the discriminatory power for M. bovis typing.

  19. Simple methodology to directly genotype Trypanosoma cruzi discrete typing units in single and mixed infections from human blood samples.

    PubMed

    Bontempi, Iván A; Bizai, María L; Ortiz, Sylvia; Manattini, Silvia; Fabbro, Diana; Solari, Aldo; Diez, Cristina

    2016-09-01

    Different DNA markers to genotype Trypanosoma cruzi are now available. However, due to the low quantity of parasites present in biological samples, DNA markers with high copy number like kinetoplast minicircles are needed. The aim of this study was to complete a DNA assay called minicircle lineage specific-PCR (MLS-PCR) previously developed to genotype the T. cruzi DTUs TcV and TcVI, in order to genotype DTUs TcI and TcII and to improve TcVI detection. We screened kinetoplast minicircle hypervariable sequences from cloned PCR products from reference strains belonging to the mentioned DTUs using specific kDNA probes. With the four highly specific sequences selected, we designed primers to be used in the MLS-PCR to directly genotype T. cruzi from biological samples. High specificity and sensitivity were obtained when we evaluated the new approach for TcI, TcII, TcV and TcVI genotyping in twenty two T. cruzi reference strains. Afterward, we compared it with hybridization tests using specific kDNA probes in 32 blood samples from chronic chagasic patients from North Eastern Argentina. With both tests we were able to genotype 94% of the samples and the concordance between them was very good (kappa=0.855). The most frequent T. cruzi DTUs detected were TcV and TcVI, followed by TcII and much lower TcI. A unique T. cruzi DTU was detected in 18 samples meantime more than one in the remaining; being TcV and TcVI the most frequent association. A high percentage of mixed detections were obtained with both assays and its impact was discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Evidence for two transferrin loci in the Salmo trutta genome.

    PubMed

    Rozman, T; Dovc, P; Marić, S; Kokalj-Vokac, N; Erjavec-Skerget, A; Rab, P; Snoj, A

    2008-12-01

    To determine the organization of transferrin (TF) locus in the Salmo trutta genome, partial DNA and cDNA sequencing, fluorescent in situ hybridization (FISH) and Salmo salar BAC analysis were performed. TF expression levels and copy number prediction were assessed using real-time PCR. In addition to two previously reported DNA TF variant sequences of S. trutta and Salmo marmoratus (TF1), two novel variant sequences (TF2) were revealed in both species. Variant-specific sequence tags, characterizing two variants for each TF type (TF1 and TF2), were identified in genomic clones from each of the F1 hybrids between S. trutta and S. marmoratus. These clearly documented double heterozygote status at the TF loci. The real-time PCR data showed that each of the two TF types (TF1 and TF2) existed in one copy only and that the transcription of TF2 was considerably lower compared with TF1. Using FISH, hybridization signals were observed on two medium-sized acrocentric chromosomes of S. trutta karyotype. A TF type-specific PCR followed by a restriction analysis revealed the presence of two TF loci in the majority of analysed BAC clones. It was concluded that the TF gene is duplicated in the genome of S. trutta, and that the two TF loci are located adjacent to one another on the same chromosome. The differing transcription levels of TF1 and TF2 appear to depend on the corresponding promoter activity, which at least for TF2 seems to vary between different Salmo congeners.

  1. Fatal Purpureocillium lilacinum pneumonia in a green tree python.

    PubMed

    Meyer, Jean; Loncaric, Igor; Richter, Barbara; Spergser, Joachim

    2018-03-01

    A 10-y-old female green tree python ( Morelia viridis) died of fungal pneumonia caused by Purpureocillium lilacinum, which was confirmed histologically and by PCR and subsequent DNA sequencing. The same fungal species was cultivated from a swab taken from the terrarium in which the snake was housed. Clinical and environmental P. lilacinum isolates were indistinguishable by the typing method applied, strongly suggesting clonal relatedness of both isolates. Because no other underlying predisposing respiratory infection could be detected by virus-specific PCR or histopathology, P. lilacinum was considered a primary pulmonary pathogen in this tree python.

  2. Presence of Panulirus argus virus 1 (PaV1) in juvenile spiny lobsters Panulirus argus from the Caribbean coast of Mexico.

    PubMed

    Huchin-Mian, Juan Pablo; Rodríguez-Canul, Rossanna; Arias-Bañuelos, Efrain; Simá-Alvarez, Raúl; Pérez-Vega, Juan A; Briones-Fourzán, Patricia; Lozano-Alvarez, Enrique

    2008-04-01

    Macroscopic evidence, histological sections, transmission electron microscopy (TEM) evaluation, and PCR analyses of 25 apparently diseased juvenile spiny lobsters Panulirus argus from the reef lagoon of Puerto Morelos, Mexico, showed the presence of Panulirus argus Virus 1 (PaV1). Cowdry Type A intranuclear viral inclusions were observed in histological analyses, icosahedral viral particles were observed by TEM, and PCR using specific primers for PaV1 amplified a fragment of 499 bp. This is the first report of PaV1 infecting P. argus outside the Florida Keys, USA.

  3. Progress towards Rapid Detection of Measles Vaccine Strains: a Tool To Inform Public Health Interventions

    PubMed Central

    2016-01-01

    ABSTRACT Rapid differentiation of vaccine from wild-type strains in suspect measles cases is a valuable epidemiological tool that informs the public health response to this highly infectious disease. Few public health laboratories sequence measles virus-positive specimens to determine genotype, and the vaccine-specific real-time reverse transcriptase PCR (rRT-PCR) assay described by F. Roy et al. (J. Clin. Microbiol. 55:735–743, 2017, https://doi.org/10.1128/JCM.01879-16) offers a rapid, easily adoptable method to identify measles vaccine strains in suspect cases. PMID:28003421

  4. Progress towards Rapid Detection of Measles Vaccine Strains: a Tool To Inform Public Health Interventions.

    PubMed

    Hacker, Jill K

    2017-03-01

    Rapid differentiation of vaccine from wild-type strains in suspect measles cases is a valuable epidemiological tool that informs the public health response to this highly infectious disease. Few public health laboratories sequence measles virus-positive specimens to determine genotype, and the vaccine-specific real-time reverse transcriptase PCR (rRT-PCR) assay described by F. Roy et al. (J. Clin. Microbiol. 55:735-743, 2017, https://doi.org/10.1128/JCM.01879-16) offers a rapid, easily adoptable method to identify measles vaccine strains in suspect cases. Copyright © 2017 American Society for Microbiology.

  5. Use of species-specific PCR for the identification of 10 sea cucumber species

    NASA Astrophysics Data System (ADS)

    Wen, Jing; Zeng, Ling

    2014-11-01

    We developed a species-specific PCR method to identify species among dehydrated products of 10 sea cucumber species. Ten reverse species-specific primers designed from the 16S rRNA gene, in combination with one forward universal primer, generated PCR fragments of ca. 270 bp length for each species. The specificity of the PCR assay was tested with DNA of samples of 21 sea cucumber species. Amplification was observed in specific species only. The species-specific PCR method we developed was successfully applied to authenticate species of commercial products of dehydrated sea cucumber, and was proven to be a useful, rapid, and low-cost technique to identify the origin of the sea cucumber product.

  6. Reliability of clinical diagnosis and laboratory testing techniques currently used for identification of canine parvovirus enteritis in clinical settings

    PubMed Central

    FAZ, Mirna; MARTÍNEZ, José Simón; QUIJANO-HERNÁNDEZ, Israel; FAJARDO, Raúl

    2016-01-01

    Canine parvovirus type 2 (CPV-2) is the main etiological agent of viral enteritis in dogs. Actually in literature, CPV-2 has been reported with clinical signs that vary from the classical disease, and immunochromatography test and PCR technique have been introduced to veterinary hospitals to confirm CPV-2 diagnosis and other infections. However, the reliability of these techniques has been poorly analyzed. In this study, we evaluated the sensitivity and specificity of veterinary clinical diagnosis, immunochromatography test and PCR technique. Our data indicate that variations in the clinical signs of CPV-2 complicate the gathering of an appropriate diagnosis; and immunochromatography test and PCR technique do not have adequate sensitivity to diagnose positive cases. PMID:27818461

  7. An improved strategy and a useful housekeeping gene for RNA analysis from formalin-fixed, paraffin-embedded tissues by PCR.

    PubMed

    Finke, J; Fritzen, R; Ternes, P; Lange, W; Dölken, G

    1993-03-01

    Specific amplification of nucleic acid sequences by PCR has been extensively used for the detection of gene rearrangements and gene expression. Although successful amplification of DNA sequences has been carried out with DNA prepared from formalin-fixed, paraffin-embedded (FFPE) tissues, there are only a few reports regarding RNA analysis in this kind of material. We describe a procedure for RNA extraction from different types of FFPE tissues, involving digestion with proteinase K followed by guanidinium-thiocyanate acid phenol extraction and DNase I digestion. These RNA preparations are suitable for PCR analysis of mRNA and even of intronless genes. Furthermore, the universally expressed porphobilinogen deaminase mRNA proved to be useful as a positive control because of the lack of pseudogenes.

  8. Packaging of Human Chromosome 19-Specific Adeno-Associated Virus (AAV) Integration Sites in AAV Virions during AAV Wild-Type and Recombinant AAV Vector Production

    PubMed Central

    Hüser, Daniela; Weger, Stefan; Heilbronn, Regine

    2003-01-01

    Adeno-associated virus type 2 (AAV-2) establishes latency by site-specific integration into a unique locus on human chromosome 19, called AAVS1. During the development of a sensitive real-time PCR assay for site-specific integration, AAV-AAVS1 junctions were reproducibly detected in highly purified AAV wild-type and recombinant AAV vector stocks. A series of controls documented that the junctions were packaged in AAV capsids and were newly generated during a single round of AAV production. Cloned junctions displayed variable AAV sequences fused to AAVS1. These data suggest that packaged junctions represent footprints of AAV integration during productive infection. Apparently, AAV latency established by site-specific integration and the helper virus-dependent, productive AAV cycle are more closely related than previously thought. PMID:12663794

  9. New molecular settings to support in vivo anti-malarial assays.

    PubMed

    Bahamontes-Rosa, Noemí; Alejandre, Ane Rodriguez; Gomez, Vanesa; Viera, Sara; Gomez-Lorenzo, María G; Sanz-Alonso, Laura María; Mendoza-Losana, Alfonso

    2016-03-08

    Quantitative real-time PCR (qPCR) is now commonly used as a method to confirm diagnosis of malaria and to differentiate recrudescence from re-infection, especially in clinical trials and in reference laboratories where precise quantification is critical. Although anti-malarial drug discovery is based on in vivo murine efficacy models, use of molecular analysis has been limited. The aim of this study was to develop qPCR as a valid methodology to support pre-clinical anti-malarial models by using filter papers to maintain material for qPCR and to compare this with traditional methods. FTA technology (Whatman) is a rapid and safe method for extracting nucleic acids from blood. Peripheral blood samples from mice infected with Plasmodium berghei, P. yoelii, or P. falciparum were kept as frozen samples or as spots on FTA cards. The extracted genetic material from both types of samples was assessed for quantification by qPCR using sets of specific primers specifically designed for Plasmodium 18S rRNA, LDH, and CytB genes. The optimal conditions for nucleic acid extraction from FTA cards and qPCR amplification were set up, and were confirmed to be suitable for parasite quantification using DNA as template after storage at room temperature for as long as 26 months in the case of P. berghei samples and 52 months for P. falciparum and P. yoelii. The quality of DNA extracted from the FTA cards for gene sequencing and microsatellite amplification was also assessed. This is the first study to report the suitability of FTA cards and qPCR assay to quantify parasite load in samples from in vivo efficacy models to support the drug discovery process.

  10. Pap smear cytology and identification of Human Papillomavirus (HPV) type 16 and 18 in multiparity women at Aviati Clinic Padang Bulan Medan

    NASA Astrophysics Data System (ADS)

    Anggraini, D. R.; Feriyawati, L.; Fitrie, A. A.; Ginting, R. N. A.

    2018-03-01

    Cervical cancer is the second most frequent cancer in woman in developing countries and one of the most crucial health problems in the world. Human Papillomavirus (HPV) is an agent for sexually transmitted disease which is an act of cervical cancer, especially high-risk of HPV type 16 and 18. In this study, we investigated the Pap smear cytology features and identification of HPV types 16 and18 in multiparity women at Aviati Clinic Padang Bulan, Medan. Samples are cervical swabs of 50 multiparity women who met the inclusion criteria (childbirth ≥ three times) was included in the study. Pap smear examination was conducted using Papanicolaou staining and identification of HPV types 16 and 18 using the Polymerase Chain Reactive (PCR) methods. Pap smearcytology showed 80% Negative for intraepithelial lesion or malignancy (NILM) with inflammation and 20% NILM. The result of PCR amplification showed that there weren’t specific band DNA was found at band 414bp and 216bp. That means there weren’t cervical swabs sample had DNA of HPV type 16 and 18.

  11. Characterization and application of a quantitative DNA marker that discriminates sex in Chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Clifton, D.R.; Rodriguez, R.J.

    1997-01-01

    A qualitative male-specific DNA marker (OT-24) was amplified by spPCR (single-primer polymerase chain reaction) from chinook salmon (Oncorhynchus tshawytscha) DNA along with several non-sex-linked products. The termini of the male-specific product were sequenced, and a pair of PeR primers were constructed for marker-specific PCR amplification. Dual primer PCR (dpPCR), with the marker-specific primers, amplified a product from both nudes and females. The amount of dpPCR product amplified from males was at least 100-fold greater than that from females. The quantitative difference between males and females was consistent among geographically distinct populations from western U.S. rivers. In addition, DNA sequence analysis indicated that OT-24 was highly conserved among geographically distinct salmon populations. The qualitative spPCR product segregated through several genetic crosses indicating equal sex ratios among progeny. Identification of the male and female juveniles by dpPCR was consistent with the spPCR analysis. There was no tissue specificity observed by spPCR or dpPCR analysis of this marker. A rapid DNA extraction method and dpPCR analysis were used to nonlethally determine sex ratios in wild spring chinook salmon adults, withheld for genetic and behavioral studies, prior to their development of gross sexual differences in their external morphology.

  12. Characterization and application of a quantitative DNA marker that discriminates sex in chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Clifton, D.R.; Rodriguez, R.J.

    1997-01-01

    A qualitative male-specific DNA marker (OT-24) was amplified by spPCR (single-primer polymerase chain reaction) from chinook salmon (Oncorhynchus tshawytscha) DNA along with several non-sex-linked products. The termini of the male-specific product were sequenced, and a pair of PeR primers were constructed for marker-specific PCR amplification. Dual primer PCR (dpPCR), with the marker-specific primers, amplified a product from both nudes and females. The amount of dpPCR product amplified from males was at least 100-fold greater than that from females. The quantitative difference between males and females was consistent among geographically distinct populations from western U.S. rivers. In addition, DNA sequence analysis indicated that OT-24 was highly conserved among geographically distinct salmon populations. The qualitative spPCR product segregated through several genetic crosses indicating equal sex ratios among progeny. Identification of the male and female juveniles by dpPCR was consistent with the spPCR analysis. There was no tissue specificity observed by spPCR or dpPCR analysis of this marker. A rapid DNA extraction method and dpPCR analysis were used to nonlethally determine sex ratios in wild spring chinook salmon adults, withheld for genetic and behavioral studies, prior to their development of gross sexual differences in their external morphology.

  13. Standardization and application of real-time polymerase chain reaction for rapid detection of bluetongue virus.

    PubMed

    Lakshmi, I Karthika; Putty, Kalyani; Raut, Satya Samparna; Patil, Sunil R; Rao, P P; Bhagyalakshmi, B; Jyothi, Y Krishna; Susmitha, B; Reddy, Y Vishnuvardhan; Kasulanati, Sowmya; Jyothi, J Shiva; Reddy, Y N

    2018-04-01

    The present study was designed to standardize real-time polymerase chain reaction (PCR) for detecting the bluetongue virus from blood samples of sheep collected during outbreaks of bluetongue disease in the year 2014 in Andhra Pradesh and Telangana states of India. A 10-fold serial dilution of Plasmid PUC59 with bluetongue virus (BTV) NS3 insert was used to plot the standard curve. BHK-21 and KC cells were used for in vitro propagation of virus BTV-9 at a TCID50/ml of 10 5 ml and RNA was isolated by the Trizol method. Both reverse transcription-PCR and real-time PCR using TaqMan probe were carried out with RNA extracted from virus-spiked culture medium and blood to compare the sensitivity by means of finding out the limit of detection (LoD). The results were verified by inoculating the detected and undetected dilutions onto cell cultures with further cytological (cytopathic effect) and molecular confirmation (by BTV-NS1 group-specific PCR). The standardized technique was then applied to field samples (blood) for detecting BTV. The slope of the standard curve obtained was -3.23, and the efficiency was 103%. The LoD with RT-PCR was 8.269E×10 3 number of copies of plasmid, whereas it was 13 with real-time PCR for plasmid dilutions. Similarly, LoD was determined for virus-spiked culture medium, and blood with both the types of PCR and the values were 10 3 TCID 50/ml and 10 4 TCID 50/ml with RT-PCR and 10° TCID 50/ml and 10 2 TCID 50/ml with real-time PCR, respectively. The standardized technique was applied to blood samples collected from BTV suspected animals; 10 among 20 samples were found positive with Cq values ranging from 27 to 39. The Cq value exhibiting samples were further processed in cell cultures and were confirmed to be BT positive. Likewise, Cq undetected samples on processing in cell cultures turned out to be BTV negative. Real-time PCR was found to be a very sensitive as well as reliable method to detect BTV present in different types of samples, including blood samples collected from BTV-infected sheep, compared to RT-PCR. The LoD of BTV is likely influenced by sample type, possibly by the interference by the other components present in the sample.

  14. Minimal Residual Disease Monitoring of Acute Myeloid Leukemia by Massively Multiplex Digital PCR in Patients with NPM1 Mutations.

    PubMed

    Mencia-Trinchant, Nuria; Hu, Yang; Alas, Maria Antonina; Ali, Fatima; Wouters, Bas J; Lee, Sangmin; Ritchie, Ellen K; Desai, Pinkal; Guzman, Monica L; Roboz, Gail J; Hassane, Duane C

    2017-07-01

    The presence of minimal residual disease (MRD) is widely recognized as a powerful predictor of therapeutic outcome in acute myeloid leukemia (AML), but methods of measurement and quantification of MRD in AML are not yet standardized in clinical practice. There is an urgent, unmet need for robust and sensitive assays that can be readily adopted as real-time tools for disease monitoring. NPM1 frameshift mutations are an established MRD marker present in half of patients with cytogenetically normal AML. However, detection is complicated by the existence of hundreds of potential frameshift insertions, clonal heterogeneity, and absence of sequence information when the NPM1 mutation is identified using capillary electrophoresis. Thus, some patients are ineligible for NPM1 MRD monitoring. Furthermore, a subset of patients with NPM1-mutated AML will have false-negative MRD results because of clonal evolution. To simplify and improve MRD testing for NPM1, we present a novel digital PCR technique composed of massively multiplex pools of insertion-specific primers that selectively detect mutated but not wild-type NPM1. By measuring reaction end points using digital PCR technology, the resulting single assay enables sensitive and specific quantification of most NPM1 exon 12 mutations in a manner that is robust to clonal heterogeneity, does not require NPM1 sequence information, and obviates the need for maintenance of hundreds of type-specific assays and associated plasmid standards. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  15. Event specific qualitative and quantitative polymerase chain reaction detection of genetically modified MON863 maize based on the 5'-transgene integration sequence.

    PubMed

    Yang, Litao; Xu, Songci; Pan, Aihu; Yin, Changsong; Zhang, Kewei; Wang, Zhenying; Zhou, Zhigang; Zhang, Dabing

    2005-11-30

    Because of the genetically modified organisms (GMOs) labeling policies issued in many countries and areas, polymerase chain reaction (PCR) methods were developed for the execution of GMO labeling policies, such as screening, gene specific, construct specific, and event specific PCR detection methods, which have become a mainstay of GMOs detection. The event specific PCR detection method is the primary trend in GMOs detection because of its high specificity based on the flanking sequence of the exogenous integrant. This genetically modified maize, MON863, contains a Cry3Bb1 coding sequence that produces a protein with enhanced insecticidal activity against the coleopteran pest, corn rootworm. In this study, the 5'-integration junction sequence between the host plant DNA and the integrated gene construct of the genetically modified maize MON863 was revealed by means of thermal asymmetric interlaced-PCR, and the specific PCR primers and TaqMan probe were designed based upon the revealed 5'-integration junction sequence; the conventional qualitative PCR and quantitative TaqMan real-time PCR detection methods employing these primers and probes were successfully developed. In conventional qualitative PCR assay, the limit of detection (LOD) was 0.1% for MON863 in 100 ng of maize genomic DNA for one reaction. In the quantitative TaqMan real-time PCR assay, the LOD and the limit of quantification were eight and 80 haploid genome copies, respectively. In addition, three mixed maize samples with known MON863 contents were detected using the established real-time PCR systems, and the ideal results indicated that the established event specific real-time PCR detection systems were reliable, sensitive, and accurate.

  16. Competitor internal standards for quantitative detection of mycoplasma DNA.

    PubMed

    Sidhu, M K; Rashidbaigi, A; Testa, D; Liao, M J

    1995-05-01

    Homologous internal controls were used as competitor DNA in the polymerase chain reaction for the quantitative detection of mycoplasma DNA. PCR primer sets were designed on the basis of the most conserved nucleotide sequences of the 16S rRNA gene of mycoplasma species. Amplification of this gene was examined in five different mycoplasma species: Mycoplasma orale, M. hyorhinus, M. synoviae, M. gallisepticum and M. pneumoniae. To evaluate the primers, a number of different cell lines were assayed for the detection of mycoplasma infections. All positive cell lines showed a distinct product on agarose gels while uninfected cells showed no DNA amplification. Neither bacterial nor eukaryotic DNA produced any cross-reaction with the primers used, thus confirming their specificity. Internal control DNA to be used for quantitation was constructed by modifying the sizes of the wild-type amplified products and cloning them in plasmid vectors. These controls used the same primer binding sites as the wild-type and the amplified products were differentiated by a size difference. The detection limits for all the mycoplasma species by competitive quantitative PCR were estimated to range from 4 to 60 genome copies per assay as determined by ethidium bromide-stained agarose gels. These internal standards also serve as positive controls in PCR-based detection of mycoplasma DNA, and therefore accidental contamination of test samples with wild-type positive controls can be eliminated. The quantitative PCR method developed will be useful in monitoring the progression and significance of mycoplasma in the disease process.

  17. Real-time PCR detection chemistry.

    PubMed

    Navarro, E; Serrano-Heras, G; Castaño, M J; Solera, J

    2015-01-15

    Real-time PCR is the method of choice in many laboratories for diagnostic and food applications. This technology merges the polymerase chain reaction chemistry with the use of fluorescent reporter molecules in order to monitor the production of amplification products during each cycle of the PCR reaction. Thus, the combination of excellent sensitivity and specificity, reproducible data, low contamination risk and reduced hand-on time, which make it a post-PCR analysis unnecessary, has made real-time PCR technology an appealing alternative to conventional PCR. The present paper attempts to provide a rigorous overview of fluorescent-based methods for nucleic acid analysis in real-time PCR described in the literature so far. Herein, different real-time PCR chemistries have been classified into two main groups; the first group comprises double-stranded DNA intercalating molecules, such as SYBR Green I and EvaGreen, whereas the second includes fluorophore-labeled oligonucleotides. The latter, in turn, has been divided into three subgroups according to the type of fluorescent molecules used in the PCR reaction: (i) primer-probes (Scorpions, Amplifluor, LUX, Cyclicons, Angler); (ii) probes; hydrolysis (TaqMan, MGB-TaqMan, Snake assay) and hybridization (Hybprobe or FRET, Molecular Beacons, HyBeacon, MGB-Pleiades, MGB-Eclipse, ResonSense, Yin-Yang or displacing); and (iii) analogues of nucleic acids (PNA, LNA, ZNA, non-natural bases: Plexor primer, Tiny-Molecular Beacon). In addition, structures, mechanisms of action, advantages and applications of such real-time PCR probes and analogues are depicted in this review. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Human papillomavirus in normal conjunctival tissue and in conjunctival papilloma: types and frequencies in a large series

    PubMed Central

    Sjö, Nicolai Christian; von Buchwald, Christian; Cassonnet, Patricia; Norrild, Bodil; Prause, Jan Ulrik; Vinding, Troels; Heegaard, Steffen

    2007-01-01

    Aim To examine conjunctival papilloma and normal conjunctival tissue for the presence of human papillomavirus (HPV). Methods Archival paraffin wax‐embedded tissue from 165 conjunctival papillomas and from 20 histological normal conjunctival biopsy specimens was analysed for the presence of HPV by PCR. Specimens considered HPV positive using consensus primers, but with a negative or uncertain PCR result using type‐specific HPV probes, were analysed with DNA sequencing. Results HPV was present in 86 of 106 (81%) β‐globin‐positive papillomas. HPV type 6 was positive in 80 cases, HPV type 11 was identified in 5 cases and HPV type 45 was present in a single papilloma. All the 20 normal conjunctival biopsy specimens were β‐globin positive and HPV negative. Conclusion There is a strong association between HPV and conjunctival papilloma. The study presents the largest material of conjunctival papilloma investigated for HPV and the first investigation of HPV in normal conjunctival tissue. HPV types 6 and 11 are the most common HPV types in conjunctival papilloma. This also is the first report of HPV type 45 in conjunctival papilloma. PMID:17166894

  19. Detection of high-risk mucosal human papillomavirus DNA in human specimens by a novel and sensitive multiplex PCR method combined with DNA microarray.

    PubMed

    Gheit, Tarik; Tommasino, Massimo

    2011-01-01

    Epidemiological and functional studies have clearly demonstrated that certain types of human papillomavirus (HPV) from the genus alpha of the HPV phylogenetic tree, referred to as high-risk (HR) types, are the etiological cause of cervical cancer. Several methods for HPV detection and typing have been developed, and their importance in clinical and epidemiological studies has been well demonstrated. However, comparative studies have shown that several assays have different sensitivities for the detection of specific HPV types, particularly in the case of multiple infections. In this chapter, we describe a novel one-shot method for the detection and typing of 19 mucosal HR HPV types (types 16, 18, 26, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68, 70, 73, and 82). The assay combines the advantages of the multiplex PCR methods, i.e., high sensitivity and the possibility to perform multiple amplifications in a single reaction, with an array primer extension (APEX) assay. The latter method offers the benefits of Sanger dideoxy sequencing with the high-throughput potential of the microarray. Initial studies have revealed that the assay is very sensitive in detecting multiple HPV infections.

  20. Detection of epidermal growth factor receptor mutation in lung cancer by droplet digital polymerase chain reaction

    PubMed Central

    Xu, Qing; Zhu, Yazhen; Bai, Yali; Wei, Xiumin; Zheng, Xirun; Mao, Mao; Zheng, Guangjuan

    2015-01-01

    Background Two types of epidermal growth factor receptor (EGFR) mutations in exon 19 and exon 21 (ex19del and L858R) are prevalent in lung cancer patients and sensitive to targeted EGFR inhibition. A resistance mutation in exon 20 (T790M) has been found to accompany drug treatment when patients relapse. These three mutations are valuable companion diagnostic biomarkers for guiding personalized treatment. Quantitative polymerase chain reaction (qPCR)-based methods have been widely used in the clinic by physicians to guide treatment decisions. The aim of this study was to evaluate the technical and clinical sensitivity and specificity of the droplet digital polymerase chain reaction (ddPCR) method in detecting the three EGFR mutations in patients with lung cancer. Methods Genomic DNA from H1975 and PC-9 cells, as well as 92 normal human blood specimens, was used to determine the technical sensitivity and specificity of the ddPCR assays. Genomic DNA of formalin-fixed, paraffin-embedded specimens from 78 Chinese patients with lung adenocarcinoma were assayed using both qPCR and ddPCR. Results The three ddPCR assays had a limit of detection of 0.02% and a wide dynamic range from 1 to 20,000 copies measurement. The L858R and ex19del assays had a 0% background level in the technical and clinical settings. The T790M assay appeared to have a 0.03% technical background. The ddPCR assays were robust for correct determination of EGFR mutation status in patients, and the dynamic range appeared to be better than qPCR methods. The ddPCR assay for T790M could detect patient samples that the qPCR method failed to detect. About 49% of this patient cohort had EGFR mutations (L858R, 15.4%; ex19del, 29.5%; T790M, 6.4%). Two patients with the ex19del mutation also had a naïve T790M mutation. Conclusion These data suggest that the ddPCR method could be useful in the personalized treatment of patients with lung cancer. PMID:26124670

  1. The characterization and certification of a quantitative reference material for Legionella detection and quantification by qPCR.

    PubMed

    Baume, M; Garrelly, L; Facon, J P; Bouton, S; Fraisse, P O; Yardin, C; Reyrolle, M; Jarraud, S

    2013-06-01

    The characterization and certification of a Legionella DNA quantitative reference material as a primary measurement standard for Legionella qPCR. Twelve laboratories participated in a collaborative certification campaign. A candidate reference DNA material was analysed through PCR-based limiting dilution assays (LDAs). The validated data were used to statistically assign both a reference value and an associated uncertainty to the reference material. This LDA method allowed for the direct quantification of the amount of Legionella DNA per tube in genomic units (GU) and the determination of the associated uncertainties. This method could be used for the certification of all types of microbiological standards for qPCR. The use of this primary standard will improve the accuracy of Legionella qPCR measurements and the overall consistency of these measurements among different laboratories. The extensive use of this certified reference material (CRM) has been integrated in the French standard NF T90-471 (April 2010) and in the ISO Technical Specification 12 869 (Anon 2012 International Standardisation Organisation) for validating qPCR methods and ensuring the reliability of these methods. © 2013 The Society for Applied Microbiology.

  2. Efficient Genotyping of KRAS Mutant Non-Small Cell Lung Cancer Using a Multiplexed Droplet Digital PCR Approach.

    PubMed

    Pender, Alexandra; Garcia-Murillas, Isaac; Rana, Sareena; Cutts, Rosalind J; Kelly, Gavin; Fenwick, Kerry; Kozarewa, Iwanka; Gonzalez de Castro, David; Bhosle, Jaishree; O'Brien, Mary; Turner, Nicholas C; Popat, Sanjay; Downward, Julian

    2015-01-01

    Droplet digital PCR (ddPCR) can be used to detect low frequency mutations in oncogene-driven lung cancer. The range of KRAS point mutations observed in NSCLC necessitates a multiplex approach to efficient mutation detection in circulating DNA. Here we report the design and optimisation of three discriminatory ddPCR multiplex assays investigating nine different KRAS mutations using PrimePCR™ ddPCR™ Mutation Assays and the Bio-Rad QX100 system. Together these mutations account for 95% of the nucleotide changes found in KRAS in human cancer. Multiplex reactions were optimised on genomic DNA extracted from KRAS mutant cell lines and tested on DNA extracted from fixed tumour tissue from a cohort of lung cancer patients without prior knowledge of the specific KRAS genotype. The multiplex ddPCR assays had a limit of detection of better than 1 mutant KRAS molecule in 2,000 wild-type KRAS molecules, which compared favourably with a limit of detection of 1 in 50 for next generation sequencing and 1 in 10 for Sanger sequencing. Multiplex ddPCR assays thus provide a highly efficient methodology to identify KRAS mutations in lung adenocarcinoma.

  3. Efficient Genotyping of KRAS Mutant Non-Small Cell Lung Cancer Using a Multiplexed Droplet Digital PCR Approach

    PubMed Central

    Pender, Alexandra; Garcia-Murillas, Isaac; Rana, Sareena; Cutts, Rosalind J.; Kelly, Gavin; Fenwick, Kerry; Kozarewa, Iwanka; Gonzalez de Castro, David; Bhosle, Jaishree; O’Brien, Mary; Turner, Nicholas C.; Popat, Sanjay; Downward, Julian

    2015-01-01

    Droplet digital PCR (ddPCR) can be used to detect low frequency mutations in oncogene-driven lung cancer. The range of KRAS point mutations observed in NSCLC necessitates a multiplex approach to efficient mutation detection in circulating DNA. Here we report the design and optimisation of three discriminatory ddPCR multiplex assays investigating nine different KRAS mutations using PrimePCR™ ddPCR™ Mutation Assays and the Bio-Rad QX100 system. Together these mutations account for 95% of the nucleotide changes found in KRAS in human cancer. Multiplex reactions were optimised on genomic DNA extracted from KRAS mutant cell lines and tested on DNA extracted from fixed tumour tissue from a cohort of lung cancer patients without prior knowledge of the specific KRAS genotype. The multiplex ddPCR assays had a limit of detection of better than 1 mutant KRAS molecule in 2,000 wild-type KRAS molecules, which compared favourably with a limit of detection of 1 in 50 for next generation sequencing and 1 in 10 for Sanger sequencing. Multiplex ddPCR assays thus provide a highly efficient methodology to identify KRAS mutations in lung adenocarcinoma. PMID:26413866

  4. Multiplex real-time RT-PCR assay for bovine viral diarrhea virus type 1, type 2 and HoBi-like pestivirus.

    PubMed

    Mari, Viviana; Losurdo, Michele; Lucente, Maria Stella; Lorusso, Eleonora; Elia, Gabriella; Martella, Vito; Patruno, Giovanni; Buonavoglia, Domenico; Decaro, Nicola

    2016-03-01

    HoBi-like pestiviruses are emerging pestiviruses that infect cattle causing clinical forms overlapping to those induced by bovine viral diarrhea virus (BVDV) 1 and 2. As a consequence of their widespread distribution reported in recent years, molecular tools for rapid discrimination among pestiviruses infecting cattle are needed. The aim of the present study was to develop a multiplex real-time RT-PCR assay, based on the TaqMan technology, for the rapid and unambiguous characterisation of all bovine pestiviruses, including the emerging HoBi-like strains. The assay was found to be sensitive, specific and repeatable, ensuring detection of as few as 10(0)-10(1) viral RNA copies. No cross-reactions between different pestiviral species were observed even in samples artificially contaminated with more than one pestivirus. Analysis of field samples tested positive for BVDV-1, BVDV-2 or HoBi-like virus by a nested PCR protocol revealed that the developed TaqMan assay had equal or higher sensitivity and was able to discriminate correctly the viral species in all tested samples, whereas a real-time RT-PCR assay previously developed for HoBi-like pestivirus detection showed cross-reactivity with few high-titre BVDV-2 samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Identification and tracing of Enterococcus spp. by RAPD-PCR in traditional fermented sausages and meat environment.

