Tivendale, Kelly A; Logue, Catherine M; Kariyawasam, Subhashinie; Jordan, Dianna; Hussein, Ashraf; Li, Ganwu; Wannemuehler, Yvonne; Nolan, Lisa K
2010-08-01
Escherichia coli strains causing avian colibacillosis and human neonatal meningitis, urinary tract infections, and septicemia are collectively known as extraintestinal pathogenic E. coli (ExPEC). Characterization of ExPEC strains using various typing techniques has shown that they harbor many similarities, despite their isolation from different host species, leading to the hypothesis that ExPEC may have zoonotic potential. The present study examined a subset of ExPEC strains: neonatal meningitis E. coli (NMEC) strains and avian-pathogenic E. coli (APEC) strains belonging to the O18 serogroup. The study found that they were not easily differentiated on the basis of multilocus sequence typing, phylogenetic typing, or carriage of large virulence plasmids. Among the APEC strains examined, one strain was found to be an outlier, based on the results of these typing methods, and demonstrated reduced virulence in murine and avian pathogenicity models. Some of the APEC strains tested in a rat model of human neonatal meningitis were able to cause meningitis, demonstrating APEC's ability to cause disease in mammals, lending support to the hypothesis that APEC strains have zoonotic potential. In addition, some NMEC strains were able to cause avian colisepticemia, providing further support for this hypothesis. However, not all of the NMEC and APEC strains tested were able to cause disease in avian and murine hosts, despite the apparent similarities in their known virulence attributes. Thus, it appears that a subset of NMEC and APEC strains harbors zoonotic potential, while other strains do not, suggesting that unknown mechanisms underlie host specificity in some ExPEC strains.
Lima, Josilene B T; Ribeiro, Guilherme S; Cordeiro, Soraia M; Gouveia, Edilane L; Salgado, Kátia; Spratt, Brian G; Godoy, Daniel; Reis, Mitermayer G; Ko, Albert I; Reis, Joice N
2010-11-15
Since the introduction of Haemophilus influenzae type b (Hib) conjugate vaccines, meningitis caused by serotypes other than Hib has gained in importance. We conducted active hospital-based surveillance for meningitis over an 11-year period in Salvador, Brazil. H. influenzae isolates were serotyped and analyzed by polymerase chain reaction, pulsed-field gel electrophoresis, and DNA sequencing to identify strains with a specific deletion (IS1016) in the bexA gene (IS1016-bexA). We identified 43 meningitis cases caused by non-type b H. influenzae: 28 (65%) were caused by type a (Hia), 9 (21%) were caused by noncapsulated strains, and 3 (7%) each were caused by types e and f. Hia isolates clustered in 2 clonal groups; clonal group A strains (n = 9) had the IS1016-bexA deletion. Among children <5 years of age, meningitis caused by Hia from clonal group A had higher case-fatality than meningitis caused by clonal group B. Despite small numbers, these results indicate that the presence of the IS1016-bexA deletion is associated with enhanced virulence in non-type b H. influenzae.
Zheng, H; Ye, C; Segura, M; Gottschalk, M; Xu, J
2008-09-01
Streptococcus suis serotype 2 sequence type 7 strains emerged in 1996 and caused a streptococcal toxic shock-like syndrome in 1998 and 2005 in China. Evidence indicated that the virulence of S. suis sequence type 7 had increased, but the mechanism was unknown. The sequence type 7 strain SC84, isolated from a patient with streptococcal toxic shock-like syndrome during the Sichuan outbreak, and the sequence type 1 strain 31533, a typical highly pathogenic strain isolated from a diseased pig, were used in comparative studies. In this study we show the mechanisms underlying cytokine production differed between the two types of strains. The S. suis sequence type 7 strain SC84 possesses a stronger capacity to stimulate T cells, naive T cells and peripheral blood mononuclear cell proliferation than does S. suis sequence type 1 strain 31533. The T cell response to both strains was dependent upon the presence of antigen-presenting cells. Histo-incompatible antigen-presenting cells were sufficient to provide the accessory signals to naive T cell stimulated by the two strains, indicating that both sequence type 7 and 1 strains possess mitogens; however, the mitogenic effect was different. Therefore, we propose that the difference in the mitogenic effect of sequence type 7 strain SC84 compared with the sequence type 1 strain 31533 of S. suis may be associated with the clinical, epidemiological and microbiological difference, where the ST 7 strains have a larger mitogenic effect.
Zheng, H; Ye, C; Segura, M; Gottschalk, M; Xu, J
2008-01-01
Streptococcus suis serotype 2 sequence type 7 strains emerged in 1996 and caused a streptococcal toxic shock-like syndrome in 1998 and 2005 in China. Evidence indicated that the virulence of S. suis sequence type 7 had increased, but the mechanism was unknown. The sequence type 7 strain SC84, isolated from a patient with streptococcal toxic shock-like syndrome during the Sichuan outbreak, and the sequence type 1 strain 31533, a typical highly pathogenic strain isolated from a diseased pig, were used in comparative studies. In this study we show the mechanisms underlying cytokine production differed between the two types of strains. The S. suis sequence type 7 strain SC84 possesses a stronger capacity to stimulate T cells, naive T cells and peripheral blood mononuclear cell proliferation than does S. suis sequence type 1 strain 31533. The T cell response to both strains was dependent upon the presence of antigen-presenting cells. Histo-incompatible antigen-presenting cells were sufficient to provide the accessory signals to naive T cell stimulated by the two strains, indicating that both sequence type 7 and 1 strains possess mitogens; however, the mitogenic effect was different. Therefore, we propose that the difference in the mitogenic effect of sequence type 7 strain SC84 compared with the sequence type 1 strain 31533 of S. suis may be associated with the clinical, epidemiological and microbiological difference, where the ST 7 strains have a larger mitogenic effect. PMID:18803762
Lin, Yi-Tsung; Cheng, Yi-Hsiang; Juan, Chih-Han; Wu, Ping-Feng; Huang, Yi-Wei; Chou, Sheng-Hua; Yang, Tsuey-Ching; Wang, Fu-Der
2018-06-12
Capsular type K1 Klebsiella pneumoniae, highly virulent strains which are common in Asian countries, can cause pyogenic infections. These hypervirulent strains are usually susceptible to most antimicrobials, except for ampicillin. Little is known regarding the clinical and molecular characteristics of antimicrobial-resistant K1 K. pneumoniae strains. This retrospective study evaluated patients infected with capsular type K1 K. pneumoniae strains in a Taiwanese medical centre between April 2013 and March 2016. Antimicrobial-resistant strains were defined based on non-susceptibility to antimicrobial agents except ampicillin. We compared the clinical outcome of patients infected with and without antimicrobial-resistant strains. The in vivo virulence, genetic relatedness, and resistance mechanisms of these hypervirulent antimicrobial-resistant strains were also investigated. A total of 182 capsular type K1 K. pneumoniae strains were identified, including 18 antimicrobial-resistant strains. The 28-day mortality rate among the 18 cases caused by antimicrobial-resistant strains was significantly higher than that among 164 cases caused by antimicrobial-sensitive strains (50% vs. 10.4%, p < 0.001). Infection with antimicrobial-resistant strain independently increased the 28-day mortality risk. Most antimicrobial -resistant strains were not clonally related, and they exhibited high in vivo virulence in a mouse lethality experiment. The major resistance mechanisms involved the presence of β-lactamases and the overexpression of efflux pumps. In conclusion, hypervirulent antimicrobial-resistant capsular type K1 K. pneumoniae strains can predispose to a fatal outcome. These strains may represent an emerging threat to public health in Taiwan. Copyright © 2018. Published by Elsevier B.V.
Mistry, Hiral; Sharma, Paresh; Mahato, Sudipta; Saravanan, R; Kumar, P Anand; Bhandari, Vasundhra
2016-01-01
Bovine mastitis caused by multidrug resistant Staphylococcus aureus is a huge problem reported worldwide, resulting in prolonged antibiotic treatment and death of livestock. The current study is focused on surveillance of antibiotic susceptibility along with genotypic and phenotypic characterization of the pathogenic S. aureus strains causing mastitis in India. One hundred and sixty seven milk samples were collected from mastitis-affected cows from different farms in India resulting in thirty nine isolated S. aureus strains. Antibiotic sensitivity profiling revealed the majority of the strains (n = 24) to be multidrug resistant and eleven strains showed reduced susceptibility to vancomycin (MICs = 2μg/ml). All strains were oxacillin sensitive, but 19 strains were positive for the mecA gene, which revealed the occurrence of oxacillin susceptible mecA positive strains (OS-MRSA) for the first time from India. Additionally, 32 strains were positive for the pvl gene, a virulence determinant; of these 17 were also OS-MRSA strains. Molecular characterization based on multilocus sequence typing (MLST), spa typing, agr typing and SCCmec classification revealed strains belonging to different groups. Moreover, strains showed spa types (t2526, t9602) and MLST sequence types, ST-72, ST-88 and ST-239 which have been earlier reported in human infections. The prevalence of OS-MRSA strains indicates the importance of including both the genetic and phenotypic tests in characterizing S. aureus strains. Increased genotypic variability with strain related to human infections and pvl positive isolates indicates a worrisome situation with the possibility of bilateral transfer.
Anza, Ibone; Skarin, Hanna; Vidal, Dolors; Lindberg, Anna; Båverud, Viveca; Mateo, Rafael
2014-04-01
Avian botulism is a paralytic disease caused by Clostridium botulinum-produced botulinum neurotoxins (BoNTs), most commonly of type C/D. It is a serious disease of waterbirds and poultry flocks in many countries in Europe. The objective of this study was to compare the genetic relatedness of avian C. botulinum strains isolated in Spain with strains isolated in Sweden using pulsed-field gel electrophoresis (PFGE). Fifteen strains were isolated from Spanish waterbirds using an immunomagnetic separation technique. Isolates were characterized by PCR, and all were identified as the genospecies Clostridium novyi sensu lato and eight harboured the gene coding for the BoNT type C/D. PFGE analysis of the strains revealed four highly similar pulsotypes, out of which two contained strains from both countries. It also showed that outbreaks in wild and domestic birds can be caused by the same strains. These results support a clonal spreading of the mosaic C. botulinum type C/D through Europe and give relevant information for future epidemiological studies. Copyright © 2014 Elsevier Ltd. All rights reserved.
Takahashi, Toshihito; Gonda, Tomoya; Maeda, Yoshinobu
Implant overdentures with attachments have been used in clinical practice and the effect of attachments on implant strain has been frequently reported. However, most studies have focused on mandibular overdentures; there are few reports on maxillary overdentures. The purpose of this study was to examine the influence of attachment type on implant strain in maxillary overdentures under various implant configurations. A maxillary edentulous model with implants and experimental overdentures were fabricated. Four strain gauges were attached to each implant, positioned in anterior, premolar, and molar areas. Three types of unsplinted attachments-ball, locator, and magnet-were set on the implants under various implant configurations. A vertical occlusal load of 98 N was applied through the mandibular complete denture, and implant strain was compared using the Kruskal-Wallis test. Ball attachments caused the greatest amount of strain, while magnet attachments caused the least amount under all conditions. For all attachments, two anterior implants caused significantly more strain than four implants (P < .05). No significant difference was observed between subtypes in four-implant configurations except when using locator attachments. When using unsplinted attachments for maxillary implant overdentures, magnet attachments are recommended to reduce implant stress. Using only two implants, especially two anterior implants, is not recommended regardless of attachment type.
Chonsin, Kaknokrat; Matsuda, Shigeaki; Theethakaew, Chonchanok; Kodama, Toshio; Junjhon, Jiraphan; Suzuki, Yasuhiko; Suthienkul, Orasa; Iida, Tetsuya
2016-01-01
Acute hepatopancreatic necrosis disease (AHPND) is an emerging shrimp disease that causes massive die-offs in farmed shrimps. Recent outbreaks of AHPND in Asia have been causing great losses for shrimp culture and have become a serious socioeconomic problem. The causative agent of AHPND is Vibrio parahaemolyticus, which is typically known to cause food-borne gastroenteritis in humans. However, there have been few reports of the epidemiology of V. parahaemolyticus AHPND strains, and the genetic relationship among AHPND strains is unclear. Here, we report the genetic characterization of V. parahaemolyticus strains isolated from AHPND outbreaks in Thailand. We found eight isolates from AHPND-suspected shrimps and pond water that were positive for AHPND markers AP1 and AP2. PCR analysis confirmed that none of these eight AP-positive AHPND strains possesses the genes for the conventional virulence factors affecting to humans, such as thermostable direct hemolysin (TDH), TDH-related hemolysin (TRH) and type III secretion system 2. Phylogenetic analysis by multilocus sequence typing showed that the AHPND strains are genetically diverse, suggesting that AHPND strains were not derived from a single genetic lineage. Our study represents the first report of molecular epidemiology of AHPND-causing V. parahaemolyticus strains using multilocus sequence typing, and provides an insight into their evolutionary mechanisms. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Setoh, Yin Xiang; Periasamy, Parthiban; Peng, Nias Yong Gao; Amarilla, Alberto A; Slonchak, Andrii; Khromykh, Alexander A
2017-11-02
West Nile virus (WNV) is a neurotropic flavivirus that can cause encephalitis in mammalian and avian hosts. In America, the virulent WNV strain (NY99) is causing yearly outbreaks of encephalitis in humans and horses, while in Australia the less virulent Kunjin strain of WNV strain has not been associated with significant disease outbreaks until a recent 2011 large outbreak in horses (but not in humans) caused by NSW2011 strain. Using chimeric viruses between NY99 and NSW2011 strains we previously identified a role for the non-structural proteins of NY99 strain and especially the NS3 protein, in enhanced virus replication in type I interferon response-competent cells and increased virulence in mice. To further define the role of NY99 NS3 protein in inhibition of type I interferon response, we have generated and characterised additional chimeric viruses containing the protease or the helicase domains of NY99 NS3 on the background of the NSW2011 strain. The results identified the role for the helicase but not the protease domain of NS3 protein in the inhibition of type I interferon signalling and showed that helicase domain of the more virulent NY99 strain performs this function more efficiently than helicase domain of the less virulent NSW2011 strain. Further analysis with individual amino acid mutants identified two amino acid residues in the helicase domain primarily responsible for this difference. Using chimeric replicons, we also showed that the inhibition of type I interferon (IFN) signalling was independent of other known functions of NS3 in RNA replication and assembly of virus particles.
Periasamy, Parthiban; Peng, Nias Yong Gao; Amarilla, Alberto A.; Slonchak, Andrii; Khromykh, Alexander A.
2017-01-01
West Nile virus (WNV) is a neurotropic flavivirus that can cause encephalitis in mammalian and avian hosts. In America, the virulent WNV strain (NY99) is causing yearly outbreaks of encephalitis in humans and horses, while in Australia the less virulent Kunjin strain of WNV strain has not been associated with significant disease outbreaks until a recent 2011 large outbreak in horses (but not in humans) caused by NSW2011 strain. Using chimeric viruses between NY99 and NSW2011 strains we previously identified a role for the non-structural proteins of NY99 strain and especially the NS3 protein, in enhanced virus replication in type I interferon response-competent cells and increased virulence in mice. To further define the role of NY99 NS3 protein in inhibition of type I interferon response, we have generated and characterised additional chimeric viruses containing the protease or the helicase domains of NY99 NS3 on the background of the NSW2011 strain. The results identified the role for the helicase but not the protease domain of NS3 protein in the inhibition of type I interferon signalling and showed that helicase domain of the more virulent NY99 strain performs this function more efficiently than helicase domain of the less virulent NSW2011 strain. Further analysis with individual amino acid mutants identified two amino acid residues in the helicase domain primarily responsible for this difference. Using chimeric replicons, we also showed that the inhibition of type I interferon (IFN) signalling was independent of other known functions of NS3 in RNA replication and assembly of virus particles. PMID:29099073
Athey, Taryn B. T.; Teatero, Sarah; Sieswerda, Lee E.; Gubbay, Jonathan B.; Marchand-Austin, Alex; Li, Aimin; Wasserscheid, Jessica; Dewar, Ken; McGeer, Allison; Williams, David
2015-01-01
An outbreak of type emm59 invasive group A Streptococcus (iGAS) disease was declared in 2008 in Thunder Bay District, Northwestern Ontario, 2 years after a countrywide emm59 epidemic was recognized in Canada. Despite a declining number of emm59 infections since 2010, numerous cases of iGAS disease continue to be reported in the area. We collected clinical information on all iGAS cases recorded in Thunder Bay District from 2008 to 2013. We also emm typed and sequenced the genomes of all available strains isolated from 2011 to 2013 from iGAS infections and from severe cases of soft tissue infections. We used whole-genome sequencing data to investigate the population structure of GAS strains of the most frequently isolated emm types. We report an increased incidence of iGAS in Thunder Bay compared to the metropolitan area of Toronto/Peel and the province of Ontario. Illicit drug use, alcohol abuse, homelessness, and hepatitis C infection were underlying diseases or conditions that might have predisposed patients to iGAS disease. Most cases were caused by clonal strains of skin or generalist emm types (i.e., emm82, emm87, emm101, emm4, emm83, and emm114) uncommonly seen in other areas of the province. We observed rapid waxing and waning of emm types causing disease and their replacement by other emm types associated with the same tissue tropisms. Thus, iGAS disease in Thunder Bay District predominantly affects a select population of disadvantaged persons and is caused by clonally related strains of a few skin and generalist emm types less commonly associated with iGAS in other areas of Ontario. PMID:26491184
Athey, Taryn B T; Teatero, Sarah; Sieswerda, Lee E; Gubbay, Jonathan B; Marchand-Austin, Alex; Li, Aimin; Wasserscheid, Jessica; Dewar, Ken; McGeer, Allison; Williams, David; Fittipaldi, Nahuel
2016-01-01
An outbreak of type emm59 invasive group A Streptococcus (iGAS) disease was declared in 2008 in Thunder Bay District, Northwestern Ontario, 2 years after a countrywide emm59 epidemic was recognized in Canada. Despite a declining number of emm59 infections since 2010, numerous cases of iGAS disease continue to be reported in the area. We collected clinical information on all iGAS cases recorded in Thunder Bay District from 2008 to 2013. We also emm typed and sequenced the genomes of all available strains isolated from 2011 to 2013 from iGAS infections and from severe cases of soft tissue infections. We used whole-genome sequencing data to investigate the population structure of GAS strains of the most frequently isolated emm types. We report an increased incidence of iGAS in Thunder Bay compared to the metropolitan area of Toronto/Peel and the province of Ontario. Illicit drug use, alcohol abuse, homelessness, and hepatitis C infection were underlying diseases or conditions that might have predisposed patients to iGAS disease. Most cases were caused by clonal strains of skin or generalist emm types (i.e., emm82, emm87, emm101, emm4, emm83, and emm114) uncommonly seen in other areas of the province. We observed rapid waxing and waning of emm types causing disease and their replacement by other emm types associated with the same tissue tropisms. Thus, iGAS disease in Thunder Bay District predominantly affects a select population of disadvantaged persons and is caused by clonally related strains of a few skin and generalist emm types less commonly associated with iGAS in other areas of Ontario. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Li, Peng; Kinch, Lisa N; Ray, Ann; Dalia, Ankur B; Cong, Qian; Nunan, Linda M; Camilli, Andrew; Grishin, Nick V; Salomon, Dor; Orth, Kim
2017-07-01
Acute hepatopancreatic necrosis disease (AHPND) is a newly emerging shrimp disease that has severely damaged the global shrimp industry. AHPND is caused by toxic strains of Vibrio parahaemolyticus that have acquired a "selfish plasmid" encoding the deadly binary toxins PirA vp /PirB vp To better understand the repertoire of virulence factors in AHPND-causing V. parahaemolyticus , we conducted a comparative analysis using the genome sequences of the clinical strain RIMD2210633 and of environmental non-AHPND and toxic AHPND isolates of V. parahaemolyticus Interestingly, we found that all of the AHPND strains, but none of the non-AHPND strains, harbor the antibacterial type VI secretion system 1 (T6SS1), which we previously identified and characterized in the clinical isolate RIMD2210633. This finding suggests that the acquisition of this T6SS might confer to AHPND-causing V. parahaemolyticus a fitness advantage over competing bacteria and facilitate shrimp infection. Additionally, we found highly dynamic effector loci in the T6SS1 of AHPND-causing strains, leading to diverse effector repertoires. Our discovery provides novel insights into AHPND-causing pathogens and reveals a potential target for disease control. IMPORTANCE Acute hepatopancreatic necrosis disease (AHPND) is a serious disease that has caused severe damage and significant financial losses to the global shrimp industry. To better understand and prevent this shrimp disease, it is essential to thoroughly characterize its causative agent, Vibrio parahaemolyticus Although the plasmid-encoded binary toxins PirA vp /PirB vp have been shown to be the primary cause of AHPND, it remains unknown whether other virulent factors are commonly present in V. parahaemolyticus and might play important roles during shrimp infection. Here, we analyzed the genome sequences of clinical, non-AHPND, and AHPND strains to characterize their repertoires of key virulence determinants. Our studies reveal that an antibacterial type VI secretion system is associated with the AHPND strains and differentiates them from non-AHPND strains, similar to what was seen with the PirA/PirB toxins. We propose that T6SS1 provides a selective advantage during shrimp infections. Copyright © 2017 American Society for Microbiology.
Li, Peng; Kinch, Lisa N.; Ray, Ann; Dalia, Ankur B.; Nunan, Linda M.; Camilli, Andrew; Grishin, Nick V.
2017-01-01
ABSTRACT Acute hepatopancreatic necrosis disease (AHPND) is a newly emerging shrimp disease that has severely damaged the global shrimp industry. AHPND is caused by toxic strains of Vibrio parahaemolyticus that have acquired a “selfish plasmid” encoding the deadly binary toxins PirAvp/PirBvp. To better understand the repertoire of virulence factors in AHPND-causing V. parahaemolyticus, we conducted a comparative analysis using the genome sequences of the clinical strain RIMD2210633 and of environmental non-AHPND and toxic AHPND isolates of V. parahaemolyticus. Interestingly, we found that all of the AHPND strains, but none of the non-AHPND strains, harbor the antibacterial type VI secretion system 1 (T6SS1), which we previously identified and characterized in the clinical isolate RIMD2210633. This finding suggests that the acquisition of this T6SS might confer to AHPND-causing V. parahaemolyticus a fitness advantage over competing bacteria and facilitate shrimp infection. Additionally, we found highly dynamic effector loci in the T6SS1 of AHPND-causing strains, leading to diverse effector repertoires. Our discovery provides novel insights into AHPND-causing pathogens and reveals a potential target for disease control. IMPORTANCE Acute hepatopancreatic necrosis disease (AHPND) is a serious disease that has caused severe damage and significant financial losses to the global shrimp industry. To better understand and prevent this shrimp disease, it is essential to thoroughly characterize its causative agent, Vibrio parahaemolyticus. Although the plasmid-encoded binary toxins PirAvp/PirBvp have been shown to be the primary cause of AHPND, it remains unknown whether other virulent factors are commonly present in V. parahaemolyticus and might play important roles during shrimp infection. Here, we analyzed the genome sequences of clinical, non-AHPND, and AHPND strains to characterize their repertoires of key virulence determinants. Our studies reveal that an antibacterial type VI secretion system is associated with the AHPND strains and differentiates them from non-AHPND strains, similar to what was seen with the PirA/PirB toxins. We propose that T6SS1 provides a selective advantage during shrimp infections. PMID:28432099
Lachance, Claude; Segura, Mariela; Gerber, Pehuén Pereyra; Xu, Jianguo; Gottschalk, Marcelo
2013-01-01
Streptococcus suis is an emerging zoonotic agent causing meningitis and septicemia. Outbreaks in humans in China with atypical cases of streptococcal toxic shock-like syndrome have been described to be caused by a clonal epidemic S. suis strain characterized as sequence type (ST) 7 by multilocus sequence typing, different from the classical ST1 usually isolated in Europe. Previous in vitro studies showed that Toll-like receptor (TLR) 2 plays a major role in S. suis ST1 interactions with host cells. In the present study, the in vivo role of TLR2 in systemic infections caused by S. suis ST1 or ST7 strains using TLR2 deficient (TLR2(-/-)) mice was evaluated. TLR2-mediated recognition significantly contributes to the acute disease caused by the highly virulent S. suis ST1 strain, since the TLR2(-/-) mice remained unaffected when compared to wild type (WT) mice. The lack of mortality could not be associated with a lower bacterial burden; however, a significant decrease in the induction of pro-inflammatory mediators, as evaluated by microarray, real-time PCR and protein assays, was observed. On the other hand, TLR2(-/-) mice infected with the epidemic ST7 strain presented no significant differences regarding survival and expression of pro-inflammatory mediators when compared to the WT mice. Together, these results show a TLR2-independent host innate immune response to S. suis that depends on the strain.
Ma, Menglin; Li, Jihong; McClane, Bruce A
2012-12-01
Clostridium perfringens type C strains are the only non-type-A isolates that cause human disease. They are responsible for enteritis necroticans, which was termed Darmbrand when occurring in post-World War II Germany. Darmbrand strains were initially classified as type F because of their exceptional heat resistance but later identified as type C strains. Since only limited information exists regarding Darmbrand strains, this study genetically and phenotypically characterized seven 1940s era Darmbrand-associated strains. Results obtained indicated the following. (i) Five of these Darmbrand isolates belong to type C, carry beta-toxin (cpb) and enterotoxin (cpe) genes on large plasmids, and express both beta-toxin and enterotoxin. The other two isolates are cpe-negative type A. (ii) All seven isolates produce highly heat-resistant spores with D(100) values (the time that a culture must be kept at 100°C to reduce its viability by 90%) of 7 to 40 min. (iii) All of the isolates surveyed produce the same variant small acid-soluble protein 4 (Ssp4) made by type A food poisoning isolates with a chromosomal cpe gene that also produce extremely heat-resistant spores. (iv) The Darmbrand isolates share a genetic background with type A chromosomal-cpe-bearing isolates. Finally, it was shown that both the cpe and cpb genes can be mobilized in Darmbrand isolates. These results suggest that C. perfringens type A and C strains that cause human food-borne illness share a spore heat resistance mechanism that likely favors their survival in temperature-abused food. They also suggest possible evolutionary relationships between Darmbrand strains and type A strains carrying a chromosomal cpe gene.
Adherence of Moraxella bovis to cell cultures of bovine origin.
Annuar, B O; Wilcox, G E
1985-09-01
The adherence of five strains of Moraxella bovis to cell cultures was investigated. M bovis adhered to cultures of bovine corneal epithelial and Madin-Darby bovine kidney cells but not to cell types of non-bovine origin. Both piliated and unpiliated strains adhered but piliated strains adhered to a greater extent than unpiliated strains. Antiserum against pili of one strain inhibited adherence of piliated strains but caused only slight inhibition of adherence to the unpiliated strains. Treatment of bacteria with magnesium chloride caused detachment of pili from the bacterial cell and markedly inhibited adherence of piliated strains but caused only slight inhibition of adherence by the unpiliated strains. The results suggested that adhesion of piliated strains to cell cultures was mediated via pili but that adhesins other than pili may be involved in the attachment of unpiliated strains of M bovis to cells.
Andersson, R A; Kõiv, V; Norman-Setterblad, C; Pirhonen, M
1999-12-01
The plant-pathogenic bacterium Erwinia carotovora subsp. carotovora causes plant disease mainly through a number of extracellular plant-cell-wall-degrading enzymes. In this study, the ability of an rpoS mutant of the Er. carotovora subsp. carotovora strain SCC3193 to infect plants and withstand environmental stress was characterized. This mutant was found to be sensitive to osmotic and oxidative stresses in vitro and to be deficient in glycogen accumulation. The production of extracellular enzymes in vitro was similar in the mutant and in the wild-type strains. However, the rpoS mutant caused more severe symptoms than the wild-type strain on tobacco plants and also produced more extracellular enzymes in planta, but did not grow to higher cell density in planta compared to the wild-type strain. When tested on plants with reduced catalase activities, which show higher levels of reactive oxygen species, the rpoS mutant was found to cause lower symptom levels and to have impaired growth. In addition, the mutant was unable to compete with the wild-type strain in planta and in vitro. These results suggest that a functional rpoS gene is needed mainly for survival in a competitive environment and during stress conditions, and not for effective infection of plants.
Trébaol, G; Gardan, L; Manceau, C; Tanguy, J L; Tirilly, Y; Boury, S
2000-07-01
A bacterial disease of artichoke (Cynara scolymus L.) was first observed in 1954 in Brittany and the Loire Valley, France. This disease causes water-soaked spots on bracts and depreciates marketability of the harvest. Ten strains of the pathogen causing bacterial spot of artichoke, previously identified as a member of the genus Xanthomonas, were characterized and compared with type and pathotype strains of the 20 Xanthomonas species using a polyphasic study including both phenotypic and genomic methods. The ten strains presented general morphological, biochemical and physiological traits and G+C content characteristic of the genus Xanthomonas. Sequencing of the 165 rRNA gene confirmed that this bacterium belongs to the genus Xanthomonas, and more precisely to the Xanthomonas campestris core. DNA-DNA hybridization results showed that the strains that cause bacterial spot of artichoke were 92-100% related to the proposed type strain CFBP 4188T and constituted a discrete DNA homology group that was distinct from the 20 previously described Xanthomonas species. The results of numerical analysis were in accordance with DNA-DNA hybridization data. Strains causing the bacterial bract spot of artichoke exhibited consistent determinative biochemical characteristics, which distinguished them from the 20 other Xanthomonas species previously described. Furthermore, pathogenicity tests allowed specific identification of this new phytopathogenic bacterium. Thus, it is concluded that this bacterium is a new species belonging to the genus Xanthomonas, for which the name Xanthomonas cynarae is proposed. The type strain, CFBP 4188T, has been deposited in the Collection Française des Bactéries Phytopathogènes (CFBP).
Valdés, I; Jaureguiberry, B; Romalde, J L; Toranzo, A E; Magariños, B; Avendaño-Herrera, R
2009-04-01
Streptococcus phocae is a beta-haemolytic bacterium frequently involved in disease outbreaks in seals causing pneumonia or respiratory infection. Since 1999, this pathogen has been isolated from diseased Atlantic salmon, Salmo salar, causing serious economic losses in the salmon industry in Chile. In this study, we used different molecular typing methods, such as pulsed-field gel electrophoresis (PFGE), randomly amplified polymorphic DNA (RAPD), enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR), repetitive extragenic palindromic PCR (REP-PCR) and restriction of 16S-23S rDNA intergenic spacer regions to evaluate the genetic diversity in S. phocae. Thirty-four strains isolated in different years were analysed. The S. phocae type strain ATCC 51973(T) was included for comparative purposes. The results demonstrated genetic homogeneity within the S. phocae strains isolated in Chile over several years, suggesting the existence of clonal relationships among S. phocae isolated from Atlantic salmon. The type strain ATCC 51973(T) presented a different genetic pattern with the PFGE, RAPD, ERIC-PCR and REP-PCR methods. However, the fingerprint patterns of two seal isolates were distinct from those of the type strain.
Garver, K.A.; Batts, W.N.; Kurath, G.
2006-01-01
Infectious hematopoietic necrosis virus (IHNV) is an aquatic rhabdovirus that infects salmonids in the Pacific Northwest of the United States, Europe, and Asia. Isolates of IHNV have been phylogenetically classified into three major viral genogroups, designated U, M, and L. To characterize virulence of IHNV in the context of these three viral genogroups, seven strains of IHNV (three U genogroup strains, three M strains, and one L strain) were compared for their pathogenicity in juvenile sockeye salmon Oncorhynchus nerka, kokanee (lacustrine sockeye salmon), and rainbow trout O. mykiss. Fish were waterborne-exposed to the different viral strains, and virulence was assessed by comparing mortality curves and final cumulative percent mortality (CPM) in both species of fish at 10??C and 15??C. In sockeye salmon and kokanee, the U genogroup virus types were extremely virulent, causing average CPMs of 69-100%, while the M genogroup virus types caused very little or no mortality (CPM = 0-4%). The endangered Redfish Lake sockeye salmon stock exhibited extreme differences in susceptibility to the U and M genogroups. Conversely, in two stocks of rainbow trout, the M genogroup virus types were more virulent, inducing average CPMs of 25-85%, while the U genogroup viruses caused lower mortality (CPM = 5-41%). In both fish species, the single L genogroup strain caused low to intermediate mortality (CPM = 13-53%). Viral glycoprotein sequence comparisons of the seven challenge strains revealed three amino acid sites (247, 256, and 270) that consistently differed between the U and M genogroups, possibly contributing to pathogenicity differences. ?? Copyright by the American Fisheries Society 2006.
Clavibacter michiganensis subsp. capsici subsp. nov., causing bacterial canker disease in pepper.
Oh, Eom-Ji; Bae, Chungyun; Lee, Han-Beoyl; Hwang, In Sun; Lee, Hyok-In; Yea, Mi Chi; Yim, Kyu-Ock; Lee, Seungdon; Heu, Sunggi; Cha, Jae-Soon; Oh, Chang-Sik
2016-10-01
Clavibacter michiganensis is a Gram-stain-positive bacterium with eight subspecies. One of these subspecies is C. michiganensis subsp. michiganensis, which causes bacterial canker disease in tomato. Bacterial strains showing very similar canker disease symptoms to those of a strain originally classified as C. michiganensis have been isolated from pepper. In this paper, we reclassified strains isolated from pepper. On the basis of phylogenetic analysis with 16S rRNA gene sequences, the strains isolated from pepper were grouped in a separate clade from other subspecies of C. michiganensis. Biochemical, physiological and genetic characteristics of strain PF008T, which is the representative strain of the isolates from pepper, were examined in this study. Based on multi-locus sequence typing and other biochemical and physiological features including colony color, utilization of carbon sources and enzyme activities, strain PF008T was categorically differentiated from eight subspecies of C. michiganensis. Moreover, genome analysis showed that the DNA G+C content of strain PF008T is 73.2 %. These results indicate that PF008T is distinct from other known subspecies of C. michiganensis. Therefore, we propose a novel subspecies, C. michiganensis subsp. capsici, causing bacterial canker disease in pepper, with a type strain of PF008T (=KACC 18448T=LMG 29047T).
Vilela, F P; Frazão, M R; Rodrigues, D P; Costa, R G; Casas, M R T; Fernandes, S A; Falcão, J P; Campioni, F
2018-02-01
Salmonella Dublin is strongly adapted to cattle causing enteritis and/or systemic disease with high rates of mortality. However, it can be sporadically isolated from humans, usually causing serious disease, especially in patients with underlying chronic diseases. The aim of this study was to molecularly type S. Dublin strains isolated from humans and animals in Brazil to verify the diversity of these strains as well as to ascertain possible differences between strains isolated from humans and animals. Moreover, the presence of the capsular antigen Vi and the plasmid profile was characterized in addition to the anti-microbial resistance against 15 drugs. For this reason, 113 S. Dublin strains isolated between 1983 and 2016 from humans (83) and animals (30) in Brazil were typed by PFGE and MLVA. The presence of the capsular antigen Vi was verified by PCR, and the phenotypic expression of the capsular antigen was determined serologically. Also, a plasmid analysis for each strain was carried out. The strains studied were divided into 35 different PFGE types and 89 MLVA-types with a similarity of ≥80% and ≥17.5%, respectively. The plasmid sizes found ranged from 2 to >150 kb and none of the strains studied presented the capsular antigen Vi. Resistance or intermediate resistance was found in 23 strains (20.3%) that were resistant to ampicillin, ciprofloxacin, chloramphenicol, imipenem, nalidixic acid, piperacillin, streptomycin and/or tetracycline. The majority of the S. Dublin strains studied and isolated over a 33-year period may descend from a common subtype that has been contaminating humans and animals in Brazil and able to cause invasive disease even in the absence of the capsular antigen. The higher diversity of resistance phenotypes in human isolates, as compared with animal strains, may be a reflection of the different anti-microbial treatments used to control S. Dublin infections in humans in Brazil. © 2017 Blackwell Verlag GmbH.
Genome analysis of Listeria ivanovii strain G770 that caused a deadly aortic prosthesis infection
Beye, M.; Gouriet, F.; Michelle, C.; Casalta, J.-P.; Habib, G.; Raoult, D.; Fournier, P.-E.
2016-01-01
We sequenced the genome of Listeria ivanovii strain G770, which caused a deadly infection of the thoracic aortic prosthesis of a 78-year-old man. The 2.9 Mb genome exhibited 21 specific genes among L. ivanovii strains, including five genes encoding a type I restriction modification system and one glycopeptide resistance gene. PMID:26933501
CodY Promotes Sporulation and Enterotoxin Production by Clostridium perfringens Type A Strain SM101.
Li, Jihong; Freedman, John C; Evans, Daniel R; McClane, Bruce A
2017-03-01
Clostridium perfringens type D strains cause enterotoxemia and enteritis in livestock via epsilon toxin production. In type D strain CN3718, CodY was previously shown to increase the level of epsilon toxin production and repress sporulation. C. perfringens type A strains producing C. perfringens enterotoxin (CPE) cause human food poisoning and antibiotic-associated diarrhea. Sporulation is critical for C. perfringens type A food poisoning since spores contribute to transmission and resistance in the harsh food environment and sporulation is essential for CPE production. Therefore, the current study asked whether CodY also regulates sporulation and CPE production in SM101, a derivative of C. perfringens type A food-poisoning strain NCTC8798. An isogenic codY -null mutant of SM101 showed decreased levels of spore formation, along with lower levels of CPE production. A complemented strain recovered wild-type levels of both sporulation and CPE production. When this result was coupled with the earlier results obtained with CN3718, it became apparent that CodY regulation of sporulation varies among different C. perfringens strains. Results from quantitative reverse transcriptase PCR analysis clearly demonstrated that, during sporulation, codY transcript levels remained high in SM101 but rapidly declined in CN3718. In addition, abrB gene expression patterns varied significantly between codY -null mutants of SM101 and CN3718. Compared to the levels in their wild-type parents, the level of abrB gene expression decreased in the CN3718 codY -null mutant strain but significantly increased in the SM101 codY -null mutant strain, demonstrating CodY-dependent regulation differences in abrB expression between these two strains. This difference appears to be important since overexpression of the abrB gene in SM101 reduced the levels of sporulation and enterotoxin production, supporting the involvement of AbrB repression in regulating C. perfringens sporulation. Copyright © 2017 American Society for Microbiology.
CodY Promotes Sporulation and Enterotoxin Production by Clostridium perfringens Type A Strain SM101
Li, Jihong; Freedman, John C.; Evans, Daniel R.
2017-01-01
ABSTRACT Clostridium perfringens type D strains cause enterotoxemia and enteritis in livestock via epsilon toxin production. In type D strain CN3718, CodY was previously shown to increase the level of epsilon toxin production and repress sporulation. C. perfringens type A strains producing C. perfringens enterotoxin (CPE) cause human food poisoning and antibiotic-associated diarrhea. Sporulation is critical for C. perfringens type A food poisoning since spores contribute to transmission and resistance in the harsh food environment and sporulation is essential for CPE production. Therefore, the current study asked whether CodY also regulates sporulation and CPE production in SM101, a derivative of C. perfringens type A food-poisoning strain NCTC8798. An isogenic codY-null mutant of SM101 showed decreased levels of spore formation, along with lower levels of CPE production. A complemented strain recovered wild-type levels of both sporulation and CPE production. When this result was coupled with the earlier results obtained with CN3718, it became apparent that CodY regulation of sporulation varies among different C. perfringens strains. Results from quantitative reverse transcriptase PCR analysis clearly demonstrated that, during sporulation, codY transcript levels remained high in SM101 but rapidly declined in CN3718. In addition, abrB gene expression patterns varied significantly between codY-null mutants of SM101 and CN3718. Compared to the levels in their wild-type parents, the level of abrB gene expression decreased in the CN3718 codY-null mutant strain but significantly increased in the SM101 codY-null mutant strain, demonstrating CodY-dependent regulation differences in abrB expression between these two strains. This difference appears to be important since overexpression of the abrB gene in SM101 reduced the levels of sporulation and enterotoxin production, supporting the involvement of AbrB repression in regulating C. perfringens sporulation. PMID:28052992
Whole genome sequence analyses of Xylella fastidiosa PD strains from different geographical regions
USDA-ARS?s Scientific Manuscript database
Genome sequences were determined for two Pierce’s disease (PD) causing Xylella fastidiosa (Xf) strains, one from Florida and one from Taiwan. The Florida strain was ATCC 35879, the type of strain used as a standard reference for related taxonomy research. By contrast, the Taiwan strain used was only...
Typing methods for the plague pathogen, Yersinia pestis.
Lindler, Luther E
2009-01-01
Phenotypic and genotypic methodologies have been used to differentiate the etiological agent of plague, Yersinia pestis. Historically, phenotypic methods were used to place isolates into one of three biovars based on nitrate reduction and glycerol fermentation. Classification of Y. pestis into genetic subtypes is problematic due to the relative monomorphic nature of the pathogen. Resolution into groups is dependent on the number and types of loci used in the analysis. The last 5-10 years of research and analysis in the field of Y. pestis genotyping have resulted in a recognition by Western scientists that two basic types of Y. pestis exist. One type, considered to be classic strains that are able to cause human plague transmitted by the normal flea vector, is termed epidemic strains. The other type does not typically cause human infections by normal routes of infection, but is virulent for rodents and is termed endemic strains. Previous classification schemes used outside the Western hemisphere referred to these latter strains as Pestoides varieties of Y. pestis. Recent molecular analysis has definitely shown that both endemic and epidemic strains arose independently from a common Yersinia pseudotuberculosis ancestor. Currently, 11 major groups of Y. pestis are defined globally.
Additional value of typing Noroviruses in gastroenteritis outbreaks in Amsterdam, The Netherlands.
Koek, A G; Bovée, L P M J; van den Hoek, J A R; Bos, A J; Bruisten, S M
2006-02-01
In Amsterdam, 17 of the 55 gastroenteritis (GI) outbreaks reported from January 2002 to May 2003 were confirmed to be caused by noroviruses (NV). In this study, we describe the molecular epidemiology of a group of nine outbreaks associated with a catering firm and two outbreaks, 5 months apart, in an Amsterdam hospital. All outbreaks were typed to confirm their linkage, and the hospital-related cases were studied to see if the two outbreaks were caused by one persisting NV strain or by a reintroduction after 5 months. For the outbreaks associated with the catering firm one NV genogroup I strain was found which was identical in sequence among customers and employees of the caterer. This was not the strain that predominantly circulated in 2002/2003 in and around Amsterdam, which was the NV genogroup II4 "new variant" (GgII4nv) strain. In the Amsterdam hospital, the two outbreaks were caused by this predominant GgII4nv type, and we argue that NV was most likely reintroduced in the second outbreak from the Amsterdam community.
Endemic and Epidemic Lineages of Escherichia coli that Cause Urinary Tract Infections
Tabor, Helen; Tellis, Patricia; Vincent, Caroline; Tellier, Pierre-Paul
2008-01-01
Women with urinary tract infections (UTIs) in California, USA (1999–2001), were infected with closely related or indistinguishable strains of Escherichia coli (clonal groups), which suggests point source dissemination. We compared strains of UTI-causing E. coli in California with strains causing such infections in Montréal, Québec, Canada. Urine specimens from women with community-acquired UTIs in Montréal (2006) were cultured for E. coli. Isolates that caused 256 consecutive episodes of UTI were characterized by antimicrobial drug susceptibility profile, enterobacterial repetitive intergenic consensus 2 PCR, serotyping, XbaI and NotI pulsed-field gel electrophoresis, multilocus sequence typing, and phylogenetic typing. We confirmed the presence of drug-resistant, genetically related, and temporally clustered E. coli clonal groups that caused community-acquired UTIs in unrelated women in 2 locations and 2 different times. Two clonal groups were identified in both locations. Epidemic transmission followed by endemic transmission of UTI-causing clonal groups may explain these clusters of UTI cases. PMID:18826822
USDA-ARS?s Scientific Manuscript database
Acidovorax citrulli is a seed-borne pathogen that causes bacterial fruit blotch of cucurbits including melon and watermelon. We investigated the roles of quorum sensing in the wild-type group II strain Aac-5 of A. citrulli by generating aacR and aacI knockout mutants and their complementation strain...
Dhanaraj, Premnath; Devadas, Akila; Muthiah, Indiraleka
2018-04-01
Epigenetic characterization studies have clearly shown that the association of genital Human Papilloma Virus (HPV) with cervical cancer is strong, independent of other risk factors, and consistent in several countries. Even though all the strains of Human Papilloma Virus can cause cancer, the high-risk strains can cause severe cancer in a human. The E6 and E7 protein are responsible for the carcinogenic property of HPV. Among these two proteins, the HPV E7 protein plays a major role in the viral life cycle by allowing the virus to replicate in differentiating epithelial cells. All the strains of HPV are variants (High risk and low risk). A computational analysis study is done to find which low-risk strain is showing most similarity with the high risk there by predicting that this low-risk strain can be converted to high-risk if a mutation occurs in future. Through mutation, a normal strain will get converted to low-risk and a low-risk to high-risk. So the mutations are important and it can affect the viruses to a greater extent because of their smaller size. In order to inhibit the expression of Type 11 low-risk strain a noval suppressor molecule is synthesized and characterized using UV, FTIR and NMR spectrometry. The suppressor molecule is a quinazoline derivative, as it can act as an anti-cancer agent to inhibit the expression of the E7 protein in Type 11 strain. The efficiency of binding of type 11 E7 protein with quinazoline derivative is calculated through docking studies using G-Score (Schrodinger). Thus proposing this noval suppressor molecule can be lead against cervical cancer caused by HPV Type 11 strain after further in-vitro and in vivo characterization. Copyright © 2018 Elsevier Ltd. All rights reserved.
Jiang, Xiaowu; Yang, Yunkai; Zhu, Lexin; Gu, Yuanxing; Shen, Hongxia; Shan, Ying; Li, Xiaoliang; Wu, Jiusheng; Fang, Weihuan
2016-12-12
Streptococcus suis is one of the common pathogens causing diseases in pigs and covers 35 serotypes with the type 2 strains being more pathogenic and zoonotic. Existing inactivated or subunit vaccines, in clinical use or under trial, could not provide cross protection against other serotypes. We identified a natural low-virulence S. suis type 5 strain XS045 as a live vaccine candidate because it is highly adhesive to the cultured HEp-2 cells, but with no apparent pathogenicity in mice and piglets. We further demonstrate that subcutaneous administration of the live XS045 strain to mice induced high antibody responses and was able to provide cross protection against challenges by a type 2 strain HA9801 (100% protection) and a type 9 strain JX13 (85% protection). Induction of high-titer antibodies with opsonizing activity as well as their cross-reactivity to surface proteins of the types 2 and 9 strains and anti-adhesion effect could be the mechanisms of cross protection. This is the first report that a live vaccine candidate S. suis type 5 strain could induce cross-protection against strains of types 2 and 9. This candidate strain is to be further examined for safety in pigs of different ages and breeds as well as for its protection against other serotypes or other strains of the type 2, a serotype of particular importance from public health concern. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lu, Ashley; Armstrong, Karen F.
2015-01-01
Pectobacterium species are economically important bacteria that cause soft rotting of potato tubers in the field and in storage. Here, we report the draft genome sequence of the type strain for P. carotovorum subsp. carotovorum, ICMP 5702 (ATCC 15713). The genome sequence of ICMP 5702 will provide an important reference for future phylogenomic and taxonomic studies of the phytopathogenic Enterobacteriaceae. PMID:26251498
Beres, Stephen B; Olsen, Randall J; Ojeda Saavedra, Matthew; Ure, Roisin; Reynolds, Arlene; Lindsay, Diane S J; Smith, Andrew J; Musser, James M
2017-12-01
Strains of type emm89 Streptococcus pyogenes have recently increased in frequency as a cause of human infections in several countries in Europe and North America. This increase has been molecular epidemiologically linked with the emergence of a new genetically distinct clone, designated clade 3. We sought to extend our understanding of this epidemic behavior by the genetic characterization of type emm89 strains responsible in recent years for an increased frequency of infections in Scotland. We sequenced the genomes of a retrospective cohort of 122 emm89 strains recovered from patients with invasive and noninvasive infections throughout Scotland during 2010 to 2016. All but one of the 122 emm89 infection isolates are of the recently emerged epidemic clade 3 clonal lineage. The Scotland isolates are closely related to and not genetically distinct from recent emm89 strains from England, they constitute a single genetic population. The clade 3 clone causes virtually all-contemporary emm89 infections in Scotland. These findings add Scotland to a growing list of countries of Europe and North America where, by whole genome sequencing, emm89 clade 3 strains have been demonstrated to be the cause of an ongoing epidemic of invasive infections and to be genetically related due to descent from a recent common progenitor.
Kaneko, Mei; Takanashi, Sayaka; Thongprachum, Aksara; Hanaoka, Nozomu; Fujimoto, Tsuguto; Nagasawa, Koo; Kimura, Hirokazu; Okitsu, Shoko; Mizuguchi, Masashi; Ushijima, Hiroshi
2017-01-01
Two live attenuated oral rotavirus vaccines, Rotarix and RotaTeq, have been introduced as voluntary vaccination in Japan since 2011 and 2012, respectively. Effectiveness of the vaccines has been confirmed, whereas concerns such as shedding of the vaccine strains and gastroenteritis cases caused by vaccine strains are not well assessed. We aimed to identify the vaccine strains in children with acute gastroenteritis (AGE) to investigate the prevalence of AGE caused by vaccination or horizontal transmission of vaccine strains. A total of 1,824 stool samples were collected from children with AGE at six outpatient clinics in 2012-2015. Among all, 372 group A rotavirus (RVA) positive samples were screened for vaccine components by real-time RT-PCR which were designed to differentiate vaccine strains from rotavirus wild-type strains with high specificity. For samples possessing both vaccine and wild-type strains, analyses by next-generation sequencing (NGS) were conducted to characterize viruses existed in the intestine. As a result, Rotarix-derived strains were identified in 6 of 372 (1.6%) RVA positive samples whereas no RotaTeq strain was detected. Among six samples, four possessed Rotarix-derived strains while two possessed both Rotarix-derived strains and wild-type strains. In addition, other pathogens such as norovirus, enterovirus and E.coli were detected in four samples. The contribution of these vaccine strains to each patient's symptoms was unclear as all of the cases were vaccinated 2-14 days before sample collection. Proportion of average coverage for each segmented gene by NGS strongly suggested the concurrent infection of the vaccine-derived strain and the wild-type strain rather than reassortment of these two strains in one sample. This is the first study to report the prevalence of vaccine-derived strains in patients with RVA AGE in Japan as 1.6% without evidence of horizontal transmission. The results emphasized the importance of continuous monitoring on vaccine strains and their clinical impacts on children.
Kaneko, Mei; Thongprachum, Aksara; Hanaoka, Nozomu; Fujimoto, Tsuguto; Nagasawa, Koo; Kimura, Hirokazu; Okitsu, Shoko; Mizuguchi, Masashi; Ushijima, Hiroshi
2017-01-01
Two live attenuated oral rotavirus vaccines, Rotarix and RotaTeq, have been introduced as voluntary vaccination in Japan since 2011 and 2012, respectively. Effectiveness of the vaccines has been confirmed, whereas concerns such as shedding of the vaccine strains and gastroenteritis cases caused by vaccine strains are not well assessed. We aimed to identify the vaccine strains in children with acute gastroenteritis (AGE) to investigate the prevalence of AGE caused by vaccination or horizontal transmission of vaccine strains. A total of 1,824 stool samples were collected from children with AGE at six outpatient clinics in 2012–2015. Among all, 372 group A rotavirus (RVA) positive samples were screened for vaccine components by real-time RT-PCR which were designed to differentiate vaccine strains from rotavirus wild-type strains with high specificity. For samples possessing both vaccine and wild-type strains, analyses by next-generation sequencing (NGS) were conducted to characterize viruses existed in the intestine. As a result, Rotarix-derived strains were identified in 6 of 372 (1.6%) RVA positive samples whereas no RotaTeq strain was detected. Among six samples, four possessed Rotarix-derived strains while two possessed both Rotarix-derived strains and wild-type strains. In addition, other pathogens such as norovirus, enterovirus and E.coli were detected in four samples. The contribution of these vaccine strains to each patient’s symptoms was unclear as all of the cases were vaccinated 2–14 days before sample collection. Proportion of average coverage for each segmented gene by NGS strongly suggested the concurrent infection of the vaccine-derived strain and the wild-type strain rather than reassortment of these two strains in one sample. This is the first study to report the prevalence of vaccine-derived strains in patients with RVA AGE in Japan as 1.6% without evidence of horizontal transmission. The results emphasized the importance of continuous monitoring on vaccine strains and their clinical impacts on children. PMID:28902863
Herrera, S.; Cabrera, R.; Ramirez, M. M.; Usera, M. A.; Echeita, M. A.
2002-01-01
Shigella flexneri infections are one of the main causes of acute diarrhoea in Cuba. Twenty strains isolated from sporadic cases in nine different Cuban provinces were characterized. Serotyping, antibiotic-resistance typing, plasmid-typing and AFLP-typing were used to determine their suitability for use in epidemiological studies of S. flexneri. The predominant serotypes were serotype 6 (35%) and serotype 2 (35%). Eleven different plasmid profiles were detected (Diversity Index = 0.92). AFLP-typing discriminated 12 different patterns (DI = 0.95), these patterns were not coincident with plasmid-typing patterns. Both techniques combined distinguished 14 patterns among the 20 studied strains (DI = 0.99). There was no consistent relationship between plasmid-typing and AFLP-typing patterns or antibiotic-resistance typing patterns. Ninety-five percent of S. flexneri strains were multiresistant. PMID:12558326
Karbuz, Adem; Karahan, Zeynep Ceren; Aldemir-Kocabaş, Bilge; Tekeli, Alper; Özdemir, Halil; Güriz, Haluk; Gökdemir, Refik; İnce, Erdal; Çiftçi, Ergin
2017-01-01
Karbuz A, Karahan ZC, Aldemir-Kocabaş B, Tekeli A, Özdemir H, Güriz H, Gökdemir R, İnce E, Çiftçi E. Evaluation of antimicrobial susceptibilities and virulence factors of Staphylococcus aureus strains isolated from community-acquired and health-care associated pediatric infections. Turk J Pediatr 2017; 59: 395-403. The aim of this study was to investigate the enterotoxins and Panton-Valentine leukocidin (PVL) gene as virulence factor, identification if antimicrobial sensitivity patterns, agr (accessory gene regulator) types and sequence types and in resistant cases to obtain SCCmec (staphylococcal cassette chromosome mec) gene types which will be helpful to decide empirical therapy and future health politics for S. aureus species. Total of 150 isolates of S. aureus were isolated from the cultures of the child patients in January 2011 and December 2012. In this study, the penicillin resistance was observed as 93.8%. PVL and mecA was detected positive in 8.7% and in 6% of all S. aureus strains, respectively. Two MRSA (methicillin resistant S.aureus) strains were detected as SCCmec type III and SCCmec type V and five MRSA strains were detected as SCCmec type IV. SET-I and SET-G were the most common detected enterotoxins. In both community-associated and healthcare-associated MRSA strains, agr type 1 was detected most commonly. The most common sequence types were ST737 in 13 patients than ST22 in eight patients and ST121 in six patients. This study highlights a necessity to review the cause of small changes in the structural genes in order to determine whether it is a cause or outcome; community-acquired and healthcare associated strains overlap.
Mora, Azucena; Blanco, Miguel; Blanco, Jesús E.; Alonso, M. Pilar; Dhabi, Ghizlane; Thomson-Carter, Fiona; Usera, Miguel A.; Bartolomé, Rosa; Prats, Guillermo; Blanco, Jorge
2004-01-01
Phage typing and DNA macrorestriction fragment analysis by pulsed-field electrophoresis (PFGE) were used for the epidemiological subtyping of a collection of Shiga toxin-producing Escherichia coli (STEC) O157:H7 strains isolated in Spain between 1980 and 1999. Phage typing distinguished a total of 18 phage types among 171 strains isolated from different sources (67 humans, 82 bovines, 12 ovines, and 10 beef products). However, five phage types, phage type 2 (PT2; 42 strains), PT8 (33 strains), PT14 (14 strains), PT21/28 (11 strains), and PT54 (16 strains), accounted for 68% of the study isolates. PT2 and PT8 were the most frequently found among strains from both humans (51%) and bovines (46%). Interestingly, we detected a significant association between PT2 and PT14 and the presence of acute pathologies. A group of 108 of the 171 strains were analyzed by PFGE, and 53 distinct XbaI macrorestriction patterns were identified, with 38 strains exhibiting unique PFGE patterns. In contrast, phage typing identified 15 different phage types. A total of 66 phage type-PFGE subtype combinations were identified among the 108 strains. PFGE subtyping differentiated between unrelated strains that exhibited the same phage type. The most common phage type-PFGE pattern combinations were PT2-PFGE type 1 (1 human and 11 bovine strains), PT8-PFGE type 8 (2 human, 6 bovine, and 1 beef product strains), PT2-PFGE subtype 4A (1 human, 3 bovine, and 1 beef product strains). Nine (29%) of 31 human strains showed phage type-PFGE pattern combinations that were detected among the bovine strains included in this study, and 26 (38%) of 68 bovine strains produced phage type-PFGE pattern combinations observed among human strains included in this study, confirming that cattle are a major reservoir of strains pathogenic for humans. PT2 and PT8 strains formed two groups which differed from each other in their motilities, stx genotypes, PFGE patterns, and the severity of the illnesses that they caused. PMID:15364983
Johnson, Timothy J.; Liu, Cindy M.; Sokurenko, Evgeni; Kisiela, Dagmara I.; Paul, Sandip; Andersen, Paal; Johnson, James R.; Price, Lance B.
2016-01-01
We report here the complete genome sequence, including five plasmid sequences, of Escherichia coli sequence type 131 (ST131) strain JJ1887. The strain was isolated in 2007 in the United States from a patient with recurrent cystitis, whose caregiver sister died from urosepsis caused by a nearly identical strain. PMID:27174264
Semiconductor-to-metal transition in rutile TiO 2 induced by tensile strain
Benson, Eric E.; Miller, Elisa M.; Nanayakkara, Sanjini U.; ...
2017-02-10
Here, we report the first observation of a reversible, degenerate doping of titanium dioxide with strain, which is referred to as a semiconductor-to-metal transition. Application of tensile strain to a ~50 nm film of rutile TiO 2 thermally grown on a superelastic nitinol (NiTi intermetallic) substrate causes reversible degenerate doping as evidenced by electrochemistry, X-ray photoelectron spectroscopy (XPS), and conducting atomic force microscopy (CAFM). Cyclic voltammetry and impedance measurements show behavior characteristic of a highly doped n-type semiconductor for unstrained TiO 2 transitioning to metallic behavior under tensile strain. The transition reverses when strain is removed. Valence band XPS spectramore » show that samples strained to 5% exhibit metallic-like intensity near the Fermi level. Strain also induces a distinct transition in CAFM current-voltage curves from rectifying (typical of an n-type semiconductor) to ohmic (metal-like) behavior. We propose that strain raises the energy distribution of oxygen vacancies ( n-type dopants) near the conduction band and causes an increase in carrier concentration. As the carrier concentration is increased, the width of the depletion region is reduced, which then permits electron tunneling through the space charge barrier resulting in the observed metallic behavior.« less
Sulakvelidze, Alexander; Kekelidze, Merab; Gomelauri, Tsaro; Deng, Yingkang; Khetsuriani, Nino; Kobaidze, Ketino; De Zoysa, Aruni; Efstratiou, Androulla; Morris, J. Glenn; Imnadze, Paata
1999-01-01
Sixty-six Corynebacterium diphtheriae strains (62 of the gravis biotype and 4 of the mitis biotype) isolated during the Georgian diphtheria epidemic of 1993 to 1998 and 13 non-Georgian C. diphtheriae strains (10 Russian and 3 reference isolates) were characterized by (i) biotyping, (ii) toxigenicity testing with the Elek assay and PCR, (iii) the randomly amplified polymorphic DNA (RAPD) technique, and (iv) pulsed-field gel electrophoresis (PFGE). Fifteen selected strains were ribotyped. Six RAPD types and 15 PFGE patterns were identified among all strains examined, and 12 ribotypes were found among the 15 strains that were ribotyped. The Georgian epidemic apparently was caused by one major clonal group of C. diphtheriae (PFGE type A, ribotype R1), which was identical to the predominant epidemic strain(s) isolated during the concurrent diphtheria epidemic in Russia. A dendrogram based on the PFGE patterns revealed profound differences between the minor (nonpredominant) epidemic strains found in Georgia and Russia. The methodologies for RAPD typing, ribotyping, and PFGE typing of C. diphtheriae strains were improved to enable rapid and convenient molecular typing of the strains. The RAPD technique was adequate for biotype differentiation; however, PFGE and ribotyping were better (and equal to each other) at discriminating between epidemiologically related and unrelated isolates. PMID:10488190
Whole genome sequence and comparative analysis of Borrelia burgdorferi MM1
Jabbari, Neda; Reddy, Panga Jaipal; Hood, Leroy
2018-01-01
Lyme disease is caused by spirochaetes of the Borrelia burgdorferi sensu lato genospecies. Complete genome assemblies are available for fewer than ten strains of Borrelia burgdorferi sensu stricto, the primary cause of Lyme disease in North America. MM1 is a sensu stricto strain originally isolated in the midwestern United States. Aside from a small number of genes, the complete genome sequence of this strain has not been reported. Here we present the complete genome sequence of MM1 in relation to other sensu stricto strains and in terms of its Multi Locus Sequence Typing. Our results indicate that MM1 is a new sequence type which contains a conserved main chromosome and 15 plasmids. Our results include the first contiguous 28.5 kb assembly of lp28-8, a linear plasmid carrying the vls antigenic variation system, from a Borrelia burgdorferi sensu stricto strain. PMID:29889842
Posttranslationally caused bioluminescence burst of the Escherichia coli luciferase reporter strain.
Ideguchi, Yamato; Oshikoshi, Yuta; Ryo, Masashi; Motoki, Shogo; Kuwano, Takashi; Tezuka, Takafumi; Aoki, Setsuyuki
2016-01-01
We continuously monitored bioluminescence from a wild-type reporter strain of Escherichia coli (lacp::luc+/WT), which carries the promoter of the lac operon (lacp) fused with the firefly luciferase gene (luc+). This strain showed a bioluminescence burst when shifted into the stationary growth phase. Bioluminescence profiles of other wild-type reporter strains (rpsPp::luc+ and argAp::luc+) and gene-deletion reporter strains (lacp::luc+/crp- and lacp::luc+/lacI-) indicate that transcriptional regulation is not responsible for generation of the burst. Consistently, changes in the luciferase protein levels did not recapitulate the profile of the burst. On the other hand, dissolved oxygen levels increased over the period across the burst, suggesting that the burst is, at least partially, caused by an increase in intracellular oxygen levels. We discuss limits of the firefly luciferase when used as a reporter for gene expression and its potential utility for monitoring metabolic changes in cells.
Ohta, Merime; Toba, Shinsuke; Ito, Akinobu; Nakamura, Rio; Tsuji, Masakatsu
2012-12-01
This study evaluated the in vitro activity of doripenem (DRPM) against 200 Streptococcus pneumoniae and 197 Haemophilus influenzae from children and adults in 2007, 50 H. influenzae type b in 2006, 20 Listeria monocytogenes in 1990-2005, 23 Neisseria meningitidis in 2007-2009 and 83 Bordetella pertussis in 1989-2003. All strains were isolated from Japanese clinical facilities. We also investigated in vitro activity of other carbapenems (meropenem, imipenem, panipenem, biapenem), cephems (ceftriaxone, cefotaxime), ampicillin and clarithromycin. The all MICs were determined by a broth micro dilution method or an agar dilution method according to CLSI. The MIC90(s) of DRPM against S. pneumoniae and H. influenzae from children were 0.25 microg/mL, 1 microg/mL, respectively, which were similar to strains from adults. These results suggested that antibacterial activity of DRPM is not variable by patient's age. DRPM also showed excellent activities against H. influenzae type b, L. monocytogenes and N. meningitidis, which cause purulent meningitis, and B. pertussis causing whooping cough more than the other carbapenems. DRPM showed superior activities against serious strains of pediatric infection diseases.
Vaccines against human papillomavirus infections: protection against cancer, genital warts or both?
Joura, E A; Pils, S
2016-12-01
Since 2006, three vaccines against infections and disease caused by human papillomavirus (HPV) became available in Europe-in 2006 a quadrivalent HPV 6/11/16/18 vaccine, in 2007 a bivalent HPV 16/18 vaccine and in 2015 a nonavalent HPV 6/11/16/18/31/33/45/52/58 vaccine. HPV 16 and 18 are the most oncogenic HPV strains, causing about 70% of cervical and other HPV-related cancers, HPV 6 and 11 cause 85% of all genital warts. The additional types of the polyvalent vaccine account for about 20% of invasive cervical cancer and >35% of pre-cancer. The potential differences between these vaccines caused some debate. All three vaccines give a robust and long-lasting protection against the strains in the various vaccines. The promise of cross-protection against other types (i.e. HPV 31/33/45) and hence a broader cancer protection was not fulfilled because these observations were confounded by the vaccine efficacy against the vaccine types. Furthermore, cross-protection was not consistent over various studies, not durable and not consistently seen in the real world experience. The protection against disease caused by oncogenic HPV strains was not compromised by the protection against low-risk types causing genital warts. The most effective cancer protection to date can be expected by the nonavalent vaccine, data indicate a 97% efficacy against cervical and vulvovaginal pre-cancer caused by these nine HPV types. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Anderson, G W; Leary, S E; Williamson, E D; Titball, R W; Welkos, S L; Worsham, P L; Friedlander, A M
1996-11-01
The purified recombinant V antigen from Yersinia pestis, expressed in Escherichia coli and adsorbed to aluminum hydroxide, an adjuvant approved for human use, was used to immunize outbred Hsd:ND4 mice subcutaneously. Immunization protected mice from lethal bubonic and pneumonic plague caused by CO92, a wild-type F1+ strain, or by the isogenic F1- strain C12. This work demonstrates that a subunit plague vaccine formulated for human use provides significant protection against bubonic plague caused by an F1- strain (C12) or against substantial aerosol challenges from either F1+ (CO92) or F1-(C12) Y. pestis.
Chang, Bin; Morita, Masatomo; Lee, Ken-Ichi; Ohnishi, Makoto
2018-05-01
Streptococcus pneumoniae colonizes the nasopharyngeal mucus in healthy individuals and can cause otitis media, pneumonia, and invasive pneumococcal diseases. In this study, we analyzed S. pneumoniae strains that caused 19 pneumonia episodes in long-term inpatients with severe underlying disease in a hospital during a period of 14 months (from January 2014 to February 2015). Serotyping and whole-genome sequencing analyses revealed that 18 of the 19 pneumonia cases were caused by S. pneumoniae strains belonging to 3 genetically distinct groups: clonal complex 9999 (CC9999), sequence type 282 (ST282), and ST166. The CC9999 and ST282 strains appeared to have emerged separately by a capsule switch from the pandemic PMEN 1 strain (Spain 23F -ST81). After all the long-term inpatients were inoculated with the 23-valent pneumococcal polysaccharide vaccine, no other nosocomial pneumonia infections occurred until March 2016. Copyright © 2018 American Society for Microbiology.
Trantas, Emmanouil A.; Licciardello, Grazia; Almeida, Nalvo F.; Witek, Kamil; Strano, Cinzia P.; Duxbury, Zane; Ververidis, Filippos; Goumas, Dimitrios E.; Jones, Jonathan D. G.; Guttman, David S.; Catara, Vittoria; Sarris, Panagiotis F.
2015-01-01
The non-fluorescent pseudomonads, Pseudomonas corrugata (Pcor) and P. mediterranea (Pmed), are closely related species that cause pith necrosis, a disease of tomato that causes severe crop losses. However, they also show strong antagonistic effects against economically important pathogens, demonstrating their potential for utilization as biological control agents. In addition, their metabolic versatility makes them attractive for the production of commercial biomolecules and bioremediation. An extensive comparative genomics study is required to dissect the mechanisms that Pcor and Pmed employ to cause disease, prevent disease caused by other pathogens, and to mine their genomes for genes that encode proteins involved in commercially important chemical pathways. Here, we present the draft genomes of nine Pcor and Pmed strains from different geographical locations. This analysis covered significant genetic heterogeneity and allowed in-depth genomic comparison. All examined strains were able to trigger symptoms in tomato plants but not all induced a hypersensitive-like response in Nicotiana benthamiana. Genome-mining revealed the absence of type III secretion system and known type III effector-encoding genes from all examined Pcor and Pmed strains. The lack of a type III secretion system appears to be unique among the plant pathogenic pseudomonads. Several gene clusters coding for type VI secretion system were detected in all genomes. Genome-mining also revealed the presence of gene clusters for biosynthesis of siderophores, polyketides, non-ribosomal peptides, and hydrogen cyanide. A highly conserved quorum sensing system was detected in all strains, although species specific differences were observed. Our study provides the basis for in-depth investigations regarding the molecular mechanisms underlying virulence strategies in the battle between plants and microbes. PMID:26300874
Beye, Mamadou; Hasni, Issam; Seng, Piseth; Michelle, Caroline; La Scola, Bernard; Raoult, Didier; Fournier, Pierre-Edouard
2018-06-21
We sequenced the genome of Raoultella ornithinolytica strain Marseille-P1025 that caused a rare case of prosthetic joint infection in a 67-year-old immunocompetent male. The 6.7-Mb genome exhibited a genomic island (RoGI) that was unique among R. ornithinolytica strains. RoGI was likely acquired by lateral gene transfer from a member of the Pectobacterium genus and coded for a type IVa secretion system found in other pathogenic bacteria and that may have conferred strain Marseille-P1025 an increased virulence. Strain Marseille-P1025 was also able to infect, multiply within, and kill Acanthamoaeba castellanii amoebae.
Skyberg, Jerod A; Rollins, Maryclare F; Samuel, Joshua W; Sutherland, Marjorie D; Belisle, John T; Pascual, David W
2013-09-01
Francisella tularensis is a highly infectious intracellular bacterium that causes the zoonotic infection tularemia. While much literature exists on the host response to F. tularensis infection, the vast majority of work has been conducted using attenuated strains of Francisella that do not cause disease in humans. However, emerging data indicate that the protective immune response against attenuated F. tularensis versus F. tularensis type A differs. Several groups have recently reported that interleukin-17 (IL-17) confers protection against the live vaccine strain (LVS) of Francisella. While we too have found that IL-17Rα(-/-) mice are more susceptible to F. tularensis LVS infection, our studies, using a virulent type A strain of F. tularensis (SchuS4), indicate that IL-17Rα(-/-) mice display organ burdens and pulmonary gamma interferon (IFN-γ) responses similar to those of wild-type mice following infection. In addition, oral LVS vaccination conferred equivalent protection against pulmonary challenge with SchuS4 in both IL-17Rα(-/-) and wild-type mice. While IFN-γ was found to be critically important for survival in a convalescent model of SchuS4 infection, IL-17 neutralization from either wild-type or IFN-γ(-/-) mice had no effect on morbidity or mortality in this model. IL-17 protein levels were also higher in the lungs of mice infected with the LVS rather than F. tularensis type A, while IL-23p19 mRNA expression was found to be caspase-1 dependent in macrophages infected with LVS but not SchuS4. Collectively, these results demonstrate that IL-17 is dispensable for host immunity to type A F. tularensis infection, and that induced and protective immunity differs between attenuated and virulent strains of F. tularensis.
Desjardins, A. E.; Brown, D. W.; Yun, S.-H.; Proctor, R. H.; Lee, T.; Plattner, R. D.; Lu, S.-W.; Turgeon, B. G.
2004-01-01
Gibberella zeae, a self-fertile, haploid filamentous ascomycete, causes serious epidemics of wheat (Triticum aestivum) head blight worldwide and contaminates grain with trichothecene mycotoxins. Anecdotal evidence dating back to the late 19th century indicates that G. zeae ascospores (sexual spores) are a more important inoculum source than are macroconidia (asexual spores), although the fungus can produce both during wheat head blight epidemics. To develop fungal strains to test this hypothesis, the entire mating type (MAT1) locus was deleted from a self-fertile (MAT1-1/MAT1-2), virulent, trichothecene-producing wild-type strain of G. zeae. The resulting MAT deletion (mat1-1/mat1-2) strains were unable to produce perithecia or ascospores and appeared to be unable to mate with the fertile strain from which they were derived. Complementation of a MAT deletion strain by transformation with a copy of the entire MAT locus resulted in recovery of production of perithecia and ascospores. MAT deletion strains and MAT-complemented strains retained the ability to produce macroconidia that could cause head blight, as assessed by direct injection into wheat heads in greenhouse tests. Availability of MAT-null and MAT-complemented strains provides a means to determine the importance of ascospores in the biology of G. zeae and perhaps to identify novel approaches to control wheat head blight. PMID:15066842
Okuno, Rumi; Endoh, Miyoko; Shimojima, Yukako; Yanagawa, Yoshitoki; Morozumi, Satoshi; Igarashi, Hideo; Ooe, Kenji
2004-01-01
To investigate clinical and microbiological features of streptococcal toxic shock syndrome (STSS), clinical, epidemiological, and bacteriological data obtained from 250 patients between 1992 and 2001 were analyzed. Among these 250 cases, 16 cases were excluded from the study because the causative microorganism were not Streptococcus pyogenes. 234 strains of S. pyogenes obtained from the aforementioned 234 cases were tested for T-type by a serological method, and for streptococcal pyrogenic exotoxin (SPE) by in vitro productivity of the toxin as well as molecular genetic methods. The number of patients was 141 (56.4%) for males, and 107 (42.8%) for females. The highest frequency of STSS was observed in those patients in their sixties in both sexes. The overall mortality rate was 43.2%. The mortality rate for male was 36.9%, and 52.3% for female. Bacteriological studies revealed that most common T types were T1 and T3. These strains consisted 54.3% of the strains collected. Among strains of T1 type, 98.8% possessed genes of spe A, and 46.1% were shown to produce SPE A in vitro. Among strains of T3 type, 82.9% possessed spe A gene, and all of these strains were shown to produce the toxin in vitro. It is concluded that certain strains of S. pyogenes, such as those with T1, or T3 type, and those with spe A gene or in vitro production of SPE A, are the most frequent cause of STSS. Although infections caused by such bacteria are quite common, STSS rarely occurs in most such patients. Additional factors, such as host factors, may play a crucial role in the pathogenesis of STSS.
Community-acquired methicillin-resistant Staphylococcus aureus can persist in the throat.
Hamdan-Partida, Aida; González-García, Samuel; de la Rosa García, Estela; Bustos-Martínez, Jaime
2018-06-01
Colonization by Staphylococcus aureus is an important factor in infections caused by this microorganism. Among the colonization niches of staphylococci are the nose, skin, intestinal tract, and, recently, the throat has been given relevance. Infections caused by community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) can be fatal. Persistence of S. aureus is an important process in the pathogenesis of this microorganism and must be studied. The aim of this study was to determine the persistence of S. aureus in the throat, and characterized the strains. We studied the persistence of S. aureus for 6 years in the throat of apparently healthy people. The isolated strains from the persistent carriers were characterized through PFGE, spa-typing, SCCmec typing, resistance to methicillin, presence of virulence genes (adhesins and toxins), and the formation of biofilm. We found persistent and intermittent carriers of S. aureus in the throat, with methicillin-sensitive (MSSA), methicillin-resistant (MRSA) strains, and confirmed for the first time that CA-MRSA colonizes this niche. These strains can colonize persistently the throat for four years or more. Typification of strains through PFGE and spa-typing revealed that some carriers present the same strain, whereas others present different strains along the period of persistence. Almost all strains induced a strong biofilm formation. All strains presented adhesin and toxin genes, but no shared genotype was found. We conclude that S. aureus, including CA-MRSA strains, can remain persistently in the throat, finding a wide variability among the persistent strains. Copyright © 2018 Elsevier GmbH. All rights reserved.
USDA-ARS?s Scientific Manuscript database
We describe using major outer membrane protein (MOMP) typing as a screen to compare the C. jejuni porA gene sequences of clinical outbreak strains from human stool with the porA sequences of dairy farm strains isolated during two milkborne campylobacteriosis outbreak investigations in California. Th...
Characterization of non-typable strains of Staphylococcus aureus from cases of hospital infection.
Vindel, A.; Martín-Bourgon, C.; Saez-Nieto, J. A.
1987-01-01
A high percentage of non-typable (NT) Staphylococcus aureus strains was isolated in Spanish hospitals during 1984 and 1985. Several alternative methods of typing were employed to study these isolates. These were: phage-typing at 1000 X RTD, phage-typing after heat-treatment (48 degrees C), thermal shock (56 degrees C), reverse-typing and induction of additional phages. Using these methods the number of NT isolates was reduced by 60%. Best results were obtained with heat-treatment. Additional phages and reverse-typing were also useful. A scheme for the study of outbreaks and sporadic cases caused by NT strains is proposed using the methods described. PMID:3609172
First Case of Infant Botulism Caused by Clostridium baratii Type F in California
Barash, Jason R.; Tang, Tania W. H.; Arnon, Stephen S.
2005-01-01
In late 2003 a severely hypotonic neonate, just 38 h old at onset of illness, was found to have infant botulism caused by neurotoxigenic Clostridium baratii type F. Environmental investigations failed to identify a source of this strain. This is the youngest patient reported to have infant botulism and the fifth instance of infant botulism caused by C. baratii type F. PMID:16082001
Streptococcus mutans clonal variation revealed by multilocus sequence typing.
Nakano, Kazuhiko; Lapirattanakul, Jinthana; Nomura, Ryota; Nemoto, Hirotoshi; Alaluusua, Satu; Grönroos, Lisa; Vaara, Martti; Hamada, Shigeyuki; Ooshima, Takashi; Nakagawa, Ichiro
2007-08-01
Streptococcus mutans is the major pathogen of dental caries, a biofilm-dependent infectious disease, and occasionally causes infective endocarditis. S. mutans strains have been classified into four serotypes (c, e, f, and k). However, little is known about the S. mutans population, including the clonal relationships among strains of S. mutans, in relation to the particular clones that cause systemic diseases. To address this issue, we have developed a multilocus sequence typing (MLST) scheme for S. mutans. Eight housekeeping gene fragments were sequenced from each of 102 S. mutans isolates collected from the four serotypes in Japan and Finland. Between 14 and 23 alleles per locus were identified, allowing us theoretically to distinguish more than 1.2 x 10(10) sequence types. We identified 92 sequence types in these 102 isolates, indicating that S. mutans contains a diverse population. Whereas serotype c strains were widely distributed in the dendrogram, serotype e, f, and k strains were differentiated into clonal complexes. Therefore, we conclude that the ancestral strain of S. mutans was serotype c. No geographic specificity was identified. However, the distribution of the collagen-binding protein gene (cnm) and direct evidence of mother-to-child transmission were clearly evident. In conclusion, the superior discriminatory capacity of this MLST scheme for S. mutans may have important practical implications.
Vlajinac, H; Adanja, B
1982-09-01
Group and type differentiation by Griffith' method of agglutination was performed on 7514 haemolytic streptococcal strains isolated from patients with acute streptococcal infections. Thirteen different groups were found--the most frequent were groups A (63.0%), B (12.5%), C (8.1%) and G(2.5%). The group A was predominant among strains isolated from upper respiratory tract, but in later years the frequency of group A strains among streptococci causing respiratory infections was significantly lower. In every year of the study period the most prevalent group A types were T1, T2, T4, T12 and T28--only their relative distribution was changing in the course of time.
Sekizuka, Tsuyoshi; Nai, Emina; Yoshida, Tomohiro; Endo, Shota; Hamajima, Emi; Akiyama, Satoka; Ikuta, Yoji; Obana, Natsuko; Kawaguchi, Takahiro; Hayashi, Kenta; Noda, Masahiro; Sumita, Tomoko; Kokaji, Masayuki; Katori, Tatsuo; Hashino, Masanori; Oba, Kunihiro; Kuroda, Makoto
2017-12-18
Streptococcus pyogenes (group A Streptococcus [GAS]) is a major human pathogen that causes a wide spectrum of clinical manifestations. Although invasive GAS (iGAS) infections are relatively uncommon, emm3/ST15 GAS is a highly virulent, invasive, and pathogenic strain. Global molecular epidemiology analysis has suggested that the frequency of emm3 GAS has been recently increasing. A 14-year-old patient was diagnosed with streptococcal toxic shock syndrome and severe pneumonia, impaired renal function, and rhabdomyolysis. GAS was isolated from a culture of endotracheal aspirates and designated as KS030. Comparative genome analysis suggested that KS030 is classified as emm3 (emm-type) and ST15 (multilocus sequencing typing [MLST]), which is similar to iGAS isolates identified in the UK (2013) and Switzerland (2015). We conclude that the global dissemination of emm3/ST15 GAS strain has the potential to cause invasive disease.
Sun, Mingjun; Jing, Zhigang; Di, Dongdong; Yan, Hao; Zhang, Zhicheng; Xu, Quangang; Zhang, Xiyue; Wang, Xun; Ni, Bo; Sun, Xiangxiang; Yan, Chengxu; Yang, Zhen; Tian, Lili; Li, Jinping; Fan, Weixing
2017-01-01
Brucellosis is a worldwide zoonotic disease caused by Brucella spp. In China, brucellosis is recognized as a reemerging disease mainly caused by Brucella melitensis specie. To better understand the currently endemic B. melitensis strains in China, three Brucella genotyping methods were applied to 110 B. melitensis strains obtained in past several years. By MLVA genotyping, five MLVA-8 genotypes were identified, among which genotypes 42 (1-5-3-13-2-2-3-2) was recognized as the predominant genotype, while genotype 63 (1-5-3-13-2-3-3-2) and a novel genotype of 1-5-3-13-2-4-3-2 were second frequently observed. MLVA-16 discerned a total of 57 MLVA-16 genotypes among these Brucella strains, with 41 genotypes being firstly detected and the other 16 genotypes being previously reported. By BruMLSA21 typing, six sequence types (STs) were identified, among them ST8 is the most frequently seen in China while the other five STs were firstly detected and designated as ST137, ST138, ST139, ST140, and ST141 by international multilocus sequence typing database. Whole-genome sequence (WGS)-single-nucleotide polymorphism (SNP)-based typing and phylogenetic analysis resolved Chinese B. melitensis strains into five clusters, reflecting the existence of multiple lineages among these Chinese B. melitensis strains. In phylogeny, Chinese lineages are more closely related to strains collected from East Mediterranean and Middle East countries, such as Turkey, Kuwait, and Iraq. In the next few years, MLVA typing will certainly remain an important epidemiological tool for Brucella infection analysis, as it displays a high discriminatory ability and achieves result largely in agreement with WGS-SNP-based typing. However, WGS-SNP-based typing is found to be the most powerful and reliable method in discerning Brucella strains and will be popular used in the future.
Peckham, Gabriel D; Kaneshiro, Wendy S; Luu, Van; Berestecky, John M; Alvarez, Anne M
2010-10-01
During a severe outbreak of bacterial heart rot that occurred in pineapple plantations on Oahu, Hawaii, in 2003 and years following, 43 bacterial strains were isolated from diseased plants or irrigation water and identified as Erwinia chrysanthemi (now Dickeya sp.) by phenotypic, molecular, and pathogenicity assays. Rep-PCR fingerprint patterns grouped strains from pineapple plants and irrigation water into five genotypes (A-E) that differed from representatives of other Dickeya species, Pectobacterium carotovorum and other enteric saprophytes isolated from pineapple. Monoclonal antibodies produced following immunization of mice with virulent type C Dickeya sp. showed only two specificities. MAb Pine-1 (2D11G1, IgG1 with kappa light chain) reacted to all 43 pineapple/water strains and some reference strains (D. dianthicola, D. chrysanthemi, D. paradisiaca, some D. dadantii, and uncharacterized Dickeya sp.) but did not react to reference strains of D. dieffenbachiae, D. zeae, or one of the two Malaysian pineapple strains. MAb Pine-2 (2A7F2, IgG3 with kappa light chain) reacted to all type B, C, and D strains but not to any A or E strains or any reference strains except Dickeya sp. isolated from Malaysian pineapple. Pathogenicity tests showed that type C strains were more aggressive than type A strains when inoculated during cool months. Therefore, MAb Pine-2 distinguishes the more virulent type C strains from less virulent type A pineapple strains and type E water strains. MAbs with these two specificities enable development of rapid diagnostic tests that will distinguish the systemic heart rot pathogen from opportunistic bacteria associated with rotted tissues. Use of the two MAbs in field assays also permits the monitoring of a known subpopulation and provides additional decision tools for disease containment and management practices.
Investigation of a Possible Link Between Vaccination and the 2010 Sheep Pox Epizootic in Morocco.
Haegeman, A; Zro, K; Sammin, D; Vandenbussche, F; Ennaji, M M; De Clercq, K
2016-12-01
Sheep pox is endemic in most parts of Northern Africa and has the potential to cause severe economic problems. Live attenuated vaccines are used in Morocco, and in many other countries, to control the disease. Sheep pox virus (SPPV) re-appeared in 2010 causing a nodular clinical form previously not observed in Morocco. The severe clinical signs observed during the course of this outbreak and initial reports citing similarity in nucleotide sequence between the Moroccan vaccine strain and field isolates warranted a more in depth analysis of this epizootic. In this study, sequence analysis showed that isolates obtained from four provinces of eastern Morocco were identical, demonstrating that a single SPPV strain was responsible for the 2010 epizootic. In addition, the genome fragments sequenced and phylogenetic analyses undertaken as part of this study showed significant differences between field isolates and the Moroccan vaccine strain. New PCR methods were developed to differentiate between wild-type isolates and vaccine strains of SPPV. Using these methods, no trace of wild-type SPPV was found in the vaccine and no evidence was found to suggest that the vaccine strain was causing clinical disease. © 2015 Blackwell Verlag GmbH.
Haendiges, Julie; Jones, Jessica; Myers, Robert A.; Mitchell, Clifford S.; Butler, Erin
2016-01-01
ABSTRACT In the summer of 2010, Vibrio parahaemolyticus caused an outbreak in Maryland linked to the consumption of oysters. Strains isolated from both stool and oyster samples were indistinguishable by pulsed-field gel electrophoresis (PFGE). However, the oysters contained other potentially pathogenic V. parahaemolyticus strains exhibiting different PFGE patterns. In order to assess the identity, genetic makeup, relatedness, and potential pathogenicity of the V. parahaemolyticus strains, we sequenced 11 such strains (2 clinical strains and 9 oyster strains). We analyzed these genomes by in silico multilocus sequence typing (MLST) and determined their phylogeny using a whole-genome MLST (wgMLST) analysis. Our in silico MLST analysis identified six different sequence types (STs) (ST8, ST676, ST810, ST811, ST34, and ST768), with both of the clinical and four of the oyster strains being identified as belonging to ST8. Using wgMLST, we showed that the ST8 strains from clinical and oyster samples were nearly indistinguishable and belonged to the same outbreak, confirming that local oysters were the source of the infections. The remaining oyster strains were genetically diverse, differing in >3,000 loci from the Maryland ST8 strains. eBURST analysis comparing these strains with strains of other STs available at the V. parahaemolyticus MLST website showed that the Maryland ST8 strains belonged to a clonal complex endemic to Asia. This indicates that the ST8 isolates from clinical and oyster sources were likely not endemic to Maryland. Finally, this study demonstrates the utility of whole-genome sequencing (WGS) and associated analyses for source-tracking investigations. IMPORTANCE Vibrio parahaemolyticus is an important foodborne pathogen and the leading cause of bacterial infections in the United States associated with the consumption of seafood. In the summer of 2010, Vibrio parahaemolyticus caused an outbreak in Maryland linked to oyster consumption. Strains isolated from stool and oyster samples were indistinguishable by pulsed-field gel electrophoresis (PFGE). The oysters also contained other potentially pathogenic V. parahaemolyticus strains with different PFGE patterns. Since their identity, genetic makeup, relatedness, and potential pathogenicity were unknown, their genomes were determined by using next-generation sequencing. Whole-genome sequencing (WGS) analysis by whole-genome multilocus sequence typing (wgMLST) allowed (i) identification of clinical and oyster strains with matching PFGE profiles as belonging to ST8, (ii) determination of oyster strain diversity, and (iii) identification of the clinical strains as belonging to a clonal complex (CC) described only in Asia. Finally, WGS and associated analyses demonstrated their utility for trace-back investigations. PMID:26994080
Haendiges, Julie; Jones, Jessica; Myers, Robert A; Mitchell, Clifford S; Butler, Erin; Toro, Magaly; Gonzalez-Escalona, Narjol
2016-06-01
In the summer of 2010, Vibrio parahaemolyticus caused an outbreak in Maryland linked to the consumption of oysters. Strains isolated from both stool and oyster samples were indistinguishable by pulsed-field gel electrophoresis (PFGE). However, the oysters contained other potentially pathogenic V. parahaemolyticus strains exhibiting different PFGE patterns. In order to assess the identity, genetic makeup, relatedness, and potential pathogenicity of the V. parahaemolyticus strains, we sequenced 11 such strains (2 clinical strains and 9 oyster strains). We analyzed these genomes by in silico multilocus sequence typing (MLST) and determined their phylogeny using a whole-genome MLST (wgMLST) analysis. Our in silico MLST analysis identified six different sequence types (STs) (ST8, ST676, ST810, ST811, ST34, and ST768), with both of the clinical and four of the oyster strains being identified as belonging to ST8. Using wgMLST, we showed that the ST8 strains from clinical and oyster samples were nearly indistinguishable and belonged to the same outbreak, confirming that local oysters were the source of the infections. The remaining oyster strains were genetically diverse, differing in >3,000 loci from the Maryland ST8 strains. eBURST analysis comparing these strains with strains of other STs available at the V. parahaemolyticus MLST website showed that the Maryland ST8 strains belonged to a clonal complex endemic to Asia. This indicates that the ST8 isolates from clinical and oyster sources were likely not endemic to Maryland. Finally, this study demonstrates the utility of whole-genome sequencing (WGS) and associated analyses for source-tracking investigations. Vibrio parahaemolyticus is an important foodborne pathogen and the leading cause of bacterial infections in the United States associated with the consumption of seafood. In the summer of 2010, Vibrio parahaemolyticus caused an outbreak in Maryland linked to oyster consumption. Strains isolated from stool and oyster samples were indistinguishable by pulsed-field gel electrophoresis (PFGE). The oysters also contained other potentially pathogenic V. parahaemolyticus strains with different PFGE patterns. Since their identity, genetic makeup, relatedness, and potential pathogenicity were unknown, their genomes were determined by using next-generation sequencing. Whole-genome sequencing (WGS) analysis by whole-genome multilocus sequence typing (wgMLST) allowed (i) identification of clinical and oyster strains with matching PFGE profiles as belonging to ST8, (ii) determination of oyster strain diversity, and (iii) identification of the clinical strains as belonging to a clonal complex (CC) described only in Asia. Finally, WGS and associated analyses demonstrated their utility for trace-back investigations. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Giraud, T; Jonot, O; Shykoff, J A
2006-05-01
Microbotryum violaceum is a fungus that causes the sterilizing anther smut disease in Caryophyllaceae. Its diploid teliospores normally produce equal proportions of haploid sporidia of its two mating types. However natural populations contain high frequencies of individuals producing sporidia of only one mating type ('biased strains'). This mating type-ratio bias is caused by deleterious alleles at haploid phase ('haplo-lethals') linked to the mating type locus that can be transmitted only by intra-tetrad selfing. We used experimental inoculations to test some of the hypotheses proposed to explain the maintenance of haplo-lethals. We found a disadvantage of biased strains in infection ability and high intra-tetrad mating rates. Biased strains had no higher competitive ability nor shorter latency and their higher spore production per flower appeared insufficient to compensate their disadvantages. These findings were only consistent with the hypothesis that haplo-lethals are maintained under a metapopulation structure because of high intra-tetrad selfing rates, founder effects and selection at the population level.
