Sample records for types including lung

  1. Interstitial Lung Diseases

    MedlinePlus

    Interstitial lung disease is the name for a large group of diseases that inflame or scar the lungs. The inflammation and ... is responsible for some types of interstitial lung diseases. Specific types include Black lung disease among coal ...

  2. [Pediatric lung lesions: a clinicopathological study of 215 cases].

    PubMed

    Niu, Huilin; Wang, Fenghua; Liu, Wei; Wang, Yong; Chen, Zhengrong; Gao, Qiu; Yi, Peng; Li, Liping; Zeng, Rongxin

    2015-09-01

    To investigate clinical and pathological features of lung lesions in children. Clinical manifestations, radiologic imaging, histopathological features and immunohistochemical results were analyzed in 215 cases of lung lesions in children. A total of 215 cases of lung lesions in children aged 0 day to 13 years (average age of 27.2 months and the median age of 18.0 months) were selected, including 137 male and 78 female patients with a male to female ratio of 1.76:1.00. The incidence of congenital lung disease was higher in patients of less than 1 year old than those of over 1 year old age, and the difference of the two groups was statistically significant (P = 0.004). 142 cases had acquired lung diseases, and 73 cases had congenital bronchopulmonary dysplasia. Lung abscess was the most common lesion seen in 86 cases (40.0%), including 1 case of fungal abscess. Congenital pulmonary airway malformation (CPAM) was the second most common, seen in 44 patients (20.5%), including 20 cases of type 1, 18 cases of type 2 and 6 cases of type 4 CPAM. Pulmonary sequestration was found in 25 cases (11.6%) including 14 cases of intralobar type and 11 cases of extralobar type. Two cases of extralobar pulmonary sequestration showed simultaneous CPAM2 type 2 lesion. Other lesions included tuberculosis (13 cases, 6.0%), emphysema (12 cases, 5.6%), interstitial pneumonia (7 cases, 3.2%), pulmonary hemorrhage (6 cases, 2.8%), bronchogenic cyst (4 cases, 1.9%), bronchiolitis obliterans (2 cases, 0.9%), idiopathic pulmonary hemosiderin deposition disease (2 cases, 0.9%) and 1 cases of lung non-specific changes. 13 cases of neoplastic lesions (6.0%) were found, of which 11 cases were primary tumors (5.1%), including inflammatory myofibroblastic tumor in 5 patients (2.3%), pleuropulmonary blastoma in 5 cases (1 case of type I, 2 type II and 2 type III) and 1 case of mucoepidermoid carcinoma (0.5%) and 2 cases of metastatic tumors (hepatoblastoma and Wilm's tumor, 0.9%). Infectious diseases are the most common lung diseases in children. Congenital bronchopulmonary dysplasia is the most common in children of less than 1 year old. Malignant lesions are rare.

  3. Serum HDL cholesterol concentration in patients with squamous cell and small cell lung cancer.

    PubMed

    Siemianowicz, K; Gminski, J; Stajszczyk, M; Wojakowski, W; Goss, M; Machalski, M; Telega, A; Brulinski, K; Magiera-Molendowska, H

    2000-09-01

    Cancer patients often present altered serum lipid profile including changes of HDL cholesterol level. The aim of our work was to evaluate serum level of HDL cholesterol in patients with squamous cell and small cell lung cancer and its dependence on histological type and clinical stage of lung cancer. Fasting serum level of HDL cholesterol was analysed in 135 patients with newly diagnosed lung cancer and compared to a control group of healthy men. All lung cancer patients, as well as subgroups of squamous cell and small cell lung cancer had statistically significantly lower HDL cholesterol concentration than controls. There were no statistically significant differences of HDL cholesterol level between the histological types or between clinical stages of each histological type of lung cancer.

  4. Afatinib

    MedlinePlus

    ... to treat certain types of non-small cell lung cancer that has spread to nearby tissues or to ... ever had lung or breathing problems (other than lung cancer); eye problems, including dry eyes; heart problems; liver ...

  5. 78 FR 40485 - Lung Cancer Patient-Focused Drug Development; Extension of Comment Period

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-05

    ... patients' perspectives for the two main types of lung cancer (small-cell and non-small cell lung cancer) on..., because of lung cancer? (Examples may include sleeping through the night, climbing stairs, household...] Lung Cancer Patient-Focused Drug Development; Extension of Comment Period AGENCY: Food and Drug...

  6. Alveolar type II cell transplantation restores pulmonary surfactant protein levels in lung fibrosis.

    PubMed

    Guillamat-Prats, Raquel; Gay-Jordi, Gemma; Xaubet, Antoni; Peinado, Victor I; Serrano-Mollar, Anna

    2014-07-01

    Alveolar Type II cell transplantation has been proposed as a cell therapy for the treatment of idiopathic pulmonary fibrosis. Its long-term benefits include repair of lung fibrosis, but its success partly depends on the restoration of lung homeostasis. Our aim was to evaluate surfactant protein restoration after alveolar Type II cell transplantation in an experimental model of bleomycin-induced lung fibrosis in rats. Lung fibrosis was induced by intratracheal instillation of bleomycin. Alveolar Type II cells were obtained from healthy animals and transplanted 14 days after bleomycin was administered. Furthermore, one group transplanted with alveolar macrophages and another group treated with surfactant were established to evaluate the specificity of the alveolar Type II cell transplantation. The animals were euthanized at 21 days after bleomycin instillation. Lung fibrosis was confirmed by a histologic study and an evaluation of the hydroxyproline content. Changes in surfactant proteins were evaluated by mRNA expression, Western blot and immunofluorescence studies. The group with alveolar Type II cell transplantation was the only one to show a reduction in the degree of lung fibrosis and a complete recovery to normal levels of surfactant proteins. One of the mechanisms involved in the beneficial effect of alveolar Type II cell transplantation is restoration of lung surfactant protein levels, which is required for proper respiratory function. Copyright © 2014 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  7. LUNG CANCER AND PULMONARY THROMBOEMBOLISM

    PubMed Central

    Cukic, Vesna; Ustamujic, Aida

    2015-01-01

    Introduction: Malignant diseases including lung cancer are the risk for development of pulmonary thromboembolism (PTE). Objective: To show the number of PTE in patients with lung cancer treated in Clinic for pulmonary diseases and TB “Podhrastovi” in three-year period: from 2012-2014. Material and methods: This is the retrospective study in which we present the number of various types of lung cancer treated in three-year period, number and per cent of PTE in different types of lung carcinoma, number and per cent of PTE of all diagnosed PTE in lung carcinoma according to the type of carcinoma. Results: In three-year period (from 2012 to 2014) 1609 patients with lung cancer were treated in Clinic for pulmonary diseases and TB “Podhrastovi” Clinical Centre of Sarajevo University. 42 patients: 25 men middle –aged 64.4 years and 17 women middle- aged 66.7 or 2.61% of all patients with lung cancer had diagnosed PTE. That was the 16. 7% of all patients with PTE treated in Clinic “Podhrastovi “in that three-year period. Of all 42 patients with lung cancer and diagnosed PTE 3 patients (7.14%) had planocellular cancer, 4 patients (9.53%) had squamocellular cancer, 9 (21.43%) had adenocarcinoma, 1 (2.38%) had NSCLC, 3 (7.14 %) had microcellular cancer, 1 (2.38%) had neuroendocrine cancer, 2 (4.76%) had large cell-macrocellular and 19 (45.24%) had histological non-differentiated lung carcinoma. Conclusion: Malignant diseases, including lung cancer, are the risk factor for development of PTE. It is important to consider the including anticoagulant prophylaxis in these patients and so to slow down the course of diseases in these patients. PMID:26622205

  8. Pleiotrophin regulates lung epithelial cell proliferation and differentiation during fetal lung development via beta-catenin and Dlk1.

    PubMed

    Weng, Tingting; Gao, Li; Bhaskaran, Manoj; Guo, Yujie; Gou, Deming; Narayanaperumal, Jeyaparthasarathy; Chintagari, Narendranath Reddy; Zhang, Kexiong; Liu, Lin

    2009-10-09

    The role of pleiotrophin in fetal lung development was investigated. We found that pleiotrophin and its receptor, protein-tyrosine phosphatase receptor beta/zeta, were highly expressed in mesenchymal and epithelial cells of the fetal lungs, respectively. Using isolated fetal alveolar epithelial type II cells, we demonstrated that pleiotrophin promoted fetal type II cell proliferation and arrested type II cell trans-differentiation into alveolar epithelial type I cells. Pleiotrophin also increased wound healing of injured type II cell monolayer. Knockdown of pleiotrophin influenced lung branching morphogenesis in a fetal lung organ culture model. Pleiotrophin increased the tyrosine phosphorylation of beta-catenin, promoted beta-catenin translocation into the nucleus, and activated T cell factor/lymphoid enhancer factor transcription factors. Dlk1, a membrane ligand that initiates the Notch signaling pathway, was identified as a downstream target of the pleiotrophin/beta-catenin pathway by endogenous dlk1 expression, promoter assay, and chromatin immunoprecipitation. These results provide evidence that pleiotrophin regulates fetal type II cell proliferation and differentiation via integration of multiple signaling pathways including pleiotrophin, beta-catenin, and Notch pathways.

  9. Influence of quartz exposure on lung cancer types in cases of lymph node-only silicosis and lung silicosis in German uranium miners.

    PubMed

    Mielke, Stefan; Taeger, Dirk; Weitmann, Kerstin; Brüning, Thomas; Hoffmann, Wolfgang

    2018-05-04

    Inhaled crystalline quartz is a carcinogen. Analyses show differences in the distribution of lung cancer types depending on the status of silicosis. Using 2,524 lung tumor cases from the WISMUT autopsy repository database, silicosis was differentiated into cases without silicosis in lung parenchyma and its lymph nodes, with lymph node-only silicosis, or with lung silicosis including lymph node silicosis. The proportions of adenocarcinoma, squamous cell carcinoma, and small-cell lung carcinoma mortality for increasing quartz exposures were estimated in a multinomial logistic regression model. The relative proportions of the lung cancer subtypes in lymph node-only silicosis were more similar to lung silicosis than without any silicosis. The results support the hypothesis that quartz-related carcinogenesis in case of lymph node-only silicosis is more similar to that in lung silicosis than in without silicosis.

  10. Immune and Inflammatory Cell Composition of Human Lung Cancer Stroma

    PubMed Central

    Banat, G-Andre; Tretyn, Aleksandra; Pullamsetti, Soni Savai; Wilhelm, Jochen; Weigert, Andreas; Olesch, Catherine; Ebel, Katharina; Stiewe, Thorsten; Grimminger, Friedrich; Seeger, Werner; Fink, Ludger; Savai, Rajkumar

    2015-01-01

    Recent studies indicate that the abnormal microenvironment of tumors may play a critical role in carcinogenesis, including lung cancer. We comprehensively assessed the number of stromal cells, especially immune/inflammatory cells, in lung cancer and evaluated their infiltration in cancers of different stages, types and metastatic characteristics potential. Immunohistochemical analysis of lung cancer tissue arrays containing normal and lung cancer sections was performed. This analysis was combined with cyto-/histomorphological assessment and quantification of cells to classify/subclassify tumors accurately and to perform a high throughput analysis of stromal cell composition in different types of lung cancer. In human lung cancer sections we observed a significant elevation/infiltration of total-T lymphocytes (CD3+), cytotoxic-T cells (CD8+), T-helper cells (CD4+), B cells (CD20+), macrophages (CD68+), mast cells (CD117+), mononuclear cells (CD11c+), plasma cells, activated-T cells (MUM1+), B cells, myeloid cells (PD1+) and neutrophilic granulocytes (myeloperoxidase+) compared with healthy donor specimens. We observed all of these immune cell markers in different types of lung cancers including squamous cell carcinoma, adenocarcinoma, adenosquamous cell carcinoma, small cell carcinoma, papillary adenocarcinoma, metastatic adenocarcinoma, and bronchioloalveolar carcinoma. The numbers of all tumor-associated immune cells (except MUM1+ cells) in stage III cancer specimens was significantly greater than those in stage I samples. We observed substantial stage-dependent immune cell infiltration in human lung tumors suggesting that the tumor microenvironment plays a critical role during lung carcinogenesis. Strategies for therapeutic interference with lung cancer microenvironment should consider the complexity of its immune cell composition. PMID:26413839

  11. Precision Cut Mouse Lung Slices to Visualize Live Pulmonary Dendritic Cells

    PubMed Central

    Lyons-Cohen, Miranda R.; Thomas, Seddon Y.; Cook, Donald N.; Nakano, Hideki

    2017-01-01

    SHORT ABSTRACT We describe a method for generating precision-cut lung slices (PCLS) and immunostaining them to visualize the localization of various immune cell types in the lung. Our protocol can be extended to visualize the location and function of many different cell types under a variety of conditions. LONG ABSTRACT Inhalation of allergens and pathogens elicits multiple changes in a variety of immune cell types in the lung. Flow cytometry is a powerful technique for quantitative analysis of cell surface proteins on immune cells, but it provides no information on the localization and migration patterns of these cells within the lung. Similarly, in vitro chemotaxis assays can be performed to study the potential of cells to respond to chemotactic factors in vitro, but these assays do not reproduce the complex environment of the intact lung. In contrast to these aforementioned techniques, the location of individual cell types within the lung can be readily visualized by generating precision-cut lung slices (PCLS), staining them with commercially available, fluorescently tagged antibodies, and visualizing the sections by confocal microscopy. PCLS can be used for both live and fixed lung tissue, and the slices can encompass areas as large as a cross section of an entire lobe. We have used this protocol to successfully visualize the location of a wide variety of cell types in the lung, including distinct types of dendritic cells, macrophages, neutrophils, T cells and B cells, as well as structural cells such as lymphatic, endothelial, and epithelial cells. The ability to visualize cellular interactions, such as those between dendritic cells and T cells, in live, three-dimensional lung tissue, can reveal how cells move within the lung and interact with one another at steady state and during inflammation. Thus, when used in combination with other procedures, such as flow cytometry and quantitative PCR, PCLS can contribute to a comprehensive understanding of cellular events that underlie allergic and inflammatory diseases of the lung. PMID:28448013

  12. Exposure to secondhand tobacco smoke and lung cancer by histological type: a pooled analysis of the International Lung Cancer Consortium (ILCCO)

    PubMed Central

    Kim, Claire H; Lee, Yuan-Chin Amy; Hung, Rayjean J; McNallan, Sheila R; Cote, Michele L; Lim, Wei-Yen; Chang, Shen-Chih; Kim, Jin Hee; Ugolini, Donatella; Chen, Ying; Liloglou, Triantafillos; Andrew, Angeline S; Onega, Tracy; Duell, Eric J; Field, John K; Lazarus, Philip; Le Marchand, Loic; Neri, Monica; Vineis, Paolo; Kiyohara, Chikako; Hong, Yun-Chul; Morgenstern, Hal; Matsuo, Keitaro; Tajima, Kazuo; Christiani, David C; McLaughlin, John R; Bencko, Vladimir; Holcatova, Ivana; Boffetta, Paolo; Brennan, Paul; Fabianova, Eleonora; Foretova, Lenka; Janout, Vladimir; Lissowska, Jolanta; Mates, Dana; Rudnai, Peter; Szeszenia-Dabrowska, Neonila; Mukeria, Anush; Zaridze, David; Seow, Adeline; Schwartz, Ann G; Yang, Ping; Zhang, Zuo-Feng

    2014-01-01

    While the association between exposure to secondhand smoke and lung cancer risk is well established, few studies with sufficient power have examined the association by histological type. In this study, we evaluated the secondhand smoke-lung cancer relationship by histological type based on pooled data from 18 case-control studies in the International Lung Cancer Consortium (ILCCO), including 2,504 cases and 7,276 controls who were never smokers and 10,184 cases and 7,176 controls who were ever smokers. We used multivariable logistic regression, adjusting for age, sex, race/ethnicity, smoking status, pack-years of smoking, and study. Among never smokers, the odds ratios (OR) comparing those ever exposed to secondhand smoke with those never exposed were 1.31 (95% CI: 1.17–1.45) for all histological types combined, 1.26 (95% CI: 1.10–1.44) for adenocarcinoma, 1.41 (95% CI: 0.99–1.99) for squamous cell carcinoma, 1.48 (95% CI: 0.89–2.45) for large cell lung cancer, and 3.09 (95% CI: 1.62–5.89) for small cell lung cancer. The estimated association with secondhand smoke exposure was greater for small cell lung cancer than for non-small cell lung cancers (OR=2.11, 95% CI: 1.11–4.04). This analysis is the largest to date investigating the relation between exposure to secondhand smoke and lung cancer. Our study provides more precise estimates of the impact of secondhand smoke on the major histological types of lung cancer, indicates the association with secondhand smoke is stronger for small cell lung cancer than for the other histological types, and suggests the importance of intervention against exposure to secondhand smoke in lung cancer prevention. PMID:24615328

  13. Epithelial neoplasia coincides with exacerbated injury and fibrotic response in the lungs of Gprc5a-knockout mice following silica exposure

    PubMed Central

    Zhong, Shuangshuang; Song, Hongyong; Sun, Beibei; Zhou, Binhua P.; Deng, Jiong; Han, Baohui

    2015-01-01

    Exposure to crystalline silica is suggested to increase the risk for a variety of lung diseases, including fibrosis and lung cancer. However, epidemiological evidences for the exposure-risk relationship are ambiguous and conflicting, and experimental study from a reliable animal model to explore the relationship is lacking. We reasoned that a mouse model that is sensitive to both lung injury and tumorigenesis would be appropriate to evaluate the exposure-risk relationship. Previously, we showed that, Gprc5a−/− mice are susceptible to both lung tumorigenesis and endotoxin-induced acute lung injury. In this study, we investigated the biological consequences in Gprc5a−/− mouse model following silica exposure. Intra-tracheal administration of fine silica particles in Gprc5a−/− mice resulted in more severe lung injury and pulmonary inflammation than in wild-type mice. Moreover, an enhanced fibrogenic response, including EMT-like characteristics, was induced in the lungs of Gprc5a−/− mice compared to those from wild-type ones. Importantly, increased hyperplasia or neoplasia coincided with silica-induced tissue injury and fibrogenic response in lungs from Gprc5a−/− mice. Consistently, expression of MMP9, TGFβ1 and EGFR was significantly increased in lungs from silica-treated Gprc5a−/− mice compared to those untreated or wild-type ones. These results suggest that, the process of tissue repair coincides with tissue damages; whereas persistent tissue damages leads to abnormal repair or neoplasia. Thus, silica-induced pulmonary inflammation and injury contribute to increased neoplasia development in lungs from Gprc5a−/− mouse model. PMID:26447616

  14. Occupational exposures to leaded and unleaded gasoline engine emissions and lung cancer risk.

    PubMed

    Xu, Mengting; Siemiatycki, Jack; Lavoué, Jérôme; Pasquet, Romain; Pintos, Javier; Rousseau, Marie-Claude; Richardson, Lesley; Ho, Vikki

    2018-04-01

    To determine whether occupational exposure to gasoline engine emissions (GEE) increased the risk of lung cancer and more specifically whether leaded or unleaded GEE increased the risk. Two population-based case-control studies were conducted in Montreal, Canada. The first was conducted in the early 1980s and included many types of cancer including lung cancer. The second was conducted in the late 1990s and focused on lung cancer. Population controls were used in both studies. Altogether, there were 1595 cases and 1432 population controls. A comprehensive expert-based exposure assessment procedure was implemented and exposure was assessed for 294 agents, including unleaded GEE, leaded GEE and diesel engine emissions (DEE). Logistic regression analyses were conducted to estimate ORs between various metrics of GEE exposure and lung cancer, adjusting for smoking, DEE and other potential confounders. About half of all controls were occupationally exposed to GEE. Irrespective of the metrics of exposure (any exposure, duration of exposure and cumulative exposure) and the type of lung cancer, and the covariates included in models, none of the point estimates of the ORs between occupational exposure to leaded or unleaded GEE and lung cancer were above 1.0. Pooling two studies, the OR for any exposure to leaded GEE was 0.82 (0.68-1.00). Our results do not support the hypothesis that occupational exposure to GEE increases the risk of lung cancer. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. Type 2 Immune Mechanisms in Carbon Nanotube-Induced Lung Fibrosis.

    PubMed

    Dong, Jie; Ma, Qiang

    2018-01-01

    T helper (Th) 2-dependent type 2 immune pathways have been recognized as an important driver for the development of fibrosis. Upon stimulation, activated Th2 immune cells and type 2 cytokines interact with inflammatory and tissue repair functions to stimulate an overzealous reparative response to tissue damage, leading to organ fibrosis and destruction. In this connection, type 2 pathways are activated by a variety of insults and pathological conditions to modulate the response. Carbon nanotubes (CNTs) are nanomaterials with a wide range of applications. However, pulmonary exposure to CNTs causes a number of pathologic outcomes in animal lungs, dominated by inflammation and fibrosis. These findings, alongside the rapidly expanding production and commercialization of CNTs and CNT-containing materials in recent years, have raised concerns on the health risk of CNT exposure in humans. The CNT-induced pulmonary fibrotic lesions resemble those of human fibrotic lung diseases, such as idiopathic pulmonary fibrosis and pneumoconiosis, to a certain extent with regard to disease development and pathological features. In fibrotic scenarios, immune cells are activated including varying immune pathways, ranging from innate immune cell activation to autoimmune disease. These events often precede and/or accompany the occurrence of fibrosis. Upon CNT exposure, significant induction and activation of Th2 cells and type 2 cytokines in the lungs are observed. Moreover, type 2 pathways are shown to play important roles in promoting CNT-induced lung fibrosis by producing type 2 pro-fibrotic factors and inducing the reparative phenotypes of macrophages in response to CNTs. In light of the vastly increased demand for nanosafety and the apparent induction and multiple roles of type 2 immune pathways in lung fibrosis, we review the current literature on CNT-induced lung fibrosis, with a focus on the induction and activation of type 2 responses by CNTs and the stimulating function of type 2 signaling on pulmonary fibrosis development. These analyses provide new insights into the mechanistic understanding of CNT-induced lung fibrosis, as well as the potential of using type 2 responses as a monitoring target and therapeutic strategy for human fibrotic lung disease.

  16. Lung Cancer Cell Lines as Tools for Biomedical Discovery and Research

    PubMed Central

    Girard, Luc; Lockwood, William W.; Lam, Wan L.; Minna, John D.

    2010-01-01

    Lung cancer cell lines have made a substantial contribution to lung cancer translational research and biomedical discovery. A systematic approach to initiating and characterizing cell lines from small cell and non–small cell lung carcinomas has led to the current collection of more than 200 lung cancer cell lines, a number that exceeds those for other common epithelial cancers combined. The ready availability and widespread dissemination of the lines to investigators worldwide have resulted in more than 9000 citations, including multiple examples of important biomedical discoveries. The high (but not perfect) genomic similarities between lung cancer cell lines and the lung tumor type from which they were derived provide evidence of the relevance of their use. However, major problems including misidentification or cell line contamination remain. Ongoing studies and new approaches are expected to reveal the full potential of the lung cancer cell line panel. PMID:20679594

  17. Radiation-induced pulmonary gene expression changes are attenuated by the CTGF antibody Pamrevlumab.

    PubMed

    Sternlicht, Mark D; Wirkner, Ute; Bickelhaupt, Sebastian; Lopez Perez, Ramon; Tietz, Alexandra; Lipson, Kenneth E; Seeley, Todd W; Huber, Peter E

    2018-01-18

    Fibrosis is a delayed side effect of radiation therapy (RT). Connective tissue growth factor (CTGF) promotes the development of fibrosis in multiple settings, including pulmonary radiation injury. To better understand the cellular interactions involved in RT-induced lung injury and the role of CTGF in these responses, microarray expression profiling was performed on lungs of irradiated and non-irradiated mice, including mice treated with the anti-CTGF antibody pamrevlumab (FG-3019). Between group comparisons (Welch's t-tests) and principal components analyses were performed in Genespring. At the mRNA level, the ability of pamrevlumab to prolong survival and ameliorate RT-induced radiologic, histologic and functional lung deficits was correlated with the reversal of a clear enrichment in mast cell, macrophage, dendritic cell and mesenchymal gene signatures. Cytokine, growth factor and matrix remodeling genes that are likely to contribute to RT pneumonitis and fibrosis were elevated by RT and attenuated by pamrevlumab, and likely contribute to the cross-talk between enriched cell-types in injured lung. CTGF inhibition had a normalizing effect on select cell-types, including immune cells not typically regarded as being regulated by CTGF. These results suggest that interactions between RT-recruited cell-types are critical to maintaining the injured state; that CTGF plays a key role in this process; and that pamrevlumab can ameliorate RT-induced lung injury in mice and may provide therapeutic benefit in other immune and fibrotic disorders.

  18. Work-relatedness of lung cancer by smoking and histologic type in Korea.

    PubMed

    Lee, Young-Il; Lee, Sang-Gil; Kang, Dong-Mug; Kim, Jong-Eun; Kim, Young-Ki; Leem, Jong-Han; Kim, Hwan-Cheol

    2014-01-01

    This study investigated the distribution of causative agents related to occupational lung cancer, their relationships with work, and associations between work-relatedness and the histologic type of lung cancer. We used data from the occupational surveillance system in Korea in 2013. In addition, data from 1,404 participants diagnosed with lung cancer were collected through interviews. We included the patients' longest-held job in the analysis. Work-relatedness was categorized as "definite," "probable," "possible," "suspicious," "none," or "undetermined." Among the subjects, 69.3% were men and 30.7% were women. Regarding smoking status, current smokers were the most prevalent (35.5%), followed by non-smokers (32.3%), ex-smokers (32.2%). Regarding the causative agents of lung cancer, asbestos (1.0%) and crystalline silica (0.9%) were the most common in definite work-related cases, while non-arsenical insecticide (2.8%) was the most common in probable cases followed by diesel engine exhaust (1.9%) and asbestos (1.0%). Regarding histologic type, adenocarcinoma was the most common (41.7%), followed by squamous cell carcinoma (21.2%). Among current smokers, squamous cell carcinoma was the most common among definite and probable cases (13.4%), while non-small cell lung cancer was the least common (7.1%). Among non-smokers, squamous cell carcinoma was the most common (21.4%), while the least common was adenocarcinoma (1.6%). Approximately, 9.5% of all lung cancer cases in Korea are occupational-related lung cancer. Well-known substances associated with lung cancer, such as crystalline silica, asbestos, and diesel engine exhaust, are of particular concern. However, the histologic types of lung cancer related to smoking were inconsistent with previous studies when work-relatedness was taken into account. Future studies are required to clarify the incidence of occupational lung cancer in agricultural workers exposed to non-arsenical insecticides and the associations between work-relatedness and the histologic type of lung cancer.

  19. Family with sequence similarity 83, member B is a predictor of poor prognosis and a potential therapeutic target for lung adenocarcinoma expressing wild-type epidermal growth factor receptor.

    PubMed

    Yamaura, Takumi; Ezaki, Junji; Okabe, Naoyuki; Takagi, Hironori; Ozaki, Yuki; Inoue, Takuya; Watanabe, Yuzuru; Fukuhara, Mitsuro; Muto, Satoshi; Matsumura, Yuki; Hasegawa, Takeo; Hoshino, Mika; Osugi, Jun; Shio, Yutaka; Waguri, Satoshi; Tamura, Hirosumi; Imai, Jun-Ichi; Ito, Emi; Yanagisawa, Yuka; Honma, Reiko; Watanabe, Shinya; Suzuki, Hiroyuki

    2018-02-01

    Lung adenocarcinoma (ADC) patients with tumors that harbor no targetable driver gene mutation, such as epidermal growth factor receptor ( EGFR ) gene mutations, have unfavorable prognosis, and thus, novel therapeutic targets are required. Family with sequence similarity 83, member B ( FAM83B ) is a biomarker for squamous cell lung cancer. FAM83B has also recently been shown to serve an important role in the EGFR signaling pathway. In the present study, the molecular and clinical impact of FAM83B in lung ADC was investigated. Matched tumor and adjacent normal tissue samples were obtained from 216 patients who underwent complete lung resection for primary lung ADC and were examined for FAM83B expression using cDNA microarray analysis. The associations between FAM83B expression and clinicopathological parameters, including patient survival, were examined. FAM83B was highly expressed in tumors from males, smokers and in tumors with wild-type EGFR . Multivariate analyses further confirmed that wild-type EGFR tumors were significantly positively associated with FAM83B expression. In survival analysis, FAM83B expression was associated with poor outcomes in disease-free survival and overall survival, particularly when stratified against tumors with wild-type EGFR . Furthermore, FAM83B knockdown was performed to investigate its phenotypic effect on lung ADC cell lines. Gene silencing by FAM83B RNA interference induced growth suppression in the HLC-1 and H1975 lung ADC cell lines. FAM83B may be involved in lung ADC tumor proliferation and can be a predictor of poor survival. FAM83B is also a potential novel therapeutic target for ADC with wild-type EGFR .

  20. Transbronchial biopsies safely diagnose amyloid lung disease

    PubMed Central

    Govender, Praveen; Keyes, Colleen M.; Hankinson, Elizabeth A.; O’Hara, Carl J.; Sanchorawala, Vaishali; Berk, John L.

    2018-01-01

    Background Autopsy identifies lung involvement in 58–92% of patients with the most prevalent forms of systemic amyloidoses. In the absence of lung biopsies, amyloid lung disease often goes unrecognized. Report of a death following transbronchial biopsies in a patient with systemic amyloidosis cautioned against the procedure in this patient cohort. We reviewed our experience with transbronchial biopsies in patients with amyloidosis to determine the safety and utility of bronchoscopic lung biopsies. Methods We identified patients referred to the Amyloidosis Center at Boston Medical Center with lung amyloidosis diagnosed by transbronchial lung biopsies (TBBX). Amyloid typing was determined by immunohistochemistry or mass spectrometry. Standard end organ assessments, including pulmonary function test (PFT) and chest tomography (CT) imaging, and extra-thoracic biopsies established the extent of disease. Results Twenty-five (21.7%) of 115 patients with lung amyloidosis were diagnosed by TBBX. PFT classified 33.3% with restrictive physiology, 28.6% with obstructive disease, and 9.5% mixed physiology; 9.5% exhibited isolated diffusion defects while 19% had normal pulmonary testing. Two view chest or CT imaging identified focal opacities in 52% of cases and diffuse interstitial disease in 48%. Amyloid type and disease extent included 68% systemic AL disease, 16% localized (lung limited) AL disease, 12% ATTR disease, and 4% AA amyloidosis. Fluoroscopy was not used during biopsy. No procedure complications were reported. Conclusions Our case series of 25 patients supports the use of bronchoscopic transbronchial biopsies for diagnosis of parenchymal lung amyloidosis. Normal PFTs do not rule out the histologic presence of amyloid lung disease. PMID:28393574

  1. Cell-type specificity of lung cancer associated with low-dose soil heavy metal contamination in Taiwan: An ecological study

    PubMed Central

    2013-01-01

    Background Numerous studies have examined the association between heavy metal contamination (including arsenic [As], cadmium [Cd], chromium [Cr], copper [Cu], mercury [Hg], nickel [Ni], lead [Pb], and zinc [Zn]) and lung cancer. However, data from previous studies on pathological cell types are limited, particularly regarding exposure to low-dose soil heavy metal contamination. The purpose of this study was to explore the association between soil heavy metal contamination and lung cancer incidence by specific cell type in Taiwan. Methods We conducted an ecological study and calculated the annual averages of eight soil heavy metals (i.e., As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) by using data from the Taiwan Environmental Protection Administration from1982 to 1986. The age-standardized incidence rates of lung cancer according to two major pathological types (adenocarcinoma [AC] and squamous cell carcinoma [SCC]) were obtained from the National Cancer Registry Program conducted in Taiwan from 2001 to 2005. A geographical information system was used to plot the maps of soil heavy metal concentration and lung cancer incidence rates. Poisson regression models were used to obtain the adjusted relative ratios (RR) and 95% confidence intervals (CI) for the lung cancer incidence associated with soil heavy metals. Results For males, the trend test for lung SCC incidence caused by exposure to Cr, Cu, Hg, Ni, and Zn showed a statistically significant dose–response relationship. However, for lung AC, only Cu and Ni had a significant dose–response relationship. As for females, those achieving a statistically significant dose–response relationship for the trend test were Cr (P = 0.02), Ni (P = 0.02), and Zn (P= 0.02) for lung SCC, and Cu (P < 0.01) and Zn (P = 0.02) for lung AC. Conclusion The current study suggests that a dose–response relationship exists between low-dose soil heavy metal concentration and lung cancer occurrence by specific cell-type; however, the relevant mechanism should be explored further. PMID:23575356

  2. Scleroderma Related Lung Disease: Is There a Pathogenic Role for Adipokines?

    PubMed Central

    Haley, Shannon; Shah, Dilip; Romero, Freddy; Summer, Ross

    2013-01-01

    Scleroderma is a systemic autoimmune disease of unknown etiology whose hallmark features include endothelial cell dysfunction, fibroblast proliferation and immune dysregulation. Although virtually any organ can be pathologically involved in scleroderma, lung complications including interstitial lung disease (ILD) and pulmonary arterial hypertension (PAH) are the leading cause of death in patients with this condition. Currently, the molecular mechanisms leading to development of scleroderma-related lung disease are poorly understood; however, the systemic nature of this condition has led many to implicate circulating factors in the pathogenesis of some of its organ impairment. In this article, we focus on a new class of circulating factors derived from adipose-tissue called adipokines, which are known to be altered in scleroderma. Recently, the adipokines adiponectin and leptin have been found to regulate biological activities in endothelial, fibroblast and immune cell types in lung and in many other tissues. The pleiotropic nature of these circulating factors and their functional activity on many cell types implicated in the pathogenesis of ILD and PAH suggest these hormones may play a mechanistic role in the onset and/or progression of scleroderma-related lung diseases. PMID:24173692

  3. Cryopreservation and in vitro culture of primary cell types from lung tissue of a stranded pygmy sperm whale (Kogia breviceps).

    PubMed

    Annalaura Mancia; Spyropoulos, Demetri D; McFee, Wayne E; Newton, Danforth A; Baatz, John E

    2012-01-01

    Current models for in vitro studies of tissue function and physiology, including responses to hypoxia or environmental toxins, are limited and rely heavily on standard 2-dimensional (2-D) cultures with immortalized murine or human cell lines. To develop a new more powerful model system, we have pursued methods to establish and expand cultures of primary lung cell types and reconstituted tissues from marine mammals. What little is known about the physiology of the deep-sea diving pygmy sperm whale (PSW), Kogia breviceps, comes primarily from stranding events that occur along the coast of the southeastern United States. Thus, development of a method for preserving live tissues and retrieving live cells from deceased stranded individuals was initiated. This report documents successful cryopreservation of PSW lung tissue. We established in vitro cultures of primary lung cell types from tissue fragments that had been cryopreserved several months earlier at the stranding event. Dissociation of cryopreserved lung tissues readily provides a variety of primary cell types that, to varying degrees, can be expanded and further studied/manipulated in cell culture. In addition, PSW-specific molecular markers have been developed that permitted the monitoring of fibroblast, alveolar type II, and vascular endothelial cell types. Reconstitution of 3-D cultures of lung tissues with these cell types is now underway. This novel system may facilitate the development of rare or disease-specific lung tissue models (e.g., to test causes of PSW stranding events and lead to improved treatments for pulmonary hypertension or reperfusion injury in humans). Also, the establishment of a "living" tissue bank biorepository for rare/endangered species could serve multiple purposes as surrogates for freshly isolated samples. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Lung cancer: biology and treatment options

    PubMed Central

    Hassan, Omer; Yang, Yi-Wei; Buchanan, Petra

    2015-01-01

    Lung cancer remains the leading cause of cancer mortality in men and women in the U.S. and worldwide. About 90% of lung cancer cases are caused by smoking and the use of tobacco products. However, other factors such as radon gas, asbestos, air pollution exposures, and chronic infections can contribute to lung carcinogenesis. In addition, multiple inherited and acquired mechanisms of susceptibility to lung cancer have been proposed. Lung cancer is divided into two broad histologic classes, which grow and spread differently: small-cell lung carcinomas (SCLC) and non-small cell lung carcinomas (NSCLC). Treatment options for lung cancer include surgery, radiation therapy, chemotherapy, and targeted therapy. Therapeutic-modalities recommendations depend on several factors, including the type and stage of cancer. Despite the improvements in diagnosis and therapy made during the past 25 years, the prognosis for patients with lung cancer is still unsatisfactory. The responses to current standard therapies are poor except for the most localized cancers. However, a better understanding of the biology pertinent to these challenging malignancies, might lead to the development of more efficacious and perhaps more specific drugs. The purpose of this review is to summarize the recent developments in lung cancer biology and its therapeutic strategies, and discuss the latest treatment advances including therapies currently under clinical investigation. PMID:26297204

  5. Repetitive intradermal bleomycin injections evoke T-helper cell 2 cytokine-driven pulmonary fibrosis.

    PubMed

    Singh, Brijendra; Kasam, Rajesh K; Sontake, Vishwaraj; Wynn, Thomas A; Madala, Satish K

    2017-11-01

    IL-4 and IL-13 are major T-helper cell (Th) 2 cytokines implicated in the pathogenesis of several lung diseases, including pulmonary fibrosis. In this study, using a novel repetitive intradermal bleomycin model in which mice develop extensive lung fibrosis and a progressive decline in lung function compared with saline-treated control mice, we investigated profibrotic functions of Th2 cytokines. To determine the role of IL-13 signaling in the pathogenesis of bleomycin-induced pulmonary fibrosis, wild-type, IL-13, and IL-4Rα-deficient mice were treated with bleomycin, and lungs were assessed for changes in lung function and pulmonary fibrosis. Histological staining and lung function measurements demonstrated that collagen deposition and lung function decline were attenuated in mice deficient in either IL-13 or IL-4Rα-driven signaling compared with wild-type mice treated with bleomycin. Furthermore, our results demonstrated that IL-13 and IL-4Rα-driven signaling are involved in excessive migration of macrophages and fibroblasts. Notably, our findings demonstrated that IL-13-driven migration involves increased phospho-focal adhesion kinase signaling and F-actin polymerization. Importantly, in vivo findings demonstrated that IL-13 augments matrix metalloproteinase (MMP)-2 and MMP9 activity that has also been shown to increase migration and invasiveness of fibroblasts in the lungs during bleomycin-induced pulmonary fibrosis. Together, our findings demonstrate a pathogenic role for Th2-cytokine signaling that includes excessive migration and protease activity involved in severe fibrotic lung disease.

  6. Delivery of acid sphingomyelinase in normal and niemann-pick disease mice using intercellular adhesion molecule-1-targeted polymer nanocarriers.

    PubMed

    Garnacho, Carmen; Dhami, Rajwinder; Simone, Eric; Dziubla, Thomas; Leferovich, John; Schuchman, Edward H; Muzykantov, Vladimir; Muro, Silvia

    2008-05-01

    Type B Niemann-Pick disease (NPD) is a multiorgan system disorder caused by a genetic deficiency of acid sphingomyelinase (ASM), for which lung is an important and challenging therapeutic target. In this study, we designed and evaluated new delivery vehicles for enzyme replacement therapy of type B NPD, consisting of polystyrene and poly(lactic-coglycolic) acid polymer nanocarriers targeted to intercellular adhesion molecule (ICAM)-1, an endothelial surface protein up-regulated in many pathologies, including type B NPD. Real-time vascular imaging using intravital microscopy and postmortem imaging of mouse organs showed rapid, uniform, and efficient binding of fluorescently labeled ICAM-1-targeted ASM nanocarriers (anti-ICAM/ASM nanocarriers) to endothelium after i.v. injection in mice. Fluorescence microscopy of lung alveoli actin, tissue histology, and 125I-albumin blood-to-lung transport showed that anti-ICAM nanocarriers cause neither detectable lung injury, nor abnormal vascular permeability in animals. Radioisotope tracing showed rapid disappearance from the circulation and enhanced accumulation of anti-ICAM/125I-ASM nanocarriers over the nontargeted naked enzyme in kidney, heart, liver, spleen, and primarily lung, both in wild-type and ASM knockout mice. These data demonstrate that ICAM-1-targeted nanocarriers may enhance enzyme replacement therapy for type B NPD and perhaps other lysosomal storage disorders.

  7. miR-34 miRNAs Regulate Cellular Senescence in Type II Alveolar Epithelial Cells of Patients with Idiopathic Pulmonary Fibrosis

    PubMed Central

    Disayabutr, Supparerk; Kim, Eun Kyung; Cha, Seung-Ick; Green, Gary; Naikawadi, Ram P.; Jones, Kirk D.; Golden, Jeffrey A.; Schroeder, Aaron; Matthay, Michael A.; Kukreja, Jasleen; Erle, David J.; Collard, Harold R.; Wolters, Paul J.

    2016-01-01

    Pathologic features of idiopathic pulmonary fibrosis (IPF) include genetic predisposition, activation of the unfolded protein response, telomere attrition, and cellular senescence. The mechanisms leading to alveolar epithelial cell (AEC) senescence are poorly understood. MicroRNAs (miRNAs) have been reported as regulators of cellular senescence. Senescence markers including p16, p21, p53, and senescence-associated β-galactosidase (SA-βgal) activity were measured in type II AECs from IPF lungs and unused donor lungs. miRNAs were quantified in type II AECs using gene expression arrays and quantitative RT-PCR. Molecular markers of senescence (p16, p21, and p53) were elevated in IPF type II AECs. SA-βgal activity was detected in a greater percentage in type II AECs isolated from IPF patients (23.1%) compared to patients with other interstitial lung diseases (1.2%) or normal controls (0.8%). The relative levels of senescence-associated miRNAs miR-34a, miR-34b, and miR-34c, but not miR-20a, miR-29c, or miR-let-7f were significantly higher in type II AECs from IPF patients. Overexpression of miR-34a, miR-34b, or miR-34c in lung epithelial cells was associated with higher SA-βgal activity (27.8%, 35.1%, and 38.2%, respectively) relative to control treated cells (8.8%). Targets of miR-34 miRNAs, including E2F1, c-Myc, and cyclin E2, were lower in IPF type II AECs. These results show that markers of senescence are uniquely elevated in IPF type II AECs and suggest that the miR-34 family of miRNAs regulate senescence in IPF type II AECs. PMID:27362652

  8. Increased risk of lung cancer in individuals with a family history of the disease: A pooled analysis from the International Lung Cancer Consortium

    PubMed Central

    Coté, Michele L.; Liu, Mei; Bonassi, Stefano; Neri, Monica; Schwartz, Ann G.; Christiani, David C.; Spitz, Margaret R.; Muscat, Joshua E.; Rennert, Gad; Aben, Katja K.; Andrew, Angeline S.; Bencko, Vladimir; Bickeböller, Heike; Boffetta, Paolo; Brennan, Paul; Brenner, Hermann; Duell, Eric J.; Fabianova, Eleonora; Field, John K.; Foretova, Lenka; Friis, Søren; Harris, Curtis C.; Holcatova, Ivana; Hong, Yun-Chul; Isla, Dolores; Janout, Vladimir; Kiemeney, Lambertus A.; Kiyohara, Chikako; Lan, Qing; Lazarus, Philip; Lissowska, Jolanta; Marchand, Loic Le; Mates, Dana; Matsuo, Keitaro; Mayordomo, Jose I.; McLaughlin, John R.; Morgenstern, Hal; Müeller, Heiko; Orlow, Irene; Park, Bernard J.; Pinchev, Mila; Raji, Olaide Y.; Rennert, Hedy S.; Rudnai, Peter; Seow, Adeline; Stucker, Isabelle; Szeszenia-Dabrowska, Neonila; Teare, M. Dawn; Tjønnelan, Anne; Ugolini, Donatella; van der Heijden, Henricus F.M.; Wichmann, Erich; Wiencke, John K.; Woll, Penella J.; Yang, Ping; Zaridze, David; Zhang, Zuo-Feng; Etzel, Carol J.; Hung, Rayjean J.

    2012-01-01

    Background and Methods Familial aggregation of lung cancer exists after accounting for cigarette smoking. However, the extent to which family history affects risk by smoking status, histology, relative type and ethnicity is not well described. This pooled analysis included 24 case-control studies in the International Lung Cancer Consortium. Each study collected age of onset/interview, gender, race/ethnicity, cigarette smoking, histology and first-degree family history of lung cancer. Data from 24,380 lung cancer cases and 23,305 healthy controls were analyzed. Unconditional logistic regression models and generalized estimating equations were used to estimate odds ratios and 95% confidence intervals. Results Individuals with a first-degree relative with lung cancer had a 1.51-fold increase in risk of lung cancer, after adjustment for smoking and other potential confounders(95% CI: 1.39, 1.63). The association was strongest for those with a family history in a sibling, after adjustment (OR=1.82, 95% CI: 1.62, 2.05). No modifying effect by histologic type was found. Never smokers showed a lower association with positive familial history of lung cancer (OR=1.25, 95% CI: 1.03, 1.52), slightly stronger for those with an affected sibling (OR=1.44, 95% CI: 1.07, 1.93), after adjustment. Conclusions The increased risk among never smokers and similar magnitudes of the effect of family history on lung cancer risk across histological types suggests familial aggregation of lung cancer is independent of those associated with cigarette smoking. While the role of genetic variation in the etiology of lung cancer remains to be fully characterized, family history assessment is immediately available and those with a positive history represent a higher risk group. PMID:22436981

  9. Matrix metalloproteinases: their functional role in lung cancer.

    PubMed

    Merchant, Neha; Nagaraju, Ganji Purnachandra; Rajitha, Balney; Lammata, Saipriya; Jella, Kishore Kumar; Buchwald, Zachary S; Lakka, Sajani S; Ali, Arif N

    2017-08-01

    Lung malignancy is the foremost cause of cancer-related deaths globally and is frequently related to long-term tobacco smoking. Recent studies reveal that the expression of matrix metalloproteinases (MMPs) is extremely high in lung tumors compared with non-malignant lung tissue. MMPs are zinc-dependent proteases and are involved in the degradation of extracellular matrix (ECM). Several investigations have shown that MMPs manipulate the activity of non-ECM molecules, including cytokines, growth factors and receptors that control the tumor microenvironment. In this review, we have summarized and critically reviewed the published works on the role of MMPs in non-small-cell lung cancer. We have also explored the structure of MMPs, their various types and roles in lung cancer metastasis including invasion, migration and angiogenesis. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Anti-Podocalyxin Monoclonal Antibody 47-mG2a Detects Lung Cancers by Immunohistochemistry.

    PubMed

    Yamada, Shinji; Itai, Shunsuke; Kaneko, Mika K; Kato, Yukinari

    2018-04-01

    Lung cancer is one of the leading causes of cancer-related deaths in the world. Regardless of the advances in lung cancer treatments, the prognosis is still poor. Podocalyxin (PODXL) is a highly glycosylated type I transmembrane protein that is expressed in normal tissues, including the heart, pancreas, and breast. It is also found and used as a diagnostic marker in many cancers, such as renal, brain, breast, oral, and lung cancers. We previously developed specific and sensitive anti-PODXL monoclonal antibodies, PcMab-47 (mouse IgG 1 , kappa) and its mouse IgG 2a -type (47-mG 2a ), both of which were suitable for immunohistochemical analyses of oral cancers. In this study, we investigated the utility of PcMab-47 and 47-mG 2a for the immunohistochemical analyses of lung cancers. PcMab-47 stained 51/70 (72.9%) cases of lung cancer, whereas 47-mG 2a stained 59/70 (84.3%) cases, indicating that the latter antibody is more sensitive and is useful for detecting PODXL in lung cancers.

  11. Amniocentesis for Fetal Lung Maturity: Will It Become Obsolete?

    PubMed Central

    Varner, Stephen; Sherman, Craig; Lewis, David; Owens, Sheri; Bodie, Frankie; McCathran, C Eric; Holliday, Nicolette

    2013-01-01

    Amniocentesis for fetal lung maturity has historically been performed for many reasons: uterine and placental complications, maternal comorbidities, fetal issues, and even obstetric problems. Even though the risks associated with third trimester amniocentesis are extremely low, complications have been documented, including preterm labor, placental abruptions, intrauterine rupture, maternal sepsis, fetal heart rate abnormalities, and fetal-maternal hemorrhage. This review presents the types of tests for fetal lung maturity, presents the indications and tests utilized, and discusses recommendations for when amniocentesis for fetal lung maturity may be appropriate. PMID:24826202

  12. Amniocentesis for fetal lung maturity: will it become obsolete?

    PubMed

    Varner, Stephen; Sherman, Craig; Lewis, David; Owens, Sheri; Bodie, Frankie; McCathran, C Eric; Holliday, Nicolette

    2013-01-01

    AMNIOCENTESIS FOR FETAL LUNG MATURITY HAS HISTORICALLY BEEN PERFORMED FOR MANY REASONS: uterine and placental complications, maternal comorbidities, fetal issues, and even obstetric problems. Even though the risks associated with third trimester amniocentesis are extremely low, complications have been documented, including preterm labor, placental abruptions, intrauterine rupture, maternal sepsis, fetal heart rate abnormalities, and fetal-maternal hemorrhage. This review presents the types of tests for fetal lung maturity, presents the indications and tests utilized, and discusses recommendations for when amniocentesis for fetal lung maturity may be appropriate.

  13. A co-culture system with an organotypic lung slice and an immortal alveolar macrophage cell line to quantify silica-induced inflammation.

    PubMed

    Hofmann, Falk; Bläsche, Robert; Kasper, Michael; Barth, Kathrin

    2015-01-01

    There is growing evidence that amorphous silica nanoparticles cause toxic effects on lung cells in vivo as well as in vitro and induce inflammatory processes. The phagocytosis of silica by alveolar macrophages potentiates these effects. To understand the underlying molecular mechanisms of silica toxicity, we applied a co-culture system including the immortal alveolar epithelial mouse cell line E10 and the macrophage cell line AMJ2-C11. In parallel we exposed precision-cut lung slices (lacking any blood cells as well as residual alveolar macrophages) of wild type and P2rx7-/- mice with or without AMJ2-C11 cells to silica nanoparticles. Exposure of E10 cells as well as slices of wild type mice resulted in an increase of typical alveolar epithelial type 1 cell proteins like T1α, caveolin-1 and -2 and PKC-β1, whereas the co-culture with AMJ2-C11 showed mostly a slightly lesser increase of these proteins. In P2rx7-/- mice most of these proteins were slightly decreased. ELISA analysis of the supernatant of wild type and P2rx7-/- mice precision-cut lung slices showed decreased amounts of IL-6 and TNF-α when incubated with nano-silica. Our findings indicate that alveolar macrophages influence the early inflammation of the lung and also that cell damaging reagents e.g. silica have a smaller impact on P2rx7-/- mice than on wild type mice. The co-culture system with an organotypic lung slice is a useful tool to study the role of alveolar macrophages during lung injury at the organoid level.

  14. Distinct Characteristics of Small Cell Lung Cancer Correlate With Central or Peripheral Origin: Subtyping Based on Location and Expression of Transcription Factor TTF-1.

    PubMed

    Miyauchi, Eisaku; Motoi, Noriko; Ono, Hiroshi; Ninomiya, Hironori; Ohyanagi, Fumiyoshi; Nishio, Makoto; Okumura, Sakae; Ichinose, Masakazu; Ishikawa, Yuichi

    2015-12-01

    Small-cell lung carcinoma (SCLC) is a type of lung cancer with neuroendocrine differentiation and a poor prognosis that is widely believed to arise in the central lung. Thyroid transcription factor-1 (TTF-1) is a peripheral marker of lung adenocarcinoma that is also highly expressed in SCLC. In this study, we examined whether SCLC is really a central-type tumor and the relationship between tumor location, TTF-1 expression and prognosis of SCLC.Ninety six SCLCs, diagnosed from biopsies or surgical materials, for which detailed computed tomography (CT) images were available, were collected consecutively from Japanese patients between 2004 and 2011. We examined the location of the primary tumor (central or peripheral) using thin-sliced CT, a TTF-1 immunohistochemical expression, and clinicopathology including prognosis.Of the 96 SCLCs, 74% (71/96) were of the peripheral type and found to have a significantly worse prognosis than central-type tumors. TTF-1 immunoreactivity was identified in 79 tumors (82%), 78% of which (62/79) were of the peripheral type and 22% of which were central. TTF-1 expression was significantly correlated with peripheral location (P = 0.030). Multivariate analysis revealed that high TNM stages and the peripheral location were independent markers for poor survival.The majority of SCLCs were of the peripheral type. The peripheral-type SCLC expressed TTF-1 more frequently and had a poorer prognosis than central-type tumors did. Further analysis on original sites of SCLC, using molecular methodology, or based on another ethnicity, should be warranted.

  15. Association of locally produced IL10 and TGFb1 with tumor size, histological type and presence of metastases in patients with lung carcinoma.

    PubMed

    Karlicic, Vukoica; Vukovic, Jelena; Stanojevic, Ivan; Sotirovic, Jelena; Peric, Aleksandar; Jovic, Milena; Cvijanovic, Vlado; Djukic, Mirjana; Banovic, Tatjana; Vojvodic, Danilo

    2016-01-01

    Advanced lung carcinoma is charasterized with fast disease progression. Interleukin (IL)10 and transforming growth factor (TGF)b1 are immunosuppressive mediators and their role in lung carcinoma pathogenesis and in the antitumor response has not yet been elucidated. The purpose of this study was to correlate IL10 and TGFb1 levels in the serum and lung tumor microcirculation with clinical stage, disease extent, histological features and TNM stage. The study included 41 lung cancer patients in clinical stage III and IV. Histological type was determined immunohistochemically, while tumor size, localization and dissemination were determined radiologically by multislice computerized tomography (MSCT). IL10 and TGFb1 levels were quantified with commercial flow cytometric test in serum and lung tumor microcirculation samples. Non small cell lung cancer (NSCLC) patients had significantly elevated TGFb1 while small cell lung cancer (SCLC) patients had significantly increased IL10 in tumor microcirculation. IL10 was significantly elevated in patients with the largest tumors, as well as in patients with III clinical stage and without metastases, both in the serum and tumor microcirculation. TGFb1 was significantly increased in serum and tumor microcirculation in patients with larger tumors. We found significant correlation between these two immunosuppressive cytokines, IL10 and TGFb1, in tumor microcirculation but not in patient serum samples. IL10 and TGFb1 in systemic and tumor microcirculation are significantly associated with particular histological type of lung cancer, tumor size and degree of disease extent.

  16. Increased risk of lung cancer in individuals with a family history of the disease: a pooled analysis from the International Lung Cancer Consortium.

    PubMed

    Coté, Michele L; Liu, Mei; Bonassi, Stefano; Neri, Monica; Schwartz, Ann G; Christiani, David C; Spitz, Margaret R; Muscat, Joshua E; Rennert, Gad; Aben, Katja K; Andrew, Angeline S; Bencko, Vladimir; Bickeböller, Heike; Boffetta, Paolo; Brennan, Paul; Brenner, Hermann; Duell, Eric J; Fabianova, Eleonora; Field, John K; Foretova, Lenka; Friis, Søren; Harris, Curtis C; Holcatova, Ivana; Hong, Yun-Chul; Isla, Dolores; Janout, Vladimir; Kiemeney, Lambertus A; Kiyohara, Chikako; Lan, Qing; Lazarus, Philip; Lissowska, Jolanta; Le Marchand, Loic; Mates, Dana; Matsuo, Keitaro; Mayordomo, Jose I; McLaughlin, John R; Morgenstern, Hal; Müeller, Heiko; Orlow, Irene; Park, Bernard J; Pinchev, Mila; Raji, Olaide Y; Rennert, Hedy S; Rudnai, Peter; Seow, Adeline; Stucker, Isabelle; Szeszenia-Dabrowska, Neonila; Dawn Teare, M; Tjønnelan, Anne; Ugolini, Donatella; van der Heijden, Henricus F M; Wichmann, Erich; Wiencke, John K; Woll, Penella J; Yang, Ping; Zaridze, David; Zhang, Zuo-Feng; Etzel, Carol J; Hung, Rayjean J

    2012-09-01

    Familial aggregation of lung cancer exists after accounting for cigarette smoking. However, the extent to which family history affects risk by smoking status, histology, relative type and ethnicity is not well described. This pooled analysis included 24 case-control studies in the International Lung Cancer Consortium. Each study collected age of onset/interview, gender, race/ethnicity, cigarette smoking, histology and first-degree family history of lung cancer. Data from 24,380 lung cancer cases and 23,305 healthy controls were analysed. Unconditional logistic regression models and generalised estimating equations were used to estimate odds ratios and 95% confidence intervals. Individuals with a first-degree relative with lung cancer had a 1.51-fold increase in the risk of lung cancer, after adjustment for smoking and other potential confounders (95% CI: 1.39, 1.63). The association was strongest for those with a family history in a sibling, after adjustment (odds ratios (OR) = 1.82, 95% CI: 1.62, 2.05). No modifying effect by histologic type was found. Never smokers showed a lower association with positive familial history of lung cancer (OR = 1.25, 95% CI: 1.03, 1.52), slightly stronger for those with an affected sibling (OR = 1.44, 95% CI: 1.07, 1.93), after adjustment. The occurrence of lung cancer among never smokers and similar magnitudes of the effect of family history on lung cancer risk across histological types suggests familial aggregation of lung cancer is independent of those risks associated with cigarette smoking. While the role of genetic variation in the aetiology of lung cancer remains to be fully characterised, family history assessment is immediately available and those with a positive history represent a higher risk group. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. PPAR-γ in innate and adaptive lung immunity.

    PubMed

    Nobs, Samuel Philip; Kopf, Manfred

    2018-05-16

    The transcription factor PPAR-γ (peroxisome proliferator-activated receptor-γ) is a key regulator of lung immunity exhibiting multiple cell type specific roles in controlling development and function of the lung immune system. It is strictly required for the generation of alveolar macrophages by controlling differentiation of fetal lung monocyte precursors. Furthermore, it plays an important role in lung allergic inflammation by licensing lung dendritic cell t helper 2 (Th2) priming capacity as well as acting as a master transcription factor for pathogenic Th2 cells. Due to this plethora of functions and its involvement in multiple pulmonary diseases including asthma and pulmonary alveolar proteinosis, understanding the role of PPAR-γ in lung immunity is an important subject of ongoing research. ©2018 Society for Leukocyte Biology.

  18. Current Treatment Algorithms for Patients with Metastatic Non-Small Cell, Non-Squamous Lung Cancer

    PubMed Central

    Melosky, Barbara

    2017-01-01

    The treatment paradigm for metastatic non-small cell, non-squamous lung cancer is continuously evolving due to new treatment options and our increasing knowledge of molecular signal pathways. As a result of treatments becoming more efficacious and more personalized, survival for selected groups of non-small cell lung cancer (NSCLC) patients is increasing. In this paper, three algorithms will be presented for treating patients with metastatic non-squamous, NSCLC. These include treatment algorithms for NSCLC patients whose tumors have EGFR mutations, ALK rearrangements, or wild-type/wild-type tumors. As the world of immunotherapy continues to evolve quickly, a future algorithm will also be presented. PMID:28373963

  19. Automated method and system for the alignment and correlation of images from two different modalities

    DOEpatents

    Giger, Maryellen L.; Chen, Chin-Tu; Armato, Samuel; Doi, Kunio

    1999-10-26

    A method and system for the computerized registration of radionuclide images with radiographic images, including generating image data from radiographic and radionuclide images of the thorax. Techniques include contouring the lung regions in each type of chest image, scaling and registration of the contours based on location of lung apices, and superimposition after appropriate shifting of the images. Specific applications are given for the automated registration of radionuclide lungs scans with chest radiographs. The method in the example given yields a system that spatially registers and correlates digitized chest radiographs with V/Q scans in order to correlate V/Q functional information with the greater structural detail of chest radiographs. Final output could be the computer-determined contours from each type of image superimposed on any of the original images, or superimposition of the radionuclide image data, which contains high activity, onto the radiographic chest image.

  20. CAVEOLINS AND LUNG FUNCTION

    PubMed Central

    Maniatis, Nikolaos A.; Chernaya, Olga; Shinin, Vasily; Minshall, Richard D.

    2012-01-01

    The primary function of the mammalian lung is to facilitate diffusion of oxygen to venous blood and to ventilate carbon dioxide produced by catabolic reactions within cells. However, it is also responsible for a variety of other important functions, including host defense and production of vasoactive agents to regulate not only systemic blood pressure, but also water, electrolyte and acid-base balance. Caveolin-1 is highly expressed in the majority of cell types in the lung, including epithelial, endothelial, smooth muscle, connective tissue cells, and alveolar macrophages. Deletion of caveolin-1 in these cells results in major functional aberrations, suggesting that caveolin-1 may be crucial to lung homeostasis and development. Furthermore, generation of mutant mice that under-express caveolin-1 results in severe functional distortion with phenotypes covering practically the entire spectrum of known lung diseases, including pulmonary hypertension, fibrosis, increased endothelial permeability, and immune defects. In this Chapter, we outline the current state of knowledge regarding caveolin-1-dependent regulation of pulmonary cell functions and discuss recent research findings on the role of caveolin-1 in various pulmonary disease states, including obstructive and fibrotic pulmonary vascular and inflammatory diseases. PMID:22411320

  1. Mechanisms of lung aging.

    PubMed

    Brandenberger, Christina; Mühlfeld, Christian

    2017-03-01

    Lung aging is associated with structural remodeling, a decline of respiratory function and a higher susceptibility to acute and chronic lung diseases. Individual factors that modulate pulmonary aging include basic genetic configuration, environmental exposure, life-style and biography of systemic diseases. However, the actual aging of the lung takes place in pulmonary resident cells and is closely linked to aging of the immune system (immunosenescence). Therefore, this article reviews the current knowledge about the impact of aging on pulmonary cells and the immune system, without analyzing those factors that may accelerate the aging process in depth. Hallmarks of aging include alterations at molecular, cellular and cell-cell interaction levels. Because of the great variety of cell types in the lung, the consequences of aging display a broad spectrum of phenotypes. For example, aging is associated with more collagen and less elastin production by fibroblasts, thus increasing pulmonary stiffness and lowering compliance. Decreased sympathetic airway innervation may increase the constriction status of airway smooth muscle cells. Aging of resident and systemic immune cells leads to a pro-inflammatory milieu and reduced capacity of fighting infectious diseases. The current review provides an overview of cellular changes occurring with advancing age in general and in several cell types of the lung as well as of the immune system. Thereby, this survey not only aims at providing a better understanding of the mechanisms of pulmonary aging but also to identify gaps in knowledge that warrant further investigations.

  2. Diagnosing lung cancer using coherent anti-Stokes Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Yang, Yaliang; Xing, Jiong; Thrall, Michael J.; Wang, Zhiyong; Li, Fuhai; Luo, Pengfei; Wong, Kelvin K.; Zhao, Hong; Wong, Stephen T. C.

    2011-03-01

    Lung carcinoma is the most prevalent type of cancer in the world, and it is responsible for more deaths than other types of cancer. During diagnosis, a pathologist primarily aims to differentiate small cell carcinoma from non-small cell carcinoma on biopsy and cytology specimens, which is time consuming due to the time required for tissue processing and staining. To speed up the diagnostic process, we investigated the feasibility of using coherent anti-Stokes Raman scattering (CARS) microscopy as a label-free strategy to image lung lesions and differentiate subtypes of lung cancers. Different mouse lung cancer models were developed by injecting human lung cancer cell lines, including adenocarcinoma, squamous cell carcinoma, and small cell carcinoma, into lungs of the nude mice. CARS images were acquired from normal lung tissues and different subtypes of cancer lesions ex vivo using intrinsic contrasts from symmetric CH2 bonds. These images showed good correlation with the hematoxylin and eosin (H&E) stained sections from the same tissue samples with regard to cell size, density, and cell-cell distance. These features are routinely used in diagnosing lung lesions. Our results showed that the CARS technique is capable of providing a visualizable platform to differentiate different kinds of lung cancers using the same pathological features without histological staining and thus has the potential to serve as a more efficient examination tool for diagnostic pathology. In addition, incorporating with suitable fiber-optic probes would render the CARS technique as a promising approach for in vivo diagnosis of lung cancer.

  3. Assessement of angiogenesis reveals blood vessel heterogeneity in lung carcinoma

    PubMed Central

    BIRAU, AMALIA; CEAUSU, RALUCA AMALIA; CIMPEAN, ANCA MARIA; GAJE, PUSA; RAICA, MARIUS; OLARIU, TEODORA

    2012-01-01

    Despite advances in treatment, the prognosis for lung cancer patients remains poor. Angiogenesis appears to be a promising target for lung cancer therapy; however, the clinical significance of vascular changes are not completely understood. The aim of this study was to evaluate the types and morphology of blood vessels in various lung carcinomas. Using double immunostaining, we investigated 39 biopsies from patients admitted with various histological types of lung carcinoma. Tumor blood vessels were quantified separately for CD34/smooth muscle actin and described as either immature, intermediate or mature. Double immunostaining evaluation of the type of blood vessels in lung carcinomas revealed a marked heterogeneity. The immature and intermediate type of vessels were more common in adenocarcinomas (ADCs) and squamous cell carcinomas (SCCs) of the lung. Small cell lung carcinomas revealed a significant correlation between pathological and immature types of blood vessels. Therefore, quantifying the types of tumor vessels in lung carcinomas may be an important element to improve the results of anti-vascular therapy. PMID:23205116

  4. Occupational Respiratory Disease

    MedlinePlus

    ... other particles. Types of occupational respiratory disease include: coal workers’ pneumoconiosis, also known as Black Lung Disease ... include: Dust from things such as wood, cotton, coal, asbestos, silica, and talc. Pesticides, drug or enzyme ...

  5. Did You Know? Video Series - SEER Cancer Statistics

    Cancer.gov

    Videos that explain cancer statistics. Choose from topics including survival, statistics overview, survivorship, disparities, and specific cancer types including breast, lung, colorectal, prostate, melanoma of the skin, and others.

  6. Bidi smoking and lung cancer.

    PubMed

    Prasad, Rajendra; Singhal, Sanjay; Garg, Rajiv

    2009-04-01

    This article discusses the role of bidi smoking as a risk factor for lung cancer. A review of the documented evidence is presented. The literature from Pubmed has been searched using the key words 'beedi smoking', 'bidi smoking' and 'lung cancer'. The bibliographies of all papers found were further searched for additional relevant articles. After this thorough search, eight studies were found. The evidence suggests that bidi smoking poses a higher risk for lung cancer than cigarette smoking and risk further increases with both the length of time and amount of bidi smoking. The focus of tobacco control programs should be expanded to all types of tobacco use, including bidis, to reduce the increasing problem of lung cancer.

  7. K-ras p21 expression and activity in lung and lung tumors.

    PubMed

    Ramakrishna, G; Sithanandam, G; Cheng, R Y; Fornwald, L W; Smith, G T; Diwan, B A; Anderson, L M

    2000-12-01

    Although K-ras is mutated in many human and mouse lung adenocarcinomas, the function of K-ras p21 in lung is not known. We sought evidence for the prevalent hypothesis that K-ras p21 activates raf, which in turn passes the signal through the extracellular signal regulated kinases (Erks) to stimulate cell division, and that this pathway is upregulated when K-ras is mutated. Results from both mouse lung tumors and immortalized cultured E10 and C10 lung type II cells failed to substantiate this hypothesis. Lung tumors did not have more total K-ras p21 or K-ras p21 GTP than normal lung tissue, nor were high levels of these proteins found in tumors with mutant K-ras. Activated K-ras p21-GTP levels did not correlate with proliferating cell nuclear antigen. Special features of tumors with mutant K-ras included small size of carcinomas compared with carcinomas lacking this mutation, and correlation of proliferating cell nuclear antigen with raf-1. In nontransformed type II cells in culture, both total and activated K-ras p21 increased markedly at confluence but not after serum stimulation, whereas both Erk1/2 and the protein kinase Akt were rapidly activated by the serum treatment. Reverse transcriptase-polymerase chain reaction (RT-PCR) assays of K-ras mRNA indicated an increase in confluent and especially in postconfluent cells. Together the findings indicate that normal K-ras p21 activity is associated with growth arrest of lung type II cells, and that the exact contribution of mutated K-ras p21 to tumor development remains to be discovered.

  8. S-nitrosoglutathione reductase in human lung cancer.

    PubMed

    Marozkina, Nadzeya V; Wei, Christina; Yemen, Sean; Wallrabe, Horst; Nagji, Alykhan S; Liu, Lei; Morozkina, Tatiana; Jones, David R; Gaston, Benjamin

    2012-01-01

    S-Nitrosoglutathione (GSNO) reductase regulates cell signaling pathways relevant to asthma and protects cells from nitrosative stress. Recent evidence suggests that this enzyme may prevent human hepatocellular carcinoma arising in the setting of chronic hepatitis. We hypothesized that GSNO reductase may also protect the lung against potentially carcinogenic reactions associated with nitrosative stress. We report that wild-type Ras is S-nitrosylated and activated by nitrosative stress and that it is denitrosylated by GSNO reductase. In human lung cancer, the activity and expression of GSNO reductase are decreased. Further, the distribution of the enzyme (including its colocalization with wild-type Ras) is abnormal. We conclude that decreased activity of GSNO reductase could leave the human lung vulnerable to the oncogenic effects of nitrosative stress, as is the case in the liver. This potential should be considered when developing therapies that inhibit pulmonary GSNO reductase to treat asthma and other conditions.

  9. Genomic signatures of Mannheimia haemolytica that associate with the lungs of cattle with respiratory disease, an integrative conjugative element, and antibiotic resistance genes

    USDA-ARS?s Scientific Manuscript database

    Background: Mannheimia haemolytica typically resides in cattle as a commensal member of the upper respiratory tract microbiome. However, some strains can invade their lungs and cause respiratory disease and death, including those with multi-drug resistance. A nucleotide polymorphism typing system ...

  10. Risk of lung cancer associated with six types of chlorinated solvents: results from two case-control studies in Montreal, Canada

    EPA Science Inventory

    Methods: Two case-control studies of occupation and lung cancer were conducted in Montreal, including 2,016 cases and 2,001 population controls. Occupational exposure to a host of agents was evaluated using a combination of subject-reported job history and expert assessment. We e...

  11. Second harmonic generation microscopy differentiates collagen type I and type III in COPD

    NASA Astrophysics Data System (ADS)

    Suzuki, Masaru; Kayra, Damian; Elliott, W. Mark; Hogg, James C.; Abraham, Thomas

    2012-03-01

    The structural remodeling of extracellular matrix proteins in peripheral lung region is an important feature in chronic obstructive pulmonary disease (COPD). Multiphoton microscopy is capable of inducing specific second harmonic generation (SHG) signal from non-centrosymmetric structural proteins such as fibrillar collagens. In this study, SHG microscopy was used to examine structural remodeling of the fibrillar collagens in human lungs undergoing emphysematous destruction (n=2). The SHG signals originating from these diseased lung thin sections from base to apex (n=16) were captured simultaneously in both forward and backward directions. We found that the SHG images detected in the forward direction showed well-developed and well-structured thick collagen fibers while the SHG images detected in the backward direction showed striking different morphological features which included the diffused pattern of forward detected structures plus other forms of collagen structures. Comparison of these images with the wellestablished immunohistochemical staining indicated that the structures detected in the forward direction are primarily the thick collagen type I fibers and the structures identified in the backward direction are diffusive structures of forward detected collagen type I plus collagen type III. In conclusion, we here demonstrate the feasibility of SHG microscopy in differentiating fibrillar collagen subtypes and understanding their remodeling in diseased lung tissues.

  12. The Impact of the Cancer Genome Atlas on Lung Cancer

    PubMed Central

    Chang, Jeremy Tzu-Huai; Lee, Yee-Ming; Huang, R. Stephanie

    2015-01-01

    The Cancer Genome Atlas (TCGA) has profiled over 10,000 samples derived from 33 types of cancer to date, with the goal of improving our understanding of the molecular basis of cancer and advancing our ability to diagnose, treat, and prevent cancer. This review focuses on lung cancer as it is the leading cause of cancer-related mortality worldwide in both men and women. Particularly, non-small cell lung cancers (including lung adenocarcinoma and lung squamous cell carcinoma) were evaluated. Our goal is to demonstrate the impact of TCGA on lung cancer research under four themes: namely, diagnostic markers, disease progression markers, novel therapeutic targets, and novel tools. Examples were given related to DNA mutation, copy number variation, mRNA, and microRNA expression along with methylation profiling. PMID:26318634

  13. Comparative Effectiveness Research in Lung Diseases and Sleep Disorders

    PubMed Central

    Lieu, Tracy A.; Au, David; Krishnan, Jerry A.; Moss, Marc; Selker, Harry; Harabin, Andrea; Connors, Alfred

    2011-01-01

    The Division of Lung Diseases of the National Heart, Lung, and Blood Institute (NHLBI) held a workshop to develop recommendations on topics, methodologies, and resources for comparative effectiveness research (CER) that will guide clinical decision making about available treatment options for lung diseases and sleep disorders. A multidisciplinary group of experts with experience in efficacy, effectiveness, implementation, and economic research identified (a) what types of studies the domain of CER in lung diseases and sleep disorders should include, (b) the criteria and process for setting priorities, and (c) current resources for and barriers to CER in lung diseases. Key recommendations were to (1) increase efforts to engage stakeholders in developing CER questions and study designs; (2) invest in further development of databases and other infrastructure, including efficient methods for data sharing; (3) make full use of a broad range of study designs; (4) increase the appropriate use of observational designs and the support of methodologic research; (5) ensure that committees that review CER grant applications include persons with appropriate perspective and expertise; and (6) further develop the workforce for CER by supporting training opportunities that focus on the methodologic and practical skills needed. PMID:21965016

  14. Influence of emphysema distribution on pulmonary function parameters in COPD patients

    PubMed Central

    Bastos, Helder Novais e; Neves, Inês; Redondo, Margarida; Cunha, Rui; Pereira, José Miguel; Magalhães, Adriana; Fernandes, Gabriela

    2015-01-01

    ABSTRACT OBJECTIVE: To evaluate the impact that the distribution of emphysema has on clinical and functional severity in patients with COPD. METHODS: The distribution of the emphysema was analyzed in COPD patients, who were classified according to a 5-point visual classification system of lung CT findings. We assessed the influence of emphysema distribution type on the clinical and functional presentation of COPD. We also evaluated hypoxemia after the six-minute walk test (6MWT) and determined the six-minute walk distance (6MWD). RESULTS: Eighty-six patients were included. The mean age was 65.2 ± 12.2 years, 91.9% were male, and all but one were smokers (mean smoking history, 62.7 ± 38.4 pack-years). The emphysema distribution was categorized as obviously upper lung-predominant (type 1), in 36.0% of the patients; slightly upper lung-predominant (type 2), in 25.6%; homogeneous between the upper and lower lung (type 3), in 16.3%; and slightly lower lung-predominant (type 4), in 22.1%. Type 2 emphysema distribution was associated with lower FEV1, FVC, FEV1/FVC ratio, and DLCO. In comparison with the type 1 patients, the type 4 patients were more likely to have an FEV1 < 65% of the predicted value (OR = 6.91, 95% CI: 1.43-33.45; p = 0.016), a 6MWD < 350 m (OR = 6.36, 95% CI: 1.26-32.18; p = 0.025), and post-6MWT hypoxemia (OR = 32.66, 95% CI: 3.26-326.84; p = 0.003). The type 3 patients had a higher RV/TLC ratio, although the difference was not significant. CONCLUSIONS: The severity of COPD appears to be greater in type 4 patients, and type 3 patients tend to have greater hyperinflation. The distribution of emphysema could have a major impact on functional parameters and should be considered in the evaluation of COPD patients. PMID:26785956

  15. Transcription factor Etv5 is essential for the maintenance of alveolar type II cells.

    PubMed

    Zhang, Zhen; Newton, Kim; Kummerfeld, Sarah K; Webster, Joshua; Kirkpatrick, Donald S; Phu, Lilian; Eastham-Anderson, Jeffrey; Liu, Jinfeng; Lee, Wyne P; Wu, Jiansheng; Li, Hong; Junttila, Melissa R; Dixit, Vishva M

    2017-04-11

    Alveolar type II (AT2) cell dysfunction contributes to a number of significant human pathologies including respiratory distress syndrome, lung adenocarcinoma, and debilitating fibrotic diseases, but the critical transcription factors that maintain AT2 cell identity are unknown. Here we show that the E26 transformation-specific (ETS) family transcription factor Etv5 is essential to maintain AT2 cell identity. Deletion of Etv5 from AT2 cells produced gene and protein signatures characteristic of differentiated alveolar type I (AT1) cells. Consistent with a defect in the AT2 stem cell population, Etv5 deficiency markedly reduced recovery following bleomycin-induced lung injury. Lung tumorigenesis driven by mutant KrasG12D was also compromised by Etv5 deficiency. ERK activation downstream of Ras was found to stabilize Etv5 through inactivation of the cullin-RING ubiquitin ligase CRL4 COP1/DET1 that targets Etv5 for proteasomal degradation. These findings identify Etv5 as a critical output of Ras signaling in AT2 cells, contributing to both lung homeostasis and tumor initiation.

  16. Resistin deficiency in mice has no effect on pulmonary responses induced by acute ozone exposure

    PubMed Central

    Razvi, Shehla S.; Richards, Jeremy B.; Malik, Farhan; Cromar, Kevin R.; Price, Roger E.; Bell, Cynthia S.; Weng, Tingting; Atkins, Constance L.; Spencer, Chantal Y.; Cockerill, Katherine J.; Alexander, Amy L.; Blackburn, Michael R.; Alcorn, Joseph L.; Haque, Ikram U.

    2015-01-01

    Acute exposure to ozone (O3), an air pollutant, causes pulmonary inflammation, airway epithelial desquamation, and airway hyperresponsiveness (AHR). Pro-inflammatory cytokines—including IL-6 and ligands of chemokine (C-X-C motif) receptor 2 [keratinocyte chemoattractant (KC) and macrophage inflammatory protein (MIP)-2], TNF receptor 1 and 2 (TNF), and type I IL-1 receptor (IL-1α and IL-1β)—promote these sequelae. Human resistin, a pleiotropic hormone and cytokine, induces expression of IL-1α, IL-1β, IL-6, IL-8 (the human ortholog of murine KC and MIP-2), and TNF. Functional differences exist between human and murine resistin; yet given the aforementioned observations, we hypothesized that murine resistin promotes O3-induced lung pathology by inducing expression of the same inflammatory cytokines as human resistin. Consequently, we examined indexes of O3-induced lung pathology in wild-type and resistin-deficient mice following acute exposure to either filtered room air or O3. In wild-type mice, O3 increased bronchoalveolar lavage fluid (BALF) resistin. Furthermore, O3 increased lung tissue or BALF IL-1α, IL-6, KC, TNF, macrophages, neutrophils, and epithelial cells in wild-type and resistin-deficient mice. With the exception of KC, which was significantly greater in resistin-deficient compared with wild-type mice, no genotype-related differences in the other indexes existed following O3 exposure. O3 caused AHR to acetyl-β-methylcholine chloride (methacholine) in wild-type and resistin-deficient mice. However, genotype-related differences in airway responsiveness to methacholine were nonexistent subsequent to O3 exposure. Taken together, these data demonstrate that murine resistin is increased in the lungs of wild-type mice following acute O3 exposure but does not promote O3-induced lung pathology. PMID:26386120

  17. Detection of Quiescent Infections with Multiple Elephant Endotheliotropic Herpesviruses (EEHVs), Including EEHV2, EEHV3, EEHV6, and EEHV7, within Lymphoid Lung Nodules or Lung and Spleen Tissue Samples from Five Asymptomatic Adult African Elephants.

    PubMed

    Zong, Jian-Chao; Heaggans, Sarah Y; Long, Simon Y; Latimer, Erin M; Nofs, Sally A; Bronson, Ellen; Casares, Miguel; Fouraker, Michael D; Pearson, Virginia R; Richman, Laura K; Hayward, Gary S

    2015-12-30

    More than 80 cases of lethal hemorrhagic disease associated with elephant endotheliotropic herpesviruses (EEHVs) have been identified in young Asian elephants worldwide. Diagnostic PCR tests detected six types of EEHV in blood of elephants with acute disease, although EEHV1A is the predominant pathogenic type. Previously, the presence of herpesvirus virions within benign lung and skin nodules from healthy African elephants led to suggestions that African elephants may be the source of EEHV disease in Asian elephants. Here, we used direct PCR-based DNA sequencing to detect EEHV genomes in necropsy tissue from five healthy adult African elephants. Two large lung nodules collected from culled wild South African elephants contained high levels of either EEHV3 alone or both EEHV2 and EEHV3. Similarly, a euthanized U.S. elephant proved to harbor multiple EEHV types distributed nonuniformly across four small lung nodules, including high levels of EEHV6, lower levels of EEHV3 and EEHV2, and a new GC-rich branch type, EEHV7. Several of the same EEHV types were also detected in random lung and spleen samples from two other elephants. Sanger PCR DNA sequence data comprising 100 kb were obtained from a total of 15 different strains identified, with (except for a few hypervariable genes) the EEHV2, EEHV3, and EEHV6 strains all being closely related to known genotypes from cases of acute disease, whereas the seven loci (4.0 kb) obtained from EEHV7 averaged 18% divergence from their nearest relative, EEHV3. Overall, we conclude that these four EEHV species, but probably not EEHV1, occur commonly as quiescent infections in African elephants. Acute hemorrhagic disease characterized by high-level viremia due to infection by members of the Proboscivirus genus threatens the future breeding success of endangered Asian elephants worldwide. Although the genomes of six EEHV types from acute cases have been partially or fully characterized, lethal disease predominantly involves a variety of strains of EEHV1, whose natural host has been unclear. Here, we carried out genotype analyses by partial PCR sequencing of necropsy tissue from five asymptomatic African elephants and identified multiple simultaneous infections by several different EEHV types, including high concentrations in lymphoid lung nodules. Overall, the results provide strong evidence that EEHV2, EEHV3, EEHV6, and EEHV7 represent natural ubiquitous infections in African elephants, whereas Asian elephants harbor EEHV1A, EEHV1B, EEHV4, and EEHV5. Although a single case of fatal cross-species infection by EEHV3 is known, the results do not support the previous concept that highly pathogenic EEHV1A crossed from African to Asian elephants in zoos. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Detection of Quiescent Infections with Multiple Elephant Endotheliotropic Herpesviruses (EEHVs), Including EEHV2, EEHV3, EEHV6, and EEHV7, within Lymphoid Lung Nodules or Lung and Spleen Tissue Samples from Five Asymptomatic Adult African Elephants

    PubMed Central

    Zong, Jian-Chao; Heaggans, Sarah Y.; Long, Simon Y.; Latimer, Erin M.; Nofs, Sally A.; Bronson, Ellen; Casares, Miguel; Fouraker, Michael D.; Pearson, Virginia R.; Richman, Laura K.

    2015-01-01

    ABSTRACT More than 80 cases of lethal hemorrhagic disease associated with elephant endotheliotropic herpesviruses (EEHVs) have been identified in young Asian elephants worldwide. Diagnostic PCR tests detected six types of EEHV in blood of elephants with acute disease, although EEHV1A is the predominant pathogenic type. Previously, the presence of herpesvirus virions within benign lung and skin nodules from healthy African elephants led to suggestions that African elephants may be the source of EEHV disease in Asian elephants. Here, we used direct PCR-based DNA sequencing to detect EEHV genomes in necropsy tissue from five healthy adult African elephants. Two large lung nodules collected from culled wild South African elephants contained high levels of either EEHV3 alone or both EEHV2 and EEHV3. Similarly, a euthanized U.S. elephant proved to harbor multiple EEHV types distributed nonuniformly across four small lung nodules, including high levels of EEHV6, lower levels of EEHV3 and EEHV2, and a new GC-rich branch type, EEHV7. Several of the same EEHV types were also detected in random lung and spleen samples from two other elephants. Sanger PCR DNA sequence data comprising 100 kb were obtained from a total of 15 different strains identified, with (except for a few hypervariable genes) the EEHV2, EEHV3, and EEHV6 strains all being closely related to known genotypes from cases of acute disease, whereas the seven loci (4.0 kb) obtained from EEHV7 averaged 18% divergence from their nearest relative, EEHV3. Overall, we conclude that these four EEHV species, but probably not EEHV1, occur commonly as quiescent infections in African elephants. IMPORTANCE Acute hemorrhagic disease characterized by high-level viremia due to infection by members of the Proboscivirus genus threatens the future breeding success of endangered Asian elephants worldwide. Although the genomes of six EEHV types from acute cases have been partially or fully characterized, lethal disease predominantly involves a variety of strains of EEHV1, whose natural host has been unclear. Here, we carried out genotype analyses by partial PCR sequencing of necropsy tissue from five asymptomatic African elephants and identified multiple simultaneous infections by several different EEHV types, including high concentrations in lymphoid lung nodules. Overall, the results provide strong evidence that EEHV2, EEHV3, EEHV6, and EEHV7 represent natural ubiquitous infections in African elephants, whereas Asian elephants harbor EEHV1A, EEHV1B, EEHV4, and EEHV5. Although a single case of fatal cross-species infection by EEHV3 is known, the results do not support the previous concept that highly pathogenic EEHV1A crossed from African to Asian elephants in zoos. PMID:26719245

  19. Biological Modeling Based Outcome Analysis (BMOA) in 3D Conformal Radiation Therapy (3DCRT) Treatments for Lung and Breast Cancers

    NASA Astrophysics Data System (ADS)

    Pyakuryal, Anil; Chen, Chiu-Hao; Dhungana, Sudarshan

    2010-03-01

    3DCRT treatments are the most commonly used techniques in the treatment of lung and breast cancers. The purpose of this study was to perform the BMOA of the 3DCRT plans designed for the treatment of breast and lung cancers utilizing HART program (Med. Phys. 36, p.2547(2009)). The BMOA parameters include normal tissue complication probability (NTCP), tumor control probability (TCP), and the complication-free tumor control probability (P+). The 3DCRT plans were designed for (i) the palliative treatment of 8 left lung cancer patients (CPs) at early stage (m=8), (ii) the curative treatment of 8 left lung CPs at stages II and III (k=8), and (iii) the curative treatment of 8 left breast CPs (n=8). The NTCPs were noticeably small (<2%) for heart, lungs and cord in both types of treatments except for the esophagus in lung CPs (k=8). Assessments of the TCPs and P+s also indicated good improvements in local tumor control in all plans. Homogeneous target coverage and improved dose conformality were the major advantages of such techniques in the treatment of breast cancer. These achievements support the efficacy of the 3DCRT techniques for the efficient treatment of various types of cancer.

  20. An improved method for the isolation of rat alveolar type II lung cells: Use in the Comet assay to determine DNA damage induced by cigarette smoke.

    PubMed

    Dalrymple, Annette; Ordoñez, Patricia; Thorne, David; Dillon, Debbie; Meredith, Clive

    2015-06-01

    Smoking is a cause of serious diseases, including lung cancer, emphysema, chronic bronchitis and heart disease. DNA damage is thought to be one of the mechanisms by which cigarette smoke (CS) initiates disease in the lung. Indeed, CS induced DNA damage can be measured in vitro and in vivo. The potential of the Comet assay to measure DNA damage in isolated rat lung alveolar type II epithelial cells (AEC II) was explored as a means to include a genotoxicity end-point in rodent sub-chronic inhalation studies. In this study, published AEC II isolation methods were improved to yield viable cells suitable for use in the Comet assay. The improved method reduced the level of basal DNA damage and DNA repair in isolated AEC II. CS induced DNA damage could also be quantified in isolated cells following a single or 5 days CS exposure. In conclusion, the Comet assay has the potential to determine CS or other aerosol induced DNA damage in AEC II isolated from rodents used in sub-chronic inhalation studies. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Paraneoplastic syndromes associated with lung cancer

    PubMed Central

    Kanaji, Nobuhiro; Watanabe, Naoki; Kita, Nobuyuki; Bandoh, Shuji; Tadokoro, Akira; Ishii, Tomoya; Dobashi, Hiroaki; Matsunaga, Takuya

    2014-01-01

    Paraneoplastic syndromes are signs or symptoms that occur as a result of organ or tissue damage at locations remote from the site of the primary tumor or metastases. Paraneoplastic syndromes associated with lung cancer can impair various organ functions and include neurologic, endocrine, dermatologic, rheumatologic, hematologic, and ophthalmological syndromes, as well as glomerulopathy and coagulopathy (Trousseau’s syndrome). The histological type of lung cancer is generally dependent on the associated syndrome, the two most common of which are humoral hypercalcemia of malignancy in squamous cell carcinoma and the syndrome of inappropriate antidiuretic hormone secretion in small cell lung cancer. The symptoms often precede the diagnosis of the associated lung cancer, especially when the symptoms are neurologic or dermatologic. The proposed mechanisms of paraneoplastic processes include the aberrant release of humoral mediators, such as hormones and hormone-like peptides, cytokines, and antibodies. Treating the underlying cancer is generally the most effective therapy for paraneoplastic syndromes, and treatment soon after symptom onset appears to offer the best potential for symptom improvement. In this article, we review the diagnosis, potential mechanisms, and treatments of a wide variety of paraneoplastic syndromes associated with lung cancer. PMID:25114839

  2. Comparison of Prevalence and Types of Mutations in Lung Cancers Among Black and White Populations.

    PubMed

    Campbell, Joshua D; Lathan, Christopher; Sholl, Lynette; Ducar, Matthew; Vega, Mikenah; Sunkavalli, Ashwini; Lin, Ling; Hanna, Megan; Schubert, Laura; Thorner, Aaron; Faris, Nicholas; Williams, David R; Osarogiagbon, Raymond U; van Hummelen, Paul; Meyerson, Matthew; MacConaill, Laura

    2017-06-01

    Lung cancer is the leading cause of cancer death in the United States in all ethnic and racial groups. The overall death rate from lung cancer is higher in black patients than in white patients. To compare the prevalence and types of somatic alterations between lung cancers from black patients and white patients. Differences in mutational frequencies could illuminate differences in prognosis and lead to the reduction of outcome disparities by more precisely targeting patients' treatment. Tumor specimens were collected from Baptist Cancer Center (Memphis, Tennessee) over the course of 9 years (January 2004-December 2012). Genomic analysis by massively parallel sequencing of 504 cancer genes was performed at Dana-Farber Cancer Institute (Boston, Massachusetts). Overall, 509 lung cancer tumors specimens (319 adenocarcinomas; 142 squamous cell carcinomas) were profiled from 245 black patients and 264 white patients. The frequencies of genomic alterations were compared between tumors from black and white populations. Overall, 509 lung cancers were collected and analyzed (273 women [129 black patients; 144 white patients] and 236 men [116 black patients; 120 white patients]). Using 313 adenocarcinomas and 138 squamous cell carcinomas with genetically supported ancestry, overall mutational frequencies and copy number changes were not significantly different between black and white populations in either tumor type after correcting for multiple hypothesis testing. Furthermore, specific activating alterations in members of the receptor tyrosine kinase/Ras/Raf pathway including EGFR and KRAS were not significantly different between populations in lung adenocarcinoma. These results demonstrate that lung cancers from black patients are similar to cancers from white patients with respect to clinically actionable genomic alterations and suggest that clinical trials of targeted therapies could significantly benefit patients in both groups.