    PubMed

    Martín, B; Corominas, L; Garriga, M; Aymerich, T

    2009-01-01

    Four local small-scale factories were studied to determine the sources of enterococci in traditional fermented sausages. Different points during the production of a traditional fermented sausage type (fuet) were evaluated. Randomly amplified polymorphic DNA (RAPD)-PCR was used to type 596 Enterococcus isolates from the final products, the initial meat batter, the casing, the workers' hands and the equipment. Species-specific PCR-multiplex and the partial sequencing of atpA gene and 16S rRNA gene sequencing allowed the identification of the isolates: Enterococcus faecalis (31.4%), Enterococcus faecium (30.7%), Enterococcus sanguinicola (14.9%), Enterococcus devriesei (9.7%), Enterococcus malodoratus (7.2%), Enterococcus gilvus (1.0%), Enterococcus gallinarum (1.3%), Enterococcus casseliflavus (3.4%), Enterococcus hermanniensis (0.2%), and Enterococcus durans (0.2%). A total of 92 different RAPD-PCR profiles were distributed among the different factories and samples evaluated. Most of the genotypes found in fuet samples were traced back to their source. The major sources of enterococci in the traditional fermented sausages studied were mainly the equipment followed by the raw ingredients, although a low proportion was traced back to human origin. This work contributes to determine the source of enterococcal contamination in fermented sausages and also to the knowledge of the meat environment.

  6. Improvement in laboratory diagnosis of wound botulism and tetanus among injecting illicit-drug users by use of real-time PCR assays for neurotoxin gene fragments.

    PubMed

    Akbulut, D; Grant, K A; McLauchlin, J

    2005-09-01

    An upsurge in wound infections due to Clostridium botulinum and Clostridium tetani among users of illegal injected drugs (IDUs) occurred in the United Kingdom during 2003 and 2004. A real-time PCR assay was developed to detect a fragment of the neurotoxin gene of C. tetani (TeNT) and was used in conjunction with previously described assays for C. botulinum neurotoxin types A, B, and E (BoNTA, -B, and -E). The assays were sensitive, specific, rapid to perform, and applicable to investigating infections among IDUs using DNA extracted directly from wound tissue, as well as bacteria growing among mixed microflora in enrichment cultures and in pure culture on solid media. A combination of bioassay and PCR test results confirmed the clinical diagnosis in 10 of 25 cases of suspected botulism and two of five suspected cases of tetanus among IDUs. The PCR assays were in almost complete agreement with the conventional bioassays when considering results from different samples collected from the same patient. The replacement of bioassays by real-time PCR for the isolation and identification of both C. botulinum and C. tetani demonstrates a sensitivity and specificity similar to those of conventional approaches. However, the real-time PCR assays substantially improves the diagnostic process in terms of the speed of results and by the replacement of experimental animals. Recommendations are given for an improved strategy for the laboratory investigation of suspected wound botulism and tetanus among IDUs.

  7. Histologic and Molecular Correlation in Shelter Cats with Acute Upper Respiratory Infection ▿

    PubMed Central

    Burns, Rachel E.; Wagner, Denae C.; Leutenegger, Christian M.; Pesavento, Patricia A.

    2011-01-01

    This is a descriptive study designed to correlate diagnostic real-time PCR results with histopathologic lesions in cats with clinical signs of upper respiratory infection (URI). The study occurred over a 9-month period in a single open-intake animal shelter. Cats that were selected for euthanasia by the shelter staff and additionally had URI were included in the study, for a total of 22 study cats. Combined conjunctival and oropharyngeal swab specimens were tested by quantitative real-time PCR (qPCR) for feline herpesvirus type 1 (FHV-1), feline calicivirus (FCV), Mycoplasma felis, Chlamydophila felis, and Bordetella bronchiseptica. Necropsy was performed on all cats, and a complete set of respiratory tract tissues was examined by histopathology. Among 22 cats, 20 were qPCR positive for FHV-1, 7 for M. felis, 5 for FCV, 1 for C. felis, and 0 for B. bronchiseptica. Nine cats were positive for two or more pathogens. Histopathologic lesions were present in all cats, with consistent lesions in the nasal cavity, including acute necroulcerative rhinitis in 16 cats. Histologic or antigenic detection of FHV-1 was seen in 18 of 20 cats positive for FHV-1 by qPCR. No lesions that could be specifically attributed to FCV, M. felis, or C. felis were seen, although interpretation in this cohort could be confounded by coinfection with FHV-1. A significant agreement was found between the amount of FHV-1 DNA determined by qPCR and the presence of specific histopathologic lesions for FHV-1 but not for the other respiratory pathogens. PMID:21562109

  8. Histologic and molecular correlation in shelter cats with acute upper respiratory infection.

    PubMed

    Burns, Rachel E; Wagner, Denae C; Leutenegger, Christian M; Pesavento, Patricia A

    2011-07-01

    This is a descriptive study designed to correlate diagnostic real-time PCR results with histopathologic lesions in cats with clinical signs of upper respiratory infection (URI). The study occurred over a 9-month period in a single open-intake animal shelter. Cats that were selected for euthanasia by the shelter staff and additionally had URI were included in the study, for a total of 22 study cats. Combined conjunctival and oropharyngeal swab specimens were tested by quantitative real-time PCR (qPCR) for feline herpesvirus type 1 (FHV-1), feline calicivirus (FCV), Mycoplasma felis, Chlamydophila felis, and Bordetella bronchiseptica. Necropsy was performed on all cats, and a complete set of respiratory tract tissues was examined by histopathology. Among 22 cats, 20 were qPCR positive for FHV-1, 7 for M. felis, 5 for FCV, 1 for C. felis, and 0 for B. bronchiseptica. Nine cats were positive for two or more pathogens. Histopathologic lesions were present in all cats, with consistent lesions in the nasal cavity, including acute necroulcerative rhinitis in 16 cats. Histologic or antigenic detection of FHV-1 was seen in 18 of 20 cats positive for FHV-1 by qPCR. No lesions that could be specifically attributed to FCV, M. felis, or C. felis were seen, although interpretation in this cohort could be confounded by coinfection with FHV-1. A significant agreement was found between the amount of FHV-1 DNA determined by qPCR and the presence of specific histopathologic lesions for FHV-1 but not for the other respiratory pathogens.

  9. Validation of use of whole-cell repetitive extragenic palindromic sequence-based PCR (REP-PCR) for typing strains belonging to the Acinetobacter calcoaceticus-Acinetobacter baumannii complex and application of the method to the investigation of a hospital outbreak.

    PubMed Central

    Snelling, A M; Gerner-Smidt, P; Hawkey, P M; Heritage, J; Parnell, P; Porter, C; Bodenham, A R; Inglis, T

    1996-01-01

    Acinetobacter spp. are being reported with increasing frequency as causes of nosocomial infection. In order to identify reservoirs of infection as quickly as possible, a rapid typing method that can differentiate epidemic strains from environmental and nonepidemic strains is needed. In 1993, a cluster of Acinetobacter baumannii isolates from five patients in the adult intensive therapy unit of our tertiary-care teaching hospital led us to develop and optimize a rapid repetitive extragenic palindromic sequence-based PCR (REP-PCR) typing protocol for members of the Acinetobacter calcoaceticus-A. baumannii complex that uses boiled colonies and consensus primers aimed at repetitive extragenic palindromic sequences. Four of the five patient isolates gave the same REP-PCR typing pattern as isolates of A. baumannii obtained from the temperature probe of a Bennett humidifier; the fifth isolate had a unique profile. Disinfection of the probe with 70% ethanol, as recommended by the manufacturer, proved ineffective, as A. baumannii with the same REP-PCR pattern was isolated from it 10 days after cleaning, necessitating a change in our decontamination procedure. Results obtained with REP-PCR were subsequently confirmed by ribotyping. To evaluate the discriminatory power (D) of REP-PCR for typing members of the A. calcoaceticus-A. baumannii complex, compared with that of ribotyping, we have applied both methods to a collection of 85 strains that included representatives of six DNA groups within the complex. Ribotyping using EcoRI digests yielded 53 patterns (D = 0.98), whereas 68 different REP-PCR patterns were observed (D = 0.99). By computer-assisted analysis of gel images, 74 patterns were observed with REP-PCR (D = 1.0). Overall, REP-PCR typing proved to be slightly more discriminatory than ribotyping. Our results indicate that REP-PCR typing used boiled colonies is a simple, rapid, and effective means of typing members of the A. calcoaceticus-A. baumannii complex. PMID:8727902

  10. Comparison of immunohistochemistry, DNA sequencing and allele-specific PCR for the detection of IDH1 mutations in gliomas.

    PubMed

    Loussouarn, Delphine; Le Loupp, Anne-Gaëlle; Frenel, Jean-Sébastien; Leclair, François; Von Deimling, Andreas; Aumont, Maud; Martin, Stéphane; Campone, Mario; Denis, Marc G

    2012-06-01

    Previous studies have identified mutations of the isocitrate dehydrogenase 1 (IDH1) gene in more than 70% of World Health Organization (WHO) grade II and III gliomas. The most frequent mutation leads to a specific amino acid change from arginine to histidine at codon 132 (c.395G>A, p.R132H). IDH1 mutated tumors have a better prognosis than IDH1 non-mutated tumors. The aim of our study was to evaluate and compare the methods of mIDH1 R132H immunohistochemistry, allele-specific PCR and DNA sequencing for determination of IDH1 status. We performed a retrospective study of 91 patients with WHO grade II (n=43) and III (n=48) oligodendrogliomas. A fragment of exon 4 spanning the sequence encoding the catalytic domain of IDH1, including codon 132, was amplified and sequenced using standard conditions. Allele-specific amplification was performed using two forward primers with variations in their 3' nucleotides such that each was specific for the wild-type or the mutated variant, and one reverse primer. Immunohistochemistry was performed with mouse monoclonal mIDH1 R132H. DNA was extracted from FFPE sections following macrodissection. IDH1 mutations were found in 55/90 patients (61.1%) by direct sequencing. R132H mutations were found in 47/55 patients (85.4%). The results of the allele-specific PCR positively correlated with those from DNA sequencing. Other mutations (p.R132C, p.R132S and pR132G) were found by DNA sequencing in 3, 3 and 2 tumors, respectively (8/55 patients, 14.6%). mIDH1 R132H immunostaining was found in the 47 patients presenting the R132H mutation (sensitivity 47/47, 100% for this mutation). None of the tumors presenting a wild-type IDH1 gene were stained (specificity 35/35, 100%). Our results demonstrate that immunohistochemistry using the mIDH1 R132H antibody and allele-specific amplification are highly sensitive techniques to detect the most frequent mutation of the IDH1 gene.

  11. Screening of eye-position related genes with DD-RT-PCR and RDA in the hybrids between Japanese flounder Paralichthys olivaceus and stone flounder Kareius bicoloratus

    NASA Astrophysics Data System (ADS)

    Chen, Yanjie; Zhang, Quanqi; Qi, Jie; Sun, Yeying; Zhong, Qiwang; Wang, Xubo; Wang, Zhigang; Li, Shuo; Li, Chunmei

    2009-02-01

    Flatfish or flounder moves one eye to change body proportion into vertebral asymmetry during metamorphosis, during which some become sinistral while others dextral. However, the mechanism behinds the eye-position has not been well understood. In this research, hybrids between Japanese flounder(♀) and stone flounder (♂) show mixed eye-location in both dextral type and sinistral type, and thus become good samples for studying the eye-migration. mRNAs from pro-metamorphosis sinistral and dextral hybrids larvae were screened with classical differential display RT-PCR (DD-RT-PCR) and representational difference analysis of cDNA (cDNA-RDA); 30 and 47 putative fragments were isolated, respectively. The cDNA fragments of creatine kinase and trypsinogen 2 precursor genes isolated by cDNA-RDA exhibited eye-position expression patterns during metamorphosis. However, none of the fragments was proved to be related to flatfishes’ eye-position specifically. Therefore, further studies and more sensitive gene isolated methods are needed to solve the problems.

  12. Use of next generation sequencing data to develop a qPCR method for specific detection of EU-unauthorized genetically modified Bacillus subtilis overproducing riboflavin.

    PubMed

    Barbau-Piednoir, Elodie; De Keersmaecker, Sigrid C J; Delvoye, Maud; Gau, Céline; Philipp, Patrick; Roosens, Nancy H

    2015-11-11

    Recently, the presence of an unauthorized genetically modified (GM) Bacillus subtilis bacterium overproducing vitamin B2 in a feed additive was notified by the Rapid Alert System for Food and Feed (RASFF). This has demonstrated that a contamination by a GM micro-organism (GMM) may occur in feed additives and has confronted for the first time,the enforcement laboratories with this type of RASFF. As no sequence information of this GMM nor any specific detection or identification method was available, Next GenerationSequencing (NGS) was used to generate sequence information. However, NGS data analysis often requires appropriate tools, involving bioinformatics expertise which is not alwayspresent in the average enforcement laboratory. This hampers the use of this technology to rapidly obtain critical sequence information in order to be able to develop a specific qPCRdetection method. Data generated by NGS were exploited using a simple BLAST approach. A TaqMan® qPCR method was developed and tested on isolated bacterial strains and on the feed additive directly. In this study, a very simple strategy based on the common BLAST tools that can be used by any enforcement lab without profound bioinformatics expertise, was successfully used toanalyse the B. subtilis data generated by NGS. The results were used to design and assess a new TaqMan® qPCR method, specifically detecting this GM vitamin B2 overproducing bacterium. The method complies with EU critical performance parameters for specificity, sensitivity, PCR efficiency and repeatability. The VitB2-UGM method also could detect the B. subtilis strain in genomic DNA extracted from the feed additive, without prior culturing step. The proposed method, provides a crucial tool for specifically and rapidly identifying this unauthorized GM bacterium in food and feed additives by enforcement laboratories. Moreover, this work can be seen as a case study to substantiate how the use of NGS data can offer an added value to easily gain access to sequence information needed to develop qPCR methods to detect unknown andunauthorized GMO in food and feed.

  13. Specific capture and detection of Staphylococcus aureus with high-affinity modified aptamers to cell surface components.

    PubMed

    Baumstummler, A; Lehmann, D; Janjic, N; Ochsner, U A

    2014-10-01

    Slow off-rate modified aptamer (SOMAmer) reagents were generated to several Staphylococcus aureus cell surface-associated proteins via SELEX with multiple modified DNA libraries using purified recombinant or native proteins. High-affinity binding agents with sub-nanomolar Kd 's were obtained for staphylococcal protein A (SpA), clumping factors (ClfA, ClfB), fibronectin-binding proteins (FnbA, FnbB) and iron-regulated surface determinants (Isd). Further screening revealed several SOMAmers that specifically bound to Staph. aureus cells from all strains that were tested, but not to other staphylococci or other bacteria. SpA and ClfA SOMAmers proved useful for the selective capture and enrichment of Staph. aureus cells, as shown by culture and PCR, leading to improved limits of detection and efficient removal of PCR inhibitors. Detection of Staph. aureus cells was enhanced by several orders of magnitude when the bacterial cell surface was coated with SOMAmers followed by qPCR of the SOMAmers. Furthermore, fluorescence-labelled SpA SOMAmers demonstrated their utility as direct detection agents in flow cytometry. Significance and impact of the study: Monitoring for microbial contamination of food, water, nonsterile products or the environment is typically based on culture, PCR or antibodies. Aptamers that bind with high specificity and affinity to well-conserved cell surface epitopes represent a promising novel type of reagents to detect bacterial cells without the need for culture or cell lysis, including for the capture and enrichment of bacteria present at low cell densities and for the direct detection via qPCR or fluorescent staining. © 2014 Soma Logic, Inc. published by John Wiley & Sons Ltd On behalf of the society for Applied Microbiology.

  14. Identification of Medically Important Yeasts Using PCR-Based Detection of DNA Sequence Polymorphisms in the Internal Transcribed Spacer 2 Region of the rRNA Genes

    PubMed Central

    Chen, Y. C.; Eisner, J. D.; Kattar, M. M.; Rassoulian-Barrett, S. L.; LaFe, K.; Yarfitz, S. L.; Limaye, A. P.; Cookson, B. T.

    2000-01-01

    Identification of medically relevant yeasts can be time-consuming and inaccurate with current methods. We evaluated PCR-based detection of sequence polymorphisms in the internal transcribed spacer 2 (ITS2) region of the rRNA genes as a means of fungal identification. Clinical isolates (401), reference strains (6), and type strains (27), representing 34 species of yeasts were examined. The length of PCR-amplified ITS2 region DNA was determined with single-base precision in less than 30 min by using automated capillary electrophoresis. Unique, species-specific PCR products ranging from 237 to 429 bp were obtained from 92% of the clinical isolates. The remaining 8%, divided into groups with ITS2 regions which differed by ≤2 bp in mean length, all contained species-specific DNA sequences easily distinguishable by restriction enzyme analysis. These data, and the specificity of length polymorphisms for identifying yeasts, were confirmed by DNA sequence analysis of the ITS2 region from 93 isolates. Phenotypic and ITS2-based identification was concordant for 427 of 434 yeast isolates examined using sequence identity of ≥99%. Seven clinical isolates contained ITS2 sequences that did not agree with their phenotypic identification, and ITS2-based phylogenetic analyses indicate the possibility of new or clinically unusual species in the Rhodotorula and Candida genera. This work establishes an initial database, validated with over 400 clinical isolates, of ITS2 length and sequence polymorphisms for 34 species of yeasts. We conclude that size and restriction analysis of PCR-amplified ITS2 region DNA is a rapid and reliable method to identify clinically significant yeasts, including potentially new or emerging pathogenic species. PMID:10834993

  15. Identification of a New DNA Region Specific for Members of Mycobacterium tuberculosis Complex

    PubMed Central

    Magdalena, Juana; Vachée, Anne; Supply, Philip; Locht, Camille

    1998-01-01

    The successful use of DNA amplification for the detection of tuberculous mycobacteria crucially depends on the choice of the target sequence, which ideally should be present in all tuberculous mycobacteria and absent from all other bacteria. In the present study we developed a PCR procedure based on the intergenic region (IR) separating two genes encoding a recently identified mycobacterial two-component system named SenX3-RegX3. The senX3-regX3 IR is composed of a novel type of repetitive sequence, called mycobacterial interspersed repetitive units (MIRUs). In a survey of 116 Mycobacterium tuberculosis strains characterized by different IS6110 restriction fragment length polymorphisms, 2 Mycobacterium africanum strains, 3 Mycobacterium bovis strains (including 2 BCG strains), and 1 Mycobacterium microti strain, a specific PCR fragment was amplified in all cases. This collection included M. tuberculosis strains that lack IS6110 or mtp40, two target sequences that have previously been used for the detection of M. tuberculosis. No PCR fragment was amplified when DNA from other organisms was used, giving a sensitivity of 100% and a specificity of 100% in the confidence limit of this study. The numbers of MIRUs were found to vary among strains, resulting in six different groups of strains on the basis of the size of the amplified PCR fragment. However, the vast majority of the strains (approximately 90%) fell within the same group, containing two 77-bp MIRUs followed by one 53-bp MIRU. PMID:9542912

  16. Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella Species in Human Feces by Using Group-Specific PCR Primers and Denaturing Gradient Gel Electrophoresis

    PubMed Central

    Walter, Jens; Hertel, Christian; Tannock, Gerald W.; Lis, Claudia M.; Munro, Karen; Hammes, Walter P.

    2001-01-01

    Denaturing gradient gel electrophoresis (DGGE) of DNA fragments generated by PCR with 16S ribosomal DNA-targeted group-specific primers was used to detect lactic acid bacteria (LAB) of the genera Lactobacillus, Pediococcus, Leuconostoc, and Weissella in human feces. Analysis of fecal samples of four subjects revealed individual profiles of DNA fragments originating not only from species that have been described as intestinal inhabitants but also from characteristically food-associated bacteria such as Lactobacillus sakei, Lactobacillus curvatus, Leuconostoc mesenteroides, and Pediococcus pentosaceus. Comparison of PCR-DGGE results with those of bacteriological culture showed that the food-associated species could not be cultured from the fecal samples by plating on Rogosa agar. On the other hand, all of the LAB species cultured from feces were detected in the DGGE profile. We also detected changes in the types of LAB present in human feces during consumption of a milk product containing the probiotic strain Lactobacillus rhamnosus DR20. The analysis of fecal samples from two subjects taken before, during, and after administration of the probiotic revealed that L. rhamnosus was detectable by PCR-DGGE during the test period in the feces of both subjects, whereas it was detectable by culture in only one of the subjects. PMID:11375166

  17. Synthesis of O-serogroup specific positive controls and real-time PCR standards for nine clinically relevant non-O157 STECs.

    PubMed

    Conrad, Cheyenne C; Gilroyed, Brandon H; McAllister, Tim A; Reuter, Tim

    2012-10-01

    Non-O157 Shiga toxin producing Escherichia coli (STEC) are gaining recognition as human pathogens, but no standardized method exists to identify them. Sequence analysis revealed that STEC can be classified on the base of variable O antigen regions into different O serotypes. Polymerase chain reaction is a powerful technique for thorough screening and complex diagnosis for these pathogens, but requires a positive control to verify qualitative and/or quantitative DNA-fragment amplification. Due to the pathogenic nature of STEC, controls are not readily available and cell culturing of STEC reference strains requires biosafety conditions of level 2 or higher. In order to bypass this limitation, controls of stacked O-type specific DNA-fragments coding for primer recognition sites were designed to screen for nine STEC serotypes frequently associated with human infection. The synthetic controls were amplified by PCR, cloned into a plasmid vector and transferred into bacteria host cells. Plasmids amplified by bacterial expression were purified, serially diluted and tested as standards for real-time PCR using SYBR Green and TaqMan assays. Utility of synthetic DNA controls was demonstrated in conventional and real-time PCR assays and validated with DNA from natural STEC strains. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Genotypic intraspecies heterogeneity of Enterococcus italicus: data from dairy environments.

    PubMed

    Borgo, Francesca; Ferrario, Chiara; Ricci, Giovanni; Fortina, Maria Grazia

    2013-01-01

    The diversity of a collection of 19 Enterococcus italicus strains isolated from different dairy sources was explored using a molecular polyphasic approach, comprising random amplification of polymorphic DNA (RAPD-PCR), repetitive element PCR (REP-PCR), plasmid profiling and ribotyping. The data obtained showed a high-level of biodiversity, not always correlated to the niche of isolation. Particularly, REP-PCR with primer BOXA1R and plasmid profiling allowed the best discrimination at strain level. Exploiting the genome shotgun sequence of the type strain of the species, available in public database, genes related to insertion sequences present on enterococcal Pathogenic Islands (ISEf1, IS905), determinants related to virulence factors (codifying for hemolysin and cell wall surface proteins), exogenously DNA (conjugal transfer protein, replication plasmid protein, pheromone shutdown protein, phage integrase/recombinase) and penicillin binding proteins system were detected. The presence of most of these genes seemed a common genetic trait in the Enterococcus genus, sur gene (cell wall surface protein) was only detected in strains of E. italicus. To our knowledge, this is the first time that specific primers, with the expection of the species-specific probe targeted to 16S rRNA gene, have been designed for this species. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Genomic typing of canine parvovirus circulating in the State of Rio de Janeiro, Brazil from 1995 to 2001 using polymerase chain reaction assay.

    PubMed

    Costa, A P; Leite, J P G; Labarthe, N V; Garcia, R C N Cubel

    2005-11-01

    In this study, the genomic types of canine parvovirus (CPV) circulating in the State of Rio de Janeiro, Brazil, from 1995 to 2001, were investigated using the polymerase chain reaction assay (PCR). A total of 78 faecal samples from gastroenteritic puppies, confirmed as positive for canine parvovirus by haemagglutination/haemagglutination inhibition tests or virus isolation in cell culture (MDCK), were examined. The viral DNA was extracted from faecal samples using a combination of phenol- chloroform and silica-guanidine thiocyanate methods. PCR was carried out with differential pairs of primers to distinguish the old (CPV-2) and new types of virus (CPv-2a or CPV-2b). Specific amplicons were observed for all samples using the primer pair P2ab, which detects CPV-2a and CPV-2b. Seventy-six from a total of 78 samples (97%) were considered as CPV-2b because of their reaction with the primer pair P2b. Thirty samples (30/78) were from previously vaccinated puppies and in 15 of them the enteritis symptoms began from 1 to 12 days after vaccination. PCR confirmed the infection by wild virus (CPV-2b) in 5 of these 15 puppies who had received old-type vaccines. Our results show that CPV-2b was the prevalent type circulating in the State of Rio de Janeiro from 1995 to 2001.

  20. Detection and Typing of Human Herpesvirus 6 by Molecular Methods in Specimens from Patients Diagnosed with Encephalitis or Meningitis▿

    PubMed Central

    Tavakoli, Norma P.; Nattanmai, Seela; Hull, Rene; Fusco, Heather; Dzigua, Lela; Wang, Heng; Dupuis, Michelle

    2007-01-01

    Human herpesvirus 6 (HHV-6) was detected in specimens from patients hospitalized with symptoms of encephalitis or meningitis. A real-time PCR assay was developed which has a linear dynamic range of 5 to 5 × 106 copies of HHV-6 and a sensitivity of five gene copies per reaction. While the assay detects both subtypes, HHV-6A and HHV-6B, it is specific and does not cross-react with a selected specificity panel. A total of 1,482 patient specimens, which were collected between 2003 and 2007, were tested; 26 specimens from 24 patients were found to be positive for HHV-6 by real-time PCR. The HHV-6 detection rate in this population was therefore 1.75%. The majority of the specimens tested (>95%) were cerebrospinal fluid (CSF) specimens. We were able to type 20 of the 26 positive specimens by conventional PCR and sequence analysis; all were HHV-6B. Forty-two percent of the patients were 3 years of age or younger, which may indicate a primary infection in these patients. Given the ages of the remaining patients (from 4 to 81 years), their infections were most probably due to virus reactivations. Where information was available, symptoms of patients included fever (71%), altered mental status (67%), and abnormal CSF profile (75%). Fifty percent of patients of 3 years of age or younger suffered from seizures. The detection of HHV-6 in specimens from patients diagnosed with encephalitis or meningitis, in the absence of a positive PCR result for other agents, strongly suggests a role for HHV-6 in the pathogenesis of these central nervous system diseases. PMID:17942643

  1. A novel, multiplexed, probe-based quantitative PCR assay for the soybean root- and stem-rot pathogen, Phytophthora sojae, utilizes its transposable element

    PubMed Central

    Haudenshield, James S.; Song, Jeong Y.; Hartman, Glen L.

    2017-01-01

    Phytophthora root rot of soybean [Glycine max (L.) Merr.] is caused by the oomycete Phytophthora sojae (Kaufm. & Gerd.). P. sojae has a narrow host range, consisting primarily of soybean, and it is a serious pathogen worldwide. It exists in root and stem tissues as mycelium, wherein it can form oospores which subsequently germinate to release motile, infectious zoospores. Molecular assays detecting DNA of P. sojae are useful in disease diagnostics, and for determining the presence of the organism in host tissues, soils, and runoff or ponded water from potentially infested fields. Such assays as published have utilized ITS sequences from the nuclear ribosomal RNA genes in conventional PCR or dye-binding quantitative PCR (Q-PCR) but are not amenable to multiplexing, and some of these assays did not utilize control strategies for type I or type II errors. In this study, we describe primers and a bifunctional probe with specificity to a gypsy-like retroelement in the P. sojae genome to create a fluorogenic 5’-exonuclease linear hydrolysis assay, with a multiplexed internal control reaction detecting an exogenous target to validate negative calls, and with uracil-deglycosylase-mediated protection against carryover contamination. The assay specifically detected 13 different P. sojae isolates, and excluded 17 other Phytophthora species along with 20 non-Phytophthora fungal and oomycete species pathogenic on soybean. A diagnostic limit of detection of 34 fg total P. sojae DNA was observed in serial dilutions, equivalent to 0.3 genome, and a practical detection sensitivity of four zoospores per sample was achieved, despite losses during DNA extraction. PMID:28441441

  2. Discriminatory Indices of Typing Methods for Epidemiologic Analysis of Contemporary Staphylococcus aureus Strains.

    PubMed

    Rodriguez, Marcela; Hogan, Patrick G; Satola, Sarah W; Crispell, Emily; Wylie, Todd; Gao, Hongyu; Sodergren, Erica; Weinstock, George M; Burnham, Carey-Ann D; Fritz, Stephanie A

    2015-09-01

    Historically, a number of typing methods have been evaluated for Staphylococcus aureus strain characterization. The emergence of contemporary strains of community-associated S. aureus, and the ensuing epidemic with a predominant strain type (USA300), necessitates re-evaluation of the discriminatory power of these typing methods for discerning molecular epidemiology and transmission dynamics, essential to investigations of hospital and community outbreaks. We compared the discriminatory index of 5 typing methods for contemporary S. aureus strain characterization. Children presenting to St. Louis Children's Hospital and community pediatric practices in St. Louis, Missouri (MO), with community-associated S. aureus infections were enrolled. Repetitive sequence-based PCR (repPCR), pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), staphylococcal protein A (spa), and staphylococcal cassette chromosome (SCC) mec typing were performed on 200 S. aureus isolates. The discriminatory index of each method was calculated using the standard formula for this metric, where a value of 1 is highly discriminatory and a value of 0 is not discriminatory. Overall, we identified 26 distinct strain types by repPCR, 17 strain types by PFGE, 30 strain types by MLST, 68 strain types by spa typing, and 5 strain types by SCCmec typing. RepPCR had the highest discriminatory index (D) of all methods (D = 0.88), followed by spa typing (D = 0.87), MLST (D = 0.84), PFGE (D = 0.76), and SCCmec typing (D = 0.60). The method with the highest D among MRSA isolates was repPCR (D = 0.64) followed by spa typing (D = 0.45) and MLST (D = 0.44). The method with the highest D among MSSA isolates was spa typing (D = 0.98), followed by MLST (D = 0.93), repPCR (D = 0.92), and PFGE (D = 0.89). Among isolates designated USA300 by PFGE, repPCR was most discriminatory, with 10 distinct strain types identified (D = 0.63). We identified 45 MRSA isolates which were classified as identical by PFGE, MLST, spa typing, and SCCmec typing (USA300, ST8, t008, SCCmec IV, respectively); within this collection, there were 5 distinct strain types identified by repPCR. The typing methods yielded comparable discriminatory power for S. aureus characterization overall; when discriminating among USA300 isolates, repPCR retained the highest discriminatory power. This property is advantageous for investigations conducted in the era of contemporary S. aureus infections.

  3. Discriminatory Indices of Typing Methods for Epidemiologic Analysis of Contemporary Staphylococcus aureus Strains

    PubMed Central

    Rodriguez, Marcela; Hogan, Patrick G.; Satola, Sarah W.; Crispell, Emily; Wylie, Todd; Gao, Hongyu; Sodergren, Erica; Weinstock, George M.; Burnham, Carey-Ann D.; Fritz, Stephanie A.

    2015-01-01

    Abstract Historically, a number of typing methods have been evaluated for Staphylococcus aureus strain characterization. The emergence of contemporary strains of community-associated S. aureus, and the ensuing epidemic with a predominant strain type (USA300), necessitates re-evaluation of the discriminatory power of these typing methods for discerning molecular epidemiology and transmission dynamics, essential to investigations of hospital and community outbreaks. We compared the discriminatory index of 5 typing methods for contemporary S. aureus strain characterization. Children presenting to St. Louis Children's Hospital and community pediatric practices in St. Louis, Missouri (MO), with community-associated S. aureus infections were enrolled. Repetitive sequence-based PCR (repPCR), pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), staphylococcal protein A (spa), and staphylococcal cassette chromosome (SCC) mec typing were performed on 200 S. aureus isolates. The discriminatory index of each method was calculated using the standard formula for this metric, where a value of 1 is highly discriminatory and a value of 0 is not discriminatory. Overall, we identified 26 distinct strain types by repPCR, 17 strain types by PFGE, 30 strain types by MLST, 68 strain types by spa typing, and 5 strain types by SCCmec typing. RepPCR had the highest discriminatory index (D) of all methods (D = 0.88), followed by spa typing (D = 0.87), MLST (D = 0.84), PFGE (D = 0.76), and SCCmec typing (D = 0.60). The method with the highest D among MRSA isolates was repPCR (D = 0.64) followed by spa typing (D = 0.45) and MLST (D = 0.44). The method with the highest D among MSSA isolates was spa typing (D = 0.98), followed by MLST (D = 0.93), repPCR (D = 0.92), and PFGE (D = 0.89). Among isolates designated USA300 by PFGE, repPCR was most discriminatory, with 10 distinct strain types identified (D = 0.63). We identified 45 MRSA isolates which were classified as identical by PFGE, MLST, spa typing, and SCCmec typing (USA300, ST8, t008, SCCmec IV, respectively); within this collection, there were 5 distinct strain types identified by repPCR. The typing methods yielded comparable discriminatory power for S. aureus characterization overall; when discriminating among USA300 isolates, repPCR retained the highest discriminatory power. This property is advantageous for investigations conducted in the era of contemporary S. aureus infections. PMID:26376402

  4. [Mission oriented diagnostic real-time PCR].