Toyo-Oka, L; Mahasirimongkol, S; Yanai, H; Mushiroda, T; Wattanapokayakit, S; Wichukchinda, N; Yamada, N; Smittipat, N; Juthayothin, T; Palittapongarnpim, P; Nedsuwan, S; Kantipong, P; Takahashi, A; Kubo, M; Sawanpanyalert, P; Tokunaga, K
2017-09-01
Tuberculosis (TB) occurs as a result of complex interactions between the host immune system and pathogen virulence factors. Human leukocyte antigen (HLA) class II molecules play an important role in the host immune system. However, no study has assessed the association between HLA class II genes and susceptibility to TB caused by specific strains. This study investigated the possible association of HLA class II genes with TB caused by modern and ancient Mycobacterium tuberculosis (MTB). The study included 682 patients with TB and 836 control subjects who were typed for HLA-DRB1 and HLA-DQB1 alleles. MTB strains were classified using a large sequence polymorphism typing method. Association analysis was performed using common HLA alleles and haplotypes in different MTB strains. HLA association analysis of patients infected with modern MTB strains showed significant association for HLA-DRB1*09:01 (odds ratio [OR] = 1.82; P-value = 9.88 × 10 -4 ) and HLA-DQB1*03:03 alleles (OR = 1.76; P-value = 1.31 × 10 -3 ) with susceptibility to TB. Haplotype analysis confirmed that these alleles were in strong linkage disequilibrium and did not exert an interactive effect. Thus, the results of this study showed an association between HLA class II genes and susceptibility to TB caused by modern MTB strains, suggesting the importance of strain-specific analysis to determine susceptibility genes associated with TB. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Tao, Zexin; Yuan, Qun; Lin, Xiaojuan; Wang, Suting; Liu, Yao; Ji, Feng; Xiong, Ping; Cui, Ning; Song, Lizhi; Wang, Mei; Xu, Aiqiang
2014-10-09
The last case of infection with wild-type poliovirus indigenous to China was reported in 1994. In 2011, a poliomyelitis outbreak caused by imported wide-type poliovirus occurred in Xinjiang Uighur Autonomous Region. Here, we report the results of enterovirus (EV) isolation from Xinjiang students that returned to school in Shandong after summer vacation during this outbreak. Stool specimens from 376 students were collected and 10 EV strains were isolated including 4 polioviruses (All Sabin strains), 1 coxsackievirus (CV) A13, 3 CVA17 and 2 EV-C99. VP1 sequence analysis revealed these CVA13, CVA17 and EV-C99 strains had 71.3-81.8%, 76.5-84.6% and 74.2-82.9% nucleotide similarity with strains from other countries within a serotype, respectively. EV-C99 strains had 82.7-92.8% VP1 similarity with two previously reported Xinjiang strains. Complete genome analysis on EV-C99 strains revealed intra-serotypic genetic recombination events. These findings reflect great genetic divergence between Chinese strains and strains from other countries of the three types, and provide valuable information on monitoring EV transmission over long distance.
Infection of hamsters with historical and epidemic BI types of Clostridium difficile.
Razaq, Nadia; Sambol, Susan; Nagaro, Kristin; Zukowski, Walter; Cheknis, Adam; Johnson, Stuart; Gerding, Dale N
2007-12-15
North American and European hospitals have reported outbreaks of Clostridium difficile-associated disease with unexpectedly high mortality caused by a newly recognized group of C. difficile strains, group BI. Our objective was to compare, in hamsters, the virulence of a historical nonepidemic BI type, BI1, with that of 2 recent epidemic BI types, BI6 and BI17, and with that of 2 standard toxigenic strains, K14 and 630. For each strain, 10 hamsters were given 1 dose of clindamycin, followed 5 days later with 100 C. difficile spores administered by gastric inoculation. Outcomes were recorded. The hamster model demonstrated variations in mean times from inoculation to death (for BI6, 40 h; for BI1, 48 h; for K14, 49 h; for BI17, 69 h; for 630, 102 h; for BI6, BI1, and K14 vs. 630, P< .01; for BI17 vs. 630, P< .05) and from colonization to death (for BI1, 7 h; for BI17, 13 h; for BI6, 16 h; for K14, 17 h; for 630, 52 h; for BI1, BI17, BI6, and K14 vs. 630, P< .01). Group BI strains were not more rapidly fatal than the standard toxinotype 0 strain K14 but were more rapidly fatal than the standard toxinotype 0 strain 630. BI6, the most common BI type in our collection, was particularly virulent in hamsters, consistently causing death within 48 h of inoculation.
Rouxel, Ronan Nicolas; Svitek, Nicholas; von Messling, Veronika
2009-08-06
CDV infects a broad range of carnivores, and over the past decades it has caused outbreaks in a variety of wild carnivore populations. Since the currently available live-attenuated vaccine is not sufficiently safe in these highly susceptible species, we produced a chimeric virus combining the replication complex of the measles Moraten vaccine strain with the envelope of a recent CDV wild type isolate. The resulting virus did not cause disease or immunosuppression in ferrets and conferred protection from challenge with a lethal wild type strain, demonstrating its potential value for wildlife conservation efforts.
Virulence characteristics of Escherichia coli in nosocomial urinary tract infection.
Ikäheimo, R; Siitonen, A; Kärkkäinen, U; Mäkelä, P H
1993-06-01
We examined 148 strains of Escherichia coli isolated from the urine from patients with nosocomial urinary tract infection (UTI). The prevalence of P fimbriation was only 11.5%. Of the strains, 17.6% expressed non-P M(R) adhesins (defined as strains expressing mannose-resistant but not P-specific hemagglutination); 33.1% produced hemolysin, and 15.2% expressed type 1C fimbriae. O6 was the most common group of O antigens (12.2%), closely followed by O75 (9.5%); both of these groups are relatively uncommon (4.5% and 1%, respectively) in fecal strains isolated from healthy adults. Of the strains with O6 and O75 antigens, 78.8% and 79% produced hemolysin, but of all other strains causing UTI, only 21% produced hemolysin. Of the strains with O6 antigens, 61% expressed non-P M(R) adhesins, but only 12% of all other strains causing UTI expressed non-P M(R) adhesins. There were no significant differences in the prevalence of virulence properties between strains isolated from patients with or without an underlying medical illness or between strains causing different clinical categories of UTI. We conclude that the prevalence of bacterial virulence factors is low among patients with nosocomial UTI.
Hernandez, Daniel; Purcell, Maureen K.; Friedman, Carolyn S.; Kurath, Gael
2016-01-01
This study examined the susceptibility of Chinook salmon Oncorhynchus tshawytscha to viral strains from the L, U, and M genogroups of infectious hematopoietic necrosis virus (IHNV) present in western North America. The goal of this investigation was to establish a baseline understanding of the susceptibility of ocean- and stream-type Chinook salmon to infection and mortality caused by exposure to commonly detected strains of L, U, and M IHNV. The L IHNV strain tested here was highly infectious and virulent in both Chinook salmon populations, following patterns previously reported for Chinook salmon. Furthermore, ocean- and stream-type Chinook salmon fry at 1 g can also become subclinically infected with U and M strains of IHNV without experiencing significant mortality. The stream-type life history phenotype was generally more susceptible to infection and suffered greater mortality than the ocean-type phenotype. Between the U and M genogroup strains tested, the U group strains were generally more infectious than the M group strains in both Chinook salmon types. Substantial viral clearance occurred by 30 d post exposure, but persistent viral infection was observed with L, U, and M strains in both host populations. While mortality decreased with increased host size in stream-type Chinook salmon, infection prevalence was not lower for all strains at a greater size. These results suggest that Chinook salmon may serve as reservoirs and/or vectors of U and M genogroup IHNV.
Hernandez, Daniel G; Purcell, Maureen K; Friedman, Carolyn S; Kurath, Gael
2016-08-31
This study examined the susceptibility of Chinook salmon Oncorhynchus tshawytscha to viral strains from the L, U, and M genogroups of infectious hematopoietic necrosis virus (IHNV) present in western North America. The goal of this investigation was to establish a baseline understanding of the susceptibility of ocean- and stream-type Chinook salmon to infection and mortality caused by exposure to commonly detected strains of L, U, and M IHNV. The L IHNV strain tested here was highly infectious and virulent in both Chinook salmon populations, following patterns previously reported for Chinook salmon. Furthermore, ocean- and stream-type Chinook salmon fry at 1 g can also become subclinically infected with U and M strains of IHNV without experiencing significant mortality. The stream-type life history phenotype was generally more susceptible to infection and suffered greater mortality than the ocean-type phenotype. Between the U and M genogroup strains tested, the U group strains were generally more infectious than the M group strains in both Chinook salmon types. Substantial viral clearance occurred by 30 d post exposure, but persistent viral infection was observed with L, U, and M strains in both host populations. While mortality decreased with increased host size in stream-type Chinook salmon, infection prevalence was not lower for all strains at a greater size. These results suggest that Chinook salmon may serve as reservoirs and/or vectors of U and M genogroup IHNV.
Miot-Sertier, C; Lonvaud-Funel, A
2007-02-01
In recent years, Brettanomyces/Dekkera bruxellensis has caused increasingly severe quality problems in the wine industry. A typing method at the strain level is needed for a better knowledge of the dispersion and the dynamics of these yeasts from grape to wine. Three molecular tools, namely random-amplified polymorphic DNA, PCR fingerprinting with microsatellite oligonucleotide primers and SAU-PCR, were explored for their relevance to typing strains of Brettanomyces bruxellensis. The results indicated that discrimination of each individual strain was not possible with a single PCR typing technique. We described a typing method for B. bruxellensis based on restriction enzyme analysis and pulse field gel electrophoresis (REA-PFGE). Results showed that electrophoretic profiles were reproducible and specific for each strain under study. Consequently, REA-PFGE should be considered for the discrimination of B. bruxellensis strains. This technique allowed a fine discrimination of B. bruxellensis, as strains were identified by a particular profile. This study constitutes a prerequisite for accurate and appropriate investigations on the diversity of strains throughout the winemaking and ageing process. Such studies will probably give clearer and more up-to-date information on the origin of the presence of Brettanomyces in wine after vinification when they are latent spoilage agents.
Mustapha, Mustapha M; Marsh, Jane W; Harrison, Lee H
2016-03-18
Following an outbreak in Mecca Saudi Arabia in 2000, meningococcal strains expressing capsular group W (W) emerged as a major cause of invasive meningococcal disease (IMD) worldwide. The Saudi Arabian outbreak strain (Hajj clone) belonging to the ST-11 clonal complex (cc11) is similar to W cc11 causing occasional sporadic disease before 2000. Since 2000, W cc11 has caused large meningococcal disease epidemics in the African meningitis belt and endemic disease in South America, Europe and China. Traditional molecular epidemiologic typing suggested that a majority of current W cc11 burden represented global spread of the Hajj clone. However, recent whole genome sequencing (WGS) analyses revealed significant genetic heterogeneity among global W cc11 strains. While continued spread of the Hajj clone occurs in the Middle East, the meningitis belt and South Africa have co-circulation of the Hajj clone and other unrelated W cc11 strains. Notably, South America, the UK, and France share a genetically distinct W cc11 strain. Other W lineages persist in low numbers in Europe, North America and the meningitis belt. In summary, WGS is helping to unravel the complex genomic epidemiology of group W meningococcal strains. Wider application of WGS and strengthening of global IMD surveillance is necessary to monitor the continued evolution of group W lineages. Copyright © 2016 Elsevier Ltd. All rights reserved.
Toltzis, Philip; Kim, Jason; Dul, Michael; Zoltanski, Joan; Smathers, Sarah; Zaoutis, Theoklis
2009-04-01
A hypervirulent strain of Clostridium difficile-labeled North American Pulsed Field type 1 causes severe disease in adults. To determine the prevalence of NAP1 C. difficile in children, organisms from consecutive C. difficile toxin-positive stool samples at 2 children's hospitals microbiology laboratories were characterized. We found that 19.4% of these samples were NAP1.
Strain hypothesis of Toxoplasma gondii infection on the outcome of human diseases
Xiao, Jianchun; Yolken, Robert H.
2015-01-01
The intracellular protozoan Toxoplasma gondii is an exceptionally successful food- and waterborne parasite that infects approximately 1 billion people worldwide. Genotyping of T. gondii isolates from all continents revealed a complex population structure. Recent research supports the notion that T. gondii genotype may be associated with disease severity. Here, we (1) discuss molecular and serological approaches for designation of T. gondii strain type, (2) overview the literatures on the association of T. gondii strain type and the outcome of human disease, and (3) explore possible mechanisms underlying these strain specific pathology and severity of human toxoplasmosis. Although no final conclusions can be drawn, it is clear that virulent strains (e. g. strains containing type I or atypical alleles) are significantly more often associated with increased frequency and severity of human toxoplasmosis. The significance of highly virulent strains can cause severe diseases in immunocompetent patients and might implicated in brain disorders such as schizophrenia should led to reconsideration of toxoplasmosis. Further studies that combine parasite strain typing and human factor analysis (e.g. immune status and genetic background) are required for better understanding of human susceptibility or resistance to toxoplasmosis. PMID:25600911
Wang, Xiaoli; Xie, Yingzhou; Li, Gang; Liu, Jialin; Li, Xiaobin; Tian, Lijun; Sun, Jingyong; Ou, Hong-Yu; Qu, Hongping
2018-01-01
Hypervirulent K. pneumoniae variants (hvKP) have been increasingly reported worldwide, causing metastasis of severe infections such as liver abscesses and bacteremia. The capsular serotype K2 hvKP strains show diverse multi-locus sequence types (MLSTs), but with limited genetics and virulence information. In this study, we report a hypermucoviscous K. pneumoniae strain, RJF293, isolated from a human bloodstream sample in a Chinese hospital. It caused a metastatic infection and fatal septic shock in a critical patient. The microbiological features and genetic background were investigated with multiple approaches. The Strain RJF293 was determined to be multilocis sequence type (ST) 374 and serotype K2, displayed a median lethal dose (LD50) of 1.5 × 10 2 CFU in BALB/c mice and was as virulent as the ST23 K1 serotype hvKP strain NTUH-K2044 in a mouse lethality assay. Whole genome sequencing revealed that the RJF293 genome codes for 32 putative virulence factors and exhibits a unique presence/absence pattern in comparison to the other 105 completely sequenced K. pneumoniae genomes. Whole genome SNP-based phylogenetic analysis revealed that strain RJF293 formed a single clade, distant from those containing either ST66 or ST86 hvKP. Compared to the other sequenced hvKP chromosomes, RJF293 contains several strain-variable regions, including one prophage, one ICEKp1 family integrative and conjugative element and six large genomic islands. The sequencing of the first complete genome of an ST374 K2 hvKP clinical strain should reinforce our understanding of the epidemiology and virulence mechanisms of this bloodstream infection-causing hvKP with clinical significance.
Wang, Xiaoli; Xie, Yingzhou; Li, Gang; Liu, Jialin; Li, Xiaobin; Tian, Lijun; Sun, Jingyong; Qu, Hongping
2018-01-01
ABSTRACT Hypervirulent K. pneumoniae variants (hvKP) have been increasingly reported worldwide, causing metastasis of severe infections such as liver abscesses and bacteremia. The capsular serotype K2 hvKP strains show diverse multi-locus sequence types (MLSTs), but with limited genetics and virulence information. In this study, we report a hypermucoviscous K. pneumoniae strain, RJF293, isolated from a human bloodstream sample in a Chinese hospital. It caused a metastatic infection and fatal septic shock in a critical patient. The microbiological features and genetic background were investigated with multiple approaches. The Strain RJF293 was determined to be multilocis sequence type (ST) 374 and serotype K2, displayed a median lethal dose (LD50) of 1.5 × 102 CFU in BALB/c mice and was as virulent as the ST23 K1 serotype hvKP strain NTUH-K2044 in a mouse lethality assay. Whole genome sequencing revealed that the RJF293 genome codes for 32 putative virulence factors and exhibits a unique presence/absence pattern in comparison to the other 105 completely sequenced K. pneumoniae genomes. Whole genome SNP-based phylogenetic analysis revealed that strain RJF293 formed a single clade, distant from those containing either ST66 or ST86 hvKP. Compared to the other sequenced hvKP chromosomes, RJF293 contains several strain-variable regions, including one prophage, one ICEKp1 family integrative and conjugative element and six large genomic islands. The sequencing of the first complete genome of an ST374 K2 hvKP clinical strain should reinforce our understanding of the epidemiology and virulence mechanisms of this bloodstream infection-causing hvKP with clinical significance. PMID:29338592
Molecular Characteristics of Staphylococcus aureus Causing Bovine Mastitis between 2014 and 2015.
Li, Tianming; Lu, Huiying; Wang, Xing; Gao, Qianqian; Dai, Yingxin; Shang, Jun; Li, Min
2017-01-01
Staphylococcus aureus is highly pathogenic and can cause diseases in both humans and domestic animals. In animal species, including ruminants, S. aureus may cause severe or sub-clinical mastitis. This study aimed to investigate the molecular profile, antimicrobial resistance, and genotype/phenotype correlation of 212 S. aureus isolates recovered from cases of bovine mastitis from 2014 to 2015 in the Shanghai and Zhejiang areas of China. Nineteen sequence types (STs) were determined by multi-locus sequence typing, while the dominant ST was ST97, followed by ST520, ST188, ST398, ST7, and ST9. Within 14 methicillin-resistant S. aureus (MRSA) isolates and 198 methicillin-susceptible S. aureus (MSSA) isolates, ST97 was the predominant MSSA clone and ST9-MRSA-SCCmecXII-spa t899 was the most common MRSA clone. The MRSA strains showed much higher rates of resistance to multiple antibiotics than did MSSA strains. Compared with other MSSA strains, MSSA ST398 was more resistant to clindamycin, erythromycin, and ciprofloxacin. No isolates were resistant to vancomycin, teicoplanin, or linezolid. The molecular profiles of the virulence genes varied in different strains. ST520 strains carried seg-sei-sem-sen-seo genes, and ST9 and ST97 harbored sdrD-sdrE genes. Virulence phenotype analysis showed diversity in different clones. Biofilm formation ability was significantly enhanced in ST188 and ST7, and red blood cell lysis capacity was relatively strong in all S. aureus strains of animal origin except ST7. Our results indicate that MSSA was the predominant S. aureus strain causing bovine mastitis in eastern regions of China. However, the presence of multidrug resistant and toxigenic MRSA clone ST9 suggests that comprehensive surveillance of S. aureus infection should be implemented in the management of animal husbandry products.
Conserved properties of human and bovine prion strains on transmission to guinea pigs
Safar, Jiri G.; Giles, Kurt; Lessard, Pierre; Letessier, Frederic; Patel, Smita; Serban, Ana; DeArmond, Stephen J.; Prusiner, Stanley B.
2011-01-01
The first transmissions of human prion diseases to rodents used guinea pigs (Gps, Cavia porcellus). Later, transgenic (Tg) mice expressing human or chimeric human/mouse PrP replaced Gps, but the small size of the mouse limits some investigations. To investigate the fidelity of strain-specific prion transmission to Gps, we inoculated “type 1” and “type 2” prion strains into Gps: we measured the incubation times and determined the strain-specified size of the unglycosylated, protease-resistant (r) PrPSc fragment. Prions passaged once in Gps from cases of sporadic (s) Creutzfeldt–Jakob disease (CJD) and Gerstmann-Sträussler-Scheinker (GSS) disease caused by the P102L mutation were used as well as human prions from a variant (v) CJD case, bovine prions from bovine spongiform encephalopathy (BSE), and mouse-passaged scrapie prions. Variant CJD and BSE prions transmitted to all the inoculated Gps with incubation times of 367 ± 4 d and 436 ± 28 d, respectively. On second passage in Gps, vCJD and BSE prions caused disease in 287 ± 4 d and 310 ± 4 d, while sCJD and GSS prions transmitted in 237 ± 4 d and 279 ± 19 d, respectively. Although hamster Sc237 prions transmitted to 2 of 3 Gps after 574 and 792 d, mouse-passaged RML and 301V prion strains, the latter derived from BSE prions, failed to transmit disease to Gps. Those Gps inoculated with vCJD or BSE prions exhibited “type 2” unglycosylated, rPrPSc (19 kDa) while those receiving sCJD or GSS prions displayed “type 1” prions (21 kDa), as determined by Western blotting. Such strain-specific properties were maintained in Gps as well as mice expressing a chimeric human/mouse transgene. Gps may prove particularly useful in further studies of novel human prions such as those causing vCJD. PMID:21727894
Bai, Feng-Yan
2014-01-01
Candida albicans is a commensal microorganism in the mucosa of healthy individuals, but is also the most common opportunistic fungal pathogen of humans. It causes from benign infections such as oral and vaginal candidiasis to fatal, systematic diseases in immunocompromised or critically ill patients. In addition to improved therapy, the rapid and accurate identification of the disease-causing strains is crucial for diagnosis, clinical treatment and epidemiological studies of candidiasis. A variety of methods for strain typing of C. albicans have been developed. The most commonly used methods with the focus on recently developed molecular typing or DNA-fingerprinting strategies and the recent findings in the association of specific and genetically similar genotypes with certain infection types and the correlation between azole susceptibilities and certain genotypes of C. albicans from China are reviewed. PMID:24772369
Gardete, Susana; Kim, Choonkeun; Hartmann, Boris M.; Mwangi, Michael; Roux, Christelle M.; Dunman, Paul M.; Chambers, Henry F.; Tomasz, Alexander
2012-01-01
An isolate of the methicillin-resistant Staphylococcus aureus (MRSA) clone USA300 with reduced susceptibility to vancomycin (SG-R) (i.e, vancomycin-intermediate S. aureus, VISA) and its susceptible “parental” strain (SG-S) were recovered from a patient at the end and at the beginning of an unsuccessful vancomycin therapy. The VISA phenotype was unstable in vitro generating a susceptible revertant strain (SG-rev). The availability of these 3 isogenic strains allowed us to explore genetic correlates of antibiotic resistance as it emerged in vivo. Compared to the susceptible isolate, both the VISA and revertant strains carried the same point mutations in yycH, vraG, yvqF and lspA genes and a substantial deletion within an intergenic region. The revertant strain carried a single additional frameshift mutation in vraS which is part of two component regulatory system VraSR. VISA isolate SG-R showed complex alterations in phenotype: decreased susceptibility to other antibiotics, slow autolysis, abnormal cell division and increased thickness of cell wall. There was also altered expression of 239 genes including down-regulation of major virulence determinants. All phenotypic properties and gene expression profile returned to parental levels in the revertant strain. Introduction of wild type yvqF on a multicopy plasmid into the VISA strain caused loss of resistance along with loss of all the associated phenotypic changes. Introduction of the wild type vraSR into the revertant strain caused recovery of VISA type resistance. The yvqF/vraSR operon seems to function as an on/off switch: mutation in yvqF in strain SG-R turns on the vraSR system, which leads to increase in vancomycin resistance and down-regulation of virulence determinants. Mutation in vraS in the revertant strain turns off this regulatory system accompanied by loss of resistance and normal expression of virulence genes. Down-regulation of virulence genes may provide VISA strains with a “stealth” strategy to evade detection by the host immune system. PMID:22319446
Biadglegne, Fantahun; Merker, Matthias; Sack, Ulrich; Rodloff, Arne C.; Niemann, Stefan
2015-01-01
Background Recently, newly defined clades of Mycobacterium tuberculosis complex (MTBC) strains, namely Ethiopia 1–3 and Ethiopia H37Rv-like strains, and other clades associated with pulmonary TB (PTB) were identified in Ethiopia. In this study, we investigated whether these new strain types exhibit an increased ability to cause TB lymphadenitis (TBLN) and raised the question, if particular MTBC strains derived from TBLN patients in northern Ethiopia are genetically adapted to their local hosts and/or to the TBLN. Methods Genotyping of 196 MTBC strains isolated from TBLN patients was performed by spoligotyping and 24-loci mycobacterial interspersed repetitive unit-variable number of tandem repeats (MIRU-VNTR) typing. A statistical analysis was carried out to see possible associations between patient characteristics and phylogenetic MTBC strain classification. Results Among 196 isolates, the majority of strains belonged to the Delhi/CAS (38.8%) lineage, followed by Ethiopia 1 (9.7%), Ethiopia 3 (8.7%), Ethiopia H37RV-like (8.2%), Ethiopia 2 and Haarlem (7.7% each), URAL (3.6%), Uganda l and LAM (2% each), S-type (1.5%), X-type (1%), and 0.5% isolates of TUR, EAI, and Beijing genotype, respectively. Overall, 15 strains (7.7%) could not be allocated to a previously described phylogenetic lineage. The distribution of MTBC lineages is similar to that found in studies of PTB samples. The cluster rate (35%) in this study is significantly lower (P = 0.035) compared to 45% in the study of PTB in northwestern Ethiopia. Conclusion In the studied area, lymph node samples are dominated by Dehli/CAS genotype strains and strains of largely not yet defined clades based on MIRU-VNTR 24-loci nomenclature. We found no indication that strains of particular genotypes are specifically associated with TBLN. However, a detailed analysis of specific genetic variants of the locally contained Ethiopian clades by whole genome sequencing may reveal new insights into the host-pathogen co-evolution and specific features that are related to the local host immune system. PMID:26376441
Mouse models of aerosol-acquired tularemia caused by Francisella tularensis types A and B.
Fritz, David L; England, Marilyn J; Miller, Lynda; Waag, David M
2014-10-01
After preliminary assessment of virulence in AKR/J, DBA/1, BALB/c, and C57BL/6 mice, we investigated histopathologic changes in BALB/c and C57BL/6 mice infected with type A (strain SCHU S4) or type B (strain 425) Francisella tularensis by aerosol exposure. In mice exposed to type A infection, changes in histologic presentation were not apparent until day 3 after infection, when pyogranulomatous inflammation was detected in spleens and livers of BALB/c mice, and in lungs and spleens of C57BL/6 mice. Histopathologic changes were most severe and widespread in both mouse strains on day 5 after infection and seemed to completely resolve within 22 d of challenge. BALB/c mice were more resistant than C57BL/6 mice in lethal-dose calculations, but C57BL/6 mice cleared the infection more rapidly. Mice similarly challenged with type B F. tularensis also developed histopathologic signs of infection beginning on day 3. The most severe changes were noted on day 8 and were characterized by granulomatous or pyogranulomatous infiltrations of the lungs. Unlike type A infection, lesions due to type B did not resolve over time and remained 3 wk after infection. In type B, but not type A, infection we noted extensive inflammation of the heart muscle. Although no microorganisms were found in tissues of type A survivors beyond 9 d after infection, mice surviving strain 425 infection had a low level of residual infection at 3 wk after challenge. The histopathologic presentation of tularemia caused by F. tularensis types A and B in BALB/c and C57BL/6 mice bears distinct similarities to tularemia in humans.
Nakajima, Rie; Escudero, Raquel; Molina, Douglas M; Rodríguez-Vargas, Manuela; Randall, Arlo; Jasinskas, Algis; Pablo, Jozelyn; Felgner, Philip L; AuCoin, David P; Anda, Pedro; Davies, D Huw
2016-07-01
Tularemia in humans is caused mainly by two subspecies of the Gram-negative facultative anaerobe Francisella tularensis: F. tularensis subsp. tularensis (type A) and F. tularensis subsp. holarctica (type B). The current serological test for tularemia is based on agglutination of whole organisms, and the reactive antigens are not well understood. Previously, we profiled the antibody responses in type A and B tularemia cases in the United States using a proteome microarray of 1,741 different proteins derived from the type A strain Schu S4. Fifteen dominant antigens able to detect antibodies to both types of infection were identified, although these were not validated in a different immunoassay format. Since type A and B subspecies are closely related, we hypothesized that Schu S4 antigens would also have utility for diagnosing type B tularemia caused by strains from other geographic locations. To test this, we probed the Schu S4 array with sera from 241 type B tularemia cases in Spain. Despite there being no type A strains in Spain, we confirmed the responses against some of the same potential serodiagnostic antigens reported previously, as well as determined the responses against additional potential serodiagnostic antigens. Five potential serodiagnostic antigens were evaluated on immunostrips, and two of these (FTT1696/GroEL and FTT0975/conserved hypothetical protein) discriminated between the Spanish tularemia cases and healthy controls. We conclude that antigens from the type A strain Schu S4 are suitable for detection of antibodies from patients with type B F. tularensis infections and that these can be used for the diagnosis of tularemia in a deployable format, such as the immunostrip. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Nakajima, Rie; Escudero, Raquel; Molina, Douglas M.; Rodríguez-Vargas, Manuela; Randall, Arlo; Jasinskas, Algis; Pablo, Jozelyn; Felgner, Philip L.; AuCoin, David P.; Anda, Pedro
2016-01-01
Tularemia in humans is caused mainly by two subspecies of the Gram-negative facultative anaerobe Francisella tularensis: F. tularensis subsp. tularensis (type A) and F. tularensis subsp. holarctica (type B). The current serological test for tularemia is based on agglutination of whole organisms, and the reactive antigens are not well understood. Previously, we profiled the antibody responses in type A and B tularemia cases in the United States using a proteome microarray of 1,741 different proteins derived from the type A strain Schu S4. Fifteen dominant antigens able to detect antibodies to both types of infection were identified, although these were not validated in a different immunoassay format. Since type A and B subspecies are closely related, we hypothesized that Schu S4 antigens would also have utility for diagnosing type B tularemia caused by strains from other geographic locations. To test this, we probed the Schu S4 array with sera from 241 type B tularemia cases in Spain. Despite there being no type A strains in Spain, we confirmed the responses against some of the same potential serodiagnostic antigens reported previously, as well as determined the responses against additional potential serodiagnostic antigens. Five potential serodiagnostic antigens were evaluated on immunostrips, and two of these (FTT1696/GroEL and FTT0975/conserved hypothetical protein) discriminated between the Spanish tularemia cases and healthy controls. We conclude that antigens from the type A strain Schu S4 are suitable for detection of antibodies from patients with type B F. tularensis infections and that these can be used for the diagnosis of tularemia in a deployable format, such as the immunostrip. PMID:27098957
Correlation of mutations and recombination with growth kinetics of poliovirus vaccine strains.
Pliaka, V; Kyriakopoulou, Z; Tsakogiannis, D; Ruether, I G A; Gartzonika, C; Levidiotou-Stefanou, S; Krikelis, A; Markoulatos, P
2010-12-01
Attenuated strains of Sabin poliovirus vaccine replicate in the human gut and, in rare cases, may cause vaccine-associated paralytic poliomyelitis (VAPP). The genetic instability of Sabin strains constitutes one of the main causes of VAPP, a disease that is most frequently associated with type 3 and type 2 Sabin strains, and more rarely with type 1 Sabin strains. In the present study, the growth phenotype of eight oral poliovirus vaccine (OPV) isolates (two non-recombinants and six recombinants), as well as of Sabin vaccine strains, was evaluated using two different assays, the reproductive capacity at different temperatures (Rct) test and the one-step growth curve test in Hep-2 cells at two different temperatures (37°C and 40°C). The growth phenotype of isolates was correlated with genomic modifications in order to identify the determinants and mechanisms of reversion towards neurovirulence. All of the recombinant OPV isolates showed a thermoresistant phenotype in the Rct test. Moreover, both recombinant Sabin-3 isolates showed significantly higher viral yield than Sabin 3 vaccine strain at 37°C and 40°C in the one-step growth curve test. All of the OPV isolates displayed mutations at specific sites of the viral genome, which are associated with the attenuated and temperature-sensitive phenotype of Sabin strains. The results showed that both mutations and recombination events could affect the phenotype traits of Sabin derivatives and may lead to the reversion of vaccinal strains to neurovirulent ones. The use of phenotypic markers along with the genomic analysis may shed additional light on the molecular determinants of the reversed neurovirulent phenotype of Sabin derivatives.
Tseng, Hung Fu; Schmid, D Scott; Harpaz, Rafael; LaRussa, Philip; Jensen, Nancy J; Rivailler, Pierre; Radford, Kay; Folster, Jennifer; Jacobsen, Steven J
2014-04-01
We report the first laboratory-documented case of herpes zoster caused by the attenuated varicella zoster virus (VZV) contained in Zostavax in a 68-year-old immunocompetent adult with strong evidence of prior wild-type VZV infection. The complete genome sequence of the isolate revealed that the strain carried 15 of 42 (36%) recognized varicella vaccine-associated single-nucleotide polymorphisms, including all 5 of the fixed vaccine markers present in nearly all of the strains in the vaccine. The case of herpes zoster was relatively mild and resolved without complications.
Tseng, Hung Fu; Schmid, D. Scott; Harpaz, Rafael; LaRussa, Philip; Jensen, Nancy J.; Rivailler, Pierre; Radford, Kay; Folster, Jennifer; Jacobsen, Steven J.
2014-01-01
We report the first laboratory-documented case of herpes zoster caused by the attenuated varicella zoster virus (VZV) contained in Zostavax in a 68-year-old immunocompetent adult with strong evidence of prior wild-type VZV infection. The complete genome sequence of the isolate revealed that the strain carried 15 of 42 (36%) recognized varicella vaccine–associated single-nucleotide polymorphisms, including all 5 of the fixed vaccine markers present in nearly all of the strains in the vaccine. The case of herpes zoster was relatively mild and resolved without complications. PMID:24470276
Xie, Jinyan; Wang, Mingshu; Cheng, Anchun; Zhao, Xin-Xin; Liu, Mafeng; Zhu, Dekang; Chen, Shun; Jia, Renyong; Yang, Qiao; Wu, Ying; Zhang, Shaqiu; Liu, Yunya; Yu, Yanling; Zhang, Ling; Sun, Kunfeng; Chen, Xiaoyue
2018-04-26
Duck hepatitis A virus type 1 (DHAV-1) is one of the most harmful pathogens in the duck industry. The infection of adult ducks with DHAV-1 was previously shown to result in transient cytokine storms in their kidneys. To understand how DHAV-1 infection impacts the host liver, we conducted animal experiments with the virulent CH DHAV-1 strain and the attenuated CH60 commercial vaccine strain. Visual observation and standard hematoxylin and eosin staining were performed to detect pathological damage in the liver, and viral copy numbers and cytokine expression in the liver were evaluated by quantitative PCR. The CH strain (10 8.4 copies/mg) had higher viral titers than the CH60 strain (10 4.9 copies/mg) in the liver and caused ecchymotic hemorrhaging on the liver surface. Additionally, livers from ducklings inoculated with the CH strain were significantly infiltrated by numerous red blood cells, accompanied by severe cytokine storms, but similar signs were not observed in the livers of ducklings inoculated with the CH60 strain. In conclusion, the severe cytokine storm caused by the CH strain apparently induces hemorrhagic lesions in the liver, which might be a key factor in the rapid death of ducklings.
Wallis, T S; Paulin, S M; Plested, J S; Watson, P R; Jones, P W
1995-01-01
Plasmid-bearing and plasmid-free isolates and a plasmid-cured strain of Salmonella dublin were compared for virulence in calves. The plasmid-bearing strains were highly virulent, causing severe enteric and systemic disease with high mortality. In contrast, the plasmid-free strains caused diarrhea but only low mortality. The infection kinetics of a wild-type and a derivative plasmid-cured strain were compared. Both strains were isolated in high numbers from intestinal sites at 3 and 6 days after oral challenge and were isolated at comparable frequencies from systemic sites at 3 days, but not at 6 days, when the wild-type strain was predominant. The strains were equally invasive in intestinal epithelia with and without Peyer's patch and elicited comparable secretory and inflammatory responses and intestinal pathology in ligated ileal loops. The effect of the virulence plasmid on growth kinetics and on the outer membrane protein profile was assessed in an in vivo growth chamber. The virulence plasmid did not influence either extracellular growth or the expression of major outer membrane proteins. These observations demonstrate that the virulence plasmid is not involved in either the enteric phase of infection or the systemic dissemination of S. dublin but probably mediates the persistence of S. dublin at systemic sites. PMID:7790094
Senior, D F; deMan, P; Svanborg, C
1992-04-01
Virulence factors were studied in 82 strains of Escherichia coli isolated from the urine of dogs with urinary tract infections. The most frequently expressed O antigens were 2, 4, 6, 25, and 22/83. Most strains were K nontypeable. Mannose-sensitive hemagglutination (MSH) with canine erythrocytes was observed in 71 strains and mannose-resistant hemagglutination (MRH) was observed in 32 strains. Strains that caused MSH of erythrocytes from dogs also caused MSH of erythrocytes from guinea pigs. Most strains that caused MRH of human A1P1 erythrocytes also reacted with erythrocytes of dogs. Of 22 strains (27%) that agglutinated human A1P1 erythrocytes, but not A1p erythrocytes, 17 (77%) had specificity for globo A, but did not react with the galactose alpha 1----4galactose beta disaccharide receptor. The remaining 5 strains and 2 others that simultaneously expressed an X adhesin agglutinated galactose alpha 1----4galactose beta-coated latex beads. Bacterial adherence to canine uroepithelial cells from the bladder was most often observed in strains expressing MSH, less often observed in strains expressing MRH, and least often observed in strains that failed to induce hemagglutination. Adherence of MSH strains to canine uroepithelial cells was inhibited by alpha-methyl-D-mannoside. As a group, MRH strains expressing globo-A- and galactose alpha 1----4galactose beta-specific adhesins did not have strong adherence. Strains of E coli isolated from dogs with urinary tract infections most commonly expressed type-1 fimbriae, and the main mechanism of in vitro adherence to canine uroepithelial cells involved a mannose-sensitive mechanism. Overrepresentation of globo-A-specific adhesins did not appear to be related to adherence of canine uroepithelial cells.
Espinosa, Luz Elena; Li, Zhongya; Gomez Barreto, Demostenes; Calderon Jaimes, Ernesto; Rodriguez, Romeo S; Sakota, Varja; Facklam, Richard R; Beall, Bernard
2003-01-01
To examine the type distribution of pathogenic group A streptococcal (GAS) strains in Mexico, we determined the emm types of 423 GAS isolates collected from ill patients residing in Mexico (Durango or Mexico City). These included 282 throat isolates and 107 isolates from normally sterile sites. Of the other isolates, 38 were recovered from other miscellaneous infections. A total of 31 different emm types were found, revealing a broad overlap between commonly occurring emm types in Mexico and the United States. The information obtained in this study is consistent with the possibility that multivalent, M type-specific vaccines prepared for GAS strain distribution within the United States could theoretically protect against the majority of GAS strains causing disease in the two cities surveyed in Mexico.
Espinosa, Luz Elena; Li, Zhongya; Barreto, Demostenes Gomez; Jaimes, Ernesto Calderon; Rodriguez, Romeo S.; Sakota, Varja; Facklam, Richard R.; Beall, Bernard
2003-01-01
To examine the type distribution of pathogenic group A streptococcal (GAS) strains in Mexico, we determined the emm types of 423 GAS isolates collected from ill patients residing in Mexico (Durango or Mexico City). These included 282 throat isolates and 107 isolates from normally sterile sites. Of the other isolates, 38 were recovered from other miscellaneous infections. A total of 31 different emm types were found, revealing a broad overlap between commonly occurring emm types in Mexico and the United States. The information obtained in this study is consistent with the possibility that multivalent, M type-specific vaccines prepared for GAS strain distribution within the United States could theoretically protect against the majority of GAS strains causing disease in the two cities surveyed in Mexico. PMID:12517875
Spiliopoulou, Iris; Spyridis, Nikolaos; Giormezis, Nikolaos; Kopsidas, John; Militsopoulou, Maria; Lebessi, Evangelia; Tsolia, Maria
2017-01-01
ABSTRACT Skin and soft tissue infections (SSTIs) caused by mupirocin-resistant Staphylococcus aureus strains have recently increased in number in our settings. We sought to evaluate the characteristics of these cases over a 43-month period. Data for all community-acquired staphylococcal infections caused by mupirocin-resistant strains were retrospectively reviewed. Genes encoding products producing high-level resistance (HLR) to mupirocin (mupA), fusidic acid resistance (fusB), resistance to macrolides and lincosamides (ermC and ermA), Panton-Valentine leukocidin (PVL) (lukS/lukF-PV), exfoliative toxins (eta and etb), and fibronectin binding protein A (fnbA) were investigated by PCRs in 102 selected preserved strains. Genotyping was performed by SCCmec and agr typing, whereas clonality was determined by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). A total of 437 cases among 2,137 staphylococcal infections were recorded in 2013 to 2016; they were all SSTIs with the exception of 1 case of primary bacteremia. Impetigo was the predominant clinical entity (371 cases [84.9%]), followed by staphylococcal scalded skin syndrome (21 cases [4.8%]), and there were no abscesses. The number of infections detected annually increased during the study years. All except 3 isolates were methicillin susceptible. The rates of HLR to mupirocin and constitutive resistance to clindamycin were 99% and 20.1%, respectively. Among the 102 tested strains, 100 (98%) were mupA positive and 97 (95%) were fusB positive, 26/27 clindamycin-resistant strains (96.3%) were ermA positive, 83 strains (81.4%) were lukS/lukF positive, 95 (93%) carried both eta and etb genes, and 99 (97%) were fnbA positive. Genotyping of methicillin-sensitive S. aureus (MSSA) strains revealed that 96/99 (96.7%) belonged to one main pulsotype, pulsotype 1, classified as sequence type 121 (ST121). The emergence of a single MSSA clone (ST121) causing impetigo was documented. Resistance to topical antimicrobials and a rich toxinogenic profile confer to this clone adaptability for spread in the community. PMID:28592549
Nandi, Sukdeb; Anbazhagan, Rajendra; Kumar, Manoj
2010-01-01
Canine parvovirus 2 (CPV-2) is one of the most important viruses that causes haemorrhagic gastroenteritis and myocarditis of dogs worldwide. The picture has been complicated further due to the emergence of new mutants of CPV, namely: CPV-2a, CPV-2b and CPV-2c. In this study, the molecular characterisation of strains present in the CPV vaccines available on the Indian market was performed using polymerase chain reaction and DNA sequencing. The VP1/VP2 genes of two vaccine strains and a field strain (Bhopal) were sequenced and the nucleotide and the deduced amino acid sequences were compared. The results indicated that the isolate belonged to CPV type 2b and the strains in the vaccines belonged to type CPV-2. From the study, it is inferred that the CPV strain used in commercially available vaccine preparation differed from the strains present in CPV infection in dogs in India.
Chen, Hongyu; Kandel, Prem P; Cruz, Luisa F; Cobine, Paul A; De La Fuente, Leonardo
2017-11-01
MopB is a major outer membrane protein (OMP) in Xylella fastidiosa, a bacterial plant pathogen that causes losses on many economically important crops. Based on in silico analysis, the uncharacterized MopB protein of X. fastidiosa contains a β-barrel structure with an OmpA-like domain and a predicted calcium-binding motif. Here, MopB function was studied by mutational analysis taking advantage of the natural competence of X. fastidiosa. Mutants of mopB were constructed in two different X. fastidiosa strains, the type strain Temecula and the more virulent WM1-1. Deletion of the mopB gene impaired cell-to-cell aggregation, surface attachment, and biofilm formation in both strains. Interestingly, mopB deletion completely abolished twitching motility. Electron microscopy of the bacterial cell surface revealed that mopB deletion eliminated type IV and type I pili formation, potentially caused by destabilization of the outer membrane. Both mopB mutants showed reduced virulence using tobacco (Nicotiana tabacum) as a host under greenhouse conditions. These results suggest that MopB has pleiotropic functions in biofilm formation and twitching motility and is important for virulence of X. fastidiosa.
Mohamed, Moemen A; Mohamed, Mohamed-Wael A; Ahmed, Ahmed I; Ibrahim, Awad A; Ahmed, Mohamed S
2012-01-01
The prevalence of Pasteurella multocida strains among 275 backyard chickens from different regions of Upper Egypt was studied. A total of 21 isolates of P. multocida were recovered in 21 out of 275 chickens tested (7.6%) and were confirmed using phenotypic characterisation. Somatic serotyping of the 21 isolates resulted in 12 isolates being classed as serotype A:1 (57.14%), 4 as serotype A:3 (19.05%) and 5 could not be typed (23.8%). Capsular typing, using multiplex polymerase chain reaction (PCR), demonstrated that 18 strains were capsular type A (85.7%), and 3 were type D (14.3%). The present findings suggest that a multiplex capsular PCR could be valuable for the rapid identification of P. multocida in cases of fowl cholera infection. A total of 5 isolates of P. multocida were selected to study their pathogenicity in embryonated chicken eggs instead of conducting a study in mature chickens. The results showed a variation in pathogenicity between the strains tested, namely: serotype A:1 strains caused 80% mortality, in contrast to 20% mortality by type D strains. Pathological findings included severe congestion of the entire embryo, haemorrhaging of the skin, feather follicles and toe, and ecchymotic haemorrhages on the liver of the inoculated embryos. The observations in this study indicate that P. multocida serogroup A could be highly pathogenic for mature chickens and therefore might be a cause of considerable economic losses in commercial production. A total of 10 isolates were subjected to antimicrobial susceptibility to determine the minimal inhibitory concentration of 7 antimicrobials. All isolates were susceptible to ciprofloxacin, florfenicol, streptomycin and sulphamethoxazol with trimethoprim and with varying degrees of sensitivity to the other agents.
Zhang, Zhenying; Liu, Xiaoming; Lv, Xuelian; Lin, Jingrong
2011-12-01
Sporotrichosis is usually a localized, lymphocutaneous disease, but its disseminated type was rarely reported. The main objective of this study was to identify specific DNA sequence variation and virulence of a strain of Sporothrix schenckii isolated from the lesion of disseminated cutaneous sporotrichosis. We confirmed this strain to be S. schenckii by(®) tubulin and chitin synthase gene sequence analysis in addition to the routine mycological and partial ITS and NTS sequencing. We found a 10-bp deletion in the ribosomal NTS region of this strain, in reference to the sequence of control strains isolated from fixed cutaneous sporotrichosis. After inoculated into immunosuppressed mice, this strain caused more extensive system involvement and showed stronger virulence than the control strain isolated from a fixed cutaneous sporotrichosis. Our study thus suggests that different clinical manifestation of sporotrichosis may be associated with variation in genotype and virulence of the strain, independent of effects due to the immune status of the host.
Junttila, N; Lévêque, N; Magnius, L O; Kabue, J P; Muyembe-Tamfum, J J; Maslin, J; Lina, B; Norder, H
2015-03-01
Complete coding regions were sequenced for two new enterovirus genomes: EV-B93 previously identified by VP1 sequencing, derived from a child with acute flaccid paralysis in the Democratic Republic of Congo; and EV-C95 from a French soldier with acute gastroenteritis in Djibouti. The EV-B93 P1 had more than 30% nucleotide divergence from other EV-B types, with highest similarity to E-15 and EV-B80. The P1 nucleotide sequence of EV-C95 was most similar, 71%, to CV-A21. Complete coding regions for the new enteroviruses were compared with those of 135 EV-B and 176 EV-C strains representing all types available in GenBank. When strains from the same outbreak or strains isolated during the same year in the same geographical region were excluded, 27 of the 58 EV-B, and 16 of the 23 EV-C types were represented by more than one sequence. However, for EV-B the P3 sequences formed three clades mainly according to origin or time of isolation, irrespective of type, while for EV-C the P3 sequences segregated mainly according to disease manifestation, with most strains causing paralysis, including polioviruses, forming one clade, and strains causing respiratory illness forming another. There was no intermixing of types between these two clades, apart from two EV-C96 strains. The EV-B P3 sequences had lower inter-clade and higher intra-clade variability as compared to the EV-C sequences, which may explain why inter-clade recombinations are more frequent in EV-B. Further analysis of more isolates may shed light on the role of recombinations in the evolution of EV-B in geographical context. © 2014 Wiley Periodicals, Inc.
Weterings, Veronica; Bosch, Thijs; Witteveen, Sandra; Landman, Fabian; Schouls, Leo; Kluytmans, Jan
2017-09-01
Resistance to methicillin in Staphylococcus aureus is caused primarily by the mecA gene, which is carried on a mobile genetic element, the staphylococcal cassette chromosome mec (SCC mec ). Horizontal transfer of this element is supposed to be an important factor in the emergence of new clones of methicillin-resistant Staphylococcus aureus (MRSA) but has been rarely observed in real time. In 2012, an outbreak occurred involving a health care worker (HCW) and three patients, all carrying a fusidic acid-resistant MRSA strain. The husband of the HCW was screened for MRSA carriage, but only a methicillin-susceptible S. aureus (MSSA) strain, which was also resistant to fusidic acid, was detected. Multiple-locus variable-number tandem-repeat analysis (MLVA) typing showed that both the MSSA and MRSA isolates were MT4053-MC0005. This finding led to the hypothesis that the MSSA strain acquired the SCC mec and subsequently caused an outbreak. To support this hypothesis, next-generation sequencing of the MSSA and MRSA isolates was performed. This study showed that the MSSA isolate clustered closely with the outbreak isolates based on whole-genome multilocus sequence typing and single-nucleotide polymorphism (SNP) analysis, with a genetic distance of 17 genes and 44 SNPs, respectively. Remarkably, there were relatively large differences in the mobile genetic elements in strains within and between individuals. The limited genetic distance between the MSSA and MRSA isolates in combination with a clear epidemiologic link supports the hypothesis that the MSSA isolate acquired a SCC mec and that the resulting MRSA strain caused an outbreak. Copyright © 2017 American Society for Microbiology.
Mumps outbreak in vaccinated children in Gipuzkoa (Basque Country), Spain.
Montes, M.; Cilla, G.; Artieda, J.; Vicente, D.; Basterretxea, M.
2002-01-01
A mumps outbreak occurred in a group of vaccinated children aged 3-4 years in San Sebastián (Gipuzkoa, Basque Country, Spain) in 2000 during the same period as a revaccination campaign against measles-mumps-rubella (MMR) was performed. The clinical cases were confirmed by viral culture, detection of viral RNA and/or specific IgM. Eighty-eight percent of the children had been vaccinated with the Rubini strain and the remainder with the Jeryl-Lynn strain. The attack rate was 47.9% (35 cases in 73 school-attending children of this age). The outbreak was caused by an H genotype strain of mumps virus which was circulating at the same time as a D genotype strain that caused sporadic cases. By sequencing the small hydrophobic (SH) gene, the strains of the clinical cases were identified as wild-type mumps virus with heterologous genotypes in comparison to the vaccine strains used in our area. PMID:12558338
Invasive group B streptococcal infections in adults, France (2007-2010).
Tazi, A; Morand, P C; Réglier-Poupet, H; Dmytruk, N; Billoët, A; Antona, D; Trieu-Cuot, P; Poyart, C
2011-10-01
Group B streptococcus (GBS) has emerged as an important cause of invasive infection in adults. Here, we report the clinical and microbiological characteristics of 401 non-redundant GBS strains causing adult invasive infections collected during a 4-year period (2007-2010). Bacteraemia without focus (43.4%) and bone and joint infections (18.7%) were the main clinical manifestations. The distribution of capsular polysaccharide (CPS) type showed that types Ia, III, and V accounted for 71.8% of all strains. Resistance to erythromycin increased from 20.2% in 2007 to 35.3% in 2010, and was mainly associated with CPS type V harbouring the erm(B) resistant determinant. © 2011 The Authors. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.
Musser, J M; Mattingly, S J; Quentin, R; Goudeau, A; Selander, R K
1989-06-01
Chromosomal genotypes of 128 isolates of six serotypes (Ia, Ib, Ic, II, Ic/II, and III) of Streptococcus agalactiae (group B Streptococcus) recovered predominantly from human infants in the United States were characterized by an analysis of electrophoretically demonstrable allelic profiles at 11 metabolic enzyme loci. Nineteen distinctive electrophoretic types (ETs), representing multilocus clonal genotypes, were identified. Mean genetic diversity per locus among ETs of isolates of the same serotype was, on average, nearly equal to that in all 19 ETs. Cluster analysis of the ETs revealed two primary phylogenetic divisions at a genetic distance of 0.65. A single clone (ET 1) represented by 40 isolates expressing type III antigen formed division I. Division II was composed of 18 ETs in three major lineages diverging from one another at distances greater than 0.35 and included strains of all six antigenic classes. The type III organisms in division I produce more extracellular neuraminidase and apparently are more virulent than the type III strains in division II, which are related to strains of other serotypes that cause disease much less frequently. The existence of this unusually virulent clone accounts, in major part, for the high morbidity and mortality associated with infection by type III organisms.
Folgosa, E.; Mastrandrea, S.; Cappuccinelli, P.; Uzzau, S.; Rappelli, P.; Brian, M. J.; Colombo, M. M.
2001-01-01
The phenotypic and genotypic profiles of the V. cholerae strains causing the Mozambican 1997-8 epidemic were characterized to provide a reference for comparison with other epidemic strains. A total of 75 strains of V. cholerae O1 isolated in different provinces, were analysed. Strains were characterized by PCR for detecting toxin genes (ctxA, zot and ace), virulence associated genes (tcpA. nanH, hlyA and torR) and ERIC sequences. All V. cholerae strains were serotype O1, Ogawa, biotype El Tor. MIC testing showed a high proportion of strains multi-resistant to drugs (100% to cotrimoxazole and 52% to tetracycline) and susceptibility to ciprofloxacin. The isolates contained two intact copies of the CTX genetic element and all other genes tested. PCR of restricted DNA revealed two ERIC types: the first in provincial isolates, also predominant in other African epidemic strains, and the second in Maputo isolates (the national capital). PMID:11561970
Sit, Pik San; Teh, Cindy Shuan Ju; Idris, Nuryana; Sam, I-Ching; Syed Omar, Sharifah Faridah; Sulaiman, Helmi; Thong, Kwai Lin; Kamarulzaman, Adeeba; Ponnampalavanar, Sasheela
2017-04-13
Methicillin-resistant Staphylococcus aureus (MRSA) is an established pathogen that causes hospital- and community-acquired infections worldwide. The prevalence rate of MRSA infections were reported to be the highest in Asia. As there is limited epidemiological study being done in Malaysia, this study aimed to determine the prevalence of MRSA infection and the molecular characteristics of MRSA bacteraemia. Two hundred and nine MRSA strains from year 2011 to 2012 were collected from a tertiary teaching hospital in Malaysia. The strains were characterized by antimicrobial susceptibility testing, staphylococcal cassette chromosome mec (SCCmec) typing, detection of Panton-Valentine leukocidin (PVL) gene, multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). Patient's demographic and clinical data were collected and correlated with molecular data by statistical analysis. Male gender and patient >50 years of age (p < 0.0001) were significantly associated with the increased risk of MRSA acquisition. Fifty-nine percent of MRSA strains were HA-MRSA that carried SCCmec type II, III, IV and V while 31% were CA-MRSA strains with SCCmec III, IV and V. The prevalence of PVL gene among 2011 MRSA strains was 5.3% and no PVL gene was detected in 2012 MRSA strains. All of the strains were sensitive to vancomycin. However, vancomycin MIC creep phenomenon was demonstrated by the increased number of MRSA strains with MIC ≥1.5 μg/mL (p = 0.008) between 2011 and 2012. Skin disease (p = 0.034) and SCCmec type III (p = 0.0001) were found to be significantly associated with high vancomycin MIC. Forty-four percent of MRSA strains from blood, were further subtyped by MLST and PFGE. Most of the bacteraemia cases were primary bacteraemia and the common comorbidities were diabetes, hypertension and chronic kidney disease. The predominant pulsotype was pulsotype C exhibited by SCCmec III-ST239. This is a first study in Malaysia that reported the occurrence of MRSA clones such as SCCmec V-ST5, untypeable-ST508, SCCmec IV-ST1 and SCCmec IV-ST1137. SCCmec type III remained predominant among the MRSA strains in this hospital. The occurrence of SCCmec IV and V among hospital strains and the presence of SCCmec III in CA-MRSA strains are increasing. MRSA strains causing bacteraemia over the two-year study period were found to be genetically diverse.
Kim, J H; Harvey, L A; Evans, A L; Byfield, G E; Betancourt, D A; Dean, T R
2016-06-01
The many benefits of building "green" have motivated the use of sustainable products in the design and execution of the built environment. However, the use of these natural or recycled materials, some of which have been treated with antimicrobials, provides a growth opportunity for microorganisms with the potential to elicit adverse health effects especially in the presence of an antimicrobial. The focus of this research was to determine the effects of Stachybotrys chartarum (strains Houston and 51-11) grown under different conditions on a macrophage cell line (Raw 264.7) using endpoints, including cytotoxicity, and those associated with immunity specifically inflammation and MHC class II expression. The fungi were grown on four different gypsum products, and macrophages were exposed to whole spores of both strains and fragmented spores of strain 51-11. Whole spores of the Houston strain elicited no cytotoxicity with some level of inflammation, while exposure to whole spores of 51-11 caused variable responses depending on the wallboard type supporting the fungal growth. High concentrations of fragmented 51-11 spores primarily resulted in the apoptosis of macrophage with no inflammation. None of the fungal strains caused elevated levels of major histocompatibility complex (MHC) class II expression on the surface of Raw cells. Mycotoxin levels of 51-11 spores from all of the wallboard types measured >250 ng/μL of T2 equivalent toxin based on activity. Collectively, the data demonstrated that all of the wallboard types supported growth of fungi with the ability to elicit harmful biological responses with the potential to negatively impact human health.
De Cort, W; Haesebrouck, F; Ducatelle, R; van Immerseel, F
2015-01-01
Consumption of contaminated poultry meat is still an important cause of Salmonella infections in humans. Colonization inhibition (CI) occurs when a live Salmonella strain is administered to chickens and subsequently protects against challenge with another Salmonella strain belonging to the same serotype. A Salmonella Enteritidis hilAssrAfliG deletion mutant has previously been proven to reduce colonization and shedding of a wild-type Salmonella Enteritidis strain in newly hatched broilers after experimental infection. In this study, we compared two administration routes for this strain. Administering the Salmonella Enteritidis ΔhilAssrAfliG strain through drinking water on the first day of life resulted in decreased fecal shedding and cecal colonization of a wild-type Salmonella Enteritidis challenge strain administered 24 h later using a seeder-bird model. When administering the CI strain by coarse spray on newly hatched broiler chicks, an even more pronounced reduction of cecal colonization was observed, and fecal shedding of the Salmonella Enteritidis challenge strain ceased during the course of the experiment. These data suggest that administering a Salmonella Enteritidis ΔhilAssrAfliG strain to newly hatched chicks using a coarse spray is a useful and effective method that reduces colonization and shedding of a wild-type Salmonella Enteritidis strain after early challenge. © 2014 Poultry Science Association Inc.
Kojima, Ayuchi; Nakano, Kazuhiko; Wada, Koichiro; Takahashi, Hirokazu; Katayama, Kazufumi; Yoneda, Masato; Higurashi, Takuma; Nomura, Ryota; Hokamura, Kazuya; Muranaka, Yoshinori; Matsuhashi, Nobuyuki; Umemura, Kazuo; Kamisaki, Yoshinori; Nakajima, Atsushi; Ooshima, Takashi
2012-01-01
Although oral bacteria-associated systemic diseases have been reported, association between Streptococcus mutans, pathogen of dental caries, and ulcerative colitis (UC) has not been reported. We investigated the effect of various S. mutans strains on dextran sodium sulfate (DSS)-induced mouse colitis. Administration of TW295, the specific strain of S. mutans, caused aggravation of colitis; the standard strain, MT8148 did not. Localization of TW295 in hepatocytes in liver was observed. Increased expression of interferon-γ in liver was also noted, indicating that the liver is target organ for the specific strain of S. mutans-mediated aggravation of colitis. The detection frequency of the specific strains in UC patients was significantly higher than in healthy subjects. Administration of the specific strains of S. mutans isolated from patients caused aggravation of colitis. Infection with highly-virulent specific types of S. mutans might be a potential risk factor in the aggravation of UC. PMID:22451861
Deciphering the biodiversity of Listeria monocytogenes lineage III strains by polyphasic approaches.
Zhao, Hanxin; Chen, Jianshun; Fang, Chun; Xia, Ye; Cheng, Changyong; Jiang, Lingli; Fang, Weihuan
2011-10-01
Listeria monocytogenes is a foodborne pathogen of humans and animals. The majority of human listeriosis cases are caused by strains of lineages I and II, while lineage III strains are rare and seldom implicated in human listeriosis. We revealed by 16S rRNA sequencing the special evolutionary status of L. monocytogenes lineage III, which falls between lineages I and II strains of L. monocytogenes and the non-pathogenic species L. innocua and L. marthii in the dendrogram. Thirteen lineage III strains were then characterized by polyphasic approaches. Biochemical reactions demonstrated 8 biotypes, internalin profiling identified 10 internal-in types clustered in 4 groups, and multilocus sequence typing differentiated 12 sequence types. These typing schemes show that lineage III strains represent the most diverse population of L. monocytogenes, and comprise at least four subpopulations IIIA-1, IIIA-2, HIB, and IIIC. The in vitro and in vivo virulence assessments showed that two lineage IIIA-2 strains had reduced pathogenicity, while the other lineage III strains had comparable virulence to lineages I and II. The HIB strains are phylogenetically distinct from other sub-populations, providing additional evidence that this sublineage represents a novel lineage. The two biochemical reactions L-rhamnose and L-lactate alkalinization, and 10 internalins were identified as potential markers for lineage III subpopulations. This study provides new insights into the biodiversity and population structure of lineage III strains, which are important for understanding the evolution of the L. mono-cytogenes-L. innocua clade.
Dan, Michael; Yair, Yael; Samosav, Alex; Gottesman, Tamar; Yossepowitch, Orit; Harari-Schwartz, Orna; Tsivian, Alexander; Schreiber, Rachel; Gophna, Uri
2015-01-01
Transrectal ultrasound-guided (TRUS) prostate biopsy is a very common procedure that is generally considered relatively safe. However, severe sepsis can occur after TRUS prostate biopsies, with Escherichia coli being the predominant causative agent. A common perception is that the bacteria that cause post-TRUS prostate biopsy infections originate in the urinary tract, but this view has not been adequately tested. Yet other authors believe on the basis of indirect evidence that the pathogens are introduced into the bloodstream by the biopsy needle after passage through the rectal mucosa. We compared E. coli isolates from male patients with bacteremic urinary tract infection (B-UTI) to isolates of patients with post prostate biopsy sepsis (PPBS), in terms of their sequence types, determined by multi-locus sequence typing (MLST) and their virulence markers. B-UTI isolates were much richer in virulence genes than were PPBS isolates, supporting the hypothesis that E. coli causing PPBS derive directly from the rectum. Sequence type 131 (ST131) strains and related strain from the ST131 were common (>30%) among the E. coli isolates from PPBS patients as well as from B-UTI patients and all these strains expressed extended spectrum beta-lactamases. Our finding supports the hypothesis that E. coli causing PPBS derive directly from the rectum, bypassing the urinary tract, and therefore do not require many of the virulence capabilities necessary for an E. coli strain that must persist in the urinary tract. In light of the increasing prevalence of highly resistant E. coli strains, a new approach for prevention of PPBS is urgently required. Copyright © 2015. Published by Elsevier GmbH.
Nova, M X Vila; Borges, L R; de Sousa, A C B; Brasileiro, B T R V; Lima, E A L A; da Costa, A F; de Oliveira, N T
2011-02-22
Onion anthracnose, caused by Colletotrichum gloeosporioides, is one of the main diseases of onions in the State of Pernambuco. We examined the pathogenicity of 15 C. gloeosporioides strains and analyzed their genetic variability using RAPDs and internal transcribed spacers (ITS) of the rDNA region. Ten of the strains were obtained from substrates and hosts other than onion, including chayote (Sechium edule), guava (Psidium guajava), pomegranate (Punica granatum), water from the Capibaribe River, maracock (Passiflora sp), coconut (Cocus nucifera), surinam cherry (Eugenia uniflora), and marine soil; five isolates came from onions collected from four different regions of the State of Pernambuco and one region of the State of Amazonas. Pathogenicity tests were carried out using onion leaves and bulbs. All strains were capable of causing disease in leaves, causing a variable degree of lesions on the leaves; four strains caused the most severe damage. In the onion bulb tests, only three of the above strains caused lesions. Seven primers of arbitrary sequences were used in the RAPD analysis, generating polymorphic bands that allowed the separation of the strains into three distinct groups. The amplification products generated with the primers ITS1 and ITS4 also showed polymorphism when digested with three restriction enzymes, DraI, HaeIII and MspI. Only the latter two demonstrated genetic variations among the strains. These two types of molecular markers were able to differentiate the strain from the State of Amazonas from those of the State of Pernambuco. However, there was no relationship between groups of strains, based on molecular markers, and degree of pathogenicity for onion leaves and bulbs.
A Real-Time PCR with Melting Curve Analysis for Molecular Typing of Vibrio parahaemolyticus.
He, Peiyan; Wang, Henghui; Luo, Jianyong; Yan, Yong; Chen, Zhongwen
2018-05-23
Foodborne disease caused by Vibrio parahaemolyticus is a serious public health problem in many countries. Molecular typing has a great scientific significance and application value for epidemiological research of V. parahaemolyticus. In this study, a real-time PCR with melting curve analysis was established for molecular typing of V. parahaemolyticus. Eighteen large variably presented gene clusters (LVPCs) of V. parahaemolyticus which have different distributions in the genome of different strains were selected as targets. Primer pairs of 18 LVPCs were distributed into three tubes. To validate this newly developed assay, we tested 53 Vibrio parahaemolyticus strains, which were classified in 13 different types. Furthermore, cluster analysis using NTSYS PC 2.02 software could divide 53 V. parahaemolyticus strains into six clusters at a relative similarity coefficient of 0.85. This method is fast, simple, and conveniently for molecular typing of V. parahaemolyticus.
Genotyping of Indian antigenic, vaccine, and field Brucella spp. using multilocus sequence typing.
Shome, Rajeswari; Krithiga, Natesan; Shankaranarayana, Padmashree B; Jegadesan, Sankarasubramanian; Udayakumar S, Vishnu; Shome, Bibek Ranjan; Saikia, Girin Kumar; Sharma, Narendra Kumar; Chauhan, Harshad; Chandel, Bharat Singh; Jeyaprakash, Rajendhran; Rahman, Habibur
2016-03-31
Brucellosis is one of the most important zoonotic diseases that affects multiple livestock species and causes great economic losses. The highly conserved genomes of Brucella, with > 90% homology among species, makes it important to study the genetic diversity circulating in the country. A total of 26 Brucella spp. (4 reference strains and 22 field isolates) and 1 B. melitensis draft genome sequence from India (B. melitensis Bm IND1) were included for sequence typing. The field isolates were identified by biochemical tests and confirmed by both conventional and quantitative polymerase chain reaction (qPCR) targeting bcsp 31Brucella genus-specific marker. Brucella speciation and biotyping was done by Bruce ladder, probe qPCR, and AMOS PCRs, respectively, and genotyping was done by multilocus sequence typing (MLST). The MLST typing of 27 Brucella spp. revealed five distinct sequence types (STs); the B. abortus S99 reference strain and 21 B. abortus field isolates belonged to ST1. On the other hand, the vaccine strain B. abortus S19 was genotyped as ST5. Similarly, B. melitensis 16M reference strain and one B. melitensis field isolate were grouped into ST7. Another B. melitensis field isolate belonged to ST8 (draft genome sequence from India), and only B. suis 1330 reference strain was found to be ST14. The sequences revealed genetic similarity of the Indian strains to the global reference and field strains. The study highlights the usefulness of MLST for typing of field isolates and validation of reference strains used for diagnosis and vaccination against brucellosis.
Arent, Z J; Gilmore, C; San-Miguel Ayanz, J M; Neyra, L Quevedo; García-Peña, F J
2017-03-01
Strains of Leptospira serogroup Pomona are known to cause widespread animal infections in many parts of the world. Forty-three isolates retrieved from domestic animals and wild small mammals suggest that serogroup Pomona is epidemiologically relevant in Spain. This is supported by the high prevalence of serovar Pomona antibodies in livestock and wild animals. In this study, the strains were serologically and genetically characterized in an attempt to elucidate their epidemiology. Serological typing was based on the microscopic agglutination test but molecular typing involved species-specific polymerase chain reaction, restriction endonuclease analysis, and multiple-locus variable-number tandem repeat analysis. The study revealed that the infections are caused by two serovars, namely Pomona and Mozdok. Serovar Pomona was derived only from farm animals and may be adapted to pigs, which are recognized as the maintenance host. The results demonstrated that serovar Pomona is genetically heterogeneous and three different types were recognized. This heterogeneity was correlated with different geographical distributions of the isolates. All strains derived from small wild mammals were identified as serovar Mozdok. Some isolates of this serovar retrieved from cattle confirm that this serovar may also be the cause of infections in food-producing animals for which these wild species may be source of infection.
Johnson, Timothy J.; Wannemuehler, Yvonne; Kariyawasam, Subhashinie; Johnson, James R.; Logue, Catherine M.
2012-01-01
Escherichia coli strains that cause disease outside the intestine are known as extraintestinal pathogenic E. coli (ExPEC) and include pathogens of humans and animals. Previously, the genome of avian-pathogenic E. coli (APEC) O1:K1:H7 strain O1, from ST95, was sequenced and compared to those of several other E. coli strains, identifying 43 genomic islands. Here, the genomic islands of APEC O1 were compared to those of other sequenced E. coli strains, and the distribution of 81 genes belonging to 12 APEC O1 genomic islands among 828 human and avian ExPEC and commensal E. coli isolates was determined. Multiple islands were highly prevalent among isolates belonging to the O1 and O18 serogroups within phylogenetic group B2, which are implicated in human neonatal meningitis. Because of the extensive genomic similarities between APEC O1 and other human ExPEC strains belonging to the ST95 phylogenetic lineage, its ability to cause disease in a rat model of sepsis and meningitis was assessed. Unlike other ST95 lineage strains, APEC O1 was unable to cause bacteremia or meningitis in the neonatal rat model and was significantly less virulent than uropathogenic E. coli (UPEC) CFT073 in a mouse sepsis model, despite carrying multiple neonatal meningitis E. coli (NMEC) virulence factors and belonging to the ST95 phylogenetic lineage. These results suggest that host adaptation or genome modifications have occurred either in APEC O1 or in highly virulent ExPEC isolates, resulting in differences in pathogenicity. Overall, the genomic islands examined provide targets for further discrimination of the different ExPEC subpathotypes, serogroups, phylogenetic types, and sequence types. PMID:22467781
Johnson, Timothy J; Wannemuehler, Yvonne; Kariyawasam, Subhashinie; Johnson, James R; Logue, Catherine M; Nolan, Lisa K
2012-06-01
Escherichia coli strains that cause disease outside the intestine are known as extraintestinal pathogenic E. coli (ExPEC) and include pathogens of humans and animals. Previously, the genome of avian-pathogenic E. coli (APEC) O1:K1:H7 strain O1, from ST95, was sequenced and compared to those of several other E. coli strains, identifying 43 genomic islands. Here, the genomic islands of APEC O1 were compared to those of other sequenced E. coli strains, and the distribution of 81 genes belonging to 12 APEC O1 genomic islands among 828 human and avian ExPEC and commensal E. coli isolates was determined. Multiple islands were highly prevalent among isolates belonging to the O1 and O18 serogroups within phylogenetic group B2, which are implicated in human neonatal meningitis. Because of the extensive genomic similarities between APEC O1 and other human ExPEC strains belonging to the ST95 phylogenetic lineage, its ability to cause disease in a rat model of sepsis and meningitis was assessed. Unlike other ST95 lineage strains, APEC O1 was unable to cause bacteremia or meningitis in the neonatal rat model and was significantly less virulent than uropathogenic E. coli (UPEC) CFT073 in a mouse sepsis model, despite carrying multiple neonatal meningitis E. coli (NMEC) virulence factors and belonging to the ST95 phylogenetic lineage. These results suggest that host adaptation or genome modifications have occurred either in APEC O1 or in highly virulent ExPEC isolates, resulting in differences in pathogenicity. Overall, the genomic islands examined provide targets for further discrimination of the different ExPEC subpathotypes, serogroups, phylogenetic types, and sequence types.
Auger, Jean-Philippe; Fittipaldi, Nahuel; Benoit-Biancamano, Marie-Odile; Segura, Mariela; Gottschalk, Marcelo
2016-01-01
Multilocus sequence typing previously identified three predominant sequence types (STs) of Streptococcus suis serotype 2: ST1 strains predominate in Eurasia while North American (NA) strains are generally ST25 and ST28. However, ST25/ST28 and ST1 strains have also been isolated in Asia and NA, respectively. Using a well-standardized mouse model of infection, the virulence of strains belonging to different STs and different geographical origins was evaluated. Results demonstrated that although a certain tendency may be observed, S. suis serotype 2 virulence is difficult to predict based on ST and geographical origin alone; strains belonging to the same ST presented important differences of virulence and did not always correlate with origin. The only exception appears to be NA ST28 strains, which were generally less virulent in both systemic and central nervous system (CNS) infection models. Persistent and high levels of bacteremia accompanied by elevated CNS inflammation are required to cause meningitis. Although widely used, in vitro tests such as phagocytosis and killing assays require further standardization in order to be used as predictive tests for evaluating virulence of strains. The use of strains other than archetypal strains has increased our knowledge and understanding of the S. suis serotype 2 population dynamics. PMID:27409640
Ben Said, M; Abbassi, M S; Bianchini, V; Sghaier, S; Cremonesi, P; Romanò, A; Gualdi, V; Hassen, A; Luini, M V
2016-12-01
Staphylococcus aureus is a major agent of bovine mastitis in dairy herds, causing economic losses in dairy industry worldwide. In addition, milk and milk-products contaminated by Staph. aureus can cause harmful human diseases. The aim of this study was to characterize Staph. aureus strains isolated from dairy farms in Tunisia. Bulk tank milk (n = 32) and individual cow milk (n = 130) samples were collected during the period of 2013-2014. Forty-three Staph. aureus isolates were recovered and typed by spa typing, 16S-23S rRNA intergenic spacer (RS-PCR) and multiplex PCRs for 22 virulence genes. Antimicrobial resistance was also investigated with a disc diffusion test. A selected subsample of 22 strains was additionally genotyped by multilocus sequence typing. Seventeen spa types were recovered, and t2421 (n = 10), t521 (n = 6) and t2112 (n = 5) were the most common. Fourteen different RS-PCR genotypes grouped into 11 clusters were detected in our study, with predominance of the R VI genotype (n = 24). Eight sequence types were identified and Clonal Complex 97, corresponding to RS-PCR cluster R, was the most common (n = 10), followed by CC1 (n = 4), CC15 (n = 3) and other four accounting for one or two strains. Different combinations of virulence genes were reported, and enterotoxin genes were present in few strains (seh, n = 4; sea, n = 2; sea and seh, n = 2; sec and sel, n = 2). The majority of strains were resistant only to penicillin; only one strain was found to be multiresistant and no methicillin-resistant Staph. aureus was demonstrated. Our study reported the isolation of CC97 from bovine milk in Tunisia for the first time and confirmed the relevance of this lineage in intramammary infection in cows. This paper describes the characteristics of Staphylococcus aureus isolated from bulk tank and individual cow milk in Tunisia. All strains were genotyped by spa typing and RS-PCR, a method based on the amplification of the 16S-23S rRNA intergenic spacer region, and multiplex PCRs for 22 virulence genes. A selected subsample of strains was also genotyped by multilocus sequence typing. All strains were tested for antimicrobial resistance. Our study evidences a predominance of strains belonging to Clonal Complex 97. Methicillin-resistant strains were not detected, and overall low level of antimicrobial resistance was reported. © 2016 The Society for Applied Microbiology.
Complete genome sequence of the fish pathogen Flavobacterium columnare strain C#2
USDA-ARS?s Scientific Manuscript database
Flavobacterium columnare is a Gram-negative bacterial pathogen that causes columnaris disease of freshwater fish. Flavobacterium columnare strain C#2 was isolated from a diseased warm water fish and is typed as genomovar II. The genome consists of a single 3.33 Mb circular chromosome with 2,689 pred...
Strain effects in Hg/sub 1-//sub x/Cd/sub x/Te (xapprox. 0. 2) photovoltaic arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, E.; Mainzer, N.
1989-03-01
The effect of stress and strain on the performance of Hg/sub 1-//sub x/Cd/sub x/Te (xapprox.0.2) photovoltaic arrays was studied both in the dark and under illumination. Stress, external as well as internal, affects the current--voltage characteristic of the photodiode. The combined action of illumination and strain yields an anomalous response to light absorption in the device. A model is conceived wherein the photodiode and guard ring are treated as a metal-insulator semiconductor field effect transistor (MISFET). Stress developed in the vicinity of small contact windows causes n-type damage, which brings about a forward bias in the device. The effect ofmore » strain on the reverse current of the photodiode is explained by a change in the n-channel conductivity of the MISFET. This change is caused by charges which are due either to a piezoelectric effect or n-type damage. Using this model observed phenomena in Hg/sub 1-//sub x/Cd/sub x/Te photovoltaic arrays are explained, as due to internal stresses originating from wafer deformation.« less
New Mycobacterium tuberculosis Complex Sublineage, Brazzaville, Congo
Malm, Sven; Linguissi, Laure S. Ghoma; Tekwu, Emmanuel M.; Vouvoungui, Jeannhey C.; Kohl, Thomas A.; Beckert, Patrick; Sidibe, Anissa; Rüsch-Gerdes, Sabine; Madzou-Laboum, Igor K.; Kwedi, Sylvie; Penlap Beng, Véronique; Frank, Matthias; Ntoumi, Francine
2017-01-01
Tuberculosis is a leading cause of illness and death in Congo. No data are available about the population structure and transmission dynamics of the Mycobacterium tuberculosis complex strains prevalent in this central Africa country. On the basis of single-nucleotide polymorphisms detected by whole-genome sequencing, we phylogenetically characterized 74 MTBC isolates from Brazzaville, the capital of Congo. The diversity of the study population was high; most strains belonged to the Euro-American lineage, which split into Latin American Mediterranean, Uganda I, Uganda II, Haarlem, X type, and a new dominant sublineage named Congo type (n = 26). Thirty strains were grouped in 5 clusters (each within 12 single-nucleotide polymorphisms), from which 23 belonged to the Congo type. High cluster rates and low genomic diversity indicate recent emergence and transmission of the Congo type, a new Euro-American sublineage of MTBC. PMID:28221129
New Mycobacterium tuberculosis Complex Sublineage, Brazzaville, Congo.
Malm, Sven; Linguissi, Laure S Ghoma; Tekwu, Emmanuel M; Vouvoungui, Jeannhey C; Kohl, Thomas A; Beckert, Patrick; Sidibe, Anissa; Rüsch-Gerdes, Sabine; Madzou-Laboum, Igor K; Kwedi, Sylvie; Penlap Beng, Véronique; Frank, Matthias; Ntoumi, Francine; Niemann, Stefan
2017-03-01
Tuberculosis is a leading cause of illness and death in Congo. No data are available about the population structure and transmission dynamics of the Mycobacterium tuberculosis complex strains prevalent in this central Africa country. On the basis of single-nucleotide polymorphisms detected by whole-genome sequencing, we phylogenetically characterized 74 MTBC isolates from Brazzaville, the capital of Congo. The diversity of the study population was high; most strains belonged to the Euro-American lineage, which split into Latin American Mediterranean, Uganda I, Uganda II, Haarlem, X type, and a new dominant sublineage named Congo type (n = 26). Thirty strains were grouped in 5 clusters (each within 12 single-nucleotide polymorphisms), from which 23 belonged to the Congo type. High cluster rates and low genomic diversity indicate recent emergence and transmission of the Congo type, a new Euro-American sublineage of MTBC.
Lethal factor is not required for Bacillus anthracis virulence in guinea pigs and rabbits.
Levy, Haim; Weiss, Shay; Altboum, Zeev; Schlomovitz, Josef; Rothschild, Nili; Blachinsky, Eran; Kobiler, David
2011-11-01
The major virulence factor of Bacillus anthracis is the tripartite anthrax toxin, comprising the protective antigen (PA), lethal factor (LF) and edema factor (EF). The LF of B. anthracis is a metalloprotease that has been shown to play an important role in pathogenicity. Deletion of this gene (lef) in the Sterne strain was reported to dramatically reduce the pathogenicity of this strain in mice, and was reported to be as dramatic as the deletion of PA. We evaluated the effect on pathogenicity of the lef deletion in the fully virulent Vollum strain in guinea pigs and NZW rabbits by either subcutaneous injection or intranasal instillation. In guinea pigs, no major differences between the mutant strain and the wild type could be detected in the LD(50) or mean time to death values. On the other hand, the lef deletion caused death of 50-70% of all rabbits infected with the mutant spores at doses equivalent or higher than the wild type LD(50). The surviving rabbits, which were infected with spore doses higher than the wild type LD(50), developed a protective immune response that conferred resistance to challenge with the wild type strain. These findings may indicate that the mutant lacking the LF is capable of host colonization which causes death in 50-70% of the animals and a protective immune response in the others. These results indicate that unlike the data obtained in mice, the LF mutation does not abolish B. anthracis pathogenicity. Copyright © 2011 Elsevier Ltd. All rights reserved.
Godornes, Charmie; Giacani, Lorenzo; Barry, Alyssa E.; Mitja, Oriol
2017-01-01
Background Yaws is a neglected tropical disease, caused by Treponema pallidum subsp. pertenue. The disease causes chronic lesions, primarily in young children living in remote villages in tropical climates. As part of a global yaws eradication campaign initiated by the World Health Organization, we sought to develop and evaluate a molecular typing method to distinguish different strains of T. pallidum subsp. pertenue for disease control and epidemiological purposes. Methods and principal findings Published genome sequences of strains of T. pallidum subsp. pertenue and pallidum were compared to identify polymorphic genetic loci among the strains. DNA from a number of existing historical Treponema isolates, as well as a subset of samples from yaws patients collected in Lihir Island, Papua New Guinea, were analyzed using these targets. From these data, three genes (tp0548, tp0136 and tp0326) were ultimately selected to give a high discriminating capability among the T. pallidum subsp. pertenue samples tested. Intragenic regions of these three target genes were then selected to enhance the discriminating capability of the typing scheme using short readily amplifiable loci. This 3-gene multilocus sequence typing (MLST) method was applied to existing historical human yaws strains, the Fribourg-Blanc simian isolate, and DNA from 194 lesion swabs from yaws patients on Lihir Island, Papua New Guinea. Among all samples tested, fourteen molecular types were identified, seven of which were found in patient samples and seven among historical isolates or DNA. Three types (JG8, TD6, and SE7) were predominant on Lihir Island. Conclusions This MLST approach allows molecular typing and differentiation of yaws strains. This method could be a useful tool to complement epidemiological studies in regions where T. pallidum subsp. pertenue is prevalent with the overall goals of improving our understanding of yaws transmission dynamics and helping the yaws eradication campaign to succeed. PMID:29281641
Yao, Yufeng; Xie, Yi; Perace, Donna; Zhong, Yi; Lu, Jie; Tao, Jing; Guo, Xiaokui; Kim, Kwang Sik
2009-11-01
Type III secretion systems (T3SSs) have been documented in many Gram-negative bacteria, including enterohemorrhagic Escherichia coli. We have previously shown the existence of a putative T3SS in meningitis-causing E. coli K1 strains, referred to as E. coli type III secretion 2 (ETT2). The sequence of ETT2 in meningitis-causing E. coli K1 strain EC10 (O7:K1) revealed that ETT2 comprises the epr, epa and eiv genes, but bears mutations, deletions and insertions. We constructed the EC10 mutants deleted of ETT2 or eivA gene, and their contributions to bacterial pathogenesis were evaluated in human brain microvascular endothelial cells (HBMECs). The deletion mutant of ETT2 exhibited defects in invasion and intracellular survival compared with the parental E. coli K1 strain EC10. The mutant deleted of eivA within ETT2 was also significantly defective in invasion and intracellular survival in HBMECs, and the defects of the eiv mutant were restored to the levels of the parent strain EC10 by transcomplementation. These findings suggest that ETT2 plays a role in the pathogenesis of E. coli K1 infection, including meningitis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cartamil-Bueno, S. J., E-mail: s.j.cartamilbueno@tudelft.nl, E-mail: rbolivar@ugr.es; Rodríguez-Bolívar, S., E-mail: s.j.cartamilbueno@tudelft.nl, E-mail: rbolivar@ugr.es
2015-06-28
The effects of tensile strain on the current-voltage (I-V) characteristics of hydrogenated-edge armchair graphene nanoribbons are investigated by using DFT theory. The strain is introduced in two different ways related to the two types of systems studied in this work: in-plane strained systems (A) and out-of-plane strained systems due to bending (B). These two kinds of strain lead to make a distinction among three cases: in-plane strained systems with strained electrodes (A1) and with unstrained electrodes (A2), and out-of-plane homogeneously strained systems with unstrained, fixed electrodes (B). The systematic simulations to calculate the electronic transmission between two electrodes were focusedmore » on systems of 8 and 11 dimers in width. The results show that the differences between cases A2 and B are negligible, even though the strain mechanisms are different: in the plane case, the strain is uniaxial along its length; while in the bent case, the strain is caused by the arc deformation. Based on the study, a new type of nanoelectromechanical system solid state switching device is proposed.« less
Vaccine-strain herpes zoster found in the trigeminal nerve area in a healthy child: A case report.
Iwasaki, Sayaka; Motokura, Kouji; Honda, Yoshitaka; Mikami, Masamitsu; Hata, Daisuke; Hata, Atsuko
2016-12-01
A previously healthy 2-year-old girl, vaccinated for varicella at 17 months, was admitted because of left-sided facial herpes zoster caused by vaccine-strain varicella-zoster virus (VZV). She recovered fully with no complication after intravenous treatment using acyclovir. Earlier reports have described that herpes zoster (HZ) rashes caused by vaccine-strain VZV tend to occur on the dermis corresponding to the skin area where the varicella vaccine was received. However, rashes appeared on this girl only in the trigeminal nerve area, which is unrelated to the vaccinated site. Results underscore the importance of distinguishing vaccine-strain VZV from wild-type VZV whenever encountering HZ cases after vaccination, even in immunocompetent children, irrespective of the skin lesion site. Monitoring vaccine-strain HZ incidence rates is expected to elucidate many aspects of varicella vaccine safety. Copyright © 2016 Elsevier B.V. All rights reserved.
Characterization of clinical Vibrio parahaemolyticus strains in Zhoushan, China, from 2013 to 2014.
Wang, Hongling; Tang, Xiaoyang; Su, Yi-Cheng; Chen, Jiabei; Yan, Jianbo
2017-01-01
Vibrio parahaemolyticus is recognized as major cause of foodborne illness of global public health concern. This study collected 107 strains of V. parahaemolyticus during active surveillance of diarrheal diseases in hospitals in Zhoushan during 2013 to 2014 and investigated their serotypes, virulence genes (tdh, trh, and orf8), antimicrobial resistance, and genotypes. The dominant serotypes of the 107 clinical strains were O3:K6, O4:K8, and O4:KUT with 87.9% and 3.7% of the strains carrying the virulence genes tdh and trh, respectively. Molecular typing by pulsed-field gel electrophoresis indicated divergence among the clinical strains. Most isolates were sensitive to the common antimicrobial agents used against the Vibrio species except ampicillin. We conclude that continuous surveillance of V. parahaemolyticus in diarrhea patients is a public health priority and is useful for conducting risk assessment of foodborne illnesses caused by V. parahaemolyticus.
Connerton, Phillippa; Wain, John; Hien, Tran T.; Ali, Tahir; Parry, Christopher; Chinh, Nguyen T.; Vinh, Ha; Ho, Vo A.; Diep, To S.; Day, Nicholas P. J.; White, Nicholas J.; Dougan, Gordon; Farrar, Jeremy J.
2000-01-01
Multidrug-resistant Salmonella enterica serotype Typhi isolates from four outbreaks of typhoid fever in southern Vietnam between 1993 and 1997 were compared. Pulsed-field gel electrophoresis, bacteriophage and plasmid typing, and antibiotic susceptibilities showed that independent outbreaks of multidrug-resistant typhoid fever in southern Vietnam are caused by single bacterial strains. However, different outbreaks do not derive from the clonal expansion of a single multidrug-resistant serotype Typhi strain. PMID:10655411
Yoshihara, Ryouhei; Li, ZhengHao; Ishimori, Keisuke; Kuwabara, Kazuki; Hatakeyama, Shin; Tanaka, Shuuitsu
2017-08-01
To elucidate genetic mechanisms affecting the lifespan of the filamentous fungus Neurospora crassa, we attempted to identify a gene of which a defect causes a short-lifespan. By screening a Neurospora knockout library, provided by the Fungal Genetics Stock Center at Kansas State University, several KO strains with a short-lifespan were isolated. FGSC#11693 is one of these, which shows similar phenotypes to known Neurospora short-lifespan mutants as follows: 1) hyphal growth ceases after about 2weeks of cultivation, despite that of the wild-type continuing for over 2years, 2) viability of conidia is lower than that of the wild-type, and 3) high sensitivity to mutagens such as methyl methanesulfonate, ultraviolet radiation, and hydroxyl urea is exhibited. The NCU number of the knocked-out gene in the KO strain is NCU02695, and recovery from the short-lifespan and mutagen sensitivity was achieved by the introduction of this gene from the wild-type. The putative amino acid sequence of the knocked-out gene contains two high mobility group box domains and a mitochondrial localization signal is found at the N-terminal of this sequence. Upon analyzing the subcellular localization of the gene product fused with GFP, GFP signals were detected in mitochondria. From these observations, the gene and KO strain were named mitochondrial high mobility group box protein 1 (MHG1) and mhg1 KO strain, respectively. The amount of mtDNA relative to the nuclear amount was lower in the mhg1 KO strain than in the wild-type. mtDNA aberration was also observed in the mhg1 KO strain. These results suggest that the MHG1 protein plays an important role in the maintenance of mitochondrial DNA, and mitochondrial abnormality caused by mtDNA aberration is responsible for the short-lifespan of the mhg1 KO strain. Copyright © 2017 Elsevier Inc. All rights reserved.
Flores, Anthony R.; Galloway-Peña, Jessica; Sahasrabhojane, Pranoti; Saldaña, Miguel; Yao, Hui; Su, Xiaoping; Ajami, Nadim J.; Holder, Michael E.; Petrosino, Joseph F.; Thompson, Erika; Margarit Y Ros, Immaculada; Rosini, Roberto; Grandi, Guido; Horstmann, Nicola; Teatero, Sarah; McGeer, Allison; Fittipaldi, Nahuel; Rappuoli, Rino; Baker, Carol J.; Shelburne, Samuel A.