  3. Comparison of Prevalence and Types of Mutations in Lung Cancers Among Black and White Populations

    PubMed Central

    Campbell, Joshua D.; Lathan, Christopher; Sholl, Lynette; Ducar, Matthew; Vega, Mikenah; Sunkavalli, Ashwini; Lin, Ling; Hanna, Megan; Schubert, Laura; Thorner, Aaron; Faris, Nicholas; Williams, David R.; Osarogiagbon, Raymond U.; van Hummelen, Paul; Meyerson, Matthew; MacConaill, Laura

    2017-01-01

    IMPORTANCE Lung cancer is the leading cause of cancer death in the United States in all ethnic and racial groups. The overall death rate from lung cancer is higher in black patients than in white patients. OBJECTIVE To compare the prevalence and types of somatic alterations between lung cancers from black patients and white patients. Differences in mutational frequencies could illuminate differences in prognosis and lead to the reduction of outcome disparities by more precisely targeting patients’ treatment. DESIGN, SETTING, AND PARTICIPANTS Tumor specimens were collected from Baptist Cancer Center (Memphis, Tennessee) over the course of 9 years (January 2004-December 2012). Genomic analysis by massively parallel sequencing of 504 cancer genes was performed at Dana-Farber Cancer Institute (Boston, Massachusetts). Overall, 509 lung cancer tumors specimens (319 adenocarcinomas; 142 squamous cell carcinomas) were profiled from 245 black patients and 264 white patients. MAIN OUTCOMES AND MEASURES The frequencies of genomic alterations were compared between tumors from black and white populations. RESULTS Overall, 509 lung cancers were collected and analyzed (273 women [129 black patients; 144 white patients] and 236 men [116 black patients; 120 white patients]). Using 313 adenocarcinomas and 138 squamous cell carcinomas with genetically supported ancestry, overall mutational frequencies and copy number changes were not significantly different between black and white populations in either tumor type after correcting for multiple hypothesis testing. Furthermore, specific activating alterations in members of the receptor tyrosine kinase/Ras/Raf pathway including EGFR and KRAS were not significantly different between populations in lung adenocarcinoma. CONCLUSIONS AND RELEVANCE These results demonstrate that lung cancers from black patients are similar to cancers from white patients with respect to clinically actionable genomic alterations and suggest that clinical trials of targeted therapies could significantly benefit patients in both groups. PMID:28114446

  4. Nfib hemizygous mice are protected from hyperoxic lung injury and death.

    PubMed

    Kumar, Vasantha H S; Chaker El Khoury, Joseph; Gronostajski, Richard; Wang, Huamei; Nielsen, Lori; Ryan, Rita M

    2017-08-01

    Nuclear Factor I ( Nfi) genes encode transcription factors essential for the development of organ systems including the lung. Nfib null mice die at birth with immature lungs. Nfib hemizygous mice have reduced lung maturation with decreased survival. We therefore hypothesized that these mice would be more sensitive to lung injury and would have lower survival to hyperoxia. Adult Nfib hemizygous mice and their wild-type (Wt) littermates were exposed to 100% O 2 for 89, 80, 72 and 66 h for survival studies with lung outcome measurements at 66 h. Nfib hemizygous and Wt controls were also studied in RA at 66 h. Cell counts and cytokines were measured in bronchoalveolar lavage (BAL); lung sections examined by histopathology; lung angiogenic and oxidative stress gene expression assessed by real-time PCR Unexpectedly, Nfib hemizygous mice (0/14-0%) had significantly lower mortality compared to Wt mice (10/22-45%) at 80 h of hyperoxia ( P  < 0.003). LD 50 was 80 h in the Wt group versus 89 h in the hemizygous group. There were no differences in BAL cell counts between the groups. Among the cytokines studied, MIP-2 was significantly lower in hemizygous mice exposed to hyperoxia. New vessel formation, edema, congestion, and alveolar hemorrhage were noted on histopathology at 72 and 80 h in wild-type mice. Nfib hemizygous lungs had significant downregulation of genes involved in redox signaling and inflammatory pathways. Adult Nfib hemizygous mice are relatively resistant to hyperoxia compared to wild-type littermates. Mechanisms contributing to this resistance are not clear; however, transcription factors such as Nfib may regulate cell survival and play a role in modulating postnatal lung development. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  5. Etoposide Injection

    MedlinePlus

    ... medications to treat a certain type of lung cancer (small cell lung cancer; SCLC). Etoposide is in a class of medications ... organs where eggs are formed), another type of lung cancer (non-small cell lung cancer; NSCLC), and Kaposi's ...

  6. Cancer Stem Cell Radioresistance and Enrichment: Where Frontline Radiation Therapy May Fail in Lung and Esophageal Cancers

    PubMed Central

    Nguyen, Giang Huong; Murph, Mandi M.; Chang, Joe Y.

    2011-01-01

    Many studies have highlighted the role cancer stem cells (CSC) play in the development and progression of various types of cancer including lung and esophageal cancer. More recently, it has been proposed that the presence of CSCs affects treatment efficacy and patient prognosis. In reviewing this new area of cancer biology, we will give an overview of the current literature regarding lung and esophageal CSCs and radioresistance of CSC, and discuss the potential therapeutic applications of these findings. PMID:21603589

  7. Lung phenotype of juvenile and adult cystic fibrosis transmembrane conductance regulator-knockout ferrets.

    PubMed

    Sun, Xingshen; Olivier, Alicia K; Liang, Bo; Yi, Yaling; Sui, Hongshu; Evans, Turan I A; Zhang, Yulong; Zhou, Weihong; Tyler, Scott R; Fisher, John T; Keiser, Nicholas W; Liu, Xiaoming; Yan, Ziying; Song, Yi; Goeken, J Adam; Kinyon, Joann M; Fligg, Danielle; Wang, Xiaoyan; Xie, Weiliang; Lynch, Thomas J; Kaminsky, Paul M; Stewart, Zoe A; Pope, R Marshall; Frana, Timothy; Meyerholz, David K; Parekh, Kalpaj; Engelhardt, John F

    2014-03-01

    Chronic bacterial lung infections in cystic fibrosis (CF) are caused by defects in the CF transmembrane conductance regulator chloride channel. Previously, we described that newborn CF transmembrane conductance regulator-knockout ferrets rapidly develop lung infections within the first week of life. Here, we report a more slowly progressing lung bacterial colonization phenotype observed in juvenile to adult CF ferrets reared on a layered antibiotic regimen. Even on antibiotics, CF ferrets were still very susceptible to bacterial lung infection. The severity of lung histopathology ranged from mild to severe, and variably included mucus obstruction of the airways and submucosal glands, air trapping, atelectasis, bronchopneumonia, and interstitial pneumonia. In all CF lungs, significant numbers of bacteria were detected and impaired tracheal mucociliary clearance was observed. Although Streptococcus, Staphylococcus, and Enterococcus were observed most frequently in the lungs of CF animals, each animal displayed a predominant bacterial species that accounted for over 50% of the culturable bacteria, with no one bacterial taxon predominating in all animals. Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry fingerprinting was used to quantify lung bacteria in 10 CF animals and demonstrated Streptococcus, Staphylococcus, Enterococcus, or Escherichia as the most abundant genera. Interestingly, there was significant overlap in the types of bacteria observed in the lung and intestine of a given CF animal, including bacterial taxa unique to the lung and gut of each CF animal analyzed. These findings demonstrate that CF ferrets develop lung disease during the juvenile and adult stages that is similar to patients with CF, and suggest that enteric bacterial flora may seed the lung of CF ferrets.

  8. Readmission after lung cancer resection is associated with a 6-fold increase in 90-day postoperative mortality.

    PubMed

    Hu, Yinin; McMurry, Timothy L; Isbell, James M; Stukenborg, George J; Kozower, Benjamin D

    2014-11-01

    Postoperative readmission affects patient care and healthcare costs. There is a paucity of nationwide data describing the clinical significance of readmission after thoracic operations. The purpose of this study was to evaluate the relationship between postoperative readmission and mortality after lung cancer resection. Data were extracted for patients undergoing lung cancer resection from the linked Surveillance Epidemiology and End Results-Medicare registry (2006-2011), including demographics, comorbidities, socioeconomic factors, readmission within 30 days from discharge, and 90-day mortality. Readmitting facility and diagnoses were identified. A hierarchical regression model clustered at the hospital level identified predictors of readmission. We identified 11,432 patients undergoing lung cancer resection discharged alive from 677 hospitals. The median age was 74.5 years, and 52% of patients received an open lobectomy. Thirty-day readmission rate was 12.8%, and 28.3% of readmissions were to facilities that did not perform the original operation. Readmission was associated with a 6-fold increase in 90-day mortality (14.4% vs 2.5%, P<.001). The most common readmitting diagnoses were respiratory insufficiency, pneumonia, pneumothorax, and cardiac complications. Patient factors associated with readmission included resection type; age; prior induction chemoradiation; preoperative comorbidities, including congestive heart failure and chronic obstructive pulmonary disease; and low regional population density. Factors associated with early readmission after lung cancer resection include patient comorbidities, type of operation, and socioeconomic factors. Metrics that only report readmissions to the operative provider miss one-fourth of all cases. Readmitted patients have an increased risk of death and demand maximum attention and optimal care. Copyright © 2014 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  9. Redox regulation of epithelial sodium channels examined in alveolar type 1 and 2 cells patch-clamped in lung slice tissue.

    PubMed

    Helms, My N; Jain, Lucky; Self, Julie L; Eaton, Douglas C

    2008-08-15

    The alveolar surface of the lung is lined by alveolar type 1 (AT1) and type 2 (AT2) cells. Using single channel patch clamp analysis in lung slice preparations, we are able to uniquely study AT1 and AT2 cells separately from intact lung. We report for the first time the Na+ transport properties of type 2 cells accessed in live lung tissue (as we have done in type 1 cells). Type 2 cells in lung tissue slices express both highly selective cation and nonselective cation channels with average conductances of 8.8 +/- 3.2 and 22.5 +/- 6.3 picosiemens, respectively. Anion channels with 10-picosiemen conductance are also present in the apical membrane of type 2 cells. Our lung slice studies importantly verify the use of cultured cell model systems commonly used in lung epithelial sodium channel (ENaC) studies. Furthermore, we identify novel functional differences between the cells that make up the alveolar epithelium. One important difference is that exposure to the nitric oxide (NO) donor, PAPA-NONOate (1.5 microm), significantly decreases average ENaC NPo in type 2 cells (from 1.38 +/- 0.26 to 0.82 +/- 0.16; p < 0.05 and n = 18) but failed to alter ENaC activity in alveolar type 1 cells. Elevating endogenous superoxide (O2.) levels with Ethiolat, a superoxide dismutase inhibitor, prevented NO inhibition of ENaC activity in type 2 cells, supporting the novel hypothesis that O2. and NO signaling plays an important role in maintaining lung fluid balance.

  10. Is the shape of the decline in risk following quitting smoking similar for squamous cell carcinoma and adenocarcinoma of the lung? A quantitative review using the negative exponential model.

    PubMed

    Fry, John S; Lee, Peter N; Forey, Barbara A; Coombs, Katharine J

    2015-06-01

    One possible contributor to the reported rise in the ratio of adenocarcinoma to squamous cell carcinoma of the lung may be differences in the pattern of decline in risk following quitting for the two lung cancer types. Earlier, using data from 85 studies comparing overall lung cancer risks in current smokers, quitters (by time quit) and never smokers, we fitted the negative exponential model, deriving an estimate of 9.93years for the half-life - the time when the excess risk for quitters compared to never smokers becomes half that for continuing smokers. Here we applied the same techniques to data from 16 studies providing RRs specific for lung cancer type. From the 13 studies where the half-life was estimable for each type, we derived estimates of 11.68 (95% CI 10.22-13.34) for squamous cell carcinoma and 14.45 (11.92-17.52) for adenocarcinoma. The ratio of the half-lives was estimated as 1.32 (95% CI 1.20-1.46, p<0.001). The slower decline in quitters for adenocarcinoma, evident in subgroups by sex, age and other factors, may be one of the factors contributing to the reported rise in the ratio of adenocarcinoma to squamous cell carcinoma. Others include changes in the diagnosis and classification of lung cancer. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Lack of matrix metalloproteinase 3 in mouse models of lung injury ameliorates the pulmonary inflammatory response in female but not in male mice.

    PubMed

    Puntorieri, Valeria; McCaig, Lynda A; Howlett, Christopher J; Yao, Li-Juan; Lewis, James F; Yamashita, Cory M; Veldhuizen, Ruud A W

    2016-09-01

    The acute respiratory distress syndrome (ARDS) is a complex pulmonary disorder in which the local release of cytokines and chemokines appears central to the pathophysiology. Based on the known role of matrix metalloproteinase-3 (MMP3) in inflammatory processes, the objective was to examine the role of MMP3 in the pathogenesis of ARDS through the modulation of pulmonary inflammation. Female and male, wild type (MMP3 +/+ ) and knock out (MMP3 -/- ) mice were exposed to two, clinically relevant models of ARDS including (i) lipopolysaccharide (LPS)-induced lung injury, and (ii) hydrochloric acid-induced lung injury. Parameters of lung injury and inflammation were assessed through measurements in lung lavage including total protein content, inflammatory cell influx, and concentrations of mediators such as TNF-α, IL-6, G-CSF, CXCL1, CXCL2, and CCL2. Lung histology and compliance were also evaluated in the LPS model of injury. Following intra-tracheal LPS instillation, all mice developed lung injury, as measured by an increase in lavage neutrophils, and decrease in lung compliance, with no overall effect of genotype observed. Increased concentrations of lavage inflammatory cytokines and chemokines were also observed following LPS injury, however, LPS-instilled female MMP3 -/- mice had lower levels of inflammatory mediators compared to LPS-instilled female MMP3 +/+ mice. This effect of the genotype was not observed in male mice. Similar findings, including the MMP3-related sex differences, were also observed after acid-induced lung injury. MMP3 contributes to the pathogenesis of ARDS, by affecting the pulmonary inflammatory response in female mice in relevant models of lung injury.

  12. p90 ribosomal S6 kinase: a potential therapeutic target in lung cancer.

    PubMed

    Poomakkoth, Noufira; Issa, Aya; Abdulrahman, Nabeel; Abdelaziz, Somaia Gamal; Mraiche, Fatima

    2016-01-14

    A global survey of cancer has shown that lung cancer is the most common cause of the new cancer cases and cancer deaths in men worldwide. The mortality from lung cancer is more than the combined mortality from breast, prostate and colorectal cancers. The two major histological types of lung cancer are non-small cell lung cancer (NSCLC) accounting for about 85 % of cases and small cell lung cancer accounting for 15 % of cases. NSCLC, the more prevalent form of lung cancer, is often diagnosed at an advanced stage and has a very poor prognosis. Many factors have been shown to contribute to the development of lung cancer in humans including tobacco smoking, exposure to environmental carcinogens (asbestos, or radon) and genetic factors. Despite the advances in treatment, lung cancer remains one of the leading causes of cancer death worldwide. Interestingly, the overall 5 year survival from lung cancer has not changed appreciably in the past 25 years. For this reason, novel and more effective treatments and strategies for NSCLC are critically needed. p90 ribosomal S6 kinase (RSK), a serine threonine kinase that lies downstream of the Ras-MAPK (mitogen activated protein kinase) cascade, has been demonstrated to be involved in the regulation of cell proliferation in various malignancies through indirect (e.g., modulation of transcription factors) or direct effects on the cell-cycle machinery. Increased expression of RSK has been demonstrated in various cancers, including lung cancer. This review focuses on the role of RSK in lung cancer and its potential therapeutic application.

  13. In their own words: A qualitative study of the psychosocial concerns of posttreatment and long-term lung cancer survivors.

    PubMed

    Rohan, Elizabeth A; Boehm, Jennifer; Allen, Kristine Gabuten; Poehlman, Jon

    2016-01-01

    Although lung cancer is the deadliest type of cancer, survival rates are improving. To address the dearth of literature about the concerns of lung cancer survivors, the authors conducted 21 in-depth interviews with lung cancer survivors that focused on experiences during diagnosis, treatment, and long-term survivorship. Emergent themes included feeling blamed for having caused their cancer, being stigmatized as throwaways, and long-term survivors' experiencing surprise that they are still alive, given poor overall survival rates. Survivors also desired increased public support. It is imperative for healthcare and public health professionals to learn more about needs of this population.

  14. In their own words: A qualitative study of the psychosocial concerns of posttreatment and long-term lung cancer survivors

    PubMed Central

    Rohan, Elizabeth A.; Boehm, Jennifer; Allen, Kristine Gabuten; Poehlman, Jon

    2017-01-01

    Although lung cancer is the deadliest type of cancer, survival rates are improving. To address the dearth of literature about the concerns of lung cancer survivors, the authors conducted 21 in-depth interviews with lung cancer survivors that focused on experiences during diagnosis, treatment, and long-term survivorship. Emergent themes included feeling blamed for having caused their cancer, being stigmatized as throwaways, and long-term survivors’ experiencing surprise that they are still alive, given poor overall survival rates. Survivors also desired increased public support. It is imperative for healthcare and public health professionals to learn more about needs of this population. PMID:26764569

  15. Preliminary study of brain glucose metabolism changes in patients with lung cancer of different histological types.

    PubMed

    Li, Wei-Ling; Fu, Chang; Xuan, Ang; Shi, Da-Peng; Gao, Yong-Ju; Zhang, Jie; Xu, Jun-Ling

    2015-02-05

    Cerebral glucose metabolism changes are always observed in patients suffering from malignant tumors. This preliminary study aimed to investigate the brain glucose metabolism changes in patients with lung cancer of different histological types. One hundred and twenty patients with primary untreated lung cancer, who visited People's Hospital of Zhengzhou University from February 2012 to July 2013, were divided into three groups based on histological types confirmed by biopsy or surgical pathology, which included adenocarcinoma (52 cases), squamous cell carcinoma (43 cases), and small-cell carcinoma (25 cases). The whole body 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) of these cases was retrospectively studied. The brain PET data of three groups were analyzed individually using statistical parametric maps (SPM) software, with 50 age-matched and gender-matched healthy controls for comparison. The brain resting glucose metabolism in all three lung cancer groups showed regional cerebral metabolic reduction. The hypo-metabolic cerebral regions were mainly distributed at the left superior and middle frontal, bilateral superior and middle temporal and inferior and middle temporal gyrus. Besides, the hypo-metabolic regions were also found in the right inferior parietal lobule and hippocampus in the small-cell carcinoma group. The area of the total hypo-metabolic cerebral regions in the small-cell carcinoma group (total voxel value 3255) was larger than those in the adenocarcinoma group (total voxel value 1217) and squamous cell carcinoma group (total voxel value 1292). The brain resting glucose metabolism in patients with lung cancer shows regional cerebral metabolic reduction and the brain hypo-metabolic changes are related to the histological types of lung cancer.

  16. Effects of icotinib on advanced non-small cell lung cancer with different EGFR phenotypes.

    PubMed

    Pan, Huiyun; Liu, Rong; Li, Shengjie; Fang, Hui; Wang, Ziwei; Huang, Sheng; Zhou, Jianying

    2014-09-01

    Icotinib is the first oral epidermal growth factor receptor (EGFR) tyrosine kinase receptor inhibitor, which has been proven to exert significant inhibitory effects on non-small cell lung cancer in vitro. Clinical evidence has showed that the efficacy of Icotinib on retreating advanced non-small cell lung cancer is comparable to Gefitinib. However, different phenotypes of EGFR can affect the therapeutic outcomes of EGFR tyrosine kinase receptor inhibitor. Therefore, our study focused on efficacy and safety of Icotinib in patients with advanced non-small cell lung cancer of different EGPR phenotypes. Clinical data of patients with advanced non-small cell lung cancer who received Icotinib treatment from August, 2011 to May, 2013 were retrospectively analyzed. Kaplan-Meier analysis was used for survival analysis and comparison. 18 wild-type EGFR and 51 mutant type were found in a total of 69 patients. Objective response rate of patients with mutant type EGFR was 54.9 % and disease control rate was 86.3 %. Objective response rate of wild-type patients was 11.1 % (P = 0.0013 vs mutant type), disease control rate was 50.0 % (P = 0.0017). Median progression-free survival (PFS) of mutant type and wild-type patients were 9.7 and 2.6 months, respectively (P < 0.001). Median PFS of exon 19 mutated mutant patients was 11.3 months, mean PFS of exon 21 L858R mutated mutant patients was 8.7 months (P = 0.3145). Median overall survival (OS) of EGFR mutated patients had not reached. OS time of 13 wild-type patients was 12.9 months (P < 0.001). The common adverse reactions of Icotinib included rash, diarrhea, itching skin with occurrence rates of 24.6 % (17/69), 13.0 % (9/69), and 11.6 % (8/69), respectively. Most adverse reactions were grade I-II. Icotinib has great efficacy in EGFR mutated patients, making it an optimal regimen to treat EGFR mutated patients. Furthermore, most of adverse reactions associated with Icotinib treatment were tolerable.

  17. Glucocorticoids Recruit Tgfbr3 and Smad1 to Shift Transforming Growth Factor-β Signaling from the Tgfbr1/Smad2/3 Axis to the Acvrl1/Smad1 Axis in Lung Fibroblasts*

    PubMed Central

    Schwartze, Julian T.; Becker, Simone; Sakkas, Elpidoforos; Wujak, Łukasz A.; Niess, Gero; Usemann, Jakob; Reichenberger, Frank; Herold, Susanne; Vadász, István; Mayer, Konstantin; Seeger, Werner; Morty, Rory E.

    2014-01-01

    Glucocorticoids represent the mainstay therapy for many lung diseases, providing outstanding management of asthma but performing surprisingly poorly in patients with acute respiratory distress syndrome, chronic obstructive pulmonary disease, lung fibrosis, and blunted lung development associated with bronchopulmonary dysplasia in preterm infants. TGF-β is a pathogenic mediator of all four of these diseases, prompting us to explore glucocorticoid/TGF-β signaling cross-talk. Glucocorticoids, including dexamethasone, methylprednisolone, budesonide, and fluticasone, potentiated TGF-β signaling by the Acvrl1/Smad1/5/8 signaling axis and blunted signaling by the Tgfbr1/Smad2/3 axis in NIH/3T3 cells, as well as primary lung fibroblasts, smooth muscle cells, and endothelial cells. Dexamethasone drove expression of the accessory type III TGF-β receptor Tgfbr3, also called betaglycan. Tgfbr3 was demonstrated to be a “switch” that blunted Tgfbr1/Smad2/3 and potentiated Acvrl1/Smad1 signaling in lung fibroblasts. The Acvrl1/Smad1 axis, which was stimulated by dexamethasone, was active in lung fibroblasts and antagonized Tgfbr1/Smad2/3 signaling. Dexamethasone acted synergistically with TGF-β to drive differentiation of primary lung fibroblasts to myofibroblasts, revealed by acquisition of smooth muscle actin and smooth muscle myosin, which are exclusively Smad1-dependent processes in fibroblasts. Administration of dexamethasone to live mice recapitulated these observations and revealed a lung-specific impact of dexamethasone on lung Tgfbr3 expression and phospho-Smad1 levels in vivo. These data point to an interesting and hitherto unknown impact of glucocorticoids on TGF-β signaling in lung fibroblasts and other constituent cell types of the lung that may be relevant to lung physiology, as well as lung pathophysiology, in terms of drug/disease interactions. PMID:24347165

  18. [X-ray diagnosis of malignant non-epithelial tumors of the lung].

    PubMed

    Arablinskiĭ, V M; Efimova, O Iu; Trakhtenberg, A Kh; Frank, G A; Korenev, S V

    1991-01-01

    The paper is devoted to analysis of the investigation and treatment of 137 patients with histologically verified lung sarcoma. X-ray was the chief method of primary detection. A classification, singling out 3 types, was developed: peripheral (82.6%), central (16%) and disseminated (1.4%). The first one included nodular (76%) and pneumonia-like (6.6%) types of changes, the second one--endobronchial changes (11%), peribronchial (2.9%) and exobronchial nodular (2.1%) changes. The developed roentgenosemeiotics made it possible to diagnose malignancy in 72% of the patients, indicating its nonepithelial nature in 36%.

  19. Production and Assessment of Decellularized Pig and Human Lung Scaffolds

    PubMed Central

    Niles, Jean; Riddle, Michael; Vargas, Gracie; Schilagard, Tuya; Ma, Liang; Edward, Kert; La Francesca, Saverio; Sakamoto, Jason; Vega, Stephanie; Ogadegbe, Marie; Mlcak, Ronald; Deyo, Donald; Woodson, Lee; McQuitty, Christopher; Lick, Scott; Beckles, Daniel; Melo, Esther; Cortiella, Joaquin

    2013-01-01

    The authors have previously shown that acellular (AC) trachea-lung scaffolds can (1) be produced from natural rat lungs, (2) retain critical components of the extracellular matrix (ECM) such as collagen-1 and elastin, and (3) be used to produce lung tissue after recellularization with murine embryonic stem cells. The aim of this study was to produce large (porcine or human) AC lung scaffolds to determine the feasibility of producing scaffolds with potential clinical applicability. We report here the first attempt to produce AC pig or human trachea-lung scaffold. Using a combination of freezing and sodium dodecyl sulfate washes, pig trachea-lungs and human trachea-lungs were decellularized. Once decellularization was complete we evaluated the structural integrity of the AC lung scaffolds using bronchoscopy, multiphoton microscopy (MPM), assessment of the ECM utilizing immunocytochemistry and evaluation of mechanics through the use of pulmonary function tests (PFTs). Immunocytochemistry indicated that there was loss of collagen type IV and laminin in the AC lung scaffold, but retention of collagen-1, elastin, and fibronectin in some regions. MPM scoring was also used to examine the AC lung scaffold ECM structure and to evaluate the amount of collagen I in normal and AC lung. MPM was used to examine the physical arrangement of collagen-1 and elastin in the pleura, distal lung, lung borders, and trachea or bronchi. MPM and bronchoscopy of trachea and lung tissues showed that no cells or cell debris remained in the AC scaffolds. PFT measurements of the trachea-lungs showed no relevant differences in peak pressure, dynamic or static compliance, and a nonrestricted flow pattern in AC compared to normal lungs. Although there were changes in content of collagen I and elastin this did not affect the mechanics of lung function as evidenced by normal PFT values. When repopulated with a variety of stem or adult cells including human adult primary alveolar epithelial type II cells both pig and human AC scaffolds supported cell attachment and cell viability. Examination of scaffolds produced using a variety of detergents indicated that detergent choice influenced human immune response in terms of T cell activation and chemokine production. PMID:23638920

  20. Production and assessment of decellularized pig and human lung scaffolds.

    PubMed

    Nichols, Joan E; Niles, Jean; Riddle, Michael; Vargas, Gracie; Schilagard, Tuya; Ma, Liang; Edward, Kert; La Francesca, Saverio; Sakamoto, Jason; Vega, Stephanie; Ogadegbe, Marie; Mlcak, Ronald; Deyo, Donald; Woodson, Lee; McQuitty, Christopher; Lick, Scott; Beckles, Daniel; Melo, Esther; Cortiella, Joaquin

    2013-09-01

    The authors have previously shown that acellular (AC) trachea-lung scaffolds can (1) be produced from natural rat lungs, (2) retain critical components of the extracellular matrix (ECM) such as collagen-1 and elastin, and (3) be used to produce lung tissue after recellularization with murine embryonic stem cells. The aim of this study was to produce large (porcine or human) AC lung scaffolds to determine the feasibility of producing scaffolds with potential clinical applicability. We report here the first attempt to produce AC pig or human trachea-lung scaffold. Using a combination of freezing and sodium dodecyl sulfate washes, pig trachea-lungs and human trachea-lungs were decellularized. Once decellularization was complete we evaluated the structural integrity of the AC lung scaffolds using bronchoscopy, multiphoton microscopy (MPM), assessment of the ECM utilizing immunocytochemistry and evaluation of mechanics through the use of pulmonary function tests (PFTs). Immunocytochemistry indicated that there was loss of collagen type IV and laminin in the AC lung scaffold, but retention of collagen-1, elastin, and fibronectin in some regions. MPM scoring was also used to examine the AC lung scaffold ECM structure and to evaluate the amount of collagen I in normal and AC lung. MPM was used to examine the physical arrangement of collagen-1 and elastin in the pleura, distal lung, lung borders, and trachea or bronchi. MPM and bronchoscopy of trachea and lung tissues showed that no cells or cell debris remained in the AC scaffolds. PFT measurements of the trachea-lungs showed no relevant differences in peak pressure, dynamic or static compliance, and a nonrestricted flow pattern in AC compared to normal lungs. Although there were changes in content of collagen I and elastin this did not affect the mechanics of lung function as evidenced by normal PFT values. When repopulated with a variety of stem or adult cells including human adult primary alveolar epithelial type II cells both pig and human AC scaffolds supported cell attachment and cell viability. Examination of scaffolds produced using a variety of detergents indicated that detergent choice influenced human immune response in terms of T cell activation and chemokine production.

  1. Enhanced Delivery and Effects of Acid Sphingomyelinase by ICAM-1-Targeted Nanocarriers in Type B Niemann-Pick Disease Mice.

    PubMed

    Garnacho, Carmen; Dhami, Rajwinder; Solomon, Melani; Schuchman, Edward H; Muro, Silvia

    2017-07-05

    Acid sphingomyelinase deficiency in type B Niemann-Pick disease leads to lysosomal sphingomyelin storage, principally affecting lungs, liver, and spleen. Infused recombinant enzyme is beneficial, yet its delivery to the lungs is limited and requires higher dosing than liver and spleen, leading to potentially adverse reactions. Previous studies showed increased enzyme pulmonary uptake by nanocarriers targeted to ICAM-1, a protein overexpressed during inflammation. Here, using polystyrene and poly(lactic-co-glycolic acid) nanocarriers, we optimized lung delivery by varying enzyme dose and nanocarrier concentration, verified endocytosis and lysosomal trafficking in vivo, and evaluated delivered activity and effects. Raising the enzyme load of nanocarriers progressively increased absolute enzyme delivery to all lung, liver, and spleen, over the naked enzyme. Varying nanocarrier concentration inversely impacted lung versus liver and spleen uptake. Mouse intravital and postmortem examination verified endocytosis, transcytosis, and lysosomal trafficking using nanocarriers. Compared to naked enzyme, nanocarriers increased enzyme activity in organs and reduced lung sphingomyelin storage and macrophage infiltration. Although old mice with advanced disease showed reactivity (pulmonary leukocyte infiltration) to injections, including buffer without carriers, antibody, or enzyme, younger mice with mild disease did not. We conclude that anti-ICAM nanocarriers may result in effective lung enzyme therapy using low enzyme doses. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  2. Absence of Gal epitope prolongs survival of swine lungs in an ex vivo model of hyperacute rejection

    PubMed Central

    Nguyen, Bao-Ngoc H.; Azimzadeh, Agnes M.; Schroeder, Carsten; Buddensick, Thomas; Zhang, Tianshu; Laaris, Amal; Cochrane, Megan; Schuurman, Henk-Jan; Sachs, David H.; Allan, James S.; Pierson, Richard N.

    2012-01-01

    Background Galactosyl transferase gene knock-out (GalTKO) swine offer a unique tool to evaluate the role of the Gal antigen in xenogenic lung hyperacute rejection. Methods We perfused GalTKO miniature swine lungs with human blood. Results were compared with those from previous studies using wild-type and human decay-accelerating factor-transgenic (hDAF+/+) pig lungs. Results GalTKO lungs survived 132 ± 52 min compared to 10 ± 9 min for wild-type lungs (P = 0.001) and 45 ± 60 min for hDAF+/+ lungs (P = 0.18). GalTKO lungs displayed stable physiologic flow and pulmonary vascular resistance (PVR) until shortly before graft demise, similar to autologous perfusion, and unlike wild-type or hDAF+/+ lungs. Early (15 and 60 min) complement (C3a) and platelet activation and intrapulmonary platelet deposition were significantly diminished in GalTKO lungs relative to wild-type or hDAF+/+ lungs. However, GalTKO lungs adsorbed cytotoxic anti-non-Gal antibody and elaborated high levels of thrombin; their demise was associated with increased PVR, capillary congestion, intravascular thrombi and strong CD41 deposition not seen at earlier time points. Conclusions In summary, GalTKO lungs are substantially protected from injury but, in addition to anti-non-Gal antibody and complement, platelet adhesion and non-physiologic intravascular coagulation contribute to Gal-independent lung injury mechanisms. PMID:21496117

  3. Metabolism of phenylethylamine in rat isolated perfused lung: evidence for monoamine oxidase 'type B' in lung.

    PubMed Central

    Bakhle, Y S; Youdim, M B

    1976-01-01

    Phenylethylamine is inactivated in a single passage through rat lung tissue by a process of uptake and deamination by a monoamine oxidase 'type B'. This enzyme is particularly susceptible to inhibition by deprenil and less sensitive to clorgyline. The monoamine oxidase of the lung, like that of other rat tissues, can be differentiated into 'type A' and 'type B' which appear to operate independently in the organized tissue. PMID:1252659

  4. Inducible Lung Epithelial Resistance Requires Multisource Reactive Oxygen Species Generation To Protect against Viral Infections

    PubMed Central

    2018-01-01

    ABSTRACT Viral pneumonias cause profound worldwide morbidity, necessitating novel strategies to prevent and treat these potentially lethal infections. Stimulation of intrinsic lung defenses via inhalation of synergistically acting Toll-like receptor (TLR) agonists protects mice broadly against pneumonia, including otherwise-lethal viral infections, providing a potential opportunity to mitigate infectious threats. As intact lung epithelial TLR signaling is required for the inducible resistance and as these cells are the principal targets of many respiratory viruses, the capacity of lung epithelial cells to be therapeutically manipulated to function as autonomous antiviral effectors was investigated. Our work revealed that mouse and human lung epithelial cells could be stimulated to generate robust antiviral responses that both reduce viral burden and enhance survival of isolated cells and intact animals. The antiviral protection required concurrent induction of epithelial reactive oxygen species (ROS) from both mitochondrial and dual oxidase sources, although neither type I interferon enrichment nor type I interferon signaling was required for the inducible protection. Taken together, these findings establish the sufficiency of lung epithelial cells to generate therapeutically inducible antiviral responses, reveal novel antiviral roles for ROS, provide mechanistic insights into inducible resistance, and may provide an opportunity to protect patients from viral pneumonia during periods of peak vulnerability. PMID:29764948

  5. Lung Phenotype of Juvenile and Adult Cystic Fibrosis Transmembrane Conductance Regulator–Knockout Ferrets

    PubMed Central

    Sun, Xingshen; Olivier, Alicia K.; Liang, Bo; Yi, Yaling; Sui, Hongshu; Evans, Turan I. A.; Zhang, Yulong; Zhou, Weihong; Tyler, Scott R.; Fisher, John T.; Keiser, Nicholas W.; Liu, Xiaoming; Yan, Ziying; Song, Yi; Goeken, J. Adam; Kinyon, Joann M.; Fligg, Danielle; Wang, Xiaoyan; Xie, Weiliang; Lynch, Thomas J.; Kaminsky, Paul M.; Stewart, Zoe A.; Pope, R. Marshall; Frana, Timothy; Meyerholz, David K.; Parekh, Kalpaj

    2014-01-01

    Chronic bacterial lung infections in cystic fibrosis (CF) are caused by defects in the CF transmembrane conductance regulator chloride channel. Previously, we described that newborn CF transmembrane conductance regulator–knockout ferrets rapidly develop lung infections within the first week of life. Here, we report a more slowly progressing lung bacterial colonization phenotype observed in juvenile to adult CF ferrets reared on a layered antibiotic regimen. Even on antibiotics, CF ferrets were still very susceptible to bacterial lung infection. The severity of lung histopathology ranged from mild to severe, and variably included mucus obstruction of the airways and submucosal glands, air trapping, atelectasis, bronchopneumonia, and interstitial pneumonia. In all CF lungs, significant numbers of bacteria were detected and impaired tracheal mucociliary clearance was observed. Although Streptococcus, Staphylococcus, and Enterococcus were observed most frequently in the lungs of CF animals, each animal displayed a predominant bacterial species that accounted for over 50% of the culturable bacteria, with no one bacterial taxon predominating in all animals. Matrix-assisted laser desorption–ionization time-of-flight mass spectrometry fingerprinting was used to quantify lung bacteria in 10 CF animals and demonstrated Streptococcus, Staphylococcus, Enterococcus, or Escherichia as the most abundant genera. Interestingly, there was significant overlap in the types of bacteria observed in the lung and intestine of a given CF animal, including bacterial taxa unique to the lung and gut of each CF animal analyzed. These findings demonstrate that CF ferrets develop lung disease during the juvenile and adult stages that is similar to patients with CF, and suggest that enteric bacterial flora may seed the lung of CF ferrets. PMID:24074402

  6. [Diagnostic values of serum type III procollagen N-terminal peptide in type IV gastric cancer].

    PubMed

    Akazawa, S; Fujiki, T; Kanda, Y; Kumai, R; Yoshida, S

    1985-04-01

    Since increased synthesis of collagen has been demonstrated in tissue of type IV gastric cancer, we attempted to distinguish type IV gastric cancer from other cancers by measuring serum levels of type III procollagen N-terminal peptide (type III-N-peptide). Mean serum levels in type IV gastric cancer patients without metastasis were found to be elevated above normal values and developed a tendency to be higher than those in types I, II and III gastric cancer patients without metastasis. Highly positive ratios were found in patients with liver diseases including hepatoma and colon cancer, biliary tract cancer, and esophageal cancer patients with liver, lung or bone metastasis, but only 2 out of 14 of these cancer patients without such metastasis showed positive serum levels of type III-N-peptide. Positive cases in patients with type IV gastric cancer were obtained not only in the group with clinical stage IV but also in the groups with clinical stages II and III. In addition, high serum levels of type III-N-peptide in patients with type IV gastric cancer were seen not only in the cases with liver, lung or bone metastasis but also in cases with disseminated peritoneal metastasis alone. These results suggest that if the serum level of type III-N-peptide is elevated above normal values, type IV gastric cancer should be suspected after ruling out liver diseases, myelofibrosis and liver, lung or bone metastasis.

  7. Testing lung cancer drugs and therapies in mice

    Cancer.gov

    National Cancer Institute (NCI) investigators have designed a genetically engineered mouse for use in the study of human lung squamous cell carcinoma (SCC). SCC is a type of non-small cell lung carcinoma, one of the most common types of lung cancer, with

  8. Hospitalization costs of lung cancer diagnosis in Turkey: Is there a difference between histological types and stages?

    PubMed

    Türk, Murat; Yıldırım, Fatma; Yurdakul, Ahmet Selim; Öztürk, Can

    2016-12-01

    To establish the direct costs of diagnosing lung cancer in hospitalized patients. Hospital data of patients who were hospitalized and diagnosed as lung cancer between September 2013 and August 2014 were retrospectively analyzed. Patients who underwent surgery for diagnosis and who were initiated with cancer treatment during the same hospital stay were excluded from study. Histological types and stages of lung cancer were determined. Expenses were grouped as laboratory costs, pathology costs, diagnostic imaging costs, overnight room charges, medication costs, blood center costs, consumable expenditures' costs and inpatient service charges (including consultants' service, electrocardiogram, follow-up, nursing services, diagnostic interventions). Of the 68 patients, 55 (81%) had non-small cell lung cancer (NSCLC), 13 (19%) had small cell lung cancer (SCLC). 47% of patients with NSCLC had stage 4 disease and 86% of patients with SCLC had extensive stage disease. Median total cost per patient was 910 (95% CI= 832-1291) Euros (€). Of all costs, 37% were due to inpatient service charges and 22% were medication costs. Median total cost per patient was 912 (95% CI= 783-1213) € in NSCLC patients and 908 (95% CI= 456-2203) € in SCLC patients (p> 0.05). In NSCLC group, total cost per patient was 873 (95% CI= 591-1143) € in stage 1-2-3 diseases and 975 (95% CI= 847-1536) € in stage 4 disease (p> 0.05). In SCLC group total cost per patient was 937 € in limited stage and 502 (95% CI= 452-2508) € in extensive stage (p> 0.05). There is no significant difference between costs related to diagnosis of different lung cancer types and stages in patients hospitalized in a university hospital.

  9. Soluble Human Leukocyte Antigen-G in the Bronchoalveolar Lavage of Lung Cancer Patients.

    PubMed

    Montilla, Dayana; Pérez, Mario; Borges, Lérida; Bianchi, Guillermo; Cova, José-Angel

    2016-08-01

    The main function of the HLA-G molecule in its membrane-bound and soluble forms is to inhibit the immune response by acting on CD4+ T cells, cytotoxic T cells, NK cells and dendritic cells. Lung cancer is a leading cause of death worldwide, and annual incidence is high in both women and men. Some studies have reported an increase of HLA-G serum levels in lung cancer, probably generated by tumor cells escaping the antitumor immune response. In this study the concentration of soluble HLA-G in bronchoalveolar lavage (BAL) in patients with primary and metastatic lung cancer was measured to determine its relation with tumor histological type and overall patient status according to the Karnofsky scale. Thirty-one lung cancer patients were included. A tumor biopsy was obtained by bronchoscopy and the tumor type was determined by hematoxylin and eosin staining. BAL samples were obtained to measure soluble HLA-G concentrations in an ELISA sandwich assay. The average value of soluble HLA-G was 49.04ng/mL. No correlation between soluble HLA-G levels and age, gender or smoking was observed. A highly significant difference was observed in the levels of soluble HLA-G in BAL from patients with different histological types of lung cancer, especially in metastatic tumors. The Karnofsky index showed a significant and inverse correlation with soluble HLA-G levels in BAL. Soluble HLA-G protein is significantly associated with metastatic tumors and patients with lower Karnofsky index and may be useful as a prognostic marker in lung cancer. Copyright © 2016 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Identification of periplakin as a major regulator of lung injury and repair in mice

    PubMed Central

    Besnard, Valérie; Dagher, Rania; Madjer, Tania; Joannes, Audrey; Jaillet, Madeleine; Kolb, Martin; Bonniaud, Philippe; Murray, Lynne A.; Sleeman, Matthew A.

    2018-01-01

    Periplakin is a component of the desmosomes that acts as a cytolinker between intermediate filament scaffolding and the desmosomal plaque. Periplakin is strongly expressed by epithelial cells in the lung and is a target antigen for autoimmunity in idiopathic pulmonary fibrosis. The aim of this study was to determine the role of periplakin during lung injury and remodeling in a mouse model of lung fibrosis induced by bleomycin. We found that periplakin expression was downregulated in the whole lung and in alveolar epithelial cells following bleomycin-induced injury. Deletion of the Ppl gene in mice improved survival and reduced lung fibrosis development after bleomycin-induced injury. Notably, Ppl deletion promoted an antiinflammatory alveolar environment linked to profound changes in type 2 alveolar epithelial cells, including overexpression of antiinflammatory cytokines, decreased expression of profibrotic mediators, and altered cell signaling with a reduced response to TGF-β1. These results identify periplakin as a previously unidentified regulator of the response to injury in the lung. PMID:29515024

  11. Serum total cholesterol and triglycerides levels in patients with lung cancer.

    PubMed

    Siemianowicz, K; Gminski, J; Stajszczyk, M; Wojakowski, W; Goss, M; Machalski, M; Telega, A; Brulinski, K; Magiera-Molendowska, H

    2000-02-01

    Epidemiological studies indicate that low serum total cholesterol level may increase the risk of death due to cancer, mainly lung cancer. The aim of our study was to evaluate serum levels of total cholesterol (TC) and triglycerides (TG) in patients with squamous cell and small cell lung cancer and their dependence on the histological type and the clinical stage of the neoplasm. Lung cancer patients (n=135) and healthy controls (n=39) entered the study. All lung cancer patients had higher rate of hypocholesterolemia and lower TC and TG levels than the control group. TC concentration was lower in lung cancer patients and in both histological types in comparison with the control group, TG level was lower only in patients with squamous cell lung cancer. There were no statistically significant differences of TC and TG levels between the histological types, or between the clinical stages of each histological type.

  12. A Catalog of Genes Homozygously Deleted in Human Lung Cancer and the Candidacy of PTPRD as a Tumor Suppressor Gene

    PubMed Central

    Kohno, Takashi; Otsuka, Ayaka; Girard, Luc; Sato, Masanori; Iwakawa, Reika; Ogiwara, Hideaki; Sanchez-Cespedes, Montse; Minna, John D.; Yokota, Jun

    2010-01-01

    A total of 176 genes homozygously deleted in human lung cancer were identified by DNA array-based whole genome scanning of 52 lung cancer cell lines and subsequent genomic PCR in 74 cell lines, including the 52 cell lines scanned. One or more exons of these genes were homozygously deleted in one (1%) to 20 (27%) cell lines. These genes included known tumor suppressor genes, e.g., CDKN2A/p16, RB1, and SMAD4, and candidate tumor suppressor genes whose hemizygous or homozygous deletions were reported in several types of human cancers, such as FHIT, KEAP1, and LRP1B/LRP-DIP. CDKN2A/p16 and p14ARF located in 9p21 were most frequently deleted (20/74, 27%). The PTPRD gene was most frequently deleted (8/74, 11%) among genes mapping to regions other than 9p21. Somatic mutations, including a nonsense mutation, of the PTPRD gene were detected in 8/74 (11%) of cell lines and 4/95 (4%) of surgical specimens of lung cancer. Reduced PTPRD expression was observed in the majority (>80%) of cell lines and surgical specimens of lung cancer. Therefore, PTPRD is a candidate tumor suppressor gene in lung cancer. Microarray-based expression profiling of 19 lung cancer cell lines also indicated that some of the 176 genes, such as KANK and ADAMTS1, are preferentially inactivated by epigenetic alterations. Genetic/epigenetic as well as functional studies of these 176 genes will increase our understanding of molecular mechanisms behind lung carcinogenesis. PMID:20073072

  13. A comprehensive computational model of sound transmission through the porcine lung

    PubMed Central

    Dai, Zoujun; Peng, Ying; Henry, Brian M.; Mansy, Hansen A.; Sandler, Richard H.; Royston, Thomas J.

    2014-01-01

    A comprehensive computational simulation model of sound transmission through the porcine lung is introduced and experimentally evaluated. This “subject-specific” model utilizes parenchymal and major airway geometry derived from x-ray CT images. The lung parenchyma is modeled as a poroviscoelastic material using Biot theory. A finite element (FE) mesh of the lung that includes airway detail is created and used in comsol FE software to simulate the vibroacoustic response of the lung to sound input at the trachea. The FE simulation model is validated by comparing simulation results to experimental measurements using scanning laser Doppler vibrometry on the surface of an excised, preserved lung. The FE model can also be used to calculate and visualize vibroacoustic pressure and motion inside the lung and its airways caused by the acoustic input. The effect of diffuse lung fibrosis and of a local tumor on the lung acoustic response is simulated and visualized using the FE model. In the future, this type of visualization can be compared and matched with experimentally obtained elastographic images to better quantify regional lung material properties to noninvasively diagnose and stage disease and response to treatment. PMID:25190415

  14. A comprehensive computational model of sound transmission through the porcine lung.

    PubMed

    Dai, Zoujun; Peng, Ying; Henry, Brian M; Mansy, Hansen A; Sandler, Richard H; Royston, Thomas J

    2014-09-01

    A comprehensive computational simulation model of sound transmission through the porcine lung is introduced and experimentally evaluated. This "subject-specific" model utilizes parenchymal and major airway geometry derived from x-ray CT images. The lung parenchyma is modeled as a poroviscoelastic material using Biot theory. A finite element (FE) mesh of the lung that includes airway detail is created and used in comsol FE software to simulate the vibroacoustic response of the lung to sound input at the trachea. The FE simulation model is validated by comparing simulation results to experimental measurements using scanning laser Doppler vibrometry on the surface of an excised, preserved lung. The FE model can also be used to calculate and visualize vibroacoustic pressure and motion inside the lung and its airways caused by the acoustic input. The effect of diffuse lung fibrosis and of a local tumor on the lung acoustic response is simulated and visualized using the FE model. In the future, this type of visualization can be compared and matched with experimentally obtained elastographic images to better quantify regional lung material properties to noninvasively diagnose and stage disease and response to treatment.

  15. Computer modeling of lung cancer diagnosis-to-treatment process

    PubMed Central

    Ju, Feng; Lee, Hyo Kyung; Osarogiagbon, Raymond U.; Yu, Xinhua; Faris, Nick

    2015-01-01

    We introduce an example of a rigorous, quantitative method for quality improvement in lung cancer care-delivery. Computer process modeling methods are introduced for lung cancer diagnosis, staging and treatment selection process. Two types of process modeling techniques, discrete event simulation (DES) and analytical models, are briefly reviewed. Recent developments in DES are outlined and the necessary data and procedures to develop a DES model for lung cancer diagnosis, leading up to surgical treatment process are summarized. The analytical models include both Markov chain model and closed formulas. The Markov chain models with its application in healthcare are introduced and the approach to derive a lung cancer diagnosis process model is presented. Similarly, the procedure to derive closed formulas evaluating the diagnosis process performance is outlined. Finally, the pros and cons of these methods are discussed. PMID:26380181

  16. Accuracy of cytology in sub typing non small cell lung carcinomas.

    PubMed

    Patel, Trupti S; Shah, Majal G; Gandhi, Jahnavi S; Patel, Pratik

    2017-07-01

    Sub typing of non small cell lung carcinoma (NSCLC) has an important task in the era of molecular and targeted therapies. Differentiating between squamous cell carcinoma (SQCC) and adenocarcinoma (ADC) is challenging when limited material is available in lung carcinoma. We investigated the accuracy and feasibility of sub typing NSCLCs in cytology and small biopsy material. Concurrent cytology and biopsy material obtained in a single CT- guided procedure in lung carcinoma over a year period retrospectively. Both materials were individually sub typed and analyzed. Immunohistochemistry (IHC) was performed. Accuracy was determined by comparing the results with IHC. Total 107 of 126 cases of NSCLCs were included for analysis, where both cytology and biopsy material were adequate for interpretation. FNAC allowed tumor typing in 83 (77.6%) cases; 36 (33.6%) were ADC, 47 (43.9%) cases were SQCC and 24 (22.4%) cases diagnosed as Non-small cell carcinoma not otherwise specified (NSCLC-NOS). In biopsy, 86 cases (80.4%) were typed, among which 34 (31.8%) were ADC, 52 (48.6%) were SQCC and 21 (19.6%) were of NSCLC-NOS type. The result of Chi-square index was significant. With the aid of IHC, NSCLC-NOS reduced from 14 (13%) cases to 2 (1.9%) cases. Cytology and small biopsy specimens achieved comparable specificity and accuracy in sub-typing NSCLC and optimal results were obtain when findings from both modalities combine. The advantage of paired specimens is to maximize overall diagnostic yield and the remaining material will be available for ancillary technique like IHC or for molecular testing. Diagn. Cytopathol. 2017;45:598-603. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Telomere dysfunction in alveolar epithelial cells causes lung remodeling and fibrosis

    PubMed Central

    Naikawadi, Ram P.; Disayabutr, Supparerk; Mallavia, Benat; Donne, Matthew L.; Green, Gary; La, Janet L.; Rock, Jason R.; Looney, Mark R.; Wolters, Paul J.

    2016-01-01

    Telomeres are short in type II alveolar epithelial cells (AECs) of patients with idiopathic pulmonary fibrosis (IPF). Whether dysfunctional telomeres contribute directly to development of lung fibrosis remains unknown. The objective of this study was to investigate whether telomere dysfunction in type II AECs, mediated by deletion of the telomere shelterin protein TRF1, leads to pulmonary fibrosis in mice (SPC-Cre TRF1fl/fl mice). Deletion of TRF1 in type II AECs for 2 weeks increased γH2AX DNA damage foci, but not histopathologic changes in the lung. Deletion of TRF1 in type II AECs for up to 9 months resulted in short telomeres and lung remodeling characterized by increased numbers of type II AECs, α-smooth muscle actin+ mesenchymal cells, collagen deposition, and accumulation of senescence-associated β-galactosidase+ lung epithelial cells. Deletion of TRF1 in collagen-expressing cells caused pulmonary edema, but not fibrosis. These results demonstrate that prolonged telomere dysfunction in type II AECs, but not collagen-expressing cells, leads to age-dependent lung remodeling and fibrosis. We conclude that telomere dysfunction in type II AECs is sufficient to cause lung fibrosis, and may be a dominant molecular defect causing IPF. SPC-Cre TRF1fl/fl mice will be useful for assessing cellular and molecular mechanisms of lung fibrosis mediated by telomere dysfunction. PMID:27699234

  18. An overview of mortality & predictors of small-cell and non-small cell lung cancer among Saudi patients.

    PubMed

    Alghamdi, Hatim I; Alshehri, Ali F; Farhat, Ghada N

    2018-03-01

    Lung cancer ranks as the top cancer worldwide in terms of incidence and constitutes a major health problem. About 90% of lung cancer cases are diagnosed at advance stage where treatment is not available. Despite evidence that lung cancer screening improves survival, guidelines for lung cancer screening are still a subject for debate. In Saudi Arabia, only 14% of lung cancers are diagnosed at early stage and researches on survival and its predictors are lacking. This overview analysis was conducted on predictors of lung cancer mortality according to the two major cancer types, small-cell lung cancers (SCLCs) and non-small cell lung cancers (NSCLCs) in Saudi Arabia. A secondary data analysis was performed on small-cell lung cancers (SCLCs) and Non-small cell lung cancers (NSCLCs) registered in the Saudi Cancer Registry (SCR) for the period 2009-2013 to estimate predictors of mortality for both lung cancer types. A total of 404 cases (197 SCLC and 207 NSCLC) were included in the analysis, all Saudi nationals. A total of 213 (52.75%) deaths occurred among lung cancer patients, 108 (54.82%) among SCLCs and 105 (50.72%) among NCSLCs. Three quarter of patients are diagnosis with advance stage for both SCLC & NSCLC. Univariate analysis revealed higher mean age at diagnosis in dead patients compared to alive patients for SCLCs (p=0.04); but not NSCLCs, a lower mortality for NSCLCs diagnosed in 2013 (p=0.025) and a significant difference in stage of tumor (p=0.006) and (p=0.035) for both SCLC and NSCLC respectively. In multiple logistic regression, stage of tumor was a strong predictor of mortality, where distant metastasis increased morality by 6-fold (OR=5.87, 95% CI: 2.01 - 17.19) in SCLC and by 3-fold (OR=3.29, 95% CI: 1.22 - 8.85) in NSCLC, compared to localized tumors. Those with NSCLC who were diagnosed in 2013 were less likely to die by 64% compared to NSCLC diagnosed in 2009 (OR=0.36, 95% CI: 0.14 - 0.93). Age, sex, topography and laterality were not associated with mortality for both types of lung cancer. We observed that the stage of the tumor is the strongest predictor of mortality for both SCLCs and NSCLs. This confirms the impact of diagnostic stage on survival. However, establishing Saudi-specific lung cancer screening guidelines will require further research on the benefits and harms of screening modalities in the Saudi population. Copyright © 2017 Ministry of Health, Saudi Arabia. All rights reserved.

  19. Factors affecting 30-month survival in lung cancer patients.

    PubMed

    Mahesh, P A; Archana, S; Jayaraj, B S; Patil, Shekar; Chaya, S K; Shashidhar, H P; Sunitha, B S; Prabhakar, A K

    2012-10-01

    Age adjusted incidence rate of lung cancer in India ranges from 7.4 to 13.1 per 100,000 among males and 3.9 to 5.8 per 100,000 among females. The factors affecting survival in lung cancer patients in India are not fully understood. The current study was undertaken to evaluate the factors affecting survival in patients diagnosed with lung cancer attending a tertiary care cancer institute in Bangalore, Karnataka, India. Consecutive patients with primary lung cancer attending Bangalore Institute of Oncology, a tertiary care centre at Bangalore, between 2006 and 2009 were included. Demographic, clinical, radiological data were collected retrospectively from the medical records. A total of 170 consecutive subjects (128 males, 42 females) diagnosed to have lung cancer; 151 non-small cell lung cancer (NSCLC) and 19 small cell lung cancer (SCLC) were included. A higher proportion of never-smokers (54.1%) were observed, mostly presenting below the age of 60 yr. Most subjects were in stage IV and III at the time of diagnosis. More than 50 per cent of patients presented with late stage lung cancer even though the duration of symptoms is less than 2 months. The 30-month overall survival rates for smokers and never-smokers were 32 and 49 per cent, respectively. No significant differences were observed in 30 month survival based on age at presentation, gender and type of lung cancer. Cox proportional hazards model identified never-smokers and duration of symptoms less than 1 month as factors adversely affecting survival. Our results showed that lung cancer in Indians involved younger subjects and associated with poorer survival as compared to other ethnic population. Studies on large sample need to be done to evaluate risk factors in lung cancer patients.

  20. Factors affecting 30-month survival in lung cancer patients

    PubMed Central

    Mahesh, P.A.; Archana, S.; Jayaraj, B.S.; Patil, Shekar; Chaya, S.K.; Shashidhar, H.P.; Sunitha, B.S.; Prabhakar, A.K.

    2012-01-01

    Background & objectives: Age adjusted incidence rate of lung cancer in India ranges from 7.4 to 13.1 per 100,000 among males and 3.9 to 5.8 per 100,000 among females. The factors affecting survival in lung cancer patients in India are not fully understood. The current study was undertaken to evaluate the factors affecting survival in patients diagnosed with lung cancer attending a tertiary care cancer institute in Bangalore, Karnataka, India. Methods: Consecutive patients with primary lung cancer attending Bangalore Institute of Oncology, a tertiary care centre at Bangalore, between 2006 and 2009 were included. Demographic, clinical, radiological data were collected retrospectively from the medical records. Results: A total of 170 consecutive subjects (128 males, 42 females) diagnosed to have lung cancer; 151 non-small cell lung cancer (NSCLC) and 19 small cell lung cancer (SCLC) were included. A higher proportion of never-smokers (54.1%) were observed, mostly presenting below the age of 60 yr. Most subjects were in stage IV and III at the time of diagnosis. More than 50 per cent of patients presented with late stage lung cancer even though the duration of symptoms is less than 2 months. The 30-month overall survival rates for smokers and never-smokers were 32 and 49 per cent, respectively. No significant differences were observed in 30 month survival based on age at presentation, gender and type of lung cancer. Cox proportional hazards model identified never-smokers and duration of symptoms less than 1 month as factors adversely affecting survival. Interpretation & conclusions: Our results showed that lung cancer in Indians involved younger subjects and associated with poorer survival as compared to other ethnic population. Studies on large sample need to be done to evaluate risk factors in lung cancer patients. PMID:23168702

  1. [What the family doctor must know about lung transplant (Part 1)].

    PubMed

    Zurbano, L; Zurbano, F

    2017-09-01

    Lung transplant is a therapeutic, medical-surgical procedure indicated for pulmonary diseases (except lung cancer), that are terminal and irreversible with current medical treatment. More than 3,500 lung transplants have been performed in Spain, with a rate of over 6 per million and increasing. In this review, an analysis is made of the types of transplants, their indications and contraindications, the procedures, immunosuppressive treatments, their side effects and medical interactions, current prophylaxis. A list of easily accessible literature references is also include, the majority being by national authors. Copyright © 2016 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Abnormalities in lung volumes and airflow in children with newly diagnosed connective tissue disease.

    PubMed

    Peradzyńska, Joanna; Krenke, Katarzyna; Szylling, Anna; Kołodziejczyk, Beata; Gazda, Agnieszka; Rutkowska-Sak, Lidia; Kulus, Marek

    2016-01-01

    Connective tissue diseases (CTDs) of childhood are rare inflammatory disorders, involving various organs and tissues including respiratory system. Pulmonary involvement in patients with CTDs is uncommon but may cause functional impairment. Data on prevalence and type of lung function abnormalities in children with CTDs are scarce. Thus, the aim of this study was to asses pulmonary functional status in children with newly diagnosed CTD and follow the results after two years of the disease course. There were 98 children (mean age: 13 ± 3; 76 girls), treated in Department of Pediatric Rheumatology, Institute of Rheumatology, Warsaw and 80 aged-matched, healthy controls (mean age 12.7 ± 2.4; 50 girls) included into the study. Study procedures included medical history, physical examination, chest radiograph and PFT (spirometry and whole body-plethysmography). Then, the assessment of PFT was performed after 24 months. FEV₁, FEV₁/FVC and MEF50 were significantly lower in CTD as compared to control group, there was no difference in FVC and TLC. The proportion of patients with abnormal lung function was significantly higher in the study group, 41 (42%) vs 9 (11%). 24-months observation didn't reveal progression in lung function impairment. Lung function impairment is relatively common in children with CTDs. Although restrictive ventilatory pattern is considered typical feature of lung involvement in CTDs, airflow limitation could also be an initial abnormality.

  3. 42 CFR 486.328 - Condition: Reporting of data.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... double lung transplant will be counted as three organs transplanted. A kidney/pancreas transplant will... Registry of Transplant Beneficiaries, and DHHS, as requested by the Secretary. The data may include, but... recovered, by type of organ; and (9) Number of organs transplanted, by type of organ. (b) An OPO must...

  4. 42 CFR 486.328 - Condition: Reporting of data.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... double lung transplant will be counted as three organs transplanted. A kidney/pancreas transplant will... Registry of Transplant Beneficiaries, and DHHS, as requested by the Secretary. The data may include, but... recovered, by type of organ; and (9) Number of organs transplanted, by type of organ. (b) An OPO must...

  5. 42 CFR 486.328 - Condition: Reporting of data.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... double lung transplant will be counted as three organs transplanted. A kidney/pancreas transplant will... Registry of Transplant Beneficiaries, and DHHS, as requested by the Secretary. The data may include, but... recovered, by type of organ; and (9) Number of organs transplanted, by type of organ. (b) An OPO must...

  6. Role of Mitochondria in Prostate Cancer

    DTIC Science & Technology

    2006-12-01

    any tissue other than liver and those having some form of hepatocellular carcinoma (see Table 1). In all cases liver tissues obtained were extracted... carcinoma , lung carcinoma 51 Nodules in the spleen, liver and lungs; lymphoma 52 Hepatocellular carcinoma 54 Wild type 56 Dysplasia, early... hepatocellular carcinoma 58 Wild type 60 Enlarged spleen, lung tumor, lymphoma 61 Lung tumor, lymphoma, carcinoid 66 Enlarged spleen, lung tumors

  7. The effects of collagen-rich extracellular matrix on the intracellular delivery of glycol chitosan nanoparticles in human lung fibroblasts.

    PubMed

    Yhee, Ji Young; Yoon, Hong Yeol; Kim, Hyunjoon; Jeon, Sangmin; Hergert, Polla; Im, Jintaek; Panyam, Jayanth; Kim, Kwangmeyung; Nho, Richard Seonghun

    2017-01-01

    Recent progress in nanomedicine has shown a strong possibility of targeted therapy for obstinate chronic lung diseases including idiopathic pulmonary fibrosis (IPF). IPF is a fatal lung disease characterized by persistent fibrotic fibroblasts in response to type I collagen-rich extracellular matrix. As a pathological microenvironment is important in understanding the biological behavior of nanoparticles, in vitro cellular uptake of glycol chitosan nanoparticles (CNPs) in human lung fibroblasts was comparatively studied in the presence or absence of type I collagen matrix. Primary human lung fibroblasts from non-IPF and IPF patients (n=6/group) showed significantly increased cellular uptake of CNPs (>33.6-78.1 times) when they were cultured on collagen matrix. To elucidate the underlying mechanism of enhanced cellular delivery of CNPs in lung fibroblasts on collagen, cells were pretreated with chlorpromazine, genistein, and amiloride to inhibit clathrin-mediated endocytosis, caveolae-mediated endocytosis, and macropinocytosis, respectively. Amiloride pretreatment remarkably reduced the cellular uptake of CNPs, suggesting that lung fibroblasts mainly utilize the macropinocytosis-dependent mechanism when interacted with collagen. In addition, the internalization of CNPs was predominantly suppressed by a phosphoinositide 3-kinase (PI3K) inhibitor in IPF fibroblasts, indicating that enhanced PI3K activity associated with late-stage macropinocytosis can be particularly important for the enhanced cellular delivery of CNPs in IPF fibroblasts. Our study strongly supports the concept that a pathological microenvironment which surrounds lung fibroblasts has a significant impact on the intracellular delivery of nanoparticles. Based on the property of enhanced intracellular delivery of CNPs when fibroblasts are made to interact with a collagen-rich matrix, we suggest that CNPs may have great potential as a drug-carrier system for targeting fibrotic lung fibroblasts.

  8. Prior cancer does not adversely affect survival in locally advanced lung cancer: A national SEER-medicare analysis.

    PubMed

    Laccetti, Andrew L; Pruitt, Sandi L; Xuan, Lei; Halm, Ethan A; Gerber, David E

    2016-08-01

    Management of locally advanced non-small cell lung cancer is among the most highly contested areas in thoracic oncology. In this population, a history of prior cancer frequently results in exclusion from clinical trials and may influence therapeutic decisions. We therefore determined prevalence and prognostic impact of prior cancer among these patients. We identified patients>65years of age diagnosed 1992-2009 with locally advanced lung cancer in the Surveillance, Epidemiology, and End Results-Medicare linked dataset. We characterized prior cancer by prevalence, type, stage, and timing. We compared all-cause and lung cancer-specific survival between patients with and without prior cancer using propensity score-adjusted Cox regression. 51,542 locally advanced lung cancer patients were included; 15.8% had a history of prior cancer. Prostate (25%), gastrointestinal (17%), breast (16%), and other genitourinary (15%) were the most common types of prior cancer, and 76% percent of prior cancers were localized or in situ stage. Approximately half (54%) of prior cancers were diagnosed within 5 years of the index lung cancer date. Patients with prior cancer had similar (propensity-score adjusted hazard ratio [HR] 0.96; 95% CI, 0.94-0.99; P=0.005) and improved lung cancer-specific (HR 0.84; 95% CI, 0.81-0.86; P<0.001) survival compared to patients with no prior cancer. For patients with locally advanced lung cancer, prior cancer does not adversely impact clinical outcomes. Patients with locally advanced lung cancer and a history of prior cancer should not be excluded from clinical trials, and should be offered aggressive, potentially curative therapies if otherwise appropriate. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. The effects of collagen-rich extracellular matrix on the intracellular delivery of glycol chitosan nanoparticles in human lung fibroblasts

    PubMed Central

    Yhee, Ji Young; Yoon, Hong Yeol; Kim, Hyunjoon; Jeon, Sangmin; Hergert, Polla; Im, Jintaek; Panyam, Jayanth; Kim, Kwangmeyung; Nho, Richard Seonghun

    2017-01-01

    Recent progress in nanomedicine has shown a strong possibility of targeted therapy for obstinate chronic lung diseases including idiopathic pulmonary fibrosis (IPF). IPF is a fatal lung disease characterized by persistent fibrotic fibroblasts in response to type I collagen-rich extracellular matrix. As a pathological microenvironment is important in understanding the biological behavior of nanoparticles, in vitro cellular uptake of glycol chitosan nanoparticles (CNPs) in human lung fibroblasts was comparatively studied in the presence or absence of type I collagen matrix. Primary human lung fibroblasts from non-IPF and IPF patients (n=6/group) showed significantly increased cellular uptake of CNPs (>33.6–78.1 times) when they were cultured on collagen matrix. To elucidate the underlying mechanism of enhanced cellular delivery of CNPs in lung fibroblasts on collagen, cells were pretreated with chlorpromazine, genistein, and amiloride to inhibit clathrin-mediated endocytosis, caveolae-mediated endocytosis, and macropinocytosis, respectively. Amiloride pretreatment remarkably reduced the cellular uptake of CNPs, suggesting that lung fibroblasts mainly utilize the macropinocytosis-dependent mechanism when interacted with collagen. In addition, the internalization of CNPs was predominantly suppressed by a phosphoinositide 3-kinase (PI3K) inhibitor in IPF fibroblasts, indicating that enhanced PI3K activity associated with late-stage macropinocytosis can be particularly important for the enhanced cellular delivery of CNPs in IPF fibroblasts. Our study strongly supports the concept that a pathological microenvironment which surrounds lung fibroblasts has a significant impact on the intracellular delivery of nanoparticles. Based on the property of enhanced intracellular delivery of CNPs when fibroblasts are made to interact with a collagen-rich matrix, we suggest that CNPs may have great potential as a drug-carrier system for targeting fibrotic lung fibroblasts. PMID:28860768

  10. Inflammation and angiogenesis in fibrotic lung disease.

    PubMed

    Keane, Michael P; Strieter, Robert M; Lynch, Joseph P; Belperio, John A

    2006-12-01

    The pathogenesis of pulmonary fibrosis is poorly understood. Although inflammation has been presumed to have an important role in the development of fibrosis this has been questioned recently, particularly with regard to idiopathic pulmonary fibrosis (IPF). It is, however, increasingly recognized that the polarization of the inflammatory response toward a type 2 phenotype supports fibroproliferation. Increased attention has been on the role of noninflammatory structural cells such as the fibroblast, myofibroblast, epithelial cell, and endothelial cells. Furthermore, the origin of these cells appears to be multifactorial and includes resident cells, bone marrow-derived cells, and epithelial to mesenchymal transition. Increasing evidence supports the presence of vascular remodeling in fibrotic lung disease, although the precise role in the pathogenesis of fibrosis remains to be determined. Therefore, the pathogenesis of pulmonary fibrosis is complex and involves the interaction of multiple cell types and compartments within the lung.

  11. The histone demethylase PHF8 is an oncogenic protein in human non-small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yuzhou; Pan, Xufeng; Zhao, Heng, E-mail: hengzhao1966@sina.com

    2014-08-15

    Highlights: • PHF8 overexpresses in human NSCLC and predicts poor survival. • PHF8 regulates lung cancer cell growth and transformation. • PHF8 regulates apoptosis in human lung cancer cells. • PHF8 promotes miR-21 expression in human lung cancer. • MiR-21 is critically essential for PHF8 function in human lung cancer cells. - Abstract: PHF8 is a JmjC domain-containing protein and erases repressive histone marks including H4K20me1 and H3K9me1/2. It binds to H3K4me3, an active histone mark usually located at transcription start sites (TSSs), through its plant homeo-domain, and is thus recruited and enriched in gene promoters. PHF8 is involved inmore » the development of several types of cancer, including leukemia, prostate cancer, and esophageal squamous cell carcinoma. Herein we report that PHF8 is an oncogenic protein in human non-small cell lung cancer (NSCLC). PHF8 is up-regulated in human NSCLC tissues, and high PHF8 expression predicts poor survival. Our in vitro and in vivo evidence demonstrate that PHF8 regulates lung cancer cell proliferation and cellular transformation. We found that PHF8 knockdown induces DNA damage and apoptosis in lung cancer cells. PHF8 promotes miR-21 expression in human lung cancer, and miR-21 knockdown blocks the effects of PHF8 on proliferation and apoptosis of lung cancer cells. In summary, PHF8 promotes lung cancer cell growth and survival by regulating miR-21.« less

  12. The Enduring Challenge of Determining Pneumonia Etiology in Children: Considerations for Future Research Priorities

    PubMed Central

    Hammitt, Laura L.; Murdoch, David R.; O’Brien, Katherine L.; Scott, J. Anthony G.

    2017-01-01

    Abstract Pneumonia kills more children each year worldwide than any other disease. Nonetheless, accurately determining the causes of childhood pneumonia has remained elusive. Over the past century, the focus of pneumonia etiology research has shifted from studies of lung aspirates and postmortem specimens intent on identifying pneumococcal disease to studies of multiple specimen types distant from the lung that are tested for multiple pathogens. Some major challenges facing modern pneumonia etiology studies include the use of nonspecific and variable case definitions, poor access to pathologic lung tissue and to specimens from fatal cases, poor diagnostic accuracy of assays (especially when testing nonpulmonary specimens), and the interpretation of results when multiple pathogens are detected in a given individual. The future of childhood pneumonia etiology research will likely require integrating data from complementary approaches, including applications of advanced molecular diagnostics and vaccine probe studies, as well as a renewed emphasis on lung aspirates from radiologically confirmed pneumonia and postmortem examinations. PMID:28575369

  13. [Immunohistochemistry of matrix metalloproteinases in different morphologic types of the lung cancer developed in the inhabitants of the Semipalatinsk Region].

    PubMed

    Sagindikova, G E; Kogan, E A; Satbaeva, E B

    2008-01-01

    The immunohistochemical characteristics of matrix metalloproteinases and their association with angiogenesis in different histological types of the lung cancer developed in the inhabitants of the Semipalatinsk Region (Kazakhstan) were investigated. The surgical and biopsy specimens from 87 patients with lung cancer, including 33 patients who had lived near the Semipalatinsk polygon from childhood to 2002 year and had been long exposed to radiation (annual radiation dose had been more than 0.1 Rem), were examined. Fifty-four control patients had lived in other Kazakhstan regions with the unchanged ionizing radiation background (n = 14) and in Moscow (n = 40). MMP-1, MMP-2, MMP-9, TIMP-1, VEGF, CD34, chromogranin, and CD68 were immunohistochemically detected. The increased expression of MMP-1, MMP-2, and MMP-9 in the cancer cells was ascertained in the study group as compared with the control one. Angiogenesis in the stroma of Semipalatinsk lung cancer was generally more pronounced, as judged by the expression of VEGF and the density of newly formed vessels.

  14. Two-step Raman spectroscopy method for tumor diagnosis

    NASA Astrophysics Data System (ADS)

    Zakharov, V. P.; Bratchenko, I. A.; Kozlov, S. V.; Moryatov, A. A.; Myakinin, O. O.; Artemyev, D. N.

    2014-05-01

    Two-step Raman spectroscopy phase method was proposed for differential diagnosis of malignant tumor in skin and lung tissue. It includes detection of malignant tumor in healthy tissue on first step with identification of concrete cancer type on the second step. Proposed phase method analyze spectral intensity alteration in 1300-1340 and 1640-1680 cm-1 Raman bands in relation to the intensity of the 1450 cm-1 band on first step, and relative differences between RS intensities for tumor area and healthy skin closely adjacent to the lesion on the second step. It was tested more than 40 ex vivo samples of lung tissue and more than 50 in vivo skin tumors. Linear Discriminant Analysis, Quadratic Discriminant Analysis and Support Vector Machine were used for tumors type classification on phase planes. It is shown that two-step phase method allows to reach 88.9% sensitivity and 87.8% specificity for malignant melanoma diagnosis (skin cancer); 100% sensitivity and 81.5% specificity for adenocarcinoma diagnosis (lung cancer); 90.9% sensitivity and 77.8% specificity for squamous cell carcinoma diagnosis (lung cancer).

  15. Lung Cancer—Patient Version

    Cancer.gov

    The two main types of lung cancer are non-small cell lung cancer and small cell lung cancer. Smoking causes most lung cancers, but nonsmokers can also develop lung cancer. Start here to find information on lung cancer treatment, causes and prevention, screening, research, and statistics on lung cancer.

  16. Histone Deacetylase Inhibitors as a Novel Targeted Therapy Against Non-small Cell Lung Cancer: Where Are We Now and What Should We Expect?

    PubMed

    Damaskos, Christos; Tomos, Ioannis; Garmpis, Nikolaos; Karakatsani, Anna; Dimitroulis, Dimitrios; Garmpi, Anna; Spartalis, Eleftherios; Kampolis, Christos F; Tsagkari, Eleni; Loukeri, Angeliki A; Margonis, Georgios-Antonios; Spartalis, Michael; Andreatos, Nikolaos; Schizas, Dimitrios; Kokkineli, Stefania; Antoniou, Efstathios A; Nonni, Afroditi; Tsourouflis, Gerasimos; Markatos, Konstantinos; Kontzoglou, Konstantinos; Kostakis, Alkiviadis; Tomos, Periklis

    2018-01-01

    Non-small cell lung cancer constitutes the most common type of lung cancer, accounting for 85-90% of lung cancer, and is a leading cause of cancer-related death. Despite the progress during the past years, poor prognosis remains a challenge and requires further research and development of novel antitumor treatment. Recently, the role of histone deacetylases in gene expression has emerged showing their regulation of the acetylation of histone proteins and other non-histone protein targets and their role in chromatin organization, while their inhibitors, the histone deacetylase inhibitors, have been proposed to have a potential therapeutic role in diverse malignancies, including non-small cell lung cancer. This review article focuses on the role of histone deacetylase inhibitors in the treatment of non-small cell lung cancer and the major molecular mechanisms underlying their antitumor activity recognized so far. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  17. Lung cancer risk, silica exposure, and silicosis in Chinese mines and pottery factories: the modifying role of other workplace lung carcinogens.

    PubMed

    Cocco, P; Rice, C H; Chen, J Q; McCawley, M A; McLaughlin, J K; Dosemeci, M

    2001-12-01

    Aims of our study were to explore whether and to what extent exposure to other lung carcinogens, or staging and clinical features of silicosis modify or confound the association between silica and lung cancer. We used data from a nested case-control study, conducted in the late 1980s in 29 Chinese mines and potteries (10 tungsten mines, 6 copper and iron mines, 4 tin mines, 8 pottery factories, and 1 clay mine), that included 316 lung cancer cases and 1,356 controls, matched by decade of birth and facility type. The previous analysis of these data presented results by type of mine or factory. In our study, pooling all 29 Chinese work sites, lung cancer risk showed a modest association with silica exposure. Risk did not vary after excluding subjects with silicosis or adjusting the risk estimates by radiological staging of silicosis. Strong correlation among exposures prevented a detailed evaluation of the role of individual exposures. However, lung cancer risk was for the most part absent when concomitant exposure to other workplace lung carcinogens, such as polycyclic aromatic hydrocarbons (PAHs), nickel or radon-daughters, was considered. The cross classification of lung cancer risk by categories of exposure to respirable silica and total respirable dust did not show an independent effect of total respirable dust. Silicosis showed a modest association with lung cancer, which did not vary by severity of radiological staging, or by radiological evidence of disease progression, or by level of silica exposure. However, among silicotic subjects, lung cancer risk was significantly elevated only when exposure to cadmium and PAH had occurred. Our results suggest that, among silica-exposed Chinese workers, numerous occupational and non-occupational risk factors interact in a complex fashion to modify lung cancer risk. Future epidemiological studies on silica and lung cancer should incorporate detailed information on exposure to other workplace lung carcinogens, total respirable dust, and on surface size and age of silica particles to understand whether and to what extent they affect the carcinogenic potential of silica. Copyright 2001 Wiley-Liss, Inc

  18. Lung donor treatment protocol in brain dead-donors: A multicenter study.

    PubMed

    Miñambres, Eduardo; Pérez-Villares, Jose Miguel; Chico-Fernández, Mario; Zabalegui, Arturo; Dueñas-Jurado, Jose María; Misis, Maite; Mosteiro, Fernando; Rodriguez-Caravaca, Gil; Coll, Elisabeth

    2015-06-01

    The shortage of lung donors for transplantation is the main limitation among patients awaiting this type of surgery. We previously demonstrated that an intensive lung donor-treatment protocol succeeded in increasing the lung procurement rate. We aimed to validate our protocol for centers with or without lung transplant programs. A quasi-experimental study was performed to compare lung donor rate before (historical group, 2010 to 2012) and after (prospective group, 2013) the application of a lung management protocol for donors after brain death (DBDs) in six Spanish hospitals. Lung donor selection criteria remained unchanged in both periods. Outcome measures for lung recipients were early survival and primary graft dysfunction (PGD) rates. A total of 618 DBDs were included: 453 in the control period and 165 in the protocol period. Donor baseline characteristics were similar in both periods. Lung donation rate in the prospective group was 27.3%, more than twice that of the historical group (13%; p < 0.001). The number of lungs retrieved, grafts transplanted, and transplants performed more than doubled over the study period. No differences in early recipients' survival between groups were observed (87.6% vs. 84.5%; p = 0.733) nor in the rate of PGD. Implementing our intensive lung donor-treatment protocol increases lung procurement rates. This allows more lung transplants to be performed without detriment to either early survival or PGD rate. Copyright © 2015 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  19. Clinical Features of Ground Glass Opacity-Dominant Lung Cancer Exceeding 3.0 cm in the Whole Tumor Size.

    PubMed

    Suzuki, Shigeki; Sakurai, Hiroyuki; Yotsukura, Masaya; Masai, Kyohei; Asakura, Keisuke; Nakagawa, Kazuo; Motoi, Noriko; Watanabe, Shun-Ichi

    2018-05-01

    Ground glass opacity (GGO)-dominant lung adenocarcinoma sized 3.0 cm or less in the whole tumor size is widely known to have an excellent prognosis and is regarded as early lung cancer. However, the characteristics and prognosis of lung cancer showing GGO exceeding 3.0 cm remains unclear. From 2002 through 2012, we reviewed 3,735 lung cancers that underwent complete resection at our institution. We identified 160 lung cancers (4.3%) showing GGO exceeding 3.0 cm on thin-section computed tomography and divided them into three types by the consolidation/tumor ratio (CTR) using cutoff values of 0.25 and 0.5. We compared the characteristics and prognosis among these types. Type A (CTR, 0 to ≤0.25), type B (CTR, >0.25 to ≤0.5), and type C (CTR, >0.5 to <1.0) were found in 16 (10%), 37 (23%), and 107 lesions (67%), respectively. No lymph node metastasis was found in types A and B. Recurrence was not observed in types A and B. The 5-year overall survival and disease-free survival rates were both 100% in type A, both 97.2% in type B, and 88.4% and 66.7% in type C, respectively. Patients with type C had a significantly worse prognosis than those with the other types with respect to overall survival and disease-free survival. A patient with GGO-dominant lung cancer exceeding 3.0 cm can be considered to be in a group of patients with nodal-negative disease and an excellent prognosis. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  20. Raynaud's Disease

    MedlinePlus

    ... become inflamed (Buerger's disease), and a type of high blood pressure that affects the arteries of the lungs (primary ... medications. These include beta blockers, used to treat high blood pressure; migraine medications that contain ergotamine or sumatriptan; attention- ...

  1. Maternal high-fat diet is associated with impaired fetal lung development

    PubMed Central

    Mayor, Reina S.; Finch, Katelyn E.; Zehr, Jordan; Morselli, Eugenia; Neinast, Michael D.; Frank, Aaron P.; Hahner, Lisa D.; Wang, Jason; Rakheja, Dinesh; Palmer, Biff F.; Rosenfeld, Charles R.; Savani, Rashmin C.

    2015-01-01

    Maternal nutrition has a profound long-term impact on infant health. Poor maternal nutrition influences placental development and fetal growth, resulting in low birth weight, which is strongly associated with the risk of developing chronic diseases, including heart disease, hypertension, asthma, and type 2 diabetes, later in life. Few studies have delineated the mechanisms by which maternal nutrition affects fetal lung development. Here, we report that maternal exposure to a diet high in fat (HFD) causes placental inflammation, resulting in placental insufficiency, fetal growth restriction (FGR), and inhibition of fetal lung development. Notably, pre- and postnatal exposure to maternal HFD also results in persistent alveolar simplification in the postnatal period. Our novel findings provide a strong association between maternal diet and fetal lung development. PMID:26092997

  2. Sirt1 restrains lung inflammasome activation in a murine model of sepsis.

    PubMed

    Gao, Rong; Ma, Zhongsen; Hu, Yuxin; Chen, Jiao; Shetty, Sreerama; Fu, Jian

    2015-04-15

    Excessive inflammation is a major cause of organ damage during sepsis. The elderly are highly susceptible to sepsis-induced organ injury. Sirt1 expression is reduced during aging. In the present study, we investigated the role of Sirt1, a histone deacetylase, in controlling inflammatory responses in a murine sepsis model induced by cecal ligation and puncture (CLP). We examined lung inflammatory signaling in inducible Sirt1 knockout (Sirt1(-/-)) mice and wild-type littermates (Sirt1(+/+)) after CLP. Our results demonstrated that Sirt1 deficiency led to severe lung inflammatory injury. To further investigate molecular mechanisms of Sirt1 regulation of lung inflammatory responses in sepsis, we conducted a series of experiments to assess lung inflammasome activation after CLP. We detected increased lung inflammatory signaling including NF-κB, signal transducer and activator of transcription 3, and ERK1/2 activation in Sirt1(-/-) mice after CLP. Furthermore, inflammasome activity was increased in Sirt1(-/-) mice after CLP, as demonstrated by increased IL-1β and caspase-7 cleavage and activation. Aggravated inflammasome activation in Sirt1(-/-) mice was associated with the increased production of lung proinflammatory mediators, including ICAM-1 and high-mobility group box 1, and further disruption of tight junctions and adherens junctions, as demonstrated by dramatic reduction of lung claudin-1 and vascular endothelial-cadherin expression, which was associated with the upregulation of matrix metallopeptidase 9 expression. In summary, our results suggest that Sirt1 suppresses acute lung inflammation during sepsis by controlling inflammasome activation pathway. Copyright © 2015 the American Physiological Society.

  3. Lung cancers diagnosed at annual CT screening: volume doubling times.

    PubMed

    Henschke, Claudia I; Yankelevitz, David F; Yip, Rowena; Reeves, Anthony P; Farooqi, Ali; Xu, Dongming; Smith, James P; Libby, Daniel M; Pasmantier, Mark W; Miettinen, Olli S

    2012-05-01

    To empirically address the distribution of the volume doubling time (VDT) of lung cancers diagnosed in repeat annual rounds of computed tomographic (CT) screening in the International Early Lung Cancer Action Program (I-ELCAP), first and foremost with respect to rates of tumor growth but also in terms of cell types. All CT screenings in I-ELCAP from 1993 to 2009 were performed according to HIPAA-compliant protocols approved by the institutional review boards of the collaborating institutions. All instances of first diagnosis of primary lung cancer after a negative screening result 7-18 months earlier were identified, with symptom-prompted diagnoses included. Lesion diameter was calculated by using the measured length and width of each cancer at the time when the nodule was first identified for further work-up and at the time of the most recent prior screening, 7-18 months earlier. The length and width were measured a second time for each cancer, and the geometric mean of the two calculated diameters was used to calculate the VDT. The χ(2) statistic was used to compare the VDT distributions. The median VDT for 111 cancers was 98 days (interquartile range, 108). For 56 (50%) cancers it was less than 100 days, and for three (3%) cancers it was more than 400 days. Adenocarcinoma was the most frequent cell type (50%), followed by squamous cell carcinoma (19%), small cell carcinoma (19%), and others (12%). Lung cancers manifesting as subsolid nodules had significantly longer VDTs than those manifesting as solid nodules (P < .0001). Lung cancers diagnosed in annual repeat rounds of CT screening, as manifest by the VDT and cell-type distributions, are similar to those diagnosed in the absence of screening.

  4. Apatinib: a promising oral antiangiogenic agent in the treatment of multiple solid tumors.

    PubMed

    Scott, A J; Messersmith, W A; Jimeno, A

    2015-04-01

    Aberrant proangiogenic pathways have long been implicated in tumorigenesis and metastasis. Antiangiogenic therapies have shown efficacy in the treatment of a variety of solid tumors including lung, breast, colon, glioblastomas, and other solid tumor types. Apatinib, a small-molecule inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2), is an orally bioavailable agent currently being studied in multiple tumor types. Apatinib has shown a survival benefit in gastric cancer in a phase III trial and non-small cell lung cancer in a phase II trial. With a favorable side effect profile and improved outcomes, apatinib has demonstrated a substantial potential to augment therapeutic options in a variety of tumor types. Copyright 2015 Prous Science, S.A.U. or its licensors. All rights reserved.

  5. LungMAP: The Molecular Atlas of Lung Development Program

    PubMed Central

    Ardini-Poleske, Maryanne E.; Ansong, Charles; Carson, James P.; Corley, Richard A.; Deutsch, Gail H.; Hagood, James S.; Kaminski, Naftali; Mariani, Thomas J.; Potter, Steven S.; Pryhuber, Gloria S.; Warburton, David; Whitsett, Jeffrey A.; Palmer, Scott M.; Ambalavanan, Namasivayam

    2017-01-01

    The National Heart, Lung, and Blood Institute is funding an effort to create a molecular atlas of the developing lung (LungMAP) to serve as a research resource and public education tool. The lung is a complex organ with lengthy development time driven by interactive gene networks and dynamic cross talk among multiple cell types to control and coordinate lineage specification, cell proliferation, differentiation, migration, morphogenesis, and injury repair. A better understanding of the processes that regulate lung development, particularly alveologenesis, will have a significant impact on survival rates for premature infants born with incomplete lung development and will facilitate lung injury repair and regeneration in adults. A consortium of four research centers, a data coordinating center, and a human tissue repository provides high-quality molecular data of developing human and mouse lungs. LungMAP includes mouse and human data for cross correlation of developmental processes across species. LungMAP is generating foundational data and analysis, creating a web portal for presentation of results and public sharing of data sets, establishing a repository of young human lung tissues obtained through organ donor organizations, and developing a comprehensive lung ontology that incorporates the latest findings of the consortium. The LungMAP website (www.lungmap.net) currently contains more than 6,000 high-resolution lung images and transcriptomic, proteomic, and lipidomic human and mouse data and provides scientific information to stimulate interest in research careers for young audiences. This paper presents a brief description of research conducted by the consortium, database, and portal development and upcoming features that will enhance the LungMAP experience for a community of users. PMID:28798251

  6. Metachronous Lung Cancer: Clinical Characteristics and Effects of Surgical Treatment.

    PubMed

    Rzechonek, Adam; Błasiak, Piotr; Muszczyńska-Bernhard, Beata; Pawełczyk, Konrad; Pniewski, Grzegorz; Ornat, Maciej; Grzegrzółka, Jędrzej; Brzecka, Anna

    2018-01-01

    The occurrence of a second lung tumor after surgical removal of lung cancer usually indicates a lung cancer metastasis, but sometimes a new lesion proves to be a new primary lung cancer, i.e., metachronous lung cancer. The goal of the present study was to conduct a clinical evaluation of patients with metachronous lung cancer and lung cancer metastasis, and to compare the early and distant outcomes of surgical treatment in both cancer types. There were 26 age-matched patients with lung cancer metastases and 23 patients with metachronous lung cancers, who underwent a second lung cancer resection. We evaluated the histological type of a resected cancer, the extent of thoracosurgery, the frequency of early postoperative complications, and the probability of 5-year survival after the second operation. The findings were that metachronous lung cancer was adenocarcinoma in 52% of patients, with a different histopathological pattern from that of the primary lung cancer in 74% of patients. In both cancer groups, mechanical resections were the most common surgery type (76% of all cases), with anatomical resections such as segmentectomy, lobectomy, or pneumectomy being much rarer conducted. The incidence of early postoperative complications in metachronous lung cancer and lung cancer metastasis (30% vs. 31%, respectively) and the probability of 5-year survival after resection of either cancer tumor (60.7% vs. 50.9%, respectively) were comparable. In conclusion, patients undergoing primary lung cancer surgery require a long-term follow-up due to the risk of metastatic or metachronous lung cancer. The likelihood of metachronous lung cancer and pulmonary lung cancer metastases, the incidence of postoperative complications, and the probability of 5-year survival after resection of metachronous lung cancer or lung cancer metastasis are similar.