    PubMed

    Tomaso, Herbert; Scholz, Holger C; Al Dahouk, Sascha; Splettstoesser, Wolf D; Neubauer, Heinrich; Pfeffer, Martin; Straube, Eberhard

    2007-01-01

    In out of area military missions soldiers are potentially exposed to bacteria that are endemic in tropical areas and can be used as biological agents. It can be difficult to culture these bacteria due to sample contamination, low number of bacteria or pretreatment with antibiotics. Commercial biochemical identification systems are not optimized for these agents which can result in misidentification. Immunological assays are often not commercially available or not specific. Real-time PCR assays are very specific and sensitive and can shorten the time required to establish a diagnosis markedly. Therefore, real-time PCRs for the identification of Bacillus anthracis, Brucella spp., Burkholderia mallei und Burkholderia pseudomallei, Francisella tularensis und Yersinia pestis have been developed. PCR results can be false negative due to inadequate clinical samples, low number of bacteria in samples, DNA degradation, inhibitory substances and inappropriate DNA preparation. Hence, it is crucial to cultivate the organisms as a prerequisite for adequate antibiotic therapy and typing of the agent. In a bioterrorist scenario samples have to be treated according to rules applied in forensic medicine and documentation has to be flawless.

  5. Isolation and identification of bovine Brucella isolates from Pakistan by biochemical tests and PCR.

    PubMed

    Ali, Shahzad; Ali, Qurban; Melzer, Falk; Khan, Iahtasham; Akhter, Shamim; Neubauer, Heinrich; Jamal, Syed M

    2014-01-01

    Brucellosis is endemic in bovines in Pakistan. The Brucella species and biovars involved, however, are unknown. The objectives of the present study were to isolate and characterize brucellae from seropositive milk samples, aborted fetuses, and vaginal swabs of cattle and buffaloes which had recently aborted. The seropositive milk samples, aborted fetuses, and vaginal swabs of cattle and buffaloes were collected from the Potohar Plateau, Pakistan. Isolation of brucellae was done on modified Farrell's serum dextrose agar. Isolates were characterized by conventional biotyping methods, while molecular typing was done by genus (B4/B5) and species-specific (Brucella abortus, Brucella melitensis, Brucella ovis, and Brucella suis) polymerase chain reaction (PCR). A total of 30 isolates were recovered from milk (n = 5), aborted fetuses (n = 13), and vaginal swabs (n = 12). Most isolates were from cattle (56.7 %). All of them were identified as B. abortus biovar 1 based on conventional biotyping methods and genus and species-specific PCR. This preliminary study provides the first report on the prevalence of B. abortus biovar 1 in cattle and buffaloes in Pakistan.

  6. Development of strain-specific PCR primers for quantitative detection of Bacillus mesentericus strain TO-A in human feces.

    PubMed

    Sato, Naoki; Seo, Genichiro; Benno, Yoshimi

    2014-01-01

    Strain-specific polymerase chain reaction (PCR) primers for detection of Bacillus mesentericus strain TO-A (BM TO-A) were developed. The randomly amplified polymorphic DNA (RAPD) technique was used to produce potential strain-specific markers. A 991-bp RAPD marker found to be strain-specific was sequenced, and two primer pairs specific to BM TO-A were constructed based on this sequence. In addition, we explored a more specific DNA region using inverse PCR, and designed a strain-specific primer set for use in real-time quantitative PCR (qPCR). These primer pairs were tested against 25 Bacillus subtilis strains and were found to be strain-specific. After examination of the detection limit and linearity of detection of BM TO-A in feces, the qPCR method and strain-specific primers were used to quantify BM TO-A in the feces of healthy volunteers who had ingested 3×10(8) colony forming unit (CFU) of BM TO-A per day in tablets. During the administration period, BM TO-A was detected in the feces of all 24 subjects, and the average number of BM TO-A detected using the culture method and qPCR was about 10(4.8) and 10(5.8) cells per gram of feces, respectively. Using the qPCR method, BM TO-A was detected in the feces of half of the subjects 3 d after withdrawal, and was detected in the feces of only one subject 1 week after withdrawal. These results suggest that the qPCR method using BM TO-A strain-specific primers is useful for the quantitative detection of this strain in feces.

  7. [A novel TaqMan® MGB probe for specifically detecting Streptococcus mutans].

    PubMed

    Zheng, Hui; Lin, Jiu-Xiang; DU, Ning; Chen, Feng

    2013-10-18

    To design a new TaqMan® MGB probe for improving the specificity of Streptococcus mutans's detection. We extracted six DNA samples from different streptococcal strains for PCR reaction. Conventional nested PCR and TaqMan® MGB real-time PCR were applied independently. The first round of nested PCR was carried out with the bacterial universal primers, while a second PCR was conducted by using primers specific for the 16S rRNA gene of Streptococcus mutans. The TaqMan® MGB probe for Streptococcus mutans was designed from sequence analyses, and the primers were the same as nested PCR. Streptococcus mutans DNA with 2.5 mg/L was sequentially diluted at 5-fold intervals to 0.16 μg/L. Standard DNA samples were used to generate standard curves by TaqMan® MGB real-time PCR. In the nested PCR, the primers specific for Streptococcus mutans also detected Streptococcus gordonii with visible band of 282 bp, giving false-positive results. In the TaqMan® MGB real-time PCR reaction, only Streptococcus mutans was detected. The detection limitation of TaqMan® MGB real-time PCR for Streptococcus mutans 16S rRNA gene was 20 μg/L. We designed a new TaqMan® MGB probe, and successfully set up a PCR based method for detecting oral Streptococcus mutans. TaqMan® MGB real-time PCR is a both specific and sensitive bacterial detection method.

  8. Detection of knockdown resistance (kdr) mutations in Anopheles gambiae: a comparison of two new high-throughput assays with existing methods

    PubMed Central

    Bass, Chris; Nikou, Dimitra; Donnelly, Martin J; Williamson, Martin S; Ranson, Hilary; Ball, Amanda; Vontas, John; Field, Linda M

    2007-01-01

    Background Knockdown resistance (kdr) is a well-characterized mechanism of resistance to pyrethroid insecticides in many insect species and is caused by point mutations of the pyrethroid target site the para-type sodium channel. The presence of kdr mutations in Anopheles gambiae, the most important malaria vector in Africa, has been monitored using a variety of molecular techniques. However, there are few reports comparing the performance of these different assays. In this study, two new high-throughput assays were developed and compared with four established techniques. Methods Fluorescence-based assays based on 1) TaqMan probes and 2) high resolution melt (HRM) analysis were developed to detect kdr alleles in An. gambiae. Four previously reported techniques for kdr detection, Allele Specific Polymerase Chain Reaction (AS-PCR), Heated Oligonucleotide Ligation Assay (HOLA), Sequence Specific Oligonucleotide Probe – Enzyme-Linked ImmunoSorbent Assay (SSOP-ELISA) and PCR-Dot Blot were also optimized. The sensitivity and specificity of all six assays was then compared in a blind genotyping trial of 96 single insect samples that included a variety of kdr genotypes and African Anopheline species. The relative merits of each assay was assessed based on the performance in the genotyping trial, the length/difficulty of each protocol, cost (both capital outlay and consumable cost), and safety (requirement for hazardous chemicals). Results The real-time TaqMan assay was both the most sensitive (with the lowest number of failed reactions) and the most specific (with the lowest number of incorrect scores). Adapting the TaqMan assay to use a PCR machine and endpoint measurement with a fluorimeter showed a slight reduction in sensitivity and specificity. HRM initially gave promising results but was more sensitive to both DNA quality and quantity and consequently showed a higher rate of failure and incorrect scores. The sensitivity and specificity of AS-PCR, SSOP-ELISA, PCR Dot Blot and HOLA was fairly similar with a small number of failures and incorrect scores. Conclusion The results of blind genotyping trials of each assay indicate that where maximum sensitivity and specificity are required the TaqMan real-time assay is the preferred method. However, the cost of this assay, particularly in terms of initial capital outlay, is higher than that of some of the other methods. TaqMan assays using a PCR machine and fluorimeter are nearly as sensitive as real-time assays and provide a cost saving in capital expenditure. If price is a primary factor in assay choice then the AS-PCR, SSOP-ELISA, and HOLA are all reasonable alternatives with the SSOP-ELISA approach having the highest throughput. PMID:17697325

  9. Rapid group-, serotype-, and vaccine strain-specific identification of poliovirus isolates by real-time reverse transcription-PCR using degenerate primers and probes containing deoxyinosine residues.

    PubMed

    Kilpatrick, David R; Yang, Chen-Fu; Ching, Karen; Vincent, Annelet; Iber, Jane; Campagnoli, Ray; Mandelbaum, Mark; De, Lina; Yang, Su-Ju; Nix, Allan; Kew, Olen M

    2009-06-01

    We have adapted our previously described poliovirus diagnostic reverse transcription-PCR (RT-PCR) assays to a real-time RT-PCR (rRT-PCR) format. Our highly specific assays and rRT-PCR reagents are designed for use in the WHO Global Polio Laboratory Network for rapid and large-scale identification of poliovirus field isolates.

  10. Design of primers and probes for quantitative real-time PCR methods.

    PubMed

    Rodríguez, Alicia; Rodríguez, Mar; Córdoba, Juan J; Andrade, María J

    2015-01-01

    Design of primers and probes is one of the most crucial factors affecting the success and quality of quantitative real-time PCR (qPCR) analyses, since an accurate and reliable quantification depends on using efficient primers and probes. Design of primers and probes should meet several criteria to find potential primers and probes for specific qPCR assays. The formation of primer-dimers and other non-specific products should be avoided or reduced. This factor is especially important when designing primers for SYBR(®) Green protocols but also in designing probes to ensure specificity of the developed qPCR protocol. To design primers and probes for qPCR, multiple software programs and websites are available being numerous of them free. These tools often consider the default requirements for primers and probes, although new research advances in primer and probe design should be progressively added to different algorithm programs. After a proper design, a precise validation of the primers and probes is necessary. Specific consideration should be taken into account when designing primers and probes for multiplex qPCR and reverse transcription qPCR (RT-qPCR). This chapter provides guidelines for the design of suitable primers and probes and their subsequent validation through the development of singlex qPCR, multiplex qPCR, and RT-qPCR protocols.

  11. Development and Validation of a New Reliable Method for the Diagnosis of Avian Botulism.

    PubMed

    Le Maréchal, Caroline; Rouxel, Sandra; Ballan, Valentine; Houard, Emmanuelle; Poezevara, Typhaine; Bayon-Auboyer, Marie-Hélène; Souillard, Rozenn; Morvan, Hervé; Baudouard, Marie-Agnès; Woudstra, Cédric; Mazuet, Christelle; Le Bouquin, Sophie; Fach, Patrick; Popoff, Michel; Chemaly, Marianne

    2017-01-01

    Liver is a reliable matrix for laboratory confirmation of avian botulism using real-time PCR. Here, we developed, optimized, and validated the analytical steps preceding PCR to maximize the detection of Clostridium botulinum group III in avian liver. These pre-PCR steps included enrichment incubation of the whole liver (maximum 25 g) at 37°C for at least 24 h in an anaerobic chamber and DNA extraction using an enzymatic digestion step followed by a DNA purification step. Conditions of sample storage before analysis appear to have a strong effect on the detection of group III C. botulinum strains and our results recommend storage at temperatures below -18°C. Short-term storage at 5°C is possible for up to 24 h, but a decrease in sensitivity was observed at 48 h of storage at this temperature. Analysis of whole livers (maximum 25 g) is required and pooling samples before enrichment culturing must be avoided. Pooling is however possible before or after DNA extraction under certain conditions. Whole livers should be 10-fold diluted in enrichment medium and homogenized using a Pulsifier® blender (Microgen, Surrey, UK) instead of a conventional paddle blender. Spiked liver samples showed a limit of detection of 5 spores/g liver for types C and D and 250 spores/g for type E. Using the method developed here, the analysis of 268 samples from 73 suspected outbreaks showed 100% specificity and 95.35% sensitivity compared with other PCR-based methods considered as reference. The mosaic type C/D was the most common neurotoxin type found in examined samples, which included both wild and domestic birds.

  12. Development and Validation of a New Reliable Method for the Diagnosis of Avian Botulism

    PubMed Central

    Le Maréchal, Caroline; Rouxel, Sandra; Ballan, Valentine; Houard, Emmanuelle; Poezevara, Typhaine; Bayon-Auboyer, Marie-Hélène; Souillard, Rozenn; Morvan, Hervé; Baudouard, Marie-Agnès; Woudstra, Cédric; Mazuet, Christelle; Le Bouquin, Sophie; Fach, Patrick; Popoff, Michel; Chemaly, Marianne

    2017-01-01

    Liver is a reliable matrix for laboratory confirmation of avian botulism using real-time PCR. Here, we developed, optimized, and validated the analytical steps preceding PCR to maximize the detection of Clostridium botulinum group III in avian liver. These pre-PCR steps included enrichment incubation of the whole liver (maximum 25 g) at 37°C for at least 24 h in an anaerobic chamber and DNA extraction using an enzymatic digestion step followed by a DNA purification step. Conditions of sample storage before analysis appear to have a strong effect on the detection of group III C. botulinum strains and our results recommend storage at temperatures below -18°C. Short-term storage at 5°C is possible for up to 24 h, but a decrease in sensitivity was observed at 48 h of storage at this temperature. Analysis of whole livers (maximum 25 g) is required and pooling samples before enrichment culturing must be avoided. Pooling is however possible before or after DNA extraction under certain conditions. Whole livers should be 10-fold diluted in enrichment medium and homogenized using a Pulsifier® blender (Microgen, Surrey, UK) instead of a conventional paddle blender. Spiked liver samples showed a limit of detection of 5 spores/g liver for types C and D and 250 spores/g for type E. Using the method developed here, the analysis of 268 samples from 73 suspected outbreaks showed 100% specificity and 95.35% sensitivity compared with other PCR-based methods considered as reference. The mosaic type C/D was the most common neurotoxin type found in examined samples, which included both wild and domestic birds. PMID:28076405

  13. Rapid specific and visible detection of porcine circovirus type 3 using loop-mediated isothermal amplification (LAMP).

    PubMed

    Zheng, S; Wu, X; Shi, J; Peng, Z; Gao, M; Xin, C; Liu, Y; Wang, S; Xu, S; Han, H; Yu, J; Sun, W; Cong, X; Li, J; Wang, J

    2018-06-01

    In this study, a rapid and specific assay for the detection of porcine circovirus type 3 (PCV3) was established using loop-mediated isothermal amplification (LAMP). Four primers were specifically designed to amplify PCV3. The LAMP assay was effectively optimized to amplify PCV3 by water bath at 60°C for 60 min. The detection limit was approximately 1 × 10 1 copy in this LAMP assay. Compared to porcine circovirus type 2 (PCV2), both gE and gD genes of pseudorabies virus (PRV) and porcine parvovirus (PPV), the LAMP assay showed a high specific detection of PCV3. A visible detection method was developed using SYBR Green I to recognize the results rapidly. Based on the detection of 20 clinical tissue samples, the LAMP assay was more practical and convenient than classical PCR due to its simplicity, high sensitivity, rapidity, specificity, visibility and cost efficiency. © 2018 Blackwell Verlag GmbH.

  14. Multiplex KRASG12/G13 mutation testing of unamplified cell-free DNA from the plasma of patients with advanced cancers using droplet digital polymerase chain reaction.

    PubMed

    Janku, F; Huang, H J; Fujii, T; Shelton, D N; Madwani, K; Fu, S; Tsimberidou, A M; Piha-Paul, S A; Wheler, J J; Zinner, R G; Naing, A; Hong, D S; Karp, D D; Cabrilo, G; Kopetz, E S; Subbiah, V; Luthra, R; Kee, B K; Eng, C; Morris, V K; Karlin-Neumann, G A; Meric-Bernstam, F

    2017-03-01

    Cell-free DNA (cfDNA) from plasma offers easily obtainable material for KRAS mutation analysis. Novel, multiplex, and accurate diagnostic systems using small amounts of DNA are needed to further the use of plasma cfDNA testing in personalized therapy. Samples of 16 ng of unamplified plasma cfDNA from 121 patients with diverse progressing advanced cancers were tested with a KRASG12/G13 multiplex assay to detect the seven most common mutations in the hotspot of exon 2 using droplet digital polymerase chain reaction (ddPCR). The results were retrospectively compared to mutation analysis of archival primary or metastatic tumor tissue obtained at different points of clinical care. Eighty-eight patients (73%) had KRASG12/G13 mutations in archival tumor specimens collected on average 18.5 months before plasma analysis, and 78 patients (64%) had KRASG12/G13 mutations in plasma cfDNA samples. The two methods had initial overall agreement in 103 (85%) patients (kappa, 0.66; ddPCR sensitivity, 84%; ddPCR specificity, 88%). Of the 18 discordant cases, 12 (67%) were resolved by increasing the amount of cfDNA, using mutation-specific probes, or re-testing the tumor tissue, yielding overall agreement in 115 patients (95%; kappa 0.87; ddPCR sensitivity, 96%; ddPCR specificity, 94%). The presence of ≥ 6.2% of KRASG12/G13 cfDNA in the wild-type background was associated with shorter survival (P = 0.001). Multiplex detection of KRASG12/G13 mutations in a small amount of unamplified plasma cfDNA using ddPCR has good sensitivity and specificity and good concordance with conventional clinical mutation testing of archival specimens. A higher percentage of mutant KRASG12/G13 in cfDNA corresponded with shorter survival. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Development of Prevotella intermedia-specific PCR primers based on the nucleotide sequences of a DNA probe Pig27.

    PubMed

    Kim, Min Jung; Hwang, Kyung Hwan; Lee, Young-Seok; Park, Jae-Yoon; Kook, Joong-Ki

    2011-03-01

    The aim of this study was to develop Prevotella intermedia-specific PCR primers based on the P. intermedia-specific DNA probe. The P. intermedia-specific DNA probe was screened by inverted dot blot hybridization and confirmed by Southern blot hybridization. The nucleotide sequences of the species-specific DNA probes were determined using a chain termination method. Southern blot analysis showed that the DNA probe, Pig27, detected only the genomic DNA of P. intermedia strains. PCR showed that the PCR primers, Pin-F1/Pin-R1, had species-specificity for P. intermedia. The detection limits of the PCR primer sets were 0.4pg of the purified genomic DNA of P. intermedia ATCC 49046. These results suggest that the PCR primers, Pin-F1/Pin-R1, could be useful in the detection of P. intermedia as well as in the development of a PCR kit in epidemiological studies related to periodontal diseases. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  16. Survey for collagenase gene prtC in Porphyromonas gingivalis and Porphyromonas endodontalis isolated from endodontic infections.

    PubMed

    Odell, L J; Baumgartner, J C; Xia, T; David, L L

    1999-08-01

    Collagenase is a potential virulence factor shown to be expressed by Porphyromonas gingivalis associated with periodontal disease. The purpose of this study was to use the polymerase chain reaction (PCR) to detect the presence of the collagenase gene (prtC) in 21 strains of Porphyromonas species isolated from endodontic infections. Type strains for P. gingivalis (ATCC 33277), P. endodontalis (ATCC 35406), Prevotella intermedia (ATCC 25611), and Prevotella nigrescens (ATCC 33563) were used as controls. When PCR primers specific for the 16S ribosomal RNA gene of P. gingivalis or P. endodontalis were used, 16 of the strains were identified as P. gingivalis, and five strains were identified as P. endodontalis. The presence of the prtC gene for collagenase was detected using PCR. Amplicons were analyzed by agarose gel electrophoresis, with an 815 bp amplicon representing the presence of the collagenase gene. Type strain ATCC 33277 and all 16 clinical isolates of P. gingivalis produced the collagenase gene amplicon. Neither type strain ATCC 35406 nor the five strains from clinical isolates of P. endodontalis produced the collagenase gene amplicon. These results indicate that P. gingivalis from endodontic infections possesses the prtC gene. P. endodontalis does not seem to exhibit prtC. The virulence of P. gingivalis may be related to its production of collagenase.

  17. [Typing and subtyping avian influenza virus using DNA microarrays].

    PubMed

    Yang, Zhongping; Wang, Xiurong; Tian, Lina; Wang, Yu; Chen, Hualan

    2008-07-01

    Outbreaks of highly pathogenic avian influenza (HPAI) virus has caused great economic loss to the poultry industry and resulted in human deaths in Thailand and Vietnam since 2004. Rapid typing and subtyping of viruses, especially HPAI from clinical specimens, are desirable for taking prompt control measures to prevent spreading of the disease. We described a simultaneous approach using microarray to detect and subtype avian influenza virus (AIV). We designed primers of probe genes and used reverse transcriptase PCR to prepare cDNAs of AIV M gene, H5, H7, H9 subtypes haemagglutinin genes and N1, N2 subtypes neuraminidase genes. They were cloned, sequenced, reamplified and spotted to form a glass-bound microarrays. We labeled samples using Cy3-dUTP by RT-PCR, hybridized and scanned the microarrays to typing and subtyping AIV. The hybridization pattern agreed perfectly with the known grid location of each probe, no cross hybridization could be detected. Examinating of HA subtypes 1 through 15, 30 infected samples and 21 field samples revealed the DNA microarray assay was more sensitive and specific than RT-PCR test and chicken embryo inoculation. It can simultaneously detect and differentiate the main epidemic AIV. The results show that DNA microarray technology is a useful diagnostic method.

  18. Detection and characterization of recombinant DNA expressing vip3A-type insecticidal gene in GMOs--standard single, multiplex and construct-specific PCR assays.

    PubMed

    Singh, Chandra K; Ojha, Abhishek; Bhatanagar, Raj K; Kachru, Devendra N

    2008-01-01

    Vegetative insecticidal protein (Vip), a unique class of insecticidal protein, is now part of transgenic plants for conferring resistance against lepidopteron pests. In order to address the imminent regulatory need for detection and labeling of vip3A carrying genetically modified (GM) products, we have developed a standard single PCR and a multiplex PCR assay. As far as we are aware, this is the first report on PCR-based detection of a vip3A-type gene (vip-s) in transgenic cotton and tobacco. Our assay involves amplification of a 284-bp region of the vip-s gene. This assay can possibly detect as many as 20 natural wild-type isolates bearing a vip3A-like gene and two synthetic genes of vip3A in transgenic plants. The limit of detection as established by our assay for GM trait (vip-s) is 0.1%. Spiking with nontarget DNA originating from diverse plant sources had no inhibitory effect on vip-s detection. Since autoclaving of vip-s bearing GM leaf samples showed no deterioration/interference in detection efficacy, the assay seems to be suitable for processed food products as well. The vip-s amplicon identity was reconfirmed by restriction endonuclease assay. The primer set for vip-s was equally effective in a multiplex PCR assay format (duplex, triplex and quadruplex), used in conjunction with the primer sets for the npt-II selectable marker gene, Cauliflower mosaic virus 35S promoter and nopaline synthetase terminator, enabling concurrent detection of the transgene, regulatory sequences and marker gene. Further, the entire transgene construct was amplified using the forward primer of the promoter and the reverse primer of the terminator. The resultant amplicon served as a template for nested PCR to confirm the construct integrity. The method is suitable for screening any vip3A-carrying GM plant and food. The availability of a reliable PCR assay method prior to commercial release of vip3A-based transgenic crops and food would facilitate rapid and efficient regulatory compliance.

  19. 454 next generation-sequencing outperforms allele-specific PCR, Sanger sequencing, and pyrosequencing for routine KRAS mutation analysis of formalin-fixed, paraffin-embedded samples

    PubMed Central

    Altimari, Annalisa; de Biase, Dario; De Maglio, Giovanna; Gruppioni, Elisa; Capizzi, Elisa; Degiovanni, Alessio; D’Errico, Antonia; Pession, Annalisa; Pizzolitto, Stefano; Fiorentino, Michelangelo; Tallini, Giovanni

    2013-01-01

    Detection of KRAS mutations in archival pathology samples is critical for therapeutic appropriateness of anti-EGFR monoclonal antibodies in colorectal cancer. We compared the sensitivity, specificity, and accuracy of Sanger sequencing, ARMS-Scorpion (TheraScreen®) real-time polymerase chain reaction (PCR), pyrosequencing, chip array hybridization, and 454 next-generation sequencing to assess KRAS codon 12 and 13 mutations in 60 nonconsecutive selected cases of colorectal cancer. Twenty of the 60 cases were detected as wild-type KRAS by all methods with 100% specificity. Among the 40 mutated cases, 13 were discrepant with at least one method. The sensitivity was 85%, 90%, 93%, and 92%, and the accuracy was 90%, 93%, 95%, and 95% for Sanger sequencing, TheraScreen real-time PCR, pyrosequencing, and chip array hybridization, respectively. The main limitation of Sanger sequencing was its low analytical sensitivity, whereas TheraScreen real-time PCR, pyrosequencing, and chip array hybridization showed higher sensitivity but suffered from the limitations of predesigned assays. Concordance between the methods was k = 0.79 for Sanger sequencing and k > 0.85 for the other techniques. Tumor cell enrichment correlated significantly with the abundance of KRAS-mutated deoxyribonucleic acid (DNA), evaluated as ΔCt for TheraScreen real-time PCR (P = 0.03), percentage of mutation for pyrosequencing (P = 0.001), ratio for chip array hybridization (P = 0.003), and percentage of mutation for 454 next-generation sequencing (P = 0.004). Also, 454 next-generation sequencing showed the best cross correlation for quantification of mutation abundance compared with all the other methods (P < 0.001). Our comparison showed the superiority of next-generation sequencing over the other techniques in terms of sensitivity and specificity. Next-generation sequencing will replace Sanger sequencing as the reference technique for diagnostic detection of KRAS mutation in archival tumor tissues. PMID:23950653

  20. Routine HLA-B genotyping with PCR-sequence-specific oligonucleotides detects a B*52 variant (B*5206).

    PubMed

    Hoelsch, K; Lenggeler, I; Pfannes, W; Knabe, H; Klein, H-G; Woelpl, A

    2005-05-01

    A new human leukocyte antigen (HLA)-B allele was found during routine typing of samples for a German unrelated bone marrow donor registry, the "Aktion Knochenmarkspende Bayern". After first interpretation of data of two independent low-resolution sequence-specific oligonucleotide typing tests, a B*51 variant was suggested. Further analysis via sequence-based typing identified the sequence as new B*52 allele. This new allele officially assigned as B*5206 differs from HLA-B*520102 by one nucleotide exchange in exon 2. The mutation is located at nucleotide position 274, at which a cytosine is substituted by a thymine leading to an amino acid change at protein position 67 from serine (TCC) to phenylalanine (TTC).

  1. Detection of human papillomaviruses by polymerase chain reaction and ligation reaction on universal microarray.

    PubMed

    Ritari, Jarmo; Hultman, Jenni; Fingerroos, Rita; Tarkkanen, Jussi; Pullat, Janne; Paulin, Lars; Kivi, Niina; Auvinen, Petri; Auvinen, Eeva

    2012-01-01

    Sensitive and specific detection of human papillomaviruses (HPV) in cervical samples is a useful tool for the early diagnosis of epithelial neoplasia and anogenital lesions. Recent studies support the feasibility of HPV DNA testing instead of cytology (Pap smear) as a primary test in population screening for cervical cancer. This is likely to be an option in the near future in many countries, and it would increase the efficiency of screening for cervical abnormalities. We present here a microarray test for the detection and typing of 15 most important high-risk HPV types and two low risk types. The method is based on type specific multiplex PCR amplification of the L1 viral genomic region followed by ligation detection reaction where two specific ssDNA probes, one containing a fluorescent label and the other a flanking ZipCode sequence, are joined by enzymatic ligation in the presence of the correct HPV PCR product. Human beta-globin is amplified in the same reaction to control for sample quality and adequacy. The genotyping capacity of our approach was evaluated against Linear Array test using cervical samples collected in transport medium. Altogether 14 out of 15 valid samples (93%) gave concordant results between our test and Linear Array. One sample was HPV56 positive in our test and high-risk positive in Hybrid Capture 2 but remained negative in Linear Array. The preliminary results suggest that our test has accurate multiple HPV genotyping capability with the additional advantages of generic detection format, and potential for high-throughput screening.

  2. Evaluation of automated repetitive-sequence-based PCR (DiversiLab) compared to PCR ribotyping for rapid molecular typing of community- and nosocomial-acquired Clostridium difficile.

    PubMed

    Church, Deirdre L; Chow, Barbara L; Lloyd, Tracie; Gregson, Daniel B

    2011-06-01

    Automated repetitive PCR (rep-PCR; DiversiLab) was compared to PCR ribotyping of the 16S-23S RNA intergenic spacer of Clostridium difficile (CD) as the "gold standard" method for CD typing. PCR products were separated on DiversiLab LabChips (bioMérieux, St. Laurent, Quebec, Canada) utilizing a 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA) operating the DiversiLab v1.4 assay. Bioanalyzer data were exported to a secure DiversiLab website and analyzed with DiversiLab v3.4 software. Replicability of each method was verified by confirming that the 5 CD reference strains (RS) formed distinct clusters (CD4, CD6, VL0047, VL0013 [ribotype 027], VL0018 [ribotype 001]) by both typing methods. Ninety randomly selected clinical isolates (CS) were analyzed by both methods: 49 from community-acquired and 41 from hospital-acquired cases. A similarity index (SI) of ≥90% was used to define clusters when comparing the known RS cluster to the PCR ribotyping and rep-PCR patterns of CS. Fourteen different PCR-ribotype clusters were identified, but most CS formed 4 major clusters (i.e., CD4 [15/90; 17%], CD6 [17%], 027 [12%], and 001 [9%]). A total of 7 rep-PCR types were identified, but most CS formed 2 major rep-PCR clusters (i.e., CD4 [29/90; 32%] and CD6 [23%]); several PCR ribotypes occurred within a single rep-PCR cluster. Rep-PCR did not distinguish 027 or 001 isolates; i) 027 RS strain did not cluster, ii) eleven 027 CS strains clustered as CD4, iii) no 027 CS strains clustered with the 027 RS, and iv) only 2 001 CS clustered with the RS. Agreement between the PCR-ribotype and rep-PCR clusters only occurred for 35/90 (39%) of the CS using a rep-PCR SI of ≥90%. Rep-PCR time to results was similar, but the annual costs of routinely using this method are 32% higher than PCR ribotyping. Routine use of rep-PCR for CD typing is limited by its lack of definitive separation of the hypertoxigenic 027 or 001 outbreak CD strains. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Presence of Type I-F CRISPR/Cas systems is associated with antimicrobial susceptibility in Escherichia coli.

    PubMed

    Aydin, Seyid; Personne, Yoann; Newire, Enas; Laverick, Rebecca; Russell, Oliver; Roberts, Adam P; Enne, Virve I

    2017-08-01

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and their associated cas genes are sequence-specific DNA nuclease systems found in bacteria and archaea. CRISPR/Cas systems use RNA transcripts of previously acquired DNA (spacers) to target invading genetic elements with the same sequence, including plasmids. In this research we studied the relationship between CRISPR/Cas systems and multidrug resistance in Escherichia coli . The presence of Type I-E and Type I-F CRISPR systems was investigated among 82 antimicrobial-susceptible and 96 MDR clinical E. coli isolates by PCR and DNA sequencing. Phylogrouping and MLST were performed to determine relatedness of isolates. RT-PCR was performed to ascertain the expression of associated cas genes. Type I-F CRISPR was associated with the B2 phylogroup and was significantly overrepresented in the susceptible group (22.0%) compared with the MDR group (2.1%). The majority of CRISPR I-F-containing isolates had spacer sequences that matched IncF and IncI plasmids. RT-PCR demonstrated that Type I-F cas genes were expressed and therefore potentially functional. The CRISPR I-F system is more likely to be found in antimicrobial-susceptible E. coli . Given that the Type I-F system is expressed in WT isolates, we suggest that this difference could be due to the CRISPR system potentially interfering with the acquisition of antimicrobial resistance plasmids, maintaining susceptibility in these isolates. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Porcine reproductive and respiratory syndrome virus and porcine circovirus type 2 infections in wild boar (Sus scrofa) in southwestern Germany.

    PubMed

    Hammer, Ralf; Ritzmann, Mathias; Palzer, Andreas; Lang, Christiane; Hammer, Birgit; Pesch, Stefan; Ladinig, Andrea

    2012-01-01

    Samples were collected from 203 wild boars (Sus scrofa) hunted in Baden-Wurtemburg, Germany from November-January 2008 and 2009. Samples from the lung and tonsil were analyzed by quantitative polymerase chain reaction (qPCR) for porcine reproductive and respiratory syndrome virus (PRRSV) type 1 (European type) and type 2 (American type). A qPCR to detect porcine circovirus type 2 (PCV2)-specific genome was performed on tissue homogenates including lung, tonsils, and inguinal lymph nodes. Serum samples were tested for antibodies against PRRSV and PCV2 by enzyme-linked immunosorbent assay (ELISA). No PRRSV was detected in any of the 203 samples and one sample had detectable antibodies against PRRSV. We detected PCV2 in organ materials from 103 wild boars with a prevalence of 50.7%. The number of wild boars positive for PCV2 by PCR varied according to the population density of wild boars among woodlands. More positive samples were detected in woodlands with a high density of wild boars. We found no correlation between the number of PCV2-positive wild boars and the density of domestic pigs in the surrounding area. The number of wild boars positive for antibodies against PCV2 by the INGEZIM Circovirus IgG/IgM test kit was low (53 sera positive for IgG- and three sera positive for IgM-antibodies) in comparison to the higher positive results from the INGEZIM CIRCO IgG test kit (102 positive and 12 inconclusive results).