2015-01-01
The molecular mechanisms underlying pathogen emergence in humans is a critical but poorly understood area of microbiologic investigation. Serotype V group B Streptococcus (GBS) was first isolated from humans in 1975, and rates of invasive serotype V GBS disease significantly increased starting in the early 1990s. We found that 210 of 229 serotype V GBS strains (92%) isolated from the bloodstream of nonpregnant adults in the United States and Canada between 1992 and 2013 were multilocus sequence type (ST) 1. Elucidation of the complete genome of a 1992 ST-1 strain revealed that this strain had the highest homology with a GBS strain causing cow mastitis and that the 1992 ST-1 strain differed from serotype V strains isolated in the late 1970s by acquisition of cell surface proteins and antimicrobial resistance determinants. Whole-genome comparison of 202 invasive ST-1 strains detected significant recombination in only eight strains. The remaining 194 strains differed by an average of 97 SNPs. Phylogenetic analysis revealed a temporally dependent mode of genetic diversification consistent with the emergence in the 1990s of ST-1 GBS as major agents of human disease. Thirty-one loci were identified as being under positive selective pressure, and mutations at loci encoding polysaccharide capsule production proteins, regulators of pilus expression, and two-component gene regulatory systems were shown to affect the bacterial phenotype. These data reveal that phenotypic diversity among ST-1 GBS is mainly driven by small genetic changes rather than extensive recombination, thereby extending knowledge into how pathogens adapt to humans. PMID:25941374
Flores, Anthony R; Galloway-Peña, Jessica; Sahasrabhojane, Pranoti; Saldaña, Miguel; Yao, Hui; Su, Xiaoping; Ajami, Nadim J; Holder, Michael E; Petrosino, Joseph F; Thompson, Erika; Margarit Y Ros, Immaculada; Rosini, Roberto; Grandi, Guido; Horstmann, Nicola; Teatero, Sarah; McGeer, Allison; Fittipaldi, Nahuel; Rappuoli, Rino; Baker, Carol J; Shelburne, Samuel A
2015-05-19
The molecular mechanisms underlying pathogen emergence in humans is a critical but poorly understood area of microbiologic investigation. Serotype V group B Streptococcus (GBS) was first isolated from humans in 1975, and rates of invasive serotype V GBS disease significantly increased starting in the early 1990s. We found that 210 of 229 serotype V GBS strains (92%) isolated from the bloodstream of nonpregnant adults in the United States and Canada between 1992 and 2013 were multilocus sequence type (ST) 1. Elucidation of the complete genome of a 1992 ST-1 strain revealed that this strain had the highest homology with a GBS strain causing cow mastitis and that the 1992 ST-1 strain differed from serotype V strains isolated in the late 1970s by acquisition of cell surface proteins and antimicrobial resistance determinants. Whole-genome comparison of 202 invasive ST-1 strains detected significant recombination in only eight strains. The remaining 194 strains differed by an average of 97 SNPs. Phylogenetic analysis revealed a temporally dependent mode of genetic diversification consistent with the emergence in the 1990s of ST-1 GBS as major agents of human disease. Thirty-one loci were identified as being under positive selective pressure, and mutations at loci encoding polysaccharide capsule production proteins, regulators of pilus expression, and two-component gene regulatory systems were shown to affect the bacterial phenotype. These data reveal that phenotypic diversity among ST-1 GBS is mainly driven by small genetic changes rather than extensive recombination, thereby extending knowledge into how pathogens adapt to humans.
Liao, Kang; Chen, Yili; Wang, Menghe; Guo, Penghao; Yang, Qiwen; Ni, Yuxing; Yu, Yunsong; Hu, Bijie; Sun, Ziyong; Huang, Wenxiang; Wang, Yong; Wu, Anhua; Feng, Xianju; Luo, Yanping; Hu, Zhidong; Chu, Yunzhuo; Chen, Shulan; Cao, Bin; Su, Jianrong; Gui, Bingdong; Duan, Qiong; Zhang, Shufang; Shao, Haifeng; Kong, Haishen; Xu, Yingchun
2017-01-01
Recently, the emergence of multidrug-resistant organisms such as extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae has raised considerable concern regarding the appropriate treatment of intra-abdominal infections (IAIs). In this study, we investigated the molecular characteristics of ESBL among clinical isolates of Escherichia coli and Klebsiella pneumoniae causing IAIs and their pattern of antimicrobial resistance, which can provide useful information about the epidemiology and risk factors associated with these infections. One hundred sixty-seven E.coli and 47 K. pneumoniae ESBL-producing strains causing IAIs were collected from 9 hospitals in China, during 2012 and 2013. The antimicrobial susceptibility profile of these strains was determined. Polymerase chain reaction and sequencing were performed to identify genes for β-lactamase (blaTEM, blaSHV, blaOXA-1-like, and blaCTX-M). The isolates were also analyzed by pulsed-field gel electrophoresis (PFGE). In 167 ESBL-producing E. coli strains, 104 strains (62.3%) were positive for CTX-M, and 9 strains (5.39%) were positive for SHV. Among the 47 K. pneumoniae strains, 35 strains (74.5%) were positive for SHV-2a, 12 strains (25.5%) were positive for CTX-M. No TEM-type and OXA-1-like strain was detected among all the ESBL-producing strains. Regarding the CTX-M-positive E. coli and K. pneumoniae strains, CTX-M-15 was the most common genotype in E. coli and K. pneumoniae strains, accounting for 28.7% and 17.0%, respectively, followed by CTX-M-55 accounting for 16.2% and 2.13%, respectively; the remaining genotypes included CTX-M-123 and CTX-M-82. PFGE showed that E.coli and K. pneumoniae ESBL-producing strains causing IAIs were diverse and that emerging resistance may not be due to the dissemination of national clones. The present study revealed that in ESBL-producing strains causing IAIs in China, the most common genotype for E.coli was CTX-M-15 and for K. pneumoniae was SHV-2a. However, there was a wide diversity of strains causing IAIs among the ESBL-producing E. coli and K. pneumoniae. Copyright © 2016 Elsevier Inc. All rights reserved.
Viral repression of fungal pheromone precursor gene expression.
Zhang, L; Baasiri, R A; Van Alfen, N K
1998-02-01
Biological control of chestnut blight caused by the filamentous ascomycete Cryphonectria parasitica can be achieved with a virus that infects this fungus. This hypovirus causes a perturbation of fungal development that results in low virulence (hypovirulence), poor asexual sporulation, and female infertility without affecting fungal growth in culture. At the molecular level, the virus is known to affect the transcription of a number of fungal genes. Two of these genes, Vir1 and Vir2, produce abundant transcripts in noninfected strains of the fungus, but the transcripts are not detectable in virus-infected strains. We report here that these two genes encode the pheromone precursors of the Mat-2 mating type of the fungus; consequently, these genes have been renamed Mf2/1 and Mf2/2. To determine if the virus affects the mating systems of both mating types of this fungus, the pheromone precursor gene, Mf1/1, of a Mat-1 strain was cloned and likewise was found to be repressed in virus-infected strains. The suppression of transcription of the pheromone precursor genes of this fungus could be the cause of the mating defect of infected strains of the fungus. Although published reports suggest that a G alpha(i) subunit may be involved in this regulation, our results do not support this hypothesis. The prepropheromone encoded by Mf1/1 is structurally similar to that of the prepro-p-factor of Schizosaccharomyces pombe. This is the first description of the complete set of pheromone precursor genes encoded by a filamentous ascomycete.
Isolation and characterization of Escherichia coli pili from diverse clinical sources.
Salit, I E; Vavougios, J; Hofmann, T
1983-11-01
Bacteria which attach to different mucous membranes should have differing specificities of adherence in vitro. Human Escherichia coli isolates from blood and urine (pathogens) and from stool and throat (commensals) were characterized as to the patterns of hemagglutination (HA), as well as the structure and function of their pili. Bacterial HA was done in microtiter plates and on slides after bacterial growth in broth or agar. Human erythrocytes were agglutinated by 95% of the pathogens and 65 to 70% of the commensals grown in broth or agar. Mannose-resistant HA was characteristically caused by pathogens, and commensals characteristically caused mannose-sensitive HA of guinea pig cells. Strains often had both mannose-resistant and mannose-sensitive reactions, or even a mannose-paradoxical reaction. Pathogens more often caused HA, but titers were lower than those for commensals. Slide HA was less sensitive than the microtiter method. All isolates were piliated. Commensals also had more pili than pathogens when grown in broth (117.8 versus 38.3 pili per bacterium), but pathogens had more pili after growth on agar (32.1 versus 8.1 pili per bacterium). Isolates causing high-titer HA had large numbers of pili (greater than 85 pili per bacterium), but some well-piliated strains were non-hemagglutinating. Pili were purified from seven E. coli strains from different sites of isolation and with different erythrocyte-binding specificity. Pili usually migrated as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. However, more than one type of pilus could be copurified from some strains since there were two or more bands after separation in octyl-glucoside and two different amino terminal sequences. Protein sequencing was done on five different pili: four resembled type 1 pili and one was a P fimbria. The type 1-like pili (strains 2239 and 9353) had an initial variable sequence of 1 to 5 residues, followed by a common region of 21 residues. The P fimbria (strain 7714) had different erythrocyte-binding specificity but was still 27% homologous with 2239 and 9353. E. coli strains from different body sites have characteristic attachments to erythrocytes. Pili derived from these different sources may also have different binding specificity, but they are similar in primary structure.
Isolation and characterization of Escherichia coli pili from diverse clinical sources.
Salit, I E; Vavougios, J; Hofmann, T
1983-01-01
Bacteria which attach to different mucous membranes should have differing specificities of adherence in vitro. Human Escherichia coli isolates from blood and urine (pathogens) and from stool and throat (commensals) were characterized as to the patterns of hemagglutination (HA), as well as the structure and function of their pili. Bacterial HA was done in microtiter plates and on slides after bacterial growth in broth or agar. Human erythrocytes were agglutinated by 95% of the pathogens and 65 to 70% of the commensals grown in broth or agar. Mannose-resistant HA was characteristically caused by pathogens, and commensals characteristically caused mannose-sensitive HA of guinea pig cells. Strains often had both mannose-resistant and mannose-sensitive reactions, or even a mannose-paradoxical reaction. Pathogens more often caused HA, but titers were lower than those for commensals. Slide HA was less sensitive than the microtiter method. All isolates were piliated. Commensals also had more pili than pathogens when grown in broth (117.8 versus 38.3 pili per bacterium), but pathogens had more pili after growth on agar (32.1 versus 8.1 pili per bacterium). Isolates causing high-titer HA had large numbers of pili (greater than 85 pili per bacterium), but some well-piliated strains were non-hemagglutinating. Pili were purified from seven E. coli strains from different sites of isolation and with different erythrocyte-binding specificity. Pili usually migrated as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. However, more than one type of pilus could be copurified from some strains since there were two or more bands after separation in octyl-glucoside and two different amino terminal sequences. Protein sequencing was done on five different pili: four resembled type 1 pili and one was a P fimbria. The type 1-like pili (strains 2239 and 9353) had an initial variable sequence of 1 to 5 residues, followed by a common region of 21 residues. The P fimbria (strain 7714) had different erythrocyte-binding specificity but was still 27% homologous with 2239 and 9353. E. coli strains from different body sites have characteristic attachments to erythrocytes. Pili derived from these different sources may also have different binding specificity, but they are similar in primary structure. Images PMID:6139339
E. coli mismatch repair enhances AT-to-GC mutagenesis caused by alkylating agents.
Nakano, Kota; Yamada, Yoko; Takahashi, Eizo; Arimoto, Sakae; Okamoto, Keinosuke; Negishi, Kazuo; Negishi, Tomoe
2017-03-01
Alkylating agents are known to induce the formation of O 6 -alkylguanine (O 6 -alkG) and O 4 -alkylthymine (O 4 -alkT) in DNA. These lesions have been widely investigated as major sources of mutations. We previously showed that mismatch repair (MMR) facilitates the suppression of GC-to-AT mutations caused by O 6 -methylguanine more efficiently than the suppression of GC-to-AT mutations caused by O 6 -ethylguanine. However, the manner by which O 4 -alkyT lesions are repaired remains unclear. In the present study, we investigated the repair pathway involved in the repair of O 4 -alkT. The E. coli CC106 strain, which harbors Δprolac in its genomic DNA and carries the F'CC106 episome, can be used to detect AT-to-GC reverse-mutation of the gene encoding β-galactosidase. Such AT-to-GC mutations should be induced through the formation of O 4 -alkT at AT base pairs. As expected, an O 6 -alkylguanine-DNA alkyltransferase (AGT) -deficient CC106 strain, which is defective in both ada and agt genes, exhibited elevated mutant frequencies in the presence of methylating agents and ethylating agents. However, in the UvrA-deficient strain, the methylating agents were less mutagenic than in wild-type, while ethylating agents were more mutagenic than in wild-type, as observed with agents that induce O 6 -alkylguanine modifications. Unexpectedly, the mutant frequencies decreased in a MutS-deficient strain, and a similar tendency was observed in MutL- or MutH-deficient strains. Thus, MMR appears to promote mutation at AT base pairs. Similar results were obtained in experiments employing double-mutant strains harboring defects in both MMR and AGT, or MMR and NER. E. coli MMR enhances AT-to-GC mutagenesis, such as that caused by O 4 -alkylthymine. We hypothesize that the MutS protein recognizes the O 4 -alkT:A base pair more efficiently than O 4 -alkT:G. Such a distinction would result in misincorporation of G at the O 4 -alkT site, followed by higher mutation frequencies in wild-type cells, which have MutS protein, compared to MMR-deficient strains. Copyright © 2017 Elsevier B.V. All rights reserved.
Poulin, L.; Grygiel, P.; Magne, M.; Rodriguez-R, L. M.; Forero Serna, N.; Zhao, S.; El Rafii, M.; Dao, S.; Tekete, C.; Wonni, I.; Koita, O.; Pruvost, O.; Verdier, V.; Vernière, C.
2014-01-01
Multilocus variable-number tandem-repeat analysis (MLVA) is efficient for routine typing and for investigating the genetic structures of natural microbial populations. Two distinct pathovars of Xanthomonas oryzae can cause significant crop losses in tropical and temperate rice-growing countries. Bacterial leaf streak is caused by X. oryzae pv. oryzicola, and bacterial leaf blight is caused by X. oryzae pv. oryzae. For the latter, two genetic lineages have been described in the literature. We developed a universal MLVA typing tool both for the identification of the three X. oryzae genetic lineages and for epidemiological analyses. Sixteen candidate variable-number tandem-repeat (VNTR) loci were selected according to their presence and polymorphism in 10 draft or complete genome sequences of the three X. oryzae lineages and by VNTR sequencing of a subset of loci of interest in 20 strains per lineage. The MLVA-16 scheme was then applied to 338 strains of X. oryzae representing different pathovars and geographical locations. Linkage disequilibrium between MLVA loci was calculated by index association on different scales, and the 16 loci showed linear Mantel correlation with MLSA data on 56 X. oryzae strains, suggesting that they provide a good phylogenetic signal. Furthermore, analyses of sets of strains for different lineages indicated the possibility of using the scheme for deeper epidemiological investigation on small spatial scales. PMID:25398857
Clostridium difficile infection: Early history, diagnosis and molecular strain typing methods.
Rodriguez, C; Van Broeck, J; Taminiau, B; Delmée, M; Daube, G
2016-08-01
Recognised as the leading cause of nosocomial antibiotic-associated diarrhoea, the incidence of Clostridium difficile infection (CDI) remains high despite efforts to improve prevention and reduce the spread of the bacterium in healthcare settings. In the last decade, many studies have focused on the epidemiology and rapid diagnosis of CDI. In addition, different typing methods have been developed for epidemiological studies. This review explores the history of C. difficile and the current scope of the infection. The variety of available laboratory tests for CDI diagnosis and strain typing methods are also examined. Copyright © 2016 Elsevier Ltd. All rights reserved.
A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection
NASA Astrophysics Data System (ADS)
Lee, Jaehwan; Kim, Sanghyeok; Lee, Jinjae; Yang, Daejong; Park, Byong Chon; Ryu, Seunghwa; Park, Inkyu
2014-09-01
Wearable strain sensors for human motion detection are being highlighted in various fields such as medical, entertainment and sports industry. In this paper, we propose a new type of stretchable strain sensor that can detect both tensile and compressive strains and can be fabricated by a very simple process. A silver nanoparticle (Ag NP) thin film patterned on the polydimethylsiloxane (PDMS) stamp by a single-step direct transfer process is used as the strain sensing material. The working principle is the change in the electrical resistance caused by the opening/closure of micro-cracks under mechanical deformation. The fabricated stretchable strain sensor shows highly sensitive and durable sensing performances in various tensile/compressive strains, long-term cyclic loading and relaxation tests. We demonstrate the applications of our stretchable strain sensors such as flexible pressure sensors and wearable human motion detection devices with high sensitivity, response speed and mechanical robustness.Wearable strain sensors for human motion detection are being highlighted in various fields such as medical, entertainment and sports industry. In this paper, we propose a new type of stretchable strain sensor that can detect both tensile and compressive strains and can be fabricated by a very simple process. A silver nanoparticle (Ag NP) thin film patterned on the polydimethylsiloxane (PDMS) stamp by a single-step direct transfer process is used as the strain sensing material. The working principle is the change in the electrical resistance caused by the opening/closure of micro-cracks under mechanical deformation. The fabricated stretchable strain sensor shows highly sensitive and durable sensing performances in various tensile/compressive strains, long-term cyclic loading and relaxation tests. We demonstrate the applications of our stretchable strain sensors such as flexible pressure sensors and wearable human motion detection devices with high sensitivity, response speed and mechanical robustness. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03295k
Van Der Zwet, W C; Parlevliet, G A; Savelkoul, P H; Stoof, J; Kaiser, A M; Van Furth, A M; Vandenbroucke-Grauls, C M
2000-11-01
In 1998, an outbreak of systemic infections caused by Bacillus cereus occurred in the Neonatal Intensive Care Unit of the University Hospital Vrije Universiteit, Amsterdam, The Netherlands. Three neonates developed sepsis with positive blood cultures. One neonate died, and the other two neonates recovered. An environmental survey, a prospective surveillance study of neonates, and a case control study were performed, in combination with molecular typing, in order to identify potential sources and transmission routes of infection. Genotypic fingerprinting by amplified-fragment length polymorphism (AFLP) showed that the three infections were caused by a single clonal type of B. cereus. The same strain was found in trachea aspirate specimens of 35 other neonates. The case control study showed mechanical ventilation with a Sensormedics ventilation machine to be a risk factor for colonization and/or infection (odds ratio, 9.8; 95% confidence interval, 1.1 to 88.2). Prospective surveillance showed that colonization with B. cereus occurred exclusively in the respiratory tract of mechanically ventilated neonates. The epidemic strain of B. cereus was found on the hands of nursing staff and in balloons used for manual ventilation. Sterilization of these balloons ended the outbreak. We conclude that B. cereus can cause outbreaks of severe opportunistic infection in neonates. Typing by AFLP proved very useful in the identification of the outbreak and in the analysis of strains recovered from the environment to trace the cause of the epidemic.
Van Der Zwet, Wil C.; Parlevliet, Gerard A.; Savelkoul, Paul H.; Stoof, Jeroen; Kaiser, Annie M.; Van Furth, A. Marceline; Vandenbroucke-Grauls, Christina M.
2000-01-01
In 1998, an outbreak of systemic infections caused by Bacillus cereus occurred in the Neonatal Intensive Care Unit of the University Hospital Vrije Universiteit, Amsterdam, The Netherlands. Three neonates developed sepsis with positive blood cultures. One neonate died, and the other two neonates recovered. An environmental survey, a prospective surveillance study of neonates, and a case control study were performed, in combination with molecular typing, in order to identify potential sources and transmission routes of infection. Genotypic fingerprinting by amplified-fragment length polymorphism (AFLP) showed that the three infections were caused by a single clonal type of B. cereus. The same strain was found in trachea aspirate specimens of 35 other neonates. The case control study showed mechanical ventilation with a Sensormedics ventilation machine to be a risk factor for colonization and/or infection (odds ratio, 9.8; 95% confidence interval, 1.1 to 88.2). Prospective surveillance showed that colonization with B. cereus occurred exclusively in the respiratory tract of mechanically ventilated neonates. The epidemic strain of B. cereus was found on the hands of nursing staff and in balloons used for manual ventilation. Sterilization of these balloons ended the outbreak. We conclude that B. cereus can cause outbreaks of severe opportunistic infection in neonates. Typing by AFLP proved very useful in the identification of the outbreak and in the analysis of strains recovered from the environment to trace the cause of the epidemic. PMID:11060080
Lahti, Päivi; Heikinheimo, Annamari; Johansson, Tuula; Korkeala, Hannu
2008-01-01
The prevalences of various genotypes of enterotoxin gene-carrying (cpe-positive) Clostridium perfringens type A in 24 different food poisoning outbreaks were 75% (chromosomal IS1470-cpe), 21% (plasmid-borne IS1470-like-cpe), and 4% (plasmid-borne IS1151-cpe). These results show that C. perfringens type A carrying the plasmid-borne cpe is a common cause of food poisoning. PMID:18003798
Liao, Feng; Mo, Zhishuo; Chen, Meiling; Pang, Bo; Fu, Xiaoqing; Xu, Wen; Jing, Huaiqi; Kan, Biao; Gu, Wenpeng
2018-01-01
Vibrio cholerae O1 strains taken from the repository of Yunnan province, southwest China, were abundant and special. We selected 70 typical toxigenic V. cholerae (69 O1 and one O139 serogroup strains) isolated from Yunnan province, performed the pulsed field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and MLST of virulence gene (V-MLST) methods, and evaluated the resolution abilities for typing methods. The ctxB subunit sequence analysis for all strains have shown that cholera between 1986 and 1995 was associated with mixed infections with El Tor and El Tor variants, while infections after 1996 were all caused by El Tor variant strains. Seventy V. cholerae obtained 50 PFGE patterns, with a high resolution. The strains could be divided into three groups with predominance of strains isolated during 1980s, 1990s, and 2000s, respectively, showing a good consistency with the epidemiological investigation. We also evaluated two MLST method for V. cholerae , one was used seven housekeeping genes ( adk , gyrB , metE , pntA , mdh , purM , and pyrC ), and all the isolates belonged to ST69; another was used nine housekeeping genes ( cat , chi , dnaE , gyrB , lap , pgm , recA , rstA , and gmd ). A total of seven sequence types (STs) were found by using this method for all the strains; among them, rstA gene had five alleles, recA and gmd have two alleles, and others had only one allele. The virulence gene sequence typing method ( ctxAB , tcpA , and toxR ) showed that 70 strains were divided into nine STs; among them, tcpA gene had six alleles, toxR had five alleles, while ctxAB was identical for all the strains. The latter two sequences based typing methods also had consistency with epidemiology of the strains. PFGE had a higher resolution ability compared with the sequence based typing method, and MLST used seven housekeeping genes showed the lower resolution power than nine housekeeping genes and virulence genes methods. These two sequence typing methods could distinguish some epidemiological special strains in local area.
Karakavuk, Muhammet; Aldemir, Duygu; Mercier, Aurélien; Atalay Şahar, Esra; Can, Hüseyin; Murat, Jean-Benjamin; Döndüren, Ömer; Can, Şengül; Özdemir, Hüseyin Gökhan; Değirmenci Döşkaya, Aysu; Pektaş, Bayram; Dardé, Marie-Laure; Gürüz, Adnan Yüksel; Döşkaya, Mert
2018-01-01
Toxoplasma gondii is a protozoon parasite that causes congenital toxoplasmosis, as well as other serious clinical presentations, in immune compromised humans. Analyses of the prevalence and genotyping of strains from the definitive host and intermediate hosts will help to understanding the circulation of the different strains and elucidating the role of the genotype(s) in human toxoplasmosis. Turkey has a specific geographic location bridging Africa, Europe, and Asia. We hypothesized that T. gondii strains may have been transferred to Turkey from these continents via migratory birds or vice versa. The present study aimed to assess the prevalence of toxoplasmosis in wild birds of prey of İzmir and Manisa provinces as well as genetically characterize T. gondii strains from these wild birds to show the relation between bird strains and neighboring stray cats as well as human strains previously isolated in Turkey. Tissues obtained from 48 wild birds were investigated for the presence of T. gondii DNA and then bioassayed in mouse. Isolated strains were genotyped using 15 microsatellite markers. The prevalence of T. gondii DNA was found to be 89.6% (n: 43/48) in wild birds. Out of 43 positive samples, a total of 14 strains were genotyped by 15 microsatellite markers. Among them, eight were type II, three were type III and three were mixture of genotypes (two type II/II and one was II/III). These are the first data that showed the presence of T. gondii and types II and III genotypes in wild birds of Turkey. Moreover, Africa 1 was not detected. In addition, cluster analysis showed that T. gondii strains within type II and III lineage have close relation with strains previously isolated from stray cats in İzmir. Further studies are required to isolate more strains from human cases, other intermediate hosts, and water sources to reveal this relation.
Karakavuk, Muhammet; Aldemir, Duygu; Mercier, Aurélien; Atalay Şahar, Esra; Can, Hüseyin; Murat, Jean-Benjamin; Döndüren, Ömer; Can, Şengül; Özdemir, Hüseyin Gökhan; Değirmenci Döşkaya, Aysu; Pektaş, Bayram; Dardé, Marie-Laure; Gürüz, Adnan Yüksel
2018-01-01
Toxoplasma gondii is a protozoon parasite that causes congenital toxoplasmosis, as well as other serious clinical presentations, in immune compromised humans. Analyses of the prevalence and genotyping of strains from the definitive host and intermediate hosts will help to understanding the circulation of the different strains and elucidating the role of the genotype(s) in human toxoplasmosis. Turkey has a specific geographic location bridging Africa, Europe, and Asia. We hypothesized that T. gondii strains may have been transferred to Turkey from these continents via migratory birds or vice versa. The present study aimed to assess the prevalence of toxoplasmosis in wild birds of prey of İzmir and Manisa provinces as well as genetically characterize T. gondii strains from these wild birds to show the relation between bird strains and neighboring stray cats as well as human strains previously isolated in Turkey. Tissues obtained from 48 wild birds were investigated for the presence of T. gondii DNA and then bioassayed in mouse. Isolated strains were genotyped using 15 microsatellite markers. The prevalence of T. gondii DNA was found to be 89.6% (n: 43/48) in wild birds. Out of 43 positive samples, a total of 14 strains were genotyped by 15 microsatellite markers. Among them, eight were type II, three were type III and three were mixture of genotypes (two type II/II and one was II/III). These are the first data that showed the presence of T. gondii and types II and III genotypes in wild birds of Turkey. Moreover, Africa 1 was not detected. In addition, cluster analysis showed that T. gondii strains within type II and III lineage have close relation with strains previously isolated from stray cats in İzmir. Further studies are required to isolate more strains from human cases, other intermediate hosts, and water sources to reveal this relation. PMID:29668747
Rodas, Claudia; Klena, John D.; Nicklasson, Matilda; Iniguez, Volga; Sjöling, Åsa
2011-01-01
Background Enterotoxigenic Escherichia coli (ETEC) is a major cause of traveller's and infantile diarrhoea in the developing world. ETEC produces two toxins, a heat-stable toxin (known as ST) and a heat-labile toxin (LT) and colonization factors that help the bacteria to attach to epithelial cells. Methodology/Principal Findings In this study, we characterized a subset of ETEC clinical isolates recovered from Bolivian children under 5 years of age using a combination of multilocus sequence typing (MLST) analysis, virulence typing, serotyping and antimicrobial resistance test patterns in order to determine the genetic background of ETEC strains circulating in Bolivia. We found that strains expressing the heat-labile (LT) enterotoxin and colonization factor CS17 were common and belonged to several MLST sequence types but mainly to sequence type-423 and sequence type-443 (Achtman scheme). To further study the LT/CS17 strains we analysed the nucleotide sequence of the CS17 operon and compared the structure to LT/CS17 ETEC isolates from Bangladesh. Sequence analysis confirmed that all sequence type-423 strains from Bolivia had a single nucleotide polymorphism; SNPbol in the CS17 operon that was also found in some other MLST sequence types from Bolivia but not in strains recovered from Bangladeshi children. The dominant ETEC clone in Bolivia (sequence type-423/SNPbol) was found to persist over multiple years and was associated with severe diarrhoea but these strains were variable with respect to antimicrobial resistance patterns. Conclusion/Significance The results showed that although the LT/CS17 phenotype is common among ETEC strains in Bolivia, multiple clones, as determined by unique MLST sequence types, populate this phenotype. Our data also appear to suggest that acquisition and loss of antimicrobial resistance in LT-expressing CS17 ETEC clones is more dynamic than acquisition or loss of virulence factors. PMID:22140423
Rodas, Claudia; Klena, John D; Nicklasson, Matilda; Iniguez, Volga; Sjöling, Asa
2011-01-01
Enterotoxigenic Escherichia coli (ETEC) is a major cause of traveller's and infantile diarrhoea in the developing world. ETEC produces two toxins, a heat-stable toxin (known as ST) and a heat-labile toxin (LT) and colonization factors that help the bacteria to attach to epithelial cells. In this study, we characterized a subset of ETEC clinical isolates recovered from Bolivian children under 5 years of age using a combination of multilocus sequence typing (MLST) analysis, virulence typing, serotyping and antimicrobial resistance test patterns in order to determine the genetic background of ETEC strains circulating in Bolivia. We found that strains expressing the heat-labile (LT) enterotoxin and colonization factor CS17 were common and belonged to several MLST sequence types but mainly to sequence type-423 and sequence type-443 (Achtman scheme). To further study the LT/CS17 strains we analysed the nucleotide sequence of the CS17 operon and compared the structure to LT/CS17 ETEC isolates from Bangladesh. Sequence analysis confirmed that all sequence type-423 strains from Bolivia had a single nucleotide polymorphism; SNP(bol) in the CS17 operon that was also found in some other MLST sequence types from Bolivia but not in strains recovered from Bangladeshi children. The dominant ETEC clone in Bolivia (sequence type-423/SNP(bol)) was found to persist over multiple years and was associated with severe diarrhoea but these strains were variable with respect to antimicrobial resistance patterns. The results showed that although the LT/CS17 phenotype is common among ETEC strains in Bolivia, multiple clones, as determined by unique MLST sequence types, populate this phenotype. Our data also appear to suggest that acquisition and loss of antimicrobial resistance in LT-expressing CS17 ETEC clones is more dynamic than acquisition or loss of virulence factors.
Secretome analysis of diarrhea-inducing strains of Escherichia coli
Nirujogi, Raja Sekhar; Muthusamy, Babylakshmi; Kim, Min-Sik; Sathe, Gajanan J.; Lakshmi, P.T.V.; Kovbasnjuk, Olga N.; Prasad, T.S. Keshava; Wade, Mary; Jabbour, Rabih E.
2017-01-01
Secreted proteins constitute a major part of virulence factors that are responsible for pathogenesis caused by Gram-negative bacteria. Enterohemorrhagic Escherichia coli, O157:H7, is the major pathogen often causing outbreaks. However, studies have reported that the significant outbreaks caused by non-O157:H7 E. coli strains, also known as “Big-Six” serogroup strains, are increasing. There is no systematic study describing differential secreted proteins from these non-O157:H7 E. coli strains. In this study, we carried out MS-based differential secretome analysis using tandem mass tags labeling strategy of non-O157:H7 E. coli strains, O103, O111, O121, O145, O26, and O45. We identified 1241 proteins, of which 565 proteins were predicted to be secreted. We also found that 68 proteins were enriched in type III secretion system and several of them were differentially expressed across the strains. Additionally, we identified several strain-specific secreted proteins that could be used for developing potential markers for the identification and strain-level differentiation. To our knowledge, this study is the first comparative proteomic study on secretome of E. coli Big-Six serogroup and the several of these strain-specific secreted proteins can be further studied to develop potential markers for identification and strain-level differentiation. Moreover, the results of this study can be utilized in several applications, including food safety, diagnostics of E. coli outbreaks, and detection and identification of bio threats in biodefense. PMID:28070933
USDA-ARS?s Scientific Manuscript database
In Triticum aestivum L. (wheat), the root-colonizing bacterium Pseudomonas fluorescens strain Q8r1-96 produces the antifungal metabolite 2,4-diacetylphloroglucinol (DAPG), suppresses damage caused by soilborne root pathogens, and modulates multiple stress or defense pathways in wheat roots. To test...
Pneumonia and New Methicillin-resistant Staphylococcus aureus Clone
Tristan, Anne; François, Bruno; Etienne, Jerome; Delage-Corre, Manuella; Martin, Christian; Liassine, Nadia; Wannet, Wim; Denis, François; Ploy, Marie-Cécile
2006-01-01
Necrotizing pneumonia caused by Staphylococcus aureus strains carrying the Panton-Valentin leukocidin gene is a newly described disease entity. We report a new fatal case of necrotizing pneumonia. An S. aureus strain with an agr1 allele and of a new sequence type 377 was recovered, representing a new, emerging, community-acquired methicillin-resistant clone. PMID:16704793
Calder, Thomas; de Souza Santos, Marcela; Attah, Victoria; Klimko, John; Fernandez, Jessie; Salomon, Dor; Krachler, Anne-Marie; Orth, Kim
2014-12-01
The Gram-negative bacterium, Vibrio parahaemolyticus, is a major cause of seafood-derived food poisoning throughout the world. The pathogenicity of V. parahaemolyticus is attributed to several virulence factors, including two type III secretion systems (T3SS), T3SS1 and T3SS2. Herein, we compare the virulence of V. parahaemolyticus POR strains, which harbor a mutation in the T3SS needle apparatus of either system, to V. parahaemolyticus CAB strains, which harbor mutations in positive transcriptional regulators of either system. These strains are derived from the clinical RIMD 2210633 strain. We demonstrate that each mutation affects the virulence of the bacterium in a different manner. POR and CAB strains exhibited similar levels of swarming motility and T3SS effector production and secretion, but the CAB3 and CAB4 strains, which harbor a mutation in the T3SS2 master regulator gene, formed reduced biofilm growth under T3SS2 inducing conditions. Additionally, while the cytotoxicity of the POR and CAB strains was similar, the CAB2 (T3SS1 regulatory mutant) strain was strikingly more invasive than the comparable POR2 (T3SS1 structural mutant) strain. In summary, creating structural or regulatory mutations in either T3SS1 or T3SS2 causes differential downstream effects on other virulence systems. Understanding the biological differences of strains created from a clinical isolate is critical for interpreting and understanding the pathogenic nature of V. parahaemolyticus. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Haendiges, Julie; Timme, Ruth; Allard, Marc W; Myers, Robert A; Brown, Eric W; Gonzalez-Escalona, Narjol
2015-01-01
Vibrio parahaemolyticus is the leading cause of foodborne illnesses in the US associated with the consumption of raw shellfish. Previous population studies of V. parahaemolyticus have used Multi-Locus Sequence Typing (MLST) or Pulsed Field Gel Electrophoresis (PFGE). Whole genome sequencing (WGS) provides a much higher level of resolution, but has been used to characterize only a few United States (US) clinical isolates. Here we report the WGS characterization of 34 genomes of V. parahaemolyticus strains that were isolated from clinical cases in the state of Maryland (MD) during 2 years (2012-2013). These 2 years saw an increase of V. parahaemolyticus cases compared to previous years. Among these MD isolates, 28% were negative for tdh and trh, 8% were tdh positive only, 11% were trh positive only, and 53% contained both genes. We compared this set of V. parahaemolyticus genomes to those of a collection of 17 archival strains from the US (10 previously sequenced strains and 7 from NCBI, collected between 1988 and 2004) and 15 international strains, isolated from geographically-diverse environmental and clinical sources (collected between 1980 and 2010). A WGS phylogenetic analysis of these strains revealed the regional outbreak strains from MD are highly diverse and yet genetically distinct from the international strains. Some MD strains caused outbreaks 2 years in a row, indicating a local source of contamination (e.g., ST631). Advances in WGS will enable this type of analysis to become routine, providing an excellent tool for improved surveillance. Databases built with phylogenetic data will help pinpoint sources of contamination in future outbreaks and contribute to faster outbreak control.
Haendiges, Julie; Timme, Ruth; Allard, Marc W.; Myers, Robert A.; Brown, Eric W.; Gonzalez-Escalona, Narjol
2015-01-01
Vibrio parahaemolyticus is the leading cause of foodborne illnesses in the US associated with the consumption of raw shellfish. Previous population studies of V. parahaemolyticus have used Multi-Locus Sequence Typing (MLST) or Pulsed Field Gel Electrophoresis (PFGE). Whole genome sequencing (WGS) provides a much higher level of resolution, but has been used to characterize only a few United States (US) clinical isolates. Here we report the WGS characterization of 34 genomes of V. parahaemolyticus strains that were isolated from clinical cases in the state of Maryland (MD) during 2 years (2012–2013). These 2 years saw an increase of V. parahaemolyticus cases compared to previous years. Among these MD isolates, 28% were negative for tdh and trh, 8% were tdh positive only, 11% were trh positive only, and 53% contained both genes. We compared this set of V. parahaemolyticus genomes to those of a collection of 17 archival strains from the US (10 previously sequenced strains and 7 from NCBI, collected between 1988 and 2004) and 15 international strains, isolated from geographically-diverse environmental and clinical sources (collected between 1980 and 2010). A WGS phylogenetic analysis of these strains revealed the regional outbreak strains from MD are highly diverse and yet genetically distinct from the international strains. Some MD strains caused outbreaks 2 years in a row, indicating a local source of contamination (e.g., ST631). Advances in WGS will enable this type of analysis to become routine, providing an excellent tool for improved surveillance. Databases built with phylogenetic data will help pinpoint sources of contamination in future outbreaks and contribute to faster outbreak control. PMID:25745421
Kumano, Y; Yamamoto, M; Inomata, H; Sakuma, S; Hidaka, Y; Minagawa, H; Mori, R
1990-01-01
A 35-year-old man had developed recurrent herpetic keratitis characterized by dendritic keratitis at intervals of a year. We were able to culture cytopathic agents repeatedly from his lesions by inoculating Vero cells. The cultures yielded definitive evidence of a virus that caused a cytopathic effect within 3 days. However, these virus strains could not be identified as herpes simplex virus (HSV) in immunofluorescence assays using the Syva MicroTrak HSV1/HSV2 direct specimen identification/typing test. Rather they were identified as strains of HSV type 1 (HSV-1) on the basis of plaque morphology, neutralization tests, electron-microscopic examination and DNA restriction endonuclease analysis. Our results allow us to assume the existence of HSV-1 strains isolated clinically that are negative to analysis using the Syva Micro-Trak HSV1/HSV2 direct specimen identification/typing test.
Survival of Acinetobacter baumannii on dry surfaces.
Wendt, C; Dietze, B; Dietz, E; Rüden, H
1997-01-01
Acinetobacter spp. have frequently been reported to be the causative agents of hospital outbreaks. The circumstances of some outbreaks demonstrated the long survival of Acinetobacter in a dry, inanimate environment. In laboratory experiments, we compared the abilities of five Acinetobacter baumannii strains, three Acinetobacter sp. strains from the American Type Culture Collection (ATCC), one Escherichia coli ATCC strain, and one Enterococcus faecium ATCC strain to survive under dry conditions. Bacterial solutions of the 10 strains were inoculated onto four different material samples (ceramic, polyvinyl chloride, rubber, and stainless steel) and stored under defined conditions. We investigated the bacterial counts of the material samples immediately after inoculation, after drying, and after 4 h, 1 day, and 1, 2, 4, 8, and 16 weeks of storage. A statistical model was used to distribute the 40 resulting curves among four types of survival curves. The type of survival curve was significantly associated with the bacterial strain but not with the material. The ability of the A. baumannii strains to survive under dry conditions varied greatly and correlated well with the source of the strain. Strains isolated from dry sources survived better than those isolated from wet sources. An outbreak strain that had caused hospital-acquired respiratory tract infections survived better than the strains from wet sources, but not as well as strains from dry sources. Resistance to dry conditions may promote the transmissibility of a strain, but it is not sufficient to make a strain an epidemic one. However, in the case of an outbreak, sources of Acinetobacter must be expected in the dry environment. PMID:9163451
Brock, Sean C.; McGraw, Patricia A.; Wright, Peter F.; Crowe Jr., James E.
2002-01-01
Streptococcus pneumoniae is a gram-positive bacterial pathogen that causes invasive life-threatening disease worldwide. This organism also commonly colonizes the upper respiratory epithelium in an asymptomatic fashion. To invade, this pathogen must traverse the respiratory epithelial barrier, allowing it to cause disease locally or disseminate hematogenously throughout the body. Previous work has demonstrated that S. pneumoniae choline-binding protein A, a pneumococcal surface protein, interacts specifically with the human polymeric immunoglobulin receptor, which is expressed by cells in the respiratory epithelium. Choline-binding protein A is required for efficient colonization of the nasopharynx in vivo. Additionally, a recent study showed that the R6x laboratory strain of S. pneumoniae invades a human pharyngeal cell line in a human polymeric immunoglobulin receptor-dependent manner. These findings raised the possibility that the interaction between choline-binding protein A and human polymeric immunoglobulin receptor may be a key determinant of S. pneumoniae pathogenesis. However, the strain used in prior invasion studies, R6x, is an unencapsulated, nonpathogenic strain. In the present study we determined the relative ability of strain R6x or pathogenic strains to invade a variety of human polymeric immunoglobulin receptor-expressing epithelial cell lines. The results of this work suggest that human polymeric immunoglobulin receptor-dependent enhanced invasion of epithelial cells by S. pneumoniae is a limited phenomenon that occurs in a strain-specific and cell type-specific manner. PMID:12183558
Aldous, E W; Fuller, C M; Ridgeon, J H; Irvine, R M; Alexander, D J; Brown, I H
2014-04-01
Newcastle disease (ND), caused by virulent strains of avian paramyxovirus type 1 (APMV-1), is considered throughout the world as one of the most important animal diseases. For over three decades now, there has been a continuing panzootic caused by a variant virulent APMV-1 strain, so-called pigeon paramyxovirus type 1 (PPMV-1), primarily in racing pigeons, which has also spread to wild birds and poultry. PPMV-1 isolations have been made in Great Britain every year since 1983. In this study, we have completed a comparative phylogenetic analysis based on a 374 nucleotide section of the fusion protein gene of 63 isolates of PPMV-1 that were isolated over a 26-year period; 43 of these were sequenced for this study. Phylogenetic analysis of these sequences revealed that all were closely related and placed in the genetic sublineage 4b (VIb), subdivision 4biif. © 2012 Crown copyright.
Xue, Wenzhi; Mattick, Debra; Smith, Linda; Umbaugh, Jerry; Trigo, Emilio
2010-12-10
Vaccination plays a significant role in the control of bovine viral diarrhea virus (BVDV) infection and spread. Recent studies revealed that type 1b is the predominant BVDV type 1 subgenotype, representing more than 75% of field isolates of BVDV-1. However, nearly all current, commercially available BVDV type 1 vaccines contain BVDV-1a strains. Previous studies have indicated that anti-BVDV sera, induced by BVDV-1a viruses, show less neutralization activity to BVDV-1b isolates than type 1a. Therefore, it is critically important to evaluate BVDV-1a vaccines in their ability to prevent BVDV-1b infection in calves. In current studies, calves were vaccinated subcutaneously, intradermally or intranasally with a single dose of a multivalent, modified-live viral vaccine containing a BVDV-1a strain, and were challenged with differing BVDV-1b strains to determine the efficacy and duration of immunity of the vaccine against these heterologous virus strains. Vaccinated calves, in all administration routes, were protected from respiratory disease caused by the BVDV-1b viruses, as indicated by significantly fewer clinical signs, lower rectal temperatures, reduced viral shedding and greater white blood cell counts than non-vaccinated control animals. The BVDV-1a vaccine elicited efficacious protection in calves against each BVDV-1b challenge strain, with a duration of immunity of at least 6 months. Copyright © 2010 Elsevier Ltd. All rights reserved.
CHARACTERIZATION OF EXTRAINTESTINAL PATHOGENIC ESCHERICHIA COLI FROM MEAT IN SOUTHERN THAILAND.
Sukkua, Kannika; Pomwised, Rattanaruji; Rattanachuay, Pattamarat; Khianngam, Saowapar; Sukhumungoon, Pharanai
2017-01-01
Extraintestinal pathogenic Escherichia coli (ExPEC) is an E. coli group, which causes diseases in systems outside human intestinal tract. ExPEC isolates were recovered from fresh chicken (25%) and pork (10%) meats, but not beef and shrimp, from markets in southern Thailand. Among the 14 ExPEC strains isolated, all carried iutA and fimH, coding for aerobactin and type 1 fimbriae, respectively. Two ExPEC strains from chicken meat possessed kpsMTK1 coding for K1 capsular antigen, responsible for neonatal meningitis. Antimicrobial susceptibility assay revealed that all ExPEC were resistant to streptomycin and carried blaTEM, but susceptible to imipenem. Phylogenetic group analysis showed that 4, 4, and 6 ExPEC strains belonged to group A, B1 and D, respectively. ExPEC strains were classified into four serotypes, namely, O8 (2 strains), O15 (2 strains), O25 (1 strain), and O127a (1 strain), with the remaining untypeable. DNA profiling analysis by BOX-PCR revealed clonality of strains with the same serotype. The existence of ExPEC in meat products should cause concern regarding food safety and public health not only in southern Thailand but also throughout the country.
Population variability of the FimH type 1 fimbrial adhesin in Klebsiella pneumoniae.
Stahlhut, Steen G; Chattopadhyay, Sujay; Struve, Carsten; Weissman, Scott J; Aprikian, Pavel; Libby, Stephen J; Fang, Ferric C; Krogfelt, Karen Angeliki; Sokurenko, Evgeni V
2009-03-01
FimH is an adhesive subunit of type 1 fimbriae expressed by different enterobacterial species. The enteric bacterium Klebsiella pneumoniae is an environmental organism that is also a frequent cause of sepsis, urinary tract infection (UTI), and liver abscess. Type 1 fimbriae have been shown to be critical for the ability of K. pneumoniae to cause UTI in a murine model. We show here that the K. pneumoniae fimH gene is found in 90% of strains from various environmental and clinical sources. The fimH alleles exhibit relatively low nucleotide and structural diversity but are prone to frequent horizontal-transfer events between different bacterial clones. Addition of the fimH locus to multiple-locus sequence typing significantly improved the resolution of the clonal structure of pathogenic strains, including the K1 encapsulated liver isolates. In addition, the K. pneumoniae FimH protein is targeted by adaptive point mutations, though not to the same extent as FimH from uropathogenic Escherichia coli or TonB from the same K. pneumoniae strains. Such adaptive mutations include a single amino acid deletion from the signal peptide that might affect the length of the fimbrial rod by affecting FimH translocation into the periplasm. Another FimH mutation (S62A) occurred in the course of endemic circulation of a nosocomial uropathogenic clone of K. pneumoniae. This mutation is identical to one found in a highly virulent uropathogenic strain of E. coli, suggesting that the FimH mutations are pathoadaptive in nature. Considering the abundance of type 1 fimbriae in Enterobacteriaceae, our present finding that fimH genes are subject to adaptive microevolution substantiates the importance of type 1 fimbria-mediated adhesion in K. pneumoniae.
Hemrajani, Cordula; Marches, Olivier; Wiles, Siouxsie; Girard, Francis; Dennis, Alison; Dziva, Francis; Best, Angus; Phillips, Alan D; Berger, Cedric N; Mousnier, Aurelie; Crepin, Valerie F; Kruidenier, Laurens; Woodward, Martin J; Stevens, Mark P; La Ragione, Roberto M; MacDonald, Thomas T; Frankel, Gad
2008-11-01
The human pathogen enterohemorrhagic Escherichia coli (EHEC) O157:H7 colonizes human and animal gut via formation of attaching and effacing lesions. EHEC strains use a type III secretion system to translocate a battery of effector proteins into the mammalian host cell, which subvert diverse signal transduction pathways implicated in actin dynamics, phagocytosis, and innate immunity. The genomes of sequenced EHEC O157:H7 strains contain two copies of the effector protein gene nleH, which share 49% sequence similarity with the gene for the Shigella effector OspG, recently implicated in inhibition of migration of the transcriptional regulator NF-kappaB to the nucleus. In this study we investigated the role of NleH during EHEC O157:H7 infection of calves and lambs. We found that while EHEC DeltanleH colonized the bovine gut more efficiently than the wild-type strain, in lambs the wild-type strain exhibited a competitive advantage over the mutant during mixed infection. Using the mouse pathogen Citrobacter rodentium, which shares many virulence factors with EHEC O157:H7, including NleH, we observed that the wild-type strain exhibited a competitive advantage over the mutant during mixed infection. We found no measurable differences in T-cell infiltration or hyperplasia in colons of mice inoculated with the wild-type or the nleH mutant strain. Using NF-kappaB reporter mice carrying a transgene containing a luciferase reporter driven by three NF-kappaB response elements, we found that NleH causes an increase in NF-kappaB activity in the colonic mucosa. Consistent with this, we found that the nleH mutant triggered a significantly lower tumor necrosis factor alpha response than the wild-type strain.
Miller, Nathan C; Quenee, Lauriane E; Elli, Derek; Ciletti, Nancy A; Schneewind, Olaf
2012-04-01
Current efforts to develop plague vaccines focus on LcrV, a polypeptide that resides at the tip of type III secretion needles. LcrV-specific antibodies block Yersinia pestis type III injection of Yop effectors into host immune cells, thereby enabling phagocytes to kill the invading pathogen. Earlier work reported that antibodies against Y. pestis LcrV cannot block type III injection by Yersinia enterocolitica strains and suggested that lcrV polymorphisms may provide for escape from LcrV-mediated plague immunity. We show here that polyclonal or monoclonal antibodies raised against Y. pestis KIM D27 LcrV (LcrV(D27)) bind LcrV from Y. enterocolitica O:9 strain W22703 (LcrV(W22703)) or O:8 strain WA-314 (LcrV(WA-314)) but are otherwise unable to block type III injection by Y. enterocolitica strains. Replacing the lcrV gene on the pCD1 virulence plasmid of Y. pestis KIM D27 with either lcrV(W22703) or lcrV(WA-314) does not affect the ability of plague bacteria to secrete proteins via the type III pathway, to inject Yops into macrophages, or to cause lethal plague infections in mice. LcrV(D27)-specific antibodies blocked type III injection by Y. pestis expressing lcrV(W22703) or lcrV(WA-314) and protected mice against intravenous lethal plague challenge with these strains. Thus, although antibodies raised against LcrV(D27) are unable to block the type III injection of Y. enterocolitica strains, expression of lcrV(W22703) or lcrV(WA-314) in Y. pestis did not allow these strains to escape LcrV-mediated plague protective immunity in the intravenous challenge model.
Kurath, Gael; Purcell, Maureen K.; Wargo, Andrew; Park, Jeong Woo; Moon, Chang Hoon
2010-01-01
Infectious haematopoietic necrosis virus (IHNV) is one of the most important viral pathogens of salmonids. In rainbow trout, IHNV isolates in the M genogroup are highly pathogenic, while U genogroup isolates are significantly less pathogenic. We show here that, at a multiplicity of infection (MOI) of 1, a representative U type strain yielded 42-fold less infectious virus than an M type strain in the rainbow trout–derived RTG-2 cell line at 24 h post-infection (p.i.). However, at an MOI of 10, there was only fivefold difference in the yield of infectious virus between the U and M strains. Quantification of extracellular viral genomic RNA suggested that the number of virus particles released from cells infected with the U strain at a MOI of 1 was 47-fold lower than from M-infected cells, but U and M virions were equally infectious by particle to infectivity ratios. At an MOI of 1, U strain intracellular viral genome accumulation and transcription were 37- and 12-fold lower, respectively, than those of the M strain at 24 h p.i. Viral nucleocapsid (N) protein accumulation in U strain infections was fivefold lower than in M strain infections. These results suggest that the block in U type strain growth in RTG-2 cells was because of the effects of reduced genome replication and transcription. The reduced growth of the U strain does not seem to be caused by defective genes, because the U and M strains grew equally well in the permissive epithelioma papulosum cyprini cell line at an MOI of 1. This suggests that host-specific factors in RTG-2 cells control the growth of the IHNV U and M strains differently, leading to growth restriction of the U type virus during the RNA synthesis step.
Park, Ji Young; Kim, Sara; Oh, Jae Young; Kim, Hye Ryoung; Jang, Il; Lee, Hee Soo; Kwon, Yong Kuk
2015-06-01
Clostridium perfringens produces diverse virulent toxins that cause necrotic enteritis in poultry, resulting in a great negative impact on the poultry industry. To study the characteristics of C. perfringens in chickens, we isolated 88 strains from chickens (1 strain per flock) with necrotic enteritis. The isolated bacterial strains were screened for toxin type and antimicrobial susceptibility. Necropsy of 17 chickens that died from necrotic enteritis revealed that their intestines were dilated with inflammatory exudates and characterized by mucosal necrosis. All the isolated strains were identified as toxin type A using multiplex PCR for toxin typing. We found that the rate of netB-positive strains isolated from dead chickens was significantly higher (8 of 17) than the rate among healthy chickens (2 of 50). We performed antimicrobial susceptibility test with 20 selected antimicrobial agents using the disk diffusion test and found that 30 tested strains were completely resistant to 5 antibiotics and partially resistant to 6 antibiotics whereas all the strains were susceptible to 9 antimicrobial agents. Using pulsed-field gel electrophoresis analysis, the 17 strains were divided into 13 genetic clusters showing high genetic diversity. In conclusion, C. perfringens strains isolated from Korean poultry showed a high resistance to antimicrobial drugs and high genetic diversity, suggesting that continuous monitoring is essential to prevent outbreaks of necrotic enteritis in chickens. © 2015 Poultry Science Association Inc.
Malacari, Dario Amilcar; Pécora, Andrea; Pérez Aguirreburualde, Maria Sol; Cardoso, Nancy Patricia; Odeón, Anselmo Carlos; Capozzo, Alejandra Victoria
2018-01-01
Non-cytopathic (ncp) type 2 bovine viral diarrhea virus (BVDV-2) is widely prevalent in Argentina causing high mortality rates in cattle herds. In this study, we characterized an Argentinean ncp BVDV-2 field isolate (98-124) compared to a high-virulence reference strain (NY-93), using in silico analysis, in vitro assays, and in vivo infections of colostrum-deprived calves (CDC) to compare pathogenic characters and virulence. In vitro infection of bovine peripheral blood mononuclear cells (PBMC) with BVDV 98-124 induced necrosis shortly after infection while NY-93 strain increased the apoptotic rate in infected cells. Experimental infection of CDC (n = 4 each) with these strains caused an enteric syndrome. High pyrexia was detected in both groups. Viremia and shedding were more prolonged in the CDC infected with the NY-93 strain. In addition, NY-93 infection elicited a severe lymphopenia that lasted for 14 days, whereas 98-124 strain reduced the leukocyte counts for 5 days. All infected animals had a diminished lymphoproliferation activity in response to a mitogen. Neutralizing and anti-NS3 antibodies were detected 3 weeks after infection in all infected calves. Virulence was associated with a more severe clinical score, prolonged immune-suppression, and a greater window for transmission. Studies of apoptosis/necrosis performed after in vitro PBMC infection also revealed differences between both strains that might be correlated to the in vivo pathogenesis. Our results identified 98-124 as a low-virulence strain. PMID:29707546
Johnson, Timothy J; Kariyawasam, Subhashinie; Wannemuehler, Yvonne; Mangiamele, Paul; Johnson, Sara J; Doetkott, Curt; Skyberg, Jerod A; Lynne, Aaron M; Johnson, James R; Nolan, Lisa K
2007-04-01
Escherichia coli strains that cause disease outside the intestine are known as extraintestinal pathogenic E. coli (ExPEC) and include human uropathogenic E. coli (UPEC) and avian pathogenic E. coli (APEC). Regardless of host of origin, ExPEC strains share many traits. It has been suggested that these commonalities may enable APEC to cause disease in humans. Here, we begin to test the hypothesis that certain APEC strains possess potential to cause human urinary tract infection through virulence genotyping of 1,000 APEC and UPEC strains, generation of the first complete genomic sequence of an APEC (APEC O1:K1:H7) strain, and comparison of this genome to all available human ExPEC genomic sequences. The genomes of APEC O1 and three human UPEC strains were found to be remarkably similar, with only 4.5% of APEC O1's genome not found in other sequenced ExPEC genomes. Also, use of multilocus sequence typing showed that some of the sequenced human ExPEC strains were more like APEC O1 than other human ExPEC strains. This work provides evidence that at least some human and avian ExPEC strains are highly similar to one another, and it supports the possibility that a food-borne link between some APEC and UPEC strains exists. Future studies are necessary to assess the ability of APEC to overcome the hurdles necessary for such a food-borne transmission, and epidemiological studies are required to confirm that such a phenomenon actually occurs.
Clostridium perfringens Enterotoxin: Action, Genetics, and Translational Applications
Freedman, John C.; Shrestha, Archana; McClane, Bruce A.
2016-01-01
Clostridium perfringens enterotoxin (CPE) is responsible for causing the gastrointestinal symptoms of several C. perfringens food- and nonfood-borne human gastrointestinal diseases. The enterotoxin gene (cpe) is located on either the chromosome (for most C. perfringens type A food poisoning strains) or large conjugative plasmids (for the remaining type A food poisoning and most, if not all, other CPE-producing strains). In all CPE-positive strains, the cpe gene is strongly associated with insertion sequences that may help to assist its mobilization and spread. During disease, CPE is produced when C. perfringens sporulates in the intestines, a process involving several sporulation-specific alternative sigma factors. The action of CPE starts with its binding to claudin receptors to form a small complex; those small complexes then oligomerize to create a hexameric prepore on the membrane surface. Beta hairpin loops from the CPE molecules in the prepore assemble into a beta barrel that inserts into the membrane to form an active pore that enhances calcium influx, causing cell death. This cell death results in intestinal damage that causes fluid and electrolyte loss. CPE is now being explored for translational applications including cancer therapy/diagnosis, drug delivery, and vaccination. PMID:26999202
Molecular typing of uropathogenic E. coli strains by the ERIC-PCR method.
Ardakani, Maryam Afkhami; Ranjbar, Reza
2016-04-01
Escherichia coli (E. coli) is the most common cause of urinary infections in hospitals. The aim of this study was to evaluate the ERIC-PCR method for molecular typing of uropathogenic E. coli strains isolated from hospitalized patients. In a cross sectional study, 98 E. coli samples were collected from urine samples taken from patients admitted to Baqiyatallah Hospital from June 2014 to January 2015. The disk agar diffusion method was used to determine antibiotic sensitivity. DNA proliferation based on repetitive intergenic consensus was used to classify the E. coli strains. The products of proliferation were electrophoresed on 1.5% agarose gel, and their dendrograms were drawn. The data were analyzed by online Insillico software. The method used in this research proliferated numerous bands (4-17 bands), ranging from 100 to 3000 base pairs. The detected strains were classified into six clusters (E1-E6) with 70% similarity between them. In this study, uropathogenic E. coli strains belonged to different genotypic clusters. It was found that ERIC-PCR had good differentiation power for molecular typing of uropathogenic E. coli strains isolated from the patients in the study.
Amro, Ahmad; Mentis, Andreas; Pratlong, Francine; Dedet, Jean-Pierre; Votypka, Jan; Volf, Petr; Ozensoy Toz, Seray; Kuhls, Katrin; Schönian, Gabriele; Soteriadou, Ketty
2012-01-01
Background New foci of human CL caused by strains of the Leishmania donovani (L. donovani) complex have been recently described in Cyprus and the Çukurova region in Turkey (L. infantum) situated 150 km north of Cyprus. Cypriot strains were typed by Multilocus Enzyme Electrophoresis (MLEE) using the Montpellier (MON) system as L. donovani zymodeme MON-37. However, multilocus microsatellite typing (MLMT) has shown that this zymodeme is paraphyletic; composed of distantly related genetic subgroups of different geographical origin. Consequently the origin of the Cypriot strains remained enigmatic. Methodology/Principal Findings The Cypriot strains were compared with a set of Turkish isolates obtained from a CL patient and sand fly vectors in south-east Turkey (Çukurova region; CUK strains) and from a VL patient in the south-west (Kuşadasi; EP59 strain). These Turkish strains were initially analyzed using the K26-PCR assay that discriminates MON-1 strains by their amplicon size. In line with previous DNA-based data, the strains were inferred to the L. donovani complex and characterized as non MON-1. For these strains MLEE typing revealed two novel zymodemes; L. donovani MON-309 (CUK strains) and MON-308 (EP59). A population genetic analysis of the Turkish isolates was performed using 14 hyper-variable microsatellite loci. The genotypic profiles of 68 previously analyzed L. donovani complex strains from major endemic regions were included for comparison. Population structures were inferred by combination of Bayesian model-based and distance-based approaches. MLMT placed the Turkish and Cypriot strains in a subclade of a newly discovered, genetically distinct L. infantum monophyletic group, suggesting that the Cypriot strains may originate from Turkey. Conclusion The discovery of a genetically distinct L. infantum monophyletic group in the south-eastern Mediterranean stresses the importance of species genetic characterization towards better understanding, monitoring and controlling the spread of leishmaniasis in this region. PMID:22348162
Wang, John Jy-an [Oak Ridge, TN; Liu, Ken C [Oak Ridge, TN; Feng, Zhili [Knoxville, TN
2013-07-31
A stress-strain testing apparatus imposes a stress-strain on a specimen while disposed in a controlled environment. Each end of the specimen is fastened to an end cap and a strain gage is attached to the specimen. An adjusting mechanism and a compression element are disposed between the end caps forming a frame for applying forces to the end caps and thereby stress-straining the specimen. The adjusting mechanism may be extended or retracted to increase or decrease the imposed stress-strain on the specimen, and the stress-strain is measured by the strain gage on the specimen while the apparatus is exposed to an environment such as high pressure hydrogen. Strain gages may be placed on the frame to measure stress-strains in the frame that may be caused by the environment.
Yarnell, K; Le Bon, M; Turton, N; Savova, M; McGlennon, A; Forsythe, S
2017-01-01
To compare the rate of growth of four microbial strains that cause disease in the horse, on four commonly used types of bedding. The moisture-holding capacity of each bedding type was also tested. Microbial strains included Streptococcus equi, Streptococcus zooepidemicus, Fusobacterium necrophorum, Dichelobacter nodosus and Dermatophilus congolensis. The bedding types tested were Pinus sylvestris (Scots pine shavings), Pinus nigra (Corsican pine shavings), Picea sitchensis (Sitka spruce shavings), Cannabis sativa (hemp) and chopped wheat straw. A suspension of each microbial strain was spread in triplicate on agar media and incubated in its optimal growth conditions. The viable count (colony-forming unit per ml) was determined for each bacterial strain for the five different bedding types. Pinus sylvestris bedding resulted in significantly less (P = 0·001) bacterial growth of all strains tested. Factors resulting in the inhibition of bacterial growth include the antibacterial effects reported in the Pinacea family and the physical properties of the bedding substrate. Research is currently focussed on the diagnosis and management of disease. Prevention of disease is also important for matters of biosecurity. Strategies should include the provision of a hygienic environment and the use of specific types of bedding. Bedding choice has implications for global equine health and disease prevention as well as potential benefits in other animal species. © 2016 The Society for Applied Microbiology.
Molecular Typing of Legionella pneumophila Isolates in the Province of Quebec from 2005 to 2015.
Lévesque, Simon; Lalancette, Cindy; Bernard, Kathryn; Pacheco, Ana Luisa; Dion, Réjean; Longtin, Jean; Tremblay, Cécile
2016-01-01
Legionella is found in natural and man-made aquatic environments, such as cooling towers and hot water plumbing infrastructures. Legionella pneumophila serogroup 1 (Lp1) is the most common etiological agent causing waterborne disease in the United States and Canada. This study reports the molecular characterization of Lp strains during a 10 year period. We conducted sequence-based typing (SBT) analysis on a large set of Lp isolates (n = 284) to investigate the province of Quebec sequence types (STs) distribution in order to identify dominant clusters. From 2005 to 2015, 181 clinical Lp isolates were typed by SBT (141 sporadic cases and 40 outbreak related cases). From the same period of time, 103 environmental isolates were also typed. Amongst the 108 sporadic cases of Lp1 typed, ST-62 was the most frequent (16.6%), followed by ST-213 (10.2%), ST-1 (8.3%) and ST-37 (8.3%). Amongst other serogroups (SG), ST-1327 (SG5) (27.3%) and ST-378 (SG10) (12.2%) were the most frequent. From the environmental isolates, ST-1 represent the more frequent SBT type (26.5%). Unweighted pair group method with arithmetic mean (UPGMA) dendrogram from the 108 sporadic cases of SG1 contains 4 major clusters (A to D) of related STs. Cluster B contains the majority of the strains (n = 61) and the three most frequent STs in our database (ST-62, ST-213 and ST-1). During the study period, we observed an important increase in the incidence rate in Quebec. All the community associated outbreaks, potentially or confirmed to be associated with a cooling tower were caused by Lp1 strains, by opposition to hospital associated outbreaks that were caused by serogroups of Lp other than SG1. The recent major Quebec City outbreak caused by ST-62, and the fact that this genotype is the most common in the province supports whole genome sequencing characterization of this particular sequence type in order to understand its evolution and associated virulence factors.
Hamby, Stephen E; Joseph, Susan; Forsythe, Stephen J; Chuzhanova, Nadia
2011-09-20
Cronobacter, formerly known as Enterobacter sakazakii, is a food-borne pathogen known to cause neonatal meningitis, septicaemia and death. Current diagnostic tests for identification of Cronobacter do not differentiate between species, necessitating time consuming 16S rDNA gene sequencing or multilocus sequence typing (MLST). The organism is ubiquitous, being found in the environment and in a wide range of foods, although there is variation in pathogenicity between Cronobacter isolates and between species. Therefore to be able to differentiate between the pathogenic and non-pathogenic strains is of interest to the food industry and regulators. Here we report the use of Expectation Maximization clustering to categorise 98 strains of Cronobacter as pathogenic or non-pathogenic based on biochemical test results from standard diagnostic test kits. Pathogenicity of a strain was postulated on the basis of either pathogenic symptoms associated with strain source or corresponding MLST sequence types, allowing the clusters to be labelled as containing either pathogenic or non-pathogenic strains. The resulting clusters gave good differentiation of strains into pathogenic and non-pathogenic groups, corresponding well to isolate source and MLST sequence type. The results also revealed a potential association between pathogenicity and inositol fermentation. An investigation of the genomes of Cronobacter sakazakii and C. turicensis revealed the gene for inositol monophosphatase is associated with putative virulence factors in pathogenic strains of Cronobacter. We demonstrated a computational approach allowing existing diagnostic kits to be used to identify pathogenic strains of Cronobacter. The resulting clusters correlated well with MLST sequence types and revealed new information about the pathogenicity of Cronobacter species.
Differential growth of Mycobacterium leprae strains (SNP genotypes) in armadillos.
Sharma, Rahul; Singh, Pushpendra; Pena, Maria; Subramanian, Ramesh; Chouljenko, Vladmir; Kim, Joohyun; Kim, Nayong; Caskey, John; Baudena, Marie A; Adams, Linda B; Truman, Richard W
2018-04-14
Leprosy (Hansen's Disease) has occurred throughout human history, and persists today at a low prevalence in most populations. Caused by Mycobacterium leprae, the infection primarily involves the skin, mucosa and peripheral nerves. The susceptible host range for Mycobacterium leprae is quite narrow. Besides humans, nine banded armadillos (Dasypus novemcinctus) and red squirrels (Sciurus vulgaris) are the only other natural hosts for M. leprae, but only armadillos recapitulate the disease as seen in humans. Armadillos across the Southern United States harbor a single predominant genotypic strain (SNP Type-3I) of M. leprae, which is also implicated in the zoonotic transmission of leprosy. We investigated, whether the zoonotic strain (3I) has any notable growth advantages in armadillos over another genetically distant strain-type (SNP Type-4P) of M. leprae, and if M. leprae strains manifest any notably different pathology among armadillos. We co-infected armadillos (n = 6) with 2 × 10 9 highly viable M. leprae of both strains and assessed the relative growth and dissemination of each strain in the animals. We also analyzed 12 additional armadillos, 6 each individually infected with the same quantity of either strain. The infections were allowed to fulminate and the clinical manifestations of the disease were noted. Animals were humanely sacrificed at the terminal stage of infection and the number of bacilli per gram of liver, spleen and lymph node tissue were enumerated by Q-PCR assay. The growth of M. leprae strain 4P was significantly higher (P < 0.05) than 3I when each strain was propagated individually in armadillos. Significantly (P < 0.0001) higher growth of the 4P strain also was confirmed among animals co-infected with both 3I and 4P strain types using whole genome sequencing. Interestingly, the zoonotic strain does not exhibit any growth advantage in these non-human hosts, but the varied proliferation of the two M. leprae strains within armadillos suggest there are notable pathological variations between M. leprae strain-types. Copyright © 2018. Published by Elsevier B.V.
Chen, Po-An; Hung, Chih-Hsin; Huang, Ping-Chih; Chen, Jung-Ren; Huang, I-Fei; Chen, Wan-Ling; Chiou, Yee-Hsuan; Hung, Wan-Yu
2016-01-01
Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli sequence type ST131 has emerged as the leading cause of community-acquired urinary tract infections and bacteremia worldwide. Whether environmental water is a potential reservoir of these strains remains unclear. River water samples were collected from 40 stations in southern Taiwan from February to August 2014. PCR assay and multilocus sequence typing (MLST) analysis were conducted to determine the CTX-M group and sequence type, respectively. In addition, we identified the seasonal frequency of ESBL-producing E. coli strains and their geographical relationship with runoffs from livestock and poultry farms between February and August 2014. ESBL-producing E. coli accounted for 30% of the 621 E. coli strains isolated from river water in southern Taiwan. ESBL-producing E. coli ST131 was not detected among the isolates. The most commonly detected strain was E. coli CTX-M group 9. Among the 92 isolates selected for MLST analysis, the most common ESBL-producing clonal complexes were ST10 and ST58. The proportion of ESBL-producing E. coli was significantly higher in areas with a lower river pollution index (P = 0.025) and regions with a large number of chickens being raised (P = 0.013). ESBL-producing E. coli strains were commonly isolated from river waters in southern Taiwan. The most commonly isolated ESBL-producing clonal complexes were ST10 and ST58, which were geographically related to chicken farms. ESBL-producing E. coli ST131, the major clone causing community-acquired infections in Taiwan and worldwide, was not detected in river waters. PMID:26773082
Rushton, Laura; Sass, Andrea; Baldwin, Adam; Dowson, Christopher G; Donoghue, Denise; Mahenthiralingam, Eshwar
2013-07-01
Bacteria from the Burkholderia cepacia complex (Bcc) are encountered as industrial contaminants, and little is known about the species involved or their mechanisms of preservative resistance. Multilocus sequence typing (MLST) revealed that multiple Bcc species may cause contamination, with B. lata (n = 17) and B. cenocepacia (n = 11) dominant within the collection examined. At the strain level, 11 of the 31 industrial sequence types identified had also been recovered from either natural environments or clinical infections. Minimal inhibitory (MIC) and minimum bactericidal (MBC) preservative concentrations varied across 83 selected Bcc strains, with industrial strains demonstrating increased tolerance for dimethylol dimethyl hydantoin (DMDMH). Benzisothiazolinone (BIT), DMDMH, methylisothiazolinone (MIT), a blend of 3:1 methylisothiazolinone-chloromethylisothiazolinone (M-CMIT), methyl paraben (MP), and phenoxyethanol (PH), were all effective anti-Bcc preservatives; benzethonium chloride (BC) and sodium benzoate (SB) were least effective. Since B. lata was the dominant industrial Bcc species, the type strain, 383(T) (LMG 22485(T)), was used to study preservative tolerance. Strain 383 developed stable preservative tolerance for M-CMIT, MIT, BIT, and BC, which resulted in preservative cross-resistance and altered antibiotic susceptibility, motility, and biofilm formation. Transcriptomic analysis of the B. lata 383 M-CMIT-adapted strain demonstrated that efflux played a key role in its M-CMIT tolerance and elevated fluoroquinolone resistance. The role of efflux was corroborated using the inhibitor l-Phe-Arg-β-napthylamide, which reduced the MICs of M-CMIT and ciprofloxacin. In summary, intrinsic preservative tolerance and stable adaptive changes, such as enhanced efflux, play a role in the ability of Bcc bacteria to cause industrial contamination.
Rushton, Laura; Sass, Andrea; Baldwin, Adam; Dowson, Christopher G.; Donoghue, Denise
2013-01-01
Bacteria from the Burkholderia cepacia complex (Bcc) are encountered as industrial contaminants, and little is known about the species involved or their mechanisms of preservative resistance. Multilocus sequence typing (MLST) revealed that multiple Bcc species may cause contamination, with B. lata (n = 17) and B. cenocepacia (n = 11) dominant within the collection examined. At the strain level, 11 of the 31 industrial sequence types identified had also been recovered from either natural environments or clinical infections. Minimal inhibitory (MIC) and minimum bactericidal (MBC) preservative concentrations varied across 83 selected Bcc strains, with industrial strains demonstrating increased tolerance for dimethylol dimethyl hydantoin (DMDMH). Benzisothiazolinone (BIT), DMDMH, methylisothiazolinone (MIT), a blend of 3:1 methylisothiazolinone-chloromethylisothiazolinone (M-CMIT), methyl paraben (MP), and phenoxyethanol (PH), were all effective anti-Bcc preservatives; benzethonium chloride (BC) and sodium benzoate (SB) were least effective. Since B. lata was the dominant industrial Bcc species, the type strain, 383T (LMG 22485T), was used to study preservative tolerance. Strain 383 developed stable preservative tolerance for M-CMIT, MIT, BIT, and BC, which resulted in preservative cross-resistance and altered antibiotic susceptibility, motility, and biofilm formation. Transcriptomic analysis of the B. lata 383 M-CMIT-adapted strain demonstrated that efflux played a key role in its M-CMIT tolerance and elevated fluoroquinolone resistance. The role of efflux was corroborated using the inhibitor l-Phe-Arg-β-napthylamide, which reduced the MICs of M-CMIT and ciprofloxacin. In summary, intrinsic preservative tolerance and stable adaptive changes, such as enhanced efflux, play a role in the ability of Bcc bacteria to cause industrial contamination. PMID:23587949
Chen, Po-An; Hung, Chih-Hsin; Huang, Ping-Chih; Chen, Jung-Ren; Huang, I-Fei; Chen, Wan-Ling; Chiou, Yee-Hsuan; Hung, Wan-Yu; Wang, Jiun-Ling; Cheng, Ming-Fang
2016-01-15
Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli sequence type ST131 has emerged as the leading cause of community-acquired urinary tract infections and bacteremia worldwide. Whether environmental water is a potential reservoir of these strains remains unclear. River water samples were collected from 40 stations in southern Taiwan from February to August 2014. PCR assay and multilocus sequence typing (MLST) analysis were conducted to determine the CTX-M group and sequence type, respectively. In addition, we identified the seasonal frequency of ESBL-producing E. coli strains and their geographical relationship with runoffs from livestock and poultry farms between February and August 2014. ESBL-producing E. coli accounted for 30% of the 621 E. coli strains isolated from river water in southern Taiwan. ESBL-producing E. coli ST131 was not detected among the isolates. The most commonly detected strain was E. coli CTX-M group 9. Among the 92 isolates selected for MLST analysis, the most common ESBL-producing clonal complexes were ST10 and ST58. The proportion of ESBL-producing E. coli was significantly higher in areas with a lower river pollution index (P = 0.025) and regions with a large number of chickens being raised (P = 0.013). ESBL-producing E. coli strains were commonly isolated from river waters in southern Taiwan. The most commonly isolated ESBL-producing clonal complexes were ST10 and ST58, which were geographically related to chicken farms. ESBL-producing E. coli ST131, the major clone causing community-acquired infections in Taiwan and worldwide, was not detected in river waters. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Chong, Yong; Ito, Yoshikiyo; Kamimura, Tomohiko
2011-10-01
The emergence of extended-spectrum β-lactamase (ESBL)-producing bacteria, particularly Escherichia coli and Klebsiella pneumoniae, is now a critical concern for the development of therapies against bacterial infection. ESBLs consist of three major genetic groups: TEM, SHV, and CTX-M types. Nosocomial infections due to TEM and SHV-producing K. pneumoniae strains were frequently documented until the late 1990s. The number of reports on community-acquired infections caused by CTX-M-producing E. coli strains have dramatically increased over the last decade; however, K. pneumoniae strains, of either the TEM or SHV types, are persistent and important ESBL producers. The spread of ESBL genes is associated with various mobile genetic elements, such as transposons, insertion sequences, and integrons. The rapid dissemination of ESBL genes of the CTX-M type may be related to highly complicated genetic structures. These structures harboring ESBL genes and mobile elements are found in a variety of plasmids, which often carry many other antibiotic resistance genes. Multidrug-resistant CTX-M-15-producing E. coli strains disseminate worldwide. Efficient mobile elements and plasmids may have accelerated the genetic diversity and the rapid spread of ESBL genes, and their genetic evolution has caused an emerging threat to the bacteria for which few effective drugs have been identified. Copyright © 2011 Elsevier B.V. All rights reserved.
L’Huillier, Arnaud G.; Kaiser, Laurent; Petty, Tom J.; Kilowoko, Mary; Kyungu, Esther; Hongoa, Philipina; Vieille, Gaël; Turin, Lara; Genton, Blaise; D’Acremont, Valérie; Tapparel, Caroline
2015-01-01
Human rhinoviruses (HRVs) and enteroviruses (HEVs) belong to the Enterovirus genus and are the most frequent cause of infection worldwide, but data on their molecular epidemiology in Africa are scarce. To understand HRV and HEV molecular epidemiology in this setting, we enrolled febrile pediatric patients participating in a large prospective cohort assessing the causes of fever in Tanzanian children. Naso/oropharyngeal swabs were systematically collected and tested by real-time RT-PCR for HRV and HEV. Viruses from positive samples were sequenced and phylogenetic analyses were then applied to highlight the HRV and HEV types as well as recombinant or divergent strains. Thirty-eight percent (378/1005) of the enrolled children harboured an HRV or HEV infection. Although some types were predominant, many distinct types were co-circulating, including a vaccinal poliovirus, HEV-A71 and HEV-D68. Three HRV-A recombinants were identified: HRV-A36/HRV-A67, HRV-A12/HRV-A67 and HRV-A96/HRV-A61. Four divergent HRV strains were also identified: one HRV-B strain and three HRV-C strains. This is the first prospective study focused on HRV and HEV molecular epidemiology in sub-Saharan Africa. This systematic and thorough large screening with careful clinical data management confirms the wide genomic diversity of these viruses, brings new insights about their evolution and provides data about associated symptoms. PMID:26670243
Wade, Ben; Keyburn, Anthony L; Haring, Volker; Ford, Mark; Rood, Julian I; Moore, Robert J
2016-12-25
Necrotic enteritis of poultry is an emerging disease of substantial economic importance, but aspects of the pathogenesis of this multi-factorial disease are still unclear. We recently demonstrated that the ability of avian strains of the causative bacterium, Clostridium perfringens, to bind to specific collagen types correlated strongly with their virulence and we postulated that binding of the pathogen to collagen types IV and V and gelatin may involve the putative adhesin-encoding gene cnaA, which is found in the VR-10B locus. In this study we have used site-directed mutagenesis to demonstrate that disruption of the cnaA gene leads to a reduction in the expression of the three genes immediately downstream of cnaA and reduced adherence to collagen types IV and V and gelatin. In addition, a cnaA mutant of strain EHE-NE18 was no longer capable of causing necrotic enteritis in a chicken disease induction model and had a significantly reduced ability to colonise the chicken intestinal mucosa. These results were confirmed by generating and analysing a similar mutant in an independent necrotic enteritis causing C. perfringens strain. This study expands our understanding of the mechanisms involved in necrotic enteritis pathogenesis by demonstrating the importance of C. perfringens adherence to extracellular matrix proteins. Copyright © 2016. Published by Elsevier B.V.
L'Huillier, Arnaud G; Kaiser, Laurent; Petty, Tom J; Kilowoko, Mary; Kyungu, Esther; Hongoa, Philipina; Vieille, Gaël; Turin, Lara; Genton, Blaise; D'Acremont, Valérie; Tapparel, Caroline
2015-12-08
Human rhinoviruses (HRVs) and enteroviruses (HEVs) belong to the Enterovirus genus and are the most frequent cause of infection worldwide, but data on their molecular epidemiology in Africa are scarce. To understand HRV and HEV molecular epidemiology in this setting, we enrolled febrile pediatric patients participating in a large prospective cohort assessing the causes of fever in Tanzanian children. Naso/oropharyngeal swabs were systematically collected and tested by real-time RT-PCR for HRV and HEV. Viruses from positive samples were sequenced and phylogenetic analyses were then applied to highlight the HRV and HEV types as well as recombinant or divergent strains. Thirty-eight percent (378/1005) of the enrolled children harboured an HRV or HEV infection. Although some types were predominant, many distinct types were co-circulating, including a vaccinal poliovirus, HEV-A71 and HEV-D68. Three HRV-A recombinants were identified: HRV-A36/HRV-A67, HRV-A12/HRV-A67 and HRV-A96/HRV-A61. Four divergent HRV strains were also identified: one HRV-B strain and three HRV-C strains. This is the first prospective study focused on HRV and HEV molecular epidemiology in sub-Saharan Africa. This systematic and thorough large screening with careful clinical data management confirms the wide genomic diversity of these viruses, brings new insights about their evolution and provides data about associated symptoms.
Fiore, L; Genovese, D; Diamanti, E; Catone, S; Ridolfi, B; Ibrahimi, B; Konomi, R; van der Avoort, H G; Hovi, T; Crainic, R; Simeoni, P; Amato, C
1998-07-01
Mass vaccination has led poliomyelitis to become a rare disease in a large part of the world, including Western Europe. However, in the past 20 years wild polioviruses imported from countries where polio is endemic have been responsible for outbreaks in otherwise polio-free European countries. We report on the characterization of poliovirus isolates from a large outbreak of poliomyelitis that occurred in Albania in 1996 and that also spread to the neighboring countries of Yugoslavia and Greece. The epidemics involved 145 subjects, mostly young adults, and caused persisting paralysis in 87 individuals and 16 deaths. The agent responsible for the outbreak was isolated from 74 patients and was identified as wild type 1 poliovirus by both immunological and molecular methods. Sequence analysis of the genome demonstrated the involvement of a single virus strain throughout the epidemics, and genotyping analysis showed 95% homology of the strain with a wild type 1 poliovirus strain isolated in Pakistan in 1995. Neutralization assays with both human sera and monoclonal antibodies were performed to analyze the antigenic structure of the epidemic strain, suggesting its peculiar antigenic characteristics. The presented data underline the current risks of outbreaks due to imported wild poliovirus and emphasize the need to improve vaccination efforts and also the need to implement surveillance in countries free of indigenous wild poliovirus.
Fiore, L.; Genovese, D.; Diamanti, E.; Catone, S.; Ridolfi, B.; Ibrahimi, B.; konomi, R.; van der Avoort, H. G. A. M.; Hovi, T.; Crainic, R.; Simeoni, P.; Amato, C.
1998-01-01
Mass vaccination has led poliomyelitis to become a rare disease in a large part of the world, including Western Europe. However, in the past 20 years wild polioviruses imported from countries where polio is endemic have been responsible for outbreaks in otherwise polio-free European countries. We report on the characterization of poliovirus isolates from a large outbreak of poliomyelitis that occurred in Albania in 1996 and that also spread to the neighboring countries of Yugoslavia and Greece. The epidemics involved 145 subjects, mostly young adults, and caused persisting paralysis in 87 individuals and 16 deaths. The agent responsible for the outbreak was isolated from 74 patients and was identified as wild type 1 poliovirus by both immunological and molecular methods. Sequence analysis of the genome demonstrated the involvement of a single virus strain throughout the epidemics, and genotyping analysis showed 95% homology of the strain with a wild type 1 poliovirus strain isolated in Pakistan in 1995. Neutralization assays with both human sera and monoclonal antibodies were performed to analyze the antigenic structure of the epidemic strain, suggesting its peculiar antigenic characteristics. The presented data underline the current risks of outbreaks due to imported wild poliovirus and emphasize the need to improve vaccination efforts and also the need to implement surveillance in countries free of indigenous wild poliovirus. PMID:9650935
2011-04-01
American Type Culture Collection (ATCC), including Salmonella typhi (causes typhoid fever), Fancisella tularensis (causes tularemia ), Salmonella...incident, the Rajneesh cult obtained the agents on which it experimented, and Iraq obtained some of its lethal strains of anthrax, tularemia and
Complete Whole-Genome Sequence of Salmonella enterica subsp. enterica Serovar Java NCTC5706.
Fazal, Mohammed-Abbas; Alexander, Sarah; Burnett, Edward; Deheer-Graham, Ana; Oliver, Karen; Holroyd, Nancy; Parkhill, Julian; Russell, Julie E
2016-11-03
Salmonellae are a significant cause of morbidity and mortality globally. Here, we report the first complete genome sequence for Salmonella enterica subsp. enterica serovar Java strain NCTC5706. This strain is of historical significance, having been isolated in the pre-antibiotic era and was deposited into the National Collection of Type Cultures in 1939. © Crown copyright 2016.
ter Laak, E A; Noordergraaf, J H; Verschure, M H
1993-01-01
The purpose of this study was to determine the susceptibility of various strains of Mycoplasma bovis, Mycoplasma dispar, and Ureaplasma diversum, which are prevalent causes of pneumonia in calves, to 16 antimicrobial agents in vitro. The MICs of the antimicrobial agents were determined by a serial broth dilution method for 16 field strains and the type strain of M. bovis, for 19 field strains and the type strain of M. dispar, and for 17 field strains of U. diversum. Final MICs for M. bovis and M. dispar were read after 7 days and final MICs for U. diversum after 1 to 2 days. All strains tested were susceptible to tylosin, kitasamycin, and tiamulin but were resistant to nifuroquine and streptomycin. Most strains of U. diversum were intermediately susceptible to oxytetracycline but fully susceptible to chlortetracycline; most strains of M. bovis and M. dispar, however, were resistant to both agents. Strains of M. dispar and U. diversum were susceptible to doxycycline and minocycline, but strains of M. bovis were only intermediately susceptible. Susceptibility or resistance to chloramphenicol, spiramycin, spectinomycin, lincomycin, or enrofloxacin depended on the species but was not equal for the three species. The type strains of M. bovis and M. dispar were more susceptible to various antimicrobial agents, including tetracyclines, than the field strains. This finding might indicate that M. bovis and M. dispar strains are becoming resistant to these agents. Antimicrobial agents that are effective in vitro against all three mycoplasma species can be considered for treating mycoplasma infections in pneumonic calves. Therefore, tylosin, kitasamycin, and tiamulin may be preferred over oxytetracycline and chlortetracycline. PMID:8452363
ter Laak, E A; Noordergraaf, J H; Verschure, M H
1993-02-01
The purpose of this study was to determine the susceptibility of various strains of Mycoplasma bovis, Mycoplasma dispar, and Ureaplasma diversum, which are prevalent causes of pneumonia in calves, to 16 antimicrobial agents in vitro. The MICs of the antimicrobial agents were determined by a serial broth dilution method for 16 field strains and the type strain of M. bovis, for 19 field strains and the type strain of M. dispar, and for 17 field strains of U. diversum. Final MICs for M. bovis and M. dispar were read after 7 days and final MICs for U. diversum after 1 to 2 days. All strains tested were susceptible to tylosin, kitasamycin, and tiamulin but were resistant to nifuroquine and streptomycin. Most strains of U. diversum were intermediately susceptible to oxytetracycline but fully susceptible to chlortetracycline; most strains of M. bovis and M. dispar, however, were resistant to both agents. Strains of M. dispar and U. diversum were susceptible to doxycycline and minocycline, but strains of M. bovis were only intermediately susceptible. Susceptibility or resistance to chloramphenicol, spiramycin, spectinomycin, lincomycin, or enrofloxacin depended on the species but was not equal for the three species. The type strains of M. bovis and M. dispar were more susceptible to various antimicrobial agents, including tetracyclines, than the field strains. This finding might indicate that M. bovis and M. dispar strains are becoming resistant to these agents. Antimicrobial agents that are effective in vitro against all three mycoplasma species can be considered for treating mycoplasma infections in pneumonic calves. Therefore, tylosin, kitasamycin, and tiamulin may be preferred over oxytetracycline and chlortetracycline.
Emergence of a deviating genotype VI pigeon paramyxovirus type-1 isolated from India.
Ganar, Ketan; Das, Moushumee; Raut, Ashwin Ashok; Mishra, Anamika; Kumar, Sachin
2017-07-01
Pigeon paramyxovirus type 1 (PPMV-1) is an antigenic variant of avian paramyxovirus type 1 (APMV-1), which infects pigeons. The virus causes high morbidity and mortality, creating an alarming state for the poultry industry. The present work describes the molecular and pathogenic characterization of a PPMV-1 strain isolated from pigeon in Bhopal, India. Complete genome sequence analysis revealed a genome of 15,192 nucleotides encoding six genes organized in the order 3'-N-P-M-F-HN-L-5'. The fusion gene sequence analysis showed the presence of multiple basic amino acids 112 R-R-Q-K-R-F 117 at the cleavage site corresponding to pathogenic strains. The mean death time and intracerebral pathogenicity index values indicated a mesogenic nature for the PPMV-1 isolate. On phylogenetic analysis, the strain clustered with genotype VI viruses, including isolates from pigeon and dove. The Bhopal strain showed significant intra and inter-genotype evolutionary distance, suggesting the emergence of a new sub-genotype, VIj.
Viral Repression of Fungal Pheromone Precursor Gene Expression
Zhang, Lei; Baasiri, Rudeina A.; Van Alfen, Neal K.
1998-01-01
Biological control of chestnut blight caused by the filamentous ascomycete Cryphonectria parasitica can be achieved with a virus that infects this fungus. This hypovirus causes a perturbation of fungal development that results in low virulence (hypovirulence), poor asexual sporulation, and female infertility without affecting fungal growth in culture. At the molecular level, the virus is known to affect the transcription of a number of fungal genes. Two of these genes, Vir1 and Vir2, produce abundant transcripts in noninfected strains of the fungus, but the transcripts are not detectable in virus-infected strains. We report here that these two genes encode the pheromone precursors of the Mat-2 mating type of the fungus; consequently, these genes have been renamed Mf2/1 and Mf2/2. To determine if the virus affects the mating systems of both mating types of this fungus, the pheromone precursor gene, Mf1/1, of a Mat-1 strain was cloned and likewise was found to be repressed in virus-infected strains. The suppression of transcription of the pheromone precursor genes of this fungus could be the cause of the mating defect of infected strains of the fungus. Although published reports suggest that a Gαi subunit may be involved in this regulation, our results do not support this hypothesis. The prepropheromone encoded by Mf1/1 is structurally similar to that of the prepro-p-factor of Schizosaccharomyces pombe. This is the first description of the complete set of pheromone precursor genes encoded by a filamentous ascomycete. PMID:9447992
Kumar, Ravi Bhushan; Alam, Syed Imteyaz
2017-07-01
Clostridium perfringens is a Validated Biological Agent and a pathogen of medical, veterinary, and military significance. Gas gangrene is the most destructive of all the clostridial diseases and is caused by C. perfringens type A strains wherein the infection spreads quickly (several inches per hour) with production of gas. Influence of repeated in vitro cultivation on the infectivity of C. perfringens was investigated by comparing the surface proteins of laboratory strain and repository strains of the bacterium using 2DE-MS approach. In order to optimize host-pathogen interaction during experimental gas gangrene infection, we also explored the role of particulate matrix on ability of C. perfringens to cause gas gangrene.