  7. Major concerns regarding lung injury and related health conditions caused by the use of humidifier disinfectant

    PubMed Central

    2016-01-01

    A total of 221 patients were evaluated to be humidifier disinfectant associated with lung injury (HDLI) through two rounds of programs through April 2015. The humidifier disinfectant (HD) brands most often associated with HDLI were found to be Oxy (n=151, 68 %) and Cefu (n=26, 17 %). Polyhexamethylene guanidine used for disinfectant for four types of HD brands including Oxy was found to be associated with the highest number of HDLI cases (n=188). Further programs are operating to identify various health effects including lung injury which may be associated with the use of HD. Not only national agencies, but also pertinent environmental health societies should cooperate in the necessary investigations so that this tragedy can be properly addressed and future incidents concerning chemicals and chemical-containing products can be prevented. PMID:27431912

  8. Activation of PPARα by Wy-14643 ameliorates systemic lipopolysaccharide-induced acute lung injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Seong Ho, E-mail: yoosh@snu.ac.kr; Abdelmegeed, Mohamed A.; Song, Byoung-Joon, E-mail: bj.song@nih.gov

    Highlights: •Activation of PPARα attenuated LPS-mediated acute lung injury. •Pretreatment with Wy-14643 decreased the levels of IFN-γ and IL-6 in ALI. •Nitrosative stress and lipid peroxidation were downregulated by PPARα activation. •PPARα agonists may be potential therapeutic targets for acute lung injury. -- Abstract: Acute lung injury (ALI) is a major cause of mortality and morbidity worldwide. The activation of peroxisome proliferator-activated receptor-α (PPARα) by its ligands, which include Wy-14643, has been implicated as a potential anti-inflammatory therapy. To address the beneficial efficacy of Wy-14643 for ALI along with systemic inflammation, the in vivo role of PPARα activation was investigatedmore » in a mouse model of lipopolysaccharide (LPS)-induced ALI. Using age-matched Ppara-null and wild-type mice, we demonstrate that the activation of PPARα by Wy-14643 attenuated LPS-mediated ALI. This was evidenced histologically by the significant alleviation of inflammatory manifestations and apoptosis observed in the lung tissues of wild-type mice, but not in the corresponding Ppara-null mice. This protective effect probably resulted from the inhibition of LPS-induced increases in pro-inflammatory cytokines and nitroxidative stress levels. These results suggest that the pharmacological activation of PPARα might have a therapeutic effect on LPS-induced ALI.« less

  9. Surfactant protein DNA methylation: A new entrant in the field of lung cancer diagnostics? (Review)

    PubMed Central

    Vaid, Mudit; Floros, Joanna

    2010-01-01

    Lung cancer is a major cause of cancer-related mortality in both men and women. A 5-year survival of lung cancer patients is only 15% with a negative correlation between progressively advanced lung cancer stage and a 5-year survival period. The only chance for cure is surgical resection if done at the early stage of the disease. Therefore, an early diagnosis and a better prediction of prognosis could decrease mortality. An early diagnosis could provide the opportunity for a therapeutic intervention early in the course of the disease. Genetic alterations in the cancer genome include aneuploidy, deletions and amplifications of chromosomal regions, loss of heterozygosity (LOH), microsatellite alterations, point mutations and aberrant promoter methylation. Of the various types of genetic alterations (i.e. gene amplifications, allele deletions, point mutations or deletions and methylation) reported in different tumor types, aberrant promoter methylation of genes is recent and is the focus of the present review. Specifically, we will briefly review the role of promoter methylation in various malignancies and then focus on lung cancer diagnosis and promoter gene methylation with emphasis on the methylation status of genes of the innate host defense, namely the surfactant proteins A and D. PMID:19082436

  10. Adenocarcinoma of the lung with scattered consolidation: radiological-pathological correlation and prognosis.

    PubMed

    Jiang, Binghu; Takashima, Shodayu; Hakucho, Tomoaki; Hodaka, Numasaki; Yasuhiko, Tomita; Masahiko, Higashiyama

    2013-10-01

    To investigate the clinicopathological features and prognosis in patients with adenocarcinoma of the lung with scattered consolidation (ALSC). Between January 2006 and March 2010, 139 consecutive patients with lung adenocarcinoma of ≤3 cm, who underwent pulmonary resection for lung cancer, were investigated retrospectively. Radiologic classification was based on the findings of thin-section CT such as the presence of consolidation or ground-glass opacity (GGO). Type I (n=15) and Type II (n=14), showed a pure GGO and a mixed GGO with consolidation <50%, respectively. Type IV (n=38) and Type V (n=52) showed a mixed GGO with consolidation ≥50% and a pure consolidation, respectively. Type III (n=20) was the adenocarcinoma of the lung with scattered consolidation (ALSC). The clinicopathological features and prognosis of ALSC was investigated with comparative analysis and survival analysis. Because of the similar recurrence rate for Type I and Type II (P=1.000), Type IV and Type V (P=0.343), we merged Type I and Type II as Type I+II, Type IV and Type V as Type IV+V, respectively. In the 20 (14.4%) patients with ALSC, lymph node metastasis was not observed, and it was rare in lymphatic invasion and vascular invasion. On the basis of IASLC/ATS/ERS 2011 classification, 80% of the ALSC were preinvasive lesions. In Noguchi classification, there was no significant difference between Type I+II and ALSC (P=0.260). The prognosis of ALSC was similar to Type I+II (P=0.408), but better than Type IV+V (P=0.040). Adenocarcinoma of the lung with scattered consolidation (ALSC) on thin-section CT was a relatively favorable prognostic factor. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. A preliminary regional PBPK model of lung metabolism for improving species dependent descriptions of 1,3-butadiene and its metabolites.

    PubMed

    Campbell, Jerry; Van Landingham, Cynthia; Crowell, Susan; Gentry, Robinan; Kaden, Debra; Fiebelkorn, Stacy; Loccisano, Anne; Clewell, Harvey

    2015-08-05

    1,3-Butadiene (BD), a volatile organic chemical (VOC), is used in synthetic rubber production and other industrial processes. It is detectable at low levels in ambient air as well as in tobacco smoke and gasoline vapors. Inhalation exposures to high concentrations of BD have been associated with lung cancer in both humans and experimental animals, although differences in species sensitivity have been observed. Metabolically active lung cells such as Pulmonary Type I and Type II epithelial cells and club cells (Clara cells)(1) are potential targets of BD metabolite-induced toxicity. Metabolic capacities of these cells, their regional densities, and distributions vary throughout the respiratory tract as well as between species and cell types. Here we present a physiologically based pharmacokinetic (PBPK) model for BD that includes a regional model of lung metabolism, based on a previous model for styrene, to provide species-dependent descriptions of BD metabolism in the mouse, rat, and human. Since there are no in vivo data on BD pharmacokinetics in the human, the rat and mouse models were parameterized to the extent possible on the basis of in vitro metabolic data. Where it was necessary to use in vivo data, extrapolation from rat to mouse was performed to evaluate the level of uncertainty in the human model. A kidney compartment and description of downstream metabolism were also included in the model to allow for eventual use of available urinary and blood biomarker data in animals and humans to calibrate the model for estimation of BD exposures and internal metabolite levels. Results from simulated inhalation exposures to BD indicate that incorporation of differential lung region metabolism is important in describing species differences in pulmonary response and that these differences may have implications for risk assessments of human exposures to BD. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  12. A preliminary regional PBPK model of lung metabolism for improving species dependent descriptions of 1,3-butadiene and its metabolites

    DOE PAGES

    Campbell, Jerry; Van Landingham, Cynthia; Crowell, Susan; ...

    2015-06-12

    1,3-Butadiene (BD), a volatile organic chemical (VOC), is used in synthetic rubber production and other industrial processes. It is detectable at low levels in ambient air as well as in tobacco smoke and gasoline vapors. Inhalation exposures to high concentrations of BD have been associated with lung cancer in both humans and experimental animals, although differences in species sensitivity have been observed. Metabolically active lung cells such as Pulmonary Type I and Type II epithelial cells and club cells (Clara cells) 1 are potential targets of BD metabolite-induced toxicity. Metabolic capacities of these cells, their regional densities, and distributions varymore » throughout the respiratory tract as well as between species and cell types. Here we present a physiologically based pharmacokinetic (PBPK) model for BD that includes a regional model of lung metabolism, based on a previous model for styrene, to provide species-dependent descriptions of BD metabolism in the mouse, rat, and human. Since there are no in vivo data on BD pharmacokinetics in the human, the rat and mouse models were parameterized to the extent possible on the basis of in vitro metabolic data. Where it was necessary to use in vivo data, extrapolation from rat to mouse was performed to evaluate the level of uncertainty in the human model. A kidney compartment and description of downstream metabolism were also included in the model to allow for eventual use of available urinary and blood biomarker data in animals and humans to calibrate the model for estimation of BD exposures and internal metabolite levels. Results from simulated inhalation exposures to BD indicate that incorporation of differential lung region metabolism is important in describing species differences in pulmonary response and that these differences may have implications for risk assessments of human exposures to BD.« less

  13. A preliminary regional PBPK model of lung metabolism for improving species dependent descriptions of 1,3-butadiene and its metabolites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Jerry; Van Landingham, Cynthia; Crowell, Susan

    1,3-Butadiene (BD), a volatile organic chemical (VOC), is used in synthetic rubber production and other industrial processes. It is detectable at low levels in ambient air as well as in tobacco smoke and gasoline vapors. Inhalation exposures to high concentrations of BD have been associated with lung cancer in both humans and experimental animals, although differences in species sensitivity have been observed. Metabolically active lung cells such as Pulmonary Type I and Type II epithelial cells and club cells (Clara cells) 1 are potential targets of BD metabolite-induced toxicity. Metabolic capacities of these cells, their regional densities, and distributions varymore » throughout the respiratory tract as well as between species and cell types. Here we present a physiologically based pharmacokinetic (PBPK) model for BD that includes a regional model of lung metabolism, based on a previous model for styrene, to provide species-dependent descriptions of BD metabolism in the mouse, rat, and human. Since there are no in vivo data on BD pharmacokinetics in the human, the rat and mouse models were parameterized to the extent possible on the basis of in vitro metabolic data. Where it was necessary to use in vivo data, extrapolation from rat to mouse was performed to evaluate the level of uncertainty in the human model. A kidney compartment and description of downstream metabolism were also included in the model to allow for eventual use of available urinary and blood biomarker data in animals and humans to calibrate the model for estimation of BD exposures and internal metabolite levels. Results from simulated inhalation exposures to BD indicate that incorporation of differential lung region metabolism is important in describing species differences in pulmonary response and that these differences may have implications for risk assessments of human exposures to BD.« less

  14. Current and Prospective Protein Biomarkers of Lung Cancer

    PubMed Central

    Zamay, Tatiana N.; Zamay, Galina S.; Kolovskaya, Olga S.; Zukov, Ruslan A.; Petrova, Marina M.; Gargaun, Ana; Berezovski, Maxim V.

    2017-01-01

    Lung cancer is a malignant lung tumor with various histological variants that arise from different cell types, such as bronchial epithelium, bronchioles, alveoli, or bronchial mucous glands. The clinical course and treatment efficacy of lung cancer depends on the histological variant of the tumor. Therefore, accurate identification of the histological type of cancer and respective protein biomarkers is crucial for adequate therapy. Due to the great diversity in the molecular-biological features of lung cancer histological types, detection is impossible without knowledge of the nature and origin of malignant cells, which release certain protein biomarkers into the bloodstream. To date, different panels of biomarkers are used for screening. Unfortunately, a uniform serum biomarker composition capable of distinguishing lung cancer types is yet to be discovered. As such, histological analyses of tumor biopsies and immunohistochemistry are the most frequently used methods for establishing correct diagnoses. Here, we discuss the recent advances in conventional and prospective aptamer based strategies for biomarker discovery. Aptamers like artificial antibodies can serve as molecular recognition elements for isolation detection and search of novel tumor-associated markers. Here we will describe how these small synthetic single stranded oligonucleotides can be used for lung cancer biomarker discovery and utilized for accurate diagnosis and targeted therapy. Furthermore, we describe the most frequently used in-clinic and novel lung cancer biomarkers, which suggest to have the ability of differentiating between histological types of lung cancer and defining metastasis rate. PMID:29137182

  15. Progenitors of Secondary Crest Myofibroblasts are Developmentally Committed in Early Lung Mesoderm

    PubMed Central

    Li, Changgong; Li, Min; Li, Sha; Xing, Yiming; Yang, Chang-Yo; Li, Aimin; Borok, Zea; De Langhe, Stijn; Minoo, Parviz

    2015-01-01

    Development of the mammalian lung is predicated on cross-communications between two highly interactive tissues, the endodermally-derived epithelium and the mesodermally-derived pulmonary mesenchyme. While much attention has been paid the lung epithelium, the pulmonary mesenchyme, partly due to lack of specific tractable markers remains under-investigated. The lung mesenchyme is derived from the lateral plate mesoderm and is the principal recipient of Hedgehog (Hh) signaling, a morphogenetic network that regulates multiple aspects of embryonic development. Using the Hh-responsive Gli1-creERT2 mouse line, we identified the mesodermal targets of Hh signaling at various time points during embryonic and postnatal lung development. Cell lineage analysis showed these cells serve as progenitors to contribute to multiple lineages of mesodermally-derived differentiated cell types that include parenchymal or interstitial myofibroblasts, parabronchial and perivascular smooth muscle as well as rare populations of cells within the mesothelium. Most importantly, Gli1-creERT2 identified the progenitors of secondary crest myofibroblasts, a hitherto intractable cell type that plays a key role in alveolar formation, a vital process about which little is currently known. Transcriptome analysis of Hh-targeted progenitor cells transitioning from the pseudoglandular to the saccular phase of lung development revealed important modulations of key signaling pathways. Amongst these, there was significant down-regulation of canonical WNT signaling. Ectopic stabilization of β-Catenin via inactivation of Apc by Gli1-creERT2 expanded the Hh-targeted progenitor pools, which caused the formation of fibroblastic masses within the lung parenchyma. The Gli1-creERT2 mouse line represents a novel tool in the analysis of mesenchymal cell biology and alveolar formation during lung development. PMID:25448080

  16. Chronic Alcohol Ingestion in Rats Alters Lung Metabolism, Promotes Lipid Accumulation, and Impairs Alveolar Macrophage Functions

    PubMed Central

    Romero, Freddy; Shah, Dilip; Duong, Michelle; Stafstrom, William; Hoek, Jan B.; Kallen, Caleb B.; Lang, Charles H.

    2014-01-01

    Chronic alcoholism impairs pulmonary immune homeostasis and predisposes to inflammatory lung diseases, including infectious pneumonia and acute respiratory distress syndrome. Although alcoholism has been shown to alter hepatic metabolism, leading to lipid accumulation, hepatitis, and, eventually, cirrhosis, the effects of alcohol on pulmonary metabolism remain largely unknown. Because both the lung and the liver actively engage in lipid synthesis, we hypothesized that chronic alcoholism would impair pulmonary metabolic homeostasis in ways similar to its effects in the liver. We reasoned that perturbations in lipid metabolism might contribute to the impaired pulmonary immunity observed in people who chronically consume alcohol. We studied the metabolic consequences of chronic alcohol consumption in rat lungs in vivo and in alveolar epithelial type II cells and alveolar macrophages (AMs) in vitro. We found that chronic alcohol ingestion significantly alters lung metabolic homeostasis, inhibiting AMP-activated protein kinase, increasing lipid synthesis, and suppressing the expression of genes essential to metabolizing fatty acids (FAs). Furthermore, we show that these metabolic alterations promoted a lung phenotype that is reminiscent of alcoholic fatty liver and is characterized by marked accumulation of triglycerides and free FAs within distal airspaces, AMs, and, to a lesser extent, alveolar epithelial type II cells. We provide evidence that the metabolic alterations in alcohol-exposed rats are mechanistically linked to immune impairments in the alcoholic lung: the elevations in FAs alter AM phenotypes and suppress both phagocytic functions and agonist-induced inflammatory responses. In summary, our work demonstrates that chronic alcohol ingestion impairs lung metabolic homeostasis and promotes pulmonary immune dysfunction. These findings suggest that therapies aimed at reversing alcohol-related metabolic alterations might be effective for preventing and/or treating alcohol-related pulmonary disorders. PMID:24940828

  17. Redox Regulation of Epithelial Sodium Channels Examined in Alveolar Type 1 and 2 Cells Patch-clamped in Lung Slice Tissue*

    PubMed Central

    Helms, My N.; Jain, Lucky; Self, Julie L.; Eaton, Douglas C.

    2008-01-01

    The alveolar surface of the lung is lined by alveolar type 1 (AT1) and type 2 (AT2) cells. Using single channel patch clamp analysis in lung slice preparations, we are able to uniquely study AT1 and AT2 cells separately from intact lung. We report for the first time the Na+ transport properties of type 2 cells accessed in live lung tissue (as we have done in type 1 cells). Type 2 cells in lung tissue slices express both highly selective cation and nonselective cation channels with average conductances of 8.8 ± 3.2 and 22.5 ± 6.3 picosiemens, respectively. Anion channels with 10-picosiemen conductance are also present in the apical membrane of type 2 cells. Our lung slice studies importantly verify the use of cultured cell model systems commonly used in lung epithelial sodium channel (ENaC) studies. Furthermore, we identify novel functional differences between the cells that make up the alveolar epithelium. One important difference is that exposure to the nitric oxide (NO) donor, PAPA-NONOate (1.5 μm), significantly decreases average ENaC NPo in type 2 cells (from 1.38 ± 0.26 to 0.82 ± 0.16; p < 0.05 and n = 18) but failed to alter ENaC activity in alveolar type 1 cells. Elevating endogenous superoxide (\\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\mathrm{O}}_{2}^{\\overline{.}}\\end{equation*}\\end{document}) levels with Ethiolat, a superoxide dismutase inhibitor, prevented NO inhibition of ENaC activity in type 2 cells, supporting the novel hypothesis that \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\mathrm{O}}_{2}^{\\overline{.}}\\end{equation*}\\end{document} and NO signaling plays an important role in maintaining lung fluid balance. PMID:18541535

  18. Shared susceptibility loci at 2q33 region for lung and esophageal cancers in high-incidence areas of esophageal cancer in northern China

    PubMed Central

    Song, Xin; Hu, Shou Jia; Lv, Shuang; Cheng, Rang; Zhang, Tang Juan; Han, Xue Na; Ren, Jing Li; Qi, Yi Jun

    2017-01-01

    Background Cancers from lung and esophagus are the leading causes of cancer-related deaths in China and share many similarities in terms of histological type, risk factors and genetic variants. Recent genome-wide association studies (GWAS) in Chinese esophageal cancer patients have demonstrated six high-risk candidate single nucleotide polymorphisms (SNPs). Thus, the present study aimed to determine the risk of these SNPs predisposing to lung cancer in Chinese population. Methods A total of 1170 lung cancer patients and 1530 normal subjects were enrolled in this study from high-incidence areas for esophageal cancer in Henan, northern China. Five milliliters of blood were collected from all subjects for genotyping. Genotyping of 20 high-risk SNP loci identified from genome-wide association studies (GWAS) on esophageal, lung and gastric cancers was performed using TaqMan allelic discrimination assays. Polymorphisms were examined for deviation from Hardy-Weinberg equilibrium (HWE) using Х2 test. Bonferroni correction was performed to correct the statistical significance of 20 SNPs with the risk of lung cancer. The Pearson’s Х2 test was used to compare the distributions of gender, TNM stage, histopathological type, smoking and family history by lung susceptibility genotypes. Kaplan-Meier and Cox regression analyses were carried out to evaluate the associations between genetic variants and overall survival. Results Four of the 20 SNPs identified as high-risk SNPs in Chinese esophageal cancer showed increased risk for Chinese lung cancer, which included rs3769823 (OR = 1.26; 95% CI = 1.107–1.509; P = 0.02), rs10931936 (OR = 1.283; 95% CI = 1.100–1.495; P = 0.04), rs2244438 (OR = 1.294; 95% CI = 1.098–1.525; P = 0.04) and rs13016963 (OR = 1.268; 95% CI = 1.089–1.447; P = 0.04). All these SNPs were located at 2q33 region harboringgenes of CASP8, ALS2CR12 and TRAK2. However, none of these susceptibility SNPs was observed to be significantly associated with gender, TNM stage, histopathological type, smoking, family history and overall survival. Conclusions The present study identified four high-risk SNPs at 2q33 locus for Chinese lung cancer and demonstrated the shared susceptibility loci at 2q33 region for Chinese lung and esophageal cancers. PMID:28542283

  19. Shared susceptibility loci at 2q33 region for lung and esophageal cancers in high-incidence areas of esophageal cancer in northern China.

    PubMed

    Zhao, Xue Ke; Mao, Yi Min; Meng, Hui; Song, Xin; Hu, Shou Jia; Lv, Shuang; Cheng, Rang; Zhang, Tang Juan; Han, Xue Na; Ren, Jing Li; Qi, Yi Jun; Wang, Li Dong

    2017-01-01

    Cancers from lung and esophagus are the leading causes of cancer-related deaths in China and share many similarities in terms of histological type, risk factors and genetic variants. Recent genome-wide association studies (GWAS) in Chinese esophageal cancer patients have demonstrated six high-risk candidate single nucleotide polymorphisms (SNPs). Thus, the present study aimed to determine the risk of these SNPs predisposing to lung cancer in Chinese population. A total of 1170 lung cancer patients and 1530 normal subjects were enrolled in this study from high-incidence areas for esophageal cancer in Henan, northern China. Five milliliters of blood were collected from all subjects for genotyping. Genotyping of 20 high-risk SNP loci identified from genome-wide association studies (GWAS) on esophageal, lung and gastric cancers was performed using TaqMan allelic discrimination assays. Polymorphisms were examined for deviation from Hardy-Weinberg equilibrium (HWE) using Х2 test. Bonferroni correction was performed to correct the statistical significance of 20 SNPs with the risk of lung cancer. The Pearson's Х2 test was used to compare the distributions of gender, TNM stage, histopathological type, smoking and family history by lung susceptibility genotypes. Kaplan-Meier and Cox regression analyses were carried out to evaluate the associations between genetic variants and overall survival. Four of the 20 SNPs identified as high-risk SNPs in Chinese esophageal cancer showed increased risk for Chinese lung cancer, which included rs3769823 (OR = 1.26; 95% CI = 1.107-1.509; P = 0.02), rs10931936 (OR = 1.283; 95% CI = 1.100-1.495; P = 0.04), rs2244438 (OR = 1.294; 95% CI = 1.098-1.525; P = 0.04) and rs13016963 (OR = 1.268; 95% CI = 1.089-1.447; P = 0.04). All these SNPs were located at 2q33 region harboringgenes of CASP8, ALS2CR12 and TRAK2. However, none of these susceptibility SNPs was observed to be significantly associated with gender, TNM stage, histopathological type, smoking, family history and overall survival. The present study identified four high-risk SNPs at 2q33 locus for Chinese lung cancer and demonstrated the shared susceptibility loci at 2q33 region for Chinese lung and esophageal cancers.

  20. The extracellular calcium-sensing receptor regulates human fetal lung development via CFTR

    PubMed Central

    Brennan, Sarah C.; Wilkinson, William J.; Tseng, Hsiu-Er; Finney, Brenda; Monk, Bethan; Dibble, Holly; Quilliam, Samantha; Warburton, David; Galietta, Luis J.; Kemp, Paul J.; Riccardi, Daniela

    2016-01-01

    Optimal fetal lung growth requires anion-driven fluid secretion into the lumen of the developing organ. The fetus is hypercalcemic compared to the mother and here we show that in the developing human lung this hypercalcaemia acts on the extracellular calcium-sensing receptor, CaSR, to promote fluid-driven lung expansion through activation of the cystic fibrosis transmembrane conductance regulator, CFTR. Several chloride channels including TMEM16, bestrophin, CFTR, CLCN2 and CLCA1, are also expressed in the developing human fetal lung at gestational stages when CaSR expression is maximal. Measurements of Cl−-driven fluid secretion in organ explant cultures show that pharmacological CaSR activation by calcimimetics stimulates lung fluid secretion through CFTR, an effect which in humans, but not mice, was also mimicked by fetal hypercalcemic conditions, demonstrating that the physiological relevance of such a mechanism appears to be species-specific. Calcimimetics promote CFTR opening by activating adenylate cyclase and we show that Ca2+-stimulated type I adenylate cyclase is expressed in the developing human lung. Together, these observations suggest that physiological fetal hypercalcemia, acting on the CaSR, promotes human fetal lung development via cAMP-dependent opening of CFTR. Disturbances in this process would be expected to permanently impact lung structure and might predispose to certain postnatal respiratory diseases. PMID:26911344

  1. Lung cancer in never-smokers - what are the differences?

    PubMed

    Dias, Margarida; Linhas, Rita; Campainha, Sérgio; Conde, Sara; Barroso, Ana

    2017-07-01

    Characteristics of never-smokers with lung cancer are still not fully clarified. The aim of this study was to compare never-smokers and ever-smokers with non-small cell lung cancer (NSCLC) regarding patient and tumor characteristics. All consecutive newly NSCLC patients with known smoking status diagnosed between 2011 and 2015 were included in this retrospective cohort study. Clinical, histological, and molecular characteristics were compared between ever-smokers and never-smokers. Of the 558 included patients, 125 (22.4%) were never-smokers. These patients were more likely to be female (74% vs. 7%, p < .001), older (67 vs. 66 years-old, p = .019), and have adenocarcinoma (93% vs. 65%, p < .001). Never-smokers took longer to seek medical care after the symptoms onset (3 vs. 2 months, p < .001), regardless of the symptoms, histological type, or gender (OR: 1.2 [1.4-2.0]). The metastatic pattern was different in never-smokers: pleural metastases were more frequent (OR: 2.1 [1.1-4.0]), regardless of the histological type and gender. Never-smokers had a higher prevalence of ALK translocations (26% vs. 4%, p < .001) and EGFR mutations (36% vs. 8%, p < .001). The type of EGFR mutation was also significantly different between groups. Never-smokers with NSCLC present distinct demographic and clinical characteristics. The characteristics of tumor also differ between never-smokers and ever-smokers, which may suggest different carcinogenic pathways.

  2. Pathogenic TH17 inflammation is sustained in the lungs by conventional dendritic cells and Toll-like receptor 4 signaling.

    PubMed

    Shalaby, Karim H; Lyons-Cohen, Miranda R; Whitehead, Gregory S; Thomas, Seddon Y; Prinz, Immo; Nakano, Hideki; Cook, Donald N

    2017-11-14

    Mechanisms that elicit mucosal T H 17 cell responses have been described, yet how these cells are sustained in chronically inflamed tissues remains unclear. We sought to understand whether maintenance of lung T H 17 inflammation requires environmental agents in addition to antigen and to identify the lung antigen-presenting cell (APC) types that sustain the self-renewal of T H 17 cells. Animals were exposed repeatedly to aspiration of ovalbumin alone or together with environmental adjuvants, including common house dust extract (HDE), to test their role in maintaining lung inflammation. Alternatively, antigen-specific effector/memory T H 17 cells, generated in culture with CD4 + T cells from Il17a fate-mapping mice, were adoptively transferred to assess their persistence in genetically modified animals lacking distinct lung APC subsets or cell-specific Toll-like receptor (TLR) 4 signaling. T H 17 cells were also cocultured with lung APC subsets to determine which of these could revive their expansion and activation. T H 17 cells and the consequent neutrophilic inflammation were poorly sustained by inhaled antigen alone but were augmented by inhalation of antigen together with HDE. This was associated with weight loss and changes in lung physiology consistent with interstitial lung disease. The effect of HDE required TLR4 signaling predominantly in lung hematopoietic cells, including CD11c + cells. CD103 + and CD11b + conventional dendritic cells interacted directly with T H 17 cells in situ and revived the clonal expansion of T H 17 cells both ex vivo and in vivo, whereas lung macrophages and B cells could not. T H 17-dependent inflammation in the lungs can be sustained by persistent TLR4-mediated activation of lung conventional dendritic cells. Published by Elsevier Inc.

  3. Asbestos Surveillance Program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Background on asbestos is presented including the different types and the important medical distinctions between those different types. The four diseases associated with asbestos exposure are discussed: mesothelioma, lung cancer, asbestosis, and benign pleural disorders. The purpose of the LeRC Asbestos Surveillance Program is outlined, and the specifics of the Medical Surveillance Program for Asbestos Monitoring at LeRC are discussed.

  4. A Patient-Derived, Pan-Cancer EMT Signature Identifies Global Molecular Alterations and Immune Target Enrichment Following Epithelial-to-Mesenchymal Transition.

    PubMed

    Mak, Milena P; Tong, Pan; Diao, Lixia; Cardnell, Robert J; Gibbons, Don L; William, William N; Skoulidis, Ferdinandos; Parra, Edwin R; Rodriguez-Canales, Jaime; Wistuba, Ignacio I; Heymach, John V; Weinstein, John N; Coombes, Kevin R; Wang, Jing; Byers, Lauren Averett

    2016-02-01

    We previously demonstrated the association between epithelial-to-mesenchymal transition (EMT) and drug response in lung cancer using an EMT signature derived in cancer cell lines. Given the contribution of tumor microenvironments to EMT, we extended our investigation of EMT to patient tumors from 11 cancer types to develop a pan-cancer EMT signature. Using the pan-cancer EMT signature, we conducted an integrated, global analysis of genomic and proteomic profiles associated with EMT across 1,934 tumors including breast, lung, colon, ovarian, and bladder cancers. Differences in outcome and in vitro drug response corresponding to expression of the pan-cancer EMT signature were also investigated. Compared with the lung cancer EMT signature, the patient-derived, pan-cancer EMT signature encompasses a set of core EMT genes that correlate even more strongly with known EMT markers across diverse tumor types and identifies differences in drug sensitivity and global molecular alterations at the DNA, RNA, and protein levels. Among those changes associated with EMT, pathway analysis revealed a strong correlation between EMT and immune activation. Further supervised analysis demonstrated high expression of immune checkpoints and other druggable immune targets, such as PD1, PD-L1, CTLA4, OX40L, and PD-L2, in tumors with the most mesenchymal EMT scores. Elevated PD-L1 protein expression in mesenchymal tumors was confirmed by IHC in an independent lung cancer cohort. This new signature provides a novel, patient-based, histology-independent tool for the investigation of EMT and offers insights into potential novel therapeutic targets for mesenchymal tumors, independent of cancer type, including immune checkpoints. ©2015 American Association for Cancer Research.

  5. Pulmonary Foreign Body Granulomatosis in Dental Technician.

    PubMed

    Chung, Sung Jun; Koo, Gun Woo; Park, Dong Won; Kwak, Hyun Jung; Yhi, Ji Young; Moon, Ji-Yong; Kim, Sang-Heon; Sohn, Jang Won; Yoon, Ho Joo; Shin, Dong Ho; Park, Sung Soo; Pyo, Ju Yeon; Oh, Young-Ha; Kim, Tae-Hyung

    2015-10-01

    Occupational lung diseases are caused by several toxic substances including heavy metals; however, the exact pathologic mechanisms remain unknown. In the workplace, dental technicians are often exposed to heavy metals such as cobalt, nickel, or beryllium and occasionally develop occupational lung diseases. We described a case of occupational lung disease in a patient who was employed as a dental technician for over a decade. A 31-year-old, non-smoking woman presented with productive cough and shortness of breath of several weeks duration. Chest computed tomography revealed a large number of scattered, bilateral small pulmonary nodules throughout the lung field, and multiple mediastinal lymph nodes enlargement. Percutaneous needle biopsy showed multifocal small granulomas with foreign body type giant cells suggestive of heavy metals inhalation. The patient's condition improved on simple avoidance strategy for several months. This case highlighted the importance of proper workplace safety.

  6. Lymphoproliferative lung disorders: a radiologic-pathologic overview. Part II: Neoplastic disorders.

    PubMed

    Restrepo, Carlos S; Carrillo, Jorge; Rosado de Christenson, Melissa; Ojeda Leon, Paulina; Lucia Rivera, Aura; Koss, Micheal N

    2013-12-01

    Lymphoproliferative pulmonary neoplasms can occur as primary pulmonary lymphomas or because of secondary pulmonary involvement. Neoplastic disorders may be difficult to differentiate from reactive pulmonary lymphoproliferative disorders, and immunohistochemical evaluation is often required to differentiate the 2 types of lesions. Neoplastic lymphoproliferative disorders are monoclonal lesions. Most affected patients present with systemic complaints, and imaging findings typically include nodules, masses, and lymphadenopathy. Primary pulmonary lymphomas are rare and account for less than 4% of the lymphomas that arise in extranodal sites. Secondary pulmonary lymphomas can affect the lung via hematogenous dissemination or by secondary involvement from tumor in adjacent or contiguous sites. Neoplastic lymphoproliferative lesions also include leukemia and plasma cell neoplasms. Posttransplantation lymphoproliferative disorders constitute a special type of lymphoid proliferation occurring in the setting of the chronic immunosuppression required for solid organ and bone marrow transplantation. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Spectrum of somatic EGFR, KRAS, BRAF, PTEN mutations and TTF-1 expression in Brazilian lung cancer patients.

    PubMed

    Carneiro, Juliana G; Couto, Patricia G; Bastos-Rodrigues, Luciana; Bicalho, Maria Aparecida C; Vidigal, Paula V; Vilhena, Alyne; Amaral, Nilson F; Bale, Allen E; Friedman, Eitan; De Marco, Luiz

    2014-01-01

    Lung cancer is the leading global cause of cancer-related mortality. Inter-individual variability in treatment response and prognosis has been associated with genetic polymorphisms in specific genes: EGFR, KRAS, BRAF, PTEN and TTF-1. Somatic mutations in EGFR and KRAS genes are reported at rates of 15-40% in non-small cell lung cancer (NSCLC) in ethnically diverse populations. BRAF and PTEN are commonly mutated genes in various cancer types, including NSCLC, with PTEN mutations exerting an effect on the therapeutic response of EGFR/AKT/PI3K pathway inhibitors. TTF-1 is expressed in approximately 80% of lung adenocarcinomas and its positivity correlates with higher prevalence of EGFR mutation in this cancer type. To determine molecular markers for lung cancer in Brazilian patients, the rate of the predominant EGFR, KRAS, BRAF and PTEN mutations, as well as TTF-1 expression, was assessed in 88 Brazilian NSCLC patients. EGFR exon 19 deletions (del746-750) were detected in 3/88 (3·4%) patients. Activating KRAS mutations in codons 12 and 61 were noted in five (5·7%) and two (2·3%) patients, respectively. None of the common somatic mutations were detected in either the BRAF or PTEN genes. TTF-1 was overexpressed in 40·7% of squamous-cell carcinoma (SCC). Our findings add to a growing body of data that highlights the genetic heterogeneity of the abnormal EGFR pathway in lung cancer among ethnically diverse populations.

  8. SiglecF+Gr1hi eosinophils are a distinct subpopulation within the lungs of allergen-challenged mice

    PubMed Central

    Percopo, Caroline M.; Brenner, Todd A.; Ma, Michelle; Kraemer, Laura S.; Hakeem, Reem M. A.; Lee, James J.; Rosenberg, Helene F.

    2017-01-01

    Although eosinophils as a group are readily identified by their unique morphology and staining properties, flow cytometry provides an important means for identification of subgroups based on differential expression of distinct surface Ags. Here, we characterize an eosinophil subpopulation defined by high levels of expression of the neutrophil Ag Gr1 (CD45+CD11c−SiglecF+Gr1hi). SiglecF+Gr1hi eosinophils, distinct from the canonical SiglecF+Gr1− eosinophil population, were detected in allergen-challenged wild-type and granule protein-deficient (EPX−/− and MBP-1−/−) mice, but not in the eosinophil-deficient ΔdblGATA strain. In contrast to Gr1+ neutrophils, which express both cross-reacting Ags Ly6C and Ly6G, SiglecF+Gr1hi eosinophils from allergen-challenged lung tissue are uniquely Ly6G+. Although indistinguishable from the more-numerous SiglecF+Gr1− eosinophils under light microscopy, FACS-isolated populations revealed prominent differences in cytokine contents. The lymphocyte-targeting cytokines CXCL13 and IL-27 were identified only in the SiglecF+Gr1hi eosinophil population (at 3.9 and 4.8 pg/106 cells, respectively), as was the prominent proinflammatory mediator IL-13 (72 pg/106 cells). Interestingly, bone marrow-derived (SiglecF+), cultured eosinophils include a more substantial Gr1+ subpopulation (∼50%); Gr1+ bmEos includes primarily a single Ly6C+ and a smaller, double-positive (Ly6C+Ly6G+) population. Taken together, our findings characterize a distinct SiglecF+Gr1hi eosinophil subset in lungs of allergen-challenged, wild-type and granule protein-deficient mice. SiglecF+Gr1hi eosinophils from wild-type mice maintain a distinct subset of cytokines, including those active on B and T lymphocytes. These cytokines may facilitate eosinophil-mediated immunomodulatory responses in the allergen-challenged lung as well as in other distinct microenvironments. PMID:27531929

  9. SiglecF+Gr1hi eosinophils are a distinct subpopulation within the lungs of allergen-challenged mice.

    PubMed

    Percopo, Caroline M; Brenner, Todd A; Ma, Michelle; Kraemer, Laura S; Hakeem, Reem M A; Lee, James J; Rosenberg, Helene F

    2017-01-01

    Although eosinophils as a group are readily identified by their unique morphology and staining properties, flow cytometry provides an important means for identification of subgroups based on differential expression of distinct surface Ags. Here, we characterize an eosinophil subpopulation defined by high levels of expression of the neutrophil Ag Gr1 (CD45 + CD11c - SiglecF + Gr1 hi ). SiglecF + Gr1 hi eosinophils, distinct from the canonical SiglecF + Gr1 - eosinophil population, were detected in allergen-challenged wild-type and granule protein-deficient (EPX -/- and MBP-1 -/- ) mice, but not in the eosinophil-deficient ΔdblGATA strain. In contrast to Gr1 + neutrophils, which express both cross-reacting Ags Ly6C and Ly6G, SiglecF + Gr1 hi eosinophils from allergen-challenged lung tissue are uniquely Ly6G + Although indistinguishable from the more-numerous SiglecF + Gr1 - eosinophils under light microscopy, FACS-isolated populations revealed prominent differences in cytokine contents. The lymphocyte-targeting cytokines CXCL13 and IL-27 were identified only in the SiglecF + Gr1 hi eosinophil population (at 3.9 and 4.8 pg/10 6 cells, respectively), as was the prominent proinflammatory mediator IL-13 (72 pg/10 6 cells). Interestingly, bone marrow-derived (SiglecF + ), cultured eosinophils include a more substantial Gr1 + subpopulation (∼50%); Gr1 + bmEos includes primarily a single Ly6C + and a smaller, double-positive (Ly6C + Ly6G + ) population. Taken together, our findings characterize a distinct SiglecF + Gr1 hi eosinophil subset in lungs of allergen-challenged, wild-type and granule protein-deficient mice. SiglecF + Gr1 hi eosinophils from wild-type mice maintain a distinct subset of cytokines, including those active on B and T lymphocytes. These cytokines may facilitate eosinophil-mediated immunomodulatory responses in the allergen-challenged lung as well as in other distinct microenvironments. © Society for Leukocyte Biology.

  10. LungMAP: The Molecular Atlas of Lung Development Program.

    PubMed

    Ardini-Poleske, Maryanne E; Clark, Robert F; Ansong, Charles; Carson, James P; Corley, Richard A; Deutsch, Gail H; Hagood, James S; Kaminski, Naftali; Mariani, Thomas J; Potter, Steven S; Pryhuber, Gloria S; Warburton, David; Whitsett, Jeffrey A; Palmer, Scott M; Ambalavanan, Namasivayam

    2017-11-01

    The National Heart, Lung, and Blood Institute is funding an effort to create a molecular atlas of the developing lung (LungMAP) to serve as a research resource and public education tool. The lung is a complex organ with lengthy development time driven by interactive gene networks and dynamic cross talk among multiple cell types to control and coordinate lineage specification, cell proliferation, differentiation, migration, morphogenesis, and injury repair. A better understanding of the processes that regulate lung development, particularly alveologenesis, will have a significant impact on survival rates for premature infants born with incomplete lung development and will facilitate lung injury repair and regeneration in adults. A consortium of four research centers, a data coordinating center, and a human tissue repository provides high-quality molecular data of developing human and mouse lungs. LungMAP includes mouse and human data for cross correlation of developmental processes across species. LungMAP is generating foundational data and analysis, creating a web portal for presentation of results and public sharing of data sets, establishing a repository of young human lung tissues obtained through organ donor organizations, and developing a comprehensive lung ontology that incorporates the latest findings of the consortium. The LungMAP website (www.lungmap.net) currently contains more than 6,000 high-resolution lung images and transcriptomic, proteomic, and lipidomic human and mouse data and provides scientific information to stimulate interest in research careers for young audiences. This paper presents a brief description of research conducted by the consortium, database, and portal development and upcoming features that will enhance the LungMAP experience for a community of users. Copyright © 2017 the American Physiological Society.

  11. Alcohol and Airways Function in Health and Disease

    PubMed Central

    Sisson, Joseph H.

    2007-01-01

    The volatility of alcohol promotes the movement of alcohol from the bronchial circulation across the airway epithelium and into the conducting airways of the lung. The exposure of the airways through this route likely accounts for many of the biologic effects of alcohol on lung airway functions. The impact of alcohol on lung airway functions is dependent on the concentration, duration and route of exposure. Brief exposure to mild concentrations of alcohol may enhance mucociliary clearance, stimulates bronchodilation and probably attenuates the airway inflammation and injury observed in asthma and COPD. Prolonged and heavy exposure to alcohol impairs mucociliary clearance, may complicate asthma management and likely worsens outcomes including lung function and mortality in COPD patients. Non-alcohol congeners and alcohol metabolites act as triggers for airway disease exacerbations especially in atopic asthmatics and in Asian populations who have a reduced capacity to metabolize alcohol. Research focused on the mechanisms of alcohol-mediated changes in airway functions has identified specific mechanisms that mediate alcohol effects within the lung airways. These include prominent roles for the second messengers calcium and nitric oxide, regulatory kinases including PKG and PKA, alcohol and acetaldehyde-metabolizing enzymes such as aldehyde dehydrogenase type 2 (ALDH2). The role alcohol may play in the pathobiology of airway mucus, bronchial blood flow, airway smooth muscle regulation and the interaction with other airway exposure agents, such as cigarette smoke, represent opportunities for future investigation. PMID:17764883

  12. Therapeutic strategies and genetic profile comparisons in small cell carcinoma and large cell neuroendocrine carcinoma of the lung using next-generation sequencing.

    PubMed

    Ito, Masaoki; Miyata, Yoshihiro; Hirano, Shoko; Kimura, Shingo; Irisuna, Fumiko; Ikeda, Kyoko; Kushitani, Kei; Tsutani, Yasuhiro; Ueda, Daisuke; Tsubokawa, Norifumi; Takeshima, Yukio; Okada, Morihito

    2017-12-12

    Small cell lung cancer (SCLC) and large cell neuroendocrine carcinoma (LCNEC) of the lung are classified as variants of endocrine carcinoma and subdivided into pure or combined type. Clinical benefit of target therapy has not been established in these tumors. This study aimed to compare genetic and clinicopathological features between SCLC and LCNEC or pure and combined types, and explore the possibility of target therapy using next-generation sequencing. In 13 SCLC and 22 LCNEC cases, 72 point mutations, 19 deletions, and 3 insertions were detected. As therapeutically targetable variants, mutations in EGFR (L858R), KRAS (G12D, G12A, G12V), and PIK3CA (E545K) were detected in 5 cases. The case harboring EGFR mutation showed response to EGFR-tyrosine kinase inhibitor. However, there are no clinicopathological features associated with therapeutically targetable cases. And there was no significant genetic feature between SCLC and LCNEC or pure and combined types. In conclusion, although patients with SCLC and LCNEC may benefit from target therapy, they were not identifiable by clinicopathologic background. And there was not significant genetic difference between SCLC and LCNEC, including between pure and combined types. Classifying SCLC and LCNEC in same category is reasonable. However, distinguishing the pure type from combined type was not validated. Comprehensive genetic analysis should be performed to detect targetable variants in any type of SCLC and LCNEC.

  13. Effects of in vitro cultivated Calculus Bovis compound on pulmonary lesions in rabbits with schistosomiasis.

    PubMed

    Li, Tao; Yang, Zhen; Cai, Hong-Jiao; Song, Li-Wei; Lu, Ke-Yu; Zhou, Zheng; Wu, Zai-De

    2010-02-14

    To explore the interventional effects and mechanism of in vitro cultivated Calculus Bovis compound preparation (ICCBco) on pulmonary lesions in portal hypertensive rabbits with schistosomiasis. The experimental group included 20 portal hypertensive rabbits with schistosomiasis treated by ICCBco. The control group included 20 portal hypertensive rabbits with schistosomiasis treated by praziquantel. The morphological changes of the pulmonary tissues were observed under light and electron microscopy. The expression of fibronectin (FN) and laminin (LN) in the lung tissues was analyzed by immunohistochemistry. Under light microscope, the alveolar exudation in the lung tissue was more frequently observed in the control group, while the alveolar space was fairly dry in the lung tissue of ICCBco group. Under electron microscope, more alveolar exudation in the lung tissue, and more macrophages, alveolar angiotelectasis and the blurred three-tier structure of alveolar-capillary barrier could be seen in the control group. In ICCBco group, fibers within the alveolar interspace slightly increased in some lung regions, and the structure of type I epithelium, basement membrane and endodermis was complete, and no obvious exudation from the alveolar space, and novascular congestion could be observed. There was a positive or strong positive expression of FN and LN in the lung tissue of the control group, while there was a negative or weak positive expression of FN and LN in ICCBco group. ICCBco can effectively prevent pulmonary complications in portal hypertensive rabbits with schistosomiasis by means of improving lung microcirculation and lowering the content of extracellular matrix.

  14. CT Scanning in Identification of Sheep Cystic Echinococcosis.

    PubMed

    Mao, Rui; Qi, Hongzhi; Pei, Lei; Hao, Jie; Dong, Jian; Jiang, Tao; Ainiwaer, Abudula; Shang, Ge; Xu, Lin; Shou, Xi; Zhang, Songan; Wu, Ge; Lu, Pengfei; Bao, Yongxing; Li, Haitao

    2017-01-01

    We aim to determine the efficiency of CT in identification of cystic echinococcosis in sheep. Fifty-three sheep with liver cysts confirmed by ultrasonography were subject to CT scan to evaluate the number, size, and type of the cysts in liver and lung, confirmed using necropsy. The correlation of numbers between liver cysts and lung cysts was calculated using Pearson analysis. Necropsy indicated a 98% consensus on size, location, number, and activity compared with CT scan. The viable cysts were 53.1% and 50.6% in the liver and lung, respectively. Among the cysts in liver, 35.5%, 9.5%, 5.7%, 10.2%, and 39.1% were Types CE1, CE2, CE3, CE4, and CE5, respectively. The cysts in the lungs, 17.4%, 26.9%, 12.1%, 11.6%, and 32.1%, were Types CE1, CE2, CE3, CE4, and CE5, respectively. A significant correlation was noticed between the number of cysts in liver and those in lung ( R = 0.770, P < 0.001). CT scan is a suitable tool in determining the size and type of cystic hydatid cysts in both liver and lung of sheep. A significant correlation was noticed between the numbers in liver and lung, indicating that lung infection was likely due to the expansion of liver cyst burden pressure.

  15. Long-term ultrastructural indices of lead intoxication in pulmonary tissue of the rat.

    PubMed

    Kaczyńska, Katarzyna; Walski, Michał; Szereda-Przestaszewska, Małgorzata

    2013-12-01

    In the present research long-term pulmonary toxicity of lead was investigated in rats treated by intraperitoneal administration of lead acetate for three consecutive days (25 mg/kg per day). Five weeks after treatment average lead content in the whole blood was 0.41 μg/dL ± 0.05, in the lung homogenates it measured 3.35 μg/g ± 0.54, as compared to the control values of 0.13 ± 0.07 μg/dL and 1.03 μg/g ± 0.59, respectively. X-ray microanalysis of lung specimens displayed lead localized mainly within type II pneumocytes and macrophages. At the ultrastructural level the effects of lead toxicity were found in lung capillaries, interstitium, epithelial cells, and alveolar lining. Alveolar septa showed intense fibrosis, consisting of collagen, elastin, and fibroblasts. Thinned alveolar septa had emphysematous tissue with some revealing signs of angiogenesis. Type II pneumocytes contained lamellar bodies with features of laminar destruction. Fragments of the surfactant layer were often detached from the alveolar epithelium. These findings indicate that 5 weeks after exposure, lead provokes reconstruction of the alveolar septa including fibrosis and emphysematous changes in the lung tissue.

  16. Integrated metabolomics and proteomics highlight altered nicotinamide and polyamine pathways in lung adenocarcinoma

    PubMed Central

    Fahrmann, Johannes F.; Grapov, Dmitry; Wanichthanarak, Kwanjeera; DeFelice, Brian C.; Salemi, Michelle R.; Rom, William N.; Gandara, David R.; Phinney, Brett S.; Fiehn, Oliver; Pass, Harvey

    2017-01-01

    Abstract Lung cancer is the leading cause of cancer mortality in the United States with non-small cell lung cancer adenocarcinoma being the most common histological type. Early perturbations in cellular metabolism are a hallmark of cancer, but the extent of these changes in early stage lung adenocarcinoma remains largely unknown. In the current study, an integrated metabolomics and proteomics approach was utilized to characterize the biochemical and molecular alterations between malignant and matched control tissue from 27 subjects diagnosed with early stage lung adenocarcinoma. Differential analysis identified 71 metabolites and 1102 proteins that delineated tumor from control tissue. Integrated results indicated four major metabolic changes in early stage adenocarcinoma (1): increased glycosylation and glutaminolysis (2); elevated Nrf2 activation (3); increase in nicotinic and nicotinamide salvaging pathways and (4) elevated polyamine biosynthesis linked to differential regulation of the s-adenosylmethionine/nicotinamide methyl-donor pathway. Genomic data from publicly available databases were included to strengthen proteomic findings. Our findings provide insight into the biochemical and molecular biological reprogramming that may accompany early stage lung tumorigenesis and highlight potential therapeutic targets. PMID:28049629

  17. Targeting DDX3 with a small molecule inhibitor for lung cancer therapy

    PubMed Central

    Bol, Guus M; Vesuna, Farhad; Xie, Min; Zeng, Jing; Aziz, Khaled; Gandhi, Nishant; Levine, Anne; Irving, Ashley; Korz, Dorian; Tantravedi, Saritha; Heerma van Voss, Marise R; Gabrielson, Kathleen; Bordt, Evan A; Polster, Brian M; Cope, Leslie; van der Groep, Petra; Kondaskar, Atul; Rudek, Michelle A; Hosmane, Ramachandra S; van der Wall, Elsken; van Diest, Paul J; Tran, Phuoc T; Raman, Venu

    2015-01-01

    Lung cancer is the most common malignancy worldwide and is a focus for developing targeted therapies due to its refractory nature to current treatment. We identified a RNA helicase, DDX3, which is overexpressed in many cancer types including lung cancer and is associated with lower survival in lung cancer patients. We designed a first-in-class small molecule inhibitor, RK-33, which binds to DDX3 and abrogates its activity. Inhibition of DDX3 by RK-33 caused G1 cell cycle arrest, induced apoptosis, and promoted radiation sensitization in DDX3-overexpressing cells. Importantly, RK-33 in combination with radiation induced tumor regression in multiple mouse models of lung cancer. Mechanistically, loss of DDX3 function either by shRNA or by RK-33 impaired Wnt signaling through disruption of the DDX3–β-catenin axis and inhibited non-homologous end joining—the major DNA repair pathway in mammalian somatic cells. Overall, inhibition of DDX3 by RK-33 promotes tumor regression, thus providing a compelling argument to develop DDX3 inhibitors for lung cancer therapy. PMID:25820276

  18. The Enduring Challenge of Determining Pneumonia Etiology in Children: Considerations for Future Research Priorities.

    PubMed

    Feikin, Daniel R; Hammitt, Laura L; Murdoch, David R; O'Brien, Katherine L; Scott, J Anthony G

    2017-06-15

    Pneumonia kills more children each year worldwide than any other disease. Nonetheless, accurately determining the causes of childhood pneumonia has remained elusive. Over the past century, the focus of pneumonia etiology research has shifted from studies of lung aspirates and postmortem specimens intent on identifying pneumococcal disease to studies of multiple specimen types distant from the lung that are tested for multiple pathogens. Some major challenges facing modern pneumonia etiology studies include the use of nonspecific and variable case definitions, poor access to pathologic lung tissue and to specimens from fatal cases, poor diagnostic accuracy of assays (especially when testing nonpulmonary specimens), and the interpretation of results when multiple pathogens are detected in a given individual. The future of childhood pneumonia etiology research will likely require integrating data from complementary approaches, including applications of advanced molecular diagnostics and vaccine probe studies, as well as a renewed emphasis on lung aspirates from radiologically confirmed pneumonia and postmortem examinations. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  19. Types of household humidifier disinfectant and associated risk of lung injury (HDLI) in South Korea.

    PubMed

    Park, Dong-Uk; Ryu, Seung-Hun; Lim, Heung-Kyu; Kim, Sun-Kyung; Choi, Ye-Yong; Ahn, Jong-Ju; Lee, Eun; Hong, Sang-Bum; Do, Kyung-Hyun; Cho, Jae-Lim; Bae, Mun-Joo; Shin, Dong-Chun; Paek, Do-Myung; Hong, Soo-Jong

    2017-10-15

    From 2002 through 2015, hundreds of people died of fatal lung injuries associated with the use of humidifier disinfectants (HDs) in Korea. Several chemical disinfectants used for household humidifiers were later clinically confirmed to cause HD-associated lung injury (HDLI). The aim of this study is to evaluate the registered lung disease cases and to compare the distribution of HDLI patients, including deaths, by HD use characteristics including types of HD and HD brands categorized by age group. A total of 530 registered were clinically examined through two rounds of investigations conducted from July 2013 until April 2015. Information on HD use was obtained from a structured questionnaire and home investigations. Approximately one-half of the patients (n=221) were clinically confirmed to be associated with the use of HDs. Pregnant women (n=35, 16%) and pre-school children≤6years old (n=128, 58%) accounted for most of the HD-associated lung injury patients (n=163, 74%). Sixty-seven percent of HDLI patients developed HDLI after less than one year of HD use. HD products containing polyhexamethylene guanidine phosphate (PHMG) were the most frequently used among confirmed HDLI patients (n=123, 55.7%), followed by oligo (2-(2-ethoxy) ethoxyethyl guanidinium (PGH) (n=24, 10.9%) and a mixture of chloromethylisothiazolinone (CMIT) and methylisothiazolinone (MIT) (n=3, 1.4%). Other HDs did not appear to be linked to HDLI. The majority of the HDLI patients (n=85, 38.5%) was found to use only Oxy Saksak® products containing PHMG. The development of HDLI was clinically found to be associated with the use of several HD products containing PHMG and PGH, and to lesser extent, CMIT/MIT. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The role of LKB1 in lung cancer.

    PubMed

    Sanchez-Cespedes, Montse

    2011-09-01

    In humans, the LKB1 gene is located on the short arm of chromosome 19, which is frequently deleted in lung tumors. Unlike most cancers of sporadic origin, in non-small cell lung cancer (NSCLC) nearly half of the tumors harbor somatic and homozygous inactivating mutations in LKB1. In NSCLC, LKB1 inactivation strongly predominates in adenocarcinomas from smokers and coexists with mutations at other important cancer genes, including KRAS and TP53. Remarkably, LKB1 alterations frequently occur simultaneously with inactivation at another important tumor suppressor gene, BRG1 (also called SMARCA4), which is also located on chromosome 19p. The present review considers the frequency and pattern of LKB1 mutations in lung cancer and the distinct biological pathways in which the LKB1 protein is involved in the development of this type of cancer. Finally, the possible clinical applications in cancer management, especially in lung cancer treatment, associated with the presence of absence of LKB1 are discussed.

  1. Detection of bremsstrahlung radiation of 90Sr-90Y for emergency lung counting.

    PubMed

    Ho, A; Hakmana Witharana, S S; Jonkmans, G; Li, L; Surette, R A; Dubeau, J; Dai, X

    2012-09-01

    This study explores the possibility of developing a field-deployable (90)Sr detector for rapid lung counting in emergency situations. The detection of beta-emitters (90)Sr and its daughter (90)Y inside the human lung via bremsstrahlung radiation was performed using a 3″ × 3″ NaI(Tl) crystal detector and a polyethylene-encapsulated source to emulate human lung tissue. The simulation results show that this method is a viable technique for detecting (90)Sr with a minimum detectable activity (MDA) of 1.07 × 10(4) Bq, using a realistic dual-shielded detector system in a 0.25-µGy h(-1) background field for a 100-s scan. The MDA is sufficiently sensitive to meet the requirement for emergency lung counting of Type S (90)Sr intake. The experimental data were verified using Monte Carlo calculations, including an estimate for internal bremsstrahlung, and an optimisation of the detector geometry was performed. Optimisations in background reduction techniques and in the electronic acquisition systems are suggested.

  2. The Lung Immune Response to Nontypeable Haemophilus influenzae (Lung Immunity to NTHi)

    PubMed Central

    King, Paul T.; Sharma, Roleen

    2015-01-01

    Haemophilus influenzae is divided into typeable or nontypeable strains based on the presence or absence of a polysaccharide capsule. The typeable strains (such as type b) are an important cause of systemic infection, whilst the nontypeable strains (designated as NTHi) are predominantly respiratory mucosal pathogens. NTHi is present as part of the normal microbiome in the nasopharynx, from where it may spread down to the lower respiratory tract. In this context it is no longer a commensal and becomes an important respiratory pathogen associated with a range of common conditions including bronchitis, bronchiectasis, pneumonia, and particularly chronic obstructive pulmonary disease. NTHi induces a strong inflammatory response in the respiratory tract with activation of immune responses, which often fail to clear the bacteria from the lung. This results in recurrent/persistent infection and chronic inflammation with consequent lung pathology. This review will summarise the current literature about the lung immune response to nontypeable Haemophilus influenzae, a topic that has important implications for patient management. PMID:26114124

  3. The tobacco-specific carcinogen-operated calcium channel promotes lung tumorigenesis via IGF2 exocytosis in lung epithelial cells

    PubMed Central

    Boo, Hye-Jin; Min, Hye-Young; Jang, Hyun-Ji; Yun, Hye Jeong; Smith, John Kendal; Jin, Quanri; Lee, Hyo-Jong; Liu, Diane; Kweon, Hee-Seok; Behrens, Carmen; Lee, J. Jack; Wistuba, Ignacio I.; Lee, Euni; Hong, Waun Ki; Lee, Ho-Young

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) binding to the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces Ca2+ signalling, a mechanism that is implicated in various human cancers. In this study, we investigated the role of NNK-mediated Ca2+ signalling in lung cancer formation. We show significant overexpression of insulin-like growth factors (IGFs) in association with IGF-1R activation in human preneoplastic lung lesions in smokers. NNK induces voltage-dependent calcium channel (VDCC)-intervened calcium influx in airway epithelial cells, resulting in a rapid IGF2 secretion via the regulated pathway and thus IGF-1R activation. Silencing nAChR, α1 subunit of L-type VDCC, or various vesicular trafficking curators, including synaptotagmins and Rabs, or blockade of nAChR/VDCC-mediated Ca2+ influx significantly suppresses NNK-induced IGF2 exocytosis, transformation and tumorigenesis of lung epithelial cells. Publicly available database reveals inverse correlation between use of calcium channel blockers and lung cancer diagnosis. Our data indicate that NNK disrupts the regulated pathway of IGF2 exocytosis and promotes lung tumorigenesis. PMID:27666821

  4. The tobacco-specific carcinogen-operated calcium channel promotes lung tumorigenesis via IGF2 exocytosis in lung epithelial cells.

    PubMed

    Boo, Hye-Jin; Min, Hye-Young; Jang, Hyun-Ji; Yun, Hye Jeong; Smith, John Kendal; Jin, Quanri; Lee, Hyo-Jong; Liu, Diane; Kweon, Hee-Seok; Behrens, Carmen; Lee, J Jack; Wistuba, Ignacio I; Lee, Euni; Hong, Waun Ki; Lee, Ho-Young

    2016-09-26

    Nicotinic acetylcholine receptors (nAChRs) binding to the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces Ca 2+ signalling, a mechanism that is implicated in various human cancers. In this study, we investigated the role of NNK-mediated Ca 2+ signalling in lung cancer formation. We show significant overexpression of insulin-like growth factors (IGFs) in association with IGF-1R activation in human preneoplastic lung lesions in smokers. NNK induces voltage-dependent calcium channel (VDCC)-intervened calcium influx in airway epithelial cells, resulting in a rapid IGF2 secretion via the regulated pathway and thus IGF-1R activation. Silencing nAChR, α1 subunit of L-type VDCC, or various vesicular trafficking curators, including synaptotagmins and Rabs, or blockade of nAChR/VDCC-mediated Ca 2+ influx significantly suppresses NNK-induced IGF2 exocytosis, transformation and tumorigenesis of lung epithelial cells. Publicly available database reveals inverse correlation between use of calcium channel blockers and lung cancer diagnosis. Our data indicate that NNK disrupts the regulated pathway of IGF2 exocytosis and promotes lung tumorigenesis.

  5. Immune checkpoint inhibitors in lung cancer: current status and future directions.

    PubMed

    Fan, Yun; Mao, Weimin

    2017-04-01

    Recently, the immune checkpoint inhibitors that target programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) have made a breakthrough in treating advanced non-small cell lung cancer (NSCLC) with the efficacy of approximately 20%; among which, nivolumab has acquired treatment indications in lung squamous cell carcinoma. The inhibitors targeting cytotoxic T lymphocyte associated antigen 4 (CTLA-4) are also undergoing clinical trials. Researches on immune checkpoint inhibitors have been rapidly implemented in a variety of different types of lung cancer, such as small cell lung cancer (SCLC) and locally advanced NSCLC, and these inhibitors began to be applied in combination with some established treatments, including chemotherapy, targeting therapy and radiotherapy. Undoubtedly, the immune checkpoint inhibitors have become a hot spot in the research and treatment of lung cancer. However, many problems wait to be solved, such as searching for ideal biomarkers, constituting the best criteria for curative effect evaluation, exploring different combination treatment models, and clearly understanding the mechanisms of primary or secondary drug resistance. Along with these problems to be successfully solved, the immune checkpoint inhibitors will have more broad applications in lung cancer therapy.

  6. Cysts mark the early stage of metastatic tumor development in non-small cell lung cancer

    PubMed Central

    Thakur, Chitra; Rapp, Ulf R.; Rudel, Thomas

    2018-01-01

    Identifying metastatic tumor growth at an early stage has been one of the biggest challenges in the treatment of lung cancer. By genetic lineage tracing approach in a conditional model of Non-Small Cell Lung Cancer (NSCLC) in mice, we demonstrate that cystic lesions represent an early stage of metastatic invasion. We generated a mouse model for NSCLC which incorporated a heritable DsRed fluorescent tag driven by the ubiquitous CAG promoter in the alveolar type II cells of the lung. We found early cystic lesions in a secondary organ (liver) that lacked the expression of bona fide lung makers namely Scgb1a1 and surfactant protein C Sftpc and were DsRed positive hence identifying lung as their source of origin. This demonstrates the significant potential of alveolar type II cells in orchestrating the process of metastasis, rendering it as one of the target cell types of the lung of therapeutic importance in human NSCLC. PMID:29464089

  7. Computer-aided diagnosis of lung cancer: definition and detection of ground-glass opacity type of nodules by high-resolution computed tomography.

    PubMed

    Okada, Tohru; Iwano, Shingo; Ishigaki, Takeo; Kitasaka, Takayuki; Hirano, Yasushi; Mori, Kensaku; Suenaga, Yasuhito; Naganawa, Shinji

    2009-02-01

    The ground-glass opacity (GGO) of lung cancer is identified only subjectively on computed tomography (CT) images as no quantitative characteristic has been defined for GGOs. We sought to define GGOs quantitatively and to differentiate between GGOs and solid-type lung cancers semiautomatically with a computer-aided diagnosis (CAD). High-resolution CT images of 100 pulmonary nodules (all peripheral lung cancers) were collected from our clinical records. Two radiologists traced the contours of nodules and distinguished GGOs from solid areas. The CT attenuation value of each area was measured. Differentiation between cancer types was assessed by a receiver-operating characteristic (ROC) analysis. The mean CT attenuation of the GGO areas was -618.4 +/- 212.2 HU, whereas that of solid areas was -68.1 +/- 230.3 HU. CAD differentiated between solidand GGO-type lung cancers with a sensitivity of 86.0% and specificity of 96.5% when the threshold value was -370 HU. Four nodules of mixed GGOs were incorrectly classified as the solid type. CAD detected 96.3% of GGO areas when the threshold between GGO and solid areas was 194 HU. Objective definition of GGO area by CT attenuation is feasible. This method is useful for semiautomatic differentiation between GGOs and solid types of lung cancer.

  8. Cross-Species Transcriptome Profiling Identifies New Alveolar Epithelial Type I Cell–Specific Genes

    PubMed Central

    Sunohara, Mitsuhiro; Pouldar, Tiffany M.; Wang, Hongjun; Liu, Yixin; Rieger, Megan E.; Tran, Evelyn; Flodby, Per; Siegmund, Kimberly D.; Crandall, Edward D.; Laird-Offringa, Ite A.

    2017-01-01

    Diseases involving the distal lung alveolar epithelium include chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, and lung adenocarcinoma. Accurate labeling of specific cell types is critical for determining the contribution of each to the pathogenesis of these diseases. The distal lung alveolar epithelium is composed of two cell types, alveolar epithelial type 1 (AT1) and type 2 (AT2) cells. Although cell type–specific markers, most prominently surfactant protein C, have allowed detailed lineage tracing studies of AT2 cell differentiation and the cells’ roles in disease, studies of AT1 cells have been hampered by a lack of genes with expression unique to AT1 cells. In this study, we performed genome-wide expression profiling of multiple rat organs together with purified rat AT2, AT1, and in vitro differentiated AT1-like cells, resulting in the identification of 54 candidate AT1 cell markers. Cross-referencing with genes up-regulated in human in vitro differentiated AT1-like cells narrowed the potential list to 18 candidate genes. Testing the top four candidate genes at RNA and protein levels revealed GRAM domain 2 (GRAMD2), a protein of unknown function, as highly specific to AT1 cells. RNA sequencing (RNAseq) confirmed that GRAMD2 is transcriptionally silent in human AT2 cells. Immunofluorescence verified that GRAMD2 expression is restricted to the plasma membrane of AT1 cells and is not expressed in bronchial epithelial cells, whereas reverse transcription–polymerase chain reaction confirmed that it is not expressed in endothelial cells. Using GRAMD2 as a new AT1 cell–specific gene will enhance AT1 cell isolation, the investigation of alveolar epithelial cell differentiation potential, and the contribution of AT1 cells to distal lung diseases. PMID:27749084

  9. Detection of human papillomaviruses type 16, 18 and 33 in bronchial aspirates of lung carcinoma patients by polymerase chain reaction: a study of 84 cases in Croatia.

    PubMed

    Branica, Bozica Vrabec; Smojver-Jezek, Silvana; Juros, Zrinka; Grgić, Sandra; Srpak, Nives; Mitrecić, Dinko; Gajović, Srećko

    2010-03-01

    Besides its well-known role in cervical carcinoma, HPV is also suggested to be involved in lung cancer development. A number of authors have been investigating the presence of HPV in histological materials. We used routine bronchial aspirates from 84 patients with lung carcinoma for DNA extraction and then performed polymerase chain reaction for high-risk HPV types 16, 18 and 33. The results were compared to those obtained from buccal and eyelid mucosa. Only three patients were positive for HPV in bronchial aspirates: one for HPV 16 type, one for HPV 18 type, and one for HPV 33. Our data indicated the low prevalence of HPV in patients with lung carcinomas in Croatia, therefore it seems unlikely that HPV contributes to the development of lung carcinomas in this region.

  10. Lung cancer in relation to exposure to silica dust, silicosis and uranium production in South African gold miners

    PubMed Central

    Hnizdo, E.; Murray, J.; Klempman, S.

    1997-01-01

    BACKGROUND: A nested case-control study for lung cancer was performed on a cohort of 2260 South African gold miners in whom an association between exposure to silica dust and risk of lung cancer was previously reported. The objective was to investigate an expanded set of risk factors and also cancer cell type. METHODS: The 78 cases of lung cancer found during the follow up period from 1970 to 1986 were matched with 386 controls. Risk of lung cancer was related to smoking, exposure to silica dust, incidence of silicosis, and uranium production and the uranium content of the mine ore. RESULTS: The risk of lung cancer was associated with tobacco smoking, cumulative dust exposure, duration of underground mining, and with silicosis. The best predictive model included pack years of cigarette consumption (adjusted relative risk (RR) = 1.0 for < 6.5 pack years, 3.5 (95% confidence interval (CI) 0.7 to 16.8) for 6.5-20 pack years, 5.7 (95% CI 1.3 to 25.8) for 21-30 pack years, and 13.2 (95% CI 3.1 to 56.2) for more than 30 pack years) and silicosis (RR = 2.45 (95% CI 1.2 to 5.2)). No association was found with uranium production. The lung tumour cell type distribution was 40.3% small cell carcinoma, 38.8% squamous cell, 16.4% adenocarcinoma, and 4.5% large cell carcinoma. Small and large cell cancer combined were associated with exposure to dust. CONCLUSIONS: The results cannot be interpreted definitively in terms of causal association. Possible interpretations are: (1) subjects with high dust exposure who develop silicosis are at increased risk of lung cancer; (2) high levels of exposure to silica dust on its own is important in the pathogenesis of lung cancer and silicosis is coincidental; and (3) high levels of silica dust exposure may be a surrogate for the exposure to radon daughters. 


 PMID:9093345

  11. Membrane-bound (MUC1) and secretory (MUC2, MUC3, and MUC4) mucin gene expression in human lung cancer.

    PubMed

    Nguyen, P L; Niehans, G A; Cherwitz, D L; Kim, Y S; Ho, S B

    1996-01-01

    Abnormalities of mucin-type glycoproteins have been described in lung cancers, but their molecular basis is unknown. In this study, mucin-core-peptide-specific antibodies and cDNA probes were used to determine the relative expression of mucin genes corresponding to one membrane-bound mucin (MUC1), two intestinal mucins (MUC2 and MUC3), and one tracheobronchial mucin (MUC4) in normal (nonneoplastic) lung, and in lung neoplasms. Normal lung tissues exhibited a distinct pattern of mucin gene expression, with high levels of MUC1 and MUC4 mRNA and low to absent levels of MUC2 and MUC3 mucin immunoreactivity and mRNA. In contrast, lung adenocarcinomas, especially well-differentiated cancers, exhibited increased MUC1, MUC3, and MUC4 mRNA levels. Lung squamous-cell, adenosquamous, and large-cell carcinomas were characterized by increased levels of MUC4 mucin only. We conclude that the expression of one membrane-bound and several secretory-type mucins is independently regulated and markedly altered in lung neoplasms. The frequent occurrence of increased MUC4 transcripts in a variety of non-small-cell lung cancers indicates the potential importance of this type of mucin in lung cancer biology.

  12. Lung transplantation in adults and children: putting lung function into perspective.

    PubMed

    Thompson, Bruce Robert; Westall, Glen Philip; Paraskeva, Miranda; Snell, Gregory Ian

    2014-11-01

    The number of lung transplants performed globally continues to increase year after year. Despite this growing experience, long-term outcomes following lung transplantation continue to fall far short of that described in other solid-organ transplant settings. Chronic lung allograft dysfunction (CLAD) remains common and is the end result of exposure to a multitude of potentially injurious insults that include alloreactivity and infection among others. Central to any description of the clinical performance of the transplanted lung is an assessment of its physiology by pulmonary function testing. Spirometry and the evaluation of forced expiratory volume in 1 s and forced vital capacity, remain core indices that are measured as part of routine clinical follow-up. Spirometry, while reproducible in detecting lung allograft dysfunction, lacks specificity in differentiating the different complications of lung transplantation such as rejection, infection and bronchiolitis obliterans. However, interpretation of spirometry is central to defining the different 'chronic rejection' phenotypes. It is becoming apparent that the maximal lung function achieved following transplantation, as measured by spirometry, is influenced by a number of donor and recipient factors as well as the type of surgery performed (single vs double vs lobar lung transplant). In this review, we discuss the wide range of variables that need to be considered when interpreting lung function testing in lung transplant recipients. Finally, we review a number of novel measurements of pulmonary function that may in the future serve as better biomarkers to detect and diagnose the cause of the failing lung allograft. © 2014 Asian Pacific Society of Respirology.

  13. Pentastatin-1, a collagen IV derived 20-mer peptide, suppresses tumor growth in a small cell lung cancer xenograft model.

    PubMed

    Koskimaki, Jacob E; Karagiannis, Emmanouil D; Tang, Benjamin C; Hammers, Hans; Watkins, D Neil; Pili, Roberto; Popel, Aleksander S

    2010-02-01

    Angiogenesis is the formation of neovasculature from a pre-existing vascular network. Progression of solid tumors including lung cancer is angiogenesis-dependent. We previously introduced a bioinformatics-based methodology to identify endogenous anti-angiogenic peptide sequences, and validated these predictions in vitro in human umbilical vein endothelial cell (HUVEC) proliferation and migration assays. One family of peptides with high activity is derived from the alpha-fibrils of type IV collagen. Based on the results from the in vitro screening, we have evaluated the ability of a 20 amino acid peptide derived from the alpha5 fibril of type IV collagen, pentastatin-1, to suppress vessel growth in an angioreactor-based directed in vivo angiogenesis assay (DIVAA). In addition, pentastatin-1 suppressed tumor growth with intraperitoneal peptide administration in a small cell lung cancer (SCLC) xenograft model in nude mice using the NCI-H82 human cancer cell line. Pentastatin-1 decreased the invasion of vessels into angioreactors in vivo in a dose dependent manner. The peptide also decreased the rate of tumor growth and microvascular density in vivo in a small cell lung cancer xenograft model. The peptide treatment significantly decreased the invasion of microvessels in angioreactors and the rate of tumor growth in the xenograft model, indicating potential treatment for angiogenesis-dependent disease, and for translational development as a therapeutic agent for lung cancer.

  14. Performance comparison of classifiers for differentiation among obstructive lung diseases based on features of texture analysis at HRCT

    NASA Astrophysics Data System (ADS)

    Lee, Youngjoo; Seo, Joon Beom; Kang, Bokyoung; Kim, Dongil; Lee, June Goo; Kim, Song Soo; Kim, Namkug; Kang, Suk Ho

    2007-03-01

    The performance of classification algorithms for differentiating among obstructive lung diseases based on features from texture analysis using HRCT (High Resolution Computerized Tomography) images was compared. HRCT can provide accurate information for the detection of various obstructive lung diseases, including centrilobular emphysema, panlobular emphysema and bronchiolitis obliterans. Features on HRCT images can be subtle, however, particularly in the early stages of disease, and image-based diagnosis is subject to inter-observer variation. To automate the diagnosis and improve the accuracy, we compared three types of automated classification systems, naÃve Bayesian classifier, ANN (Artificial Neural Net) and SVM (Support Vector Machine), based on their ability to differentiate among normal lung and three types of obstructive lung diseases. To assess the performance and cross-validation of these three classifiers, 5 folding methods with 5 randomly chosen groups were used. For a more robust result, each validation was repeated 100 times. SVM showed the best performance, with 86.5% overall sensitivity, significantly different from the other classifiers (one way ANOVA, p<0.01). We address the characteristics of each classifier affecting performance and the issue of which classifier is the most suitable for clinical applications, and propose an appropriate method to choose the best classifier and determine its optimal parameters for optimal disease discrimination. These results can be applied to classifiers for differentiation of other diseases.

  15. Imaging of pulmonary emphysema: A pictorial review

    PubMed Central

    Takahashi, Masashi; Fukuoka, Junya; Nitta, Norihisa; Takazakura, Ryutaro; Nagatani, Yukihiro; Murakami, Yoko; Otani, Hideji; Murata, Kiyoshi

    2008-01-01

    The term ‘emphysema’ is generally used in a morphological sense, and therefore imaging modalities have an important role in diagnosing this disease. In particular, high resolution computed tomography (HRCT) is a reliable tool for demonstrating the pathology of emphysema, even in subtle changes within secondary pulmonary lobules. Generally, pulmonary emphysema is classified into three types related to the lobular anatomy: centrilobular emphysema, panlobular emphysema, and paraseptal emphysema. In this pictorial review, we discuss the radiological – pathological correlation in each type of pulmonary emphysema. HRCT of early centrilobular emphysema shows an evenly distributed centrilobular tiny areas of low attenuation with ill-defined borders. With enlargement of the dilated airspace, the surrounding lung parenchyma is compressed, which enables observation of a clear border between the emphysematous area and the normal lung. Because the disease progresses from the centrilobular portion, normal lung parenchyma in the perilobular portion tends to be preserved, even in a case of far-advanced pulmonary emphysema. In panlobular emphysema, HRCT shows either panlobular low attenuation or ill-defined diffuse low attenuation of the lung. Paraseptal emphysema is characterized by subpleural well-defined cystic spaces. Recent topics related to imaging of pulmonary emphysema will also be discussed, including morphometry of the airway in cases of chronic obstructive pulmonary disease, combined pulmonary fibrosis and pulmonary emphysema, and bronchogenic carcinoma associated with bullous lung disease. PMID:18686729

  16. The effects of storage and sterilization on de-cellularized and re-cellularized whole lung.

    PubMed

    Bonenfant, Nicholas R; Sokocevic, Dino; Wagner, Darcy E; Borg, Zachary D; Lathrop, Melissa J; Lam, Ying Wai; Deng, Bin; Desarno, Michael J; Ashikaga, Taka; Loi, Roberto; Weiss, Daniel J

    2013-04-01

    Despite growing interest on the potential use of de-cellularized whole lungs as 3-dimensional scaffolds for ex vivo lung tissue generation, optimal processing including sterilization and storage conditions, are not well defined. Further, it is unclear whether lungs need to be obtained immediately or may be usable even if harvested several days post-mortem, a situation mimicking potential procurement of human lungs from autopsy. We therefore assessed effects of delayed necropsy, prolonged storage (3 and 6 months), and of two commonly utilized sterilization approaches: irradiation or final rinse with peracetic acid, on architecture and extracellular matrix (ECM) protein characteristics of de-cellularized mouse lungs. These different approaches resulted in significant differences in both histologic appearance and in retention of ECM and intracellular proteins as assessed by immunohistochemistry and mass spectrometry. Despite these differences, binding and proliferation of bone marrow-derived mesenchymal stromal cells (MSCs) over a one month period following intratracheal inoculation was similar between experimental conditions. In contrast, significant differences occurred with C10 mouse lung epithelial cells between the different conditions. Therefore, delayed necropsy, duration of scaffold storage, sterilization approach, and cell type used for re-cellularization may significantly impact the usefulness of this biological scaffold-based model of ex vivo lung tissue regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Mechanobiology in Lung Epithelial Cells: Measurements, Perturbations, and Responses

    PubMed Central

    Waters, Christopher M.; Roan, Esra; Navajas, Daniel

    2015-01-01

    Epithelial cells of the lung are located at the interface between the environment and the organism and serve many important functions including barrier protection, fluid balance, clearance of particulate, initiation of immune responses, mucus and surfactant production, and repair following injury. Because of the complex structure of the lung and its cyclic deformation during the respiratory cycle, epithelial cells are exposed to continuously varying levels of mechanical stresses. While normal lung function is maintained under these conditions, changes in mechanical stresses can have profound effects on the function of epithelial cells and therefore the function of the organ. In this review, we will describe the types of stresses and strains in the lungs, how these are transmitted, and how these may vary in human disease or animal models. Many approaches have been developed to better understand how cells sense and respond to mechanical stresses, and we will discuss these approaches and how they have been used to study lung epithelial cells in culture. Understanding how cells sense and respond to changes in mechanical stresses will contribute to our understanding of the role of lung epithelial cells during normal function and development and how their function may change in diseases such as acute lung injury, asthma, emphysema, and fibrosis. PMID:23728969

  18. Fetal Onset of Aberrant Gene Expression Relevant to Pulmonary Carcinogenesis in Lung Adenocarcinoma Development Induced by In Utero Arsenic Exposure

    PubMed Central

    Shen, Jun; Liu, Jie; Xie, Yaxiong; Diwan, Bhalchandra A.; Waalkes, Michael P.

    2009-01-01

    Arsenic is a human pulmonary carcinogen. Our work indicates that in utero arsenic exposure in mice can induce or initiate lung cancer in female offspring. To define early molecular changes, pregnant C3H mice were given 85 ppm arsenic in drinking water from days 8 to 18 of gestation and expression of selected genes in the fetal lung or in lung tumors developing in adults was examined. Transplacental arsenic exposure increased estrogen receptor-α (ER-α) transcript and protein levels in the female fetal lung. An overexpression of various estrogen-regulated genes also occurred, including trefoil factor-3, anterior gradient-2, and the steroid metabolism genes 17-β-hydroxysteroid dehydrogenase type 5 and aromatase. The insulin growth factor system, which can be influenced by ER and has been implicated in the pulmonary oncogenic process, was activated in fetal lung after gestational arsenic exposure. in utero arsenic exposure also induced overexpression of α-fetoprotein, epidermal growth factor receptor, L-myc, and metallothionein-1 in fetal lung, all of which are associated with lung cancer. Lung adenoma and adenocarcinoma from adult female mice exposed to arsenic in utero showed widespread, intense nuclear ER-α expression. In contrast, normal adult lung and diethylnitrosamine-induced lung adenocarcinoma showed little evidence of ER-α expression. Thus, transplacental arsenic exposure at a carcinogenic dose produced aberrant estrogen-linked pulmonary gene expression. ER-α activation was specifically associated with arsenic-induced lung adenocarcinoma and adenoma but not with nitrosamine-induced lung tumors. These data provide evidence that arsenic-induced aberrant ER signaling could disrupt early life stage genetic programing in the lung leading eventually to lung tumor formation much later in adulthood. PMID:17077188

  19. Fetal onset of aberrant gene expression relevant to pulmonary carcinogenesis in lung adenocarcinoma development induced by in utero arsenic exposure.

    PubMed

    Shen, Jun; Liu, Jie; Xie, Yaxiong; Diwan, Bhalchandra A; Waalkes, Michael P

    2007-02-01

    Arsenic is a human pulmonary carcinogen. Our work indicates that in utero arsenic exposure in mice can induce or initiate lung cancer in female offspring. To define early molecular changes, pregnant C3H mice were given 85 ppm arsenic in drinking water from days 8 to 18 of gestation and expression of selected genes in the fetal lung or in lung tumors developing in adults was examined. Transplacental arsenic exposure increased estrogen receptor-alpha (ER-alpha) transcript and protein levels in the female fetal lung. An overexpression of various estrogen-regulated genes also occurred, including trefoil factor-3, anterior gradient-2, and the steroid metabolism genes 17-beta-hydroxysteroid dehydrogenase type 5 and aromatase. The insulin growth factor system, which can be influenced by ER and has been implicated in the pulmonary oncogenic process, was activated in fetal lung after gestational arsenic exposure. In utero arsenic exposure also induced overexpression of alpha-fetoprotein, epidermal growth factor receptor, L-myc, and metallothionein-1 in fetal lung, all of which are associated with lung cancer. Lung adenoma and adenocarcinoma from adult female mice exposed to arsenic in utero showed widespread, intense nuclear ER-alpha expression. In contrast, normal adult lung and diethylnitrosamine-induced lung adenocarcinoma showed little evidence of ER-alpha expression. Thus, transplacental arsenic exposure at a carcinogenic dose produced aberrant estrogen-linked pulmonary gene expression. ER-alpha activation was specifically associated with arsenic-induced lung adenocarcinoma and adenoma but not with nitrosamine-induced lung tumors. These data provide evidence that arsenic-induced aberrant ER signaling could disrupt early life stage genetic programing in the lung leading eventually to lung tumor formation much later in adulthood.

  20. Equine Multinodular Pulmonary Fibrosis in association with asinine herpesvirus type 5 and equine herpesvirus type 5: a case report

    PubMed Central

    2012-01-01

    A standardbred gelding with a history of 10 days pyrexia and lethargy was referred to the Equine Hospital at the Swedish University of Agricultural Sciences in Uppsala, Sweden. The horse had tachypnea with increased respiratory effort and was in thin body condition. Laboratory findings included leukocytosis, hyperfibrinogenemia and hypoxemia. Thoracic radiographs showed signs of pneumonia with a multifocal nodular pattern, which in combination with lung biopsy findings indicated Equine Multinodular Pulmonary Fibrosis (EMPF). EMPF is a recently described disease in adult horses with clinical signs of fever, weight loss and respiratory problems. The pathological findings include loss of functional pulmonary parenchyma due to extensive nodular interstitial fibrosis which has been related to infection with the equine herpesvirus type 5 (EHV-5). In this case, lung biopsy and tracheal wash samples tested positive for both asinine herpesvirus type 5 (AHV-5) and EHV-5 using PCR assays. The horse failed to respond to treatment and was euthanized for humane reasons. Postmortem examination confirmed the diagnosis of EMPF. This case suggests that not only EHV-5 alone should be considered in association with the development of this disease. PMID:23009194

  1. Enhanced Heme Function and Mitochondrial Respiration Promote the Progression of Lung Cancer Cells

    PubMed Central

    Alam, Md Maksudul; Shah, Ajit; Cao, Thai M.; Sullivan, Laura A.; Brekken, Rolf; Zhang, Li

    2013-01-01

    Lung cancer is the leading cause of cancer-related mortality, and about 85% of the cases are non-small-cell lung cancer (NSCLC). Importantly, recent advance in cancer research suggests that altering cancer cell bioenergetics can provide an effective way to target such advanced cancer cells that have acquired mutations in multiple cellular regulators. This study aims to identify bioenergetic alterations in lung cancer cells by directly measuring and comparing key metabolic activities in a pair of cell lines representing normal and NSCLC cells developed from the same patient. We found that the rates of oxygen consumption and heme biosynthesis were intensified in NSCLC cells. Additionally, the NSCLC cells exhibited substantially increased levels in an array of proteins promoting heme synthesis, uptake and function. These proteins include the rate-limiting heme biosynthetic enzyme ALAS, transporter proteins HRG1 and HCP1 that are involved in heme uptake, and various types of oxygen-utilizing hemoproteins such as cytoglobin and cytochromes. Several types of human tumor xenografts also displayed increased levels of such proteins. Furthermore, we found that lowering heme biosynthesis and uptake, like lowering mitochondrial respiration, effectively reduced oxygen consumption, cancer cell proliferation, migration and colony formation. In contrast, lowering heme degradation does not have an effect on lung cancer cells. These results show that increased heme flux and function are a key feature of NSCLC cells. Further, increased generation and supply of heme and oxygen-utilizing hemoproteins in cancer cells will lead to intensified oxygen consumption and cellular energy production by mitochondrial respiration, which would fuel cancer cell proliferation and progression. The results show that inhibiting heme and respiratory function can effectively arrest the progression of lung cancer cells. Hence, understanding heme function can positively impact on research in lung cancer biology and therapeutics. PMID:23704904

  2. A Major Population of Functional KLRG1- ILC2s in Female Lungs Contributes to a Sex Bias in ILC2 Numbers.

    PubMed

    Kadel, Sapana; Ainsua-Enrich, Erola; Hatipoglu, Ibrahim; Turner, Sean; Singh, Simar; Khan, Sohaib; Kovats, Susan

    2018-02-01

    Humans show significant sex differences in the incidence and severity of respiratory diseases, including asthma and virus infection. Sex hormones contribute to the female sex bias in type 2 inflammation associated with respiratory diseases, consistent with recent reports that female lungs harbor greater numbers of GATA-3-dependent group 2 innate lymphoid cells (ILC2s). In this study, we determined whether sex hormone levels govern sex differences in the numbers, phenotype, and function of ILC2s in the murine lung and bone marrow (BM). Our data show that lungs of female mice harbor significantly greater ILC2 numbers in homeostasis, in part due to a major subset of ILC2s lacking killer-cell lectin like receptor G1 (KLRG1), a population largely absent in male lungs. The KLRG1 - ILC2s were capable of type 2 cytokine production and increased with age after sexual maturity, suggesting that a unique functional subset exists in females. Experiments with gonadectomized mice or mice bearing either global or lymphocyte restricted estrogen receptor α ( Esr1 ) deficiency showed that androgens rather than estrogens regulated numbers of the KLRG1 - ILC2 subset and ILC2 functional capacity in the lung and BM, as well as levels of GATA-3 expression in BM ILC2s. Furthermore, the frequency of BM PLZF + ILC precursors was higher in males and increased by excess androgens, suggesting that androgens act to inhibit the transition of ILC precursors to ILC2s. Taken together, these data show that a functional subset of KLRG1 - ILC2s in females contributes to the sex bias in lung ILC2s that is observed after reproductive age.

  3. Single Versus Double Lung Retransplantation Does Not Affect Survival Based on Previous Transplant Type.

    PubMed

    Schumer, Erin M; Rice, Jonathan D; Kistler, Amanda M; Trivedi, Jaimin R; Black, Matthew C; Bousamra, Michael; van Berkel, Victor

    2017-01-01

    Survival following retransplantation with a single lung is worse than after double lung transplant. We sought to characterize survival of patients who underwent lung retransplantation based on the type of their initial transplant, single or double. The United Network for Organ Sharing database was queried for adult patients who underwent lung retransplantation from 2005 onward. Patients were excluded if they underwent more than one retransplantation. The patient population was divided into 4 groups based on first followed by second transplant type, respectively: single then single, double then single, double then double, and single then double. Descriptive analysis and Kaplan-Meier survival analysis were performed. A p value less than 0.05 was considered significant. A total of 410 patients underwent retransplantation in the study time period. Overall mean survival for all patients who underwent retransplantation was 1,213 days. Kaplan-Meier survival analysis demonstrated no difference in graft survival between the 4 study groups (p = 0.146). There was no significant difference in graft survival between recipients of retransplant with single or double lungs when stratified by previous transplant type. These results suggest that when retransplantation is performed, single lung retransplantation should be considered, regardless of previous transplant type, in an effort to maximize organ resources. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  4. Radiation-induced lung fibrosis in a tumor-bearing mouse model is associated with enhanced Type-2 immunity.

    PubMed

    Chen, Jing; Wang, Yacheng; Mei, Zijie; Zhang, Shimin; Yang, Jie; Li, Xin; Yao, Ye; Xie, Conghua

    2016-03-01

    Lung fibrosis may be associated with Type-2 polarized inflammation. Herein, we aim to investigate whether radiation can initiate a Type-2 immune response and contribute to the progression of pulmonary fibrosis in tumor-bearing animals. We developed a tumor-bearing mouse model with Lewis lung cancer to receive either radiation therapy alone or radiation combined with Th1 immunomodulator unmethylated cytosine-phosphorothioate-guanine containing oligodeoxynucleotide (CpG-ODN). The Type-2 immune phenotype in tumors and the histological grade of lung fibrosis were evaluated in mice sacrificed three weeks after irradiation. Mouse lung tissues were analyzed for hydroxyproline and the expression of Type-1/Type-2 key transcription factors (T-bet/GATA-3). The concentration of Type-1/Type-2 cytokines in serum was measured by cytometric bead array. Lung fibrosis was observed to be more serious in tumor-bearing mice than in normal mice post-irradiation. The fibrosis score in irradiated tumor-bearing mice on Day 21 was 4.33 ± 0.82, which was higher than that of normal mice (2.00 ± 0.63; P < 0.05). Hydroxyproline and GATA-3 expression were increased in the lung tissues of tumor-bearing mice following irradiation. CpG-ODN attenuated fibrosis by markedly decreasing GATA-3 expression. Serum IL-13 and IL-5 were elevated, whereas INF-γ and IL-12 expression were decreased in irradiated tumor-bearing mice. These changes were reversed after CpG-ODN treatment. Thus, Type-2 immunity in tumors appeared to affect the outcome of radiation damage and might be of interest for future studies on developing approaches in which Type-1-related immunotherapy and radiotherapy are used in combination. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  5. The potential impacts of climate variability and change on air pollution-related health effects in the United States.

    PubMed Central

    Bernard, S M; Samet, J M; Grambsch, A; Ebi, K L; Romieu, I

    2001-01-01

    Climate change may affect exposures to air pollutants by affecting weather, anthropogenic emissions, and biogenic emissions and by changing the distribution and types of airborne allergens. Local temperature, precipitation, clouds, atmospheric water vapor, wind speed, and wind direction influence atmospheric chemical processes, and interactions occur between local and global-scale environments. If the climate becomes warmer and more variable, air quality is likely to be affected. However, the specific types of change (i.e., local, regional, or global), the direction of change in a particular location (i.e., positive or negative), and the magnitude of change in air quality that may be attributable to climate change are a matter of speculation, based on extrapolating present understanding to future scenarios. There is already extensive evidence on the health effects of air pollution. Ground-level ozone can exacerbate chronic respiratory diseases and cause short-term reductions in lung function. Exposure to particulate matter can aggravate chronic respiratory and cardiovascular diseases, alter host defenses, damage lung tissue, lead to premature death, and possibly contribute to cancer. Health effects of exposures to carbon monoxide, sulfur dioxide, and nitrogen dioxide can include reduced work capacity, aggravation of existing cardiovascular diseases, effects on pulmonary function, respiratory illnesses, lung irritation, and alterations in the lung's defense systems. Adaptations to climate change should include ensuring responsiveness of air quality protection programs to changing pollution levels. Research needs include basic atmospheric science work on the association between weather and air pollutants; improving air pollution models and their linkage with climate change scenarios; and closing gaps in the understanding of exposure patterns and health effects. PMID:11359687

  6. The potential impacts of climate variability and change on air pollution-related health effects in the United States.

    PubMed

    Bernard, S M; Samet, J M; Grambsch, A; Ebi, K L; Romieu, I

    2001-05-01

    Climate change may affect exposures to air pollutants by affecting weather, anthropogenic emissions, and biogenic emissions and by changing the distribution and types of airborne allergens. Local temperature, precipitation, clouds, atmospheric water vapor, wind speed, and wind direction influence atmospheric chemical processes, and interactions occur between local and global-scale environments. If the climate becomes warmer and more variable, air quality is likely to be affected. However, the specific types of change (i.e., local, regional, or global), the direction of change in a particular location (i.e., positive or negative), and the magnitude of change in air quality that may be attributable to climate change are a matter of speculation, based on extrapolating present understanding to future scenarios. There is already extensive evidence on the health effects of air pollution. Ground-level ozone can exacerbate chronic respiratory diseases and cause short-term reductions in lung function. Exposure to particulate matter can aggravate chronic respiratory and cardiovascular diseases, alter host defenses, damage lung tissue, lead to premature death, and possibly contribute to cancer. Health effects of exposures to carbon monoxide, sulfur dioxide, and nitrogen dioxide can include reduced work capacity, aggravation of existing cardiovascular diseases, effects on pulmonary function, respiratory illnesses, lung irritation, and alterations in the lung's defense systems. Adaptations to climate change should include ensuring responsiveness of air quality protection programs to changing pollution levels. Research needs include basic atmospheric science work on the association between weather and air pollutants; improving air pollution models and their linkage with climate change scenarios; and closing gaps in the understanding of exposure patterns and health effects.