  5. Detection of G1 genotype of human cystic echinococcosis in Egypt.

    PubMed

    Abd El Baki, Mohammad H; El Missiry, Adel M G; Abd El Aaty, Heba E M; Mohamad, Anhar A; Aminou, Heba A R

    2009-12-01

    The first trial to detect G1 genotype in Egyptian human isolates of hydatid cysts (HC) and serum samples to approach diagnosis of cystic echinococcosis (CE) using human sera by PCR. Using strain specific primers, 27/36 confirmed CE patients (75%) showed G1 specific band in their sera at 254 bp. Specificity was 100% without detecting bands for either other parasitosis, or mass occupying lesions. Using PCR, G1 genotype was detected in 83.3% of HC samples, without significant difference between types of human isolates (pulmonary, hepatic, or multi-organ). G1 genotype detection in human sera was in 75% of CE patients compared to 83.3% in HC samples of the same group of patients proved satisfactory, simple and safer than HCF sampling. IHAT gave sensitivity of 58.3% compared to histopathological examination of surgically removed cysts or examination of hydatid cyst fluid (HCF) for protoscolices (gold standards). The specificity was 70% with false positive reactions with other parasitic infections and mass occupying lesions. PCR detection of G1 genotype in Egyptian animal hydatid cysts showed 90% in camel isolates and 80% in sheep isolates, but pig isolates were negative. The presence of this genotype in a high percentage in camel isolates incriminated sheep strain as the source of CE camel infection. The results may give an explanation to the contradicting results of other studies that did not relay upon molecular aspects.

  6. A PCR-based tool for the cultivation-independent monitoring of Pandora neoaphidis.

    PubMed

    Fournier, A; Enkerli, J; Keller, S; Widmer, F

    2008-09-01

    Pandora neoaphidis is one of the most important fungal pathogens of aphids and has a great potential for use in biocontrol. Little is known on how this fungus persists in an area and in particular on its overwintering strategies. It is hypothesized that natural areas play an important role for survival and that soil may serve as a source of inoculum for new aphid populations in spring. To test these hypotheses, a cultivation-independent PCR-based diagnostic tool was developed, that allows the detection of P. neoaphidis in the environment. Two P. neoaphidis specific PCR primer pairs were designed, targeting sequences in the ribosomal RNA gene cluster. Specificity of both primer pairs was demonstrated with P. neoaphidis and non-target close entomophthoralean relatives. Moreover, single amplicons of expected sizes were obtained with both primer pairs from various environmental sample types, including aphid cadavers, plant material, and soil. The PCR-based diagnostic tool was applied to investigate the persistence of P. neoaphidis in soil samples obtained in 2004/2005 from a nettle field harboring infected aphids in fall 2004. P. neoaphidis was detected in every sample collected in November 2004 and March 2005, suggesting an overwintering stage of P. neoaphidis in top soil layers. The developed cultivation-independent PCR-based tool will be valuable for further investigation of the ecology of P. neoaphidis and for the development and future implementation of management strategies against aphids involving conservation biocontrol.

  7. Analytical Performances of Human Immunodeficiency Virus Type 1 RNA-Based Amplix® Real-Time PCR Platform for HIV-1 RNA Quantification

    PubMed Central

    Mboumba Bouassa, Ralph-Sydney; Jenabian, Mohammad-Ali; Wolyec, Serge Tonen; Robin, Leman; Matta, Mathieu; Longo, Jean de Dieu; Grésenguet, Gérard; Andreoletti, Laurent; Bélec, Laurent

    2016-01-01

    Objectives. We evaluated the performances of Amplix real-time PCR platform developed by Biosynex (Strasbourg, France), combining automated station extraction (Amplix station 16 Dx) and real-time PCR (Amplix NG), for quantifying plasma HIV-1 RNA by lyophilized HIV-1 RNA-based Amplix reagents targeting gag and LTR, using samples from HIV-1-infected adults from Central African Republic. Results. Amplix real-time PCR assay showed low limit of detection (28 copies/mL), across wide dynamic range (1.4–10 log copies/mL), 100% sensitivity and 99% specificity, high reproducibility, and accuracy with mean bias < 5%. The assay showed excellent correlations and concordance of 95.3% with the reference HIV-1 RNA load assay (Roche), with mean absolute bias of +0.097 log copies/mL by Bland-Altman analysis. The assay was able to detect and quantify the most prevalent HIV-1 subtype strains and the majority of non-B subtypes, CRFs of HIV-1 group M, and HIV-1 groups N and O circulating in Central Africa. The Amplix assay showed 100% sensitivity and 99.6% specificity to diagnose virological failure in clinical samples from antiretroviral drug-experienced patients. Conclusions. The HIV-1 RNA-based Amplix real-time PCR platform constitutes sensitive and reliable system for clinical monitoring of HIV-1 RNA load in HIV-1-infected children and adults, particularly adapted to intermediate laboratory facilities in sub-Saharan Africa. PMID:28050283

  8. Rapid and simultaneous detection of Salmonella spp., Escherichia coli O157, and Listeria monocytogenes by magnetic capture hybridization and multiplex real-time PCR.

    PubMed

    Carloni, Elisa; Rotundo, Luca; Brandi, Giorgio; Amagliani, Giulia

    2018-05-25

    The application of rapid, specific, and sensitive methods for pathogen detection and quantification is very advantageous in diagnosis of human pathogens in several applications, including food analysis. The aim of this study was the evaluation of a method for the multiplexed detection and quantification of three significant foodborne pathogenic species (Escherichia coli O157, Salmonella spp., and Listeria monocytogenes). The assay combines specific DNA extraction by multiplex magnetic capture hybridization (mMCH) with multiplex real-time PCR. The amplification assay showed linearity in the range 10 6 -10 genomic units (GU)/PCR for each co-amplified species. The sensitivity corresponded to 1 GU/PCR for E. coli O157 and L. monocytogenes, and 10 GU/PCR for Salmonella spp. The immobilization process and the hybrid capture of the MCH showed good efficiency and reproducibility for all targets, allowing the combination in equal amounts of the different nanoparticle types in mMCH. MCH and mMCH efficiencies were similar. The detection limit of the method was 10 CFU in samples with individual pathogens and 10 2  CFU in samples with combination of the three pathogens in unequal amounts (amount's differences of 2 or 3 log). In conclusion, this multiplex molecular platform can be applied to determine the presence of target species in food samples after culture enrichment. In this way, this method could be a time-saving and sensitive tool to be used in routine diagnosis.

  9. Development of reverse transcription-PCR assays specific for detection of equine encephalitis viruses.

    PubMed

    Linssen, B; Kinney, R M; Aguilar, P; Russell, K L; Watts, D M; Kaaden, O R; Pfeffer, M

    2000-04-01

    Specific and sensitive reverse transcription-PCR (RT-PCR) assays were developed for the detection of eastern, western, and Venezuelan equine encephalitis viruses (EEE, WEE, and VEE, respectively). Tests for specificity included all known alphavirus species. The EEE-specific RT-PCR amplified a 464-bp region of the E2 gene exclusively from 10 different EEE strains from South and North America with a sensitivity of about 3,000 RNA molecules. In a subsequent nested PCR, the specificity was confirmed by the amplification of a 262-bp fragment, increasing the sensitivity of this assay to approximately 30 RNA molecules. The RT-PCR for WEE amplified a fragment of 354 bp from as few as 2,000 RNA molecules. Babanki virus, as well as Mucambo and Pixuna viruses (VEE subtypes IIIA and IV), were also amplified. However, the latter viruses showed slightly smaller fragments of about 290 and 310 bp, respectively. A subsequent seminested PCR amplified a 195-bp fragment only from the 10 tested strains of WEE from North and South America, rendering this assay virus specific and increasing its sensitivity to approximately 20 RNA molecules. Because the 12 VEE subtypes showed too much divergence in their 26S RNA nucleotide sequences to detect all of them by the use of nondegenerate primers, this assay was confined to the medically important and closely related VEE subtypes IAB, IC, ID, IE, and II. The RT-PCR-seminested PCR combination specifically amplified 342- and 194-bp fragments of the region covering the 6K gene in VEE. The sensitivity was 20 RNA molecules for subtype IAB virus and 70 RNA molecules for subtype IE virus. In addition to the subtypes mentioned above, three of the enzootic VEE (subtypes IIIB, IIIC, and IV) showed the specific amplicon in the seminested PCR. The practicability of the latter assay was tested with human sera gathered as part of the febrile illness surveillance in the Amazon River Basin of Peru near the city of Iquitos. All of the nine tested VEE-positive sera showed the expected 194-bp amplicon of the VEE-specific RT-PCR-seminested PCR.

  10. Detection of Epidemic USA300 Community-Associated Methicillin-Resistant Staphylococcus aureus Strains by Use of a Single Allele-Specific PCR Assay Targeting a Novel Polymorphism of Staphylococcus aureus pbp3

    PubMed Central

    Chadwick, Sean G.; Prasad, Aditya; Smith, W. Lamar; Mordechai, Eli; Adelson, Martin E.

    2013-01-01

    In recent years, the dramatic increase in community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) infections has become a significant health care challenge. Early detection of CA-MRSA is important because of its increased virulence associated with the arginine catabolic mobile element (ACME), Panton-Valentine leukocidin (PVL), and other toxins that may contribute to disease severity. In particular, the USA300 epidemic clone has emerged and now represents the cause of as much as 98% of CA-MRSA skin and soft tissue infections in the United States. Current diagnostic assays used to identify CA-MRSA strains are based on complex multiplex PCRs targeting the staphylococcal cassette chromosome mec (SCCmec) DNA junction, a multitude of genes, and noncoding DNA fragments or on a number of lengthy sequence-typing methods. Here, two nucleotide polymorphisms, G88A and G2047A, that were found to be in strict linkage disequilibrium in the S. aureus penicillin-binding protein 3 (pbp3) gene were also found to be highly associated with the USA300 clone of CA-MRSA. Clinical isolates that contained this pbp3 allele were also positive for the presence of SCCmec type IV, the ACME, and the PVL toxin gene and matched the t008 or t121 molecular spa types, which are associated specifically with the USA300 CA-MRSA clone. A single allele-specific PCR targeting the G88A polymorphism was developed and was found to be 100% sensitive and specific for the detection of USA300 CA-MRSA and 91.5% sensitive and 100% specific for the detection of all CA-MRSA isolates in this study. PMID:23698534

  11. Bacteriological and molecular studies of Clostridium perfringens infections in newly born calves.

    PubMed

    Selim, A M; Elhaig, M M; Zakaria, I; Ali, A

    2017-01-01

    Clostridium perfringens is considered one of the important causes of calf diarrhea. Two hundred and twenty-seven clinical samples from newly born and dead diarrheic calves were examined bacteriologically and by PCR. Bacterial culture identified C. perfringens in 168 of 227 samples. A total of 144 of these isolates were lecithinase positive, indicating C. perfringens Type A. In addition, 154 isolates were positive by alpha toxin encoding gene-PCR assay. This study showed high agreement between the results of bacteriology and multiplex PCR. The multiplex PCR typed all isolates that were typed as C. perfringens Type A through bacteriologic methods, but ten samples that were lecithinase negative were positive in the multiplex PCR. The study showed the highest occurrence of C. perfringens Type A isolations from calves during the winter and autumn compared with other seasons.

  12. Development of mRNA-specific RT-PCR for the detection of koi herpesvirus (KHV) replication stage.

    PubMed

    Yuasa, Kei; Kurita, Jun; Kawana, Morihiko; Kiryu, Ikunari; Oseko, Norihisa; Sano, Motohiko

    2012-08-13

    An mRNA-specific reverse transcription (RT)-PCR primer set spanning the exon junction of a spliced putative terminase gene in the koi herpesvirus (KHV) was developed to detect the replicating stage of the virus. The proposed RT-PCR amplified a target gene from the RNA template, but not from a DNA template extracted from common carp brain (CCB) cells infected with KHV. In addition, the RT-PCR did not amplify the target gene of templates extracted from specific cell lines infected with either CyHV-1 or CyHV-2. RT-PCR detected mRNA from the scales of koi experimentally infected with KHV at 24 h post exposure (hpe). However, unlike conventional PCR, RT-PCR could not detect KHV DNA in fish at 0 hpe. The results indicate that the RT-PCR developed in this study is mRNA-specific and that the assay can detect the replicating stage of KHV from both fish and cultured cells infected with the virus.

  13. Droplet Digital PCR-Based Chimerism Analysis for Primary Immunodeficiency Diseases.

    PubMed

    Okano, Tsubasa; Tsujita, Yuki; Kanegane, Hirokazu; Mitsui-Sekinaka, Kanako; Tanita, Kay; Miyamoto, Satoshi; Yeh, Tzu-Wen; Yamashita, Motoi; Terada, Naomi; Ogura, Yumi; Takagi, Masatoshi; Imai, Kohsuke; Nonoyama, Shigeaki; Morio, Tomohiro

    2018-04-01

    In the current study, we aimed to accurately evaluate donor/recipient or male/female chimerism in samples from patients who underwent hematopoietic stem cell transplantation (HSCT). We designed the droplet digital polymerase chain reaction (ddPCR) for SRY and RPP30 to detect the male/female chimerism. We also developed mutation-specific ddPCR for four primary immunodeficiency diseases. The accuracy of the male/female chimerism analysis using ddPCR was confirmed by comparing the results with those of conventional methods (fluorescence in situ hybridization and short tandem repeat-PCR) and evaluating dilution assays. In particular, we found that this method was useful for analyzing small samples. Thus, this method could be used with patient samples, especially to sorted leukocyte subpopulations, during the early post-transplant period. Four mutation-specific ddPCR accurately detected post-transplant chimerism. ddPCR-based male/female chimerism analysis and mutation-specific ddPCR were useful for all HSCT, and these simple methods contribute to following the post-transplant chimerism, especially in disease-specific small leukocyte fractions.

  14. Use of PCR-Based Methods for Rapid Differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis

    PubMed Central

    Torriani, Sandra; Zapparoli, Giacomo; Dellaglio, Franco

    1999-01-01

    Two PCR-based methods, specific PCR and randomly amplified polymorphic DNA PCR (RAPD-PCR), were used for rapid and reliable differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. PCR with a single combination of primers which targeted the proline iminopeptidase (pepIP) gene of L. delbrueckii subsp. bulgaricus allowed amplification of genomic fragments specific for the two subspecies when either DNA from a single colony or cells extracted from dairy products were used. A numerical analysis of the RAPD-PCR patterns obtained with primer M13 gave results that were consistent with the results of specific PCR for all strains except L. delbrueckii subsp. delbrueckii LMG 6412T, which clustered with L. delbrueckii subsp. lactis strains. In addition, RAPD-PCR performed with primer 1254 provided highly polymorphic profiles and thus was superior for distinguishing individual L. delbrueckii strains. PMID:10508059

  15. Use of PCR-based methods for rapid differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis.

    PubMed

    Torriani, S; Zapparoli, G; Dellaglio, F

    1999-10-01

    Two PCR-based methods, specific PCR and randomly amplified polymorphic DNA PCR (RAPD-PCR), were used for rapid and reliable differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. PCR with a single combination of primers which targeted the proline iminopeptidase (pepIP) gene of L. delbrueckii subsp. bulgaricus allowed amplification of genomic fragments specific for the two subspecies when either DNA from a single colony or cells extracted from dairy products were used. A numerical analysis of the RAPD-PCR patterns obtained with primer M13 gave results that were consistent with the results of specific PCR for all strains except L. delbrueckii subsp. delbrueckii LMG 6412(T), which clustered with L. delbrueckii subsp. lactis strains. In addition, RAPD-PCR performed with primer 1254 provided highly polymorphic profiles and thus was superior for distinguishing individual L. delbrueckii strains.

  16. Isolation and molecular characterization of Toxoplasma gondii in a colony of captive black-capped squirrel monkeys (Saimiri boliviensis).

    PubMed

    Pardini, L; Dellarupe, A; Bacigalupe, D; Quiroga, M A; Moré, G; Rambeaud, M; Basso, W; Unzaga, J M; Schares, G; Venturini, M C

    2015-12-01

    Toxoplasmosis is commonly asymptomatic; however, it can be a fatal multisystemic disease in some animal species, such as New World monkeys. An outbreak of acute fatal toxoplasmosis was reported in a colony of black-capped squirrel monkeys (Saimiri boliviensis) from the zoo of La Plata, Argentina. Post-mortem examination of two monkeys revealed macroscopical and microscopical lesions compatible with acute toxoplasmosis. The presence of Toxoplasma gondii was confirmed by immunohistochemistry on monkey tissues, bioassay in mice and PCR using the specific primers B22-B23. By PCR-RFLP analysis, T. gondii isolated in mice, deriving from both monkeys, showed the same restriction pattern, with most markers showing a type III restriction pattern, except for C22-8 (type II) and C29-2 (type I). To our knowledge this is the first report of fatal toxoplasmosis in S. boliviensis caused by a non-canonical or atypical genotype of T. gondii. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Rapid and sensitive detection of Feline immunodeficiency virus using an insulated isothermal PCR-based assay with a point-of-need PCR detection platform.

    PubMed

    Wilkes, Rebecca Penrose; Kania, Stephen A; Tsai, Yun-Long; Lee, Pei-Yu Alison; Chang, Hsiu-Hui; Ma, Li-Juan; Chang, Hsiao-Fen Grace; Wang, Hwa-Tang Thomas

    2015-07-01

    Feline immunodeficiency virus (FIV) is an important infectious agent of cats. Clinical syndromes resulting from FIV infection include immunodeficiency, opportunistic infections, and neoplasia. In our study, a 5' long terminal repeat/gag region-based reverse transcription insulated isothermal polymerase chain reaction (RT-iiPCR) was developed to amplify all known FIV strains to facilitate point-of-need FIV diagnosis. The RT-iiPCR method was applied in a point-of-need PCR detection platform--a field-deployable device capable of generating automatically interpreted RT-iiPCR results from nucleic acids within 1 hr. Limit of detection 95% of FIV RT-iiPCR was calculated to be 95 copies standard in vitro transcription RNA per reaction. Endpoint dilution studies with serial dilutions of an ATCC FIV type strain showed that the sensitivity of lyophilized FIV RT-iiPCR reagent was comparable to that of a reference nested PCR. The established reaction did not amplify any nontargeted feline pathogens, including Felid herpesvirus 1, feline coronavirus, Feline calicivirus, Feline leukemia virus, Mycoplasma haemofelis, and Chlamydophila felis. Based on analysis of 76 clinical samples (including blood and bone marrow) with the FIV RT-iiPCR, test sensitivity was 97.78% (44/45), specificity was 100.00% (31/31), and agreement was 98.65% (75/76), determined against a reference nested-PCR assay. A kappa value of 0.97 indicated excellent correlation between these 2 methods. The lyophilized FIV RT-iiPCR reagent, deployed on a user-friendly portable device, has potential utility for rapid and easy point-of-need detection of FIV in cats. © 2015 The Author(s).

  18. Application of real-time PCR and melting curve analysis in rapid Diego blood group genotyping.

    PubMed

    Novaretti, M C Z; Ruiz, A S; Dorlhiac-Llacer, P E; Chamone, D A F

    2010-01-01

    The paucity of appropriate reagents for serologic typing of the Diego blood group antigens has prompted the development of a real-time PCR and melting curve analysis for Diego blood group genotyping. In this study, we phenotyped 4326 donor blood samples for Di(a) using semiautomated equipment. All 157 Di(a+) samples were then genotyped by PCR using sequence-specific primers (PCR-SSP) for DI*02 because of anti-Di(b) scarcity. Of the 4326 samples, we simultaneously tested 160 samples for Di(a) and Di(b) serology, and DI*01 and DI*02 by PCR-SSP and by real-time PCR. We used the same primers for Diego genotyping by real-time PCR and PCR-SSP. Melting curve profiles obtained using the dissociation software of the real-time PCR apparatus enabled the discrimination of Diego alleles. Of the total samples tested, 4169 blood donors, 96.4 percent (95% confidence interval [CI], 95.8-96.9%), were homozygous for DI*02 and 157, 3.6 percent (95% CI, 3.1%-4.2%), were heterozygous DI*01/02. No blood donor was found to be homozygous for DI*01 in this study. The calculated DI*01 and DI*02 allele frequencies were 0.0181 (95% CI, 0.0173-0.0189) and 0.9819 (95% CI, 0.9791-0.9847), respectively, showing a good fit for the Hardy-Weinberg equilibrium. There was full concordance among Diego phenotype results by PCR-SSP and real-time PCR. DI*01 and DI*02 allele determination with SYBR Green I and thermal cycler technology are useful methods for Diego determination. The real-time PCR with SYBR Green I melting temperature protocol can be used as a rapid screening tool for DI*01 and DI*02 blood group genotyping.

  19. Enhancing the specificity of polymerase chain reaction by graphene oxide through surface modification: zwitterionic polymer is superior to other polymers with different charges.

    PubMed

    Zhong, Yong; Huang, Lihong; Zhang, Zhisen; Xiong, Yunjing; Sun, Liping; Weng, Jian

    Graphene oxides (GOs) with different surface characteristics, such as size, reduction degree and charge, are prepared, and their effects on the specificity of polymerase chain reaction (PCR) are investigated. In this study, we demonstrate that GO with a large size and high reduction degree is superior to small and nonreduced GO in enhancing the specificity of PCR. Negatively charged polyacrylic acid (PAA), positively charged polyacrylamide (PAM), neutral polyethylene glycol (PEG) and zwitterionic polymer poly(sulfobetaine) (pSB) are used to modify GO. The PCR specificity-enhancing ability increases in the following order: GO-PAA < GO-PAM < GO-PEG < GO-pSB. Thus, zwitterionic polymer-modified GO is superior to other GO derivatives with different charges in enhancing the specificity of PCR. GO derivatives are also successfully used to enhance the specificity of PCR for the amplification of human mitochondrial DNA using blood genomic DNA as template. Molecular dynamics simulations and molecular docking are performed to elucidate the interaction between the polymers and Pfu DNA polymerase. Our data demonstrate that the size, reduction degree and surface charge of GO affect the specificity of PCR. Based on our results, zwitterionic polymer-modified GO may be used as an efficient additive for enhancing the specificity of PCR.

  20. Development of a Multiplexed Microsphere PCR for Culture-Free Detection and Gram-Typing of Bacteria in Human Blood Samples.

    PubMed

    Liang, Fang; Browne, Daniel J; Gray, Megan J; Gartlan, Kate H; Smith, David D; Barnard, Ross T; Hill, Geoffrey R; Corrie, Simon R; Markey, Kate A

    2018-05-11

    Bloodstream infection is a significant clinical problem, particularly in vulnerable patient groups such as those undergoing chemotherapy and bone marrow transplantation. Clinical diagnostics for suspected bloodstream infection remain centered around blood culture (highly variable timing, in the order of hours to days to become positive), and empiric use of broad-spectrum antibiotics is therefore employed for patients presenting with febrile neutropenia. Gram-typing provides the first opportunity to target therapy (e.g., combinations containing vancomycin or teicoplanin for Gram-positives; piperacillin-tazobactam or a carbapenem for Gram-negatives); however, current approaches require blood culture. In this study, we describe a multiplexed microsphere-PCR assay with flow cytometry readout, which can distinguish Gram-positive from Gram-negative bacterial DNA in a 3.5 h time period. The combination of a simple assay design (amplicon-dependent release of Gram-type specific Cy3-labeled oligonucleotides) and the Luminex-based readout (for quantifying each specific Cy3-labeled sequence) opens opportunities for further multiplexing. We demonstrate the feasibility of detecting common Gram-positive and Gram-negative organisms after spiking whole bacteria into healthy human blood prior to DNA extraction. Further development of DNA extraction methods is required to reach detection limits comparable to blood culture.

  1. Specific and quantitative detection of human polyomaviruses BKV, JCV, and SV40 by real time PCR.

    PubMed

    McNees, Adrienne L; White, Zoe S; Zanwar, Preeti; Vilchez, Regis A; Butel, Janet S

    2005-09-01

    The polyomaviruses that infect humans, BK virus (BKV), JC virus (JCV), and simian virus 40 (SV40), typically establish subclinical persistent infections. However, reactivation of these viruses in immunocompromised hosts is associated with renal nephropathy and hemorrhagic cystitis (HC) caused by BKV and with progressive multifocal leukoencephalopathy (PML) caused by JCV. Additionally, SV40 is associated with several types of human cancers including primary brain and bone cancers, mesotheliomas, and non-Hodgkin's lymphoma. Advancements in detection of these viruses may contribute to improved diagnosis and treatment of affected patients. To develop sensitive and specific real time quantitative polymerase chain reaction (RQ-PCR) assays for the detection of T-antigen DNA sequences of the human polyomaviruses BKV, JCV, and SV40 using the ABI Prism 7000 Sequence Detection System. Assays for absolute quantification of the viral T-ag sequences were designed and the sensitivity and specificity were evaluated. A quantitative assay to measure the single copy human RNAse P gene was also developed and evaluated in order to normalize viral gene copy numbers to cell numbers. Quantification of the target genes is sensitive and specific over a 7 log dynamic range. Ten copies each of the viral and cellular genes are reproducibly and accurately detected. The sensitivity of detection of the RQ-PCR assays is increased 10- to 100-fold compared to conventional PCR and agarose gel protocols. The primers and probes used to detect the viral genes are specific for each virus and there is no cross reactivity within the dynamic range of the standard dilutions. The sensitivity of detection for these assays is not reduced in human cellular extracts; however, different DNA extraction protocols may affect quantification. These assays provide a technique for rapid and specific quantification of polyomavirus genomes per cell in human samples.

  2. A simplified multiplex PCR assay for fast and easy discrimination of globally distributed staphylococcal cassette chromosome mec types in meticillin-resistant Staphylococcus aureus.

    PubMed

    Ghaznavi-Rad, Ehsanollah; Nor Shamsudin, Mariana; Sekawi, Zamberi; van Belkum, Alex; Neela, Vasanthakumari

    2010-10-01

    A multiplex PCR assay was developed for the identification of major types and subtypes of staphylococcal cassette chromosome mec (SCCmec) in meticillin-resistant Staphylococcus aureus (MRSA) strains. The method uses a novel 9 valent multiplex PCR plus two primer pairs for S. aureus identification and detection of meticillin resistance. All 389 clinical MRSA isolates from Malaysia and 18 European isolates from the Harmony collection harbouring different SCCmec types that we tested were correctly characterized by our PCR assay. SCCmec type III and V were by far the most common types among both hospital- and community-acquired Malaysian MRSA isolates, with an apparent emergence of MRSA harbouring the IVh type.

  3. Does muscle creatine phosphokinase have access to the total pool of phosphocreatine plus creatine?

    PubMed

    Hochachka, P W; Mossey, M K

    1998-03-01

    Two fundamental assumptions underlie currently accepted dogma on creatine phosphokinase (CPK) function in phosphagen-containing cells: 1) CPK always operates near equilibrium and 2) CPK has access to, and reacts with, the entire pool of phosphocreatine (PCr) and creatine (Cr). We tested the latter assumption in fish fast-twitch or white muscle (WM) by introducing [14C]Cr into the WM pool in vivo. To avoid complications arising from working with muscles formed from a mixture of fast and slow fibers, it was advantageous to work with fish WM because it is uniformly fast twitch and is anatomically separated from other fiber types. According to current theory, at steady state after [14C]Cr administration, the specific activities of PCr and Cr should be the same under essentially all conditions. In contrast, we found that, in various metabolic states between rest and recovery from exercise, the specific activity of PCr greatly exceeds that of Cr. The data imply that a significant fraction of Cr is not free to rapidly exchange with exogenously added [14C]Cr. Releasing of this unlabeled or "cold" Cr on acid extraction accounts for lowered specific activities. This unexpected and provocative result is not consistent with traditional models of phosphagen function.

  4. Identification of Past and Recent Parvovirus B19 Infection in Immunocompetent Individuals by Quantitative PCR and Enzyme Immunoassays: a Dual-Laboratory Study

    PubMed Central

    Hedman, Lea; Dhanilall, Pravesh; Kantola, Kalle; Nurmi, Visa; Söderlund-Venermo, Maria; Brown, Kevin E.; Hedman, Klaus

    2014-01-01

    Parvovirus B19 (B19V) is a member of the family Parvoviridae, genus Erythrovirus. B19V-specific IgG and IgM react differently against conformational and linear epitopes of VP1 and VP2 antigens, leading to the development of IgG avidity and epitope type specificity (ETS) enzyme immunoassays (EIAs) for distinguishing past from recent infection. Additionally, B19V viral load determination (by quantitative PCR [qPCR]) is increasingly used in the staging of B19V infection. In this study, the utility of these methods is compared. A panel of 78 sera was jointly tested by the Virus Reference Department (VRD), London, United Kingdom, and the Haartman Institute (HI), Helsinki, Finland, using a number of EIAs, e.g., B19V-specific IgG and IgM, IgG avidity, and ETS EIAs. At VRD, the sera were also tested by a B19V viral load PCR (qPCR). By consensus analysis, 43 (55.1%) sera represented past infection, 28 (35.9%) sera represented recent infection, and 7 (9.0%) sera were indeterminate. Both VRD B19V qPCR and HI B19V VP2 IgM EIA gave the highest agreement with consensus interpretation for past or recent infection, with an overall agreement of 99% (95% confidence interval [CI], 92 to 100) and positive predictive value (PPV) of 100% (95% CI, 87 to 100). Nine sera designated as representing past infection by consensus analysis were B19V IgM positive by a commercial VRD B19V IgM EIA and B19V IgM negative by a new HI in-house B19V VP2 IgM EIA. A new VRD B19V IgG avidity EIA showed good (>95%) agreement (excluding equivocal results) with consensus interpretations for past or recent infection. Correct discrimination of past from recent B19V infection was achieved through application of qPCR or by appropriate selection of EIAs. PMID:24403307

  5. Human papillomavirus hpv-16 DNA as an epitheliotropic virus that induces hyperproliferation in squamous penile tissue.

    PubMed

    Salazar, Edith L; Mercado, E; Calzada, L

    2005-01-01

    The prevalence of human papillomavirus HPV-16DNA sequences in 57 penile carcinoma biopsies was examined using the polymerase chain reaction (PCR) with type specific internal probes, employing HPV consensus primers from the L1 region. The cases comprised 39 typical squamous cell carcinoma and 18 specimens with different subtype. PCR products were analyzed and HPV-16DNA was detected in a high percentage of specimens. Thirty-eight biopsies were HPV-16DNA positive. This determination was correlated with cellular differentiation and growth pattern. Our data corroborates that squamous cell carcinoma was invariably associated with HPV-16DNA.

  6. Methods for Integrated Air Sampling and DNA Analysis for Detection of Airborne Fungal Spores

    PubMed Central

    Williams, Roger H.; Ward, Elaine; McCartney, H. Alastair

    2001-01-01

    Integrated air sampling and PCR-based methods for detecting airborne fungal spores, using Penicillium roqueforti as a model fungus, are described. P. roqueforti spores were collected directly into Eppendorf tubes using a miniature cyclone-type air sampler. They were then suspended in 0.1% Nonidet P-40, and counted using microscopy. Serial dilutions of the spores were made. Three methods were used to produce DNA for PCR tests: adding untreated spores to PCRs, disrupting spores (fracturing of spore walls to release the contents) using Ballotini beads, and disrupting spores followed by DNA purification. Three P. roqueforti-specific assays were tested: single-step PCR, nested PCR, and PCR followed by Southern blotting and probing. Disrupting the spores was found to be essential for achieving maximum sensitivity of the assay. Adding untreated spores to the PCR did allow the detection of P. roqueforti, but this was never achieved when fewer than 1,000 spores were added to the PCR. By disrupting the spores, with or without subsequent DNA purification, it was possible to detect DNA from a single spore. When known quantities of P. roqueforti spores were added to air samples consisting of high concentrations of unidentified fungal spores, pollen, and dust, detection sensitivity was reduced. P. roqueforti DNA could not be detected using untreated or disrupted spore suspensions added to the PCRs. However, using purified DNA, it was possible to detect 10 P. roqueforti spores in a background of 4,500 other spores. For all DNA extraction methods, nested PCR was more sensitive than single-step PCR or PCR followed by Southern blotting. PMID:11375150

  7. Development of a Generic PCR Detection of 3-Acetyldeoxy-nivalenol-, 15-Acetyldeoxynivalenol- and Nivalenol-Chemotypes of Fusarium graminearum Clade

    PubMed Central

    Wang, Jian-Hua; Li, He-Ping; Qu, Bo; Zhang, Jing-Bo; Huang, Tao; Chen, Fang-Fang; Liao, Yu-Cai

    2008-01-01

    Fusarium graminearum clade pathogens cause Fusarium head blight (FHB) or scab of wheat and other small cereal grains, producing different kinds of trichothecene mycotoxins that are detrimental to human and domestic animals. Type B trichothecene mycotoxins such as deoxynivalenol, 3-acetyldeoxynivalenol (3-AcDON), 15-acetyldeoxynivalenol (15-AcDON) and nivalenol (NIV) are the principal Fusarium mycotoxins reported in China, as well as in other countries. A genomic polymerase chain reaction (PCR) to predict chemotypes was developed based on the structural gene sequences of Tri13 genes involved in trichothecene mycotoxin biosynthesis pathways. A single pair of primers derived from the Tri13 genes detected a 583 bp fragment from 15-AcDON-chemotypes, a 644 bp fragment from 3-AcDON-chemotypes and an 859 bp fragment from NIV-producing strains. Fusarium strains from China, Nepal, USA and Europe were identified by this method, revealing their mycotoxin chemotypes identical to that obtained by chemical analyses of HPLC or GC/MS and other PCR assays. The mycotoxin chemotype-specific fragments were amplified from a highly variable region located in Tri13 genes with three deletions for 15-AcDON-chemotypes, two deletions for 3-AcDON-chemotypes and no deletion for NIV-producers. This PCR assay generated a single amplicon and thus should be more reliable than other PCR-based assays that showed the absence or presence of a PCR fragment since these assays may generate false-negative results. The results with strains from several different countries as well as from different hosts further indicated that this method should be globally applicable. This is a rapid, reliable and cost-effective method for the identification of type B trichothecene mycotoxin chemotypes in Fusarium species and food safety controls. PMID:19330088

  8. Evaluation of two real time PCR assays for the detection of bacterial DNA in amniotic fluid.

    PubMed

    Girón de Velasco-Sada, Patricia; Falces-Romero, Iker; Quiles-Melero, Inmaculada; García-Perea, Adela; Mingorance, Jesús

    2018-01-01

    The aim of this study was to evaluate two non-commercial Real-Time PCR assays for the detection of microorganisms in amniotic fluid followed by identification by pyrosequencing. We collected 126 amniotic fluids from 2010 to 2015 for the evaluation of two Real-Time PCR assays for detection of bacterial DNA in amniotic fluid (16S Universal PCR and Ureaplasma spp. specific PCR). The method was developed in the Department of Microbiology of the University Hospital La Paz. Thirty-seven samples (29.3%) were positive by PCR/pyrosequencing and/or culture, 4 of them were mixed cultures with Ureaplasma urealyticum. The Universal 16S Real-Time PCR was compared with the standard culture (81.8% sensitivity, 97.4% specificity, 75% positive predictive value, 98% negative predictive value). The Ureaplasma spp. specific Real-Time PCR was compared with the Ureaplasma/Mycoplasma specific culture (92.3% sensitivity, 89.4% specificity, 50% positive predictive value, 99% negative predictive value) with statistically significant difference (p=0.005). Ureaplasma spp. PCR shows a rapid response time (5h from DNA extraction until pyrosequencing) when comparing with culture (48h). So, the response time of bacteriological diagnosis in suspected chorioamnionitis is reduced. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Development and in-house validation of the event-specific polymerase chain reaction detection methods for genetically modified soybean MON89788 based on the cloned integration flanking sequence.