Sumby, Paul; Barbian, Kent D; Gardner, Donald J; Whitney, Adeline R; Welty, Diane M; Long, R Daniel; Bailey, John R; Parnell, Michael J; Hoe, Nancy P; Adams, Gerald G; Deleo, Frank R; Musser, James M
2005-02-01
Many pathogenic bacteria produce extracellular DNase, but the benefit of this enzymatic activity is not understood. For example, all strains of the human bacterial pathogen group A Streptococcus (GAS) produce at least one extracellular DNase, and most strains make several distinct enzymes. Despite six decades of study, it is not known whether production of DNase by GAS enhances virulence. To test the hypothesis that extracellular DNase is required for normal progression of GAS infection, we generated seven isogenic mutant strains in which the three chromosomal- and prophage-encoded DNases made by a contemporary serotype M1 GAS strain were inactivated. Compared to the wild-type parental strain, the isogenic triple-mutant strain was significantly less virulent in two mouse models of invasive infection. The triple-mutant strain was cleared from the skin injection site significantly faster than the wild-type strain. Preferential clearance of the mutant strain was related to the differential extracellular killing of the mutant and wild-type strains, possibly through degradation of neutrophil extracellular traps, innate immune structures composed of chromatin and granule proteins. The triple-mutant strain was also significantly compromised in its ability to cause experimental pharyngeal disease in cynomolgus macaques. Comparative analysis of the seven DNase mutant strains strongly suggested that the prophage-encoded SdaD2 enzyme is the major DNase that contributes to virulence in this clone. We conclude that extracellular DNase activity made by GAS contributes to disease progression, thereby resolving a long-standing question in bacterial pathogenesis research.
Importance of adhesins in the recurrence of pharyngeal infections caused by Streptococcus pyogenes.
Wozniak, Aniela; Scioscia, Natalia; Geoffroy, Enrique; Ponce, Iván; García, Patricia
2017-04-01
Pharyngo-amygdalitis is the most common infection caused by Streptococcus pyogenes (S. pyogenes). Reinfection with strains of different M types commonly occurs. However, a second infection with a strain of the same M type can still occur and is referred to as recurrence. We aimed to assess whether recurrence of S. pyogenes could be associated to erythromycin resistance, biofilm formation or surface adhesins like fibronectin-binding proteins and pilus proteins, both located in the fibronectin-binding, collagen-binding, T-antigen (FCT) region. We analyed clinical isolates of S. pyogenes obtained from children with multiple positive cultures of throat swabs. We analysed potential associations between M types, clonal patterns, biofilm production and FCT types with their capacity of producing a recurrent infection. We genetically defined recurrence as an infection with the same M type (same strain) and reinfection as an infection with a different M type. No differences were observed between recurrent and reinfection isolates in relation to erythromycin resistance, presence and number of domains of prtF1 gene, and biofilm formation capacity; the only significant difference was the higher frequency of FCT-4 type among recurrent isolates. However, when all the factors that could contribute to recurrence (erythromycin resistance, biofilm production, presence of prtF1 gene and FCT-4 type) were analysed together, we observed that recurrent isolates have a higher number of factors than reinfection isolates. Recurrence seems not to be associated with biofilm formation. However, pili and fibronectin-binding proteins could be associated with recurrence because FCT-4 isolates which harbour two fibronectin-binding proteins are more frequent among recurrent isolates.
Specific Proteins in Nontuberculous Mycobacteria: New Potential Tools.
Orduña, Patricia; Castillo-Rodal, Antonia I; Mercado, Martha E; Ponce de León, Samuel; López-Vidal, Yolanda
2015-01-01
Nontuberculous mycobacteria (NTM) have been isolated from water, soil, air, food, protozoa, plants, animals, and humans. Although most NTM are saprophytes, approximately one-third of NTM have been associated with human diseases. In this study, we did a comparative proteomic analysis among five NTM strains isolated from several sources. There were different numbers of protein spots from M. gordonae (1,264), M. nonchromogenicum type I (894), M. nonchromogenicum type II (935), M. peregrinum (806), and M. scrofulaceum/Mycobacterium mantenii (1,486) strains, respectively. We identified 141 proteins common to all strains and specific proteins to each NTM strain. A total of 23 proteins were selected for its identification. Two of the common proteins identified (short-chain dehydrogenase/reductase SDR and diguanylate cyclase) did not align with M. tuberculosis complex protein sequences, which suggest that these proteins are found only in the NTM strains. Some of the proteins identified as common to all strains can be used as markers of NTM exposure and for the development of new diagnostic tools. Additionally, the specific proteins to NTM strains identified may represent potential candidates for the diagnosis of diseases caused by these mycobacteria.
Yao, Yufeng; Xie, Yi; Kim, Kwang Sik
2006-04-01
Escherichia coli is a major cause of enteric/diarrheal diseases, urinary tract infections, and sepsis. E. coli K1 is the leading gram-negative organism causing neonatal meningitis, but the microbial basis of E. coli K1 meningitis is incompletely understood. Here we employed comparative genomic hybridization to investigate 11 strains of E. coli K1 isolated from the cerebrospinal fluid (CSF) of patients with meningitis. These 11 strains cover the majority of common O serotypes in E. coli K1 isolates from CSF. Our data demonstrated that these 11 strains of E. coli K1 can be categorized into two groups based on their profile for putative virulence factors, lipoproteins, proteases, and outer membrane proteins. Of interest, we showed that some open reading frames (ORFs) encoding the type III secretion system apparatus were found in group 2 strains but not in group 1 strains, while ORFs encoding the general secretory pathway are predominant in group 1 strains. These findings suggest that E. coli K1 strains isolated from CSF can be divided into two groups and these two groups of E. coli K1 may utilize different mechanisms to induce meningitis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, Carol; Henry, Matthew; Bishop-Lilly, Kimberly A.
Historically, cholera outbreaks have been linked to V. cholerae O1 serogroup strains or its derivatives of the O37 and O139 serogroups. A genomic study on the 2010 Haiti cholera outbreak strains highlighted the putative role of non O1/non-O139 V. cholerae in causing cholera and the lack of genomic sequences of such strains from around the world. Here we address these gaps by scanning a global collection of V. cholerae strains as a first step towards understanding the population genetic diversity and epidemic potential of non O1/non-O139 strains. Whole Genome Mapping (Optical Mapping) based bar coding produces a high resolution, orderedmore » restriction map, depicting a complete view of the unique chromosomal architecture of an organism. To assess the genomic diversity of non-O1/non-O139 V. cholerae, we applied a Whole Genome Mapping strategy on a well-defined and geographically and temporally diverse strain collection, the Sakazaki serogroup type strains. Whole Genome Map data on 91 of the 206 serogroup type strains support the hypothesis that V. cholerae has an unprecedented genetic and genomic structural diversity. Interestingly, we discovered chromosomal fusions in two unusual strains that possess a single chromosome instead of the two chromosomes usually found in V. cholerae. We also found pervasive chromosomal rearrangements such as duplications and indels in many strains. The majority of Vibrio genome sequences currently in public databases are unfinished draft sequences. The Whole Genome Mapping approach presented here enables rapid screening of large strain collections to capture genomic complexities that would not have been otherwise revealed by unfinished draft genome sequencing and thus aids in assembling and finishing draft sequences of complex genomes. Furthermore, Whole Genome Mapping allows for prediction of novel V. cholerae non-O1/non-O139 strains that may have the potential to cause future cholera outbreaks.« less
Chapman, Carol; Henry, Matthew; Bishop-Lilly, Kimberly A; Awosika, Joy; Briska, Adam; Ptashkin, Ryan N; Wagner, Trevor; Rajanna, Chythanya; Tsang, Hsinyi; Johnson, Shannon L; Mokashi, Vishwesh P; Chain, Patrick S G; Sozhamannan, Shanmuga
2015-01-01
Historically, cholera outbreaks have been linked to V. cholerae O1 serogroup strains or its derivatives of the O37 and O139 serogroups. A genomic study on the 2010 Haiti cholera outbreak strains highlighted the putative role of non O1/non-O139 V. cholerae in causing cholera and the lack of genomic sequences of such strains from around the world. Here we address these gaps by scanning a global collection of V. cholerae strains as a first step towards understanding the population genetic diversity and epidemic potential of non O1/non-O139 strains. Whole Genome Mapping (Optical Mapping) based bar coding produces a high resolution, ordered restriction map, depicting a complete view of the unique chromosomal architecture of an organism. To assess the genomic diversity of non-O1/non-O139 V. cholerae, we applied a Whole Genome Mapping strategy on a well-defined and geographically and temporally diverse strain collection, the Sakazaki serogroup type strains. Whole Genome Map data on 91 of the 206 serogroup type strains support the hypothesis that V. cholerae has an unprecedented genetic and genomic structural diversity. Interestingly, we discovered chromosomal fusions in two unusual strains that possess a single chromosome instead of the two chromosomes usually found in V. cholerae. We also found pervasive chromosomal rearrangements such as duplications and indels in many strains. The majority of Vibrio genome sequences currently in public databases are unfinished draft sequences. The Whole Genome Mapping approach presented here enables rapid screening of large strain collections to capture genomic complexities that would not have been otherwise revealed by unfinished draft genome sequencing and thus aids in assembling and finishing draft sequences of complex genomes. Furthermore, Whole Genome Mapping allows for prediction of novel V. cholerae non-O1/non-O139 strains that may have the potential to cause future cholera outbreaks.
Chapman, Carol; Henry, Matthew; Bishop-Lilly, Kimberly A.; ...
2015-03-20
Historically, cholera outbreaks have been linked to V. cholerae O1 serogroup strains or its derivatives of the O37 and O139 serogroups. A genomic study on the 2010 Haiti cholera outbreak strains highlighted the putative role of non O1/non-O139 V. cholerae in causing cholera and the lack of genomic sequences of such strains from around the world. Here we address these gaps by scanning a global collection of V. cholerae strains as a first step towards understanding the population genetic diversity and epidemic potential of non O1/non-O139 strains. Whole Genome Mapping (Optical Mapping) based bar coding produces a high resolution, orderedmore » restriction map, depicting a complete view of the unique chromosomal architecture of an organism. To assess the genomic diversity of non-O1/non-O139 V. cholerae, we applied a Whole Genome Mapping strategy on a well-defined and geographically and temporally diverse strain collection, the Sakazaki serogroup type strains. Whole Genome Map data on 91 of the 206 serogroup type strains support the hypothesis that V. cholerae has an unprecedented genetic and genomic structural diversity. Interestingly, we discovered chromosomal fusions in two unusual strains that possess a single chromosome instead of the two chromosomes usually found in V. cholerae. We also found pervasive chromosomal rearrangements such as duplications and indels in many strains. The majority of Vibrio genome sequences currently in public databases are unfinished draft sequences. The Whole Genome Mapping approach presented here enables rapid screening of large strain collections to capture genomic complexities that would not have been otherwise revealed by unfinished draft genome sequencing and thus aids in assembling and finishing draft sequences of complex genomes. Furthermore, Whole Genome Mapping allows for prediction of novel V. cholerae non-O1/non-O139 strains that may have the potential to cause future cholera outbreaks.« less
Changing epidemiology of rotavirus G-types circulating in Hong Kong, China.
Lo, Janice Yee Chi; Szeto, Kai Cheung; Tsang, Dominic Ngai Chong; Leung, Kwok Hung; Lim, Wilina Wei Ling
2005-01-01
Group A rotaviruses are the most common cause of severe diarrhoeal disease in young children worldwide. The development of a vaccine is advocated by the World Health Organization. Obtaining local baseline information regarding rotavirus strain variation is important to ensure matching of circulating and vaccine strains. The current study was undertaken to determine the epidemiology of rotavirus G-types in Hong Kong in anticipation of a vaccination program. From 2001 to 2002 over a period of one year, diarrhoeal stool specimens known to be positive for rotavirus were subjected to G-typing by reverse transcriptase-polymerase chain reaction using nested type-specific primers. Rotavirus G-type distribution was correlated with patient demographics. Among 747 rotavirus positive stool specimens, 723 strains could be G-typed as G1 (302, 40.4%), G2 (128, 17.1%), G3 (231, 30.9%), G4 (24, 3.2%), and G9 (38, 5.1%). G1 strains were found predominantly in those 5 years old or younger (P < 0.0001), while G2 strains were more prevalent among those over 5 years of age (P < 0.001). When compared with similar studies in 1983 to 1984 and 1999 to 2000, there were significant changes in the prevalence of various G-types, with consistent detection of G9 strains in the current study. It is concluded that rotavirus G-type distribution in Hong Kong has varied with time. Continuous monitoring of the epidemiology of rotavirus is important, especially in anticipation of the introduction of a vaccine, in order to document its impact and to ensure its continued effectiveness. Copyright 2005 Wiley-Liss, Inc.
Hughes, L A; Wigley, P; Bennett, M; Chantrey, J; Williams, N
2010-10-01
Recent studies have suggested that Salmonella Typhimurium strains associated with mortality in UK garden birds are significantly different from strains that cause disease in humans and livestock and that wild bird strains may be host adapted. However, without further genomic characterization of these strains, it is not possible to determine whether they are host adapted. The aim of this study was to characterize a representative sample of Salm. Typhimurium strains detected in wild garden birds using multi-locus sequence typing (MLST)to investigate evolutionary relationships between them. Multi-locus sequence typing was performed on nine Salm. Typhimurium strains isolated from wild garden birds. Two sequence types were identified, the most common of which was ST568. Examination of the public Salmonella enterica MLST database revealed that only three other ST568 isolates had been cultured from a human in Scotland. Two further isolates of Salm. Typhimurium were determined to be ST19. Results of MLST analysis suggest that there is a predominant strain of Salm. Typhimurium circulating among garden bird populations in the United Kingdom, which is rarely detected in other species, supporting the hypothesis that this strain is host adapted. Host-pathogen evolution is often assumed to lead to pathogens becoming less virulent to avoid the death of their host; however, infection with ST568 led to high mortality rates among the wild birds examined, which were all found dead at wild bird-feeding stations. We hypothesize that by attracting unnaturally high densities of birds, wild bird-feeding stations may facilitate the transmission of ST568 between wild birds, therefore reducing the evolutionary cost of this pathogen killing its host, resulting in a host-adapted strain with increased virulence.
Gebhart, Dana; Lok, Stephen; Clare, Simon; Tomas, Myreen; Stares, Mark; Scholl, Dean; Donskey, Curtis J.; Lawley, Trevor D.
2015-01-01
ABSTRACT Clostridium difficile is a leading cause of nosocomial infections worldwide and has become an urgent public health threat requiring immediate attention. Epidemic lineages of the BI/NAP1/027 strain type have emerged and spread through health care systems across the globe over the past decade. Limiting person-to-person transmission and eradicating C. difficile, especially the BI/NAP1/027 strain type, from health care facilities are difficult due to the abundant shedding of spores that are impervious to most interventions. Effective prophylaxis for C. difficile infection (CDI) is lacking. We have genetically modified a contractile R-type bacteriocin (“diffocin”) from C. difficile strain CD4 to kill BI/NAP1/027-type strains for this purpose. The natural receptor binding protein (RBP) responsible for diffocin targeting was replaced with a newly discovered RBP identified within a prophage of a BI/NAP1/027-type target strain by genome mining. The resulting modified diffocins (a.k.a. Avidocin-CDs), Av-CD291.1 and Av-CD291.2, were stable and killed all 16 tested BI/NAP1/027-type strains. Av-CD291.2 administered in drinking water survived passage through the mouse gastrointestinal (GI) tract, did not detectably alter the mouse gut microbiota or disrupt natural colonization resistance to C. difficile or the vancomycin-resistant Enterococcus faecium (VREF), and prevented antibiotic-induced colonization of mice inoculated with BI/NAP1/027-type spores. Given the high incidence and virulence of the pathogen, preventing colonization by BI/NAP1/027-type strains and limiting their transmission could significantly reduce the occurrence of the most severe CDIs. This modified diffocin represents a prototype of an Avidocin-CD platform capable of producing targetable, precision anti-C. difficile agents that can prevent and potentially treat CDIs without disrupting protective indigenous microbiota. PMID:25805733
Vincent, Caroline; Usongo, Valentine; Berry, Chrystal; Tremblay, Denise M; Moineau, Sylvain; Yousfi, Khadidja; Doualla-Bell, Florence; Fournier, Eric; Nadon, Céline; Goodridge, Lawrence; Bekal, Sadjia
2018-08-01
Salmonella enterica serovar Heidelberg (S. Heidelberg) is one of the top serovars causing human salmonellosis. This serovar ranks second and third among serovars that cause human infections in Québec and Canada, respectively, and has been associated with severe infections. Traditional typing methods such as PFGE do not display adequate discrimination required to resolve outbreak investigations due to the low level of genetic diversity of isolates belonging to this serovar. This study evaluates the ability of four whole genome sequence (WGS)-based typing methods to differentiate among 145 S. Heidelberg strains involved in four distinct outbreak events and sporadic cases of salmonellosis that occurred in Québec between 2007 and 2016. Isolates from all outbreaks were indistinguishable by PFGE. The core genome single nucleotide variant (SNV), core genome multilocus sequence typing (MLST) and whole genome MLST approaches were highly discriminatory and separated outbreak strains into four distinct phylogenetic clusters that were concordant with the epidemiological data. The clustered regularly interspaced short palindromic repeats (CRISPR) typing method was less discriminatory. However, CRISPR typing may be used as a secondary method to differentiate isolates of S. Heidelberg that are genetically similar but epidemiologically unrelated to outbreak events. WGS-based typing methods provide a highly discriminatory alternative to PFGE for the laboratory investigation of foodborne outbreaks. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pathoadaptive Conditional Regulation of the Type VI Secretion System in Vibrio cholerae O1 Strains
Ishikawa, Takahiko; Sabharwal, Dharmesh; Bröms, Jeanette; Milton, Debra L.; Sjöstedt, Anders; Uhlin, Bernt Eric
2012-01-01
The most recently discovered secretion pathway in Gram-negative bacteria, the type VI secretion system (T6SS), is present in many species and is considered important for the survival of non-O1 non-O139 Vibrio cholerae in aquatic environments. Until now, it was not known whether there is a functionally active T6SS in wild-type V. cholerae O1 strains, the cause of cholera disease in humans. Here, we demonstrate the presence of a functionally active T6SS in wild-type V. cholerae O1 strains, as evidenced by the secretion of the T6SS substrate Hcp, which required several gene products encoded within the putative vas gene cluster. Our analyses showed that the T6SS of wild-type V. cholerae O1 strain A1552 was functionally activated when the bacteria were grown under high-osmolarity conditions. The T6SS was also active when the bacteria were grown under low temperature (23°C), suggesting that the system may be important for the survival of the bacterium in the environment. A test of the interbacterial virulence of V. cholerae strain A1552 against an Escherichia coli K-12 strain showed that it was strongly enhanced under high osmolarity and that it depended on the hcp genes. Interestingly, we found that the newly recognized osmoregulatory protein OscR plays a role in the regulation of T6SS gene expression and secretion of Hcp from V. cholerae O1 strains. PMID:22083711
Bjornstad, Petter; Truong, Uyen; Pyle, Laura; Dorosz, Jennifer L.; Cree-Green, Melanie; Baumgartner, Amy; Coe, Gregory; Regensteiner, Judith G.; Reusch, Jane E.B.; Nadeau, Kristen J.
2016-01-01
Objective Diabetic cardiomyopathy is a major cause of morbidity, but limited data are available on early cardiac abnormalities in type 1 diabetes (T1D). We investigated differences in myocardial strain in adolescents with and without T1D. We hypothesized that adolescents with T1D would have worse strain than their normoglycemic peers, which boys would have worse strain than girls, and that strain would correlate with glycemic control and adipokines. Methods We performed fasting laboratory measures and echocardiograms with speckle tracking to evaluate traditional echocardiographic measures in addition to longitudinal (LS) and circumferential (CS) strain, and in adolescents (15±2 years) with (19 boys; 22 girls) and without (16 boys; 32 girls) type 1 diabetes. Results Compared to controls, adolescents with type 1 diabetes had significantly lower CS (−20.9 vs. −22.7%, p=0.02), but not LS (p=0.83). Boys with T1D had significantly lower LS than girls with T1D (−17.5 vs. −19.7%, p=0.047), adjusted for Tanner stage. The significant sex differences observed in indexed left ventricular mass, left end-diastolic volume, diastolic septal and posterior wall thickness in our controls were lacking in adolescents with T1D. Conclusions Our observations suggest that youth with T1D have worse myocardial strain than normoglycemic peers. In addition, the relatively favorable cardiac profile observed in girls vs. boys in the control group, was attenuated in T1D. These early cardiovascular changes in youth with T1D are concerning and warrant longitudinal and mechanistic studies. PMID:27133451
Loss of Regulatory Protein RfaH Attenuates Virulence of Uropathogenic Escherichia coli
Nagy, Gábor; Dobrindt, Ulrich; Schneider, György; Khan, A. Salam; Hacker, Jörg; Emödy, Levente
2002-01-01
RfaH is a regulatory protein in Escherichia coli and Salmonella enterica serovar Typhimurium. Although it enhances expression of different factors that are proposed to play a role in bacterial virulence, a direct effect of RfaH on virulence has not been investigated so far. We report that inactivation of rfaH dramatically decreases the virulence of uropathogenic E. coli strain 536 in an ascending mouse model of urinary tract infection. The mortality rate caused by the wild-type strain in this assay is 100%, whereas that of its isogenic rfaH mutant does not exceed 18%. In the case of coinfection, the wild-type strain 536 shows higher potential to colonize the urinary tract even when it is outnumbered 100-fold by its rfaH mutant in the inoculum. In contrast to the wild-type strain, serum resistance of strain 536rfaH::cat is fully abolished. Furthermore, we give evidence that, besides a major decrease in the amount of hemin receptor ChuA (G. Nagy, U. Dobrindt, M. Kupfer, L. Emody, H. Karch, and J. Hacker, Infect. Immun. 69:1924-1928, 2001), loss of the RfaH protein results in an altered lipopolysaccharide phenotype as well as decreased expression of K15 capsule and alpha-hemolysin, whereas levels of other pathogenicity factors such as siderophores, flagella, Prf, and S fimbriae appear to be unaltered in strain 536rfaH::cat in comparison to the wild-type strain. trans complementation of the mutant strain with the rfaH gene restores wild-type levels of the affected virulence factors and consequently restitutes virulence in the mouse model of ascending urinary tract infection. PMID:12117951
Ikegami, Tetsuro; Balogh, Aaron; Nishiyama, Shoko; Lokugamage, Nandadeva; Saito, Tais B; Morrill, John C; Shivanna, Vinay; Indran, Sabarish V; Zhang, Lihong; Smith, Jennifer K; Perez, David; Juelich, Terry L; Morozov, Igor; Wilson, William C; Freiberg, Alexander N; Richt, Juergen A
2017-01-01
Rift Valley fever phlebovirus (RVFV) causes high rates of abortions and fetal malformations in ruminants, and hemorrhagic fever, encephalitis, or blindness in humans. Viral transmission occurs via mosquito vectors in endemic areas, which necessitates regular vaccination of susceptible livestock animals to prevent the RVF outbreaks. Although ZH501 strain has been used as a challenge strain for past vaccine efficacy studies, further characterization of other RVFV strains is important to optimize ruminant and nonhuman primate RVFV challenge models. This study aimed to characterize the virulence of wild-type RVFV strains belonging to different genetic lineages in outbred CD1 mice. Mice were intraperitoneally infected with 1x103 PFU of wild-type ZH501, Kenya 9800523, Kenya 90058, Saudi Arabia 200010911, OS1, OS7, SA75, Entebbe, or SA51 strains. Among them, mice infected with SA51, Entebbe, or OS7 strain showed rapid dissemination of virus in livers and peracute necrotic hepatitis at 2-3 dpi. Recombinant SA51 (rSA51) and Zinga (rZinga) strains were recovered by reverse genetics, and their virulence was also tested in CD1 mice. The rSA51 strain reproduced peracute RVF disease in mice, whereas the rZinga strain showed a similar virulence with that of rZH501 strain. This study showed that RVFV strains in different genetic lineages display distinct virulence in outbred mice. Importantly, since wild-type RVFV strains contain defective-interfering RNA or various genetic subpopulations during passage from original viral isolations, recombinant RVFV strains generated by reverse genetics will be better suitable for reproducible challenge studies for vaccine development as well as pathological studies.
Balogh, Aaron; Nishiyama, Shoko; Lokugamage, Nandadeva; Saito, Tais B.; Morrill, John C.; Shivanna, Vinay; Indran, Sabarish V.; Zhang, Lihong; Smith, Jennifer K.; Perez, David; Juelich, Terry L.; Morozov, Igor; Wilson, William C.; Freiberg, Alexander N.; Richt, Juergen A.
2017-01-01
Rift Valley fever phlebovirus (RVFV) causes high rates of abortions and fetal malformations in ruminants, and hemorrhagic fever, encephalitis, or blindness in humans. Viral transmission occurs via mosquito vectors in endemic areas, which necessitates regular vaccination of susceptible livestock animals to prevent the RVF outbreaks. Although ZH501 strain has been used as a challenge strain for past vaccine efficacy studies, further characterization of other RVFV strains is important to optimize ruminant and nonhuman primate RVFV challenge models. This study aimed to characterize the virulence of wild-type RVFV strains belonging to different genetic lineages in outbred CD1 mice. Mice were intraperitoneally infected with 1x103 PFU of wild-type ZH501, Kenya 9800523, Kenya 90058, Saudi Arabia 200010911, OS1, OS7, SA75, Entebbe, or SA51 strains. Among them, mice infected with SA51, Entebbe, or OS7 strain showed rapid dissemination of virus in livers and peracute necrotic hepatitis at 2–3 dpi. Recombinant SA51 (rSA51) and Zinga (rZinga) strains were recovered by reverse genetics, and their virulence was also tested in CD1 mice. The rSA51 strain reproduced peracute RVF disease in mice, whereas the rZinga strain showed a similar virulence with that of rZH501 strain. This study showed that RVFV strains in different genetic lineages display distinct virulence in outbred mice. Importantly, since wild-type RVFV strains contain defective-interfering RNA or various genetic subpopulations during passage from original viral isolations, recombinant RVFV strains generated by reverse genetics will be better suitable for reproducible challenge studies for vaccine development as well as pathological studies. PMID:29267298
Graham, J. C.; Leathart, J. B. S.; Keegan, S. J.; Pearson, J.; Bint, A.; Gally, D. L.
2001-01-01
Escherichia coli isolates from patients with bacteriuria of pregnancy were compared by PCR with isolates from patients with community-acquired cystitis for the presence of established virulence determinants. The strains from patients with bacteriuria of pregnancy were less likely to carry genes for P-family, S-family, and F1C adhesins, cytotoxic necrotizing factor 1, and aerobactin, but virtually all of the strains carried the genes for type 1 fimbriae. Standard mannose-sensitive agglutination of yeast cells showed that only 15 of 42 bacteriuria strains (36%) expressed type 1 fimbriae compared with 32 of 42 strains from community-acquired symptomatic infections (76%) (P < 0.01). This difference was confirmed by analysis of all isolates for an allele of the type 1 fimbrial regulatory region (fim switch), which negates type 1 fimbrial expression by preventing the fim switch from being inverted to the on phase. This allele, fimS49, was found in 8 of 47 bacteriuria strains from pregnant women (17.0%) compared with 2 of 60 strains isolated from patients with cystitis (3.3%) (P < 0.05). Determination of the phase switch orientation in vivo by analysis of freshly collected infected urine from patients with bacteriuria showed that the fim switch was detectable in the off orientation in 17 of 23 urine samples analyzed (74%). These data indicate that type 1 fimbriae are not necessary to maintain the majority of E. coli bacteriurias in pregnant women since there appears to be selection against their expression in this particular group. This is in contrast to the considered role of this adhesin in community-acquired symptomatic infections. The lack of type 1 fimbria expression is likely to contribute to the asymptomatic nature of bacteriuria in pregnant women, although approximately one-third of the bacteriuria isolates do possess key virulence determinants. If left untreated, this subset of isolates pose the greatest threat to the health of the mother and unborn child. PMID:11159970
Gebhart, Dana; Lok, Stephen; Clare, Simon; Tomas, Myreen; Stares, Mark; Scholl, Dean; Donskey, Curtis J; Lawley, Trevor D; Govoni, Gregory R
2015-03-24
Clostridium difficile is a leading cause of nosocomial infections worldwide and has become an urgent public health threat requiring immediate attention. Epidemic lineages of the BI/NAP1/027 strain type have emerged and spread through health care systems across the globe over the past decade. Limiting person-to-person transmission and eradicating C. difficile, especially the BI/NAP1/027 strain type, from health care facilities are difficult due to the abundant shedding of spores that are impervious to most interventions. Effective prophylaxis for C. difficile infection (CDI) is lacking. We have genetically modified a contractile R-type bacteriocin ("diffocin") from C. difficile strain CD4 to kill BI/NAP1/027-type strains for this purpose. The natural receptor binding protein (RBP) responsible for diffocin targeting was replaced with a newly discovered RBP identified within a prophage of a BI/NAP1/027-type target strain by genome mining. The resulting modified diffocins (a.k.a. Avidocin-CDs), Av-CD291.1 and Av-CD291.2, were stable and killed all 16 tested BI/NAP1/027-type strains. Av-CD291.2 administered in drinking water survived passage through the mouse gastrointestinal (GI) tract, did not detectably alter the mouse gut microbiota or disrupt natural colonization resistance to C. difficile or the vancomycin-resistant Enterococcus faecium (VREF), and prevented antibiotic-induced colonization of mice inoculated with BI/NAP1/027-type spores. Given the high incidence and virulence of the pathogen, preventing colonization by BI/NAP1/027-type strains and limiting their transmission could significantly reduce the occurrence of the most severe CDIs. This modified diffocin represents a prototype of an Avidocin-CD platform capable of producing targetable, precision anti-C. difficile agents that can prevent and potentially treat CDIs without disrupting protective indigenous microbiota. Treatment and prevention strategies for bacterial diseases rely heavily on traditional antibiotics, which impose strong selection for resistance and disrupt protective microbiota. One consequence has been an upsurge of opportunistic pathogens, such as Clostridium difficile, that exploit antibiotic-induced disruptions in gut microbiota to proliferate and cause life-threatening diseases. We have developed alternative agents that utilize contractile bactericidal protein complexes (R-type bacteriocins) to kill specific C. difficile pathogens. Efficacy in a preclinical animal study indicates these molecules warrant further development as potential prophylactic agents to prevent C. difficile infections in humans. Since these agents do not detectably alter the indigenous gut microbiota or colonization resistance in mice, we believe they will be safe to administer as a prophylactic to block transmission in high-risk environments without rendering patients susceptible to enteric infection after cessation of treatment. Copyright © 2015 Gebhart et al.
Full-length genomic characterization and molecular evolution of canine parvovirus in China.
Zhou, Ling; Tang, Qinghai; Shi, Lijun; Kong, Miaomiao; Liang, Lin; Mao, Qianqian; Bu, Bin; Yao, Lunguang; Zhao, Kai; Cui, Shangjin; Leal, Élcio
2016-06-01
Canine parvovirus type 2 (CPV-2) can cause acute haemorrhagic enteritis in dogs and myocarditis in puppies. This disease has become one of the most serious infectious diseases of dogs. During 2014 in China, there were many cases of acute infectious diarrhoea in dogs. Some faecal samples were negative for the CPV-2 antigen based on a colloidal gold test strip but were positive based on PCR, and a viral strain was isolated from one such sample. The cytopathic effect on susceptible cells and the results of the immunoperoxidase monolayer assay, PCR, and sequencing indicated that the pathogen was CPV-2. The strain was named CPV-NY-14, and the full-length genome was sequenced and analysed. A maximum likelihood tree was constructed using the full-length genome and all available CPV-2 genomes. New strains have replaced the original strain in Taiwan and Italy, although the CPV-2a strain is still predominant there. However, CPV-2a still causes many cases of acute infectious diarrhoea in dogs in China.
Qin, Tian; Zhou, Haijian; Ren, Hongyu; Guan, Hong; Li, Machao; Zhu, Bingqing; Shao, Zhujun
2014-04-01
Legionella pneumophila serogroup 1 causes Legionnaires' disease. Water systems contaminated with Legionella are the implicated sources of Legionnaires' disease. This study analyzed L. pneumophila serogroup 1 strains in China using sequence-based typing. Strains were isolated from cooling towers (n = 96), hot springs (n = 42), and potable water systems (n = 26). Isolates from cooling towers, hot springs, and potable water systems were divided into 25 sequence types (STs; index of discrimination [IOD], 0.711), 19 STs (IOD, 0.934), and 3 STs (IOD, 0.151), respectively. The genetic variation among the potable water isolates was lower than that among cooling tower and hot spring isolates. ST1 was the predominant type, accounting for 49.4% of analyzed strains (n = 81), followed by ST154. With the exception of two strains, all potable water isolates (92.3%) belonged to ST1. In contrast, 53.1% (51/96) and only 14.3% (6/42) of cooling tower and hot spring, respectively, isolates belonged to ST1. There were differences in the distributions of clone groups among the water sources. The comparisons among L. pneumophila strains isolated in China, Japan, and South Korea revealed that similar clones (ST1 complex and ST154 complex) exist in these countries. In conclusion, in China, STs had several unique allelic profiles, and ST1 was the most prevalent sequence type of environmental L. pneumophila serogroup 1 isolates, similar to its prevalence in Japan and South Korea.
Yasugi, Mayo; Sugahara, Yuki; Hoshi, Hidenobu; Kondo, Kaori; Talukdar, Prabhat K; Sarker, Mahfuzur R; Yamamoto, Shigeki; Kamata, Yoichi; Miyake, Masami
2015-08-01
Clostridium perfringens type A is a common source of food poisoning (FP) and non-food-borne (NFB) gastrointestinal diseases in humans. In the intestinal tract, the vegetative cells sporulate and produce a major pathogenic factor, C. perfringens enterotoxin (CPE). Most type A FP isolates carry a chromosomal cpe gene, whereas NFB type A isolates typically carry a plasmid-encoded cpe. In vitro, the purified CPE protein binds to a receptor and forms pores, exerting a cytotoxic activity in epithelial cells. However, it remains unclear if CPE is indispensable for C. perfringens cytotoxicity. In this study, we examined the cytotoxicity of cpe-harboring C. perfringens isolates co-cultured with human intestinal epithelial Caco-2 cells. The FP strains showed severe cytotoxicity during sporulation and CPE production, but not during vegetative cell growth. While Caco-2 cells were intact during co-culturing with cpe-null mutant derivative of strain SM101 (a FP strain carrying a chromosomal cpe gene), the wild-type level cytotoxicity was observed with cpe-complemented strain. In contrast, both wild-type and cpe-null mutant derivative of the NFB strain F4969 induced Caco-2 cell death during both vegetative and sporulation growth. Collectively, the Caco-2 cell cytotoxicity caused by C. perfringens strain SM101 is considered to be exclusively dependent on CPE production, whereas some additional toxins should be involved in F4969-mediated in vitro cytotoxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Involvement of T6 pili in biofilm formation by serotype M6 Streptococcus pyogenes.
Kimura, Keiji Richard; Nakata, Masanobu; Sumitomo, Tomoko; Kreikemeyer, Bernd; Podbielski, Andreas; Terao, Yutaka; Kawabata, Shigetada
2012-02-01
The group A streptococcus (GAS) Streptococcus pyogenes is known to cause self-limiting purulent infections in humans. The role of GAS pili in host cell adhesion and biofilm formation is likely fundamental in early colonization. Pilus genes are found in the FCT (fibronectin-binding protein, collagen-binding protein, and trypsin-resistant antigen) genomic region, which has been classified into nine subtypes based on the diversity of gene content and nucleotide sequence. Several epidemiological studies have indicated that FCT type 1 strains, including serotype M6, produce large amounts of monospecies biofilm in vitro. We examined the direct involvement of pili in biofilm formation by serotype M6 clinical isolates. In the majority of tested strains, deletion of the tee6 gene encoding pilus shaft protein T6 compromised the ability to form biofilm on an abiotic surface. Deletion of the fctX and srtB genes, which encode pilus ancillary protein and class C pilus-associated sortase, respectively, also decreased biofilm formation by a representative strain. Unexpectedly, these mutant strains showed increased bacterial aggregation compared with that of the wild-type strain. When the entire FCT type 1 pilus region was ectopically expressed in serotype M1 strain SF370, biofilm formation was promoted and autoaggregation was inhibited. These findings indicate that assembled FCT type 1 pili contribute to biofilm formation and also function as attenuators of bacterial aggregation. Taken together, our results show the potential role of FCT type 1 pili in the pathogenesis of GAS infections.
Phylogeography and Molecular Epidemiology of an Epidemic Strain of Dengue Virus Type 1 in Sri Lanka
Ocwieja, Karen E.; Fernando, Anira N.; Sherrill-Mix, Scott; Sundararaman, Sesh A.; Tennekoon, Rashika N.; Tippalagama, Rashmi; Krishnananthasivam, Shivankari; Premawansa, Gayani; Premawansa, Sunil; De Silva, Aruna Dharshan
2014-01-01
In 2009, a severe epidemic of dengue disease occurred in Sri Lanka, with higher mortality and morbidity than any previously recorded epidemic in the country. It corresponded to a shift to dengue virus 1 as the major disease-causing serotype in Sri Lanka. Dengue disease reached epidemic levels in the next 3 years. We report phylogenetic evidence that the 2009 epidemic DENV-1 strain continued to circulate within the population and caused severe disease in the epidemic of 2012. Bayesian phylogeographic analyses suggest that the 2009 Sri Lankan epidemic DENV-1 strain may have traveled directly or indirectly from Thailand through China to Sri Lanka, and after spreading within the Sri Lankan population, it traveled to Pakistan and Singapore. Our findings delineate the dissemination route of a virulent DENV-1 strain in Asia. Understanding such routes will be of particular importance to global control efforts. PMID:24799375
Probe-based real-time PCR method for multilocus melt typing of Xylella fastidiosa strains.
Brady, Jeff A; Faske, Jennifer B; Ator, Rebecca A; Castañeda-Gill, Jessica M; Mitchell, Forrest L
2012-04-01
Epidemiological studies of Pierce's disease (PD) can be confounded by a lack of taxonomic detail on the bacterial causative agent, Xylella fastidiosa (Xf). PD in grape is caused by strains of Xylella fastidiosa subsp. fastidiosa, but is not caused by other subspecies of Xf that typically colonize plants other than grape. Detection assays using ELISA and qPCR are effective at detecting and quantifying Xf presence or absence, but offer no information on Xf subspecies or strain identity. Surveying insects or host plants for Xf by current ELISA or qPCR methods provides only presence/absence and quantity information for any and all Xf subspecies, potentially leading to false assessments of disease threat. This study uses a series of adjacent-hybridizing DNA melt analysis probes that are capable of efficiently discriminating Xf subspecies and strain relationships in rapid real-time PCR reactions. Copyright © 2012 Elsevier B.V. All rights reserved.
Lacher, David W; Gangiredla, Jayanthi; Patel, Isha; Elkins, Christopher A; Feng, Peter C H
2016-10-01
More than 470 serotypes of Shiga toxin-producing Escherichia coli (STEC) have been identified, but not all cause severe illness in humans. Most STEC that cause severe diseases can adhere to epithelial cells, produce specific stx subtypes, and belong to certain serotypes; therefore, these traits appear to be critical STEC risk factors. However, testing for these traits is labor intensive, and serotyping is inadequate because of extensive variations among E. coli O and H antigen types. In the present study, the E. coli identification microarray, which tests for over 40,000 E. coli gene targets, was examined for its potential to quickly characterize STEC strains. Analysis of 47 E. coli isolates, including 31 STEC isolates, recovered from 39 foods revealed that the microarray effectively determined the presence or absence of adherence genes and identified the specific eae allele in 3 isolates. The array identified most of the stx subtypes carried by all the isolates but had some difficulties in discerning between stx 2a , stx 2c , and stx 2d because of the genetic similarities of these subtypes. The array determined the O and H types of 68 and 96% of the isolates, respectively, and although most serotypes were unremarkable, a few known pathogenic serotypes were also found. These selected STEC traits provided a scientific basis for assessing the potential health risks of STEC strains and also showed the importance of H typing in determining health risks. However, the diversity of the STEC group, the complexity of virulence mechanisms, and the variation in pathotypes among strains continue to pose challenges to assessing the potential of STEC strains to cause severe illness.
Butin, M; Rasigade, J-P; Martins-Simões, P; Meugnier, H; Lemriss, H; Goering, R V; Kearns, A; Deighton, M A; Denis, O; Ibrahimi, A; Claris, O; Vandenesch, F; Picaud, J-C; Laurent, F
2016-01-01
Nosocomial late-onset sepsis represents a frequent cause of morbidity and mortality in preterm neonates. The Staphylococcus capitis clone NRCS-A has been previously described as an emerging cause of nosocomial bacteraemia in French neonatal intensive-care units (NICUs). In this study, we aimed to explore the possible unrecognized dissemination of this clone on a larger geographical scale. One hundred methicillin-resistant S. capitis strains isolated from neonates (n = 86) and adult patients (n = 14) between 2000 and 2013 in four different countries (France, Belgium, the UK, and Australia) were analysed with SmaI pulsed-field gel electrophoresis (PFGE) and dru typing. The vast majority of NICU strains showed the NRCS-A pulsotype and the dt11c type (96%). We then randomly selected 14 isolates (from neonates, n = 12, three per country; from adult patients, n = 2), considered to be a subset of representative isolates, and performed further molecular typing (SacII PFGE, SCCmec typing, and multilocus sequence typing-like analysis), confirming the clonality of the S. capitis strains isolated from neonates, despite their distant geographical origin. Whole genome single-nucleotide polymorphism-based phylogenetic analysis of five NICU isolates (from the different countries) attested to high genetic relatedness within the NRCS-A clone. Finally, all of the NRCS-A strains showed multidrug resistance (e.g. methicillin and aminoglycoside resistance, and decreased vancomycin susceptibility), with potential therapeutic implications for infected neonates. In conclusion, this study represents the first report of clonal dissemination of methicillin-resistant coagulase-negative Staphylococcus clone on a large geographical scale. Questions remain regarding the origin and means of international spread, and the reasons for this clone's apparent predilection for neonates. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Meggiolaro, Maira N; Ly, Anna; Rysnik-Steck, Benjamin; Silva, Carolina; Zhang, Joshua; Higgins, Damien P; Muscatello, Gary; Norris, Jacqueline M; Krockenberger, Mark; Šlapeta, Jan
2017-06-01
Canine parvovirus (CPV-2) remains an important cause of devastating enteritis in young dogs. It can be successfully prevented with live attenuated CPV-2 vaccines when given at the appropriate age and in the absence of maternal antibody interference. Rapid diagnosis of parvoviral enteritis in young dogs is essential to ensuring suitable barrier nursing protocols within veterinary hospitals. The current diagnostic trend is to use multiplexed PCR panels to detect an array of pathogens commonly responsible for diarrhea in dogs. The multiplexed PCR assays do not distinguish wild from vaccine CPV-2. They are highly sensitive and detect even a low level of virus shedding, such as those caused by the CPV-2 vaccine. The aim of this study was to identify the CPV-2 subtypes detected in diagnostic specimens and rule out occult shedding of CPV-2 vaccine strains. For a total of 21 samples that tested positive for CPV-2 in a small animal fecal pathogens diagnostic multiplexed tandem PCR (MT-PCR) panel during 2014-2016 we partially characterized the VP2 gene of CPV-2. Vaccine CPV-2 strain, wild type CPV-2a subtypes and vaccine-like CPV-2b subtypes were detected. High copy number was indicative of wild-type CPV-2a presence, but presence of vaccine-like CPV-2b had a variable copy number in fecal samples. A yardstick approach to a copy number or C t -value to discriminate vaccine strain from a wild type virus of CPV-2 can be, in some cases, potentially misleading. Therefore, discriminating vaccine strain from a wild type subtype of CPV-2 remains ambitious. Copyright © 2017 Elsevier Ltd. All rights reserved.
Venketaraman, Vishwanath; Lin, Albert K.; Le, Amy; Kachlany, Scott C.; Connell, Nancy D.; Kaplan, Jeffrey B.
2008-01-01
Two virulence factors produced by the periodontopathogen Aggregatibacter actinomycetemcomitans are leukotoxin, a secreted lipoprotein that kills human polymorphonuclear leukocytes and macrophages, and poly-N-acetylglucosamine (PGA), a surface polysaccharide that mediates intercellular adhesion, biofilm formation and detergent resistance. In this study we examined the roles of leukotoxin and PGA in protecting A. actinomycetemcomitans cells from killing by the human macrophage cell line THP-1. Monolayers of THP-1 cells were infected with single-cell suspensions of a wild-type A. actinomycetemcomitans strain, or of isogenic leukotoxin or PGA mutant strains. After 48 h, viable bacteria were enumerated by dilution plating, macrophage morphology was evaluated microscopically, and macrophage viability was measured by a Trypan blue dye exclusion assay. The number of A. actinomycetemcomitans CFUs increased approximately 2-fold in wells infected with the wild-type strain, but decreased by approximately 70–90% in wells infected with the leukotoxin and PGA mutant strains. Infection with the wild-type or leukotoxin mutant strain caused a significant decrease in THP-1 cell viability, whereas infection with the PGA mutant strain did not result in any detectable changes in THP-1 viability. Pre-treatment of wild-type A. actinomycetemcomitans cells with the PGA-hydrolyzing enzyme dispersin B rendered them sensitive to killing by THP-1 cells. We concluded that both leukotoxin and PGA are necessary for evasion of macrophage killing by A. actinomycetemcomitans. PMID:18573331
Golovchenko, Maryna; Vancová, Marie; Clark, Kerry; Oliver, James H; Grubhoffer, Libor; Rudenko, Nataliia
2016-02-04
Out of 20 spirochete species from Borrelia burgdorferi sensu lato (s.l.) complex recognized to date some are considered to have a limited distribution, while others are worldwide dispersed. Among those are Borrelia burgdorferi sensu stricto (s.s.) and Borrelia bissettii which are distributed both in North America and in Europe. While B. burgdorferi s.s. is recognized as a cause of Lyme borreliosis worldwide, involvement of B. bissettii in human Lyme disease was not so definite yet. Multilocus sequence typing of spirochete isolates originating from residents of Georgia and Florida, USA, revealed the presence of two Borrelia burgdorferi sensu stricto strains highly similar to those from endemic Lyme borreliosis regions of the northeastern United States, and an unusual strain that differed from any previously described in Europe or North America. Based on phylogenetic analysis of eight chromosomally located housekeeping genes divergent strain clustered between Borrelia bissettii and Borrelia carolinensis, two species from the B.burgdorferi s.l. complex, widely distributed among the multiple hosts and vector ticks in the southeastern United States. The genetic distance analysis showed a close relationship of the diverged strain to B. bissettii. Here, we present the analysis of the first North American human originated live spirochete strain that revealed close relatedness to B. bissettii. The potential of B. bissettii to cause human disease, even if it is infrequent, is of importance for clinicians due to the extensive range of its geographic distribution.
NASA Astrophysics Data System (ADS)
Gao, Yang; Fang, Xiaoliang; Tan, Jianping; Lu, Ting; Pan, Likun; Xuan, Fuzhen
2018-06-01
Wearable strain sensors based on nanomaterial/elastomer composites have potential applications in flexible electronic skin, human motion detection, human–machine interfaces, etc. In this research, a type of high performance strain sensors has been developed using fragmentized carbon nanotube/polydimethylsiloxane (CNT/PDMS) composites. The CNT/PDMS composites were ground into fragments, and a liquid-induced densification method was used to fabricate the strain sensors. The strain sensors showed high sensitivity with gauge factors (GFs) larger than 200 and a broad strain detection range up to 80%, much higher than those strain sensors based on unfragmentized CNT/PDMS composites (GF < 1). The enhanced sensitivity of the strain sensors is ascribed to the sliding of individual fragmentized-CNT/PDMS-composite particles during mechanical deformation, which causes significant resistance change in the strain sensors. The strain sensors can differentiate mechanical stimuli and monitor various human body motions, such as bending of the fingers, human breathing, and blood pulsing.
Gao, Yang; Fang, Xiaoliang; Tan, Jianping; Lu, Ting; Pan, Likun; Xuan, Fuzhen
2018-06-08
Wearable strain sensors based on nanomaterial/elastomer composites have potential applications in flexible electronic skin, human motion detection, human-machine interfaces, etc. In this research, a type of high performance strain sensors has been developed using fragmentized carbon nanotube/polydimethylsiloxane (CNT/PDMS) composites. The CNT/PDMS composites were ground into fragments, and a liquid-induced densification method was used to fabricate the strain sensors. The strain sensors showed high sensitivity with gauge factors (GFs) larger than 200 and a broad strain detection range up to 80%, much higher than those strain sensors based on unfragmentized CNT/PDMS composites (GF < 1). The enhanced sensitivity of the strain sensors is ascribed to the sliding of individual fragmentized-CNT/PDMS-composite particles during mechanical deformation, which causes significant resistance change in the strain sensors. The strain sensors can differentiate mechanical stimuli and monitor various human body motions, such as bending of the fingers, human breathing, and blood pulsing.
Pardos de la Gandara, Maria; Raygoza Garay, Juan Antonio; Mwangi, Michael; Tobin, Jonathan N.; Tsang, Amanda; Khalida, Chamanara; D'Orazio, Brianna; Kost, Rhonda G.; Leinberger-Jabari, Andrea; Coffran, Cameron; Evering, Teresa H.; Coller, Barry S.; Balachandra, Shirish; Urban, Tracie; Parola, Claude; Salvato, Scott; Jenks, Nancy; Wu, Daren; Burgess, Rhonda; Chung, Marilyn; de Lencastre, Herminia
2015-01-01
In November 2011, The Rockefeller University Center for Clinical and Translational Science (CCTS), the Laboratory of Microbiology and Infectious Diseases, and Clinical Directors Network (CDN) launched a research and learning collaborative project with six community health centers in the New York City metropolitan area to determine the nature (clonal type) of community-acquired Staphylococcus aureus strains causing skin and soft tissue infections (SSTIs). Between November 2011 and March 2013, wound and nasal samples from 129 patients with active SSTIs suspicious for S. aureus were collected and characterized by molecular typing techniques. In 63 of 129 patients, the skin wounds were infected by S. aureus: methicillin-resistant S. aureus (MRSA) was recovered from 39 wounds and methicillin-sensitive S. aureus (MSSA) was recovered from 24. Most—46 of the 63–wound isolates belonged to the CC8/Panton-Valentine leukocidin-positive (PVL+) group of S. aureus clone USA300: 34 of these strains were MRSA and 12 were MSSA. Of the 63 patients with S. aureus infections, 30 were also colonized by S. aureus in the nares: 16 of the colonizing isolates were MRSA, and 14 were MSSA, and the majority of the colonizing isolates belonged to the USA300 clonal group. In most cases (70%), the colonizing isolate belonged to the same clonal type as the strain involved with the infection. In three of the patients, the identity of invasive and colonizing MRSA isolates was further documented by whole-genome sequencing. PMID:26063853
Lachance, Claude; Gottschalk, Marcelo; Gerber, Pehuén P; Lemire, Paul; Xu, Jianguo; Segura, Mariela
2013-06-01
Streptococcus suis, a major porcine pathogen, can be transmitted to humans and cause severe symptoms. A large human outbreak associated with an unusual streptococcal toxic shock-like syndrome (STSLS) was described in China. Albeit an early burst of proinflammatory cytokines following Chinese S. suis infection was suggested to be responsible for STSLS case severity, the mechanisms involved are still poorly understood. Using a mouse model, the host response to S. suis infection with a North American intermediately pathogenic strain, a European highly pathogenic strain, and the Chinese epidemic strain was investigated by a whole-genome microarray approach. Proinflammatory genes were expressed at higher levels in mice infected with the Chinese strain than those infected with the European strain. The Chinese strain induced a fast and strong gamma interferon (IFN-γ) response by natural killer (NK) cells. In fact, IFN-γ-knockout mice infected with the Chinese strain showed significantly better survival than wild-type mice. Conversely, infection with the less virulent North American strain resulted in an IFN-β-subjugated, low inflammatory response that might be beneficial for the host to clear the infection. Overall, our data suggest that a highly virulent epidemic strain has evolved to massively activate IFN-γ production, mainly by NK cells, leading to a rapid and lethal STSLS.
Mathieu-Denoncourt, Annabelle; Letendre, Corinne; Auger, Jean-Philippe; Segura, Mariela; Aragon, Virginia; Lacouture, Sonia; Gottschalk, Marcelo
2018-01-01
Streptococcus suis and Haemophilus parasuis are normal inhabitants of the porcine upper respiratory tract but are also among the most frequent causes of disease in weaned piglets worldwide, causing inflammatory diseases such as septicemia, meningitis and pneumonia. Using an in vitro model of infection with tracheal epithelial cells or primary alveolar macrophages (PAMs), it was possible to determine the interaction between S. suis serotype 2 and H. parasuis strains with different level of virulence. Within H. parasuis strains, the low-virulence F9 strain showed higher adhesion levels to respiratory epithelial cells and greater association levels to PAMs than the high-virulence Nagasaki strain. Accordingly, the low-virulence F9 strain induced, in general, higher levels of pro-inflammatory cytokines than the virulent Nagasaki strain from both cell types. In general, S. suis adhesion levels to respiratory epithelial cells were similar to H. parasuis Nagasaki strain. Yet, S. suis strains induced a significantly lower level of pro-inflammatory cytokine expression from epithelial cells and PAMs than those observed with both H. parasuis strains. Finally, this study has shown that, overall and under the conditions used in the present study, S. suis and H. parasuis have limited in vitro interactions between them and use probably different host receptors, regardless to their level of virulence. PMID:29316613
Strangles in horses can be caused by vaccination with Pinnacle I. N.
Cursons, Ray; Patty, Olivia; Steward, Karen F; Waller, Andrew S
2015-07-09
The differentiation of live attenuated vaccine strains from their progenitor and wild-type counterparts is important for ongoing surveillance of product safety and improved guidelines on their use. We utilised a genome sequencing approach to confirm that two cases of strangles in previously healthy horses that had received the Pinnacle I. N. vaccine (Zoetis) were caused by the vaccine strain. Our data shed new light on the safety of this vaccine and suggest that factors beyond the maturity of the animal's immune system influence the development of adverse reactions. Copyright © 2015 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Escherichia coli O157:H7 (O157) are Shiga toxin-producing food-borne pathogens that are a significant threat to human health, causing severe illnesses including hemorrhagic uremic syndrome and kidney failure. Cattle are the major reservoirs of O157, with asymptomatic animals harboring the organism i...
USDA-ARS?s Scientific Manuscript database
An infectious clone of a highly pathogenic PRRSV strain from Vietnam (rSRV07) was prepared, analyzed and compared to Chinese highly pathogenic PRRSV rJXwn06 and US Type 2 prototype VR-2332 in order to examine the effects of virus phenotype and genotype on growth in MARC-145 cells, as well as the imp...
Qian, J; Yao, K; Xue, L; Xie, G; Zheng, Y; Wang, C; Shang, Y; Wang, H; Wan, L; Liu, L; Li, C; Ji, W; Wang, Y; Xu, P; Yu, S; Tang, Y-W; Yang, Y
2012-03-01
The objective of this paper was to investigate the sequence types (STs) and diversity of surface antigen pneumococcal surface protein A (PspA) in 171 invasive Streptococcus pneumoniae isolates from Chinese children. A total of 171 pneumococci isolates were isolated from Chinese children with invasive pneumococcal diseases (IPD) in 11 hospitals between 2006 and 2008. The pneumococci samples were characterized by serotyping, PspA classification, and multilocus sequence typing (MLST). The PspA of these strains could be assigned to two families. The PspA family 2 was the most common (120/171, 70.1%). No PspA family 3 isolates were detected. Family 1 could be subdivided into two clades, with 42 strains in clade 1 and 9 strains in clade 2, and family 2 could be subdivided into clades 3, 4, and 5, which respectively contained 5, 21, and 14 strains. In total, 65 STs were identified, of which ST320 (30/171, 17.5%), ST271 (23/171, 13.5%), and ST876 (18/171, 10.5%) were the most common types. PspA family 2 and family 1 were dominant among pneumococcal clones isolated from Chinese children with invasive disease. The strains with the same ST always presented in the same PspA family.
Steer, P A; O'Rourke, D; Ghorashi, S A; Noormohammadi, A H
2011-05-01
Fowl adenoviruses (FAdVs) cause inclusion body hepatitis (IBH) in chickens. In this study, clinical cases of IBH from Australian broiler flocks were screened for the presence and genotype of FAdVs. Twenty-six IBH cases from commercial poultry farms were screened. Polymerase chain reaction (PCR) coupled with high-resolution melt (HRM) curve analysis (PCR/HRM genotyping) was used to determine the presence and genotype of FAdVs. For comparison, field isolates were also assessed by virus microneutralisation and nucleotide sequence analysis of the hexon loop 1 (Hex L1) gene. PCR detection of chicken anaemia virus (CAV) and infectious bursal disease virus (IBDV) was also employed. FAdV-8b and FAdV-11 were identified in 13 cases each. In one case, FAdV-1 was also identified. Cross-neutralisation was observed between the FAdV-11 field strain and the reference FAdV-2 and 11 antisera, a result also seen with the type 2 and 11 reference FAdVs. Field strains 1 and 8b were neutralised only by their respective type antisera. The FAdV-8b field strain was identical to the Australian FAdV vaccine strain (type 8b) in the Hex L1 region. The Hex L1 sequence of the FAdV-11 field strain had the highest identity to FAdV-11 (93.2%) and FAdV-2 (92.7%) reference strains. In the five cases tested for CAV and IBDV, neither virus was detected. The evidence suggested the presence of sufficient antibodies against CAV and IBD in the parent flocks and there was no indication of immunosuppression caused by these viruses. These results indicate that PCR/HRM genotyping is a reliable diagnostic method for FAdV identification and is more rapid than virus neutralisation and direct sequence analysis. Furthermore, they suggest that IBH in Australian broiler flocks is a primary disease resulting from two alternative FAdV strains from different species. © 2011 The Authors. Australian Veterinary Journal © 2011 Australian Veterinary Association.
Arrebola, Eva; Carrión, Víctor J.; Gutiérrez-Barranquero, José Antonio; Pérez-García, Alejandro; Ramos, Cayo; Cazorla, Francisco M.; de Vicente, Antonio
2015-01-01
The genome sequence of more than 100 Pseudomonas syringae strains has been sequenced to date; however only few of them have been fully assembled, including P. syringae pv. syringae B728a. Different strains of pv. syringae cause different diseases and have different host specificities; so, UMAF0158 is a P. syringae pv. syringae strain related to B728a but instead of being a bean pathogen it causes apical necrosis of mango trees, and the two strains belong to different phylotypes of pv.syringae and clades of P. syringae. In this study we report the complete sequence and annotation of P. syringae pv. syringae UMAF0158 chromosome and plasmid pPSS158. A comparative analysis with the available sequenced genomes of other 25 P. syringae strains, both closed (the reference genomes DC3000, 1448A and B728a) and draft genomes was performed. The 5.8 Mb UMAF0158 chromosome has 59.3% GC content and comprises 5017 predicted protein-coding genes. Bioinformatics analysis revealed the presence of genes potentially implicated in the virulence and epiphytic fitness of this strain. We identified several genetic features, which are absent in B728a, that may explain the ability of UMAF0158 to colonize and infect mango trees: the mangotoxin biosynthetic operon mbo, a gene cluster for cellulose production, two different type III and two type VI secretion systems, and a particular T3SS effector repertoire. A mutant strain defective in the rhizobial-like T3SS Rhc showed no differences compared to wild-type during its interaction with host and non-host plants and worms. Here we report the first complete sequence of the chromosome of a pv. syringae strain pathogenic to a woody plant host. Our data also shed light on the genetic factors that possibly determine the pathogenic and epiphytic lifestyle of UMAF0158. This work provides the basis for further analysis on specific mechanisms that enable this strain to infect woody plants and for the functional analysis of host specificity in the P. syringae complex. PMID:26313942
Arthur, Terrance M; Bono, James L; Kalchayanand, Norasak
2014-01-01
The development and implementation of effective antimicrobial interventions by the beef processing industry in the United States have dramatically reduced the incidence of beef trim contamination by Escherichia coli O157:H7. However, individual processing plants still experience sporadic peaks in contamination rates where multiple E. coli O157:H7-positive lots are clustered in a short time frame. These peaks have been referred to as "high event periods" (HEP) of contamination. The results reported here detail the characterization of E. coli O157:H7 isolates from 21 HEP across multiple companies and processing plants to gain insight regarding the mechanisms causing these incidents. Strain genotypes were determined by pulsed-field gel electrophoresis, and isolates were investigated for characteristics linking them to human illness. Through these analyses, it was determined that individual HEP show little to no diversity in strain genotypes. Hence, each HEP has one strain type that makes up most, if not all, of the contamination. This is shown to differ from the genotypic diversity of E. coli O157:H7 found on the hides of cattle entering processing plants. In addition, it was found that a large proportion (81%) of HEP are caused by strain types associated with human illness. These results pose a potential challenge to the current model for finished product contamination during beef processing.
Verma, Renu; Rojas, Thaís Cabrera Galvão; Maluta, Renato Pariz; Leite, Janaína Luisa; da Silva, Livia Pilatti Mendes; Nakazato, Gerson; Dias da Silveira, Wanderley
2016-01-01
The extraintestinal pathogen termed avian pathogenic Escherichia coli (APEC) is known to cause colibacillosis in chickens. The molecular basis of APEC pathogenesis is not fully elucidated yet. In this work, we deleted a component of the Yad gene cluster (yadC) in order to understand the role of Yad in the pathogenicity of the APEC strain SCI-07. In vitro, the transcription level of yadC was upregulated at 41°C and downregulated at 22°C. The yadC expression in vivo was more pronounced in lungs than in spleen, suggesting a role in the early steps of the infection. Chicks infected with the wild-type and mutant strains presented, respectively, 80% and 50% mortality rates. The ΔyadC strain presented a slightly decreased ability to adhere to HeLa cells with or without the d-mannose analog compared with the wild type. Real-time PCR (RT-PCR) assays showed that fimH was downregulated (P < 0.05) and csgA and ecpA were slightly upregulated in the mutant strain, showing that yadC modulates expression of other fimbriae. Bacterial internalization studies showed that the ΔyadC strain had a lower number of intracellular bacteria recovered from Hep-2 cells and HD11 cells than the wild-type strain (P < 0.05). Motility assays in soft agar demonstrated that the ΔyadC strain was less motile than the wild type (P < 0.01). Curiously, flagellum-associated genes were not dramatically downregulated in the ΔyadC strain. Taken together, the results show that the fimbrial adhesin Yad contributes to the pathogenicity and modulates different biological characteristics of the APEC strain SCI-07. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Genomic Epidemiology of Hypervirulent Serogroup W, ST-11 Neisseria meningitidis
Mustapha, Mustapha M.; Marsh, Jane W.; Krauland, Mary G.; Fernandez, Jorge O.; de Lemos, Ana Paula S.; Dunning Hotopp, Julie C.; Wang, Xin; Mayer, Leonard W.; Lawrence, Jeffrey G.; Hiller, N. Luisa; Harrison, Lee H.
2015-01-01
Neisseria meningitidis is a leading bacterial cause of sepsis and meningitis globally with dynamic strain distribution over time. Beginning with an epidemic among Hajj pilgrims in 2000, serogroup W (W) sequence type (ST) 11 emerged as a leading cause of epidemic meningitis in the African ‘meningitis belt’ and endemic cases in South America, Europe, Middle East and China. Previous genotyping studies were unable to reliably discriminate sporadic W ST-11 strains in circulation since 1970 from the Hajj outbreak strain (Hajj clone). It is also unclear what proportion of more recent W ST-11 disease clusters are caused by direct descendants of the Hajj clone. Whole genome sequences of 270 meningococcal strains isolated from patients with invasive meningococcal disease globally from 1970 to 2013 were compared using whole genome phylogenetic and major antigen-encoding gene sequence analyses. We found that all W ST-11 strains were descendants of an ancestral strain that had undergone unique capsular switching events. The Hajj clone and its descendants were distinct from other W ST-11 strains in that they shared a common antigen gene profile and had undergone recombination involving virulence genes encoding factor H binding protein, nitric oxide reductase, and nitrite reductase. These data demonstrate that recent acquisition of a distinct antigen-encoding gene profile and variations in meningococcal virulence genes was associated with the emergence of the Hajj clone. Importantly, W ST-11 strains unrelated to the Hajj outbreak contribute a significant proportion of W ST-11 cases globally. This study helps illuminate genomic factors associated with meningococcal strain emergence and evolution. PMID:26629539
Drira, Ines; Hadrich, Ines; Neji, Sourour; Mahfouth, Nedia; Trabelsi, Houaida; Sellami, Hayet; Makni, Fattouma
2014-01-01
Trichophyton interdigitale is the second most frequent cause of superficial fungal infections of various parts of the human body. Studying the population structure and genotype differentiation of T. interdigitale strains may lead to significant improvements in clinical practice. The present study aimed to develop and select suitable variable-number tandem-repeat (VNTR) markers for 92 clinical strains of T. interdigitale. On the basis of an analysis of four VNTR markers, four to eight distinct alleles were detected for each marker. The marker with the highest discriminatory power had eight alleles and a D value of 0.802. The combination of all four markers yielded a D value of 0.969 with 29 distinct multilocus genotypes. VNTR typing revealed the genetic diversity of the strains, identifying three populations according to their colonization sites. A correlation between phenotypic characteristics and multilocus genotypes was observed. Seven patients harbored T. interdigitale strains with different genotypes. Typing of clinical T. interdigitale samples by VNTR markers displayed excellent discriminatory power and 100% reproducibility. PMID:24989614
Lorenz, Udo; Hüttinger, Christian; Schäfer, Tina; Ziebuhr, Wilma; Thiede, Arnulf; Hacker, Jörg; Engelmann, Susanne; Hecker, Michael; Ohlsen, Knut
2008-03-01
The impact of the alternative sigma factor sigma B (SigB) on pathogenesis of Staphylococcus aureus is not conclusively clarified. In this study, a central venous catheter (CVC) related model of multiorgan infection was used to investigate the role of SigB for the pathogenesis of S. aureus infections and biofilm formation in vivo. Analysis of two SigB-positive wild-type strains and their isogenic mutants revealed uniformly that the wild-type was significantly more virulent than the SigB-deficient mutant. The observed difference in virulence was apparently not linked to the capability of the strains to form biofilms in vivo since wild-type and mutant strains were able to produce biofilm layers inside of the catheter. The data strongly indicate that the alternative sigma factor SigB plays a role in CVC-associated infections caused by S. aureus.
[Serotype and phage type distribution of human Salmonella strains isolated in Spain, 1997-2001].
Echeita, María Aurora; Aladueña, Ana María; Díez, Rosa; Arroyo, Margarita; Cerdán, Francisca; Gutiérrez, Rafaela; de la Fuente, Manuela; González-Sanz, Rubén; Herrera-León, Silvia; Usera, Miguel Angel
2005-03-01
Salmonellosis is one of the most frequent causes of gastroenteritis in Spain. Serotyping is the gold standard epidemiological marker for subdividing Salmonella spp. strains. A small number of serotypes are very frequently isolated, reducing the discriminatory power of serotyping. Thus, to increase our knowledge of Salmonella spp. epidemiology, additional epidemiological markers, such as phage typing, should be used for this purpose. Salmonella spp. strains of human origin sent to the Laboratorio Nacional de Referencia de Salmonella y Shigella (LNRSSE, Spanish Reference Laboratory for Salmonella and Shigella) between 1997 and 2001 were serotyped using conventional agglutination methods, and Enteritidis, Typhimurium, Hadar, Virchow and Typhi serotypes were additionally phage typed according to internationally-developed schemes. A total of 30,856 Salmonella spp. strains, isolated in the majority of Spanish Autonomous Communities, were analyzed. Enteritidis (51%) and Typhimurium (24%) were the most frequently isolated serotypes. The following were the most frequent serotype/phage type combinations: Enteritidis/PT1 (18%), Enteritidis/PT4 (15%), Enteritidis/PT6a (5%), Typhimurium/DT104 (5%) and Enteritidis/PT6 (3%). The serotype Enteritidis/PT1 showed the greatest increase over the period studied, from 11.61% in 1997 to 24.74% in 2001. A hierarchical typing approach for Salmonella spp., using serotyping coupled with phage typing allowed a higher level of discrimination among Salmonella serotypes. Application of this approach in epidemiological studies could be highly useful for early characterization of related strains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryo, H.; Yoo, M.A.; Fujikawa, K.
Somatic reversion of strains with the ivory (wi) allele, a mutation associated with a tandem duplication of a DNA sequence at the white locus, increased with the age of larvae at the time of X-irradiation as expected from the increase in the number of target cells. In contrast, two independently isolated strains with unstable w+ loci associated with insertion of transposable elements showed higher reversion frequencies after treatment with X rays or ethyl methanesulfonate (EMS) at early larval stages than at late stages. Nevertheless, both the wi strain and the two unstable w+ strains reverted at nearly equal rates aftermore » treatment with X rays or EMS at early larval stages. Possible similarity in hot spot structure for the high reversibility of the two types of mutations is discussed in relation to production of presumed mutator-type cofactors specific to the transposon-caused mutations at early larval stages.« less
Buckee, Caroline O; Recker, Mario; Watkins, Eleanor R; Gupta, Sunetra
2011-09-13
Many highly diverse pathogen populations appear to exist stably as discrete antigenic types despite evidence of genetic exchange. It has been shown that this may arise as a consequence of immune selection on pathogen populations, causing them to segregate permanently into discrete nonoverlapping subsets of antigenic variants to minimize competition for available hosts. However, discrete antigenic strain structure tends to break down under conditions where there are unequal numbers of allelic variants at each locus. Here, we show that the inclusion of stochastic processes can lead to the stable recovery of discrete strain structure through loss of certain alleles. This explains how pathogen populations may continue to behave as independently transmitted strains despite inevitable asymmetries in allelic diversity of major antigens. We present evidence for this type of structuring across global meningococcal isolates in three diverse antigens that are currently being developed as vaccine components.
Yang, Peng; Peng, Xiaomin; Zhang, Daitao; Wu, Shuangsheng; Liu, Yimeng; Cui, Shujuan; Lu, Guilan; Duan, Wei; Shi, Weixian; Liu, Shuang; Li, Jing; Wang, Quanyi
2013-06-01
Scarlet fever is one of a variety of diseases caused by group A Streptococcus (GAS). During 2011, a scarlet fever epidemic characterized by peak monthly incidence rates 2.9-6.7 times higher than those in 2006-2010 occurred in Beijing, China. During the epidemic, hospital-based enhanced surveillance for scarlet fever and pharyngitis was conducted to determine characteristics of circulating GAS strains. The surveillance identified 3,359 clinical cases of scarlet fever or pharyngitis. GAS was isolated from 647 of the patients; 76.4% of the strains were type emm12, and 17.1% were emm1. Almost all isolates harbored superantigens speC and ssa. All isolates were susceptible to penicillin, and resistance rates were 96.1% to erythromycin, 93.7% to tetracycline, and 79.4% to clindamycin. Because emm12 type GAS is not the predominant type in other countries, wider surveillance for the possible spread of emm12 type GAS from China to other countries is warranted.
Yang, Peng; Peng, Xiaomin; Zhang, Daitao; Wu, Shuangsheng; Liu, Yimeng; Cui, Shujuan; Lu, Guilan; Duan, Wei; Shi, Weixian; Liu, Shuang; Li, Jing
2013-01-01
Scarlet fever is one of a variety of diseases caused by group A Streptococcus (GAS). During 2011, a scarlet fever epidemic characterized by peak monthly incidence rates 2.9–6.7 times higher than those in 2006–2010 occurred in Beijing, China. During the epidemic, hospital-based enhanced surveillance for scarlet fever and pharyngitis was conducted to determine characteristics of circulating GAS strains. The surveillance identified 3,359 clinical cases of scarlet fever or pharyngitis. GAS was isolated from 647 of the patients; 76.4% of the strains were type emm12, and 17.1% were emm1. Almost all isolates harbored superantigens speC and ssa. All isolates were susceptible to penicillin, and resistance rates were 96.1% to erythromycin, 93.7% to tetracycline, and 79.4% to clindamycin. Because emm12 type GAS is not the predominant type in other countries, wider surveillance for the possible spread of emm12 type GAS from China to other countries is warranted. PMID:23735582
Fukuda, K; Watanabe, M; Asano, K; Ouchi, K; Takasawa, S
1991-12-01
o-Fluoro-DL-phenylalanine (OFP)-resistant mutants which overproduce beta-phenethyl-alcohol were isolated from a laboratory strain of Saccharomyces cerevisiae. Cells of one of the mutants accumulated tyrosine and phenylalanine 1.5-3 fold more than did wild-type cells. Its 3-deoxy-D-arabino-hepturosonate-7-phosphate (DAHP) synthase (EC 4.1.2.15), encoded by ARO4, was free from feedback inhibition by tyrosine. Genetic analysis revealed that the mutation was controlled by a single dominant gene, ARO4-OFP, encoding feedback-resistant DAHP synthase by tyrosine, and that this gene caused both the OFP resistance and beta-phenethyl-alcohol overproduction. This was supported by molecular genetic studies using cloned ARO4 both from the wild-type and its mutant strain.
Biocavity laser spectroscopy of genetically altered yeast cells and isolated yeast mitochondria
NASA Astrophysics Data System (ADS)
Gourley, Paul L.; Hendricks, Judy K.; McDonald, Anthony E.; Copeland, R. Guild; Naviaux, Robert K.; Yaffe, Michael P.
2006-02-01
We report an analysis of 2 yeast cell mutants using biocavity laser spectroscopy. The two yeast strains differed only by the presence or absence of mitochondrial DNA. Strain 104 is a wild-type (ρ +) strain of the baker's yeast, Saccharomyces cerevisiae. Strain 110 was derived from strain 104 by removal of its mitochondrial DNA (mtDNA). Removal of mtDNA causes strain 110 to grow as a "petite" (ρ -), named because it forms small colonies (of fewer cells because it grows more slowly) on agar plates supplemented with a variety of different carbon sources. The absence of mitochondrial DNA results in the complete loss of all the mtDNA-encoded proteins and RNAs, and loss of the pigmented, heme-containing cytochromes a and b. These cells have mitochondria, but the mitochondria lack the normal respiratory chain complexes I, III, IV, and V. Complex II is preserved because its subunits are encoded by genes located in nuclear DNA. The frequency distributions of the peak shifts produced by wild-type and petite cells and mitochondria show striking differences in the symmetry and patterns of the distributions. Wild-type ρ + cells (104) and mitochondria produced nearly symmetric, Gaussian distributions. The ρ - cells (110) and mitochondria showed striking asymmetry and skew that appeared to follow a Poisson distribution.
Nishimoto, Takuto; Furuta, Masakazu; Kataoka, Michihiko; Kishida, Masao
2015-03-01
Ionizing radiation indirectly causes oxidative stress in cells via reactive oxygen species (ROS), such as hydroxyl radicals (OH(-)) generated by the radiolysis of water. We investigated how the catalase function was affected by ionizing radiation and analyzed the phenotype of mutants with a disrupted catalase gene in Saccharomyces cerevisiae exposed to radiation. The wild-type yeast strain and isogenic mutants with disrupted catalase genes were exposed to various doses of (60)Co gamma-rays. There was no difference between the wild-type strain and the cta1 disruption mutant following exposure to gamma-ray irradiation. In contrast, there was a significant decrease in the ctt1 disruption mutant, suggesting that this strain exhibited decreased survival on gamma-ray exposure compared with other strains. In all three strains, stationary phase cells were more tolerant to the exposure of gamma-rays than exponential phase cells, whereas the catalase activity in the wild-type strain and cta1 disruption mutant was higher in the stationary phase than in the exponential phase. These data suggest a correlation between catalase activity and survival following gamma-ray exposure. However, this correlation was not clear in the ctt1 disruption mutant, suggesting that other factors are involved in the tolerance to ROS induced by irradiation.
Henkels, Marcella D; Kidarsa, Teresa A; Shaffer, Brenda T; Goebel, Neal C; Burlinson, Peter; Mavrodi, Dmitri V; Bentley, Michael A; Rangel, Lorena I; Davis, Edward W; Thomashow, Linda S; Zabriskie, T Mark; Preston, Gail M; Loper, Joyce E
2014-07-01
Bacteria in the diverse Pseudomonas fluorescens group include rhizosphere inhabitants known for their antifungal metabolite production and biological control of plant disease, such as Pseudomonas protegens Pf-5, and mushroom pathogens, such as Pseudomonas tolaasii. Here, we report that strain Pf-5 causes brown, sunken lesions on peeled caps of the button mushroom (Agaricus bisporus) that resemble brown blotch symptoms caused by P. tolaasii. Strain Pf-5 produces six known antifungal metabolites under the control of the GacS/GacA signal transduction system. A gacA mutant produces none of these metabolites and did not cause lesions on mushroom caps. Mutants deficient in the biosynthesis of the antifungal metabolites 2,4-diacetylphloroglucinol and pyoluteorin caused less-severe symptoms than wild-type Pf-5 on peeled mushroom caps, whereas mutants deficient in the production of lipopeptide orfamide A caused similar symptoms to wild-type Pf-5. Purified pyoluteorin and 2,4-diacetylphloroglucinol mimicked the symptoms caused by Pf-5. Both compounds were isolated from mushroom tissue inoculated with Pf-5, providing direct evidence for their in situ production by the bacterium. Although the lipopeptide tolaasin is responsible for brown blotch of mushroom caused by P. tolaasii, P. protegens Pf-5 caused brown blotch-like symptoms on peeled mushroom caps through a lipopeptide-independent mechanism involving the production of 2,4-diacetylphloroglucinol and pyoluteorin.
Identification of capsule, biofilm, lateral flagellum, and type IV pili in Vibrio mimicus strains.
Tercero-Alburo, J J; González-Márquez, H; Bonilla-González, E; Quiñones-Ramírez, E I; Vázquez-Salinas, C
2014-11-01
Vibrio mimicus is a bacterium that causes gastroenteritis; it is closely related to Vibrio cholerae, and can cause acute diarrhea like cholera- or dysentery-type diarrhea. It is distributed worldwide. Factors associated with virulence (such as hemolysins, enterotoxins, proteases, phospholipases, aerobactin, and hemagglutinin) have been identified; however, its pathogenicity mechanism is still unknown. In pathogenic Vibrio species such as V. cholerae, Vibrio. parahaemolyticus and Vibrio vulnificus, capsule, biofilms, lateral flagellum, and type IV pili are structures described as essential for pathogenicity. These structures had not been described in V. mimicus until this work. We used 20 V. mimicus strains isolated from water (6), oyster (9), and fish (5) samples and we were able to identify the capsule, biofilm, lateral flagellum, and type IV pili through phenotypic tests, electron microscopy, PCR, and sequencing. In all tested strains, we observed and identified the presence of capsular exopolysaccharide, biofilm formation in an in vitro model, as well as swarming, multiple flagellation, and pili. In addition, we identified homologous genes to those described in other bacteria of the genus in which these structures have been found. Identification of these structures in V. mimicus is a contribution to the biology of this organism and can help to reveal its pathogenic behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.
Characteristics of Vibrio parahaemolyticus O3:K6 from Asia
Wong, Hin-Chung; Liu, Shu-Hui; Wang, Tien-Kuei; Lee, Chih-Lung; Chiou, Chien-Shun; Liu, Ding-Ping; Nishibuchi, Mitsuaki; Lee, Bok-Kwon
2000-01-01
A variety of serovars of the food-borne pathogen Vibrio parahaemolyticus normally cause infection. Since 1996, the O3:K6 strains of this pathogen have caused pandemics in many Asian countries, including Taiwan. For a better understanding of these pandemic strains, the recently isolated clinical O3:K6 strains from India, Japan, Korea, and Taiwan were examined in terms of pulsed-field gel electrophoresis (PFGE) typing and other biological characteristics. After PFGE and cluster analysis, all the O3:K6 strains were grouped into two unrelated groups. The recently isolated O3:K6 strains were all in one group, consisting of eight closely related patterns, with I1(81%) and I5(13%) being the most frequent patterns. Pattern I1 was the major one for strains from Japan, Korea, and Taiwan. All recently isolated O3:K6 strains carried the thermostable direct hemolysin (tdh) gene. No significant difference was observed between recently isolated O3:K6 strains and either non-O3:K6 reference strains or old O3:K6 strains isolated before 1996 with respect to antibiotic susceptibility, the level of thermostable direct hemolysin, and the susceptibility to environmental stresses. Results in this study confirmed that the recently isolated O3:K6 strains of V. parahaemolyticus are genetically close to each other, while the other biological traits examined were usually strain dependent, and no unique trait was found in the recently isolated O3:K6 strains. PMID:10966418
Koroleva, G A; Lashkevich, V A; Voroshilova, M K
1977-01-01
Multiplication of virulent and vaccine strains of poliovirus type I, II and III in laboratory animals of different species was studied comparatively. The main criterion of virus reproduction was the production of the photoresistant virus progeny after inoculation of the animals with proflavin-photosensitized virus strains. On the whole, virulent poliovirus strains were characterized by replication in a wide range of hosts (monkeys, cotton rats, white mice, guinea pigs, rabbits, chickens, chick embryos), a low infective dose, production of the photoresistant progeny to a high titre, clinically overt disease in some animal species. The vaccine strains multiplied in a norrower range of hosts, had a high infective dose, a low titre of virus progeny, and caused no clinical symptoms of infection. These differences may serve as a marker for differentiation between virulent and attenuated strains in vivo. Administration of guanidine before inoculation of newborn cotton rats completely prevented or delayed by several days the production of photoresistant virus progeny. This fact confirms the stability of the proflavin-poliovirus complex under conditions ruling out virus replication.
Rubin, Steven A; Qi, Li; Audet, Susette A; Sullivan, Bradley; Carbone, Kathryn M; Bellini, William J; Rota, Paul A; Sirota, Lev; Beeler, Judy
2008-08-15
Recent mumps outbreaks in older vaccinated populations were caused primarily by genotype G viruses, which are phylogenetically distinct from the genotype A vaccine strains used in the countries affected by the outbreaks. This finding suggests that genotype A vaccine strains could have reduced efficacy against heterologous mumps viruses. The remote history of vaccination also suggests that waning immunity could have contributed to susceptibility. To examine these issues, we obtained consecutive serum samples from children at different intervals after vaccination and assayed the ability of these samples to neutralize the genotype A Jeryl Lynn mumps virus vaccine strain and a genotype G wild-type virus obtained during the mumps outbreak that occurred in the United States in 2006. Although the geometric mean neutralizing antibody titers against the genotype G virus were approximately one-half the titers measured against the vaccine strain, and although titers to both viruses decreased with time after vaccination, antibody induced by immunization with the Jeryl Lynn mumps vaccine strain effectively neutralized the outbreak-associated virus at all time points tested.
Dudnik, Alexey; Dudler, Robert
2014-01-01
The Pseudomonas syringae species complex has recently been named the number one plant pathogen, due to its economic and environmental impacts, as well as for its role in scientific research. The bacterium has been repeatedly reported to cause outbreaks on bean, cucumber, stone fruit, kiwi and olive tree, as well as on other crop and non-crop plants. It also serves as a model organism for research on the Type III secretion system (T3SS) and plant-pathogen interactions. While most of the current work on this pathogen is either carried out on one of three model strains found on dicot plants with completely sequenced genomes or on isolates obtained from recent outbreaks, not much is known about strains isolated from grasses (Poaceae). Here, we use comparative genomics in order to identify putative virulence-associated genes and other Poaceae-specific adaptations in several newly available genome sequences of strains isolated from grass species. All strains possess only a small number of known Type III effectors, therefore pointing to the importance of non-Type III secreted virulence factors. The implications of this finding are discussed. PMID:25437611
Wang, Liyan; Ma, Lina; Liu, Yongan; Gao, Pengcheng; Li, Youquan; Li, Xuerui; Liu, Yongsheng
2016-10-01
Haemophilus parasuis is the etiological agent of Glässers disease, which causes high morbidity and mortality in swine herds. Although H. parasuis strains can be classified into 15 serovars with the Kielstein-Rapp-Gabrielson serotyping scheme, a large number of isolates cannot be classified and have been designated 'nontypeable' strains. In this study, multilocus sequence typing (MLST) of H. parasuis was used to analyze 48 H. parasuis field strains isolated in China and two strains from Australia. Twenty-six new alleles and 29 new sequence types (STs) were detected, enriching the H. parasuis MLST databases. A BURST analysis indicated that H. parasuis lacks stable population structure and is highly heterogeneous, and that there is no association between STs and geographic area. When an UPGMA dendrogram was constructed, two major clades, clade A and clade B, were defined. Animal experiments, in which guinea pigs were challenged intraperitoneally with the bacterial isolates, supported the hypothesis that the H. parasuis STs in clade A are generally avirulent or weakly virulent, whereas the STs in clade B tend to be virulent. Copyright © 2016 Elsevier B.V. All rights reserved.
Lück, Paul Christian; Schneider, Thomas; Wagner, Jutta; Walther, Ilona; Reif, Ursula; Weber, Stefan; Weist, Klaus
2008-02-01
We describe the case of a 66-year-old man with a culture-proven Legionella pneumonia after kidney transplantation. The patient developed the infection 15 days after discharge from a university hospital. Legionella pneumonia caused by Legionella pneumophila serogroup 5/10 was established by positive direct fluorescence assay, positive urinary-antigen detection and isolation of the causative agent. The infection was successfully treated by giving appropriate antibiotics, but the further course was complicated by invasive aspergillosis, cytomegalovirus pneumonia, failure of the transplanted kidney and development of septic anaemia. Four months after the diagnosis of Legionella pneumonia the patient died of multi-organ failure. The microbiological and epidemiological investigation revealed that strains from the water supply of the patient's private home were indistinguishable from the patient's isolate by amplified fragment length polymorphism analysis and sequence-based typing (SBT). Unrelated strains of serogroups 4, 5, 8 and 10 from the Dresden strain collection were of different SBT types. Thus, SBT is a very useful tool for epidemiological investigation of infections by L. pneumophila serogroups other than serogroup 1.
Odds, F C; Palacio-Hernanz, A; Cuadra, J; Sanchéz, J
1987-05-01
Among 21 intravenous heroin abusers with cutaneous and ocular manifestations of disseminated Candida infection, a single C. albicans strain type (serotype A, biotype 153/7) was isolated from skin lesions in 14 cases. This suggests that central contamination of the heroin with C. albicans is less likely to be the source of infection than an endogenous source, and that one particular strain type is either better adapted than others to grow in the lemon juice used as a heroin solvent, or more likely than others to cause the specific pathology seen in these patients.
Complete genomic sequence of campylobacter jejuni subsp. jejuni HS:19 penner reference strain
USDA-ARS?s Scientific Manuscript database
Campylobacter jejuni subsp. jejuni (Cjj) infections are a leading cause of foodborne gastroenteritis and the most prevalent antecedent to Guillain-Barré syndrome (GBS). Capsular type Penner HS:19 is among several capsule types shown to be markers for GBS. This study describes the genome of Cjj HS:19...
Kikuchi, Ken; Takahashi, Naoto; Piao, Chuncheng; Totsuka, Kyoichi; Nishida, Hiroshi; Uchiyama, Takehiko
2003-07-01
Neonatal toxic shock syndrome-like exanthematous disease (NTED) is a new neonatal disease caused by toxic shock syndrome toxin 1 (TSST-1). We conducted a prospective surveillance study and characterized the methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from patients with NTED and compared them with the strains from patients with other MRSA infections and asymptomatic carriers. The study was performed in the neonatal intensive care unit and a general neonatal and maternal ward in the Tokyo Women's Medical University Hospital (TWMUH) from September to December 1998. Among 103 patients eligible for the study, MRSA was detected in 62 (60.2%) newborns; of these 62 newborns, 8 (12.9%) developed NTED, 1 (1.6%) had another MRSA infection, and 53 (85.5%) were asymptomatic MRSA carriers. Sixty-nine MRSA strains were obtained from the 62 newborns. DNA fingerprinting by pulsed-field gel electrophoresis showed two clusters: clone A with 8 subtypes and clone B. Sixty-seven of the 69 MRSA strains (97.1%) belonged to clone A, and type A1 was the most predominant (42 of 69 strains; 60.9%) in every neonatal and perinatal ward. All but one of the clone A strains had the TSST-1 and staphylococcal enterotoxin C genes. We also analyzed eight MRSA strains from eight NTED patients in five hospitals in Japan other than TWMUH. All the MRSA strains from NTED patients also belonged to clone A. These results suggest that a single clone that predominated in the neonatal wards of six hospitals might have caused NTED. However, the occurrence of NTED might not be dependent on the presence of an NTED-specific strain.
Ramaraj, Vijayakumar; Vijayaraman, Rajyoganandh S; Elavarashi, Elangovan; Rangarajan, Sudha
2017-01-01
Introduction Dermatophytes are a group of fungi which infect keratinized tissues and causes superficial mycoses in humans and animals. The group comprises of three major genera, Trichophyton, Microsporum and Epidermophyton. Among them Trichophyton rubrum is a predominant anthropophilic fungi which causes chronic infections. Although, the infection is superficial and treatable, reinfection/coinfection causes inflation in the treatment cost. Identifying the source and mode of transmission is essential to prevent its transmission. Accurate discrimination is required to understand the clinical (relapse or reinfection) and epidemiological implications of the genetic heterogeneity of this species. Polymorphism in the Non Transcribed Spacer (NTS) region of ribosomal DNA (rDNA) clusters renders an effective way to discriminate strains among T. rubrum. Aim To carry out the strain typing of the clinical isolates, Trichophyton rubrum using NTS as a molecular marker. Materials and Methods Seventy T.rubrum clinical isolates obtained from April-2011-March 2013, from Sri Ramachandra Medical Centre, Chennai, Tamil Nadu, India, were identified by conventional phenotypic methods and included in this prospective study. The isolates were then subjected to Polymerase Chain Reaction (PCR) targeting two subrepeat elements (SREs), TRS-1 and TRS-2 of the NTS region. Results Strain-specific polymorphism was observed in both subrepeat loci. Total, nine different strains were obtained on combining both TRS-1 and TRS-2, SREs. Conclusion The outcome has given a strong representation for using NTS region amplification in discriminating the T. rubrum clinical isolates. The method can be adapted as a tool for conducting epidemiology and population based study in T. rubrum infections. This will help in future exploration of the epidemiology of T. rubrum. PMID:28658757
Ramaraj, Vijayakumar; Vijayaraman, Rajyoganandh S; Elavarashi, Elangovan; Rangarajan, Sudha; Kindo, Anupma Jyoti
2017-05-01
Dermatophytes are a group of fungi which infect keratinized tissues and causes superficial mycoses in humans and animals. The group comprises of three major genera, Trichophyton , Microsporum and Epidermophyton . Among them Trichophyton rubrum is a predominant anthropophilic fungi which causes chronic infections. Although, the infection is superficial and treatable, reinfection/coinfection causes inflation in the treatment cost. Identifying the source and mode of transmission is essential to prevent its transmission. Accurate discrimination is required to understand the clinical (relapse or reinfection) and epidemiological implications of the genetic heterogeneity of this species. Polymorphism in the Non Transcribed Spacer (NTS) region of ribosomal DNA (rDNA) clusters renders an effective way to discriminate strains among T. rubrum . To carry out the strain typing of the clinical isolates, Trichophyton rubrum using NTS as a molecular marker. Seventy T.rubrum clinical isolates obtained from April-2011-March 2013, from Sri Ramachandra Medical Centre, Chennai, Tamil Nadu, India, were identified by conventional phenotypic methods and included in this prospective study. The isolates were then subjected to Polymerase Chain Reaction (PCR) targeting two subrepeat elements (SREs), TRS-1 and TRS-2 of the NTS region. Strain-specific polymorphism was observed in both subrepeat loci. Total, nine different strains were obtained on combining both TRS-1 and TRS-2, SREs. The outcome has given a strong representation for using NTS region amplification in discriminating the T. rubrum clinical isolates. The method can be adapted as a tool for conducting epidemiology and population based study in T. rubrum infections. This will help in future exploration of the epidemiology of T. rubrum .