  7. Rab22a enhances CD147 recycling and is required for lung cancer cell migration and invasion.

    PubMed

    Zhou, Yang; Wu, Bo; Li, Jiang-Hua; Nan, Gang; Jiang, Jian-Li; Chen, Zhi-Nan

    2017-08-01

    Rab22a is a member of the Ras-related small GTPase family, which plays a key role in regulating the recycling of cargo proteins entering cells through clathrin-independent endocytosis (CIE). Rab22a is overexpressed in different cancer types, including liver cancer, malignant melanoma, ovarian cancer and osteosarcoma. However, its oncogenic role remains unknown. In this study, we found that silencing of Rab22a suppressed the migration and invasion of lung cancer cells. Furthermore, Rab22a interacts with CD147, and knockdown of Rab22a blocks CD147 recycling and promotes CD147 degradation. Taken together, our findings indicate that Rab22a enhances recycling of CD147, which is required for lung cancer cell migration and invasion,and targeting CD147 recycling may be a rational strategy for lung cancer therapy. Copyright © 2017. Published by Elsevier Inc.

  8. [The characteristics of type I, III collagen and LN in pulmonary fibrosis induced by uranium ore dust in rats].

    PubMed

    Hu, Ying-chun; Luo, Zhen-hua; Yuan, Xing-jiang; Yang, Li-ping; Wang, Shou-feng; Li, Guang-yue; He, Xing-peng

    2011-02-01

    To explore the characteristics of LN and type I, III collagen in pulmonary fibrosis induced by uranium ore dust in rats. 60 adult Wistar rats were divided randomly into two groups, control group (30 rats) and uranium ore dust group (30 rats). Non-exposed intratracheal instillation method was used. Uranium ore dust group was exposed 20 mg/ml uranium ore dust suspension 1ml per rat, meanwhile control group was exposed normal saline 1ml per rat. Post-exposed the 7, 14, 21, 30 and 60 d, 6 rats in each group were killed randomly, lung tissue were collected. The pathological changes in lung tissue were observed by microscope using HE staining, the collagen I and III in lungs were observed by polarizing microscope using Biebrich scarlet staining. The expression of LN protein in lung tissue was observed by immunohistochemistry-SP. During lung fibrosis, a large amount of the proliferated I and III collagen in lungs were observed. Post-exposure to uranium ore dust, the characteristics in proliferated collagen in lungs were type I collagen deposited in lung interstitium mainly in the early stage. The area percentage of collagen I and III was increased significantly at 7, 14, 21, 30 and 60d in the experimental group as compared with that in the control group (P < 0.05 or P < 0.01). The over expression of LN in the lung tissue were observed. The expression of LN was distributed in the lung tissue as thickening of the linear or cluster. The integral optical density of LN was increased significantly at 21, 30 and 60 d in the experimental group as compared with that in the control group (P < 0.05 or P < 0.01). After exposure to uranium ore dust, the characteristics in proliferated collagen in lungs are the type of I collagen deposited in lung interstitium mainly in the early stage, while the type of III collagen increase significantly at the later period. The overexpression of LN exists in the process of pulmonary fibrosis. It suggests that LN has a role effect in the process of pulmonary fibrosis.

  9. Secretory leukocyte protease inhibitor gene deletion alters bleomycin-induced lung injury, but not development of pulmonary fibrosis.

    PubMed

    Habgood, Anthony N; Tatler, Amanda L; Porte, Joanne; Wahl, Sharon M; Laurent, Geoffrey J; John, Alison E; Johnson, Simon R; Jenkins, Gisli

    2016-06-01

    Idiopathic pulmonary fibrosis is a progressive, fatal disease with limited treatment options. Protease-mediated transforming growth factor-β (TGF-β) activation has been proposed as a pathogenic mechanism of lung fibrosis. Protease activity in the lung is tightly regulated by protease inhibitors, particularly secretory leukocyte protease inhibitor (SLPI). The bleomycin model of lung fibrosis was used to determine the effect of increased protease activity in the lungs of Slpi(-/-) mice following injury. Slpi(-/-), and wild-type, mice received oropharyngeal administration of bleomycin (30 IU) and the development of pulmonary fibrosis was assessed. Pro and active forms of matrix metalloproteinase (MMP)-2 and MMP-9 were measured. Lung fibrosis was determined by collagen subtype-specific gene expression, hydroxyproline concentration, and histological assessment. Alveolar TGF-β activation was measured using bronchoalveolar lavage cell pSmad2 levels and global TGF-β activity was assessed by pSmad2 immunohistochemistry. The active-MMP-9 to pro-MMP-9 ratio was significantly increased in Slpi(-/-) animals compared with wild-type animals, demonstrating enhanced metalloproteinase activity. Wild-type animals showed an increase in TGF-β activation following bleomycin, with a progressive and sustained increase in collagen type I, alpha 1 (Col1α1), III, alpha 1(Col3α1), IV, alpha 1(Col4α1) mRNA expression, and a significant increase in total lung collagen 28 days post bleomycin. In contrast Slpi(-/-) mice showed no significant increase of alveolar TGF-β activity following bleomycin, above their already elevated levels, although global TGF-β activity did increase. Slpi(-/-) mice had impaired collagen gene expression but animals demonstrated minimal reduction in lung fibrosis compared with wild-type animals. These data suggest that enhanced proteolysis does not further enhance TGF-β activation, and inhibits sustained Col1α1, Col3α1, and Col4α1 gene expression following lung injury. However, these changes do not prevent the development of lung fibrosis. Overall, these data suggest that the absence of Slpi does not markedly modify the development of lung fibrosis following bleomycin-induced lung injury.

  10. CT Scanning in Identification of Sheep Cystic Echinococcosis

    PubMed Central

    Mao, Rui; Qi, Hongzhi; Pei, Lei; Hao, Jie; Dong, Jian; Jiang, Tao; Ainiwaer, Abudula; Shang, Ge; Xu, Lin; Shou, Xi; Zhang, Songan; Wu, Ge; Lu, Pengfei

    2017-01-01

    Objective We aim to determine the efficiency of CT in identification of cystic echinococcosis in sheep. Methods Fifty-three sheep with liver cysts confirmed by ultrasonography were subject to CT scan to evaluate the number, size, and type of the cysts in liver and lung, confirmed using necropsy. The correlation of numbers between liver cysts and lung cysts was calculated using Pearson analysis. Results Necropsy indicated a 98% consensus on size, location, number, and activity compared with CT scan. The viable cysts were 53.1% and 50.6% in the liver and lung, respectively. Among the cysts in liver, 35.5%, 9.5%, 5.7%, 10.2%, and 39.1% were Types CE1, CE2, CE3, CE4, and CE5, respectively. The cysts in the lungs, 17.4%, 26.9%, 12.1%, 11.6%, and 32.1%, were Types CE1, CE2, CE3, CE4, and CE5, respectively. A significant correlation was noticed between the number of cysts in liver and those in lung (R = 0.770, P < 0.001). Conclusions CT scan is a suitable tool in determining the size and type of cystic hydatid cysts in both liver and lung of sheep. A significant correlation was noticed between the numbers in liver and lung, indicating that lung infection was likely due to the expansion of liver cyst burden pressure. PMID:29082246

  11. Mesenchymal Stem Cells Adopt Lung Cell Phenotype in Normal and Radiation-induced Lung Injury Conditions.

    PubMed

    Maria, Ola M; Maria, Ahmed M; Ybarra, Norma; Jeyaseelan, Krishinima; Lee, Sangkyu; Perez, Jessica; Shalaby, Mostafa Y; Lehnert, Shirley; Faria, Sergio; Serban, Monica; Seuntjens, Jan; El Naqa, Issam

    2016-04-01

    Lung tissue exposure to ionizing irradiation can invariably occur during the treatment of a variety of cancers leading to increased risk of radiation-induced lung disease (RILD). Mesenchymal stem cells (MSCs) possess the potential to differentiate into epithelial cells. However, cell culture methods of primary type II pneumocytes are slow and cannot provide a sufficient number of cells to regenerate damaged lungs. Moreover, effects of ablative radiation doses on the ability of MSCs to differentiate in vitro into lung cells have not been investigated yet. Therefore, an in vitro coculture system was used, where MSCs were physically separated from dissociated lung tissue obtained from either healthy or high ablative doses of 16 or 20 Gy whole thorax irradiated rats. Around 10±5% and 20±3% of cocultured MSCs demonstrated a change into lung-specific Clara and type II pneumocyte cells when MSCs were cocultured with healthy lung tissue. Interestingly, in cocultures with irradiated lung biopsies, the percentage of MSCs changed into Clara and type II pneumocytes cells increased to 40±7% and 50±6% at 16 Gy irradiation dose and 30±5% and 40±8% at 20 Gy irradiation dose, respectively. These data suggest that MSCs to lung cell differentiation is possible without cell fusion. In addition, 16 and 20 Gy whole thorax irradiation doses that can cause varying levels of RILD, induced different percentages of MSCs to adopt lung cell phenotype compared with healthy lung tissue, providing encouraging outlook for RILD therapeutic intervention for ablative radiotherapy prescriptions.

  12. A global perspective of lung transplantation: Part 1 - Recipient selection and choice of procedure

    PubMed Central

    Khaghani, Asghar

    Lung transplantation has grown considerably in recent years and its availability has spread to an expanding number of countries worldwide. Importantly, survival has also steadily improved, making this an increasingly viable procedure for patients with end-stage lung disease and limited life expectancy. In this first of a series of articles, recipient selection and type of transplant operation are reviewed. Pulmonary fibrotic disorders are now the most indication in the U.S., followed by chronic obstructive pulmonary disease and cystic fibrosis. Transplant centers have liberalized criteria to include older and more critically ill candidates. A careful, systematic, multi-disciplinary selection process is critical in identifying potential barriers that may increase risk and optimize long-term outcomes. PMID:29043255

  13. Lung Cancer Pathological Image Analysis Using a Hidden Potts Model

    PubMed Central

    Li, Qianyun; Yi, Faliu; Wang, Tao; Xiao, Guanghua; Liang, Faming

    2017-01-01

    Nowadays, many biological data are acquired via images. In this article, we study the pathological images scanned from 205 patients with lung cancer with the goal to find out the relationship between the survival time and the spatial distribution of different types of cells, including lymphocyte, stroma, and tumor cells. Toward this goal, we model the spatial distribution of different types of cells using a modified Potts model for which the parameters represent interactions between different types of cells and estimate the parameters of the Potts model using the double Metropolis-Hastings algorithm. The double Metropolis-Hastings algorithm allows us to simulate samples approximately from a distribution with an intractable normalizing constant. Our numerical results indicate that the spatial interaction between the lymphocyte and tumor cells is significantly associated with the patient’s survival time, and it can be used together with the cell count information to predict the survival of the patients. PMID:28615918

  14. Loss of Nrf2 promotes alveolar type 2 cell loss in irradiated, fibrotic lung.

    PubMed

    Traver, Geri; Mont, Stacey; Gius, David; Lawson, William E; Ding, George X; Sekhar, Konjeti R; Freeman, Michael L

    2017-11-01

    The development of radiation-induced pulmonary fibrosis represents a critical clinical issue limiting delivery of therapeutic doses of radiation to non-small cell lung cancer. Identification of the cell types whose injury initiates a fibrotic response and the underlying biological factors that govern that response are needed for developing strategies that prevent or mitigate fibrosis. C57BL/6 mice (wild type, Nrf2 null, Nrf2 flox/flox , and Nrf2 Δ/Δ ; SPC-Cre) were administered a thoracic dose of 12Gy and allowed to recover for 250 days. Whole slide digital and confocal microscopy imaging of H&E, Masson's trichrome and immunostaining were used to assess tissue remodeling, collagen deposition and cell renewal/mobilization during the regenerative process. Histological assessment of irradiated, fibrotic wild type lung revealed significant loss of alveolar type 2 cells 250 days after irradiation. Type 2 cell loss and the corresponding development of fibrosis were enhanced in the Nrf2 null mouse. Yet, conditional deletion of Nrf2 in alveolar type 2 cells in irradiated lung did not impair type 2 cell survival nor yield an increased fibrotic phenotype. Instead, radiation-induced ΔNp63 stem/progenitor cell mobilization was inhibited in the Nrf2 null mouse while the propensity for radiation-induced myofibroblasts derived from alveolar type 2 cells was magnified. In summary, these results indicate that Nrf2 is an important regulator of irradiated lung's capacity to maintain alveolar type 2 cells, whose injury can initiate a fibrotic phenotype. Loss of Nrf2 inhibits ΔNp63 stem/progenitor mobilization, a key event for reconstitution of injured lung, while promoting a myofibroblast phenotype that is central for fibrosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Lack of MyD88 protects the immunodeficient host against fatal lung inflammation triggered by the opportunistic bacteria Burkholderia cenocepacia.

    PubMed

    Ventura, Grasiella M de C; Balloy, Viviane; Ramphal, Reuben; Khun, Huot; Huerre, Michel; Ryffel, Bernhard; Plotkowski, Maria-Cristina M; Chignard, Michel; Si-Tahar, Mustapha

    2009-07-01

    Burkholderia cenocepacia is an opportunistic pathogen of major concern for cystic fibrosis patients as well as immunocompromised cancer patients and transplant recipients. The mechanisms by which B. cenocepacia triggers a rapid health deterioration of the susceptible host have yet to be characterized. TLR and their key signaling intermediate MyD88 play a central role in the detection of microbial molecular patterns and in the initiation of an effective immune response. We performed a study to better understand the role of TLR-MyD88 signaling in B. cenocepacia-induced pathogenesis in the immunocompromised host, using an experimental murine model. The time-course of several dynamic parameters, including animal survival, bacterial load, and secretion of critical inflammatory mediators, was compared in infected and immunosuppressed wild-type and MyD88(-/-) mice. Notably, when compared with wild-type mice, infected MyD88(-/-) animals displayed significantly reduced levels of inflammatory mediators (including KC, TNF-alpha, IL-6, MIP-2, and G-CSF) in blood and lung airspaces. Moreover, despite a higher transient bacterial load in the lungs, immunosuppressed mice deficient in MyD88 had an unexpected survival advantage. Finally, we showed that this B. cenocepacia-induced life-threatening infection of wild-type mice involved the proinflammatory cytokine TNF-alpha and could be prevented by corticosteroids. Altogether, our findings demonstrate that a MyD88-dependent pathway can critically contribute to a detrimental host inflammatory response that leads to fatal pneumonia.

  16. Type I interferon promotes alveolar epithelial type II cell survival during pulmonary Streptococcus pneumoniae infection and sterile lung injury in mice.

    PubMed

    Maier, Barbara B; Hladik, Anastasiya; Lakovits, Karin; Korosec, Ana; Martins, Rui; Kral, Julia B; Mesteri, Ildiko; Strobl, Birgit; Müller, Mathias; Kalinke, Ulrich; Merad, Miriam; Knapp, Sylvia

    2016-09-01

    Protecting the integrity of the lung epithelial barrier is essential to ensure respiration and proper oxygenation in patients suffering from various types of lung inflammation. Type I interferon (IFN-I) has been associated with pulmonary epithelial barrier function, however, the mechanisms and involved cell types remain unknown. We aimed to investigate the importance of IFN-I with respect to its epithelial barrier strengthening function to better understand immune-modulating effects in the lung with potential medical implications. Using a mouse model of pneumococcal pneumonia, we revealed that IFN-I selectively protects alveolar epithelial type II cells (AECII) from inflammation-induced cell death. Mechanistically, signaling via the IFN-I receptor on AECII is sufficient to promote AECII survival. The net effects of IFN-I are barrier protection, together with diminished tissue damage, inflammation, and bacterial loads. Importantly, we found that the protective role of IFN-I can also apply to sterile acute lung injury, in which loss of IFN-I signaling leads to a significant reduction in barrier function caused by AECII cell death. Our data suggest that IFN-I is an important mediator in lung inflammation that plays a protective role by antagonizing inflammation-associated cell obstruction, thereby strengthening the integrity of the epithelial barrier. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Animal Models in Carotenoids Research and Lung Cancer Prevention1

    PubMed Central

    Kim, Jina; Kim, Yuri

    2011-01-01

    Numerous epidemiological studies have consistently demonstrated that individuals who eat more fruits and vegetables (which are rich in carotenoids) and who have higher serum β-carotene levels have a lower risk of cancer, especially lung cancer. However, two human intervention trials conducted in Finland and in the United States have reported contrasting results with high doses of β-carotene supplementation increasing the risk of lung cancer among smokers. The failure of these trials to demonstrate actual efficacy has resulted in the initiation of animal studies to reproduce the findings of these two studies and to elucidate the mechanisms responsible for the harmful or protective effects of carotenoids in lung carcinogenesis. Although these studies have been limited by a lack of animal models that appropriately represent human lung cancer induced by cigarette smoke, ferrets and A/J mice are currently the most widely used models for these types of studies. There are several proposed mechanisms for the protective effects of carotenoids on cigarette smoke-induced lung carcinogenesis, and these include antioxidant/prooxidant effects, modulation of retinoic acid signaling pathway and metabolism, induction of cytochrome P450, and molecular signaling involved in cell proliferation and/or apoptosis. The technical challenges associated with animal models include strain-specific and diet-specific effects, differences in the absorption and distribution of carotenoids, and differences in the interactions of carotenoids with other antioxidants. Despite the problems associated with extrapolating from animal models to humans, the understanding and development of various animal models may provide useful information regarding the protective effects of carotenoids against lung carcinogenesis. PMID:21966544

  18. Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: challenges and opportunities

    PubMed Central

    Mangal, Sharad; Gao, Wei; Li, Tonglei; Zhou, Qi (Tony)

    2017-01-01

    Lung cancer is the second most prevalent and the deadliest among all cancer types. Chemotherapy is recommended for lung cancers to control tumor growth and to prolong patient survival. Systemic chemotherapy typically has very limited efficacy as well as severe systemic adverse effects, which are often attributed to the distribution of anticancer drugs to non-targeted sites. In contrast, inhalation routes permit the delivery of drugs directly to the lungs providing high local concentrations that may enhance the anti-tumor effect while alleviating systemic adverse effects. Preliminary studies in animals and humans have suggested that most inhaled chemotherapies are tolerable with manageable pulmonary adverse effects, including cough and bronchospasm. Promoting the deposition of anticancer drugs in tumorous cells and minimizing access to healthy lung cells can further augment the efficacy and reduce the risk of local toxicities caused by inhaled chemotherapy. Sustained release and tumor localization characteristics make nanoparticle formulations a promising candidate for the inhaled delivery of chemotherapeutic agents against lung cancers. However, the physiology of respiratory tracts and lung clearance mechanisms present key barriers for the effective deposition and retention of inhaled nanoparticle formulations in the lungs. Recent research has focused on the development of novel formulations to maximize lung deposition and to minimize pulmonary clearance of inhaled nanoparticles. This article systematically reviews the challenges and opportunities for the pulmonary delivery of nanoparticle formulations for the treatment of lung cancers. PMID:28504252

  19. [MicroRNAs in diagnosis and prognosis in lung cancer].

    PubMed

    Avila-Moreno, Federico; Urrea, Francisco; Ortiz-Quintero, Blanca

    2011-01-01

    MicroRNAs (miRNAs) are endogenous small non-coding RNA molecules that regulate gene expression at the posttranscriptional level by blocking translation or inducing degradation of messenger RNA targets. It has been shown that miRNAs participate in a wide spectrum of essential biologic processes including cell cycle, differentiation, development, apoptosis and hematopoiesis, revealing one of the major regulators of human gene expression. Recent studies have shown evidences of abnormal expression of miRNAs in solid and hematological tumors, as well as the association of altered miRNAs with oncogenic or tumor suppressor functions, suggesting a key role of miRNAs in carcinogenesis. Moreover, unique profiles of altered miRNAs expression seem to allow distinction from normal tissue, prediction of disease outcomes, and evaluation of tumor aggressiveness in several types of cancer, including lung cancer. These unique and highly stable miRNAs patterns seems not to depend of age and race, and these characteristics highlight their potential diagnostic and prognosis utility. These findings are particularly promising for lung cancer, a worldwide leading cause of cancer-related deaths with a poor survival rate, despite the discovery of novel therapies. This review describes the potential of miRNAs as biomarkers for diagnosis, cancer classification and estimation of prognosis in lung cancer; and the approaches used to detect and quantify these miRNAs; including the current information about circulating miRNAs as potential biomarkers in lung cancer. This review also provides a description of miRNAs biogenesis, nomenclature and available database for miRNA sequences.

  20. Combined human papillomavirus typing and TP53 mutation analysis in distinguishing second primary tumors from lung metastases in patients with head and neck squamous cell carcinoma.

    PubMed

    Daher, Tamas; Tur, Mehmet Kemal; Brobeil, Alexander; Etschmann, Benjamin; Witte, Biruta; Engenhart-Cabillic, Rita; Krombach, Gabriele; Blau, Wolfgang; Grimminger, Friedrich; Seeger, Werner; Klussmann, Jens Peter; Bräuninger, Andreas; Gattenlöhner, Stefan

    2018-06-01

    In head and neck squamous cell carcinoma (HNSCC), the occurrence of concurrent lung malignancies poses a significant diagnostic challenge because metastatic HNSCC is difficult to discern from second primary lung squamous cell carcinoma (SCC). However, this differentiation is crucial because the recommended treatments for metastatic HNSCC and second primary lung SCC differ profoundly. We analyzed the origin of lung tumors in 32 patients with HNSCC using human papillomavirus (HPV) typing and targeted next generation sequencing of all coding exons of tumor protein 53 (TP53). Lung tumors were clearly identified as HNSCC metastases or second primary tumors in 29 patients, thus revealing that 16 patients had received incorrect diagnoses based on clinical and morphological data alone. The HPV typing and mutation analysis of all TP53 coding exons is a valuable diagnostic tool in patients with HNSCC and concurrent lung SCC, which can help to ensure that patients receive the most suitable treatment. © 2018 Wiley Periodicals, Inc.

  1. Epidermal growth factor receptor expression in radiation-induced dog lung tumors by immunocytochemical localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, F.L.; Park, J.F.; Dagle, G.E.

    1993-06-01

    In studies to determine the role of growth factors in radiation-induced lung cancer, epidermal growth factor (EGFR) expression was examined by immunocytochemistry in 51 lung tumors from beagle dogs exposed to inhaled plutonium; 21 of 51 (41%) tumors were positive for EGFR. The traction of tumors positive for EGFR and the histological type of EGFR-positive tumors in the plutonium-exposed dogs were not different from spontaneous dog lung tumors, In which 36% were positive for EGFR. EGFR involvement in Pu-induced lung tumors appeared to be similar to that in spontaneous lung tumors. However, EGFR-positive staining was observed in only 1 ofmore » 16 tumors at the three lowest Pu exposure levels, compared to 20 of 35 tumors staining positive at the two highest Pu exposure levels. The results in dogs were in good agreement with the expression of EGFR reported in human non-small cell carcinoma of the lung, suggesting that Pu-induced lung tumors in the dog may be a suitable animal model to investigate the role of EGFR expression in lung carcinogenesis. In humans, EGFR expression in lung tumors has been primarily related to histological tumor types. In individual dogs with multiple primary lung tumors, the tumors were either all EGFR positive or EGFR negative, suggesting that EGFR expression may be related to the response of the individual dog as well as to the histological type of tumor.« less

  2. Coal Tar and Coal-Tar Pitch

    Cancer.gov

    Learn about coal-tar products, which can raise your risk of skin cancer, lung cancer, and other types of cancer. Examples of coal-tar products include creosote, coal-tar pitch, and certain preparations used to treat skin conditions such as eczema, psoriasis, and dandruff.

  3. Applicability of avidin protein coated mesoporous silica nanoparticles as drug carriers in the lung

    NASA Astrophysics Data System (ADS)

    van Rijt, S. H.; Bölükbas, D. A.; Argyo, C.; Wipplinger, K.; Naureen, M.; Datz, S.; Eickelberg, O.; Meiners, S.; Bein, T.; Schmid, O.; Stoeger, T.

    2016-04-01

    Mesoporous silica nanoparticles (MSNs) exhibit unique drug delivery properties and are thus considered as promising candidates for next generation nano-medicines. In particular, inhalation into the lungs represents a direct, non-invasive delivery route for treating lung disease. To assess MSN biocompatibility in the lung, we investigated the bioresponse of avidin-coated MSNs (MSN-AVI), as well as aminated (uncoated) MSNs, after direct application into the lungs of mice. We quantified MSN distribution, clearance rate, cell-specific uptake, and inflammatory responses to MSNs within one week after instillation. We show that amine-functionalized (MSN-NH2) particles are not taken up by lung epithelial cells, but induced a prolonged inflammatory response in the lung and macrophage cell death. In contrast, MSN-AVI co-localized with alveolar epithelial type 1 and type 2 cells in the lung in the absence of sustained inflammatory responses or cell death, and showed preferential epithelial cell uptake in in vitro co-cultures. Further, MSN-AVI particles demonstrated uniform particle distribution in mouse lungs and slow clearance rates. Thus, we provide evidence that avidin functionalized MSNs (MSN-AVI) have the potential to serve as versatile biocompatible drug carriers for lung-specific drug delivery.Mesoporous silica nanoparticles (MSNs) exhibit unique drug delivery properties and are thus considered as promising candidates for next generation nano-medicines. In particular, inhalation into the lungs represents a direct, non-invasive delivery route for treating lung disease. To assess MSN biocompatibility in the lung, we investigated the bioresponse of avidin-coated MSNs (MSN-AVI), as well as aminated (uncoated) MSNs, after direct application into the lungs of mice. We quantified MSN distribution, clearance rate, cell-specific uptake, and inflammatory responses to MSNs within one week after instillation. We show that amine-functionalized (MSN-NH2) particles are not taken up by lung epithelial cells, but induced a prolonged inflammatory response in the lung and macrophage cell death. In contrast, MSN-AVI co-localized with alveolar epithelial type 1 and type 2 cells in the lung in the absence of sustained inflammatory responses or cell death, and showed preferential epithelial cell uptake in in vitro co-cultures. Further, MSN-AVI particles demonstrated uniform particle distribution in mouse lungs and slow clearance rates. Thus, we provide evidence that avidin functionalized MSNs (MSN-AVI) have the potential to serve as versatile biocompatible drug carriers for lung-specific drug delivery. Electronic supplementary information (ESI) available: Synthesis of MSN particles. Characterisation of MSN particles (Fig. S1 and S2), DLS measurements of MSNs over time, lymphocyte and PMN cell count after MSN exposure (Fig. S3). Toxicity in BAL cytospins controls, phalloidin staining on BAL cytospins of MSN-NH2 exposed mice (Fig. S4), nanoparticle distribution in lung cryo-slices of Balb/c mice exposed to 100 μg MSNs (Fig. S5). Balb/c mice cryo-slices exposed to MSN-AVI for 1 or 7 days, co-stained with alveolar epithelial cell type 1 marker or with alveolar epithelial cell type 2 marker (Fig. S6), DiD selective labeling in a co-culture set-up (Fig. S7). See DOI: 10.1039/c5nr04119h

  4. Risk factors for disseminated intravascular coagulation in patients with lung cancer.

    PubMed

    Nakano, Kentaro; Sugiyama, Kumiya; Satoh, Hideyuki; Shiromori, Sadaaki; Sugitate, Kei; Arifuku, Hajime; Yoshida, Naruo; Watanabe, Hiroyoshi; Tokita, Shingo; Wakayama, Tomoshige; Tatewaki, Masamitsu; Souma, Ryosuke; Koyama, Kenya; Hirata, Hirokuni; Fukushima, Yasutsugu

    2018-05-31

    The mortality rate from disseminated intravascular coagulation (DIC) is higher in patients with lung cancer than in non-lung cancer patients. Moreover, the prevalence of DIC varies among the pathologic types of lung cancer. This study analyzed the relationship between coagulation factors and the pathologic types of lung cancer. Twenty-six patients with progressive, inoperable stage IIB or higher lung cancer (20 men, 6 women; mean age 71 years; 11 Adeno, 10 squamous cell carcinoma, and 5 small cell carcinoma) and five healthy volunteers without respiratory disease (3 men, 2 women; mean age 72 years) were enrolled in the study. Blood samples were collected at lung cancer diagnosis, before treatment. White blood cell count, platelet count, serum C-reactive protein, fibrin/fibrinogen degradation products, fibrinogen, thrombin-antithrombin complex, and D-dimer levels differed significantly between lung cancer patients and the control group, but not among the pathologic types of lung cancer. Thrombomodulin levels were significantly higher in patients with Adeno and squamous cell carcinoma than in those with small cell carcinoma (P < 0.05 and P < 0.01, respectively). Antithrombin levels were significantly lower in patients with squamous cell carcinoma than in those with Adeno (P < 0.05). Coagulation disorders may develop secondary to chronic inflammation in patients with progressive lung cancer. DIC in lung cancer may be attributed to changes in anticoagulation factors, such as thrombomodulin and antithrombin, but not in other coagulation factors. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  5. Activation and overexpression of Sirt1 attenuates lung fibrosis via P300.

    PubMed

    Zeng, Zhilin; Cheng, Sheng; Chen, Huilong; Li, Qinghai; Hu, Yinan; Wang, Qi; Zhu, Xianying; Wang, Jun

    2017-05-13

    Persistent fibroblast activation is a predominant feature of idiopathic pulmonary fibrosis (IPF), but the transcriptional and epigenetic mechanisms controlling this process are not well understood. Silent information regulator type-1 (Sirt1) is a member of class Ⅲ histone deacetylase with important regulatory roles in a variety of pathophysiologic processes, but its role in fibrotic lung diseases is not clearly elucidated. Sirt1 expression in lung tissues of IPF patients and in a mouse model of bleomycin (BLM)-induced lung fibrosis were evaluated by immunofluorescence. The function of Sirt1 in BLM-induced lung fibrosis in the mouse model or transforming growth factor β1 (TGF-β1)-mediated lung fibroblast cellular model was investigated by Sirt1 activation, overexpression and knockdown of Sirt1. Finally, the involvement of p300 signaling pathways was assessed. In this study, we found up-regulation of Sirt1 in BLM-induced lung fibrosis, as well as in the lungs of IPF patients, including in the aggregated pulmonary fibroblasts of fibrotic foci. Activation or overexpression of Sirt1 attenuated TGF-β1-mediated lung fibroblast differentiation and activation and diminished the severity of experimental lung fibrosis in mice. Whereas knockdown of Sirt1 promoted the pro-fibrogenic activity of TGF-β1 in lung fibroblasts. A potential mechanism for the role of Sirt1 in lung fibrosis was through regulating the expression of p300. Thus, we characterized Sirt1 as an important regulator of lung fibrosis and provides a proof of principle for activation or overexpression of Sirt1 as a potential novel therapeutic strategy for IPF. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Differential Expression of CHL1 Gene during Development of Major Human Cancers

    PubMed Central

    Senchenko, Vera N.; Krasnov, George S.; Dmitriev, Alexey A.; Kudryavtseva, Anna V.; Anedchenko, Ekaterina A.; Braga, Eleonora A.; Pronina, Irina V.; Kondratieva, Tatiana T.; Ivanov, Sergey V.; Zabarovsky, Eugene R.; Lerman, Michael I.

    2011-01-01

    Background CHL1 gene (also known as CALL) on 3p26.3 encodes a one-pass trans-membrane cell adhesion molecule (CAM). Previously CAMs of this type, including L1, were shown to be involved in cancer growth and metastasis. Methodology/Principal Findings We used Clontech Cancer Profiling Arrays (19 different types of cancers, 395 samples) to analyze expression of the CHL1 gene. The results were further validated by RT-qPCR for breast, renal and lung cancer. Cancer Profiling Arrays revealed differential expression of the gene: down-regulation/silencing in a majority of primary tumors and up-regulation associated with invasive/metastatic growth. Frequent down-regulation (>40% of cases) was detected in 11 types of cancer (breast, kidney, rectum, colon, thyroid, stomach, skin, small intestine, bladder, vulva and pancreatic cancer) and frequent up-regulation (>40% of cases) – in 5 types (lung, ovary, uterus, liver and trachea) of cancer. Using real-time quantitative PCR (RT-qPCR) we found that CHL1 expression was decreased in 61% of breast, 60% of lung, 87% of clear cell and 89% papillary renal cancer specimens (P<0.03 for all the cases). There was a higher frequency of CHL1 mRNA decrease in lung squamous cell carcinoma compared to adenocarcinoma (81% vs. 38%, P = 0.02) without association with tumor progression. Conclusions/Significance Our results suggested that CHL1 is involved in the development of different human cancers. Initially, during the primary tumor growth CHL1 could act as a putative tumor suppressor and is silenced to facilitate in situ tumor growth for 11 cancer types. We also suggested that re-expression of the gene on the edge of tumor mass might promote local invasive growth and enable further metastatic spread in ovary, colon and breast cancer. Our data also supported the role of CHL1 as a potentially novel specific biomarker in the early pathogenesis of two major histological types of renal cancer. PMID:21408220

  7. Pleiotropic associations of risk variants identified for other cancers with lung cancer risk: the PAGE and TRICL consortia.

    PubMed

    Park, S Lani; Fesinmeyer, Megan D; Timofeeva, Maria; Caberto, Christian P; Kocarnik, Jonathan M; Han, Younghun; Love, Shelly-Ann; Young, Alicia; Dumitrescu, Logan; Lin, Yi; Goodloe, Robert; Wilkens, Lynne R; Hindorff, Lucia; Fowke, Jay H; Carty, Cara; Buyske, Steven; Schumacher, Frederick R; Butler, Anne; Dilks, Holli; Deelman, Ewa; Cote, Michele L; Chen, Wei; Pande, Mala; Christiani, David C; Field, John K; Bickebller, Heike; Risch, Angela; Heinrich, Joachim; Brennan, Paul; Wang, Yufei; Eisen, Timothy; Houlston, Richard S; Thun, Michael; Albanes, Demetrius; Caporaso, Neil; Peters, Ulrike; North, Kari E; Heiss, Gerardo; Crawford, Dana C; Bush, William S; Haiman, Christopher A; Landi, Maria Teresa; Hung, Rayjean J; Kooperberg, Charles; Amos, Christopher I; Le Marchand, Loïc; Cheng, Iona

    2014-04-01

    Genome-wide association studies have identified hundreds of genetic variants associated with specific cancers. A few of these risk regions have been associated with more than one cancer site; however, a systematic evaluation of the associations between risk variants for other cancers and lung cancer risk has yet to be performed. We included 18023 patients with lung cancer and 60543 control subjects from two consortia, Population Architecture using Genomics and Epidemiology (PAGE) and Transdisciplinary Research in Cancer of the Lung (TRICL). We examined 165 single-nucleotide polymorphisms (SNPs) that were previously associated with at least one of 16 non-lung cancer sites. Study-specific logistic regression results underwent meta-analysis, and associations were also examined by race/ethnicity, histological cell type, sex, and smoking status. A Bonferroni-corrected P value of 2.5×10(-5) was used to assign statistical significance. The breast cancer SNP LSP1 rs3817198 was associated with an increased risk of lung cancer (odds ratio [OR] = 1.10; 95% confidence interval [CI] = 1.05 to 1.14; P = 2.8×10(-6)). This association was strongest for women with adenocarcinoma (P = 1.2×10(-4)) and not statistically significant in men (P = .14) with this cell type (P het by sex = .10). Two glioma risk variants, TERT rs2853676 and CDKN2BAS1 rs4977756, which are located in regions previously associated with lung cancer, were associated with increased risk of adenocarcinoma (OR = 1.16; 95% CI = 1.10 to 1.22; P = 1.1×10(-8)) and squamous cell carcinoma (OR = 1.13; CI = 1.07 to 1.19; P = 2.5×10(-5)), respectively. Our findings demonstrate a novel pleiotropic association between the breast cancer LSP1 risk region marked by variant rs3817198 and lung cancer risk.

  8. TGFβ1-induced down-regulation of microRNA-138 contributes to epithelial-mesenchymal transition in primary lung cancer cells.

    PubMed

    Zhang, Fang; Li, Tiepeng; Han, Lu; Qin, Peng; Wu, Zhao; Xu, Benling; Gao, Quanli; Song, Yongping

    2018-02-19

    The existence of cancer stem cells within the tumor could lead to cancer therapy resistance. TGFβ1 is considered as one of the most powerful players in the generation of CSCs through induction of epithelial-mesenchymal transition in different types of cancer including lung cancer, however, the detailed mechanisms by which TGFβ1 contribute to EMT induction and CSC maintenance remains unclear. Here, we showed primary lung cancer cells treated by TGFβ1 exhibit mesenchymal features, including morphology and expression of mesenchymal marker in a time-dependent manner. We also observed long-term TGFβ1 exposure leads to an enrichment of a sub-population of CD44 + CD90 + cells which represent CSCs in lung cancer cells. Moreover, the differential expression microRNAs between CSCs and non-CSCs were identified using next-generation sequencing to screen key miRNAs which might contribute to TGFβ1-induced EMT and CSCs generation. Among those differentially expressed miRNAs, the expression of microRNA-138 was time-dependently down-regulated by TGFβ1 treatment. We further demonstrated primary lung cancer cells, in which we knockdown the expression of miR-138, exhibit mesenchymal phenotypes and stem cell properties. Taken together, these findings indicate TGFβ1-induced down-regulation of microRNA-138 contributes to EMT in primary lung cancer cells, and suggest that miR-138 might serve as a potential therapeutic target. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruano-Ravina, Alberto, E-mail: alberto.ruano@usc.es; CIBER de Epidemiología y Salud Pública CIBERESP, Barcelona; García-Lavandeira, José Antonio

    We aim to assess the relationship between leisure time activities related to exposure to carcinogenic substances and lung cancer risk in a hospital-based case-control study performed in never smokers. We included never smoking cases with anatomopathologically confirmed lung cancer and never smoking controls undergoing trivial surgery, at 8 Spanish hospitals. The study was conducted between January 2011 and June 2013. Participants were older than 30 and had no previous neoplasms. All were personally interviewed focusing on lifestyle, environmental tobacco smoke exposure, occupational history and leisure time activities (including duration of such activities). Results were analyzed through logistic regression and adjustedmore » also by residential radon and education level. We included 513 never smokers, 191 cases and 322 controls. The OR for those performing the studied leisure time activities was 1.43 (95%CI 0.78–2.61). When we restricted the analysis to those performing do-it-yourself activities for more than 10 years the OR was 2.21 (95%CI 0.93–5.27). Environmental tobacco smoke exposure did not modify this association. The effect for the different lung cancer histological types was very close to significance for adenocarcinoma but only when these activities were performed for more than 10 years. We encourage health professionals to recommend protective measures for those individuals while performing these hobbies to reduce the risk of lung cancer. - Highlights: • Some leisure time activities are associated with the exposure to carcinogenic substances. • These activities are model-making, painting (artistic or not), furniture refinishing or wood working. • Few studies have assessed lung cancer risk due to these hobbies and none in never-smokers. • Leisure activities related to exposure to carcinogenic substances present higher lung cancer risk. • The risk is higher when these activities are performed for more than 10 years.« less

  10. Combining Cell Type-Restricted Adenoviral Targeting with Immunostaining and Flow Cytometry to Identify Cells-of-Origin of Lung Cancer.

    PubMed

    Best, Sarah A; Kersbergen, Ariena; Asselin-Labat, Marie-Liesse; Sutherland, Kate D

    2018-01-01

    Lung cancers display considerable intertumoral heterogeneity, leading to the classification of distinct tumor subtypes. Our understanding of the genetic aberrations that underlie tumor subtypes has been greatly enhanced by recent genomic sequencing studies and state-of-the-art gene targeting technologies, highlighting evidence that distinct lung cancer subtypes may be derived from different "cells-of-origin". Here, we describe the intra-tracheal delivery of cell type-restricted Ad5-Cre viruses into the lungs of adult mice, combined with immunohistochemical and flow cytometry strategies for the detection of lung cancer-initiating cells in vivo.

  11. A review on the effects of current chemotherapy drugs and natural agents in treating non–small cell lung cancer

    PubMed Central

    Huang, Chih-Yang; Ju, Da-Tong; Chang, Chih-Fen; Muralidhar Reddy, P.; Velmurugan, Bharath Kumar

    2017-01-01

    Lung cancer is the leading cause of cancer deaths worldwide, and this makes it an attractive disease to review and possibly improve therapeutic treatment options. Surgery, radiation, chemotherapy, targeted treatments, and immunotherapy separate or in combination are commonly used to treat lung cancer. However, these treatment types may cause different side effects, and chemotherapy-based regimens appear to have reached a therapeutic plateau. Hence, effective, better-tolerated treatments are needed to address and hopefully overcome this conundrum. Recent advances have enabled biologists to better investigate the potential use of natural compounds for the treatment or control of various cancerous diseases. For the past 30 years, natural compounds have been the pillar of chemotherapy. However, only a few compounds have been tested in cancerous patients and only partial evidence is available regarding their clinical effectiveness. Herein, we review the research on using current chemotherapy drugs and natural compounds (Wortmannin and Roscovitine, Cordyceps militaris, Resveratrol, OSU03013, Myricetin, Berberine, Antroquinonol) and the beneficial effects they have on various types of cancers including non-small cell lung cancer. Based on this literature review, we propose the use of these compounds along with chemotherapy drugs in patients with advanced and/or refractory solid tumours. PMID:29130448

  12. Inhibition of Chlorine-Induced Lung Injury by the Type 4 Phosphodiesterase Inhibitor Rolipram

    PubMed Central

    Chang, Weiyuan; Chen, Jing; Schlueter, Connie F.; Rando, Roy J.; Pathak, Yashwant V.; Hoyle, Gary W.

    2012-01-01

    Chlorine is a highly toxic respiratory irritant that when inhaled causes epithelial cell injury, alveolar-capillary barrier disruption, airway hyperreactivity, inflammation, and pulmonary edema. Chlorine is considered a chemical threat agent, and its release through accidental or intentional means has the potential to result in mass casualties from acute lung injury. The type 4 phosphodiesterase inhibitor rolipram was investigated as a rescue treatment for chlorine-induced lung injury. Rolipram inhibits degradation of the intracellular signaling molecule cyclic AMP. Potential beneficial effects of increased cyclic AMP levels include inhibition of pulmonary edema, inflammation, and airway hyperreactivity. Mice were exposed to chlorine (whole body exposure, 228–270 ppm for 1 h) and were treated with rolipram by intraperitoneal, intranasal, or intramuscular (either aqueous or nanoemulsion formulation) delivery starting 1 h after exposure. Rolipram administered intraperitoneally or intranasally inhibited chlorine-induced pulmonary edema. Minor or no effects were observed on lavage fluid IgM (indicative of plasma protein leakage), KC (Cxcl1, neutrophil chemoattractant), and neutrophils. All routes of administration inhibited chlorine-induced airway hyperreactivity assessed 1 day after exposure. The results of the study suggest that rolipram may be an effective rescue treatment for chlorine-induced lung injury and that both systemic and targeted administration to the respiratory tract were effective routes of delivery. PMID:22763362

  13. Targeting DDX3 with a small molecule inhibitor for lung cancer therapy.

    PubMed

    Bol, Guus M; Vesuna, Farhad; Xie, Min; Zeng, Jing; Aziz, Khaled; Gandhi, Nishant; Levine, Anne; Irving, Ashley; Korz, Dorian; Tantravedi, Saritha; Heerma van Voss, Marise R; Gabrielson, Kathleen; Bordt, Evan A; Polster, Brian M; Cope, Leslie; van der Groep, Petra; Kondaskar, Atul; Rudek, Michelle A; Hosmane, Ramachandra S; van der Wall, Elsken; van Diest, Paul J; Tran, Phuoc T; Raman, Venu

    2015-05-01

    Lung cancer is the most common malignancy worldwide and is a focus for developing targeted therapies due to its refractory nature to current treatment. We identified a RNA helicase, DDX3, which is overexpressed in many cancer types including lung cancer and is associated with lower survival in lung cancer patients. We designed a first-in-class small molecule inhibitor, RK-33, which binds to DDX3 and abrogates its activity. Inhibition of DDX3 by RK-33 caused G1 cell cycle arrest, induced apoptosis, and promoted radiation sensitization in DDX3-overexpressing cells. Importantly, RK-33 in combination with radiation induced tumor regression in multiple mouse models of lung cancer. Mechanistically, loss of DDX3 function either by shRNA or by RK-33 impaired Wnt signaling through disruption of the DDX3-β-catenin axis and inhibited non-homologous end joining-the major DNA repair pathway in mammalian somatic cells. Overall, inhibition of DDX3 by RK-33 promotes tumor regression, thus providing a compelling argument to develop DDX3 inhibitors for lung cancer therapy. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.

  14. Deflation-activated receptors, not classical inflation-activated receptors, mediate the Hering-Breuer deflation reflex.

    PubMed

    Yu, Jerry

    2016-11-01

    Many airway sensory units respond to both lung inflation and deflation. Whether those responses to opposite stimuli come from one sensor (one-sensor theory) or more than one sensor (multiple-sensor theory) is debatable. One-sensor theory is commonly presumed in the literature. This article proposes a multiple-sensor theory in which a sensory unit contains different sensors for sensing different forces. Two major types of mechanical sensors operate in the lung: inflation- and deflation-activated receptors (DARs). Inflation-activated sensors can be further divided into slowly adapting receptors (SARs) and rapidly adapting receptors (RARs). Many SAR and RAR units also respond to lung deflation because they contain DARs. Pure DARs, which respond to lung deflation only, are rare in large animals but are easily identified in small animals. Lung deflation-induced reflex effects previously attributed to RARs should be assigned to DARs (including pure DARs and DARs associated with SARs and RARs) if the multiple-sensor theory is accepted. Thus, based on the information, it is proposed that activation of DARs can attenuate lung deflation, shorten expiratory time, increase respiratory rate, evoke inspiration, and cause airway secretion and dyspnea.

  15. In vitro modeling to determine mutation specificity of EGFR tyrosine kinase inhibitors against clinically relevant EGFR mutants in non-small-cell lung cancer

    PubMed Central

    Yasuda, Hiroyuki; Hamamoto, Junko; Oashi, Ayano; Ishioka, Kota; Arai, Daisuke; Nukaga, Shigenari; Miyawaki, Masayoshi; Kawada, Ichiro; Naoki, Katsuhiko; Costa, Daniel B.; Kobayashi, Susumu S.; Betsuyaku, Tomoko; Soejima, Kenzo

    2015-01-01

    EGFR mutated lung cancer accounts for a significant subgroup of non-small-cell lung cancer (NSCLC). Over the last decade, multiple EGFR tyrosine kinase inhibitors (EGFR-TKIs) have been developed to target mutated EGFR. However, there is little information regarding mutation specific potency of EGFR-TKIs against various types of EGFR mutations. The purpose of this study is to establish an in vitro model to determine the “therapeutic window” of EGFR-TKIs against various types of EGFR mutations, including EGFR exon 20 insertion mutations. The potency of 1st (erlotinib), 2nd (afatinib) and 3rd (osimertinib and rociletinib) generation EGFR-TKIs was compared in vitro for human lung cancer cell lines and Ba/F3 cells, which exogenously express mutated or wild type EGFR. An in vitro model of mutation specificity was created by calculating the ratio of IC50 values between mutated and wild type EGFR. The in vitro model identified a wide therapeutic window of afatinib for exon 19 deletions and L858R and of osimertinib and rociletinib for T790M positive mutations. The results obtained with our models matched well with previously reported preclinical and clinical data. Interestingly, for EGFR exon 20 insertion mutations, most of which are known to be resistant to 1st and 2nd generation EGFR-TKIS, osimertinib was potent and presented a wide therapeutic window. To our knowledge, this is the first report that has identified the therapeutic window of osimertinib for EGFR exon 20 insertion mutations. In conclusion, this model will provide a preclinical rationale for proper selection of EGFR-TKIs against clinically-relevant EGFR mutations. PMID:26515464

  16. [Occupational lung cancer. A comparison between humans and experimental animals].

    PubMed

    Adachi, S; Takemoto, K

    1987-09-01

    Many epidemiological and experimental studies have suggested that the respiratory tract is one of the most sensitive organs to environmental carcinogens. Nevertheless there is little evidence to determine the relationship between a specific environmental carcinogen and a cell type of lung cancer, because the cell types of lung cancer and their relative frequencies are highly complex compared with those of other organs and tissues. In the present paper, occupational lung-cancer characteristics, which are the clearest in the relation between cause and effect in human lung cancers, were reviewed in comparison with the results of animal experiments concerned with occupational lung carcinogens. Through accumulation of histopathological examinations of the lung cancer cases, the following relationships between cause and cell type were conjectured: chromium and squamous cell carcinoma; asbestos and adenocarcinoma; nickel and squamous cell carcinoma; beryllium and small cell carcinoma; bis (chloromethyl) ether and small cell carcinoma; mustard gas and squamous cell or small cell carcinoma; vinyl chloride and large cell or adenocarcinoma; radionuclides and small cell carcinoma. The relation pertaining to arsenic, benzotrichloride and tar could not be conjectured because of insufficient cases and information in the histological diagnosis. On the other hand, the carcinogenicity of these substances in occupational exposure has been confirmed by animal experiments administered intratracheally or by inhalation studies under relatively higher concentration. As a result of recent refinements of inhalation study, all-day and life-span exposure to extremely low concentrations, such as microgram/m3 orders, of certain substances has been possible. The characteristics of lung tumors occurring in these animals are rather different from those of human. For example, in mouse, almost all of the malignant lung tumors developed by carcinogens are adenocarcinomas and it is rare to find the squamous cell carcinoma. Moreover, small cell carcinoma and large cell carcinoma have not known to occur in the lungs of rats and mice. Therefore, future research should focus elucidating the specific relationship between cause and cell type of human lung cancer by means of animal experiments on lung cancer that give attention to the specificities of each experimental animal and the origin of the resultant lung tumor.

  17. Recommendations for dose calculations of lung cancer treatment plans treated with stereotactic ablative body radiotherapy (SABR)

    NASA Astrophysics Data System (ADS)

    Devpura, S.; Siddiqui, M. S.; Chen, D.; Liu, D.; Li, H.; Kumar, S.; Gordon, J.; Ajlouni, M.; Movsas, B.; Chetty, I. J.

    2014-03-01

    The purpose of this study was to systematically evaluate dose distributions computed with 5 different dose algorithms for patients with lung cancers treated using stereotactic ablative body radiotherapy (SABR). Treatment plans for 133 lung cancer patients, initially computed with a 1D-pencil beam (equivalent-path-length, EPL-1D) algorithm, were recalculated with 4 other algorithms commissioned for treatment planning, including 3-D pencil-beam (EPL-3D), anisotropic analytical algorithm (AAA), collapsed cone convolution superposition (CCC), and Monte Carlo (MC). The plan prescription dose was 48 Gy in 4 fractions normalized to the 95% isodose line. Tumors were classified according to location: peripheral tumors surrounded by lung (lung-island, N=39), peripheral tumors attached to the rib-cage or chest wall (lung-wall, N=44), and centrally-located tumors (lung-central, N=50). Relative to the EPL-1D algorithm, PTV D95 and mean dose values computed with the other 4 algorithms were lowest for "lung-island" tumors with smallest field sizes (3-5 cm). On the other hand, the smallest differences were noted for lung-central tumors treated with largest field widths (7-10 cm). Amongst all locations, dose distribution differences were most strongly correlated with tumor size for lung-island tumors. For most cases, convolution/superposition and MC algorithms were in good agreement. Mean lung dose (MLD) values computed with the EPL-1D algorithm were highly correlated with that of the other algorithms (correlation coefficient =0.99). The MLD values were found to be ~10% lower for small lung-island tumors with the model-based (conv/superposition and MC) vs. the correction-based (pencil-beam) algorithms with the model-based algorithms predicting greater low dose spread within the lungs. This study suggests that pencil beam algorithms should be avoided for lung SABR planning. For the most challenging cases, small tumors surrounded entirely by lung tissue (lung-island type), a Monte-Carlo-based algorithm may be warranted.

  18. EML4-ALK-positive lung adenocarcinoma presenting an unusual metastatic pattern in a 29-year-old woman who is alive and well in her third year follow up:A case report.

    PubMed

    Tokat, Fatma; Zeren, Handan; Barut, Pinar; Tansan, Sualp; Ince, Umit

    2017-01-01

    Non-small cell lung cancer (NSCLC) is a frequent tumor entity with high mortality. Although several newly discovered chromosomal translocations and mutations opened new horizons for targeted therapy, literature still lacks large series of NSCLC with chromosomal abberations and their correlations with histological and clinical features. We present a case of echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK) translocation positive adenocarcinoma of the lung with an unusual metastatic pattern in a 29-year-old young woman. Young adult non-smoker female patients with an unexplained pleural effusion and signs of metastatic disease should alert the physicians straight away for all types of malignancies including lung cancer. Any skin lesions should be evaluated carefully, biopsies should be done to exclude metastasis in urgency. On the other hand, an uncommon clinical presentation of a lung cancer requires corresponding molecular testing rapidly in order to offer the best treatment option.

  19. [The effectiveness of magnetic therapy of grade I-II radiation pneumofibrosis].

    PubMed

    Grushina, T I

    2014-01-01

    Radiation therapy of malignant tumours of the chest organs may result in radiation damage of the lungs. To prevent and reduce radiation-induced lung injuries, new types of radiation therapy have been developed, a number of various modifiers investigated, the methods of pharmacotherapy and physiotherapy proposed. The present study involved 37 patients presenting with radiation pneumofibrosis, including 7 ones with lung cancer and 30 patients with breast cancer. Based on the results of clinical, radiographic, and functional investigations, grade 1 and II pneumofibrosis was diagnosed in 20 and 17 patients respectively. After the application of an alternating magnetic field during 15 days, all the patients experience the overall regression of clinical symptoms and disorders of respiratory biomechanics. However, it seems premature to draw a definitive conclusion about the effectiveness of magnetic therapy of grade 1 and II radiation pneumofibrosis before the extensive in-depth investigations are carried out based on a large clinical material including the results of long-term follow-up studies and continuous monitoring.

  20. Update on the Mechanisms of Pulmonary Inflammation and Oxidative Imbalance Induced by Exercise.

    PubMed

    Araneda, O F; Carbonell, T; Tuesta, M

    2016-01-01

    The mechanisms involved in the generation of oxidative damage and lung inflammation induced by physical exercise are described. Changes in lung function induced by exercise involve cooling of the airways, fluid evaporation of the epithelial surface, increased contact with polluting substances, and activation of the local and systemic inflammatory response. The present work includes evidence obtained from the different types of exercise in terms of duration and intensity, the effect of both acute performance and chronic performance, and the influence of special conditions such as cold weather, high altitude, and polluted environments. Levels of prooxidants, antioxidants, oxidative damage to biomolecules, and cellularity, as well as levels of soluble mediators of the inflammatory response and its effects on tissues, are described in samples of lung origin. These samples include tissue homogenates, induced sputum, bronchoalveolar lavage fluid, biopsies, and exhaled breath condensate obtained in experimental protocols conducted on animal and human models. Finally, the need to simultaneously explore the oxidative/inflammatory parameters to establish the interrelation between them is highlighted.

  1. Update on the Mechanisms of Pulmonary Inflammation and Oxidative Imbalance Induced by Exercise

    PubMed Central

    Araneda, O. F.; Carbonell, T.; Tuesta, M.

    2016-01-01

    The mechanisms involved in the generation of oxidative damage and lung inflammation induced by physical exercise are described. Changes in lung function induced by exercise involve cooling of the airways, fluid evaporation of the epithelial surface, increased contact with polluting substances, and activation of the local and systemic inflammatory response. The present work includes evidence obtained from the different types of exercise in terms of duration and intensity, the effect of both acute performance and chronic performance, and the influence of special conditions such as cold weather, high altitude, and polluted environments. Levels of prooxidants, antioxidants, oxidative damage to biomolecules, and cellularity, as well as levels of soluble mediators of the inflammatory response and its effects on tissues, are described in samples of lung origin. These samples include tissue homogenates, induced sputum, bronchoalveolar lavage fluid, biopsies, and exhaled breath condensate obtained in experimental protocols conducted on animal and human models. Finally, the need to simultaneously explore the oxidative/inflammatory parameters to establish the interrelation between them is highlighted. PMID:26881028

  2. Epithelial Cell–Derived Secreted and Transmembrane 1a Signals to Activated Neutrophils during Pneumococcal Pneumonia

    PubMed Central

    Kamata, Hirofumi; Yamamoto, Kazuko; Wasserman, Gregory A.; Zabinski, Mary C.; Yuen, Constance K.; Lung, Wing Yi; Gower, Adam C.; Belkina, Anna C.; Ramirez, Maria I.; Deng, Jane C.; Quinton, Lee J.; Jones, Matthew R.

    2016-01-01

    Airway epithelial cell responses are critical to the outcome of lung infection. In this study, we aimed to identify unique contributions of epithelial cells during lung infection. To differentiate genes induced selectively in epithelial cells during pneumonia, we compared genome-wide expression profiles from three sorted cell populations: epithelial cells from uninfected mouse lungs, epithelial cells from mouse lungs with pneumococcal pneumonia, and nonepithelial cells from those same infected lungs. Of 1,166 transcripts that were more abundant in epithelial cells from infected lungs compared with nonepithelial cells from the same lungs or from epithelial cells of uninfected lungs, 32 genes were identified as highly expressed secreted products. Especially strong signals included two related secreted and transmembrane (Sectm) 1 genes, Sectm1a and Sectm1b. Refinement of sorting strategies suggested that both Sectm1 products were induced predominantly in conducting airway epithelial cells. Sectm1 was induced during the early stages of pneumococcal pneumonia, and mutation of NF-κB RelA in epithelial cells did not diminish its expression. Instead, type I IFN signaling was necessary and sufficient for Sectm1 induction in lung epithelial cells, mediated by signal transducer and activator of transcription 1. For target cells, Sectm1a bound to myeloid cells preferentially, in particular Ly6GbrightCD11bbright neutrophils in the infected lung. In contrast, Sectm1a did not bind to neutrophils from uninfected lungs. Sectm1a increased expression of the neutrophil-attracting chemokine CXCL2 by neutrophils from the infected lung. We propose that Sectm1a is an epithelial product that sustains a positive feedback loop amplifying neutrophilic inflammation during pneumococcal pneumonia. PMID:27064756

  3. Effects of Bisphenol A Metabolite 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene on Lung Function and Type 2 Pulmonary Alveolar Epithelial Cell Growth

    PubMed Central

    Liu, Shing-Hwa; Su, Chin-Chuan; Lee, Kuan-I; Chen, Ya-Wen

    2016-01-01

    Bisphenol A (BPA) is recognized as a major pollutant worldwide. 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP) is a major active metabolite of BPA. The epidemiological and animal studies have reported that BPA is harmful to lung function. The role of MBP in lung dysfunction after BPA exposure still remains unclear. This study investigated whether MBP would induce lung alveolar cell damage and evaluated the role of MBP in the BPA exposure-induced lung dysfunction. An in vitro type 2 alveolar epithelial cell (L2) model and an ex vivo isolated reperfused rat lung model were used to determine the effects of BPA or MBP on cell growth and lung function. MBP, but not BPA, dose-dependently increased the mean artery pressure (Pa), pulmonary capillary pressure (Pc), pulmonary capillary filtration coefficient (Kfc), and wet/dry weight ratio in isolated reperfused rat lungs. MBP significantly reduced cell viability and induced caspases-3/7 cleavage and apoptosis and increased AMP-activated protein kinas (AMPK) phosphorylation and endoplasmic reticulum (ER) stress-related molecules expression in L2 cells, which could be reversed by AMPK-siRNA transfection. These findings demonstrated for the first time that MBP exposure induced type 2 alveolar cell apoptosis and lung dysfunction through an AMPK-regulated ER stress signaling pathway. PMID:27982077

  4. Effects of Bisphenol A Metabolite 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene on Lung Function and Type 2 Pulmonary Alveolar Epithelial Cell Growth.

    PubMed

    Liu, Shing-Hwa; Su, Chin-Chuan; Lee, Kuan-I; Chen, Ya-Wen

    2016-12-16

    Bisphenol A (BPA) is recognized as a major pollutant worldwide. 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP) is a major active metabolite of BPA. The epidemiological and animal studies have reported that BPA is harmful to lung function. The role of MBP in lung dysfunction after BPA exposure still remains unclear. This study investigated whether MBP would induce lung alveolar cell damage and evaluated the role of MBP in the BPA exposure-induced lung dysfunction. An in vitro type 2 alveolar epithelial cell (L2) model and an ex vivo isolated reperfused rat lung model were used to determine the effects of BPA or MBP on cell growth and lung function. MBP, but not BPA, dose-dependently increased the mean artery pressure (Pa), pulmonary capillary pressure (Pc), pulmonary capillary filtration coefficient (K fc ), and wet/dry weight ratio in isolated reperfused rat lungs. MBP significantly reduced cell viability and induced caspases-3/7 cleavage and apoptosis and increased AMP-activated protein kinas (AMPK) phosphorylation and endoplasmic reticulum (ER) stress-related molecules expression in L2 cells, which could be reversed by AMPK-siRNA transfection. These findings demonstrated for the first time that MBP exposure induced type 2 alveolar cell apoptosis and lung dysfunction through an AMPK-regulated ER stress signaling pathway.

  5. Lung Cancer—Health Professional Version

    Cancer.gov

    Lung cancer appears in two main types. Non-small cell (squamous cell carcinoma, large cell carcinoma, and adenocarcinoma), and small cell lung cancer (oat cell cancer and combined small cell carcinoma). Find evidence-based information on lung cancer treatment, causes and prevention, research, screening, and statistics.

  6. Relationship between solitary pulmonary nodule lung cancer and CT image features based on gradual clustering

    NASA Astrophysics Data System (ADS)

    Zhang, Weipeng

    2017-06-01

    The relationship between the medical characteristics of lung cancers and computer tomography (CT) images are explored so as to improve the early diagnosis rate of lung cancers. This research collected CT images of patients with solitary pulmonary nodule lung cancer, and used gradual clustering methodology to classify them. Preliminary classifications were made, followed by continuous modification and iteration to determine the optimal condensation point, until iteration stability was achieved. Reasonable classification results were obtained. the clustering results fell into 3 categories. The first type of patients was mostly female, with ages between 50 and 65 years. CT images of solitary pulmonary nodule lung cancer for this group contain complete lobulation and burr, with pleural indentation; The second type of patients was mostly male with ages between 50 and 80 years. CT images of solitary pulmonary nodule lung cancer for this group contain complete lobulation and burr, but with no pleural indentation; The third type of patients was also mostly male with ages between 50 and 80 years. CT images for this group showed no abnormalities. the application of gradual clustering methodology can scientifically classify CT image features of patients with lung cancer in the initial lesion stage. These findings provide the basis for early detection and treatment of malignant lesions in patients with lung cancer.

  7. Risk of lung cancer associated with domestic use of coal in Xuanwei, China: retrospective cohort study

    PubMed Central

    Chapman, Robert S; Silverman, Debra T; He, Xinghzhou; Hu, Wei; Vermeulen, Roel; Ning, Bofu; Fraumeni, Joseph F; Rothman, Nathaniel; Lan, Qing

    2012-01-01

    Objective To estimate the risk of lung cancer associated with the use of different types of coal for household cooking and heating. Setting Xuanwei County, Yunnan Province, China. Design Retrospective cohort study (follow-up 1976-96) comparing mortality from lung cancer between lifelong users of “smoky coal” (bituminous) and “smokeless coal” (anthracite). Participants 27 310 individuals using smoky coal and 9962 individuals using smokeless coal during their entire life. Main outcome measures Primary outcomes were absolute and relative risk of death from lung cancer among users of different types of coal. Unadjusted survival analysis was used to estimate the absolute risk of lung cancer, while Cox regression models compared mortality hazards for lung cancer between smoky and smokeless coal users. Results Lung cancer mortality was substantially higher among users of smoky coal than users of smokeless coal. The absolute risks of lung cancer death before 70 years of age for men and women using smoky coal were 18% and 20%, respectively, compared with less than 0.5% among smokeless coal users of both sexes. Lung cancer alone accounted for about 40% of all deaths before age 60 among individuals using smoky coal. Compared with smokeless coal, use of smoky coal was associated with an increased risk of lung cancer death (for men, hazard ratio 36 (95% confidence interval 20 to 65); for women, 99 (37 to 266)). Conclusions In Xuanwei, the domestic use of smoky coal is associated with a substantial increase in the absolute lifetime risk of developing lung cancer and is likely to represent one of the strongest effects of environmental pollution reported for cancer risk. Use of less carcinogenic types of coal could translate to a substantial reduction of lung cancer risk. PMID:22936785

  8. Tentative explanatory variable of lung dust concentration in gold miners exposed to crystalline silica.

    PubMed

    Dufresne, A; Loosereewanich, P; Bégin, R; Dion, C; Ecobichon, D; Muir, D C; Ritchie, A C; Perrault, G

    1998-01-01

    The first objective of the study was to investigate the relationships between quantitative lung mineral dust burdens, dust exposure history, and pathological fibrosis grading in silicotic workers. The second objective was to evaluate the association between particle size parameters, concentration of retained silica particles and the severity of the silicosis. Sixty-seven paraffin-embedded lung tissue samples of silicotic patients were analyzed. The cases of silicosis included 39 non-lung cancer patients and 28 patients with lung cancer. All of the cases were gold miners in the Province of Ontario, Canada. Particles, both angular and fibrous, were extracted from lung parenchyma by a bleach digestion method, mounted on copper microscopic grids by a carbon replica technique, and analyzed by transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). Quartz concentration was also determined by X-ray diffraction (XRD) on a silver membrane filter after the extraction from the lung parenchyma. Total particles, silica, clay, and quartz also increase in concentration with increased age at death, although the trends are not statistically significant. Quartz concentration has a statistically significant correlation with the silicosis severity score (r = +0.45, p < 0.001), with the geometric mean concentration increasing from 2.24 micrograms/mg in the group having silicosis severity score less than 1 to 4.80 micrograms/mg in group with highest score. Quartz concentration is the only significant explanatory variable of the silicosis severity with a regression coefficient of +0.41 (p < 0.001). Among several dust exposure variables extracted from the work history of the miners, the calendar year of first exposure was the primary significant determinant of lung retained total particles, silica, and clay minerals, except for quartz. A statistically significant linear relationship between lung quartz concentration and silicosis severity in the gold miners was observed (p < 0.001). Among the several types of lung particles detected, quartz was the only significant determinant of the silicosis severity in the gold miners in this study and vice versa, although it explained only 20% of the variation in the severity. This study suggested no significant linear relationship between the duration of dust exposure and the lung burden of any particle types in the gold miners.

  9. Alarmin S100A8 Activates Alveolar Epithelial Cells in the Context of Acute Lung Injury in a TLR4-Dependent Manner.

    PubMed

    Chakraborty, Deblina; Zenker, Stefanie; Rossaint, Jan; Hölscher, Anna; Pohlen, Michele; Zarbock, Alexander; Roth, Johannes; Vogl, Thomas

    2017-01-01

    Alveolar epithelial cells (AECs) are an essential part of the respiratory barrier in lungs for gas exchange and protection against pathogens. Damage to AECs occurs during lung injury and PAMPs/DAMPs have been shown to activate AECs. However, their interplay as well as the mechanism of AECs' activation especially by the alarmin S100A8/A9 is unknown. Thus, our aim was to study the mechanism of activation of AECs (type I and type II) by S100A8 and/or lipopolysaccharide (LPS) and to understand the role of endogenous S100A8/A9 in neutrophil recruitment in the lung. For our studies, we modified a previous protocol for isolation and culturing of murine AECs. Next, we stimulated the cells with S100A8 and/or LPS and analyzed cytokine/chemokine release. We also analyzed the contribution of the known S100-receptors TLR4 and RAGE in AEC activation. In a murine model of lung injury, we investigated the role of S100A8/A9 in neutrophil recruitment to lungs. S100A8 activates type I and type II cells in a dose- and time-dependent manner which could be quantified by the release of IL-6, KC, and MCP-1. We here clearly demonstrate that AEC s are activated by S100A8 via a TLR4-dependent pathway. Surprisingly, RAGE, albeit mainly expressed in lung tissue, plays no role. Additionally, we show that S100A8/A9 is an essential factor for neutrophil recruitment to lungs. We, therefore, conclude that S100A8 promotes acute lung injury via Toll-like receptor 4-dependent activation of AECs.

  10. Alarmin S100A8 Activates Alveolar Epithelial Cells in the Context of Acute Lung Injury in a TLR4-Dependent Manner

    PubMed Central

    Chakraborty, Deblina; Zenker, Stefanie; Rossaint, Jan; Hölscher, Anna; Pohlen, Michele; Zarbock, Alexander; Roth, Johannes; Vogl, Thomas

    2017-01-01

    Alveolar epithelial cells (AECs) are an essential part of the respiratory barrier in lungs for gas exchange and protection against pathogens. Damage to AECs occurs during lung injury and PAMPs/DAMPs have been shown to activate AECs. However, their interplay as well as the mechanism of AECs’ activation especially by the alarmin S100A8/A9 is unknown. Thus, our aim was to study the mechanism of activation of AECs (type I and type II) by S100A8 and/or lipopolysaccharide (LPS) and to understand the role of endogenous S100A8/A9 in neutrophil recruitment in the lung. For our studies, we modified a previous protocol for isolation and culturing of murine AECs. Next, we stimulated the cells with S100A8 and/or LPS and analyzed cytokine/chemokine release. We also analyzed the contribution of the known S100-receptors TLR4 and RAGE in AEC activation. In a murine model of lung injury, we investigated the role of S100A8/A9 in neutrophil recruitment to lungs. S100A8 activates type I and type II cells in a dose- and time-dependent manner which could be quantified by the release of IL-6, KC, and MCP-1. We here clearly demonstrate that AEC s are activated by S100A8 via a TLR4-dependent pathway. Surprisingly, RAGE, albeit mainly expressed in lung tissue, plays no role. Additionally, we show that S100A8/A9 is an essential factor for neutrophil recruitment to lungs. We, therefore, conclude that S100A8 promotes acute lung injury via Toll-like receptor 4-dependent activation of AECs. PMID:29180999

  11. A multi-center evaluation of a powered surgical stapler in video-assisted thoracoscopic lung resection procedures in China.

    PubMed

    Qiu, Bin; Yan, Wanpu; Chen, Keneng; Fu, Xiangning; Hu, Jian; Gao, Shugeng; Knippenberg, Susan; Schwiers, Michael; Kassis, Edmund; Yang, Tengfei

    2016-05-01

    Lung cancer is one of the most prevalent malignancies worldwide. The number of anatomic lung cancer resections performed via video-assisted thoracoscopic surgery (VATS) is growing rapidly. Staplers are widely used in VATS procedures, but there is limited clinical data regarding how they might affect performance and postoperative outcomes, including air leak. This clinical trial assessed the use of a powered stapler in VATS lung resection, with a primary study endpoint being occurrence and duration of air leak and prolonged air leak (PAL). Data was collected from a single arm, multi-center study in Chinese patients receiving VATS wedge resection or lobectomy. Intra-operative data included surgery duration; cartridge selection for ligation/transection of bronchus, major vessels, and lung parenchyma; staple line interventions; blood loss; and device usage. Post-operative data included air leak assessments, chest tube duration, length of hospital stay, and adverse events (AEs). A total of 94 procedures across four institutions in China were included in the final analysis: 15 wedge resections, 74 lobectomies, and five wedge resections followed by lobectomies. Post-operative air leak occurred in five (5.3%) patients who had lobectomy procedures, with PAL in one (1.1%) patient. Sites were generally consistent relative to cartridge use by tissue type. The incidence of stapler firings requiring surgical interventions was seven out of 550 (1.3%). Surgeons participating in the study were satisfied with the articulation and overall usability of the stapler. The powered staplers make the VATS procedure easier for the surgeons and have achieved intra- and post-operative patient outcomes comparable to those previously reported.

  12. Serum periostin relates to type-2 inflammation and lung function in asthma: Data from the large population-based cohort Swedish GA(2)LEN.

    PubMed

    James, A; Janson, C; Malinovschi, A; Holweg, C; Alving, K; Ono, J; Ohta, S; Ek, A; Middelveld, R; Dahlén, B; Forsberg, B; Izuhara, K; Dahlén, S-E

    2017-11-01

    Periostin has been suggested as a novel, phenotype-specific biomarker for asthma driven by type 2 inflammation. However, large studies examining relationships between circulating periostin and patient characteristics are lacking and the suitability of periostin as a biomarker in asthma remains unclear. To examine circulating periostin in healthy controls and subjects with asthma from the general population with different severity and treatment profiles, both with and without chronic rhinosinusitis (CRS), in relation to other biomarkers and clinical characteristics. Serum periostin was examined by ELISA in 1100 subjects aged 17-76 from the Swedish Global Allergy and Asthma European Network (GA(2)LEN) study, which included 463 asthmatics with/without chronic rhinosinusitis (CRS), 98 individuals with CRS only, and 206 healthy controls. Clinical tests included measurement of lung function, Fraction of exhaled NO (FeNO), IgE, urinary eosinophil-derived neurotoxin (U-EDN), and serum eosinophil cationic protein (S-ECP), as well as completion of questionnaires regarding respiratory symptoms, medication, and quality of life. Although median periostin values showed no differences when comparing disease groups with healthy controls, multiple regression analyses revealed that periostin was positively associated with higher FeNO, U-EDN, and total IgE. In patients with asthma, an inverse relationship with lung function was also observed. Current smoking was associated with decreased periostin levels, whereas increased age and lower body mass index (BMI) related to higher periostin levels in subjects both with and without asthma. We confirm associations between periostin and markers of type 2 inflammation, as well as lung function, and identify novel constitutional factors of importance to the use of periostin as a phenotype-specific biomarker in asthma. © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  13. Mitomycin

    MedlinePlus

    ... worsened after treatment with other medications, surgery, or radiation therapy. Mitomycin is a type of antibiotic that ... cancer, a type of lung cancer (non-small cell lung cancer; NSCLC), and malignant ... for other uses; ask your doctor or pharmacist for more information.

  14. Leukocyte telomere length in relation to risk of lung adenocarcinoma incidence: Findings from the Singapore Chinese Health Study.

    PubMed

    Yuan, Jian-Min; Beckman, Kenneth B; Wang, Renwei; Bull, Caroline; Adams-Haduch, Jennifer; Huang, Joyce Y; Jin, Aizhen; Opresko, Patricia; Newman, Anne B; Zheng, Yun-Ling; Fenech, Michael; Koh, Woon-Puay

    2018-06-01

    Telomeres are crucial in the maintenance of chromosome integrity and genomic stability. Critically short telomeres can trigger programed cell death while cells with longer telomeres may have increased likelihood of replicative errors, resulting in genetic mutations and chromosomal alterations, and ultimately promoting oncogenesis. Data on telomere length and lung cancer risk from large prospective cohort studies are spare. Relative telomere length in peripheral blood leukocytes was quantified using a validated monochrome multiplex quantitative polymerase chain reaction (qPCR) method in 26,540 participants of the Singapore Chinese Health Study. After a follow-up of 12 years, 654 participants developed lung cancer including 288 adenocarcinoma, 113 squamous cell carcinoma and 253 other/unknown histological type. The Cox proportional hazard regression was used to estimate hazard ratio (HR) and 95% confidence interval (CI). HR of lung adenocarcinoma for individuals in the highest comparing the lowest 20 percentile of telomere length was 2.84 (95% CI 1.94-4.14, p trend  < 0.0001). This positive association was present in never smokers (p trend  < 0.0001), ever smokers (p trend  = 0.0010), men (p trend  = 0.0003), women (p trend  < 0.0001), and in shorter (p trend  = 0.0002) and longer (p trend  = 0.0001) duration of follow-up. There was no association between telomere length and risk of squamous cell carcinoma or other histological type of lung cancer in all or subgroups of individuals. The agreement of results from this prospective cohort study with those of previous prospective studies and Mendelian randomization studies suggest a possible etiological role of telomere length in the development of lung adenocarcinoma. © 2018 UICC.

  15. Non-small cell lung cancer in never smokers: a clinical entity to be identified.

    PubMed

    Santoro, Ilka Lopes; Ramos, Roberta Pulcheri; Franceschini, Juliana; Jamnik, Sergio; Fernandes, Ana Luisa Godoy

    2011-01-01

    It has been recognized that patients with non-small cell lung cancer who are lifelong never-smokers constitute a distinct clinical entity. The aim of this study was to assess clinical risk factors for survival among never-smokers with non-small cell lung cancer. All consecutive non-small cell lung cancer patients diagnosed (n = 285) between May 2005 and May 2009 were included. The clinical characteristics of never-smokers and ever-smokers (former and current) were compared using chi-squared or Student's t tests. Survival curves were calculated using the Kaplan-Meier method, and log-rank tests were used for survival comparisons. A Cox proportional hazards regression analysis was evaluated by adjusting for age (continuous variable), gender (female vs. male), smoking status (never- vs. ever-smoker), the Karnofsky Performance Status Scale (continuous variable), histological type (adenocarcinoma vs. non-adenocarcinoma), AJCC staging (early vs. advanced staging), and treatment (chemotherapy and/or radiotherapy vs. the best treatment support). Of the 285 non-small cell lung cancer patients, 56 patients were never-smokers. Univariate analyses indicated that the never-smoker patients were more likely to be female (68% vs. 32%) and have adenocarcinoma (70% vs. 51%). Overall median survival was 15.7 months (95% CI: 13.2 to 18.2). The never-smoker patients had a better survival rate than their counterpart, the ever-smokers. Never-smoker status, higher Karnofsky Performance Status, early staging, and treatment were independent and favorable prognostic factors for survival after adjusting for age, gender, and adenocarcinoma in multivariate analysis. Epidemiological differences exist between never- and ever-smokers with lung cancer. Overall survival among never-smokers was found to be higher and independent of gender and histological type.

  16. Inhibition of chlorine-induced lung injury by the type 4 phosphodiesterase inhibitor rolipram

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Weiyuan; Chen, Jing; Schlueter, Connie F.

    2012-09-01

    Chlorine is a highly toxic respiratory irritant that when inhaled causes epithelial cell injury, alveolar-capillary barrier disruption, airway hyperreactivity, inflammation, and pulmonary edema. Chlorine is considered a chemical threat agent, and its release through accidental or intentional means has the potential to result in mass casualties from acute lung injury. The type 4 phosphodiesterase inhibitor rolipram was investigated as a rescue treatment for chlorine-induced lung injury. Rolipram inhibits degradation of the intracellular signaling molecule cyclic AMP. Potential beneficial effects of increased cyclic AMP levels include inhibition of pulmonary edema, inflammation, and airway hyperreactivity. Mice were exposed to chlorine (whole bodymore » exposure, 228–270 ppm for 1 h) and were treated with rolipram by intraperitoneal, intranasal, or intramuscular (either aqueous or nanoemulsion formulation) delivery starting 1 h after exposure. Rolipram administered intraperitoneally or intranasally inhibited chlorine-induced pulmonary edema. Minor or no effects were observed on lavage fluid IgM (indicative of plasma protein leakage), KC (Cxcl1, neutrophil chemoattractant), and neutrophils. All routes of administration inhibited chlorine-induced airway hyperreactivity assessed 1 day after exposure. The results of the study suggest that rolipram may be an effective rescue treatment for chlorine-induced lung injury and that both systemic and targeted administration to the respiratory tract were effective routes of delivery. -- Highlights: ► Chlorine causes lung injury when inhaled and is considered a chemical threat agent. ► Rolipram inhibited chlorine-induced pulmonary edema and airway hyperreactivity. ► Post-exposure rolipram treatments by both systemic and local delivery were effective. ► Rolipram shows promise as a rescue treatment for chlorine-induced lung injury.« less

  17. No effect of meat, meat cooking preferences, meat mutagens or heme iron on lung cancer risk in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial

    PubMed Central

    Tasevska, Nataša; Cross, Amanda J.; Dodd, Kevin W.; Ziegler, Regina G.; Caporaso, Neil E.; Sinha, Rashmi

    2010-01-01

    Recent epidemiological studies have suggested that red and processed meat may increase the risk of lung cancer. Possible underlying mechanisms include mutagens produced during high temperature cooking or preservation, or formed endogenously from heme iron in meat. We used data from 99,579 participants of both screened and non-screened arms of the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO), aged 55–74 years, to investigate whether meat type, cooking method, doneness level, intake of specific meat mutagens 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline] (DiMeIQx), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), and benzo(a)pyrene (B(a)P)] and heme iron are associated with lung cancer. Participants’ diet was assessed prospectively using a 124-item food frequency questionnaire and an additional meat-cooking module. Dietary data were used in conjunction with a database to estimate intake of MeIQx, DiMeIQx, PhIP, B(a)P and heme iron. After up to 8 years of follow-up, 782 incident lung cancer cases were ascertained. Lung cancer risk was not associated with the consumption of either red (men: HRQ5vs.Q1 = 1.11, 95% CI = 0.79–1.56, Ptrend = 0.42; women: HRQ5vs.Q1 = 1.30, 95% CI = 0.87–1.95, Ptrend = 0.65) or processed meat (men: HRQ5vs.Q1 = 1.12, 95% CI = 0.83–1.53, Ptrend = 0.22; women: HRQ5vs.Q1 = 0.98, 95% CI = 0.68–1.41, Ptrend = 0.32) in multivariable models. High temperature cooking methods, level of meat doneness, meat mutagens and heme iron had no effect on lung cancer risk. In this population, we found no association between meat type, cooking method, doneness level, or intake of specific meat mutagens or heme iron and lung cancer risk. PMID:20232386

  18. No effect of meat, meat cooking preferences, meat mutagens or heme iron on lung cancer risk in the prostate, lung, colorectal and ovarian cancer screening trial.

    PubMed

    Tasevska, Nataša; Cross, Amanda J; Dodd, Kevin W; Ziegler, Regina G; Caporaso, Neil E; Sinha, Rashmi

    2011-01-15

    Recent epidemiological studies have suggested that red and processed meat may increase the risk of lung cancer. Possible underlying mechanisms include mutagens produced during high-temperature cooking or preservation, or formed endogenously from heme iron in meat. We used data from 99,579 participants of both screened and nonscreened arms of the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial, aged 55-74 years, to investigate whether meat type, cooking method, doneness level, intake of specific meat mutagens 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline] (DiMeIQx), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and benzo(a)pyrene (B(a)P)] and heme iron are associated with lung cancer. Participants' diet was assessed prospectively using a 124-item food frequency questionnaire and an additional meat-cooking module. Dietary data were used in conjunction with a database to estimate intake of MeIQx, DiMeIQx, PhIP, B(a)P and heme iron. After up to 8 years of follow-up, 782 incident lung cancer cases were ascertained. Lung cancer risk was not associated with the consumption of either red (men: HR(Q₅ vs. Q₁) = 1.11, 95% CI = 0.79-1.56, P(trend) = 0.42; women: HR(Q₅ vs. Q₁) = 1.30, 95% CI = 0.87-1.95, P(trend) = 0.65) or processed meat (men: HR(Q₅ vs. Q₁1) = 1.12, 95% CI = 0.83-1.53, P(trend) = 0.22; women: HR(Q₅ vs. Q₁) = 0.98, 95% CI = 0.68-1.41, P(trend) = 0.32) in multivariable models. High-temperature cooking methods, level of meat doneness, meat mutagens and heme iron had no effect on lung cancer risk. In this population, we found no association between meat type, cooking method, doneness level or intake of specific meat mutagens or heme iron and lung cancer risk. Copyright © 2010 UICC.

  19. Long non-coding RNAs may serve as biomarkers in breast cancer combined with primary lung cancer

    PubMed Central

    Mao, Weimin; Chen, Bo; Yang, Shifeng; Ding, Xiaowen; Zou, Dehong; Mo, Wenju; He, Xiangming; Zhang, Xiping

    2017-01-01

    Long non-coding RNAs (lncRNAs) have been shown to play important regulatory role in certain type of cancers biology, including breast and lung cancers. However, the lncRNA expression in breast cancer combined with primary lung cancer remains unknown. In this study, databases of the Cancer Genome Atlas (TCGA) and the lncRNA profiler of contained candidate 192 lncRNAs were utilized. 11 lncRNAs were differentially expressed in breast cancer, 9 candidate lncRNAs were differentially expressed in lung cancer. In order to find the aberrant expression of lncRNAs in breast cancer combined with primary lung cancer, seven samples of primary breast cancer and lung cancer were studied for the expression of selected lncRNAs. The results showed that SNHG6 and NEAT1 were reversely expressed in breast cancer combined with primary lung cancer compared with primary breast or lung cancer. In addition, a significant correlation of lncRNAs was found in the patients whose age was above 56 in breast cancer. What's more, PVT1 expression was negatively correlated with the pathological stage, and the level of ER, PR, HER2, p53 in breast cancer. Furthermore, lncRNA expression did not have significant relationship with the 5-year survival of patients with breast cancer combined with primary lung cancer. The findings revealed that PVT1, SNHG6, NEAT1 may serve as a prognostic marker for breast cancer combined with primary lung cancer. Therefore, these lncRNAs are potential molecular indicators in the diagnosis and prognosis of cancer in the future. PMID:28938549

  20. Glucose Transporter 1–Dependent Glycolysis Is Increased during Aging-Related Lung Fibrosis, and Phloretin Inhibits Lung Fibrosis

    PubMed Central

    Cho, Soo Jung; Moon, Jong-Seok; Lee, Chang-Min; Choi, Augustine M. K.

    2017-01-01

    Aging is associated with metabolic diseases such as type 2 diabetes mellitus, cardiovascular disease, cancer, and neurodegeneration. Aging contributes to common processes including metabolic dysfunction, DNA damage, and reactive oxygen species generation. Although glycolysis has been linked to cell growth and proliferation, the mechanisms by which the activation of glycolysis by aging regulates fibrogenesis in the lung remain unclear. The objective of this study was to determine if glucose transporter 1 (GLUT1)–induced glycolysis regulates age-dependent fibrogenesis of the lung. Mouse and human lung tissues were analyzed for GLUT1 and glycolytic markers using immunoblotting. Glycolytic function was measured using a Seahorse apparatus. To study the effect of GLUT1, genetic inhibition of GLUT1 was performed by short hairpin RNA transduction, and phloretin was used for pharmacologic inhibition of GLUT1. GLUT1-dependent glycolysis is activated in aged lung. Genetic and pharmacologic inhibition of GLUT1 suppressed the protein expression of α-smooth muscle actin, a key cytoskeletal component of activated fibroblasts, in mouse primary lung fibroblast cells. Moreover, we demonstrated that the activation of AMP-activated protein kinase, which is regulated by GLUT1-dependent glycolysis, represents a critical metabolic pathway for fibroblast activation. Furthermore, we demonstrated that phloretin, a potent inhibitor of GLUT1, significantly inhibited bleomycin-induced lung fibrosis in vivo. These results suggest that GLUT1-dependent glycolysis regulates fibrogenesis in aged lung and that inhibition of GLUT1 provides a potential target of therapy of age-related lung fibrosis. PMID:27997810

  1. Glucose Transporter 1-Dependent Glycolysis Is Increased during Aging-Related Lung Fibrosis, and Phloretin Inhibits Lung Fibrosis.

    PubMed

    Cho, Soo Jung; Moon, Jong-Seok; Lee, Chang-Min; Choi, Augustine M K; Stout-Delgado, Heather W

    2017-04-01

    Aging is associated with metabolic diseases such as type 2 diabetes mellitus, cardiovascular disease, cancer, and neurodegeneration. Aging contributes to common processes including metabolic dysfunction, DNA damage, and reactive oxygen species generation. Although glycolysis has been linked to cell growth and proliferation, the mechanisms by which the activation of glycolysis by aging regulates fibrogenesis in the lung remain unclear. The objective of this study was to determine if glucose transporter 1 (GLUT1)-induced glycolysis regulates age-dependent fibrogenesis of the lung. Mouse and human lung tissues were analyzed for GLUT1 and glycolytic markers using immunoblotting. Glycolytic function was measured using a Seahorse apparatus. To study the effect of GLUT1, genetic inhibition of GLUT1 was performed by short hairpin RNA transduction, and phloretin was used for pharmacologic inhibition of GLUT1. GLUT1-dependent glycolysis is activated in aged lung. Genetic and pharmacologic inhibition of GLUT1 suppressed the protein expression of α-smooth muscle actin, a key cytoskeletal component of activated fibroblasts, in mouse primary lung fibroblast cells. Moreover, we demonstrated that the activation of AMP-activated protein kinase, which is regulated by GLUT1-dependent glycolysis, represents a critical metabolic pathway for fibroblast activation. Furthermore, we demonstrated that phloretin, a potent inhibitor of GLUT1, significantly inhibited bleomycin-induced lung fibrosis in vivo. These results suggest that GLUT1-dependent glycolysis regulates fibrogenesis in aged lung and that inhibition of GLUT1 provides a potential target of therapy of age-related lung fibrosis.

  2. Late-occurring pulmonary pathologies following inhalation of mixed oxide (uranium + plutonium oxide) aerosol in the rat.

    PubMed

    Griffiths, N M; Van der Meeren, A; Fritsch, P; Abram, M-C; Bernaudin, J-F; Poncy, J L

    2010-09-01

    Accidental exposure by inhalation to alpha-emitting particles from mixed oxide (MOX: uranium and plutonium oxide) fuels is a potential long-term health risk to workers in nuclear fuel fabrication plants. For MOX fuels, the risk of lung cancer development may be different from that assigned to individual components (plutonium, uranium) given different physico-chemical characteristics. The objective of this study was to investigate late effects in rat lungs following inhalation of MOX aerosols of similar particle size containing 2.5 or 7.1% plutonium. Conscious rats were exposed to MOX aerosols and kept for their entire lifespan. Different initial lung burdens (ILBs) were obtained using different amounts of MOX. Lung total alpha activity was determined by external counting and at autopsy for total lung dose calculation. Fixed lung tissue was used for anatomopathological, autoradiographical, and immunohistochemical analyses. Inhalation of MOX at ILBs ranging from 1-20 kBq resulted in lung pathologies (90% of rats) including fibrosis (70%) and malignant lung tumors (45%). High ILBs (4-20 kBq) resulted in reduced survival time (N = 102; p < 0.05) frequently associated with lung fibrosis. Malignant tumor incidence increased linearly with dose (up to 60 Gy) with a risk of 1-1.6% Gy for MOX, similar to results for industrial plutonium oxide alone (1.9% Gy). Staining with antibodies against Surfactant Protein-C, Thyroid Transcription Factor-1, or Oct-4 showed differential labeling of tumor types. In conclusion, late effects following MOX inhalation result in similar risk for development of lung tumors as compared with industrial plutonium oxide.