    PubMed

    Liu, Jia; Guo, Jinchao; Zhang, Haibo; Li, Ning; Yang, Litao; Zhang, Dabing

    2009-11-25

    Various polymerase chain reaction (PCR) methods were developed for the execution of genetically modified organism (GMO) labeling policies, of which an event-specific PCR detection method based on the flanking sequence of exogenous integration is the primary trend in GMO detection due to its high specificity. In this study, the 5' and 3' flanking sequences of the exogenous integration of MON89788 soybean were revealed by thermal asymmetric interlaced PCR. The event-specific PCR primers and TaqMan probe were designed based upon the revealed 5' flanking sequence, and the qualitative and quantitative PCR assays were established employing these designed primers and probes. In qualitative PCR, the limit of detection (LOD) was about 0.01 ng of genomic DNA corresponding to 10 copies of haploid soybean genomic DNA. In the quantitative PCR assay, the LOD was as low as two haploid genome copies, and the limit of quantification was five haploid genome copies. Furthermore, the developed PCR methods were in-house validated by five researchers, and the validated results indicated that the developed event-specific PCR methods can be used for identification and quantification of MON89788 soybean and its derivates.

  10. The usability of allele-specific PCR and reverse-hybridization assays for KRAS genotyping in Serbian colorectal cancer patients.

    PubMed

    Brotto, Ksenija; Malisic, Emina; Cavic, Milena; Krivokuca, Ana; Jankovic, Radmila

    2013-04-01

    Colorectal cancers (CRCs) with wild-type KRAS respond to EGFR-targeted antibody treatment. Analysis of the hotspot clustered mutations in codons 12 and 13 is compulsory before therapy and no standardized methodology for that purpose has been established so far. Since these mutations may have different biological effects and clinical outcome, reliable frequency and types of KRAS mutations need to be determined for individual therapy. The purpose of this study was to describe the KRAS mutation spectrum in a group of 481 Serbian mCRC patients and to compare the general performances of allele-specific PCR and reverse-hybridization assays. KRAS testing was performed with two diagnostic analyses, DxS TheraScreen K-RAS PCR Kit and KRAS StripAssay™. KRAS mutations in codons 12 and 13 were present in 37.6 % of analyzed formalin-fixed paraffin-embedded (FFPE) DNA samples. The seven most frequent mutation types were observed with both assays: p.G12D 34.6 %, p.G12V 24.9 %, p.G12A 10.3 %, p.G12C 8.1 %, p.G12S 5.4 %, p.G12R 1.6 %, and p.G13D 15.1 %. Regarding double mutants, 0.8 % of them were present among all tested samples and 2.2 % among KRAS mutated ones. Two screening approaches that were used in this study have been shown as suitable tests for detecting KRAS mutations in diagnostic settings. In addition, they appear to be good alternatives to methods presently in use. In our experience, both methods showed capacity to detect and identify double mutations which may be important for potential further subgrouping of CRC patients.

  11. Identification of growth stage molecular markers in Trichoderma sp. 'atroviride type B' and their potential application in monitoring fungal growth and development in soil.

    PubMed

    Mendoza-Mendoza, Artemio; Steyaert, Johanna; Nieto-Jacobo, Maria Fernanda; Holyoake, Andrew; Braithwaite, Mark; Stewart, Alison

    2015-11-01

    Several members of the genus Trichoderma are biocontrol agents of soil-borne fungal plant pathogens. The effectiveness of biocontrol agents depends heavily on how they perform in the complex field environment. Therefore, the ability to monitor and track Trichoderma within the environment is essential to understanding biocontrol efficacy. The objectives of this work were to: (a) identify key genes involved in Trichoderma sp. 'atroviride type B' morphogenesis; (b) develop a robust RNA isolation method from soil; and (c) develop molecular marker assays for characterizing morphogenesis whilst in the soil environment. Four cDNA libraries corresponding to conidia, germination, vegetative growth and conidiogenesis were created, and the genes identified by sequencing. Stage specificity of the different genes was confirmed by either Northern blot or quantitative reverse-transcriptase PCR (qRT-PCR) analysis using RNA from the four stages. con10, a conidial-specific gene, was observed in conidia, as well as one gene also involved in subsequent stages of germination (L-lactate/malate dehydrogenase encoding gene). The germination stage revealed high expression rates of genes involved in amino acid and protein biosynthesis, while in the vegetative-growth stage, genes involved in differentiation, including the mitogen-activated protein kinase kinase similar to Kpp7 from Ustilago maydis and the orthologue to stuA from Aspergillus nidulans, were preferentially expressed. Genes involved in cell-wall synthesis were expressed during conidiogenesis. We standardized total RNA isolation from Trichoderma sp. 'atroviride type B' growing in soil and then examined the expression profiles of selected genes using qRT-PCR. The results suggested that the relative expression patterns were cyclic and not accumulative.

  12. Molecular and phenotypic characteristics of methicillin-resistant Staphylococcus aureus isolated from hospitalized patients.

    PubMed

    de Oliveira, Caio Ferreira; Morey, Alexandre Tadachi; Santos, Jussevania Pereira; Gomes, Ludmila Vilela Pereira; Cardoso, Juscélio Donizete; Pinge-Filho, Phileno; Perugini, Márcia Regina Eches; Yamauchi, Lucy Megumi; Yamada-Ogatta, Sueli Fumie

    2015-07-30

    Methicillin-resistant Staphylococcus aureus (MRSA) is one of the leading causes of infections acquired in both community and hospital settings. In this study, MRSA isolated from different sources of hospitalized patients was characterized by molecular and phenotypic methods. A total of 123 S. aureus isolates were characterized according to their genetic relatedness by repetitive element sequence based-PCR (REP-PCR), in vitro antimicrobial susceptibility profile, SCCmec typing and presence of seven virulence factor-encoding genes. REP-PCR fingerprinting showed low relatedness between the isolates, and the predominance of one specific lineage or clonal group was not observed. All isolates were susceptible to teicoplanin and linezolide. All isolates were resistant to cefoxitin and penicillin, and the majority were also resistant to one or more other antimicrobials. Fifty isolates (41.7%) were intermediately resistant to vancomycin. Most isolates harbored SCCmec type II (53.7%), followed by type I (22.8%), type IV (8.1%) and type III (1.6%). All isolates harbored at least two virulence factor-encoding genes, and the prevalence was as follows: coa, 100%; icaA, 100%; hla, 13.0%; hlb, 91.1%, hld, 91.1%; lukS-PV and lukF-PV, 2.4%; and tst, 34.1%. A positive association with the presence of hla and SCCmec type II, and tst and SCCmec type I was observed. This study showed the high virulence potential of multidrug-resistant MRSA circulating in a teaching hospital. A high prevalence of MRSA showing intermediate vancomycin resistance was also observed, indicating the urgent need to improve strategies for controlling the use of antimicrobials for appropriate management of S. aureus infections.

  13. Genetic Diversity of the Flagellin Genes of Clostridium botulinum Groups I and II

    PubMed Central

    Woudstra, Cedric; Lambert, Dominic; Anniballi, Fabrizio; De Medici, Dario; Austin, John

    2013-01-01

    Botulinum neurotoxins (BoNTs) are produced by phenotypically and genetically different Clostridium species, including Clostridium botulinum and some strains of Clostridium baratii (serotype F) and Clostridium butyricum (serotype E). BoNT-producing clostridia responsible for human botulism encompass strains of group I (secreting proteases, producing toxin serotype A, B, or F, and growing optimally at 37°C) and group II (nonproteolytic, producing toxin serotype E, B, or F, and growing optimally at 30°C). Here we report the development of real-time PCR assays for genotyping C. botulinum strains of groups I and II based on flaVR (variable region sequence of flaA) sequences and the flaB gene. Real-time PCR typing of regions flaVR1 to flaVR10 and flaB was optimized and validated with 62 historical and Canadian C. botulinum strains that had been previously typed. Analysis of 210 isolates of European origin allowed the identification of four new C. botulinum flaVR types (flaVR11 to flaVR14) and one new flaVR type specific to C. butyricum type E (flaVR15). The genetic diversity of the flaVR among C. botulinum strains investigated in the present study reveals the clustering of flaVR types into 5 major subgroups. Subgroups 1, 3, and 4 contain proteolytic Clostridium botulinum, subgroup 2 is made up of nonproteolytic C. botulinum only, and subgroup 5 is specific to C. butyricum type E. The genetic variability of the flagellin genes carried by C. botulinum and the possible association of flaVR types with certain geographical areas make gene profiling of flaVR and flaB promising in molecular surveillance and epidemiology of C. botulinum. PMID:23603687

  14. Quantum dots for a high-throughput Pfu polymerase based multi-round polymerase chain reaction (PCR).

    PubMed

    Sang, Fuming; Zhang, Zhizhou; Yuan, Lin; Liu, Deli

    2018-02-26

    Multi-round PCR is an important technique for obtaining enough target DNA from rare DNA resources, and is commonly used in many fields including forensic science, ancient DNA analysis and cancer research. However, multi-round PCR is often aborted, largely due to the accumulation of non-specific amplification during repeated amplifications. Here, we developed a Pfu polymerase based multi-round PCR technique assisted by quantum dots (QDs). Different PCR assays, DNA polymerases (Pfu and Taq), DNA sizes and GC amounts were compared in this study. In the presence of QDs, PCR specificity could be retained even in the ninth-round amplification. Moreover, the longer and more complex the targets were, the earlier the abortion happened in multi-round PCR. However, no obvious enhancement of specificity was found in multi-round PCR using Taq DNA polymerase. Significantly, the fidelity of Pfu polymerase based multi-round PCR was not sacrificed in the presence of QDs. Besides, pre-incubation at 50 °C for an hour had no impact on multi-round PCR performance, which further authenticated the hot start effect of QDs modulated in multi-round PCR. The findings of this study demonstrated that a cost-effective and promising multi-round PCR technique for large-scale and high-throughput sample analysis could be established with high specificity, sensibility and accuracy.

  15. Novel primers and PCR protocols for the specific detection and quantification of Sphingobium suberifaciens in situ

    USDA-ARS?s Scientific Manuscript database

    The pathogen causing corky root on lettuce, Sphingobium suberifaciens, is recalcitrant to standard epidemiological methods. Primers were selected from 16S rDNA sequences useful for the specific detection and quantification of S. suberifaciens. Conventional (PCR) and quantitative (qPCR) PCR protocols...

  16. Detection of the reemerging agent Burkholderia mallei in a recent outbreak of glanders in the United Arab Emirates by a newly developed fliP-based polymerase chain reaction assay.

    PubMed

    Scholz, Holger C; Joseph, Marina; Tomaso, Herbert; Al Dahouk, Sascha; Witte, Angela; Kinne, Joerg; Hagen, Ralph M; Wernery, Renate; Wernery, Ulrich; Neubauer, Heinrich

    2006-04-01

    A polymerase chain reaction (PCR) assay targeting the flagellin P (fliP)-I S407A genomic region of Burkholderia mallei was developed for the specific detection of this organism in pure cultures and clinical samples from a recent outbreak of equine glanders. Primers deduced from the known fliP-IS407A sequence of B. mallei American Type Culture Collection (ATCC) 23344(T) allowed the specific amplification of a 989-bp fragment from each of the 20 B. mallei strains investigated, whereas other closely related organisms tested negative. The detection limit of the assay was 10 fg for purified DNA of B. mallei ATCC 23344(T). B. mallei DNA was also amplified from various tissues of horses with a generalized B. mallei infection. The developed PCR assay can be used as a simple and rapid tool for the specific and sensitive detection of B. mallei in clinical samples.

  17. Mice maintain predominantly maternal Gαs expression throughout life in brown fat tissue (BAT), but not other tissues.

    PubMed

    Tafaj, Olta; Hann, Steven; Ayturk, Ugur; Warman, Matthew L; Jüppner, Harald

    2017-10-01

    The murine Gnas (human GNAS) locus gives rise to Gαs and different splice variants thereof. The Gαs promoter is not methylated thus allowing biallelic expression in most tissues. In contrast, the alternative first Gnas/GNAS exons and their promoters undergo parent specific methylation, which limits transcription to the non-methylated allele. Pseudohypoparathyroidism type Ia (PHP1A) or type Ib (PHP1B) are caused by heterozygous maternal GNAS mutations suggesting that little or no Gαs is derived in some tissues from the non-mutated paternal GNAS thereby causing hormonal resistance. Previous data had indicated that Gαs is mainly derived from the maternal Gnas allele in brown adipose tissue (BAT) of newborn mice, yet it is biallelically expressed in adult BAT. This suggested that paternal Gαs expression is regulated by an unknown factor(s) that varies considerably with age. To extend these findings, we now used a strain-specific SNP in Gnas exon 11 (rs13460569) for evaluation of parent-specific Gαs expression through the densitometric quantification of BanII-digested RT-PCR products and digital droplet PCR (ddPCR). At all investigated ages, Gαs transcripts were derived in BAT predominantly from the maternal Gnas allele, while kidney and liver showed largely biallelic Gαs expression. Only low or undetectable levels of other paternally Gnas-derived transcripts were observed, making it unlikely that these are involved in regulating paternal Gαs expression. Our findings suggest that a cis-acting factor could be implicated in reducing paternal Gαs expression in BAT and presumably in proximal renal tubules, thereby causing PTH-resistance if the maternal GNAS/Gnas allele is mutated. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. A false positive food chain error associated with a generic predator gut content ELISA

    USDA-ARS?s Scientific Manuscript database

    Conventional prey-specific gut content ELISA and PCR assays are useful for identifying predators of insect pests in nature. However, these assays are prone to yielding certain types of food chain errors. For instance, it is possible that prey remains can pass through the food chain as the result of ...

  19. Multiplex Real-Time PCR Assay Using TaqMan Probes for the Identification of Trypanosoma cruzi DTUs in Biological and Clinical Samples

    PubMed Central

    Cura, Carolina I.; Duffy, Tomas; Lucero, Raúl H.; Bisio, Margarita; Péneau, Julie; Jimenez-Coello, Matilde; Calabuig, Eva; Gimenez, María J.; Valencia Ayala, Edward; Kjos, Sonia A.; Santalla, José; Mahaney, Susan M.; Cayo, Nelly M.; Nagel, Claudia; Barcán, Laura; Málaga Machaca, Edith S.; Acosta Viana, Karla Y.; Brutus, Laurent; Ocampo, Susana B.; Aznar, Christine; Cuba Cuba, Cesar A.; Gürtler, Ricardo E.; Ramsey, Janine M.; Ribeiro, Isabela; VandeBerg, John L.; Yadon, Zaida E.; Osuna, Antonio; Schijman, Alejandro G.

    2015-01-01

    Background Trypanosoma cruzi has been classified into six Discrete Typing Units (DTUs), designated as TcI–TcVI. In order to effectively use this standardized nomenclature, a reproducible genotyping strategy is imperative. Several typing schemes have been developed with variable levels of complexity, selectivity and analytical sensitivity. Most of them can be only applied to cultured stocks. In this context, we aimed to develop a multiplex Real-Time PCR method to identify the six T. cruzi DTUs using TaqMan probes (MTq-PCR). Methods/Principal Findings The MTq-PCR has been evaluated in 39 cultured stocks and 307 biological samples from vectors, reservoirs and patients from different geographical regions and transmission cycles in comparison with a multi-locus conventional PCR algorithm. The MTq-PCR was inclusive for laboratory stocks and natural isolates and sensitive for direct typing of different biological samples from vectors, reservoirs and patients with acute, congenital infection or Chagas reactivation. The first round SL-IR MTq-PCR detected 1 fg DNA/reaction tube of TcI, TcII and TcIII and 1 pg DNA/reaction tube of TcIV, TcV and TcVI reference strains. The MTq-PCR was able to characterize DTUs in 83% of triatomine and 96% of reservoir samples that had been typed by conventional PCR methods. Regarding clinical samples, 100% of those derived from acute infected patients, 62.5% from congenitally infected children and 50% from patients with clinical reactivation could be genotyped. Sensitivity for direct typing of blood samples from chronic Chagas disease patients (32.8% from asymptomatic and 22.2% from symptomatic patients) and mixed infections was lower than that of the conventional PCR algorithm. Conclusions/Significance Typing is resolved after a single or a second round of Real-Time PCR, depending on the DTU. This format reduces carryover contamination and is amenable to quantification, automation and kit production. PMID:25993316

  20. Multiplex Real-Time PCR Assay Using TaqMan Probes for the Identification of Trypanosoma cruzi DTUs in Biological and Clinical Samples.

    PubMed

    Cura, Carolina I; Duffy, Tomas; Lucero, Raúl H; Bisio, Margarita; Péneau, Julie; Jimenez-Coello, Matilde; Calabuig, Eva; Gimenez, María J; Valencia Ayala, Edward; Kjos, Sonia A; Santalla, José; Mahaney, Susan M; Cayo, Nelly M; Nagel, Claudia; Barcán, Laura; Málaga Machaca, Edith S; Acosta Viana, Karla Y; Brutus, Laurent; Ocampo, Susana B; Aznar, Christine; Cuba Cuba, Cesar A; Gürtler, Ricardo E; Ramsey, Janine M; Ribeiro, Isabela; VandeBerg, John L; Yadon, Zaida E; Osuna, Antonio; Schijman, Alejandro G

    2015-05-01

    Trypanosoma cruzi has been classified into six Discrete Typing Units (DTUs), designated as TcI-TcVI. In order to effectively use this standardized nomenclature, a reproducible genotyping strategy is imperative. Several typing schemes have been developed with variable levels of complexity, selectivity and analytical sensitivity. Most of them can be only applied to cultured stocks. In this context, we aimed to develop a multiplex Real-Time PCR method to identify the six T. cruzi DTUs using TaqMan probes (MTq-PCR). The MTq-PCR has been evaluated in 39 cultured stocks and 307 biological samples from vectors, reservoirs and patients from different geographical regions and transmission cycles in comparison with a multi-locus conventional PCR algorithm. The MTq-PCR was inclusive for laboratory stocks and natural isolates and sensitive for direct typing of different biological samples from vectors, reservoirs and patients with acute, congenital infection or Chagas reactivation. The first round SL-IR MTq-PCR detected 1 fg DNA/reaction tube of TcI, TcII and TcIII and 1 pg DNA/reaction tube of TcIV, TcV and TcVI reference strains. The MTq-PCR was able to characterize DTUs in 83% of triatomine and 96% of reservoir samples that had been typed by conventional PCR methods. Regarding clinical samples, 100% of those derived from acute infected patients, 62.5% from congenitally infected children and 50% from patients with clinical reactivation could be genotyped. Sensitivity for direct typing of blood samples from chronic Chagas disease patients (32.8% from asymptomatic and 22.2% from symptomatic patients) and mixed infections was lower than that of the conventional PCR algorithm. Typing is resolved after a single or a second round of Real-Time PCR, depending on the DTU. This format reduces carryover contamination and is amenable to quantification, automation and kit production.

  1. Discrimination of Spore-Forming Bacilli Using spoIVA

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri; LaDuc, Myron; Stuecker, Tara

    2009-01-01

    A method of discriminating between spore-forming and non-spore-forming bacteria is based on a combination of simultaneous sporulation-specific and non-sporulation-specific quantitative polymerase chain reactions (Q-PCRs). The method was invented partly in response to the observation that for the purposes of preventing or reducing biological contamination affecting many human endeavors, ultimately, only the spore-forming portions of bacterial populations are the ones that are problematic (or, at least, more problematic than are the non-spore-forming portions). In some environments, spore-forming bacteria constitute small fractions of the total bacterial populations. The use of sporulation-specific primers in Q-PCR affords the ability to assess the spore-forming fraction of a bacterial population present in an environment of interest. This assessment can provide a more thorough and accurate understanding of the bacterial contamination in the environment, thereby making it possible to focus contamination- testing, contamination-prevention, sterilization, and decontamination resources more economically and efficiently. The method includes the use of sporulation-specific primers in the form of designed, optimized deoxyribonucleic acid (DNA) oligonucleotides specific for the bacterial spoIVA gene (see table). [In "spoIVA," "IV" signifies Roman numeral four and the entire quoted name refers to gene A for the fourth stage of sporulation.] These primers are mixed into a PCR cocktail with a given sample of bacterial cells. A control PCR cocktail into which are mixed universal 16S rRNA primers is also prepared. ["16S rRNA" denotes a ribosomal ribonucleic acid (rRNA) sequence that is common to all organisms.] Following several cycles of heating and cooling according to the PCR protocol to amplify amounts of DNA molecules, the amplification products can be analyzed to determine the types of bacterial cells present within the samples. If the amplification product is strong, relative to the product of a control PCR sequence, then it is concluded that the bacterial population in the sample consists predominantly of spore-forming cells. If the amplification product is weak or nonexistent, then it is concluded that the bacterial population in the sample consists predominantly or entirely of non-spore-forming cells.

  2. A multiplex PCR for detection of six viruses in ducks.

    PubMed

    Wang, Yongjuan; Zhu, Shanyuan; Hong, Weiming; Wang, Anping; Zuo, Weiyong

    2017-10-01

    In this study, six pairs of specific primers that can amplify DNA fragments of different sizes were designed and synthesized according to viral protein gene sequences published in GenBank. Then, a multiplex PCR method was established for rapid detection of duck hepatitis virus 1, duck plague virus, duck Tembusu virus, muscovy duck parvovirus, muscovy duck reovirus, and duck H9N2 avian influenza virus, and achieve simple and rapid detection of viral diseases in ducks. Single PCR was used to confirm primer specificity, and PCR conditions were optimized to construct a multiplex PCR system. Specificity and sensitivity assays were also developed. The multiplex PCR was used to detect duck embryos infected with mixed viruses and those with clinically suspected diseases to verify the feasibility of the multiplex PCR. Results show that the primers can specifically amplify target fragments, without any cross-amplification with other viruses. The multiplex PCR system can amplify six DNA fragments from the pooled viral genomes and specifically detect nucleic acids of the six duck susceptible viruses when the template amount is 10 2 copies/μl. In addition, the system can be used to detect viral nucleic acids in duck embryos infected with the six common viruses. The detection results for clinical samples are consistent with those detected by single PCR. Therefore, the established multiplex PCR method can perform specific, sensitive, and high-throughput detection of six duck-infecting viruses and can be applied to clinical identification and diagnosis of viral infection in ducks. Copyright © 2017. Published by Elsevier B.V.

  3. [Optimized application of nested PCR method for detection of malaria].

    PubMed

    Yao-Guang, Z; Li, J; Zhen-Yu, W; Li, C

    2017-04-28

    Objective To optimize the application of the nested PCR method for the detection of malaria according to the working practice, so as to improve the efficiency of malaria detection. Methods Premixing solution of PCR, internal primers for further amplification and new designed primers that aimed at two Plasmodium ovale subspecies were employed to optimize the reaction system, reaction condition and specific primers of P . ovale on basis of routine nested PCR. Then the specificity and the sensitivity of the optimized method were analyzed. The positive blood samples and examination samples of malaria were detected by the routine nested PCR and the optimized method simultaneously, and the detection results were compared and analyzed. Results The optimized method showed good specificity, and its sensitivity could reach the pg to fg level. The two methods were used to detect the same positive malarial blood samples simultaneously, the results indicated that the PCR products of the two methods had no significant difference, but the non-specific amplification reduced obviously and the detection rates of P . ovale subspecies improved, as well as the total specificity also increased through the use of the optimized method. The actual detection results of 111 cases of malarial blood samples showed that the sensitivity and specificity of the routine nested PCR were 94.57% and 86.96%, respectively, and those of the optimized method were both 93.48%, and there was no statistically significant difference between the two methods in the sensitivity ( P > 0.05), but there was a statistically significant difference between the two methods in the specificity ( P < 0.05). Conclusion The optimized PCR can improve the specificity without reducing the sensitivity on the basis of the routine nested PCR, it also can save the cost and increase the efficiency of malaria detection as less experiment links.

  4. Comparison of (GTG)5-oligonucleotide and ribosomal intergenic transcribed spacer (ITS)-PCR for molecular typing of Klebsiella isolates.

    PubMed

    Ryberg, Anna; Olsson, Crister; Ahrné, Siv; Monstein, Hans-Jürg

    2011-02-01

    Molecular typing of Klebsiella species has become important for monitoring dissemination of β-lactamase-producers in hospital environments. The present study was designed to evaluate poly-trinucleotide (GTG)(5)- and rDNA intergenic transcribed spacer (ITS)-PCR fingerprint analysis for typing of Klebsiella pneumoniae and Klebsiella oxytoca isolates. Multiple displacement amplified DNA derived from 19 K. pneumoniae (some with an ESBL-phenotype), 35 K. oxytoca isolates, five K. pneumoniae, two K. oxytoca, three Raoultella, and one Enterobacter aerogenes type and reference strains underwent (GTG)(5) and ITS-PCR analysis. Dendrograms were constructed using cosine coefficient and the Neighbour joining method. (GTG)(5) and ITS-PCR analysis revealed that K. pneumoniae and K. oxytoca isolates, reference and type strains formed distinct cluster groups, and tentative subclusters could be established. We conclude that (GTG)(5) and ITS-PCR analysis combined with automated capillary electrophoresis provides promising tools for molecular typing of Klebsiella isolates. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Sequence-specific "gene signatures" can be obtained by PCR with single specific primers at low stringency.

    PubMed Central

    Pena, S D; Barreto, G; Vago, A R; De Marco, L; Reinach, F C; Dias Neto, E; Simpson, A J

    1994-01-01

    Low-stringency single specific primer PCR (LSSP-PCR) is an extremely simple PCR-based technique that detects single or multiple mutations in gene-sized DNA fragments. A purified DNA fragment is subjected to PCR using high concentrations of a single specific oligonucleotide primer, large amounts of Taq polymerase, and a very low annealing temperature. Under these conditions the primer hybridizes specifically to its complementary region and nonspecifically to multiple sites within the fragment, in a sequence-dependent manner, producing a heterogeneous set of reaction products resolvable by electrophoresis. The complex banding pattern obtained is significantly altered by even a single-base change and thus constitutes a unique "gene signature." Therefore LSSP-PCR will have almost unlimited application in all fields of genetics and molecular medicine where rapid and sensitive detection of mutations and sequence variations is important. The usefulness of LSSP-PCR is illustrated by applications in the study of mutants of smooth muscle myosin light chain, analysis of a family with X-linked nephrogenic diabetes insipidus, and identity testing using human mitochondrial DNA. Images PMID:8127912

  6. Development and evaluation of internal amplification controls for use in a real-time duplex PCR assay for detection of Campylobacter coli and Campylobacter jejuni.

    PubMed

    Randall, Luke; Lemma, Fabrizio; Rodgers, John; Vidal, Ana; Clifton-Hadley, Felicity

    2010-02-01

    A common problem of both conventional and real-time PCR assays is failure of DNA amplification due to the presence of inhibitory substances in samples. In view of this, our aim was to develop and evaluate internal amplification controls (IACs) for use with an existing duplex real-time PCR assay for Campylobacter coli and Campylobacter jejuni. Both competitive and non-competitive IACs were developed and evaluated. The competitive approach involved a DNA fragment of the coding region of the fish viral haemorrhagic septicaemia virus, flanked by the mapA PCR primers, whilst the non-competitive approach utilized an extra set of universal 16S rDNA primers. Both IAC-PCR assay types were evaluated using cultures of Campylobacter and chicken caecal content samples. Both IACs were sensitive to caecal inhibitors, making them suitable for detecting inhibition which could lead to false-negatives. Results showed that both IACs at optimum concentrations worked well without reducing the overall sensitivity of the PCR assay. Compared to culture, the optimized competitive IAC-PCR assay detected 45/47 positives (sensitivity 93.6 %, specificity 80.1 %); however, it had the advantage over culture in that it could detect mixed infections of C. coli and C. jejuni and was capable of giving a result for a sample within a day.

  7. Edesign: Primer and Enhanced Internal Probe Design Tool for Quantitative PCR Experiments and Genotyping Assays.

    PubMed

    Kimura, Yasumasa; Soma, Takahiro; Kasahara, Naoko; Delobel, Diane; Hanami, Takeshi; Tanaka, Yuki; de Hoon, Michiel J L; Hayashizaki, Yoshihide; Usui, Kengo; Harbers, Matthias

    2016-01-01

    Analytical PCR experiments preferably use internal probes for monitoring the amplification reaction and specific detection of the amplicon. Such internal probes have to be designed in close context with the amplification primers, and may require additional considerations for the detection of genetic variations. Here we describe Edesign, a new online and stand-alone tool for designing sets of PCR primers together with an internal probe for conducting quantitative real-time PCR (qPCR) and genotypic experiments. Edesign can be used for selecting standard DNA oligonucleotides like for instance TaqMan probes, but has been further extended with new functions and enhanced design features for Eprobes. Eprobes, with their single thiazole orange-labelled nucleotide, allow for highly sensitive genotypic assays because of their higher DNA binding affinity as compared to standard DNA oligonucleotides. Using new thermodynamic parameters, Edesign considers unique features of Eprobes during primer and probe design for establishing qPCR experiments and genotyping by melting curve analysis. Additional functions in Edesign allow probe design for effective discrimination between wild-type sequences and genetic variations either using standard DNA oligonucleotides or Eprobes. Edesign can be freely accessed online at http://www.dnaform.com/edesign2/, and the source code is available for download.

  8. Edesign: Primer and Enhanced Internal Probe Design Tool for Quantitative PCR Experiments and Genotyping Assays

    PubMed Central

    Kasahara, Naoko; Delobel, Diane; Hanami, Takeshi; Tanaka, Yuki; de Hoon, Michiel J. L.; Hayashizaki, Yoshihide; Usui, Kengo; Harbers, Matthias

    2016-01-01

    Analytical PCR experiments preferably use internal probes for monitoring the amplification reaction and specific detection of the amplicon. Such internal probes have to be designed in close context with the amplification primers, and may require additional considerations for the detection of genetic variations. Here we describe Edesign, a new online and stand-alone tool for designing sets of PCR primers together with an internal probe for conducting quantitative real-time PCR (qPCR) and genotypic experiments. Edesign can be used for selecting standard DNA oligonucleotides like for instance TaqMan probes, but has been further extended with new functions and enhanced design features for Eprobes. Eprobes, with their single thiazole orange-labelled nucleotide, allow for highly sensitive genotypic assays because of their higher DNA binding affinity as compared to standard DNA oligonucleotides. Using new thermodynamic parameters, Edesign considers unique features of Eprobes during primer and probe design for establishing qPCR experiments and genotyping by melting curve analysis. Additional functions in Edesign allow probe design for effective discrimination between wild-type sequences and genetic variations either using standard DNA oligonucleotides or Eprobes. Edesign can be freely accessed online at http://www.dnaform.com/edesign2/, and the source code is available for download. PMID:26863543

  9. BchY-based degenerate primers target all types of anoxygenic photosynthetic bacteria in a single PCR.

    PubMed

    Yutin, Natalya; Suzuki, Marcelino T; Rosenberg, Mira; Rotem, Denisse; Madigan, Michael T; Süling, Jörg; Imhoff, Johannes F; Béjà, Oded

    2009-12-01

    To detect anoxygenic bacteria containing either type 1 or type 2 photosynthetic reaction centers in a single PCR, we designed a degenerate primer set based on the bchY gene. The new primers were validated in silico using the GenBank nucleotide database as well as by PCR on pure strains and environmental DNA.

  10. [Study on the genetic difference of SEO type Hantaviruses].

    PubMed

    Zhang, X; Zhou, S; Wang, H; Hu, J; Guan, Z; Liu, H

    2000-10-01

    To understand the genetic type of Hantaviruses and the difference between them caused by rodents in Beijing and to furhter explore the source of the infectious factors. Hantavirus RNA, isolated from lungs of rodents captured in Beijing and positive with Hantavirus antigens with frozen sectioning and Immunofluorescent assay, were reverse-transcribed and amplified with PCR with Hantavirus-specific primers. Five of the PCR amplifications were discovered and sequenced with 300 bp sequence data of M segments (from 2003 - 2302nt according cDNA of seoul 8039 strain). Nucleotide sequence homology showed that they were sequences of SEO-type Hantavirus. Compared with SEO type Hantavirus, the nucleotide sequence homology of these samples was more than 94% while the homology of amonia acid sequence was more than 98%. When compared with HNT type Hantavirus, the homology of nucleotide sequence became less than 72% with the homology of amonia acid sequence less than 81%. Similar to other Hantavirus of SEO type, their nucleotide sequences and deduced amino acid sequences were highly preserved. Phylogenetic tree analysis showed that the five viruses could be divided into at least 4 branches. It was quite likely that there were at least two sub-type SEO viruses with 4 branches that were circulating in Beijing.