NASA Astrophysics Data System (ADS)
Nanba, Masaru; Nomura, Kazuki; Nasuhara, Yusuke; Hayashi, Manabu; Kido, Miyuki; Hayashi, Mayumi; Iguchi, Akinori; Shigematsu, Toru; Hirayama, Masao; Ueno, Shigeaki; Fujii, Tomoyuki
2013-06-01
A high pressure (HP) tolerant (barotolerant) mutant a2568D8 and a variably barotolerant mutant a1210H12 were generated from Saccharomyces cerevisiae using ultra-violet mutagenesis. The two mutants, a barosensitive mutant a924E1 and the wild-type strain, were pressurized (225 MPa), and pressure inactivation behavior was analyzed. In the wild-type strain, a proportion of the growth-delayed cells were detected after exposure to HP. In a924E1, the proportion of growth-delayed cells significantly decreased compared with the wild-type. In a2568D8, the proportion of growth-delayed cells increased and the proportion of inactivated cells decreased compared with the wild-type. In a1210H12, the growth-delayed cells could not be detected within 120 s of exposure to HP. The proportion of growth-delayed cells, which incurred the damage, would affect the survival ratio by HP. These results suggested that cellular changes in barotolerance caused by mutations are remarkably affected by the ability to recover from cellular damage, which results in a growth delay.
Madigan, Theresa; Johnson, James R; Clabots, Connie; Johnston, Brian D; Porter, Stephen B; Slater, Billie S; Banerjee, Ritu
2015-07-01
Reasons for the successful global dissemination of multidrug-resistant Escherichia coli sequence type 131 (ST131) are undefined, but may include enhanced transmissibility or ability to colonize the intestine compared with other strains. We identified a household in which 2 young children had urinary tract infection (UTI) caused by an extended-spectrum β-lactamase (ESBL)-producing, multidrug-resistant ST131 E. coli strain. We assessed the prevalence of ST131 intestinal colonization among the 7 household members (6 humans, 1 dog). Fecal samples, collected 3 times over a 19-week period, were cultured selectively for E. coli. Isolates were characterized using clone-specific polymerase chain reaction to detect ST131 and its ESBL-associated H30Rx subclone, pulsed-field gel electrophoresis, extended virulence genotyping, and antimicrobial susceptibility testing. In total, 8 different E. coli pulsotypes (strains) were identified. The index patient's urine isolate represented ST131-H30Rx strain 903. This was the most widely shared and persistent strain in the household, colonizing 5 individuals at each sampling. In contrast, the 7 non-ST131 strains were each found in only 1 or 2 household members at a time, with variable persistence. The ST131 strain was the only strain with both extensive virulence and antimicrobial resistance profiles. An ESBL-producing ST131-H30Rx strain caused UTI in 2 siblings, plus asymptomatic intestinal colonization in multiple other household members, and was the household's most extensively detected and persistent fecal E. coli strain. Efficient transmission and intestinal colonization may contribute to the epidemiologic success of the H30Rx subclone of E. coli ST131. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
RAPD- and ERIC-Based Typing of Clinical and Environmental Pseudomonas aeruginosa Isolates.
Auda, Ibtesam Ghadban; Al-Kadmy, Israa M S; Kareem, Sawsan Mohammed; Lafta, Aliaa Khyuon; A'Affus, Mustafa Hussein Obeid; Khit, Ibrahim Abd Aloahd; Al Kheraif, Abdulaziz Abdullah; Divakar, Darshan Devang; Ramakrishnaiah, Ravikumar
2017-03-01
Pseudomonas aeruginosa is a major cause of nosocomial infection in children and adults, resulting in significant morbidity and mortality due to its ability to acquire drug resistance. The ability of P. aeruginosa in the environment to cause infection in individuals has been reported previously; henceforth, surveillance of the emergence and transmission of P. aeruginosa strains among patients is important for infection control in a clinical setup. Various gene-typing methods have been used for epidemiological typing of P. aeruginosa isolates for the purpose of surveillance. In this work, the suitability and comparability of two typing methods, enterobacterial repetitive intergenic consensus (ERIC)-PCR and random amplification of polymorphic DNA (RAPD)-PCR fingerprinting, were studied to characterize P. aeruginosa strains isolated from clinical and environmental sources. Forty-four clinical and environmental bacterial isolates of P. aeruginosa were collected between October 2015 and January 2016. DNA extraction, ERIC-PCR and RAPD-PCR, agarose gel electrophoresis, and phylogenetic analyses were carried using the unweighted pair-group method with mean. RAPD typing revealed less clonality among clinical isolates, whereas the ERIC method showed greater similarity in comparison with RAPD. Environmental isolates, however, showed greater similarity using RAPD compared with ERIC typing. With only a few exceptions, most clinical isolates were distinct from environmental isolates, irrespective of the typing method. In conclusion, both the RAPD and ERIC typing methods proved to be good tools in understanding clonal diversity. The results also suggest that there is no relationship between clinical and environmental isolates. The absence of clonality among the clinical isolates may indicate that most P. aeruginosa infection cases could be endemic and not epidemic and that endemic infections may be due to nonclonal strains of P. aeruginosa.
Ethanol-induced alcohol dehydrogenase E (AdhE) potentiates pneumolysin in Streptococcus pneumoniae.
Luong, Truc Thanh; Kim, Eun-Hye; Bak, Jong Phil; Nguyen, Cuong Thach; Choi, Sangdun; Briles, David E; Pyo, Suhkneung; Rhee, Dong-Kwon
2015-01-01
Alcohol impairs the host immune system, rendering the host more vulnerable to infection. Therefore, alcoholics are at increased risk of acquiring serious bacterial infections caused by Streptococcus pneumoniae, including pneumonia. Nevertheless, how alcohol affects pneumococcal virulence remains unclear. Here, we showed that the S. pneumoniae type 2 D39 strain is ethanol tolerant and that alcohol upregulates alcohol dehydrogenase E (AdhE) and potentiates pneumolysin (Ply). Hemolytic activity, colonization, and virulence of S. pneumoniae, as well as host cell myeloperoxidase activity, proinflammatory cytokine secretion, and inflammation, were significantly attenuated in adhE mutant bacteria (ΔadhE strain) compared to D39 wild-type bacteria. Therefore, AdhE might act as a pneumococcal virulence factor. Moreover, in the presence of ethanol, S. pneumoniae AdhE produced acetaldehyde and NADH, which subsequently led Rex (redox-sensing transcriptional repressor) to dissociate from the adhE promoter. An increase in AdhE level under the ethanol condition conferred an increase in Ply and H2O2 levels. Consistently, S. pneumoniae D39 caused higher cytotoxicity to RAW 264.7 cells than the ΔadhE strain under the ethanol stress condition, and ethanol-fed mice (alcoholic mice) were more susceptible to infection with the D39 wild-type bacteria than with the ΔadhE strain. Taken together, these data indicate that AdhE increases Ply under the ethanol stress condition, thus potentiating pneumococcal virulence. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Parreira, Valeria R.; Marri, Pradeep R.; Rosey, Everett L.; Gong, Joshua; Songer, J. Glenn; Vedantam, Gayatri; Prescott, John F.
2010-01-01
Type A Clostridium perfringens causes poultry necrotic enteritis (NE), an enteric disease of considerable economic importance, yet can also exist as a member of the normal intestinal microbiota. A recently discovered pore-forming toxin, NetB, is associated with pathogenesis in most, but not all, NE isolates. This finding suggested that NE-causing strains may possess other virulence gene(s) not present in commensal type A isolates. We used high-throughput sequencing (HTS) technologies to generate draft genome sequences of seven unrelated C. perfringens poultry NE isolates and one isolate from a healthy bird, and identified additional novel NE-associated genes by comparison with nine publicly available reference genomes. Thirty-one open reading frames (ORFs) were unique to all NE strains and formed the basis for three highly conserved NE-associated loci that we designated NELoc-1 (42 kb), NELoc-2 (11.2 kb) and NELoc-3 (5.6 kb). The largest locus, NELoc-1, consisted of netB and 36 additional genes, including those predicted to encode two leukocidins, an internalin-like protein and a ricin-domain protein. Pulsed-field gel electrophoresis (PFGE) and Southern blotting revealed that the NE strains each carried 2 to 5 large plasmids, and that NELoc-1 and -3 were localized on distinct plasmids of sizes ∼85 and ∼70 kb, respectively. Sequencing of the regions flanking these loci revealed similarity to previously characterized conjugative plasmids of C. perfringens. These results provide significant insight into the pathogenetic basis of poultry NE and are the first to demonstrate that netB resides in a large, plasmid-encoded locus. Our findings strongly suggest that poultry NE is caused by several novel virulence factors, whose genes are clustered on discrete pathogenicity loci, some of which are plasmid-borne. PMID:20532244
Lepp, Dion; Roxas, Bryan; Parreira, Valeria R; Marri, Pradeep R; Rosey, Everett L; Gong, Joshua; Songer, J Glenn; Vedantam, Gayatri; Prescott, John F
2010-05-24
Type A Clostridium perfringens causes poultry necrotic enteritis (NE), an enteric disease of considerable economic importance, yet can also exist as a member of the normal intestinal microbiota. A recently discovered pore-forming toxin, NetB, is associated with pathogenesis in most, but not all, NE isolates. This finding suggested that NE-causing strains may possess other virulence gene(s) not present in commensal type A isolates. We used high-throughput sequencing (HTS) technologies to generate draft genome sequences of seven unrelated C. perfringens poultry NE isolates and one isolate from a healthy bird, and identified additional novel NE-associated genes by comparison with nine publicly available reference genomes. Thirty-one open reading frames (ORFs) were unique to all NE strains and formed the basis for three highly conserved NE-associated loci that we designated NELoc-1 (42 kb), NELoc-2 (11.2 kb) and NELoc-3 (5.6 kb). The largest locus, NELoc-1, consisted of netB and 36 additional genes, including those predicted to encode two leukocidins, an internalin-like protein and a ricin-domain protein. Pulsed-field gel electrophoresis (PFGE) and Southern blotting revealed that the NE strains each carried 2 to 5 large plasmids, and that NELoc-1 and -3 were localized on distinct plasmids of sizes approximately 85 and approximately 70 kb, respectively. Sequencing of the regions flanking these loci revealed similarity to previously characterized conjugative plasmids of C. perfringens. These results provide significant insight into the pathogenetic basis of poultry NE and are the first to demonstrate that netB resides in a large, plasmid-encoded locus. Our findings strongly suggest that poultry NE is caused by several novel virulence factors, whose genes are clustered on discrete pathogenicity loci, some of which are plasmid-borne.
Gautam, Rashi; Mijatovic-Rustempasic, Slavica; Esona, Mathew D; Tam, Ka Ian; Quaye, Osbourne; Bowen, Michael D
2016-01-01
Background. Group A rotavirus (RVA) infection is the major cause of acute gastroenteritis (AGE) in young children worldwide. Introduction of two live-attenuated rotavirus vaccines, RotaTeq® and Rotarix®, has dramatically reduced RVA associated AGE and mortality in developed as well as in many developing countries. High-throughput methods are needed to genotype rotavirus wild-type strains and to identify vaccine strains in stool samples. Quantitative RT-PCR assays (qRT-PCR) offer several advantages including increased sensitivity, higher throughput, and faster turnaround time. Methods. In this study, a one-step multiplex qRT-PCR assay was developed to detect and genotype wild-type strains and vaccine (Rotarix® and RotaTeq®) rotavirus strains along with an internal processing control (Xeno or MS2 RNA). Real-time RT-PCR assays were designed for VP7 (G1, G2, G3, G4, G9, G12) and VP4 (P[4], P[6] and P[8]) genotypes. The multiplex qRT-PCR assay also included previously published NSP3 qRT-PCR for rotavirus detection and Rotarix® NSP2 and RotaTeq® VP6 qRT-PCRs for detection of Rotarix® and RotaTeq® vaccine strains respectively. The multiplex qRT-PCR assay was validated using 853 sequence confirmed stool samples and 24 lab cultured strains of different rotavirus genotypes. By using thermostable rTth polymerase enzyme, dsRNA denaturation, reverse transcription (RT) and amplification (PCR) steps were performed in single tube by uninterrupted thermocycling profile to reduce chances of sample cross contamination and for rapid generation of results. For quantification, standard curves were generated using dsRNA transcripts derived from RVA gene segments. Results. The VP7 qRT-PCRs exhibited 98.8-100% sensitivity, 99.7-100% specificity, 85-95% efficiency and a limit of detection of 4-60 copies per singleplex reaction. The VP7 qRT-PCRs exhibited 81-92% efficiency and limit of detection of 150-600 copies in multiplex reactions. The VP4 qRT-PCRs exhibited 98.8-100% sensitivity, 100% specificity, 86-89% efficiency and a limit of detection of 12-400 copies per singleplex reactions. The VP4 qRT-PCRs exhibited 82-90% efficiency and limit of detection of 120-4000 copies in multiplex reaction. Discussion. The one-step multiplex qRT-PCR assay will facilitate high-throughput rotavirus genotype characterization for monitoring circulating rotavirus wild-type strains causing rotavirus infections, determining the frequency of Rotarix® and RotaTeq® vaccine strains and vaccine-derived reassortants associated with AGE, and help to identify novel rotavirus strains derived by reassortment between vaccine and wild-type strains.
Mijatovic-Rustempasic, Slavica; Esona, Mathew D.; Tam, Ka Ian; Quaye, Osbourne; Bowen, Michael D.
2016-01-01
Background. Group A rotavirus (RVA) infection is the major cause of acute gastroenteritis (AGE) in young children worldwide. Introduction of two live-attenuated rotavirus vaccines, RotaTeq® and Rotarix®, has dramatically reduced RVA associated AGE and mortality in developed as well as in many developing countries. High-throughput methods are needed to genotype rotavirus wild-type strains and to identify vaccine strains in stool samples. Quantitative RT-PCR assays (qRT-PCR) offer several advantages including increased sensitivity, higher throughput, and faster turnaround time. Methods. In this study, a one-step multiplex qRT-PCR assay was developed to detect and genotype wild-type strains and vaccine (Rotarix® and RotaTeq®) rotavirus strains along with an internal processing control (Xeno or MS2 RNA). Real-time RT-PCR assays were designed for VP7 (G1, G2, G3, G4, G9, G12) and VP4 (P[4], P[6] and P[8]) genotypes. The multiplex qRT-PCR assay also included previously published NSP3 qRT-PCR for rotavirus detection and Rotarix® NSP2 and RotaTeq® VP6 qRT-PCRs for detection of Rotarix® and RotaTeq® vaccine strains respectively. The multiplex qRT-PCR assay was validated using 853 sequence confirmed stool samples and 24 lab cultured strains of different rotavirus genotypes. By using thermostable rTth polymerase enzyme, dsRNA denaturation, reverse transcription (RT) and amplification (PCR) steps were performed in single tube by uninterrupted thermocycling profile to reduce chances of sample cross contamination and for rapid generation of results. For quantification, standard curves were generated using dsRNA transcripts derived from RVA gene segments. Results. The VP7 qRT-PCRs exhibited 98.8–100% sensitivity, 99.7–100% specificity, 85–95% efficiency and a limit of detection of 4–60 copies per singleplex reaction. The VP7 qRT-PCRs exhibited 81–92% efficiency and limit of detection of 150–600 copies in multiplex reactions. The VP4 qRT-PCRs exhibited 98.8–100% sensitivity, 100% specificity, 86–89% efficiency and a limit of detection of 12–400 copies per singleplex reactions. The VP4 qRT-PCRs exhibited 82–90% efficiency and limit of detection of 120–4000 copies in multiplex reaction. Discussion. The one-step multiplex qRT-PCR assay will facilitate high-throughput rotavirus genotype characterization for monitoring circulating rotavirus wild-type strains causing rotavirus infections, determining the frequency of Rotarix® and RotaTeq® vaccine strains and vaccine-derived reassortants associated with AGE, and help to identify novel rotavirus strains derived by reassortment between vaccine and wild-type strains. PMID:26839745
Hemrajani, Cordula; Marches, Olivier; Wiles, Siouxsie; Girard, Francis; Dennis, Alison; Dziva, Francis; Best, Angus; Phillips, Alan D.; Berger, Cedric N.; Mousnier, Aurelie; Crepin, Valerie F.; Kruidenier, Laurens; Woodward, Martin J.; Stevens, Mark P.; La Ragione, Roberto M.; MacDonald, Thomas T.; Frankel, Gad
2008-01-01
The human pathogen enterohemorrhagic Escherichia coli (EHEC) O157:H7 colonizes human and animal gut via formation of attaching and effacing lesions. EHEC strains use a type III secretion system to translocate a battery of effector proteins into the mammalian host cell, which subvert diverse signal transduction pathways implicated in actin dynamics, phagocytosis, and innate immunity. The genomes of sequenced EHEC O157:H7 strains contain two copies of the effector protein gene nleH, which share 49% sequence similarity with the gene for the Shigella effector OspG, recently implicated in inhibition of migration of the transcriptional regulator NF-κB to the nucleus. In this study we investigated the role of NleH during EHEC O157:H7 infection of calves and lambs. We found that while EHEC ΔnleH colonized the bovine gut more efficiently than the wild-type strain, in lambs the wild-type strain exhibited a competitive advantage over the mutant during mixed infection. Using the mouse pathogen Citrobacter rodentium, which shares many virulence factors with EHEC O157:H7, including NleH, we observed that the wild-type strain exhibited a competitive advantage over the mutant during mixed infection. We found no measurable differences in T-cell infiltration or hyperplasia in colons of mice inoculated with the wild-type or the nleH mutant strain. Using NF-κB reporter mice carrying a transgene containing a luciferase reporter driven by three NF-κB response elements, we found that NleH causes an increase in NF-κB activity in the colonic mucosa. Consistent with this, we found that the nleH mutant triggered a significantly lower tumor necrosis factor alpha response than the wild-type strain. PMID:18725419
Goessens, Wil H F; Mouton, Johan W; Ten Kate, Marian T; Sörgel, Fritz; Kinzig, Martina; Bakker-Woudenberg, Irma A J M
2013-01-01
The efficacies of tigecycline and ceftazidime against fatal pneumonia in rats caused by an extended-spectrum β-lactamase (ESBL)-positive Klebsiella pneumoniae strain or its wild-type (WT) progenitor were compared. Ceftazidime at 12.5 or 50 mg/kg of body weight twice daily (b.i.d.) was effective (50% or 100% rat survival) in pneumonia caused by the WT isolate but unsuccessful (100% rat mortality) in pneumonia caused by the ESBL-positive variant. In contrast, tigecycline at 6.25, 12.5, or 25 mg/kg b.i.d. showed dosage-dependent efficacy up to 100% rat survival irrespective of the ESBL character of the infecting organism.
Bisgaard, M; Christensen, H
2012-02-01
Avian haemolytic Actinobacillus-like organisms have tentatively been named Bisgaard taxon 26. Phenotypic information has been published on 65 strains of this taxon. In the current study, 31 isolates were selected for genotypic characterization. Thirty strains had the same rpoB sequence and only one strain diverged in 1 nt. The highest rpoB similarity to members of other taxa was 89.7 % to the type strain of Actinobacillus equuli subsp. haemolyticus and the similarity to the type strain of the type species, Actinobacillus lignieresii, was 88.2 %. The lowest 16S rRNA gene sequence similarity between strains of the group was determined in previous investigations to be 99.6 % and the highest similarities of 96.4 and 96.2 % outside the group were obtained to the reference strain of Actinobacillus genomospecies 2 and to the type strain of A. equuli subsp. equuli, respectively; 95.8-95.3 % similarity was obtained with the type strain of A. lignieresii. recN gene sequence similarities within the group were from 99.5 % (strains F66(T) and F64) to 99.8 % (strains F66(T) and F67) corresponding to genome similarities of 93.9-94.6 %, which are near the upper limit for species compared with other members of the Pasteurellaceae. The highest recN similarity outside the group (83.4 %) was observed to the type strain of Actinobacillus capsulatus, whereas the similarity to the type strain of A. lignieresii was 80.9 %, corresponding to genome similarities of 57.7 and 52.0 %, respectively. All isolates meet the phenotypic characters outlined for Actinobacillus (urease-, phosphatase- and porphyrin-positive, indole-negative, acid production from fructose, sucrose, maltose and dextrin). β-Haemolysis of bovine blood is observed and isolates may demonstrate in vitro satellitic growth, referred to as V-factor or NAD requirement. Isolates have been obtained from the upper respiratory tract of web-footed birds in which they may cause sinusitis, conjunctivitis and septicaemia. Based on the characterization reported, it is proposed that the isolates belong to a novel species, Actinobacillus anseriformium sp. nov., which includes taxon 26 and a V-factor-dependent strain. The major fatty acids of the type strain are C(16 : 1)ω7c, C(14 : 0), C(16 : 0) and C(14 : 0) 3-OH and/or iso-C(16 : 1) I, corresponding to the profile observed for the type strain of A. lignieresii. Five to 12 characters separate A. anseriformium from other taxa of Actinobacillus, with Actinobacillus ureae being most closely related; A. anseriformium can be differentiated from A. ureae based on haemolysis, β-glucosidase, and production of acid from (-)-D-sorbitol, trehalose and glycosides. The type strain of A. anseriformium is F66(T) ( = CCUG 60324(T) = CCM 7846(T)), which was isolated from conjunctivitis in a White Pekin duck.
NASA Astrophysics Data System (ADS)
Wei, Zhang; Jie, Huang
2016-05-01
Motivated by recent experimental observations of metallic conduction in the quasi-two-dimensional SrFeO2, we study the epitaxial strain effect on the formation and electronic structures of oxygen vacancy (Vo) by first-principles calculations. The bulk SrFeO2 is found to have the G-type antiferromagnetic ordering (G-AFM) at zero strain, which agrees with the experiment. Under compressive strain the bulk SrFeO2 keeps the G-AFM and has the trend of Mott insulator-metal transition. Different from most of the previous similar work about the strain effect on Vo, both the tensile strain and the compressive strain enhance the Vo formation. It is found that the competitions between the band energies and the electrostatic interactions are the dominant mechanisms in determining the Vo formation. We confirm that the Vo in SrFeO2 would induce the n-type conductivity where the donor levels are occupied by the delocalized d x 2-y 2 electrons. It is suggested that the vanishing of n-type conductivity observed by the Hall measurement on the strained films are caused by the shift of donor levels into the conduction band. These results would provide insightful information for the realization of metallic conduction in SrFeO2. Project supported by the Creative Plan Project of Nanjing Forest Police College, China (Grant Nos. 201512213045xy and 201512213007x).
Toxic shock syndrome toxin-1, not α-toxin, mediated Bundaberg fatalities.
Mueller, Elizabeth A; Merriman, Joseph A; Schlievert, Patrick M
2015-12-01
The 1928 Bundaberg disaster is one of the greatest vaccine tragedies in history. Of 21 children immunized with a diphtheria toxin-antitoxin preparation contaminated with Staphylococcus aureus, 18 developed life-threatening disease and 12 died within 48 h. Historically, the deaths have been attributed to α-toxin, a secreted cytotoxin produced by most S. aureus strains, yet the ability of the Bundaberg contaminant microbe to produce the toxin has never been verified. For the first time, the ability of the original strain to produce α-toxin and other virulence factors is investigated. The study investigates the genetic and regulatory loci mediating α-toxin expression by PCR and assesses production of the cytotoxin in vitro using an erythrocyte haemolysis assay. This analysis is extended to other secreted virulence factors produced by the strain, and their sufficiency to cause lethality in New Zealand white rabbits is determined. Although the strain possesses a wild-type allele for α-toxin, it must have a defective regulatory system, which is responsible for the strain's minimal α-toxin production. The strain encodes and produces staphylococcal superantigens, including toxic shock syndrome toxin-1 (TSST-1), which is sufficient to cause lethality in patients. The findings cast doubt on the belief that α-toxin is the major virulence factor responsible for the Bundaberg fatalities and point to the superantigen TSST-1 as the cause of the disaster.
Balassiano, I T; Yates, E A; Domingues, R M C P; Ferreira, E O
2012-02-01
Clostridium difficile-associated disease (CDAD) is caused by a spore-forming bacterium and can result in highly variable disease, ranging from mild diarrhoea to severe clinical manifestations. Infections are most commonly seen in hospital settings and are often associated with on-going antibiotic therapy. Incidences of CDAD have shown a sustained increase worldwide over the last ten years and a hypervirulent C. difficile strain, PCR ribotype 027/REA type BI/North American pulsed-field (NAP) type 1 (027/BI/NAP-1), has caused outbreaks in North America and Europe. In contrast, only a few reports of cases in Latin America have been published and the hypervirulent strain 027/BI/NAP-1 has, so far, only been reported in Costa Rica. The potential worldwide spread of this infection calls for epidemiological studies to characterize currently circulating strains and also highlights the need for increased awareness and vigilance among healthcare professionals in currently unaffected areas, such as Latin America. This review attempts to summarize reports of C. difficile infection worldwide, especially in Latin America, and aims to provide an introduction to the problems associated with this pathogen for those countries that might face outbreaks of epidemic strains of C. difficile for the first time in the near future.
Nicolosi, Daria; Tempera, Gianna; Genovese, Carlo; Furneri, Pio M.
2014-01-01
Urinary tract infections (UTIs) are relatively common in women and may be classified as uncomplicated or complicated, depending upon the urinary tract anatomy and physiology. Acute uncomplicated cystitis (AUC) occurs when urinary pathogens from the bowel or vagina colonize the periurethral mucosa and reach the bladder. The vast majority of episodes in healthy women involving the same bacterial strain that caused the initial infection are thought to be reinfections. About 90% of AUC are caused by uropathogenic Escherichia coli (UPEC), but Proteus mirabilis also plays an important role. Several studies support the importance of cranberry (Vaccinium macrocarpon) proanthocyanidins in preventing adhesion of P-fimbriated UPEC to uroepithelial cells. In this study, we evaluated the in vitro anti-adhesion activity of A2-linked proanthocyanidins from cranberry on a UPEC and Proteus mirabilis strains and their possible influence on urease activity of the latter. A significant reduction of UPEC adhesion (up to 75%) on the HT1376 cell line was observed vs. control. For the strains of P. mirabilis there was also a reduction of adhesion (up to 75%) compared to controls, as well as a reduction in motility and urease activity. These results suggest that A2-type cranberry proanthocyanidins could aid in maintaining urinary tract health. PMID:27025740
Heddergott, Christoph; Bruns, Sandra; Nietzsche, Sandor; Leonhardt, Ines; Kurzai, Oliver; Kniemeyer, Olaf; Brakhage, Axel A
2012-05-01
Dermatophytes are the most common cause of superficial mycoses in humans and animals. They can coexist with their hosts for many years without causing significant symptoms but also cause highly inflammatory diseases. To identify mechanisms involved in the modulation of the host response during infection caused by the zoophilic dermatophyte Arthroderma benhamiae, cell wall-associated surface proteins were studied. By two-dimensional gel electrophoresis, we found that a hydrophobin protein designated HypA was the dominant cell surface protein. HypA was also detected in the supernatant during the growth and conidiation of the fungus. The A. benhamiae genome harbors only a single hydrophobin gene, designated hypA. A hypA deletion mutant was generated, as was a complemented hypA mutant strain (hypA(C)). In contrast to the wild type and the complemented strain, the hypA deletion mutant exhibited "easily wettable" mycelia and conidia, indicating the loss of surface hydrophobicity of both morphotypes. Compared with the wild type, the hypA deletion mutant triggered an increased activation of human neutrophil granulocytes and dendritic cells, characterized by an increased release of the immune mediators interleukin-6 (IL-6), IL-8, IL-10, and tumor necrosis factor alpha (TNF-α). For the first time, we observed the formation of neutrophil extracellular traps against dermatophytes, whose level of formation was increased by the ΔhypA mutant compared with the wild type. Furthermore, conidia of the ΔhypA strain were killed more effectively by neutrophils. Our data suggest that the recognition of A. benhamiae by the cellular immune defense system is notably influenced by the presence of the surface rodlet layer formed by the hydrophobin HypA.
Heddergott, Christoph; Bruns, Sandra; Nietzsche, Sandor; Leonhardt, Ines; Kurzai, Oliver; Kniemeyer, Olaf
2012-01-01
Dermatophytes are the most common cause of superficial mycoses in humans and animals. They can coexist with their hosts for many years without causing significant symptoms but also cause highly inflammatory diseases. To identify mechanisms involved in the modulation of the host response during infection caused by the zoophilic dermatophyte Arthroderma benhamiae, cell wall-associated surface proteins were studied. By two-dimensional gel electrophoresis, we found that a hydrophobin protein designated HypA was the dominant cell surface protein. HypA was also detected in the supernatant during the growth and conidiation of the fungus. The A. benhamiae genome harbors only a single hydrophobin gene, designated hypA. A hypA deletion mutant was generated, as was a complemented hypA mutant strain (hypAC). In contrast to the wild type and the complemented strain, the hypA deletion mutant exhibited “easily wettable” mycelia and conidia, indicating the loss of surface hydrophobicity of both morphotypes. Compared with the wild type, the hypA deletion mutant triggered an increased activation of human neutrophil granulocytes and dendritic cells, characterized by an increased release of the immune mediators interleukin-6 (IL-6), IL-8, IL-10, and tumor necrosis factor alpha (TNF-α). For the first time, we observed the formation of neutrophil extracellular traps against dermatophytes, whose level of formation was increased by the ΔhypA mutant compared with the wild type. Furthermore, conidia of the ΔhypA strain were killed more effectively by neutrophils. Our data suggest that the recognition of A. benhamiae by the cellular immune defense system is notably influenced by the presence of the surface rodlet layer formed by the hydrophobin HypA. PMID:22408226
Involvement of T6 Pili in Biofilm Formation by Serotype M6 Streptococcus pyogenes
Kimura, Keiji Richard; Nakata, Masanobu; Sumitomo, Tomoko; Kreikemeyer, Bernd; Podbielski, Andreas; Terao, Yutaka
2012-01-01
The group A streptococcus (GAS) Streptococcus pyogenes is known to cause self-limiting purulent infections in humans. The role of GAS pili in host cell adhesion and biofilm formation is likely fundamental in early colonization. Pilus genes are found in the FCT (fibronectin-binding protein, collagen-binding protein, and trypsin-resistant antigen) genomic region, which has been classified into nine subtypes based on the diversity of gene content and nucleotide sequence. Several epidemiological studies have indicated that FCT type 1 strains, including serotype M6, produce large amounts of monospecies biofilm in vitro. We examined the direct involvement of pili in biofilm formation by serotype M6 clinical isolates. In the majority of tested strains, deletion of the tee6 gene encoding pilus shaft protein T6 compromised the ability to form biofilm on an abiotic surface. Deletion of the fctX and srtB genes, which encode pilus ancillary protein and class C pilus-associated sortase, respectively, also decreased biofilm formation by a representative strain. Unexpectedly, these mutant strains showed increased bacterial aggregation compared with that of the wild-type strain. When the entire FCT type 1 pilus region was ectopically expressed in serotype M1 strain SF370, biofilm formation was promoted and autoaggregation was inhibited. These findings indicate that assembled FCT type 1 pili contribute to biofilm formation and also function as attenuators of bacterial aggregation. Taken together, our results show the potential role of FCT type 1 pili in the pathogenesis of GAS infections. PMID:22155780
Genetic conversion of a fungal plant pathogen to a non-pathogenic, endophytic mutualist
Freeman, Stanley; Rodriguez, Rusty J.
1993-01-01
The filamentous fungal ascomycete Colletotrichum magna causes anthracnose in cucurbit plants. Isolation of a nonpathogenic mutant of this species (path-1) resulted in maintained wild-type levels of in vitro sporulation, spore adhesion, appressorial formation, and infection. Path-1 grew throughout host tissues as an endophyte and retained the wild-type host range, which indicates that the genetics involved in pathogenicity and host specificity are distinct. Prior infection with path-1 protected plants from disease caused by Colletotrichum and Fusarium.Genetic analysis of a cross between path-1 and wild-type strains indicated mutation of a single locus.
Jiménez, Judy Natalia; Ocampo, Ana María; Vanegas, Johanna Marcela; Rodríguez, Erika Andrea; Garcés, Carlos Guillermo; Patiño, Luz Adriana; Ospina, Sigifredo; Correa, Margarita María
2011-12-01
Virulence and antibiotic resistance are significant determinants of the types of infections caused by Staphylococcus aureus and paediatric groups remain among the most commonly affected populations. The goal of this study was to characterise virulence genes of methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) strains isolated from a paediatric population of a Colombian University Hospital during 2009. Sixty MSSA and MRSA isolates were obtained from paediatric patients between zero-14 years. We identified the genes encoding virulence factors, which included Panton-Valentine leucocidine (PVL), staphylococcal enterotoxins A-E, exfoliative toxins A and B and toxic shock syndrome toxin 1. Typing of the staphylococcal chromosome cassette mec (SCCmec) was performed in MRSA strains. The virulence genes were more diverse and frequent in MSSA than in MRSA isolates (83% vs. 73%). MRSA strains harboured SCCmec types IVc (60%), I (30%), IVa (7%) and V (3%). SCCmec type IVc isolates frequently carried the PVL encoding genes and harboured virulence determinants resembling susceptible strains while SCCmec type I isolates were often negative. PVL was not exclusive to skin and soft tissue infections. As previously suggested, these differences in the distribution of virulence factor genes may be due to the fitness cost associated with methicillin resistance.
Specific Proteins in Nontuberculous Mycobacteria: New Potential Tools
Orduña, Patricia; Castillo-Rodal, Antonia I.; Mercado, Martha E.; Ponce de León, Samuel; López-Vidal, Yolanda
2015-01-01
Nontuberculous mycobacteria (NTM) have been isolated from water, soil, air, food, protozoa, plants, animals, and humans. Although most NTM are saprophytes, approximately one-third of NTM have been associated with human diseases. In this study, we did a comparative proteomic analysis among five NTM strains isolated from several sources. There were different numbers of protein spots from M. gordonae (1,264), M. nonchromogenicum type I (894), M. nonchromogenicum type II (935), M. peregrinum (806), and M. scrofulaceum/Mycobacterium mantenii (1,486) strains, respectively. We identified 141 proteins common to all strains and specific proteins to each NTM strain. A total of 23 proteins were selected for its identification. Two of the common proteins identified (short-chain dehydrogenase/reductase SDR and diguanylate cyclase) did not align with M. tuberculosis complex protein sequences, which suggest that these proteins are found only in the NTM strains. Some of the proteins identified as common to all strains can be used as markers of NTM exposure and for the development of new diagnostic tools. Additionally, the specific proteins to NTM strains identified may represent potential candidates for the diagnosis of diseases caused by these mycobacteria. PMID:26106621
Sitkiewicz, Izabela; Nagiec, Michal J; Sumby, Paul; Butler, Stephanie D; Cywes-Bentley, Colette; Musser, James M
2006-10-24
The molecular basis of pathogen clone emergence is relatively poorly understood. Acquisition of a bacteriophage encoding a previously unknown secreted phospholipase A(2) (designated SlaA) has been implicated in the rapid emergence in the mid-1980s of a new hypervirulent clone of serotype M3 group A Streptococcus. Although several lines of circumstantial evidence suggest that SlaA is a virulence factor, this issue has not been addressed experimentally. We found that an isogenic DeltaslaA mutant strain was significantly impaired in ability to adhere to and kill human epithelial cells compared with the wild-type parental strain. The mutant strain was less virulent for mice than the wild-type strain, and immunization with purified SlaA significantly protected mice from invasive disease. Importantly, the mutant strain was significantly attenuated for colonization in a monkey model of pharyngitis. We conclude that transductional acquisition of the ability of a GAS strain to produce SlaA enhanced the spread and virulence of the serotype M3 precursor strain. Hence, these studies identified a crucial molecular event underlying the evolution, rapid emergence, and widespread dissemination of unusually severe human infections caused by a distinct bacterial clone.
Zheng, Po-Xing; Chan, Yuen-Chi; Chiou, Chien-Shun; Chiang-Ni, Chuan; Wang, Shu-Ying; Tsai, Pei-Jane; Chuang, Woei-Jer; Lin, Yee-Shin; Liu, Ching-Chuan; Wu, Jiunn-Jong
2015-01-01
Clustered regularly interspaced short palindromic repeats (CRISPR) are the bacterial adaptive immune system against foreign nucleic acids. Given the variable nature of CRISPR, it could be a good marker for molecular epidemiology. Group A streptococcus is one of the major human pathogens. It has two CRISPR loci, including CRISPR01 and CRISPR02. The aim of this study was to analyze the distribution of CRISPR-associated gene cassettes (cas) and CRISPR arrays in highly prevalent emm types. The cas cassette and CRISPR array in two CRISPR loci were analyzed in a total of 332 strains, including emm1, emm3, emm4, emm12, and emm28 strains. The CRISPR type was defined by the spacer content of each CRISPR array. All strains had at least one cas cassette or CRISPR array. More than 90% of the spacers were found in one emm type, specifically. Comparing the consistency between emm and CRISPR types by Simpson's index of diversity and the adjusted Wallace coefficient, CRISPR01 type was concordant to emm type, and CRISPR02 showed unidirectional congruence to emm type, suggesting that at least for the majority of isolates causing infection in high income countries, the emm type can be inferred from CRISPR analysis, which can further discriminate isolates sharing the same emm type.
Hissen, Anna H T; Wan, Adrian N C; Warwas, Mark L; Pinto, Linda J; Moore, Margo M
2005-09-01
Aspergillus fumigatus is the leading cause of invasive mold infection and is a serious problem in immunocompromised populations worldwide. We have previously shown that survival of A. fumigatus in serum may be related to secretion of siderophores. In this study, we identified and characterized the sidA gene of A. fumigatus, which encodes l-ornithine N(5)-oxygenase, the first committed step in hydroxamate siderophore biosynthesis. A. fumigatus sidA codes for a protein of 501 amino acids with significant homology to other fungal l-ornithine N(5)-oxygenases. A stable DeltasidA strain was created by deletion of A. fumigatus sidA. This strain was unable to synthesize the siderophores N',N",N'''-triacetylfusarinine C (TAF) and ferricrocin. Growth of the DeltasidA strain was the same as that of the wild type in rich media; however, the DeltasidA strain was unable to grow in low-iron defined media or media containing 10% human serum unless supplemented with TAF or ferricrocin. No significant differences in ferric reduction activities were observed between the parental strain and the DeltasidA strain, indicating that blocking siderophore secretion did not result in upregulation of this pathway. Unlike the parental strain, the DeltasidA strain was unable to remove iron from human transferrin. A rescued strain (DeltasidA + sidA) was constructed; it produced siderophores and had the same growth as the wild type on iron-limited media. Unlike the wild-type and rescued strains, the DeltasidA strain was avirulent in a mouse model of invasive aspergillosis, indicating that sidA is necessary for A. fumigatus virulence.
Clostridium perfringens Sporulation and Sporulation-Associated Toxin Production
Li, Jihong; Paredes-Sabja, Daniel; Sarker, Mahfuzur R.; McClane, Bruce A.
2015-01-01
The ability of Clostridium perfringens to form spores plays a key role during the transmission of this Gram-positive bacterium to cause disease. Of particular note, the spores produced by food poisoning strains are often exceptionally resistant to food environment stresses such as heat, cold and preservatives, which likely facilitates their survival in temperature-abused foods. The exceptional resistance properties of spores made by most type A food poisoning strains and some type C foodborne disease strains involves their production of a variant small acid soluble protein-4 that binds more tightly to spore DNA compared to the small acid soluble protein-4 made by most other C. perfringens strains. Sporulation and germination by C. perfringens and Bacillus spp. share both similarities and differences. Finally, sporulation is essential for production of C. perfringens enterotoxin, which is responsible for the symptoms of C. perfringens type A food poisoning, the second most common bacterial foodborne disease in the USA. During this foodborne disease, C. perfringens is ingested with food and then, using sporulation-specific alternate sigma factors, this bacterium sporulates and produces the enterotoxin in the intestines. PMID:27337447
Guo, Fen; Carter, David E.; Leask, Andrew
2011-01-01
Unlike skin, oral gingival do not scar in response to tissue injury. Fibroblasts, the cell type responsible for connective tissue repair and scarring, are exposed to mechanical tension during normal and pathological conditions including wound healing and fibrogenesis. Understanding how human gingival fibroblasts respond to mechanical tension is likely to yield valuable insights not only into gingival function but also into the molecular basis of scarless repair. CCN2/connective tissue growth factor is potently induced in fibroblasts during tissue repair and fibrogenesis. We subjected gingival fibroblasts to cyclical strain (up to 72 hours) using the Flexercell system and showed that CCN2 mRNA and protein was induced by strain. Strain caused the rapid activation of latent TGFβ, in a fashion that was reduced by blebbistatin and FAK/src inhibition, and the induction of endothelin (ET-1) mRNA and protein expression. Strain did not cause induction of α-smooth muscle actin or collagen type I mRNAs (proteins promoting scarring); but induced a cohort of pro-proliferative mRNAs and cell proliferation. Compared to dermal fibroblasts, gingival fibroblasts showed reduced ability to respond to TGFβ by inducing fibrogenic mRNAs; addition of ET-1 rescued this phenotype. Pharmacological inhibition of the TGFβ type I (ALK5) receptor, the endothelin A/B receptors and FAK/src significantly reduced the induction of CCN2 and pro-proliferative mRNAs and cell proliferation. Controlling TGFβ, ET-1 and FAK/src activity may be useful in controlling responses to mechanical strain in the gingiva and may be of value in controlling fibroproliferative conditions such as gingival hyperplasia; controlling ET-1 may be of benefit in controlling scarring in response to injury in the skin. PMID:21611193
Soeorg, Hiie; Metsvaht, Hanna Kadri; Keränen, Evamaria Elisabet; Eelmäe, Imbi; Merila, Mirjam; Ilmoja, Mari-Liis; Metsvaht, Tuuli; Lutsar, Irja
2018-04-02
Staphylococcus haemolyticus is a common colonizer and cause of late-onset sepsis (LOS) in preterm neonates. By describing genetic relatedness, we aimed to determine whether mother's breast milk (BM) is a source of S. haemolyticus colonizing neonatal gut and skin and/or causing LOS. S. haemolyticus was isolated from stool and skin swabs of 49 BM-fed preterm neonates admitted to neonatal intensive care unit, 20 healthy BM-fed term neonates and BM of mothers once a week and typed by multilocus variable-number tandem-repeat analysis (MLVA) and multilocus sequence typing (MLST). Virulence-related genes were determined by PCR. Compared with term neonates S. haemolyticus colonized more commonly gut (35% vs 89.9%; p<0.001) and skin (50% vs 91.8%; p<0.001) of preterm neonates and mothers' BM (15% vs 38.8%). Isolates from preterm compared with term neonates and their mothers carried more commonly the mecA gene (83.5% vs 5.4%; p<0.001) and IS256 (52.4% vs 2.7%; p<0.001) and belonged to clonal complex 29 (89.1% vs 63%; p=0.014). Only 7 (14.3%) preterm and 3 (15%) term neonates were colonized in gut or on skin with MLVA-types indistinguishable from those in BM. Most frequent MLVA-types belonged to sequence type 3 or 42, comprised 71.1-78.4% of isolates from preterm neonates/mothers and caused all seven LOS episodes. LOS-causing strain colonized the gut of 4/7 and the skin of 5/7 neonates, but not BM, prior to onset of LOS. S. haemolyticus colonizing gut and skin or causing LOS in preterm neonates rarely originate from BM, but are mecA-positive strains adapted to hospital environment.
USDA-ARS?s Scientific Manuscript database
Fusarium tucumaniae is the only known sexually reproducing species among the seven closely related fusaria that cause soybean sudden death syndrome (SDS) or bean root rot (BRR). Laboratory mating of F. tucumaniae required two mating-compatible strains, indicating that it is heterothallic. To assess ...
Genome Sequence of the Hemolytic-Uremic Syndrome-Causing Strain Escherichia coli NCCP15647
Jeong, Haeyoung; Zhao, Fumei; Igori, Davaajargal; Oh, Kyung-Hwan; Kim, Seon-Young; Kang, Sung Gyun; Kim, Byung Kwon; Kwon, Soon-Kyeong; Lee, Choong Hoon; Song, Ju Yeon; Yu, Dong Su; Park, Mi-Sun
2012-01-01
Enterohemorrhagic Escherichia coli (EHEC) causes a disease involving diarrhea, hemorrhagic colitis, and hemolytic-uremic syndrome (HUS). Here we present the draft genome sequence of NCCP15647, an EHEC isolate from an HUS patient. Its genome exhibits features of EHEC, such as genes for verotoxins, a type III secretion system, and prophages. PMID:22740672
Chen, Jianming
2015-01-01
Large clostridial toxins (LCTs) are produced by at least four pathogenic clostridial species, and several LCTs are proven pivotal virulence factors for both human and veterinary diseases. TpeL is a recently identified LCT produced by Clostridium perfringens that has received relatively limited study. In response, the current study surveyed carriage of the tpeL gene among different C. perfringens strains, detecting this toxin gene in some type A, B, and C strains but not in any type D or E strains. This study also determined that all tested strains maximally produce, and extracellularly release, TpeL at the late-log or early-stationary growth stage during in vitro culture, which is different from the maximal late-stationary-phase production reported previously for other LCTs and for TpeL production by C. perfringens strain JIR12688. In addition, the present study found that TpeL levels in culture supernatants can be repressed by either glucose or sucrose. It was also shown that, at natural production levels, TpeL is a significant contributor to the cytotoxic activity of supernatants from cultures of tpeL-positive strain CN3685. Lastly, this study identified TpeL, which presumably is produced in the intestines during diseases caused by TpeL-positive type B and C strains, as a toxin whose cytotoxicity decreases after treatment with trypsin; this finding may have pathophysiologic relevance by suggesting that, like beta toxin, TpeL contributes to type B and C infections in hosts with decreased trypsin levels due to disease, diet, or age. PMID:25824828
Wilkes, Rebecca P; Sanchez, Elena; Riley, Matthew C; Kennedy, Melissa A
2014-01-01
Canine distemper virus (CDV) remains a common cause of infectious disease in dogs, particularly in high-density housing situations such as shelters. Vaccination of all dogs against CDV is recommended at the time of admission to animal shelters and many use a modified live virus (MLV) vaccine. From a diagnostic standpoint for dogs with suspected CDV infection, this is problematic because highly sensitive diagnostic real-time reverse transcription polymerase chain reaction (RT-PCR) tests are able to detect MLV virus in clinical samples. Real-time PCR can be used to quantitate amount of virus shedding and can differentiate vaccine strains from wild-type strains when shedding is high. However, differentiation by quantitation is not possible in vaccinated animals during acute infection, when shedding is low and could be mistaken for low level vaccine virus shedding. While there are gel-based RT-PCR assays for differentiation of vaccine strains from field strains based on sequence differences, the sensitivity of these assays is unable to match that of the real-time RT-PCR assay currently used in the authors' laboratory. Therefore, a real-time RT-PCR assay was developed that detects CDV MLV vaccine strains and distinguishes them from wild-type strains based on nucleotide sequence differences, rather than the amount of viral RNA in the sample. The test is highly sensitive, with detection of as few as 5 virus genomic copies (corresponding to 10(-1) TCID(50)). Sequencing of the DNA real-time products also allows phylogenetic differentiation of the wild-type strains. This test will aid diagnosis during outbreaks of CDV in recently vaccinated animals.
Jiang, Xiaowu; Yang, Yunkai; Zhou, Jingjing; Zhu, Lexin; Gu, Yuanxing; Zhang, Xiaoyan; Li, Xiaoliang; Fang, Weihuan
2016-01-01
Streptococcus suis type 2 (SS2) is a zoonotic pathogen causing septic infection, meningitis and pneumonia in pigs and humans. SS2 may cause streptococcal toxic shock syndrome (STSS) probably due to excessive release of inflammatory cytokines. A previous study indicated that the virD4 gene in the putative type IV-like secretion system (T4SS) within the 89K pathogenicity island specific for recent epidemic strains contributed to the development of STSS. However, the functional basis of VirD4 in STSS remains unclear. Here we show that deletion of virD4 led to reduced virulence as shown by about 65% higher LD50, lower bacterial load in liver and brain, and lower level of expression of inflammatory cytokines in mice and cell lines than its parent strain. The ΔVirD4 mutant was more easily phagocytosed, suggesting its role as an anti-phagocytic factor. Oxidative stress that mimic bacterial exposure to respiratory burst of phagocytes upregulated expression of virD4. Proteomic analysis identified 10 secreted proteins of significant differences between the parent and mutant strains under oxidative stress, including PrsA, a peptidyl-prolyl isomerase. The SS2 PrsA expressed in E. coli caused a dose-dependent cell death and increased expression of proinflammatory IL-1β, IL-6 and TNF-α in murine macrophage cells. Our data provide novel insights into the contribution of the VirD4 factor to STSS pathogenesis, possibly via its anti-phagocytic activity, upregulation of its expression upon oxidative stress and its involvement in increased secretion of PrsA as a cell death inducer and proinflammatory effector. PMID:27995095
Group A rotavirus genotypes in hospital-acquired gastroenteritis in Italy, 2012-14.
Ianiro, G; Delogu, R; Fiore, L; Monini, M; Ruggeri, F M
2017-07-01
Group A rotaviruses (RVA) are the leading cause of acute gastroenteritis (AGE) in young (aged <5 years) children, causing ∼250,000 deaths worldwide, mostly in developing countries. Differences on nucleotide sequences of VP7 (G-type) and VP4 (P-type) genes are the basis for the binary RVA nomenclature. Although at least 32 G-types and 47 P-types of rotavirus are presently known, most RVA infections in humans worldwide are related to five major G/P combinations: G1P[8], G2P[4], G3P[8], G4P[8], and G9P[8]. To provide the hospitals of the Italian surveillance network with update information on RVA AGE. During RVA gastroenteritis surveillance in Italy in 2012-14, a total of 2341 RVA-positive faecal samples were collected from children hospitalized with AGE, and RVA strains were genotyped following standard EuroRotaNet protocols. Most strains analysed belonged to the five major human genotypes and 118 out of 2341 (5.0%) were reported to be hospital-acquired. Comparison of the distributions of the RVA genotypes circulating in the community or associated with nosocomial infections showed a different distribution of genotypes circulating inside the hospital wards, with respect to those observed in the community. G1P[8] and G9P[8] RVA strains were detected frequently, whereas G12P[8] caused a single large nosocomial outbreak. The information from this study will be useful to implement guidelines for preventing RVA AGE and optimizing the management of patients in hospital wards. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Sastalla, Inka; Williams, Kelli W.; Anderson, Erik D.; Myles, Ian A.; Reckhow, Jensen D.; Espinoza-Moraga, Marlene; Freeman, Alexandra F.; Datta, Sandip K.
2017-01-01
Autosomal dominant hyper IgE syndrome (AD-HIES) is a primary immunodeficiency caused by a loss-of-function mutation in the Signal Transducer and Activator of Transcription 3 (STAT3). This immune disorder is clinically characterized by increased susceptibility to cutaneous and sinopulmonary infections, in particular with Candida and Staphylococcus aureus. It has recently been recognized that the skin microbiome of patients with AD-HIES is altered with an overrepresentation of certain Gram-negative bacteria and Gram-positive staphylococci. However, these alterations have not been characterized at the species- and strain-level. Since S. aureus infections are influenced by strain-specific expression of virulence factors, information on colonizing strain characteristics may provide insights into host-pathogen interactions and help guide management strategies for treatment and prophylaxis. The aim of this study was to determine whether the immunodeficiency of AD-HIES selects for unique strains of colonizing S. aureus. Using multi-locus sequence typing (MLST), protein A (spa) typing, and PCR-based detection of toxin genes, we performed a detailed analysis of the S. aureus isolates (n = 13) found on the skin of twenty-one patients with AD-HIES. We found a low diversity of sequence types, and an abundance of strains that expressed methicillin resistance, Panton-Valentine leukocidin (PVL), and staphylococcal enterotoxins K and Q (SEK, SEQ). Our results indicate that patients with AD-HIES may often carry antibiotic-resistant strains that harbor key virulence factors. PMID:28587312
San Mateo, L R; Toffer, K L; Orndorff, P E; Kawula, T H
1999-10-01
Haemophilus ducreyi causes chancroid, a sexually transmitted cutaneous genital ulcer disease associated with increased heterosexual transmission of human immunodeficiency virus. H. ducreyi expresses a periplasmic copper-zinc superoxide dismutase (Cu, Zn SOD) that protects the bacterium from killing by exogenous superoxide in vitro. We hypothesized that the Cu,Zn SOD would protect H. ducreyi from immune cell killing, enhance survival, and affect ulcer development in vivo. In order to test this hypothesis and study the role of the Cu,Zn SOD in H. ducreyi pathogenesis, we compared a Cu,Zn SOD-deficient H. ducreyi strain to its isogenic wild-type parent with respect to survival and ulcer development in immunocompetent and immunosuppressed pigs. The Cu,Zn SOD-deficient strain was recovered from significantly fewer inoculated sites and in significantly lower numbers than the wild-type parent strain or a merodiploid (sodC+ sodC) strain after infection of immunocompetent pigs. In contrast, survival of the wild-type and Cu,Zn SOD-deficient strains was not significantly different in pigs that were rendered neutropenic by treatment with cyclophosphamide. Ulcer severity in pigs was not significantly different between sites inoculated with wild type and sites inoculated with Cu,Zn SOD-deficient H. ducreyi. Our data suggest that the periplasmic Cu,Zn SOD is an important virulence determinant in H. ducreyi, protecting the bacterium from host immune cell killing and contributing to survival and persistence in the host.
San Mateo, Lani R.; Toffer, Kristen L.; Orndorff, Paul E.; Kawula, Thomas H.
1999-01-01
Haemophilus ducreyi causes chancroid, a sexually transmitted cutaneous genital ulcer disease associated with increased heterosexual transmission of human immunodeficiency virus. H. ducreyi expresses a periplasmic copper-zinc superoxide dismutase (Cu,Zn SOD) that protects the bacterium from killing by exogenous superoxide in vitro. We hypothesized that the Cu,Zn SOD would protect H. ducreyi from immune cell killing, enhance survival, and affect ulcer development in vivo. In order to test this hypothesis and study the role of the Cu,Zn SOD in H. ducreyi pathogenesis, we compared a Cu,Zn SOD-deficient H. ducreyi strain to its isogenic wild-type parent with respect to survival and ulcer development in immunocompetent and immunosuppressed pigs. The Cu,Zn SOD-deficient strain was recovered from significantly fewer inoculated sites and in significantly lower numbers than the wild-type parent strain or a merodiploid (sodC+ sodC) strain after infection of immunocompetent pigs. In contrast, survival of the wild-type and Cu,Zn SOD-deficient strains was not significantly different in pigs that were rendered neutropenic by treatment with cyclophosphamide. Ulcer severity in pigs was not significantly different between sites inoculated with wild type and sites inoculated with Cu,Zn SOD-deficient H. ducreyi. Our data suggest that the periplasmic Cu,Zn SOD is an important virulence determinant in H. ducreyi, protecting the bacterium from host immune cell killing and contributing to survival and persistence in the host. PMID:10496915
Freschi de Barros, Samar; De Amicis, Karine Marafigo; Alencar, Raquel; Smeesters, Pierre Robert; Trunkel, Ariel; Postól, Edilberto; Almeida Junior, João Nóbrega; Rossi, Flavia; Pignatari, Antonio Carlos Campos; Kalil, Jorge; Guilherme, Luiza
2015-08-05
Several human diseases are caused by Streptococcus pyogenes, ranging from common infections to autoimmunity. Characterization of the most prevalent strains worldwide is a useful tool for evaluating the coverage capacity of vaccines under development. In this study, a collection of S. pyogenes strains from Sao Paulo, Brazil, was analyzed to describe the diversity of strains and assess the vaccine coverage capacity of StreptInCor. Molecular epidemiology of S. pyogenes strains was performed by emm-genotyping the 229 isolates from different clinical sites, and PCR was used for superantigen profile analysis. The emm-pattern and tissue tropism for these M types were also predicted and compared based on the emm-cluster classification. The strains were fit into 12 different emm-clusters, revealing a diverse phylogenetic origin and, consequently, different mechanisms of infection and escape of the host immune system. Forty-eight emm-types were distinguished in 229 samples, and the 10 most frequently observed types accounted for 69 % of all isolates, indicating a diverse profile of circulating strains comparable to other countries under development. A similar proportion of E and A-C emm-patterns were observed, whereas pattern D was less frequent, indicating that the strains of this collection primarily had a tissue tropism for the throat. In silico analysis of the coverage capacity of StreptInCor, an M protein-conserved regionally based vaccine candidate developed by our group, had a range of 94.5 % to 59.7 %, with a mean of 71.0 % identity between the vaccine antigen and the predicted amino acid sequence of the emm-types included here. This is the first report of S. pyogenes strain characterization in Sao Paulo, one of the largest cities in the world; thus, the strain panel described here is a representative sample for vaccine coverage capacity analysis. Our results enabled evaluation of StreptInCor candidate vaccine coverage capacity against diverse M-types, indicating that the vaccine candidate likely would induce protection against the diverse strains worldwide.
Reengineering of a Corynebacterium glutamicum L-arginine and L-citrulline producer.
Ikeda, Masato; Mitsuhashi, Satoshi; Tanaka, Kenji; Hayashi, Mikiro
2009-03-01
Toward the creation of a robust and efficient producer of L-arginine and L-citrulline (arginine/citrulline), we have performed reengineering of a Corynebacterium glutamicum strain by using genetic information of three classical producers. Sequence analysis of their arg operons identified three point mutations (argR123, argG92(up), and argG45) in one producer and one point mutation (argB26 or argB31) in each of the other two producers. Reconstitution of the former three mutations or of each argB mutation on a wild-type genome led to no production. Combined introduction of argB26 or argB31 with argR123 into a wild type gave rise to arginine/citrulline production. When argR123 was replaced by an argR-deleted mutation (Delta argR), the production was further increased. The best mutation set, Delta argR and argB26, was used to screen for the highest productivity in the backgrounds of different wild-type strains of C. glutamicum. This yielded a robust producer, RB, but the production was still one-third of that of the best classical producer. Transcriptome analysis revealed that the arg operon of the classical producer was much more highly upregulated than that of strain RB. Introduction of leuC456, a mutation derived from a classical L-lysine producer and provoking global induction of the amino acid biosynthesis genes, including the arg operon, into strain RB led to increased production but incurred retarded fermentation. On the other hand, replacement of the chromosomal argB by heterologous Escherichia coli argB, natively insensitive to arginine, caused a threefold-increased production without retardation, revealing that the limitation in strain RB was the activity of the argB product. To overcome this, in addition to argB26, the argB31 mutation was introduced into strain RB, which caused higher deregulation of the enzyme and resulted in dramatically increased production, like the strain with E. coli argB. This reconstructed strain displayed an enhanced performance, thus allowing significantly higher productivity of arginine/citrulline even at the suboptimal 38 degrees C.
Kazembe, P; Simor, A E; Swarney, A E; Yap, L G; Kreiswirth, B; Ng, J; Low, D E
1993-01-01
Coagulase-negative staphylococci (CNS) are among the most prevalent microorganisms that colonize and cause sepsis in neonatal intensive care units (NICU). We had previously identified a strain of CNS, Staphylococcus haemolyticus (TOR-35), in the NICU at Mount Sinai Hospital, that had been repeatedly isolated from blood cultures from neonates. We therefore carried out a prospective study to determine the frequency and time of colonization and the frequency of bacteremia in neonates over a 3.5 month period. This was accomplished by obtaining surface swabs within 1 h of birth and on days 3, 5, and 7 and by characterizing all blood culture isolates of CNS. We also determined what percentage of neonatal CNS bacteremias were due to this strain, between January 1, 1987 and December 31, 1990, by retrieving and typing all stock cultures of CNS from that period. All isolates were typed by species identification and antimicrobial susceptibility profile code. There were 76 (38%) neonates that became colonized with the TOR-35 strain at some time during their NICU stay. Lower birth weight was associated with colonization (p < 0.001), as was lower gestational age (p < 0.001). Only 1 neonate had a positive blood culture isolate for the TOR-35 strain during the prospective study. Of the 4 years of neonatal bacteremias that were studied retrospectively, there were 252 episodes of CNS bacteremia, of which 27 (11%) were due to the TOR-35 strain. The TOR-35 strain has become endemic in our NICU and appears to selectively colonize premature, low birth weight newborn infants, but only infrequently causes bacteremia.
Piret, Jocelyne; Roy, Sylvie; Gagnon, Mylène; Landry, Sébastien; Désormeaux, André; Omar, Rabeea F.; Bergeron, Michel G.
2002-01-01
The mechanisms of herpes simplex virus (HSV) inactivation by sodium lauryl sulfate (SLS) and n-lauroylsarcosine (LS), two anionic surfactants with protein denaturant potency, have been evaluated in cultured cells. Results showed that pretreatment of HSV type 1 (HSV-1) strain F and HSV-2 strain 333 with either surfactant inhibited, in a concentration- and time-dependent manner, their infectivities on Vero cells. SLS was a more potent inhibitor of HSV-2 strain 333 infectivity than LS with respect to the concentration (4.8-fold lower) and time (2.4-fold shorter) required to completely inactivate the virus. No inhibition of both herpesvirus strains infectivities was observed when Vero cells were pretreated with either surfactant. LS prevented the binding of HSV-2 strain 333 to cells without affecting the stable attachment and the rate of penetration into cells, whereas SLS exerted the opposite effect. Both SLS and LS inhibited, in a concentration-dependent manner, the HSV-2 strain 333-induced cytopathic effect, probably by affecting newly synthesized virions that come into contact with surfactant molecules present in culture medium. The pretreatment of HSV-2 strain 333 with specific combinations of SLS and LS concentrations inhibited the viral infectivity in a synergistic manner and resulted in only a small increase in their toxicities for exponentially growing Vero cells compared with that caused by each compound alone. Taken together, these results suggest that SLS and LS, alone or combined, could represent potent candidates as microbicides in topical vaginal formulations to prevent the transmission of herpes and possibly other pathogens that cause sexually transmitted diseases, including human immunodeficiency virus type 1. PMID:12183250
Molecular Typing and Macrolide Resistance of Syphilis Cases in Manitoba, Canada, From 2012 to 2016.
Shuel, Michelle; Hayden, Kristy; Kadkhoda, Kamran; Tsang, Raymond S W
2018-04-01
The province of Manitoba, Canada, with a population of approximately 1.3 million, has been experiencing increased incidence of syphilis cases since 2015. In this study, we examined the detection of Treponema pallidum DNA in 354 clinical samples from 2012 to 2016, and determined molecular types and mutations conferring resistance to azithromycin in the polymerase chain reaction (PCR)-positive samples. T. pallidum DNA detection was done by PCR amplification of tpp47, bmp, and polA genes. Syphilis serology results were reviewed for the PCR-positive cases. Molecular typing of syphilis strains was done by analysis of the T, pallidum arp, tpr, and tp0548 gene targets as well as partial sequencing of the 23S rRNA gene for azithromycin resistance. Of the 354 samples tested, 74 individual cases were PCR positive. A result from the treponemal antibody chemiluminescent microparticle immunoassay test was positive in 72 of these cases and that from the Venereal Disease Research Laboratory testing was positive in 66. Mutations conferring resistance to azithromycin were found in all 74 PCR-positive samples. Molecular typing was completed on 57 PCR-positive samples, and 12 molecular types were identified with 14d/g found in 63.2%. Increased strain diversity was observed with 8 molecular types detected in 2016, whereas only 2 to 3 types were found in 2012 to 2014. A patient with 2 episodes of infection 9 months apart caused by different molecular strain types was also identified. The finding of an increase in genetic diversity in the strains in this study and an increase in macrolide resistance compared with previous Canadian reports highlighted the need for continued surveillance including strain characterization.
Iwahi, T; Imada, A
1988-01-01
Two type 1 fimbria-producing strains of Escherichia coli, 31-B and K12W1-3, and two type 1 fimbriae-defective mutants derived from 31-B, BH5 and BH9, were compared for their capacity to induce vesical infection in mice undergoing water diuresis and to interact in vitro with murine peritoneal exudate polymorphonuclear leukocytes (PMN). Strains 31-B and BH5 caused rapid bacterial multiplication in the bladder wall after being inoculated intrabladderly; their log-phase cells grown at 37 degrees C, in striking contrast to their stationary-phase or 17 degrees C-grown cells, resisted phagocytic killing by PMN in the presence of normal murine serum. Strains K12W1-3 and BH9 failed to cause vesical infection, and their cells were always susceptible to the opsonophagocytic killing by PMN irrespective of the growth conditions. Nevertheless, the log-phase cells of the three isogenic strains, 31-B, BH5, and BH9, grown at 37 degrees C gave almost the same chemiluminescent response patterns during incubation with PMN in normal serum. The phagocytic resistance in strains 31-B and BH5 was eliminated by briefly treating bacterial cells with EDTA. These results suggest that the two virulent strains may express an antiphagocytic activity during their growth in the bladder and continue to stimulate the oxidative metabolic burst of PMN without being ingested and killed, and that the antiphagocytic activity may be related to a bacterial surface component(s) that is removed by EDTA. PMID:2894364
Ruiz, P; Poblete, M; Yáñez, A J; Irgang, R; Toranzo, A E; Avendaño-Herrera, R
2015-02-10
Vibrio ordalii is the causative agent of atypical vibriosis and has the potential to cause severe losses in salmonid aquaculture, but the factors determining its virulence have not yet been elucidated. In this work, cell-surface-related properties of the isolates responsible for outbreaks in Atlantic salmon were investigated. We also briefly examined whether pathogenicity against fish varied for V. ordalii strains with differing cell-surface properties. Hydrocarbon adhesions indicated the hydrophobic character of V. ordalii, although only 4 of 18 isolates induced haemagglutination in Atlantic salmon erythrocytes. A minority of the studied isolates (6 of 18) and the type strain ATCC 33509T produced low-grade biofilm formation on polyethylene surface after 2 h post-inoculation (hpi), but no strains were slime producers. Interestingly, V. ordalii isolates showed wide differences in hydrophobicity. Therefore, we chose 3 V. ordalii isolates (Vo-LM-03, Vo-LM-18 and Vo-LM-16) as representative of each hydrophobicity group (strongly hydrophobic, relatively hydrophobic and quasi-hydrophilic, respectively) and ATCC 33509T was used in the pathogenicity studies. All tested V. ordalii strains except the type strain resisted the killing activity of Atlantic salmon mucus and serum, and could proliferate in these components. Moreover, all V. ordalii isolates adhered to SHK-1 cells, causing damage to fish cell membrane permeability after 16 hpi. Virulence testing using rainbow trout revealed that isolate Vo-LM-18 was more virulent than isolates Vo-LM-03 and Vo-LM-16, indicating some relationship between haemagglutination and virulence, but not with hydrophobicity.
Solà-Ginés, Marc; Cameron-Veas, Karla; Badiola, Ignacio; Dolz, Roser; Majó, Natalia; Dahbi, Ghizlane; Viso, Susana; Mora, Azucena; Blanco, Jorge; Piedra-Carrasco, Nuria; González-López, Juan José; Migura-Garcia, Lourdes
2015-01-01
Avian pathogenic Escherichia coli (APEC) are the major cause of colibacillosis in poultry production. In this study, a total of 22 E. coli isolated from colibacillosis field cases and 10 avian faecal E. coli (AFEC) were analysed. All strains were characterised phenotypically by susceptibility testing and molecular typing methods such as pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). The presence of 29 virulence genes associated to APEC and human extraintestinal pathogenic E. coli (ExPEC) was also evaluated. For cephalosporin resistant isolates, cephalosporin resistance genes, plasmid location and replicon typing was assessed. Avian isolates belonged to 26 O:H serotypes and 24 sequence types. Out of 22 APEC isolates, 91% contained the virulence genes predictors of APEC; iutA, hlyF, iss, iroN and ompT. Of all strains, 34% were considered ExPEC. PFGE analysis demonstrated a high degree of genetic polymorphism. All strains were multi-resistant, including those isolated from healthy animals. Eleven strains were resistant to cephalosporins; six contained blaCTX-M-14, two blaSHV-12, two blaCMY-2 and one blaSHV-2. Two strains harboured qnrA, and two qnrA together with aac(6')-Ib-cr. Additionally, the emergent clone O25b:H4-B2-ST131 was isolated from a healthy animal which harboured blaCMY-2 and qnrS genes. Cephalosporin resistant genes were mainly associated to the presence of IncK replicons. This study demonstrates a very diverse population of multi-drug resistant E. coli containing a high number of virulent genes. The E. coli population among broilers is a reservoir of resistance and virulence-associated genes that could be transmitted into the community through the food chain. More epidemiological studies are necessary to identify clonal groups and resistance mechanisms with potential relevance to public health.
Solà-Ginés, Marc; Cameron-Veas, Karla; Badiola, Ignacio; Dolz, Roser; Majó, Natalia; Dahbi, Ghizlane; Viso, Susana; Mora, Azucena; Blanco, Jorge; Piedra-Carrasco, Nuria; González-López, Juan José; Migura-Garcia, Lourdes
2015-01-01
Avian pathogenic Escherichia coli (APEC) are the major cause of colibacillosis in poultry production. In this study, a total of 22 E. coli isolated from colibacillosis field cases and 10 avian faecal E. coli (AFEC) were analysed. All strains were characterised phenotypically by susceptibility testing and molecular typing methods such as pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). The presence of 29 virulence genes associated to APEC and human extraintestinal pathogenic E. coli (ExPEC) was also evaluated. For cephalosporin resistant isolates, cephalosporin resistance genes, plasmid location and replicon typing was assessed. Avian isolates belonged to 26 O:H serotypes and 24 sequence types. Out of 22 APEC isolates, 91% contained the virulence genes predictors of APEC; iutA, hlyF, iss, iroN and ompT. Of all strains, 34% were considered ExPEC. PFGE analysis demonstrated a high degree of genetic polymorphism. All strains were multi-resistant, including those isolated from healthy animals. Eleven strains were resistant to cephalosporins; six contained bla CTX-M-14, two bla SHV-12, two bla CMY-2 and one bla SHV-2. Two strains harboured qnrA, and two qnrA together with aac(6’)-Ib-cr. Additionally, the emergent clone O25b:H4-B2-ST131 was isolated from a healthy animal which harboured bla CMY-2 and qnrS genes. Cephalosporin resistant genes were mainly associated to the presence of IncK replicons. This study demonstrates a very diverse population of multi-drug resistant E. coli containing a high number of virulent genes. The E. coli population among broilers is a reservoir of resistance and virulence-associated genes that could be transmitted into the community through the food chain. More epidemiological studies are necessary to identify clonal groups and resistance mechanisms with potential relevance to public health. PMID:26600205
Pardos de la Gandara, Maria; Raygoza Garay, Juan Antonio; Mwangi, Michael; Tobin, Jonathan N; Tsang, Amanda; Khalida, Chamanara; D'Orazio, Brianna; Kost, Rhonda G; Leinberger-Jabari, Andrea; Coffran, Cameron; Evering, Teresa H; Coller, Barry S; Balachandra, Shirish; Urban, Tracie; Parola, Claude; Salvato, Scott; Jenks, Nancy; Wu, Daren; Burgess, Rhonda; Chung, Marilyn; de Lencastre, Herminia; Tomasz, Alexander
2015-08-01
In November 2011, The Rockefeller University Center for Clinical and Translational Science (CCTS), the Laboratory of Microbiology and Infectious Diseases, and Clinical Directors Network (CDN) launched a research and learning collaborative project with six community health centers in the New York City metropolitan area to determine the nature (clonal type) of community-acquired Staphylococcus aureus strains causing skin and soft tissue infections (SSTIs). Between November 2011 and March 2013, wound and nasal samples from 129 patients with active SSTIs suspicious for S. aureus were collected and characterized by molecular typing techniques. In 63 of 129 patients, the skin wounds were infected by S. aureus: methicillin-resistant S. aureus (MRSA) was recovered from 39 wounds and methicillin-sensitive S. aureus (MSSA) was recovered from 24. Most-46 of the 63-wound isolates belonged to the CC8/Panton-Valentine leukocidin-positive (PVL(+)) group of S. aureus clone USA300: 34 of these strains were MRSA and 12 were MSSA. Of the 63 patients with S. aureus infections, 30 were also colonized by S. aureus in the nares: 16 of the colonizing isolates were MRSA, and 14 were MSSA, and the majority of the colonizing isolates belonged to the USA300 clonal group. In most cases (70%), the colonizing isolate belonged to the same clonal type as the strain involved with the infection. In three of the patients, the identity of invasive and colonizing MRSA isolates was further documented by whole-genome sequencing. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Morgand, Marjolaine; Vimont, Sophie; Bleibtreu, Alexandre; Boyd, Anders; Thien, Hoang Vu; Zahar, Jean-Ralph; Denamur, Erick; Arlet, Guillaume
2014-11-01
Infections caused by extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli are an important cause of morbidity and mortality, especially in children. We compared 58 epidemiologically unrelated ESBL-producing E. coli strains that caused infections. They were isolated between 2008 and 2012 in two Parisian pediatric hospitals and grouped according to their origin into either community-acquired (CA) (n=37) or nosocomially acquired (NA) (n=21) strains. Molecular characteristics of the ESBLs, phylogenetic traits of the strains including their belonging to clone O25b-ST131, prevalence of associated virulence genes, growth capacities in different media, metabolic phenotype and biofilm formation abilities were studied. ESBL type, associated resistance and distribution of phylogenetic groups were similar in the CA and NA groups. More than 60% of the B2 phylogroup strains in both groups belonged to the ST131 clone. Interestingly, CA strains possessed more genes encoding virulence factors and the distribution of these genes differed significantly between the two groups: fyuA, hlyC, papC and papGII were more frequent in the CA group, whereas iroN was more frequent in the NA group. CA strains also showed enhanced growth capacities in Luria Bertani rich medium. They tended to produce more biofilm but the difference was not significant. This study confirms the wide spread of clone ST131 among infected children, regardless of whether their infections were community- or nosocomially acquired. It highlights genotypic and phenotypic differences according to the origin of the strains that could indicate adaptability of these multi-resistant bacteria to specific environmental and host factors. Copyright © 2014 Elsevier GmbH. All rights reserved.
Bozue, Joel; Mou, Sherry; Moody, Krishna L; Cote, Christopher K; Trevino, Sylvia; Fritz, David; Worsham, Patricia
2011-06-01
At the genomic level, Yersinia pestis and Yersinia pseudotuberculosis are nearly identical but cause very different diseases. Y. pestis is the etiologic agent of plague; whereas Y. pseudotuberculosis causes a gastrointestinal infection primarily after the consumption of contaminated food. In many gram-negative pathogenic bacteria, PhoP is part of a two-component global regulatory system in which PhoQ serves as the sensor kinase, and PhoP is the response regulator. PhoP is known to activate a number of genes in many bacteria related to virulence. To determine the role of the PhoPQ proteins in Yersinia infections, primarily using aerosol challenge models, the phoP gene was deleted from the chromosome of the CO92 strain of Y. pestis and the IP32953 strain of Y. pseudotuberculosis, leading to a polar mutation of the phoPQ operon. We demonstrated that loss of phoPQ from both strains leads to a defect in intracellular growth and/or survival within macrophages. These in vitro data would suggest that the phoPQ mutants would be attenuated in vivo. However, the LD(50) for the Y. pestis mutant did not differ from the calculated LD(50) for the wild-type CO92 strain for either the bubonic or pneumonic murine models of infection. In contrast, mice challenged by aerosol with the Y. pseudotuberculosis mutant had a LD(50) value 40× higher than the wild-type strain. These results demonstrate that phoPQ are necessary for full virulence by aerosol infection with the IP32953 strain of Y. pseudotuberculosis. However, the PhoPQ proteins do not play a significant role in infection with a fully virulent strain of Y. pestis. Published by Elsevier India Pvt Ltd.
Schouls, Leo M.; van der Heide, Han G. J.; Vauterin, Luc; Vauterin, Paul; Mooi, Frits R.
2004-01-01
Bordetella pertussis, the causative agent of whooping cough, has remained endemic in The Netherlands despite extensive nationwide vaccination since 1953. In the 1990s, several epidemic periods have resulted in many cases of pertussis. We have proposed that strain variation has played a major role in the upsurges of this disease in The Netherlands. Therefore, molecular characterization of strains is important in identifying the causes of pertussis epidemiology. For this reason, we have developed a multiple-locus variable-number tandem repeat analysis (MLVA) typing system for B. pertussis. By combining the MLVA profile with the allelic profile based on multiple-antigen sequence typing, we were able to further differentiate strains. The relationships between the various genotypes were visualized by constructing a minimum spanning tree. MLVA of Dutch strains of B. pertussis revealed that the genotypes of the strains isolated in the prevaccination period were diverse and clearly distinct from the strains isolated in the 1990s. Furthermore, there was a decrease in diversity in the strains from the late 1990s, with a remarkable clonal expansion that coincided with the epidemic periods. Using this genotyping, we have been able to show that B. pertussis is much more dynamic than expected. PMID:15292152
Liu, Y; Wang, S; Lu, H; Chen, W; Wang, W
2016-06-01
Among the most prevalent Mycobacterium tuberculosis (Mtb) strains worldwide is the Beijing genotype, which has caused large outbreaks of tuberculosis (TB). Characteristics facilitating the dissemination of Beijing family strains remain unknown, but they are presumed to have been acquired through evolution of the lineage. To explore the genetic diversity of the Beijing family Mtb and explore the discriminatory ability of mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) loci in several regions of East Asia, a cross-sectional study was conducted with a total of 163 Beijing strains collected from registered TB patients between 1 June 2009 and 31 November 2010 in Funing County, China. The isolated strains were analysed by 15-MIRU-VNTR loci typing and compared with published MIRU-VNTR profiles of Beijing strains. Synonymous single nucleotide polymorphisms at 10 chromosomal positions were also analysed. The combination of SNP and MIRU-VNTR typing may be used to assess Mtb genotypes in areas dominated by Beijing strains. The modern subfamily in Shanghai overlapped with strains from other countries, whereas the ancient subfamily was genetically differentiated across several countries. Modern subfamilies, especially ST10, were prevalent. Qub11b and four other loci (MIRU 26, Mtub21, Qub26, Mtub04) could be used to discriminate Beijing strains.
Characterization of two pigeon paramyxovirus type 1 isolates in China.
Awu, Abie; Shao, Meng-yu; Liu, Meng-meng; Hu, Yan-xin; Qin, Zhuo-ming; Tian, Fu-lin; Zhang, Guo-zhong
2015-01-01
For over three decades, there has been a continuing panzootic caused by a virulent variant avian paramyxovirus type 1 strain, the so-called pigeon paramyxovirus type 1. It is found primarily in racing pigeons, but it has also spread to wild birds and poultry. In this study, two pigeon paramyxovirus type 1 strains, SD12 and BJ13, obtained from diseased pigeons in China, were characterized. Phylogenetic analysis based on complete sequences allowed characterization of both strains as genotype VI, class II. Further phylogenetic analysis of a 374-nucleotide section of the fusion gene showed that SD12 fell into lineage VIbii-d and BJ13 into VIbii-f. The deduced amino acid sequence of the cleavage site of the fusion protein confirmed that both isolates contained the virulent motif (112)K/RRQKR↓F(117) at the cleavage site. Nevertheless, the values of intracerebral pathogenicity indices showed the SD12 isolate to be a velogenic strain and BJ13 isolate to be a mesogenic strain. The SD12 isolate was further investigated via clinical observation, RNA detection, histopathology and viral serology in experimentally infected 3-week-old chickens. It showed a mild pathological phenotype in chickens, with viral replication restricted to a few tissues. The molecular mechanism for the SD12 isolate to have a virulent motif but low levels of virulence for chickens requires further study.
Rella, Antonella; Mor, Visesato; Farnoud, Amir M.; Singh, Ashutosh; Shamseddine, Achraf A.; Ivanova, Elitza; Carpino, Nicholas; Montagna, Maria T.; Luberto, Chiara; Del Poeta, Maurizio
2015-01-01
Cryptococcosis caused by Cryptococcus neoformans and Cryptococcus gattii affects a large population and is a cause of significant morbidity and mortality. Despite its public health burden, there are currently no vaccines against cryptococcosis and new strategies against such infections are needed. In this study, we demonstrate that C. neoformans has the biochemical ability to metabolize sterylglucosides (SGs), a class of immunomodulatory glycolipids. Genetic manipulations that eliminate cryptococccal sterylglucosidase lead to the accumulation of SGs and generate a mutant strain (Δsgl1) that is non-pathogenic in the mouse models of cryptococcosis. Interestingly, this mutant strain acts as a vaccine strain and protects mice against cryptococcosis following infection with C. neoformans or C. gattii. The immunity induced by the Δsgl1 strain is not CD4+ T-cells dependent. Immunocompromised mice, which lack CD4+ T-cells, are able to control the infection by Δsgl1 and acquire immunity against the challenge by wild-type C. neoformans following vaccination with the Δsgl1 strain. These findings are particularly important in the context of HIV/AIDS immune deficiency and suggest that the Δsgl1 strain might provide a potential vaccination strategy against cryptococcosis. PMID:26322039
Rella, Antonella; Mor, Visesato; Farnoud, Amir M; Singh, Ashutosh; Shamseddine, Achraf A; Ivanova, Elitza; Carpino, Nicholas; Montagna, Maria T; Luberto, Chiara; Del Poeta, Maurizio
2015-01-01
Cryptococcosis caused by Cryptococcus neoformans and Cryptococcus gattii affects a large population and is a cause of significant morbidity and mortality. Despite its public health burden, there are currently no vaccines against cryptococcosis and new strategies against such infections are needed. In this study, we demonstrate that C. neoformans has the biochemical ability to metabolize sterylglucosides (SGs), a class of immunomodulatory glycolipids. Genetic manipulations that eliminate cryptococccal sterylglucosidase lead to the accumulation of SGs and generate a mutant strain (Δsgl1) that is non-pathogenic in the mouse models of cryptococcosis. Interestingly, this mutant strain acts as a vaccine strain and protects mice against cryptococcosis following infection with C. neoformans or C. gattii. The immunity induced by the Δsgl1 strain is not CD4(+) T-cells dependent. Immunocompromised mice, which lack CD4(+) T-cells, are able to control the infection by Δsgl1 and acquire immunity against the challenge by wild-type C. neoformans following vaccination with the Δsgl1 strain. These findings are particularly important in the context of HIV/AIDS immune deficiency and suggest that the Δsgl1 strain might provide a potential vaccination strategy against cryptococcosis.
The molecular identification of Streptococcus equi subsp. equi strains isolated within New Zealand.
Patty, O A; Cursons, R T M
2014-03-01
To identify Streptococcus equi subsp. equi (S. equi) by PCR analysis and obtain isolates by culture, in order to investigate the strains of S. equi infecting horses within New Zealand. A diagnostic PCR, based on the amplification of the seeI gene for S. equi, was used on 168 samples submitted from horses with and without clinical signs of strangles. Samples were also processed and cultured on selective media for the isolation of β-haemolytic colonies. In addition, the hypervariable region of the seM gene of S. equi was amplified and then sequenced for strain typing purposes. Of the 168 samples, 35 tested positive for S. equi using PCR. Thirty-two confirmed samples were from horses with a clinical diagnosis of strangles and three were from horses where clinical information was unavailable. Only 22/35 (63%) confirmed S. equi samples were successfully isolated following culture. Strain typing demonstrated that two novel seM alleles of S. equi were found in New Zealand with SeM-99 strains being restricted to the North Island while SeM-100 strains were found in both North and South Islands. The application of PCR for the laboratory confirmation of strangles allowed for a rapid and sensitive identification of S. equi. Moreover, seM typing revealed that within the samples examined two strains of S. equi co-circulated within the North Island of New Zealand but only one strain in the South Island. PCR reduces the time required to obtain laboratory confirmation of strangles compared with culture methods. It also has greater sensitivity in detecting S. equi infections, which is of particular importance in the detection of carrier animals which normally shed low numbers of bacteria. Additionally, seM molecular typing can differentiate between bacterial strains, assisting in the monitoring of local strains of S. equi subsp. equi causing disease.
Buccarello, A; Azzarito, M; Michoud, F; Lacour, S P; Kucera, J P
2018-05-01
Cardiac tissue deformation can modify tissue resistance, membrane capacitance and ion currents and hence cause arrhythmogenic slow conduction. Our aim was to investigate whether uniaxial strain causes different changes in conduction velocity (θ) when the principal strain axis is parallel vs perpendicular to impulse propagation. Cardiomyocyte strands were cultured on stretchable custom microelectrode arrays, and θ was determined during steady-state pacing. Uniaxial strain (5%) with principal axis parallel (orthodromic) or perpendicular (paradromic) to propagation was applied for 1 minute and controlled by imaging a grid of markers. The results were analysed in terms of cable theory. Both types of strain induced immediate changes of θ upon application and release. In material coordinates, orthodromic strain decreased θ significantly more (P < .001) than paradromic strain (2.2 ± 0.5% vs 1.0 ± 0.2% in n = 8 mouse cardiomyocyte cultures, 2.3 ± 0.4% vs 0.9 ± 0.5% in n = 4 rat cardiomyocyte cultures, respectively). The larger effect of orthodromic strain can be explained by the increase in axial myoplasmic resistance, which is not altered by paradromic strain. Thus, changes in tissue resistance substantially contributed to the changes of θ during strain, in addition to other influences (eg stretch-activated channels). Besides these immediate effects, the application of strain also consistently initiated a slow progressive decrease in θ and a slow recovery of θ upon release. Changes in cardiac conduction velocity caused by acute stretch do not only depend on the magnitude of strain but also on its orientation relative to impulse propagation. This dependence is due to different effects on tissue resistance. © 2017 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
McDonald, Sarah M; Matthijnssens, Jelle; McAllen, John K; Hine, Erin; Overton, Larry; Wang, Shiliang; Lemey, Philippe; Zeller, Mark; Van Ranst, Marc; Spiro, David J; Patton, John T
2009-10-01
Group A human rotaviruses (RVs) are a major cause of severe gastroenteritis in infants and young children. Yet, aside from the genes encoding serotype antigens (VP7; G-type and VP4; P-type), little is known about the genetic make-up of emerging and endemic human RV strains. To gain insight into the diversity and evolution of RVs circulating at a single location over a period of time, we sequenced the eleven-segmented, double-stranded RNA genomes of fifty-one G3P[8] strains collected from 1974 to 1991 at Children's Hospital National Medical Center, Washington, D. C. During this period, G1P[8] strains typically dominated, comprising on average 56% of RV infections each year in hospitalized children. A notable exception was in the 1976 and 1991 winter seasons when the incidence of G1P[8] infections decreased dramatically, a trend that correlated with a significant increase in G3P[8] infections. Our sequence analysis indicates that the 1976 season was characterized by the presence of several genetically distinct, co-circulating clades of G3P[8] viruses, which contained minor but significant differences in their encoded proteins. These 1976 lineages did not readily exchange gene segments with each other, but instead remained stable over the course of the season. In contrast, the 1991 season contained a single major clade, whose genome constellation was similar to one of the 1976 clades. The 1991 clade may have gained a fitness advantage after reassorting with as of yet unidentified RV strain(s). This study reveals for the first time that genetically distinct RV clades of the same G/P-type can co-circulate and cause disease. The findings from this study also suggest that, although gene segment exchange occurs, most reassortant strains are replaced over time by lineages with preferred genome constellations. Elucidation of the selective pressures that favor maintenance of RVs with certain sets of genes may be necessary to anticipate future vaccine needs.
McDonald, Sarah M.; Matthijnssens, Jelle; McAllen, John K.; Hine, Erin; Overton, Larry; Wang, Shiliang; Lemey, Philippe; Zeller, Mark; Van Ranst, Marc; Spiro, David J.; Patton, John T.
2009-01-01
Group A human rotaviruses (RVs) are a major cause of severe gastroenteritis in infants and young children. Yet, aside from the genes encoding serotype antigens (VP7; G-type and VP4; P-type), little is known about the genetic make-up of emerging and endemic human RV strains. To gain insight into the diversity and evolution of RVs circulating at a single location over a period of time, we sequenced the eleven-segmented, double-stranded RNA genomes of fifty-one G3P[8] strains collected from 1974 to 1991 at Children's Hospital National Medical Center, Washington, D. C. During this period, G1P[8] strains typically dominated, comprising on average 56% of RV infections each year in hospitalized children. A notable exception was in the 1976 and 1991 winter seasons when the incidence of G1P[8] infections decreased dramatically, a trend that correlated with a significant increase in G3P[8] infections. Our sequence analysis indicates that the 1976 season was characterized by the presence of several genetically distinct, co-circulating clades of G3P[8] viruses, which contained minor but significant differences in their encoded proteins. These 1976 lineages did not readily exchange gene segments with each other, but instead remained stable over the course of the season. In contrast, the 1991 season contained a single major clade, whose genome constellation was similar to one of the 1976 clades. The 1991 clade may have gained a fitness advantage after reassorting with as of yet unidentified RV strain(s). This study reveals for the first time that genetically distinct RV clades of the same G/P-type can co-circulate and cause disease. The findings from this study also suggest that, although gene segment exchange occurs, most reassortant strains are replaced over time by lineages with preferred genome constellations. Elucidation of the selective pressures that favor maintenance of RVs with certain sets of genes may be necessary to anticipate future vaccine needs. PMID:19851457
Qiu, Huiling; Chen, Fu; Leng, Xinyan; Fei, Rongmei; Wang, Libo
2014-10-01
Clostridium perfringens is an important pathogen causing sudden death syndrome, necrotic enteritis, and gas gangrene in ruminants, especially some deer species. Père David's deer (Elaphurus davidianus) is one of the world's rare species and is an endangered and protected species in China. Some Père David's deer in the Chinese Shishou Père David's Deer Preserve died due to C. perfringens infection. We investigated the toxin types and C. perfringens enterotoxin-positive (cpe(+)) strains of isolated C. perfringens in Père David's deer in China. We collected 155 fecal samples from the Beijing Nanhaizi Père David's Deer Park and the Jiangsu Dafeng Père David's Deer National Nature Reserve between July 2010 and July 2011. Bacteria isolated using blood agar and mannitol agar plates were identified by Gram staining and nested PCR for 16S rRNA. We isolated C. perfringens from 41 fecal samples and used PCR amplification of five toxin genes to identify the toxinotypes and the cpe(+) strains of C. perfringens. Twenty-one isolates were type A, 15 were type E, and five were type D. Fifteen isolates were cpe(+) strains, including eight that were type A and seven that were type E.