  3. Negative psychological aspects and survival in lung cancer patients.

    PubMed

    Nakaya, Naoki; Saito-Nakaya, Kumi; Akechi, Tatsuo; Kuriyama, Shinichi; Inagaki, Masatoshi; Kikuchi, Nobutaka; Nagai, Kanji; Tsugane, Shoichiro; Nishiwaki, Yutaka; Tsuji, Ichiro; Uchitomi, Yosuke

    2008-05-01

    We conducted a prospective cohort study in Japan to investigate associations between negative psychological aspects and cancer survival. Between July 1999 and July 2004, a total of 1178 lung cancer patients were enrolled. The questionnaire asked about socioeconomic variables, smoking status, clinical symptoms, and psychological aspects after diagnosis. Negative psychological aspects were assessed for the subscales of helplessness/hopelessness and depression. Clinical stage, performance status (PS), and histologic type were obtained from medical charts. The subjects were followed up until December 2004, and 686 had died. A Cox regression model was used to estimate the hazards ratio (HR) of all-cause mortality. After adjustment for socioeconomic variables and smoking status in addition to sex, age, and histologic type, both helplessness/hopelessness and depression subscales showed significant linear positive associations with the risk of mortality (p for trend<0.001 for both). However, after adjustment for clinical state variables in addition to sex, age, and histologic type, these significant linear positive associations were no longer observed (p for trend=0.41 and 0.26, respectively). Our data supported the hypothesis that the association between helplessness/hopelessness and depression and the risk of mortality among lung cancer patients was largely confounded by clinical state variables including clinical stage, PS, and clinical symptoms. (c) 2007 John Wiley & Sons, Ltd.

  4. Comparison of in vitro toxicological effects of biomass smoke from different sources of animal dung.

    PubMed

    McCarthy, Claire E; Duffney, Parker F; Wyatt, Jeffrey D; Thatcher, Thomas H; Phipps, Richard P; Sime, Patricia J

    2017-09-01

    Worldwide, over 4 million premature deaths each year are attributed to the burning of biomass fuels for cooking and heating. Epidemiological studies associate household air pollution with lung diseases, including chronic obstructive pulmonary disease, lung cancer, and respiratory infections. Animal dung, a biomass fuel used by economically vulnerable populations, generates more toxic compounds per mass burned than other biomass fuels. The type of animal dung used varies widely depending on local agro-geography. There are currently neither standardized experimental systems for dung biomass smoke research nor studies assessing the health impacts of different types of dung smoke. Here, we used a novel reproducible exposure system to assess outcomes related to inflammation and respiratory infections in human airway cells exposed to six different types of dung biomass smoke. We report that dung biomass smoke, regardless of species, is pro-inflammatory and activates the aryl hydrocarbon receptor and JNK transcription factors; however, dung smoke also suppresses interferon responses after a challenge with a viral mimetic. These effects are consistent with epidemiological data, and suggest a mechanism by which the combustion of animal dung can directly cause lung diseases, promote increased susceptibility to infection, and contribute to the global health problem of household air pollution. Copyright © 2017. Published by Elsevier Ltd.

  5. Lung gallium scan

    MedlinePlus

    ... the lungs. This is most often due to sarcoidosis or a certain type of pneumonia. Normal Results ... it may mean any of the following problems: Sarcoidosis (disease in which inflammation occurs in the lungs ...

  6. 75 FR 65340 - Secretarial Review and Publication of the Annual Report to Congress Submitted by the Contracted...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... Lung cancer Major depression Osteoporosis Prostate cancer Rheumatoid arthritis and osteoarthritis... obstructive pulmonary disease, arthritis, diabetes, depression, and several types of cancers. There is also a... cancers; bone/joint diseases, including hip fracture, osteoporosis, and arthritis; and infection...

  7. Exosomes as a liquid biopsy for lung cancer.

    PubMed

    Cui, Shaohua; Cheng, Zhuoan; Qin, Wenxin; Jiang, Liyan

    2018-02-01

    In lung cancer and other malignancies, the so-called "liquid biopsy" is quickly moving into clinical practice. Its full potential has not yet been fully identified, but the "liquid biopsy" is no longer a promise but has become a reality that allows for better treatment selection and monitoring of lung cancer. This emerging field has significant potential to make up for the limitations of the traditional tissue-derived biomaterials. Exosomes are spherical nano-sized vesicles with a diameter of 40-100 nm and a density of 1.13-1.19 g/ml. In both physiological and pathological conditions, exosomes can be released by different cell types, including immune cells, stem cells and tumor cells. These small molecules may serve as promising biomarkers in lung cancer "liquid biopsy" as they can be easily obtained from most body fluids. In addition, the lipid bilayer of exosomes allows for stable cargoes which are relatively hard to degrade. Furthermore, the composition of exosomes reflects that of their parental cells, suggesting that exosomes are potential surrogates of the original cells and, therefore, are useful for understanding cell biology. Previous studies have demonstrated that exosomes play important roles in cell-to-cell communication. Moreover, tumor-derived exosomes are evolved in tumor-specific biological process, including tumor proliferation and progression. Recently, a growing number of studies has focused on exosomal cargo and their use in lung cancer genesis and progression. In addition, their utility as lung cancer diagnostic, prognostic and predictive biomarkers have also been studied. The current review primarily summaries lung cancer-related exosomal biomarkers that have recently been identified and discusses their potential in clinical practice. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The expression of SALL4 is significantly associated with EGFR, but not KRAS or EML4-ALK mutations in lung cancer.

    PubMed

    Jia, Xiangbo; Qian, Rulin; Zhang, Binbin; Zhao, Song

    2016-10-01

    Lung cancer is the leading cause of cancer-related deaths worldwide; unfortunately, its prognosis is still very poor. Therefore, developing the target molecular is very important for lung cancer diagnosis and treatment, especially in the early stage. With this in view, spalt-like transcription factor 4 ( SALL4 ) is considered a potential biomarker for diagnosis and prognosis in cancers, including lung cancer. In order to better investigate the association between the expression of SALL4 and driver genes mutation, 450 histopathologically diagnosed patients with lung cancer and 11 non-cancer patients were enrolled to test the expression of SALL4 and the status of driver genes mutation. This investigation included epidermal growth factor receptor ( EGFR ), kirsten rat sarcoma viral oncogene homolog ( KRAS ), and a fusion gene of the echinoderm microtubule-associated protein-like 4 ( EML4 ) and the anaplastic lymphoma kinase ( ALK ). The results of the study showed that females harbored more EGFR mutation in adenocarcinoma (ADC). The mutation rate of KRAS and EML4-ALK was about 5%, and the double mutations of EGFR/EML4-ALK were higher than EGFR/KRAS . In the expression analysis, the expression of SALL4 was much higher in cancer tissues than normally expected, especially in tissues that carried EGFR mutation (P<0.05), however, there were no significant differences between different mutation types. Likewise, there were no significant differences between expression of SALL4 and KRAS and EML4-ALK mutations. SALL4 is up regulated in lung cancer specimens and harbors EGFR mutation; this finding indicates that SALL4 expression may be relevant with EGFR , which could provide a new insight to lung cancer therapy. The mechanism needs further investigation and analysis.

  9. The IκB family member Bcl-3 coordinates the pulmonary defense against Klebsiella pneumoniae infection.

    PubMed

    Pène, Frédéric; Paun, Andrea; Sønder, Søren Ulrik; Rikhi, Nimisha; Wang, Hongshan; Claudio, Estefania; Siebenlist, Ulrich

    2011-02-15

    Bcl-3 is an atypical member of the IκB family that has the potential to positively or negatively modulate nuclear NF-κB activity in a context-dependent manner. Bcl-3's biologic impact is complex and includes roles in tumorigenesis and diverse immune responses, including innate immunity. Bcl-3 may mediate LPS tolerance, suppressing cytokine production, but it also seems to contribute to defense against select systemic bacterial challenges. However, the potential role of Bcl-3 in organ-specific host defense against bacteria has not been addressed. In this study, we investigated the relevance of Bcl-3 in a lung challenge with the Gram-negative pathogen Klebsiella pneumoniae. In contrast to wild-type mice, Bcl-3-deficient mice exhibited significantly increased susceptibility toward K. pneumoniae pneumonia. The mutant mice showed increased lung damage marked by neutrophilic alveolar consolidation, and they failed to clear bacteria in lungs, which correlated with increased bacteremic dissemination. Loss of Bcl-3 incurred a dramatic cytokine imbalance in the lungs, which was characterized by higher levels of IL-10 and a near total absence of IFN-γ. Moreover, Bcl-3-deficient mice displayed increased lung production of the neutrophil-attracting chemokines CXCL-1 and CXCL-2. Alveolar macrophages and neutrophils are important to antibacterial lung defense. In vitro stimulation of Bcl-3-deficient alveolar macrophages with LPS or heat-killed K. pneumoniae recapitulated the increase in IL-10 production, and Bcl-3-deficient neutrophils were impaired in intracellular bacterial killing. These findings suggest that Bcl-3 is critically involved in lung defense against Gram-negative bacteria, modulating functions of several cells to facilitate efficient clearance of bacteria.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, C.C.; Cohen, M.H.; Connor, R.

    Scrum alpha/sub 1/-antitrypsin Pi types and trypsin inhibitory capacity (TIC) were measured in 72 patients with lung cancer and in 196 patients with abnormal sputum cytology but no clinical evidence of lung cancer to determine if a genetic deficiency of alpha/sub 1/-antitrypsin (AAT) predisposes to lung cancer. The distributions of Pi types in these two groups of patients and healthy adults are similar. Serum TIC and AAT concentrations are elevated in lung cancer patients. However, patients with abnormal sputum cytology and no clinical lung cancer have normal levels of serum TIC and AAT. A genetic deficiency of AAT probably doesmore » not produce a state of increased susceptibility to the carcinogenic effects of respiratory carcinogens such as tobacco smoke.« less

  11. [Surfactant surface activity and ultrastructural changes in the type-II alveolocytes of fetal and neonatal lungs in experimental inflammation of the maternal lungs].

    PubMed

    Zagorul'ko, A K; Fat, L F; Safronova, L G; Kobozev, G V; Gorelik, N I

    1989-06-01

    The lungs of 19 guinea pigs, born from 8 females in which acute and chronic pneumonia had been modelled by transtracheal introduction of sterile fishing-line were investigated. It was established, that in guinea pigs, born in females with acute and chronic pneumonia, the functional immaturity of pneumocytes of the 2-nd type took place. The functional immaturity of pneumocytes of the 2-nd type results in suppression of the surface active characteristics of surfactant.

  12. Radiation and Smoking Effects on Lung Cancer Incidence by Histological Types Among Atomic Bomb Survivors

    PubMed Central

    Egawa, Hiromi; Furukawa, Kyoji; Preston, Dale; Funamoto, Sachiyo; Yonehara, Shuji; Matsuo, Takeshi; Tokuoka, Shoji; Suyama, Akihiko; Ozasa, Kotaro; Kodama, Kazunori; Mabuchi, Kiyohiko

    2014-01-01

    While the risk of lung cancer associated separately with smoking and radiation exposure has been widely reported, it is not clear how smoking and radiation together contribute to the risk of specific lung cancer histological types. With individual smoking histories and radiation dose estimates, we characterized the joint effects of radiation and smoking on type-specific lung cancer rates among the Life Span Study cohort of Japanese atomic bomb survivors. Among 105,404 cohort subjects followed between 1958 and 1999, 1,803 first primary lung cancer incident cases were diagnosed and classified by histological type. Poisson regression methods were used to estimate excess relative risks under several interaction models. Adenocarcinoma (636 cases), squamous-cell carcinoma (330) and small-cell carcinoma (194) made up 90% of the cases with known histology. Both smoking and radiation exposure significantly increased the risk of each major lung cancer histological type. Smoking-associated excess relative risks were significantly larger for small-cell and squamous-cell carcinomas than for adenocarcinoma. The gender-averaged excess relative risks per 1 Gy of radiation (for never-smokers at age 70 after radiation exposure at age 30) were estimated as 1.49 (95% confidence interval 0.1–4.6) for small-cell carcinoma, 0.75 (0.3–1.3) for adenocarcinoma, and 0.27 (0–1.5) for squamous-cell carcinoma. Under a model allowing radiation effects to vary with levels of smoking, the nature of the joint effect of smoking and radiation showed a similar pattern for different histological types in which the radiation-associated excess relative risk tended to be larger for moderate smokers than for heavy smokers. However, in contrast to analyses of all lung cancers as a group, such complicated interactions did not describe the data significantly better than either simple additive or multiplicative interaction models for any of the type-specific analyses. PMID:22862780

  13. Expression of cyclin D{sub 1} during endotoxin-induced aleveolar type II cell hyperplasia in rat lung and the detection of apoptotic cells during the remodeling process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tesfaigzi, J.; Wood, M.B.; Johnson, N.F.

    Our studies have shown that endotoxin intratracheally instilled into the rat lung induces proliferation of alveolar type II cells. In that study, the alveolar type II cells. In that study, the alveolar type II cell hyperplasia occurred 2 d after instillation of endotoxin and persisted for a further 2 d. After hyperplasia, the lung remodeled and returned to a normal state within 24-48 h. Understanding the mechanisms involved in the remodeling process of this transient hyperplasia may be useful to identify molecular changes that are altered in neoplasia. The purpose of the present study was to corroborate induction of epithelialmore » cell hyperplasia by endotoxin and to delineate mechanisms involved in tissue remodeling after endotoxin-induced alveolar type II cell hyperplasia. In conclusion, immonostaining with cyclin D1 and cytokeratin shows that endotoxin induced epithelial cell proliferation and resulted in hyperplasia in the lung which persisted through 4 d post-instillation.« less

  14. Indoor air pollution from solid fuel use, chronic lung diseases and lung cancer in Harbin, Northeast China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galeone, C.; Pelucchi, C.; La Vecchia, C.

    In some areas of China, indoor air pollution (IAP) originating principally from the combustion of solid fuels has a relevant role in lung cancer. Most previous studies focused on the female population and only a few on both the sexes. We analyzed the relationship between IAP from solid fuel use and selected chronic lung diseases and lung cancer risk in Harbin, Northeast China, an area with a very high base line risk of lung cancer for both the sexes. We used data from a case-control study conducted between 1987 and 1990, including 218 patients with incident, histologically confirmed lung cancermore » and 436 controls admitted to the same hospitals as cases. We calculated an index of IAP from solid fuel use exposure using data on heating type, cooking fuel used, and house measurements. Cases reported more frequently than controls on exposure to coal fuel for house heating and/or cooking, and the odds ratio (OR) for ever versus never exposed was 2.19 (95% confidence interval (CI): 1.08-4.46). The ORs of lung cancer according to subsequent tertiles of IAP exposure index were 1.82 (95% CI: 1.14-2.89) and 1.99 (95% CI: 1.26-3.15) as compared with the lowest tertile. The ORs of lung cancer for participants with a history of chronic bronchitis and tuberculosis were 3.79 (95% CI: 2.38-6.02) and 3.82 (95% CI: 1.97-7.41), respectively. This study gives further support and quantification of the positive association between IAP, history of selected nonmalignant lung diseases, and lung cancer risk for both the sexes.« less

  15. APS8, a Polymeric Alkylpyridinium Salt Blocks α7 nAChR and Induces Apoptosis in Non-Small Cell Lung Carcinoma

    PubMed Central

    Zovko, Ana; Viktorsson, Kristina; Lewensohn, Rolf; Kološa, Katja; Filipič, Metka; Xing, Hong; Kem, William R.; Paleari, Laura; Turk, Tom

    2013-01-01

    Naturally occurring 3-alkylpyridinium polymers (poly-APS) from the marine sponge Reniera sarai, consisting of monomers containing polar pyridinium and nonpolar alkyl chain moieties, have been demonstrated to exert a wide range of biological activities, including a selective cytotoxicity against non-small cell lung cancer (NSCLC) cells. APS8, an analog of poly-APS with defined alkyl chain length and molecular size, non-competitively inhibits α7 nicotinic acetylcholine receptors (nAChRs) at nanomolar concentrations that are too low to be acetylcholinesterase (AChE) inhibitory or generally cytotoxic. In the present study we show that APS8 inhibits NSCLC tumor cell growth and activates apoptotic pathways. APS8 was not toxic for normal lung fibroblasts. Furthermore, in NSCLC cells, APS8 reduced the adverse anti-apoptotic, proliferative effects of nicotine. Our results suggest that APS8 or similar compounds might be considered as lead compounds to develop antitumor therapeutic agents for at least certain types of lung cancer. PMID:23880932

  16. Sarcomatoid carcinoma of the lung -  a case report.

    PubMed

    Szkorupa, M; Bohanes, T; Neoral, C; Vomackova, K; Chudacek, J

    2015-01-01

    Sarcomatoid carcinoma (SARC) of the lung is a very rare and aggressive type of nonsmall cell lung cancer. It belongs to a group of poorly differentiated carcinomas with partial sarcomatoid differentiation or with a direct sarcoma component. Characteristic findings include a large tumor with an invasive tendency, early recurrence and systemic metastases. The authors present a case of SARC in the 77-year-old patient. Preoperative staging confirmed sarcomatoid carcinoma of the lower lobe of the left lung without generalization on PET/CT. However, an infiltration of more than 2/3 of the diaphragm was ascertained. A resection was performed -  a left lower lobectomy with resection of the diaphragm and its replacement by a muscle flap made from the latissimus dorsi muscle with vascular pedicle. Histological findings confirmed the dia-gnosis of sarcomatoid (pleomorphic) carcinoma pT3N0M0. The patient underwent adjuvant chemotherapy; recurrence and systemic dissemination of the disease occurred after 20 months; the patient died 21 months after the surgery.

  17. Maintenance or non-maintenance therapy in the treatment of advanced non-small cell lung cancer: that is the question.

    PubMed

    Galetta, D; Rossi, A; Pisconti, S; Millaku, A; Colucci, G

    2010-11-01

    Lung cancer is the most common cancer worldwide with non-small cell lung cancer (NSCLC), including squamous carcinoma, adenocarcinoma and large cell carcinoma, accounting for about 85% of all lung cancer types with most of the patients presenting with advanced disease at the time of diagnosis. In this setting first-line platinum-based chemotherapy for no more than 4-6 cycles are recommended. After these cycles of treatment, non-progressing patients enter in the so called "watch and wait" period in which no further therapy is administered until there is disease progression. In order to improve the advanced NSCLC outcomes, the efficacy of further treatment in the "watch and wait" period was investigated. This is the "maintenance therapy". Recently, the results coming from randomized phase III trials investigating two new agents, pemetrexed and erlotinib, in this setting led to their registration for maintenance therapy. Here, we report and discuss these results. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Supercomputer description of human lung morphology for imaging analysis.

    PubMed

    Martonen, T B; Hwang, D; Guan, X; Fleming, J S

    1998-04-01

    A supercomputer code that describes the three-dimensional branching structure of the human lung has been developed. The algorithm was written for the Cray C94. In our simulations, the human lung was divided into a matrix containing discrete volumes (voxels) so as to be compatible with analyses of SPECT images. The matrix has 3840 voxels. The matrix can be segmented into transverse, sagittal and coronal layers analogous to human subject examinations. The compositions of individual voxels were identified by the type and respective number of airways present. The code provides a mapping of the spatial positions of the almost 17 million airways in human lungs and unambiguously assigns each airway to a voxel. Thus, the clinician and research scientist in the medical arena have a powerful new tool to be used in imaging analyses. The code was designed to be integrated into diverse applications, including the interpretation of SPECT images, the design of inhalation exposure experiments and the targeted delivery of inhaled pharmacologic drugs.

  19. Circulating Tumor Cell and Cell-free Circulating Tumor DNA in Lung Cancer.

    PubMed

    Nurwidya, Fariz; Zaini, Jamal; Putra, Andika Chandra; Andarini, Sita; Hudoyo, Achmad; Syahruddin, Elisna; Yunus, Faisal

    2016-09-01

    Circulating tumor cells (CTCs) are tumor cells that are separated from the primary site or metastatic lesion and disseminate in blood circulation. CTCs are considered to be part of the long process of cancer metastasis. As a 'liquid biopsy', CTC molecular examination and investigation of single cancer cells create an important opportunity for providing an understanding of cancer biology and the process of metastasis. In the last decade, we have seen dramatic development in defining the role of CTCs in lung cancer in terms of diagnosis, genomic alteration determination, treatment response and, finally, prognosis prediction. The aims of this review are to understand the basic biology and to review methods of detection of CTCs that apply to the various types of solid tumor. Furthermore, we explored clinical applications, including treatment monitoring to anticipate therapy resistance as well as biomarker analysis, in the context of lung cancer. We also explored the potential use of cell-free circulating tumor DNA (ctDNA) in the genomic alteration analysis of lung cancer.

  20. A closed-loop model of the respiratory system: focus on hypercapnia and active expiration.

    PubMed

    Molkov, Yaroslav I; Shevtsova, Natalia A; Park, Choongseok; Ben-Tal, Alona; Smith, Jeffrey C; Rubin, Jonathan E; Rybak, Ilya A

    2014-01-01

    Breathing is a vital process providing the exchange of gases between the lungs and atmosphere. During quiet breathing, pumping air from the lungs is mostly performed by contraction of the diaphragm during inspiration, and muscle contraction during expiration does not play a significant role in ventilation. In contrast, during intense exercise or severe hypercapnia forced or active expiration occurs in which the abdominal "expiratory" muscles become actively involved in breathing. The mechanisms of this transition remain unknown. To study these mechanisms, we developed a computational model of the closed-loop respiratory system that describes the brainstem respiratory network controlling the pulmonary subsystem representing lung biomechanics and gas (O2 and CO2) exchange and transport. The lung subsystem provides two types of feedback to the neural subsystem: a mechanical one from pulmonary stretch receptors and a chemical one from central chemoreceptors. The neural component of the model simulates the respiratory network that includes several interacting respiratory neuron types within the Bötzinger and pre-Bötzinger complexes, as well as the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG) representing the central chemoreception module targeted by chemical feedback. The RTN/pFRG compartment contains an independent neural generator that is activated at an increased CO2 level and controls the abdominal motor output. The lung volume is controlled by two pumps, a major one driven by the diaphragm and an additional one activated by abdominal muscles and involved in active expiration. The model represents the first attempt to model the transition from quiet breathing to breathing with active expiration. The model suggests that the closed-loop respiratory control system switches to active expiration via a quantal acceleration of expiratory activity, when increases in breathing rate and phrenic amplitude no longer provide sufficient ventilation. The model can be used for simulation of closed-loop control of breathing under different conditions including respiratory disorders.

  1. Pulmonary Endpoints (Lung Carcinomas and Asbestosis) Following Inhalation Exposure to Asbestos

    PubMed Central

    Mossman, Brooke T.; Lippmann, Morton; Hesterberg, Thomas W.; Kelsey, Karl T.; Barchowsky, Aaron; Bonner, James C.

    2011-01-01

    Lung carcinomas and pulmonary fibrosis (asbestosis) occur in asbestos workers. Understanding the pathogenesis of these diseases is complicated because of potential confounding factors, such as smoking, which is not a risk factor in mesothelioma. The modes of action (MOA) of various types of asbestos in the development of lung cancers, asbestosis, and mesotheliomas appear to be different. Moreover, asbestos fibers may act differentially at various stages of these diseases, and have different potencies as compared to other naturally occurring and synthetic fibers. This literature review describes patterns of deposition and retention of various types of asbestos and other fibers after inhalation, methods of translocation within the lung, and dissolution of various fiber types in lung compartments and cells in vitro. Comprehensive dose-response studies at fiber concentrations inhaled by humans as well as bivariate size distributions (lengths and widths), types, and sources of fibers are rarely defined in published studies and are needed. Species-specific responses may occur. Mechanistic studies have some of these limitations, but have suggested that changes in gene expression (either fiber-catalyzed directly or by cell elaboration of oxidants), epigenetic changes, and receptor-mediated or other intracellular signaling cascades may play roles in various stages of the development of lung cancers or asbestosis. PMID:21534086

  2. Alcohol consumption and lung cancer risk in never smokers: a pooled analysis of case-control studies.

    PubMed

    García Lavandeira, José A; Ruano-Ravina, Alberto; Kelsey, Karl T; Torres-Durán, María; Parente-Lamelas, Isaura; Leiro-Fernández, Virginia; Zapata, Maruxa; Abal-Arca, José; Vidal-García, Iria; Montero-Martínez, Carmen; Amenedo, Margarita; Castro-Añón, Olalla; Golpe-Gómez, Antonio; Guzmán-Taveras, Rosirys; Martínez, Cristina; Provencio, Mariano; Mejuto-Martí, María J; García-García, Silvia; Fernández-Villar, Alberto; Piñeiro, María; Barros-Dios, Juan M

    2018-06-01

    Lung cancer is the deadliest cancer in developed countries but the etiology of lung cancer risk in never smokers (LCRINS) is largely unknown. We aim to assess the effects of alcohol consumption, in its different forms, on LCRINS. We pooled six multi-center case-control studies developed in the northwest of Spain. Cases and controls groups were composed of never smokers. We selected incident cases with anatomopathologically confirmed lung cancer diagnoses. All participants were personally interviewed. We performed two groups of statistical models, applying unconditional logistic regression with generalized additive models. One considered the effect of alcohol type consumption and the other considered the quantity of each alcoholic beverage consumed. A total of 438 cases and 863 controls were included. Median age was 71 and 66, years, respectively. Adenocarcinoma was the predominant histological type, comprising 66% of all cases. We found that any type of wine consumption posed an OR of 2.20 OR 95%CI 1.12-4.35), and spirits consumption had an OR of 1.90 (95%CI 1.13-3.23). Beer consumption had an OR of 1.33 (95%CI 0.82-2.14). These results were similar when women were analyzed separately, but for men there was no apparent risk for any alcoholic beverage. The dose-response analysis for each alcoholic beverage revealed no clear pattern. Wine and spirits consumption might increase the risk of LCRINSs, particularly in females. These results have to be taken with caution given the limitations of the present study.

  3. Expression of inducible nitric oxide synthase in spontaneous bovine bronchopneumonia.

    PubMed

    Fligger, J M; Waldvogel, A S; Pfister, H; Jungi, T W

    1999-09-01

    The expression of inducible nitric oxide synthase (iNOS), major histocompatibility class II molecules (MHC-II), CD68, and the calcium-binding proteins S100A8 and S100A9 (also called MRP8 and MRP14, respectively) was assessed in lung tissues from cattle that succumbed to pneumonia. Expression patterns of these markers were related to the types of lung lesion. iNOS expression was only observed in lungs infected with Arcanobacterium pyogenes or Pasteurella haemolytica but not in lungs from cattle with subacute chronic interstitial pneumonia and acute interstitial pneumonia due to Escherichia coli infection. High levels of iNOS were expressed by cells (probably leukocytes) surrounding necrotic foci. Occasionally, iNOS was expressed by intraalveolar macrophages in viable parenchyma, by leukocytes within the airways, and by some chondrocytes in the supporting cartilage of bronchi. Cells expressing MHC-II were distributed relatively evenly throughout areas of inflammation and did not display any clear association with necrotic foci. Cell types expressing MHC-II included type II alveolar epithelial cells, spindle-shaped cells of the interstitium, cells in bronchus-associated lymphoid tissue, and leukocytes in lymph and blood vessels but largely excluded iNOS-positive cells. Likewise, CD68-positive cells were rarely positive for iNOS and were not confined to the areas surrounding necrotic tissue. As with MHC-II and CD68, there was little if any coexpression of iNOS and either of the S100 proteins tested. Thus, in cattle with necrotizing bronchopneumonia, iNOS-expressing cells were largely restricted to the cellular zone surrounding necrotic areas.

  4. Correlation of EGFR or KRAS mutation status with 18F-FDG uptake on PET-CT scan in lung adenocarcinoma.

    PubMed

    Takamochi, Kazuya; Mogushi, Kaoru; Kawaji, Hideya; Imashimizu, Kota; Fukui, Mariko; Oh, Shiaki; Itoh, Masayoshi; Hayashizaki, Yoshihide; Ko, Weijey; Akeboshi, Masao; Suzuki, Kenji

    2017-01-01

    18F-fluoro-2-deoxy-glucose (18F-FDG) positron emission tomography (PET) is a functional imaging modality based on glucose metabolism. The correlation between EGFR or KRAS mutation status and the standardized uptake value (SUV) of 18F-FDG PET scanning has not been fully elucidated. Correlations between EGFR or KRAS mutation status and clinicopathological factors including SUVmax were statistically analyzed in 734 surgically resected lung adenocarcinoma patients. Molecular causal relationships between EGFR or KRAS mutation status and glucose metabolism were then elucidated in 62 lung adenocarcinomas using cap analysis of gene expression (CAGE), a method to determine and quantify the transcription initiation activities of mRNA across the genome. EGFR and KRAS mutations were detected in 334 (46%) and 83 (11%) of the 734 lung adenocarcinomas, respectively. The remaining 317 (43%) patients had wild-type tumors for both genes. EGFR mutations were more frequent in tumors with lower SUVmax. In contrast, no relationship was noted between KRAS mutation status and SUVmax. CAGE revealed that 4 genes associated with glucose metabolism (GPI, G6PD, PKM2, and GAPDH) and 5 associated with the cell cycle (ANLN, PTTG1, CIT, KPNA2, and CDC25A) were positively correlated with SUVmax, although expression levels were lower in EGFR-mutated than in wild-type tumors. No similar relationships were noted with KRAS mutations. EGFR-mutated adenocarcinomas are biologically indolent with potentially lower levels of glucose metabolism than wild-type tumors. Several genes associated with glucose metabolism and the cell cycle were specifically down-regulated in EGFR-mutated adenocarcinomas.

  5. GTV-based prescription in SBRT for lung lesions using advanced dose calculation algorithms.

    PubMed

    Lacornerie, Thomas; Lisbona, Albert; Mirabel, Xavier; Lartigau, Eric; Reynaert, Nick

    2014-10-16

    The aim of current study was to investigate the way dose is prescribed to lung lesions during SBRT using advanced dose calculation algorithms that take into account electron transport (type B algorithms). As type A algorithms do not take into account secondary electron transport, they overestimate the dose to lung lesions. Type B algorithms are more accurate but still no consensus is reached regarding dose prescription. The positive clinical results obtained using type A algorithms should be used as a starting point. In current work a dose-calculation experiment is performed, presenting different prescription methods. Three cases with three different sizes of peripheral lung lesions were planned using three different treatment platforms. For each individual case 60 Gy to the PTV was prescribed using a type A algorithm and the dose distribution was recalculated using a type B algorithm in order to evaluate the impact of the secondary electron transport. Secondly, for each case a type B algorithm was used to prescribe 48 Gy to the PTV, and the resulting doses to the GTV were analyzed. Finally, prescriptions based on specific GTV dose volumes were evaluated. When using a type A algorithm to prescribe the same dose to the PTV, the differences regarding median GTV doses among platforms and cases were always less than 10% of the prescription dose. The prescription to the PTV based on type B algorithms, leads to a more important variability of the median GTV dose among cases and among platforms, (respectively 24%, and 28%). However, when 54 Gy was prescribed as median GTV dose, using a type B algorithm, the variability observed was minimal. Normalizing the prescription dose to the median GTV dose for lung lesions avoids variability among different cases and treatment platforms of SBRT when type B algorithms are used to calculate the dose. The combination of using a type A algorithm to optimize a homogeneous dose in the PTV and using a type B algorithm to prescribe the median GTV dose provides a very robust method for treating lung lesions.

  6. Partial pneumonectomy of telomerase null mice carrying shortened telomeres initiates cell growth arrest resulting in a limited compensatory growth response

    PubMed Central

    Jackson, Sha-Ron; Lee, Jooeun; Reddy, Raghava; Williams, Genevieve N.; Kikuchi, Alexander; Freiberg, Yael; Warburton, David

    2011-01-01

    Telomerase mutations and significantly shortened chromosomal telomeres have recently been implicated in human lung pathologies. Natural telomere shortening is an inevitable consequence of aging, which is also a risk factor for development of lung disease. However, the impact of shortened telomeres and telomerase dysfunction on the ability of lung cells to respond to significant challenge is still largely unknown. We have previously shown that lungs of late generation, telomerase null B6.Cg-Terctm1Rdp mice feature alveolar simplification and chronic stress signaling at baseline, a phenocopy of aged lung. To determine the role telomerase plays when the lung is challenged, B6.Cg-Terctm1Rdp mice carrying shortened telomeres and wild-type controls were subjected to partial pneumonectomy. We found that telomerase activity was strongly induced in alveolar epithelial type 2 cells (AEC2) of the remaining lung immediately following surgery. Eighty-six percent of wild-type animals survived the procedure and exhibited a burst of early compensatory growth marked by upregulation of proliferation, stress response, and DNA repair pathways in AEC2. In B6.Cg-Terctm1Rdp mice carrying shortened telomeres, response to pneumonectomy was characterized by decreased survival, diminished compensatory lung growth, attenuated distal lung progenitor cell response, persistent DNA damage, and cell growth arrest. Overall, survival correlated strongly with telomere length. We conclude that functional telomerase and properly maintained telomeres play key roles in both long-term survival and the early phase of compensatory lung growth following partial pneumonectomy. PMID:21460122

  7. Multidisciplinary team working across different tumour types: analysis of a national survey.

    PubMed

    Lamb, B W; Sevdalis, N; Taylor, C; Vincent, C; Green, J S A

    2012-05-01

    Using data from a national survey, this study aimed to address whether the current model for multidisciplinary team (MDT) working is appropriate for all tumour types. Responses to the 2009 National Cancer Action Team national survey were analysed by tumour type. Differences indicate lack of consensus between MDT members in different tumour types. One thousand one hundred and forty-one respondents from breast, gynaecological, colorectal, upper gastrointestinal, urological, head and neck, haematological and lung MDTs were included. One hundred and sixteen of 136 statements demonstrated consensus between respondents in different tumour types. There were no differences regarding the infrastructure for meetings and team governance. Significant consensus was seen for team characteristics, and respondents disagreed regarding certain aspects of meeting organisations and logistics, and patient-centred decision making. Haematology MDT members were outliers in relation to the clinical decision-making process, and lung MDT members disagreed with other tumour types regarding treating patients with advanced disease. This analysis reveals strong consensus between MDT members from different tumour types, while also identifying areas that require a more tailored approach, such as the clinical decision-making process, and preparation for and the organisation of MDT meetings. Policymakers should remain sensitive to the needs of health care teams working in individual tumour types.

  8. Sumas Mountain chrysotile induces greater lung fibrosis in Fischer 344 rats than Libby amphibole, El Dorado tremolite, and Ontario ferroactinolite

    EPA Science Inventory

    The physical properties of different types of asbestos may strongly affect health outcomes in exposed individuals. This study was designed to provide understanding of the comparative toxicity of naturally occurring asbestos (NOA) fibers including Libby amphibole (LA), Sumas Moun...

  9. The risk of schizophrenia and child psychiatric disorders in offspring of mothers with lung cancer and other types of cancer: a Danish nationwide register study.

    PubMed

    Benros, Michael Eriksen; Laursen, Thomas Munk; Dalton, Susanne Oksbjerg; Nordentoft, Merete; Mortensen, Preben Bo

    2013-01-01

    Maternal immune responses and brain-reactive antibodies have been proposed as possible causal mechanisms for schizophrenia and some child psychiatric disorders. According to this hypothesis maternal antibodies may cross the placenta and interact with the developing CNS of the fetus causing future neurodevelopmental disorders. Therefore, we investigated if children of mothers with cancer might be at higher risk of developing psychiatric disorders, with particular focus on small-cell lung cancer, which is known to induce production of antibodies binding to CNS elements. Nationwide population-based registers were linked, including the Danish Psychiatric Central Register and The Danish Cancer Registry. Data were analyzed as a cohort study using survival analysis techniques. Incidence rate ratios (IRRs) and accompanying 95% confidence intervals (CIs) were used as measures of relative risk. In general, parental cancer was not associated with schizophrenia in the offspring (IRR, 0.98; 95% CI, 0.95-1.01). Furthermore, we found no temporal associations with maternal cancer in general; neither around the pregnancy period. However, maternal small-cell lung cancer increased the risk of early-onset schizophrenia and maternal small-cell lung cancer diagnosed within 20 years after childbirth increased the risk of schizophrenia. Parental cancer was not associated with child psychiatric disorders (IRR, 1.01; 95% CI, 0.98-1.05) except for the smoking related cancers. There was a significantly increased risk of child psychiatric disorders in offspring of both mothers (IRR, 1.35; 95% CI, 1.16-1.58) and fathers (IRR, 1.47; 95% CI, 1.30-1.66) with lung cancer of all types. In general, parental cancer did not increase the risk of schizophrenia nor of child psychiatric disorders. However, maternal small-cell lung cancer increased the risk of schizophrenia in subgroups; and lung cancer in general increased the risk of child psychiatric disorders, which could be due to risk factors associated with parental smoking.

  10. The prevalence and extent of gastroesophageal reflux disease correlates to the type of lung transplantation.

    PubMed

    Fisichella, Piero Marco; Davis, Christopher S; Shankaran, Vidya; Gagermeier, James; Dilling, Daniel; Alex, Charles G; Kovacs, Elizabeth J; Joehl, Raymond J; Love, Robert B

    2012-02-01

    Evidence is increasingly convincing that lung transplantation is a risk factor of gastroesophageal reflux disease (GERD). However, it is still not known if the type of lung transplant (unilateral, bilateral, or retransplant) plays a role in the pathogenesis of GERD. The records of 61 lung transplant patients who underwent esophageal function tests between September 2008 and May 2010, were retrospectively reviewed. These patients were divided into 3 groups based on the type of lung transplant they received: unilateral (n=25); bilateral (n=30), and retransplant (n=6). Among these groups we compared: (1) the demographic characteristics (eg, sex, age, race, and body mass index); (2) the presence of Barrett esophagus, delayed gastric emptying, and hiatal hernia; and (3) the esophageal manometric and pH-metric profile. Distal and proximal reflux were more prevalent in patients with bilateral transplant or retransplant and less prevalent in patients after unilateral transplant, regardless of the cause of their lung disease. The prevalence of hiatal hernia, Barrett esophagus, and the manometric profile were similar in all groups of patients. Although our data show a discrepancy in prevalence of GERD in patients with different types of lung transplantation, we cannot determine the exact cause for these findings from this study. We speculate that the extent of dissection during the transplant places the patients at risk for GERD. On the basis of the results of this study, a higher level of suspicion of GERD should be held in patients after bilateral or retransplantation.

  11. IL-22 Is Essential for Lung Epithelial Repair following Influenza Infection

    PubMed Central

    Pociask, Derek A.; Scheller, Erich V.; Mandalapu, Sivanarayana; McHugh, Kevin J.; Enelow, Richard I.; Fattman, Cheryl L.; Kolls, Jay K.; Alcorn, John F.

    2014-01-01

    Influenza infection is widespread in the United States and the world. Despite low mortality rates due to infection, morbidity is common and little is known about the molecular events involved in recovery. Influenza infection results in persistent distal lung remodeling, and the mechanism(s) involved are poorly understood. Recently IL-22 has been found to mediate epithelial repair. We propose that IL-22 is critical for recovery of normal lung function and architecture after influenza infection. Wild-type and IL-22−/− mice were infected with influenza A PR8/34 H1N1 and were followed up for up to 21 days post infection. IL-22 receptor was localized to the airway epithelium in naive mice but was expressed at the sites of parenchymal lung remodeling induced by influenza infection. IL-22−/− mice displayed exacerbated lung injury compared with wild-type mice, which correlated with decreased lung function 21 days post infection. Epithelial metaplasia was observed in wild-type mice but was not evident in IL-22−/− animals that were characterized with an increased fibrotic phenotype. Gene expression analysis revealed aberrant expression of epithelial genes involved in repair processes, among changes in several other biological processes. These data indicate that IL-22 is required for normal lung repair after influenza infection. IL-22 represents a novel pathway involved in interstitial lung disease. PMID:23490254

  12. Patient views on smoking, lung cancer, and stigma: a focus group perspective.

    PubMed

    Lehto, Rebecca H

    2014-06-01

    Patients with lung cancer, the leading cause of cancer death, are shown to have high levels of psychological distress and poorer quality of life as compared to patients with other cancer types. The purpose of this paper is to describe patient focus group discussions about the lung cancer experience in relation to perceived stigmatization, smoking behaviors, and illness causes; and to discuss implications of these findings relative to the role of the nurse as a patient advocate. Eleven adult lung cancer patients participated in audio taped focus group sessions. Discussion questions probed patient perceptions of lung cancer challenges and adaptation issues. Six primary themes from the qualitative analysis included: 1) societal attitudes; 2) institutional practices and experiences; 3) negative thoughts and emotions such as guilt, self-blame and self-deprecation, regret, and anger; 4) actual stigmatization experiences; 5) smoking cessation: personal choices versus addiction; and 6) causal attributions. Patients with lung cancer uniquely experience an added burden from developing an illness that the public recognizes is directly associated with smoking behaviors. Stigmatization and smoking related concerns are of high importance. Oncology nurses must be at the forefront in ensuring that patients with lung cancer do not experience additional burden from perceptions that they somehow deserve and need to defend why they have the illness that they are facing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Emodin induces apoptosis of lung cancer cells through ER stress and the TRIB3/NF-κB pathway.

    PubMed

    Su, Jin; Yan, Yan; Qu, Jingkun; Xue, Xuewen; Liu, Zi; Cai, Hui

    2017-03-01

    Emodin is a phytochemical with potent anticancer activities against various human malignant cancer types, including lung cancer; however, the molecular mechanisms underlying the effects of emodin remain unclear. In the present study, the A549 and H1299 human non-small lung cancer cell lines were treated with emodin and the induced molecular effects were investigated. Changes in cell viability were evaluated by MTT assay, Hoechst staining was used to indicate the apoptotic cells, and western blotting was utilized to assess endoplasmic reticulum (ER) stress and signaling changes. RNA interference was also employed to further examine the role of tribbles homolog 3 (TRIB3) in the emodin-induced apoptosis of lung cancer cells. Emodin was found to reduce the viability of lung cancer cells and induce apoptosis in a concentration-dependent manner. Emodin-induced apoptosis was impaired by inhibition of ER stress using 4-phenylbutyrate (4-PBA). ER stress and TRIB3/nuclear factor-κB signaling was activated in emodin-treated lung cancer cells. Emodin-induced apoptosis was reduced by TRIB3 knockdown in A549 cells, whereas ER stress was not reduced. In vivo assays verified the significance of these results, revealing that emodin inhibited lung cancer growth and that the inhibitory effects were reduced by inhibition of ER stress with 4-PBA. In conclusion, the results suggest that TRIB3 signaling is associated with emodin-induced ER stress-mediated apoptosis in lung cancer cells.

  14. Meat consumption and risk of lung cancer: evidence from observational studies

    PubMed Central

    Yang, W. S.; Wong, M. Y.; Vogtmann, E.; Tang, R. Q.; Xie, L.; Yang, Y. S.; Wu, Q. J.; Zhang, W.; Xiang, Y. B.

    2012-01-01

    Background A number of epidemiological studies have reported inconsistent findings on the association between meat consumption and lung cancer. Design We therefore conducted a systematic review and meta-analysis to investigate the relationship between meat consumption and lung cancer risk in epidemiological studies. Results Twenty-three case–control and 11 cohort studies were included. All studies adjusted for smoking or conducted in never smokers. The summary relative risks (RRs) of lung cancer for the highest versus lowest intake categories were 1.35 (95% confidence interval (CI) 1.08–1.69) for total meat, 1.34 (95% CI 1.18–1.52) for red meat, and 1.06 (95% CI 0.90–1.25) for processed meat. An inverse association was found between poultry intake and lung cancer (RR = 0.91, 95% CI 0.85–0.97), but not for total white meat (RR = 1.06, 95% CI 0.82–1.37) or fish (RR = 1.01, 95% CI 0.96–1.07). Conclusions The relationship between meat intake and lung cancer risk appears to depend on the types of meat consumed. A high intake of red meat may increase the risk of lung cancer by about 35%, while a high intake of poultry decreases the risk by about 10%. More well-designed cohort studies on meat mutagens or heme iron, meat cooking preferences, and doneness level are needed to fully characterize this meat–lung cancer association. PMID:22855553

  15. Medical follow-up of workers exposed to lung carcinogens: French evidence-based and pragmatic recommendations.

    PubMed

    Delva, Fleur; Margery, Jacques; Laurent, François; Petitprez, Karine; Pairon, Jean-Claude

    2017-02-14

    The aim of this work was to establish recommendations for the medical follow-up of workers currently or previously exposed to lung carcinogens. A critical synthesis of the literature was conducted. Occupational lung carcinogenic substances were listed and classified according to their level of lung cancer risk. A targeted screening protocol was defined. A clinical trial, National Lung Screnning Trial (NLST), showed the efficacy of chest CAT scan (CT) screening for populations of smokers aged 55-74 years with over 30 pack-years of exposure who had stopped smoking for less than 15 years. To propose screening in accordance with NLST criteria, and to account for occupational risk factors, screening among smokers and former smokers needs to consider the types of occupational exposure for which the risk level is at least equivalent to the risk of the subjects included in the NLST. The working group proposes an algorithm that estimates the relative risk of each occupational lung carcinogen, taking into account exposure to tobacco, based on available data from the literature. Given the lack of data on bronchopulmonary cancer (BPC) screening in occupationally exposed workers, the working group proposed implementing a screening experiment for bronchopulmonary cancer in subjects occupationally exposed or having been occupationally exposed to lung carcinogens who are confirmed as having high risk factors for BPC. A specific algorithm is proposed to determine the level of risk of BPC, taking into account the different occupational lung carcinogens and tobacco smoking at the individual level.

  16. ACE phenotyping in human heart.

    PubMed

    Tikhomirova, Victoria E; Kost, Olga A; Kryukova, Olga V; Golukhova, Elena Z; Bulaeva, Naida I; Zholbaeva, Aigerim Z; Bokeria, Leo A; Garcia, Joe G N; Danilov, Sergei M

    2017-01-01

    Angiotensin-converting enzyme (ACE), which metabolizes many peptides and plays a key role in blood pressure regulation and vascular remodeling, is expressed as a type-1 membrane glycoprotein on the surface of different cells, including endothelial cells of the heart. We hypothesized that the local conformation and, therefore, the properties of heart ACE could differ from lung ACE due to different microenvironment in these organs. We performed ACE phenotyping (ACE levels, conformation and kinetic characteristics) in the human heart and compared it with that in the lung. ACE activity in heart tissues was 10-15 lower than that in lung. Various ACE effectors, LMW endogenous ACE inhibitors and HMW ACE-binding partners, were shown to be present in both heart and lung tissues. "Conformational fingerprint" of heart ACE (i.e., the pattern of 17 mAbs binding to different epitopes on the ACE surface) significantly differed from that of lung ACE, which reflects differences in the local conformations of these ACEs, likely controlled by different ACE glycosylation in these organs. Substrate specificity and pH-optima of the heart and lung ACEs also differed. Moreover, even within heart the apparent ACE activities, the local ACE conformations, and the content of ACE inhibitors differ in atria and ventricles. Significant differences in the local conformations and kinetic properties of heart and lung ACEs demonstrate tissue specificity of ACE and provide a structural base for the development of mAbs able to distinguish heart and lung ACEs as a potential blood test for predicting atrial fibrillation risk.

  17. Distribution of donor lungs in the United States: a case for broader geographic sharing.

    PubMed

    Iribarne, Alexander; Meltzer, David O; Chauhan, Dhaval; Sonett, Joshua R; Gibbons, Robert D; Vigneswaran, Wickii; Russo, Mark J

    2016-06-01

    To evaluate the association between allocation of donor lungs by geographic sharing type (GST) and lung allocation score (LAS). UNOS data included lung transplant recipients between 5/4/05 and 09/30/15 (n = 17 416) grouped by GST of donor lungs: local, regional, or national. Recipients were stratified by LAS <50, 50-75, and >75. Kaplan-Meier analysis was used to assess five-yr survival. The majority of lungs were shared locally (n = 9200; 52.8%) followed by nationally (n = 5356; 30.8%) and regionally (n = 2860; 16.4%). There was a significant difference in the mean LAS at transplant (local: 43.7 ± 15; regional: 49.5 ± 18.8; national 51 ± 19.4; p < 0.001). There was a significant association between GST and LAS (p < 0.001). The majority (n = 7431; 58.2%) of recipients with LAS <50 received local lungs. Recipients with LAS >75 received a majority of their organs from national (n = 881; 45.4%) and regional (n = 414; 21.6%) donors. Although statistically significant (p = 0.024), absolute decline in five-yr survival by GST in the national GST was only 1.1% compared to the local GST. Nearly half of all lungs in the United States are allocated locally to recipients with an LAS <50. Additional studies should determine if organ sharing over broader geographies would improve waitlist outcomes. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Type I IFN triggers RIG-I/TLR3/NLRP3-dependent inflammasome activation in influenza A virus infected cells.

    PubMed

    Pothlichet, Julien; Meunier, Isabelle; Davis, Beckley K; Ting, Jenny P-Y; Skamene, Emil; von Messling, Veronika; Vidal, Silvia M

    2013-01-01

    Influenza A virus (IAV) triggers a contagious and potentially lethal respiratory disease. A protective IL-1β response is mediated by innate receptors in macrophages and lung epithelial cells. NLRP3 is crucial in macrophages; however, which sensors elicit IL-1β secretion in lung epithelial cells remains undetermined. Here, we describe for the first time the relative roles of the host innate receptors RIG-I (DDX58), TLR3, and NLRP3 in the IL-1β response to IAV in primary lung epithelial cells. To activate IL-1β secretion, these cells employ partially redundant recognition mechanisms that differ from those described in macrophages. RIG-I had the strongest effect through a MAVS/TRIM25/Riplet-dependent type I IFN signaling pathway upstream of TLR3 and NLRP3. Notably, RIG-I also activated the inflammasome through interaction with caspase 1 and ASC in primary lung epithelial cells. Thus, NS1, an influenza virulence factor that inhibits the RIG-I/type I IFN pathway, strongly modulated the IL-1β response in lung epithelial cells and in ferrets. The NS1 protein derived from a highly pathogenic strain resulted in increased interaction with RIG-I and inhibited type I IFN and IL-1β responses compared to the least pathogenic virus strains. These findings demonstrate that in IAV-infected lung epithelial cells RIG-I activates the inflammasome both directly and through a type I IFN positive feedback loop.

  19. Gemcitabine Injection

    MedlinePlus

    ... other chemotherapy drugs to treat a type of lung cancer (non-small cell lung cancer; NSCLC) that has spread to other parts of ... 3 weeks. When gemcitabine is used to treat lung cancer it is usually given on certain days every ...

  20. Predictors of lung transplant survival in eurotransplant.

    PubMed

    Smits, J M A; Mertens, B J A; Van Houwelingen, H C; Haverich, A; Persijn, G G; Laufer, G

    2003-11-01

    This study was undertaken to assess the influence of patient/donor and center factors on lung transplantation outcome. Outcomes of all consecutive first cadaveric lung transplants performed at 21 Eurotransplant centers in 1997-99 were analyzed. The risk-adjusted center effect on mortality was estimated. A Cox model was built including donor and recipient age and gender, primary disease, HLA mismatches, patient's residence, cold ischemic time, donor's cause of death, serum creatinine, type of lung transplant, respiratory support status, clinical condition and percentage predicted FEV1. The center effect was calculated (expressed as the standardized difference between the observed and expected survival rates), and empirical and full Bayes methods were applied to evaluate between-center differences. A total of 590 adults underwent lung transplantation. The primary disease (p=0.01), HLA-mismatches (p = 0.02), clinical condition(p < 0.0001) and the patient's respiratory support status (p = 0.05) were significantly associated with survival. After adjusting for case-mix, no between-center differences could be found. An in-depth empirical Bayes analysis showed the between-center variation to be zero. Similar results were obtained from the full Bayes analysis. Based on these data, there is no scientific basis to support a hypothesis of possible association between center volume and lung survival rates.

  1. Angiotensin receptors as sensitive markers of acute bronchiole injury after lung transplantation.

    PubMed

    Nataatmadja, Maria; Passmore, Margaret; Russell, Fraser D; Prabowo, Sulistiana; Corley, Amanda; Fraser, John F

    2014-08-01

    Although lung transplantation is the only means of survival for patients with end-stage pulmonary disease, outcomes from this intervention are inferior to other solid organ transplants. The reason for the poor outcomes may be linked to an early reaction, such as primary graft dysfunction, and associated with marked inflammatory response, bronchiole injury, and later fibrotic responses. Mediators regulating these effects include angiotensin II and matrix metalloproteinases (MMPs). We investigated changes to these mediators over the course of cardiopulmonary bypass (CPB) and up to 72 h after lung transplantation, using immunohistochemistry, Western blot, and ELISA techniques. We found 4- and 16-fold increases in plasma angiotensin II and MMP-9, respectively, from pre-CPB to post-CPB. MMP-9 levels remained elevated 1 h after transplantation. MMP-2 levels were elevated 6-24 h after lung transplantation. Type 2 angiotensin II receptor (ATR2) expression was 3.5-fold higher in bronchoalveolar cells 1-6 h after transplantation than in controls. The study suggests that the combination of cardiopulmonary bypass and lung transplantation is associated with early changes in the angiotensin II receptor system and in MMPs, and that altered expression of these mediators may be a useful marker to examine pathological changes that occur in lungs during transplant surgery.

  2. Deploying Team Science Principles to Optimize Interdisciplinary Lung Cancer Care Delivery: Avoiding the Long and Winding Road to Optimal Care.

    PubMed

    Osarogiagbon, Raymond U; Rodriguez, Hector P; Hicks, Danielle; Signore, Raymond S; Roark, Kristi; Kedia, Satish K; Ward, Kenneth D; Lathan, Christopher; Santarella, Scott; Gould, Michael K; Krasna, Mark J

    2016-11-01

    The complexity of lung cancer care mandates interaction between clinicians with different skill sets and practice cultures in the routine delivery of care. Using team science principles and a case-based approach, we exemplify the need for the development of real care teams for patients with lung cancer to foster coordination among the multiple specialists and staff engaged in routine care delivery. Achieving coordinated lung cancer care is a high-priority public health challenge because of the volume of patients, lethality of disease, and well-described disparities in quality and outcomes of care. Coordinating mechanisms need to be cultivated among different types of specialist physicians and care teams, with differing technical expertise and practice cultures, who have traditionally functioned more as coactively working groups than as real teams. Coordinating mechanisms, including shared mental models, high-quality communication, mutual trust, and mutual performance monitoring, highlight the challenge of achieving well-coordinated care and illustrate how team science principles can be used to improve quality and outcomes of lung cancer care. To develop the evidence base to support coordinated lung cancer care, research comparing the effectiveness of a diverse range of multidisciplinary care team approaches and interorganizational coordinating mechanisms should be promoted.

  3. A novel telomerase activator suppresses lung damage in a murine model of idiopathic pulmonary fibrosis.

    PubMed

    Le Saux, Claude Jourdan; Davy, Philip; Brampton, Christopher; Ahuja, Seema S; Fauce, Steven; Shivshankar, Pooja; Nguyen, Hieu; Ramaseshan, Mahesh; Tressler, Robert; Pirot, Zhu; Harley, Calvin B; Allsopp, Richard

    2013-01-01

    The emergence of diseases associated with telomere dysfunction, including AIDS, aplastic anemia and pulmonary fibrosis, has bolstered interest in telomerase activators. We report identification of a new small molecule activator, GRN510, with activity ex vivo and in vivo. Using a novel mouse model, we tested the potential of GRN510 to limit fibrosis induced by bleomycin in mTERT heterozygous mice. Treatment with GRN510 at 10 mg/kg/day activated telomerase 2-4 fold both in hematopoietic progenitors ex vivo and in bone marrow and lung tissue in vivo, respectively. Telomerase activation was countered by co-treatment with Imetelstat (GRN163L), a potent telomerase inhibitor. In this model of bleomycin-induced fibrosis, treatment with GRN510 suppressed the development of fibrosis and accumulation of senescent cells in the lung via a mechanism dependent upon telomerase activation. Treatment of small airway epithelial cells (SAEC) or lung fibroblasts ex vivo with GRN510 revealed telomerase activating and replicative lifespan promoting effects only in the SAEC, suggesting that the mechanism accounting for the protective effects of GRN510 against induced lung fibrosis involves specific types of lung cells. Together, these results support the use of small molecule activators of telomerase in therapies to treat idiopathic pulmonary fibrosis.

  4. Pulmonary Nodule Classification with Deep Convolutional Neural Networks on Computed Tomography Images.

    PubMed

    Li, Wei; Cao, Peng; Zhao, Dazhe; Wang, Junbo

    2016-01-01

    Computer aided detection (CAD) systems can assist radiologists by offering a second opinion on early diagnosis of lung cancer. Classification and feature representation play critical roles in false-positive reduction (FPR) in lung nodule CAD. We design a deep convolutional neural networks method for nodule classification, which has an advantage of autolearning representation and strong generalization ability. A specified network structure for nodule images is proposed to solve the recognition of three types of nodules, that is, solid, semisolid, and ground glass opacity (GGO). Deep convolutional neural networks are trained by 62,492 regions-of-interest (ROIs) samples including 40,772 nodules and 21,720 nonnodules from the Lung Image Database Consortium (LIDC) database. Experimental results demonstrate the effectiveness of the proposed method in terms of sensitivity and overall accuracy and that it consistently outperforms the competing methods.

  5. [Clinical Development of Immune Checkpoint Inhibitors in Patients with Small Cell Lung Cancer].

    PubMed

    Zhang, Shuang; Liu, Jingjing; Cheng, Ying

    2017-09-20

    Small cell lung cancer (SCLC) is a poorly differentiated high-grade neuroendocrine tumor, accounts for approximately 14% of all lung cancers. SCLC is characterized by rapid growth, early metastasis without effective treatments after recurrence. It is urgently need to improve the therapy of patients with SCLC. In recent years Tumor immunotherapy has shown promising efficacy, especially in immune checkpoints including inhibitors programmed cell-death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). These immune checkpoint inhibitors of the researches are changing the clinical practice of many kinds of solid tumor. SCLC is a potential ideal type of tumor immunotherapy for tobacco exposure and the highest mutational load. In this report, the authors review the current state of the immunotherapy in SCLC, to discussing the problems, challenge and application development prospect.

  6. Prospective evaluation of changes in computed cranial tomography in patients with small cell lung carcinoma treated with chemotherapy and prophylactic cranial irradiation.

    PubMed

    Craig, J B; Jackson, D V; Moody, D; Cruz, J M; Pope, E K; Powell, B L; Spurr, C L; Capizzi, R L

    1984-10-01

    Computed cranial tomographic scans were performed as part of the pretreatment evaluation and at six- to nine-month intervals posttreatment in 13 patients with small cell lung carcinoma. All patients received 3,000 rad of prophylactic cranial irradiation delivered over two weeks in ten treatment fractions in conjunction with multiagent chemotherapy. Posttreatment scans documented an extraordinarily high frequency of abnormalities including cerebral atrophy (100%), ventricular dilatation (70%), and decreased coefficient of absorption in the white matter (15%). Unexplained neurologic abnormalities developed in four of six patients living at least 15 months after institution of therapy. As the number of long-term survivors of this type of lung cancer increases, the need for prospective comprehensive neuropsychologic assessment to determine the clinical significance of these changes is needed.

  7. Effects of multi-walled carbon nanotubes on a murine allergic airway inflammation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Ken-ichiro; Koike, Eiko; Yanagisawa, Rie

    The development of nanotechnology has increased the risk of exposure to types of particles other than combustion-derived particles in the environment, namely, industrial nanomaterials. On the other hand, patients with bronchial asthma are sensitive to inhaled substances including particulate matters. This study examined the effects of pulmonary exposure to a type of nano-sized carbon nanotube (multi-walled nanotubes: MWCNT) on allergic airway inflammation in vivo and their cellular mechanisms in vitro. In vivo, ICR mice were divided into 4 experimental groups. Vehicle, MWCNT (50 {mu}g/animal), ovalbumin (OVA), and OVA + MWCNT were repeatedly administered intratracheally. Bronchoalveolar lavage (BAL) cellularity, lung histology,more » levels of cytokines related to allergic inflammation in lung homogenates/BAL fluids (BALFs), and serum immunoglobulin levels were studied. Also, we evaluated the impact of MWCNT (0.1-1 {mu}g/ml) on the phenotype and function of bone marrow-derived dendritic cells (DC) in vitro. MWCNT aggravated allergen-induced airway inflammation characterized by the infiltration of eosinophils, neutrophils, and mononuclear cells in the lung, and an increase in the number of goblet cells in the bronchial epithelium. MWCNT with allergen amplified lung protein levels of Th cytokines and chemokines compared with allergen alone. MWCNT exhibited adjuvant activity for allergen-specific IgG{sub 1} and IgE. MWCNT significantly increased allergen (OVA)-specific syngeneic T-cell proliferation, particularly at a lower concentration in vitro. Taken together, MWCNT can exacerbate murine allergic airway inflammation, at least partly, via the promotion of a Th-dominant milieu. In addition, the exacerbation may be partly through the inappropriate activation of antigen-presenting cells including DC.« less

  8. The effect of gender on health-related quality of life and related factors in post-lobectomy lung-cancer patients.

    PubMed

    Chang, Nai-Wen; Lin, Kuan-Chia; Hsu, Wen-Hu; Lee, Shih-Chun; Chan, James Yi-Hsin; Wang, Kwua-Yun

    2015-06-01

    While studies have documented gender differences by histologic type among lung cancer patients, the effect of these differences on the health-related quality of life (HRQoL) of post-lobectomy lungcancer patients and related factors remain uncertain. This study examines gender-specific HRQoL and related factors in post-lobectomy lung-cancer patients. A cross-sectional study design was applied. A convenience sample of 231 post-lobectomy lungcancer patients was recruited from the thoracic surgery outpatient departments of two teaching hospitals in Taipei, Taiwan from March to December 2012. Patients performed a spirometry test and completed instruments that included a Beck Depression Inventory-II, an Interpersonal Support Evaluation List, and the symptom and function scales of the Quality of Life Questionnaire. Data analysis used descriptive statistics, including mean and standard deviations, frequency, and percentage values. Independent-sample Student's t-tests and multivariate analyses were used for comparative purposes. This study confirmed a significant gender effect on HRQoL and HRQoL-related factors such as marital status, religious affiliation, smoking status, histologic type, symptoms, pulmonary function, depression, and family support. Moreover, multivariate analysis found gender to be a significant determinant of the HRQoL aspects of physical functioning, emotional functioning, and cognitive functioning. Finally, results indicated that factors other than gender were also significant determinants of HRQoL. Gender impacts the HRQoL and related factors of postoperative lung-cancer patients. Therefore, gender should be considered in assessing and addressing the individual care needs of these patients in order to attain optimal treatment outcomes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Identification of Key Transcription Factors Associated with Lung Squamous Cell Carcinoma

    PubMed Central

    Zhang, Feng; Chen, Xia; Wei, Ke; Liu, Daoming; Xu, Xiaodong; Zhang, Xing; Shi, Hong

    2017-01-01

    Background Lung squamous cell carcinoma (lung SCC) is a common type of lung cancer, but its mechanism of pathogenesis is unclear. The aim of this study was to identify key transcription factors in lung SCC and elucidate its mechanism. Material/Methods Six published microarray datasets of lung SCC were downloaded from Gene Expression Omnibus (GEO) for integrated bioinformatics analysis. Significance analysis of microarrays was used to identify differentially expressed genes (DEGs) between lung SCC and normal controls. The biological functions and signaling pathways of DEGs were mapped in the Gene Otology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, respectively. A transcription factor gene regulatory network was used to obtain insights into the functions of DEGs. Results A total of 1,011 genes, including 539 upregulated genes and 462 downregulated genes, were filtered as DEGs between lung SCC and normal controls. DEGs were significantly enriched in cell cycle, DNA replication, p53 signaling pathway, pathways in cancer, adherens junction, and cell adhesion molecules signaling pathways. There were 57 transcription factors identified, which were used to construct a regulatory network. The network consisted of 736 interactions between 49 transcription factors and 486 DEGs. NFIC, BRCA1, and NFATC2 were the top 3 transcription factors that had the highest connectivity with DEGs and that regulated 83, 82, and 75 DEGs in the network, respectively. Conclusions NFIC, BRCA1, and NFATC2 might be the key transcription factors in the development of lung SCC by regulating the genes involved in cell cycle and DNA replication pathways. PMID:28081052

  10. Frequency and distribution of incidental findings deemed appropriate for S modifier designation on low-dose CT in a lung cancer screening program.

    PubMed

    Reiter, Michael J; Nemesure, Allison; Madu, Ezemonye; Reagan, Lisa; Plank, April

    2018-06-01

    To describe the frequency, distribution and reporting patterns of incidental findings receiving the Lung-RADS S modifier on low-dose chest computed tomography (CT) among lung cancer screening participants. This retrospective investigation included 581 individuals who received baseline low-dose chest CT for lung cancer screening between October 2013 and June 2017 at a single center. Incidental findings resulting in assignment of Lung-RADS S modifier were recorded as were incidental abnormalities detailed within the body of the radiology report only. A subset of 60 randomly selected CTs was reviewed by a second (blinded) radiologist to evaluate inter-rater variability of Lung-RADS reporting. A total of 261 (45%) participants received the Lung-RADS S modifier on baseline CT with 369 incidental findings indicated as potentially clinically significant. Coronary artery calcification was most commonly reported, accounting for 182 of the 369 (49%) findings. An additional 141 incidentalomas of the same types as these 369 findings were described in reports but were not labelled with the S modifier. Therefore, as high as 69% (402 of 581) of participants could have received the S modifier if reporting was uniform. Inter-radiologist concordance of S modifier reporting in a subset of 60 participants was poor (42% agreement, kappa = 0.2). Incidental findings are commonly identified on chest CT for lung cancer screening, yet reporting of the S modifier within Lung-RADS is inconsistent. Specific guidelines are necessary to better define potentially clinically significant abnormalities and to improve reporting uniformity. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Lung cancer risk and consumption of vegetables and fruit: an evaluation based on a systematic review of epidemiological evidence from Japan.

    PubMed

    Wakai, Kenji; Matsuo, Keitaro; Nagata, Chisato; Mizoue, Tetsuya; Tanaka, Keitaro; Tsuji, Ichiro; Sasazuki, Shizuka; Shimazu, Taichi; Sawada, Norie; Inoue, Manami; Tsugane, Shoichiro

    2011-05-01

    Clinical trials of β-carotene supplementation and recent large-scale prospective studies have called into question the protective effects of vegetable and fruit consumption against lung cancer. To re-assess this issue, we reviewed data from Japanese epidemiological studies. Original data were obtained from searches of MEDLINE and the Japana Centra Revuo Medicina (Ichushi) database. The associations were assessed based on their magnitude and the strength of the evidence, together with their biological plausibility as previously evaluated by the International Agency for Research on Cancer. We identified six cohort studies and four case-control studies on the consumption of vegetables and/or fruit. We focused on fruit and green-yellow vegetables as food items, as they were included in more of the studies, and insufficient data were available on other types of vegetables. Among the three cohort and two case-control studies that reported on green-yellow vegetables, only one of each study type showed a weak inverse association between lung cancer risk and their consumption. Two of the four cohort studies and one (or possibly two) of the four case-control studies demonstrated a weak inverse correlation between lung cancer risk and fruit consumption. Meta-analysis for fruit consumption revealed a summary relative risk that was significantly smaller than unity. Our analysis of the Japanese epidemiological data showed that fruit consumption possibly decreased the risk of lung cancer, but found insufficient evidence of a link with vegetable consumption. Further prospective studies should assess the effects of consuming these food groups.

  12. Inhibition of chlorine-induced lung injury by the type 4 phosphodiesterase inhibitor rolipram.

    PubMed

    Chang, Weiyuan; Chen, Jing; Schlueter, Connie F; Rando, Roy J; Pathak, Yashwant V; Hoyle, Gary W

    2012-09-01

    Chlorine is a highly toxic respiratory irritant that when inhaled causes epithelial cell injury, alveolar-capillary barrier disruption, airway hyperreactivity, inflammation, and pulmonary edema. Chlorine is considered a chemical threat agent, and its release through accidental or intentional means has the potential to result in mass casualties from acute lung injury. The type 4 phosphodiesterase inhibitor rolipram was investigated as a rescue treatment for chlorine-induced lung injury. Rolipram inhibits degradation of the intracellular signaling molecule cyclic AMP. Potential beneficial effects of increased cyclic AMP levels include inhibition of pulmonary edema, inflammation, and airway hyperreactivity. Mice were exposed to chlorine (whole body exposure, 228-270 ppm for 1 h) and were treated with rolipram by intraperitoneal, intranasal, or intramuscular (either aqueous or nanoemulsion formulation) delivery starting 1h after exposure. Rolipram administered intraperitoneally or intranasally inhibited chlorine-induced pulmonary edema. Minor or no effects were observed on lavage fluid IgM (indicative of plasma protein leakage), KC (Cxcl1, neutrophil chemoattractant), and neutrophils. All routes of administration inhibited chlorine-induced airway hyperreactivity assessed 1 day after exposure. The results of the study suggest that rolipram may be an effective rescue treatment for chlorine-induced lung injury and that both systemic and targeted administration to the respiratory tract were effective routes of delivery. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Tobacco, alcohol use, and risks of laryngeal and lung cancer by subsite and histologic type in Turkey.

    PubMed

    Dosemeci, M; Gokmen, I; Unsal, M; Hayes, R B; Blair, A

    1997-09-01

    Effects of tobacco smoking and alcohol use on risks of cancers of the larynx and lung have been evaluated extensively in industrialized countries. Few studies on the effect of these risk factors have been reported from developing countries. We conducted a case-control study to evaluate risks of laryngeal and lung cancers in men by subsite and cell type in relation to smoking and alcohol drinking in Turkey, a country where smoking and alcohol consumption patterns are different from those in industrialized countries. We identified 832 laryngeal and 1,210 lung cancer cases and 829 controls with information on smoking and alcohol use (amount and duration) and histologic cell type from an oncology treatment center of a Social Security Agency hospital in Istanbul, Turkey, admitted between 1979 and 1984. Both laryngeal and lung cancer showed significant associations with smoking and alcohol drinking, but no monotonic dose-response was obtained for alcohol drinking. Among smokers, the highest risks were observed in the supraglottis region of the larynx (odds ratio [OR] = 4.1) after adjustment for age and alcohol use. Among alcohol drinkers, the highest risks were observed in the glottis region of the larynx (OR = 1.7) after adjustment for age and smoking. In the analysis by the cell type of lung cancer among ever-smokers, small cell type showed the highest risk (OR = 5.4), while it showed no association with alcohol drinking. Cumulative cigarette use (pack-years) and number of cigarettes per day showed stronger associations than years smoked for both cancer sites. The relative risks of joint exposure to smoking and alcohol were 12.2 for laryngeal cancer and 14.1 for lung cancer among heavy smokers and heavy alcohol drinkers. This study provides epidemiologic evidence from Turkey that smoking and alcohol use are associated with risks of cancers of the larynx and lung.

  14. Silencing hyperoxia-induced C/EBPα in neonatal mice improves lung architecture via enhanced proliferation of alveolar epithelial cells

    PubMed Central

    Yang, Guang; Hinson, Maurice D.; Bordner, Jessica E.; Lin, Qing S.; Fernando, Amal P.; La, Ping; Wright, Clyde J.

    2011-01-01

    Postnatal lung development requires proliferation and differentiation of specific cell types at precise times to promote proper alveolar formation. Hyperoxic exposure can disrupt alveolarization by inhibiting cell growth; however, it is not fully understood how this is mediated. The transcription factor CCAAT/enhancer binding protein-α (C/EBPα) is highly expressed in the lung and plays a role in cell proliferation and differentiation in many tissues. After 72 h of hyperoxia, C/EBPα expression was significantly enhanced in the lungs of newborn mice. The increased C/EBPα protein was predominantly located in alveolar type II cells. Silencing of C/EBPα with a transpulmonary injection of C/EBPα small interfering RNA (siRNA) prior to hyperoxic exposure reduced expression of markers of type I cell and differentiation typically observed after hyperoxia but did not rescue the altered lung morphology at 72 h. Nevertheless, when C/EBPα hyperoxia-exposed siRNA-injected mice were allowed to recover for 2 wk in room air, lung epithelial cell proliferation was increased and lung morphology was restored compared with hyperoxia-exposed control siRNA-injected mice. These data suggest that C/EBPα is an important regulator of postnatal alveolar epithelial cell proliferation and differentiation during injury and repair. PMID:21571903

  15. Trends in lung cancer incidence in Lebanon by gender and histological type over the period 2005-2008.

    PubMed

    Temraz, Sally; Charafeddine, Maya; Mukherji, Deborah; Shamseddine, Ali

    2017-09-01

    Lung cancer incidence rates, overall and by histologic subtypes, vary substantially by gender and smoking. This study's aim was to review data regarding trends in the number of cases of different lung-cancer histologies and relate these to smoking habits by gender in Lebanon. Lung cancer data using ICD-O, 3rd edition, from the Lebanese National Cancer Registry from 2005 to 2008 were stratified by gender for histology type for patients aged over 18years. Lung cancer cases among males were 2.5 times higher than those in females. The most common lung cancer histology type for males and females was adenocarcinoma for all observed years. The proportion of squamous cell carcinoma in incident cases was significantly higher in males than in females for the total period from 2005 to 2008, P=0.032, but not in individual years. The ratio of adenocarcinoma to squamous cell carcinoma in incident cases between 2005 and 2008 was 2:45 for males and 3:15 for females. Lung cancer histology in Lebanon is following a pattern similar to that found in most countries of North America and in Europe, where adenocarcinoma is the most prevalent subtype among both males and females. Copyright © 2017 Ministry of Health, Saudi Arabia. Published by Elsevier Ltd. All rights reserved.

  16. Lack of association between the BIM deletion polymorphism and the risk of lung cancer with and without EGFR mutations.

    PubMed

    Ebi, Hiromichi; Oze, Isao; Nakagawa, Takayuki; Ito, Hidemi; Hosono, Satoyo; Matsuda, Fumihiko; Takahashi, Meiko; Takeuchi, Shinji; Sakao, Yukinori; Hida, Toyoaki; Faber, Anthony C; Tanaka, Hideo; Yatabe, Yasushi; Mitsudomi, Tetsuya; Yano, Seiji; Matsuo, Keitaro

    2015-01-01

    The BIM deletion polymorphism in intron 2 was found in a significant percent of the Asian population. Patients with epidermal growth factor receptor (EGFR) mutant lung cancers harboring this BIM polymorphism have shorter progression free survival and overall response rates to EGFR tyrosine kinase inhibitors. However, the association between the BIM deletion polymorphism and lung cancer risk is unknown. The BIM deletion polymorphism was screened by polymerase chain reaction in 765 lung cancer cases and 942 healthy individuals. Carriers possessing one allele of the BIM polymorphism were observed in 13.0% of control cases and 12.8% of lung cancer cases, similar to incidence rates reported earlier in healthy individuals. Homozygote for the BIM polymorphism was observed in four of 942 healthy controls and three of 765 lung cancer cases. The frequency of the BIM deletion polymorphism in lung cancer patients was not related to age, sex, smoking history, or family history of lung cancer. The BIM deletion polymorphism was found in 30 of 212 patients with EGFR wild type lung cancers and 16 of 120 patients with EGFR mutant lung cancers. The frequency of the BIM polymorphism is similar between cancers with wild type EGFR and mutated EGFR (p = 0.78). The BIM deletion polymorphism was not associated with lung cancer susceptibility. Furthermore, the BIM polymorphism is not associated with EGFR mutant lung cancer.

  17. [What is the prognostic significance of histomorphology in small cell lung carcinoma?].

    PubMed

    Facilone, F; Cimmino, A; Assennato, G; Sardelli, P; Colucci, G A; Resta, L

    1993-01-01

    What is the prognostic significant of the histomorphology in the small cell carcinomas of the lung? After the WHO classification of the lung cancer (1981), several studies criticized the subdivision of the small cell carcinoma in three sub-types (oat-cell, intermediate cell and combined types). The role of histology in the prognostic predition has been devaluated. In order to verify the prognostic value of the morphology of the small cell types of lung cancer, we performed a multivariate analysis in 62 patients. The survival rate was analytically compared with the following parameters: nuclear maximum diameter, nuclear form, nuclear chromatism, chromatine distribution, presence of nucleolus, evidence of cytoplasm. The results showed that none of these parameters are able to express a prognostic value. According to the recent studies, we think that the small cell carcinoma of the lung is a neoplasia with a multiform histologic pattern. Differences observed in clinical management are not correlate with the morphology, but with other biological parameters still unknown.

  18. Latent infection by γherpesvirus stimulates profibrotic mediator release from multiple cell types.

    PubMed

    Stoolman, Joshua S; Vannella, Kevin M; Coomes, Stephanie M; Wilke, Carol A; Sisson, Thomas H; Toews, Galen B; Moore, Bethany B

    2011-02-01

    Although γherpesvirus infections are associated with enhanced lung fibrosis in both clinical and animal studies, there is limited understanding about fibrotic effects of γherpesviruses on cell types present in the lung, particularly during latent infection. Wild-type mice were intranasally infected with a murine γherpesvirus (γHV-68) or mock-infected with saline. Twenty-eight days postinfection (dpi), ∼14 days following clearance of the lytic infection, alveolar macrophages (AMs), mesenchymal cells, and CD19-enriched cell populations from the lung and spleen express M(3) and/or glycoprotein B (gB) viral mRNA and harbor viral genome. AMs from infected mice express more transforming growth factor (TGF)-β(1), CCL2, CCL12, TNF-α, and IFN-γ than AMs from mock-infected mice. Mesenchymal cells express more total TGF-β(1), CCL12, and TNF-α than mesenchymal cells from mock-infected mice. Lung and spleen CD19-enriched cells express more total TGF-β(1) 28 dpi compared with controls. The CD19-negative fraction of the spleen overexpresses TGF-β(1) and harbors viral genome, but this likely represents infection of monocytes. Purified T cells from the lung harbor almost no viral genome. Purified T cells overexpress IL-10 but not TGF-β(1). Intracellular cytokine staining demonstrated that lung T cells at 28 dpi produce IFN-γ but not IL-4. Thus infection with a murine γherpesvirus is sufficient to upregulate profibrotic and proinflammatory factors in a variety of lung resident and circulating cell types 28 dpi. Our results provide new information about possible contributions of these cells to fibrogenesis in the lungs of individuals harboring a γherpesvirus infection and may help explain why γHV-68 infection can augment or exacerbate fibrotic responses in mice.

  19. Validation of SCT Methylation as a Hallmark Biomarker for Lung Cancers.

    PubMed

    Zhang, Yu-An; Ma, Xiaotu; Sathe, Adwait; Fujimoto, Junya; Wistuba, Ignacio; Lam, Stephen; Yatabe, Yasushi; Wang, Yi-Wei; Stastny, Victor; Gao, Boning; Larsen, Jill E; Girard, Luc; Liu, Xiaoyun; Song, Kai; Behrens, Carmen; Kalhor, Neda; Xie, Yang; Zhang, Michael Q; Minna, John D; Gazdar, Adi F

    2016-03-01

    The human secretin gene (SCT) encodes secretin, a hormone with limited tissue distribution. Analysis of the 450k methylation array data in The Cancer Genome Atlas (TCGA) indicated that the SCT promoter region is differentially hypermethylated in lung cancer. Our purpose was to validate SCT methylation as a potential biomarker for lung cancer. We analyzed data from TCGA and developed and applied SCT-specific bisulfite DNA sequencing and quantitative methylation-specific polymerase chain reaction assays. The analyses of TCGA 450K data for 801 samples showed that SCT hypermethylation has an area under the curve (AUC) value greater than 0.98 that can be used to distinguish lung adenocarcinomas or squamous cell carcinomas from nonmalignant lung tissue. Bisulfite sequencing of lung cancer cell lines and normal blood cells allowed us to confirm that SCT methylation is highly discriminative. By applying a quantitative methylation-specific polymerase chain reaction assay, we found that SCT hypermethylation is frequently detected in all major subtypes of malignant non-small cell lung cancer (AUC = 0.92, n = 108) and small cell lung cancer (AUC = 0.93, n = 40) but is less frequent in lung carcinoids (AUC = 0.54, n = 20). SCT hypermethylation appeared in samples of lung carcinoma in situ during multistage pathogenesis and increased in invasive samples. Further analyses of TCGA 450k data showed that SCT hypermethylation is highly discriminative in most other types of malignant tumors but less frequent in low-grade malignant tumors. The only normal tissue with a high level of methylation was the placenta. Our findings demonstrated that SCT methylation is a highly discriminative biomarker for lung and other malignant tumors, is less frequent in low-grade malignant tumors (including lung carcinoids), and appears at the carcinoma in situ stage. Copyright © 2015 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  20. Disruption of the Hepcidin/Ferroportin Regulatory System Causes Pulmonary Iron Overload and Restrictive Lung Disease.

    PubMed

    Neves, Joana; Leitz, Dominik; Kraut, Simone; Brandenberger, Christina; Agrawal, Raman; Weissmann, Norbert; Mühlfeld, Christian; Mall, Marcus A; Altamura, Sandro; Muckenthaler, Martina U

    2017-06-01

    Emerging evidence suggests that pulmonary iron accumulation is implicated in a spectrum of chronic lung diseases. However, the mechanism(s) involved in pulmonary iron deposition and its role in the in vivo pathogenesis of lung diseases remains unknown. Here we show that a point mutation in the murine ferroportin gene, which causes hereditary hemochromatosis type 4 (Slc40a1 C326S ), increases iron levels in alveolar macrophages, epithelial cells lining the conducting airways and lung parenchyma, and in vascular smooth muscle cells. Pulmonary iron overload is associated with oxidative stress, restrictive lung disease with decreased total lung capacity and reduced blood oxygen saturation in homozygous Slc40a1 C326S/C326S mice compared to wild-type controls. These findings implicate iron in lung pathology, which is so far not considered a classical iron-related disorder. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Lung and Upper Aerodigestive Cancer | Division of Cancer Prevention

    Cancer.gov

    [[{"fid":"180","view_mode":"default","fields":{"format":"default","field_file_image_alt_text[und][0][value]":"Lung and Upper Aerodigestive Cancer Research Group Homepage Logo","field_file_image_title_text[und][0][value]":"Lung and Upper Aerodigestive Cancer Research Group Homepage Logo","field_folder[und]":"15"},"type":"media","attributes":{"alt":"Lung and Upper Aerodigestive

  2. Novel Therapeutic Strategies for Reducing Right Heart Failure Associated Mortality in Fibrotic Lung Diseases

    PubMed Central

    Levy, Matthew; Oyenuga, Olusegun

    2015-01-01

    Fibrotic lung diseases carry a significant mortality burden worldwide. A large proportion of these deaths are due to right heart failure and pulmonary hypertension. Underlying contributory factors which appear to play a role in the mechanism of progression of right heart dysfunction include chronic hypoxia, defective calcium handling, hyperaldosteronism, pulmonary vascular alterations, cyclic strain of pressure and volume changes, elevation of circulating TGF-β, and elevated systemic NO levels. Specific therapies targeting pulmonary hypertension include calcium channel blockers, endothelin (ET-1) receptor antagonists, prostacyclin analogs, phosphodiesterase type 5 (PDE5) inhibitors, and rho-kinase (ROCK) inhibitors. Newer antifibrotic and anti-inflammatory agents may exert beneficial effects on heart failure in idiopathic pulmonary fibrosis. Furthermore, right ventricle-targeted therapies, aimed at mitigating the effects of functional right ventricular failure, include β-adrenoceptor (β-AR) blockers, angiotensin-converting enzyme (ACE) inhibitors, antioxidants, modulators of metabolism, and 5-hydroxytryptamine-2B (5-HT2B) receptor antagonists. Newer nonpharmacologic modalities for right ventricular support are increasingly being implemented. Early, effective, and individualized therapy may prevent overt right heart failure in fibrotic lung disease leading to improved outcomes and quality of life. PMID:26583148

  3. Primary Severe Acute Respiratory Syndrome Coronavirus Infection Limits Replication but Not Lung Inflammation upon Homologous Rechallenge

    PubMed Central

    Clay, Candice; Donart, Nathan; Fomukong, Ndingsa; Knight, Jennifer B.; Lei, Wanli; Price, Lance; Hahn, Fletcher; Van Westrienen, Jesse

    2012-01-01

    Our knowledge regarding immune-protective and immunopathogenic events in severe acute respiratory syndrome coronavirus (SARS-CoV) infection is limited, and little is known about the dynamics of the immune response at the primary site of disease. Here, an African green monkey (AGM) model was used to elucidate immune mechanisms that facilitate viral clearance but may also contribute to persistent lung inflammation following SARS-CoV infection. During primary infection, SARS-CoV replicated in the AGM lung for up to 10 days. Interestingly, lung inflammation was more prevalent following viral clearance, as leukocyte numbers peaked at 14 days postinfection (dpi) and remained elevated at 28 dpi compared to those of mock-infected controls. Lung macrophages but not dendritic cells were rapidly activated, and both cell types had high activation marker expression at late infection time points. Lung proinflammatory cytokines were induced at 1 to 14 dpi, but most returned to baseline by 28 dpi except interleukin 12 (IL-12) and gamma interferon. In SARS-CoV homologous rechallenge studies, 11 of the 12 animals were free of replicating virus at day 5 after rechallenge. However, incidence and severity of lung inflammation was not reduced despite the limited viral replication upon rechallenge. Evaluating the role of antibodies in immune protection or potentiation revealed a progressive increase in anti-SARS-CoV antibodies in lung and serum that did not correlate temporally or spatially with enhanced viral replication. This study represents one of the first comprehensive analyses of lung immunity, including changes in leukocyte populations, lung-specific cytokines, and antibody responses following SARS-CoV rechallenge in AGMs. PMID:22345460

  4. Fibulin-1 functions as a prognostic factor in lung adenocarcinoma.

    PubMed

    Cui, Yuan; Liu, Jian; Yin, Hai-Bing; Liu, Yi-Fei; Liu, Jun-Hua

    2015-09-01

    Fibulin-1 is a member of the fibulin gene family, characterized by tandem arrays of epidermal growth factor-like domains and a C-terminal fibulin-type module. Fibulin-1 plays important roles in a range of cellular functions including morphology, growth, adhesion and mobility. It acts as a tumor suppressor gene in cutaneous melanoma, prostate cancer and gastric cancer. However, whether fibulin-1 also acts as a tumor suppressor gene in lung adenocarcinoma remains unknown. We also determined the association of fibulin-1 expression with various clinical and pathological parameters, which would show its potential role in clinical prognosis. We investigated and followed up 140 lung adenocarcinoma patients who underwent lung resection without pre- and post-operative systemic chemotherapy at the Affiliated Hospital of Nantong University from 2009 to 2013. Western blot assay and immunohistochemistry were used to evaluate the expression of fibulin-1 in lung adenocarcinoma tissues. We then analyzed the correlations between fibulin-1 expression and clinicopathological variables as well as the patients' overall survival rate. Both western blot assay and immunohistochemistry demonstrated that the level of fibulin-1 was downregulated in human lung adenocarcinoma tissues compared with that of normal lung tissues. Fibulin-1 expression significantly correlated with histological differentiation (P = 0.046), clinical stage (P< 0.01), lymph node status (P = 0.038) and expression of Ki-67 (P = 0.013). More importantly, multivariate analysis revealed that fibulin-1 was an independent prognostic marker for lung adenocarcinoma, and high expression of fibulin-1 was significantly associated with better prognosis of lung adenocarcinoma patients. The results supported our hypothesis that fibulin-1 can act as a prognostic factor in lung adenocarcinoma progression. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Lung Cancer Indicators Recurrence

    Cancer.gov

    This study describes prognostic factors for lung cancer spread and recurrence, as well as subsequent risk of death from the disease. The investigators observed that regardless of cancer stage, grade, or type of lung cancer, patients in the study were more

  6. Rat lung glutathione S-transferases. Evidence for two distinct types of 22000-Mr subunits.

    PubMed Central

    Singh, S V; Partridge, C A; Awasthi, Y C

    1984-01-01

    Two immunologically distinct types of 22000-Mr subunits are present in rat lung glutathione S-transferases. One of these subunits is probably similar to Ya subunits of rat liver glutathione S-transferases, whereas the other subunit Ya' is immunologically distinct. Glutathione S-transferase II (pI7.2) of rat lung is a heterodimer (YaYa') of these subunits, and glutathione S-transferase VI (pI4.8) of rat lung is a homodimer of Ya' subunits. On hybridization in vitro of the subunits of glutathione S-transferase II of rat lung three active dimers having pI values 9.4, 7.2 and 4.8 are obtained. Immunological properties and substrate specificities indicate that the hybridized enzymes having pI7.2 and 4.8 correspond to glutathione S-transferases II and VI of rat lung respectively. Images Fig. 1. Fig. 5. PMID:6433888

  7. The biology, function and clinical implications of exosomes in lung cancer.

    PubMed

    Zhou, Li; Lv, Tangfeng; Zhang, Qun; Zhu, Qingqing; Zhan, Ping; Zhu, Suhua; Zhang, Jianya; Song, Yong

    2017-10-28

    Exosomes are 30-100 nm small membrane vesicles of endocytic origin that are secreted by all types of cells, and can also be found in various body fluids. Increasing evidence implicates that exosomes confer stability and can deliver their cargos such as proteins and nucleic acids to specific cell types, which subsequently serve as important messengers and carriers in lung carcinogenesis. Here, we describe the biogenesis and components of exosomes mainly in lung cancer, we summarize their function in lung carcinogenesis (epithelial mesenchymal transition, oncogenic cell transformation, angiogenesis, metastasis and immune response in tumor microenvironment), and importantly we focus on the clinical potential of exosomes as biomarkers and therapeutics in lung cancer. In addition, we also discuss current challenges that might impede the clinical use of exosomes. Further studies on the functional roles of exosomes in lung cancer requires thorough research. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. ALK‐rearrangement in non‐small‐cell lung cancer (NSCLC)

    PubMed Central

    Du, Xue; Shao, Yun; Qin, Hai‐Feng

    2018-01-01

    The ALK gene encodes a transmembrane tyrosine kinase receptor. ALK is physiologically expressed in the nervous system during embryogenesis, but its expression decreases postnatally. ALK first emerged in the field of oncology in 1994 when it was identified to fuse to NPM1 in anaplastic large‐cell lymphoma. Since then, ALK has been associated with other types of cancers, including non‐small‐cell lung cancer (NSCLC). More than 19 different ALK fusion partners have been discovered in NSCLC, including EML4, KIF5B, KLC1, and TPR. Most of these ALK fusions in NSCLC patients respond well to the ALK inhibitor, crizotinib. In this paper, we reviewed fusion partner genes with ALK, detection methods for ALK‐rearrangement (ALK‐R), and the ALK‐tyrosine kinase inhibitor, crizotinib, used in NSCLC patients. PMID:29488330

  9. Microfluidic lung airway-on-a-chip with arrayable suspended gels for studying epithelial and smooth muscle cell interactions.

    PubMed

    Humayun, Mouhita; Chow, Chung-Wai; Young, Edmond W K

    2018-05-01

    Chronic lung diseases (CLDs) are regulated by complex interactions between many different cell types residing in lung airway tissues. Specifically, interactions between airway epithelial cells (ECs) and airway smooth muscle cells (SMCs) have been shown in part to play major roles in the pathogenesis of CLDs, but the underlying molecular mechanisms are not well understood. To advance our understanding of lung pathophysiology and accelerate drug development processes, new innovative in vitro tissue models are needed that can reconstitute the complex in vivo microenvironment of human lung tissues. Organ-on-a-chip technologies have recently made significant strides in recapitulating physiological properties of in vivo lung tissue microenvironments. However, novel advancements are still needed to enable the study of airway SMC-EC communication with matrix interactions, and to provide higher throughput capabilities and manufacturability. We have developed a thermoplastic-based microfluidic lung airway-on-a-chip model that mimics the lung airway tissue microenvironment, and in particular, the interactions between SMCs, ECs, and supporting extracellular matrix (ECM). The microdevice is fabricated from acrylic using micromilling and solvent bonding techniques, and consists of three vertically stacked microfluidic compartments with a bottom media reservoir for SMC culture, a middle thin hydrogel layer, and an upper microchamber for achieving air-liquid interface (ALI) culture of the epithelium. A unique aspect of the design lies in the suspended hydrogel with upper and lower interfaces for EC and SMC culture, respectively. A mixture of type I collagen and Matrigel was found to promote EC adhesion and monolayer formation, and SMC adhesion and alignment. Optimal culturing protocols were established that enabled EC-SMC coculture for more than 31 days. Epithelial monolayers displayed common morphological markers including ZO-1 tight junctions and F-actin cell cortices, while SMCs exhibited enhanced cell alignment and expression of α-SMA. The thermoplastic device construction facilitates mass manufacturing, allows EC-SMC coculture systems to be arrayed for increased throughput, and can be disassembled to allow extraction of the suspended gel for downstream analyses. This airway-on-a-chip device has potential to significantly advance our understanding of SMC-EC-matrix interactions, and their roles in the development of CLDs.