  11. Molecular Strain Typing of Mycobacterium tuberculosis: a Review of Frequently Used Methods

    PubMed Central

    2016-01-01

    Tuberculosis, caused by the bacterium Mycobacterium tuberculosis, remains one of the most serious global health problems. Molecular typing of M. tuberculosis has been used for various epidemiologic purposes as well as for clinical management. Currently, many techniques are available to type M. tuberculosis. Choosing the most appropriate technique in accordance with the existing laboratory conditions and the specific features of the geographic region is important. Insertion sequence IS6110-based restriction fragment length polymorphism (RFLP) analysis is considered the gold standard for the molecular epidemiologic investigations of tuberculosis. However, other polymerase chain reaction-based methods such as spacer oligonucleotide typing (spoligotyping), which detects 43 spacer sequence-interspersing direct repeats (DRs) in the genomic DR region; mycobacterial interspersed repetitive units–variable number tandem repeats, (MIRU-VNTR), which determines the number and size of tandem repetitive DNA sequences; repetitive-sequence-based PCR (rep-PCR), which provides high-throughput genotypic fingerprinting of multiple Mycobacterium species; and the recently developed genome-based whole genome sequencing methods demonstrate similar discriminatory power and greater convenience. This review focuses on techniques frequently used for the molecular typing of M. tuberculosis and discusses their general aspects and applications. PMID:27709842

  12. Molecular Strain Typing of Mycobacterium tuberculosis: a Review of Frequently Used Methods.

    PubMed

    Ei, Phyu Win; Aung, Wah Wah; Lee, Jong Seok; Choi, Go Eun; Chang, Chulhun L

    2016-11-01

    Tuberculosis, caused by the bacterium Mycobacterium tuberculosis, remains one of the most serious global health problems. Molecular typing of M. tuberculosis has been used for various epidemiologic purposes as well as for clinical management. Currently, many techniques are available to type M. tuberculosis. Choosing the most appropriate technique in accordance with the existing laboratory conditions and the specific features of the geographic region is important. Insertion sequence IS6110-based restriction fragment length polymorphism (RFLP) analysis is considered the gold standard for the molecular epidemiologic investigations of tuberculosis. However, other polymerase chain reaction-based methods such as spacer oligonucleotide typing (spoligotyping), which detects 43 spacer sequence-interspersing direct repeats (DRs) in the genomic DR region; mycobacterial interspersed repetitive units-variable number tandem repeats, (MIRU-VNTR), which determines the number and size of tandem repetitive DNA sequences; repetitive-sequence-based PCR (rep-PCR), which provides high-throughput genotypic fingerprinting of multiple Mycobacterium species; and the recently developed genome-based whole genome sequencing methods demonstrate similar discriminatory power and greater convenience. This review focuses on techniques frequently used for the molecular typing of M. tuberculosis and discusses their general aspects and applications.

  13. Comparison of allele-specific PCR, created restriction-site PCR, and PCR with primer-introduced restriction analysis methods used for screening complex vertebral malformation carriers in Holstein cattle

    PubMed Central

    Altınel, Ahmet

    2017-01-01

    Complex vertebral malformation (CVM) is an inherited, autosomal recessive disorder of Holstein cattle. The aim of this study was to compare sensitivity, specificity, positive and negative predictive values, accuracy, and rapidity of allele-specific polymerase chain reaction (AS-PCR), created restriction-site PCR (CRS-PCR), and PCR with primer-introduced restriction analysis (PCR-PIRA), three methods used in identification of CVM carriers in a Holstein cattle population. In order to screen for the G>T mutation in the solute carrier family 35 member A3 (SLC35A3) gene, DNA sequencing as the gold standard method was used. The prevalence of carriers and the mutant allele frequency were 3.2% and 0.016, respectively, among Holstein cattle in the Thrace region of Turkey. Among the three methods, the fastest but least accurate was AS-PCR. Although the rapidity of CRS-PCR and PCR-PIRA were nearly equal, the accuracy of PCR-PIRA was higher than that of CRS-PCR. Therefore, among the three methods, PCR-PIRA appears to be the most efficacious for screening of mutant alleles when identifying CVM carriers in a Holstein cattle population. PMID:28927256

  14. Evaluation of repetitive element polymerase chain reaction for surveillance of methicillin-resistant Staphylococcus aureus at a large academic medical center and community hospitals.

    PubMed

    Wang, Shu-Hua; Stevenson, Kurt B; Hines, Lisa; Mediavilla, José R; Khan, Yosef; Soni, Ruchi; Dutch, Wendy; Brandt, Eric; Bannerman, Tammy; Kreiswirth, Barry N; Pancholi, Preeti

    2015-01-01

    Repetitive element polymerase chain reaction (rep-PCR) typing has been used for methicillin-resistant Staphylococcus aureus (MRSA) strain characterization. The goal of this study was to determine if a rapid commercial rep-PCR system, DiversiLab™ (DL; bioMérieux, Durham, NC, USA), could be used for MRSA surveillance at a large medical center and community hospitals. A total of 1286 MRSA isolates genotyped by the DL system were distributed into 84 distinct rep-PCR patterns: 737/1286 (57%) were clustered into 6 major rep-PCR patterns. A subset of 220 isolates was further typed by pulsed-field gel electrophoresis (PFGE), spa typing, and SCCmec typing. The 220 isolates were distributed into 80 rep-PCR patterns, 94 PFGE pulsotypes, 27 spa, and 3 SCCmec types. The DL rep-PCR system is sufficient for surveillance, but the DL system alone cannot be used to compare data to other institutions until a standardized nomenclature is established and the DL MRSA reference library is expanded. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. High Throughput Multiplex PCR and Probe-based Detection with Luminex Beads for Seven Intestinal Parasites

    PubMed Central

    Taniuchi, Mami; Verweij, Jaco J.; Noor, Zannatun; Sobuz, Shihab U.; van Lieshout, Lisette; Petri, William A.; Haque, Rashidul; Houpt, Eric R.

    2011-01-01

    Polymerase chain reaction (PCR) assays for intestinal parasites are increasingly being used on fecal DNA samples for enhanced specificity and sensitivity of detection. Comparison of these tests against microscopy and copro-antigen detection has been favorable, and substitution of PCR-based assays for the ova and parasite stool examination is a foreseeable goal for the near future. One challenge is the diverse list of protozoan and helminth parasites. Several existing real-time PCR assays for the major intestinal parasites—Cryptosporidium spp., Giardia intestinalis, Entamoeba histolytica, Ancylostoma duodenale, Ascaris lumbricoides, Necator americanus, and Strongyloides stercoralis—were adapted into a high throughput protocol. The assay involves two multiplex PCR reactions, one with specific primers for the protozoa and one with specific primers for the helminths, after which PCR products are hybridized to beads linked to internal oligonucleotide probes and detected on a Luminex platform. When compared with the parent multiplex real-time PCR assays, this multiplex PCR-bead assay afforded between 83% and 100% sensitivity and specificity on a total of 319 clinical specimens. In conclusion, this multiplex PCR-bead protocol provides a sensitive diagnostic screen for a large panel of intestinal parasites. PMID:21292910

  16. Rapid single nucleotide polymorphism based method for hematopoietic chimerism analysis and monitoring using high-speed droplet allele-specific PCR and allele-specific quantitative PCR.

    PubMed

    Taira, Chiaki; Matsuda, Kazuyuki; Yamaguchi, Akemi; Uehara, Masayuki; Sugano, Mitsutoshi; Okumura, Nobuo; Honda, Takayuki

    2015-05-20

    Chimerism analysis is important for the evaluation of engraftment and predicting relapse following hematopoietic stem cell transplantation (HSCT). We developed a chimerism analysis for single nucleotide polymorphisms (SNPs), including rapid screening of the discriminable donor/recipient alleles using droplet allele-specific PCR (droplet-AS-PCR) pre-HSCT and quantitation of recipient DNA using AS-quantitative PCR (AS-qPCR) following HSCT. SNP genotyping of 20 donor/recipient pairs via droplet-AS-PCR and the evaluation of the informativity of 5 SNP markers for chimerism analysis were performed. Samples from six follow-up patients were analyzed to assess the chimerism via AS-qPCR. These results were compared with that determined by short tandem repeat PCR (STR-PCR). Droplet-AS-PCR could determine genotypes within 8min. The total informativity using all 5 loci was 95% (19/20). AS-qPCR provided the percentage of recipient DNA in all 6 follow-up patients without influence of the stutter peak or the amplification efficacy, which affected the STR-PCR results. The droplet-AS-PCR had an advantage over STR-PCR in terms of rapidity and simplicity for screening before HSCT. Furthermore, AS-qPCR had better accuracy than STR-PCR for quantification of recipient DNA following HSCT. The present chimerism assay compensates for the disadvantages of STR-PCR and is readily performable in clinical laboratories. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Discriminatory Power and Reproducibility of Novel DNA Typing Methods for Mycobacterium tuberculosis Complex Strains

    PubMed Central

    Kremer, Kristin; Arnold, Catherine; Cataldi, Angel; Gutiérrez, M. Cristina; Haas, Walter H.; Panaiotov, Stefan; Skuce, Robin A.; Supply, Philip; van der Zanden, Adri G. M.; van Soolingen, Dick

    2005-01-01

    In recent years various novel DNA typing methods have been developed which are faster and easier to perform than the current internationally standardized IS6110 restriction fragment length polymorphism typing method. However, there has been no overview of the utility of these novel typing methods, and it is largely unknown how they compare to previously published methods. In this study, the discriminative power and reproducibility of nine recently described PCR-based typing methods for Mycobacterium tuberculosis were investigated using the strain collection of the interlaboratory study of Kremer et al. (J. Clin. Microbiol. 37:2607-2618, 1999). This strain collection contains 90 M. tuberculosis complex and 10 non-M. tuberculosis complex mycobacterial strains, as well as 31 duplicated DNA samples to assess reproducibility. The highest reproducibility was found with variable numbers of tandem repeat typing using mycobacterial interspersed repetitive units (MIRU VNTR) and fast ligation-mediated PCR (FLiP), followed by second-generation spoligotyping, ligation-mediated PCR (LM-PCR), VNTR typing using five repeat loci identified at the Queens University of Belfast (QUB VNTR), and the Amadio speciation PCR. Poor reproducibility was associated with fluorescent amplified fragment length polymorphism typing, which was performed in three different laboratories. The methods were ordered from highest discrimination to lowest by the Hunter-Gaston discriminative index as follows: QUB VNTR typing, MIRU VNTR typing, FLiP, LM-PCR, and spoligotyping. We conclude that both VNTR typing methods and FLiP typing are rapid, highly reliable, and discriminative epidemiological typing methods for M. tuberculosis and that VNTR typing is the epidemiological typing method of choice for the near future. PMID:16272496

  18. White spot syndrome virus (WSSV) infects specific hemocytes of the shrimp Penaeus merguiensis.

    PubMed

    Wang, Y T; Liu, W; Seah, J N; Lam, C S; Xiang, J H; Korzh, V; Kwang, J

    2002-12-10

    White spot syndrome virus (WSSV) was specifically detected by PCR in Penaeus merguiensis hemocytes, hemolymph and plasma. This suggested a close association between the shrimp hemolymph and the virus. Three types of hemocyte from shrimp were isolated using flow cytometry. Dynamic changes of the hemocyte subpopulations in P. merguiensis at different times after infection were observed, indicating that the WSSV infection selectively affected specific subpopulations. Immunofluorescence assay (IFA) and a Wright-Giemsa double staining study of hemocyte types further confirmed the cellular localization of the virus in the infected hemocytes. Electron microscopy revealed virus particles in both vacuoles and the nucleus of the semigranular cells (SGC), as well as in the vacuoles of the granular cells (GC). However, no virus could be detected in the hyaline cells (HC). Our results suggest that the virus infects 2 types of shrimp hemocytes--GCs and SGCs. The SGC type contains higher virus loads and exhibits faster infection rates, and is apparently more susceptible to WSSV infection.

  19. Direct detection of Trichomonas vaginalis virus in Trichomonas vaginalis positive clinical samples from the Netherlands.

    PubMed

    Jehee, Ivo; van der Veer, Charlotte; Himschoot, Michelle; Hermans, Mirjam; Bruisten, Sylvia

    2017-12-01

    Trichomonas vaginalis is the most common sexually transmitted parasitical infection worldwide. T. vaginalis can carry a virus: Trichomonas vaginalis virus (TVV). To date, four TVV species have been described. Few studies have investigated TVV prevalence and its clinical importance. We have developed a nested reverse-transcriptase PCR, with novel, type specific primers to directly detect TVV RNA in T. vaginalis positive clinical samples. A total of 119T. vaginalis positive clinical samples were collected in Amsterdam and "s-Hertogenbosch, the Netherlands, from 2012 to 2016. For all samples T. vaginalis was genotyped using multi-locus sequence typing. The T. vaginalis positive samples segregated into a two-genotype population: type I (n=64) and type II (n=55). All were tested for TVV with the new TVV PCR. We detected 3 of the 4 TVV species. Sequencing of the amplified products showed high homology with published TVV genomes (82-100%). Half of the T. vaginalis clinical samples (n=60, 50.4%) were infected with one or more TVV species, with a preponderance for TVV infections in T. vaginalis type I (n=44, 73.3%). Clinical data was available for a subset of samples (n=34) and we observed an association between testing positive for (any) TVV and reporting urogenital symptoms (p=0.023). The nested RT-PCR allowed for direct detection of TVV in T. vaginalis positive clinical samples. This may be helpful in studies and clinical settings, since T. vaginalis disease and/or treatment outcome may be influenced by the protozoa"s virus. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Application of immuno-PCR assay for the detection of serum IgE specific to Bermuda allergen.

    PubMed

    Rahmatpour, Samine; Khan, Amjad Hayat; Nasiri Kalmarzi, Rasoul; Rajabibazl, Masoumeh; Tavoosidana, Gholamreza; Motevaseli, Elahe; Zarghami, Nosratollah; Sadroddiny, Esmaeil

    2017-04-01

    In vivo and in vitro tests are the two major ways of identifying the triggering allergens in sensitized individuals with allergic symptoms. Both methods are equally significant in terms of sensitivity and specificity. However, in certain circumstances, in vitro methods are highly preferred because they circumvent the use of sensitizing drugs in patients. In current study, we described a highly sensitive immuno-PCR (iPCR) assay for serum IgE specific to Bermuda allergens. Using oligonucleotide-labelled antibody, we used iPCR for the sensitive detection of serum IgE. The nucleotide sequence was amplified using conventional PCR and the bands were visualized on 2.5% agarose gel. Results demonstrated a 100-fold enhancement in sensitivity of iPCR over commercially available enzyme-linked immunosorbent assay (ELISA) kit. Our iPCR method was highly sensitive for Bermuda-specific serum IgE and could be beneficial in allergy clinics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Rapid, Point-of-Care Extraction of Human Immunodeficiency Virus Type 1 Proviral DNA from Whole Blood for Detection by Real-Time PCR ▿

    PubMed Central

    Jangam, Sujit R.; Yamada, Douglas H.; McFall, Sally M.; Kelso, David M.

    2009-01-01

    PCR detection of human immunodeficiency virus type 1 (HIV-1) proviral DNA is the method recommended for use for the diagnosis of HIV-1 infection in infants in limited-resource settings. Currently, testing must be performed in central laboratories, which are usually located some distance from health care facilities. While the collection and transportation of samples, such as dried blood spots, has improved test accessibility, the results are often not returned for several weeks. To enable PCR to be performed at the point of care while the mothers wait, we have developed a vertical filtration method that uses a separation membrane and an absorbent pad to extract cellular DNA from whole blood in less than 2 min. Cells are trapped in the separation membrane as the specimen is collected, and then a lysis buffer is added. The membrane retains the DNA, while the buffer washes away PCR inhibitors, which get wicked into the absorbent blotter pad. The membrane containing the entrapped DNA is then added to the PCR mixture without further purification. The method demonstrates a high degree of reproducibility and analytical sensitivity and allows the quantification of as few as 20 copies of HIV-1 proviral DNA from 100 μl of blood. In a blinded study with 182 longitudinal samples from infants (ages, 0 to 72 weeks) obtained from the Women and Infants Transmission Study, our assay demonstrated a sensitivity of 99% and a specificity of 100%. PMID:19644129

  2. Rapid polymerase chain reaction screening of Helicobacter pylori chromosomal point mutations.

    PubMed

    Ge, Z; Taylor, D E

    1997-09-01

    Microdiversity (within individual genes) in the genomes of different Helicobacter pylori strains has been demonstrated to be more frequent than that seen in other prokaryotes. Point mutations in some genes, such as the vacA and 23S ribosomal RNA genes could result in the alteration of pathogenicity or antibiotic susceptibility of individual H. pylori strains. Development of a simple, rapid, and reliable screening method would be useful in the molecular characterization of genetic variation among different H. pylori strains. The copP gene from H. pylori UA802 was used as a model for developing a mutation screening method. Four point mutations were introduced into the copP gene by in vitro site-directed mutagenesis and were verified by DNA sequencing. The mutated copP gene replaced the wild-type locus by natural transformation and homologous recombination. The site-specific mutants were screened by polymerase chain reaction (PCR) using 3'-end mismatched primers. The origins of the PCR fragments were demonstrated by Southern hybridization with the copP-derived DNA probe. Three of these four mutations were characterized by PCR with the specific primers that contained the 3'-terminal nucleotide complementary only to the mutated nucleotide on both plasmid and chromosomal DNA templates. One mutation was able to be identified with the foregoing primer containing an additional wild-type nucleotide at its 3'-end. Point mutant screening with these specific primers offers 100% sensitivity in the aforementioned conditions. To achieve optimal screening, the concentration of magnesium and the annealing temperature have to be adjusted. The procedure reported in this study is a simple, economical, rapid, and efficient approach in the identification of site-specific mutations on both plasmids and chromosomal DNA. Although the method was developed by using a specified H. pylori gene, it can be extended easily to other genes of interest in H. pylori or other organisms.

  3. Sensitive PCR Detection of Meloidogyne arenaria, M. incognita, and M. javanica Extracted from Soil

    PubMed Central

    Qiu, Jinya Jack; Westerdahl, Becky B.; Anderson, Cindy; Williamson, Valerie M.

    2006-01-01

    We have developed a simple PCR assay protocol for detection of the root-knot nematode (RKN) species Meloidogyne arenaria, M. incognita, and M. javanica extracted from soil. Nematodes are extracted from soil using Baermann funnels and centrifugal flotation. The nematode-containing fraction is then digested with proteinase K, and a PCR assay is carried out with primers specific for this group of RKN and with universal primers spanning the ITS of rRNA genes. The presence of RKN J2 can be detected among large numbers of other plant-parasitic and free-living nematodes. The procedure was tested with several soil types and crops from different locations and was found to be sensitive and accurate. Analysis of unknowns and spiked soil samples indicated that detection sensitivity was the same as or higher than by microscopic examination. PMID:19259460

  4. European Bat Lyssavirus in Scottish Bats

    PubMed Central

    Brookes, Sharon M.; Aegerter, James N.; Smith, Graham C.; Healy, Derek M.; Jolliffe, Tracey A.; Swift, Susan M.; Mackie, Iain J.; Pritchard, J. Stewart; Racey, Paul A.; Moore, Niall P.

    2005-01-01

    We report the first seroprevalence study of the occurrence of specific antibodies to European bat lyssavirus type 2 (EBLV-2) in Daubenton's bats. Bats were captured from 19 sites across eastern and southern Scotland. Samples from 198 Daubenton's bats, 20 Natterer's bats, and 6 Pipistrelle's bats were tested for EBLV-2. Blood samples (N = 94) were subjected to a modified fluorescent antibody virus neutralization test to determine antibody titer. From 0.05% to 3.8% (95% confidence interval) of Daubenton's bats were seropositive. Antibodies to EBLV-2 were not detected in the 2 other species tested. Mouth swabs (N = 218) were obtained, and RNA was extracted for a reverse transcription–polymerase chain reaction (RT-PCR). The RT-PCR included pan lyssavirus-primers (N gene) and internal PCR control primers for ribosomal RNA. EBLV-2 RNA was not detected in any of the saliva samples tested, and live virus was not detected in virus isolation tests. PMID:15829196

  5. Characterization of Escherichia coli Type 1 Pilus Mutants with Altered Binding Specificities

    PubMed Central

    Harris, Sandra L.; Spears, Patricia A.; Havell, Edward A.; Hamrick, Terri S.; Horton, John R.; Orndorff, Paul E.

    2001-01-01

    PCR mutagenesis and a unique enrichment scheme were used to obtain two mutants, each with a single lesion in fimH, the chromosomal gene that encodes the adhesin protein (FimH) of Escherichia coli type 1 pili. These mutants were noteworthy in part because both were altered in the normal range of cell types bound by FimH. One mutation altered an amino acid at a site previously shown to be involved in temperature-dependent binding, and the other altered an amino acid lining the predicted FimH binding pocket. PMID:11395476

  6. Acute hydrocephalus secondary to herpes simplex type II meningitis.

    PubMed

    Heppner, Peter A; Schweder, Patrick M; Monteith, Stephen J; Law, Andrew J J

    2008-10-01

    A 34-year-old woman presented with a rapid onset of meningitic symptoms. Cerebrospinal fluid (CSF) from a lumbar puncture revealed a leucocytosis with a preponderance of monocytes, elevated protein and reduced glucose. Herpes simplex virus (HSV) type II was subsequently confirmed by polymerase chain reaction (PCR) of CSF. The patient's level of consciousness deteriorated and a CT scan revealed hydrocephalus. The patient required placement of an external ventricular drain for 5 days; however, she made a full recovery without specific antiviral therapy. This is the first reported case of hydrocephalus secondary to isolated HSV type II meningitis.

  7. A rapid and reliable PCR method for genotyping the ABO blood group. II: A2 and O2 alleles.

    PubMed

    O'Keefe, D S; Dobrovic, A

    1996-01-01

    PCR permits direct genotyping of individuals at the ABO locus. Several methods have been reported for genotyping ABO that rely on differentiating the A, B, and O alleles at specific base substitutions. However, the O allele as defined by serology comprises at least two alleles (O1 and O2) at the molecular level, and most current ABO genotyping methods only take into account the O1 allele. Determining the presence of the O2 allele is critical, as this not-infrequent allele would be mistyped as an A or a B allele by standard PCR typing methods. Furthermore, none of the methods to date distinguish between the A1 and A2 alleles, even though 10% of all white persons are blood group A2. We have developed a method for genotyping the ABO locus that takes the O2 and A2 alleles into account. Typing for A2 and O2 by diagnostic restriction enzyme digestion is a sensitive, nonradioactive assay that provides a convenient method useful for forensic and paternity testing and for clarifying anomalous serological results.

  8. Use of the polymerase chain reaction to directly detect malaria parasites in blood samples from the Venezuelan Amazon.

    PubMed

    Laserson, K F; Petralanda, I; Hamlin, D M; Almera, R; Fuentes, M; Carrasquel, A; Barker, R H

    1994-02-01

    We have examined the reproducibility, sensitivity, and specificity of detecting Plasmodium falciparum using the polymerase chain reaction (PCR) and the species-specific probe pPF14 under field conditions in the Venezuelan Amazon. Up to eight samples were field collected from each of 48 consenting Amerindians presenting with symptoms of malaria. Sample processing and analysis was performed at the Centro Amazonico para la Investigacion y Control de Enfermedades Tropicales Simon Bolivar. A total of 229 samples from 48 patients were analyzed by PCR methods using four different P. falciparum-specific probes. One P. vivax-specific probe and by conventional microscopy. Samples in which results from PCR and microscopy differed were reanalyzed at a higher sensitivity by microscopy. Results suggest that microscopy-negative, PCR-positive samples are true positives, and that microscopy-positive and PCR-negative samples are true negatives. The sensitivity of the DNA probe/PCR method was 78% and its specificity was 97%. The positive predictive value of the PCR method was 88%, and the negative predictive value was 95%. Through the analysis of multiple blood samples from each individual, the DNA probe/PCR methodology was found to have an inherent reproducibility that was highly statistically significant.

  9. Rapid ABO genotyping by high-speed droplet allele-specific PCR using crude samples.

    PubMed

    Taira, Chiaki; Matsuda, Kazuyuki; Takeichi, Naoya; Furukawa, Satomi; Sugano, Mitsutoshi; Uehara, Takeshi; Okumura, Nobuo; Honda, Takayuki

    2018-01-01

    ABO genotyping has common tools for personal identification of forensic and transplantation field. We developed a new method based on a droplet allele-specific PCR (droplet-AS-PCR) that enabled rapid PCR amplification. We attempted rapid ABO genotyping using crude DNA isolated from dried blood and buccal cells. We designed allele-specific primers for three SNPs (at nucleotides 261, 526, and 803) in exons 6 and 7 of the ABO gene. We pretreated dried blood and buccal cells with proteinase K, and obtained crude DNAs without DNA purification. Droplet-AS-PCR allowed specific amplification of the SNPs at the three loci using crude DNA, with results similar to those for DNA extracted from fresh peripheral blood. The sensitivity of the methods was 5%-10%. The genotyping of extracted DNA and crude DNA were completed within 8 and 9 minutes, respectively. The genotypes determined by the droplet-AS-PCR method were always consistent with those obtained by direct sequencing. The droplet-AS-PCR method enabled rapid and specific amplification of three SNPs of the ABO gene from crude DNA treated with proteinase K. ABO genotyping by the droplet-AS-PCR has the potential to be applied to various fields including a forensic medicine and transplantation medical care. © 2017 Wiley Periodicals, Inc.

  10. Molecular characterisation of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolates from hospital and ambulatory patients in Germany.

    PubMed

    Pietsch, Michael; Eller, Christoph; Wendt, Constanze; Holfelder, Martin; Falgenhauer, Linda; Fruth, Angelika; Grössl, Tobias; Leistner, Rasmus; Valenza, Giuseppe; Werner, Guido; Pfeifer, Yvonne

    2017-02-01

    The increase of Escherichia coli producing extended-spectrum β-lactamases (ESBL) in hospitals and their emergence as intestinal colonisers of healthy humans is of concern. Transmission ways and the extent of spread of distinct E. coli clones or ESBL genes among humans and animals via the food chain or the environment is a matter of debate. In this study we determined ESBL genotypes in E. coli isolates (n=233) resistant to 3rd generation cephalosporins from hospitals and medical practices using PCR and sequencing. Bacterial strain typing was performed by PCR-based phylogrouping, multilocus sequence typing (MLST) and a ST131-specific PCR. Results showed that CTX-M-15 (50.4%), CTX-M-1 (28.4%) and CTX-M-14 (5.6%) were the most common ESBL types. Especially, CTX-M-15 was associated with E. coli ST131 of phylogenetic group B2, which was the dominant sequence type among our isolates (35.8%). MLST typing revealed 40 different sequence types (STs), with ST131, ST410, ST10 and ST38 as the most prevalent ones. Our findings give an overview of the current distribution of ESBL-producing E. coli isolates from humans in Germany. E. coli O25b:H4-ST131 was confirmed to be the most common clone, which is known for its successful dissemination worldwide. Although heterogeneity among the isolates was found, several successful clones previously described in animals (ST410, ST10) also occurred in our isolate collection. Further detailed investigations of ESBL-producing isolates from different habitats are needed to evaluate possible transfer ways. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Rapid and sensitive detection of Yersinia pestis using amplification of plague diagnostic bacteriophages monitored by real-time PCR.

    PubMed

    Sergueev, Kirill V; He, Yunxiu; Borschel, Richard H; Nikolich, Mikeljon P; Filippov, Andrey A

    2010-06-28

    Yersinia pestis, the agent of plague, has caused many millions of human deaths and still poses a serious threat to global public health. Timely and reliable detection of such a dangerous pathogen is of critical importance. Lysis by specific bacteriophages remains an essential method of Y. pestis detection and plague diagnostics. The objective of this work was to develop an alternative to conventional phage lysis tests--a rapid and highly sensitive method of indirect detection of live Y. pestis cells based on quantitative real-time PCR (qPCR) monitoring of amplification of reporter Y. pestis-specific bacteriophages. Plague diagnostic phages phiA1122 and L-413C were shown to be highly effective diagnostic tools for the detection and identification of Y. pestis by using qPCR with primers specific for phage DNA. The template DNA extraction step that usually precedes qPCR was omitted. phiA1122-specific qPCR enabled the detection of an initial bacterial concentration of 10(3) CFU/ml (equivalent to as few as one Y. pestis cell per 1-microl sample) in four hours. L-413C-mediated detection of Y. pestis was less sensitive (up to 100 bacteria per sample) but more specific, and thus we propose parallel qPCR for the two phages as a rapid and reliable method of Y. pestis identification. Importantly, phiA1122 propagated in simulated clinical blood specimens containing EDTA and its titer rise was detected by both a standard plating test and qPCR. Thus, we developed a novel assay for detection and identification of Y. pestis using amplification of specific phages monitored by qPCR. The method is simple, rapid, highly sensitive, and specific and allows the detection of only live bacteria.

  12. Detection of mRNA by reverse transcription PCR as an indicator of viability in Phytophthora ramorum

    Treesearch

    Antonio Chimento; Santa Olga Cacciola; Matteo Garbelotto

    2008-01-01

    Real-Time PCR technologies offer increasing opportunities to detect and study phytopathogenic fungi. They combine the sensitivity of conventional PCR with the generation of a specific fluorescent signal providing both real-time analysis of the reaction kinetics and quantification of specific DNA targets. Before the development of Real-Time PCR and...

  13. A novel SERRS sandwich-hybridization assay to detect specific DNA target.

    PubMed

    Feuillie, Cécile; Merheb, Maxime Mohamad; Gillet, Benjamin; Montagnac, Gilles; Daniel, Isabelle; Hänni, Catherine

    2011-01-01

    In this study, we have applied Surface Enhanced Resonance Raman Scattering (SERRS) technology to the specific detection of DNA. We present an innovative SERRS sandwich-hybridization assay that allows specific DNA detection without any enzymatic amplification, such as is the case with Polymerase Chain Reaction (PCR). In some substrates, such as ancient or processed remains, enzymatic amplification fails due to DNA alteration (degradation, chemical modification) or to the presence of inhibitors. Consequently, the development of a non-enzymatic method, allowing specific DNA detection, could avoid long, expensive and inconclusive amplification trials. Here, we report the proof of concept of a SERRS sandwich-hybridization assay that leads to the detection of a specific chamois DNA. This SERRS assay reveals its potential as a non-enzymatic alternative technology to DNA amplification methods (particularly the PCR method) with several applications for species detection. As the amount and type of damage highly depend on the preservation conditions, the present SERRS assay would enlarge the range of samples suitable for DNA analysis and ultimately would provide exciting new opportunities for the investigation of ancient DNA in the fields of evolutionary biology and molecular ecology, and of altered DNA in food frauds detection and forensics.

  14. A Novel SERRS Sandwich-Hybridization Assay to Detect Specific DNA Target

    PubMed Central

    Gillet, Benjamin; Montagnac, Gilles; Daniel, Isabelle; Hänni, Catherine

    2011-01-01

    In this study, we have applied Surface Enhanced Resonance Raman Scattering (SERRS) technology to the specific detection of DNA. We present an innovative SERRS sandwich-hybridization assay that allows specific DNA detection without any enzymatic amplification, such as is the case with Polymerase Chain Reaction (PCR). In some substrates, such as ancient or processed remains, enzymatic amplification fails due to DNA alteration (degradation, chemical modification) or to the presence of inhibitors. Consequently, the development of a non-enzymatic method, allowing specific DNA detection, could avoid long, expensive and inconclusive amplification trials. Here, we report the proof of concept of a SERRS sandwich-hybridization assay that leads to the detection of a specific chamois DNA. This SERRS assay reveals its potential as a non-enzymatic alternative technology to DNA amplification methods (particularly the PCR method) with several applications for species detection. As the amount and type of damage highly depend on the preservation conditions, the present SERRS assay would enlarge the range of samples suitable for DNA analysis and ultimately would provide exciting new opportunities for the investigation of ancient DNA in the fields of evolutionary biology and molecular ecology, and of altered DNA in food frauds detection and forensics. PMID:21655320

  15. Cloned plasmid DNA fragments as calibrators for controlling GMOs: different real-time duplex quantitative PCR methods.

    PubMed

    Taverniers, Isabel; Van Bockstaele, Erik; De Loose, Marc

    2004-03-01

    Analytical real-time PCR technology is a powerful tool for implementation of the GMO labeling regulations enforced in the EU. The quality of analytical measurement data obtained by quantitative real-time PCR depends on the correct use of calibrator and reference materials (RMs). For GMO methods of analysis, the choice of appropriate RMs is currently under debate. So far, genomic DNA solutions from certified reference materials (CRMs) are most often used as calibrators for GMO quantification by means of real-time PCR. However, due to some intrinsic features of these CRMs, errors may be expected in the estimations of DNA sequence quantities. In this paper, two new real-time PCR methods are presented for Roundup Ready soybean, in which two types of plasmid DNA fragments are used as calibrators. Single-target plasmids (STPs) diluted in a background of genomic DNA were used in the first method. Multiple-target plasmids (MTPs) containing both sequences in one molecule were used as calibrators for the second method. Both methods simultaneously detect a promoter 35S sequence as GMO-specific target and a lectin gene sequence as endogenous reference target in a duplex PCR. For the estimation of relative GMO percentages both "delta C(T)" and "standard curve" approaches are tested. Delta C(T) methods are based on direct comparison of measured C(T) values of both the GMO-specific target and the endogenous target. Standard curve methods measure absolute amounts of target copies or haploid genome equivalents. A duplex delta C(T) method with STP calibrators performed at least as well as a similar method with genomic DNA calibrators from commercial CRMs. Besides this, high quality results were obtained with a standard curve method using MTP calibrators. This paper demonstrates that plasmid DNA molecules containing either one or multiple target sequences form perfect alternative calibrators for GMO quantification and are especially suitable for duplex PCR reactions.