Jakočiūnė, D; Bisgaard, M; Pedersen, K; Olsen, J E
2014-08-01
The aim of this study was to investigate whether continuous contamination of light pasteurized egg products with Salmonella enterica serovar Tennessee (S. Tennessee) at a large European producer of industrial egg products was caused by persistent contamination of the production facility and to characterize the persistent strains. Seventy-three S. Tennessee isolates collected from products over a 3-year period with intermittent contamination, and 15 control strains were compared by pulsed field gel electrophoresis (PFGE) using two enzymes. Forty-five case isolates distributed throughout the full period were shown to belong to one profile type. Isolates representing different PFGE profiles were all assigned to ST 319 by multilocus sequence typing (MLST). The case isolates did not show a higher ability to form biofilm on a plastic surface than noncase isolates. Characteristically, members of the persistent clone were weak producers of H2 S in laboratory medium. S. Tennessee isolated from the case was able to grow better in pasteurized egg product compared with other serovars investigated. It was concluded that the contamination was caused by a persistent strain in the production facility and that this strain apparently had adapted to grow in the relevant egg product. S. Tennessee has previously been associated with persistence in hatching facilities. This is the first report of persistent contamination of an egg production facility with this serovar. © 2014 The Society for Applied Microbiology.
Velineni, Sridhar; Russell, Kim; Hamlen, Heidi J.; Pesavento, Patricia; Fortney, William D.; Crawford, P. Cynda
2014-01-01
Acute hemorrhagic pneumonia caused by Streptococcus zooepidemicus has emerged as a major disease of shelter dogs and greyhounds. S. zooepidemicus strains differing in multilocus sequence typing (MLST), protective protein (SzP), and M-like protein (SzM) sequences were identified from 9 outbreaks in Texas, Kansas, Florida, Nevada, New Mexico, and Pennsylvania. Clonality based on 2 or more isolates was evident for 7 of these outbreaks. The Pennsylvania and Nevada outbreaks also involved cats. Goat antisera against acutely infected lung tissue as well as convalescent-phase sera reacted with a mucinase (Sz115), hyaluronidase (HylC), InlA domain-containing cell surface-anchored protein (INLA), membrane-anchored protein (MAP), SzP, SzM, and extracellular oligopeptide-binding protein (OppA). The amino acid sequences of SzP and SzM of the isolates varied greatly. The szp and szm alleles of the closely related Kansas clone (sequence type 129 [ST-129]) and United Kingdom isolate BHS5 (ST-123) were different, indicating that MLST was unreliable as a predictor of virulence phenotype. Combinations of conserved HylC and serine protease (ScpC) and variable SzM and SzP proteins of S. zooepidemicus strain NC78 were protectively immunogenic for mice challenged with a virulent canine strain. Thus, although canine pneumonia outbreaks are caused by different strains of S. zooepidemicus, protective immune responses were elicited in mice by combinations of conserved or variable S. zooepidemicus proteins from a single strain. PMID:24990905
Brenner, D J; Mayer, L W; Carlone, G M; Harrison, L H; Bibb, W F; Brandileone, M C; Sottnek, F O; Irino, K; Reeves, M W; Swenson, J M
1988-01-01
Brazilian purpuric fever (BPF) is a recently recognized fulminant pediatric disease characterized by fever, with rapid progression to purpura, hypotensive shock, and death. BPF is usually preceded by purulent conjunctivitis that has resolved before the onset of fever. Both the conjunctivitis and BPF are caused by Haemophilus influenzae biogroup aegyptius (formerly called H. aegyptius). Isolates from 15 BPF cases, mainly from blood or hemorrhagic cerebrospinal fluid, case-associated isolates from 42 persons in towns where BPF cases occurred, and control strains from 32 persons in towns without BPF cases were characterized biochemically, genetically, and epidemiologically. Results indicated that a single clone was responsible for all BPF cases identified in six Brazilian towns from 1984 through 1986. All of 15 (100%) case strains were the same clone as was 1 of 32 (3%) control strains (P = less than 10(-8). Isolates of the clone were preferentially intrarelated by DNA hybridization (99% relatedness, hydroxyapatite method at 60 and 75 degrees C) and were separable from other H. influenzae biogroup aegyptius strains (approximately 90% relatedness at 60 degrees C and 82% relatedness at 75 degrees C). All isolates of the BPF clone and no other strains contained a 24-megadalton plasmid of restriction endonuclease type 3031, were of a single multilocus enzyme mobility type, were of a single sodium dodecyl sulfate-polyacrylamide gel electrophoresis type, and were in one of two ribosomal DNA restriction patterns. All BPF clone isolates reacted with monoclonal antibodies produced from a case strain; only 3 of 62 (5%) other strains reacted with this monoclonal antibody. Ninety percent of BPF clone strains and 27% of other strains were relatively resistant to sulfamethoxazole-trimethoprim. Images PMID:3262623
Strockbine, Nancy; Changayil, Shankar; Ranganathan, Satishkumar; Zhao, Kun; Weil, Ryan; MacCannell, Duncan; Sabol, Ashley; Schmidtke, Amber; Martin, Haley; Stripling, Devon; Ribot, Efrain M.; Gerner-Smidt, Peter
2014-01-01
Shiga toxin-producing Escherichia coli (STEC) are a common cause for food-borne diarrheal illness outbreaks and sporadic cases. Here, we report the availability of the draft genome sequences of 228 STEC strains representing 32 serotypes with known pulsed-field gel electrophoresis (PFGE) types and epidemiological relationships, as well as 12 strains representing other diarrheagenic E. coli pathotypes. PMID:25103754
Magditch, Denise A.; Liu, Tong-Bao; Xue, Chaoyang; Idnurm, Alexander
2012-01-01
The disease cryptococcosis, caused by the fungus Cryptococcus neoformans, is acquired directly from environmental exposure rather than transmitted person-to-person. One explanation for the pathogenicity of this species is that interactions with environmental predators select for virulence. However, co-incubation of C. neoformans with amoeba can cause a “switch” from the normal yeast morphology to a pseudohyphal form, enabling fungi to survive exposure to amoeba, yet conversely reducing virulence in mammalian models of cryptococcosis. Like other human pathogenic fungi, C. neoformans is capable of microevolutionary changes that influence the biology of the organism and outcome of the host-pathogen interaction. A yeast-pseudohyphal phenotypic switch also happens under in vitro conditions. Here, we demonstrate that this morphological switch, rather than being under epigenetic control, is controlled by DNA mutation since all pseudohyphal strains bear mutations within genes encoding components of the RAM pathway. High rates of isolation of pseudohyphal strains can be explained by the physical size of RAM pathway genes and a hypermutator phenotype of the strain used in phenotypic switching studies. Reversion to wild type yeast morphology in vitro or within a mammalian host can occur through different mechanisms, with one being counter-acting mutations. Infection of mice with RAM mutants reveals several outcomes: clearance of the infection, asymptomatic maintenance of the strains, or reversion to wild type forms and progression of disease. These findings demonstrate a key role of mutation events in microevolution to modulate the ability of a fungal pathogen to cause disease. PMID:23055925
Both, Leonard; Collins, Sarah; de Zoysa, Aruni; White, Joanne; Mandal, Sema
2014-01-01
Human infections caused by toxigenic corynebacteria occur sporadically across Europe. In this report, we undertook the epidemiological and molecular characterization of all toxigenic corynebacterium strains isolated in England between January 2007 and December 2013. Epidemiological aspects include case demographics, risk factors, clinical presentation, treatment, and outcome. Molecular characterization was performed using multilocus sequence typing (MLST) alongside traditional phenotypic methods. In total, there were 20 cases of toxigenic corynebacteria; 12 (60.0%) were caused by Corynebacterium ulcerans, where animal contact was the predominant risk factor. The remaining eight (40.0%) were caused by Corynebacterium diphtheriae strains; six were biovar mitis, which were associated with recent travel abroad. Adults 45 years and older were particularly affected (55.0%; 11/20), and typical symptoms included sore throat and fever. Respiratory diphtheria with the absence of a pharyngeal membrane was the most common presentation (50.0%; 10/20). None of the eight C. diphtheriae cases were fully immunized. Diphtheria antitoxin was issued in two (9.5%) cases; both survived. Two (9.5%) cases died, one due to a C. diphtheriae infection and one due to C. ulcerans. MLST demonstrated that the majority (87.5%; 7/8) of C. diphtheriae strains represented new sequence types (STs). By adapting several primer sequences, the MLST genes in C. ulcerans were also amplified, thereby providing the basis for extension of the MLST scheme, which is currently restricted to C. diphtheriae. Despite high population immunity, occasional toxigenic corynebacterium strains are identified in England and continued surveillance is required. PMID:25502525
Dietzel, Erik; Anderson, Danielle E; Castan, Alexandre; von Messling, Veronika; Maisner, Andrea
2011-07-01
In paramyxoviruses, the matrix (M) protein mediates the interaction between the envelope and internal proteins during particle assembly and egress. In measles virus (MeV), M mutations, such as those found in subacute sclerosing panencephalitis (SSPE) strains, and differences in vaccine and wild-type M proteins can affect the strength of interaction with the envelope glycoproteins, assembly efficiency, and spread. However, the contribution of the M protein to the replication and pathogenesis of the closely related canine distemper virus (CDV) has not been characterized. To this end this, we generated a recombinant wild-type CDV carrying a vaccine strain M protein. The recombinant virus retained the parental growth phenotype in VerodogSLAMtag cells, but displayed an increased particle-to-infectivity ratio very similar to that of the vaccine strain, likely due to inefficient H protein incorporation. Even though infectious virus was released only from the apical surface, consistent with the release polarity of the wild-type CDV strain, envelope protein distribution in polarized epithelial cells reproduced the bipolar pattern seen in vaccine strain-infected cells. Most notably, the chimeric virus was completely attenuated in ferrets and caused only a mild and transient leukopenia, indicating that the differences in particle infectivity and envelope protein sorting mediated by the vaccine M protein contribute importantly to vaccine strain attenuation.
Klebsiella spp. in endoscopy-associated infections: we may only be seeing the tip of the iceberg.
Gastmeier, P; Vonberg, R-P
2014-02-01
Two endoscopy-associated nosocomial outbreaks caused by carbapenemase-producing Klebsiella pneumoniae (CPKP) were recently observed in two German hospitals. In this study, we performed a systematic search of the medical literature in order to elucidate the epidemiology of Klebsiella spp. in endoscopy-associated outbreaks. Medline, the Outbreak Database ( http://www.outbreak-database.com ) and reference lists of articles extracted from these databases were screened for descriptions of endoscopy-associated nosocomial outbreaks. The data extracted and analysed were: (1) the type of medical department affected; (2) characterisation of pathogen to species and conspicuous resistance patterns (if applicable); (3) type of endoscope and the grade of its contamination; (4) number and the types of infections; (5) actual cause of the outbreak. A total of seven nosocomial outbreaks were identified, of which six were outbreaks of endoscopic retrograde cholangiopancreatography-related infections and caused by contaminated duodenoscopes. Including our own outbreaks in the analysis, we identified one extended-spectrum beta-lactamase-producing K. pneumoniae strain and six CPKP strains. Insufficient reprocessing after the use of the endoscope was the main reason for subsequent pathogen transmission. There were only two reports of nosocomial outbreaks due to Klebsiella spp. in the first three decades of endoscopic procedures, but seven additional outbreaks of this kind have been reported within the last 4 years. It is very likely that many of such outbreaks have been missed in the past because this pathogen belongs to the physiological gut flora. However, with the emergence of highly resistant (carbapenemase-producing) strains, strict adherence to infection control guidelines is more important than ever.
USDA-ARS?s Scientific Manuscript database
Phomopsis longicolla T. W. Hobbs (syn. Diaporthe longicolla) is the primary cause of Phomopsis seed decay (PSD) in soybean, Glycine max (L.) Merrill. The genome of P. longicolla type strain TWH P74 represents one of the important fungal pathogens in the Diaporthe-Phomopsis complex. In this study, th...
An arctic fox rabies virus strain as the cause of human rabies in Russian Siberia.
Kuzmin, I V
1999-01-01
A case of human rabies in the arctic zone of Siberia is described. The victim was bitten by a wolf, but characterization of the isolate by monoclonal antibodies showed that it was an arctic fox virus strain. This discovery reaffirmed the value of strain typing rabies virus isolates in regions where this has not been done already: such characterization pertains to the identification of the reservoir host, to the natural history of the virus in the reservoir, and to future surveillance, post-exposure treatment, and public education in the region.
Malorny, Burkhard; Junker, Ernst; Helmuth, Reiner
2008-01-01
Background Salmonella enterica subsp. enterica serotype Enteritidis is known as an important and pathogenic clonal group which continues to cause worldwide sporadic cases and outbreaks in humans. Here a new multiple-locus variable-number tandem repeat analysis (MLVA) method is reported for highly-discriminative subtyping of Salmonella Enteritidis. Emphasis was given on the most predominant phage types PT4 and PT8. The method comprises multiplex PCR specifically amplifying repeated sequences from nine different loci followed by an automatic fragment size analysis using a multicolor capillary electrophoresis instrument. A total of 240 human, animal, food and environmental isolates of S. Enteritidis including 23 definite phage types were used for development and validation. Furthermore, the MLVA types were compared to the phage types of several isolates from two recent outbreaks to determine the concordance between both methods and to estimate their in vivo stability. The in vitro stability of the two MLVA types specifically for PT4 and PT8 strains were determined by multiple freeze-thaw cycles. Results Seventy-nine different MLVA types were identified in 240 S. Enteritidis strains. The Simpson's diversity index for the MLVA method was 0.919 and Nei diversity values for the nine VNTR loci ranged from 0.07 to 0.65. Twenty-four MLVA types could be assigned to 62 PT4 strains and 21 types to 81 PT8 strains. All outbreak isolates had an indistinguishable outbreak specific MLVA type. The in vitro stability experiments showed no changes of the MLVA type compared to the original isolate. Conclusion This MLVA method is useful to discriminate S. Enteritidis strains even within a single phage type. It is easy in use, fast, and cheap compared to other high-resolution molecular methods and therefore an important tool for surveillance and outbreak studies for S. Enteritidis. PMID:18513386
Chen, Swaine L.; Wu, Meng; Henderson, Jeffrey P.; Hooton, Thomas M.; Hibbing, Michael E.; Hultgren, Scott J.; Gordon, Jeffrey I.
2013-01-01
Urinary tract infections (UTIs) are common in women and recurrence is a major clinical problem. Most UTIs are caused by uropathogenic Escherichia coli (UPEC). UPEC are generally thought to migrate from the gut to the bladder to cause UTI. UPEC strains form specialized intracellular bacterial communities (IBCs) in the bladder urothelium as part of a pathogenic mechanism to establish a foothold during acute stages of infection. Evolutionarily, such a specific adaptation to the bladder environment would be predicted to result in decreased fitness in other habitats, such as the gut. To examine this concept, we characterized 45 E. coli strains isolated from the feces and urine of four otherwise healthy women with recurrent UTIs. Multi-locus sequence typing revealed that two of the patients maintained a clonal population in both of these body habitats throughout their recurrent UTIs, whereas the other two manifested a wholesale shift in the dominant UPEC strain colonizing their urinary tract and gut between UTIs. These results were confirmed when we subjected 26 isolates from two patients, one representing the persistent clonal pattern and the other representing the dynamic population shift, to whole genome sequencing. In vivo competition studies conducted in mouse models of bladder and gut colonization, using isolates taken from one of the patients with a wholesale population shift, and a newly developed SNP-based method for quantifying strains, revealed that the strain that dominated in her last UTI episode had increased fitness in both body habitats relative to the one that dominated in the preceding episodes. Furthermore, increased fitness was correlated with differences in the strains’ gene repertoires and their in vitro carbohydrate and amino acid utilization profiles. Thus, UPEC appear capable of persisting in both the gut and urinary tract without a fitness tradeoff. Determination of all of the potential reservoirs for UPEC strains that cause recurrent UTI will require additional longitudinal studies of the type described in this report, with sampling of multiple body habitats during and between episodes. PMID:23658245
Natural and Unanticipated Modifiers of RNAi Activity in Caenorhabditis elegans
Asad, Nadeem; Aw, Wen Yih; Timmons, Lisa
2012-01-01
Organisms used as model genomics systems are maintained as isogenic strains, yet evidence of sequence differences between independently maintained wild-type stocks has been substantiated by whole-genome resequencing data and strain-specific phenotypes. Sequence differences may arise from replication errors, transposon mobilization, meiotic gene conversion, or environmental or chemical assault on the genome. Low frequency alleles or mutations with modest effects on phenotypes can contribute to natural variation, and it has proven possible for such sequences to become fixed by adapted evolutionary enrichment and identified by resequencing. Our objective was to identify and analyze single locus genetic defects leading to RNAi resistance in isogenic strains of Caenorhabditis elegans. In so doing, we uncovered a mutation that arose de novo in an existing strain, which initially frustrated our phenotypic analysis. We also report experimental, environmental, and genetic conditions that can complicate phenotypic analysis of RNAi pathway defects. These observations highlight the potential for unanticipated mutations, coupled with genetic and environmental phenomena, to enhance or suppress the effects of known mutations and cause variation between wild-type strains. PMID:23209671
Hoshino, Tadashi; Hachisu, Yushi; Kikuchi, Takashi; Tokutake, Shoko; Okui, Hideyuki; Kutsuna, Satoru; Fukasawa, Chie; Murayama, Kei; Oohara, Asami; Shimizu, Hiroyuki; Ito, Midori; Takahashi, Yoshiko; Ishiwada, Naruhiko
2015-04-01
In Japan, publicly subsidized Haemophilus influenzae serotype b vaccines became available in 2011; consequently, the incidence of invasive H. influenzae infection in paediatric patients of less than 5 years of age decreased dramatically. In 2013, the first case of H. influenzae serotype f (Hif) meningitis in a Japanese infant was reported, and another case of Hif meningitis in a Japanese infant was observed in 2013. We experienced a fatal paediatric case of Hif bacteraemia in 2004; therefore, we conducted an analysis of the three Hif strains isolated from these three Japanese children with invasive Hif infections. All three strains were β-lactamase-non-producing, ampicillin-sensitive strains, with MICs of 1 µg ml(-1) or less. However, one of the three strains showed slightly elevated MICs for ampicillin (1 µg ml(-1)), cefotaxime (0.25 µg ml(-1)) and meropenem (0.13 µg ml(-1)). A molecular analysis by multilocus sequence typing identified all three strains as sequence type (ST) 124, which is a predominant invasive Hif strain in many countries. SmaI-digested PFGE showed variable DNA fragmentation patterns among the strains, suggesting that some highly virulent strains have originated from a single ST124 clone and caused invasive Hif infections in Japan. Additional studies are needed to determine the factors that have led to the clonal expansion of virulent ST124 strains. © 2015 The Authors.
Okwumabua, Ogi; Chinnapapakkagari, Sharmila
2005-04-01
In our continued effort to search for a Streptococcus suis protein(s) that can serve as a vaccine candidate or a diagnostic reagent, we constructed and screened a gene library with a polyclonal antibody raised against the whole-cell protein of S. suis type 2. A clone that reacted with the antibody was identified and characterized. Analysis revealed that the gene encoding the protein is localized within a 2.0-kbp EcoRI DNA fragment. The nucleotide sequence contained an open reading frame that encoded a polypeptide of 445 amino acid residues with a calculated molecular mass of 46.4 kDa. By in vitro protein synthesis and Western blot experiments, the protein exhibited an electrophoretic mobility of approximately 38 kDa. At the amino acid level the deduced primary sequence shared homology with sequences of unknown function from Streptococcus pneumoniae (89%), Streptococcus mutans (86%), Lactococcus lactis (80%), Listeria monocytogenes (74%), and Clostridium perfringens (64%). Except for strains of serotypes 20, 26, 32, and 33, Southern hybridization analysis revealed the presence of the gene in strains of other S. suis serotypes and demonstrated restriction fragment length differences caused by a point mutation in the EcoRI recognition sequence. We confirmed expression of the 38-kDa protein in the hybridization-positive isolates using specific antiserum against the purified protein. The recombinant protein was reactive with serum from pigs experimentally infected with virulent strains of S. suis type 2, suggesting that the protein is immunogenic and may serve as an antigen of diagnostic importance for the detection of most S. suis infections. Pigs immunized with the recombinant 38-kDa protein mounted antibody responses to the protein and were completely protected against challenge with a strain of a homologous serotype, the wild-type virulent strain of S. suis type 2, suggesting that it may be a good candidate for the development of a vaccine that can be used as protection against S. suis infection. Analysis of the cellular fractions of the bacterium by Western blotting revealed that the protein was present in the surface and cell wall extracts. The functional role of the protein with respect to pathogenesis and whether antibodies against the antigen confer protective immunity against diseases caused by strains of other pathogenic S. suis capsular types remains to be determined.
Seredyński, Rafał; Wolna, Dorota; Kędzior, Mateusz; Gutowicz, Jan
2017-01-01
Protease secretion in Saccharomyces cerevisiae cultures is a complex process, important for the application of this organism in the food industry and biotechnology. Previous studies provide rather quantitative data, yielding no information about the number of enzymes involved in proteolysis and their individual biochemical properties. Here we demonstrate that W303a and BY4742 S. cerevisiae strains reveal different patterns of spontaneous and gelatin-induced extracellular proteolytic activity. We applied the gelatin zymography assay to track changes of the proteolytic profile in time, finding the protease secretion dependent on the growth phase and the presence of the protein inducer. Detected enzymes were characterized regarding their substrate specificity, pH tolerance, and susceptibility to inhibitors. In case of the W303a strain, only one type of gelatin-degrading secretory protease (presumably metalloproteinase) was observed. However, the BY4742 strain secreted different proteases of the various catalytic types, depending on the substrate availability. Our study brings the evidence that S. cerevisiae strains secrete several kinds of proteases depending on the presence and type of the substrate. Protein induction may cause not only quantitative but also qualitative changes in the extracellular proteolytic patterns. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ault, Alida; Tennant, Sharon M; Gorres, J Patrick; Eckhaus, Michael; Sandler, Netanya G; Roque, Annelys; Livio, Sofie; Bao, Saran; Foulds, Kathryn E; Kao, Shing-Fen; Roederer, Mario; Schmidlein, Patrick; Boyd, Mary Adetinuke; Pasetti, Marcela F; Douek, Daniel C; Estes, Jacob D; Nabel, Gary J; Levine, Myron M; Rao, Srinivas S
2013-12-02
Nontyphoidal Salmonella (NTS) serovars are a common cause of acute food-borne gastroenteritis worldwide and can cause invasive systemic disease in young infants, the elderly, and immunocompromised hosts, accompanied by high case fatality. Vaccination against invasive NTS disease is warranted where the disease incidence and mortality are high and multidrug resistance is prevalent, as in sub-Saharan Africa. Live-attenuated vaccines that mimic natural infection constitute one strategy to elicit protection. However, they must particularly be shown to be adequately attenuated for consideration of immunocompromised subjects. Accordingly, we examined the safety and tolerability of an oral live attenuated Salmonella typhimurium vaccine candidate, CVD 1921, in an established chronic simian immunodeficiency virus (SIV)-infected rhesus macaque model. We evaluated clinical parameters, histopathology, and measured differences in mucosal permeability to wild-type and vaccine strains. Compared to the wild-type S. typhimurium strain I77 in both SIV-infected and SIV-uninfected nonhuman primate hosts, this live-attenuated vaccine shows reduced shedding and systemic spread, exhibits limited pathological disease manifestations in the digestive tract, and induces low levels of cellular infiltration in tissues. Furthermore, wild-type S. typhimurium induces increased intestinal epithelial damage and permeability, with infiltration of neutrophils and macrophages in both SIV-infected and SIV-uninfected nonhuman primates compared to the vaccine strain. Based on shedding, systemic spread, and histopathology, the live-attenuated S. typhimurium strain CVD 1921 appears to be safe and well-tolerated in the nonhuman primate model, including chronically SIV-infected rhesus macaques. Copyright © 2013. Published by Elsevier Ltd.
Gangaiah, Dharanesh; Spinola, Stanley M
2016-12-01
Haemophilus ducreyi has emerged as a major cause of cutaneous ulcers (CU) in yaws-endemic regions of the tropics in the South Pacific, South East Asia and Africa. H. ducreyi was once thought only to cause the genital ulcer (GU) disease chancroid; GU strains belong to 2 distinct classes, class I and class II. Using whole-genome sequencing of 4 CU strains from Samoa, 1 from Vanuatu and 1 from Papua New Guinea, we showed that CU strains diverged from the class I strain 35000HP and that one CU strain expressed β-lactamase. Recently, the Center for Disease Control and Prevention released the genomes of 11 additional CU strains from Vanuatu and Ghana; however, the evolutionary relationship of these CU strains to previously-characterized CU and GU strains is unknown. We performed phylogenetic analysis of 17 CU and 10 GU strains. Class I and class II GU strains formed two distinct clades. The class I strains formed two subclades, one containing 35000HP and HD183 and the other containing the remainder of the class I strains. Twelve of the CU strains formed a subclone under the class I 35000HP subclade, while 2 CU strains formed a subclone under the other class I subclade. Unexpectedly, 3 of the CU strains formed a subclone under the class II clade. Phylogenetic analysis of dsrA-hgbA-ncaA sequences yielded a tree similar to that of whole-genome phylogenetic tree. CU strains diverged from multiple lineages within both class I and class II GU strains. Multilocus sequence typing of dsrA-hgbA-ncaA could be reliably used for epidemiological investigation of CU and GU strains. As class II strains grow relatively poorly and are relatively more susceptible to vancomycin than class I strains, these findings have implications for methods to recover CU strains. Comparison of contemporary CU and GU isolates would help clarify the relationship between these entities.
Peng, Yang; Ou, Qianting; Lin, Dongxin; Xu, Ping; Li, Ying; Ye, Xiaohua; Zhou, Junli; Yao, Zhenjiang
2015-10-29
Staphylococci are common causes of healthcare-associated and community-associated infections. However, limited data are available on the prevalence, phenotypes and molecular characteristics of Staphylococci in metro system around the world. 320 surface samples were collected from the Guangzhou metro system to isolate and characterize Staphylococci strains. Of the samples, 75.6% (242/320) were contaminated with Staphylococci. The Staphylococci isolates, especially the methicillin resistant isolates, were resistance to most of the antibiotics, with 79.8% (193/242) classified as multidrug resistant (MDR) strains. 8 strains of methicillin-resistant Staphylococcus aureus (MRSA) carried a range of staphylococcal cassette chromosome mec (SCCmec) types [I (1), II (3), III (2) and NT (2)]. Staphylococcus aureus isolates were classified into several ST types and showed possible cross transmissions of strains from various sources. All MRSA strains were positive for the qac gene, and only one methicillin-susceptible Staphylococci aureus (MSSA) strain was positive for the Panton-Valentine leukocidin (PVL) genes. This study demonstrated that environmental surfaces in the Guangzhou metro system may be a hazardous reservoir for transmission of Staphylococci to passengers. The resistance to antibiotics and disinfectants observed among isolates was also noteworthy.
Voisard, Christophe; Keel, Christoph; Haas, Dieter; Dèfago, Geneviève
1989-01-01
Pseudomonas fluorescens CHA0 suppresses black root rot of tobacco, a disease caused by the fungus Thielaviopsis basicola. Strain CHA0 excretes several metabolites with antifungal properties. The importance of one such metabolite, hydrogen cyanide, was tested in a gnotobiotic system containing an artificial, iron-rich soil. A cyanidenegative (hcn) mutant, CHA5, constructed by a gene replacement technique, protected the tobacco plant less effectively than did the wild-type CHA0. Complementation of strain CHA5 by the cloned wild-type hcn+ genes restored the strain's ability to suppress disease. An artificial transposon carrying the hcn+ genes of strain CHA0 (Tnhcn) was constructed and inserted into the genome of another P.fluorescens strain, P3, which naturally does not produce cyanide and gives poor plant protection. The P3::Tnhcn derivative synthesized cyanide and exhibited an improved ability to suppress disease. All bacterial strains colonized the roots similarly and did not influence significantly the survival of T.basicola in soil. We conclude that bacterial cyanide is an important but not the only factor involved in suppression of black root rot. Images PMID:16453871
Rodríguez; Flores
2000-06-01
Galactose does not allow growth of pyruvate carboxylase mutants in media with ammonium as a nitrogen source, and inhibits growth of strains defective in phosphoglyceromutase in ethanol-glycerol mixtures. Starting with pyc1, pyc2, and gpm1 strains, we isolated mutants that eliminated those galactose effects. The mutations were recessive and were named dgr1-1 and dgr2-1. Strains bearing those mutations in an otherwise wild-type background grew slower than the wild type in rich galactose media, and their growth was dependent on respiration. Galactose repression of several enzymes was relieved in the mutants. Biochemical and genetic evidence showed that dgr1-1 was allelic with GAL2 and dgr2-1 with GAL4. The results indicate that the rate of galactose consumption is critical to cause catabolite repression.
Guzman-Herrador, Bernardo R; Panning, Marcus; Stene-Johansen, Kathrine; Borgen, Katrine; Einöder-Moreno, Margot; Huzly, Daniela; Jensvoll, Laila; Lange, Heidi; Maassen, Sigrid; Myking, Solveig; Myrmel, Mette; Neumann-Haefelin, Christoph; Nygård, Karin; Wenzel, Jürgen J; Øye, Ann Kristin; Vold, Line
2015-11-01
In March 2014, after an increase of notifications of domestically acquired hepatitis A virus infections, an outbreak investigation was launched in Norway. Sequenced-based typing results showed that these cases were associated with a strain that was identical to one causing an ongoing multinational outbreak in Europe linked to frozen mixed berries. Thirty-three confirmed cases with the outbreak strain were notified in Norway from November 2013 to June 2014. Epidemiological evidence and trace-back investigations linked the outbreak to the consumption of a berry mix cake. Identification of the hepatitis A virus outbreak strain in berries from one of the implicated cakes confirmed the cake to be the source. Subsequently, a cluster in Germany linked to the cake was also identified.
Zhang, Yibo; Sun, Jingyong; Mi, Chenrong; Li, Wenhui; Zhao, Shengyuan; Wang, Qun; Shi, Dake; Liu, Luo; Ding, Bingyu; Chang, Yung-Fu; Guo, Hongxiong; Guo, XiaoKui; Li, Qingtian; Zhu, Yongzhang
2015-01-01
Here, we present the first report of one suspected dead case and two confirmed rapid-onset fatal infections caused by a newly emerging hypervirulent Klebsiella pneumoniae ST86 strain of serotype K2. The three cases occurred in a surgery ward during 2013 in Shanghai, China. A combination of multilocus sequence typing, pulsed-field gel electrophoresis, phenotypic and PCR tests for detecting virulence factors (VFs) was used to identify the isolates as K2 ST86 strains with common VFs, including Aerobactin and rmpA. Furthermore, the two K2 ST86 strains additionally harbored a distinct VF kfu (responsible for iron uptake system), which commonly existed in invasive K1 strains only. Thus, the unusual presence of both K1 and K2 VFs in the lethal ST86 strain might further enhance its hypervirulence and cause rapid onset of a life-threatening infection. Nevertheless, despite the administration of a combined antibiotic treatment, these three patients all died within 24 h of acute onset, thereby highlighting that the importance of early diagnosis to determine whether the ST86 strains harbor key K2 VF and unusual K1 kfu and whether patients should receive a timely and targeted antibiotic therapy to prevent ST86 induced fatal pneumonia. Finally, even though these patients are clinically improved, keeping on with oral antibiotic treatment for additional 2-3 weeks will be also vital for successfully preventing hvKP reinfection or relapse.
Ipe, Deepak S.; Ben Zakour, Nouri L.; Sullivan, Matthew J.; Beatson, Scott A.; Ulett, Kimberly B.; Benjamin, William H.; Davies, Mark R.; Dando, Samantha J.; King, Nathan P.; Cripps, Allan W.; Dougan, Gordon
2015-01-01
Streptococcus agalactiae causes both symptomatic cystitis and asymptomatic bacteriuria (ABU); however, growth characteristics of S. agalactiae in human urine have not previously been reported. Here, we describe a phenotype of robust growth in human urine observed in ABU-causing S. agalactiae (ABSA) that was not seen among uropathogenic S. agalactiae (UPSA) strains isolated from patients with acute cystitis. In direct competition assays using pooled human urine inoculated with equal numbers of a prototype ABSA strain, designated ABSA 1014, and any one of several UPSA strains, measurement of the percentage of each strain recovered over time showed a markedly superior fitness of ABSA 1014 for urine growth. Comparative phenotype profiling of ABSA 1014 and UPSA strain 807, isolated from a patient with acute cystitis, using metabolic arrays of >2,500 substrates and conditions revealed unique and specific l-malic acid catabolism in ABSA 1014 that was absent in UPSA 807. Whole-genome sequencing also revealed divergence in malic enzyme-encoding genes between the strains predicted to impact the activity of the malate metabolic pathway. Comparative growth assays in urine comparing wild-type ABSA and gene-deficient mutants that were functionally inactivated for the malic enzyme metabolic pathway by targeted disruption of the maeE or maeK gene in ABSA demonstrated attenuated growth of the mutants in normal human urine as well as synthetic human urine containing malic acid. We conclude that some S. agalactiae strains can grow in human urine, and this relates in part to malic acid metabolism, which may affect the persistence or progression of S. agalactiae ABU. PMID:26553467
Ivanova, E I; Popkova, S M; Dzhioev, Iu P; Rakova, E B; Dolgikh, V V; Savel'kaeva, M V; Nemchenko, U M; Bukharova, E V; Serdiuk, L V
2015-01-01
E. coli is a commensal of intestine of the vertebrata. The exchange of genetic material of different types of bacteria between themselves and with other representatives of family of Enterobacteriaceae in intestinal ecosystem results in development of types of normal colibacillus with genetic characteristics of pathogenicity that can serve as a theoretical substantiation to attribute such strains to pathobionts. The entero-pathogenic colibacillus continues be an important cause of diarrhea in children in developing countries. The gene responsible for formation of pili binding is a necessary condition for virulence of entero-pathogenic colibacillus. The polymerase chain reaction was applied to examine 316 strains of different types of E. coli (normal, with weak enzyme activity and hemolytic activity) isolated from healthy children and children with functional disorders of gastro-intestinal tract for presence of genes coding capability to form pill binding. The presence of this gene in different biochemical types of E. coli permits to establish the fact of formation of reservoir of pathogenicity in indigent microbiota of intestinal biocenosis.
Toboldt, Anne; Tietze, Erhard; Helmuth, Reiner; Fruth, Angelika; Junker, Ernst
2012-01-01
In this study, the population structure, incidence, and potential sources of human infection caused by the d-tartrate-fermenting variant of Salmonella enterica serovar Paratyphi B [S. Paratyphi B (dT+)] was investigated. In Germany, the serovar is frequently isolated from broilers. Therefore, a selection of 108 epidemiologically unrelated S. enterica serovar Paratyphi B (dT+) strains isolated in Germany between 2002 and 2010 especially from humans, poultry/poultry meat, and reptiles was investigated by phenotypic and genotypic methods. Strains isolated from poultry and products thereof were strongly associated with multilocus sequence type ST28 and showed antimicrobial multiresistance profiles. Pulsed-field gel electrophoresis XbaI profiles were highly homogeneous, with only a few minor XbaI profile variants. All strains isolated from reptiles, except one, were strongly associated with ST88, another distantly related type. Most of the strains were susceptible to antimicrobial agents, and XbaI profiles were heterogeneous. Strains isolated from humans yielded seven sequence types (STs) clustering in three distantly related lineages. The first lineage, comprising five STs, represented mainly strains belonging to ST43 and ST149. The other two lineages were represented only by one ST each, ST28 and ST88. The relatedness of strains based on the pathogenicity gene repertoire (102 markers tested) was mostly in agreement with the multilocus sequence type. Because ST28 was frequently isolated from poultry but rarely in humans over the 9-year period investigated, overall, this study indicates that in Germany S. enterica serovar Paratyphi B (dT+) poses a health risk preferentially by contact with reptiles and, to a less extent, by exposure to poultry or poultry meat. PMID:22885742
A Zebrafish Larval Model to Assess Virulence of Porcine Streptococcus suis Strains.
Zaccaria, Edoardo; Cao, Rui; Wells, Jerry M; van Baarlen, Peter
2016-01-01
Streptococcus suis is an encapsulated Gram-positive bacterium, and the leading cause of sepsis and meningitis in young pigs resulting in considerable economic losses in the porcine industry. It is also considered an emerging zoonotic agent. In the environment, both avirulent and virulent strains occur in pigs, and virulent strains appear to cause disease in both humans and pigs. There is a need for a convenient, reliable and standardized animal model to assess S. suis virulence. A zebrafish (Danio rerio) larvae infection model has several advantages, including transparency of larvae, low cost, ease of use and exemption from ethical legislation up to 6 days post fertilization, but has not been previously established as a model for S. suis. Microinjection of different porcine strains of S. suis in zebrafish larvae resulted in highly reproducible dose- and strain-dependent larval death, strongly correlating with presence of the S. suis capsule and to the original virulence of the strain in pigs. Additionally we compared the virulence of the two-component system mutant of ciaRH, which is attenuated for virulence in both mice and pigs in vivo. Infection of larvae with the ΔciaRH strain resulted in significantly higher survival rate compared to infection with the S10 wild-type strain. Our data demonstrate that zebrafish larvae are a rapid and reliable model to assess the virulence of clinical porcine S. suis isolates.
A Zebrafish Larval Model to Assess Virulence of Porcine Streptococcus suis Strains
Zaccaria, Edoardo; Cao, Rui; Wells, Jerry M.; van Baarlen, Peter
2016-01-01
Streptococcus suis is an encapsulated Gram-positive bacterium, and the leading cause of sepsis and meningitis in young pigs resulting in considerable economic losses in the porcine industry. It is also considered an emerging zoonotic agent. In the environment, both avirulent and virulent strains occur in pigs, and virulent strains appear to cause disease in both humans and pigs. There is a need for a convenient, reliable and standardized animal model to assess S. suis virulence. A zebrafish (Danio rerio) larvae infection model has several advantages, including transparency of larvae, low cost, ease of use and exemption from ethical legislation up to 6 days post fertilization, but has not been previously established as a model for S. suis. Microinjection of different porcine strains of S. suis in zebrafish larvae resulted in highly reproducible dose- and strain-dependent larval death, strongly correlating with presence of the S. suis capsule and to the original virulence of the strain in pigs. Additionally we compared the virulence of the two-component system mutant of ciaRH, which is attenuated for virulence in both mice and pigs in vivo. Infection of larvae with the ΔciaRH strain resulted in significantly higher survival rate compared to infection with the S10 wild-type strain. Our data demonstrate that zebrafish larvae are a rapid and reliable model to assess the virulence of clinical porcine S. suis isolates. PMID:26999052
Listeria monocytogenes sequence type 1 is predominant in ruminant rhombencephalitis
Dreyer, Margaux; Aguilar-Bultet, Lisandra; Rupp, Sebastian; Guldimann, Claudia; Stephan, Roger; Schock, Alexandra; Otter, Arthur; Schüpbach, Gertraud; Brisse, Sylvain; Lecuit, Marc; Frey, Joachim; Oevermann, Anna
2016-01-01
Listeria (L.) monocytogenes is an opportunistic pathogen causing life-threatening infections in diverse mammalian species including humans and ruminants. As little is known on the link between strains and clinicopathological phenotypes, we studied potential strain-associated virulence and organ tropism in L. monocytogenes isolates from well-defined ruminant cases of clinical infections and the farm environment. The phylogeny of isolates and their virulence-associated genes were analyzed by multilocus sequence typing (MLST) and sequence analysis of virulence-associated genes. Additionally, a panel of representative isolates was subjected to in vitro infection assays. Our data suggest the environmental exposure of ruminants to a broad range of strains and yet the strong association of sequence type (ST) 1 from clonal complex (CC) 1 with rhombencephalitis, suggesting increased neurotropism of ST1 in ruminants, which is possibly related to its hypervirulence. This study emphasizes the importance of considering clonal background of L. monocytogenes isolates in surveillance, epidemiological investigation and disease control. PMID:27848981
Ramonaite, Sigita; Tamuleviciene, Egle; Alter, Thomas; Kasnauskyte, Neringa; Malakauskas, Mindaugas
2017-06-15
Campylobacter (C.) jejuni is the leading cause of human campylobacteriosis worldwide. We performed a molecular epidemiological study to investigate the genetic relationship among C. jejuni strains isolated from human diarrhoeal patients, broiler products and dairy cattle in Lithuania. The C. jejuni isolates from human clinical cases, dairy cattle and broiler products were genotyped using multilocus sequence typing (MLST). Allele numbers for each housekeeping gene, sequence type (ST), and clonal complex (CC) were assigned by submitting the DNA sequences to the C. jejuni MLST database ( http://pubmlst.org/campylobacter ). Based on the obtained sequence data of the housekeeping genes a phylogenetic analysis of the strains was performed and a minimum spanning tree (MST) was calculated. Among the 262 C. jejuni strains (consisting of 43 strains isolated from dairy cattle, 102 strains isolated from broiler products and 117 clinical human C. jejuni strains), 82 different MLST sequence types and 22 clonal complexes were identified. Clonal complexes CC21 and CC353 predominated among the C. jejuni strains. On ST-level, five sequence types (ST-5, ST-21, ST-50, ST-464 and ST-6410) were dominating and these five STs accounted for 35.9% (n = 94) of our isolates. In addition, 51 (19.5%) C. jejuni strains representing 27 (32.9%) STs were reported for the first time in the PubMLST database ( http://pubmlst.org/campylobacter ). The highest Czekanowski index or proportional similarity index (PSI) was calculated for C. jejuni strains isolated from human campylobacteriosis cases and broiler products (PSI = 0.32) suggesting a strong link between broiler strains and human cases. The PSI of dairy cattle and human samples was lower (PSI = 0.11), suggesting a weaker link between bovine strains and human cases. The calculated Simpson's index of all C. jejuni isolates showed a high genetic diversity (D = 0.96). Our results suggest that broiler products are the most important source of human campylobacteriosis in Lithuania. The study provides information on MLST type distribution and genetic relatedness of C. jejuni strains from humans, broiler products and dairy cattle in Lithuania for the first time, enabling a better understanding of the transmission pathways of C. jejuni in this country.
Jorge, Taissa Ricciardi; Mosimann, Ana Luiza Pamplona; Noronha, Lucia de; Maron, Angela; Duarte Dos Santos, Claudia Nunes
2017-02-01
During a series of epizootics caused by Yellow fever virus in Brazil between 2007 and 2009, a monkey was found dead (May 2009) in a sylvatic area in the State of Paraná. Brain samples from this animal were used for immunohistochemical analysis and isolation of a wild-type strain of YFV. This viral strain was characterized, and sequence analyzes demonstrated that it is closely related with YFV strains of the recently identified subclade 1E of the South American genotype I. Further characterization included indirect-immunofluorescence of different infected cell lines and analysis of the kinetics of virus replication and infectivity inhibition by type I IFN. The generated data contributes to the knowledge of YFV evolution and phylogeny. Additionally, the reagents generated and characterized during this study, such as a panel of monoclonal antibodies, are useful tools for further studies on YFV. Lastly, this case stresses the importance of yellow fever surveillance through sentinel monkeys. Copyright © 2016 Elsevier B.V. All rights reserved.
Metzgar, David; Myers, Christopher A.; Russell, Kevin L.; Faix, Dennis; Blair, Patrick J.; Brown, Jason; Vo, Scott; Swayne, David E.; Thomas, Colleen; Stenger, David A.; Lin, Baochuan; Malanoski, Anthony P.; Wang, Zheng; Blaney, Kate M.; Long, Nina C.; Schnur, Joel M.; Saad, Magdi D.; Borsuk, Lisa A.; Lichanska, Agnieszka M.; Lorence, Matthew C.; Weslowski, Brian; Schafer, Klaus O.; Tibbetts, Clark
2010-01-01
For more than four decades the cause of most type A influenza virus infections of humans has been attributed to only two viral subtypes, A/H1N1 or A/H3N2. In contrast, avian and other vertebrate species are a reservoir of type A influenza virus genome diversity, hosting strains representing at least 120 of 144 combinations of 16 viral hemagglutinin and 9 viral neuraminidase subtypes. Viral genome segment reassortments and mutations emerging within this reservoir may spawn new influenza virus strains as imminent epidemic or pandemic threats to human health and poultry production. Traditional methods to detect and differentiate influenza virus subtypes are either time-consuming and labor-intensive (culture-based) or remarkably insensitive (antibody-based). Molecular diagnostic assays based upon reverse transcriptase-polymerase chain reaction (RT-PCR) have short assay cycle time, and high analytical sensitivity and specificity. However, none of these diagnostic tests determine viral gene nucleotide sequences to distinguish strains and variants of a detected pathogen from one specimen to the next. Decision-quality, strain- and variant-specific pathogen gene sequence information may be critical for public health, infection control, surveillance, epidemiology, or medical/veterinary treatment planning. The Resequencing Pathogen Microarray (RPM-Flu) is a robust, highly multiplexed and target gene sequencing-based alternative to both traditional culture- or biomarker-based diagnostic tests. RPM-Flu is a single, simultaneous differential diagnostic assay for all subtype combinations of type A influenza viruses and for 30 other viral and bacterial pathogens that may cause influenza-like illness. These other pathogen targets of RPM-Flu may co-infect and compound the morbidity and/or mortality of patients with influenza. The informative specificity of a single RPM-Flu test represents specimen-specific viral gene sequences as determinants of virus type, A/HN subtype, virulence, host-range, and resistance to antiviral agents. PMID:20140251
Metzgar, David; Myers, Christopher A; Russell, Kevin L; Faix, Dennis; Blair, Patrick J; Brown, Jason; Vo, Scott; Swayne, David E; Thomas, Colleen; Stenger, David A; Lin, Baochuan; Malanoski, Anthony P; Wang, Zheng; Blaney, Kate M; Long, Nina C; Schnur, Joel M; Saad, Magdi D; Borsuk, Lisa A; Lichanska, Agnieszka M; Lorence, Matthew C; Weslowski, Brian; Schafer, Klaus O; Tibbetts, Clark
2010-02-03
For more than four decades the cause of most type A influenza virus infections of humans has been attributed to only two viral subtypes, A/H1N1 or A/H3N2. In contrast, avian and other vertebrate species are a reservoir of type A influenza virus genome diversity, hosting strains representing at least 120 of 144 combinations of 16 viral hemagglutinin and 9 viral neuraminidase subtypes. Viral genome segment reassortments and mutations emerging within this reservoir may spawn new influenza virus strains as imminent epidemic or pandemic threats to human health and poultry production. Traditional methods to detect and differentiate influenza virus subtypes are either time-consuming and labor-intensive (culture-based) or remarkably insensitive (antibody-based). Molecular diagnostic assays based upon reverse transcriptase-polymerase chain reaction (RT-PCR) have short assay cycle time, and high analytical sensitivity and specificity. However, none of these diagnostic tests determine viral gene nucleotide sequences to distinguish strains and variants of a detected pathogen from one specimen to the next. Decision-quality, strain- and variant-specific pathogen gene sequence information may be critical for public health, infection control, surveillance, epidemiology, or medical/veterinary treatment planning. The Resequencing Pathogen Microarray (RPM-Flu) is a robust, highly multiplexed and target gene sequencing-based alternative to both traditional culture- or biomarker-based diagnostic tests. RPM-Flu is a single, simultaneous differential diagnostic assay for all subtype combinations of type A influenza viruses and for 30 other viral and bacterial pathogens that may cause influenza-like illness. These other pathogen targets of RPM-Flu may co-infect and compound the morbidity and/or mortality of patients with influenza. The informative specificity of a single RPM-Flu test represents specimen-specific viral gene sequences as determinants of virus type, A/HN subtype, virulence, host-range, and resistance to antiviral agents.
Lee, Su Jin; Kwon, Young Seop; Lee, Ji-eun; Choi, Eun-Jin; Lee, Chang-Hee; Song, Jae-Young; Gu, Man Bock
2013-01-02
Porcine reproductive and respiratory syndrome virus (PRRSV) causes porcine reproductive and respiratory syndrome disease (PRRS), a disease that has a significant and economic impact on the swine industry. In this study, single-stranded DNA (ssDNA) aptamers with high specificity and affinity against VR-2332 strain of PRRSV type II were successfully obtained. Of 19 candidates, the LB32 aptamer was found to be the most specific and sensitive to VR-2332 strain according to an aptamer-based surface plasmon resonance (SPR) analysis. The detection of VR-2332 of PRRSV type II was successfully accomplished using the enzyme-linked antibody-aptamer sandwich (ELAAS) method. The detection limit of ELAAS was 4.8 × 10(0) TCID(50)/mL that is comparable to some of the previous reports of the PCR-based detection but does not require any complicated equipment or extra costs. Moreover, this ELAAS-based PRRSV detection showed similar sensitivity for both the VR-2332 samples spiked in diluted swine serum and in buffer. Therefore, this VR-2332 strain-specific aptamer and its assay method with high specificity can be used as an alternative method for the fast and precise detection of PRRSV.
Kubomura, Akiko; Misaki, Takako; Homma, Sachiko; Matsuo, Chiaki; Okabe, Nobuhiko
2017-09-25
Enteroaggregative Escherichia coli (EAEC), an enteric pathogen, causes persistent diarrhea in children, HIV-infected individuals, and travelers in economically developing countries. However, the pathogenesis of EAEC infection is not well understood. This study aimed to characterize EAEC in Japan. Between 2012 and 2014, we identified 40 EAEC strains carrying the aggR gene at the Kawasaki City Institute for Public Health, Japan. We characterized these strains using O:H-antigen typing, polymerase chain reaction (for pCVD432, astA, extended-spectrum beta-lactamase, and 4 aggregative adherence fimbriae genes), HEp-2 cell adherence, clump formation, and antimicrobial susceptibility testing. We were able to classify the 40 EAEC strains into 20 O:H types. Although specific O:H types were not correlated with HEp-2 cell aggregative adherence, all the O99:H10, O131:H27, and O176:H34 EAEC strains that were the most frequent O:H types detected in this study showed co-resistance to ampicillin, sulfamethoxazole-trimethoprim, and tetracycline. Based on results of the adhesion assay and detection of virulence-related genes, no significant difference was found between asymptomatic and symptomatic cases. Irrespective of the origin, their potential for virulence was retained. Further characterization is vital to determine whether EAEC is virulent in Japan.
Factors affecting infection of corals and larval oysters by Vibrio coralliilyticus.
Ushijima, Blake; Richards, Gary P; Watson, Michael A; Schubiger, Carla B; Häse, Claudia C
2018-01-01
The bacterium Vibrio coralliilyticus can threaten vital reef ecosystems by causing disease in a variety of coral genera, and, for some strains, increases in virulence at elevated water temperatures. In addition, strains of V. coralliilyticus (formally identified as V. tubiashii) have been implicated in mass mortalities of shellfish larvae causing significant economic losses to the shellfish industry. Recently, strain BAA-450, a coral pathogen, was demonstrated to be virulent towards larval Pacific oysters (Crassostrea gigas). However, it is unclear whether other coral-associated V. coralliilyticus strains can cause shellfish mortalities and if infections are influenced by temperature. This study compared dose dependence, temperature impact, and gross pathology of four V. coralliilyticus strains (BAA-450, OCN008, OCN014 and RE98) on larval C. gigas raised at 23°C and 27°C, and evaluated whether select virulence factors are required for shellfish infections as they are for corals. All strains were infectious to larval oysters in a dose-dependent manner with OCN014 being the most pathogenic and BAA-450 being the least. At 27°C, higher larval mortalities (p < 0.05) were observed for all V. coralliilyticus strains, ranging from 38.8-93.7%. Gross pathological changes to the velum and cilia occurred in diseased larvae, but there were no distinguishable differences between oysters exposed to different V. coralliilyticus strains or temperatures. Additionally, in OCN008, the predicted transcriptional regulator ToxR and the outer membrane protein OmpU were important for coral and oyster disease, while mannose sensitive hemagglutinin type IV pili were required only for coral infection. This study demonstrated that multiple coral pathogens can infect oyster larvae in a temperature-dependent manner and identified virulence factors required for infection of both hosts.
2012-01-01
Background Sexual reproduction is common in eukaryotic microorganisms, with few species reproducing exclusively asexually. However, in some organisms, such as fungi, asexual reproduction alternates with episodic sexual reproduction events. Fungi are thus appropriate organisms for studies of the reasons for the selection of sexuality or clonality and of the mechanisms underlying this selection. Magnaporthe oryzae, an Ascomycete causing blast disease on rice, reproduces mostly asexually in natura. Sexual reproduction is possible in vitro and requires (i) two strains of opposite mating types including (ii) at least one female-fertile strain (i.e. a strain able to produce perithecia, the female organs in which meiosis occurs). Female-fertile strains are found only in limited areas of Asia, in which evidence for contemporary recombination has recently been obtained. We induced the forced evolution of four Chinese female-fertile strains in vitro by the weekly transfer of asexual spores (conidia) between Petri dishes. We aimed to determine whether female fertility was rapidly lost in the absence of sexual reproduction and whether this loss was controlled genetically or epigenetically. Results All the strains became female-sterile after 10 to 19 rounds of selection under asexual conditions. As no single-spore isolation was carried out, the observed decrease in the production of perithecia reflected the emergence and the invasion of female-sterile mutants. The female-sterile phenotype segregated in the offspring of crosses between female-sterile evolved strains and female-fertile wild-type strains. This segregation was maintained in the second generation in backcrosses. Female-sterile evolved strains were subjected to several stresses, but none induced the restoration of female fertility. This loss of fertility was therefore probably due to genetic rather than epigenetic mechanisms. In competition experiments, female-sterile mutants produced similar numbers of viable conidia to wild-type strains, but released them more efficiently. This advantage may account for the invasion of our populations by female-sterile mutants. Conclusions We show for the first time that, in the absence of sexual reproduction, female-sterile mutants of M. oryzae rice strains can arise and increase in abundance in asexual generations. This change in phenotype was frequent and probably caused by mutation. These results suggest that female fertility may have been lost rapidly during the dispersion of the fungus from Asia to the rest of the world. PMID:22458778
de Oliveira, Gilberto Santos; Kawahara, Rebeca; Rosa-Fernandes, Livia; Avila, Carla Cristi; Teixeira, Marta M. G.; Larsen, Martin R.
2018-01-01
Background Chagas disease also known as American trypanosomiasis is caused by the protozoan Trypanosoma cruzi. Over the last 30 years, Chagas disease has expanded from a neglected parasitic infection of the rural population to an urbanized chronic disease, becoming a potentially emergent global health problem. T. cruzi strains were assigned to seven genetic groups (TcI-TcVI and TcBat), named discrete typing units (DTUs), which represent a set of isolates that differ in virulence, pathogenicity and immunological features. Indeed, diverse clinical manifestations (from asymptomatic to highly severe disease) have been attempted to be related to T.cruzi genetic variability. Due to that, several DTU typing methods have been introduced. Each method has its own advantages and drawbacks such as high complexity and analysis time and all of them are based on genetic signatures. Recently, a novel method discriminated bacterial strains using a peptide identification-free, genome sequence-independent shotgun proteomics workflow. Here, we aimed to develop a Trypanosoma cruzi Strain Typing Assay using MS/MS peptide spectral libraries, named Tc-STAMS2. Methods/Principal findings The Tc-STAMS2 method uses shotgun proteomics combined with spectral library search to assign and discriminate T. cruzi strains independently on the genome knowledge. The method is based on the construction of a library of MS/MS peptide spectra built using genotyped T. cruzi reference strains. For identification, the MS/MS peptide spectra of unknown T. cruzi cells are identified using the spectral matching algorithm SpectraST. The Tc-STAMS2 method allowed correct identification of all DTUs with high confidence. The method was robust towards different sample preparations, length of chromatographic gradients and fragmentation techniques. Moreover, a pilot inter-laboratory study showed the applicability to different MS platforms. Conclusions and significance This is the first study that develops a MS-based platform for T. cruzi strain typing. Indeed, the Tc-STAMS2 method allows T. cruzi strain typing using MS/MS spectra as discriminatory features and allows the differentiation of TcI-TcVI DTUs. Similar to genomic-based strategies, the Tc-STAMS2 method allows identification of strains within DTUs. Its robustness towards different experimental and biological variables makes it a valuable complementary strategy to the current T. cruzi genotyping assays. Moreover, this method can be used to identify DTU-specific features correlated with the strain phenotype. PMID:29608573
de Oliveira, Gilberto Santos; Kawahara, Rebeca; Rosa-Fernandes, Livia; Mule, Simon Ngao; Avila, Carla Cristi; Teixeira, Marta M G; Larsen, Martin R; Palmisano, Giuseppe
2018-04-01
Chagas disease also known as American trypanosomiasis is caused by the protozoan Trypanosoma cruzi. Over the last 30 years, Chagas disease has expanded from a neglected parasitic infection of the rural population to an urbanized chronic disease, becoming a potentially emergent global health problem. T. cruzi strains were assigned to seven genetic groups (TcI-TcVI and TcBat), named discrete typing units (DTUs), which represent a set of isolates that differ in virulence, pathogenicity and immunological features. Indeed, diverse clinical manifestations (from asymptomatic to highly severe disease) have been attempted to be related to T.cruzi genetic variability. Due to that, several DTU typing methods have been introduced. Each method has its own advantages and drawbacks such as high complexity and analysis time and all of them are based on genetic signatures. Recently, a novel method discriminated bacterial strains using a peptide identification-free, genome sequence-independent shotgun proteomics workflow. Here, we aimed to develop a Trypanosoma cruzi Strain Typing Assay using MS/MS peptide spectral libraries, named Tc-STAMS2. The Tc-STAMS2 method uses shotgun proteomics combined with spectral library search to assign and discriminate T. cruzi strains independently on the genome knowledge. The method is based on the construction of a library of MS/MS peptide spectra built using genotyped T. cruzi reference strains. For identification, the MS/MS peptide spectra of unknown T. cruzi cells are identified using the spectral matching algorithm SpectraST. The Tc-STAMS2 method allowed correct identification of all DTUs with high confidence. The method was robust towards different sample preparations, length of chromatographic gradients and fragmentation techniques. Moreover, a pilot inter-laboratory study showed the applicability to different MS platforms. This is the first study that develops a MS-based platform for T. cruzi strain typing. Indeed, the Tc-STAMS2 method allows T. cruzi strain typing using MS/MS spectra as discriminatory features and allows the differentiation of TcI-TcVI DTUs. Similar to genomic-based strategies, the Tc-STAMS2 method allows identification of strains within DTUs. Its robustness towards different experimental and biological variables makes it a valuable complementary strategy to the current T. cruzi genotyping assays. Moreover, this method can be used to identify DTU-specific features correlated with the strain phenotype.
Martínez, Ignacio; Nogueda, Benjamín; Martínez-Hernández, Fernando; Espinoza, Bertha
2013-03-01
Chagas disease is caused by the protozoan parasite Trypanosoma cruzi, and it affects as many as 10 million people in North and South America, where it represents a major public health problem. T. cruzi is a parasite with high genetic diversity, and it has been grouped into 6 discrete typing units (DTUs), designated as T. cruzi I (TcI) to T. cruzi VI (TcVI). Mexican isolates from humans and from vector insects have been primarily found to be TcI, and these isolates are likely to be the strains that cause the clinical manifestations observed in Mexico. However, genetic characterization and drug susceptibility assays are limited in Mexican TcI strains. In this work, 24 Mexican T. cruzi strains, obtained primarily from humans, were studied with 7 locus microsatellites and mini-exon gene by PCR. Also, drug susceptibility was evaluated by growth and mobility assays. All of the human strains belonged to TcI, and they could be further grouped through microsatellite analysis into 2 subgroups (microsatellite genotypes 1 and 2), which were not related to the host clinical status or biological origin of the strain. Two strains, both from wild mammals, belonged to the TcII-TcVI groups; these strains and the CL Brener strain constituted microsatellite genotype 3. The number of alleles in each locus was lower than reported for South American strains, and a departure from the Hardy-Weinberg equilibrium was observed. The susceptibility of these strains to nifurtimox and benznidazole was heterogeneous. T. cruzi strains characterized as microsatellite genotypes 2 and 3 were significantly more susceptible to benznidazole than strains of microsatellite genotype 1. Only 1 Mexican strain resistant to both drugs was found in this study.
Urinary tract infections of Escherichia coli strains of chaperone-usher system.
Zalewska-Piatek, Beata M
2011-01-01
Urinary tract infections are a very serious health and economic problem affecting millions of people each year worldwide. The most common etiologic agent of this type of bacterial infections, involving the upper and lower urinary tract, are E. coli strains representing approximately 80% of cases. Uropathogenic E. coli strains produce several urovirulence factors which can be divided into two main types, surface virulence factors and exported virulence factors. Surface-exposed structures include mainly extracellular adhesive organelles such as fimbriae/pili necessary in adhesion, invasion, biofilm formation and cytokine induction. Among the surface-exposed polymeric adhesive structures there are three most invasive groups, type 1 pili, type P pili and Dr family of adhesins which are bioassembled via the conserved, among Gram-negative bacteria, chaperone-usher secretion system. Type 1 and P-piliated E. coli cause cystitis and pyelonephritis. The Dr family of adhesins recognizing DAF receptor is responsible for cystitis, pyelonephritis (especially in pregnant women) and diarrhoea (in infants). In addition, Dr-positive E. coli strains carry the risk of recurrent urinary tract infections. Pyelonephritis in pregnant women leads to a series of complications such as bacteremia, urosepsis, acute respiratory distress syndrome and even death. In the era of increasing drug resistance of bacteria, the development of vaccines, drugs termed pilicides and inhibitors of adhesion may be a promising tool in the fight against urogenital infections.
Zheng, Po-Xing; Chan, Yuen-Chi; Chiou, Chien-Shun; Chiang-Ni, Chuan; Wang, Shu-Ying; Tsai, Pei-Jane; Chuang, Woei-Jer; Lin, Yee-Shin; Liu, Ching-Chuan; Wu, Jiunn-Jong
2015-01-01
Clustered regularly interspaced short palindromic repeats (CRISPR) are the bacterial adaptive immune system against foreign nucleic acids. Given the variable nature of CRISPR, it could be a good marker for molecular epidemiology. Group A streptococcus is one of the major human pathogens. It has two CRISPR loci, including CRISPR01 and CRISPR02. The aim of this study was to analyze the distribution of CRISPR-associated gene cassettes (cas) and CRISPR arrays in highly prevalent emm types. The cas cassette and CRISPR array in two CRISPR loci were analyzed in a total of 332 strains, including emm1, emm3, emm4, emm12, and emm28 strains. The CRISPR type was defined by the spacer content of each CRISPR array. All strains had at least one cas cassette or CRISPR array. More than 90% of the spacers were found in one emm type, specifically. Comparing the consistency between emm and CRISPR types by Simpson’s index of diversity and the adjusted Wallace coefficient, CRISPR01 type was concordant to emm type, and CRISPR02 showed unidirectional congruence to emm type, suggesting that at least for the majority of isolates causing infection in high income countries, the emm type can be inferred from CRISPR analysis, which can further discriminate isolates sharing the same emm type. PMID:26710228
Cunha, Marcos Paulo Vieira; Saidenberg, Andre Becker; Moreno, Andrea Micke; Ferreira, Antonio José Piantino; Vieira, Mônica Aparecida Midolli; Gomes, Tânia Aparecida Tardelli; Knöbl, Terezinha
2017-01-01
Extra-intestinal pathogenic Escherichia coli (ExPEC) represent an emerging pathogen, with pandemic strains increasingly involved in cases of urinary tract infections (UTIs), bacteremia, and meningitis. In addition to affecting humans, the avian pathotype of ExPEC, avian pathogenic E. coli (APEC), causes severe economic losses to the poultry industry. Several studies have revealed overlapping characteristics between APEC and human ExPEC, leading to the hypothesis of a zoonotic potential of poultry strains. However, the description of certain important pandemic clones, such as Sequence Type 73 (ST73), has not been reported in food sources. We characterized 27 temporally matched APEC strains from diverse poultry farms in Brazil belonging to the O6 serogroup because this serogroup is frequently described as a causal factor in UTI and septicemia in humans in Brazil and worldwide. The isolates were genotypically characterized by identifying ExPEC virulence factors, phylogenetically tested by phylogrouping and multilocus sequence type (MLST) analysis, and compared to determine their similarity employing the pulsed field gel electrophoresis (PFGE) technique. The strains harbored a large number of virulence determinants that are commonly described in uropathogenic E. coli (UPEC) and sepsis associated E. coli (SEPEC) strains and, to a lesser extent in neonatal meningitis associated E. coli (NMEC), such as pap (85%), sfa (100%), usp (100%), cnf1 (22%), kpsMTII (66%), hlyA (52%), and ibeA (4%). These isolates also yielded a low prevalence of some genes that are frequently described in APEC, such as iss (37%), tsh, ompT, and hlyF (8% each), and cvi/cva (0%). All strains were classified as part of the B2 phylogroup and sequence type 73 (ST73), with a cluster of 25 strains showing a clonal profile by PFGE. These results further suggest the zoonotic potential of some APEC clonal lineages and their possible role in the epidemiology of human ExPEC, in addition to providing the first description of the O6-B2-ST73 clonal group in poultry.
Jakava-Viljanen, Miia; Miia, Jakava-Viljanen; Nokireki, Tiina; Tiina, Nokireki; Sironen, Tarja; Tarja, Sironen; Vapalahti, Olli; Olli, Vapalahti; Sihvonen, Liisa; Liisa, Sihvonen; Huovilainen, Anita; Anita, Huovilainen
2015-06-01
Among other Lyssaviruses, Daubenton's and pond-bat-related European bat lyssavirus type 2 (EBLV-2) can cause human rabies. To investigate the diversity and evolutionary trends of EBLV-2, complete genome sequences of two Finnish isolates were analysed. One originated from a human case in 1985, and the other originated from a bat in 2009. The overall nucleotide and deduced amino acid sequence identity of the two Finnish isolates were high, as well as the similarity to fully sequenced EBLV-2 strains originating from the UK and the Netherlands. In phylogenetic analysis, the EBLV-2 strains formed a monophyletic group that was separate from other bat-type lyssaviruses, with significant support. EBLV-2 shared the most recent common ancestry with Bokeloh bat lyssavirus (BBLV) and Khujan virus (KHUV). EBLV-2 showed limited diversity compared to RABV and appears to be well adapted to its host bat species. The slow tempo of viral evolution was evident in the estimations of divergence times for EBLV-2: the current diversity was estimated to have built up during the last 2000 years, and EBLV-2 diverged from KHUV about 8000 years ago. In a phylogenetic tree of partial N gene sequences, the Finnish EBLV-2 strains clustered with strains from Central Europe, supporting the hypothesis that EBLV-2 circulating in Finland might have a Central European origin. The Finnish EBLV-2 strains and a Swiss strain were estimated to have diverged from other EBLV-2 strains during the last 1000 years, and the two Finnish strains appear to have evolved from a common ancestor during the last 200 years.
Lindahl, Susanne; Söderlund, Robert; Frosth, Sara; Pringle, John; Båverud, Viveca; Aspán, Anna
2011-11-21
Strangles is a serious respiratory disease in horses caused by Streptococcus equi subspecies equi (S. equi). Transmission of the disease occurs by direct contact with an infected horse or contaminated equipment. Genetically, S. equi strains are highly homogenous and differentiation of strains has proven difficult. However, the S. equi M-protein SeM contains a variable N-terminal region and has been proposed as a target gene to distinguish between different strains of S. equi and determine the source of an outbreak. In this study, strains of S. equi (n=60) from 32 strangles outbreaks in Sweden during 1998-2003 and 2008-2009 were genetically characterized by sequencing the SeM protein gene (seM), and by pulsed-field gel electrophoresis (PFGE). Swedish strains belonged to 10 different seM types, of which five have not previously been described. Most were identical or highly similar to allele types from strangles outbreaks in the UK. Outbreaks in 2008/2009 sharing the same seM type were associated by geographic location and/or type of usage of the horses (racing stables). Sequencing of the seM gene generally agreed with pulsed-field gel electrophoresis profiles. Our data suggest that seM sequencing as a epidemiological tool is supported by the agreement between seM and PFGE and that sequencing of the SeM protein gene is more sensitive than PFGE in discriminating strains of S. equi. Copyright © 2011 Elsevier B.V. All rights reserved.
Rivera, F. P.; Ochoa, T. J.; Maves, R. C.; Bernal, M.; Medina, A. M.; Meza, R.; Barletta, F.; Mercado, E.; Ecker, L.; Gil, A. I.; Hall, E. R.; Huicho, L.; Lanata, C. F.
2010-01-01
Enterotoxigenic Escherichia coli (ETEC) is a major cause of childhood diarrhea. The present study sought to determine the prevalence and distribution of toxin types, colonization factors (CFs), and antimicrobial susceptibility of ETEC strains isolated from Peruvian children. We analyzed ETEC strains isolated from Peruvian children between 2 and 24 months of age in a passive surveillance study. Five E. coli colonies per patient were studied by multiplex real-time PCR to identify ETEC virulence factors. ETEC-associated toxins were confirmed using a GM1-based enzyme-linked immunosorbent assay. Confirmed strains were tested for CFs by dot blot assay using 21 monoclonal antibodies. We analyzed 1,129 samples from children with diarrhea and 744 control children and found ETEC in 5.3% and 4.3%, respectively. ETEC was more frequently isolated from children >12 months of age than from children <12 months of age (P < 0.001). Fifty-two percent of ETEC isolates from children with diarrhea and 72% of isolates from controls were heat-labile enterotoxin (LT) positive and heat-stable enterotoxin (ST) negative; 25% and 19%, respectively, were LT negative and ST positive; and 23% and 9%, respectively, were LT positive and ST positive. CFs were identified in 64% of diarrheal samples and 37% of control samples (P < 0.05). The most common CFs were CS6 (14% and 7%, respectively), CS12 (12% and 4%, respectively), and CS1 (9% and 4%, respectively). ST-producing ETEC strains caused more severe diarrhea than non-ST-producing ETEC strains. The strains were most frequently resistant to ampicillin (71%) and co-trimoxazole (61%). ETEC was thus found to be more prevalent in older infants. LT was the most common toxin type; 64% of strains had an identified CF. These data are relevant in estimating the burden of disease due to ETEC and the potential coverage of children in Peru by investigational vaccines. PMID:20631096
Simultaneous type 1 diabetes onset in mother and son coincident with an enteroviral infection.
Hindersson, Maria; Maria, Hindersson; Elshebani, Asma; Orn, Anders; Anders, Orn; Tuvemo, Torsten; Torsten, Tuvemo; Frisk, Gun; Gun, Frisk
2005-06-01
Enterovirus (EV) infections have been implicated in the development of type 1 diabetes. (T1D). They may cause beta-cell destruction either by cytolytic infection of the cells or indirectly by triggering the autoimmune response. Virus was isolated from a woman at diagnosis of T1D (Tuvemo 1) and in addition, virus was isolated from her son at diagnosis of T1D at the same day (Tuvemo 2). None of the isolates could initially be serotyped by conventional methods. The Tuvemo 1 virus was genotyped and after sub-cultivation it was also serotyped as Coxsackievirus B5. The mother revealed antibodies against GAD65. The boy and the father both revealed a significant increase in neutralization antibody titre against two strains of CBV-4, clearly indicating a recent or ongoing EV infection. In addition, the brother showed such a titre rise against another CBV-4 strain (E2) and against a CBV-5 strain (4429). These results show that the whole family had a proven EV infection at the time of T1D diagnosis of the mother and the 10-years-old boy, indicating that the infection might cause or accelerate the T1D.
Rahman, Mahbubur; Hossain, Shahadat; Baqui, Abdullah Hel; Shoma, Shereen; Rashid, Harunur; Nahar, Nazmun; Zaman, Mohammed Khalequ; Khatun, Farida
2008-03-01
To prospectively study the epidemiology and antibiotic resistance of Haemophilus infuenzae isolates from invasive infections in children. Children (<5years) with pneumonia, meningitis and septicemia from three hospitals in Dhaka, Bangladesh were enrolled (1999-2003); clinical and laboratory data, and blood for cultures were collected. Cerebrospinal fluid (CSF) of meningitis cases was analyzed (Gram stain, culture and biochemical tests). Hib antigen was detected by latex agglutination (LA) in culture-negative pyogenic CSF and PCR was done for bexA gene in culture- and LA-negative pyogenic CSF. Antibiotic susceptibility was determined by E-Tests and beta-lactamase by nitrocefin stick. Seventy-three cases of H. influenzae infections (46 of 293 meningitis cases, 25 of 1493 pneumonia cases, 2 of 48 septicemia cases) were detected; 63%, 34% and 3% of them had meningitis, pneumonia and septicemia respectively. H. influenzae type b (Hib) caused infections in 80.8% of cases (60.3% meningitis, 20.5% pneumonia). Most (86%) infections clustered in 4-12month infants. The case-fatality in pneumonia was 8% compared to 19% in meningitis. H. influenzae isolates from pneumonia and meningitis children were equally resistant to antibiotics (46% vs 43%). Of 10 drugs tested, isolates were resistant to ampicillin (31%), chloramphenicol (42%), trimethoprim-sulfamethoxazole (44%) and azithromycin (1.4%). Multidrug-resistant (MDR) strains were equally prevalent in Hib (31%) and non-b-type (29%) isolates, and in pneumonia (31%) and meningitis (34%) cases. None was resistant to amoxicillin-clavulanate, ceftriaxone, ciprofloxacin, levofloxacin, moxifloxacin, and gatifloxacin. Of all H. influenzae infections, 40%, 4.4% and 100% of pneumonia, meningitis and septicemia cases were caused by other serotypes or non-typeable strains. All ampicillin-resistant-strains produced beta-lactamase without detection of beta-lactamase-negative-ampicillin-resistant (BLNAR) strains. Hib is a leading cause of invasive bacterial infections in infants. Multidrug-resistant H. influenzae is common and requires amoxicillin-clavulanate, ceftriaxone or azithromycin as empirical therapy with specific recommendation for use of ceftriaxone for treatment of meningitis particularly MDR cases. New fluoroquinolines has potential utility. An effective national Hib vaccination programme is essential in Bangladesh although non-Hib infections will remain an issue.
Severe acute bovine viral diarrhea in Ontario, 1993-1995.
Carman, S; van Dreumel, T; Ridpath, J; Hazlett, M; Alves, D; Dubovi, E; Tremblay, R; Bolin, S; Godkin, A; Anderson, N
1998-01-01
In 1993, noncytopathic bovine viral diarrhea virus (BVDV) strains with enhanced virulence caused unprecedented outbreaks of severe acute bovine viral diarrhea (BVD) in dairy, beef, and veal herds in Ontario (Canada). Fever, pneumonia, diarrhea, and sudden death occurred in all age groups of cattle. Abortions often occurred in pregnant animals. Gross lesions in the alimentary tract were similar to those associated with mucosal disease, especially in animals >6 months of age. Cattle of all age groups had microscopic lesions in the alimentary tract similar to those seen with mucosal disease. The epidemic peaked in the summer of 1993, with 15% of all bovine accessions from diseased cattle presented to the diagnostic laboratory being associated with BVDV. The virus strains involved in the outbreak were analyzed using monoclonal and polyclonal antibodies and the polymerase chain reaction. The virus isolates from these outbreaks of severe disease were determined to be type 2 BVDV. Type 2 BVDV has been present in Ontario at least since 1981 without causing widespread outbreaks of severe acute BVD, which suggests that type 2 designation in itself does not imply enhanced virulence. Cattle properly vaccinated with type 1 BVDV vaccines appear to be protected from clinical disease.
Kasprzyk, Joanna; Piechowicz, Lidia; Wiśniewska, Katarzyna; Dziewit, Łukasz; Bronk, Marek; Świeć, Krystyna
2015-01-01
Methicillin-resistant Staphylococcus aureus bacteria are one of the key etiological factors of hospital-acquired and community-acquired infections. MRSA strains have an ability of causing a broad spectrum infections: from a relatively mild skin infections to severe life-threatening systemic infections. They are characterized by multi-drug resistance, virulence of a number of factors, may clonally spread within the hospitals and between hospitals. The study embraced a number of 75 isolates of MRSA isolated from patients of 7 medical sites of the Gdansk region within the period of six months (June to December 2013). Strains have derived from various clinical materials, both of hospitalized patients (n=59) and outpatient (n=16). The isolates were tested for the susceptibility to antimicrobial agents accordance with the guidelines EUCAST. To estimate of the variability of occurrence of S. aureus clones used were standard spa gene, consisting in the amplified polymorphic region of the X gene encoding the protein A gene (spa). After receiving the results, a spa types were identified using international database Ridom Spa Server (www.spaserver.ridom.de). To determine the polymorphism cassette carrying the inecA gene from MRSA strains, used typing five major chromosomal cassette SCCmec (I-V) by multiplex PCR. MRSA population genetic analysis carried out on the basis of typing SCCmec cassettes and spa gene has showed a predominance of strains with SCCmec type II casette (46.7%) and SCCmec IV casette (38.7%). Less frequently detected were strains containing SCCmec I cassette (12.0%) and SCCmec III cassette (2.6%). Spa typing revealed the presence of 13 gene types in MRSA. The most frequently observed spa types were: t151 (24.0%), t003 (16.0%) in strains of the SCCmec II cassette and t437 (16.0%) and t008 (14.8%) in the isolates with SCCmec cassette IV, whereas staphylococcus with the type of spa t011 (12.0%) had SCCmec cassette I. In our population most frequent strains cassette SCCmec II (46.7%), in most representing types of spa t151 (51.4%) and t003 (34.3%), generally resistant not only to β-lactam antibiotics, but as erythromycin, clindamycin and norfloxacin (82.8%), the more frequently they were isolated from patients than a hospital outpatient centers. The strains SCCmec IV that represent the majority of outpatient centers (68.8%), the most represented type t437 (41.4%) and often occurred in hospital centers.
Peterson, Nathan; Goodman, Seth; Peterson, Michael; Peterson, Warren
2016-08-01
Herpes zoster (HZ) in immunocompetent children is quite uncommon. Initial exposure to the varicella-zoster virus (VZV) may be from a wild-type or vaccine-related strain. Either strain may cause a latent infection and subsequent eruption of HZ. We present a case of HZ in a 15-month-old boy after receiving the varicella vaccination at 12 months of age. A review of the literature regarding the incidence, clinical characteristics, and diagnosis of HZ in children also is provided.
Fel'dblium, I V; Zakharova, Iu A; Nikolaeva, A M; Fedotova, O S
2013-01-01
Scientific justification of optimization of epidemiologic diagnostic of suppurative-septic infection (SSI) caused by Pseudomonas aeruginosa based on comparability of antibiotic sensitivity and beta-lactamase production. Intraspecies typing of 37 P. aeruginosa strains isolated during microbiological monitoring of 106 patients and 131 objects of clinical environment of surgical and obstetrician hospitals by using a complex ofphenotypic and molecular-biological methods including determination of sensitivity to antibiotics by serial dilutions method and PCR-diagnostics with determination of TEM, SHV, CTX, OXA, MBL, VIM genes was performed. P. aeruginosa strains combined into groups by isolation location during studies turned out to be heterogeneous by sensitivity to antibiotics and beta-lactamase production that allowed to form subgroups of strains by focality attribute. Isolates recovered from different SSI foci had significant differences in minimal inhibitory concentration (MIC) reaching 1024 times. MIC parameter within subgroups did not exceed 8 - 16 consequent dilutions. Use of a complex of phenotypic and molecular-biologic methods of causative agent typing including determination of sensitivity to antibiotics by serial dilutions method and evaluation of beta-lactamase production allowed to establish a mechanism of development of SSI epidemic process caused by P. aeruginosa, detect origins and reservoirs of infection in hospital, modes and factors of transmission and reach maximum justification of epidemiologic control and prophylaxis measures of localization of foci of nosocomial infections of pseudomonas etiology.
Denayer, Sarah; Nia, Yacine; Botteldoorn, Nadine
2017-01-01
Staphylococcus aureus is an important aetiological agent of food intoxications in the European Union as it can cause gastro-enteritis through the production of various staphylococcal enterotoxins (SEs) in foods. Reported enterotoxin dose levels causing food-borne illness are scarce and varying. Three food poisoning outbreaks due to enterotoxin-producing S. aureus strains which occurred in 2013 in Belgium are described. The outbreaks occurred in an elderly home, at a barbecue event and in a kindergarten and involved 28, 18, and six cases, respectively. Various food leftovers contained coagulase positive staphylococci (CPS). Low levels of staphylococcal enterotoxins ranging between 0.015 ng/g and 0.019 ng/g for enterotoxin A (SEA), and corresponding to 0.132 ng/g for SEC were quantified in the food leftovers for two of the reported outbreaks. Molecular typing of human and food isolates using pulsed-field gel electrophoresis (PFGE) and enterotoxin gene typing, confirmed the link between patients and the suspected foodstuffs. This also demonstrated the high diversity of CPS isolates both in the cases and in healthy persons carrying enterotoxin genes encoding emetic SEs for which no detection methods currently exist. For one outbreak, the investigation pointed out to the food handler who transmitted the outbreak strain to the food. Tools to improve staphylococcal food poisoning (SFP) investigations are presented. PMID:29261162
Sato, K; Quartey, M K; Liebeler, C L; Le, C T; Giebink, G S
1996-01-01
Streptococcus pneumoniae cell wall and pneumolysin are important contributors to pneumococcal pathogenicity in some animal models. To further explore these factors in middle ear inflammation caused by pneumococci, penicillin-induced inflammatory acceleration was studied by using three closely related pneumococcal strains: a wild-type 3 strain (WT3), its pneumolysin-negative derivative (P-1), and into autolysin-negative derivative (A-1). Both middle ears of chinchillas were inoculated with one of the three pneumococcal strains. During the first 12 h, all three strains grew in vivo at the same rate, and all three strains induced similar inflammatory cell responses in middle ear fluid (MEF). Procaine penicillin G was given as 12 h to one-half of the animals in each group, and all treated chinchillas had sterile MEF at 24 h. Penicillin significantly accelerated MEF inflammatory cell influx into WT3-and P-1-infected ears at 18 and 24 h in comparison with the rate for penicillin-treated A-1-infected ears. Inflammatory cell influx was slightly, but not significantly, greater after treatment of WT3 infection than after treatment of P-1 infection. Interleukin (IL)-1beta and IL-6, but not IL-8, concentrations in MEF at 24 h reflected the penicillin effect on MEF inflammatory cells; however, differences between treatment groups were not significant. Results suggest that pneumococcal otitis media pathogenesis is triggered principally by the inflammatory effects of intact and lytic cell wall products in the middle ear, with at most a modes additional pneumolysin effect. Investigation strategies that limit the release of these products or neutralize them warrant further investigation. PMID:8606070
Molecular epidemiology of duck hepatitis a virus types 1 and 3 in China, 2010-2015.
Wen, X; Zhu, D; Cheng, A; Wang, M; Chen, S; Jia, R; Liu, M; Sun, K; Zhao, X; Yang, Q; Wu, Y; Chen, X
2018-02-01
Duck hepatitis A virus (DHAV) is the most common aetiologic agent of duck virus hepatitis (DVH), causing substantial economic losses in the duck industry worldwide. In China, officially approved DHAV-1 live-attenuated vaccines have been used widely to vaccinate breeder ducks since 2013. However, following the reports of DVH outbreaks, it has become necessary to assess the epidemiological situation of this virus in China. We conducted molecular epidemiological analyses of 32 DHAV field isolates while analysing the samples from ducks suspected of having hepatitis collected from commercial duck farms in China between May 2010 and December 2015. Considerable changes were observed in the epidemiology of DHAV-1 and DHAV-3 in China over time. A higher number of DHAV-1 strains were isolated during 2010-2012, coinciding with the widespread use of officially approved DHAV-1 live vaccine strains beginning in 2013. In contrast, a higher rate of DHAV-3 causing DHAV infections was observed between 2013 and 2015. Phylogenetic analyses based on the full-length VP1 gene were performed on these field isolates and using reference strains available in GenBank. DHAV-1 field isolates were evaluated in two groups: one group closely related to prototype strains and circulating in China between 2010 and 2012 and another group exhibiting genetic and serological differences from prototype strains. All DHAV-3 strains isolated in this study were grouped as monophyletic, which has become the predominant viral type, particularly in Shandong and Sichuan provinces, since 2013. In conclusion, these data provide updated information on the genetic and serological diversity of DHAV-1 and DHAV-3, and our findings may serve as a foundation for the prevention of, and vaccine development for, DHAV in China. © 2017 Blackwell Verlag GmbH.
Tozzoli, Rosangela; Grande, Laura; Michelacci, Valeria; Ranieri, Paola; Maugliani, Antonella; Caprioli, Alfredo; Morabito, Stefano
2014-01-01
Shiga toxin (Stx)-producing Escherichia coli (STEC) are pathogenic E. coli causing diarrhea, hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS). STEC are characterized by a constellation of virulence factors additional to Stx and have long been regarded as capable to cause HC and HUS when possessing the ability of inducing the attaching and effacing (A/E) lesion to the enterocyte, although strains isolated from such severe infections sometimes lack this virulence feature. Interestingly, the capability to cause the A/E lesion is shared with another E. coli pathogroup, the Enteropathogenic E. coli (EPEC). In the very recent times, a different type of STEC broke the scene causing a shift in the paradigm for HUS-associated STEC. In 2011, a STEC O104:H4 caused a large outbreak with more than 800 HUS and 50 deaths. Such a strain presented the adhesion determinants of Enteroaggregative E. coli (EAggEC). We investigated the possibility that, besides STEC and EAggEC, other pathogenic E. coli could be susceptible to infection with stx-phages. A panel of stx2-phages obtained from STEC isolated from human disease was used to infect experimentally E. coli strains representing all the known pathogenic types, including both diarrheagenic E. coli (DEC) and extra-intestinal pathogenic E. coli (ExPEC). We observed that all the E. coli pathogroups used in the infection experiments were susceptible to the infection. Our results suggest that the stx2-phages used may not have specificity for E. coli adapted to the intestinal environment, at least in the conditions used. Additionally, we could only observe transient lysogens suggesting that the event of stable stx2-phage acquisition occurs rarely. PMID:24999453
Analysis of the vp2 gene sequence of a new mutated mink enteritis parvovirus strain in PR China
2010-01-01
Background Mink enteritis virus (MEV) causes a highly contagious viral disease of mink with a worldwide distribution. MEV has a linear, single-stranded, negative-sense DNA with a genome length of approximately 5,000 bp. The VP2 protein is the major structural protein of the parvovirus encoded by the vp2 gene. VP2 is highly antigenic and plays important roles in determining viral host ranges and tissue tropisms. This study describes the bionomics and vp2 gene analysis of a mutated strain, MEV-DL, which was isolated recently in China and outlines its homologous relationships with other selected strains registered in Genbank. Results The MEV-DL strain can infect F81 cells with cytopathic effects. Pig erythrocytes were agglutinated by the MEV-DL strain. The generation of MEV-DL in F81 cells could infect mink within three months and cause a disease that was similar to that caused by wild-type MEV. A comparative analysis of the vp2 gene nucleotide (nt) sequence of MEV-DL showed that this was more than 99% homologous with other mink enteritis parvoviruses in Genbank. However, the nucleotide residues at positions 1,065 and 1,238 in the MEV-DL strain of the vp2 gene differed from those of all the other MEV strains described previously. It is noteworthy that the mutation at the nucleotide residues position 1,238 led to Asp/Gly replacement. This may lead to structural changes. A phylogenetic tree and sequence distance table were obtained, which showed that the MEV-DL and ZYL-1 strains had the closest inheritance distance. Conclusions A new variation of the vp2 gene exists in the MEV-DL strain, which may lead to structural changes of the VP2 protein. Phylogenetic analysis showed that MEV-DL may originate from the ZYL-1 strain in DaLian. PMID:20540765
Stepan, Ryan M; Sherwood, Julie S; Petermann, Shana R; Logue, Catherine M
2011-06-27
Salmonella species are recognized worldwide as a significant cause of human and animal disease. In this study the molecular profiles and characteristics of Salmonella enterica Senftenberg isolated from human cases of illness and those recovered from healthy or diagnostic cases in animals were assessed. Included in the study was a comparison with our own sequenced strain of S. Senfteberg recovered from production turkeys in North Dakota. Isolates examined in this study were subjected to antimicrobial susceptibility profiling using the National Antimicrobial Resistance Monitoring System (NARMS) panel which tested susceptibility to 15 different antimicrobial agents. The molecular profiles of all isolates were determined using Pulsed Field Gel Electrophoresis (PFGE) and the sequence types of the strains were obtained using Multi-Locus Sequence Type (MLST) analysis based on amplification and sequence interrogation of seven housekeeping genes (aroC, dnaN, hemD, hisD, purE, sucA, and thrA). PFGE data was input into BioNumerics analysis software to generate a dendrogram of relatedness among the strains. The study found 93 profiles among 98 S. Senftenberg isolates tested and there were primarily two sequence types associated with humans and animals (ST185 and ST14) with overlap observed in all host types suggesting that the distribution of S. Senftenberg sequence types is not host dependent. Antimicrobial resistance was observed among the animal strains, however no resistance was detected in human isolates suggesting that animal husbandry has a significant influence on the selection and promotion of antimicrobial resistance. The data demonstrates the circulation of at least two strain types in both animal and human health suggesting that S. Senftenberg is relatively homogeneous in its distribution. The data generated in this study could be used towards defining a pathotype for this serovar.