  10. Long-Term, Supplemental, One-Carbon Metabolism-Related Vitamin B Use in Relation to Lung Cancer Risk in the Vitamins and Lifestyle (VITAL) Cohort.

    PubMed

    Brasky, Theodore M; White, Emily; Chen, Chi-Ling

    2017-10-20

    Purpose Inconsistent findings have been reported of a link between the use of one-carbon metabolism-related B vitamins and lung cancer risk. Because of the high prevalence of supplemental vitamin B use, any possible increased association warrants further investigation. We examined the association between long-term use of supplemental B vitamins on the one-carbon metabolism pathway and lung cancer risk in the Vitamins and Lifestyle (VITAL) cohort, which was designed specifically to look at supplement use relative to cancer risk. Methods A total of 77,118 participants of the VITAL cohort, 50 to 76 years of age, were recruited between October 2000 and December 2002 and included in this analysis. Incident, primary, invasive lung cancers (n = 808) were ascertained by prospectively linking the participants to a population-based cancer registry. The 10-year average daily dose from individual and multivitamin supplements were the exposures of primary interest. Results Use of supplemental vitamins B 6 , folate, and B 12 was not associated with lung cancer risk among women. In contrast, use of vitamin B 6 and B 12 from individual supplement sources, but not from multivitamins, was associated with a 30% to 40% increase in lung cancer risk among men. When the 10-year average supplement dose was evaluated, there was an almost two-fold increase in lung cancer risk among men in the highest categories of vitamin B 6 (> 20 mg/d; hazard ratio, 1.82; 95% CI, 1.25 to 2.65) and B 12 (> 55µg/d; hazard ratio, 1.98; 95% CI, 1.32 to 2.97) compared with nonusers. For vitamin B 6 and B 12 , the risk was even higher among men who were smoking at baseline. In addition, the B 6 and B 12 associations were apparent in all histologic types except adenocarcinoma, which is the type less related to smoking. Conclusion This sex- and source-specific association provides further evidence that vitamin B supplements are not chemopreventive for lung cancer and may be harmful.

  11. Dual drive coexistence of EML4-ALK and TPM3-ROS1 fusion in advanced lung adenocarcinoma.

    PubMed

    Zhu, You-Cai; Liao, Xing-Hui; Wang, Wen-Xian; Xu, Chun-Wei; Zhuang, Wu; Wei, Jian-Guo; Du, Kai-Qi

    2018-02-01

    We report a case of concomitant EML4-ALK and TPM3-ROS1 fusion in non-small cell lung cancer (NSCLC) in a 47-year-old Chinese man and review the clinical characteristics of this type double of fusion. The patient presented with a local tumor of the left upper lobe and underwent thoracoscopy. Postoperative surgical pathologic staging revealed T 1a N 0 M 0 stage IA. Histological examination of the tumor showed lung adenocarcinoma. Ventana ALK (D5F3) assay of the left lung tissue was ALK negative; however, immunohistochemical assay was positive for ROS1 protein. Using next generation sequencing, we found that the tumor had concomitant EML4-ALK and TPM3-ROS1 fusion. No recurrence was observed during seven months of follow-up. Precise diagnostic techniques allow the detection of concomitant ROS1 fusion and other driver genes, including ALK or EGFR; therefore oncologists should consider this rare double mutation in NSCLC patients. Further exploration of treatment models is required to provide additional therapeutic options. © 2017 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  12. Elderly male smokers with right lung tumors are viable candidates for KRAS mutation screening.

    PubMed

    Yang, Yang; Shi, Chun; Sun, Hui; Yin, Wei; Zhou, Xiao; Zhang, Lei; Jiang, Gening

    2016-01-07

    Genetic aberrations in tumor driver genes provide specific molecular targets for therapeutic intervention, which can greatly improve therapeutic outcomes. Here, we analyzed the mutational frequency of EGFR and KRAS gene, as well as EML4-ALK rearrangement, and summarized the clinicopathological characters of Chinese lung cancer patients. We detected the mutation spectrum of 1033 primary lung cancer patients. The analyzed clinicopathological parameters included gender, age at diagnosis, smoking status, pathological TNM stage, tumor morphology and location, visceral pleural invasion, and histological type. A total of 618 patients had mutations in EGFR or KRAS gene as well as rearrangement of EML4-ALK. Exon 19 deletions and L858R in the EGFR gene were the most frequent mutations. Left-side lung cancer was more common in female patients carrying the KRAS mutation. Rearrangement of EML4-ALK was more common in non-tobacco-using male patients, who also exhibited a higher likelihood of visceral pleura invasion. Elderly females who never smoked and possessed 1-20 mm stage I adenocarcinomas in the right side exhibited a higher frequency of EGFR mutations. Elderly male smokers with right lung tumors were viable candidates for KRAS mutation screening.

  13. Bone Marrow Cells Expressing Clara Cell Secretory Protein Increase Epithelial Repair After Ablation of Pulmonary Clara Cells

    PubMed Central

    Bustos, Martha L; Mura, Marco; Marcus, Paula; Hwang, David; Ludkovski, Olga; Wong, Amy P; Waddell, Thomas K

    2013-01-01

    We have previously reported a subpopulation of bone marrow cells (BMC) that express Clara cell secretory protein (CCSP), generally felt to be specific to lung Clara cells. Ablation of lung Clara cells has been reported using a transgenic mouse that expresses thymidine kinase under control of the CCSP promoter. Treatment with ganciclovir results in permanent elimination of CCSP+ cells, failure of airway regeneration, and death. To determine if transtracheal delivery of wild-type bone marrow CCSP+ cells is beneficial after ablation of lung CCSP+ cells, transgenic mice were treated with ganciclovir followed by transtracheal administration of CCSP+ or CCSP− BMC. Compared with mice administered CCSP− cells, mice treated with CCSP+ cells had more donor cells lining the airway epithelium, where they expressed epithelial markers including CCSP. Although donor CCSP+ cells did not substantially repopulate the airway, their administration resulted in increased host ciliated cells, better preservation of airway epithelium, reduction of inflammatory cells, and an increase in animal survival time. Administration of CCSP+ BMC is beneficial after permanent ablation of lung Clara cells by increasing bronchial epithelial repair. Therefore, CCSP+ BMC could be important for treatment of lung diseases where airways re-epithelialization is compromised. PMID:23609017

  14. Difference in Postsurgical Prognostic Factors between Lung Adenocarcinoma and Squamous Cell Carcinoma

    PubMed Central

    Sakai, Hiroki; Kimura, Hiroyuki; Miyazawa, Tomoyuki; Marushima, Hideki; Saji, Hisashi

    2017-01-01

    Purpose: The aim of this study was to compare the clinicopathologic prognostic factors between patients who underwent lung resection for adenocarcinoma (AD) and those with squamous cell carcinoma (SQ). Methods: A database of patients with lung AD or SQ who underwent surgery with curative intent in our department from January 2008 to December 2014 was reviewed. Associations between various clinicopathologic factors, postsurgical recurrence-free survival (RFS), and overall survival (OS) were analyzed to find significant prognostic factors. Results: A total of 537 lung cancer patients (AD, 434; SQ, 103) were included in this study. Although RFS was similar in patients with AD and SQ, OS was significantly poorer in those with SQ. Multivariate analysis in patients with AD revealed that age (≥69 vs. <69), lymphatic invasion, and histologic pleural invasion (p0 vs. p1–3) were associated with RFS, while gender and pleural invasion were associated with OS. In SQ, however, smoking, clinical stage, and pulmonary metastasis were associated with RFS in the multivariate analysis. Conclusion: Since significant postoperative prognostic factors are quite different between lung AD and SQ, these two histologic types should be differently analyzed in a clinical study. PMID:28966230

  15. A protective role for IL-13 receptor α 1 in bleomycin-induced pulmonary injury and repair

    PubMed Central

    Karo-Atar, D; Bordowitz, A; Wand, O; Pasmanik-Chor, M; Fernandez, I E; Itan, M; Frenkel, R; Herbert, D R; Finkelman, F D; Eickelberg, O; Munitz, A

    2016-01-01

    Molecular mechanisms that regulate lung repair vs. progressive scarring in pulmonary fibrosis remain elusive. Interleukin (IL)-4 and IL-13 are pro-fibrotic cytokines that share common receptor chains including IL-13 receptor (R) α1 and are key pharmacological targets in fibrotic diseases. However, the roles of IL-13Rα1 in mediating lung injury/repair are unclear. We report dysregulated levels of IL-13 receptors in the lungs of bleomycin-treated mice and to some extent in idiopathic pulmonary fibrosis patients. Transcriptional profiling demonstrated an epithelial cell-associated gene signature that was homeostatically dependent on IL-13Rα1 expression. IL-13Rα1 regulated a striking array of genes in the lung following bleomycin administration and Il13ra1 deficiency resulted in exacerbated bleomycin-induced disease. Increased pathology in bleomycin-treated Il13ra1−/− mice was due to IL-13Rα1 expression in structural and hematopoietic cells but not due to increased responsiveness to IL-17, IL-4, IL-13, increased IL-13Rα2 or type 1 IL-4R signaling. These data highlight underappreciated protective roles for IL-13Rα1 in lung injury and homeostasis. PMID:26153764

  16. Airway complications have a greater impact on the outcomes of living-donor lobar lung transplantation recipients than cadaveric lung transplantation recipients.

    PubMed

    Sugimoto, Seiichiro; Yamane, Masaomi; Otani, Shinji; Kurosaki, Takeshi; Okahara, Shuji; Hikasa, Yukiko; Toyooka, Shinichi; Kobayashi, Motomu; Oto, Takahiro

    2018-04-21

    Airway complications (ACs) after living-donor lobar lung transplantation (LDLLT) could have different features from those after cadaveric lung transplantation (CLT). We conducted this study to compare the characteristics of ACs after LDLLT vs. those after CLT and investigate their impact on outcomes. We reviewed, retrospectively, data on 163 recipients of lung transplantation, including 83 recipients of LDLLT and 80 recipients of CLT. The incidence of ACs did not differ between LDLLT and CLT. The initial type of AC after LDLLT was limited to stenosis in all eight patients, whereas that after CLT consisted of stenosis in three patients and necrosis in ten patients (p = 0.0034). ACs after LDLLT necessitated significantly earlier initiation of treatment than those after CLT (p = 0.032). The overall survival rate of LDLLT recipients with an AC was significantly lower than that of those without an AC (p = 0.030), whereas the overall survival rate was comparable between CLT recipients with and those without ACs (p = 0.25). ACs after LDLLT, limited to bronchial stenosis, require significantly earlier treatment and have a greater adverse impact on survival than ACs after CLT.

  17. A Novel Model for Squamous Cell Carcinoma of the Lung | Center for Cancer Research

    Cancer.gov

    In the U.S. lung cancer remains the most deadly cancer type with less than one in five patients alive five years after diagnosis. The majority of lung cancer deaths are due to tobacco smoke, and the squamous cell carcinoma (SCC) subtype of lung cancer is strongly associated with smoking. Researchers have identified a number of mutations in lung SCC tumors but have failed to

  18. Effects of exogenous fatty acids and inhibition of de novo fatty acid synthesis on disaturated phosphatidylcholine production by fetal lung cells and adult type II cells.

    PubMed

    Maniscalco, W M; Finkelstein, J N; Parkhurst, A B

    1989-05-01

    De novo fatty acid synthesis may be an important source of saturated fatty acids for fetal lung disaturated phosphatidylcholine (DSPC) production. To investigate the roles of de novo fatty acid synthesis and exogenous fatty acids, we incubated dispersed fetal lung cells and freshly isolated adult type II cells with exogenous palmitate and oleate and measured DSPC synthesis. Unlike adult type II cells, fetal lung cells did not increase DSPC synthesis when exogenous palmitate was available; adult type II cells increased DSPC synthesis by 70% in the presence of palmitate. Exogenous oleate decreased DSPC synthesis by 48% in fetal cells but not in adult type II cells. Incubation of fetal lung cells with TOFA [2-furancarboxylate, 5-(tetradecyloxy)-sodium], a metabolic inhibitor of fatty acid synthesis, decreased fatty acid synthesis by 65%. There was a simultaneous 56% inhibition of DSPC production, but no effect on protein, DNA, or glyceride-glycerol production, measured by precursor incorporation. The inhibition of DSPC synthesis associated with TOFA was partially prevented by exogenous palmitate but not oleate. Fetal cells prepared from explants that had been cultured in dexamethasone also had TOFA-associated inhibition of DSPC synthesis that was similar to non-dexamethasone-exposed cells. These studies suggest that under baseline conditions of low fatty acid availability, such as in the fetus, de novo fatty acid synthesis in fetal cells, but not in adult type II cells, provides sufficient saturated fatty acids to support maximal DSPC production. Inhibition of de novo fatty acid synthesis resulting in decreased DSPC production in fetal lung cells in conditions of low fatty acid availability suggests that fatty acid synthesis may be central to maintain DSPC synthesis in the fetus.

  19. Baseline and annual repeat rounds of screening: implications for optimal regimens of screening.

    PubMed

    Henschke, Claudia I; Salvatore, Mary; Cham, Matthew; Powell, Charles A; DiFabrizio, Larry; Flores, Raja; Kaufman, Andrew; Eber, Corey; Yip, Rowena; Yankelevitz, David F

    2018-03-01

    Differences in results of baseline and subsequent annual repeat rounds provide important information for optimising the regimen of screening. A prospective cohort study of 65,374 was reviewed to examine the frequency/percentages of the largest noncalcified nodule (NCN), lung cancer cell types and Kaplan-Meier (K-M) survival rates, separately for baseline and annual rounds. Of 65,374 baseline screenings, NCNs were identified in 28,279 (43.3%); lung cancer in 737 (1.1%). Of 74,482 annual repeat screenings, new NCNs were identified in 4959 (7%); lung cancer in 179 (0.24%). Only adenocarcinoma was diagnosed in subsolid NCNs. Percentages of lung cancers by cell type were significantly different (p < 0.0001) in the baseline round compared with annual rounds, reflecting length bias, as were the ratios, reflecting lead times. Long-term K-M survival rate was 100% for typical carcinoids and for adenocarcinomas manifesting as subsolid NCNs; 85% (95% CI 81-89%) for adenocarcinoma, 74% (95% CI 63-85%) for squamous cell, 48% (95% CI 34-62%) for small cell. The rank ordering by lead time was the same as the rank ordering by survival rates. The significant differences in the frequency of NCNs and frequency and aggressiveness of diagnosed cancers in baseline and annual repeat need to be recognised for an optimal regimen of screening. • Lung cancer aggressiveness varies considerably by cell type and nodule consistency. • Kaplan-Meier survival rates varied by cell type between 100% and 48%. • The percentages of lung cancers by cell type in screening rounds reflect screening biases. • Rank ordering by cell type survival is consistent with that by lead times. • Empirical evidence provides critical information for the regimen of screening.

  20. Matrilysin (Matrix Metalloproteinase-7) Regulates Anti-Inflammatory and Antifibrotic Pulmonary Dendritic Cells That Express CD103 (αEβ7-Integrin)

    PubMed Central

    Manicone, Anne M.; Huizar, Isham; McGuire, John K.

    2009-01-01

    The E-cadherin receptor CD103 (αEβ7-integrin) is expressed on specific populations of pulmonary dendritic cells (DC) and T cells. However, CD103 function in the lung is not well understood. Matrilysin (MMP-7) expression is increased in lung injury and cleaves E-cadherin from injured lung epithelium. Thus, to assess matrilysin effects on CD103-E-cadherin interactions in lung injury, wild-type, CD103−/−, and Mmp7−/− mice, in which E-cadherin isn’t cleaved in the lung, were treated with bleomycin or bleomycin with nFMLP to reverse the defect in acute neutrophil influx seen in Mmp7−/− mice. Pulmonary CD103+ DC were significantly increased in injured wild-type compared with Mmp7−/− mice, and CD103+ leukocytes showed significantly enhanced interaction with E-cadherin on injured wild-type epithelium than with Mmp7−/− epithelium in vitro and in vivo. Bleomycin-treated CD103−/− mice had persistent neutrophilic inflammation, increased fibrosis, and increased mortality compared with wild-type mice, a phenotype that was partially recapitulated in bleomycin/nFMLP-treated Mmp7−/− mice. Soluble E-cadherin increased IL-12 and IL-10 and reduced IL-6 mRNA expression in wild-type bone marrow-derived DC but not in CD103−/− bone marrow-derived DC. Similar mRNA patterns were seen in lungs of bleomycin-injured wild-type, but not CD103−/− or Mmp7−/−, mice. In conclusion, matrilysin regulates pulmonary localization of DC that express CD103, and E-cadherin cleavage may activate CD103+ DC to limit inflammation and inhibit fibrosis. PMID:19893044

  1. When Is an Alveolar Type 2 Cell an Alveolar Type 2 Cell? A Conundrum for Lung Stem Cell Biology and Regenerative Medicine.

    PubMed

    Beers, Michael F; Moodley, Yuben

    2017-07-01

    Generating mature, differentiated, adult lung cells from pluripotent cells, such as induced pluripotent stem cells and embryonic stem cells, offers the hope of both generating disease-specific in vitro models and creating definitive and personalized therapies for a host of debilitating lung parenchymal and airway diseases. With the goal of advancing lung-regenerative medicine, several groups have developed and reported on protocols using defined media, coculture with mesenchymal components, or sequential treatments mimicking lung development, to obtain distal lung epithelial cells from stem cell precursors. However, there remains significant controversy about the degree of differentiation of these cells compared with their primary counterparts, coupled with a lack of consistency or uniformity in assessing the resultant phenotypes. Given the inevitable, exponential expansion of these approaches and the probable, but yet-to-emerge second and higher generation techniques to create such assets, we were prompted to pose the question, what makes a lung epithelial cell a lung epithelial cell? More specifically for this Perspective, we also posed the question, what are the minimum features that constitute an alveolar type (AT) 2 epithelial cell? In addressing this, we summarize a body of work spanning nearly five decades, amassed by a series of "lung epithelial cell biology pioneers," which carefully describes well characterized molecular, functional, and morphological features critical for discriminately assessing an AT2 phenotype. Armed with this, we propose a series of core criteria to assist the field in confirming that cells obtained following a differentiation protocol are indeed mature and functional AT2 epithelial cells.

  2. Identification of Cell Type-Specific Differences in Erythropoietin Receptor Signaling in Primary Erythroid and Lung Cancer Cells

    PubMed Central

    Salopiata, Florian; Depner, Sofia; Wäsch, Marvin; Böhm, Martin E.; Mücke, Oliver; Plass, Christoph; Lehmann, Wolf D.; Kreutz, Clemens; Timmer, Jens; Klingmüller, Ursula

    2016-01-01

    Lung cancer, with its most prevalent form non-small-cell lung carcinoma (NSCLC), is one of the leading causes of cancer-related deaths worldwide, and is commonly treated with chemotherapeutic drugs such as cisplatin. Lung cancer patients frequently suffer from chemotherapy-induced anemia, which can be treated with erythropoietin (EPO). However, studies have indicated that EPO not only promotes erythropoiesis in hematopoietic cells, but may also enhance survival of NSCLC cells. Here, we verified that the NSCLC cell line H838 expresses functional erythropoietin receptors (EPOR) and that treatment with EPO reduces cisplatin-induced apoptosis. To pinpoint differences in EPO-induced survival signaling in erythroid progenitor cells (CFU-E, colony forming unit-erythroid) and H838 cells, we combined mathematical modeling with a method for feature selection, the L1 regularization. Utilizing an example model and simulated data, we demonstrated that this approach enables the accurate identification and quantification of cell type-specific parameters. We applied our strategy to quantitative time-resolved data of EPO-induced JAK/STAT signaling generated by quantitative immunoblotting, mass spectrometry and quantitative real-time PCR (qRT-PCR) in CFU-E and H838 cells as well as H838 cells overexpressing human EPOR (H838-HA-hEPOR). The established parsimonious mathematical model was able to simultaneously describe the data sets of CFU-E, H838 and H838-HA-hEPOR cells. Seven cell type-specific parameters were identified that included for example parameters for nuclear translocation of STAT5 and target gene induction. Cell type-specific differences in target gene induction were experimentally validated by qRT-PCR experiments. The systematic identification of pathway differences and sensitivities of EPOR signaling in CFU-E and H838 cells revealed potential targets for intervention to selectively inhibit EPO-induced signaling in the tumor cells but leave the responses in erythroid progenitor cells unaffected. Thus, the proposed modeling strategy can be employed as a general procedure to identify cell type-specific parameters and to recommend treatment strategies for the selective targeting of specific cell types. PMID:27494133

  3. Candidate Cancer Allele cDNA Collection | Office of Cancer Genomics

    Cancer.gov

    CTD2 researchers at the Broad Institute/DFCI have developed a collection of plasmids including mutant alleles found in sequencing studies of cancer. It includes somatic variants found in lung adenocarcinoma and across other cancer types. The clones enable researchers to characterize the function of the cancer variants in a high throughput experiments. These plasmids are collectively called the “Broad Target Accelerator Plasmid Collections”.

  4. A new needle on the block: EchoTip ProCore endobronchial ultrasound needle

    PubMed Central

    Dincer, H Erhan; Andrade, Rafael; Zamora, Felix; Podgaetz, Eitan

    2016-01-01

    Endobronchial ultrasound has become the first choice standard of care procedure to diagnose benign or malignant lesions involving mediastinum and lung parenchyma adjacent to the airways owing to its characteristics of being real-time and minimally invasive. Although the incidence of lung cancer has been decreasing, it is and will be the leading cause of cancer-related mortality in the next few decades. When compared to other cancers, lung cancer kills more females than breast and colon cancers combined and more males than colon and prostate cancers combined. The type of lung cancer has changed in recent decades and adenocarcinoma has become the most frequent cell type. Prognosis of lung cancer depends upon the cell type and the staging at the time of diagnosis. The cell type and molecular characteristics of adenocarcinoma may allow individualized targeted treatment. Other malignant conditions in the mediastinum and lung (eg, metastatic lung cancers and lymphoma) can be biopsied using endobronchial ultrasound needles. Endobronchial ultrasound needle biopsies provides mostly cytology specimens due to its small sizes of needles (22 gauge or larger) which may not give enough tissue to make a definitive diagnosis in malignant (eg, lymphoma) or benign conditions (eg, sarcoidosis). EchoTip ProCore endobronchial needle released in early 2014 provides histologic biopsy material. Larger tissue biopsies may potentially provide a higher diagnostic yield and it eliminates mediastinoscopy or other surgical interventions. Here we aim to review bronchoscopic approach in the diagnosis of mediastinal lesions with emphasis of EchoTip ProCore needles. PMID:27099535

  5. [Lung Cancer as an Occupational Disease].

    PubMed

    Baur, X; Woitowitz, H-J

    2016-08-01

    Lung cancer is one of the most frequently encountered cancer types. According to the latest WHO data, about 10 % of this disease are due to occupational exposure to cancerogens. Asbestos is still the number one carcinogen. Further frequent causes include quarz and ionizing radiation (uranium mining). Probable causes of the disease can be identified only with the help of detailed occupational history taken by a medical specialist and qualified exposure assessment. Without clarifying the cause of the disease, there is neither a correct insurance procedure nor compensation for the victim, and furthermore, required preventive measures cannot be initiated. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Role of the Lung Microbiome in the Pathogenesis of Chronic Obstructive Pulmonary Disease.

    PubMed

    Wang, Lei; Hao, Ke; Yang, Ting; Wang, Chen

    2017-09-05

    The development of culture-independent techniques for microbiological analysis shows that bronchial tree is not sterile in either healthy or chronic obstructive pulmonary disease (COPD) individuals. With the advance of sequencing technologies, lung microbiome has become a new frontier for pulmonary disease research, and such advance has led to better understanding of the lung microbiome in COPD. This review aimed to summarize the recent advances in lung microbiome, its relationships with COPD, and the possible mechanisms that microbiome contributed to COPD pathogenesis. Literature search was conducted using PubMed to collect all available studies concerning lung microbiome in COPD. The search terms were "microbiome" and "chronic obstructive pulmonary disease", or "microbiome" and "lung/pulmonary". The papers in English about lung microbiome or lung microbiome in COPD were selected, and the type of articles was not limited. The lung is a complex microbial ecosystem; the microbiome in lung is a collection of viable and nonviable microbiota (bacteria, viruses, and fungi) residing in the bronchial tree and parenchymal tissues, which is important for health. The following types of respiratory samples are often used to detect the lung microbiome: sputum, bronchial aspirate, bronchoalveolar lavage, and bronchial mucosa. Disordered bacterial microbiome is participated in pathogenesis of COPD; there are also dynamic changes in microbiota during COPD exacerbations. Lung microbiome may contribute to the pathogenesis of COPD by manipulating inflammatory and/or immune process. Normal lung microbiome could be useful for prophylactic or therapeutic management in COPD, and the changes of lung microbiome could also serve as biomarkers for the evaluation of COPD.

  7. 77 FR 43601 - Government-Owned Inventions; Availability for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ... of the patent applications. Novel Analogues of the Asthma Drug Fenoterol as Liver and Brain Cancer... as MNF, that inhibit the growth of various types of cancers, including brain, liver, colon, and lung..., represents one of the first potential drugs directed at this target. MNF crosses the blood brain barrier and...

  8. Lung cancer in patients with lung transplants.

    PubMed

    Espinosa, D; Baamonde, C; Illana, J; Arango, E; Carrasco, G; Moreno, P; Algar, F J; Alvarez, A; Cerezo, F; Santos, F; Vaquero, J M; Redel, J; Salvatierra, A

    2012-09-01

    The aim of our study was to describe the incidence of lung cancer in patients after lung transplantation (LT). We performed an observational, retrospective, descriptive study based on data from 340 patients undergoing lung transplantation between October 1993 and December 2010. We collected data about the donors, recipients, intra- and postoperative periods, and survivals. We identified 9 (2.6%) patients who developed lung cancer after LT. Their average age was 56 ± 9.3 years (range, 18-63). All cases were men with 8/9 (88.8%) having received a single lung transplant. All cancers developed in the native lung. The indications for transplantation were: emphysema type chronic obstructive pulmonary disease (COPD; n = 5), idiopathic pulmonary fibrosis (n = 3), or cystic fibrosis (n = 1); 77% of them were former smokers. All of the COPD patient were affected. The interval from transplantation to diagnosis was 53.3 ± 12 months (range 24-86). Survival after cancer diagnosis was 49.3 ± 6.3 (range = 0-180) months. LT was associated with a relatively high incidence of lung cancer, particularly in the native lung. In our series, lung cancer was related more to patients with emphysema-type COPD and a history of smoking. We believe that these patients should be closely followed to establish the diagnosis and apply early treatment. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Modeling asthma: Pitfalls, promises, and the road ahead.

    PubMed

    Rosenberg, Helene F; Druey, Kirk M

    2018-02-16

    Asthma is a chronic, heterogeneous, and recurring inflammatory disease of the lower airways, with exacerbations that feature airway inflammation and bronchial hyperresponsiveness. Asthma has been modeled extensively via disease induction in both wild-type and genetically manipulated laboratory mice (Mus musculus). Antigen sensitization and challenge strategies have reproduced numerous important features of airway inflammation characteristic of human asthma, notably the critical roles of type 2 T helper cell cytokines. Recent models of disease induction have advanced to include physiologic aeroallergens with prolonged respiratory challenge without systemic sensitization; others incorporate tobacco, respiratory viruses, or bacteria as exacerbants. Nonetheless, differences in lung size, structure, and physiologic responses limit the degree to which airway dynamics measured in mice can be compared to human subjects. Other rodent allergic airways models, including those featuring the guinea pig (Cavia porcellus) might be considered for lung function studies. Finally, domestic cats (Feline catus) and horses (Equus caballus) develop spontaneous obstructive airway disorders with clinical and pathologic features that parallel human asthma. Information on pathogenesis and treatment of these disorders is an important resource. ©2018 Society for Leukocyte Biology.

  10. Biomass fuels and lung cancer.

    PubMed

    Lim, Wei-Yen; Seow, Adeline

    2012-01-01

    It is estimated that about 2.4 billion people around the world, or about 40% of the world's population, depend on biomass fuels (wood, charcoal, dung, crop residue) to meet their energy needs for cooking and heating. The burden is especially high in Asia. Studies suggest that levels of pollutants including particulate matter <10 µm and polycyclic aromatic hydrocarbons indoors in homes where biomass fuels are used far exceed levels recommended as safe. While in vitro and in vivo studies in animal models suggest that wood smoke emission extracts are mutagenic and carcinogenic, epidemiologic studies have been inconsistent. In this review, we discuss possible carcinogenic mechanisms of action of biomass fuel emissions, summarize the biological evidence for carcinogenesis, and review the epidemiologic evidence in humans of biomass fuel emissions as a risk factor for lung cancer. Finally, we highlight some issues relevant for interpreting the epidemiologic evidence for the relationship between biomass fuel exposure and lung cancer: these include methodologic considerations and recognition of possible effect modification by genetic susceptibility, smoking status, age of exposure and histologic type. © 2011 The Authors. Respirology © 2011 Asian Pacific Society of Respirology.

  11. Regulation of pulmonary surfactant secretion in the developing lizard, Pogona vitticeps.

    PubMed

    Sullivan, Lucy C; Orgeig, Sandra; Daniels, Christopher B

    2002-11-01

    Pulmonary surfactant is a mixture of lipids and proteins that is secreted by alveolar type II cells in the lungs of all air-breathing vertebrates. Pulmonary surfactant functions to reduce the surface tension in the lungs and, therefore, reduce the work of breathing. In mammals, the embryonic maturation of the surfactant system is controlled by a host of factors, including glucocorticoids, thyroid hormones and autonomic neurotransmitters. We have used a co-culture system of embryonic type II cells and lung fibroblasts to investigate the ability of dexamethasone, tri-iodothyronine (T(3)), adrenaline and carbamylcholine (carbachol) to stimulate the cellular secretion of phosphatidylcholine in the bearded dragon (Pogona vitticeps) at day 55 (approx. 92%) of incubation and following hatching. Adrenaline stimulated surfactant secretion both before and after hatching, whereas carbachol stimulated secretion only at day 55. Glucocorticoids and triiodothyronine together stimulated secretion at day 55 but did not after hatching. Therefore, adrenaline, carbachol, dexamethasone and T(3), are all involved in the development of the surfactant system in the bearded dragon. However, the efficacy of the hormones is attenuated during the developmental process. These differences probably relate to the changes in the cellular environment during development and the specific biology of the bearded dragon.

  12. Stress failure of pulmonary capillaries: role in lung and heart disease

    NASA Technical Reports Server (NTRS)

    West, J. B.; Mathieu-Costello, O.

    1992-01-01

    Pulmonary capillaries have extremely thin walls to allow rapid exchange of respiratory gases across them. Recently it has been shown that the wall stresses become very large when the capillary pressure is raised, and in anaesthetised rabbits, ultrastructural damage to the walls is seen at pressures of 40 mm Hg and above. The changes include breaks in the capillary endothelial layer, alveolar epithelial layer, and sometimes all layers of the wall. The strength of the thin part of the capillary wall can be attributed to the type IV collagen in the extracellular matrix. Stress failure of pulmonary capillaries results in a high-permeability form of oedema, or even frank haemorrhage, and is apparently the mechanism of neurogenic pulmonary oedema and high-altitude pulmonary oedema. It also explains the exercise-induced pulmonary haemorrhage that occurs in all racehorses. Several features of mitral stenosis are consistent with stress failure. Overinflation of the lung also leads to stress failure, a common cause of increased capillary permeability in the intensive care environment. Stress failure also occurs if the type IV collagen of the capillary wall is weakened by autoantibodies as in Goodpasture's syndrome. Neutrophil elastase degrades type IV collagen and this may be the starting point of the breakdown of alveolar walls that is characteristic of emphysema. Stress failure of pulmonary capillaries is a hitherto overlooked and potentially important factor in lung and heart disease.

  13. Ex Vivo Lung Perfusion: Establishment and Operationalization in Iran.

    PubMed

    Shafaghi, Shadi; Abbasi Dezfuli, Azizollah; Ansari Aval, Zahra; Sheikhy, Kambiz; Farzanegan, Behrooz; Mortaz, Esmaeil; Emami, Habib; Aigner, Clemens; Hosseini-Baharanchi, Fatemeh Sadat; Najafizadeh, Katayoun

    2017-02-01

    Although the number of lung transplants is limited because of general shortage of organ donors, ex vivo lung perfusion is a novel method with 2 main benefits, including better evaluation of lung potential and recovery of injured lungs. The main aim of this study was to establish and operationalize ex vivo lung perfusion as the first experience in Iran. This was a prospective operational research study on 5 cases, including 1 pig from Vienna Medical University and 4 patients from Masih Daneshvari Hospital. All organ donations from brain dead donors were evaluated according to lung transplant or ex vivo lung perfusion criteria from May 2013 to July 2015 in Tehran, Iran. If a donor did not have any sign of severe chest trauma or pneumonia but had poor oxygenation due to possible atelectasis or neurogenic pulmonary edema, their lungs were included for ex vivo lung perfusion. A successful trend in the difference between the pulmonary arterial Po2 and the left atrial Po2 was observed, as well as an increasing pattern in other functional parameters, including dynamic lung compliance and a decreasing trend in pulmonary vascular resistance. These initial trials indicate that ex vivo lung perfusion can lead to remarkable progress in lung transplant in Iran. They also provide several important pieces of guidance for successful ex vivo lung perfusion, including the necessity of following standard lung retrieval procedures and monitoring temperature and pressure precisely. The development of novel methods can provide opportunities for further research studies on lungs of deceased donors and lead to undiscovered findings. By keeping this science up to date in Iran and developing such new and creative methods, we can reveal effective strategies to promote the quality of donor lungs to support patients on transplant wait lists.

  14. Comprehensive analysis of immune, extracellular matrices and pathogens profile in lung granulomatosis of unexplained etiology.

    PubMed

    da Costa Souza, Paola; Dondo, Patrícia Suemi; Souza, Gabriela; Lopes, Deborah; Moscardi, Marcel; de Miranda Martinho, Vinicius; de Mattos Lourenço, Rodolfo Daniel; Prieto, Tabatha; Balancin, Marcelo Luiz; Assato, Aline Kawassaki; Teodoro, Walcy Rosolia; Rodrigues, Silvia; Lima, Mariana; Castellano, Maria Vera; Coletta, Ester; Parra, Edwin Roger; Capelozzi, Vera Luiza

    2018-05-01

    This study analyzed the type 1 and type 2T helper (Th1/Th2) cytokines (including interleukins), immune cellular, matrix profile, and pathogens in granulomas with unexplained etiology compared to those with infectious and noninfectious etiology. Surgical lung biopsies from 108 patients were retrospectively reviewed. Histochemistry, immunohistochemistry, immunofluorescence, morphometry and polymerase chain reaction were used, respectively, to evaluate total collagen and elastin fibers, collagen I and III, immune cells, cytokines, matrix metalloproteinase-9, myofibroblasts, and multiple usual and unusual pathogens. No relevant polymerase chain reaction expression was found in unexplained granulomas. A significant difference was found between the absolute number of eosinophils, macrophages, and lymphocytes within granulomas compared to uninvolved lung tissue. Granulomas with unexplained etiology (UEG) presented increased number of eosinophils and high expression of interleukins (ILs) IL-4/IL-5 and transforming growth factor-β. In sarcoidosis, CD4/CD8 cell number was significantly higher within and outside granulomas, respectively; the opposite was detected in hypersensitivity pneumonitis. Again, a significant difference was found between the high number of myofibroblasts and matrix metalloproteinase-9 in UEG, hypersensitivity pneumonitis, and sarcoidosis compared to granulomas of tuberculosis. Granulomas of paracoccidioisis exhibited increased type I collagen and elastic fibers. Th1 immune cellular profile was similar among granulomas with unexplained, infectious, and noninfectious etiology. In contrast, modulation of Th2 and matrix remodeling was associated with more fibroelastogenesis and scarring of lung tissue in UEG compared to infectious and noninfectious. We concluded that IL-4/IL-5 and transforming growth factor-β might be used as surrogate markers of early fibrosis, reducing the need for genotyping, and promise therapeutic target in unexplained granulomas. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Comparison of therapeutic effects of EGFR-tyrosine kinase inhibitors on 19Del and L858R mutations in advanced lung adenocarcinoma and effect on cellular immune function.

    PubMed

    Zhou, Juan; Ben, Suqin

    2018-02-01

    We compared the therapeutic effect of EGFR-tyrosine kinase inhibitors (TKIs) on 19Del and L858R mutations in advanced lung adenocarcinoma on cellular immune function and explored the factors influencing the curative effect and prognosis. Clinical efficacy in the selected 71 patients with lung adenocarcinoma, including 52 patients with 19Del and L858R mutations and 19 wild type patients treated with EGFR-TKIs was retrospectively analyzed. The response rate (RR), disease control rate (DCR), progression-free survival (PFS), overall survival (OS), and cellular immune function were analyzed. The RR, DCR, PFS, and OS of the 19Del group were higher than those of the L858R group; however, there were no statistically significant differences between the groups. χ 2 test results revealed that gender, smoking, and EGFR mutations were associated with DCR. Log-rank analytical results showed that EGFR mutation type was correlated to PFS and OS. Multivariate analysis implied that disease control and mutation type of EGFR were independent prognostic factors of OS. Following TKI treatment, the number of CD3+, CD4+, and NK cells and the CD4+/CD8+ratio increased in both mutation groups; however the results were not statistically significant. There was also no significant difference in the upregulation of immunological function observed, with 46.43% in the 19Del mutation and 45.83% in the L858R mutation group. EGFR 19Del and L858R mutations are good biomarkers for predicting the clinical response of EGFR-TKIs. 19Del mutations may have a better clinical outcome. © 2017 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  16. Differential Expression of VEGF-Axxx Isoforms Is Critical for Development of Pulmonary Fibrosis.

    PubMed

    Barratt, Shaney L; Blythe, Thomas; Jarrett, Caroline; Ourradi, Khadija; Shelley-Fraser, Golda; Day, Michael J; Qiu, Yan; Harper, Steve; Maher, Toby M; Oltean, Sebastian; Hames, Thomas J; Scotton, Chris J; Welsh, Gavin I; Bates, David O; Millar, Ann B

    2017-08-15

    Fibrosis after lung injury is related to poor outcome, and idiopathic pulmonary fibrosis (IPF) can be regarded as an exemplar. Vascular endothelial growth factor (VEGF)-A has been implicated in this context, but there are conflicting reports as to whether it is a contributory or protective factor. Differential splicing of the VEGF-A gene produces multiple functional isoforms including VEGF-A 165 a and VEGF-A 165 b, a member of the inhibitory family. To date there is no clear information on the role of VEGF-A in IPF. To establish VEGF-A isoform expression and functional effects in IPF. We used tissue sections, plasma, and lung fibroblasts from patients with IPF and control subjects. In a bleomycin-induced lung fibrosis model we used wild-type MMTV mice and a triple transgenic mouse SPC-rtTA +/- TetoCre +/- LoxP-VEGF-A +/+ to conditionally induce VEGF-A isoform deletion specifically in the alveolar type II (ATII) cells of adult mice. IPF and normal lung fibroblasts differentially expressed and responded to VEGF-A 165 a and VEGF-A 165 b in terms of proliferation and matrix expression. Increased VEGF-A 165 b was detected in plasma of progressing patients with IPF. In a mouse model of pulmonary fibrosis, ATII-specific deficiency of VEGF-A or constitutive overexpression of VEGF-A 165 b inhibited the development of pulmonary fibrosis, as did treatment with intraperitoneal delivery of VEGF-A 165 b to wild-type mice. These results indicate that changes in the bioavailability of VEGF-A sourced from ATII cells, namely the ratio of VEGF-A xxx a to VEGF-A xxx b, are critical in development of pulmonary fibrosis and may be a paradigm for the regulation of tissue repair.

  17. Indigenous Australians with non-small cell lung cancer or cervical cancer receive suboptimal treatment.

    PubMed

    Whop, Lisa J; Bernardes, Christina M; Kondalsamy-Chennakesavan, Srinivas; Darshan, Deepak; Chetty, Naven; Moore, Suzanne P; Garvey, Gail; Walpole, Euan; Baade, Peter; Valery, Patricia C

    2017-10-01

    Lung cancer and cervical cancer are higher in incidence for Indigenous Australians and survival is worse compared with non-Indigenous Australians. Here we aim to determine if being Indigenous and/or other factors are associated with patients receiving "suboptimal treatment" compared to "optimal treatment" according to clinical guidelines for two cancer types. Data were collected from hospital medical records for Indigenous adults diagnosed with cervical cancer and non-small cell lung cancer (NSCLC) and a frequency-matched comparison group of non-Indigenous patients in the Queensland Cancer Registry between January 1998 and December 2004. The two cancer types were analyzed separately. A total of 105 women with cervical cancer were included in the study, 56 of whom were Indigenous. Indigenous women had higher odds of not receiving optimal treatment according to clinical guidelines (unadjusted OR 7.1; 95% CI, 1.5-33.3), even after adjusting for stage (OR 5.7; 95% CI, 1.2-27.3). Of 225 patients with NSCLC, 198 patients (56% Indigenous) had sufficient information available to be analyzed. The odds of receiving suboptimal treatment were significantly higher for Indigenous compared to non-Indigenous NSCLC patients (unadjusted OR 1.9; 95% CI, 1.0-3.6) and remained significant after adjusting for stage, comorbidity and age (adjusted OR 2.1; 95% CI, 1.1-4.1). The monitoring of treatment patterns and appraisal against guidelines can provide valuable evidence of inequity in cancer treatment. We found that Indigenous people with lung cancer or cervical cancer received suboptimal treatment, reinforcing the need for urgent action to reduce the impact of these two cancer types on Indigenous people. © 2016 John Wiley & Sons Australia, Ltd.

  18. Cruciferous Vegetable Intake Is Inversely Associated with Lung Cancer Risk among Current Nonsmoking Men in the Japan Public Health Center (JPHC) Study.

    PubMed

    Mori, Nagisa; Shimazu, Taichi; Sasazuki, Shizuka; Nozue, Miho; Mutoh, Michihiro; Sawada, Norie; Iwasaki, Motoki; Yamaji, Taiki; Inoue, Manami; Takachi, Ribeka; Sunami, Ayaka; Ishihara, Junko; Sobue, Tomotaka; Tsugane, Shoichiro

    2017-05-01

    Background: Cruciferous vegetables, a rich source of isothiocyanates, have been reported to lower the risk of several types of cancer, including lung cancer. However, evidence from prospective observations of populations with a relatively high intake of cruciferous vegetables is sparse. Objective: We investigated the association between cruciferous vegetable intake and lung cancer risk in a large-scale population-based prospective study in Japan. Methods: We studied 82,330 participants (38,663 men; 43,667 women) aged 45-74 y without a past history of cancer. Participants were asked to respond to a validated questionnaire that included 138 food items. The association between cruciferous vegetable intake and lung cancer incidence was assessed with the use of Cox proportional hazard regression analysis to estimate HRs and 95% CIs (with adjustments for potential confounding factors). Results: After 14.9 y of follow-up, a total of 1499 participants (1087 men; 412 women) were diagnosed with lung cancer. After deleting early-diagnosed cancer and adjusting for confounding factors, we observed a nonsignificant inverse trend between cruciferous vegetable intake and lung cancer risk in men in the highest compared with the lowest quartiles (multivariate HR: 0.85; 95% CI: 0.69, 1.06; P -trend = 0.13). Stratified analysis by smoking status revealed a significant inverse association between cruciferous vegetable intake and lung cancer risk among those who were never smokers and those who were past smokers after deleting lung cancer cases in the first 3 y of follow-up [multivariate HR for never smokers: 0.49 (95% CI: 0.27, 0.87; P -trend = 0.04); multivariate HR for past smokers: 0.59 (95% CI: 0.35, 0.99; P -trend = 0.10)]. No association was noted in men who were current smokers and women who were never smokers. Conclusion: This study suggests that cruciferous vegetable intake may be associated with a reduction in lung cancer risk among men who are currently nonsmokers. © 2017 American Society for Nutrition.

  19. Occupational exposure to radon for underground tourist routes in Poland: Doses to lung and the risk of developing lung cancer.

    PubMed

    Walczak, Katarzyna; Olszewski, Jerzy; Politański, Piotr; Zmyślony, Marek

    2017-07-14

    Radon concentrations for 31 Polish underground tourist routes were analyzed. The equivalent dose to the lung, the effective dose and the relative risk were calculated for employees of the analyzed routes on the grounds of information on radon concentrations, work time, etc. The relative risk for lung cancers was calculated using the Biological Effects of Ionizing Radiation (BEIR) VI Committee model. Equivalent doses to the lungs of workers were determined using the coefficients calculated by the Kendall and Smith. The conversion coefficient proposed by the International Atomic Energy Agency (IAEA) in the report No. 33 was used for estimating the effective doses. In 13 routes, the effective dose was found to be above 1 mSv/year, and in 3 routes, it exceeded 6 mSv/year. For 5 routes, the equivalent dose to lungs was higher than 100 mSv/year, and in 1 case it was as high as 490 mSv/year. In 22.6% of underground workplaces the risk of developing lung cancer among employees was about 2 times higher than that for the general population, and for 1 tourist route it was about 5 times higher. The geometric mean of the relative risk of lung cancer for all workers of underground tourist routes was 1.73 (95% confidence interval (CI): 1.6-1.87). Routes were divided into: caves, mines, post-military underground constructions and urban underground constructions. The difference between levels of the relative risk of developing lung cancer for all types of underground tourist routes was not found to be significant. If we include the professional group of the employees of underground tourist routes into the group of occupational exposure, the number of persons who are included in the Category A due to occupational exposure may increase by about 3/4. The professional group of the employees of underground tourist routes should be monitored for their exposure to radon. Int J Occup Med Environ Health 2017;30(5):687-694. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  20. Type XVIII collagen degradation products in acute lung injury

    PubMed Central

    Perkins, Gavin D; Nathani, Nazim; Richter, Alex G; Park, Daniel; Shyamsundar, Murali; Heljasvaara, Ritva; Pihlajaniemi, Taina; Manji, Mav; Tunnicliffe, W; McAuley, Danny; Gao, Fang; Thickett, David R

    2009-01-01

    Introduction In acute lung injury, repair of the damaged alveolar-capillary barrier is an essential part of recovery. Endostatin is a 20 to 28 kDa proteolytic fragment of the basement membrane collagen XVIII, which has been shown to inhibit angiogenesis via action on endothelial cells. We hypothesised that endostatin may have a role in inhibiting lung repair in patients with lung injury. The aims of the study were to determine if endostatin is elevated in the plasma/bronchoalveolar lavage fluid of patients with acute lung injury and ascertain whether the levels reflect the severity of injury and alveolar inflammation, and to assess if endostatin changes occur early after the injurious lung stimuli of one lung ventilation and lipopolysaccharide (LPS) challenge. Methods Endostatin was measured by ELISA and western blotting. Results Endostatin is elevated within the plasma and bronchoalveolar lavage fluid of patients with acute lung injury. Lavage endostatin reflected the degree of alveolar neutrophilia and the extent of the loss of protein selectivity of the alveolar-capillary barrier. Plasma levels of endostatin correlated with the severity of physiological derangement. Western blotting confirmed elevated type XVIII collagen precursor levels in the plasma and lavage and multiple endostatin-like fragments in the lavage of patients. One lung ventilation and LPS challenge rapidly induce increases in lung endostatin levels. Conclusions Endostatin may adversely affect both alveolar barrier endothelial and epithelial cells, so its presence within both the circulation and the lung may have a pathophysiological role in acute lung injury that warrants further evaluation. PMID:19358707

  1. miR-34a Inhibits Lung Fibrosis by Inducing Lung Fibroblast Senescence.

    PubMed

    Cui, Huachun; Ge, Jing; Xie, Na; Banerjee, Sami; Zhou, Yong; Antony, Veena B; Thannickal, Victor J; Liu, Gang

    2017-02-01

    Cellular senescence has been implicated in diverse pathologies. However, there is conflicting evidence regarding the role of this process in tissue fibrosis. Although dysregulation of microRNAs is a key mechanism in the pathogenesis of lung fibrosis, it is unclear whether microRNAs function by regulating cellular senescence in the disease. In this study, we found that miR-34a demonstrated greater expression in the lungs of patients with idiopathic pulmonary fibrosis and in mice with experimental pulmonary fibrosis, with its primary localization in lung fibroblasts. More importantly, miR-34a was up-regulated significantly in both human and mouse lung myofibroblasts. We found that mice with miR-34a ablation developed more severe pulmonary fibrosis than did wild-type animals after fibrotic lung injury. Mechanistically, we found that miR-34a induced a senescent phenotype in lung fibroblasts because this microRNA increased senescence-associated β-galactosidase activity, enhanced expression of senescence markers, and decreased cell proliferative capacities. Consistently, we found that primary lung fibroblasts from fibrotic lungs of miR-34a-deficient mice had a diminished senescent phenotype and enhanced resistance to apoptosis as compared with those from wild-type animals. We also identified multiple miR-34a targets that likely mediated its activities in inducing senescence in lung fibroblasts. In conclusion, our data suggest that miR-34a functions through a negative feedback mechanism to restrain fibrotic response in the lungs by promoting senescence of pulmonary fibroblasts.

  2. Ciprofloxacin mediates cancer stem cell phenotypes in lung cancer cells through caveolin-1-dependent mechanism.

    PubMed

    Phiboonchaiyanan, Preeyaporn Plaimee; Kiratipaiboon, Chayanin; Chanvorachote, Pithi

    2016-04-25

    Cancer stem cells (CSCs), a subpopulation of cancer cells with high aggressive behaviors, have been identified in many types of cancer including lung cancer as one of the key mediators driving cancer progression and metastasis. Here, we have reported for the first time that ciprofloxacin (CIP), a widely used anti-microbial drug, has a potentiating effect on CSC-like features in human non-small cell lung cancer (NSCLC) cells. CIP treatment promoted CSC-like phenotypes, including enhanced anchorage-independent growth and spheroid formation. The known lung CSC markers: CD133, CD44, ABCG2 and ALDH1A1 were found to be significantly increased, while the factors involving in epithelial to mesenchymal transition (EMT): Slug and Snail, were depleted. Also, self-renewal transcription factors Oct-4 and Nanog were found to be up-regulated in CIP-treated cells. The treatment of CIP on CSC-rich populations obtained from secondary spheroids resulted in the further increase of CSC markers. In addition, we have proven that the mechanistic insight of the CIP induced stemness is through Caveolin-1 (Cav-1)-dependent mechanism. The specific suppression of Cav-1 by stably transfected Cav-1 shRNA plasmid dramatically reduced the effect of CIP on CSC markers as well as the CIP-induced spheroid formation ability. Cav-1 was shown to activate protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) pathways in CSC-rich population; however, such an effect was rarely found in the main lung cancer cells population. These findings reveal a novel effect of CIP in positively regulating CSCs in lung cancer cells via the activation of Cav-1, Akt and ERK, and may provoke the awareness of appropriate therapeutic strategy in cancer patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Usefulness of immunohistochemistry for the detection of the BRAF V600E mutation in Japanese lung adenocarcinoma.

    PubMed

    Sasaki, Hidefumi; Shimizu, Shigeki; Tani, Yoichi; Shitara, Masayuki; Okuda, Katsuhiro; Hikosaka, Yu; Moriyama, Satoru; Yano, Motoki; Fujii, Yoshitaka

    2013-10-01

    Mutations in components of the mitogen-activated protein kinase (MAPK) cascade may be a new candidate for target for lung cancer. The usefulness of immunohistochemistry (IHC) as a new approach for the detection of BRAF V600E in cancer patients has been recently reported. To increase the sensitivity, we modified BRAF V600E expression detection assay by IHC using mutation specific antibody. From the screening step, we found a novel 599 insertion T BRAF mutation in lung adenocarcinoma. In this study included 26 surgically removed cases with EGFR, Kras, erbB2, EML4-ALK and KIF5B-RET wild-type (wt) lung adenocarcinomas, including 7 BRAF mutants (5 V600E, 1 N581I, and 1 novel 599 insertion T mutation) analyzed by DNA sequencing. Detection of the BRAF V600E mutation was carried out by the Dako EnVision™ FLEX detection system using the VE1 clone antibody and compared with the results of direct sequencing. The autostainer IHC VE1 assay was positive in 5 of 5 (100%) BRAF V600E-mutated tumors and negative in 20 of 21 (95.2%) BRAF non-V600E tumors, except for a novel 599 insertion T case. IHC using the VE1 clone and FLEX linker is a specific method for the detection BRAF V600E and may be an alternative to molecular biology for the detection of mutations in lung adenocarcinomas. This method might be useful for screening to use molecular target therapy for lung adenocarcinomas. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Cytomorphological features of ALK-positive lung adenocarcinomas: psammoma bodies and signet ring cells.

    PubMed

    Pareja, Fresia; Crapanzano, John P; Mansukhani, Mahesh M; Bulman, William A; Saqi, Anjali

    2015-03-01

    Correlation between histology and genotype has been described in lung adenocarcinomas. For example, studies have demonstrated that adenocarcinomas with an anaplastic lymphoma kinase (ALK) gene rearrangement may have mucinous features. The objective of the current study was to determine whether a similar association can be identified in cytological specimens. A retrospective search for ALK-rearranged cytopathology (CP) and surgical pathology (SP) lung carcinomas was conducted. Additional ALK-negative (-) lung adenocarcinomas served as controls. For CP and SP cases, the clinical data (i.e., age, sex, and smoking history), architecture, nuclear features, presence of mucin-containing cells (including signet ring cells), and any additional salient characteristics were evaluated. The search yielded 20 ALK-positive (+) adenocarcinomas. Compared with patients with ALK(-) lung adenocarcinomas (33 patients; 12 with epidermal growth factor receptor [EGFR]-mutation, 11 with Kristen rat sarcoma [KRAS]-mutation, and 10 wild-type adenocarcinomas), patients with ALK(+) adenocarcinoma presented at a younger age; and there was no correlation noted with sex or smoking status. The most common histological pattern in SP was papillary/micropapillary. Mucinous features were associated with ALK rearrangement in SP specimens. Signet ring cells and psammoma bodies were evident in and significantly associated with ALK(+) SP and CP specimens. However, psammoma bodies were observed in rare adenocarcinomas with an EGFR mutation. Both the ALK(+) and ALK(-) groups had mostly high nuclear grade. Salient features, including signet ring cells and psammoma bodies, were found to be significantly associated with ALK(+) lung adenocarcinomas and are identifiable on CP specimens. Recognizing these may be especially helpful in the molecular triage of scant CP samples. © 2014 American Cancer Society.

  5. Evaluation of the Role of Invadopodia in Lung Cancer Cell Growth and Invasion

    DTIC Science & Technology

    2014-11-01

    NSCLC cell lines. We obtained eight such lines: H1975 and H1650 ( non - smoker , mutant EGFr); H1395 and H1573 ( non - smoker , wildtype EGFr); H23 and H1792...Invadopodia are actin-based cellular protrusions found in many invasive cancer cell types. Non small cell lung cancers (NSCLCs) are highly invasive and...Abstract: Invadopodia are actin-based cellular protrusions found in many invasive cancer cell types. Non small cell lung cancers (NSCLCs) are highly

  6. Involvement of aryl hydrocarbon receptor signaling in the development of small cell lung cancer induced by HPV E6/E7 oncoproteins

    PubMed Central

    2011-01-01

    Background Lung cancers consist of four major types that and for clinical-pathological reasons are often divided into two broad categories: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). All major histological types of lung cancer are associated with smoking, although the association is stronger for SCLC and squamous cell carcinoma than adenocarcinoma. To date, epidemiological studies have identified several environmental, genetic, hormonal and viral factors associated with lung cancer risk. It has been estimated that 15-25% of human cancers may have a viral etiology. The human papillomavirus (HPV) is a proven cause of most human cervical cancers, and might have a role in other malignancies including vulva, skin, oesophagus, head and neck cancer. HPV has also been speculated to have a role in the pathogenesis of lung cancer. To validate the hypothesis of HPV involvement in small cell lung cancer pathogenesis we performed a gene expression profile of transgenic mouse model of SCLC induced by HPV-16 E6/E7 oncoproteins. Methods Gene expression profile of SCLC has been performed using Agilent whole mouse genome (4 × 44k) representing ~ 41000 genes and mouse transcripts. Samples were obtained from two HPV16-E6/E7 transgenic mouse models and from littermate's normal lung. Data analyses were performed using GeneSpring 10 and the functional classification of deregulated genes was performed using Ingenuity Pathway Analysis (Ingenuity® Systems, http://www.ingenuity.com). Results Analysis of deregulated genes induced by the expression of E6/E7 oncoproteins supports the hypothesis of a linkage between HPV infection and SCLC development. As a matter of fact, comparison of deregulated genes in our system and those in human SCLC showed that many of them are located in the Aryl Hydrocarbon Receptor Signal transduction pathway. Conclusions In this study, the global gene expression of transgenic mouse model of SCLC induced by HPV-16 E6/E7 oncoproteins led us to identification of several genes involved in SCLC tumor development. Furthermore, our study reveled that the Aryl Hydrocarbon Receptor Signaling is the primarily affected pathway by the E6/E7 oncoproteins expression and that this pathway is also deregulated in human SCLC. Our results provide the basis for the development of new therapeutic approaches against human SCLC. PMID:21205295

  7. Cigarette smoking decreases dynamic inspiratory capacity during maximal exercise in patients with type 2 diabetes.

    PubMed

    Kitahara, Yoshihiro; Hattori, Noboru; Yokoyama, Akihito; Yamane, Kiminori; Sekikawa, Kiyokazu; Inamizu, Tsutomu; Kohno, Nobuoki

    2012-06-01

    To investigate the influence of cigarette smoking on exercise capacity, respiratory responses and dynamic changes in lung volume during exercise in patients with type 2 diabetes. Forty-one men with type, 2 diabetes without cardiopulmonary disease were recruited and divided into 28 non-current smokers and 13 current smokers. All subjects received lung function tests and cardiopulmonary exercise testing using tracings of the flow-volume loop. Exercise capacity was compared using the percentage of predicted oxygen uptake at maximal workload (%VO2max). Respiratory variables and inspiratory capacity (IC) were compared between the two groups at rest and at 20%, 40%, 60%, 80% and 100% of maximum workload. Although there was no significant difference in lung function tests between the two groups, venous carboxyhemoglobin (CO-Hb) levels were significantly higher in current smokers. %VO2max was inversely correlated with CO-Hb levels. Changing patterns in respiratory rate, respiratory equivalent and IC were significantly different between the two groups. Current smokers had rapid breathing, a greater respiratory equivalent and a limited increase in IC during exercise. Cigarette smoking diminishes the increase in dynamic IC in patients with type 2 diabetes. As this effect of smoking on dynamic changes in lung volume will exacerbate dynamic hyperinflation in cases complicated by chronic obstructive pulmonary disease, physicians should consider smoking habits and lung function when evaluating exercise capacity in patients with type 2 diabetes.

  8. [Anomalous systemic arterial supply to normal basal segments of the left lung (Pryce type I)].

    PubMed

    Ryu, Chusei; Sawada, Takahiro; Machino, Ryusuke

    2013-03-01

    Patient 1 was a 54-year-old female diagnosed with anomalous systemic arterial supply to normal basal segments of the left lung discovered as an abnormality on chest X-ray radiography. Patient 2 was a 47-year-old male in whom the disease was diagnosed by close examination of bloody sputum. Division of the abnormal artery and left lower lobectomy were performed in patient 1. Arterial congestion and serpentine distribution were noted in the basal segments of the lung, which was the region perfused by the abnormal artery, on histopathological examination. Arteriosclerotic changes were noted in the vascular wall, but no abnormal vascular wall or alveolar structure was noted in S6, which was not included in theperfused region. Based on the above findings, division of the abnormal artery and left basal segmentectomy were performed in patient 2. Bloody sputum disappeared, and activity of daily living( ADL) were not impaired after surgery.

  9. Low-voltage electricity-induced lung injury.

    PubMed

    Truong, Thai; Le, Thuong Vu; Smith, David L; Kantrow, Stephen P; Tran, Van Ngoc

    2018-02-01

    We report a case of bilateral pulmonary infiltrates and haemoptysis following low-voltage electricity exposure in an agricultural worker. A 58-year-old man standing in water reached for an electric watering machine and sustained an exposure to 220 V circuit for an uncertain duration. The electricity was turned off by another worker, and the patient was asymptomatic for the next 10 h until he developed haemoptysis. A chest radiograph demonstrated bilateral infiltrates, and chest computed tomography (CT) revealed ground-glass opacities with interstitial thickening. Evaluations, including electrocardiogram, serum troponin, N-terminal pro-B-type natriuretic peptide (NT-pro BNP), coagulation studies, and echocardiogram, found no abnormality. The patient was treated for suspected electricity-induced lung injury and bleeding with tranexamic acid and for rhabdomyolysis with volume resuscitation. He recovered with complete resolution of chest radiograph abnormalities by Day 7. This is the first reported case of bilateral lung oedema and/or injury after electricity exposure without cardiac arrest.

  10. Probability of cancer in pulmonary nodules detected on first screening CT.

    PubMed

    McWilliams, Annette; Tammemagi, Martin C; Mayo, John R; Roberts, Heidi; Liu, Geoffrey; Soghrati, Kam; Yasufuku, Kazuhiro; Martel, Simon; Laberge, Francis; Gingras, Michel; Atkar-Khattra, Sukhinder; Berg, Christine D; Evans, Ken; Finley, Richard; Yee, John; English, John; Nasute, Paola; Goffin, John; Puksa, Serge; Stewart, Lori; Tsai, Scott; Johnston, Michael R; Manos, Daria; Nicholas, Garth; Goss, Glenwood D; Seely, Jean M; Amjadi, Kayvan; Tremblay, Alain; Burrowes, Paul; MacEachern, Paul; Bhatia, Rick; Tsao, Ming-Sound; Lam, Stephen

    2013-09-05

    Major issues in the implementation of screening for lung cancer by means of low-dose computed tomography (CT) are the definition of a positive result and the management of lung nodules detected on the scans. We conducted a population-based prospective study to determine factors predicting the probability that lung nodules detected on the first screening low-dose CT scans are malignant or will be found to be malignant on follow-up. We analyzed data from two cohorts of participants undergoing low-dose CT screening. The development data set included participants in the Pan-Canadian Early Detection of Lung Cancer Study (PanCan). The validation data set included participants involved in chemoprevention trials at the British Columbia Cancer Agency (BCCA), sponsored by the U.S. National Cancer Institute. The final outcomes of all nodules of any size that were detected on baseline low-dose CT scans were tracked. Parsimonious and fuller multivariable logistic-regression models were prepared to estimate the probability of lung cancer. In the PanCan data set, 1871 persons had 7008 nodules, of which 102 were malignant, and in the BCCA data set, 1090 persons had 5021 nodules, of which 42 were malignant. Among persons with nodules, the rates of cancer in the two data sets were 5.5% and 3.7%, respectively. Predictors of cancer in the model included older age, female sex, family history of lung cancer, emphysema, larger nodule size, location of the nodule in the upper lobe, part-solid nodule type, lower nodule count, and spiculation. Our final parsimonious and full models showed excellent discrimination and calibration, with areas under the receiver-operating-characteristic curve of more than 0.90, even for nodules that were 10 mm or smaller in the validation set. Predictive tools based on patient and nodule characteristics can be used to accurately estimate the probability that lung nodules detected on baseline screening low-dose CT scans are malignant. (Funded by the Terry Fox Research Institute and others; ClinicalTrials.gov number, NCT00751660.).

  11. The association between human papillomavirus infection and lung cancer: a system review and meta-analysis

    PubMed Central

    Xiong, Wei-Min; Xu, Qiu-Ping; Li, Xu; Xiao, Ren-Dong; Cai, Lin; He, Fei

    2017-01-01

    To estimate the global attributable fraction of human papillomavirus (HPV) in lung cancer, we provided updated information through a system review and meta-analysis. We did a literature search on PubMed, Ovid and Web of Science to identify case-control studies and cohort studies that detected HPV in lung carcinomas. We included studies that tested 30 or more cases and were published before Feb 28, 2017. We collected information about gender, smoking status, HPV detection methods, HPV types, materials and clinical features. If it was not possible to abstract the required information directly from the papers, we contacted the authors. A meta-analysis was performed to calculate the pooled effect sizes (OR/RR) with 95% confidence intervals (CI) including subgroup analysis and meta-regression to explore sources of heterogeneity, by Stata 13.0 software. 36 case-control studies, contributing data for 6,980 cases of lung cancer and 7,474 controls from 17 countries and one cohort study with 24,162 exposed and 1,026,986 unexposed from China were included. HPV infection was associated with cancer of lung, pooled OR was 3.64 (95% CI: 2.60–5.08), calculated with the random-effects model. Pooled OR for allogeneic case-control studies, self-matched case-control studies and nested case-control studies were 6.71 (95% CI: 4.07–11.07), 2.59 (95% CI: 1.43–4.69) and 0.92 (95% CI: 0.63–1.36), respectively. Pooled OR for HPV 16 and HPV 18 infection, were 3.14 (95% CI: 2.07–4.76) and 2.25 (95% CI: 1.49–3.40), respectively. We also found that HPV infection may be associated with squamous cell carcinoma, adenocarcinoma and small cell carcinoma. There is evidence that HPV infection, especially HPV 16 and HPV 18 infection, significantly increase the risk of lung cancer. Future research needs to focus attention toward whether an HPV vaccine can effectively reduce the incidence of lung cancer. PMID:29221217

  12. Nanosized zinc oxide particles do not promote DHPN-induced lung carcinogenesis but cause reversible epithelial hyperplasia of terminal bronchioles.

    PubMed

    Xu, Jiegou; Futakuchi, Mitsuru; Alexander, David B; Fukamachi, Katsumi; Numano, Takamasa; Suzui, Masumi; Shimizu, Hideo; Omori, Toyonori; Kanno, Jun; Hirose, Akihiko; Tsuda, Hiroyuki

    2014-01-01

    Zinc oxide (ZnO) is known to induce lung toxicity, including terminal bronchiolar epithelial hyperplasia, which gives rise to concerns that nanosized ZnO (nZnO) might lead to lung carcinogenesis. We studied the tumor promoting activity of nZnO by an initiation-promotion protocol using human c-Ha-ras proto-oncogene transgenic rats (Hras128 rats). The rats were given 0.2 % N-nitrosobis(2-hydroxypropyl)amine (DHPN) in the drinking water for 2 weeks and then treated with 0.5 ml of 250 or 500 μg/ml nZnO suspension by intra-pulmonary spraying once every 2 weeks for a total of 7 times. Treatment with nZnO particles did not promote DHPN-induced lung carcinogenesis. However, nZnO dose-dependently caused epithelial hyperplasia of terminal bronchioles (EHTB) and fibrosis-associated interstitial pneumonitis (FAIP) that were independent of DHPN treatment. Tracing the fate of EHTB lesions in wild-type rats indicated that the hyperplastic lesions almost completely disappeared within 12 weeks after the last nZnO treatment. Since nZnO particles were not found in the lung and ZnCl2 solution induced similar lung lesions and gene expression profiles, the observed lesions were most likely caused by dissolved Zn(2+). In summary, nZnO did not promote carcinogenesis in the lung and induced EHTB and FAIP lesions that regressed rapidly, probably due to clearance of surplus Zn(2+) from the lung.

  13. ACE phenotyping in human heart

    PubMed Central

    Tikhomirova, Victoria E.; Kost, Olga A.; Kryukova, Olga V.; Golukhova, Elena Z.; Bulaeva, Naida I.; Zholbaeva, Aigerim Z.; Bokeria, Leo A.; Garcia, Joe G. N.

    2017-01-01

    Aims Angiotensin-converting enzyme (ACE), which metabolizes many peptides and plays a key role in blood pressure regulation and vascular remodeling, is expressed as a type-1 membrane glycoprotein on the surface of different cells, including endothelial cells of the heart. We hypothesized that the local conformation and, therefore, the properties of heart ACE could differ from lung ACE due to different microenvironment in these organs. Methods and results We performed ACE phenotyping (ACE levels, conformation and kinetic characteristics) in the human heart and compared it with that in the lung. ACE activity in heart tissues was 10–15 lower than that in lung. Various ACE effectors, LMW endogenous ACE inhibitors and HMW ACE-binding partners, were shown to be present in both heart and lung tissues. “Conformational fingerprint” of heart ACE (i.e., the pattern of 17 mAbs binding to different epitopes on the ACE surface) significantly differed from that of lung ACE, which reflects differences in the local conformations of these ACEs, likely controlled by different ACE glycosylation in these organs. Substrate specificity and pH-optima of the heart and lung ACEs also differed. Moreover, even within heart the apparent ACE activities, the local ACE conformations, and the content of ACE inhibitors differ in atria and ventricles. Conclusions Significant differences in the local conformations and kinetic properties of heart and lung ACEs demonstrate tissue specificity of ACE and provide a structural base for the development of mAbs able to distinguish heart and lung ACEs as a potential blood test for predicting atrial fibrillation risk. PMID:28771512

  14. IL-33 Drives Augmented Responses to Ozone in Obese Mice

    PubMed Central

    Mathews, Joel A.; Krishnamoorthy, Nandini; Kasahara, David Itiro; Cho, Youngji; Wurmbrand, Allison Patricia; Ribeiro, Luiza; Smith, Dirk; Umetsu, Dale; Levy, Bruce D.; Shore, Stephanie Ann

    2016-01-01

    Background: Ozone increases IL-33 in the lungs, and obesity augments the pulmonary effects of acute ozone exposure. Objectives: We assessed the role of IL-33 in the augmented effects of ozone observed in obese mice. Methods: Lean wildtype and obese db/db mice were pretreated with antibodies blocking the IL-33 receptor, ST2, and then exposed to ozone (2 ppm for 3 hr). Airway responsiveness was assessed, bronchoalveolar lavage (BAL) was performed, and lung cells harvested for flow cytometry 24 hr later. Effects of ozone were also assessed in obese and lean mice deficient in γδ T cells and their wildtype controls. Results and Discussion: Ozone caused greater increases in BAL IL-33, neutrophils, and airway responsiveness in obese than lean mice. Anti-ST2 reduced ozone-induced airway hyperresponsiveness and inflammation in obese mice but had no effect in lean mice. Obesity also augmented ozone-induced increases in BAL CXCL1 and IL-6, and in BAL type 2 cytokines, whereas anti-ST2 treatment reduced these cytokines. In obese mice, ozone increased lung IL-13+ innate lymphoid cells type 2 (ILC2) and IL-13+ γδ T cells. Ozone increased ST2+ γδ T cells, indicating that these cells can be targets of IL-33, and γδ T cell deficiency reduced obesity-related increases in the response to ozone, including increases in type 2 cytokines. Conclusions: Our data indicate that IL-33 contributes to augmented responses to ozone in obese mice. Obesity and ozone also interacted to promote type 2 cytokine production in γδ T cells and ILC2 in the lungs, which may contribute to the observed effects of IL-33. Citation: Mathews JA, Krishnamoorthy N, Kasahara DI, Cho Y, Wurmbrand AP, Ribeiro L, Smith D, Umetsu D, Levy BD, Shore SA. 2017. IL-33 drives augmented responses to ozone in obese mice. Environ Health Perspect 125:246–253; http://dx.doi.org/10.1289/EHP272 PMID:27472835

  15. Clinical characteristics and prognostic significance of 92 cases of patients with primary mixed-histology lung cancer.

    PubMed

    Deng, Pengbo; Hu, Chengping; Zhou, Lihua; Li, Yuanyuan; Huang, Li

    2013-09-01

    Mixed-histology primary lung cancer is a rare type of lung cancer, where data regarding epidemiology, clinical features and prognosis of survival are limited. The aim of this study was to analyze the clinical characteristics of patients with mixed-histology lung tumors, and to investigate the association between clinical characteristics, treatment and prognosis. Between January, 1999 and September, 2008, 1,842 patients were diagnosed with primary lung tumors. Of these, 92 presented a mixed histological pattern. Patient clinical characteristics, clinical tumor-node-metastasis (TNM) staging, diagnostic methods, treatment and survival data were collected in order to be retrospectively analyzed. Differences between the frequencies were examined using the χ 2 test and survival rates using the Kaplan-Meier method. The log-rank test was used to compare the survival curves and a probability value <5% (P<0.05) was considered to indicate a statistically significant difference. Of the 92 lung cancer patients (4.99%) with a mixed histological pattern, most were adenosquamous carcinomas. Patients included 75 men and 17 women with a mean age of 56 years. Most cases were in late stage and 64 patients had metastasis. The 1-, 2- and 3-year survival of 52 mixed-histology and 54 non-small cell lung cancer (NSCLC) patients with resection who were successfully followed up, was 63.5, 23.1, 9.6 and 81.5, 48.1, 27.7% (P=0.013). The median survival time of mixed-histology lung cancer patients treated with surgery plus adjuvant therapy and surgery alone was 22 and 12 months, respectively (P=0.002). Mixed-histology lung cancer is characterized by higher malignancy and poor prognosis. However, surgery plus adjuvant therapy is able to prolong survival, compared to surgery alone.

  16. Clinical predictors and outcome implications of early readmission in lung transplant recipients.

    PubMed

    Osho, Asishana A; Castleberry, Anthony W; Yerokun, Babatunde A; Mulvihill, Michael S; Rucker, Justin; Snyder, Laurie D; Davis, Robert D; Hartwig, Matthew G

    2017-05-01

    The purpose of this study was to identify risk factors and outcome implications for 30-day hospital readmission in lung transplant recipients. We conducted a retrospective cohort study of lung transplant cases from a single, high-volume lung transplant program between January 2000 and March 2012. Demographic and health data were reviewed for all patients. Risk factors for 30-day readmission (defined as readmission within 30 days of discharge from index lung transplant hospitalization) were modeled using logistic regression, with selection of parameters by backward elimination. The sample comprised 795 patients after excluding scheduled readmissions and in-hospital deaths. Overall 30-day readmission rate was 45.4% (n = 361). Readmission rates were similar across different diagnosis categories and procedure types. By univariate analysis, post-operative complications that predisposed to 30-day readmission included pneumonia, any infection, and atrial fibrillation (all p < 0.05). In the final multivariate model, occurrence of any post-transplant complication was the most significant risk factor for 30-day readmission (odds ratio = 1.764; 95% confidence interval, 1.259-2.470). Even for patients with no documented perioperative complication, readmission rates were still >35%. Kaplan-Meier analysis and multi-variate regression modeling to assess readmission as a predictor of long-term outcomes showed that 30-day readmission was not a significant predictor of worse survival in lung recipients. Occurrence of at least 1 post-transplant complication increases risk for 30-day readmission in lung transplant recipients. In this patient population, 30-day readmission does not predispose to adverse long-term survival. Quality indicators other than 30-day readmission may be needed to assess hospitals that perform lung transplantation. Copyright © 2017 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  17. Yin yang 1 is a novel regulator of pulmonary fibrosis.

    PubMed

    Lin, Xin; Sime, Patricia J; Xu, Haodong; Williams, Marc A; LaRussa, Larry; Georas, Steve N; Guo, Jia

    2011-06-15

    The differentiation of fibroblasts into myofibroblasts is a cardinal feature of idiopathic pulmonary fibrosis (IPF). The transcription factor Yin Yang 1 (YY1) plays a role in the proliferation and differentiation of diverse cell types, but its role in fibrotic lung diseases is not known. To elucidate the mechanism by which YY1 regulates fibroblast differentiation and lung fibrosis. Lung fibroblasts were cultured with transforming growth factor (TGF)-β or tumor necrosis factor-α. Nuclear factor (NF)-κB, YY1, and α-smooth muscle actin (SMA) were determined in protein, mRNA, and promoter reporter level. Lung fibroblasts and lung fibrosis were assessed in a partial YY1-deficient mouse and a YY1(f/f) conditional knockout mouse after being exposed to silica or bleomycin. TGF-β and tumor necrosis factor-α up-regulated YY1 expression in lung fibroblasts. TGF-β-induced YY1 expression was dramatically decreased by an inhibitor of NF-κB, which blocked I-κB degradation. YY1 is significantly overexpressed in both human IPF and murine models of lung fibrosis, including in the aggregated pulmonary fibroblasts of fibrotic foci. Furthermore, the mechanism of fibrogenesis is that YY1 can up-regulate α-SMA expression in pulmonary fibroblasts. YY1-deficient (YY1(+/-)) mice were significantly protected from lung fibrosis, which was associated with attenuated α-SMA and collagen expression. Finally, decreasing YY1 expression through instilled adenovirus-cre in floxed-YY1(f/f) mice reduced lung fibrosis. YY1 is overexpressed in fibroblasts in both human IPF and murine models in a NF-κB-dependent manner, and YY1 regulates fibrogenesis at least in part by increasing α-SMA and collagen expression. Decreasing YY1 expression may provide a new therapeutic strategy for pulmonary fibrosis.

  18. Focal necrotizing pneumonia is a distinct entity from lung abscess.

    PubMed

    Seo, Hyewon; Cha, Seung-Ick; Shin, Kyung-Min; Lim, Jaekwang; Yoo, Seung-Soo; Lee, Jaehee; Lee, Shin-Yup; Kim, Chang-Ho; Park, Jae-Yong

    2013-10-01

    'Focal necrotizing pneumonia' was defined as a localized type of necrotizing pneumonia characterized by a single or few cavities of low density without rim enhancement on computed tomography (CT) scan. The purpose of this study was to investigate the clinical features and course of patients with focal necrotizing pneumonia, thereby elucidating its clinical relevance. The present study was conducted retrospectively in patients who had been interpreted as having lung abscess or necrotizing pneumonia on CT scan. Clinical and radiological characteristics were compared between the focal necrotizing pneumonia and lung abscess groups. Overall, 68 patients with focal necrotizing pneumonia (n = 35) or lung abscess (n = 33) were included in the present study. The frequency of risk factors for aspiration was significantly lower in the focal necrotizing group, compared with the lung abscess group (14.3% vs 45.5%, P = 0.005). Compared with lung abscess, focal necrotizing pneumonia was observed more commonly in non-gravity-dependent segments (66% vs 36%, P < 0.001). In addition, a trend towards more common isolation of aerobes as potential pathogens was observed in the focal necrotizing pneumonia group, compared with the lung abscess group (31% vs 12%, P = 0.08). However, in terms of treatment outcomes, a similar high rate of success was observed in both groups: 97%, respectively. Compared to lung abscess, focal necrotizing pneumonia occurs more commonly in non-gravity-dependent segments with lower incidence of risk factors for aspiration. Similar to lung abscess, the rate of success for treatment of focal necrotizing pneumonia was high. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.

  19. Training and Validating a Portable Electronic Nose for Lung Cancer Screening.

    PubMed

    van de Goor, Rens; van Hooren, Michel; Dingemans, Anne-Marie; Kremer, Bernd; Kross, Kenneth

    2018-05-01

    Profiling volatile organic compounds in exhaled breath enables the diagnosis of several types of cancer. In this study we investigated whether a portable point-of-care version of an electronic nose (e-nose) (Aeonose, [eNose Company, Zutphen, the Netherlands]) is able to discriminate between patients with lung cancer and healthy controls on the basis of their volatile organic compound pattern. In this study, we used five e-nose devices to collect breath samples from patients with lung cancer and healthy controls. A total of 60 patients with lung cancer and 107 controls exhaled through an e-nose for 5 minutes. Patients were assigned either to a training group for building an artificial neural network model or to a blinded control group for validating this model. For differentiating patients with lung cancer from healthy controls, the results showed a diagnostic accuracy of 83% with a sensitivity of 83%, specificity of 84%, and area under the curve of 0.84. Results for the blinded group showed comparable results, with a sensitivity of 88%, specificity of 86%, and diagnostic accuracy of 86%. This feasibility study showed that this portable e-nose can properly differentiate between patients with lung cancer and healthy controls. This result could have important implications for future lung cancer screening. Further studies with larger cohorts, including also more participants with early-stage tumors, should be performed to increase the robustness of this noninvasive diagnostic tool and to determine its added value in the diagnostic chain for lung cancer. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  20. Correlation of MET gene amplification and TP53 mutation with PD-L1 expression in non-small cell lung cancer

    PubMed Central

    Albitar, Maher; Sudarsanam, Sucha; Ma, Wanlong; Jiang, Shiping; Chen, Wayne; Funari, Vincent; Blocker, Forrest; Agersborg, Sally

    2018-01-01

    Background The role of MET amplification in lung cancer, particularly in relation to checkpoint inhibition and EGFR WT, has not been fully explored. In this study, we correlated PD-L1 expression with MET amplification and EGFR, KRAS, or TP53 mutation in primary lung cancer. Methods In this retrospective study, tissue collected from 471 various tumors, including 397 lung cancers, was tested for MET amplification by FISH with a MET/centromere probe. PD-L1 expression was evaluated using clone SP142 and standard immunohistochemistry, and TP53, KRAS, and EGFR mutations were tested using next generation sequencing. Results Our results revealed that PD-L1 expression in non-small cell lung cancer is inversely correlated with EGFR mutation (P=0.0003), and positively correlated with TP53 mutation (P=0.0001) and MET amplification (P=0.004). Patients with TP53 mutations had significantly higher MET amplification (P=0.007), and were more likely (P=0.0002) to be EGFR wild type. There was no correlation between KRAS mutation and overall PD-L1 expression, but significant positive correlation between PD-L1 expression and KRAS with TP53 co-mutation (P=0.0002). A cut-off for the ratio of MET: centromere signal was determined as 1.5%, and 4% of lung cancer patients were identified as MET amplified. Conclusions This data suggests that in lung cancer both MET and TP53 play direct roles in regulating PD-L1 opposing EGFR. Moreover, KRAS and TP53 co-mutation may cooperate to drive PD-L1 expression in lung cancer. Adding MET or TP53 inhibitors to checkpoint inhibitors may be an attractive combination therapy in patients with lung cancer and MET amplification. PMID:29568386

  1. Clinical features and survival of lung cancer patients with pleural effusions.

    PubMed

    Porcel, Jose M; Gasol, Ariadna; Bielsa, Silvia; Civit, Carme; Light, Richard W; Salud, Antonieta

    2015-05-01

    The clinical relevance of pleural effusions in lung cancer has seldom been approached systematically. The aim of this study was to determine the prevalence, causes and natural history of lung cancer-associated pleural effusions, as well as their influence on survival. Retrospective review of clinical records and imaging of 556 consecutive patients with a newly diagnosed lung cancer over a 4-year period at our institution. Lung cancer comprised 490 non-small cell and 66 small cell types. About 40% of patients with lung cancer developed pleural effusions at some time during the course of their disease. In half the patients, the effusions were too small to be tapped. These effusions did not progress to require a pleural intervention. Patients with minimal effusions had a worse prognosis compared to patients without pleural effusions (median survival of 7.49 vs 12.65 months, P < 0.001). Less than 20% of the 113 patients subjected to a diagnostic thoracentesis had benign causes for their effusions. Palliative pleural procedures (like therapeutic thoracenteses, pleurodesis or tunnelled pleural catheters) were conducted in 79 (84%) of the 94 malignant effusions. An effusion's size equal to or greater than half of the hemithorax was a strong predictor of the need for a palliative procedure. Overall survival of patients with malignant effusions was 5.49 months. Malignant pleural effusions are a poor prognostic factor in the setting of lung cancer, which includes minimal effusions not amenable to tapping. © 2015 Asian Pacific Society of Respirology.

  2. Humidifier Disinfectants Are a Cause of Lung Injury among Adults in South Korea: A Community-Based Case-Control Study

    PubMed Central

    Kwon, Geun-Yong; Gwack, Jin; Park, Young-Joon; Youn, Seung-Ki; Kwon, Jun-Wook; Yang, Byung-Guk; Lee, Moo-Song; Jung, Miran; Lee, Hanyi; Jun, Byung-Yool; Lim, Hyun-Sul

    2016-01-01

    Backgrounds An outbreak of lung injury among South Korean adults was examined in a hospital-based case-control study, and the suspected cause was exposure to humidifier disinfectant (HD). However, a case-control study with community-dwelling controls was needed to validate the previous study’s findings, and to confirm the exposure-response relationship between HD and lung injury. Methods Each case of lung injury was matched with four community-dwelling controls, according to age (±3 years), sex, residence, and history of childbirth since 2006 (for women). Environmental risk factors, which included type and use of humidifier and HD, were investigated using a structured questionnaire during August 2011. The exposure to HD was calculated for both cases and controls, and the corresponding risks of lung injury were compared. Results Among 28 eligible cases, 16 patients agreed to participate, and 60 matched controls were considered eligible for this study. The cases were more likely to have been exposed to HD (odds ratio: 116.1, 95% confidence interval: 6.5–2,063.7). All cases were exposed to HDs containing polyhexamethyleneguanidine phosphate, and the risk of lung injury increased with the cumulative exposure, duration of exposure, and exposure per day. Conclusions This study revealed a statistically significant exposure-response relationship between HD and lung injury. Therefore, continuous monitoring and stricter evaluation of environmental chemicals’ safety should be conducted. PMID:26990641

  3. Cigarette side-stream smoke lung and bladder carcinogenesis: inducing mutagenic acrolein-DNA adducts, inhibiting DNA repair and enhancing anchorage-independent-growth cell transformation

    PubMed Central

    Chin, Chiu; Huang, William; Lepor, Herbert; Wu, Xue-Ru; Rom, William N.; Chen, Lung-Chi; Tang, Moon-shong

    2015-01-01

    Second-hand smoke (SHS) is associated with 20–30% of cigarette-smoke related diseases, including cancer. Majority of SHS (>80%) originates from side-stream smoke (SSS). Compared to mainstream smoke, SSS contains more tumorigenic polycyclic aromatic hydrocarbons and acrolein (Acr). We assessed SSS-induced benzo(a)pyrene diol epoxide (BPDE)- and cyclic propano-deoxyguanosine (PdG) adducts in bronchoalveolar lavage (BAL), lung, heart, liver, and bladder-mucosa from mice exposed to SSS for 16 weeks. In SSS exposed mice, Acr-dG adducts were the major type of PdG adducts formed in BAL (p < 0.001), lung (p < 0.05), and bladder mucosa (p < 0.001), with no significant accumulation of Acr-dG adducts in heart or liver. SSS exposure did not enhance BPDE-DNA adduct formation in any of these tissues. SSS exposure reduced nucleotide excision repair (p < 0.01) and base excision repair (p < 0.001) in lung tissue. The levels of DNA repair proteins, XPC and hOGG1, in lung tissues of exposed mice were significantly (p < 0.001 and p < 0.05) lower than the levels in lung tissues of control mice. We found that Acr can transform human bronchial epithelial and urothelial cells in vitro. We propose that induction of mutagenic Acr-DNA adducts, inhibition of DNA repair, and induction of cell transformation are three mechanisms by which SHS induces lung and bladder cancers. PMID:26431382

  4. Quantitative computed tomography of the lungs and airways in healthy nonsmoking adults.

    PubMed

    Zach, Jordan Alexander; Newell, John D; Schroeder, Joyce; Murphy, James R; Curran-Everett, Douglas; Hoffman, Eric A; Westgate, Philip M; Han, MeiLan K; Silverman, Edwin K; Crapo, James D; Lynch, David A

    2012-10-01

    The purposes of this study were to evaluate the reference range of quantitative computed tomography (QCT) measures of lung attenuation and airway parameter measurements in healthy nonsmoking adults and to identify sources of variation in those measures and possible means to adjust for them. Within the COPDGene study, 92 healthy non-Hispanic white nonsmokers (29 men, 63 women; mean [SD] age, 62.7 [9.0] years; mean [SD] body mass index [BMI], 28.1 [5.1] kg/m(2)) underwent volumetric computed tomography (CT) at full inspiration and at the end of a normal expiration. On QCT analysis (Pulmonary Workstation 2, VIDA Diagnostics), inspiratory low-attenuation areas were defined as lung tissue with attenuation values -950 Hounsfield units or less on inspiratory CT (LAA(I-950)). Expiratory low-attenuation areas were defined as lung tissue -856 Hounsfield units or less on expiratory CT (LAA(E-856)). We used simple linear regression to determine the impact of age and sex on QCT parameters and multiple regression to assess the additional impact of total lung capacity and functional residual capacity measured by CT (TLC(CT) and FRC(CT)), scanner type, and mean tracheal air attenuation. Airways were evaluated using measures of airway wall thickness, inner luminal area, wall area percentage (WA%), and standardized thickness of an airway with inner perimeter of 10 mm (Pi10). Mean (SD) %LAA(I-950) was 2.0% (2.7%), and mean (SD) %LAA(E-856) was 9.2% (6.8%). Mean (SD) %LAA(I-950) was 3.6% (3.2%) in men, compared with 1.3% (2.0%) in women (P < 0.001). The %LAA(I-950) did not change significantly with age (P = 0.08) or BMI (P = 0.52). %LAA(E-856) did not show any independent relationship with age (P = 0.33), sex (P = 0.70), or BMI (P = 0.32). On multivariate analysis, %LAA(I-950) showed a direct relationship to TLC(CT) (P = 0.002) and an inverse relationship to mean tracheal air attenuation (P = 0.003), and %LAA(E-856) was related to age (P = 0.001), FRC(CT) (P = 0.007), and scanner type (P < 0.001). Multivariate analysis of segmental airways showed that inner luminal area and WA% were significantly related to TLC(CT) (P < 0.001) and age (0.006). Moreover, WA% was associated with sex (P = 0.05), axial pixel size (P = 0.03), and slice interval (P = 0.04). Lastly, airway wall thickness was strongly influenced by axial pixel size (P < 0.001). Although the attenuation characteristics of normal lung differ by age and sex, these differences do not persist on multivariate analysis. Potential sources of variation in measurement of attenuation-based QCT parameters include depth of inspiration/expiration and scanner type. Tracheal air attenuation may partially correct variation because of scanner type. Sources of variation in QCT airway measurements may include age, sex, BMI, depth of inspiration, and spatial resolution.

  5. Effect of hyperoxia on uptake and metabolism of 5-hydroxytryptamine and β-phenylethylamine in rat lung: a sex difference

    PubMed Central

    Ben-Harari, R.R.; Lanir, A.; Youdim, M.B.H.

    1981-01-01

    1 The uptake of 5-hydroxytryptamine (5—HT) and β-phenylethylamine (PEA) and their deamination by monoamine oxidase (MAO) were studied in perfused lung from male and female rats exposed to 100% O2 at 1 ATA for up to 60 h. 2 The uptake and metabolism of 5-HT in lungs from both male and female rats was not changed by exposure to O2. 3 The uptake and metabolism of PEA by lungs from male rats was unchanged. Uptake of PEA by lungs from female rats was inhibited 20% and 62% after 37 h and 50 h exposure respectively. 4 MAO activity, both in vitro and in perfused lung, was increased towards PEA after 35 h of hyperoxia. 5 Metabolism of PEA in perfused lung, measured over 30 min, was inhibited 52% after 50 h of O2 hyperoxia. 6 These results show that exposure to high concentrations of O2 damages lung, resulting in inhibition of uptake of PEA and consequently in inhibition of metabolism of PEA. 7 These results also indicate that, in lung from female rats, MAO-type B is more susceptible to changes in O2 tension than MAO type A. PMID:7236995

  6. Toward efficient biomechanical-based deformable image registration of lungs for image-guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Al-Mayah, Adil; Moseley, Joanne; Velec, Mike; Brock, Kristy

    2011-08-01

    Both accuracy and efficiency are critical for the implementation of biomechanical model-based deformable registration in clinical practice. The focus of this investigation is to evaluate the potential of improving the efficiency of the deformable image registration of the human lungs without loss of accuracy. Three-dimensional finite element models have been developed using image data of 14 lung cancer patients. Each model consists of two lungs, tumor and external body. Sliding of the lungs inside the chest cavity is modeled using a frictionless surface-based contact model. The effect of the type of element, finite deformation and elasticity on the accuracy and computing time is investigated. Linear and quadrilateral tetrahedral elements are used with linear and nonlinear geometric analysis. Two types of material properties are applied namely: elastic and hyperelastic. The accuracy of each of the four models is examined using a number of anatomical landmarks representing the vessels bifurcation points distributed across the lungs. The registration error is not significantly affected by the element type or linearity of analysis, with an average vector error of around 2.8 mm. The displacement differences between linear and nonlinear analysis methods are calculated for all lungs nodes and a maximum value of 3.6 mm is found in one of the nodes near the entrance of the bronchial tree into the lungs. The 95 percentile of displacement difference ranges between 0.4 and 0.8 mm. However, the time required for the analysis is reduced from 95 min in the quadratic elements nonlinear geometry model to 3.4 min in the linear element linear geometry model. Therefore using linear tetrahedral elements with linear elastic materials and linear geometry is preferable for modeling the breathing motion of lungs for image-guided radiotherapy applications.