  16. Single-Tube Multiplexed Molecular Detection of Endemic Porcine Viruses in Combination with Background Screening for Transboundary Diseases

    PubMed Central

    Wernike, Kerstin; Hoffmann, Bernd

    2013-01-01

    Detection of several pathogens with multiplexed real-time quantitative PCR (qPCR) assays in a one-step setup allows the simultaneous detection of two endemic porcine and four different selected transboundary viruses. Reverse transcription (RT)-qPCR systems for the detection of porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2), two of the most economically important pathogens of swine worldwide, were combined with a screening system for diseases notifiable to the World Organization of Animal Health, namely, classical and African swine fever, foot-and-mouth disease, and Aujeszky's disease. Background screening was implemented using the identical fluorophore for all four different RT-qPCR assays. The novel multiplex RT-qPCR system was validated with a large panel of different body fluids and tissues from pigs and other animal species. Both reference samples and clinical specimens were used for a complete evaluation. It could be demonstrated that a highly sensitive and specific parallel detection of the different viruses was possible. The assays for the notifiable diseases were even not affected by the simultaneous amplification of very high loads of PRRSV- and PCV2-specific sequences. The novel broad-spectrum multiplex assay allows in a unique form the routine investigation for endemic porcine pathogens with exclusion diagnostics of the most important transboundary diseases in samples from pigs with unspecific clinical signs, such as fever or hemorrhages. The new system could significantly improve early detection of the most important notifiable diseases of swine and could lead to a new approach in syndromic surveillance. PMID:23303496

  17. Improved serotype-specific dengue virus detection in Trinidad and Tobago using a multiplex, real-time RT-PCR.

    PubMed

    Waggoner, Jesse J; Sahadeo, Nikita S D; Brown, Arianne; Mohamed-Hadley, Alisha; Hadley, Dexter; Carrington, Leslie; Carrington, Christine V F; Pinsky, Benjamin A

    2015-02-01

    Dengue virus (DENV) transmission occurs throughout the Caribbean, though laboratory confirmation and epidemiologic surveillance are limited by the availability of serotype-specific molecular diagnostics. In this study, we show that a serotype-specific DENV multiplex, real-time reverse transcriptase-PCR (RT-PCR) detected DENV RNA in significantly more samples (82/182) than a reference hemi-nested RT-PCR (57/182; P=0.01). Copyright © 2015 Elsevier Inc. All rights reserved.

  18. [Sensitivity and specificity of nested PCR pyrosequencing in hepatitis B virus drug resistance gene testing].

    PubMed

    Sun, Shumei; Zhou, Hao; Zhou, Bin; Hu, Ziyou; Hou, Jinlin; Sun, Jian

    2012-05-01

    To evaluate the sensitivity and specificity of nested PCR combined with pyrosequencing in the detection of HBV drug-resistance gene. RtM204I (ATT) mutant and rtM204 (ATG) nonmutant plasmids mixed at different ratios were detected for mutations using nested-PCR combined with pyrosequencing, and the results were compared with those by conventional PCR pyrosequencing to analyze the linearity and consistency of the two methods. Clinical specimens with different viral loads were examined for drug-resistant mutations using nested PCR pyrosequencing and nested PCR combined with dideoxy sequencing (Sanger) for comparison of the detection sensitivity and specificity. The fitting curves demonstrated good linearity of both conventional PCR pyrosequencing and nested PCR pyrosequencing (R(2)>0.99, P<0.05). Nested PCR showed a better consistency with the predicted value than conventional PCR, and was superior to conventional PCR for detection of samples containing 90% mutant plasmid. In the detection of clinical specimens, Sanger sequencing had a significantly lower sensitivity than nested PCR pyrosequencing (92% vs 100%, P<0.01). The detection sensitivity of Sanger sequencing varied with the viral loads, especially in samples with low viral copies (HBV DNA ≤3log10 copies/ml), where the sensitivity was 78%, significantly lower than that of pyrosequencing (100%, P<0.01). Neither of the two methods yielded positive results for the negative control samples, suggesting their good specificity. Compared with nested PCR and Sanger sequencing method, nested PCR pyrosequencing has a higher sensitivity especially in clinical specimens with low viral copies, which can be important for early detection of HBV mutant strains and hence more effective clinical management.

  19. Multiplex detection of nine food-borne pathogens by mPCR and capillary electrophoresis after using a universal pre-enrichment medium.

    PubMed

    Villamizar-Rodríguez, Germán; Fernández, Javier; Marín, Laura; Muñiz, Juan; González, Isabel; Lombó, Felipe

    2015-01-01

    Routine microbiological quality analyses in food samples require, in some cases, an initial incubation in pre-enrichment medium. This is necessary in order to ensure that small amounts of pathogenic strains are going to be detected. In this work, a universal pre-enrichment medium has been developed for the simultaneous growth of Bacillus cereus, Campylobacter jejuni, Clostridium perfringens, Cronobacter sakazakii, Escherichia coli, Enterobacteriaceae family (38 species, 27 genera), Listeria monocytogenes, Staphylococcus aureus, Salmonella spp. (two species, 13 strains). Growth confirmation for all these species was achieved in all cases, with excellent enrichments. This was confirmed by plating on the corresponding selective agar media for each bacterium. This GVUM universal pre-enrichment medium could be useful in food microbiological analyses, where different pathogenic bacteria must be detected after a pre-enrichment step. Following, a mPCR reaction for detection of all these pathogens was developed, after designing a set of nine oligonucleotide pairs from specific genetic targets on gDNA from each of these bacteria, covering all available strains already sequenced in GenBank for each pathogen type. The detection limits have been 1 Genome Equivalent (GE), with the exception of the Fam. Enterobacteriaceae (5 GEs). We obtained amplification for all targets (from 70 to 251 bp, depending on the bacteria type), showing the capability of this method to detect the most important industrial and sanitary food-borne pathogens from a universal pre-enrichment medium. This method includes an initial pre-enrichment step (18 h), followed by a mPCR (2 h) and a capillary electrophoresis (30 min); avoiding the tedious and long lasting growing on solid media required in traditional analysis (1-4 days, depending on the specific pathogen and verification procedure). An external testing of this method was conducted in order to compare classical and mPCR methods. This evaluation was carried out on five types of food matrices (meat, dairy products, prepared foods, canned fish, and pastry products), which were artificially contaminated with each one of the microorganisms, demonstrating the equivalence between both methods (coincidence percentages between both methods ranged from 78 to 92%).

  20. Multiplex detection of nine food-borne pathogens by mPCR and capillary electrophoresis after using a universal pre-enrichment medium

    PubMed Central

    Villamizar-Rodríguez, Germán; Fernández, Javier; Marín, Laura; Muñiz, Juan; González, Isabel; Lombó, Felipe

    2015-01-01

    Routine microbiological quality analyses in food samples require, in some cases, an initial incubation in pre-enrichment medium. This is necessary in order to ensure that small amounts of pathogenic strains are going to be detected. In this work, a universal pre-enrichment medium has been developed for the simultaneous growth of Bacillus cereus, Campylobacter jejuni, Clostridium perfringens, Cronobacter sakazakii, Escherichia coli, Enterobacteriaceae family (38 species, 27 genera), Listeria monocytogenes, Staphylococcus aureus, Salmonella spp. (two species, 13 strains). Growth confirmation for all these species was achieved in all cases, with excellent enrichments. This was confirmed by plating on the corresponding selective agar media for each bacterium. This GVUM universal pre-enrichment medium could be useful in food microbiological analyses, where different pathogenic bacteria must be detected after a pre-enrichment step. Following, a mPCR reaction for detection of all these pathogens was developed, after designing a set of nine oligonucleotide pairs from specific genetic targets on gDNA from each of these bacteria, covering all available strains already sequenced in GenBank for each pathogen type. The detection limits have been 1 Genome Equivalent (GE), with the exception of the Fam. Enterobacteriaceae (5 GEs). We obtained amplification for all targets (from 70 to 251 bp, depending on the bacteria type), showing the capability of this method to detect the most important industrial and sanitary food-borne pathogens from a universal pre-enrichment medium. This method includes an initial pre-enrichment step (18 h), followed by a mPCR (2 h) and a capillary electrophoresis (30 min); avoiding the tedious and long lasting growing on solid media required in traditional analysis (1–4 days, depending on the specific pathogen and verification procedure). An external testing of this method was conducted in order to compare classical and mPCR methods. This evaluation was carried out on five types of food matrices (meat, dairy products, prepared foods, canned fish, and pastry products), which were artificially contaminated with each one of the microorganisms, demonstrating the equivalence between both methods (coincidence percentages between both methods ranged from 78 to 92%). PMID:26579100

  1. Strand-specific, real-time RT-PCR assays for quantification of genomic and positive-sense RNAs of the fish rhabdovirus, Infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Purcell, Maureen K.; Hart, S. Alexandra; Kurath, Gael; Winton, James R.

    2006-01-01

    The fish rhabdovirus, Infectious hematopoietic necrosis virus (IHNV), is an important pathogen of salmonids. Cell culture assays have traditionally been used to quantify levels of IHNV in samples; however, real-time or quantitative RT-PCR assays have been proposed as a rapid alternative. For viruses having a single-stranded, negative-sense RNA genome, standard qRT-PCR assays do not distinguish between the negative-sense genome and positive-sense RNA species including mRNA and anti-genome. Thus, these methods do not determine viral genome copy number. This study reports development of strand-specific, qRT-PCR assays that use tagged primers for enhancing strand specificity during cDNA synthesis and quantitative PCR. Protocols were developed for positive-strand specific (pss-qRT-PCR) and negative-strand specific (nss-qRT-PCR) assays for IHNV glycoprotein (G) gene sequences. Validation with synthetic RNA transcripts demonstrated the assays could discriminate the correct strand with greater than 1000-fold fidelity. The number of genome copies in livers of IHNV-infected fish determined by nss-qRT-PCR was, on average, 8000-fold greater than the number of infectious units as determined by plaque assay. We also compared the number of genome copies with the quantity of positive-sense RNA and determined that the ratio of positive-sense molecules to negative-sense genome copies was, on average, 2.7:1. Potential future applications of these IHNV strand-specific qRT-PCR assays are discussed.

  2. Introduction on Using the FastPCR Software and the Related Java Web Tools for PCR and Oligonucleotide Assembly and Analysis.

    PubMed

    Kalendar, Ruslan; Tselykh, Timofey V; Khassenov, Bekbolat; Ramanculov, Erlan M

    2017-01-01

    This chapter introduces the FastPCR software as an integrated tool environment for PCR primer and probe design, which predicts properties of oligonucleotides based on experimental studies of the PCR efficiency. The software provides comprehensive facilities for designing primers for most PCR applications and their combinations. These include the standard PCR as well as the multiplex, long-distance, inverse, real-time, group-specific, unique, overlap extension PCR for multi-fragments assembling cloning and loop-mediated isothermal amplification (LAMP). It also contains a built-in program to design oligonucleotide sets both for long sequence assembly by ligase chain reaction and for design of amplicons that tile across a region(s) of interest. The software calculates the melting temperature for the standard and degenerate oligonucleotides including locked nucleic acid (LNA) and other modifications. It also provides analyses for a set of primers with the prediction of oligonucleotide properties, dimer and G/C-quadruplex detection, linguistic complexity as well as a primer dilution and resuspension calculator. The program consists of various bioinformatical tools for analysis of sequences with the GC or AT skew, CG% and GA% content, and the purine-pyrimidine skew. It also analyzes the linguistic sequence complexity and performs generation of random DNA sequence as well as restriction endonucleases analysis. The program allows to find or create restriction enzyme recognition sites for coding sequences and supports the clustering of sequences. It performs efficient and complete detection of various repeat types with visual display. The FastPCR software allows the sequence file batch processing that is essential for automation. The program is available for download at http://primerdigital.com/fastpcr.html , and its online version is located at http://primerdigital.com/tools/pcr.html .

  3. Rapid RHD Zygosity Determination Using Digital PCR.

    PubMed

    Sillence, Kelly A; Halawani, Amr J; Tounsi, Wajnat A; Clarke, Kirsty A; Kiernan, Michele; Madgett, Tracey E; Avent, Neil D

    2017-08-01

    Paternal zygosity testing is used for determining homo- or hemizygosity of RHD in pregnancies that are at a risk of hemolytic disease of the fetus and newborn. At present, this is achieved by using real-time PCR or the Rhesus box PCR, which can be difficult to interpret and unreliable, particularly for black African populations. DNA samples extracted from 53 blood donors were analyzed using 2 multiplex reactions for RHD -specific targets against a reference ( AGO1 ) 2 to determine gene dosage by digital PCR. Results were compared with serological data, and the correct genotype for 2 discordant results was determined by long-range PCR (LR-PCR), next-generation sequencing, and conventional Sanger sequencing. The results showed clear and reliable determination of RHD zygosity using digital PCR and revealed that 4 samples did not match the serologically predicted genotype. Sanger sequencing and long-range PCR followed by next-generation sequencing revealed that the correct genotypes for samples 729M and 351D, which were serologically typed as R 1 R 2 (DCe/DcE), were R 2 r' (DcE/dCe) for 729M and R 1 r″ (DCe/dcE), R 0 r y (Dce/dCE), or R Z r (DCE/dce) for 351D, in concordance with the digital PCR data. Digital PCR provides a highly accurate method to rapidly define blood group zygosity and has clinical application in the analysis of Rh phenotyped or genotyped samples. The vast majority of current blood group genotyping platforms are not designed to define zygosity, and thus, this technique may be used to define paternal RH zygosity in pregnancies that are at a risk of hemolytic disease of the fetus and newborn and can distinguish between homo- and hemizygous RHD -positive individuals. © 2017 American Association for Clinical Chemistry.

  4. Multiplex Real-Time PCR Assay for Rapid Detection of Methicillin-Resistant Staphylococci Directly from Positive Blood Cultures

    PubMed Central

    Wang, Hye-young; Kim, Sunghyun; Kim, Jungho; Park, Soon-Deok

    2014-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is the most prevalent cause of bloodstream infections (BSIs) and is recognized as a major nosocomial pathogen. This study aimed to evaluate a newly designed multiplex real-time PCR assay capable of the simultaneous detection of mecA, S. aureus, and coagulase-negative staphylococci (CoNS) in blood culture specimens. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays (M&D, Republic of Korea) use the TaqMan probes 16S rRNA for Staphylococcus spp., the nuc gene for S. aureus, and the mecA gene for methicillin resistance. The detection limit of the multiplex real-time PCR assay was 103 CFU/ml per PCR for each gene target. The multiplex real-time PCR assay was evaluated using 118 clinical isolates from various specimen types and a total of 350 positive blood cultures from a continuous monitoring blood culture system. The results obtained with the multiplex real-time PCR assay for the three targets were in agreement with those of conventional identification and susceptibility testing methods except for one organism. Of 350 positive bottle cultures, the sensitivities of the multiplex real-time PCR kit were 100% (166/166 cultures), 97.2% (35/36 cultures), and 99.2% (117/118 cultures) for the 16S rRNA, nuc, and mecA genes, respectively, and the specificities for all three targets were 100%. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays are very useful for the rapid accurate diagnosis of staphylococcal BSIs. In addition, the Real-MRSA and Real-MRCoNS multiplex real-time PCR assays could have an important impact on the choice of appropriate antimicrobial therapy, based on detection of the mecA gene. PMID:24648566

  5. Computational intelligence-based polymerase chain reaction primer selection based on a novel teaching-learning-based optimisation.

    PubMed

    Cheng, Yu-Huei

    2014-12-01

    Specific primers play an important role in polymerase chain reaction (PCR) experiments, and therefore it is essential to find specific primers of outstanding quality. Unfortunately, many PCR constraints must be simultaneously inspected which makes specific primer selection difficult and time-consuming. This paper introduces a novel computational intelligence-based method, Teaching-Learning-Based Optimisation, to select the specific and feasible primers. The specified PCR product lengths of 150-300 bp and 500-800 bp with three melting temperature formulae of Wallace's formula, Bolton and McCarthy's formula and SantaLucia's formula were performed. The authors calculate optimal frequency to estimate the quality of primer selection based on a total of 500 runs for 50 random nucleotide sequences of 'Homo species' retrieved from the National Center for Biotechnology Information. The method was then fairly compared with the genetic algorithm (GA) and memetic algorithm (MA) for primer selection in the literature. The results show that the method easily found suitable primers corresponding with the setting primer constraints and had preferable performance than the GA and the MA. Furthermore, the method was also compared with the common method Primer3 according to their method type, primers presentation, parameters setting, speed and memory usage. In conclusion, it is an interesting primer selection method and a valuable tool for automatic high-throughput analysis. In the future, the usage of the primers in the wet lab needs to be validated carefully to increase the reliability of the method.

  6. SensiScreen® KRAS exon 2-sensitive simplex and multiplex real-time PCR-based assays for detection of KRAS exon 2 mutations

    PubMed Central

    Guldmann-Christensen, Mariann; Hauge Kyneb, Majbritt; Voogd, Kirsten; Andersen, Christina; Epistolio, Samantha; Merlo, Elisabetta; Yding Wolff, Tine; Hamilton-Dutoit, Stephen; Lorenzen, Jan; Christensen, Ulf Bech

    2017-01-01

    Activating mutations in codon 12 and codon 13 of the KRAS (Kirsten rat sarcoma viral oncogene homolog) gene are implicated in the development of several human cancer types and influence their clinical evaluation, treatment and prognosis. Numerous different methods for KRAS genotyping are currently available displaying a wide range of sensitivities, time to answer and requirements for laboratory equipment and user skills. Here we present SensiScreen® KRAS exon 2 simplex and multiplex CE IVD assays, that use a novel real-time PCR-based method for KRAS mutation detection based on PentaBase’s proprietary DNA analogue technology and designed to work on standard real-time PCR instruments. By means of the included BaseBlocker™ technology, we show that SensiScreen® specifically amplifies the mutated alleles of interest with no or highly subdued amplification of the wild type allele. Furthermore, serial dilutions of mutant DNA in a wild type background demonstrate that all SensiScreen® assays display a limit of detection that falls within the range of 0.25–1%. Finally, in three different colorectal cancer patient populations, SensiScreen® assays confirmed the KRAS genotype previously determined by commonly used methods for KRAS mutation testing, and notably, in two of the populations, SensiScreen® identified additional mutant positive cases not detected by common methods. PMID:28636636

  7. Survey of diagnostic and typing capacity for Clostridium difficile infection in Europe, 2011 and 2014.

    PubMed

    van Dorp, Sofie M; Notermans, Daan W; Alblas, Jeroen; Gastmeier, Petra; Mentula, Silja; Nagy, Elisabeth; Spigaglia, Patrizia; Ivanova, Katiusha; Fitzpatrick, Fidelma; Barbut, Frédéric; Morris, Trefor; Wilcox, Mark H; Kinross, Pete; Suetens, Carl; Kuijper, Ed J

    2016-07-21

    Suboptimal laboratory diagnostics for Clostridium difficile infection (CDI) impedes its surveillance and control across Europe. We evaluated changes in local laboratory CDI diagnostics and changes in national diagnostic and typing capacity for CDI during the European C. difficile Infection Surveillance Network (ECDIS-Net) project, through cross-sectional surveys in 33 European countries in 2011 and 2014. In 2011, 126 (61%) of a convenience sample of 206 laboratories in 31 countries completed a survey on local diagnostics. In 2014, 84 (67%) of these 126 laboratories in 26 countries completed a follow-up survey. Among laboratories that participated in both surveys, use of CDI diagnostics deemed 'optimal' or 'acceptable' increased from 19% to 46% and from 10% to 15%, respectively (p  < 0.001). The survey of national capacity was completed by national coordinators of 31 and 32 countries in 2011 and 2014, respectively. Capacity for any C. difficile typing method increased from 22/31 countries in 2011 to 26/32 countries in 2014; for PCR ribotyping from 20/31 countries to 23/32 countries, and specifically for capillary PCR ribotyping from 7/31 countries to 16/32 countries. While our study indicates improved diagnostic capability and national capacity for capillary PCR ribotyping across European laboratories between 2011 and 2014, increased use of 'optimal' diagnostics should be promoted. This article is copyright of The Authors, 2016.

  8. Occurrence of avian botulism in Korea during the period from June to September 2012.

    PubMed

    Jang, Il; Kang, Min-Su; Kim, Hye-Ryoung; Oh, Jae-Young; Lee, Jae-Il; Lee, Hee-Soo; Kwon, Yong-Kuk

    2014-12-01

    Botulism is a paralytic disease caused by the botulinum neurotoxin produced by Clostridium botulinum. In the summer season in Korea, intensive outbreaks of avian botulism were reported in both poultry and wild birds, including five Korean native chicken farms (HanHyup NO.3), one pheasant (Phasianus colchicus karpowi) farm, and one community of spot-billed ducks (Anas poecilorhyncha). The affected domestic birds showed 24.5% to 58.3% mortality, with specific clinical signs including ataxia, limber neck, and diarrhea. To confirm the botulinum toxin, neutralization tests were performed on sera (four Korean native chicken farms and one pheasant farm) or culture supernatant (spot-billed ducks). Additionally, the contents of the cecum and liver from poultry presenting signs suggestive of botulism were inoculated to isolate the pathogen. The toxin genes were then detected by polymerase chain reaction (PCR). Through the neutralization tests, it was possible to diagnose the botulism and, except in the case of one Korean native chicken farm, to identify the type of pathogen. Using detection by PCR, except in two cases of the Korean native chicken farms, the botulinum toxin gene was found. Additionally, in four cases, it was possible to identify the C/D mosaic type using PCR. This paper reports the first occurrence of avian botulism in domestic birds and the first detection of botulism caused by this mosaic type in Korea.

  9. A vertically-stacked, polymer, microfluidic point mutation analyzer: Rapid, high accuracy detection of low-abundance K-ras mutations

    PubMed Central

    Han, Kyudong; Lee, Tae Yoon; Nikitopoulos, Dimitris E.; Soper, Steven A.; Murphy, Michael C.

    2011-01-01

    Recognition of point mutations in the K-ras gene can be used for the clinical management of several types of cancers. Unfortunately, several assay and hardware concerns must be addressed to allow users not well-trained in performing molecular analyses the opportunity to undertake these measurements. To provide for a larger user-base for these types of molecular assays, a vertically-stacked microfluidic analyzer with a modular architecture and process automation was developed. The analyzer employed a primary PCR coupled to an allele-specific ligase detection reaction (LDR). Each functional device, including continuous flow thermal reactors for the PCR and LDR, passive micromixers and ExoSAP-IT® purification, was designed and tested. Individual devices were fabricated in polycarbonate using hot embossing and assembled using adhesive bonding for system assembly. The system produced LDR products from a DNA sample in ~1 h, an 80% reduction in time compared to conventional bench-top instrumentation. Purifying the post-PCR products with the ExoSAP-IT® enzyme led to optimized LDR performance minimizing false positive signals and producing reliable results. Mutant alleles in genomic DNA were quantified to the level of 0.25 ng of mutant DNA in 50 ng of wild-type DNA for a 25 μL sample, equivalent to DNA from 42 mutant cells. PMID:21771577

  10. An acute multispecies episode of sheep-associated malignant catarrhal fever in captive wild animals in an Italian zoo

    USDA-ARS?s Scientific Manuscript database

    In July 2011, in a zoological garden in Rome, Italy, malignant catarrhal fever (MCF), a fatal, systemic disease of Artiodactyls, was suspected on the basis of neurological signs and gross lesions observed in a banteng, the first animal to die of this infection. An MCF type-specific, one-step PCR wit...

  11. PCR method for the rapid detection and discrimination of Legionella spp. based on the amplification of pcs, pmtA, and 16S rRNA genes.

    PubMed

    Janczarek, Monika; Palusińska-Szysz, Marta

    2016-05-01

    Legionella bacteria are organisms of public health interest due to their ability to cause pneumonia (Legionnaires' disease) in susceptible humans and their ubiquitous presence in water supply systems. Rapid diagnosis of Legionnaires' disease allows the use of therapy specific for the disease. L. pneumophila serogroup 1 is the most common cause of infection acquired in community and hospital environments. The non-L. pneumophila infections are likely under-detected because of a lack of effective diagnosis. In this work, simplex and duplex PCR assays with the use of new molecular markers pcs and pmtA involved in phosphatidylcholine synthesis were specified for rapid and cost-efficient identification and distinguishing Legionella species. The sets of primers developed were found to be sensitive and specific for reliable detection of Legionella belonging to the eight most clinically relevant species. Among these, four primer sets I, II, VI, and VII used for duplex-PCRs proved to have the highest identification power and reliability in the detection of the bacteria. Application of this PCR-based method should improve detection of Legionella spp. in both clinical and environmental settings and facilitate molecular typing of these organisms.

  12. A polymerase chain reaction assay for detection of virulent and attenuated strains of duck plague virus.

    PubMed

    Xie, Liji; Xie, Zhixun; Huang, Li; Wang, Sheng; Huang, Jiaoling; Zhang, Yanfang; Zeng, Tingting; Luo, Sisi

    2017-11-01

    Sequence analysis of duck plague virus (DPV) revealed that there was a 528bp (B fragment) deletion within the UL2 gene of DPV attenuated vaccine strain in comparison with field virulent strains. The finding of gene deletion provides a potential differentiation test between DPV virulent strain and attenuated strain based on their UL2 gene sizes. Thus we developed a polymerase chain reaction (PCR) assay targeting to the DPV UL2 gene for simultaneous detection of DPV virulent strain and attenuated strain, 827bp for virulent strain and 299bp for attenuated strain. This newly developed PCR for DPV was highly sensitive and specific. It detected as low as 100fg of DNA on both DPV virulent and attenuated strains, no same size bands were amplified from other duck viruses including duck paramyxovirus, duck tembusu virus, duck circovirus, Muscovy duck parvovirus, duck hepatitis virus type I, avian influenza virus and gosling plague virus. Therefore, this PCR assay can be used for the rapid, sensitive and specific detection of DPV virulent and attenuated strains affecting ducks. Copyright © 2017. Published by Elsevier B.V.

  13. Molecular diagnostics for human leptospirosis.

    PubMed

    Waggoner, Jesse J; Pinsky, Benjamin A

    2016-10-01

    The definitive diagnosis of leptospirosis, which results from infection with spirochetes of the genus Leptospira, currently relies on the use of culture, serological testing (microscopic agglutination testing), and molecular detection. The purpose of this review is to describe new molecular diagnostics for Leptospira and discuss advancements in the use of available methods. Efforts have been focused on improving the clinical sensitivity of Leptospira detection using molecular methods. In this review, we describe a reoptimized pathogenic species-specific real-time PCR (targeting lipL32) that has demonstrated improved sensitivity, findings by two groups that real-time reverse-transcription PCR assays targeting the 16S rrs gene can improve detection, and two new loop-mediated amplification techniques. Quantitation of leptospiremia, detection in different specimen types, and the complementary roles played by molecular detection and microscopic agglutination testing will be discussed. Finally, a protocol for Leptospira strain subtyping using variable number tandem repeat targets and high-resolution melting will be described. Molecular diagnostics have an established role for the diagnosis of leptospirosis and provide an actionable diagnosis in the acute setting. The use of real-time reverse-transcription PCR for testing serum/plasma and cerebrospinal fluid, when available, may improve the detection of Leptospira without decreasing clinical specificity.

  14. Multiprimer PCR system for differential identification of mycobacteria in clinical samples.

    PubMed Central

    Del Portillo, P; Thomas, M C; Martínez, E; Marañón, C; Valladares, B; Patarroyo, M E; Carlos López, M

    1996-01-01

    A novel multiprimer PCR method with the potential to identify mycobacteria in clinical samples is presented. The assay relies on the simultaneous amplification of three bacterial DNA genomic fragments by using different sets of oligonucleotide primers. The first set of primers amplifies a 506-bp fragment from the gene for the 32-kDa antigen of Mycobacterium tuberculosis, which is present in most of the species belonging to the genus Mycobacterium. The second set of primers amplifies a 984-bp fragment from the IS6110 insertion sequence of the bacteria belonging to the M. tuberculosis complex. The third set of primers, derived from an M. tuberculosis species-specific sequence named MTP40, amplifies a 396-bp genomic fragment. Thus, while the multiprimer system would render three amplification fragments from the M. tuberculosis genome and two fragments from the Mycobacterium bovis genome, a unique amplification fragment would be obtained from nontuberculous mycobacteria. The results obtained, using reference mycobacterial strains and typed clinical isolates, show that the multiprimer PCR method may be a rapid, sensitive, and specific tool for the differential identification of various mycobacterial strains in a single-step assay. PMID:8789008

  15. Novel PCRs for differential diagnosis of cestodes.

    PubMed

    Roelfsema, Jeroen H; Nozari, Nahid; Pinelli, Elena; Kortbeek, Laetitia M

    2016-02-01

    Cestodes or tapeworms belong to a diverse group of helminths. The adult Taenia saginata and Taenia solium tapeworm can infest the human gut and the larval stage of Echinococcus spp. and T. solium can infect tissues of the human body, causing serious disease. Molecular diagnostics can be performed on proglottids, eggs and on cyst fluids taken by biopsy. Detection of cestodes when a helminthic infection is suspected is of vital importance and species determination is required for appropriate patient care. For routine diagnostics a single test that is able to detect and type a range of cestodes is preferable. We sought to improve our diagnostic procedure that used to rely on PCR and subsequent sequencing of the Cox1 and Nad1 genes. We have compared these PCRs with novel PCRs on the 12S rRNA and Nad5 gene and established the sensitivity and specificity. A single PCR on the 12S gene proved to be very suitable for detection and specification of Taenia sp. and Echinococcus sp. Both targets harbour enough polymorphic sites to determine the various Echinococcus species. The 12S PCR was most sensitive of all tested. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Development of an immunochromatographic kit for rapid detection of human influenza B virus infection.

    PubMed

    Zhang, Peirui; Duan, Yueqiang; Zhang, Dexi; Zhang, Shaogeng; Li, Zhiwei; Wang, Xiliang; Yang, Penghui

    2014-01-01

    Type B influenza virus is a major epidemic strain responsible for considerable mortality and morbidity. A colloidal gold immunochromatographic strip for the rapid detection of human influenza B virus was developed. This test is based on membrane chromatography and uses colloidal gold conjugated with influenza B virus anti-NP monoclonal antibody as the tracer. The assembled test strip was housed in a plastic case. The colloid gold strip (CGS) specifically detected all influenza B viruses tested and did not react with other respiratory viruses. Compared with SYBR Green real-time PCR, the sensitivity and specificity of the CGS test was 89.76% and 99.56%, respectively, and the consistency ratio between CGS and real-time PCR was 96.06% in detecting influenza B virus in 710 nasopharyngeal swabs from patients with influenza-like illness in the hospital. The CGS array developed in this study enabled typing of influenza B viruses in human clinical specimens. Thus, together with the advantages of rapid detection and easy operation without requiring specialized personnel and equipment, this technique is a convenient and relatively inexpensive diagnostic tool for large-scale screening of clinical samples.

  17. Concholepas hemocyanin biosynthesis takes place in the hepatopancreas, with hemocytes being involved in its metabolism.

    PubMed

    Manubens, Augusto; Salazar, Fabián; Haussmann, Denise; Figueroa, Jaime; Del Campo, Miguel; Pinto, Jonathan Martínez; Huaquín, Laura; Venegas, Alejandro; Becker, María Inés

    2010-12-01

    Hemocyanins are copper-containing glycoproteins in some molluscs and arthropods, and their best-known function is O(2) transport. We studied the site of their biosynthesis in the gastropod Concholepas concholepas by using immunological and molecular genetic approaches. We performed immunohistochemical staining of various organs, including the mantle, branchia, and hepatopancreas, and detected C. concholepas hemocyanin (CCH) molecules in circulating and tissue-associated hemocytes by electron microscopy. To characterize the hemocytes, we purified them from hemolymph. We identified three types of granular cells. The most abundant type was a phagocyte-like cell with small cytoplasmic granules. The second type contained large electron-dense granules. The third type had vacuoles containing hemocyanin molecules suggesting that synthesis or catabolism occurred inside these cells. Our failure to detect cch-mRNA in hemocytes by reverse transcription with the polymerase chain reaction (RT-PCR) led us to propose that hemocytes instead played a role in CCH metabolism. This hypothesis was supported by colloidal gold staining showing hemocyanin molecules in electron-dense granules inside hemocytes. RT-PCR analysis, complemented by in situ hybridization analyses with single-stranded antisense RNAs as specific probes, demonstrated the presence of cch-mRNA in the hepatopancreas; this was consistent with the specific hybridization signal and confirmed the hepatopancreas as the site of CCH synthesis. Finally, we investigated the possibility that CCH catabolism in hemocytes was involved in the host immune response and in the generation of secondary metabolites such as antimicrobial peptides and phenoloxidase.

  18. [Detection of rubella virus RNA in clinical material by real time polymerase chain reaction method].

    PubMed

    Domonova, É A; Shipulina, O Iu; Kuevda, D A; Larichev, V F; Safonova, A P; Burchik, M A; Butenko, A M; Shipulin, G A

    2012-01-01

    Development of a reagent kit for detection of rubella virus RNA in clinical material by PCR-RT. During development and determination of analytical specificity and sensitivity DNA and RNA of 33 different microorganisms including 4 rubella strains were used. Comparison of analytical sensitivity of virological and molecular-biological methods was performed by using rubella virus strains Wistar RA 27/3, M-33, "Orlov", Judith. Evaluation of diagnostic informativity of rubella virus RNAisolation in various clinical material by PCR-RT method was performed in comparison with determination of virus specific serum antibodies by enzyme immunoassay. A reagent kit for the detection of rubella virus RNA in clinical material by PCR-RT was developed. Analytical specificity was 100%, analytical sensitivity - 400 virus RNA copies per ml. Analytical sensitivity of the developed technique exceeds analytical sensitivity of the Vero E6 cell culture infection method in studies of rubella virus strains Wistar RA 27/3 and "Orlov" by 11g and 31g, and for M-33 and Judith strains is analogous. Diagnostic specificity is 100%. Diagnostic specificity for testing samples obtained within 5 days of rash onset: for peripheral blood sera - 20.9%, saliva - 92.5%, nasopharyngeal swabs - 70.1%, saliva and nasopharyngeal swabs - 97%. Positive and negative predictive values of the results were shown depending on the type of clinical material tested. Application of reagent kit will allow to increase rubella diagnostics effectiveness at the early stages of infectious process development, timely and qualitatively perform differential diagnostics of exanthema diseases, support tactics of anti-epidemic regime.