Jacobs, Jonathan M.; Pesce, Céline; Lefeuvre, Pierre; Koebnik, Ralf
2015-01-01
Pathogenic bacteria in the genus Xanthomonas cause diseases on over 350 plant species, including cannabis (Cannabis sativa L.). Because of regulatory limitations, the biology of the Xanthomonas-cannabis pathosystem remains largely unexplored. To gain insight into the evolution of Xanthomonas strains pathogenic to cannabis, we sequenced the genomes of two geographically distinct Xanthomonas strains, NCPPB 3753 and NCPPB 2877, which were previously isolated from symptomatic plant tissue in Japan and Romania. Comparative multilocus sequence analysis of housekeeping genes revealed that they belong to Group 2, which comprises most of the described species of Xanthomonas. Interestingly, both strains lack the Hrp Type III secretion system and do not contain any of the known Type III effectors. Yet their genomes notably encode two key Hrp pathogenicity regulators HrpG and HrpX, and hrpG and hrpX are in the same genetic organization as in the other Group 2 xanthomonads. Promoter prediction of HrpX-regulated genes suggests the induction of an aminopeptidase, a lipase and two polygalacturonases upon plant colonization, similar to other plant-pathogenic xanthomonads. Genome analysis of the distantly related Xanthomonas maliensis strain 97M, which was isolated from a rice leaf in Mali, similarly demonstrated the presence of HrpG, HrpX, and a HrpX-regulated polygalacturonase, and the absence of the Hrp Type III secretion system and known Type III effectors. Given the observation that some Xanthomonas strains across distinct taxa do not contain hrpG and hrpX, we speculate a stepwise evolution of pathogenicity, which involves (i) acquisition of key regulatory genes and cell wall-degrading enzymes, followed by (ii) acquisition of the Hrp Type III secretion system, which is ultimately accompanied by (iii) successive acquisition of Type III effectors. PMID:26136759
Complete genome sequence of Tsukamurella paurometabola type strain (no. 33T)
Munk, A. Christine; Lapidus, Alla; Lucas, Susan; Nolan, Matt; Tice, Hope; Cheng, Jan-Fang; Del Rio, Tijana Glavina; Goodwin, Lynne; Pitluck, Sam; Liolios, Konstantinos; Huntemann, Marcel; Ivanova, Natalia; Mavromatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Tapia, Roxanne; Han, Cliff; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D.; Brettin, Thomas; Yasawong, Montri; Brambilla, Evelyne-Marie; Rohde, Manfred; Sikorski, Johannes; Göker, Markus; Detter, John C.; Woyke, Tanja; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter
2011-01-01
Tsukamurella paurometabola corrig. (Steinhaus 1941) Collins et al. 1988 is the type species of the genus Tsukamurella, which is the type genus to the family Tsukamurellaceae. The species is not only of interest because of its isolated phylogenetic location, but also because it is a human opportunistic pathogen with some strains of the species reported to cause lung infection, lethal meningitis, and necrotizing tenosynovitis. This is the first completed genome sequence of a member of the genus Tsukamurella and the first genome sequence of a member of the family Tsukamurellaceae. The 4,479,724 bp long genome contains a 99,806 bp long plasmid and a total of 4,335 protein-coding and 56 RNA genes, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:21886861
Ikegaya, Satoshi; Iwasaki, Hiromichi; Takada, Nobuhiro; Yamamoto, Seigo; Ueda, Takanori
2013-06-01
An 85-year-old female farmer was admitted to our hospital for fever, general fatigue, and skin rash. Cephalosporin was not effective and minocycline was dramatically effective. An eschar was discovered on her inguinal region after the defervescence. Laboratory examination of serum taken 12 days after onset of the illness showed elevated titers of antibodies against the Shimokoshi strain of Orientia tsutsugamushi. The gene sequence analysis of specimen from the patient's eschar revealed high similarity to the Shimokoshi strain by nested polymerase chain reaction. Therefore, this patient was diagnosed as a case of Shimokoshi-type tsutsugamushi disease, which has not previously been reported in Western Japan. Recently, cases of this type have also been confirmed in northeastern Japan, suggesting the need for further epidemiological studies.
Bergman, Nicholas H; Akerley, Brian J
2003-03-01
Bacteria exhibit extensive genetic heterogeneity within species. In many cases, these differences account for virulence properties unique to specific strains. Several such loci have been discovered in the genome of the type b serotype of Haemophilus influenzae, a human pathogen able to cause meningitis, pneumonia, and septicemia. Here we report application of a PCR-based scanning procedure to compare the genome of a virulent type b (Hib) strain with that of the laboratory-passaged Rd KW20 strain for which a complete genome sequence is available. We have identified seven DNA segments or H. influenzae genetic islands (HiGIs) present in the type b genome and absent from the Rd genome. These segments vary in size and content and show signs of horizontal gene transfer in that their percent G+C content differs from that of the rest of the H. influenzae genome, they contain genes similar to those found on phages or other mobile elements, or they are flanked by DNA repeats. Several of these loci represent potential pathogenicity islands, because they contain genes likely to mediate interactions with the host. These newly identified genetic islands provide areas of investigation into both the evolution and pathogenesis of H. influenzae. In addition, the genome scanning approach developed to identify these islands provides a rapid means to compare the genomes of phenotypically diverse bacterial strains once the genome sequence of one representative strain has been determined.
Bowman, Barry J; Abreu, Stephen; Johl, Jessica K; Bowman, Emma Jean
2012-11-01
The pmr gene is predicted to encode a Ca(2+)-ATPase in the secretory pathway. We examined two strains of Neurospora crassa that lacked PMR: the Δpmr strain, in which pmr was completely deleted, and pmr(RIP), in which the gene was extensively mutated. Both strains had identical, complex phenotypes. Compared to the wild type, these strains required high concentrations of calcium or manganese for optimal growth and had highly branched, slow-growing hyphae. They conidiated poorly, and the shape and size of the conidia were abnormal. Calcium accumulated in the Δpmr strains to only 20% of the wild-type level. High concentrations of MnCl(2) (1 to 5 mM) in growth medium partially suppressed the morphological defects but did not alter the defect in calcium accumulation. The Δpmr Δnca-2 double mutant (nca-2 encodes a Ca(2+)-ATPase in the plasma membrane) accumulated 8-fold more calcium than the wild type, and the morphology of the hyphae was more similar to that of wild-type hyphae. Previous experiments failed to show a function for nca-1, which encodes a SERCA-type Ca(2+)-ATPase in the endoplasmic reticulum (B. J. Bowman, S. Abreu, E. Margolles-Clark, M. Draskovic, and E. J. Bowman, Eukaryot. Cell 10:654-661, 2011). The pmr(RIP) Δnca-1 double mutant accumulated small amounts of calcium, like the Δpmr strain, but exhibited even more extreme morphological defects. Thus, PMR can apparently replace NCA-1 in the endoplasmic reticulum, but NCA-1 cannot replace PMR. The morphological defects in the Δpmr strain are likely caused, in part, by insufficient concentrations of calcium and manganese in the Golgi compartment; however, PMR is also needed to accumulate normal levels of calcium in the whole cell.
High Prevalence of ESBL-Producing Klebsiella pneumoniae Causing Community-Onset Infections in China
Zhang, Jing; Zhou, Kai; Zheng, Beiwen; Zhao, Lina; Shen, Ping; Ji, Jinru; Wei, Zeqing; Li, Lanjuan; Zhou, Jianying; Xiao, Yonghong
2016-01-01
The aim of this work was to investigate the epidemiological and genetic characteristics of ESBL-producing Klebsiella pneumoniae (ESBL-Kp) causing community-onset infections. K. pneumoniae isolates were collected from 31 Chinese secondary hospitals between August 2010 and 2011. Genes encoding ESBL and AmpC beta-lactamases were detected by PCR. The isolates were assigned to sequence types (STs) using multi-locus sequence typing (MLST). Eleven ESBL-Kp strains were selected for whole-genome sequencing (WGS) for investigating the genetic environment and plasmids encoding ESBL genes. A total of 578 K. pneumoniae isolates were collected, and 184 (31.8%) carried ESBL genes. The prevalence of ESBL-Kp varied from different geographical areas of China (10.2–50.3%). The three most prevalent ESBL genes were blaCTX-M-14 (n = 74), blaCTX-M-15 (n = 60), and blaCTX-M-3 (n = 40). MLST assigned 127 CTX-M-14 and CTX-M-15 producers to 54 STs, and CC17 was the most prevalent population (12.6%). STs (23, 37, and 86) that were known frequently associated with hypervirulent K. pneumoniae (hvKP) account for 14.1% (18/127). Phylogenetic analysis by concatenating the seven loci of MLST revealed the existence of ESBL-producing K. quasipneumoniae (two strains) and K. varricola (one strain), which was further confirmed by WGS. This study highlights the challenge of community-onset infections caused by ESBL-Kp in China. The prevalence of STs frequently associating with hvKP should be of concern. Surveillance of ESBL-KP causing community-onset infections now appears imperative. PMID:27895637
Effect of Serotype on Pneumococcal Competition in a Mouse Colonization Model.
Trzciński, Krzysztof; Li, Yuan; Weinberger, Daniel M; Thompson, Claudette M; Cordy, Derrick; Bessolo, Andrew; Malley, Richard; Lipsitch, Marc
2015-09-15
Competitive interactions between Streptococcus pneumoniae strains during host colonization could influence the serotype distribution in nasopharyngeal carriage and pneumococcal disease. We evaluated the competitive fitness of strains of serotypes 6B, 14, 19A, 19F, 23F, and 35B in a mouse model of multiserotype carriage. Isogenic variants were constructed using clinical strains as the capsule gene donors. Animals were intranasally inoculated with a mixture of up to six pneumococcal strains of different serotypes, with separate experiments involving either clinical isolates or isogenic capsule-switch variants of clinical strain TIGR4. Upper-respiratory-tract samples were repeatedly collected from animals in order to monitor changes in the serotype ratios using quantitative PCR. A reproducible hierarchy of capsular types developed in the airways of mice inoculated with multiple strains. Serotype ranks in this hierarchy were similar among pneumococcal strains of different genetic backgrounds in different strains of mice and were not altered when tested under a range of host conditions. This rank correlated with the measure of the metabolic cost of capsule synthesis and in vitro measure of pneumococcal cell surface charge, both parameters considered to be predictors of serotype-specific fitness in carriage. This study demonstrates the presence of a robust competitive hierarchy of pneumococcal serotypes in vivo that is driven mainly, but not exclusively, by the capsule itself. Streptococcus pneumoniae (pneumococcus) is the leading cause of death due to respiratory bacterial infections but also a commensal frequently carried in upper airways. Available vaccines induce immune responses against polysaccharides coating pneumococcal cells, but with over 90 different capsular types (serotypes) identified, they can only target strains of the selected few serotypes most prevalent in disease. Vaccines not only protect vaccinated individuals against disease but also protect by reducing carriage of vaccine-targeted strains to induce herd effects across whole populations. Unfortunately, reduction in the circulation of vaccine-type strains is offset by increase in carriage and disease from nonvaccine strains, indicating the importance of competitive interactions between pneumococci in shaping the population structure of this pathogen. Here, we showed that the competitive ability of pneumococcal strains to colonize the host strongly depends on the type of capsular polysaccharide expressed by pneumococci and only to a lesser degree on strain or host genetic backgrounds or on variation in host immune responses. Copyright © 2015 Trzciński et al.
NASA Astrophysics Data System (ADS)
Kogure, Tetsuya; Okuda, Yudai
2018-05-01
Distributed fiber optic sensing with Rayleigh backscattering, which has been recognized as a novel technique for measuring differences in temperature or strain, was adopted in a borehole to a depth of 16 m in an actual landslide to detect a vertical profile of strain changes. Strain changes were measured every 6 hr from 19 June 2017 to 18 October 2017 with a spatial resolution of 10 cm and strain resolution of 1.87 μɛ. The measurements provided a clear-cut vertical profile of the strain changes caused by rainfalls that cannot be detected by conventional methods. The results show that there are two types of deformation in the landslide mass: (1) sliding at the boundary between tuff and mudstone and (2) creep in mudstone layers. Activation of deeper sections of the landslide by heavy rainfalls has also been detected.
Photonic Biosensor Assays to Detect and Distinguish Subspecies of Francisella tularensis
Cooper, Kristie L.; Bandara, Aloka B.; Wang, Yunmiao; Wang, Anbo; Inzana, Thomas J.
2011-01-01
The application of photonic biosensor assays to diagnose the category-A select agent Francisella tularensis was investigated. Both interferometric and long period fiber grating sensing structures were successfully demonstrated; both these sensors are capable of detecting the optical changes induced by either immunological binding or DNA hybridization. Detection was made possible by the attachment of DNA probes or immunoglobulins (IgG) directly to the fiber surface via layer-by-layer electrostatic self-assembly. An optical fiber biosensor was tested using a standard transmission mode long period fiber grating of length 15 mm and period 260 μm, and coated with the IgG fraction of antiserum to F. tularensis. The IgG was deposited onto the optical fiber surface in a nanostructured film, and the resulting refractive index change was measured using spectroscopic ellipsometry. The presence of F. tularensis was detected from the decrease of peak wavelength caused by binding of specific antigen. Detection and differentiation of F. tularensis subspecies tularensis (type A strain TI0902) and subspecies holarctica (type B strain LVS) was further accomplished using a single-mode multi-cavity fiber Fabry-Perot interferometric sensor. These sensors were prepared by depositing seven polymer bilayers onto the fiber tip followed by attaching one of two DNA probes: (a) a 101-bp probe from the yhhW gene unique to type-A strains, or (b) a 117-bp probe of the lpnA gene, common to both type-A and type-B strains. The yhhW probe was reactive with the type-A, but not the type-B strain. Probe lpnA was reactive with both type-A and type-B strains. Nanogram quantities of the target DNA could be detected, highlighting the sensitivity of this method for DNA detection without the use of PCR. The DNA probe reacted with 100% homologous target DNA, but did not react with sequences containing 2-bp mismatches, indicating the high specificity of the assay. These assays will fill an important void that exists for rapid, culture-free, and field-compatible diagnosis of F. tularensis. PMID:22163782
Prieto, Monica; Xu, Jianguo; Zielinski, Gustavo; Auger, Jean-Philippe
2016-01-01
Introduction: Streptococcus suis serotype 2 is an important swine pathogen and emerging zoonotic agent causing meningitis and septicemia/septic shock. Strains are usually virulent (Eurasia) or of intermediate/low virulence (North America). Very few data regarding human and swine isolates from South America are available. Case presentation: Seventeen new human S. suis cases in Argentina (16 serotype 2 strains and a serotype 5 strain) are reported. Alongside, 14 isolates from pigs are analyzed: 12 from systemic disease, one from lungs and one from tonsils of a healthy animal. All human serotype 2 strains and most swine isolates are sequence type (ST) 1, as determined by multilocus sequence typing and present a mrp+/epf+/sly+ genotype typical of virulent Eurasian ST1 strains. The remaining two strains (recovered from swine lungs and tonsils) are ST28 and possess a mrp+/epf−/sly− genotype typical of low virulence North American strains. Representative human ST1 strains as well as one swine ST28 strain were analyzed by whole-genome sequencing and compared with genomes from GenBank. ST1 strains clustered together with three strains from Vietnam and this cluster is close to another one composed of 11 strains from the United Kingdom. Conclusion: Close contact with pigs/pork products, a good surveillance system, and the presence of potentially virulent Eurasian-like serotype 2 strains in Argentina may be an important factor contributing to the higher number of human cases observed. In fact, Argentina is now fifth among Western countries regarding the number of reported human cases after the Netherlands, France, the UK and Poland. PMID:28348788
Ostojić, Maja; Hukić, Mirsada
2015-08-04
Staphylococcus aureus is a major cause of hospital-acquired infections worldwide. Increased frequency of methicillin-resistant Staphylococcus aureus (MRSA) in hospitalized patients and possibility of vancomycin resistance requires rapid and reliable characterization of isolates and control of MRSA spread in hospitals. Typing of isolates helps to understand the route of a hospital pathogen spread. The aim of this study was to investigate and compare genotypic and phenotypic characteristics of MRSA samples on three different geography locations. In addition, our aim was to evaluate three different methods of MRSA typing: spa-typing, agr-typing and GenoType MRSA. We included 104 samples of MRSA, isolated in 3 different geographical locations in clinical hospitals in Zagreb, Mostar, and Heidelberg, during the period of six months. Genotyping and phenotyping were done by spa-typing, agr-typing and dipstick assay GenoType MRSA. We failed to type all our samples by spa-typing. The most common spa-type in clinical hospital Zagreb was t041, in Mostar t001, and in Heidelberg t003.We analyzed 102/104 of our samples by agr-typing method. We did not find any agr-type IV in our locations. We analyzed all our samples by the dipstick assay GenoType MRSA. All isolates in our study were MRSA strains. In Zagreb there were no positive strains to PVL gene. In Mostar we have found 5/25 positive strains to PVL gene, in Heidelberg there was 1/49. PVL positive isolates were associated with spa-type t008 and agr-type I, thus, genetically, they were community-associated MRSA (CA-MRSA). Dipstick assay GenoType MRSA has demonstrated sufficient specificity, sensibility, simple performance and low cost, so we could introduce it to work in smaller laboratories. Using this method may expedite MRSA screening, thus preventing its spread in hospitals.
Phylogenetic analysis of dengue virus types 1 and 3 isolated in Jakarta, Indonesia in 1988.
Sjatha, Fithriyah; Takizawa, Yamato; Yamanaka, Atsushi; Konishi, Eiji
2012-12-01
Dengue viruses are mosquito-borne viruses that cause dengue fever and dengue hemorrhagic fever, both of which are globally important diseases. These viruses have evolved in a transmission cycle between human hosts and mosquito vectors in various tropical and subtropical environments. We previously isolated three strains of dengue type 1 virus (DENV1) and 14 strains of dengue type 3 virus (DENV3) during an outbreak of dengue fever and dengue hemorrhagic fever in Jakarta, Indonesia in 1988. Here, we compared the nucleotide sequences of the entire envelope protein-coding region among these strains. The isolates were 97.6-100% identical for DENV1 and 98.8-100% identical for DENV3. All DENV1 isolates were included in two different clades of genotype IV and all DENV3 isolates were included in a single clade of genotype I. For DENV1, three Yap Island strains isolated in 2004 were the only strains closely related to the present isolates; the recently circulated Indonesian strains were in different clades. Molecular clock analyses estimated that ancestors of the genotype IV strains of DENV1 have been indigenous in Indonesia since 1948. We predict that they diverged frequently around 1967 and that their offspring distributed to Southeast Asia, the Western Pacific, and Africa. For DENV3, the clade containing all the present isolates also contained strains isolated from other Indonesian regions and other countries including Malaysia, Singapore, China, and East Timor from 1985-2010. Molecular clock analyses estimated that the common ancestor of the genotype I strains of DENV3 emerged in Indonesia around 1967 and diverged frequently until 1980, and that their offspring distributed mainly in Southeast Asia. The first dengue outbreak in 1968 and subsequent outbreaks in Indonesia might have influenced the divergence and distribution of the DENV1 genotype IV strains and the DENV3 genotype I strains in many countries. Copyright © 2012 Elsevier B.V. All rights reserved.
Jain, Amita; Kumar, Pradeep; Agarwal, Sudhir K
2008-02-01
Development of ampicillin resistance in Haemophilus influenzae is a cause of serious concern. Ampicillin resistance in H influenzae is beta-lactamase mediated except in some isolates. Two important issues related to beta-lactamase-negative ampicillin-resistant (BLNAR) strains while choosing therapy for infections caused by H. influenzae are (i) whether BLNAR H. influenzae isolates are sufficiently pathogenic to cause respiratory tract infection, and (ii) variability in the magnitude of ampicillin minimum inhibitory concentrations obtained for the isolates. The aim of the present study was to determine the carriage of BLNAR H. influenzae in the nasopharynx of normal healthy children, to test the level of ampicillin resistance and the correlation of ampicillin resistance with resistance to other antimicrobials and to evaluate the frequency of serotype b and biotypes I, II, and III among BLNAR H. influenzae. Of 1001 H. influenzae isolates, 229 (22.9%) strains were ampicillin resistant. A total of 33/229 isolates were BLNAR. beta-Lactamase-positive strains show higher level of resistance to ampicillin as well as to chloramphenicol, erythromycin, and co-trimoxazole. Of the 196 beta-lactamase-producing H. influenzae isolates, 112 (57%) were H. influenzae type b, while of the 33 BLNAR isolates, 27 (81.8%) were H. influenzae type b. One hundred and eighty-four of 196 (93.9%) beta-lactamase-producing H. influenzae isolates and 30/33 (91.0%) BLNAR strains belonged to biotypes I, II, and III. BLNAR H. influenzae are no less pathogenic than beta-lactamase-positive H. influenzae. Higher level of drug resistance was found in beta-lactamase-producing H. influenzae in comparison to BLNAR isolates.
Wekesa, S N; Muwanika, V B; Siegismund, H R; Sangula, A K; Namatovu, A; Dhikusooka, M T; Tjørnehøj, K; Balinda, S N; Wadsworth, J; Knowles, N J; Belsham, G J
2015-06-01
Foot-and-mouth disease (FMD) is endemic in Kenya where four serotypes (O, A, SAT 1 and SAT 2) of the virus are currently in circulation. Within 2010 and 2011, the National Laboratory recorded an increase in the number of FMD outbreaks caused by serotype O virus. The characteristics of these viruses were determined to ascertain whether these were independent outbreaks or one single strain spreading throughout the country. The sequences of the complete VP1-coding region were analysed from viruses sampled within different areas of Kenya during 2010 and 2011. The results indicated that the 2010 to 2011 outbreaks in Kenya were caused by four independent strains. By comparison with earlier type O isolates from Eastern Africa, it was apparent that the outbreaks were caused by viruses from three different lineages of topotype EA-2 and a fourth virus strain belonging to topotype EA-4. The topotypes EA-1 and EA-3 were not detected from these outbreaks. Implications of these results for FMD control in Eastern Africa are discussed. © 2013 Blackwell Verlag GmbH.
CRISPR-Cas Systems in Bacteroides fragilis, an Important Pathobiont in the Human Gut Microbiome.
Tajkarimi, Mehrdad; Wexler, Hannah M
2017-01-01
Background: While CRISPR-Cas systems have been identified in bacteria from a wide variety of ecological niches, there are no studies to describe CRISPR-Cas elements in Bacteroides species, the most prevalent anaerobic bacteria in the lower intestinal tract. Microbes of the genus Bacteroides make up ~25% of the total gut microbiome. Bacteroides fragilis comprises only 2% of the total Bacteroides in the gut, yet causes of >70% of Bacteroides infections. The factors causing it to transition from benign resident of the gut microbiome to virulent pathogen are not well understood, but a combination of horizontal gene transfer (HGT) of virulence genes and differential transcription of endogenous genes are clearly involved. The CRISPR-Cas system is a multi-functional system described in prokaryotes that may be involved in control both of HGT and of gene regulation. Results: Clustered regularly interspaced short palindromic repeats (CRISPR) elements in all strains of B. fragilis ( n = 109) with publically available genomes were identified. Three different CRISPR-Cas types, corresponding most closely to Type IB, Type IIIB, and Type IIC, were identified. Thirty-five strains had two CRISPR-Cas types, and three strains included all three CRISPR-Cas types in their respective genomes. The cas1 gene in the Type IIIB system encoded a reverse-transcriptase/Cas1 fusion protein rarely found in prokaryotes. We identified a short CRISPR (3 DR) with no associated cas genes present in most of the isolates; these CRISPRs were found immediately upstream of a hipA/hipB operon and we speculate that this element may be involved in regulation of this operon related to formation of persister cells during antimicrobial exposure. Also, blood isolates of B. fragilis did not have Type IIC CRISPR-Cas systems and had atypical Type IIIB CRISPR-Cas systems that were lacking adjacent cas genes. Conclusions: This is the first systematic report of CRISPR-Cas systems in a wide range of B. fragilis strains from a variety of sources. There are four apparent CRISPR-Cas systems in B. fragilis -three systems have adjacent cas genes. Understanding CRISPR/Cas function in B. fragilis will elucidate their role in gene expression, DNA repair and ability to survive exposure to antibiotics. Also, based on their unique CRISPR-Cas arrays, their phylogenetic clustering and their virulence potential, we are proposing that blood isolates of B. fragilis be viewed a separate subgroup.
Molecular typing and resistance analysis of travel-associated Salmonella enterica serotype Typhi.
Tatavarthy, A; Sanderson, R; Peak, K; Scilabro, G; Davenhill, P; Cannons, A; Amuso, P
2012-08-01
Salmonella enterica serotype Typhi is a human pathogen causing 12 to 30% mortality and requiring antibiotic therapy to control the severity of the infection. Typhoid fever in United States is often associated with foreign travel to areas of endemicity. Increasing resistance to multiple drugs, including quinolones, is associated with decreased susceptibility to ciprofloxacin (DCS). We investigated 31 clinical strains isolated in Florida from 2007 to 2010, associated with travel to six countries, to examine the clonal distribution of the organism and apparent nalidixic acid (NAL) resistance. The strains were isolated from blood or stool of patients aged 2 to 68 years. The isolates were subtyped by ribotyping and pulsed-field gel electrophoresis. Susceptibilities to 15 antimicrobials were determined, and the isolates were screened for integrons and gyrase A gene mutations. Both typing techniques effectively segregated the strains. Identical clones were associated with different countries, while diverse types coexisted in the same geographic location. Fifty-one percent of the strains were resistant to at least one antimicrobial, and five were resistant to three or more drugs (multidrug resistant [MDR]). All 12 isolates from the Indian subcontinent were resistant to at least one drug, and 83% of those were resistant to NAL. Three of the MDR strains harbored a 750-bp integron containing the dfr7 gene. Ninety-three percent of the resistant strains showed a DCS profile. All the NAL-resistant strains contained point mutations in the quinolone resistance-determining region of gyrA. This study affirms the global clonal distribution, concomitant genetic heterogeneity, and increased NAL resistance of S. enterica serovar Typhi.
sourceR: Classification and source attribution of infectious agents among heterogeneous populations
French, Nigel
2017-01-01
Zoonotic diseases are a major cause of morbidity, and productivity losses in both human and animal populations. Identifying the source of food-borne zoonoses (e.g. an animal reservoir or food product) is crucial for the identification and prioritisation of food safety interventions. For many zoonotic diseases it is difficult to attribute human cases to sources of infection because there is little epidemiological information on the cases. However, microbial strain typing allows zoonotic pathogens to be categorised, and the relative frequencies of the strain types among the sources and in human cases allows inference on the likely source of each infection. We introduce sourceR, an R package for quantitative source attribution, aimed at food-borne diseases. It implements a Bayesian model using strain-typed surveillance data from both human cases and source samples, capable of identifying important sources of infection. The model measures the force of infection from each source, allowing for varying survivability, pathogenicity and virulence of pathogen strains, and varying abilities of the sources to act as vehicles of infection. A Bayesian non-parametric (Dirichlet process) approach is used to cluster pathogen strain types by epidemiological behaviour, avoiding model overfitting and allowing detection of strain types associated with potentially high “virulence”. sourceR is demonstrated using Campylobacter jejuni isolate data collected in New Zealand between 2005 and 2008. Chicken from a particular poultry supplier was identified as the major source of campylobacteriosis, which is qualitatively similar to results of previous studies using the same dataset. Additionally, the software identifies a cluster of 9 multilocus sequence types with abnormally high ‘virulence’ in humans. sourceR enables straightforward attribution of cases of zoonotic infection to putative sources of infection. As sourceR develops, we intend it to become an important and flexible resource for food-borne disease attribution studies. PMID:28558033
Francis, Isolde M; Jochimsen, Kenneth N; De Vos, Paul; van Bruggen, Ariena H C
2014-04-01
The genus Rhizorhapis gen. nov. (to replace the illegitimate genus name Rhizomonas) is proposed for strains of Gram-negative bacteria causing corky root of lettuce, a widespread and important lettuce disease worldwide. Only one species of the genus Rhizomonas was described, Rhizomonas suberifaciens, which was subsequently reclassified as Sphingomonas suberifaciens based on 16S rRNA gene sequences and the presence of sphingoglycolipid in the cell envelope. However, the genus Sphingomonas is so diverse that further reclassification was deemed necessary. Twenty new Rhizorhapis gen. nov.- and Sphingomonas-like isolates were obtained from lettuce or sow thistle roots, or from soil using lettuce seedlings as bait. These and previously reported isolates were characterized in a polyphasic study including 16S rRNA gene sequencing, DNA-DNA hybridization, DNA G+C content, whole-cell fatty acid composition, morphology, substrate oxidation, temperature and pH sensitivity, and pathogenicity to lettuce. The isolates causing lettuce corky root belonged to the genera Rhizorhapis gen. nov., Sphingobium, Sphingopyxis and Rhizorhabdus gen. nov. More specifically, we propose to reclassify Rhizomonas suberifaciens as Rhizorhapis suberifaciens gen. nov., comb. nov. (type strain, CA1(T) = LMG 17323(T) = ATCC 49355(T)), and also propose the novel species Sphingobium xanthum sp. nov., Sphingobium mellinum sp. nov. and Rhizorhabdus argentea gen. nov., sp. nov. with the type strains NL9(T) ( = LMG 12560(T) = ATCC 51296(T)), WI4(T) ( = LMG 11032(T) = ATCC 51292(T)) and SP1(T) ( = LMG 12581(T) = ATCC 51289(T)), respectively. Several strains isolated from lettuce roots belonged to the genus Sphingomonas, but none of them were pathogenic.
Effect of frequency-doubling pulse Nd:YAG laser on microbial mutation
NASA Astrophysics Data System (ADS)
Zhao, Yansheng; Wang, Luyan; Zheng, Heng; Yin, Hongping; Chen, Xiangdong; Tan, Zheng; Wu, Wutong
1999-09-01
We are going to report the mutagenic effect of frequency-doubling pulse Nd:YAG laser (532 nm) on microbe. After irradiation with pulse laser, mutants of abscisic acid producing strains and erythromycin producing strains were obtained, one of which could produce 62.1% and 57% more products than control, respectively. In the study of mutagenization of Spirulina platensis caused by pulse laser, we selected a high photosynthetic strains, with improved productivity of protein and exocellular ploysaccharides of 12% and 246%, respectively. The experimental results indicate that frequency-doubling pulse laser (532 nm) is a potential new type of physical mutagenic factor.
Germani, Y; Amat, F; Brethes, B; Begaud, E; Plassart, H
1985-01-01
A strain of enteropathogenic Escherichia coli 0126:B16 has been isolated in fifteen children and one adult during a severe outbreak. One infant is dead. The strain produced heat-stable enterotoxin, attach to rabbit enterocytes but did not have colonization factor antigen CFA/I or CFA/II. Its hemagglutination type was the same that the E. coli H10407, CFA/I+. It presented a resistance at eight antibiotics and, with the loss of enterotoxigenicity, there was a loss of resistance at ampicillin and of the capacity to attach to enterocytes.
Directional pair distribution function for diffraction line profile analysis of atomistic models
Leonardi, Alberto; Leoni, Matteo; Scardi, Paolo
2013-01-01
The concept of the directional pair distribution function is proposed to describe line broadening effects in powder patterns calculated from atomistic models of nano-polycrystalline microstructures. The approach provides at the same time a description of the size effect for domains of any shape and a detailed explanation of the strain effect caused by the local atomic displacement. The latter is discussed in terms of different strain types, also accounting for strain field anisotropy and grain boundary effects. The results can in addition be directly read in terms of traditional line profile analysis, such as that based on the Warren–Averbach method. PMID:23396818
Bouchez, Valérie; Guglielmini, Julien; Dazas, Mélody; Landier, Annie; Toubiana, Julie; Guillot, Sophie; Criscuolo, Alexis; Brisse, Sylvain
2018-06-01
Bordetella pertussis causes whooping cough, a highly contagious respiratory disease that is reemerging in many world regions. The spread of antigen-deficient strains may threaten acellular vaccine efficacy. Dynamics of strain transmission are poorly defined because of shortcomings in current strain genotyping methods. Our objective was to develop a whole-genome genotyping strategy with sufficient resolution for local epidemiologic questions and sufficient reproducibility to enable international comparisons of clinical isolates. We defined a core genome multilocus sequence typing scheme comprising 2,038 loci and demonstrated its congruence with whole-genome single-nucleotide polymorphism variation. Most cases of intrafamilial groups of isolates or of multiple isolates recovered from the same patient were distinguished from temporally and geographically cocirculating isolates. However, epidemiologically unrelated isolates were sometimes nearly undistinguishable. We set up a publicly accessible core genome multilocus sequence typing database to enable global comparisons of B. pertussis isolates, opening the way for internationally coordinated surveillance.
Characterization of exochelins of the Mycobacterium bovis type strain and BCG substrains.
Gobin, J; Wong, D K; Gibson, B W; Horwitz, M A
1999-04-01
Pathogenic mycobacteria must acquire iron in the host in order to multiply and cause disease. To do so, they release abundant quantities of siderophores called exochelins, which have the capacity to scavenge iron from host iron-binding proteins and deliver it to the mycobacteria. In this study, we have characterized the exochelins of Mycobacterium bovis, the causative agent of bovine and occasionally of human tuberculosis, and the highly attenuated descendant of M. bovis, bacillus Calmette-Guérin (BCG), widely used as a vaccine against human tuberculosis. The M. bovis type strain, five substrains of M. bovis BCG (Copenhagen, Glaxo, Japanese, Pasteur, and Tice), and two strains of virulent Mycobacterium tuberculosis all produce the same set of exochelins, although the relative amounts of individual exochelins may differ. Among these mycobacteria, the total amount of exochelins produced is greatest in M. tuberculosis, intermediate in M. bovis, and smallest in M. bovis BCG.
Suzuki, S.; Katagiri, S.; Nakashima, H.
1996-01-01
Two newly isolated mutant strains of Neurospora crassa, cpz-1 and cpz-2, were hypersensitive to chlorpromazine with respect to mycelial growth but responded differently to the drug with respect to the circadian conidiation rhythm. In the wild type, chlorpromazine caused shortening of the period length of the conidiation rhythm. Pulse treatment with the drug shifted the phase and inhibited light-induced phase shifting in Neurospora. By contrast to the wild type, the cpz-2 strain was resistant to these inhibitory effects of chlorpromazine. Inhibition of cpz-2 function by chlorpromazine affected three different parameters of circadian conidiation rhythm, namely, period length, phase and light-induced phase shifting. These results indicate that the cpz-2 gene must be involved in or related closely to the clock mechanism of Neurospora. By contrast, the cpz-1 strain was hypersensitive to chlorpromazine with respect to the circadian conidiation rhythm. PMID:8807291
Zhu, Ling; Shahid, Muhammad A; Markham, John; Browning, Glenn F; Noormohammadi, Amir H; Marenda, Marc S
2018-02-02
The bacterial pathogen Mycoplasma synoviae can cause subclinical respiratory disease, synovitis, airsacculitis and reproductive tract disease in poultry and is a major cause of economic loss worldwide. The M. synoviae strain MS-H was developed by chemical mutagenesis of an Australian isolate and has been used as a live attenuated vaccine in many countries over the past two decades. As a result it may now be the most prevalent strain of M. synoviae globally. Differentiation of the MS-H vaccine from local field strains is important for epidemiological investigations and is often required for registration of the vaccine. The complete genomic sequence of the MS-H strain was determined using a combination of Illumina and Nanopore methods and compared to WVU-1853, the M. synoviae type strain isolated in the USA 30 years before the parent strain of MS-H, and MS53, a more recent isolate from Brazil. The vaccine strain genome had a slightly larger number of pseudogenes than the two other strains and contained a unique 55 kb chromosomal inversion partially affecting a putative genomic island. Variations in gene content were also noted, including a deoxyribose-phosphate aldolase (deoC) fragment and an ATP-dependent DNA helicase gene found only in MS-H. Some of these sequences may have been acquired horizontally from other avian mycoplasma species. MS-H was somewhat more similar to WVU-1853 than to MS53. The genome sequence of MS-H will enable identification of vaccine-specific genetic markers for use as diagnostic and epidemiological tools to better control M. synoviae.
Huang, Shr-Wei; Ho, Chia-Fang; Chan, Kun-Wei; Cheng, Min-Chung; Shien, Jui-Hung; Liu, Hung-Jen; Wang, Chi-Young
2014-11-01
Infectious bronchitis virus (IBV; Avian coronavirus) causes acute respiratory and reproductive and urogenital diseases in chickens. Following sequence alignment of IBV strains, a combination of selective primer sets was designed to individually amplify the IBV wild-type and vaccine strains using a multiplex amplification refractory mutation system reverse transcription polymerase chain reaction (ARMS RT-PCR) approach. This system was shown to discriminate the IBV wild-type and vaccine strains. Moreover, an ARMS real-time RT-PCR (ARMS qRT-PCR) was combined with a high-resolution analysis (HRMA) to establish a melt curve analysis program. The specificity of the ARMS RT-PCR and the ARMS qRT-PCR was verified using unrelated avian viruses. Different melting temperatures and distinct normalized and shifted melting curve patterns for the IBV Mass, IBV H120, IBV TW-I, and IBV TW-II strains were detected. The new assays were used on samples of lung and trachea as well as virus from allantoic fluid and cell culture. In addition to being able to detect the presence of IBV vaccine and wild-type strains by ARMS RT-PCR, the IBV Mass, IBV H120, IBV TW-I, and IBV TW-II strains were distinguished using ARMS qRT-PCR by their melting temperatures and by HRMA. These approaches have acceptable sensitivities and specificities and therefore should be able to serve as options when carrying out differential diagnosis of IBV in Taiwan and China. © 2014 The Author(s).
Jiménez de Bagüés, María P; Iturralde, María; Arias, Maykel A; Pardo, Julián; Cloeckaert, Axel; Zygmunt, Michel S
2014-08-01
Recently, novel atypical Brucella strains isolated from humans and wild rodents have been reported. They are phenotypically close to Ochrobactrum species but belong to the genus Brucella, based on genetic relatedness, although genetic diversity is higher among the atypical Brucella strains than between the classic species. They were classified within or close to the novel species Brucella inopinata. However, with the exception of Brucella microti, the virulence of these novel strains has not been investigated in experimental models of infection. The type species B. inopinata strain BO1 (isolated from a human) and Brucella species strain 83-210 (isolated from a wild Australian rodent) were investigated. A classic infectious Brucella reference strain, B. suis 1330, was also used. BALB/c, C57BL/6, and CD1 mice models and C57BL/6 mouse bone-marrow-derived macrophages (BMDMs) were used as infection models. Strains BO1 and 83-210 behaved similarly to reference strain 1330 in all mouse infection models: there were similar growth curves in spleens and livers of mice and similar intracellular replication rates in BMDMs. However, unlike strain 1330, strains BO1 and 83-210 showed lethality in the 3 mouse models. The novel atypical Brucella strains of this study behave like classic intracellular Brucella pathogens. In addition, they cause death in murine models of infection, as previously published for B. microti, another recently described environmental and wildlife species. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Shao, Xinxing; Zhu, Feipeng; Su, Zhilong; Dai, Xiangjun; Chen, Zhenning; He, Xiaoyuan
2018-03-01
The strain errors in stereo-digital image correlation (DIC) due to camera calibration were investigated using precisely controlled numerical experiments and real experiments. Three-dimensional rigid body motion tests were conducted to examine the effects of camera calibration on the measured results. For a fully accurate calibration, rigid body motion causes negligible strain errors. However, for inaccurately calibrated camera parameters and a short working distance, rigid body motion will lead to more than 50-μɛ strain errors, which significantly affects the measurement. In practical measurements, it is impossible to obtain a fully accurate calibration; therefore, considerable attention should be focused on attempting to avoid these types of errors, especially for high-accuracy strain measurements. It is necessary to avoid large rigid body motions in both two-dimensional DIC and stereo-DIC.
Keighobadi, Masoud; Emami, Saeed; Lagzian, Milad; Fakhar, Mahdi; Rafiei, Alireza; Valadan, Reza
2018-03-19
Cutaneous leishmaniasis is a neglected tropical disease and a major public health in the most countries. Leishmania major is the most common cause of cutaneous leishmaniasis. In the Leishmania parasites, sterol 14α-demethylase (CYP51), which is involved in the biosynthesis of sterols, has been identified as an attractive target for development of new therapeutic agents. In this study, the sequence and structure of CYP51 in a laboratory strain (MRHO/IR/75/ER) of L. major were determined and compared to the wild-type strain. The results showed 19 mutations including seven non-synonymous and 12 synonymous ones in the CYP51 sequence of strain MRHO/IR/75/ER. Importantly, an arginine to lysine substitution at position of 474 resulted in destabilization of CYP51 (ΔΔG = 1.17 kcal/mol) in the laboratory strain; however, when the overall effects of all substitutions were evaluated by 100 ns molecular dynamics simulation, the final structure did not show any significant changes ( p -value < 0.05) in stability parameter of the strain MRHO/IR/75/ER compared to the wild-type protein. The energy level for the CYP51 of wild-type and MRHO/IR/75/ER strain were -40,027.1 and -39,706.48 Kcal/mol respectively. The overall Root-mean-square deviation (RMSD) deviation between two proteins was less than 1 Å throughout the simulation and Root-mean-square fluctuation (RMSF) plot also showed no substantial differences between amino acids fluctuation of the both protein. The results also showed that, these mutations were located on the protein periphery that neither interferes with protein folding nor with substrate/inhibitor binding. Therefore, L. major strain MRHO/IR/75/ER is suggested as a suitable laboratory model for studying biological role of CYP51 and inhibitory effects of sterol 14α-demethylase inhibitors.
Dong, X. Y.; Li, W. H.; Zhu, J. L.; Liu, W. J.; Zhao, M. Q.; Luo, Y. W.; Chen, J. D.
2015-01-01
Canine distemper virus (CDV) is the cause of canine distemper (CD) which is a severe and highly contagious disease in dogs. In the present study, a duplex reverse transcription polymerase chain reaction (RT-PCR) method was developed for the detection and differentiation of wild-type and vaccine strains of CDV. Four primers were designed to detect and discriminate the two viruses by generating 638- and 781-bp cDNA products, respectively. Furthermore, the duplex RT-PCR method was used to detect 67 field samples suspected of CD from Guangdong province in China. Results showed that, 33 samples were to be wild-type-like. The duplex RT-PCR method exhibited high specificity and sensitivity which could be used to effectively detect and differentiate wild-type and vaccine CDV, indicating its use for clinical detection and epidemiological surveillance. PMID:27175171
Tu, I-Fan; Liao, Jiahn-Haur; Yang, Feng-Ling; Lin, Nien-Tsung; Chan, Hong-Lin; Wu, Shih-Hsiung
2014-10-01
The lon gene of Helicobacter pylori strains is constitutively expressed during growth. However, virtually nothing is understood concerning the role of Lon in H. pylori. This study examined the function and physiological role of Lon in H. pylori (HpLon) using a trapping approach to identify putative Lon binding partners in the bacterium. Protease-deficient Lon was expressed and served as the bait in trapping approach to capture the interacting partners in H. pylori. The antibiotic susceptibility of wild-type and lon derivative mutants was determined by the E test trips and the disc diffusion assay. The effect of HpLon on RdxA activity was detected the change in NADPH oxidation and metronidazole reduction by spectrophotometer. Lon in Helicobacter pylori (HpLon) interacting partners are mostly associated with metronidazole activation. lon mutant presents more susceptible to metronidazole than that of the wild type, and this phenotype is recovered by complementation of the wild-type Lon. We found that the ATPases associated with a variety of cellular activities (AAA(+) ) module of HpLon causes a decrease in both NADPH oxidase and Mtz reductase activity in RdxA, a major Mtz-activating enzyme in H. pylori. Metronidazole resistance of H. pylori causes the serious medical problem worldwide. In this study, HpLon is involved in metronidazole susceptibility among H. pylori strains. We provide the evidence that HpLon alters RdxA activity in vitro. The decrease in metronidazole activation caused by HpLon is possibly prior to accumulate mutation in rdxA gene before the metronidazole-resistant strains to be occurred. © 2014 John Wiley & Sons Ltd.
Rezzonico, Fabio; Braun-Kiewnick, Andrea; Mann, Rachel A; Rodoni, Brendan; Goesmann, Alexander; Duffy, Brion; Smits, Theo H M
2012-10-01
Comparative genomic analysis revealed differences in the lipopolysaccharide (LPS) biosynthesis gene cluster between the Rubus-infecting strain ATCC BAA-2158 and the Spiraeoideae-infecting strain CFBP 1430 of Erwinia amylovora. These differences corroborate rpoB-based phylogenetic clustering of E. amylovora into four different groups and enable the discrimination of Spiraeoideae- and Rubus-infecting strains. The structure of the differences between the two groups supports the hypothesis that adaptation to Rubus spp. took place after species separation of E. amylovora and E. pyrifoliae that contrasts with a recently proposed scenario, based on CRISPR data, in which the shift to domesticated apple would have caused an evolutionary bottleneck in the Spiraeoideae-infecting strains of E. amylovora which would be a much earlier event. In the core region of the LPS biosynthetic gene cluster, Spiraeoideae-infecting strains encode three glycosyltransferases and an LPS ligase (Spiraeoideae-type waaL), whereas Rubus-infecting strains encode two glycosyltransferases and a different LPS ligase (Rubus-type waaL). These coding domains share little to no homology at the amino acid level between Rubus- and Spiraeoideae-infecting strains, and this genotypic difference was confirmed by polymerase chain reaction analysis of the associated DNA region in 31 Rubus- and Spiraeoideae-infecting strains. The LPS biosynthesis gene cluster may thus be used as a molecular marker to distinguish between Rubus- and Spiraeoideae-infecting strains of E. amylovora using primers designed in this study. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.
Berglund, C; Söderquist, B
2008-11-01
The first methicillin-resistant Staphylococcus aureus (MRSA) strain originated when a staphylococcal cassette chromosome mec (SCCmec) with the gene mecA was integrated into the chromosome of a susceptible S. aureus cell. The SCCmec elements are common among the coagulase-negative staphylococci, e.g. Staphylococcus haemolyticus, and these are considered to be potential SCCmec donors when new clones of MRSA arise. An outbreak of MRSA occurred at a neonatal intensive-care unit, and the isolates were all of sequence type (ST) 45, as characterized by multilocus sequence typing, but were not typeable with respect to SCCmec types I, II, III or IV. During the same time period, methicillin-resistant S. haemolyticus (MRSH) isolates identified in blood cultures at the same ward were found to be genotypically homogenous by pulsed-field gel electrophoresis, and did not carry a type I, II, III or IV SCCmec either. Thus, the hypothesis was raised that an SCCmec of MRSH had been transferred to a methicillin-susceptible S. aureus strain and thereby created a new clone of MRSA that caused the outbreak. This study showed that MRSA from the outbreak carried a ccrC and a class C mec complex that was also found among MRSH isolates. Partial sequencing of the mec complexes showed more than 99% homology, indicative of a common type V SCCmec. This finding may provide evidence for a recent horizontal transfer of an SCCmec from MRSH to an identified potential recipient, an ST45 methicillin-susceptible S. aureus strain, thereby creating a new clone of MRSA that caused the outbreak.
Bilocq, Florence; Jennes, Serge; Verbeken, Gilbert; Rose, Thomas; Keersebilck, Elkana; Bosmans, Petra; Pieters, Thierry; Hing, Mony; Heuninckx, Walter; De Pauw, Frank; Soentjens, Patrick; Merabishvili, Maia; Deschaght, Pieter; Vaneechoutte, Mario; Bogaerts, Pierre; Glupczynski, Youri; Pot, Bruno; van der Reijden, Tanny J.; Dijkshoorn, Lenie
2016-01-01
Multidrug resistant Acinetobacter baumannii and its closely related species A. pittii and A. nosocomialis, all members of the Acinetobacter calcoaceticus-baumannii (Acb) complex, are a major cause of hospital acquired infection. In the burn wound center of the Queen Astrid military hospital in Brussels, 48 patients were colonized or infected with Acb complex over a 52-month period. We report the molecular epidemiology of these organisms, their clinical impact and infection control measures taken. A representative set of 157 Acb complex isolates was analyzed using repetitive sequence-based PCR (rep-PCR) (DiversiLab) and a multiplex PCR targeting OXA-51-like and OXA-23-like genes. We identified 31 rep-PCR genotypes (strains). Representatives of each rep-type were identified to species by rpoB sequence analysis: 13 types to A. baumannii, 10 to A. pittii, and 3 to A. nosocomialis. It was assumed that isolates that belonged to the same rep-type also belonged to the same species. Thus, 83.4% of all isolates were identified to A. baumannii, 9.6% to A. pittii and 4.5% to A. nosocomialis. We observed 12 extensively drug resistant Acb strains (10 A. baumannii and 2 A. nosocomialis), all carbapenem-non-susceptible/colistin-susceptible and imported into the burn wound center through patients injured in North Africa. The two most prevalent rep-types 12 and 13 harbored an OXA-23-like gene. Multilocus sequence typing allocated them to clonal complex 1 corresponding to EU (international) clone I. Both strains caused consecutive outbreaks, interspersed with periods of apparent eradication. Patients infected with carbapenem resistant A. baumannii were successfully treated with colistin/rifampicin. Extensive infection control measures were required to eradicate the organisms. Acinetobacter infection and colonization was not associated with increased attributable mortality. PMID:27223476
De Vos, Daniel; Pirnay, Jean-Paul; Bilocq, Florence; Jennes, Serge; Verbeken, Gilbert; Rose, Thomas; Keersebilck, Elkana; Bosmans, Petra; Pieters, Thierry; Hing, Mony; Heuninckx, Walter; De Pauw, Frank; Soentjens, Patrick; Merabishvili, Maia; Deschaght, Pieter; Vaneechoutte, Mario; Bogaerts, Pierre; Glupczynski, Youri; Pot, Bruno; van der Reijden, Tanny J; Dijkshoorn, Lenie
2016-01-01
Multidrug resistant Acinetobacter baumannii and its closely related species A. pittii and A. nosocomialis, all members of the Acinetobacter calcoaceticus-baumannii (Acb) complex, are a major cause of hospital acquired infection. In the burn wound center of the Queen Astrid military hospital in Brussels, 48 patients were colonized or infected with Acb complex over a 52-month period. We report the molecular epidemiology of these organisms, their clinical impact and infection control measures taken. A representative set of 157 Acb complex isolates was analyzed using repetitive sequence-based PCR (rep-PCR) (DiversiLab) and a multiplex PCR targeting OXA-51-like and OXA-23-like genes. We identified 31 rep-PCR genotypes (strains). Representatives of each rep-type were identified to species by rpoB sequence analysis: 13 types to A. baumannii, 10 to A. pittii, and 3 to A. nosocomialis. It was assumed that isolates that belonged to the same rep-type also belonged to the same species. Thus, 83.4% of all isolates were identified to A. baumannii, 9.6% to A. pittii and 4.5% to A. nosocomialis. We observed 12 extensively drug resistant Acb strains (10 A. baumannii and 2 A. nosocomialis), all carbapenem-non-susceptible/colistin-susceptible and imported into the burn wound center through patients injured in North Africa. The two most prevalent rep-types 12 and 13 harbored an OXA-23-like gene. Multilocus sequence typing allocated them to clonal complex 1 corresponding to EU (international) clone I. Both strains caused consecutive outbreaks, interspersed with periods of apparent eradication. Patients infected with carbapenem resistant A. baumannii were successfully treated with colistin/rifampicin. Extensive infection control measures were required to eradicate the organisms. Acinetobacter infection and colonization was not associated with increased attributable mortality.
Nielsen, Line; Jensen, Trine Hammer; Kristensen, Birte; Jensen, Tove Dannemann; Karlskov-Mortensen, Peter; Lund, Morten; Aasted, Bent; Blixenkrone-Møller, Merete
2012-10-01
Immunity induced by DNA vaccines containing the hemagglutinin (H) and nucleoprotein (N) genes of wild-type and attenuated canine distemper virus (CDV) was investigated in mink (Mustela vison), a highly susceptible natural host of CDV. All DNA-immunized mink seroconverted, and significant levels of virus-neutralizing (VN) antibodies were present on the day of challenge with wild-type CDV. The DNA vaccines also primed the cell-mediated memory responses, as indicated by an early increase in the number of interferon-gamma (IFN-γ)-producing lymphocytes after challenge. Importantly, the wild-type and attenuated CDV DNA vaccines had a long-term protective effect against wild-type CDV challenge. The vaccine-induced immunity induced by the H and N genes from wild-type CDV and those from attenuated CDV was comparable. Because these two DNA vaccines were shown to protect equally well against wild-type virus challenge, it is suggested that the genetic/antigenic heterogeneity between vaccine strains and contemporary wild-type strains are unlikely to cause vaccine failure.
Henri, Clémentine; Félix, Benjamin; Guillier, Laurent; Leekitcharoenphon, Pimlapas; Michelon, Damien; Mariet, Jean-François; Aarestrup, Frank M.; Mistou, Michel-Yves; Hendriksen, René S.
2016-01-01
ABSTRACT Listeria monocytogenes is a ubiquitous bacterium that may cause the foodborne illness listeriosis. Only a small amount of data about the population genetic structure of strains isolated from food is available. This study aimed to provide an accurate view of the L. monocytogenes food strain population in France. From 1999 to 2014, 1,894 L. monocytogenes strains were isolated from food at the French National Reference Laboratory for L. monocytogenes and classified according to the five risk food matrices defined by the European Food Safety Authority (EFSA). A total of 396 strains were selected on the basis of different pulsed-field gel electrophoresis (PFGE) clusters, serotypes, and strain origins and typed by multilocus sequence typing (MLST), and the MLST results were supplemented with MLST data available from Institut Pasteur, representing human and additional food strains from France. The distribution of sequence types (STs) was compared between food and clinical strains on a panel of 675 strains. High congruence between PFGE and MLST was found. Out of 73 PFGE clusters, the two most prevalent corresponded to ST9 and ST121. Using original statistical analysis, we demonstrated that (i) there was not a clear association between ST9 and ST121 and the food matrices, (ii) serotype IIc, ST8, and ST4 were associated with meat products, and (iii) ST13 was associated with dairy products. Of the two major STs, ST121 was the ST that included the fewest clinical strains, which might indicate lower virulence. This observation may be directly relevant for refining risk analysis models for the better management of food safety. IMPORTANCE This study showed a very useful backward compatibility between PFGE and MLST for surveillance. The results enabled better understanding of the population structure of L. monocytogenes strains isolated from food and management of the health risks associated with L. monocytogenes food strains. Moreover, this work provided an accurate view of L. monocytogenes strain populations associated with specific food matrices. We clearly showed that some STs were associated with food matrices, such as meat, meat products, and dairy products. We opened the way to source attribution modeling in order to quantify the relative importance of the main food matrices. PMID:27235443
Ipe, Deepak S; Ben Zakour, Nouri L; Sullivan, Matthew J; Beatson, Scott A; Ulett, Kimberly B; Benjamin, William H; Davies, Mark R; Dando, Samantha J; King, Nathan P; Cripps, Allan W; Schembri, Mark A; Dougan, Gordon; Ulett, Glen C
2016-01-01
Streptococcus agalactiae causes both symptomatic cystitis and asymptomatic bacteriuria (ABU); however, growth characteristics of S. agalactiae in human urine have not previously been reported. Here, we describe a phenotype of robust growth in human urine observed in ABU-causing S. agalactiae (ABSA) that was not seen among uropathogenic S. agalactiae (UPSA) strains isolated from patients with acute cystitis. In direct competition assays using pooled human urine inoculated with equal numbers of a prototype ABSA strain, designated ABSA 1014, and any one of several UPSA strains, measurement of the percentage of each strain recovered over time showed a markedly superior fitness of ABSA 1014 for urine growth. Comparative phenotype profiling of ABSA 1014 and UPSA strain 807, isolated from a patient with acute cystitis, using metabolic arrays of >2,500 substrates and conditions revealed unique and specific l-malic acid catabolism in ABSA 1014 that was absent in UPSA 807. Whole-genome sequencing also revealed divergence in malic enzyme-encoding genes between the strains predicted to impact the activity of the malate metabolic pathway. Comparative growth assays in urine comparing wild-type ABSA and gene-deficient mutants that were functionally inactivated for the malic enzyme metabolic pathway by targeted disruption of the maeE or maeK gene in ABSA demonstrated attenuated growth of the mutants in normal human urine as well as synthetic human urine containing malic acid. We conclude that some S. agalactiae strains can grow in human urine, and this relates in part to malic acid metabolism, which may affect the persistence or progression of S. agalactiae ABU. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakajima, Yoshitake; Dapkus, P. Daniel
Yellow and green emitting multiple quantum well structures are grown on nanostripe templates with {10-11} facets. SEM and cathodoluminescence measurements show a correlation between rough surface morphology near the bottom of the stripes and non-radiative recombination centers. Transmission electron microscopy (TEM) analysis shows that these surface instabilities are a result of stacking faults generated from the quantum well (QW) regions near the bottom of the pyramid that propagate to the surface. HRTEM images show that the stacking faults are I{sub 1} type which is formed by removal of one half basal plane to relieve the compressive strain in the InGaNmore » QW. Thicker QWs near the bottom as a result of growth rate enhancement due to the surface diffusion of the precursors from the mask regions cause increased strain. Additionally, the compressive strain induced by the bending of the nanostructure towards the growth mask further increases the strain experienced by the QW thereby causing the localized defect generation.« less
NASA Astrophysics Data System (ADS)
Nakajima, Yoshitake; Dapkus, P. Daniel
2016-08-01
Yellow and green emitting multiple quantum well structures are grown on nanostripe templates with {10-11} facets. SEM and cathodoluminescence measurements show a correlation between rough surface morphology near the bottom of the stripes and non-radiative recombination centers. Transmission electron microscopy (TEM) analysis shows that these surface instabilities are a result of stacking faults generated from the quantum well (QW) regions near the bottom of the pyramid that propagate to the surface. HRTEM images show that the stacking faults are I1 type which is formed by removal of one half basal plane to relieve the compressive strain in the InGaN QW. Thicker QWs near the bottom as a result of growth rate enhancement due to the surface diffusion of the precursors from the mask regions cause increased strain. Additionally, the compressive strain induced by the bending of the nanostructure towards the growth mask further increases the strain experienced by the QW thereby causing the localized defect generation.
Nowell, Victoria J; Kropinski, Andrew M; Songer, J Glenn; MacInnes, Janet I; Parreira, Valeria R; Prescott, John F
2012-01-01
Clostridium perfringens is a common inhabitant of the avian and mammalian gastrointestinal tracts and can behave commensally or pathogenically. Some enteric diseases caused by type A C. perfringens, including bovine clostridial abomasitis, remain poorly understood. To investigate the potential basis of virulence in strains causing this disease, we sequenced the genome of a type A C. perfringens isolate (strain F262) from a case of bovine clostridial abomasitis. The ∼3.34 Mbp chromosome of C. perfringens F262 is predicted to contain 3163 protein-coding genes, 76 tRNA genes, and an integrated plasmid sequence, Cfrag (∼18 kb). In addition, sequences of two complete circular plasmids, pF262C (4.8 kb) and pF262D (9.1 kb), and two incomplete plasmid fragments, pF262A (48.5 kb) and pF262B (50.0 kb), were identified. Comparison of the chromosome sequence of C. perfringens F262 to complete C. perfringens chromosomes, plasmids and phages revealed 261 unique genes. No novel toxin genes related to previously described clostridial toxins were identified: 60% of the 261 unique genes were hypothetical proteins. There was a two base pair deletion in virS, a gene reported to encode the main sensor kinase involved in virulence gene activation. Despite this frameshift mutation, C. perfringens F262 expressed perfringolysin O, alpha-toxin and the beta2-toxin, suggesting that another regulation system might contribute to the pathogenicity of this strain. Two complete plasmids, pF262C (4.8 kb) and pF262D (9.1 kb), unique to this strain of C. perfringens were identified.
Nowell, Victoria J.; Kropinski, Andrew M.; Songer, J. Glenn; MacInnes, Janet I.; Parreira, Valeria R.; Prescott, John F.
2012-01-01
Clostridium perfringens is a common inhabitant of the avian and mammalian gastrointestinal tracts and can behave commensally or pathogenically. Some enteric diseases caused by type A C. perfringens, including bovine clostridial abomasitis, remain poorly understood. To investigate the potential basis of virulence in strains causing this disease, we sequenced the genome of a type A C. perfringens isolate (strain F262) from a case of bovine clostridial abomasitis. The ∼3.34 Mbp chromosome of C. perfringens F262 is predicted to contain 3163 protein-coding genes, 76 tRNA genes, and an integrated plasmid sequence, Cfrag (∼18 kb). In addition, sequences of two complete circular plasmids, pF262C (4.8 kb) and pF262D (9.1 kb), and two incomplete plasmid fragments, pF262A (48.5 kb) and pF262B (50.0 kb), were identified. Comparison of the chromosome sequence of C. perfringens F262 to complete C. perfringens chromosomes, plasmids and phages revealed 261 unique genes. No novel toxin genes related to previously described clostridial toxins were identified: 60% of the 261 unique genes were hypothetical proteins. There was a two base pair deletion in virS, a gene reported to encode the main sensor kinase involved in virulence gene activation. Despite this frameshift mutation, C. perfringens F262 expressed perfringolysin O, alpha-toxin and the beta2-toxin, suggesting that another regulation system might contribute to the pathogenicity of this strain. Two complete plasmids, pF262C (4.8 kb) and pF262D (9.1 kb), unique to this strain of C. perfringens were identified. PMID:22412860
Holtappels, Michelle; Noben, Jean-Paul; Valcke, Roland
2016-09-01
Until now, no data are available on the outer membrane (OM) proteome of Erwinia amylovora, a Gram-negative plant pathogen, causing fire blight in most of the members of the Rosaceae family. Since the OM forms the interface between the bacterial cell and its environment it is in direct contact with the host. Additionally, the type III secretion system, embedded in the OM, is a pathogenicity factor of E. amylovora. To assess the influence of the OM composition and the secretion behavior on virulence, a 2D-DIGE analysis and gene expression profiling were performed on a high and lower virulent strain, both in vitro and in planta. Proteome data showed an increase in flagellin for the lower virulent strain in vitro, whereas, in planta several interesting proteins were identified as being differently expressed between both the strains. Further, gene expression of nearly all type III secreted effectors was elevated for the higher virulent strain, both in vitro and in planta. As a first, we report that several characteristics of virulence can be assigned to the OM proteome. Moreover, we demonstrate that secreted proteins prove to be the important factors determining differences in virulence between the strains, otherwise regarded as homogeneous on a genome level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Morozova, O V; Sashina, T A; Epifanova, N V; Zverev, V V; Kashnikov, A U; Novikova, N A
2018-04-01
Group A rotaviruses (RVA) are one of the leading causes of gastroenteritis in young children worldwide. The introduction of universal mass vaccination around the world has contributed to a reduction in hospitalizations and outpatient visits associated with rotavirus infection. Continued surveillance of RVA strains is needed to determine long-term effects of vaccine introduction. In the present work, we carried out the analysis of the genotypic diversity of RVA strains isolated in Nizhny Novgorod (Russia) during the 2015-2016 epidemic season. Also we conducted a comparative analysis of the amino acid sequences of T-cell epitopes of wild-type and vaccine (RotaTeq and Rotarix) strains. In total, 1461 samples were examined. RVAs were detected in 30.4% of cases. Rotaviruses with genotype G9P[8] (40.5%) dominated in the 2015-16 epidemic season. Additionally, RVAs with the following genotypes were detected: G4P[8] (25.4%), G1P[8] (13%), G2P[4] (3.2%). Rotaviruses with genotypes G3P[9], G6P[9], and G1P[9] totaled 3%. The number of partially typed and untyped RVA samples was 66 (14.9%). The findings of a RVA of G6P[9] genotype in Russia were an original observation. Our analysis of VP6 and NSP4 T-cell epitopes showed highly conserved amino acid sequences. The found differences seem not to be caused by the immune pressure but were rather related to the genotypic affiliations of the proteins. Vaccination against rotavirus infection is not included in the national vaccination schedule in Russia. Monitoring of the genotypic and antigenic diversity of contemporary RVA will allow providing a comparative analysis of wild-type strains in areas with and without vaccine campaign.
Masum, Md. Mahidul Islam; Yang, Yingzi; Li, Bin; Olaitan, Ogunyemi Solabomi; Chen, Jie; Zhang, Yang; Fang, Yushi; Qiu, Wen; Wang, Yanli; Sun, Guochang
2017-01-01
The Type VI secretion system (T6SS) is a class of macromolecular machine that is required for the virulence of gram-negative bacteria. However, it is still not clear what the role of T6SS in the virulence of rice bacterial brown stripe pathogen Acidovorax avenae subsp. avenae (Aaa) is. The aim of the current study was to investigate the contribution of T6SS in Aaa strain RS2 virulence using insertional deletion mutation and complementation approaches. This strain produced weak virulence but contains a complete T6SS gene cluster based on a genome-wide analysis. Here we compared the virulence-related phenotypes between the wild-type (RS-2) and 25 T6SS mutants, which were constructed using homologous recombination methods. The mutation of 15 T6SS genes significantly reduced bacterial virulence and the secretion of Hcp protein. Additionally, the complemented 7 mutations ΔpppA, ΔclpB, Δhcp, ΔdotU, ΔicmF, ΔimpJ, and ΔimpM caused similar virulence characteristics as RS-2. Moreover, the mutant ΔpppA, ΔclpB, ΔicmF, ΔimpJ and ΔimpM genes caused by a 38.3~56.4% reduction in biofilm formation while the mutants ΔpppA, ΔclpB, ΔicmF and Δhcp resulted in a 37.5~44.6% reduction in motility. All together, these results demonstrate that T6SS play vital roles in the virulence of strain RS-2, which may be partially attributed to the reductions in Hcp secretion, biofilm formation and motility. However, differences in virulence between strain RS-1 and RS-2 suggest that other factors may also be involved in the virulence of Aaa. PMID:28934168
Biriukova, I V; Krylov, A A; Kiseleva, E M; Minaeva, N I; Mashko, S V
2010-03-01
MG1655 of Escherichia coli K-12 is frequently used in metabolic engineering as the wild-type strain. However, its two mutations, ilvG and rph-1 provide a negative effect on culture growth. The "polar effect" of rph-1 decreases the level of pyrE expression, causing partial auxotrophy for pyrimidines. Mutation ilvG leading to the appearance of Val(S) phenotype causes retardation of cell growth rate on media containing amino acids. In this work, the substitution of two loci in the genome of MG1655 with the recovery of the wild-type phenotype was accomplished. Gene rph(wt) from the chromosome of E. coli TG1 was marked via Red-dependent integration of DNA fragment carrying lambda attL-Cm(R)-lambda attR and transduced with phage P1 into MG1655; later, the Cm(R) marker was removed with the use of lambda Xis/Int recombinase. Parallel to this procedure, a spontaneous Val(R) mutant of E. coli MG1655 yielding colonies of maximal size on M9 medium with glucose in the presence of Val (50 microg/ml) was isolated. It was shown that a nucleotide deletion in the isolated Val(R) strain had been generated in the region of the identified E. coli K-12 ilvG mutation, which led to the recovery of the reading frame and active protein synthesis. This mutation named ilvG-15, which is the only reason for the Val(R) phenotype in the obtained strain, was transferred to MG1655-rph(wt) using cotransduction, by analogy to the transfer of rph(wt). Evaluation of rates of aerobically growing cells (microm, hour(-1)) on M9 medium with glucose produced the following values: 0.56, 0.69, and 0.73 for strains MG1655, MG1655-rph(wt), and MG1655-(rph(wt), ilvG-15), respectively.
Martin, Kathleen; Singh, Jugpreet; Hill, John H; Whitham, Steven A; Cannon, Steven B
2016-08-11
Bean common mosaic virus (BCMV) is widespread, with Phaseolus species as the primary host plants. Numerous BCMV strains have been identified on the basis of a panel of bean varieties that distinguish the pathogenicity types with respect to the viral strains. The molecular responses in Phaseolus to BCMV infection have not yet been well characterized. We report the transcriptional responses of a widely susceptible variety of common bean (Phaseolus vulgaris L., cultivar 'Stringless green refugee') to two BCMV strains, in a time-course experiment. We also report the genome sequence of a previously unreported BCMV strain. The interaction with the known strain NL1-Iowa causes moderate symptoms and large transcriptional responses, and the newly identified strain (Strain 2 or S2) causes severe symptoms and moderate transcriptional responses. The transcriptional profiles of host plants infected with the two isolates are distinct, and involve numerous differences in splice forms in particular genes, and pathway specific expression patterns. We identified differential host transcriptome response after infection of two different strains of Bean common mosaic virus (BCMV) in common bean (Phaseolus vulgaris L.). Virus infection initiated a suite of changes in gene expression level and patterns in the host plants. Pathways related to defense, gene regulation, metabolic processes, photosynthesis were specifically altered after virus infection. Results presented in this study can increase the understanding of host-pathogen interactions and provide resources for further investigations of the biological mechanisms in BCMV infection and defense.
Zhang, Dian-peng; Lu, Cai-ge; Zhang, Tao-tao; Spadaro, Davide; Liu, De-wen; Liu, Wei-cheng
2014-07-01
Brown rot caused by Monilinia spp. is among the most important postharvest diseases of commercially grown stone fruits, and application of antagonistic yeasts to control brown rot is one promising strategy alternative to chemical fungicides. In this research, new yeast strains were isolated and tested for their activity against peach brown rot caused by Monilinia fructicola. Three yeast strains were originally isolated from the surface of plums (cv Chinese Angelino) collected in the north of China. In artificially wounded inoculation tests, the yeast reduced the brown rot incidence to 20 %. The population of the yeast within inoculated wounds on peaches significantly increased at 25 °C from an initial level of 5.0×10(6) to 4.45×10(7) CFU per wound after 1 day. The antagonistic strains were belonging to a new species of the genus Candida by sequence comparisons of 26 S rDNA D1/D2 domain and internal transcribed spacer region. The strains are most closely related to C. asparagi, C. musae and C. fructus on the basis of the phylogenetic trees based on the D1/D2 region of 26S rDNA. However, the strains are notably different from C. asparagi, C. musae and C. fructus, in morphological and physiological characteristics. Therefore, the name Candida pruni is proposed for the novel species, with sp-Quan (=CBS12814T=KCTC 27526T=GCMC 6582T) as the type strain. Our study showed that Candida pruni is a novel yeast species with potential biocontrol against brown rot caused by M. fructicola on peaches.
Feng, Le; Lu, Xinxin; Yu, Yonghui; Wang, Tao; Luo, Shengdong; Sun, Zhihui; Duan, Qing; Wang, Ningli; Song, Lihua
2017-01-01
Trachoma, the leading infectious cause of blindness worldwide, is an ancient human disease. Its existence in China can be traced back to as early as the twenty-seventh century BC. In modern China, the overall prevalence of trachoma has dramatically reduced, but trachoma is still endemic in many areas of the country. Here, we report that 26 (8%) of 322 students from two rural boarding schools of Qinghai province, west China, were identified as having ocular C. trachomatis infection; and 15 ocular C. trachomatis strains were isolated from these trachoma patients. Chlamydiae in 37 clinical samples were genotyped as type B based on ompA gene analyses. Three ompA variants with one or two in-between SNP differences in the second or fourth variable domain were found. C. trachomatis strains QH111L and QH111R were from the same patient's left and right conjunctival swabs, respectively, but their ompA genes have a non-synonymous base difference in the second variable domain. Moreover, this SNP only exists in this single sample, suggesting QH111L is a newly emerged ompA variant. Interestingly, chromosomal phylogeny analysis found QH111L clusters between a branch of two type B strains and a branch of both A and C strains, but is significantly divergent from both branches. Comparative chromosome analysis found that compared to sequences of reference B/TZ1A828/OT strain, 12 of 22 QH111L's chromosomal genes exhibiting more than nine SNPs have the best homology with reciprocal genes of UGT strains while 9 of 22 genes are closest to those of type C strains. Consistent with findings of UGT-type genetic features in the chromosome, the QH111L plasmid appears to be intermediate between UGT and classical ocular plasmids due to the existence of UGT-type SNPs in the QH111L plasmid. Moreover, the QH111L strain has a unique evolutionarily older cytotoxin region compared to cytotoxin regions of other C. trachomatis strains. The genome analyses suggest that the QH111L strain is derived from recombinations between UGT and classical ocular ancestors. This is the first study of culture and characterization of ocular C. trachomatis in Qinghai Tibetan areas. PMID:28119858
Tularaemia: clinical aspects in Europe.
Maurin, Max; Gyuranecz, Miklós
2016-01-01
Tularaemia is a zoonotic disease caused by Francisella tularensis, a Gram-negative, facultative intracellular bacterium. Typically, human and animal infections are caused by F tularensis subspecies tularensis (type A) strains mainly in Canada and USA, and F tularensis subspecies holarctica (type B) strains throughout the northern hemisphere, including Europe. In the past, the epidemiological, clinical, therapeutic, and prognostic aspects of tularaemia reported in the English medical literature were mainly those that had been reported in the USA, where the disease was first described. Tularaemia has markedly changed in the past decade, and a large number of studies have provided novel data for the disease characteristics in Europe. In this Review we aim to emphasise the specific and variable aspects of tularaemia in different European countries. In particular, two natural lifecycles of F tularensis have been described in this continent, although not fully characterised, which are associated with different modes of transmission, clinical features, and public health burdens of tularaemia. Copyright © 2016 Elsevier Ltd. All rights reserved.
Singh, Rakesh Kumar; Krishna, Malini
2005-12-01
Genotoxic stress induces a checkpoint signaling cascade to generate a stress response. Saccharomyces cerevisiae shows an altered radiation response under different type of stress. Although the induction of repair has been implicated in enhanced survival after exposure to the challenging stress, the nature of the signal remains poorly understood. This study demonstrates that low doses of gamma radiation and bleomycin induce RAD52-dependent recombination repair pathway in the wild-type strain D-261. Prior exposure of cells to DNA-damaging agents (gamma radiation or bleomycin) equips them better for the subsequent damage caused by challenging doses. However, exposure to UV light, which does not cause strand breaks, was ineffective. This was confirmed by PFGE studies. This indicates that the strand breaks probably serve as the signal for induction of the recombination repair pathway while pyrimidine dimers do not. The nature of the induced repair was investigated by mutation scoring in special strain D-7, which showed that the induced repair is essentially error free.
Typing of Canine Parvovirus Strains Circulating in North-East China.
Zhao, H; Wang, J; Jiang, Y; Cheng, Y; Lin, P; Zhu, H; Han, G; Yi, L; Zhang, S; Guo, L; Cheng, S
2017-04-01
Canine parvovirus (CPV) is highly contagious and is a major cause of haemorrhagic enteritis and myocarditis in dogs. We investigated the genetic variation of emerging CPV strains by sequencing 64 CPV VP2 genes from 216 clinical samples of dogs from Heilongjiang, Jilin, Liaoning, Shandong and Hebei in 2014. Genetic analysis revealed that CPV-2b was predominant in Hebei and CPV-2a was predominant in the other four provinces. In addition, a CPV-2c strain has emerged in Shandong province. All samples had a Ser-Ala substitution at residue 297 and an Ile-Arg substitution at residue 324. Interestingly, in five separate canine samples, we found a mutation of Gln370 to Arg, until now detected only in isolates from pandas. The phylogenetic analysis showed clear distinctions between epidemic isolates and vaccine strains and between Chinese CPV-2c strains and CPV-2c strains found in other countries. Monitoring recent incidence of CPV strains enables evaluation and implementation of disease control strategies. © 2015 Blackwell Verlag GmbH.
NASA Astrophysics Data System (ADS)
Choi, Changhoon; Ahn, Joongho; Jeon, Seungwan; Kim, Chulhong
2017-07-01
Vulnerable plaques are the major cause of cardiovascular disease, but they are difficult to detect with conventional intravascular imaging techniques. Techniques are needed to identify plaque vulnerability based on the presence of lipids in plaque. Thermal strain imaging (TSI) is an imaging technique based on ultrasound (US) wave propagation speed, which varies with the medium temperature. In TSI, the strain that occurs during tissue temperature change can be used for lipid detection because it has a different tendency depending on the type of tissue. Here, we demonstrate photothermal strain imaging (pTSI) using an intravascular ultrasound catheter. pTSI is performed by slightly and selectively heating lipid using a relatively inexpensive continuous laser source. We applied a speckle-tracking algorithm to US B-mode images for strain calculations. As a result, the strain produced in porcine fat was different from the strain produced in water-bearing gelatin phantom, which made it possible to distinguish the two. This suggests that pTSI could potentially be a way of differentiating lipids in coronary artery.
Evolutionary clade affects resistance of Clostridium difficile spores to Cold Atmospheric Plasma
NASA Astrophysics Data System (ADS)
Connor, Mairéad; Flynn, Padrig B.; Fairley, Derek J.; Marks, Nikki; Manesiotis, Panagiotis; Graham, William G.; Gilmore, Brendan F.; McGrath, John W.
2017-02-01
Clostridium difficile is a spore forming bacterium and the leading cause of colitis and antibiotic associated diarrhoea in the developed world. Spores produced by C. difficile are robust and can remain viable for months, leading to prolonged healthcare-associated outbreaks with high mortality. Exposure of C. difficile spores to a novel, non-thermal atmospheric pressure gas plasma was assessed. Factors affecting sporicidal efficacy, including percentage of oxygen in the helium carrier gas admixture, and the effect on spores from different strains representing the five evolutionary C. difficile clades was investigated. Strains from different clades displayed varying resistance to cold plasma. Strain R20291, representing the globally epidemic ribotype 027 type, was the most resistant. However all tested strains displayed a ~3 log reduction in viable spore counts after plasma treatment for 5 minutes. Inactivation of a ribotype 078 strain, the most prevalent clinical type seen in Northern Ireland, was further assessed with respect to surface decontamination, pH, and hydrogen peroxide concentration. Environmental factors affected plasma activity, with dry spores without the presence of organic matter being most susceptible. This study demonstrates that cold atmospheric plasma can effectively inactivate C. difficile spores, and highlights factors that can affect sporicidal activity.
Wen, Yao-Tseng; Wang, Jie-Siou; Tsai, Shu-Han; Chuan, Chiang-Ni; Wu, Jiunn-Jong; Liao, Pao-Chi
2014-09-23
Streptococcus pyogenes is responsible for various diseases. During infection, bacteria must adapt to adverse environments, such as the acidic environment. Acidic stimuli may stimulate S. pyogenes to invade into deeper tissue. However, how this acidic stimulus causes S. pyogenes to manipulate its secretome for facilitating invasion remains unclear. The dynamic label-free LC-MS/MS profiling identified 97 proteins, which are influenced by environmental acidification. Among these, 33 (34%) of the identified proteins were predicted to be extracellular proteins. Interestingly, classical secretory proteins comprise approximately 90% of protein abundance of the secretome in acidic condition at the stationary phase. One acid-induced secreted protein, HtpA, was selected to investigate its role in invasive infection. The mouse infected by the htpA deficient mutant showed lower virulence and smaller lesion area than the wild-type strain. The mutant strain was more efficiently cleared at infected skin than the wild-type strain. Besides, the relative phagocytosis resistance is lower in the mutant strain than in the wild-type strain. These data indicate that a novel acid-induced virulence factor, HtpA, which improves anti-phagocytosis ability for causing necrotizing fasciitis. Our investigation provides vital information for documenting the broad influences and mechanisms underlying the invasive behavior of S. pyogenes in an acidified environment. The acidified infected environment may facilitate S. pyogenes invasion from the mucosa to the deeper subepithelial tissue. The acid stimuli have been considered to affect the complex regulatory network of S. pyogenes for causing severe infections. Many of secreted virulence factors influenced by acidified environment may also play a crucial role in pathogenesis of invasive disease. To investigate temporal secretome changes under acidic environment, a comparative secretomics approach using label-free LC-MS/MS was undertaken to analyze the secretome in acidic and neutral conditions. The dynamic label-free LC-MS/MS profiling and secretome prediction were used in this study for mining acid-influenced secreted proteins. We identified 33 acid-influenced secreted proteins in this study. Among these proteins, a novel acid-induced virulence factor, HtpA, was demonstrated to improve anti-phagocytosis ability for causing necrotizing fasciitis. In addition, our study demonstrates the first evidence that acidic stimuli and growth-phase cues are crucial for classical protein secretion in S. pyogenes. Copyright © 2014. Published by Elsevier B.V.
Tuschl, Karin; Clayton, Peter T.; Gospe, Sidney M.; Gulab, Shamshad; Ibrahim, Shahnaz; Singhi, Pratibha; Aulakh, Roosy; Ribeiro, Reinaldo T.; Barsottini, Orlando G.; Zaki, Maha S.; Del Rosario, Maria Luz; Dyack, Sarah; Price, Victoria; Rideout, Andrea; Gordon, Kevin; Wevers, Ron A.; “Kling” Chong, W.K.; Mills, Philippa B.
2012-01-01
Environmental manganese (Mn) toxicity causes an extrapyramidal, parkinsonian-type movement disorder with characteristic magnetic resonance images of Mn accumulation in the basal ganglia. We have recently reported a suspected autosomal recessively inherited syndrome of hepatic cirrhosis, dystonia, polycythemia, and hypermanganesemia in cases without environmental Mn exposure. Whole-genome mapping of two consanguineous families identified SLC30A10 as the affected gene in this inherited type of hypermanganesemia. This gene was subsequently sequenced in eight families, and homozygous sequence changes were identified in all affected individuals. The function of the wild-type protein and the effect of sequence changes were studied in the manganese-sensitive yeast strain Δpmr1. Expressing human wild-type SLC30A10 in the Δpmr1 yeast strain rescued growth in high Mn conditions, confirming its role in Mn transport. The presence of missense (c.266T>C [p.Leu89Pro]) and nonsense (c.585del [p.Thr196Profs∗17]) mutations in SLC30A10 failed to restore Mn resistance. Previously, SLC30A10 had been presumed to be a zinc transporter. However, this work has confirmed that SLC30A10 functions as a Mn transporter in humans that, when defective, causes Mn accumulation in liver and brain. This is an important step toward understanding Mn transport and its role in neurodegenerative processes. PMID:22341972
Zekarias, B; O'Toole, D; Lehmann, J; Corbeil, L B
2011-04-21
Histophilus somni causes bovine pneumonia, septicemia, myocarditis, thrombotic meningoencephalitis and arthritis, as well as a genital or upper respiratory carrier state in normal animals. However, differences in virulence factors among strains are not well studied. The surface and secreted immunoglobulin binding protein A (IbpA) Fic motif of H. somni causes bovine alveolar type 2 (BAT2) cells to retract, allowing virulent bacteria to cross the alveolar monolayer. Because H. somni IbpA is an important virulence factor, its presence was evaluated in different strains from cattle, sheep and bison to define whether there are syndrome specific markers and whether antigenic/molecular/functional conservation occurs. A few preputial carrier strains lacked IbpA by Western blotting but all other tested disease or carrier strains were IbpA positive. These positive strains had either both IbpA DR1/Fic and IbpA DR2/Fic or only IbpA DR2/Fic by PCR. IbpA Fic mediated cytotoxicity for BAT2 cells and sequence analysis of IbpA DR2/Fic from selected strains revealed conservation of sequence and function in disease and IbpA positive carrier strains. Passive protection of mice against H. somni septicemia with antibody to IbpA DR2/Fic, along with previous data, indicates that the IbpA DR1/Fic and/or DR2/Fic domains are candidate vaccine antigens for protection against many strains of H. somni. Since IbpA DR2/Fic is conserved in most carrier strains, they may be virulent if introduced to susceptible animals at susceptible sites. Conservation of the protective IbpA antigen in all disease isolates tested is encouraging for development of protective vaccines and diagnostic assays. Copyright © 2010 Elsevier B.V. All rights reserved.
Chen, Y; Chen, X; Yu, F; Wu, M; Wang, R; Zheng, S; Han, D; Yang, Q; Kong, H; Zhou, F; Zhu, J; Yao, H; Zhou, W; Li, L
2016-03-01
Vibrio parahaemolyticus is a leading cause of food-borne diarrhoea in coastal countries. Although V. parahaemolyticus cases have been reported since 1950, they have been poorly documented. From July 2009 to June 2013, we collected 6951 faecal specimens for pathogen detection; V. parahaemolyticus strains were isolated from 563 specimens (8.1%). We then analysed the characteristics of the 501 V. parahaemolyticus strains that were isolated as the sole pathogen. Twenty-one serotypes were identified among these strains; O3:K6 was the most common serotype (65.1%), followed by O4:K8, O4:K68 and O1:K36. One strain of the O4:K18 serotype was isolated from clinical patients for the first time. Pandemic O3:K6 clones were predominant and accounted for 69.1% of all of the pandemic strains. This is the first report of one strain expressing the O3:K8 serotype with a pandemic genotype. The presence of the haemolysin gene tdh (93.0%) was the key characteristic of the virulent strains; however, a few strains carried the trh gene. We also confirmed the presence of the type III secretion system 2 (T3SS2) genes in all of the pathogenic strains. Subsequent multilocus sequence typing split the isolates into 16 sequence types (STs), with ST3 and ST88 as the most prevalent in southeastern China. Most isolates were sensitive to common antimicrobial agents, apart from ampicillin. However, the resistance rate to ampicillin has apparently increased in this area. In conclusion, our results indicate that pandemic O3:K6 V. parahaemolyticus isolates are predominant in southeastern China, and additional surveillance should be conducted to facilitate control of the transmission of this pathogen. Copyright © 2016. Published by Elsevier Ltd.
Kurlenda, J; Grinholc, M; Krzysztoń-Russjan, J; Wiśniewska, K
2009-05-01
During a 1-month period, eight neonates developed staphylococcal skin disease diagnosed as a bullous impetigo in the maternity unit of the Provincial Hospital in Gdansk. An epidemiological investigation based on phenotyping and genotyping methods was performed. All neonates involved in the outbreak, their mothers and 15 staff members were screened for carriage of Staphylococcus aureus by nasal swabs. Isolated strains were compared with strains cultured from affected skin and purulent conjunctiva of infected newborns. Isolates were analyzed for the presence of the etA and etB genes using polymerase chain reaction and genotyped by pulsed-field gel electrophoresis (PFGE) and coa gene polymorphism. The analyzed S. aureus strains were methicillin-sensitive and could be divided into two groups according to antibiotyping, phage typing, coa polymorphism and PFGE pattern. The first group consisted of etA and etB negative strains, and the second one involved only the etB positive ones. Our results have shown that there were two different clusters of infection caused by two populations of S. aureus strains. Among the 15 medical staff members screened we have found seven carriers. However, phage typing revealed that distinct strains unrelated to the outbreak isolates were carried. Although we have not been able to establish the source of bacteria involved in the outbreak, our results suggest that for both groups, mothers could be the source of the infecting strains.
Xu, J; Guo, H-C; Wei, Y-Q; Shu, L; Wang, J; Li, J-S; Cao, S-Z; Sun, S-Q
2015-02-01
Canine parvovirus causes serious disease in dogs. Study of the genetic variation in emerging CPV strains is important for disease control strategy. The antigenic property of CPV is connected with specific amino acid changes, mainly in the capsid protein VP2. This study was carried out to characterize VP2 gene of CPV viruses from two provinces of China in 2011. The complete VP2 genes of the CPV-positive samples were amplified and sequenced. Genetic analysis based on the VP2 genes of CPV was conducted. All of the isolates screened and sequenced in this study were typed as CPV-2a except GS-K11 strain, which was typed as CPV-2b. Sequence comparison showed nucleotide identities of 98.8-100% among CPV strains, whereas the Aa similarities were 99.6-100%. Compared with the reference strains, there are three distinctive amino acid changes at VP2 gene residue 267, 324 and 440 of the strains isolated in this study. Of the 27 strains, fourteen (51.85%) had the 267 (Phe-Tyr) and 440 (Thr-Ala) substitution, all the 27 (100%) had 324 (Tyr-Ile) substitution. Phylogenetically, all of the strains isolated in this study formed a major monophyletic cluster together with one South Korean isolate, two Thailand isolates and four Chinese former isolates. © 2013 Blackwell Verlag GmbH.
Kabeya, Hidenori; Sato, Shingo; Oda, Shinya; Kawamura, Megumi; Nagasaka, Mariko; Kuranaga, Masanari; Yokoyama, Eiji; Hirai, Shinichiro; Iguchi, Atsushi; Ishihara, Tomoe; Kuroki, Toshiro; Morita-Ishihara, Tomoko; Iyoda, Sunao; Terajima, Jun; Ohnishi, Makoto; Maruyama, Soichi
2017-05-03
This study examined the potential pathogenicity of Shiga toxin-producing Escherichia coli (STEC) in feces of sika deer by PCR binary typing (P-BIT), using 24 selected STEC genes. A total of 31 STEC strains derived from sika deer in 6 prefectures of Japan were O-serotyped and found to be O93 (n=12), O146 (n=5), O176 (n=3), O130 (n=3), O5 (n=2), O7 (n=1), O96 (n=1), O116 (n=1), O141 (n=1), O157 (n=1) and O-untypable (n=1). Of the 31 STEC strains, 13 carried both stx1 and stx2, 5 carried only stx1, and 13 carried one or two variants of stx2. However, no Stx2 production was observed in 3 strains that carried only stx2: the other 28 strains produced the appropriate Stx. P-BIT analysis showed that the 5 O5 strains from two wild deer formed a cluster with human STEC strains, suggesting that the profiles of the presence of the 24 P-BIT genes in the deer strains were significantly similar to those in human strains. All of the other non-O157 STEC strains in this study were classified with strains from food, domestic animals and humans in another cluster. Good sanitary conditions should be used for deer meat processing to avoid STEC contamination, because STEC is prevalent in deer and deer may be a potential source of STEC causing human infections.
Li, Liping; Wang, Rui; Huang, Yan; Huang, Ting; Luo, Fuguang; Huang, Weiyi; Yang, Xiuying; Lei, Aiying; Chen, Ming; Gan, Xi
2018-01-01
Group B streptococcus (GBS) is the major pathogen causing diseases in neonates, pregnant/puerperal women, cows and fish. Recent studies have shown that GBS may be infectious across hosts and some fish GBS strain might originate from human. The purpose of this study is to investigate the genetic relationship of CC103 strains that recently emerged in cows and humans, and explore the pathogenicity of clinical GBS isolates from human to tilapia. Ninety-two pathogenic GBS isolates were identified from 19 patients with different diseases and their evolution and pathogenicity to tilapia were analyzed. The multilocus sequence typing revealed that clonal complex (CC) 103 strain was isolated from 21.74% (20/92) of patients and ST485 strain was from 14.13% (13/92) patients with multiple diseases including neonates. Genomic evolution analysis showed that both bovine and human CC103 strains alternately form independent evolutionary branches. Three CC67 isolates carried gbs2018-C gene and formed one evolutionary branch with ST61 and ST67 strains that specifically infect dairy cows. Studies of interspecies transmission to tilapia found that 21/92 (22.83%) isolates including all ST23 isolates were highly pathogenic to tilapia and demonstrated that streptococci could break through the blood-brain barrier into brain tissue. In conclusions, CC103 strains are highly prevalent among pathogenic GBS from humans and have evolved into the highly pathogenic ST485 strains specifically infecting humans. The CC67 strains isolated from cows are able to infect humans through evolutionary events of acquiring CC17-specific type C gbs2018 gene and others. Human-derived ST23 pathogenic GBS strains are highly pathogenic to tilapia. PMID:29467722
Seki, Fumio; Yamada, Kentaro; Nakatsu, Yuichiro; Okamura, Koji; Yanagi, Yusuke; Nakayama, Tetsuo; Komase, Katsuhiro; Takeda, Makoto
2011-11-01
Subacute sclerosing panencephalitis (SSPE) is a fatal sequela associated with measles and is caused by persistent infection of the brain with measles virus (MV). The SI strain was isolated in 1976 from a patient with SSPE and shows neurovirulence in animals. Genome nucleotide sequence analyses showed that the SI strain genome possesses typical genome alterations for SSPE-derived strains, namely, accumulated amino acid substitutions in the M protein and cytoplasmic tail truncation of the F protein. Through the establishment of an efficient reverse genetics system, a recombinant SI strain expressing a green fluorescent protein (rSI-AcGFP) was generated. The infection of various cell types with rSI-AcGFP was evaluated by fluorescence microscopy. rSI-AcGFP exhibited limited syncytium-forming activity and spread poorly in cells. Analyses using a recombinant MV possessing a chimeric genome between those of the SI strain and a wild-type MV strain indicated that the membrane-associated protein genes (M, F, and H) were responsible for the altered growth phenotype of the SI strain. Functional analyses of viral glycoproteins showed that the F protein of the SI strain exhibited reduced fusion activity because of an E300G substitution and that the H protein of the SI strain used CD46 efficiently but used the original MV receptors on immune and epithelial cells poorly because of L482F, S546G, and F555L substitutions. The data obtained in the present study provide a new platform for analyses of SSPE-derived strains as well as a clear example of an SSPE-derived strain that exhibits altered receptor specificity and limited fusion activity.