  7. A Novel Model for Squamous Cell Carcinoma of the Lung | Center for Cancer Research

    Cancer.gov

    In the U.S. lung cancer remains the most deadly cancer type with less than one in five patients alive five years after diagnosis. The majority of lung cancer deaths are due to tobacco smoke, and the squamous cell carcinoma (SCC) subtype of lung cancer is strongly associated with smoking. Researchers have identified a number of mutations in lung SCC tumors but have failed to generate an animal model of lung SCC, which is critical for understanding the biology of the disease and for identifying novel therapeutic targets.

  8. Efficiency of low dosage apatinib in post-first-line treatment of advanced lung adenocarcinoma.

    PubMed

    Zeng, Da-Xiong; Wang, Chang-Guo; Lei, Wei; Huang, Jian-An; Jiang, Jun-Hong

    2017-09-12

    Chemotherapy is the standard treatment of in advanced lung adenocarcinoma patients without driver mutation. However, few drugs could be selected when diseases progressed after second-line treatment. As a small molecule inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2), apatinib was suggested mainly using in advanced gastric cancer. In this study, we showed the results of apatinib as second-line to fourth-line treatment in EGFR wild-type advanced lung adenocarcinoma patients. 16 EGFR wild-type advanced lung adenocarcinoma patients were administrated apatinib (250-500 mg/d) orally. 3 patients showed partial response and 8 patients showed stable diseases response to apatinib, with a medium progression-free survival (PFS) of 4.4 month (2-10 months). The objective remission rate (ORR) was 18.75%(3/16). The total disease control rate (DCR) was 68.75% (11/16). The main toxicities were hypertension, hand-foot syndrome, proteinuria and thrombocytopenia which were tolerable and manageable. So, apatinib might be an optional choice for post-first-line treatment of EGFR wild-type advanced lung adenocarcinoma patients.

  9. Primary Tumor and MEF Cell Isolation to Study Lung Metastasis.

    PubMed

    Dong, Shengli; Maziveyi, Mazvita; Alahari, Suresh K

    2015-05-20

    In breast tumorigenesis, the metastatic stage of the disease poses the greatest threat to the affected individual. Normal breast cells with altered genotypes now possess the ability to invade and survive in other tissues. In this protocol, mouse mammary tumors are removed and primary cells are prepared from tumors. The cells isolated from this procedure are then available for gene profiling experiments. For successful metastasis, these cells must be able to intravasate, survive in circulation, extravasate to distant organs, and survive in that new organ system. The lungs are the typical target of breast cancer metastasis. A set of genes have been discovered that mediates the selectivity of metastasis to the lung. Here we describe a method of studying lung metastasis from a genetically engineered mouse model.. Furthermore, another protocol for analyzing mouse embryonic fibroblasts (MEFs) from the mouse embryo is included. MEF cells from the same animal type provide a clue of non-cancer cell gene expression. Together, these techniques are useful in studying mouse mammary tumorigenesis, its associated signaling mechanisms and pathways of the abnormalities in embryos.

  10. Management of long-term persistent air leakage developed after bullectomy for giant bullous lung disease associated with neurofibromatosis type 1

    PubMed Central

    Kim, Si-Wook

    2016-01-01

    Persistent air leakage is a serious and sometimes fatal complication of bullous lung disease surgery. A 32-year-old man with lung involvement of neurofibromatosis type I underwent bullectomy for huge bullae and recurrent pneumothorax. Persistent postoperative air leakage developed and the lung was totally collapsed. The initial surgery failed, but a second trial employing a novel suture technique on half-absorbed polyglycolic acid (PGA) felt successfully resolved the massive air leakage. Pneumothorax did not recur and the patient remained stable without dyspnea. Thus, a suture technique employing half-absorbed PGA felt was an effective option for managing persistent air leakage. PMID:26904244

  11. Association of TERT Polymorphisms with Clinical Outcome of Non-Small Cell Lung Cancer Patients.

    PubMed

    Zhao, Xueying; Wang, Shiming; Wu, Junjie; Li, Xiaoying; Wang, Xun; Gao, Zhiqiang; Wu, Wenting; Wang, Haijian; Wang, Jiucun; Qian, Ji; Ma, Ke; Li, Hui; Han, Baohui; Bai, Chunxue; Li, Qiang; Liu, Wenbin; Lu, Daru

    2015-01-01

    TERT is of great importance in cancer initiation and progression. Many studies have demonstrated the TERT polymorphisms as risk factors for many cancer types, including lung cancer. However, the impacts of TERT variants on cancer progression and treatment efficacy have remained controversial. This study aimed to investigate the association of TERT polymorphisms with clinical outcome of advanced non-small cell lung cancer (NSCLC) patients receiving first-line platinum-based chemotherapy, including response rate, clinical benefit, progression-free survival (PFS), overall survival (OS), and grade 3 or 4 toxicity. Seven polymorphisms of TERT were assessed, and a total of 1004 inoperable advanced NSCLC patients treated with platinum-based chemotherapy were enrolled. It is exhibited that the variant heterozygote of rs4975605 showed significant association with a low rate of clinical benefit, and displayed a much stronger effect in never-smoking female subset, leading to the clinical benefit rate decreased from 82.9% (C/C genotype) to 56.4% (C/A genotype; adjusted OR, 3.58; P=1.40×10(-4)). It is also observed that the polymorphism rs2736109 showed significant correlation with PFS (log-rank P=0.023). In age > 58 subgroup, patients carrying the heterozygous genotype had a longer median PFS than those carrying the wild-type genotypes (P=0.002). The results from the current study, for the first time to our knowledge, provide suggestive evidence of an effect of TERT polymorphisms on disease progression variability among Chinese patients with platinum-treated advanced NSCLC.

  12. Surfactant Protein–C Chromatin-Bound Green Fluorescence Protein Reporter Mice Reveal Heterogeneity of Surfactant Protein C–Expressing Lung Cells

    PubMed Central

    Lee, Joo-Hyeon; Kim, Jonghwan; Gludish, David; Roach, Rebecca R.; Saunders, Arven H.; Barrios, Juliana; Woo, Andrew Jonghan; Chen, Huaiyong; Conner, David A.; Fujiwara, Yuko; Stripp, Barry R.

    2013-01-01

    The regeneration of alveolar epithelial cells is a critical aspect of alveolar reorganization after lung injury. Although alveolar Type II (AT2) cells have been described as progenitor cells for alveolar epithelia, more remains to be understood about how their progenitor cell properties are regulated. A nuclear, chromatin-bound green fluorescence protein reporter (H2B-GFP) was driven from the murine surfactant protein–C (SPC) promoter to generate SPC H2B-GFP transgenic mice. The SPC H2B-GFP allele allowed the FACS-based enrichment and gene expression profiling of AT2 cells. Approximately 97% of AT2 cells were GFP-labeled on Postnatal Day 1, and the percentage of GFP-labeled AT2 cells decreased to approximately 63% at Postnatal Week 8. Isolated young adult SPC H2B-GFP+ cells displayed proliferation, differentiation, and self-renewal capacity in the presence of lung fibroblasts in a Matrigel-based three-dimensional culture system. Heterogeneity within the GFP+ population was revealed, because cells with distinct alveolar and bronchiolar gene expression arose in three-dimensional cultures. CD74, a surface marker highly enriched on GFP+ cells, was identified as a positive selection marker, providing 3-fold enrichment for AT2 cells. In vivo, GFP expression was induced within other epithelial cell types during maturation of the distal lung. The utility of the SPC H2B-GFP murine model for the identification of AT2 cells was greatest in early postnatal lungs and more limited with age, when some discordance between SPC and GFP expression was observed. In adult mice, this allele may allow for the enrichment and future characterization of other SPC-expressing alveolar and bronchiolar cells, including putative stem/progenitor cell populations. PMID:23204392

  13. Localization of intercellular adhesion molecule-1 (ICAM-1) in the lungs of silica-exposed mice.

    PubMed Central

    Nario, R C; Hubbard, A K

    1997-01-01

    Intercellular adhesion molecule-1 (ICAM-1) is expressed on a variety of cells including endothelial cells, alveolar epithelial cells, and alveolar macrophages. Endothelial/epithelial cell ICAM-1 participates in the migration of leukocytes out of the blood in response to pulmonary inflammation, whereas alveolar macrophage ICAM-1 may represent cell activation. Our previous studies have shown that there is increased expression of ICAM-1 in lung tissue during acute inflammation following intratracheal injection with silica particles (2 mg/mouse). This increased expression was shown to play a role, in part, in the migration of neutrophils from the circulation into the tissue parenchyma. The aim of the current work is to localize expression of ICAM-1 during acute inflammation in lungs of mice exposed to either silica or the nuisance dust, titanium dioxide. In silica-exposed mice, a significant increase in ICAM-1 was detected on day-1 and localized by immunohistochemistry to aggregates of pulmonary macrophages and to type II epithelial cells. Areas of the lung with increased ICAM-1 expression also showed increased tumor necrosis factor alpha expression. Immunocytochemical staining of bronchoalveolar lavage (BAL) cells demonstrated increased ICAM-1 expression associated with alveolar macrophages 3, 5, and 7 days following silica exposure. Finally, soluble ICAM-1 levels in the BAL fluid were significantly increased in mice exposed to silica on the same days. Titanium dioxide exposure elicited a minimal increase in expression of ICAM-1 in the lungs. These data demonstrate that exposure to the toxic particle silica specifically increases ICAM-1 expression localized to pulmonary macrophages and type II epithelial cells. Images Figure 2. B Figure 2. A Figure 2. D Figure 2. C Figure 3. A Figure 3. B Figure 5. B Figure 5. A Figure 5. C PMID:9400721

  14. Role of Iron Uptake Systems in Pseudomonas aeruginosa Virulence and Airway Infection

    PubMed Central

    Minandri, Fabrizia; Imperi, Francesco; Frangipani, Emanuela; Bonchi, Carlo; Visaggio, Daniela; Facchini, Marcella; Pasquali, Paolo; Bragonzi, Alessandra

    2016-01-01

    Pseudomonas aeruginosa is a leading cause of hospital-acquired pneumonia and chronic lung infections in cystic fibrosis patients. Iron is essential for bacterial growth, and P. aeruginosa expresses multiple iron uptake systems, whose role in lung infection deserves further investigation. P. aeruginosa Fe3+ uptake systems include the pyoverdine and pyochelin siderophores and two systems for heme uptake, all of which are dependent on the TonB energy transducer. P. aeruginosa also has the FeoB transporter for Fe2+ acquisition. To assess the roles of individual iron uptake systems in P. aeruginosa lung infection, single and double deletion mutants were generated in P. aeruginosa PAO1 and characterized in vitro, using iron-poor media and human serum, and in vivo, using a mouse model of lung infection. The iron uptake-null mutant (tonB1 feoB) and the Fe3+ transport mutant (tonB1) did not grow aerobically under low-iron conditions and were avirulent in the mouse model. Conversely, the wild type and the feoB, hasR phuR (heme uptake), and pchD (pyochelin) mutants grew in vitro and caused 60 to 90% mortality in mice. The pyoverdine mutant (pvdA) and the siderophore-null mutant (pvdA pchD) grew aerobically in iron-poor media but not in human serum, and they caused low mortality in mice (10 to 20%). To differentiate the roles of pyoverdine in iron uptake and virulence regulation, a pvdA fpvR double mutant defective in pyoverdine production but expressing wild-type levels of pyoverdine-regulated virulence factors was generated. Deletion of fpvR in the pvdA background partially restored the lethal phenotype, indicating that pyoverdine contributes to the pathogenesis of P. aeruginosa lung infection by combining iron transport and virulence-inducing capabilities. PMID:27271740

  15. Cystathionine-gamma-lyase deficient mice are protected against the development of multiorgan failure and exhibit reduced inflammatory response during burn.

    PubMed

    Ahmad, Akbar; Druzhyna, Nadiya; Szabo, Csaba

    2017-08-01

    Considering the role of H 2 S in critical illness, the aim of this study was to compare the outcome of burn in wild-type mice and in mice deficient in CSE, one of the principal mammalian H 2 S-generating enzymes. Animals were subjected to scald burn. Outcome variables included indices of organ injury, clinical chemistry parameters and plasma levels of inflammatory mediators. Plasma levels of H 2 S significantly increased in response to burn in wild-type mice, but remained unchanged in CSE -/- mice. Expression of the three H 2 S-producing enzymes (CSE, CBS and 3-MST) in the lung and liver, and the capacity of tissue homogenates to produce H 2 S, however, was not affected by burn. In CSE deficient mice there was a significant amelioration of burn-induced accumulation of myeloperoxidase levels in heart, lung, liver and kidney and significantly lower degree of malon dialdehyde accumulation in the heart, lung and kidney than in wild-type mice. CSE deficient mice, compared to wild-type mice, showed a significant attenuation of the burn-induced elevation in circulating alkaline aminotransferase and blood urea nitrogen and creatinine levels, indicative of protective effects of CSE deficiency against burn-induced hepatic, and renal functional impairment. Multiple burn-induced inflammatory mediators (TNF-α, IL-1β, IL-4, IL-6, IL-10 and IL-12) were significantly lower in the plasma of CSE -/- animals after burn than in the plasma of wild-type controls subjected to burns. In conclusion, CSE deficiency improves organ function and attenuates the inflammatory response in a murine model of burn. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  16. Thymidylate synthase (TS) gene expression in primary lung cancer patients: a large-scale study in Japanese population.

    PubMed

    Tanaka, F; Wada, H; Fukui, Y; Fukushima, M

    2011-08-01

    Previous small-sized studies showed lower thymidylate synthase (TS) expression in adenocarcinoma of the lung, which may explain higher antitumor activity of TS-inhibiting agents such as pemetrexed. To quantitatively measure TS gene expression in a large-scale Japanese population (n = 2621) with primary lung cancer, laser-captured microdissected sections were cut from primary tumors, surrounding normal lung tissues and involved nodes. TS gene expression level in primary tumor was significantly higher than that in normal lung tissue (mean TS/β-actin, 3.4 and 1.0, respectively; P < 0.01), and TS gene expression level was further higher in involved node (mean TS/β-actin, 7.7; P < 0.01). Analyses of TS gene expression levels in primary tumor according to histologic cell type revealed that small-cell carcinoma showed highest TS expression (mean TS/β-actin, 13.8) and that squamous cell carcinoma showed higher TS expression as compared with adenocarcinoma (mean TS/β-actin, 4.3 and 2.3, respectively; P < 0.01); TS gene expression was significantly increased along with a decrease in the grade of tumor cell differentiation. There was no significant difference in TS gene expression according to any other patient characteristics including tumor progression. Lower TS expression in adenocarcinoma of the lung was confirmed in a large-scale study.

  17. Nras and Kras mutation in Japanese lung cancer patients: Genotyping analysis using LightCycler.

    PubMed

    Sasaki, Hidefumi; Okuda, Katsuhiro; Kawano, Osamu; Endo, Katsuhiko; Yukiue, Haruhiro; Yokoyama, Tomoki; Yano, Motoki; Fujii, Yoshitaka

    2007-09-01

    Activating mutations of Ras gene families have been found in a variety of human malignancies, including lung cancer, suggesting their dominant role in tumorigenesis. Many studies have showed that the Kras gene is activated by point mutations in approximately 15-20% of non-small cell lung cancers (NSCLCs), however, there are only a few reports on Nras mutations in NSCLC. We have genotyped Nras mutation status (n=195) and Kras mutation status (n=190) in surgically treated lung adenocarcinoma cases. The presence or absence of Nras and Kras mutations was analyzed by real-time quantitative polymerase chain reaction (PCR) with mutation-specific sensor and anchor probes. EGFR mutation status at kinase domain has already been reported. Nras mutation was found in 1 of 195 patients. This mutation was a G-to-T transversion, involving the substitution of the normal glycine (GGT) with cystein (TGT) and thought to be a somatic mutation. The patient was male and a smoker. Kras mutant patients (11.1%; 21/190) had a significantly worse prognosis than wild-type patients (p=0.0013). Eighty-two EGFR mutations at kinase domain had exclusively Nras or Kras mutations. Although Nras gene mutation might be one of the mechanisms of oncogenesis of lung adenocarcinoma, this was a very rare event. Further studies are needed to confirm the mechanisms of Nras mutations for the sensitivity of molecular target therapy for lung cancer.

  18. Influenza A virus-dependent remodeling of pulmonary clock function in a mouse model of COPD

    PubMed Central

    Sundar, Isaac K.; Ahmad, Tanveer; Yao, Hongwei; Hwang, Jae-woong; Gerloff, Janice; Lawrence, B. Paige; Sellix, Michael T.; Rahman, Irfan

    2015-01-01

    Daily oscillations of pulmonary function depend on the rhythmic activity of the circadian timing system. Environmental tobacco/cigarette smoke (CS) disrupts circadian clock leading to enhanced inflammatory responses. Infection with influenza A virus (IAV) increases hospitalization rates and death in susceptible individuals, including patients with Chronic Obstructive Pulmonary Disease (COPD). We hypothesized that molecular clock disruption is enhanced by IAV infection, altering cellular and lung function, leading to severity in airway disease phenotypes. C57BL/6J mice exposed to chronic CS, BMAL1 knockout (KO) mice and wild-type littermates were infected with IAV. Following infection, we measured diurnal rhythms of clock gene expression in the lung, locomotor activity, pulmonary function, inflammatory, pro-fibrotic and emphysematous responses. Chronic CS exposure combined with IAV infection altered the timing of clock gene expression and reduced locomotor activity in parallel with increased lung inflammation, disrupted rhythms of pulmonary function, and emphysema. BMAL1 KO mice infected with IAV showed pronounced detriments in behavior and survival, and increased lung inflammatory and pro-fibrotic responses. This suggests that remodeling of lung clock function following IAV infection alters clock-dependent gene expression and normal rhythms of lung function, enhanced emphysematous and injurious responses. This may have implications for the pathobiology of respiratory virus-induced airway disease severity and exacerbations. PMID:25923474

  19. β3 integrin expression is required for invadopodia-mediated ECM degradation in lung carcinoma cells

    PubMed Central

    Morales, Xabier; Salvo, Elizabeth; Garasa, Saray; Ortiz de Solórzano, Carlos; Martínez, Alfredo; Larrayoz, Ignacio M.; Rouzaut, Ana

    2017-01-01

    Cancer related deaths are primarily due to tumor metastasis. To facilitate their dissemination to distant sites, cancer cells develop invadopodia, actin-rich protrusions capable of degrading the surrounding extracellular matrix (ECM). We aimed to determine whether β3 integrin participates in invadopodia formed by lung carcinoma cells, based on our previous findings of specific TGF-β induction of β3 integrin dependent metastasis in animal models of lung carcinoma. In this study, we demonstrate that lung carcinoma cells form invadopodia in response to TGF-β exposure. Invadopodia formation and degradation activity is dependent on β3 integrin expression since β3 integrin deficient cells are not able to degrade gelatin-coated surfaces. Even more, transient over-expression of SRC did not restore invadopodia formation in β3 integrin deficient cells. Finally, we observed that blockade of PLC-dependent signaling leads to more intense labeling for β3 integrin in invadopodia. Our results suggest that β3 integrin function, and location, in lung cancer cells are essential for invadopodia formation, and this integrin regulates the activation of different signal pathways necessary for the invasive structure. β3 integrin has been associated with poor prognosis and increased metastasis in several carcinoma types, including lung cancer. Our findings provide new evidence to support the use of targeted therapies against this integrin to combat the onset of metastases. PMID:28767724

  20. Novel Roles for Notch3 and Notch4 Receptors in Gene Expression and Susceptibility to Ozone-Induced Lung Inflammation in Mice.

    PubMed

    Verhein, Kirsten C; McCaw, Zachary; Gladwell, Wesley; Trivedi, Shweta; Bushel, Pierre R; Kleeberger, Steven R

    2015-08-01

    Ozone is a highly toxic air pollutant and global health concern. Mechanisms of genetic susceptibility to ozone-induced lung inflammation are not completely understood. We hypothesized that Notch3 and Notch4 are important determinants of susceptibility to ozone-induced lung inflammation. Wild-type (WT), Notch3 (Notch3-/-), and Notch4 (Notch4-/-) knockout mice were exposed to ozone (0.3 ppm) or filtered air for 6-72 hr. Relative to air-exposed controls, ozone increased bronchoalveolar lavage fluid (BALF) protein, a marker of lung permeability, in all genotypes, but significantly greater concentrations were found in Notch4-/- compared with WT and Notch3-/- mice. Significantly greater mean numbers of BALF neutrophils were found in Notch3-/- and Notch4-/- mice compared with WT mice after ozone exposure. Expression of whole lung Tnf was significantly increased after ozone in Notch3-/- and Notch4-/- mice, and was significantly greater in Notch3-/- compared with WT mice. Statistical analyses of the transcriptome identified differentially expressed gene networks between WT and knockout mice basally and after ozone, and included Trim30, a member of the inflammasome pathway, and Traf6, an inflammatory signaling member. These novel findings are consistent with Notch3 and Notch4 as susceptibility genes for ozone-induced lung injury, and suggest that Notch receptors protect against innate immune inflammation.

  1. Genome-wide interaction study of smoking behavior and non-small cell lung cancer risk in Caucasian population.

    PubMed

    Li, Yafang; Xiao, Xiangjun; Han, Younghun; Gorlova, Olga; Qian, David; Leighl, Natasha; Johansen, Jakob S; Barnett, Matt; Chen, Chu; Goodman, Gary; Cox, Angela; Taylor, Fiona; Woll, Penella; Wichmann, H-Erich; Manz, Judith; Muley, Thomas; Risch, Angela; Rosenberger, Albert; Arnold, Susanne M; Haura, Eric B; Bolca, Ciprian; Holcatova, Ivana; Janout, Vladimir; Kontic, Milica; Lissowska, Jolanta; Mukeria, Anush; Ognjanovic, Simona; Orlowski, Tadeusz M; Scelo, Ghislaine; Swiatkowska, Beata; Zaridze, David; Bakke, Per; Skaug, Vidar; Zienolddiny, Shanbeh; Duell, Eric J; Butler, Lesley M; Houlston, Richard; Soler Artigas, María; Grankvist, Kjell; Johansson, Mikael; Shepherd, Frances A; Marcus, Michael W; Brunnström, Hans; Manjer, Jonas; Melander, Olle; Muller, David C; Overvad, Kim; Trichopoulou, Antonia; Tumino, Rosario; Liu, Geoffrey; Bojesen, Stig E; Wu, Xifeng; Marchand, Loic Le; Albanes, Demetrios; Bickeböller, Heike; Aldrich, Melinda C; Bush, William S; Tardon, Adonina; Rennert, Gad; Teare, M Dawn; Field, John K; Kiemeney, Lambertus A; Lazarus, Philip; Haugen, Aage; Lam, Stephen; Schabath, Matthew B; Andrew, Angeline S; Bertazzi, Pier Alberto; Pesatori, Angela C; Christiani, David C; Caporaso, Neil; Johansson, Mattias; McKay, James D; Brennan, Paul; Hung, Rayjean J; Amos, Christopher I

    2018-03-08

    Non-small cell lung cancer is the most common type of lung cancer. Both environmental and genetic risk factors contribute to lung carcinogenesis. We conducted a genome-wide interaction analysis between single nucleotide polymorphisms (SNPs) and smoking status (never- versus ever-smokers) in a European-descent population. We adopted a two-step analysis strategy in the discovery stage: we first conducted a case-only interaction analysis to assess the relationship between SNPs and smoking behavior using 13336 non-small cell lung cancer cases. Candidate SNPs with P-value <0.001 were further analyzed using a standard case-control interaction analysis including 13970 controls. The significant SNPs with P-value <3.5 × 10-5 (correcting for multiple tests) from the case-control analysis in the discovery stage were further validated using an independent replication dataset comprising 5377 controls and 3054 non-small cell lung cancer cases. We further stratified the analysis by histological subtypes. Two novel SNPs, rs6441286 and rs17723637, were identified for overall lung cancer risk. The interaction odds ratio and meta-analysis P-value for these two SNPs were 1.24 with 6.96 × 10-7 and 1.37 with 3.49 × 10-7, respectively. In addition, interaction of smoking with rs4751674 was identified in squamous cell lung carcinoma with an odds ratio of 0.58 and P-value of 8.12 × 10-7. This study is by far the largest genome-wide SNP-smoking interaction analysis reported for lung cancer. The three identified novel SNPs provide potential candidate biomarkers for lung cancer risk screening and intervention. The results from our study reinforce that gene-smoking interactions play important roles in the etiology of lung cancer and account for part of the missing heritability of this disease.

  2. Cardiac Safety Study of Entinostat in Men and Women With Advanced Solid Tumors

    ClinicalTrials.gov

    2017-04-14

    Neoplasms; Neoplasms, Glandular and Epithelial; Neoplasms by Histologic Type; Bronchial Neoplasms; Lung Neoplasms; Respiratory Tract Neoplasms; Thoracic Neoplasms; Digestive System Neoplasms; Endocrine Gland Neoplasms; Carcinoma, Non-Small-Cell Lung; Lung Diseases; Breast Neoplasms; Breast Diseases; Renal Neoplasm; Solid Tumors

  3. Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds

    NASA Astrophysics Data System (ADS)

    Wu, Tsai-Jung; Tzeng, Yan-Kai; Chang, Wei-Wei; Cheng, Chi-An; Kuo, Yung; Chien, Chin-Hsiang; Chang, Huan-Cheng; Yu, John

    2013-09-01

    Lung stem/progenitor cells are potentially useful for regenerative therapy, for example in repairing damaged or lost lung tissue in patients. Several optical imaging methods and probes have been used to track how stem cells incorporate and regenerate themselves in vivo over time. However, these approaches are limited by photobleaching, toxicity and interference from background tissue autofluorescence. Here we show that fluorescent nanodiamonds, in combination with fluorescence-activated cell sorting, fluorescence lifetime imaging microscopy and immunostaining, can identify transplanted CD45-CD54+CD157+ lung stem/progenitor cells in vivo, and track their engraftment and regenerative capabilities with single-cell resolution. Fluorescent nanodiamond labelling did not eliminate the cells' properties of self-renewal and differentiation into type I and type II pneumocytes. Time-gated fluorescence imaging of tissue sections of naphthalene-injured mice indicates that the fluorescent nanodiamond-labelled lung stem/progenitor cells preferentially reside at terminal bronchioles of the lungs for 7 days after intravenous transplantation.

  4. Recruited Monocytes and Type 2 Immunity Promote Lung Regeneration following Pneumonectomy.

    PubMed

    Lechner, Andrew J; Driver, Ian H; Lee, Jinwoo; Conroy, Carmen M; Nagle, Abigail; Locksley, Richard M; Rock, Jason R

    2017-07-06

    To investigate the role of immune cells in lung regeneration, we used a unilateral pneumonectomy model that promotes the formation of new alveoli in the remaining lobes. Immunofluorescence and single-cell RNA sequencing found CD115+ and CCR2+ monocytes and M2-like macrophages accumulating in the lung during the peak of type 2 alveolar epithelial stem cell (AEC2) proliferation. Genetic loss of function in mice and adoptive transfer studies revealed that bone marrow-derived macrophages (BMDMs) traffic to the lung through a CCL2-CCR2 chemokine axis and are required for optimal lung regeneration, along with Il4ra-expressing leukocytes. Our data suggest that these cells modulate AEC2 proliferation and differentiation. Finally, we provide evidence that group 2 innate lymphoid cells are a source of IL-13, which promotes lung regeneration. Together, our data highlight the potential for immunomodulatory therapies to stimulate alveologenesis in adults. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Incidence of lung cancer histologic cell-types according to neighborhood factors: A population based study in California

    PubMed Central

    McKinley, Meg; Gali, Kathleen; Patel, Manali; Clarke, Christina; Wakelee, Heather; Haile, Robert; Gomez, Scarlett Lin; Cheng, Iona

    2018-01-01

    Background The relationships between neighborhood factors (i.e., neighborhood socioeconomic status (nSES) and ethnic enclave) and histologic subtypes of lung cancer for racial/ethnic groups, particularly Hispanics and Asian American/Pacific Islanders (AAPIs), are poorly understood. Methods We conducted a population-based study of 75,631 Californians diagnosed with lung cancer from 2008 through2012. We report incidence rate ratios (IRRs) for lung cancer histologic cell-types by nSES among racial/ethnic groups (non-Hispanic (NH) Whites, NH Blacks, Hispanics and AAPIs) and according to Hispanic or Asian neighborhood ethnic enclave status among Hispanics and AAPIs, respectively. In addition, we examined incidence jointly by nSES and ethnic enclave. Results Patterns of lung cancer incidence by nSES and ethnic enclave differed across race/ethnicity, sex, and histologic cell-type. For adenocarcinoma, Hispanic males and females, residing in both low nSES and high nSES neighborhoods that were low enclave, had higher incidence rates compared to those residing in low nSES, high enclave neighborhoods; males (IRR, 1.17 [95% CI, 1.04–1.32] and IRR, 1.15 [95% CI, 1.02–1.29], respectively) and females (IRR, 1.29 [95% CI, 1.15–1.44] and IRR, 1.51 [95% CI, 1.36–1.67], respectively). However, AAPI males residing in both low and high SES neighborhoods that were also low enclave had lower adenocarcinoma incidence. Conclusions Neighborhood factors differentially influence the incidence of lung cancer histologic cell-types with heterogeneity in these associations by race/ethnicity and sex. For Hispanic males and females and AAPI males, neighborhood ethnic enclave status is strongly associated with lung adenocarcinoma incidence. PMID:29791458

  6. Methylation of L1RE1, RARB, and RASSF1 function as possible biomarkers for the differential diagnosis of lung cancer.

    PubMed

    Walter, R F H; Rozynek, P; Casjens, S; Werner, R; Mairinger, F D; Speel, E J M; Zur Hausen, A; Meier, S; Wohlschlaeger, J; Theegarten, D; Behrens, T; Schmid, K W; Brüning, T; Johnen, G

    2018-01-01

    Lung cancer is the major cause of cancer-related deaths worldwide. Differential diagnosis can be difficult, especially when only small samples are available. Epigenetic changes are frequently tissue-specific events in carcinogenesis and hence may serve as diagnostic biomarkers. 138 representative formalin-fixed, paraffin-embedded (FFPE) tissues (116 lung cancer cases and 22 benign controls) were used for targeted DNA methylation analysis via pyrosequencing of ten literature-derived methylation markers (APC, CDH1, CDKN2A, EFEMP1, FHIT, L1RE1, MGMT, PTEN, RARB, and RASSF1). Methylation levels were analyzed with the Classification and Regression Tree Algorithm (CART), Conditional Interference Trees (ctree) and ROC. Validation was performed with additional 27 lung cancer cases and 38 benign controls. TCGA data for 282 lung cancer cases was included in the analysis. CART and ctree analysis identified the combination of L1RE1 and RARB as well as L1RE1 and RASSF1 as independent methylation markers with high discriminative power between tumor and benign tissue (for each combination, 91% specificity and 100% sensitivity). L1RE1 methylation associated significantly with tumor type and grade (p<0.001) with highest methylation in the control group. The opposite was found for RARB (p<0.001). RASSF1 methylation increased with tumor type and grade (p<0.001) with strongest methylation in neuroendocrine tumors (NET). Hypomethylation of L1RE1 is frequent in tumors compared to benign controls and associates with higher grade, whereas increasing methylation of RARB is an independent marker for tumors and higher grade. RASSF1 hypermethylation was frequent in tumors and most prominent in NET making it an auxiliary marker for separation of NSCLC and NET. L1RE1 in combination with either RARB or RASSF1 could function as biomarkers for separating lung cancer and non-cancerous tissue and could be useful for samples of limited size such as biopsies.

  7. Three-dimensional visualization of morphology and ventilation procedure (air flow and diffusion) of a subdivision of the acinus using synchrotron radiation microtomography of the human lung specimens

    NASA Astrophysics Data System (ADS)

    Shimizu, Kenji; Ikura, Hirohiko; Ikezoe, Junpei; Nagareda, Tomofumi; Yagi, Naoto; Umetani, Keiji; Imai, Yutaka

    2004-04-01

    We have previously reported a synchrotron radiation (SR) microtomography system constructed at the bending magnet beamline at the SPring-8. This system has been applied to the lungs obtained at autopsy and inflated and fixed by Heitzman"s method. Normal lung and lung specimens with two different types of pathologic processes (fibrosis and emphysema) were included. Serial SR microtomographic images were stacked to yield the isotropic volumetric data with high-resolution (12 μm3 in voxel size). Within the air spaces of a subdivision of the acinus, each voxel is segmented three-dimensionally using a region growing algorithm ("rolling ball algorithm"). For each voxel within the segmented air spaces, two types of voxel coding have been performed: single-seeded (SS) coding and boundary-seeded (BS) coding, in which the minimum distance from an initial point as the only seed point and all object boundary voxels as a seed set were calculated and assigned as the code values to each voxel, respectively. With these two codes, combinations of surface rendering and volume rendering techniques were applied to visualize three-dimensional morphology of a subdivision of the acinus. Furthermore, sequentially filling process of air into a subdivision of the acinus was simulated under several conditions to visualize the ventilation procedure (air flow and diffusion). A subdivision of the acinus was reconstructed three-dimensionally, demonstrating the normal architecture of the human lung. Significant differences in appearance of ventilation procedure were observed between normal and two pathologic processes due to the alteration of the lung architecture. Three-dimensional reconstruction of the microstructure of a subdivision of the acinus and visualization of the ventilation procedure (air flow and diffusion) with SR microtomography would offer a new approach to study the morphology, physiology, and pathophysiology of the human respiratory system.

  8. Combined effect of urinary monohydroxylated polycyclic aromatic hydrocarbons and impaired lung function on diabetes.

    PubMed

    Hou, Jian; Sun, Huizhen; Xiao, Lili; Zhou, Yun; Yin, Wenjun; Xu, Tian; Cheng, Juan; Chen, Weihong; Yuan, Jing

    2016-07-01

    Associations of type 2 diabetes with exposure to polycyclic aromatic hydrocarbons and reduced lung function have been reported. The aim of the present study was to investigate effect of reduced lung function and exposure to background PAHs on diabetes. A total of 2730 individuals were drawn from the Wuhan-Zhuhai (WHZH) Cohort Study (n=3053). Participants completed physical examination, measurement of lung function and urinary monohydroxylated polycyclic aromatic hydrocarbons (OH-PAHs). Risk factors for type 2 diabetes were identified by multiple logistic regression analysis, and the presence of additive interaction between levels of urinary OH-PAHs and lower lung function was evaluated by calculation of the relative excess risk due to interaction (RERI) and attributable proportion due to interaction (AP). Urinary OH-PAHs levels was positively associated with type 2 diabetes among individuals with impaired lung function (p<0.05). Forced expiratory volume in one second (FEV1, odd ratio (OR): 0.664, 95% confidence interval (CI): 0.491-0.900) and forced vital capacity (FVC, OR: 0.693, 95% CI: 0.537-0.893) were negatively associated with diabetes among individuals. Additive interaction of higher urinary levels of OH-PAHs and lower FVC (RERI: 0.679, 95% CI: 0.120-1.238); AP: 0.427, 95% CI: 0.072-0.782) was associated with diabetes. Exposure to background PAHs was related to diabetes among individuals with lower lung function. Urinary levels of OH-PAHs and reduced lung function had an additive effect on diabetes. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Respiratory Influenza A Virus Infection Triggers Local and Systemic Natural Killer Cell Activation via Toll-Like Receptor 7.

    PubMed

    Stegemann-Koniszewski, Sabine; Behrens, Sarah; Boehme, Julia D; Hochnadel, Inga; Riese, Peggy; Guzmán, Carlos A; Kröger, Andrea; Schreiber, Jens; Gunzer, Matthias; Bruder, Dunja

    2018-01-01

    The innate immune system senses influenza A virus (IAV) through different pathogen-recognition receptors including Toll-like receptor 7 (TLR7). Downstream of viral recognition natural killer (NK) cells are activated as part of the anti-IAV immune response. Despite the known decisive role of TLR7 for NK cell activation by therapeutic immunostimulatory RNAs, the contribution of TLR7 to the NK cell response following IAV infection has not been addressed. We have analyzed lung cytokine responses as well as the activation, interferon (IFN)-γ production, and cytotoxicity of lung and splenic NK cells following sublethal respiratory IAV infection in wild-type and TLR7ko mice. Early airway IFN-γ levels as well as the induction of lung NK cell CD69 expression and IFN-γ production in response to IAV infection were significantly attenuated in TLR7-deficient hosts. Strikingly, respiratory IAV infection also primed splenic NK cells for IFN-γ production, degranulation, and target cell lysis, all of which were fully dependent on TLR7. At the same time, lung type I IFN levels were significantly reduced in TLR7ko mice early following IAV infection, displaying a potential upstream mechanism of the attenuated NK cell activation observed. Taken together, our data clearly demonstrate a specific role for TLR7 signaling in local and systemic NK cell activation following respiratory IAV infection despite the presence of redundant innate IAV-recognition pathways.

  10. Respiratory Influenza A Virus Infection Triggers Local and Systemic Natural Killer Cell Activation via Toll-Like Receptor 7

    PubMed Central

    Stegemann-Koniszewski, Sabine; Behrens, Sarah; Boehme, Julia D.; Hochnadel, Inga; Riese, Peggy; Guzmán, Carlos A.; Kröger, Andrea; Schreiber, Jens; Gunzer, Matthias; Bruder, Dunja

    2018-01-01

    The innate immune system senses influenza A virus (IAV) through different pathogen-recognition receptors including Toll-like receptor 7 (TLR7). Downstream of viral recognition natural killer (NK) cells are activated as part of the anti-IAV immune response. Despite the known decisive role of TLR7 for NK cell activation by therapeutic immunostimulatory RNAs, the contribution of TLR7 to the NK cell response following IAV infection has not been addressed. We have analyzed lung cytokine responses as well as the activation, interferon (IFN)-γ production, and cytotoxicity of lung and splenic NK cells following sublethal respiratory IAV infection in wild-type and TLR7ko mice. Early airway IFN-γ levels as well as the induction of lung NK cell CD69 expression and IFN-γ production in response to IAV infection were significantly attenuated in TLR7-deficient hosts. Strikingly, respiratory IAV infection also primed splenic NK cells for IFN-γ production, degranulation, and target cell lysis, all of which were fully dependent on TLR7. At the same time, lung type I IFN levels were significantly reduced in TLR7ko mice early following IAV infection, displaying a potential upstream mechanism of the attenuated NK cell activation observed. Taken together, our data clearly demonstrate a specific role for TLR7 signaling in local and systemic NK cell activation following respiratory IAV infection despite the presence of redundant innate IAV-recognition pathways. PMID:29497422

  11. Risks of on-pump coronary artery bypass grafting surgery in patients with chronic obstructive pulmonary disease due to sulfur mustard.

    PubMed

    Firoozabadi, Mehdi Dehghani; Sheikhi, Mohammad Ali; Rahmani, Hossein; Ebadi, Ahmad; Heidari, Amanollah; Gholizadeh, Behnam; Sharifi, Khosrow

    2017-10-01

    Sulfur mustard (SM) is a toxic chemical agent that belongs to a class of vesicant compounds. In the 1980s it was used by the Iraqi army against Iranian forces. Sulfur mustard severely irritates the skin, eyes and lungs. The highest side effects seen in patients affected by this gas are pulmonary complications including different types of lung diseases such as bronchiolitis. It has also led to a certain type of chronic obstructive pulmonary disease called mustard lung. Similar extra-pulmonary, molecular and hormonal effects can be observed in these patients and patients with chronic obstructive pulmonary disease. Here cardiovascular complications may be one of the most dangerous visible effects. And atherosclerosis is probable following the direct effects or consequential long-term effects of SM. The development of atherosclerosis in these patients is associated with an increased risk of cardiovascular and coronary artery disease. Coronary artery bypass grafting surgery is the treatment of coronary artery disease. Doing this surgery by bypass pump has its own morbidity and due to local and systemic inflammation changes in patients with SM pulmonary disorders it may have more side effects. Therefore, detailed knowledge of inflammatory diseases as well as the serum level or even the local lung fluid of the inflammatory factors in these patients before surgery are needed so that it would be possible to reduce the rate of morbidity and mortality by normalizing the inflammatory conditions of the patients before cardiac surgery.

  12. Endophytic fungi from mangrove inhibit lung cancer cell growth and angiogenesis in vitro.

    PubMed

    Liu, Xin; Wu, Xin; Ma, Yuefan; Zhang, Wenzhang; Hu, Liang; Feng, Xiaowei; Li, Xiangyong; Tang, Xudong

    2017-03-01

    The secondary metabolites of mangrove-derived endophytic fungi contain multiple substances with novel structures and biological activities. In the present study, three types of mangrove plants, namely Kandelia candel, Rhizophora stylosa and Rhizophoraceae from Zhanjiang region including the leaves, roots and stems were collected, and endophytic fungi were isolated, purified and identified from these mangrove plants. MTT assay was used to observe the effects of the isolated endophytic fungi on the growth of A549 and NCI-H460 lung cancer cells. The effect of the endophytic fungi on lung cancer angiogenesis in vitro induced by the HPV-16 E7 oncoprotein was observed. Our results showed that 28 strains of endophytic fungi were isolated, purified and identified from the three types of mangrove plants. Ten strains of endophytic fungi significantly suppressed the growth of A549 and NCI-H460 cells. The average inhibitory rates in the A549 cells were 64.4, 59.5, 81.9, 43.9, 58.3, 56.2, 48.3, 42.4, 93.0 and 49.7%, respectively. The average inhibitory rates in the NCI-H460 cells were 41.2, 49.3, 82.7, 40.7, 53.9, 52.6, 56.8, 64.3, 91.0 and 45.6%, respectively. Particularly, three strains of endophytic fungi markedly inhibited HPV-16 E7 oncoprotein‑induced lung cancer angiogenesis in vitro. These findings contribute to the further screening of potential chemotherapeutic agents from mangrove-derived endophytic fungi.

  13. Generalized Connective Tissue Disease in Crtap-/- Mouse

    PubMed Central

    Baldridge, Dustin; Lennington, Jennifer; Weis, MaryAnn; Homan, Erica P.; Jiang, Ming-Ming; Munivez, Elda; Keene, Douglas R.; Hogue, William R.; Pyott, Shawna; Byers, Peter H.; Krakow, Deborah; Cohn, Daniel H.; Eyre, David R.; Lee, Brendan; Morello, Roy

    2010-01-01

    Mutations in CRTAP (coding for cartilage-associated protein), LEPRE1 (coding for prolyl 3-hydroxylase 1 [P3H1]) or PPIB (coding for Cyclophilin B [CYPB]) cause recessive forms of osteogenesis imperfecta and loss or decrease of type I collagen prolyl 3-hydroxylation. A comprehensive analysis of the phenotype of the Crtap-/- mice revealed multiple abnormalities of connective tissue, including in the lungs, kidneys, and skin, consistent with systemic dysregulation of collagen homeostasis within the extracellular matrix. Both Crtap-/- lung and kidney glomeruli showed increased cellular proliferation. Histologically, the lungs showed increased alveolar spacing, while the kidneys showed evidence of segmental glomerulosclerosis, with abnormal collagen deposition. The Crtap-/- skin had decreased mechanical integrity. In addition to the expected loss of proline 986 3-hydroxylation in α1(I) and α1(II) chains, there was also loss of 3Hyp at proline 986 in α2(V) chains. In contrast, at two of the known 3Hyp sites in α1(IV) chains from Crtap-/- kidneys there were normal levels of 3-hydroxylation. On a cellular level, loss of CRTAP in human OI fibroblasts led to a secondary loss of P3H1, and vice versa. These data suggest that both CRTAP and P3H1 are required to maintain a stable complex that 3-hydroxylates canonical proline sites within clade A (types I, II, and V) collagen chains. Loss of this activity leads to a multi-systemic connective tissue disease that affects bone, cartilage, lung, kidney, and skin. PMID:20485499

  14. Transcriptome instability as a molecular pan-cancer characteristic of carcinomas.

    PubMed

    Sveen, Anita; Johannessen, Bjarne; Teixeira, Manuel R; Lothe, Ragnhild A; Skotheim, Rolf I

    2014-08-10

    We have previously proposed transcriptome instability as a genome-wide, pre-mRNA splicing-related characteristic of colorectal cancer. Here, we explore the hypothesis of transcriptome instability being a general characteristic of cancer. Exon-level microarray expression data from ten cancer datasets were analyzed, including breast cancer, cervical cancer, colorectal cancer, gastric cancer, lung cancer, neuroblastoma, and prostate cancer (555 samples), as well as paired normal tissue samples from the colon, lung, prostate, and stomach (93 samples). Based on alternative splicing scores across the genomes, we calculated sample-wise relative amounts of aberrant exon skipping and inclusion. Strong and non-random (P < 0.001) correlations between these estimates and the expression levels of splicing factor genes (n = 280) were found in most cancer types analyzed (breast-, cervical-, colorectal-, lung- and prostate cancer). This suggests a biological explanation for the splicing variation. Surprisingly, these associations prevailed in pan-cancer analyses. This is in contrast to the tissue and cancer specific patterns observed in comparisons across healthy tissue samples from the colon, lung, prostate, and stomach, and between paired cancer-normal samples from the same four tissue types. Based on exon-level expression profiling and computational analyses of alternative splicing, we propose transcriptome instability as a molecular pan-cancer characteristic. The affected cancers show strong and non-random associations between low expression levels of splicing factor genes, and high amounts of aberrant exon skipping and inclusion, and vice versa, on a genome-wide scale.

  15. Cellular Immune Responses to Nine Mycobacterium tuberculosis Vaccine Candidates following Intranasal Vaccination

    PubMed Central

    Sable, Suraj B.; Cheruvu, Mani; Nandakumar, Subhadra; Sharma, Sunita; Bandyopadhyay, Kakali; Kellar, Kathryn L.; Posey, James E.; Plikaytis, Bonnie B.; Amara, Rama Rao; Shinnick, Thomas M.

    2011-01-01

    Background The identification of Mycobacterium tuberculosis vaccines that elicit a protective immune response in the lungs is important for the development of an effective vaccine against tuberculosis. Methods and Principal Findings In this study, a comparison of intranasal (i.n.) and subcutaneous (s.c.) vaccination with the BCG vaccine demonstrated that a single moderate dose delivered intranasally induced a stronger and sustained M. tuberculosis-specific T-cell response in lung parenchyma and cervical lymph nodes of BALB/c mice than vaccine delivered subcutaneously. Both BCG and a multicomponent subunit vaccine composed of nine M. tuberculosis recombinant proteins induced strong antigen-specific T-cell responses in various local and peripheral immune compartments. Among the nine recombinant proteins evaluated, the alanine proline rich antigen (Apa, Rv1860) was highly antigenic following i.n. BCG and immunogenic after vaccination with a combination of the nine recombinant antigens. The Apa-induced responses included induction of both type 1 and type 2 cytokines in the lungs as evaluated by ELISPOT and a multiplexed microsphere-based cytokine immunoassay. Of importance, i.n. subunit vaccination with Apa imparted significant protection in the lungs and spleen of mice against M. tuberculosis challenge. Despite observed differences in the frequencies and location of specific cytokine secreting T cells both BCG vaccination routes afforded comparable levels of protection in our study. Conclusion and Significance Overall, our findings support consideration and further evaluation of an intranasally targeted Apa-based vaccine to prevent tuberculosis. PMID:21799939

  16. Autoinflammatory disease in the lung.

    PubMed

    Scambler, Thomas; Holbrook, Jonathan; Savic, Sinisa; McDermott, Michael F; Peckham, Daniel

    2018-04-19

    Ascertaining the dominant cell type driving an immunological disease is essential to understanding the causal pathology and, therefore, selecting or developing an effective treatment. Classifying immunological diseases in this way has led to successful treatment regimens for many monogenic diseases; however, when the dominant cell type is unclear and there is no obvious causal genetic mutation, then identifying the correct disease classification and appropriate therapy can be challenging. In this review we focus on pulmonary immunological diseases where an innate immune signature has been identified as a predominant aspect of the immunopathology. We describe the molecular pathology of 'autoinflammatory diseases of the lung' and propose that small molecule and biological therapies, including recombinant interleukin-1 receptor antagonist, that target key innate immune pathways, are likely be beneficial in the control of pulmonary and systemic inflammation in these conditions. In addition, the successful use of macrolide antibiotics to treat lung infections in these conditions further confirms that the innate immune system is the key conductor of inflammation in these pulmonary diseases, as there is a strong body of evidence that macrolides are able to modulate the NLRP3 inflammasome and interleukin-1β and interleukin-18 secretion, both of which are central players in the innate immune response. Throughout this review we highlight the published evidence of autoinflammatory disease in chronic obstructive pulmonary disease, bronchiectasis, cystic fibrosis and rheumatoid lung disease and suggest that the fundamental pathology of these diseases places them towards the autoinflammatory pole of the immunological disease continuum. © 2018 John Wiley & Sons Ltd.

  17. Mesenchymal stromal cell-derived extracellular vesicles attenuate lung ischemia-reperfusion injury and enhance reconditioning of donor lungs after circulatory death.

    PubMed

    Stone, Matthew L; Zhao, Yunge; Robert Smith, J; Weiss, Mark L; Kron, Irving L; Laubach, Victor E; Sharma, Ashish K

    2017-12-21

    Lung ischemia-reperfusion (IR) injury after transplantation as well as acute shortage of suitable donor lungs are two critical issues impacting lung transplant patients. This study investigates the anti-inflammatory and immunomodulatory role of human mesenchymal stromal cells (MSCs) and MSC-derived extracellular vesicles (EVs) to attenuate lung IR injury and improve of ex-vivo lung perfusion (EVLP)-mediated rehabilitation in donation after circulatory death (DCD) lungs. C57BL/6 wild-type (WT) mice underwent sham surgery or lung IR using an in vivo hilar-ligation model with or without MSCs or EVs. In vitro studies used primary iNKT cells and macrophages (MH-S cells) were exposed to hypoxia/reoxygenation with/without co-cultures with MSCs or EVs. Also, separate groups of WT mice underwent euthanasia and 1 h of warm ischemia and stored at 4 °C for 1 h followed by 1 h of normothermic EVLP using Steen solution or Steen solution containing MSCs or EVs. Lungs from MSCs or EV-treated mice had significant attenuation of lung dysfunction and injury (decreased edema, neutrophil infiltration and myeloperoxidase levels) compared to IR alone. A significant decrease in proinflammatory cytokines (IL-17, TNF-α, CXCL1 and HMGB1) and upregulation of keratinocyte growth factor, prostaglandin E2 and IL-10 occurred in the BAL fluid from MSC or EV-treated mice after IR compared to IR alone. Furthermore, MSCs or EVs significantly downregulated iNKT cell-produced IL-17 and macrophage-produced HMGB1 and TNF-α after hypoxia/reoxygenation. Finally, EVLP of DCD lungs with Steen solution including MSCs or EVs provided significantly enhanced protection versus Steen solution alone. Co-cultures of MSCs or EVs with lung endothelial cells prevents neutrophil transendothelial migration after exposure to hypoxia/reoxygenation and TNF-α/HMGB1 cytomix. These results suggest that MSC-derived EVs can attenuate lung inflammation and injury after IR as well as enhance EVLP-mediated reconditioning of donor lungs. The therapeutic benefits of EVs are in part mediated through anti-inflammatory promoting mechanisms via attenuation of immune cell activation as well as prevention of endothelial barrier integrity to prevent lung edema. Therefore, MSC-derived EVs offer a potential therapeutic strategy to treat post-transplant IR injury as well as rehabilitation of DCD lungs.

  18. Association between the Type of Workplace and Lung Function in Copper Miners

    PubMed Central

    Gruszczyński, Leszek; Wojakowska, Anna; Ścieszka, Marek; Turczyn, Barbara; Schmidt, Edward

    2016-01-01

    The aim of the analysis was to retrospectively assess changes in lung function in copper miners depending on the type of workplace. In the groups of 225 operators, 188 welders, and 475 representatives of other jobs, spirometry was performed at the start of employment and subsequently after 10, 20, and 25 years of work. Spirometry Longitudinal Data Analysis software was used to estimate changes in group means for FEV1 and FVC. Multiple linear regression analysis was used to assess an association between workplace and lung function. Lung function assessed on the basis of calculation of longitudinal FEV1 (FVC) decline was similar in all studied groups. However, multiple linear regression model used in cross-sectional analysis revealed an association between workplace and lung function. In the group of welders, FEF75 was lower in comparison to operators and other miners as early as after 10 years of work. Simultaneously, in smoking welders, the FEV1/FVC ratio was lower than in nonsmokers (p < 0,05). The interactions between type of workplace and smoking (p < 0,05) in their effect on FVC, FEV1, PEF, and FEF50 were shown. Among underground working copper miners, the group of smoking welders is especially threatened by impairment of lung ventilatory function. PMID:27274987

  19. Morphology and Morphometry of the Lung in Corn Snakes (Pantherophis guttatus) Infected with Three Different Strains of Ferlavirus.

    PubMed

    Starck, J M; Neul, A; Schmidt, V; Kolb, T; Franz-Guess, S; Balcecean, D; Pees, M

    2017-05-01

    Ophidian paramyxovirus (ferlavirus) is a global threat to reptilian sauropsids in herpetological collections, with occasional but fatal effects. This study characterizes the effects of three different genetic strains of ferlavirus on the dynamic changes of histology and morphometry of the lung of corn snakes (Pantherophis guttatus). Lungs from 42 corn snakes were either sham-infected or infected experimentally under standardized conditions. From 4 to 49 days after intratracheal inoculation, the lungs were examined qualitatively and quantitatively. Progressive microscopical changes were seen in the lung. Initially, increased numbers of heterophils were observed in the interstitium followed by proliferation and vacuolation of epithelial cells lining faveoli. Electron microscopy revealed loss of type-I pneumocytes, hyperplasia of type-II pneumocytes, and interstitial infiltrates of heterophils and mononuclear cells. With progression of disease the respiratory epithelium was initially overgrown by transformed type-II pneumocytes and later became multilayered. The results of the study suggest that the respiratory capacity of the lungs declines with disease development. The dynamics of disease development and histopathology differed in snakes infected with different ferlavirus genogroups. Animals infected with virus genogroup B developed histopathological changes and morphometric changes more rapidly and of greater intensity than snakes infected with viruses from genogroups A or C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. An epidemiological study of risk factors for lung cancer in Guangzhou, China.

    PubMed

    Du, Y X; Cha, Q; Chen, X W; Chen, Y Z; Huang, L F; Feng, Z Z; Wu, X F; Wu, J M

    1996-03-01

    Lung cancer has been on a rapid rise worldwide during the last three or four decades, in part due to modern social habits and unhealthy lifestyles. Although smoking, air pollution, and certain types of occupational exposure have been recognized as the major risk factors for lung cancer, the significance of each of these factors appears to vary with sex, country, and with region within a given country. In the case of nonsmoking females, some risk factors for lung cancer remain to be identified. In the city of Guangzhou, lung cancer is one of the five leading tumors and the rate has been increasing steadily in both males and females since the 1970s. In this report, more than 6000 cases of lung cancer deaths, accumulated over the past 9 years, were analyzed. The severity of air pollution and cigarette smoking were positively correlated with the incidence of lung cancer deaths. Analysis of levels of SO2 and NOx suggests that the major source of indoor air pollution came from cooking. Two studies were performed in order to determine the relative contribution and importance of smoking, indoor air pollution and occupational exposure as risk factors for the rising incidence of lung cancer. The first was a population-based case-control study involving 849 subjects (566 males and 283 females). The second study was based on the data made available by the Third National Census survey, in which the standardized mortality rate (SMR) and population attributable risk (PAR) for lung cancer due to occupational exposure for the population in Guangzhou were analyzed. Results of these two studies show that: in females, indoor air pollution, derived primarily from burning coal, was found to be a highly significant risk factor for lung cancer. In males, however, cigarette smoking and occupational exposure were significantly associated with lung cancer. To further elucidate the contribution of indoor air pollution as a risk factor for lung cancer in nonsmoking females, two additional case-control studies were performed in 1985 and 1986. The 1985 study involved 120 nonsmokers (28 males, 92 females) in which the influence of such lifestyle factors as: personal history of nonmalignant respiratory diseases, fresh vegetable consumption, lifetime occupation and occupational exposure histories, exposure to environmental tobacco smoke (ETS), degree of indoor air pollution, general conditions of home residence, cooking practices and environments, and family history of cancer were first individually assessed and then collectively subjected to multiple conditional regression analysis for evaluation as risk factors for lung cancer. The 1986 study involved 75 cases of never-smoking females in which the aim was to investigate the influence of exposure to spousal smoke as a risk factor for lung cancer. These studies suggest that consumption of fresh vegetables was a "protective" factor for lung cancer in both males and females. In females, indoor air pollution and size of the kitchen were risk factors for lung cancer, whereas ETS exposure, respiratory disease history, family history of cancer, living conditions, use of cooking fuel, and participation in cooking, were not statistically associated with female lung cancer deaths. Occupational exposure was also correlated with the incidence of female lung cancer deaths. In males, chemists had the highest SMR, whereas in females, homemakers had the highest SMR. In males, the most common lung cancer cell type was squamous cell carcinoma, whereas in females adenocarcinoma was the most predominant type. The factors affecting the distribution of histologic lung cancer cell types were also investigated and discussed.

  1. Association of ABO blood groups with von Willebrand factor, factor VIII and ADAMTS-13 in patients with lung cancer.

    PubMed

    Liu, Xia; Chen, Xiaogang; Yang, Jiezuan; Guo, Renyong

    2017-09-01

    Coagulative and fibrinolytic disorders appear to be associated with the development of lung cancer. The aim of the present study was to determine plasma levels of von Willebrand factor (VWF) and a disintegrin and metalloproteinase with a thrombospondin type 1 motif 13 (ADAMTS-13), and factor VIII (FVIII) activity, in association with O and non-O blood groups in patients with lung cancer. Plasma levels of VWF and ADAMTS-13, and FVIII activity were measured in 115 patients with lung cancer and 98 healthy subjects. Phenotyping of the ABO blood groups was also performed for the two groups. Significantly increased VWF levels and FVIII activity, as well as significantly decreased ADAMTS-13 levels, were observed in patients with distant metastasis as compared with those without distant metastasis and the healthy controls. Plasma VWF levels and FVIII activity were significantly increased in subjects with non-O type blood compared with those with type O blood in the two groups. However, a significant decrease in ADAMTS-13 levels was observed only in the control group among those with non-O type blood, compared with those with type O blood. The results of the present study indicate that increased VWF and decreased ADAMTS-13 levels facilitate the invasiveness and metastasis of lung cancer. Non-O blood groups constitute a risk factor for increased VWF and FVIII in plasma. Continued monitoring of VWF and ADAMTS-13 levels, and of FVIII activity in patients with lung cancer with distinct blood groups may help to minimize the incidence of thrombotic events and improve assessment of disease progression.

  2. Brachyury Essential for Notochord Cell Fate, Not Proliferation or EMT | Center for Cancer Research

    Cancer.gov

    The Brachyury or T gene encodes a transcription factor that is essential for body axis elongation during embryonic development. T is also highly expressed in chordomas, rare sarcomas derived from notochord cells, and a number of additional tumor types, including lung, prostate, and colon cancers. 

  3. Fibroblast Activation Protein (FAP) Accelerates Collagen Degradation and Clearance from Lungs in Mice*

    PubMed Central

    Fan, Ming-Hui; Zhu, Qiang; Li, Hui-Hua; Ra, Hyun-Jeong; Majumdar, Sonali; Gulick, Dexter L.; Jerome, Jacob A.; Madsen, Daniel H.; Christofidou-Solomidou, Melpo; Speicher, David W.; Bachovchin, William W.; Feghali-Bostwick, Carol; Puré, Ellen

    2016-01-01

    Idiopathic pulmonary fibrosis is a disease characterized by progressive, unrelenting lung scarring, with death from respiratory failure within 2–4 years unless lung transplantation is performed. New effective therapies are clearly needed. Fibroblast activation protein (FAP) is a cell surface-associated serine protease up-regulated in the lungs of patients with idiopathic pulmonary fibrosis as well as in wound healing and cancer. We postulate that FAP is not only a marker of disease but influences the development of pulmonary fibrosis after lung injury. In two different models of pulmonary fibrosis, intratracheal bleomycin instillation and thoracic irradiation, we find increased mortality and increased lung fibrosis in FAP-deficient mice compared with wild-type mice. Lung extracellular matrix analysis reveals accumulation of intermediate-sized collagen fragments in FAP-deficient mouse lungs, consistent with in vitro studies showing that FAP mediates ordered proteolytic processing of matrix metalloproteinase (MMP)-derived collagen cleavage products. FAP-mediated collagen processing leads to increased collagen internalization without altering expression of the endocytic collagen receptor, Endo180. Pharmacologic FAP inhibition decreases collagen internalization as expected. Conversely, restoration of FAP expression in the lungs of FAP-deficient mice decreases lung hydroxyproline content after intratracheal bleomycin to levels comparable with that of wild-type controls. Our findings indicate that FAP participates directly, in concert with MMPs, in collagen catabolism and clearance and is an important factor in resolving scar after injury and restoring lung homeostasis. Our study identifies FAP as a novel endogenous regulator of fibrosis and is the first to show FAP's protective effects in the lung. PMID:26663085

  4. A herpes simplex virus type 2-encoded microRNA promotes tumor cell metastasis by targeting suppressor of cytokine signaling 2 in lung cancer.

    PubMed

    Wang, Xudong; Liu, Shupeng; Zhou, Zhenhua; Yan, Hongli; Xiao, Jianru

    2017-05-01

    Certain viruses use microRNAs to regulate the expression of their own genes, host genes, or both. A number of microRNAs expressed by herpes simplex virus type 2 have been confirmed by previous studies. However, whether these microRNAs play a role in the metastasis of lung cancers and how these viral microRNAs precisely regulated the tumor biological process in lung cancer bone metastasis remain obscure. We recently identified the high expression of an acutely and latently expressed viral microRNA, Hsv2-miR-H9-5p, encoded by herpes simplex virus type 2 latency-associated transcript through microarray and quantitative polymerase chain reaction analyses which compared the expression of microRNAs in bone metastasis from lung cancer with primary lung cancers. We now reported that Hsv2-miR-H9-5p was highly expressed in bone metastasis and closely associated with pathological and metastatic processes of lung cancers. The functions of Hsv2-miR-H9-5p were determined by overexpression which results in an increase in survival, migration, and invasion of lung cancer cells in vitro. We determined that Hsv2-miR-H9-5p directly targeted SOCS2 mechanistically by dual-luciferase reporter assay. Then, we investigated the functions of SOCS2 in the progress of lung cancers. Reduction of SOCS2 dosage by hsv2-miR-H9-5p induced increased migration and invasion of lung cancer cells. Overexpression of SOCS2 inverted these phenotypes generated by hsv2-miR-H9-5p, indicating the potential roles of SOCS2 in Hsv2-miR-H9-5p-driven metastasis in lung cancers. The results highlighted that Hsv2-miR-H9-5p regulated and contributed to bone metastasis of lung cancers. We proposed that Hsv2-miR-H9-5p could be used as a potential target in lung cancer therapy.

  5. Hfe Deficiency Impairs Pulmonary Neutrophil Recruitment in Response to Inflammation

    PubMed Central

    Benesova, Karolina; Vujić Spasić, Maja; Schaefer, Sebastian M.; Stolte, Jens; Baehr-Ivacevic, Tomi; Waldow, Katharina; Zhou, Zhe; Klingmueller, Ursula; Benes, Vladimir; Mall, Marcus A.; Muckenthaler, Martina U.

    2012-01-01

    Regulation of iron homeostasis and the inflammatory response are tightly linked to protect the host from infection. Here we investigate how imbalanced systemic iron homeostasis in a murine disease model of hereditary hemochromatosis (Hfe−/− mice) affects the inflammatory responses of the lung. We induced acute pulmonary inflammation in Hfe−/− and wild-type mice by intratracheal instillation of 20 µg of lipopolysaccharide (LPS) and analyzed local and systemic inflammatory responses and iron-related parameters. We show that in Hfe−/− mice neutrophil recruitment to the bronchoalveolar space is attenuated compared to wild-type mice although circulating neutrophil numbers in the bloodstream were elevated to similar levels in Hfe−/− and wild-type mice. The underlying molecular mechanisms are likely multifactorial and include elevated systemic iron levels, alveolar macrophage iron deficiency and/or hitherto unexplored functions of Hfe in resident pulmonary cell types. As a consequence, pulmonary cytokine expression is out of balance and neutrophils fail to be recruited efficiently to the bronchoalveolar compartment, a process required to protect the host from infections. In conclusion, our findings suggest a novel role for Hfe and/or imbalanced iron homeostasis in the regulation of the inflammatory response in the lung and hereditary hemochromatosis. PMID:22745741

  6. Meconium increases type 1 angiotensin II receptor expression and alveolar cell death.

    PubMed

    Rosenfeld, Charles R; Zagariya, Alexander M; Liu, Xiao-Tie; Willis, Brigham C; Fluharty, Steven; Vidyasagar, Dharmapuri

    2008-03-01

    The pulmonary renin-angiotensin system (RAS) contributes to inflammation and epithelial apoptosis in meconium aspiration. It is unclear if both angiotensin II receptors (ATR) contribute, where they are expressed and if meconium modifies subtype expression. We examined ATR subtypes in 2 wk rabbit pup lungs before and after meconium exposure and with and without captopril pretreatment or type 1 receptor (AT1R) inhibition with losartan, determining expression and cellular localization with immunoblots, RT-PCR and immunohistochemistry, respectively. Responses of cultured rat alveolar type II pneumocytes were also examined. Type 2 ATR were undetected in newborn lung before and after meconium instillation. AT1R were expressed in pulmonary vascular and bronchial smooth muscle and alveolar and bronchial epithelium. Meconium increased total lung AT1R protein approximately 3-fold (p = 0.006), mRNA 29% (p = 0.006) and immunostaining in bronchial and alveolar epithelium and smooth muscle, which were unaffected by captopril and losartan. Meconium also increased AT1R expression >3-fold in cultured type II pneumocytes and caused concentration-dependent cell death inhibited by losartan. Meconium increases AT1R expression in newborn rabbit lung and cultured type II pneumocytes and induces AT1R-mediated cell death. The pulmonary RAS contributes to the pathogenesis of meconium aspiration through increased receptor expression.

  7. Mechanisms of crystalline silica-induced pulmonary toxicity revealed by global gene expression profiling

    PubMed Central

    Sellamuthu, Rajendran; Umbright, Christina; Li, Shengqiao; Kashon, Michael; Joseph, Pius

    2015-01-01

    A proper understanding of the mechanisms underlying crystalline silica-induced pulmonary toxicity has implications in the management and potential prevention of the adverse health effects associated with silica exposure including silicosis, cancer and several auto-immune diseases. Human lung type II epithelial cells and rat lungs exposed to crystalline silica were employed as experimental models to determine global gene expression changes in order to understand the molecular mechanisms underlying silica-induced pulmonary toxicity. The differential gene expression profile induced by silica correlated with its toxicity in the A549 cells. The biological processes perturbed by silica exposure in the A549 cells and rat lungs, as identified by the bioinformatics analysis of the differentially expressed genes, demonstrated significant similarity. Functional categorization of the differentially expressed genes identified cancer, cellular movement, cellular growth and proliferation, cell death, inflammatory response, cell cycle, cellular development, and genetic disorder as top ranking biological functions perturbed by silica exposure in A549 cells and rat lungs. Results of our study, in addition to confirming several previously identified molecular targets and mechanisms involved in silica toxicity, identified novel molecular targets and mechanisms potentially involved in silica-induced pulmonary toxicity. Further investigations, including those focused on the novel molecular targets and mechanisms identified in the current study may result in better management and, possibly, reduction and/or prevention of the potential adverse health effects associated with crystalline silica exposure. PMID:22087542

  8. How much do cancer-related symptoms contribute to health-related quality of life in lung and colorectal cancer patients? A report from the Cancer Care Outcomes Research and Surveillance (CanCORS) Consortium.

    PubMed

    Kenzik, Kelly M; Ganz, Patricia A; Martin, Michelle Y; Petersen, Laura; Hays, Ron D; Arora, Neeraj; Pisu, Maria

    2015-08-15

    The objective of this study was to examine associations of symptoms with physical and mental health-related quality of life (HRQOL) in patients with colorectal cancer (CRC) and in patients with lung cancer. Patients with newly diagnosed CRC (n = 3040) or lung cancer (n = 2297) who were participating in the Cancer Care Outcomes Research and Surveillance Consortium study completed surveys on general HRQOL and symptoms. HRQOL was measured by using physical component summary (PCS) and mental component summary (MCS) scores on the Medical Outcomes Study 12-item short-form heath survey. Nonspecific cancer symptoms were measured using items from the European Organization for Research and Treatment of Cancer core quality-of-life questionnaire. Cancer type-specific modules developed by the European Organization for Research and Treatment of Cancer were used to assess CRC-specific and lung cancer-specific symptoms. For both cancer types, linear regression models that were controlled for demographic and clinical information were used to examine correlations of nonspecific and cancer-specific symptoms with PCS and MCS scores. PCS scores for patients with CRC and lung cancer were below the general population norm of 50 (43 and 37, respectively), and MCS scores were at the population norm. For the CRC sample, in the model that included both symptom indices, an increase in nonspecific symptoms was more strongly associated with lower PCS and MCS scores than an increase in CRC-specific symptoms (PCS, standardized coefficient [β] = -0.41 vs -0.09; MCS, β = -0.38 vs -0.08). In a similar model for lung cancer, increases in lung cancer-specific symptoms were more strongly associated with lower PCS scores (β = -0.34 vs -0.20), whereas nonspecific symptoms were more strongly associated with lower MCS scores (β = -0.34 vs -0.14). Symptoms were associated with HRQOL impairments in recently diagnosed patients. Additional supportive care implemented early in cancer care, regardless of cancer stage, may provide symptom relief and improve HRQOL. © 2015 American Cancer Society.

  9. An uptake of cationized ferritin by alveolar type I cells in airway-instilled goat lung: distribution of anionic sites on the epithelial surface.

    PubMed

    Atwal, O S; Viel, L; Minhas, K J

    1990-07-01

    The present study has investigated ultrastructural localization of anionic sites on the luminal surface of the alveolar epithelium of goat lung by direct airway instillation of cationized ferritin (CF) in the cranial lobe of the right lung through a bronchoscope. The cationic probe decorated preferentially the luminal plasmalemmal vesicles and plasmalemma proper of alveolar type I cell. This indicated the presence of highly charged anionic microdomains at these binding sites. The ligand was internalized in the free plasmalemmal vesicles of alveolar type I cell within 2 min. Heavy decoration of vesicles at 5 min of perfusion indicated that the amount of CF internalization increased with its concentration in the alveoli. It is suggested that exposure of alveolar surface to several gases of ruminal-origin induces changes in the surface charge of luminal plasmalemma of alveolar type I cells. The significance of these anionic plasmalemmal sites is discussed in relation to the adjustment of osmotic pressure gradient across the alveolar-capillary membrane of the ruminant lung.

  10. Low-Dose Intestinal Trichuris muris Infection Alters the Lung Immune Microenvironment and Can Suppress Allergic Airway Inflammation.

    PubMed

    Chenery, Alistair L; Antignano, Frann; Burrows, Kyle; Scheer, Sebastian; Perona-Wright, Georgia; Zaph, Colby

    2016-02-01

    Immunological cross talk between mucosal tissues such as the intestine and the lung is poorly defined during homeostasis and disease. Here, we show that a low-dose infection with the intestinally restricted helminth parasite Trichuris muris results in the production of Th1 cell-dependent gamma interferon (IFN-γ) and myeloid cell-derived interleukin-10 (IL-10) in the lung without causing overt airway pathology. This cross-mucosal immune response in the lung inhibits the development of papain-induced allergic airway inflammation, an innate cell-mediated type 2 airway inflammatory disease. Thus, we identify convergent and nonredundant roles of adaptive and innate immunity in mediating cross-mucosal suppression of type 2 airway inflammation during low-dose helminth-induced intestinal inflammation. These results provide further insight in identifying novel intersecting immune pathways elicited by gut-to-lung mucosal cross talk. Copyright © 2016 Chenery et al.

  11. Molecular Typing of Lung Adenocarcinoma on Cytological Samples Using a Multigene Next Generation Sequencing Panel

    PubMed Central

    Fassan, Matteo; Rachiglio, Anna Maria; Cappellesso, Rocco; Antonello, Davide; Amato, Eliana; Mafficini, Andrea; Lambiase, Matilde; Esposito, Claudia; Bria, Emilio; Simonato, Francesca; Scardoni, Maria; Turri, Giona; Chilosi, Marco; Tortora, Giampaolo; Fassina, Ambrogio; Normanno, Nicola

    2013-01-01

    Identification of driver mutations in lung adenocarcinoma has led to development of targeted agents that are already approved for clinical use or are in clinical trials. Therefore, the number of biomarkers that will be needed to assess is expected to rapidly increase. This calls for the implementation of methods probing the mutational status of multiple genes for inoperable cases, for which limited cytological or bioptic material is available. Cytology specimens from 38 lung adenocarcinomas were subjected to the simultaneous assessment of 504 mutational hotspots of 22 lung cancer-associated genes using 10 nanograms of DNA and Ion Torrent PGM next-generation sequencing. Thirty-six cases were successfully sequenced (95%). In 24/36 cases (67%) at least one mutated gene was observed, including EGFR, KRAS, PIK3CA, BRAF, TP53, PTEN, MET, SMAD4, FGFR3, STK11, MAP2K1. EGFR and KRAS mutations, respectively found in 6/36 (16%) and 10/36 (28%) cases, were mutually exclusive. Nine samples (25%) showed concurrent alterations in different genes. The next-generation sequencing test used is superior to current standard methodologies, as it interrogates multiple genes and requires limited amounts of DNA. Its applicability to routine cytology samples might allow a significant increase in the fraction of lung cancer patients eligible for personalized therapy. PMID:24236184

  12. Exposure to diesel and gasoline engine emissions and the risk of lung cancer.

    PubMed

    Parent, Marie-Elise; Rousseau, Marie-Claude; Boffetta, Paolo; Cohen, Aaron; Siemiatycki, Jack

    2007-01-01

    Pollution from motor vehicles constitutes a major environmental health problem. The present paper describes associations between diesel and gasoline engine emissions and lung cancer, as evidenced in a 1979-1985 population-based case-control study in Montreal, Canada. Cases were 857 male lung cancer patients. Controls were 533 population controls and 1,349 patients with other cancer types. Subjects were interviewed to obtain a detailed lifetime job history and relevant data on potential confounders. Industrial hygienists translated each job description into indices of exposure to several agents, including engine emissions. There was no evidence of excess risks of lung cancer with exposure to gasoline exhaust. For diesel engine emissions, results differed by control group. When cancer controls were considered, there was no excess risk. When population controls were studied, the odds ratios, after adjustments for potential confounders, were 1.2 (95% confidence interval: 0.8, 1.8) for any exposure and 1.6 (95% confidence interval: 0.9, 2.8) for substantial exposure. Confidence intervals between risk estimates derived from the two control groups overlapped considerably. These results provide some limited support for the hypothesis of an excess lung cancer risk due to diesel exhaust but no support for an increase in risk due to gasoline exhaust.

  13. Quantifying lung morphology with respiratory-gated micro-CT in a murine model of emphysema

    NASA Astrophysics Data System (ADS)

    Ford, N. L.; Martin, E. L.; Lewis, J. F.; Veldhuizen, R. A. W.; Holdsworth, D. W.; Drangova, M.

    2009-04-01

    Non-invasive micro-CT imaging techniques have been developed to investigate lung structure in free-breathing rodents. In this study, we investigate the utility of retrospectively respiratory-gated micro-CT imaging in an emphysema model to determine if anatomical changes could be observed in the image-derived quantitative analysis at two respiratory phases. The emphysema model chosen was a well-characterized, genetically altered model (TIMP-3 knockout mice) that exhibits a homogeneous phenotype. Micro-CT scans of the free-breathing, anaesthetized mice were obtained in 50 s and retrospectively respiratory sorted and reconstructed, providing 3D images representing peak inspiration and end expiration with 0.15 mm isotropic voxel spacing. Anatomical measurements included the volume and CT density of the lungs and the volume of the major airways, along with the diameters of the trachea, left bronchus and right bronchus. From these measurements, functional parameters such as functional residual capacity and tidal volume were calculated. Significant differences between the wild-type and TIMP-3 knockout groups were observed for measurements of CT density over the entire lung, indicating increased air content in the lungs of TIMP-3 knockout mice. These results demonstrate retrospective respiratory-gated micro-CT, providing images at multiple respiratory phases that can be analyzed quantitatively to investigate anatomical changes in murine models of emphysema.

  14. Expression and arrangement of extracellular matrix proteins in the lungs of mice infected with Paracoccidioides brasiliensis conidia

    PubMed Central

    González, Angel; Lenzi, Henrique Leonel; Motta, Ester Maria; Caputo, Luzia; Restrepo, Angela; Cano, Luz Elena

    2008-01-01

    Extracellular matrix (ECM) proteins are important modulators of migration, differentiation and proliferation for the various cell types present in the lungs; they influence the immune response as well as participate in the adherence of several fungi including Paracoccidioides brasiliensis. The expression, deposition and arrangement of ECM proteins such as laminin, fibronectin, fibrinogen, collagen and proteoglycans in the lungs of mice infected with P. brasiliensis conidia has been evaluated in this study, together with the elastic fibre system. Lungs of BALB/c mice infected with P. brasiliensis conidia were analysed for the different ECM proteins by histological and immunohistochemical procedures at different times of infection. In addition, laser scanning confocal microscopy and scanning electron microscopy were used. During the early periods, the lungs of infected animals showed an inflammatory infiltrate composed mainly of polymorphonuclear neutrophils (PMNs) and macrophages, while during the later periods, mice presented a chronic inflammatory response with granuloma formation. Re-arrangement and increased expression of all ECM proteins tested were observed throughout all studied periods, especially during the occurrence of inflammatory infiltration and formation of the granuloma. The elastic fibre system showed an elastolysis process in all experiments. In conclusion, this study provides new details of pulmonary ECM distribution during the course of paracoccidioidomycosis. PMID:18336528

  15. Bone marrow-derived fibrocytes promote stem cell-like properties of lung cancer cells.

    PubMed

    Saijo, Atsuro; Goto, Hisatsugu; Nakano, Mayuri; Mitsuhashi, Atsushi; Aono, Yoshinori; Hanibuchi, Masaki; Ogawa, Hirohisa; Uehara, Hisanori; Kondo, Kazuya; Nishioka, Yasuhiko

    2018-05-01

    Cancer stem cells (CSCs) represent a minor population that have clonal tumor initiation and self-renewal capacity and are responsible for tumor initiation, metastasis, and therapeutic resistance. CSCs reside in niches, which are composed of diverse types of stromal cells and extracellular matrix components. These stromal cells regulate CSC-like properties by providing secreted factors or by physical contact. Fibrocytes are differentiated from bone marrow-derived CD14 + monocytes and have features of both macrophages and fibroblasts. Accumulating evidence has suggested that stromal fibrocytes might promote cancer progression. However, the role of fibrocytes in the CSC niches has not been revealed. We herein report that human fibrocytes enhanced the CSC-like properties of lung cancer cells through secreted factors, including osteopontin, CC-chemokine ligand 18, and plasminogen activator inhibitor-1. The PIK3K/AKT pathway was critical for fibrocytes to mediate the CSC-like functions of lung cancer cells. In human lung cancer specimens, the number of tumor-infiltrated fibrocytes was correlated with high expression of CSC-associated protein in cancer cells. These results suggest that fibrocytes may be a novel cell population that regulates the CSC-like properties of lung cancer cells in the CSC niches. Copyright © 2018. Published by Elsevier B.V.

  16. Donor-to-host transmission of bacterial and fungal infections in lung transplantation.

    PubMed

    Ruiz, I; Gavaldà, J; Monforte, V; Len, O; Román, A; Bravo, C; Ferrer, A; Tenorio, L; Román, F; Maestre, J; Molina, I; Morell, F; Pahissa, A

    2006-01-01

    The purpose of this study was to evaluate the incidence and etiology of bacterial and fungal infection or contamination in lung allograft donors and to assess donor-to-host transmission of these infections. Recipients who survived more than 24 h and their respective donors were evaluated. The overall incidence of donor infection was 52% (103 out of 197 donors). Types of donor infection included isolated contamination of preservation fluids (n = 30, 29.1%), graft colonization (n = 65, 63.1%) and bacteremia (n = 8, 7.8%). Donor-to-host transmission of bacterial or fungal infection occurred in 15 lung allograft recipients, 7.6% of lung transplants performed. Among these cases, 2 were due to donor bacteremia and 13 to colonization of the graft. Twenty-five percent of donors with bacteremia and 14.1% of colonized grafts were responsible for transmitting infection. Excluding the five cases without an effective prophylactic regimen, prophylaxis failure occurred in 11 out of 197 procedures (5.58%). Donor-to-host transmission of infection is a frequent event after lung transplantation. Fatal consequences can be avoided with an appropriate prophylactic antibiotic regimen that must be modified according to the microorganisms isolated from cultures of samples obtained from donors, grafts, preservation fluids and recipients.

  17. Serum pleiotrophin could be an early indicator for diagnosis and prognosis of non-small cell lung cancer.

    PubMed

    Du, Zi-Yan; Shi, Min-Hua; Ji, Cheng-Hong; Yu, Yong

    2015-01-01

    Pleiotrophin (PTN), an angiogenic factor, is associated with various types of cancer, including lung cancer. Our aim was to investigate the possibility of using serum PTN as an early indicator regarding disease diagnosis, classification and prognosis, for patients with non-small cell lung cancer (NSCLC). Significant differences among PTN levels in patients with small cell lung cancer (SCLC, n=40), NSCLC (n=136), and control subjects with benign pulmonary lesions (n=21), as well as patients with different pathological subtypes of NSCLC were observed. A serum level of PTN of 300.1 ng/ml, was determined as the cutoff value differentiating lung cancer patients and controls, with a sensitivity and specificity of 78.4% and 66.7%, respectively. Negative correlations between serum PTN level and pathological differentiation level, stage, and survival time were observed in our cohort of patients with NSCLC. In addition, specific elevation of PTN levels in pulmonary tissue in and around NSCLC lesions in comparison to normal pulmonary tissue obtained from the same subjects was also observed (n=2). This study suggests that the serum PTN level of patients with NSCLC could be an early indicator for diagnosis and prognosis. This conclusion should be further assessed in randomized clinical trials.

  18. Advances in combination therapy of lung cancer: Rationales, delivery technologies and dosage regimens.

    PubMed

    Wu, Lan; Leng, Donglei; Cun, Dongmei; Foged, Camilla; Yang, Mingshi

    2017-08-28

    Lung cancer is a complex disease caused by a multitude of genetic and environmental factors. The progression of lung cancer involves dynamic changes in the genome and a complex network of interactions between cancer cells with multiple, distinct cell types that form tumors. Combination therapy using different pharmaceuticals has been proven highly effective due to the ability to affect multiple cellular pathways involved in the disease progression. However, the currently used drug combination designs are primarily based on empirical clinical studies, and little attention has been given to dosage regimens, i.e. how administration routes, onsets, and durations of the combinations influence the therapeutic outcome. This is partly because combination therapy is challenged by distinct physicochemical properties and in vivo pharmacokinetics/pharmacodynamics of the individual pharmaceuticals, including small molecule drugs and biopharmaceuticals, which make the optimization of dosing and administration schedule challenging. This article reviews the recent advances in the design and development of combinations of pharmaceuticals for the treatment of lung cancer. Focus is primarily on rationales for the selection of specific combination therapies for lung cancer treatment, and state of the art of delivery technologies and dosage regimens for the combinations, tested in preclinical and clinical trials. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Lung Cancer Risk Prediction Model Incorporating Lung Function: Development and Validation in the UK Biobank Prospective Cohort Study.

    PubMed

    Muller, David C; Johansson, Mattias; Brennan, Paul

    2017-03-10

    Purpose Several lung cancer risk prediction models have been developed, but none to date have assessed the predictive ability of lung function in a population-based cohort. We sought to develop and internally validate a model incorporating lung function using data from the UK Biobank prospective cohort study. Methods This analysis included 502,321 participants without a previous diagnosis of lung cancer, predominantly between 40 and 70 years of age. We used flexible parametric survival models to estimate the 2-year probability of lung cancer, accounting for the competing risk of death. Models included predictors previously shown to be associated with lung cancer risk, including sex, variables related to smoking history and nicotine addiction, medical history, family history of lung cancer, and lung function (forced expiratory volume in 1 second [FEV1]). Results During accumulated follow-up of 1,469,518 person-years, there were 738 lung cancer diagnoses. A model incorporating all predictors had excellent discrimination (concordance (c)-statistic [95% CI] = 0.85 [0.82 to 0.87]). Internal validation suggested that the model will discriminate well when applied to new data (optimism-corrected c-statistic = 0.84). The full model, including FEV1, also had modestly superior discriminatory power than one that was designed solely on the basis of questionnaire variables (c-statistic = 0.84 [0.82 to 0.86]; optimism-corrected c-statistic = 0.83; p FEV1 = 3.4 × 10 -13 ). The full model had better discrimination than standard lung cancer screening eligibility criteria (c-statistic = 0.66 [0.64 to 0.69]). Conclusion A risk prediction model that includes lung function has strong predictive ability, which could improve eligibility criteria for lung cancer screening programs.

  20. SPECT/CT of lung nodules using 111In-DOTA-c(RGDfK) in a mouse lung carcinogenesis model.

    PubMed

    Hayakawa, Takuya; Mutoh, Michihiro; Imai, Toshio; Tsuta, Koji; Yanaka, Akinori; Fujii, Hirofumi; Yoshimoto, Mitsuyoshi

    2013-08-01

    Lung cancer is one of the leading causes of cancer-related deaths worldwide, including Japan. Although computed tomography (CT) can detect small lung lesions such as those appearing as ground glass opacity, it cannot differentiate between malignant and non-malignant lesions. Previously, we have shown that single photon emission computed tomography (SPECT) imaging using (111)In-1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid-cyclo-(Arg-Gly-Asp-D-Phe-Lys) (DOTA-c(RGDfK)), an imaging probe of αvβ3 integrin, is useful for the early detection of pancreatic cancer in a hamster pancreatic carcinogenesis model. In this study, we aimed to assess the usefulness of SPECT/CT with (111)In-DOTA-c(RGDfK) for the evaluation of the malignancy of lung cancer. Lung tumors were induced by a single intraperitoneal injection (250 mg/kg) of urethane in male A/J mice. Twenty-six weeks after the urethane treatment, SPECT was performed an hour after injection of (111)In-DOTA-c(RGDfK). Following this, the radioactivity ratios of tumor to normal lung tissue were measured by autoradiography (ARG) in the excised lung samples. We also examined the expression of αvβ3 integrin in mouse and human lung samples. Urethane treatment induced 5 hyperplasias, 41 adenomas and 12 adenocarcinomas in the lungs of 8 A/J mice. SPECT with (111)In-DOTA-c(RGDfK) could clearly visualize lung nodules, though we failed to detect small lung nodules like adenoma and hyperplasias (adenocarcinoma: 66.7%, adenoma: 33.6%, hyperplasia: 0.0%). ARG analysis revealed significant uptake of (111)In-DOTA-c(RGDfK) in all the lesions. Moreover, tumor to normal lung tissue ratios increased along with the progression of carcinogenesis. Histopathological examination using human lung tissue samples revealed clear up-regulation of αvβ3 integrin in well-differentiated adenocarcinoma (Noguchi type B and C) rather than atypical adenomatous hyperplasia. Although there are some limitations in evaluating the malignancy of small lung tumors using (111)In-DOTA-c(RGDfK), SPECT with (111)In-DOTA-c(RGDfK) might be a useful non-invasive imaging approach for evaluating the characteristics of lung tumors in mice, thus showing potential for use in humans.

  1. Severe hypertension and hypokalemia as first clinical manifestations in ectopic Cushing's syndrome.

    PubMed

    Fernández-Rodríguez, Eva; Villar-Taibo, Rocío; Pinal-Osorio, Iria; Cabezas-Agrícola, José Manuel; Anido-Herranz, Urbano; Prieto, Alma; Casanueva, Felipe F; Araujo-Vilar, David

    2008-08-01

    Ectopic ACTH production occurs in about 10% of all cases of Cushing's syndrome, and about 25% of cases of ACTH-dependent Cushing's syndrome. Diverse tumor types are able to produce ACTH ectopically, including small cell lung carcinoma. Ectopic ACTH secretion by malignant neoplasm has been reported to have earlier and more aggressive metabolic effects. We report a 59-year-old male patient with severe hypertension, metabolic alkalosis and hypokalemia as the first clinical manifestations of an ACTH-secreting small cell lung carcinoma, although the typical phenotypic features of Cushing's syndrome were not present. Ectopic Cushing's syndrome should always be ruled out in patients with severe hypertension and hypokalemia.

  2. IMAGING DIAGNOSIS-SPONTANEOUS PNEUMOMEDIASTINUM SECONDARY TO PRIMARY PULMONARY PATHOLOGY IN A DALMATIAN DOG.

    PubMed

    Agut, Amalia; Talavera, Jesus; Buendia, Antonio; Anson, Agustina; Santarelli, Giorgia; Gomez, Serafin

    2015-01-01

    A 1.5-year-old, 23 kg intact male Dalmatian dog was evaluated for acute respiratory insufficiency without a previous history of trauma or toxic exposition. Imaging revealed pneumomediastinum, pneumothorax, diffuse unstructured interstitial pulmonary pattern, pulmonary interstitial emphysema, and pneumoretroperitoneum. Histopathological evaluation of the lungs revealed perivascular and peribronchial emphysema, mild lymphocytic interstitial pneumonia with atypical proliferation of type II pneumocytes in bronchioles and alveoli. A lung disease resembling fibrosing interstitial pneumonia in man and cats has been previously reported in Dalmatians and should be included as a differential diagnosis for Dalmatians with this combination of clinical and imaging characteristics. © 2014 American College of Veterinary Radiology.

  3. Longitudinal dose and type of immunosuppression in a national cohort of Australian liver, heart, and lung transplant recipients, 1984-2006.

    PubMed

    Na, Renhua; Laaksonen, Maarit A; Grulich, Andrew E; Webster, Angela C; Meagher, Nicola S; McCaughan, Geoffrey W; Keogh, Anne M; Vajdic, Claire M

    2015-11-01

    Unconfounded comparative data on the type and dose of immunosuppressive agents among solid organ transplant recipients are sparse, as are data on longitudinal immunosuppressive therapy since transplantation. We addressed this issue in a population-based cohort of Australian liver (n = 1895), heart (n = 1220), and lung (n = 1059) transplant recipients, 1984-2006. Data on immunosuppressive therapy were retrospectively collected at discharge, three months, and one, five, 10, and 15 yr after first transplant. We computed unadjusted and adjusted estimates for the association between the type and dose of immunosuppressive therapy and organ type. After adjustment for confounders, use of induction antibody and maintenance corticosteroids was more common in heart and lung compared to liver recipients (p < 0.001), and antibody therapy for rejection more common in liver recipients (p < 0.001). Liver recipients were more likely to receive calcineurin inhibitor monotherapy, with or without corticosteroids, compared to heart and lung recipients (p < 0.001). Liver recipients consistently received lower doses of azathioprine than heart and lung recipients (p < 0.001). These differences in immunosuppression may partly explain variations in immunosuppression-related morbidity by transplanted organ, for example, malignancy risk. Longitudinal changes in the type and the dose of immunosuppressive therapy over time since transplantation also demonstrate the need for time-dependent data in observational research. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Functional characterization of pulmonary neuroendocrine cells in lung development, injury, and tumorigenesis

    USDA-ARS?s Scientific Manuscript database

    Pulmonary neuroendocrine cells (PNECs) are proposed to be the first specialized cell type to appear in the lung, but their ontogeny remains obscure. Although studies of PNECs have suggested their involvement in a number of lung functions, neither their in vivo significance nor the molecular mechanis...