  19. Design and Assessment of a Real Time Reverse Transcription-PCR Method to Genotype Single-Stranded RNA Male-Specific Coliphages (Family Leviviridae).

    EPA Science Inventory

    A real-time, reverse transcription-PCR (RT-qPCR) assay was developed to differentiate the four genogroups of male-specific ssRNA coliphages (FRNA) (family Leviviridae). As FRNA display a trend of source-specificity (human sewage or animal waste) at the genogroup level, this assa...

  20. Genetic Diversity of the fliC Genes Encoding the Flagellar Antigen H19 of Escherichia coli and Application to the Specific Identification of Enterohemorrhagic E. coli O121:H19.

    PubMed

    Beutin, Lothar; Delannoy, Sabine; Fach, Patrick

    2015-06-15

    Enterohemorrhagic Escherichia coli (EHEC) O121:H19 belong to a specific clonal type distinct from other classical EHEC and major enteropathogenic E. coli groups and is regarded as one of the major EHEC serogroups involved in severe infections in humans. Sequencing of the fliC genes associated with the flagellar antigen H19 (fliCH19) revealed the genetic diversity of the fliCH19 gene sequences in E. coli. A cluster analysis of 12 fliCH19 sequences, 4 from O121 and 8 from non-O121 E. coli strains, revealed five different genotypes. All O121:H19 strains fell into one cluster, whereas a second cluster was formed by five non-O121:H19 strains. Cluster 1 and cluster 2 strains differ by 27 single nucleotide exchanges in their fliCH19 genes (98.5% homology). Based on allele discrimination of the fliCH19 genes, a real-time PCR test was designed for specific identification of EHEC O121:H19. The O121 fliCH19 PCR tested negative in 73 E. coli H19 strains that belonged to serogroups other than O121, including 28 different O groups, O-nontypeable H19, and O-rough:H19 strains. The O121 fliCH19 PCR reacted with all 16 tested O121:H19 strains and 1 O-rough:H19 strain which was positive for the O121 wzx gene. A cross-reaction was observed only with E. coli H32 strains which share sequence similarities in the target region of the O121 fliCH19 PCR. The combined use of O-antigen genotyping (O121 wzx) and the detection of O121 fliCH19 allele type contributes to improving the identification and molecular serotyping of EHEC O121:H19 motile and nonmotile strains and variants of these strains lacking stx genes. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Genetic Diversity of the fliC Genes Encoding the Flagellar Antigen H19 of Escherichia coli and Application to the Specific Identification of Enterohemorrhagic E. coli O121:H19

    PubMed Central

    Beutin, Lothar; Delannoy, Sabine

    2015-01-01

    Enterohemorrhagic Escherichia coli (EHEC) O121:H19 belong to a specific clonal type distinct from other classical EHEC and major enteropathogenic E. coli groups and is regarded as one of the major EHEC serogroups involved in severe infections in humans. Sequencing of the fliC genes associated with the flagellar antigen H19 (fliCH19) revealed the genetic diversity of the fliCH19 gene sequences in E. coli. A cluster analysis of 12 fliCH19 sequences, 4 from O121 and 8 from non-O121 E. coli strains, revealed five different genotypes. All O121:H19 strains fell into one cluster, whereas a second cluster was formed by five non-O121:H19 strains. Cluster 1 and cluster 2 strains differ by 27 single nucleotide exchanges in their fliCH19 genes (98.5% homology). Based on allele discrimination of the fliCH19 genes, a real-time PCR test was designed for specific identification of EHEC O121:H19. The O121 fliCH19 PCR tested negative in 73 E. coli H19 strains that belonged to serogroups other than O121, including 28 different O groups, O-nontypeable H19, and O-rough:H19 strains. The O121 fliCH19 PCR reacted with all 16 tested O121:H19 strains and 1 O-rough:H19 strain which was positive for the O121 wzx gene. A cross-reaction was observed only with E. coli H32 strains which share sequence similarities in the target region of the O121 fliCH19 PCR. The combined use of O-antigen genotyping (O121 wzx) and the detection of O121 fliCH19 allele type contributes to improving the identification and molecular serotyping of EHEC O121:H19 motile and nonmotile strains and variants of these strains lacking stx genes. PMID:25862232

  2. Comparison of Ribotyping, Randomly Amplified Polymorphic DNA Analysis, and Pulsed-Field Gel Electrophoresis in Typing of Lactobacillus rhamnosus and L. casei Strains

    PubMed Central

    Tynkkynen, Soile; Satokari, Reetta; Saarela, Maria; Mattila-Sandholm, Tiina; Saxelin, Maija

    1999-01-01

    A total of 24 strains, biochemically identified as members of the Lactobacillus casei group, were identified by PCR with species-specific primers. The same set of strains was typed by randomly amplified polymorphic DNA (RAPD) analysis, ribotyping, and pulsed-field gel electrophoresis (PFGE) in order to compare the discriminatory power of the methods. Species-specific primers for L. rhamnosus and L. casei identified the type strain L. rhamnosus ATCC 7469 and the neotype strain L. casei ATCC 334, respectively, but did not give any signal with the recently revived species L. zeae, which contains the type strain ATCC 15820 and the strain ATCC 393, which was previously classified as L. casei. Our results are in accordance with the suggested new classification of the L. casei group. Altogether, 21 of the 24 strains studied were identified with the species-specific primers. In strain typing, PFGE was the most discriminatory method, revealing 17 genotypes for the 24 strains studied. Ribotyping and RAPD analysis yielded 15 and 12 genotypes, respectively. PMID:10473394

  3. Comparison of ribotyping, randomly amplified polymorphic DNA analysis, and pulsed-field gel electrophoresis in typing of Lactobacillus rhamnosus and L. casei strains.

    PubMed

    Tynkkynen, S; Satokari, R; Saarela, M; Mattila-Sandholm, T; Saxelin, M

    1999-09-01

    A total of 24 strains, biochemically identified as members of the Lactobacillus casei group, were identified by PCR with species-specific primers. The same set of strains was typed by randomly amplified polymorphic DNA (RAPD) analysis, ribotyping, and pulsed-field gel electrophoresis (PFGE) in order to compare the discriminatory power of the methods. Species-specific primers for L. rhamnosus and L. casei identified the type strain L. rhamnosus ATCC 7469 and the neotype strain L. casei ATCC 334, respectively, but did not give any signal with the recently revived species L. zeae, which contains the type strain ATCC 15820 and the strain ATCC 393, which was previously classified as L. casei. Our results are in accordance with the suggested new classification of the L. casei group. Altogether, 21 of the 24 strains studied were identified with the species-specific primers. In strain typing, PFGE was the most discriminatory method, revealing 17 genotypes for the 24 strains studied. Ribotyping and RAPD analysis yielded 15 and 12 genotypes, respectively.

  4. Development of a quantitative PCR (qPCR) for Giardia and analysis of the prevalence, cyst shedding and genotypes of Giardia present in sheep across four states in Australia.

    PubMed

    Yang, Rongchang; Jacobson, Caroline; Gardner, Graham; Carmichael, Ian; Campbell, Angus J D; Ryan, Una

    2014-02-01

    A novel quantitative PCR (qPCR) for Giardia at the glutamate dehydrogenase (gdh) locus was developed and validated. The qPCR was used to screen a total of 3412 lamb faecal samples collected from approximately 1189 lambs at three sampling periods (weaning, post-weaning and pre-slaughter) from eight farms across South Australia (SA), New South Wales (NSW), Victoria (Vic) and Western Australia (WA). The overall prevalence was 20.2% (95% CI 18.9-21.6) and of the 690 positives, 473 were successfully typed. In general, the prevalence of Giardia varied widely across the different farms with the highest prevalence in one WA farm (42.1%) at pre-slaughter sampling and the lowest prevalence in one Victorian farm (7.2%) at weaning. The range of cyst shedding at weaning, post-weaning and pre-slaughter overall across all states was 63-1.3×10(9) cysts g(-1) (median=1.7×10(4)), 63-1.1×10(9) cysts g(-1) (median=9.6×10(3)), 63-4.7×10(9) cysts g(-1) (median=8.1×10(4)) respectively. Assemblage specific primers at the triose phosphate isomerase (tpi) locus identified assemblage A in 22.4% (106/473) of positive samples typed, assemblage E in 75.9% (359/473) and mixed A and E assemblages in 1.7% (8/473) of samples. A subset of representative samples from the 8 farms (n=32) were typed at both the gdh and beta-giardin loci and confirmed these results and identified sub-assemblage AII in 16 representative assemblage A isolates across the 8 farms. This demonstrates a prevalence of Giardia previously not recognised in Australian sheep, highlighting a need for further research to quantify the production impacts of this protozoan parasite. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Tracking the Invasion of Small Numbers of Cells in Paper-Based Assays with Quantitative PCR.

    PubMed

    Truong, Andrew S; Lochbaum, Christian A; Boyce, Matthew W; Lockett, Matthew R

    2015-11-17

    Paper-based scaffolds are an attractive material for culturing mammalian cells in a three-dimensional environment. There are a number of previously published studies, which utilize these scaffolds to generate models of aortic valves, cardiac ischemia and reperfusion, and solid tumors. These models have largely relied on fluorescence imaging and microscopy to quantify cells in the scaffolds. We present here a polymerase chain reaction (PCR)-based method, capable of quantifying multiple cell types in a single culture with the aid of DNA barcodes: unique sequences of DNA introduced to the genome of individual cells or cell types through lentiviral transduction. PCR-based methods are highly specific and are amenable to high-throughput and multiplexed analyses. To validate this method, we engineered two different breast cancer lines to constitutively express either a green or red fluorescent protein. These cells lines allowed us to directly compare the ability of fluorescence imaging (of the fluorescent proteins) and qPCR (of the unique DNA sequences of the fluorescent proteins) to quantify known numbers of cells in the paper based-scaffolds. We also used both methods to quantify the distribution of these breast cell lines in homotypic and heterotypic invasion assays. In the paper-based invasion assays, a single sheet of paper containing cells suspended in a hydrogel was sandwiched between sheets of paper containing only hydrogel. The stack was incubated, and the cells invaded the adjacent layers. The individual sheets of the invasion assay were then destacked and the number of cells in each layer quantified. Our results show both methods can accurately detect cell populations of greater than 500 cells. The qPCR method can repeatedly and accurately detect as few as 50 cells, allowing small populations of highly invasive cells to be detected and differentiated from other cell types.

  6. Performance characteristics of a reverse transcriptase-polymerase chain reaction assay for the detection of tumor-specific fusion transcripts from archival tissue.

    PubMed

    Fritsch, Michael K; Bridge, Julia A; Schuster, Amy E; Perlman, Elizabeth J; Argani, Pedram

    2003-01-01

    Pediatric small round cell tumors still pose tremendous diagnostic problems. In difficult cases, the ability to detect tumor-specific gene fusion transcripts for several of these neoplasms, including Ewing sarcoma/peripheral primitive neuroectodermal tumor (ES/PNET), synovial sarcoma (SS), alveolar rhabdomyosarcoma (ARMS), and desmoplastic small round cell tumor (DSRCT) using reverse transcriptase-polymerase chain reaction (RT-PCR), can be extremely helpful. Few studies to date, however, have systematically examined several different tumor types for the presence of multiple different fusion transcripts in order to determine the specificity and sensitivity of the RT-PCR method, and no study has addressed this issue for formalin-fixed material. The objectives of this study were to address the specificity, sensitivity, and practicality of such an assay applied strictly to formalin-fixed tissue blocks. Our results demonstrate that, for these tumors, the overall sensitivity for detecting each fusion transcript is similar to that reported in the literature for RT-PCR on fresh or formalin-fixed tissues. The specificity of the assay is very high, being essentially 100% for each primer pair when interpreting the results from visual inspection of agarose gels. However, when these same agarose gels were examined using Southern blotting, a small number of tumors also yielded reproducibly detectable weak signals for unexpected fusion products, in addition to a strong signal for the expected fusion product. Fluorescence in situ hybridization (FISH) studies in one such case indicated that a rearrangement that would account for the unexpected fusion was not present, while another case was equivocal. The overall specificity for each primer pair used in this assay ranged from 94 to 100%. Therefore, RT-PCR using formalin-fixed paraffin-embedded tissue sections can be used to detect chimeric transcripts as a reliable, highly sensitive, and highly specific diagnostic assay. However, we strongly suggest that the final interpretation of the results from this assay be viewed in light of the other features of the case, including clinical history, histology, and immunohistochemistry, by the diagnostic pathologist. Additional studies such as FISH may be useful in clarifying the nature of equivocal or unexpected results.

  7. Rapid and Easy Identification of Capsular Serotypes of Streptococcus pneumoniae by Use of Fragment Analysis by Automated Fluorescence-Based Capillary Electrophoresis

    PubMed Central

    Selva, Laura; del Amo, Eva; Brotons, Pedro

    2012-01-01

    The purpose of this study was to develop a high-throughput method for the identification of pneumococcal capsular types. Multiplex PCR combined with fragment analysis and automated fluorescent capillary electrophoresis (FAF-mPCR) was utilized. FAF-mPCR was composed of only 3 PCRs for the specific detection of serotypes 1, 2, 3, 4, 5, 6A/6B, 6C, 7F/7A, 7C/(7B/40), 8, 9V/9A, 9N/9L, 10A, 10F/(10C/33C), 11A/11D/11F, 12F/(12A/44/46), 13, 14, 15A/15F, 15B/15C, 16F, 17F, 18/(18A/18B/18C/18F), 19A, 19F, 20, 21, 22F/22A, 23A, 23B, 23F, 24/(24A/24B/24F), 31, 33F/(33A/37), 34, 35A/(35C/42), 35B, 35F/47F, 38/25F, and 39. In order to evaluate the assay, all invasive pneumococcal isolates (n = 394) characterized at Hospital Sant Joan de Déu, Barcelona, Spain, from July 2010 to July 2011 were included in this study. The Wallace coefficient was used to evaluate the overall agreement between two typing methods (Quellung reaction versus FAF-mPCR). A high concordance with Quellung was found: 97.2% (383/394) of samples. The Wallace coefficient was 0.981 (range, 0.965 to 0.997). Only 11 results were discordant with the Quellung reaction. However, latex reaction and Quellung results of the second reference laboratory agreed with FAF-mPCR for 9 of these 11 strains (82%). Therefore, we considered that only 2 of 394 strains (0.5%) were not properly characterized by the new assay. The automation of the process allowed the typing of 30 isolates in a few hours with a lower cost than that of the Quellung reaction. These results indicate that FAF-mPCR is a good method to determine the capsular serotype of Streptococcus pneumoniae. PMID:22875895

  8. Identification and quantification of virulence factors of enterotoxigenic Escherichia coli by high-resolution melting curve quantitative PCR.

    PubMed

    Wang, Weilan; Zijlstra, Ruurd T; Gänzle, Michael G

    2017-05-15

    Diagnosis of enterotoxigenic E. coli (ETEC) associated diarrhea is complicated by the diversity of E.coli virulence factors. This study developed a multiplex quantitative PCR assay based on high-resolution melting curves analysis (HRM-qPCR) to identify and quantify genes encoding five ETEC fimbriae related to diarrhea in swine, i.e. K99, F41, F18, F6 and K88. Five fimbriae expressed by ETEC were amplified in multiple HRM-qPCR reactions to allow simultaneous identification and quantification of five target genes. The assay was calibrated to allow quantification of the most abundant target gene, and validated by analysis of 30 samples obtained from piglets with diarrhea and healthy controls, and comparison to standard qPCR detection. The five amplicons with melting temperatures (Tm) ranging from 74.7 ± 0.06 to 80.5 ± 0.15 °C were well-separated by HRM-qPCR. The area of amplicons under the melting peak correlated linearly to the proportion of the template in the calibration mixture if the proportion exceeded 4.8% (K88) or <1% (all other amplicons). The suitability of the method was evaluated using 30 samples from weaned pigs aged 6-7 weeks; 14 of these animals suffered from diarrhea in consequence of poor sanitary conditions. Genes encoding fimbriae and enterotoxins were quantified by HRM-qPCR and/or qPCR. The multiplex HRM-qPCR allowed accurate analysis when the total gene copy number of targets was more than 1 × 10 5 / g wet feces and the HRM curves were able to simultaneously distinguish fimbriae genes in the fecal samples. The relative quantification of the most abundant F18 based on melting peak area was highly correlated (P < 0.001; r 2  = 0.956) with that of individual qPCR result but the correlation for less abundant fimbriae was much lower. The multiplex HRM assay identifies ETEC virulence factors specifically and efficiently. It correctly indicated the predominant fimbriae type and additionally provides information of presence/ absence of other fimbriae types and it could find broad applications for pathogen diagnosis.

  9. Identification of Erwinia species isolated from apples and pears by differential PCR.

    PubMed

    Gehring, I; Geider, K

    2012-04-01

    Many pathogenic and epiphytic bacteria isolated from apples and pears belong to the genus Erwinia; these include the species E. amylovora, E. pyrifoliae, E. billingiae, E. persicina, E. rhapontici and E. tasmaniensis. Identification and classification of freshly isolated bacterial species often requires tedious taxonomic procedures. To facilitate routine identification of Erwinia species, we have developed a PCR method based on species-specific oligonucleotides (SSOs) from the sequences of the housekeeping genes recA and gpd. Using species-specific primers that we report here, differentiation was done with conventional PCR (cPCR) and quantitative PCR (qPCR) applying two consecutive primer annealing temperatures. The specificity of the primers depends on terminal Single Nucleotide Polymorphisms (SNPs) that are characteristic for the target species. These PCR assays enabled us to distinguish eight Erwinia species, as well as to identify new Erwinia isolates from plant surfaces. When performed with mixed bacterial cultures, they only detected a single target species. This method is a novel approach to classify strains within the genus Erwinia by PCR and it can be used to confirm other diagnostic data, especially when specific PCR detection methods are not already available. The method may be applied to classify species within other bacterial genera. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Development of Primer Pairs from Molecular Typing of Rabies Virus Variants Present in Mexico

    PubMed Central

    Ramírez-Hernández, Dolores G.; Lara-Padilla, Eleazar; Zárate-Segura, Paola

    2016-01-01

    Nucleoprotein (N) gene from rabies virus (RABV) is a useful sequence target for variant studies. Several specific RABV variants have been characterized in different mammalian hosts such as skunk, dog, and bats by using anti-nucleocapsid monoclonal antibodies (MAbs) via indirect fluorescent antibody (IFA) test, a technique not available in many laboratories in Mexico. In the present study, a total of 158 sequences of N gene from RABV were used to design eight pairs of primers (four external and four internal primers), for typing four different RABV variants (dog, skunk, vampire bat, and nonhematophagous bat) which are most common in Mexico. The results indicate that the primer and the typing variant from the brain samples, submitted to nested and/or real-time PCR, are in agreement in all four singleplex reactions, and the designed primer pairs are an alternative for use in specific variant RABV typing. PMID:27563666

  11. Development of Primer Pairs from Molecular Typing of Rabies Virus Variants Present in Mexico.

    PubMed

    Bastida-González, Fernando; Ramírez-Hernández, Dolores G; Chavira-Suárez, Erika; Lara-Padilla, Eleazar; Zárate-Segura, Paola

    2016-01-01

    Nucleoprotein (N) gene from rabies virus (RABV) is a useful sequence target for variant studies. Several specific RABV variants have been characterized in different mammalian hosts such as skunk, dog, and bats by using anti-nucleocapsid monoclonal antibodies (MAbs) via indirect fluorescent antibody (IFA) test, a technique not available in many laboratories in Mexico. In the present study, a total of 158 sequences of N gene from RABV were used to design eight pairs of primers (four external and four internal primers), for typing four different RABV variants (dog, skunk, vampire bat, and nonhematophagous bat) which are most common in Mexico. The results indicate that the primer and the typing variant from the brain samples, submitted to nested and/or real-time PCR, are in agreement in all four singleplex reactions, and the designed primer pairs are an alternative for use in specific variant RABV typing.

  12. Determining the analytical specificity of PCR-based assays for the diagnosis of IA: What is Aspergillus?

    PubMed

    Morton, C Oliver; White, P Lewis; Barnes, Rosemary A; Klingspor, Lena; Cuenca-Estrella, Manuel; Lagrou, Katrien; Bretagne, Stéphane; Melchers, Willem; Mengoli, Carlo; Caliendo, Angela M; Cogliati, Massimo; Debets-Ossenkopp, Yvette; Gorton, Rebecca; Hagen, Ferry; Halliday, Catriona; Hamal, Petr; Harvey-Wood, Kathleen; Jaton, Katia; Johnson, Gemma; Kidd, Sarah; Lengerova, Martina; Lass-Florl, Cornelia; Linton, Chris; Millon, Laurence; Morrissey, C Orla; Paholcsek, Melinda; Talento, Alida Fe; Ruhnke, Markus; Willinger, Birgit; Donnelly, J Peter; Loeffler, Juergen

    2017-06-01

    A wide array of PCR tests has been developed to aid the diagnosis of invasive aspergillosis (IA), providing technical diversity but limiting standardisation and acceptance. Methodological recommendations for testing blood samples using PCR exist, based on achieving optimal assay sensitivity to help exclude IA. Conversely, when testing more invasive samples (BAL, biopsy, CSF) emphasis is placed on confirming disease, so analytical specificity is paramount. This multicenter study examined the analytical specificity of PCR methods for detecting IA by blind testing a panel of DNA extracted from a various fungal species to explore the range of Aspergillus species that could be detected, but also potential cross reactivity with other fungal species. Positivity rates were calculated and regression analysis was performed to determine any associations between technical specifications and performance. The accuracy of Aspergillus genus specific assays was 71.8%, significantly greater (P < .0001) than assays specific for individual Aspergillus species (47.2%). For genus specific assays the most often missed species were A. lentulus (25.0%), A. versicolor (24.1%), A. terreus (16.1%), A. flavus (15.2%), A. niger (13.4%), and A. fumigatus (6.2%). There was a significant positive association between accuracy and using an Aspergillus genus PCR assay targeting the rRNA genes (P = .0011). Conversely, there was a significant association between rRNA PCR targets and false positivity (P = .0032). To conclude current Aspergillus PCR assays are better suited for detecting A. fumigatus, with inferior detection of most other Aspergillus species. The use of an Aspergillus genus specific PCR assay targeting the rRNA genes is preferential. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Nested PCR Assay for Eight Pathogens: A Rapid Tool for Diagnosis of Bacterial Meningitis.

    PubMed

    Bhagchandani, Sharda P; Kubade, Sushant; Nikhare, Priyanka P; Manke, Sonali; Chandak, Nitin H; Kabra, Dinesh; Baheti, Neeraj N; Agrawal, Vijay S; Sarda, Pankaj; Mahajan, Parikshit; Ganjre, Ashish; Purohit, Hemant J; Singh, Lokendra; Taori, Girdhar M; Daginawala, Hatim F; Kashyap, Rajpal S

    2016-02-01

    Bacterial meningitis is a dreadful infectious disease with a high mortality and morbidity if remained undiagnosed. Traditional diagnostic methods for bacterial meningitis pose a challenge in accurate identification of pathogen, making prognosis difficult. The present study is therefore aimed to design and evaluate a specific and sensitive nested 16S rDNA genus-based polymerase chain reaction (PCR) assay using clinical cerebrospinal fluid (CSF) for rapid diagnosis of eight pathogens causing the disease. The present work was dedicated to development of an in-house genus specific 16S rDNA nested PCR covering pathogens of eight genera responsible for causing bacterial meningitis using newly designed as well as literature based primers for respective genus. A total 150 suspected meningitis CSF obtained from the patients admitted to Central India Institute of Medical Sciences (CIIMS), India during the period from August 2011 to May 2014, were used to evaluate clinical sensitivity and clinical specificity of optimized PCR assays. The analytical sensitivity and specificity of our newly designed genus-specific 16S rDNA PCR were found to be ≥92%. With such a high sensitivity and specificity, our in-house nested PCR was able to give 100% sensitivity in clinically confirmed positive cases and 100% specificity in clinically confirmed negative cases indicating its applicability in clinical diagnosis. Our in-house nested PCR system therefore can diagnose the accurate pathogen causing bacterial meningitis and therefore be useful in selecting a specific treatment line to minimize morbidity. Results are obtained within 24 h and high sensitivity makes this nested PCR assay a rapid and accurate diagnostic tool compared to traditional culture-based methods.

  14. COLD-PCR: improving the sensitivity of molecular diagnostics assays

    PubMed Central

    Milbury, Coren A; Li, Jin; Liu, Pingfang; Makrigiorgos, G Mike

    2011-01-01

    The detection of low-abundance DNA variants or mutations is of particular interest to medical diagnostics, individualized patient treatment and cancer prognosis; however, detection sensitivity for low-abundance variants is a pronounced limitation of most currently available molecular assays. We have recently developed coamplification at lower denaturation temperature-PCR (COLD-PCR) to resolve this limitation. This novel form of PCR selectively amplifies low-abundance DNA variants from mixtures of wild-type and mutant-containing (or variant-containing) sequences, irrespective of the mutation type or position on the amplicon, by using a critical denaturation temperature. The use of a lower denaturation temperature in COLD-PCR results in selective denaturation of amplicons with mutation-containing molecules within wild-type mutant heteroduplexes or with a lower melting temperature. COLD-PCR can be used in lieu of conventional PCR in several molecular applications, thus enriching the mutant fraction and improving the sensitivity of downstream mutation detection by up to 100-fold. PMID:21405967

  15. Market surveillance on non-halal additives incorporated in surimi based products using polymerase chain reaction (PCR)-southern hybridization analysis

    NASA Astrophysics Data System (ADS)

    Aravindran, S.; Sahilah, A. M.; Aminah, A.

    2014-09-01

    Halal surveillance on halal ingredients incorporated in surimi based products were studied using polymerase chain reaction (PCR)-southern hybridization on chip analysis. The primers used in this technique were targeted on mitochondria DNA (mtDNA) of cytochrome b (cyt b) gene sequence which able to differentiate 7 type (beef, chicken, duck, goat, buffalo, lamb and pork) of species on a single chip. 17 (n = 17*3) different brands of surimi-based product were purchased randomly from Selangor local market in January 2013. Of 17 brands, 3 (n = 3*3) brands were positive for chicken DNA, 1 (n = 1*3) brand was positive for goat DNA, and the remainder 13 brands (n = 13*3) have no DNA species detected. The sensitivity of PCR-southern hybridization primers to detect each meat species was 0.1 ng. In the present study, it is evidence that PCR-Southern Hybridization analysis offered a reliable result due to its highly specific and sensitive properties in detecting non-halal additive such as plasma protein incorporation in surimi-based product.

  16. A multisite blinded study for the detection of BRAF mutations in formalin-fixed, paraffin-embedded malignant melanoma

    PubMed Central

    Richter, Anna; Grieu, Fabienne; Carrello, Amerigo; Amanuel, Benhur; Namdarian, Kateh; Rynska, Aleksandra; Lucas, Amanda; Michael, Victoria; Bell, Anthony; Fox, Stephen B.; Hewitt, Chelsee A.; Do, Hongdo; McArthur, Grant A.; Wong, Stephen Q.; Dobrovic, Alexander; Iacopetta, Barry

    2013-01-01

    Melanoma patients with BRAF mutations respond to treatment with vemurafenib, thus creating a need for accurate testing of BRAF mutation status. We carried out a blinded study to evaluate various BRAF mutation testing methodologies in the clinical setting. Formalin-fixed, paraffin-embedded melanoma samples were macrodissected before screening for mutations using Sanger sequencing, single-strand conformation analysis (SSCA), high resolution melting analysis (HRM) and competitive allele-specific TaqMan® PCR (CAST-PCR). Concordance of 100% was observed between the Sanger sequencing, SSCA and HRM techniques. CAST-PCR gave rapid and accurate results for the common V600E and V600K mutations, however additional assays are required to detect rarer BRAF mutation types found in 3–4% of melanomas. HRM and SSCA followed by Sanger sequencing are effective two-step strategies for the detection of BRAF mutations in the clinical setting. CAST-PCR was useful for samples with low tumour purity and may also be a cost-effective and robust method for routine diagnostics. PMID:23584600

  17. Restriction enzyme body doubles and PCR cloning: on the general use of type IIs restriction enzymes for cloning.

    PubMed

    Tóth, Eszter; Huszár, Krisztina; Bencsura, Petra; Kulcsár, Péter István; Vodicska, Barbara; Nyeste, Antal; Welker, Zsombor; Tóth, Szilvia; Welker, Ervin

    2014-01-01

    The procedure described here allows the cloning of PCR fragments containing a recognition site of the restriction endonuclease (Type IIP) used for cloning in the sequence of the insert. A Type IIS endonuclease--a Body Double of the Type IIP enzyme--is used to generate the same protruding palindrome. Thus, the insert can be cloned to the Type IIP site of the vector without digesting the PCR product with the same Type IIP enzyme. We achieve this by incorporating the recognition site of a Type IIS restriction enzyme that cleaves the DNA outside of its recognition site in the PCR primer in such a way that the cutting positions straddle the desired overhang sequence. Digestion of the PCR product by the Body Double generates the required overhang. Hitherto the use of Type IIS restriction enzymes in cloning reactions has only been used for special applications, the approach presented here makes Type IIS enzymes as useful as Type IIP enzymes for general cloning purposes. To assist in finding Body Double enzymes, we summarised the available Type IIS enzymes which are potentially useful for Body Double cloning and created an online program (http://group.szbk.u-szeged.hu/welkergr/body_double/index.html) for the selection of suitable Body Double enzymes and the design of the appropriate primers.

  18. Development of defined microbial population standards using fluorescence activated cell sorting for the absolute quantification of S. aureus using real-time PCR.

    PubMed

    Martinon, Alice; Cronin, Ultan P; Wilkinson, Martin G

    2012-01-01

    In this article, four types of standards were assessed in a SYBR Green-based real-time PCR procedure for the quantification of Staphylococcus aureus (S. aureus) in DNA samples. The standards were purified S. aureus genomic DNA (type A), circular plasmid DNA containing a thermonuclease (nuc) gene fragment (type B), DNA extracted from defined populations of S. aureus cells generated by Fluorescence Activated Cell Sorting (FACS) technology with (type C) or without purification of DNA by boiling (type D). The optimal efficiency of 2.016 was obtained on Roche LightCycler(®) 4.1. software for type C standards, whereas the lowest efficiency (1.682) corresponded to type D standards. Type C standards appeared to be more suitable for quantitative real-time PCR because of the use of defined populations for construction of standard curves. Overall, Fieller Confidence Interval algorithm may be improved for replicates having a low standard deviation in Cycle Threshold values such as found for type B and C standards. Stabilities of diluted PCR standards stored at -20°C were compared after 0, 7, 14 and 30 days and were lower for type A or C standards compared with type B standards. However, FACS generated standards may be useful for bacterial quantification in real-time PCR assays once optimal storage and temperature conditions are defined.

  19. Rapid detection of 21-hydroxylase deficiency mutations by allele-specific in vitro amplification and capillary zone electrophoresis.

    PubMed

    Carrera, P; Barbieri, A M; Ferrari, M; Righetti, P G; Perego, M; Gelfi, C

    1997-11-01

    A quick diagnosis of the classic form of 21-hydroxylase deficiency (simple virilizing and salt wasting) is of great importance, especially for prenatal diagnosis and treatment in pregnancies at risk. A method for simultaneous detection of common point mutations in the P450c21 B gene is here proposed by combining a nested PCR amplification refractory mutation system (ARMS) with capillary zone electrophoresis (CZE) in sieving liquid polymers. In the first PCR, B genes are selectively amplified. In the nested reaction, ARMS-detected wild-type and mutated alleles are separately pooled and resolved by CZE. CZE is performed in coated capillaries in the presence of 30 g/L hydroxyethyl cellulose in the background electrolyte for size separation of the DNA analytes. For high-sensitivity detection the electrophoresis buffer contains the fluorescent dye SYBR Green I. Laser-induced fluorescence detection is obtained by excitation at 488 nm and signal collection at 520 nm. Specificity and reproducibility of the protocols were established by using samples from 75 Italian families with 21-hydroxylase deficiency already genotyped by allele-specific oligonucleotide hybridization or direct sequencing. Whereas dot-blot is time consuming because of the high number of hybridizations with radioactive probes, this present protocol is more rapid, giving sufficient separation on CZE after PCR reactions without preconcentration or desalting of samples.

  20. [Assessment of two DNA extraction methods to amplify the pneumolysin gene (PLY) from blood culture samples of Streptococcus pneumoniae].

    PubMed

    Hernández, Carolina; Durán, Claudia; Ulloa, María Teresa; Prado, Valeria

    2004-05-01

    Streptococcus pneumoniae is a common etiologic agent of invasive respiratory infections among children under 5 years of age and older adults. Isolation rates of S. pneumoniae by traditional culture techniques are low. To study the sensitivity and specificity of two different DNA extraction methods to amplify the ply gene, applied to three different types of blood culture broths, experimentally inoculated with S. pneumoniae. DNA was extracted from the cultures using an organic method or a technique that consists in dilution, washing with NaOH and concentration of the sample. This was followed by PCR amplification of a 355 pb fragment of the pneumolysin gene (ply). The organic DNA extraction method inhibited the PCR reaction at all concentrations studied (0.6 to 10(6) colony forming units/mL). Using the NaOH extraction, ply gene amplification was positive in all three blood culture broths, but only at concentrations of 10(3) colony forming units/mL, or higher. Using the same DNA extraction method, PCR was negative when the broths were inoculated with seven other related bacterial species, which results in a 100% specificity. Detection of S. pneumoniae by amplification of ply gene from blood cultures using the protocol of NaOH for DNA extraction is specific and provides results in a short lapse. However, the diagnostic sensitivity is not optimal, which limits its clinical use.

Top