Seki, Fumio; Yamada, Kentaro; Nakatsu, Yuichiro; Okamura, Koji; Yanagi, Yusuke; Nakayama, Tetsuo; Komase, Katsuhiro; Takeda, Makoto
2011-01-01
Subacute sclerosing panencephalitis (SSPE) is a fatal sequela associated with measles and is caused by persistent infection of the brain with measles virus (MV). The SI strain was isolated in 1976 from a patient with SSPE and shows neurovirulence in animals. Genome nucleotide sequence analyses showed that the SI strain genome possesses typical genome alterations for SSPE-derived strains, namely, accumulated amino acid substitutions in the M protein and cytoplasmic tail truncation of the F protein. Through the establishment of an efficient reverse genetics system, a recombinant SI strain expressing a green fluorescent protein (rSI-AcGFP) was generated. The infection of various cell types with rSI-AcGFP was evaluated by fluorescence microscopy. rSI-AcGFP exhibited limited syncytium-forming activity and spread poorly in cells. Analyses using a recombinant MV possessing a chimeric genome between those of the SI strain and a wild-type MV strain indicated that the membrane-associated protein genes (M, F, and H) were responsible for the altered growth phenotype of the SI strain. Functional analyses of viral glycoproteins showed that the F protein of the SI strain exhibited reduced fusion activity because of an E300G substitution and that the H protein of the SI strain used CD46 efficiently but used the original MV receptors on immune and epithelial cells poorly because of L482F, S546G, and F555L substitutions. The data obtained in the present study provide a new platform for analyses of SSPE-derived strains as well as a clear example of an SSPE-derived strain that exhibits altered receptor specificity and limited fusion activity. PMID:21917959
Gangaiah, Dharanesh
2016-01-01
Background Haemophilus ducreyi has emerged as a major cause of cutaneous ulcers (CU) in yaws-endemic regions of the tropics in the South Pacific, South East Asia and Africa. H. ducreyi was once thought only to cause the genital ulcer (GU) disease chancroid; GU strains belong to 2 distinct classes, class I and class II. Using whole-genome sequencing of 4 CU strains from Samoa, 1 from Vanuatu and 1 from Papua New Guinea, we showed that CU strains diverged from the class I strain 35000HP and that one CU strain expressed β-lactamase. Recently, the Center for Disease Control and Prevention released the genomes of 11 additional CU strains from Vanuatu and Ghana; however, the evolutionary relationship of these CU strains to previously-characterized CU and GU strains is unknown. Methodology/Principal Findings We performed phylogenetic analysis of 17 CU and 10 GU strains. Class I and class II GU strains formed two distinct clades. The class I strains formed two subclades, one containing 35000HP and HD183 and the other containing the remainder of the class I strains. Twelve of the CU strains formed a subclone under the class I 35000HP subclade, while 2 CU strains formed a subclone under the other class I subclade. Unexpectedly, 3 of the CU strains formed a subclone under the class II clade. Phylogenetic analysis of dsrA-hgbA-ncaA sequences yielded a tree similar to that of whole-genome phylogenetic tree. Conclusions/Significance CU strains diverged from multiple lineages within both class I and class II GU strains. Multilocus sequence typing of dsrA-hgbA-ncaA could be reliably used for epidemiological investigation of CU and GU strains. As class II strains grow relatively poorly and are relatively more susceptible to vancomycin than class I strains, these findings have implications for methods to recover CU strains. Comparison of contemporary CU and GU isolates would help clarify the relationship between these entities. PMID:28027326
Pinho, Marcos D; Erol, Erdal; Ribeiro-Gonçalves, Bruno; Mendes, Catarina I; Carriço, João A; Matos, Sandra C; Preziuso, Silvia; Luebke-Becker, Antina; Wieler, Lothar H; Melo-Cristino, Jose; Ramirez, Mario
2016-08-17
The pathogenic role of beta-hemolytic Streptococcus dysgalactiae in the equine host is increasingly recognized. A collection of 108 Lancefield group C (n = 96) or L (n = 12) horse isolates recovered in the United States and in three European countries presented multilocus sequence typing (MLST) alleles, sequence types and emm types (only 56% of the isolates could be emm typed) that were, with few exceptions, distinct from those previously found in human Streptococcus dysgalactiae subsp. equisimilis. Characterization of a subset of horse isolates by multilocus sequence analysis (MLSA) and 16S rRNA gene sequence showed that most equine isolates could also be differentiated from S. dysgalactiae strains from other animal species, supporting the existence of a horse specific genomovar. Draft genome information confirms the distinctiveness of the horse genomovar and indicates the presence of potentially horse-specific virulence factors. While this genomovar represents most of the isolates recovered from horses, a smaller MLST and MLSA defined sub-population seems to be able to cause infections in horses, other animals and humans, indicating that transmission between hosts of strains belonging to this group may occur.
Kip, E; Nazé, F; Suin, V; Vanden Berghe, T; Francart, A; Lamoral, S; Vandenabeele, P; Beyaert, R; Van Gucht, S; Kalai, M
2017-01-01
Rabies virus is a highly neurovirulent RNA virus, which causes about 59000 deaths in humans each year. Previously, we described macrophage cytotoxicity upon infection with rabies virus. Here we examined the type of cell death and the role of specific caspases in cell death and disease development upon infection with two laboratory strains of rabies virus: Challenge Virus Standard strain-11 (CVS-11) is highly neurotropic and lethal for mice, while the attenuated Evelyn-Rotnycki-Abelseth (ERA) strain has a broader cell tropism, is non-lethal and has been used as an oral vaccine for animals. Infection of Mf4/4 macrophages with both strains led to caspase-1 activation and IL-1 β and IL-18 production, as well as activation of caspases-3, -7, -8, and -9. Moreover, absence of caspase-3, but not of caspase-1 and -11 or -7, partially inhibited virus-induced cell death of bone marrow-derived macrophages. Intranasal inoculation with CVS-11 of mice deficient for either caspase-1 and -11 or -7 or both IL-1 β and IL-18 led to general brain infection and lethal disease similar to wild-type mice. Deficiency of caspase-3, on the other hand, significantly delayed the onset of disease, but did not prevent final lethal outcome. Interestingly, deficiency of caspase-1/11, the key executioner of pyroptosis, aggravated disease severity caused by ERA virus, whereas wild-type mice or mice deficient for either caspase-3, -7, or both IL-1 β and IL-18 presented the typical mild symptoms associated with ERA virus. In conclusion, rabies virus infection of macrophages induces caspase-1- and caspase-3-dependent cell death. In vivo caspase-1/11 and caspase-3 differently affect disease development in response to infection with the attenuated ERA strain or the virulent CVS-11 strain, respectively. Inflammatory caspases seem to control attenuated rabies virus infection, while caspase-3 aggravates virulent rabies virus infection.
Effect of tcdR Mutation on Sporulation in the Epidemic Clostridium difficile Strain R20291.
Girinathan, Brintha P; Monot, Marc; Boyle, Daniel; McAllister, Kathleen N; Sorg, Joseph A; Dupuy, Bruno; Govind, Revathi
2017-01-01
Clostridium difficile is an important nosocomial pathogen and the leading cause of hospital-acquired diarrhea. Antibiotic use is the primary risk factor for the development of C. difficile -associated disease because it disrupts normally protective gut flora and enables C. difficile to colonize the colon. C. difficile damages host tissue by secreting toxins and disseminates by forming spores. The toxin-encoding genes, tcdA and tcdB , are part of a pathogenicity locus, which also includes the tcdR gene that codes for TcdR, an alternate sigma factor that initiates transcription of tcdA and tcdB genes. We created a tcdR mutant in epidemic-type C. difficile strain R20291 in an attempt to identify the global role of tcdR . A site-directed mutation in tcdR affected both toxin production and sporulation in C. difficile R20291. Spores of the tcdR mutant were more heat sensitive than the wild type (WT). Nearly 3-fold more taurocholate was needed to germinate spores from the tcdR mutant than to germinate the spores prepared from the WT strain. Transmission electron microscopic analysis of the spores also revealed a weakly assembled exosporium on the tcdR mutant spores. Accordingly, comparative transcriptome analysis showed many differentially expressed sporulation genes in the tcdR mutant compared to the WT strain. These data suggest that regulatory networks of toxin production and sporulation in C. difficile strain R20291 a re linked with each other. IMPORTANCE C. difficile infects thousands of hospitalized patients every year, causing significant morbidity and mortality. C. difficile spores play a pivotal role in the transmission of the pathogen in the hospital environment. During infection, the spores germinate, and the vegetative bacterial cells produce toxins that damage host tissue. Thus, sporulation and toxin production are two important traits of C. difficile . In this study, we showed that a mutation in tcdR , the toxin gene regulator, affects both toxin production and sporulation in epidemic-type C. difficile strain R20291.
Effect of tcdR Mutation on Sporulation in the Epidemic Clostridium difficile Strain R20291
Girinathan, Brintha P.; Monot, Marc; Boyle, Daniel; McAllister, Kathleen N.; Dupuy, Bruno
2017-01-01
ABSTRACT Clostridium difficile is an important nosocomial pathogen and the leading cause of hospital-acquired diarrhea. Antibiotic use is the primary risk factor for the development of C. difficile-associated disease because it disrupts normally protective gut flora and enables C. difficile to colonize the colon. C. difficile damages host tissue by secreting toxins and disseminates by forming spores. The toxin-encoding genes, tcdA and tcdB, are part of a pathogenicity locus, which also includes the tcdR gene that codes for TcdR, an alternate sigma factor that initiates transcription of tcdA and tcdB genes. We created a tcdR mutant in epidemic-type C. difficile strain R20291 in an attempt to identify the global role of tcdR. A site-directed mutation in tcdR affected both toxin production and sporulation in C. difficile R20291. Spores of the tcdR mutant were more heat sensitive than the wild type (WT). Nearly 3-fold more taurocholate was needed to germinate spores from the tcdR mutant than to germinate the spores prepared from the WT strain. Transmission electron microscopic analysis of the spores also revealed a weakly assembled exosporium on the tcdR mutant spores. Accordingly, comparative transcriptome analysis showed many differentially expressed sporulation genes in the tcdR mutant compared to the WT strain. These data suggest that regulatory networks of toxin production and sporulation in C. difficile strain R20291 are linked with each other. IMPORTANCE C. difficile infects thousands of hospitalized patients every year, causing significant morbidity and mortality. C. difficile spores play a pivotal role in the transmission of the pathogen in the hospital environment. During infection, the spores germinate, and the vegetative bacterial cells produce toxins that damage host tissue. Thus, sporulation and toxin production are two important traits of C. difficile. In this study, we showed that a mutation in tcdR, the toxin gene regulator, affects both toxin production and sporulation in epidemic-type C. difficile strain R20291. PMID:28217744
Zheng, H; Peret, T C; Randolph, V B; Crowley, J C; Anderson, L J
1996-01-01
Candidate live-virus vaccines for respiratory syncytial virus are being developed and are beginning to be evaluated in clinical trials. To distinguish candidate vaccine strains from wild-type strains isolated during these trials, we developed PCR assays specific to two sets of candidate vaccine strains. The two sets were a group A strain (3A), its three attenuated, temperature-sensitive variant strains, a group B strain (2B), and its four attenuated, temperature-sensitive variant strains. The PCR assays were evaluated by testing 18 group A wild-type strains, the 3A strains, 9 group B wild-type strains, and the 2B strains. PCR specific to group A wild-type strains amplified only group A wild-type strains, and 3A-specific PCR amplified only 3A strains. PCR specific to group B wild-type strains amplified all group A and group B strains but gave a 688-bp product for group B wild-type strains, a 279-bp product for 2B strains, a 547-bp product for all group A strains, and an additional 688-bp product for some group A strains, including 3A strains. These types of PCR assays can, in conjunction with other methods, be used to efficiently distinguish candidate vaccine strains from other respiratory syncytial virus strains. PMID:8789010
Kohayagawa, Yoshitaka; Ishitobi, Natsuko; Yamamori, Yuji; Wakuri, Miho; Sano, Chiaki; Tominaga, Kiyoshi; Ikebe, Tadayoshi
2015-02-01
Streptococcal toxic shock syndrome is a severe infectious disease. We report a Japanese case of Streptococcal toxic shock syndrome caused by a highly mucoid strain of Streptococcus pyogenes. A 31-year old female with shock vital sign presented at a tertiary medical center. Her left breast was necrotizing and S. pyogenes was detected by Immunochromatographic rapid diagnostic kits. Intensive care, including administration of antibiotics and skin debridement, was performed. After 53 days in our hospital, she was discharged. The blood cultures and skin swab cultures all grew S. pyogenes which displayed a highly mucoid morphology on culture media. In her course of the disease, the Streptococcus strain had infected two other family members. All of the strains possessed the T1 and M1 antigens, as well as the emm1.0 gene. As for fever genes, the strains were all positive for speA, speB, and speF, but negative for speC. All of the strains exhibited and the same pattern in PFGE with the SfiI restriction enzyme. The strain might have spread in the local area by the data from the Japanese Infectious Disease Surveillance Center. Immunochromatographic rapid diagnostic kits are very useful for detecting S. pyogenes. However, they can not be used to diagnose severe streptococcul disease by highly mucoid strain alone. Careful observation of patients and colony morphology are useful methods for diagnosing severe streptococcal disease by highly mucoid strain. Copyright © 2014 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Buommino, Elisabetta; Nocera, Francesca Paola; Parisi, Annamaria; Rizzo, Antonietta; Donnarumma, Giovanna; Mallardo, Karina; Fiorito, Filomena; Baroni, Adone; De Martino, Luisa
2016-07-01
Malassezia pachydermatis is a yeast belonging to the microbiota of the skin and mucous membranes of dog and cat, but it can also act as pathogen, causing dermatitis. The aim of this work was to evaluate the genetic variability of M. pachydermatis strains isolated from symptomatic dogs and cats and determine a correlation between genotype and phenotype. For this purpose eleven strains of M. pachydermatis were molecularly classified by nested-polymerase chain reaction (nested-PCR) based on ITS-1 and ITS-2 regions, specific for fungal rRNA genes. Furthermore, random amplification of polymorphic DNA (RAPD) was applied for genetic typing of M. pachydermatis isolates identifying four different genotypes. Strains belonging to genotype 1 produced the highest amount of biofilm and phospholipase activity. The inflammatory response induced by M. pachydermatis strains in immortalized human keratinocytes (HaCat cells) was significantly different when we compared the results obtained from each strain. In particular, HaCat cells infected with the strains belonging to genotypes 1 and 2 triggered the highest levels of increase in TLR-2, IL-1β, IL-6, IL-8, COX-2 and MMP-9 expression. By contrast, cells infected with the strains of genotype 3 and those of genotype 4 did not significantly induce TLR-2 and cytokines. The results obtained might suggest a possible association between genotype and virulence factors expressed by M. pachydermatis strains. This highlights the need for a more accurate identification of the yeast to improve the therapeutic approach and to monitor the onset of human infections caused by this emergent zoonotic pathogen.
Complete genome sequence of Tsukamurella paurometabola type strain (no. 33T)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munk, Christine; Lapidus, Alla L.; Lucas, Susan
2011-01-01
Tsukamurella paurometabola corrig. (Steinhaus 1941) Collins et al. 1988 is the type species of the genus Tsukamurella, which is the type genus to the family Tsukamurellaceae. The spe- cies is not only of interest because of its isolated phylogenetic location, but also because it is a human opportunistic pathogen with some strains of the species reported to cause lung in- fection, lethal meningitis, and necrotizing tenosynovitis. This is the first completed genome sequence of a member of the genus Tsukamurella and the first genome sequence of a member of the family Tsukamurellaceae. The 4,479,724 bp long genome contains a 99,806more » bp long plasmid and a total of 4,335 protein-coding and 56 RNA genes, and is a part of the Ge- nomic Encyclopedia of Bacteria and Archaea project.« less
Mustapha, Mustapha M; Marsh, Jane W; Krauland, Mary G; Fernandez, Jorge O; de Lemos, Ana Paula S; Dunning Hotopp, Julie C; Wang, Xin; Mayer, Leonard W; Lawrence, Jeffrey G; Hiller, N Luisa; Harrison, Lee H
2016-07-03
Neisseria meningitidis is an important cause of meningococcal disease globally. Sequence type (ST)-11 clonal complex (cc11) is a hypervirulent meningococcal lineage historically associated with serogroup C capsule and is believed to have acquired the W capsule through a C to W capsular switching event. We studied the sequence of capsule gene cluster (cps) and adjoining genomic regions of 524 invasive W cc11 strains isolated globally. We identified recombination breakpoints corresponding to two distinct recombination events within W cc11: A 8.4-kb recombinant region likely acquired from W cc22 including the sialic acid/glycosyl-transferase gene, csw resulted in a C→W change in capsular phenotype and a 13.7-kb recombinant segment likely acquired from Y cc23 lineage includes 4.5 kb of cps genes and 8.2 kb downstream of the cps cluster resulting in allelic changes in capsule translocation genes. A vast majority of W cc11 strains (497/524, 94.8%) retain both recombination events as evidenced by sharing identical or very closely related capsular allelic profiles. These data suggest that the W cc11 capsular switch involved two separate recombination events and that current global W cc11 meningococcal disease is caused by strains bearing this mosaic capsular switch. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Tsuchida, Atsuko; Yokoi, Norihide; Namae, Misako; Fuse, Masanori; Masuyama, Taku; Sasaki, Masashi; Kawazu, Shoji; Komeda, Kajuro
2008-12-01
The Komeda miniature rat Ishikawa (KMI) is a spontaneous animal model of dwarfism caused by a mutation in Prkg2, which encodes cGMP-dependent protein kinase type II (cGKII). This strain has been maintained as a segregating inbred strain for the mutated allele mri. In this study, we characterized the phenotype of the KMI strain, particularly growth traits, craniofacial measurements, and organ weights. The homozygous mutant (mri/mri) animals were approximately 70% to 80% of the size of normal, heterozygous (mri/+) animals in regard to body length, weight, and naso-occipital length of the calvarium, and the retroperitoneal fat of mri/mri rats was reduced greatly. In addition, among progeny of the (BNxKMI-mri/mri)F1xKMI-mri/mri backcross, animals with the KMI phenotype (mri/mri) were easily distinguished from those showing the wild-type phenotype (mri/+) by using growth traits such as body length and weight. Genetic analysis revealed that all of the backcrossed progeny exhibiting the KMI phenotype were homozygous for the KMI allele in the 1.2-cM region between D14Rat5 and D14Rat80 on chromosome 14, suggesting strongly that mri acts in a completely recessive manner. The KMI strain is the first and only rat model with a confirmed mutation in Prkg2 and is a valuable model for studying dwarfism and longitudinal growth traits in humans and for functional studies of cGKII.
NASA Astrophysics Data System (ADS)
Sarkar, Aritra; Nagesha, A.; Parameswaran, P.; Sandhya, R.; Laha, K.
2015-12-01
Formation of surface relief and short cracks under cyclic creep (stress-controlled fatigue) in type 316LN stainless steel was studied at temperatures ranging from ambient to 923 K using scanning electron microscopy technique. The surface topography and crack distribution behaviour under cyclic creep were found to be strong functions of testing temperature due to the difference in strain accumulation. At 823 K, surface relief mainly consisted of fine slip markings due to negligible accumulation of strain as a consequence of dynamic strain ageing (DSA) which led to an increase in the cyclic life. Persistent slip markings (PSM) with distinct extrusions containing minute cracks were seen to prevail in the temperature range 873-923 K, indicating a higher slip activity causing higher strain accumulation in the absence of DSA. Besides, a large number of secondary cracks (both transgranular and intergranular) which were partially accentuated by severe oxidation, were observed. Extensive cavitation-induced grain boundary cracking took place at 923 K, which coalesced with PSM-induced transgranular cracks resulting in failure dominated by creep that in turn led to a drastic reduction in cyclic life. Investigations on the influence of stress rate were also carried out which underlined the presence of DSA at 823 K. At 923 K, lowering the stress rate caused further strengthening of the contribution from creep damage marked by a shift in the damage mechanism from cyclic slip to diffusion.
Tsuchida, Atsuko; Yokoi, Norihide; Namae, Misako; Fuse, Masanori; Masuyama, Taku; Sasaki, Masashi; Kawazu, Shoji; Komeda, Kajuro
2008-01-01
The Komeda miniature rat Ishikawa (KMI) is a spontaneous animal model of dwarfism caused by a mutation in Prkg2, which encodes cGMP-dependent protein kinase type II (cGKII). This strain has been maintained as a segregating inbred strain for the mutated allele mri. In this study, we characterized the phenotype of the KMI strain, particularly growth traits, craniofacial measurements, and organ weights. The homozygous mutant (mri/mri) animals were approximately 70% to 80% of the size of normal, heterozygous (mri/+) animals in regard to body length, weight, and naso-occipital length of the calvarium, and the retroperitoneal fat of mri/mri rats was reduced greatly. In addition, among progeny of the (BN×KMI-mri/mri)F1×KMI-mri/mri backcross, animals with the KMI phenotype (mri/mri) were easily distinguished from those showing the wild-type phenotype (mri/+) by using growth traits such as body length and weight. Genetic analysis revealed that all of the backcrossed progeny exhibiting the KMI phenotype were homozygous for the KMI allele in the 1.2-cM region between D14Rat5 and D14Rat80 on chromosome 14, suggesting strongly that mri acts in a completely recessive manner. The KMI strain is the first and only rat model with a confirmed mutation in Prkg2 and is a valuable model for studying dwarfism and longitudinal growth traits in humans and for functional studies of cGKII. PMID:19149413
Ciszewski, Marcin; Zegarski, Kamil; Szewczyk, Eligia M
2016-11-01
Streptococcus dysgalactiae is a pyogenic species pathogenic both for humans and animals. Until recently, it has been considered an exclusive animal pathogen causing infections in wild as well as domestic animals. Currently, human infections are being reported with increasing frequency, and their clinical picture is often similar to the ones caused by Streptococcus pyogenes. Due to the fact that S. dysgalactiae is a heterogeneous species, it was divided into two subspecies: S. dysgalactiae subsp. equisimilis (SDSE) and S. dysgalactiae subsp. dysgalactiae (SDSD). The first differentiation criterion, described in 1996, was based on strain isolation source. Currently applied criteria, published in 1998, are based on hemolysis type and Lancefield group classification. In this study, we compared subspecies identification results for 36 strains isolated from clinical cases both in humans and animals. Species differentiation was based on two previously described criteria as well as MALDI-TOF and genetic analyses: RISA and 16S rRNA genes sequencing. Antimicrobial susceptibility profiles were also determined according to CLSI guidelines. The results presented in our study suggest that the subspecies differentiation criteria previously described in the above two literature positions seem to be inaccurate in analyzed group of strains, the hemolysis type on blood agar, and Lancefield classification should not be here longer considered as criteria in subspecies identification. The antimicrobial susceptibility tests indicate emerging of multiresistant human SDSE strains resistant also to vancomycin, linezolid and tigecycline, which might pose a substantial problem in treatment.
Gardner, Christina L.; Burke, Crystal W.; Higgs, Stephen T.; Klimstra, William B.; Ryman, Kate D.
2012-01-01
In humans, chikungunya virus (CHIKV) infection causes fever, rash, and acute and persisting polyarthalgia/arthritis associated with joint swelling. We report a new CHIKV disease model in adult mice that distinguishes the wild-type CHIKV-LR strain from the live-attenuated vaccine strain (CHIKV-181/25). Although eight-week old normal mice inoculated in the hind footpad developed no hind limb swelling with either virus, CHIKV-LR replicated in musculoskeletal tissues and caused detectable inflammation. In mice deficient in STAT1-dependent interferon (IFN) responses, CHIKV-LR caused significant swelling of the inoculated and contralateral limbs and dramatic inflammatory lesions, while CHIKV-181/25 vaccine and another arthritogenic alphavirus, Sindbis, failed to induce swelling. IFN responses suppressed CHIKV-LR and CHIKV-181/25 replication equally in dendritic cells in vitro whereas macrophages were refractory to infection independently of STAT1-mediated IFN responses. Glycosaminoglycan (GAG) binding may be a CHIKV vaccine attenuation mechanism as CHIKV-LR infectivity was not dependent upon GAG, while CHIKV-181/25 was highly dependent. PMID:22305131
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruhlig, M.A.; Person, S.
1977-11-01
The isolation of syncytium-producing mutants of herpes simplex virus type 1 (KOS strain), which cause extensive cell fusion during otherwise normal infections, has been reported previously (S. Person, R.W. Knowles, G.S. Read, S.C. Warner, and V.C. Bond, J. Virol. 17:183-190, 1976). Seven of these mutants, plus two syncytial strains obtained elsewhere were used to compare the incorporation of labeled galactose into neutral glycolipids of mock-infected, wild-type-infected, and syncytially infected human embryonic lung cells. Five predominant cellular glycolipid species were observed, denoted GL-1 through GL-5 in order of increasing oligosaccharide chain length; for example, GL-1 and GL-2 correspond to glycolipids thatmore » contain mono- and disaccharide units, respectively. Wild-type virus infection caused an increase in galactose incorporation into GL-1 and GL-2 relative to GL-3 through GL-5. For a single labeling interval from 4 to 10 h after adsorption, syncytial infections generally resulted in a relatively greater incorporation into more complex glycolipids than did wild-type infections. One mutant, syn 20, was compared with wild-type virus throughout infection by using a series of shorter labeling pulses and appeared to delay by at least 2 h the alterations observed during wild-type infections. These alterations are apparently due to defects in synthesis, since prelabeled cellular glycolipids were not differentially degraded during mock or virus infection.« less
Siriphap, Achiraya; Leekitcharoenphon, Pimlapas; Kaas, Rolf S; Theethakaew, Chonchanok; Aarestrup, Frank M; Sutheinkul, Orasa; Hendriksen, Rene S
2017-01-01
Cholera is still an important public health problem in several countries, including Thailand. In this study, a collection of clinical and environmental V. cholerae serogroup O1, O139, and non-O1/non-O139 strains originating from Thailand (1983 to 2013) was characterized to determine phenotypic and genotypic traits and to investigate the genetic relatedness. Using a combination of conventional methods and whole genome sequencing (WGS), 78 V. cholerae strains were identified. WGS was used to determine the serogroup, biotype, virulence, mobile genetic elements, and antimicrobial resistance genes using online bioinformatics tools. In addition, phenotypic antimicrobial resistance was determined by the minimal inhibitory concentration (MIC) test. The 78 V. cholerae strains belonged to the following serogroups O1: (n = 44), O139 (n = 16) and non-O1/non-O139 (n = 18). Interestingly, we found that the typical El Tor O1 strains were the major cause of clinical cholera during 1983-2000 with two Classical O1 strains detected in 2000. In 2004-2010, the El Tor variant strains revealed genotypes of the Classical biotype possessing either only ctxB or both ctxB and rstR while they harbored tcpA of the El Tor biotype. Thirty O1 and eleven O139 clinical strains carried CTXϕ (Cholera toxin) and tcpA as well four different pathogenic islands (PAIs). Beside non-O1/non-O139, the O1 environmental strains also presented chxA and Type Three Secretion System (TTSS). The in silico MultiLocus Sequence Typing (MLST) discriminated the O1 and O139 clinical strains from other serogroups and environmental strains. ST69 was dominant in the clinical strains belonging to the 7th pandemic clone. Non-O1/non-O139 and environmental strains showed various novel STs indicating genetic variation. Multidrug-resistant (MDR) strains were observed and conferred resistance to ampicillin, azithromycin, nalidixic acid, sulfamethoxazole, tetracycline, and trimethoprim and harboured variants of the SXT elements. For the first time since 1986, the presence of V. cholerae O1 Classical was reported causing cholera outbreaks in Thailand. In addition, we found that V. cholerae O1 El Tor variant and O139 were pre-dominating the pathogenic strains in Thailand. Using WGS and bioinformatic tools to analyze both historical and contemporary V. cholerae circulating in Thailand provided a more detailed understanding of the V. cholerae epidemiology, which ultimately could be applied for control measures and management of cholera in Thailand.
Siriphap, Achiraya; Leekitcharoenphon, Pimlapas; Kaas, Rolf S.; Theethakaew, Chonchanok; Aarestrup, Frank M.; Sutheinkul, Orasa; Hendriksen, Rene S.
2017-01-01
Cholera is still an important public health problem in several countries, including Thailand. In this study, a collection of clinical and environmental V. cholerae serogroup O1, O139, and non-O1/non-O139 strains originating from Thailand (1983 to 2013) was characterized to determine phenotypic and genotypic traits and to investigate the genetic relatedness. Using a combination of conventional methods and whole genome sequencing (WGS), 78 V. cholerae strains were identified. WGS was used to determine the serogroup, biotype, virulence, mobile genetic elements, and antimicrobial resistance genes using online bioinformatics tools. In addition, phenotypic antimicrobial resistance was determined by the minimal inhibitory concentration (MIC) test. The 78 V. cholerae strains belonged to the following serogroups O1: (n = 44), O139 (n = 16) and non-O1/non-O139 (n = 18). Interestingly, we found that the typical El Tor O1 strains were the major cause of clinical cholera during 1983–2000 with two Classical O1 strains detected in 2000. In 2004–2010, the El Tor variant strains revealed genotypes of the Classical biotype possessing either only ctxB or both ctxB and rstR while they harbored tcpA of the El Tor biotype. Thirty O1 and eleven O139 clinical strains carried CTXϕ (Cholera toxin) and tcpA as well four different pathogenic islands (PAIs). Beside non-O1/non-O139, the O1 environmental strains also presented chxA and Type Three Secretion System (TTSS). The in silico MultiLocus Sequence Typing (MLST) discriminated the O1 and O139 clinical strains from other serogroups and environmental strains. ST69 was dominant in the clinical strains belonging to the 7th pandemic clone. Non-O1/non-O139 and environmental strains showed various novel STs indicating genetic variation. Multidrug-resistant (MDR) strains were observed and conferred resistance to ampicillin, azithromycin, nalidixic acid, sulfamethoxazole, tetracycline, and trimethoprim and harboured variants of the SXT elements. For the first time since 1986, the presence of V. cholerae O1 Classical was reported causing cholera outbreaks in Thailand. In addition, we found that V. cholerae O1 El Tor variant and O139 were pre-dominating the pathogenic strains in Thailand. Using WGS and bioinformatic tools to analyze both historical and contemporary V. cholerae circulating in Thailand provided a more detailed understanding of the V. cholerae epidemiology, which ultimately could be applied for control measures and management of cholera in Thailand. PMID:28103259
Fulton, Kelly M.; Zhao, Xigeng; Petit, Mireille D.; Kilmury, Sara L.N; Wolfraim, Lawrence A.; House, Robert V.; Sjostedt, Anders; Twine, Susan M.
2011-01-01
Francisella tularensis is pathogenic for many mammalian species including humans, causing a spectrum of diseases called tularemia. The highly virulent Type A strains have associated mortality rates of up to 60% if inhaled. An attenuated live vaccine strain (LVS) is the only vaccine to show efficacy in humans, but suffers several barriers to licensure, including the absence of a correlate of protection. An immunoproteomics approach was used to survey the repertoire of antibodies in sera from individuals who had contracted tularemia during two outbreaks and individuals from two geographical areas who had been vaccinated with NDBR Lot 11 or Lot 17 LVS. These data showed a large overlap in the antibodies generated in response to tularemia infection or LVS vaccination. A total of seven proteins were observed to be reactive with 60 % or more sera from vaccinees and convalescents. A further four proteins were recognised by 30–60 % of the sera screened. These proteins have the potential to serve as markers of vaccination or candidates for subunit vaccines. PMID:21873113
Adjustable Membrane Mirrors Incorporating G-Elastomers
NASA Technical Reports Server (NTRS)
Chang, Zensheu; Morgan, Rhonda M.; Xu, Tian-Bing; Su, Ji; Hishinuma, Yoshikazu; Yang, Eui-Hyeok
2008-01-01
Lightweight, flexible, large-aperture mirrors of a type being developed for use in outer space have unimorph structures that enable precise adjustment of their surface figures. A mirror of this type includes a reflective membrane layer bonded with an electrostrictive grafted elastomer (G-elastomer) layer, plus electrodes suitably positioned with respect to these layers. By virtue of the electrostrictive effect, an electric field applied to the G-elastomer membrane induces a strain along the membrane and thus causes a deflection of the mirror surface. Utilizing this effect, the mirror surface figure can be adjusted locally by individually addressing pairs of electrodes. G-elastomers, which were developed at NASA Langley Research Center, were chosen for this development in preference to other electroactive polymers partly because they offer superior electromechanical performance. Whereas other electroactive polymers offer, variously, large strains with low moduli of elasticity or small strains with high moduli of elasticity, G-elastomers offer both large strains (as large as 4 percent) and high moduli of elasticity (about 580 MPa). In addition, G-elastomer layers can be made by standard melt pressing or room-temperature solution casting.
Protective efficacy of Zika vaccine in AG129 mouse model
Sumathy, K.; Kulkarni, Bharathi; Gondu, Ravi Kumar; Ponnuru, Sampath Kumar; Bonguram, Nagaraju; Eligeti, Rakesh; Gadiyaram, Sindhuja; Praturi, Usha; Chougule, Bhushan; Karunakaran, Latha; Ella, Krishna M.
2017-01-01
Zika virus (ZIKV) is a mosquito-borne flavivirus that causes asymptomatic infection or presents only mild symptoms in majority of those infected. However, vaccination for ZIKV is a public health priority due to serious congenital and neuropathological abnormalities observed as a sequelae of the virus infection in the recent epidemics. We have developed an inactivated virus vaccine with the African MR 766 strain. Here we show that two doses of the vaccine provided 100% efficacy against mortality and disease following challenge with homotypic MR 766 and the heterotypic FSS 13025 ZIKV strains in the Type I and Type II interferon deficient AG129 mice. Two doses of the vaccine elicited high titer of neutralizing antibodies in Balb/c mice, and the vaccine antisera conferred protection against virus challenge in passively immunized mice. The studies were useful to rationalize vaccine doses for protective efficacy. Furthermore, the vaccine antisera neutralized the homotypic and heterotypic ZIKV strains in vitro with equivalent efficiency. Our study suggests a single ZIKV serotype, and that the development of an effective vaccine may not be limited by the choice of virus strain. PMID:28401907
Protective efficacy of Zika vaccine in AG129 mouse model.
Sumathy, K; Kulkarni, Bharathi; Gondu, Ravi Kumar; Ponnuru, Sampath Kumar; Bonguram, Nagaraju; Eligeti, Rakesh; Gadiyaram, Sindhuja; Praturi, Usha; Chougule, Bhushan; Karunakaran, Latha; Ella, Krishna M
2017-04-12
Zika virus (ZIKV) is a mosquito-borne flavivirus that causes asymptomatic infection or presents only mild symptoms in majority of those infected. However, vaccination for ZIKV is a public health priority due to serious congenital and neuropathological abnormalities observed as a sequelae of the virus infection in the recent epidemics. We have developed an inactivated virus vaccine with the African MR 766 strain. Here we show that two doses of the vaccine provided 100% efficacy against mortality and disease following challenge with homotypic MR 766 and the heterotypic FSS 13025 ZIKV strains in the Type I and Type II interferon deficient AG129 mice. Two doses of the vaccine elicited high titer of neutralizing antibodies in Balb/c mice, and the vaccine antisera conferred protection against virus challenge in passively immunized mice. The studies were useful to rationalize vaccine doses for protective efficacy. Furthermore, the vaccine antisera neutralized the homotypic and heterotypic ZIKV strains in vitro with equivalent efficiency. Our study suggests a single ZIKV serotype, and that the development of an effective vaccine may not be limited by the choice of virus strain.
Mizan, Md Furkanur Rahaman; Jahid, Iqbal Kabir; Kim, Minhui; Lee, Ki-Hoon; Kim, Tae Jo; Ha, Sang-Do
2016-01-01
Vibrio parahaemolyticus is one of the leading foodborne pathogens causing seafood contamination. Here, 22 V. parahaemolyticus strains were analyzed for biofilm formation to determine whether there is a correlation between biofilm formation and quorum sensing (QS), swimming motility, or hydrophobicity. The results indicate that the biofilm formation ability of V. parahaemolyticus is positively correlated with cell surface hydrophobicity, autoinducer (AI-2) production, and protease activity. Field emission scanning electron microscopy (FESEM) showed that strong-biofilm-forming strains established thick 3-D structures, whereas poor-biofilm-forming strains produced thin inconsistent biofilms. In addition, the distribution of the genes encoding pandemic clone factors, type VI secretion systems (T6SS), biofilm functions, and the type I pilus in the V. parahaemolyticus seafood isolates were examined. Biofilm-associated genes were present in almost all the strains, irrespective of other phenotypes. These results indicate that biofilm formation on/in seafood may constitute a major factor in the dissemination of V. parahaemolyticus and the ensuing diseases.
Schmidt, Maria Augusta; Balsanelli, Eduardo; Faoro, Hellison; Cruz, Leonardo M; Wassem, Roseli; de Baura, Valter A; Weiss, Vinícius; Yates, Marshall G; Madeira, Humberto M F; Pereira-Ferrari, Lilian; Fungaro, Maria H P; de Paula, Francine M; Pereira, Luiz F P; Vieira, Luiz G E; Olivares, Fábio L; Pedrosa, Fábio O; de Souza, Emanuel M; Monteiro, Rose A
2012-06-06
Herbaspirillum rubrisubalbicans was first identified as a bacterial plant pathogen, causing the mottled stripe disease in sugarcane. H. rubrisubalbicans can also associate with various plants of economic interest in a non pathogenic manner. A 21 kb DNA region of the H. rubrisubalbicans genome contains a cluster of 26 hrp/hrc genes encoding for the type three secretion system (T3SS) proteins. To investigate the contribution of T3SS to the plant-bacterial interaction process we generated mutant strains of H. rubrisubalbicans M1 carrying a Tn5 insertion in both the hrcN and hrpE genes. H. rubrisulbalbicans hrpE and hrcN mutant strains of the T3SS system failed to cause the mottled stripe disease in the sugarcane susceptible variety B-4362. These mutant strains also did not produce lesions on Vigna unguiculata leaves. Oryza sativa and Zea mays colonization experiments showed that mutations in hrpE and hrcN genes reduced the capacity of H. rubrisulbalbicans to colonize these plants, suggesting that hrpE and hrcN genes are involved in the endophytic colonization. Our results indicate that the T3SS of H. rubrisubalbicans is necessary for the development of the mottled stripe disease and endophytic colonization of rice.
Tedim, Ana P.; Lanza, Val F.; Manrique, Marina; Pareja, Eduardo; Ruiz-Garbajosa, Patricia; Cantón, Rafael; Baquero, Fernando; Tobes, Raquel
2017-01-01
ABSTRACT The emergence of nosocomial infections by multidrug-resistant sequence type 117 (ST117) Enterococcus faecium has been reported in several European countries. ST117 has been detected in Spanish hospitals as one of the main causes of bloodstream infections. We analyzed genome variations of ST117 strains isolated in Madrid and describe the first ST117 closed genome sequences. PMID:28360174
Duarte, Andreia; Santos, Andrea; Manageiro, Vera; Martins, Ana; Fraqueza, Maria J; Caniça, Manuela; Domingues, Fernanda C; Oleastro, Mónica
2014-10-01
Infections by Campylobacter jejuni and Campylobacter coli are considered the major cause of bacterial gastroenteritis in humans, with food being the main source of infection. In this study, a total of 196 Campylobacter strains (125 isolates from humans, 39 from retail food and 32 from food animal sources) isolated in Portugal between 2009 and 2012 were characterised by multilocus sequence typing (MLST) and flaA short variable region (SVR) typing. Susceptibility to six antibiotics as well as the mechanisms underlying antibiotic resistance phenotypes was also studied. Based on MLST typing, C. coli strains were genetically more conserved, with a predominant clonal complex (CC828), than C. jejuni strains. In contrast, C. coli isolates were genetically more variable than C. jejuni with regard to flaA-SVR typing. A high rate of resistance was observed for quinolones (100% to nalidixic acid, >90% to ciprofloxacin) and, in general, resistance was more common among C. coli, especially for erythromycin (40.2% vs. 6.7%). In addition, most isolates (86%) were resistant to multiple antimicrobial families. Besides the expected point mutations associated with antibiotic resistance, detected polymorphisms in the cmeABC locus likely play a role in the multiresistant phenotype. This study provides for the first time an overview of the genetic diversity of Campylobacter strains from Portugal. It also shows a worrying antibiotic multiresistance rate and the emergence of Campylobacter strains resistant to antibiotics of human use. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Li, Boqiang; Peng, Huaimin; Tian, Shiping
2016-01-01
Rhodotorula glutinis as an antagonism show good biocontrol performance against various post-harvest diseases in fruits. In the present study, strong attachment capability of R. glutinis to spores and hyphae of Botrytis cinerea was observed. Further analysis showed that certain protein components on the yeast cell surface played critical role during the interaction between R. glutinis and B. cinerea. The components mainly distributed at the poles of yeast cells and might contain glycosylation modification, as tunicamycin treated yeast cells lost attachment capability to B. cinerea. To investigate contributions of attachment capability of R. glutinis to its biocontrol efficacy, yeast cells were mutagenized with 3% methane-sulfonic acid ethyl ester (EMS), and a mutant CE4 with stable non-attaching phenotype was obtained. No significant difference was found on colony, cell morphology, reproductive ability, and capsule formation between the mutant and wild-type. However, there was a distinct difference in India ink positive staining patterns between the two strains. Moreover, wild-type strain of R. glutinis showed better performance on inhibiting spore germination and mycelial growth of B. cinerea than CE4 strain when yeast cells and B. cinerea were co-cultured in vitro. In biocontrol assay, both wild-type and CE4 strains showed significant biocontrol efficacy against gray mold caused by B. cinerea in apple fruit, whereas, control effect of CE4 strain was lower than that of wild-type. Our findings provided new evidences that attachment capability of R. glutinis to B. cinerea contributed to its biocontrol efficacy.
Li, Boqiang; Peng, Huaimin; Tian, Shiping
2016-01-01
Rhodotorula glutinis as an antagonism show good biocontrol performance against various post-harvest diseases in fruits. In the present study, strong attachment capability of R. glutinis to spores and hyphae of Botrytis cinerea was observed. Further analysis showed that certain protein components on the yeast cell surface played critical role during the interaction between R. glutinis and B. cinerea. The components mainly distributed at the poles of yeast cells and might contain glycosylation modification, as tunicamycin treated yeast cells lost attachment capability to B. cinerea. To investigate contributions of attachment capability of R. glutinis to its biocontrol efficacy, yeast cells were mutagenized with 3% methane-sulfonic acid ethyl ester (EMS), and a mutant CE4 with stable non-attaching phenotype was obtained. No significant difference was found on colony, cell morphology, reproductive ability, and capsule formation between the mutant and wild-type. However, there was a distinct difference in India ink positive staining patterns between the two strains. Moreover, wild-type strain of R. glutinis showed better performance on inhibiting spore germination and mycelial growth of B. cinerea than CE4 strain when yeast cells and B. cinerea were co-cultured in vitro. In biocontrol assay, both wild-type and CE4 strains showed significant biocontrol efficacy against gray mold caused by B. cinerea in apple fruit, whereas, control effect of CE4 strain was lower than that of wild-type. Our findings provided new evidences that attachment capability of R. glutinis to B. cinerea contributed to its biocontrol efficacy. PMID:27199931
NASA Astrophysics Data System (ADS)
Mueller, Barbara
2016-04-01
Using bacteria of the strain Pseudomonas fluorescens wild type CHA0 and its genetic derivative strains CHA77, CHA89, CHA400, CHA631 and CHA661 (which differ in one gene only) the changes in chemical, mineralogical and rheological properties of the clay mineral vermiculite affected by microbial activity were studied in order to test whether the individually different production of metabolites by the genetically engineered strains may alter the clay mineral vermiculite in distinct ways. With the novel strategy of working with living wild type bacteria, their genetic derivatives and clay, the following properties of the mineral altered by the various strains of Pseudomonas fluorescens were determined: grain size, X-Ray diffraction pattern, intercrystalline swelling with glycerol, layer charge, CEC, BET surface and uptake of trace elements. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to determine the changes in major, minor and trace elements of the clay vermiculite affected by microbial activity. Among all analyzed trace elements, Fe, Mn and Cu are the most interesting. Fe and Mn are taken up from the clay mineral by all bacterial strains whereas Cu is only removed from vermiculite by strains CHA0, CHA77, CHA400 and CHA661. The latter mentioned strains all produce the antibiotics 2,4-diacetylphloroglucinol and monoacetylphloroglucinol which can complex Cu efficiently. Therefore the alteration of only one gene of the bacteria is causing significant effects on the clay mineral.
Szemraj, Magdalena; Kwaszewska, Anna; Pawlak, Renata; Szewczyk, Eligia M
2014-10-01
Corynebacteria exist as part of human skin microbiota. However, under some circumstances, they can cause opportunistic infections. The subject of the study was to examine the macrolide-lincosamide-streptogramin B (MLSB) antibiotic resistance in 99 lipophilic strains of Corynebacterium genus isolated from the skin of healthy men. Over 70% of the tested strains were resistant to erythromycin and clindamycin. All of which demonstrated a constitutive type of MLSB resistance mechanism. In all strains, there were being investigated the erm(A), erm(B), erm(C), erm(X), lin(A), msr(A), and mph(C) genes that could be responsible for the different types of resistance to marcolides, lincosamides, and streptogramin B. In all strains with the MLSB resistance phenotype, the erm(X) gene was detected. None of the other tested genes were discovered. Strains harboring the erm(X) gene were identified using a phenotypic method based on numerous biological and biochemical tests. Identification of the chosen strains was compared with the results of API Coryne, MALDI-TOF MS, and 16S rDNA sequencing methods. Only 7 out of the 23 investigated resistant strains provided successful results in all the used methods, showing that identification of this group of bacteria is still a great challenge. The MLSB resistance mechanism was common in most frequently isolated from healthy human skin Corynebacterium tuberculostearicum and Corynebacterium jeikeium strains. This represents a threat as these species are also commonly described as etiological factors of opportunistic infections.
Leibner-Ciszak, Justyna; Dobrowolska, Anita; Krawczyk, Beata; Kaszuba, Aleksandra; Staczek, Paweł
2010-02-01
In order to identify the source of infections caused by dermatophytes, as well as the pathogen transmission pathway, there is a need to determine methods that allow detailed genetic differentiation of the strains within the dermatophyte genera. In this work, a PCR melting profile (PCR-MP) technique based on the ligation of adaptors and the difference in melting temperatures of DNA restriction fragments was used for the first time for intraspecies genotyping of dermatophytes. Clinical isolates and reference strains of dermatophytes isolated from skin, scalp, toenails and fingernails were used for this study. PCR-MP and random amplification of polymorphic DNA (RAPD) were used to type 11 isolates of Trichophyton rubrum, 40 isolates of Trichophyton interdigitale and 14 isolates of Microsporum canis. The results distinguished five types (containing one subtype) characteristic for T. rubrum and seven types characteristic for T. interdigitale using the PCR-MP technique. Analysis conducted using RAPD revealed five types for T. rubrum and four types for T. interdigitale isolates. No differentiation was observed for the M. canis isolates with either method. These results demonstrate that PCR-MP is a reliable method for the differentiation of T. rubrum and T. interdigitale strains and yields a discriminatory power that is at least equal to that of RAPD.
Chen, Zhong; Pan, Wei-Guang; Xian, Wei-Yi; Cheng, Hang; Zheng, Jin-Xin; Hu, Qing-Hua; Yu, Zhi-Jian; Deng, Qi-Wen
2016-10-01
Staphylococcus aureus is a well-known organism which is responsible for a variety of human infectious diseases including skin infections, pneumonia, bacteremia, and endocarditis. Few of the microorganisms can be transmitted from mother to the newborn or infant by milk breastfeeding. This study aims to identify transmission of S. aureus from healthy, lactating mothers to their infants by breastfeeding. Stool specimens of diarrheal infants and breast milk of their mother (totally three pairs) were collected and six Staphylococcus aureus isolates were cultured positively. Homology and molecular characters of isolated strains were tested using pulsed-field gel electrophoresis (PFGE), spa typing, and multilocus sequence typing. Furthermore, toxin genes detection was also performed. Each pair of isolates has the same PFGE type and spa type. Four Sequence types (STs) were found among all the isolates; they are ST15, ST188, and ST59, respectively. Among the strains, seb, sec, and tst genes were found, and all were negative for pvl gene. The homology of the S. aureus strains isolated from the infants' stool and the mothers' milk was genetically demonstrated, which indicated that breastfeeding may be important in the transmission of S. aureus infection, and the character of S. aureus needed to be further evaluated.
Identification of syncytial mutations in a clinical isolate of herpes simplex virus 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muggeridge, Martin I.; Grantham, Michael L.; Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA 71130
2004-10-25
Small polykaryocytes resulting from cell fusion are found in herpes simplex virus (HSV) lesions in patients, but their significance for viral spread and pathogenesis is unclear. Although syncytial variants causing extensive fusion in tissue culture can be readily isolated from laboratory strains, they are rarely found in clinical isolates, suggesting that extensive cell fusion may be deleterious in vivo. Syncytial mutations have previously been identified for several laboratory strains, but not for clinical isolates of HSV type 2. To address this deficiency, we studied a recent syncytial clinical isolate, finding it to be a mixture of two syncytial and onemore » nonsyncytial strain. The two syncytial strains have novel mutations in glycoprotein B, and in vitro cell fusion assays confirmed that they are responsible for syncytium formation. This panel of clinical strains may be ideal for examining the effect of increased cell fusion on pathogenesis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anno, Toshiro; Sakamoto, Naoya, E-mail: sakan@me.kawasaki-m.ac.jp; Sato, Masaaki
Highlights: Black-Right-Pointing-Pointer Nesprin-1 knockdown decreases widths of nuclei in ECs under static condition. Black-Right-Pointing-Pointer Nuclear strain caused by stretching is increased by nesprin-1 knockdown in ECs. Black-Right-Pointing-Pointer We model mechanical interactions of F-actin with the nucleus in stretched cells. Black-Right-Pointing-Pointer F-actin bound to nesprin-1 may cause sustainable force transmission to the nucleus. -- Abstract: The linker of nucleus and cytoskeleton (LINC) complex, including nesprin-1, has been suggested to be crucial for many biological processes. Previous studies have shown that mutations in nesprin-1 cause abnormal cellular functions and diseases, possibly because of insufficient force transmission to the nucleus through actin filamentsmore » (F-actin) bound to nesprin-1. However, little is known regarding the mechanical interaction between the nucleus and F-actin through nesprin-1. In this study, we examined nuclear deformation behavior in nesprin-1 knocked-down endothelial cells (ECs) subjected to uniaxial stretching by evaluating nuclear strain from lateral cross-sectional images. The widths of nuclei in nesprin-1 knocked-down ECs were smaller than those in wild-type cells. In addition, nuclear strain in nesprin-1 knocked-down cells, which is considered to be compressed by the actin cortical layer, increased compared with that in wild-type cells under stretching condition. These results indicate that nesprin-1 knockdown releases the nucleus from the tension of F-actin bound to the nucleus, thereby increasing allowance for deformation before stretching, and that F-actin bound to the nucleus through nesprin-1 causes sustainable force transmission to the nucleus.« less
Kirdis, Ebru; Jonsson, Ing-Marie; Kubica, Malgorzata; Potempa, Jan; Josefsson, Elisabet; Masalha, Mahmud; Foster, Simon J; Tarkowski, Andrzej
2007-01-01
Staphylococcus aureus is the most common cause of joint infections. It also contributes to several other diseases such as pneumonia, osteomyelitis, endocarditis, and sepsis. Bearing in mind that S. aureus becomes rapidly resistant to new antibiotics, many studies survey the virulence factors, with the aim to find alternative prophylaxis/treatment regimens. One potential virulence factor is the bacterial ability to survive at different oxygen tensions. S. aureus expresses ribonucleotide reductases (RNRs), which help it to grow under both aerobic and anaerobic conditions, by reducing ribonucleotides to deoxyribonucleotides. In this study, we investigated the role of RNR class III, which is required for anaerobic growth, as a virulence determinant in the pathogenesis of staphylococcal arthritis. The wild-type S. aureus strain and its isogenic mutant nrdDG mutant were inoculated intravenously into mice. Mice inoculated with the wild-type strain displayed significantly more severe arthritis, with significantly more synovitis and destruction of the bone and cartilage versus mutant strain inoculated mice. Further, the persistence of bacteria in the kidneys was significantly more pronounced in the group inoculated with the wild-type strain. Together these results indicate that RNR class III is an important virulence factor for the establishment of septic arthritis.
Bartek, Tobias; Blombach, Bastian; Lang, Siegmund; Eikmanns, Bernhard J.; Wiechert, Wolfgang; Oldiges, Marco; Nöh, Katharina; Noack, Stephan
2011-01-01
l-Valine can be formed successfully using C. glutamicum strains missing an active pyruvate dehydrogenase enzyme complex (PDHC). Wild-type C. glutamicum and four PDHC-deficient strains were compared by 13C metabolic flux analysis, especially focusing on the split ratio between glycolysis and the pentose phosphate pathway (PPP). Compared to the wild type, showing a carbon flux of 69% ± 14% through the PPP, a strong increase in the PPP flux was observed in PDHC-deficient strains with a maximum of 113% ± 22%. The shift in the split ratio can be explained by an increased demand of NADPH for l-valine formation. In accordance, the introduction of the Escherichia coli transhydrogenase PntAB, catalyzing the reversible conversion of NADH to NADPH, into an l-valine-producing C. glutamicum strain caused the PPP flux to decrease to 57% ± 6%, which is below the wild-type split ratio. Hence, transhydrogenase activity offers an alternative perspective for sufficient NADPH supply, which is relevant for most amino acid production systems. Moreover, as demonstrated for l-valine, this bypass leads to a significant increase of product yield due to a concurrent reduction in carbon dioxide formation via the PPP. PMID:21784914
Moleleki, Lucy Novungayo; Pretorius, Rudolph Gustav; Tanui, Collins Kipngetich; Mosina, Gabolwelwe; Theron, Jacques
2017-01-01
Pectobacterium carotovorum ssp. brasiliense 1692 (Pcb1692) is an important emerging pathogen of potatoes causing blackleg in the field and soft rot during post-harvest storage. Blackleg diseases involve the bacterial colonization of vascular tissue and the formation of aggregates, also known as biofilms. To understand the role of quorum sensing in vascular colonization by Pcb1692, we generated a Pcb1692ΔexpI mutant strain. Inactivation of expI led to the reduced production of plant cell wall-degrading enzymes (PCWDEs), the inability to produce acyl homoserine lactone (AHL) and reduced virulence in potato tubers and stems. Complementation of the mutant strain with the wild-type expI gene in trans successfully restored AHL and PCWDE production as well as virulence. Transmission electron microscopy and in vitro motility assays demonstrated hyperpiliation and loss of flagella and swimming motility in the mutant strain compared with the wild-type Pcb1692. Furthermore, we noted that, in the early stages of infection, Pcb1692 wild-type cells had intact flagella which were shed at the later stages of infection. Confocal laser microscopy of PcbΔexpI-inoculated plants showed that the mutant strain tended to aggregate in intercellular spaces, but was unable to transit to xylem tissue. On the contrary, the wild-type strain was often observed forming aggregates within xylem tissue of potato stems. Gene expression analyses confirmed that flagella are part of the quorum sensing regulon, whereas fimbriae and pili appear to be negatively regulated by quorum sensing. The relative expression levels of other important putative virulence genes, such as those encoding different groups of PCWDEs, were down-regulated in the mutant compared with the wild-type strain. © 2016 BSPP and John Wiley & Sons Ltd.
Prion Strain Characterization of a Novel Subtype of Creutzfeldt-Jakob Disease.
Galeno, Roberta; Di Bari, Michele Angelo; Nonno, Romolo; Cardone, Franco; Sbriccoli, Marco; Graziano, Silvia; Ingrosso, Loredana; Fiorini, Michele; Valanzano, Angelina; Pasini, Giulia; Poleggi, Anna; Vinci, Ramona; Ladogana, Anna; Puopolo, Maria; Monaco, Salvatore; Agrimi, Umberto; Zanusso, Gianluigi; Pocchiari, Maurizio
2017-06-01
In 2007, we reported a patient with an atypical form of Creutzfeldt-Jakob disease (CJD) heterozygous for methionine-valine (MV) at codon 129 who showed a novel pathological prion protein (PrP TSE ) conformation with an atypical glycoform (AG) profile and intraneuronal PrP deposition. In the present study, we further characterize the conformational properties of this pathological prion protein (PrP TSE MV AG ), showing that PrP TSE MV AG is composed of multiple conformers with biochemical properties distinct from those of PrP TSE type 1 and type 2 of MV sporadic CJD (sCJD). Experimental transmission of CJD-MV AG to bank voles and gene-targeted transgenic mice carrying the human prion protein gene (TgHu mice) showed unique transmission rates, survival times, neuropathological changes, PrP TSE deposition patterns, and PrP TSE glycotypes that are distinct from those of sCJD-MV1 and sCJD-MV2. These biochemical and experimental data suggest the presence of a novel prion strain in CJD-MV AG IMPORTANCE Sporadic Creutzfeldt-Jakob disease is caused by the misfolding of the cellular prion protein, which assumes two different major conformations (type 1 and type 2) and, together with the methionine/valine polymorphic codon 129 of the prion protein gene, contribute to the occurrence of distinct clinical-pathological phenotypes. Inoculation in laboratory rodents of brain tissues from the six possible combinations of pathological prion protein types with codon 129 genotypes results in the identification of 3 or 4 strains of prions. We report on the identification of a novel strain of Creutzfeldt-Jakob disease isolated from a patient who carried an abnormally glycosylated pathological prion protein. This novel strain has unique biochemical characteristics, does not transmit to humanized transgenic mice, and shows exclusive transmission properties in bank voles. The identification of a novel human prion strain improves our understanding of the pathogenesis of the disease and of possible mechanisms of prion transmission. Copyright © 2017 American Society for Microbiology.
Chironna, Maria; Loconsole, Daniela; De Robertis, Anna Lisa; Morea, Anna; Scalini, Egidio; Quarto, Michele; Tafuri, Silvio; Germinario, Cinzia; Manzionna, Mariano
2016-03-01
Macrolide-resistant Mycoplasma pneumoniae (MR-MP) is an increasing problem worldwide. This study describes the clonal spread of a unique strain of MR-MP within a single family. On January 23, 2015, nasopharyngeal swabs and sputum samples were collected from the index case (a 9-year-old girl) in southern Italy. The patient had pneumonia and was initially treated with clarithromycin. MR-MP infection was suspected due to prolonged symptoms despite appropriate antibiotic therapy. Two further cases of pneumonia occurred in relatives (a 7-year-old cousin and the 36-year-old mother of the index case); therefore, respiratory samples were also collected from other family members. Sequence analysis identified mutations associated with resistance to macrolides. Both P1 major adhesion protein typing and multiple loci variable-number tandem repeat analysis (MLVA) typing were performed to assess the relatedness of the strains. The index case, the cousin, the mother, and another 4 family members (twin siblings of the index case, a 3-year-old cousin, and the grandmother) were positive for MR-MP. All strains harbored the mutation A2063G, had the same P1 subtype (1), and were MLVA (7/4/5/7/2) type Z. In addition, the index case's aunt (31 years of age and the probable source of infection) harbored an M pneumoniae strain with the same molecular profile; however, this strain was susceptible to macrolides. This cluster of MR-MP infection/carriage caused by a clonal strain suggests a high transmission rate within this family and highlights the need for increased awareness among clinicians regarding the circulation of MR-MP. Novel strategies for the treatment and prevention of M pneumoniae infections are required.
Schultsz, Constance; Jansen, Ewout; Keijzers, Wendy; Rothkamp, Anja; Duim, Birgitta; Wagenaar, Jaap A; van der Ende, Arie
2012-01-01
Streptococcus suis serotype 2 is the main cause of zoonotic S. suis infection despite the fact that other serotypes are frequently isolated from diseased pigs. Studies comparing concurrent invasive human and pig isolates from a single geographical location are lacking. We compared the population structures of invasive S. suis strains isolated between 1986 and 2008 from human patients (N = 24) and from pigs with invasive disease (N = 124) in The Netherlands by serotyping and multi locus sequence typing (MLST). Fifty-six percent of pig isolates were of serotype 9 belonging to 15 clonal complexes (CCs) or singleton sequence types (ST). In contrast, all human isolates were of serotype 2 and belonged to two non-overlapping clonal complexes CC1 (58%) and CC20 (42%). The proportion of serotype 2 isolates among S. suis strains isolated from humans was significantly higher than among strains isolated from pigs (24/24 vs. 29/124; P<0.0001). This difference remained significant when only strains within CC1 and CC20 were considered (24/24 vs. 27/37,P = 0.004). The Simpson diversity index of the S. suis population isolated from humans (0.598) was smaller than of the population isolated from pigs (0.765, P = 0.05) indicating that the S. suis population isolated from infected pigs was more diverse than the S. suis population isolated from human patients. S. suis serotype 2 strains of CC20 were all negative in a PCR for detection of genes encoding extracellular protein factor (EF) variants. These data indicate that the polysaccharide capsule is an important correlate of human S. suis infection, irrespective of the ST and EF encoding gene type of S. suis strains.
Cosate, Maria Raquel V; Sakamoto, Tetsu; de Oliveira Mendes, Tiago Antônio; Moreira, Élvio C; Regis da Silva, Carlos G; Brasil, Bruno S A F; Oliveira, Camila S F; de Azevedo, Vasco Ariston; Ortega, José Miguel; Leite, Rômulo C; Haddad, João Paulo
2017-06-15
Leptospirosis is caused by pathogenic spirochetes of the genus Leptospira spp. This zoonotic disease is distributed globally and affects domestic animals, including cattle. Leptospira interrogans serogroup Sejroe serovar Hardjo and Leptospira borgpetersenii serogroup Sejroe serovar Hardjo remain important species associated with this reproductive disease in livestock production. Previous studies on Brazilian livestock have reported that L. interrogans serovar Hardjo is the most prevalent leptospiral agent in this country and is related to clinical signs of leptospirosis, which lead to economic losses in production. Here, we described the isolation of three clinical strains (Norma, Lagoa and Bolivia) obtained from leptospirosis outbreaks that occurred in Minas Gerais state in 1994 and 2008. Serological and molecular typing using housekeeping (secY and 16SrRNA) and rfb locus (ORF22 and ORF36) genes were applied for the identification and comparative analysis of Leptospira spp. Our results identified the three isolates as L. interrogans serogroup Sejroe serovar Hardjo and confirmed the occurrence of this bacterial strain in Brazilian livestock. Genetic analysis using ORF22 and ORF36 grouped the Leptospira into serogroup Sejroe and subtype Hardjoprajitno. Genetic approaches were also applied to compare distinct serovars of L. interrogans strains by verifying the copy numbers of the IS1500 and IS1533 insertion sequences (ISs). The IS1500 copy number varied among the analyzed L. interrogans strains. This study provides evidence that L. interrogans serogroup Sejroe serovar Hardjo subtype Hardjoprajitno causes bovine leptospirosis in Brazilian production. The molecular results suggested that rfb locus (ORF22 and ORF36) could improve epidemiological studies by allowing the identification of Leptospira spp. at the serogroup level. Additionally, the IS1500 and IS1533 IS copy number analysis suggested distinct genomic features among closely related leptospiral strains.
Wan Sai Cheong, J; Smith, H; Heney, C; Robson, J; Schlebusch, S; Fu, J; Nourse, C
2015-10-01
Following the introduction of vaccination against Haemophilus influenzae type b (Hib), cases of invasive encapsulated Hib disease have decreased markedly. This study aimed to examine subsequent epidemiological trends in invasive H. influenzae disease in Queensland, Australia and in particular, assess the clinical impact and public health implications of invasive non-typable H. influenzae (NTHi) strains. A multicentre retrospective study was conducted from July 2000 to June 2013. Databases of major laboratories in Queensland including Queensland Forensic and Scientific Services (jurisdictional referral laboratory for isolate typing) were examined to identify cases. Demographic, infection site, Indigenous status, serotype, and mortality data were collected. In total, 737 invasive isolates were identified, of which 586 (79·5%) were serotyped. Hib, NTHi and encapsulated non-b strains, respectively, constituted 12·1%, 69·1% and 18·8% of isolates. The predominant encapsulated non-b strains were f (45·5%) and a (27·3%) serotypes. Of isolates causing meningitis, 48·9% were NTHi, 14·9% Hib, 14·9% Hie, 10·6% Hif, 6·4% Hia and 4·3% were untyped. During the study period, there was an increase in the incidence of invasive NTHi disease (P = 0·007) with seasonal peaks in winter and spring (P 0·001) and Hib (P = 0·039) than non-Indigenous patients. In Queensland, invasive H. influenzae disease is now predominantly encountered in adults and most commonly caused by NTHi strains with demonstrated pathogenicity extending to otherwise young or immunocompetent individuals. Routine public health notification of these strains is recommended and recent available immunization options should be considered.
Lamson Bs, Daryl M; Kajon, Adriana E; Shudt, Matthew; Quinn, Monica; Newman, Alexandra; Whitehouse, Joan; Greenko, Jane; Adams, Eleanor; St George, Kirsten
2018-05-11
Ocular infections caused by human adenovirus (HAdV) are highly contagious. The most severe are usually caused by members of species HAdV-D (types HAdV8, 19, 37, 53, 54, and 56) and can manifest as epidemic keratoconjunctivitis (EKC), often resulting in prolonged impairment of vision. During the early months of 2012, EKC outbreaks occurred in neonatal intensive care units (NICUs) in 3 hospitals in New York State (New York and Suffolk Counties). A total of 32 neonates were affected. For 14 of them, HAdV8 was laboratory-confirmed as the causative agent. Nine healthcare workers were also affected with 3 laboratory-confirmed, HAdV-positive EKC. A fourth EKC outbreak was documented among patients attending a private ophthalmology practice in Ulster County involving a total of 35 cases. Epidemiological linkage between the neonatal intensive care unit outbreaks was demonstrated by molecular typing of virus isolates with restriction enzyme analysis and next generation whole genome sequencing. The strain isolated from the ophthalmology clinic was easily distinguishable from the others by restriction enzyme analysis. © 2018 Wiley Periodicals, Inc.
Bano, Luca; Drigo, Ilenia; Tonon, Elena; Berto, Giacomo; Tavella, Alexander; Woudstra, Cedric; Capello, Katia; Agnoletti, Fabrizio
2015-12-01
Bovine botulism is a sporadic acute disease that usually causes catastrophic losses in the herds. The unusual clinical evolution of a persistent mild outbreak in a dairy herd, prompted us to characterize the neurotoxin gene profile of the strain involved and to evaluate whether seroconversion had occurred. Diagnosis was based on mild classical symptoms and was supported by PCR and bacteriological findings, which revealed the involvement of a non-mosaic type C strain. An in-house ELISA was developed to detect antibodies to botulinum neurotoxin type C and its performance was evaluated in a vaccination study. Fifty days after the index case, fecal and serum samples were collected from the 14 animals of the herd and screened for Clostridium botulinum and anti-botulinum neurotoxin antibodies type C, respectively. The in-house developed ELISA was also used to test 100 sera samples randomly collected from 20 herds. Strong ELISA reactions were observed in 3 convalescent and 5 asymptomatic animals involved in the studied outbreak. The ELISA-positive cows all tested positive for non-mosaic C. botulinum type C in the feces and the same strain was also detected in the alfalfa hay, suspected to be the carrier source. Ten out of the 100 randomly collected sera tested positive for anti-botulinum neurotoxin type C antibodies: 7 had borderline values and 3 from the same herd showed titers three times higher than the cut-off. We concluded that type C botulism in cattle may occur with variable severity and that prolonged exposure to sublethal doses of botulinum neurotoxin C may occur, resulting in detectable antibodies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Meekhanon, Nattakan; Kaewmongkol, Sarawan; Phimpraphai, Waraphon; Okura, Masatoshi; Osaki, Makoto; Sekizaki, Tsutomu; Takamatsu, Daisuke
2017-05-01
Carrier pigs have been considered as the major reservoir of Streptococcus suis and couldbe a significant source of human infection. Therefore, we investigated the prevalence and characteristics of latent S. suis in asymptomatic pigs in the pig-farming area of central Thailand, and compared the data to those previously reported in other regions. We collected samples from 340 asymptomatic pigs. S. suis isolates from the samples were confirmed by species-specific PCR (recN PCR). The capsular polysaccharide synthesis gene (cps) types, virulence-associated gene profiles and sequence types (STs) of the isolates were investigated.Results/Key findings. The prevalence of S. suis found in this study was 37 % (125/340 pigs). The most prevalent genotype was mrp-/epf-/sly-. Among the 16 cps-types identified in 135 isolates, cps-type 16 was the most frequent (11 %), whereas 44 % of the isolates were non-typable. In common with the strains causing human sepsis in Thailand, two cps-type 9 isolates and a cps-type 24 isolate from slaughtered pigs belonged to ST16 and ST221, respectively. All the isolated cps-type 2 strains were confirmed as serotype 2 by co-agglutination tests, and these belonged to ST104, the unique ST commonly found in Thai patients; however, in contrast to the endemic areas, the prevalence of serotype 2 strains was relatively low (2 %) and no ST1 isolate was found. Our results showed the population structure differences between S. suis in central Thailand and other regions; however, zoonotic S. suis is certainly latent in asymptomatic pigs in this intensive swine production area.
Yan, Ju-Ying; Lu, Yi-Yu; Xu, Chang-Ping; Yu, Zhao; Gong, Li-Ming; Chen, Yin; Zhang, Yan-Jun
2011-09-01
In order to confirm the cause of the outbreak of aseptic meningitis in Zhejiang Province in 2002-2004, trace the pathogen and analyze the molecular characteristics, 271 cerebrospinal fluid (CSF) and faeces specimens were collected from suspected patients. The virus strains from the specimens were isolated with RD and Hep-2 cell lines. The VP1 and VP4/VP2 genes of the isolated viruses were sequenced, and their phylogenetic and homology trees were also constructed. Of the total 271 samples, 78 Echovirus type 30 (E30) strains were isolated. All of the complete VP1 genes in 31 sequenced virus isolates of E30 were composed of 876 nt without any insertion or deletion, encoding 292 amino acids (aa). The identity of nucleotide and amino acid in VP1 gene were 84.7%-86.3% and 92.1%-94.2% between the 31 Zhejiang strains and the prototype strain Bastianni of E30, and 87.1%-99.4% and 96.2%-100% among the 31 Zhejiang strains, respectively. The Zhejiang strains of E30 in the phylogenetic tree of the VP1 gene were attributed into two branches of the G and H genotype, respectively. In G genotype, the Shangdong and Jiangsu E30 strains in 2003 among domestic strains and Ukraine E30 strain in 1999 among overseas strains had maximum similarity with the Zhejiang strains, while H genotype had maximum similarity with the Korea E30 strains in 2008. The phylogenetic tree of the VP4/VP2 genes was similar to that of VP1 gene. The results indicated that the outbreak of aseptic meningitis in Zhejiang Provinec in 2002-2004 was caused by the G and H genotypes of E30 strains existing simultaneously. The H genotype was a new variant strain, which was first isolated in Zhejiang Province in 2002.
2013-01-01
Background Treatment of subclinical mastitis during lactation can have both direct (individual animal level) and indirect (population level) effects. With a few exceptions, prior research has focused on evaluating the direct effects of mastitis treatment, and to date no controlled field trials have been conducted to test whether beneficial indirect effects of lactation treatment strategies targeting subclinical mastitis can be demonstrated on commercial dairy farms. Furthermore, there is limited knowledge on the impact of such interventions on the population dynamics of specific bacterial strains. The purpose of this study was to test the hypothesis that lactation therapy targeting S. aureus subclinical intramammary infection reduces transmission of S. aureus strains within dairy herds. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were used to determine strain specific infection dynamics in treated and control groups in a split herd trial conducted on 2 commercial dairy farms. Results The direct effect of 8 days intramammary lactation therapy with pirlimycin hydrochloride was demonstrated by an increased proportion of cure and a reduction in duration of infection in quarters receiving treatment compared to untreated controls. The indirect effect of lactation therapy was demonstrated by reduction of new S. aureus intramammary infections (IMI) caused by the dominant strain type in both herds. Strain typing of representative isolates taken over the duration of all IMI, including pre- and post-treatment isolates, provided more precise estimates of new infection, cure, and re-infection rates. New S. aureus infections in recovered susceptible quarters and the emergence of a new strain type in one herd influenced incidence measures. Conclusion In addition to demonstrating positive direct effects of lactation therapy, this study provides evidence that treatment of subclinical S. aureus mastitis during lactation can have indirect effects including preventing new IMI and reducing incidence of clinical mastitis within dairy herds. Strain specific transmission parameter estimates for S. aureus MLST clonal complexes 5, 97 and 705 in 2 commercial dairy herds are also reported. PMID:23398676
Barlow, John W; Zadoks, Ruth N; Schukken, Ynte H
2013-02-11
Treatment of subclinical mastitis during lactation can have both direct (individual animal level) and indirect (population level) effects. With a few exceptions, prior research has focused on evaluating the direct effects of mastitis treatment, and to date no controlled field trials have been conducted to test whether beneficial indirect effects of lactation treatment strategies targeting subclinical mastitis can be demonstrated on commercial dairy farms. Furthermore, there is limited knowledge on the impact of such interventions on the population dynamics of specific bacterial strains. The purpose of this study was to test the hypothesis that lactation therapy targeting S. aureus subclinical intramammary infection reduces transmission of S. aureus strains within dairy herds. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were used to determine strain specific infection dynamics in treated and control groups in a split herd trial conducted on 2 commercial dairy farms. The direct effect of 8 days intramammary lactation therapy with pirlimycin hydrochloride was demonstrated by an increased proportion of cure and a reduction in duration of infection in quarters receiving treatment compared to untreated controls. The indirect effect of lactation therapy was demonstrated by reduction of new S. aureus intramammary infections (IMI) caused by the dominant strain type in both herds. Strain typing of representative isolates taken over the duration of all IMI, including pre- and post-treatment isolates, provided more precise estimates of new infection, cure, and re-infection rates. New S. aureus infections in recovered susceptible quarters and the emergence of a new strain type in one herd influenced incidence measures. In addition to demonstrating positive direct effects of lactation therapy, this study provides evidence that treatment of subclinical S. aureus mastitis during lactation can have indirect effects including preventing new IMI and reducing incidence of clinical mastitis within dairy herds. Strain specific transmission parameter estimates for S. aureus MLST clonal complexes 5, 97 and 705 in 2 commercial dairy herds are also reported.
Chiou, Chien-Shun; Wang, You-Wun; Chen, Pei-Ling; Wang, Wan-Ling; Wu, Ping-Fuai; Wei, Hsiao-Lun
2009-06-01
The number of scarlet fever occurrences reported between 2000 and 2006 fluctuated considerably in central Taiwan and throughout the nation. Isolates of Streptococcus pyogenes were collected from scarlet fever patients in central Taiwan and were characterized by emm sequencing and a standardized pulsed-field gel electrophoresis (PFGE) method. National weekly report data were collected for investigating epidemiological trends. A total of 23 emm types were identified in 1,218 S. pyogenes isolates. The five most prevalent emm types were emm12 (50.4%), emm4 (23.2%), emm1 (16.4%), emm6 (3.8%) and emm22 (3.0%). PFGE analysis with SmaI suggested that, with a few exceptions, strains with a common emm type belonged to the same clone. There were two large emm12 clones, one with DNA resistant to cleavage by SmaI. Each prevalent emm clone had major PFGE strain(s) and many minor strains. Most of the minor strains emerged in the population and disappeared soon after. Even some major strains remained prevalent for only 2-3 years before declining. The large fluctuation of scarlet fever cases between 2000 and 2006 was associated with the shuffling of six prevalent emm clones. In 2003, the dramatic drop in scarlet fever cases in central Taiwan and throughout the whole country was associated with the occurrence of a severe acute respiratory syndrome (SARS) outbreak that occurred between late-February and mid-June in Taiwan. The occurrences of scarlet fever in central Taiwan in 2000-2006 were primarily caused by five emm types, which accounted for 96.8% of the isolates collected. Most of the S. pyogenes strains (as defined by PFGE genotypes) emerged and lasted for only a few years. The fluctuation in the number of scarlet fever cases during the seven years can be primarily attributed to the shuffling of six prevalent emm clones and to the SARS outbreak in 2003.
Yang, Q; Borkovich, K A
1999-01-01
Heterotrimeric G proteins, consisting of alpha, beta, and gamma subunits, transduce environmental signals through coupling to plasma membrane-localized receptors. We previously reported that the filamentous fungus Neurospora crassa possesses a Galpha protein, GNA-1, that is a member of the Galphai superfamily. Deletion of gna-1 leads to defects in apical extension, differentiation of asexual spores, sensitivity to hyperosmotic media, and female fertility. In addition, Deltagna-1 strains have lower intracellular cAMP levels under conditions that promote morphological abnormalities. To further define the function of GNA-1 in signal transduction in N. crassa, we examined properties of strains with mutationally activated gna-1 alleles (R178C or Q204L) as the only source of GNA-1 protein. These mutations are predicted to inhibit the GTPase activity of GNA-1 and lead to constitutive signaling. In the sexual cycle, gna-1(R178C) and gna-1(Q204L) strains are female-fertile, but produce fewer and larger perithecia than wild type. During asexual development, gna-1(R178C) and gna-1(Q204L) strains elaborate abundant, long aerial hyphae, produce less conidia, and possess lower levels of carotenoid pigments in comparison to wild-type controls. Furthermore, gna-1(R178C) and gna-1(Q204L) strains are more sensitive to heat shock and exposure to hydrogen peroxide than wild-type strains, while Deltagna-1 mutants are more resistant. In contrast to Deltagna-1 mutants, gna-1(R178C) and gna-1(Q204L) strains have higher steady-state levels of cAMP than wild type. The results suggest that GNA-1 possesses several Gbetagamma-independent functions in N. crassa. We propose that GNA-1 mediates signal transduction pathway(s) that regulate aerial hyphae development and sensitivity to heat and oxidative stresses, possibly through modulation of cAMP levels. PMID:9872952
Wang, Li; Yokoyama, Koji; Miyaji, Makoto; Nishimura, Kazuko
2001-01-01
We analyzed a 402-bp sequence of the mitochondrial cytochrome b gene of 34 strains of Exophiala jeanselmei and 16 strains representing 12 related species. The strains of E. jeanselmei were classified into 20 DNA types and 17 amino acid types. The differences between these strains were found in 1 to 60 nucleotides and 1 to 17 amino acids. On the basis of the identities and similarities of nucleotide and amino acid sequences, some strains were reidentified: i.e., two strains of E. jeanselmei var. hetermorpha and one strain of E. castellanii as E. dermatitidis (including the type strain), three strains of E. jeanselmei as E. jeanselmei var. lecanii-corni (including the type strain), three strains of E. jeanselmei as E. bergeri (including the type strain), seven strains of E. jeanselmei as E. pisciphila (including the type strain), seven strains of E. jeanselmei as E. jeanselmei var. jeanselmei (including the type strain), one strain of E. jeanselmei as Fonsecaea pedrosoi (including the type strain), and one strain of E. jeanselmei as E. spinifera (including the type strain). Some E. jeanselmei strains showed distinct nucleotide and amino acid sequences. The amino-acid-based UPGMA (unweighted pair group method with the arithmetic mean) tree exhibited nearly the same topology as those of the DNA-based trees obtained by neighbor joining, maximum parsimony, and maximum likelihood methods. PMID:11724862
Involvement of the pagR gene of pXO2 in anthrax pathogenesis
Liang, Xudong; Zhang, Enmin; Zhang, Huijuan; Wei, Jianchun; Li, Wei; Zhu, Jin; Wang, Bingxiang; Dong, Shulin
2016-01-01
Anthrax is a disease caused by Bacillus anthracis. Specifically, the anthrax toxins and capsules encoded by the pXO1 and pXO2 plasmids, respectively, are the major virulence factors. We previously reported that the pXO1 plasmid was retained in the attenuated strain of B. anthracis vaccine strains even after subculturing at high temperatures. In the present study, we reinvestigate the attenuation mechanism of Pasteur II. Sequencing of pXO1 and pXO2 from Pasteur II strain revealed mutations in these plasmids as compared to the reference sequences. Two deletions on these plasmids, one each on pXO1 and pXO2, were confirmed to be unique to the Pasteur II strain as compared to the wild-type strains. Gene replacement with homologous recombination revealed that the mutation in the promoter region of the pagR gene on pXO2, but not the mutation on pXO1, contributes to lethal levels of toxin production. This result was further confirmed by RT-PCR, western blot, and animal toxicity assays. Taken together, our results signify that the attenuation of the Pasteur II vaccine strain is caused by a mutation in the pagR gene on its pXO2 plasmid. Moreover, these data suggest that pXO2 plasmid encoded proteins are involved in the virulence of B. anthracis. PMID:27363681
Cryptic Diversity of Malassezia pachydermatis from Healthy and Diseased Domestic Animals.
Puig, Laura; Castellá, Gemma; Cabañes, F Javier
2016-10-01
Malassezia pachydermatis is part of the normal cutaneous microbiota of wild and domestic carnivores. However, under certain conditions this yeast can overproliferate and cause several diseases in its host, mainly otitis and dermatitis in dogs. The aim of this study was to conduct a molecular characterization of M. pachydermatis isolates from healthy and diseased domestic animals, in order to assess the molecular diversity and phylogenetic relationship within this species. The large subunit (LSU) and the internal transcribed spacer (ITS) of ribosomal RNA, chitin synthase 2 (CHS2) and β-tubulin genes from sixteen strains isolated from dogs, cats, a goat, a pig and a horse were sequenced. A different number of types of sequences were identified for each target gene, including some types described for the first time. Five sequence types were characterized for the LSU, eleven for the ITS region, nine for CHS2 and eight for β-tubulin. A multilocus analysis was performed including the four genes, and the resulting phylogenetic tree revealed fifteen genotypes. Genotypes were distributed in two well-supported clades. One clade comprised strains isolated from different domestic animals and a strongly supported cluster constituted by strains isolated from cats. The second clade included strains isolated mainly from dogs and an outlier strain isolated from a horse. No apparent association could be observed between the health status of the animal hosts and concrete strains. The multilocus phylogenetic analysis is a useful tool to assess the intraspecific variation within this species and could help understand the ecology, epidemiology and speciation process of M. pachydermatis.
Marcelletti, Simone; Ferrante, Patrizia; Petriccione, Milena; Firrao, Giuseppe; Scortichini, Marco
2011-01-01
A recent re-emerging bacterial canker disease incited by Pseudomonas syringae pv. actinidiae (Psa) is causing severe economic losses to Actinidia chinensis and A. deliciosa cultivations in southern Europe, New Zealand, Chile and South Korea. Little is known about the genetic features of this pathovar. We generated genome-wide Illumina sequence data from two Psa strains causing outbreaks of bacterial canker on the A. deliciosa cv. Hayward in Japan (J-Psa, type-strain of the pathovar) and in Italy (I-Psa) in 1984 and 1992, respectively as well as from a Psa strain (I2-Psa) isolated at the beginning of the recent epidemic on A. chinensis cv. Hort16A in Italy. All strains were isolated from typical leaf spot symptoms. The phylogenetic relationships revealed that Psa is more closely related to P. s. pv. theae than to P. avellanae within genomospecies 8. Comparative genomic analyses revealed both relevant intrapathovar variations and putative pathovar-specific genomic regions in Psa. The genomic sequences of J-Psa and I-Psa were very similar. Conversely, the I2-Psa genome encodes four additional effector protein genes, lacks a 50 kb plasmid and the phaseolotoxin gene cluster, argK-tox but has acquired a 160 kb plasmid and putative prophage sequences. Several lines of evidence from the analysis of the genome sequences support the hypothesis that this strain did not evolve from the Psa population that caused the epidemics in 1984–1992 in Japan and Italy but rather is the product of a recent independent evolution of the pathovar actinidiae for infecting Actinidia spp. All Psa strains share the genetic potential for copper resistance, antibiotic detoxification, high affinity iron acquisition and detoxification of nitric oxide of plant origin. Similar to other sequenced phytopathogenic pseudomonads associated with woody plant species, the Psa strains isolated from leaves also display a set of genes involved in the catabolism of plant-derived aromatic compounds. PMID:22132095
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Tianyong; Olson, Daniel G.; Tian, Liang
Clostridium thermocellum and Thermoanaerobacterium saccharolyticumare thermophilic bacteria that have been engineered to produce ethanol from the cellulose and hemicellulose fractions of biomass, respectively. Although engineered strains of T. saccharolyticumproduce ethanol with a yield of 90% of the theoretical maximum, engineered strains ofC. thermocellumproduce ethanol at lower yields (~50% of the theoretical maximum). In the course of engineering these strains, a number of mutations have been discovered in theiradhEgenes, which encode both alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes. To understand the effects of these mutations, theadhEgenes from six strains ofC. thermocellumandT. saccharolyticumwere cloned and expressed inEscherichia coli, the enzymesmore » produced were purified by affinity chromatography, and enzyme activity was measured. In wild-type strains of both organisms, NADH was the preferred cofactor for both ALDH and ADH activities. In high-ethanol-producing (ethanologen) strains ofT. saccharolyticum, both ALDH and ADH activities showed increased NADPH-linked activity. Interestingly, the AdhE protein of the ethanologenic strain ofC. thermocellumhas acquired high NADPH-linked ADH activity while maintaining NADH-linked ALDH and ADH activities at wild-type levels. When single amino acid mutations in AdhE that caused increased NADPH-linked ADH activity were introduced intoC. thermocellumandT. saccharolyticum, ethanol production increased in both organisms. Structural analysis of the wild-type and mutant AdhE proteins was performed to provide explanations for the cofactor specificity change on a molecular level. This work describes the characterization of the AdhE enzyme from different strains ofC. thermocellumandT. saccharolyticum.C. thermocellumandT. saccharolyticumare thermophilic anaerobes that have been engineered to make high yields of ethanol and can solubilize components of plant biomass and ferment the sugars to ethanol. In the course of engineering these strains, several mutations arose in the bifunctional ADH/ALDH protein AdhE, changing both enzyme activity and cofactor specificity. We show that changing AdhE cofactor specificity from mostly NADH linked to mostly NADPH linked resulted in higher ethanol production byC. thermocellumandT. saccharolyticum.« less
Borges, Vítor; Gomes, João Paulo
2015-06-01
Lymphogranuloma venereum (LGV) is a human sexually transmitted disease caused by the obligate intracellular bacterium Chlamydia trachomatis (serovars L1-L3). LGV clinical manifestations range from severe ulcerative proctitis (anorectal syndrome), primarily caused by the epidemic L2b strains, to painful inguinal lymphadenopathy (the typical LGV bubonic form). Besides potential host-related factors, the differential disease severity and tissue tropism among LGV strains is likely a function of the genetic backbone of the strains. We aimed to characterize the genetic variability among LGV strains as strain- or serovar-specific mutations may underlie phenotypic signatures, and to investigate the mutational events that occurred throughout the pathoadaptation of the epidemic L2b lineage. By analyzing 20 previously published genomes from L1, L2, L2b and L3 strains and two new genomes from L2b strains, we detected 1497 variant sites and about 100 indels, affecting 453 genes and 144 intergenic regions, with 34 genes displaying a clear overrepresentation of nonsynonymous mutations. Effectors and/or type III secretion substrates (almost all of those described in the literature) and inclusion membrane proteins showed amino acid changes that were about fivefold more frequent than silent changes. More than 120 variant sites occurred in plasmid-regulated virulence genes, and 66% yielded amino acid changes. The identified serovar-specific variant sites revealed that the L2b-specific mutations are likely associated with higher fitness and pointed out potential targets for future highly discriminatory diagnostic/typing tests. By evaluating the evolutionary pathway beyond the L2b clonal radiation, we observed that 90.2% of the intra-L2b variant sites occurring in coding regions involve nonsynonymous mutations, where CT456/tarp has been the main target. Considering the progress on C. trachomatis genetic manipulation, this study may constitute an important contribution for prioritizing study targets for functional genomics aiming to dissect the impact of the identified intra-LGV polymorphisms on virulence or tropism dissimilarities among LGV strains. Copyright © 2015 Elsevier B.V. All rights reserved.
Pectobacterium polaris sp. nov., isolated from potato (Solanum tuberosum).
Dees, Merete Wiken; Lysøe, Erik; Rossmann, Simeon; Perminow, Juliana; Brurberg, May Bente
2017-12-01
The genus Pectobacterium, which belongs to the bacterial family Enterobacteriaceae, contains numerous species that cause soft rot diseases in a wide range of plants. The species Pectobacterium carotovorum is highly heterogeneous, indicating a need for re-evaluation and a better classification of the species. PacBio was used for sequencing of two soft-rot-causing bacterial strains (NIBIO1006 T and NIBIO1392), initially identified as P. carotovorumstrains by fatty acid analysis and sequencing of three housekeeping genes (dnaX, icdA and mdh). Their taxonomic relationship to other Pectobacterium species was determined and the distance from any described species within the genus Pectobacterium was less than 94 % average nucleotide identity (ANI). Based on ANI, phylogenetic data and genome-to-genome distance, strains NIBIO1006 T , NIBIO1392 and NCPPB3395 are suggested to represent a novel species of the genus Pectobacterium, for which the name Pectobacterium polaris sp. nov. is proposed. The type strain is NIBIO1006 T (=DSM 105255 T =NCPPB 4611 T ).
Wang, L; Hu, X; Tao, G; Wang, X
2012-05-01
To investigate the role of lipopolysaccharide (LPS) structure in the stability of outer membrane and the ability of biofilm formation in Cronobacter sakazakii. A C. sakazakii mutant strain LWW02 was constructed by inactivating the gene ESA_04107 encoding for heptosyltransferase I. LPS were purified from LWW02, and changes in their structure were confirmed by thin-layer chromatography and electrospray ionization mass spectrometry. Comparing with the wild-type strain BAA-894, slower growth, higher membrane permeability, higher surface hydrophobicity, stronger ability of autoaggregation and biofilm formation were observed for the mutant strain LWW02. The gene ESA_04107 encodes heptosyltransferase I in C. sakazakii ATCC BAA-894. The cleavage of LPS in C. sakazakii could cause its outer membrane defects and increase its ability to form biofilms. The study is important for understanding the pathogenic mechanism and efficient control of C. sakazakii. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.