  5. An observational study of Donor Ex Vivo Lung Perfusion in UK lung transplantation: DEVELOP-UK.

    PubMed

    Fisher, Andrew; Andreasson, Anders; Chrysos, Alexandros; Lally, Joanne; Mamasoula, Chrysovalanto; Exley, Catherine; Wilkinson, Jennifer; Qian, Jessica; Watson, Gillian; Lewington, Oli; Chadwick, Thomas; McColl, Elaine; Pearce, Mark; Mann, Kay; McMeekin, Nicola; Vale, Luke; Tsui, Steven; Yonan, Nizar; Simon, Andre; Marczin, Nandor; Mascaro, Jorge; Dark, John

    2016-11-01

    Many patients awaiting lung transplantation die before a donor organ becomes available. Ex vivo lung perfusion (EVLP) allows initially unusable donor lungs to be assessed and reconditioned for clinical use. The objective of the Donor Ex Vivo Lung Perfusion in UK lung transplantation study was to evaluate the clinical effectiveness and cost-effectiveness of EVLP in increasing UK lung transplant activity. A multicentre, unblinded, non-randomised, non-inferiority observational study to compare transplant outcomes between EVLP-assessed and standard donor lungs. Multicentre study involving all five UK officially designated NHS adult lung transplant centres. Patients aged ≥ 18 years with advanced lung disease accepted onto the lung transplant waiting list. The study intervention was EVLP assessment of donor lungs before determining suitability for transplantation. The primary outcome measure was survival during the first 12 months following lung transplantation. Secondary outcome measures were patient-centred outcomes that are influenced by the effectiveness of lung transplantation and that contribute to the health-care costs. Lungs from 53 donors unsuitable for standard transplant were assessed with EVLP, of which 18 (34%) were subsequently transplanted. A total of 184 participants received standard donor lungs. Owing to the early closure of the study, a non-inferiority analysis was not conducted. The Kaplan-Meier estimate of survival at 12 months was 0.67 [95% confidence interval (CI) 0.40 to 0.83] for the EVLP arm and 0.80 (95% CI 0.74 to 0.85) for the standard arm. The hazard ratio for overall 12-month survival in the EVLP arm relative to the standard arm was 1.96 (95% CI 0.83 to 4.67). Patients in the EVLP arm required ventilation for a longer period and stayed longer in an intensive therapy unit (ITU) than patients in the standard arm, but duration of overall hospital stay was similar in both groups. There was a higher rate of very early grade 3 primary graft dysfunction (PGD) in the EVLP arm, but rates of PGD did not differ between groups after 72 hours. The requirement for extracorporeal membrane oxygenation (ECMO) support was higher in the EVLP arm (7/18, 38.8%) than in the standard arm (6/184, 3.2%). There were no major differences in rates of chest radiograph abnormalities, infection, lung function or rejection by 12 months. The cost of EVLP transplants is approximately £35,000 higher than the cost of standard transplants, as a result of the cost of the EVLP procedure, and the increased ECMO use and ITU stay. Predictors of cost were quality of life on joining the waiting list, type of transplant and number of lungs transplanted. An exploratory model comparing a NHS lung transplant service that includes EVLP and standard lung transplants with one including only standard lung transplants resulted in an incremental cost-effectiveness ratio of £73,000. Interviews showed that patients had a good understanding of the need for, and the processes of, EVLP. If EVLP can increase the number of usable donor lungs and reduce waiting, it is likely to be acceptable to those waiting for lung transplantation. Study limitations include small numbers in the EVLP arm, limiting analysis to descriptive statistics and the EVLP protocol change during the study. Overall, one-third of donor lungs subjected to EVLP were deemed suitable for transplant. Estimated survival over 12 months was lower than in the standard group, but the data were also consistent with no difference in survival between groups. Patients receiving these additional transplants experience a higher rate of early graft injury and need for unplanned ECMO support, at increased cost. The small number of participants in the EVLP arm because of early study termination limits the robustness of these conclusions. The reason for the increased PGD rates, high ECMO requirement and possible differences in lung injury between EVLP protocols needs evaluation. Current Controlled Trials ISRCTN44922411. This project was funded by the NIHR Health Technology Assessment programme and will be published in full in Health Technology Assessment ; Vol. 20, No. 85. See the NIHR Journals Library website for further project information.

  6. Obesity, metabolic factors and risk of different histological types of lung cancer: A Mendelian randomization study

    PubMed Central

    Carreras-Torres, Robert; Johansson, Mattias; Haycock, Philip C.; Wade, Kaitlin H.; Relton, Caroline L.; Martin, Richard M.; Davey Smith, George; Albanes, Demetrius; Aldrich, Melinda C.; Andrew, Angeline; Bickeböller, Heike; Bojesen, Stig E.; Brunnström, Hans; Manjer, Jonas; Brüske, Irene; Caporaso, Neil E.; Chen, Chu; Christiani, David C.; Christian, W. Jay; Doherty, Jennifer A.; Duell, Eric J.; Goodman, Gary E.; Grankvist, Kjell; Haugen, Aage; Hong, Yun-Chul; Johansson, Mikael B.; Lam, Stephen; Landi, Maria Teresa; Lazarus, Philip; Le Marchand, Loïc; Liu, Geoffrey; Melander, Olle; Rennert, Gad; Risch, Angela; Haura, Eric B.; Scelo, Ghislaine; Zaridze, David; Mukeriya, Anush; Savić, Milan; Lissowska, Jolanta; Swiatkowska, Beata; Janout, Vladimir; Holcatova, Ivana; Mates, Dana; Shen, Hongbing; Tardon, Adonina; Woll, Penella; Tsao, Ming-Sound; Wu, Xifeng; Yuan, Jian-Min; Hung, Rayjean J.; Amos, Christopher I.; Brennan, Paul

    2017-01-01

    Background Assessing the relationship between lung cancer and metabolic conditions is challenging because of the confounding effect of tobacco. Mendelian randomization (MR), or the use of genetic instrumental variables to assess causality, may help to identify the metabolic drivers of lung cancer. Methods and findings We identified genetic instruments for potential metabolic risk factors and evaluated these in relation to risk using 29,266 lung cancer cases (including 11,273 adenocarcinomas, 7,426 squamous cell and 2,664 small cell cases) and 56,450 controls. The MR risk analysis suggested a causal effect of body mass index (BMI) on lung cancer risk for two of the three major histological subtypes, with evidence of a risk increase for squamous cell carcinoma (odds ratio (OR) [95% confidence interval (CI)] = 1.20 [1.01–1.43] and for small cell lung cancer (OR [95%CI] = 1.52 [1.15–2.00]) for each standard deviation (SD) increase in BMI [4.6 kg/m2]), but not for adenocarcinoma (OR [95%CI] = 0.93 [0.79–1.08]) (Pheterogeneity = 4.3x10-3). Additional analysis using a genetic instrument for BMI showed that each SD increase in BMI increased cigarette consumption by 1.27 cigarettes per day (P = 2.1x10-3), providing novel evidence that a genetic susceptibility to obesity influences smoking patterns. There was also evidence that low-density lipoprotein cholesterol was inversely associated with lung cancer overall risk (OR [95%CI] = 0.90 [0.84–0.97] per SD of 38 mg/dl), while fasting insulin was positively associated (OR [95%CI] = 1.63 [1.25–2.13] per SD of 44.4 pmol/l). Sensitivity analyses including a weighted-median approach and MR-Egger test did not detect other pleiotropic effects biasing the main results. Conclusions Our results are consistent with a causal role of fasting insulin and low-density lipoprotein cholesterol in lung cancer etiology, as well as for BMI in squamous cell and small cell carcinoma. The latter relation may be mediated by a previously unrecognized effect of obesity on smoking behavior. PMID:28594918

  7. Pulmonary tumor types induced in Wistar rats of the so-called "19-dust study".

    PubMed

    Mohr, Ulrich; Ernst, Heinrich; Roller, Markus; Pott, Friedrich

    2006-08-01

    The incidences of primary lung tumor types histologically diagnosed in 28 groups of Wistar rats of the so-called "19-dust study" are described, the total study having been already presented by Pott and Roller (Carcinogenicity study with nineteen granular dusts in rats. Eur J Oncol, 2005; 10: 249-81). Each exposed group was repeatedly instilled intratracheally with a suspension of one type and dose of 13 non-mining dusts differing in at least one of the following properties: chemical composition, density, specific surface area, and mean particle size. Eleven of the 13 dusts were classified as respirable granular bio-durable particles without known significant specific toxicity (abbreviation of the nine-word definition: GBP). In 579 (58%) lungs of 1002 rats which survived more than 26 weeks after the first instillation of GBP, at least one primary lung tumor type was observed, and in 306 (31%) at least two types. Three benign tumor types were diagnosed in the 579 tumor-bearing rats: bronchiolo-alveolar adenoma in 46%, cystic keratinizing epithelioma in 53%, and non-keratinizing epithelioma in 2.6% of the rats. Two of three malignant tumor types (bronchiolo-alveolar carcinoma and squamous cell carcinoma) occurred in 46% and 31% of the tumor-bearing rats, respectively, and adenosquamous carcinoma was diagnosed in 0.9%. Numerous lungs with a malignant tumor also showed one or more benign tumor types. In addition, single or multiple metastases from primary tumors of other sites (mainly carcinoma of the uterus) were diagnosed in 14% of the 1002 lungs. The proportionate incidences of the four predominantly diagnosed tumor types were compared with three summarized experimental groups which were exposed either to carbon black (two size classes), to titanium dioxide (two size classes), or to the total of the other nine GBP. A significant difference was not detected. The combination of dust volume with particle size correlated best with the carcinogenic effect, in contrast to dust mass and surface area.

  8. Estimating the asbestos-related lung cancer burden from mesothelioma mortality

    PubMed Central

    McCormack, V; Peto, J; Byrnes, G; Straif, K; Boffetta, P

    2012-01-01

    Background: Quantifying the asbestos-related lung cancer burden is difficult in the presence of this disease's multiple causes. We explore two methods to estimate this burden using mesothelioma deaths as a proxy for asbestos exposure. Methods: From the follow-up of 55 asbestos cohorts, we estimated ratios of (i) absolute number of asbestos-related lung cancers to mesothelioma deaths; (ii) excess lung cancer relative risk (%) to mesothelioma mortality per 1000 non-asbestos-related deaths. Results: Ratios varied by asbestos type; there were a mean 0.7 (95% confidence interval 0.5, 1.0) asbestos-related lung cancers per mesothelioma death in crocidolite cohorts (n=6 estimates), 6.1 (3.6, 10.5) in chrysotile (n=16), 4.0 (2.8, 5.9) in amosite (n=4) and 1.9 (1.4, 2.6) in mixed asbestos fibre cohorts (n=31). In a population with 2 mesothelioma deaths per 1000 deaths at ages 40–84 years (e.g., US men), the estimated lung cancer population attributable fraction due to mixed asbestos was estimated to be 4.0%. Conclusion: All types of asbestos fibres kill at least twice as many people through lung cancer than through mesothelioma, except for crocidolite. For chrysotile, widely consumed today, asbestos-related lung cancers cannot be robustly estimated from few mesothelioma deaths and the latter cannot be used to infer no excess risk of lung or other cancers. PMID:22233924

  9. Low tumour cell content in a lung tumour bank: implications for molecular characterisation.

    PubMed

    Goh, Felicia; Duhig, Edwina E; Clarke, Belinda E; McCaul, Elizabeth; Passmore, Linda; Courtney, Deborah; Windsor, Morgan; Naidoo, Rishendren; Franz, Louise; Parsonson, Kylie; Yang, Ian A; Bowman, Rayleen V; Fong, Kwun M

    2017-10-01

    Lung cancer encompasses multiple malignant epithelial tumour types, each with specific targetable, potentially actionable mutations, such that precision management mandates accurate tumour typing. Molecular characterisation studies require high tumour cell content and low necrosis content, yet lung cancers are frequently a heterogeneous mixture of tumour and stromal cells. We hypothesised that there may be systematic differences in tumour cell content according to histological subtype, and that this may have implications for tumour banks as a resource for comprehensive molecular characterisation studies in lung cancer. To investigate this, we estimated tumour cell and necrosis content of 4267 samples resected from 752 primary lung tumour specimens contributed to a lung tissue bank. We found that banked lung cancer samples had low tumour cell content (33%) generally, although it was higher in carcinoids (77.5%) than other lung cancer subtypes. Tumour cells comprise a variable and often small component of banked resected tumour samples, and are accompanied by stromal reaction, inflammation, fibrosis, and normal structures. This has implications for the adequacy of unselected tumour bank samples for diagnostic and molecular investigations, and further research is needed to determine whether tumour cell content has a significant impact on analytical results in studies using tissue from tumour bank resources. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  10. Solitary glandular papilloma of the peripheral lung: a report of two cases

    PubMed Central

    2014-01-01

    Solitary papilloma of the lung is thought to be a rare benign epithelial tumor, and complete surgical resection is currently the standard treatment for this pathology. However, some cases of papilloma have reportedly shown malignant potential. We report two cases of solitary glandular papilloma of the peripheral lung that were treated by thoracoscopic partial resection. The first patient presented with a nodular lesion in the lower lobe of the left lung that was detected on a follow-up chest computed tomography (CT) scan after treatment for laryngeal cancer. Partial lung resection was performed by video-assisted thoracoscopic surgery. In the second patient, a nodular lesion was incidentally identified in the lower lobe of the left lung during a health check-up. Partial lung resection was again performed by video-assisted thoracoscopic surgery. The postoperative course in both cases was uneventful, and no recurrences have been observed as of 44 months and 41 months postoperatively, respectively. To the best of our knowledge, malignant transformation has been reported both with the squamous type and the mixed type of solitary papilloma of the lung. The glandular variant has shown no tendency toward local recurrence after local excision and has no apparent malignant potential. Local excision is thus recommended for solitary glandular papilloma in order to preserve pulmonary function. PMID:24885310

  11. Solitary glandular papilloma of the peripheral lung: a report of two cases.

    PubMed

    Kaseda, Kaoru; Horio, Hirotoshi; Harada, Masahiko; Hishima, Tsunekazu

    2014-05-19

    Solitary papilloma of the lung is thought to be a rare benign epithelial tumor, and complete surgical resection is currently the standard treatment for this pathology. However, some cases of papilloma have reportedly shown malignant potential. We report two cases of solitary glandular papilloma of the peripheral lung that were treated by thoracoscopic partial resection. The first patient presented with a nodular lesion in the lower lobe of the left lung that was detected on a follow-up chest computed tomography (CT) scan after treatment for laryngeal cancer. Partial lung resection was performed by video-assisted thoracoscopic surgery. In the second patient, a nodular lesion was incidentally identified in the lower lobe of the left lung during a health check-up. Partial lung resection was again performed by video-assisted thoracoscopic surgery. The postoperative course in both cases was uneventful, and no recurrences have been observed as of 44 months and 41 months postoperatively, respectively. To the best of our knowledge, malignant transformation has been reported both with the squamous type and the mixed type of solitary papilloma of the lung. The glandular variant has shown no tendency toward local recurrence after local excision and has no apparent malignant potential. Local excision is thus recommended for solitary glandular papilloma in order to preserve pulmonary function.

  12. Microanalyses of lesions and lymph nodes from coalminers' lungs.

    PubMed

    Chapman, J S; Ruckley, V A

    1985-08-01

    The dust content and composition of lesions and hilar lymph nodes from the lungs of British coalworkers have been examined. Samples of macules, fibrotic nodules, and massive fibrosis (both peripheral and central sites) were dissected from 49 lungs. The highest mean dust concentrations (about 20%) were found in nodules and massive fibrosis. Overall there were no significant differences between the selected lesion types and their respective whole lung dust composition, although the central sites of massive fibrosis were found to contain on average a higher proportion of coal and a lower proportion of ash and its measured constituents, quartz and kaolin plus mica, than the edge of the lesion (p less than 0.001 for each component). There were striking differences between recovered lung and lymph node dusts. An examination of 180 specimens showed a mean quartz in lymph node dust of 20.3% compared with 6.1% in lung dust. As expected the proportion of quartz was greater in lymph nodes and lungs from men who had worked "low" rank (high ash) coal. By contrast with the corresponding figures for lung dusts, however, the mean proportion of quartz in nodes did not increase over the pathological range of pneumoconiotic lung disease. On average the proportions of kaolin and mica in lymph nodes reflect those found in lungs. The lymphotrophic nature of quartz was clearly shown although it was not possible to show an association between this clearance pathway and any particular type of lesion.

  13. Lung endothelial HO-1 targeting in vivo using lentiviral miRNA regulates apoptosis and autophagy during oxidant injury

    PubMed Central

    Zhang, Yi; Jiang, Ge; Sauler, Maor; Lee, Patty J.

    2013-01-01

    The lung endothelium is a major target for inflammatory and oxidative stress. Heme oxygenase-1 (HO-1) induction is a crucial defense mechanism during oxidant challenges, such as hyperoxia. The role of lung endothelial HO-1during hyperoxia in vivo is not well defined. We engineered lentiviral vectors with microRNA (miRNA) sequences controlled by vascular endothelium cadherin (VE-cad) to study the specific role of lung endothelial HO-1. Wild-type (WT) murine lung endothelial cells (MLECs) or WT mice were treated with lentivirus and exposed to hyperoxia (95% oxygen). We detected HO-1 knockdown (∼55%) specifically in the lung endothelium. MLECs and lungs showed approximately a 2-fold increase in apoptosis and ROS generation after HO-1 silencing. We also demonstrate for the first time that silencing endothelial HO-1 has the same effect on lung injury and survival as silencing HO-1 in multiple lung cell types and that HO-1 regulates caspase 3 activation and autophagy in endothelium during hyperoxia. These studies demonstrate the utility of endothelial-targeted gene silencing in vivo using lentiviral miRNA constructs to assess gene function and that endothelial HO-1 is an important determinant of survival during hyperoxia.—Zhang, Y., Jiang, G., Sauler, M., Lee, P. J. Lung endothelial HO-1 targeting in vivo using lentiviral miRNA regulates apoptosis and autophagy during oxidant injury. PMID:23771928

  14. Lung epithelial stem cells and their niches: Fgf10 takes center stage.

    PubMed

    Volckaert, Thomas; De Langhe, Stijn

    2014-01-01

    Throughout life adult animals crucially depend on stem cell populations to maintain and repair their tissues to ensure life-long organ function. Stem cells are characterized by their capacity to extensively self-renew and give rise to one or more differentiated cell types. These powerful stem cell properties are key to meet the changing demand for tissue replacement during normal lung homeostasis and regeneration after lung injury. Great strides have been made over the last few years to identify and characterize lung epithelial stem cells as well as their lineage relationships. Unfortunately, knowledge on what regulates the behavior and fate specification of lung epithelial stem cells is still limited, but involves communication with their microenvironment or niche, a local tissue environment that hosts and influences the behaviors or characteristics of stem cells and that comprises other cell types and extracellular matrix. As such, an intimate and dynamic epithelial-mesenchymal cross-talk, which is also essential during lung development, is required for normal homeostasis and to mount an appropriate regenerative response after lung injury. Fibroblast growth factor 10 (Fgf10) signaling in particular seems to be a well-conserved signaling pathway governing epithelial-mesenchymal interactions during lung development as well as between different adult lung epithelial stem cells and their niches. On the other hand, disruption of these reciprocal interactions leads to a dysfunctional epithelial stem cell-niche unit, which may culminate in chronic lung diseases such as chronic obstructive pulmonary disease (COPD), chronic asthma and idiopathic pulmonary fibrosis (IPF).

  15. Lung Cancers Associated with Cystic Airspaces: Underrecognized Features of Early Disease.

    PubMed

    Sheard, Sarah; Moser, Joanna; Sayer, Charlie; Stefanidis, Konstantinos; Devaraj, Anand; Vlahos, Ioannis

    2018-01-01

    Early lung cancers associated with cystic airspaces are increasingly being recognized as a cause of delayed diagnoses-owing to data gathered from screening trials and encounters in routine clinical practice as more patients undergo serial imaging. Several morphologic subtypes of cancers associated with cystic airspaces exist and can exhibit variable patterns of progression as the solid elements of the tumor grow. Current understanding of the pathogenesis of these malignancies is limited, and the numbers of cases reported in the literature are small. However, several tumor cell types are represented in these lesions, with adenocarcinoma predominating. The features of cystic airspaces differ among cases and include emphysematous bullae, congenital or fibrotic cysts, subpleural blebs, bronchiectatic airways, and distended distal airspaces. Once identified, these cystic lesions pose management challenges to radiologists in terms of distinguishing them from benign mimics of cancer that are commonly seen in patients who also are at increased risk of lung cancer. Rendering a definitive tissue-based diagnosis can be difficult when the lesions are small, and affected patients tend to be in groups that are at higher risk of requiring biopsy or resection. In addition, the decision to monitor these cases can add to patient anxiety and cause the additional burden of strained departmental resources. The authors have drawn from their experience, emerging evidence from international lung cancer screening trials, and large databases of lung cancer cases from other groups to analyze the prevalence and evolution of lung cancers associated with cystic airspaces and provide guidance for managing these lesions. Although there are insufficient data to support specific management guidelines similar to those for managing small solid and ground-glass lung nodules, these data and guidelines should be the direction for ongoing research on early detection of lung cancer. © RSNA, 2018.

  16. Functional polymorphisms in cell death pathway genes FAS and FASL contribute to risk of lung cancer.

    PubMed

    Zhang, X; Miao, X; Sun, T; Tan, W; Qu, S; Xiong, P; Zhou, Y; Lin, D

    2005-06-01

    The FAS and FASL system plays a key role in regulating apoptotic cell death and corruption of this signalling pathway has been shown to participate in immune escape and tumorigenesis. There is reduced expression of FAS but elevated expression of FASL in many types of human cancers including lung cancer. We recently reported an association between functional polymorphisms in FAS (-1377G-->A) and FASL (-844T-->C) and risk of oesophageal cancer. To examine the contribution of these polymorphisms to risk of developing lung cancer. Genotypes of 1000 lung cancer patients and 1270 controls were analysed by PCR based restriction fragment length polymorphism. Associations with risk of lung cancer were estimated by logistic regression. Compared with non-carriers, there was a 1.6 fold excess risk of developing lung cancer for carriers of the FAS -1377AA genotype (odds ratio (OR) 1.59, 95% confidence interval (CI) 1.21 to 2.10; p = 0.001), and 1.8 fold excess risk (OR 1.79, 95% CI 1.26 to 2.52; p = 0.001) for carriers of FASL -844CC. Gene-gene interaction of FAS and FASL polymorphisms increased risk of lung cancer in a multiplicative manner (OR for the carriers of both FAS -1377AA and FASL -844CC genotypes 4.18, 95% CI 2.83 to 6.18). Gene-environment interaction of FAS or FASL polymorphism and smoking associated with increased risk of lung cancer was also found. These results are consistent with our initial findings in oesophageal cancer and further support the hypothesis that the FAS and FASL triggered apoptosis pathway plays an important role in human carcinogenesis.

  17. The Superiority of IFN-λ as a Therapeutic Candidate to Control Acute Influenza Viral Lung Infection.

    PubMed

    Kim, Sujin; Kim, Min-Ji; Kim, Chang-Hoon; Kang, Ju Wan; Shin, Ha Kyung; Kim, Dong-Young; Won, Tae-Bin; Han, Doo Hee; Rhee, Chae Seo; Yoon, Joo-Heon; Kim, Hyun Jik

    2017-02-01

    Here, we studied the IFN-regulated innate immune response against influenza A virus (IAV) infection in the mouse lung and the therapeutic effect of IFN-λ2/3 in acute IAV lung infection. For viral infections, IAV (WS/33, H1N1, PR8 H1N1, H5N1) were inoculated into wild-type mice by intranasal delivery, and IAV mRNA level and viral titer were measured. To compare the antiviral effect of IFNs in vivo in the lung, neutralizing antibodies and recombinant IFNs were used. After intranasal inoculation of IAV into mice, viral infection peaked at 7 days postinfection, and the IAV titer also reached its peak at this time. We found that IFN-β and IFN-λ2/3 were preferentially induced after IAV infection and the IFN-λ2/3-mediated innate immune response was specifically required for the induction of IFN-stimulated genes (ISGs) transcription in the mouse respiratory tract. Neutralization of secreted IFN-λ2/3 aggravated acute IAV lung infection in mice with intact IFN-β induction; consistent with this finding, the transcription of ISGs was significantly reduced. Intranasal administration of IFN-λ2/3 significantly suppressed various strains of IAV infection, including WS/33 (H1N1), PR (H1N1), and H5N1 in the mouse lung, and was accompanied by greater up-regulation of ISGs. Taken together, our data indicate that the IFN-λ2/3-mediated innate immune response is necessary to protect the lungs from IAV infection, and intranasally delivered IFN-λ2/3 has the potential to be a useful therapeutic strategy for treating acute IAV lung infection.

  18. Lung cancer treatment costs, including patient responsibility, by disease stage and treatment modality, 1992 to 2003.

    PubMed

    Cipriano, Lauren E; Romanus, Dorothy; Earle, Craig C; Neville, Bridget A; Halpern, Elkan F; Gazelle, G Scott; McMahon, Pamela M

    2011-01-01

    The objective of this analysis was to estimate costs for lung cancer care and evaluate trends in the share of treatment costs that are the responsibility of Medicare beneficiaries. The Surveillance, Epidemiology, and End Results (SEER)-Medicare data from 1991-2003 for 60,231 patients with lung cancer were used to estimate monthly and patient-liability costs for clinical phases of lung cancer (prediagnosis, staging, initial, continuing, and terminal), stratified by treatment, stage, and non-small- versus small-cell lung cancer. Lung cancer-attributable costs were estimated by subtracting each patient's own prediagnosis costs. Costs were estimated as the sum of Medicare reimbursements (payments from Medicare to the service provider), co-insurance reimbursements, and patient-liability costs (deductibles and "co-payments" that are the patient's responsibility). Costs and patient-liability costs were fit with regression models to compare trends by calendar year, adjusting for age at diagnosis. The monthly treatment costs for a 72-year-old patient, diagnosed with lung cancer in 2000, in the first 6 months ranged from $2687 (no active treatment) to $9360 (chemo-radiotherapy); costs varied by stage at diagnosis and histologic type. Patient liability represented up to 21.6% of care costs and increased over the period 1992-2003 for most stage and treatment categories, even when care costs decreased or remained unchanged. The greatest monthly patient liability was incurred by chemo-radiotherapy patients, which ranged from $1617 to $2004 per month across cancer stages. Costs for lung cancer care are substantial, and Medicare is paying a smaller proportion of the total cost over time. Copyright © 2011 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  19. Impact of hydrogel nanoparticle size and functionalization on in vivo behavior for lung imaging and therapeutics

    PubMed Central

    Liu, Yongjian; Ibricevic-Richardson, Aida; Cohen, Joel A.; Cohen, Jessica L.; Gunsten, Sean P.; Fréchet, Jean M. J.; Walter, Michael J.; Welch, Michael J.; Brody, Steven L.

    2009-01-01

    Polymer chemistry offers the possibility of synthesizing multifunctional nanoparticles which incorporate moieties that enhance diagnostic and therapeutic targeting of cargo delivery to the lung. However, since rules for predicting particle behavior following modification are not well defined, it is essential that probes for tracking fate in vivo are also included. Accordingly, we designed polyacrylamide-based hydrogel particles of differing sizes, functionalized with a nona-arginine cell-penetrating peptide (Arg9), and labeled with imaging components to assess lung retention and cellular uptake after intratracheal administration. Radiolabeled microparticles (1–5 µm diameter) and nanoparticles (20–40 nm diameter) without and with Arg9 showed diffuse airspace distribution by positron emission tomography imaging. Biodistribution studies revealed that particle clearance and extrapulmonary distribution was, in part, size dependent. Microparticles were rapidly cleared by mucociliary routes but unexpectedly, also through the circulation. In contrast, nanoparticles had prolonged lung retention enhanced by Arg9 and were significantly restricted to the lung. For all particle types, uptake was predominant in alveolar macrophages, and, to a lesser extent, lung epithelial cells. In general, particles did not induce local inflammatory responses, with the exception of microparticles bearing Arg9. Whereas microparticles may be advantageous for short-term applications, nano-sized particles constitute an efficient high-retention and non-inflammatory vehicle for the delivery of diagnostic imaging agents and therapeutics to lung airspaces and alveolar macrophages that can be enhanced by Arg9. Importantly, our results show that minor particle modifications may significantly impact in vivo behavior within the complex environments of the lung, underscoring the need for animal modeling. PMID:19852512

  20. Lung transplant of extrahospitalary donor after cardiac death.

    PubMed

    Mateos Rodríguez, Alonso A; Navalpotro Pascual, José Maria; del Río Gallegos, Francisco

    2013-04-01

    Non-heart-beating donors (NHBDs) have to meet the predefined criteria for organ donation including death from irreversible cessation of the beating heart. The Maastricht conference defined 4 NHBD categories to differentiate their viability and ethical-legal support. In Spain, NHBDs who originate from an out-of-hospital setting correspond to type II donors. These are patients who have had a cardiac arrest outside hospital and, after failed CPR attempts, are transferred with hemodynamic support measures to the hospital for organ donation. The Hospital Clínico San Carlos also has a lung donation program in collaboration with the Hospital Puerta de Hierro in Madrid and the Hospital Marques de Valdecilla in Santander. The objective of this study is to describe the results of lung transplantation of after cardiac death program, specifically the section regarding lung extraction donation. Twenty potential lung donors were obtained during the study. Most patients were male (19 cases), with a mean age of 42 years (36.5-49.5 years). A total of 33 lungs were donated (18 right and 15 left lungs). Most extractions were multiorganic (19 cases). One liver, 19 kidneys, 2 pancreas, and 19 corneas were obtained from these donors; bone tissue was obtained from all donors. The transplantation was bipulmonary in 13 cases and unipulmonary in 7. Thirty days after transplantation, 2 recipients died, 1 died of stroke associated with bilateral pneumonia and 1 died of hypovolemic shock resulting from hemothorax. The remaining 18 patients were progressing well at 30 days. Our data suggest that lung transplantation from patients after extrahospitalary cardiac death is feasible. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Detection of circulating tumor cells using oHSV1-hTERT-GFP in lung cancer.

    PubMed

    Gao, Hongjun; Liu, Wenjing; Yang, Shaoxing; Zhang, Wen; Li, Xiaoyan; Qin, Haifeng; Wang, Weixia; Zhao, Changyun

    2018-01-01

    This study was conducted to evaluate the clinical utility of the oHSV1-hTERT-GFP circulating tumor cell (CTC) detection method in the peripheral blood of patients with lung cancer by comparing its sensitivity to the CellSearch CTC detection method. The oHSV1-hTERT-GFP and CellSearch CTC detection methods were compared using peripheral blood samples of patients pathologically diagnosed with lung cancer. A total of 240 patients with lung cancer were recruited, including 89 patients who were newly diagnosed and 151 patients who had previously received treatment. Sixty-six newly diagnosed patients were evaluated using both methods. The CTC detection rates were 71.2% and 33.3% using the oHSV1-hTERT-GFP and CellSearch methods, respectively; this difference was statistically significant (P = 0.000). Among the entire cohort (n = 240), the CTC detection rate using the oHSV1-hTERT-GFP method was 76.3%, with a CTC count of 0-81. The CTC detection rates were 76.7%, 68.9%, and 76.3% in patients with squamous cell carcinoma, adenocarcinoma, and small cell lung cancer, respectively. There was no statistically significant difference in the CTC detection rates between these different pathological subtypes (P = 0.738). The CTC detection rates of 79.8% and 74.4% in patients with stage I-III and IV lung cancer, respectively, were not significantly different (P = 0.427). The oHSV1-hTERT-GFP method is highly effective for detecting CTCs in patients with lung cancer, independent of pathological type and disease stage, and is ideal for large-scale clinical applications. © 2017 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  2. Lack of any association between blood groups and lung cancer, independent of histology.

    PubMed

    Oguz, Arzu; Unal, Dilek; Tasdemir, Arzu; Karahan, Samet; Aykas, Fatma; Mutlu, Hasan; Cihan, Yasemin Benderli; Kanbay, Mehmet

    2013-01-01

    Lung cancer, the leading cause of cancer deaths, is divided into 2 main classes based on its biology, therapy and prognosis: non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). Many cases are at an advanced stage at diagnosis, which is a major obstacle to improving outcomes. It is important to define the high risk group patients for early diagnosis and chance of cure. Blood group antigens are chemical components on erythrocyte membranes but they are also expressed on a variety of epithelial cells. Links between ABO blood groups with benign or malignant diseases, such as gastric and pancreas cancers, have been observed for a long time. In this study, we aimed to investigate any possible relationship between lung cancer histological subtypes and ABO-Rh blood groups. The files of 307 pathologically confirmed lung cancer patients were were reviewed retrospectively. Cases with a serologically determined blood group and Rh factor were included and those with a history of another primary cancer were excluded, leaving a total of 221. The distribution of blood groups of the lung cancer patients were compared with the distribution of blood groups of healthy donors admitted to the Turkish Red Crescent Blood Service in our city in the year 2012. There was no significant difference between patients with lung cancer of either type and the control group in terms of distribution of ABO blood groups and Rh factor (p: 0.073). There was also no relationship with non small cell cancer histological subtypes. In this study, we found no relationship between the ABO-Rhesus blood groups and NSCLC and SCLC groups. To our knowledge this is the first analysis of ABO blood groups in SCLC patients.

  3. Morphometric and histological analysis of the lungs of Syrian golden hamsters.

    PubMed Central

    Kennedy, A R; Desrosiers, A; Terzaghi, M; Little, J B

    1978-01-01

    Hamster lung morphometry and histology have been studied in an attempt to determine differences between hamster and human lungs which may have relevance for lung carcinogenesis studies. Morphometric measurements were made on fresh lungs, lung casts, and histological sections. Cell type and frequency measurements were determined from frozen, paraffin, 1 micron plastic (glycol methacrylate) and electron microscopic sections. A standard terminology for hamster lung histology is established, and differences between hamster and human lung morphometry and histology are discussed. Images Fig. 2 Fig. 3 Fig. 4 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 Fig. 17 Fig. 18 Fig. 19 Fig. 20 Fig. 21 Fig. 22 PMID:640957

  4. Macrophage A2A Adenosinergic Receptor Modulates Oxygen-Induced Augmentation of Murine Lung Injury

    PubMed Central

    D’Alessio, Franco R.; Eto, Yoshiki; Chau, Eric; Avalos, Claudia; Waickman, Adam T.; Garibaldi, Brian T.; Mock, Jason R.; Files, Daniel C.; Sidhaye, Venkataramana; Polotsky, Vsevolod Y.; Powell, Jonathan; Horton, Maureen; King, Landon S.

    2013-01-01

    Acute respiratory distress syndrome (ARDS) causes significant morbidity and mortality. Exacerbating factors increasing the risk of ARDS remain unknown. Supplemental oxygen is often necessary in both mild and severe lung disease. The potential effects of supplemental oxygen may include augmentation of lung inflammation by inhibiting anti-inflammatory pathways in alveolar macrophages. We sought to determine oxygen-derived effects on the anti-inflammatory A2A adenosinergic (ADORA2A) receptor in macrophages, and the role of the ADORA2A receptor in lung injury. Wild-type (WT) and ADORA2A−/− mice received intratracheal lipopolysaccharide (IT LPS), followed 12 hours later by continuous exposure to 21% oxygen (control mice) or 60% oxygen for 1 to 3 days. We measured the phenotypic endpoints of lung injury and the alveolar macrophage inflammatory state. We tested an ADORA2A-specific agonist, CGS-21680 hydrochloride, in LPS plus oxygen-exposed WT and ADORA2A−/− mice. We determined the specific effects of myeloid ADORA2A, using chimera experiments. Compared with WT mice, ADORA2A−/− mice exposed to IT LPS and 60% oxygen demonstrated significantly more histologic lung injury, alveolar neutrophils, and protein. Macrophages from ADORA2A−/− mice exposed to LPS plus oxygen expressed higher concentrations of proinflammatory cytokines and cosignaling molecules. CGS-21680 prevented the oxygen-induced augmentation of lung injury after LPS only in WT mice. Chimera experiments demonstrated that the transfer of WT but not ADORA2A−/− bone marrow cells into irradiated ADORA2A−/− mice reduced lung injury after LPS plus oxygen, demonstrating myeloid ADORA2A protection. ADORA2A is protective against lung injury after LPS and oxygen. Oxygen after LPS increases macrophage activation to augment lung injury by inhibiting the ADORA2A pathway. PMID:23349051

  5. Extracorporeal membrane oxygenation as a bridge to lung transplant: midterm outcomes.

    PubMed

    Bermudez, Christian A; Rocha, Rodolfo V; Zaldonis, Diana; Bhama, Jay K; Crespo, Maria M; Shigemura, Norihisa; Pilewski, Joseph M; Sappington, Penny L; Boujoukos, Arthur J; Toyoda, Yoshiya

    2011-10-01

    Extracorporeal membrane oxygenation (ECMO) is used occasionally as a bridge to lung transplantation. The impact on mid-term survival is unknown. We analyzed outcomes after lung transplant over a 19-year period in patients who received ECMO support. From March 1991 to October 2010, 1,305 lung transplants were performed at our institution. Seventeen patients (1.3%) were supported with ECMO before lung transplant. Diagnoses included retransplantation (n = 6), pulmonary fibrosis (n = 6), cystic fibrosis (n = 4), and chronic obstructive pulmonary disease (n = 1). Fifteen patients underwent double lung transplant, one patient had single left lung transplant and one patient had a heart-lung transplant. Venovenous and venoarterial ECMO were implanted in eight and nine cases, respectively. Median duration of support was 3.2 days (range, 1 to 49 days). Mean patient follow-up was 2.3 years. Thirty-day, 1-year, and 3-year survivals were 81%, 74%, and 65%, respectively, for the supported patients and 93%, 78%, and 62% in the control group (p = 0.56). Two-year survival was not affected by ECMO type, with survival of five out of nine patients supported by venoarterial ECMO vs seven out of eight patients supported by venovenous ECMO (p = 0.17). At 1- year follow-up, allograft function for the ECMO-supported patients did not differ from the control group (forced expiratory volume in one second, 2.35 L vs 2.09 L, p = 0.39) (forced vital capacity, 3.06 L vs 2.71 L, p = 0.34). Extracorporeal membrane oxygenation as a bridge to lung transplantation is associated with higher perioperative mortality but acceptable mid-term survival in carefully selected patients. Late allograft function did not differ in patients who received ECMO support before lung transplant from those who did not receive ECMO. Copyright © 2011 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  6. EGFR mutations in early-stage and advanced-stage lung adenocarcinoma: Analysis based on large-scale data from China.

    PubMed

    Pi, Can; Xu, Chong-Rui; Zhang, Ming-Feng; Peng, Xiao-Xiao; Wei, Xue-Wu; Gao, Xing; Yan, Hong-Hong; Zhou, Qing

    2018-05-02

    EGFR-tyrosine kinase inhibitors play an important role in the treatment of advanced non-small cell lung cancer (NSCLC). EGFR mutations in advanced NSCLC occur in approximately 35% of Asian patients and 60% of patients with adenocarcinoma. However, the frequency and type of EGFR mutations in early-stage lung adenocarcinoma remain unclear. We retrospectively collected data on patients diagnosed with lung adenocarcinoma tested for EGFR mutation. Early stage was defined as pathological stage IA-IIIA after radical lung cancer surgery, and advanced stage was defined as clinical stage IIIB without the opportunity for curative treatment or stage IV according to the American Joint Committee on Cancer Staging Manual, 7th edition. A total of 1699 patients were enrolled in this study from May 2014 to May 2016; 750 were assigned to the early-stage and 949 to the advanced-stage group. Baseline characteristics of the two groups were balanced, except that there were more smokers in the advanced-stage group (P < 0.001). The total EGFR mutation rate in the early-stage group was similar to that in the advanced-stage group (53.6% vs. 51.4%, respectively; P = 0.379). There was no significant difference in EGFR mutation type between the two groups. In subgroup analysis of smoking history, there was no difference in EGFR mutation frequency or type between the early-stage and advanced-stage groups. Early-stage and advanced-stage groups exhibited the same EGFR mutation frequencies and types. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  7. Indirectly estimated absolute lung cancer mortality rates by smoking status and histological type based on a systematic review

    PubMed Central

    2013-01-01

    Background National smoking-specific lung cancer mortality rates are unavailable, and studies presenting estimates are limited, particularly by histology. This hinders interpretation. We attempted to rectify this by deriving estimates indirectly, combining data from national rates and epidemiological studies. Methods We estimated study-specific absolute mortality rates and variances by histology and smoking habit (never/ever/current/former) based on relative risk estimates derived from studies published in the 20th century, coupled with WHO mortality data for age 70–74 for the relevant country and period. Studies with populations grossly unrepresentative nationally were excluded. 70–74 was chosen based on analyses of large cohort studies presenting rates by smoking and age. Variations by sex, period and region were assessed by meta-analysis and meta-regression. Results 148 studies provided estimates (Europe 59, America 54, China 22, other Asia 13), 54 providing estimates by histology (squamous cell carcinoma, adenocarcinoma). For all smoking habits and lung cancer types, mortality rates were higher in males, the excess less evident for never smokers. Never smoker rates were clearly highest in China, and showed some increasing time trend, particularly for adenocarcinoma. Ever smoker rates were higher in parts of Europe and America than in China, with the time trend very clear, especially for adenocarcinoma. Variations by time trend and continent were clear for current smokers (rates being higher in Europe and America than Asia), but less clear for former smokers. Models involving continent and trend explained much variability, but non-linearity was sometimes seen (with rates lower in 1991–99 than 1981–90), and there was regional variation within continent (with rates in Europe often high in UK and low in Scandinavia, and higher in North than South America). Conclusions The indirect method may be questioned, because of variations in definition of smoking and lung cancer type in the epidemiological database, changes over time in diagnosis of lung cancer types, lack of national representativeness of some studies, and regional variation in smoking misclassification. However, the results seem consistent with the literature, and provide additional information on variability by time and region, including evidence of a rise in never smoker adenocarcinoma rates relative to squamous cell carcinoma rates. PMID:23570286

  8. Fibrocytes Regulate Wilms’ Tumor 1-Positive Cell Accumulation in Severe Fibrotic Lung Disease

    PubMed Central

    Sontake, Vishwaraj; Shanmukhappa, Shiva K.; DiPasquale, Betsy A.; Reddy, Geereddy B.; Medvedovic, Mario; Hardie, William D.; White, Eric S.; Madala, Satish K.

    2015-01-01

    Collagen-producing myofibroblast transdifferentiation is considered a crucial determinant in the formation of scar tissue in the lungs of patients with idiopathic pulmonary fibrosis (IPF). Multiple resident pulmonary cell types and bone marrow-derived fibrocytes have been implicated as contributors to fibrotic lesions due to the transdifferentiation potential of these cells into myofibroblasts. In this study, we assessed the expression of Wilms’ tumor 1 (WT1), a known marker of mesothelial cells, in various cell types in normal and fibrotic lungs. We demonstrate that WT1 is expressed by both mesothelial and mesenchymal cells in IPF lungs, but has limited or no expression in normal human lungs. We also demonstrate that WT1-positive cells accumulate in fibrotic lung lesions, using two different mouse models of pulmonary fibrosis and WT1 promoter-driven fluorescent reporter mice. Reconstitution of bone-marrow cells into a transforming growth factor-α transgenic-mouse model demonstrated that fibrocytes do not transform into WT1-positive mesenchymal cells, but do augment accumulation of WT1-positive cells in severe fibrotic lung disease. Importantly, the number of WT1-positive cells in fibrotic lesions were correlated with severity of lung disease as assessed by changes in lung function, histology, and hydroxyproline levels in mice. Finally, inhibition of WT1 expression was sufficient to attenuate collagen and other extracellular-matrix gene production by mesenchymal cells from both murine and human fibrotic lungs. Thus, the results of this study demonstrate a novel association between fibrocyte-driven WT1-positive cell accumulation and severe fibrotic lung disease. PMID:26371248

  9. Morphological effects of chronic bilateral phrenectomy or vagotomy in the fetal lamb lung.

    PubMed Central

    Alcorn, D; Adamson, T M; Maloney, J E; Robinson, P M

    1980-01-01

    The relationship between fetal espiratory activity and fetal lung development has been studied at the cellular level using two experimental models. Chronic bilateral phrenectomy over a period of 20-28 days during the last trimester of the fetal lamb resulted in hypoplastic lungs, although cellular maturity, as indicated by the presence of alveolar epithelial Type II cells, was present. In the lungs from fetal lambs undergoing sham operations for a similar time course there was evidence of enhanced alveolar proliferation when compared with lungs from normal fetal sheep of a similar gastational age, most probably as a result of operative stress. Following chronic bilateral vagotomy no changes in size or histology of the fetal lamb lungs were detected. At an ultrastructural level, however, inclusions of Type II cells consistently showed the loss of the typical osmiophilic lamellated appearance. These results indicate the importance of the fetal breathing apparatus in maintaining a volume of lung liquid which is adequate for normal pulmonary development, particularly during the phase in which alveoli are formed. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 PMID:7429961

  10. Extracellular adenosine production by ecto-5′-nucleotidase (CD73) enhances radiation-induced lung fibrosis

    PubMed Central

    Wirsdörfer, Florian; de Leve, Simone; Cappuccini, Federica; Eldh, Therese; Meyer, Alina V.; Gau, Eva; Thompson, Linda F.; Chen, Ning-Yuan; Karmouty-Quintana, Harry; Fischer, Ute; Kasper, Michael; Klein, Diana; Ritchey, Jerry W.; Blackburn, Michael R.; Westendorf, Astrid M.; Stuschke, Martin; Jendrossek, Verena

    2016-01-01

    Radiation-induced pulmonary fibrosis is a severe side effect of thoracic irradiation, but its pathogenesis remains poorly understood and no effective treatment is available. In this study, we investigated the role of the extracellular adenosine as generated by the ecto-5'-nucleotidase CD73 in fibrosis development after thoracic irradiation. Exposure of wild-type C57BL/6 mice to a single dose (15 Gray) of whole thorax irradiation triggered a progressive increase in CD73 activity in the lung between 3 and 30 weeks post-irradiation. In parallel, adenosine levels in bronchoalveolar lavage fluid (BALF) were increased by approximately three-fold. Histological evidence of lung fibrosis was observed by 25 weeks after irradiation. Conversely, CD73-deficient mice failed to accumulate adenosine in BALF and exhibited significantly less radiation-induced lung fibrosis (P<0.010). Furthermore, treatment of wild-type mice with pegylated adenosine deaminase (PEG-ADA) or CD73 antibodies also significantly reduced radiation-induced lung fibrosis. Taken together, our findings demonstrate that CD73 potentiates radiation-induced lung fibrosis, suggesting that existing pharmacological strategies for modulating adenosine may be effective in limiting lung toxicities associated with the treatment of thoracic malignancies. PMID:26921334

  11. Tissue factor deficiency increases alveolar hemorrhage and death in influenza A virus-infected mice.

    PubMed

    Antoniak, S; Tatsumi, K; Hisada, Y; Milner, J J; Neidich, S D; Shaver, C M; Pawlinski, R; Beck, M A; Bastarache, J A; Mackman, N

    2016-06-01

    Essentials H1N1 Influenza A virus (IAV) infection is a hemostatic challenge for the lung. Tissue factor (TF) on lung epithelial cells maintains lung hemostasis after IAV infection. Reduced TF-dependent activation of coagulation leads to alveolar hemorrhage. Anticoagulation might increase the risk for hemorrhages into the lung during severe IAV infection. Background Influenza A virus (IAV) infection is a common respiratory tract infection that causes considerable morbidity and mortality worldwide. Objective To investigate the effect of genetic deficiency of tissue factor (TF) in a mouse model of IAV infection. Methods Wild-type mice, low-TF (LTF) mice and mice with the TF gene deleted in different cell types were infected with a mouse-adapted A/Puerto Rico/8/34 H1N1 strain of IAV. TF expression was measured in the lungs, and bronchoalveolar lavage fluid (BALF) was collected to measure extracellular vesicle TF, activation of coagulation, alveolar hemorrhage, and inflammation. Results IAV infection of wild-type mice increased lung TF expression, activation of coagulation and inflammation in BALF, but also led to alveolar hemorrhage. LTF mice and mice with selective deficiency of TF in lung epithelial cells had low basal levels of TF and failed to increase TF expression after infection; these two strains of mice had more alveolar hemorrhage and death than controls. In contrast, deletion of TF in either myeloid cells or endothelial cells and hematopoietic cells did not increase alveolar hemorrhage or death after IAV infection. These results indicate that TF expression in the lung, particularly in epithelial cells, is required to maintain alveolar hemostasis after IAV infection. Conclusion Our study indicates that TF-dependent activation of coagulation is required to limit alveolar hemorrhage and death after IAV infection. © 2016 International Society on Thrombosis and Haemostasis.

  12. Hybrid detection of lung nodules on CT scan images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Lin; Tan, Yongqiang; Schwartz, Lawrence H.

    Purpose: The diversity of lung nodules poses difficulty for the current computer-aided diagnostic (CAD) schemes for lung nodule detection on computed tomography (CT) scan images, especially in large-scale CT screening studies. We proposed a novel CAD scheme based on a hybrid method to address the challenges of detection in diverse lung nodules. Methods: The hybrid method proposed in this paper integrates several existing and widely used algorithms in the field of nodule detection, including morphological operation, dot-enhancement based on Hessian matrix, fuzzy connectedness segmentation, local density maximum algorithm, geodesic distance map, and regression tree classification. All of the adopted algorithmsmore » were organized into tree structures with multi-nodes. Each node in the tree structure aimed to deal with one type of lung nodule. Results: The method has been evaluated on 294 CT scans from the Lung Image Database Consortium (LIDC) dataset. The CT scans were randomly divided into two independent subsets: a training set (196 scans) and a test set (98 scans). In total, the 294 CT scans contained 631 lung nodules, which were annotated by at least two radiologists participating in the LIDC project. The sensitivity and false positive per scan for the training set were 87% and 2.61%. The sensitivity and false positive per scan for the testing set were 85.2% and 3.13%. Conclusions: The proposed hybrid method yielded high performance on the evaluation dataset and exhibits advantages over existing CAD schemes. We believe that the present method would be useful for a wide variety of CT imaging protocols used in both routine diagnosis and screening studies.« less

  13. The microbiome of the lung and its extracellular vesicles in nonsmokers, healthy smokers and COPD patients

    PubMed Central

    Kim, Hyun Jung; Kim, You-Sun; Kim, Kang-Hyun; Choi, Jun-Pyo; Kim, Yoon-Keun; Yun, Sunmi; Sharma, Lokesh; Dela Cruz, Charles S; Lee, Jae Seung; Oh, Yeon-Mok; Lee, Sang-Do; Lee, Sei Won

    2017-01-01

    Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease, and bacterial infection plays a role in its pathogenesis. Bacteria secrete nanometer-sized extracellular vesicles (EVs), which may induce more immune dysfunction and inflammation than the bacteria themselves. We hypothesized that the microbiome of lung EVs might have distinct characteristics depending on the presence of COPD and smoking status. We analyzed and compared the microbiomes of 13 nonsmokers with normal spirometry, 13 smokers with normal spirometry (healthy smokers) and 13 patients with COPD by using 16S ribosomal RNA gene sequencing of surgical lung tissue and lung EVs. Subjects were matched for age and sex in all groups and for smoking levels in the COPD and healthy smoker groups. Each group included 12 men and 1 woman with the same mean age of 65.5 years. In all groups, EVs consistently showed more operational taxonomic units (OTUs) than lung tissue. In the healthy smoker and COPD groups, EVs had a higher Shannon index and a lower Simpson index than lung tissue and this trend was more prominent in the COPD group. Principal component analysis (PCA) showed clusters based on sample type rather than participants' clinical characteristics. Stenotrophomonas, Propionibacterium and Alicyclobacillus were the most commonly found genera. Firmicutes were highly present in the EVs of the COPD group compared with other samples or groups. Our analysis of the lung microbiome revealed that the bacterial communities present in the EVs and in the COPD group possessed distinct characteristics with differences in the OTUs, diversity indexes and PCA clustering. PMID:28408748

  14. A Validated Clinical Risk Prediction Model for Lung Cancer in Smokers of All Ages and Exposure Types: A HUNT Study.

    PubMed

    Markaki, Maria; Tsamardinos, Ioannis; Langhammer, Arnulf; Lagani, Vincenzo; Hveem, Kristian; Røe, Oluf Dimitri

    2018-05-01

    Lung cancer causes >1·6 million deaths annually, with early diagnosis being paramount to effective treatment. Here we present a validated risk assessment model for lung cancer screening. The prospective HUNT2 population study in Norway examined 65,237 people aged >20years in 1995-97. After a median of 15·2years, 583 lung cancer cases had been diagnosed; 552 (94·7%) ever-smokers and 31 (5·3%) never-smokers. We performed multivariable analyses of 36 candidate risk predictors, using multiple imputation of missing data and backwards feature selection with Cox regression. The resulting model was validated in an independent Norwegian prospective dataset of 45,341 ever-smokers, in which 675 lung cancers had been diagnosed after a median follow-up of 11·6years. Our final HUNT Lung Cancer Model included age, pack-years, smoking intensity, years since smoking cessation, body mass index, daily cough, and hours of daily indoors exposure to smoke. External validation showed a 0·879 concordance index (95% CI [0·866-0·891]) with an area under the curve of 0·87 (95% CI [0·85-0·89]) within 6years. Only 22% of ever-smokers would need screening to identify 81·85% of all lung cancers within 6years. Our model of seven variables is simple, accurate, and useful for screening selection. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Lung Microtissue Array to Screen the Fibrogenic Potential of Carbon Nanotubes

    PubMed Central

    Chen, Zhaowei; Wang, Qixin; Asmani, Mohammadnabi; Li, Yan; Liu, Chang; Li, Changning; Lippmann, Julian M.; Wu, Yun; Zhao, Ruogang

    2016-01-01

    Due to their excellent physical and chemical characteristics, multi-wall carbon nanotubes (MWCNT) have the potential to be used in structural composites, conductive materials, sensors, drug delivery and medical imaging. However, because of their small-size and light-weight, the applications of MWCNT also raise health concerns. In vivo animal studies have shown that MWCNT cause biomechanical and genetic alterations in the lung tissue which lead to lung fibrosis. To screen the fibrogenic risk factor of specific types of MWCNT, we developed a human lung microtissue array device that allows real-time and in-situ readout of the biomechanical properties of the engineered lung microtissue upon MWCNT insult. We showed that the higher the MWCNT concentration, the more severe cytotoxicity was observed. More importantly, short type MWCNT at low concentration of 50 ng/ml stimulated microtissue formation and contraction force generation, and caused substantial increase in the fibrogenic marker miR-21 expression, indicating the high fibrogenic potential of this specific carbon nanotube type and concentration. The presented microtissue array system provides a powerful tool for high-throughput examination of the therapeutic and toxicological effects of target compounds in realistic tissue environment. PMID:27510174

  16. Overexpression of TGF-alpha increases lung tissue hysteresivity in transgenic mice.

    PubMed

    Pillow, J J; Korfhagen, T R; Ikegami, M; Sly, P D

    2001-12-01

    Increased transforming growth factor (TGF)-alpha has been observed in neonatal chronic lung disease. Lungs of transgenic mice that overexpress TGF-alpha develop enlarged air spaces and pulmonary fibrosis compared with wild-type mice. We hypothesized that these pathological changes may alter the mechanical coupling of viscous and elastic forces within lung parenchyma. Respiratory impedance was measured in open-chested, tracheostomized adult wild-type and TGF-alpha mice by using the forced oscillation technique (0.25-19.63 Hz) delivered by flexiVent (Scireq, Montreal, PQ). Estimates of airway resistance (Raw), inertance (I), and the coefficients of tissue damping (G(L)) and tissue elastance (H(L)) were obtained by fitting a model to each impedance spectrum. Hysteresivity (eta) was calculated as G(L)/H(L). There was a significant increase in eta (P < 0.01) and a trend to a decrease in H(L) (P = 0.07) of TGF-alpha mice compared with the wild-type group. There was no significant change in Raw, I, or G(L). Structural abnormality present in the lungs of adult TGF-alpha mice alters viscoelastic coupling of the tissues, as evidenced by a change in eta.

  17. Functional analysis of Discoidin domain receptor 2 mutation and expression in squamous cell lung cancer.

    PubMed

    Kobayashi-Watanabe, Naomi; Sato, Akemi; Watanabe, Tatsuro; Abe, Tomonori; Nakashima, Chiho; Sueoka, Eisaburo; Kimura, Shinya; Sueoka-Aragane, Naoko

    2017-08-01

    Discoidin domain receptor (DDR) 2 mutations have recently been reported to be candidate targets of molecular therapy in lung squamous cell carcinoma (SQCC). However, the status of DDR2 expression and mutations, as well as their precise roles in lung SQCC, have not been clarified. We here report DDR2 mutation and expression status in clinical samples and its role of lung SQCC. We investigated DDR2 expression and mutation status in 44 human clinical samples and 7 cell lines. Biological functions of DDR2 were assessed by in vitro cell invasion assay and animal model experiments. Endogenous DDR2 protein expression levels were high in one cell line, PC-1, and immunohistochemistry of lung cancer tissue array showed high levels of DDR2 protein in 29% of lung SQCC patients. A mutation (T681I) identified in lung SQCC and the cell line EBC-1 was detected among 44 primary lung SQCC samples and 7 lung SQCC cell lines. Although Forced expression of DDR2 and its mutant (T681I) led to induce SQCC cell invasion in vitro, only wild type DDR2 enhanced lung metastasis in an animal model. We also found that ectopic expression of DDR2 induced MMP-1 mRNA expression accompanied by phosphorylation of c-Jun after treatment with its ligand, collagen type I, but DDR2 with the T681I mutation did not, suggesting that T681I mutation is an inactivating mutation. Overexpression of DDR2 might contribute to tumor progression in lung SQCC. The overexpression of DDR2 could be potential molecular target of lung SQCC. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Fibroblast Activation Protein (FAP) Accelerates Collagen Degradation and Clearance from Lungs in Mice.

    PubMed

    Fan, Ming-Hui; Zhu, Qiang; Li, Hui-Hua; Ra, Hyun-Jeong; Majumdar, Sonali; Gulick, Dexter L; Jerome, Jacob A; Madsen, Daniel H; Christofidou-Solomidou, Melpo; Speicher, David W; Bachovchin, William W; Feghali-Bostwick, Carol; Puré, Ellen

    2016-04-08

    Idiopathic pulmonary fibrosis is a disease characterized by progressive, unrelenting lung scarring, with death from respiratory failure within 2-4 years unless lung transplantation is performed. New effective therapies are clearly needed. Fibroblast activation protein (FAP) is a cell surface-associated serine protease up-regulated in the lungs of patients with idiopathic pulmonary fibrosis as well as in wound healing and cancer. We postulate that FAP is not only a marker of disease but influences the development of pulmonary fibrosis after lung injury. In two different models of pulmonary fibrosis, intratracheal bleomycin instillation and thoracic irradiation, we find increased mortality and increased lung fibrosis in FAP-deficient mice compared with wild-type mice. Lung extracellular matrix analysis reveals accumulation of intermediate-sized collagen fragments in FAP-deficient mouse lungs, consistent within vitrostudies showing that FAP mediates ordered proteolytic processing of matrix metalloproteinase (MMP)-derived collagen cleavage products. FAP-mediated collagen processing leads to increased collagen internalization without altering expression of the endocytic collagen receptor, Endo180. Pharmacologic FAP inhibition decreases collagen internalization as expected. Conversely, restoration of FAP expression in the lungs of FAP-deficient mice decreases lung hydroxyproline content after intratracheal bleomycin to levels comparable with that of wild-type controls. Our findings indicate that FAP participates directly, in concert with MMPs, in collagen catabolism and clearance and is an important factor in resolving scar after injury and restoring lung homeostasis. Our study identifies FAP as a novel endogenous regulator of fibrosis and is the first to show FAP's protective effects in the lung. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Repositioning approved drugs for the treatment of problematic cancers using a screening approach

    PubMed Central

    Kuttler, Fabien; Banfi, Damiano; Turcatti, Gerardo; Dyson, Paul J.

    2017-01-01

    Advances in treatment strategies together with an earlier diagnosis have considerably increased the average survival of cancer patients over the last four decades. Nevertheless, despite the growing number of new antineoplastic agents introduced each year, there is still no adequate therapy for problematic malignancies such as pancreatic, lung and stomach cancers. Consequently, it is important to ensure that existing drugs used to treat other types of cancers, and potentially other diseases, are not overlooked when searching for new chemotherapy regimens for these problematic cancer types. We describe a screening approach that identifies chemotherapeutics for the treatment of lung and pancreatic cancers, based on drugs already approved for other applications. Initially, the 1280 chemically and pharmacologically diverse compounds from the Prestwick Chemical Library® (PCL) were screened against A549 (lung cancer) and PANC-1 (pancreatic carcinoma) cells using the PrestoBlue fluorescent-based cell viability assay. More than 100 compounds from the PCL were identified as hits in one or both cell lines (80 of them, being drugs used to treat diseases other than cancer). Selected PCL hits were further evaluated in a dose-response manner. Promising candidates for repositioning emanating from this study include antiparasitics, cardiac glycosides, as well as the anticancer drugs vorinostat and topotecan. PMID:28166232

  20. Cellular morphometry of the bronchi of human and dog lungs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robbins, E.S.

    1991-03-01

    One hundred and thirty-one bronchial samples from 62 patients have been dissected by generation from fixed surgical lung specimens obtained after the removal of pathological lesions. Complete patient records including occupational and smoking histories, as well as possible exposure to radon, are obtained. In addition, one hundred and sixty-two mongol dog bronchi dissected from different lobes of 23 dog lungs have also been similarly prepared. Ninety-four human samples have been completely processed for electron microscopy and have yielded 994 electron micrographs of which 532 have been entered into the Computerized Stereological Analysis System (COSAS) and been used for the measurementmore » of the distances of basal and mucous cell nuclei to the epithelial free surface. Similarly 240 micrographs of dog epithelium from 31 bronchial samples have been entered into COSAS. We have, using the COSAS planimetry program, established data bases which describe the volume density and nuclear numbers per electron micrograph for 5 cell types of the human bronchial epithelial lining of men and women, as well as smokers, non-smokers and ex-smokers and similar parameters for the epithelial cell types of dog bronchi. The data are being used to develop weighting factors for dosimetry and radon risk analysis. 26 refs., 7 figs., 4 tabs.« less

  1. Group 2 Innate Lymphoid Cells in Pulmonary Immunity and Tissue Homeostasis.

    PubMed

    Mindt, Barbara C; Fritz, Jörg H; Duerr, Claudia U

    2018-01-01

    Group 2 innate lymphoid cells (ILC2) represent an evolutionary rather old but only recently identified member of the family of innate lymphoid cells and have received much attention since their detailed description in 2010. They can orchestrate innate as well as adaptive immune responses as they interact with and influence several immune and non-immune cell populations. Moreover, ILC2 are able to rapidly secrete large amounts of type 2 cytokines that can contribute to protective but also detrimental host immune responses depending on timing, location, and physiological context. Interestingly, ILC2, despite their scarcity, are the dominant innate lymphoid cell population in the lung, indicating a key role as first responders and amplifiers upon immune challenge at this site. In addition, the recently described tissue residency of ILC2 further underlines the importance of their respective microenvironment. In this review, we provide an overview of lung physiology including a description of the most prominent pulmonary resident cells together with a review of known and potential ILC2 interactions within this unique environment. We will further outline recent observations regarding pulmonary ILC2 during immune challenge including respiratory infections and discuss different models and approaches to study ILC2 biology in the lung.

  2. Detection of ALK translocation in non-small cell lung carcinoma (NSCLC) and its clinicopathological significance using the Ventana immunohistochemical staining method: a single-center large-scale investigation of 1, 504 Chinese Han patients

    PubMed Central

    Yang, Lin; Ling, Yun; Guo, Lei; Ma, Di; Xue, Xuemin; Wang, Bingning; Li, Junling; Ying, Jianming

    2016-01-01

    Objective The novel fully automated immunohistochemistry (IHC) assay-Ventana anaplastic lymphoma kinase (ALK)-D5F3 for screening ALK rearrangements has been approved by China’s Food and Drug Administration in 2013, our previous study disclosed a highly specificity and sensitivity nearly 100%, and its efficacy needs to be evaluated in a large cohort of primary lung adenocarcinoma patients, and to compare clinicopathological features with ALK (+) and ALK (-) lung adenocarcinoma. Methods A total of 1,504 consecutive surgical lung adenocarcinoma cases of Chinese Han population were collected and re-diagnosed according to the 2011 multidisciplinary classification of lung adenocarcinoma. Fully automated Ventana ALK-D5F3 IHC staining with a binary scoring was adopted to evaluate staining and correlated with clinicopathological characters, including age, sex, differentiation degree, histological subtype, lymph node metastasis, and clinical staging. ALK (+) patients were followed-up, and targeted therapy of ALK-inhibitors was adopted and observed in patients with stage IV according to the NCCN guideline. Results ALK positive adenocarcinomas were identified in 6.6% of the surgically resected 1,504 NSCLCs, and significantly younger than the negative group (P<0.05).Mucinous adenocarcinoma (28.2%) was determined to be predominant in ALK (+) cases, followed by the solid type (11.7%), specific type (6.8%), papillary type (5.6%), acinar type (5.5%), and lepidic type (3.1%), and the differences were statistically significant (χ2=42.011, P<0.05). ALK (+) adenocarcinoma with lymph node metastasis (10.8%) were significantly higher than that without lymph node metastasis (4.5%) (χ2=19.809, P<0.05); and ALK (+) in phase IV (20%) was significantly higher than phase III (12.9%), phase II (4.2%), phase I (4.5%), and phase 0 (0) (χ2=36.068, P<0.05). Multivariate logistic regression disclosed that patient age, AJCC staging, and histological mucinous subtype were correlated with ALK positive staining (OR=0.959, 1.578, 5.036, respectively). Sixty eight patients had followed-up results, five patients out of which primarily diagnosed or progressed into Stage IV benefited well from targeted therapy with Crizotinib. Conclusions The ALK fusion protein was seen in 6.6% Chinese NSCLC patients, and mostly seen in younger, clinically higher staging, mucinous and solid predominant adenocarcinoma. Clinical trials in patients of Stage IV confirmed that ALK-D5F3 Ventana IHC is serviceable in screening ALK-positive candidates for molecular targeted therapy. PMID:27877008

  3. Detection of ALK translocation in non-small cell lung carcinoma (NSCLC) and its clinicopathological significance using the Ventana immunohistochemical staining method: a single-center large-scale investigation of 1, 504 Chinese Han patients.

    PubMed

    Yang, Lin; Ling, Yun; Guo, Lei; Ma, Di; Xue, Xuemin; Wang, Bingning; Li, Junling; Ying, Jianming

    2016-10-01

    The novel fully automated immunohistochemistry (IHC) assay-Ventana anaplastic lymphoma kinase (ALK)-D5F3 for screening ALK rearrangements has been approved by China's Food and Drug Administration in 2013, our previous study disclosed a highly specificity and sensitivity nearly 100%, and its efficacy needs to be evaluated in a large cohort of primary lung adenocarcinoma patients, and to compare clinicopathological features with ALK (+) and ALK (-) lung adenocarcinoma. A total of 1,504 consecutive surgical lung adenocarcinoma cases of Chinese Han population were collected and re-diagnosed according to the 2011 multidisciplinary classification of lung adenocarcinoma. Fully automated Ventana ALK-D5F3 IHC staining with a binary scoring was adopted to evaluate staining and correlated with clinicopathological characters, including age, sex, differentiation degree, histological subtype, lymph node metastasis, and clinical staging. ALK (+) patients were followed-up, and targeted therapy of ALK-inhibitors was adopted and observed in patients with stage IV according to the NCCN guideline. ALK positive adenocarcinomas were identified in 6.6% of the surgically resected 1,504 NSCLCs, and significantly younger than the negative group (P<0.05).Mucinous adenocarcinoma (28.2%) was determined to be predominant in ALK (+) cases, followed by the solid type (11.7%), specific type (6.8%), papillary type (5.6%), acinar type (5.5%), and lepidic type (3.1%), and the differences were statistically significant (χ 2 =42.011, P<0.05). ALK (+) adenocarcinoma with lymph node metastasis (10.8%) were significantly higher than that without lymph node metastasis (4.5%) (χ 2 =19.809, P<0.05); and ALK (+) in phase IV (20%) was significantly higher than phase III (12.9%), phase II (4.2%), phase I (4.5%), and phase 0 (0) (χ 2 =36.068, P<0.05). Multivariate logistic regression disclosed that patient age, AJCC staging, and histological mucinous subtype were correlated with ALK positive staining (OR=0.959, 1.578, 5.036, respectively). Sixty eight patients had followed-up results, five patients out of which primarily diagnosed or progressed into Stage IV benefited well from targeted therapy with Crizotinib. The ALK fusion protein was seen in 6.6% Chinese NSCLC patients, and mostly seen in younger, clinically higher staging, mucinous and solid predominant adenocarcinoma. Clinical trials in patients of Stage IV confirmed that ALK-D5F3 Ventana IHC is serviceable in screening ALK-positive candidates for molecular targeted therapy.

  4. Radiation-Induced Immunogenic Modulation Enhances T-Cell Killing | Center for Cancer Research

    Cancer.gov

    For many types of cancer, including breast, lung, and prostate carcinomas, radiation therapy is the standard of care. However, limits placed on the tolerable levels of radiation exposure coupled with heterogeneity of biological tissue result in cases where not all tumor cells receive a lethal dose of radiation. Preclinical studies have shown that exposing tumor cells to lethal

  5. Pulmonary Hypertension in Parenchymal Lung Disease

    PubMed Central

    Tsangaris, Iraklis; Tsaknis, Georgios; Anthi, Anastasia; Orfanos, Stylianos E.

    2012-01-01

    Idiopathic pulmonary arterial hypertension (IPAH) has been extensively investigated, although it represents a less common form of the pulmonary hypertension (PH) family, as shown by international registries. Interestingly, in types of PH that are encountered in parenchymal lung diseases such as interstitial lung diseases (ILDs), chronic obstructive pulmonary disease (COPD), and many other diffuse parenchymal lung diseases, some of which are very common, the available data is limited. In this paper, we try to browse in the latest available data regarding the occurrence, pathogenesis, and treatment of PH in chronic parenchymal lung diseases. PMID:23094153

  6. Advanced Lung Cancer Screening: An Individualized Molecular Nanotechnology Approach

    DTIC Science & Technology

    2014-08-01

    AD_________________ Award Number: W81XWH-12-1-0323 TITLE: Advanced Lung Cancer Screening: An...Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION...August 2014 2. REPORT TYPE Annual 3. DATES COVERED 1 Aug 2013 – 31 July 2014 4. TITLE AND SUBTITLE Advanced Lung Cancer Screening: An Individualized

  7. Transfusion-related acute lung injury (TRALI) in graft by blood donor antibodies against host leukocytes.

    PubMed

    Goodwin, Jodi; Tinckam, Kathryn; denHollander, Neal; Haroon, Ayesha; Keshavjee, Shaf; Cserti-Gazdewich, Christine M

    2010-09-01

    It is unknown the extent to which transfusion-related acute lung injury (TRALI) contributes to primary graft dysfunction (PGD), the leading cause of death after lung transplantation. In this case of suspected transfusion-associated acute bilateral graft injury in a 61-year-old idiopathic pulmonary fibrosis patient, recipient sera from before and after transplantation/transfusion, as well as the sera of 22 of the 24 implicated blood donors, were individually screened by Luminex bead assay for the presence of human leukocyte antigen (HLA) antibodies, with recipient and lung donor HLA typing to explore for cognate relationships. A red-cell-unit donor-source anti-Cw6 antibody, cognate with the HLA type of the recipient, was identified. This is the second reported case of TRALI in the setting of lung transplantation, and the first to show an associated interaction between donor antibodies (in a low-plasma volume product) with recipient leukocytes (rather than graft antigens); therefore, it should be considered in the differential diagnosis of PGD. Copyright 2010 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  8. Jaagsiekte Sheep Retrovirus Envelope Efficiently Pseudotypes Human Immunodeficiency Virus Type 1-Based Lentiviral Vectors

    PubMed Central

    Liu, Shan-Lu; Halbert, Christine L.; Miller, A. Dusty

    2004-01-01

    Jaagsiekte sheep retrovirus (JSRV) infects lung epithelial cells in sheep, and oncoretroviral vectors bearing JSRV Env can mediate transduction of human cells, suggesting that such vectors might be useful for lung-directed gene therapy. Here we show that JSRV Env can also efficiently pseudotype a human immunodeficiency virus type 1-based lentiviral vector, a more suitable vector for transduction of slowly dividing lung epithelial cells. We created several chimeric Env proteins that, unlike the parental Env, do not transform rodent fibroblasts but are still capable of pseudotyping lentiviral and oncoretroviral vectors. PMID:14963173

  9. Effects of retinoic acid-inducible gene-I-like receptors activations and ionizing radiation cotreatment on cytotoxicity against human non-small cell lung cancer in vitro.

    PubMed

    Yoshino, Hironori; Iwabuchi, Miyu; Kazama, Yuka; Furukawa, Maho; Kashiwakura, Ikuo

    2018-04-01

    Retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) are pattern-recognition receptors that recognize pathogen-associated molecular patterns and induce antiviral immune responses. Recent studies have demonstrated that RLR activation induces antitumor immunity and cytotoxicity against different types of cancer, including lung cancer. However a previous report has demonstrated that ionizing radiation exerts a limited effect on RLR in human monocytic cell-derived macrophages, suggesting that RLR agonists may be used as effective immunostimulants during radiation therapy. However, it is unclear whether ionizing radiation affects the cytotoxicity of RLR agonists against cancer cells. Therefore, in the present study the effects of cotreatment with ionizing radiation and RLR agonists on cytotoxicity against human non-small cell lung cancer cells A549 and H1299 was investigated. Treatment with RLR agonist poly(I:C)/LyoVec™ [poly(I:C)] exerted cytotoxic effects against human non-small cell lung cancer. The cytotoxic effects of poly(I:C) were enhanced by cotreatment with ionizing radiation, and poly(I:C) pretreatment resulted in the radiosensitization of non-small cell lung cancer. Furthermore, cotreatment of A549 and H1299 cells with poly(I:C) and ionizing radiation effectively induced apoptosis in a caspase-dependent manner compared with treatment with poly(I:C) or ionizing radiation alone. These results indicate that RLR agonists and ionizing radiation cotreatment effectively exert cytotoxic effects against human non-small cell lung cancer through caspase-mediated apoptosis.

  10. The inhibitor of kappa B kinase-epsilon regulates MMP-3 expression levels and can promote lung metastasis.

    PubMed

    Seccareccia, E; Pinard, M; Wang, N; Li, S; Burnier, J; Dankort, D; Brodt, P

    2014-08-18

    The factors that determine the ability of metastatic tumor cells to expand and grow in specific secondary site(s) are not yet fully understood. Matrix metalloproteinases (MMP) were identified as potential regulators of the site-specificity of metastasis. We found that lung carcinoma cells ectopically expressing high levels of the receptor for the type I insulin like growth factor receptor (M27(R) cells) had a significant reduction in MMP-3 expression levels and this coincided with reduced metastasis to the lung. We used these cells to further investigate signaling pathways regulating MMP-3 expression and the role that MMP-3 plays in lung metastasis. We show that ectopic IκB kinase ɛ (IKKɛ) expression in these cells partly restored MMP-3 expression levels and also sensitized MMP-3 transcription to induction by phorbol 12-myristate 13-acetate (PMA). This increase in MMP-3 production was due to increased activation of several signal transduction mediators, including protein kinase C alpha, ERK2, Akt and the transcription factor p65. Furthermore, reconstitution of MMP-3 expression in M27(R) cells restored their ability to colonize the lung whereas silencing of MMP-3 in M27 cells reduced metastases. Collectively, our results implicate IKKɛ as a central regulator of PMA-induced cell signaling and MMP-3 expression and identify MMP-3 as an enabler of tumor cell expansion in the lung.Oncogenesis (2014) 3, e116; doi:10.1038/oncsis.2014.28; published online 18 August 2014.

  11. The Effects of Smoking on the Developing Lung: Insights from a Biologic Model for Lung Development, Homeostasis, and Repair

    PubMed Central

    Asotra, Kamlesh; Torday, John S.

    2010-01-01

    There is extensive epidemiologic and experimental evidence from both animal and human studies that demonstrates detrimental long-term pulmonary outcomes in the offspring of mothers who smoke during pregnancy. However, the molecular mechanisms underlying these associations are not understood. Therefore, it is not surprising that that there is no effective intervention to prevent the damaging effects of perinatal smoke exposure. Using a biologic model of lung development, homeostasis, and repair, we have determined that in utero nicotine exposure disrupts specific molecular paracrine communications between epithelium and interstitium that are driven by parathyroid hormone-related protein and peroxisome proliferator-activated receptor (PPAR)γ, resulting in transdifferentiation of lung lipofibroblasts to myofibroblasts, i.e., the conversion of the lipofibroblast phenotype to a cell type that is not conducive to alveolar homeostasis, and is the cellular hallmark of chronic lung disease, including asthma. Furthermore, we have shown that by molecularly targeting PPARγ expression, nicotine-induced lung injury can not only be significantly averted, it can also be reverted. The concept outlined by us differs from the traditional paradigm of teratogenic and toxicological effects of tobacco smoke that has been proposed in the past. We have argued that since nicotine alters the normal homeostatic epithelial-mesenchymal paracrine signaling in the developing alveolus, rather than causing totally disruptive structural changes, it offers a unique opportunity to prevent, halt, and/or reverse this process through targeted molecular manipulations. PMID:19641967

  12. Occupational exposure to diesel engine emissions and risk of lung cancer: evidence from two case-control studies in Montreal, Canada.

    PubMed

    Pintos, Javier; Parent, Marie-Elise; Richardson, Lesley; Siemiatycki, Jack

    2012-11-01

    To examine the risk of lung cancer among men associated with exposure to diesel engine emissions incurred in a wide range of occupations and industries. 2 population-based lung cancer case-control studies were conducted in Montreal. Study I (1979-1986) comprised 857 cases and 533 population controls; study II (1996-2001) comprised 736 cases and 894 population controls. A detailed job history was obtained, from which we inferred lifetime occupational exposure to 294 agents, including diesel engine emissions. ORs were estimated for each study and in the pooled data set, adjusting for socio-demographic factors, smoking history and selected occupational carcinogens. While it proved impossible to retrospectively estimate absolute exposure concentrations, there were estimates and analyses by relative measures of cumulative exposure. Increased risks of lung cancer were found in both studies. The pooled analysis showed an OR of lung cancer associated with substantial exposure to diesel exhaust of 1.80 (95% CI 1.3 to 2.6). The risk associated with substantial exposure was higher for squamous cell carcinomas (OR 2.09; 95% CI 1.3 to 3.2) than other histological types. Joint effects between diesel exhaust exposure and tobacco smoking are compatible with a multiplicative synergistic effect. Our findings provide further evidence supporting a causal link between diesel engine emissions and risk of lung cancer. The risk is stronger for the development of squamous cell carcinomas than for small cell tumours or adenocarcinomas.

  13. Postentry Processing of Recombinant Adeno-Associated Virus Type 1 and Transduction of the Ferret Lung Are Altered by a Factor in Airway Secretions

    PubMed Central

    Yan, Ziying; Sun, Xingshen; Evans, Idil A.; Tyler, Scott R.; Song, Yi; Liu, Xiaoming; Sui, Hongshu

    2013-01-01

    Abstract We recently created a cystic fibrosis ferret model that acquires neonatal lung infection. To develop lung gene therapies for this model, we evaluated recombinant adeno-associated virus (rAAV)-mediated gene transfer to the neonatal ferret lung. Unlike in vitro ferret airway epithelial (FAE) cells, in vivo infection of the ferret lung with rAAV1 required proteasome inhibitors to achieve efficient airway transduction. We hypothesized that differences in transduction between these two systems were because of an in vivo secreted factor that alter the transduction biology of rAAV1. Indeed, treatment of rAAV1 with ferret airway secretory fluid (ASF) strongly inhibited rAAV1, but not rAAV2, transduction of primary FAE and HeLa cells. Properties of the ASF inhibitory factor included a strong affinity for the AAV1 capsid, heat-stability, negative charge, and sensitivity to endoproteinase Glu-C. ASF-treated rAAV1 dramatically inhibited apical transduction of FAE ALI cultures (512-fold), while only reducing viral entry by 55-fold, suggesting that postentry processing of virus was influenced by the inhibitor factor. Proteasome inhibitors rescued transduction in the presence of ASF (∼1600-fold) without effecting virus internalization, while proteasome inhibitors only enhanced transduction 45-fold in the absence of ASF. These findings demonstrate that a factor in lung secretions can influence intracellular processing of rAAV1 in a proteasome-dependent fashion. PMID:23948055

  14. Postentry processing of recombinant adeno-associated virus type 1 and transduction of the ferret lung are altered by a factor in airway secretions.

    PubMed

    Yan, Ziying; Sun, Xingshen; Evans, Idil A; Tyler, Scott R; Song, Yi; Liu, Xiaoming; Sui, Hongshu; Engelhardt, John F

    2013-09-01

    We recently created a cystic fibrosis ferret model that acquires neonatal lung infection. To develop lung gene therapies for this model, we evaluated recombinant adeno-associated virus (rAAV)-mediated gene transfer to the neonatal ferret lung. Unlike in vitro ferret airway epithelial (FAE) cells, in vivo infection of the ferret lung with rAAV1 required proteasome inhibitors to achieve efficient airway transduction. We hypothesized that differences in transduction between these two systems were because of an in vivo secreted factor that alter the transduction biology of rAAV1. Indeed, treatment of rAAV1 with ferret airway secretory fluid (ASF) strongly inhibited rAAV1, but not rAAV2, transduction of primary FAE and HeLa cells. Properties of the ASF inhibitory factor included a strong affinity for the AAV1 capsid, heat-stability, negative charge, and sensitivity to endoproteinase Glu-C. ASF-treated rAAV1 dramatically inhibited apical transduction of FAE ALI cultures (512-fold), while only reducing viral entry by 55-fold, suggesting that postentry processing of virus was influenced by the inhibitor factor. Proteasome inhibitors rescued transduction in the presence of ASF (~1600-fold) without effecting virus internalization, while proteasome inhibitors only enhanced transduction 45-fold in the absence of ASF. These findings demonstrate that a factor in lung secretions can influence intracellular processing of rAAV1 in a proteasome-dependent fashion.

  15. Induction of apoptosis in non-small cell lung carcinoma A549 cells by PGD₂ metabolite, 15d-PGJ₂.

    PubMed

    Wang, Jun-Jie; Mak, Oi-Tong

    2011-11-01

    PGD2 (prostaglandin D2) is a mediator in various pathophysiological processes, including inflammation and tumorigenesis. PGD2 can be converted into active metabolites and is known to activate two distinct receptors, DP (PGD2 receptor) and CRTH2/DP2 (chemoattractant receptor-homologous molecule expressed on Th2 cells). In the past, PGD2 was thought to be involved principally in the process of inflammation. However, in recent years, several studies have shown that PGD2 has anti-proliferative ability against tumorigenesis and can induce cellular apoptosis via activation of the caspase-dependent pathway in human colorectal cancer cells, leukaemia cells and eosinophils. In the lung, where PGD2 is highly released when sensitized mast cells are challenged with allergen, the mechanism of PGD2-induced apoptosis is unclear. In the present study, A549 cells, a type of NSCLC (non-small cell lung carcinoma), were treated with PGD2 under various conditions, including while blocking DP and CRTH2/DP2 with the selective antagonists BWA868C and ramatroban respectively. We report here that PGD2 induces A549 cell death through the intrinsic apoptotic pathway, although the process does not appear to involve either DP or CRTH2/DP2. Similar results were also found with H2199 cells, another type of NSCLC. We found that PGD2 metabolites induce apoptosis effectively and that 15d-PGJ2 (15-deoxy-Δ12,14-prostaglandin J2) is a likely candidate for the principal apoptotic inducer in PGD2-induced apoptosis in NSCLC A549 cells.

  16. US lung cancer trends by histologic type.

    PubMed

    Lewis, Denise Riedel; Check, David P; Caporaso, Neil E; Travis, William D; Devesa, Susan S

    2014-09-15

    Lung cancer incidence rates overall are declining in the United States. This study investigated the trends by histologic type and demographic characteristics. Surveillance, Epidemiology, and End Results (SEER) program rates of microscopically confirmed lung cancer overall and squamous cell, small cell, adenocarcinoma, large cell, other, and unspecified carcinomas among US whites and blacks diagnosed from 1977 to 2010 and white non-Hispanics, Asian/Pacific Islanders, and white Hispanics diagnosed from 1992 to 2010 were analyzed by sex and age. Squamous and small cell carcinoma rates declined since the 1990s, although less rapidly among females than males. Adenocarcinoma rates decreased among males and only through 2005, after which they then rose during 2006 to 2010 among every racial/ethnic/sex group; rates for unspecified type declined. Male/female rate ratios declined among whites and blacks more than among other groups. Recent rates among young females were higher than among males for adenocarcinoma among all racial/ethnic groups and for other specified carcinomas among whites. US lung cancer trends vary by sex, histologic type, racial/ethnic group, and age, reflecting historical cigarette smoking rates, duration, cessation, cigarette composition, and exposure to other carcinogens. Substantial excesses among males have diminished and higher rates of adenocarcinoma among young females have emerged as rates among males declined more rapidly. The recognition of EGFR mutation and ALK rearrangements that occur primarily in adenocarcinomas are the primary basis for the molecular revolution that has transformed lung cancer diagnosis and treatment over the past decade, and these changes have affected recent type-specific trends. © 2014 American Cancer Society.

  17. VEGF-D promotes pulmonary oedema in hyperoxic acute lung injury.

    PubMed

    Sato, Teruhiko; Paquet-Fifield, Sophie; Harris, Nicole C; Roufail, Sally; Turner, Debra J; Yuan, Yinan; Zhang, You-Fang; Fox, Stephen B; Hibbs, Margaret L; Wilkinson-Berka, Jennifer L; Williams, Richard A; Stacker, Steven A; Sly, Peter D; Achen, Marc G

    2016-06-01

    Leakage of fluid from blood vessels, leading to oedema, is a key feature of many diseases including hyperoxic acute lung injury (HALI), which can occur when patients are ventilated with high concentrations of oxygen (hyperoxia). The molecular mechanisms driving vascular leak and oedema in HALI are poorly understood. VEGF-D is a protein that promotes blood vessel leak and oedema when overexpressed in tissues, but the role of endogenous VEGF-D in pathological oedema was unknown. To address these issues, we exposed Vegfd-deficient mice to hyperoxia. The resulting pulmonary oedema in Vegfd-deficient mice was substantially reduced compared to wild-type, as was the protein content of bronchoalveolar lavage fluid, consistent with reduced vascular leak. Vegf-d and its receptor Vegfr-3 were more highly expressed in lungs of hyperoxic, versus normoxic, wild-type mice, indicating that components of the Vegf-d signalling pathway are up-regulated in hyperoxia. Importantly, VEGF-D and its receptors were co-localized on blood vessels in clinical samples of human lungs exposed to hyperoxia; hence, VEGF-D may act directly on blood vessels to promote fluid leak. Our studies show that Vegf-d promotes oedema in response to hyperoxia in mice and support the hypothesis that VEGF-D signalling promotes vascular leak in human HALI. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

  18. Pulmonary responses to welding fumes: role of metal constituents.

    PubMed

    Antonini, James M; Taylor, Michael D; Zimmer, Anthony T; Roberts, Jenny R

    2004-02-13

    It is estimated that more than 1 million workers worldwide perform some type of welding as part of their work duties. Epidemiology studies have shown that a large number of welders experience some type of respiratory illness. Respiratory effects seen in full-time welders have included bronchitis, siderosis, asthma, and a possible increase in the incidence of lung cancer. Pulmonary infections are increased in terms of severity, duration, and frequency among welders. Inhalation exposure to welding fumes may vary due to differences in the materials used and methods employed. The chemical properties of welding fumes can be quite complex. Most welding materials are alloy mixtures of metals characterized by different steels that may contain iron, manganese, chromium, and nickel. Animal studies have indicated that the presence and combination of different metal constituents is an important determinant in the potential pneumotoxic responses associated with welding fumes. Animal models have demonstrated that stainless steel (SS) welding fumes, which contain significant levels of nickel and chromium, induce more lung injury and inflammation, and are retained in the lungs longer than mild steel (MS) welding fumes, which contain mostly iron. In addition, SS fumes generated from welding processes using fluxes to protect the resulting weld contain elevated levels of soluble metals, which may affect respiratory health. Recent animal studies have indicated that the lung injury and inflammation induced by SS welding fumes that contain water-soluble metals are dependent on both the soluble and insoluble fractions of the fume. This article reviews the role that metals play in the pulmonary effects associated with welding fume exposure in workers and laboratory animals.

  19. Influence of perfluorocarbons on Carbamazepine and Benzodiazepine for a neuro-lung protective strategy.

    PubMed

    Natchimuthu, V; Thomas, Sabu; Ramalingam, Murugan; Ravi, S

    2017-09-01

    Lennox-Gastaut syndrome (LGS) is commonly characterized by a triad of features including multiple seizure types, intellectual disability or regression. LGS type of seizures is epilepsy which is due to abnormal vibrations occurring in seizures. During the time of such abnormal vibrations, both the seizures and the lungs suffer a lack in oxygen content to a considerable extent. This results in prolonged vibrations and loses of nervous control. As a neuro-lung protective strategy, a novel attempt has been made to enrich both seizures and lungs with oxygen content through the support of Perfluorodecalin (an excellent oxygen carrier) C 10 F 18 (PFD) and Perfluorohexane C 6 F 14 (PFH) along with an enhancement in the antiepileptic activity by the two chosen antiepileptic drugs (AEDs) Carbamazepine (CBZ) and Benzodiazepine (BDZ). Perfluorodecalin C 10 F 18 (PFD) and Perfluorohexane C 6 F 14 (PFH) emulsions were prepared by sonication process with combination of nonionic emulsifier, Lecithin (l-α-phosphatidylcholine) as a surfactant in Aqueous phase medium. These emulsions were mixed with Carbamazepine (CBZ) and Benzodiazepine (BDZ) drugs maintained at a temperature of about -20°C to 20°C and were set to slow evaporation process. The products are subjected to Optical microscope, Transmission electron microscopy (TEM) and Scanning Electron Microscope (SEM) - Energy dispersive X-ray Spectroscopy (EDS). Study reveals the co-existence of fluorine and drug ensuring the oxygen uptake by the drug. Morphology of TEM, Optical microscopic images and the particle diameter estimated through Image_J confirms this analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Space-time variation of respiratory cancers in South Carolina: a flexible multivariate mixture modeling approach to risk estimation.

    PubMed

    Carroll, Rachel; Lawson, Andrew B; Kirby, Russell S; Faes, Christel; Aregay, Mehreteab; Watjou, Kevin

    2017-01-01

    Many types of cancer have an underlying spatiotemporal distribution. Spatiotemporal mixture modeling can offer a flexible approach to risk estimation via the inclusion of latent variables. In this article, we examine the application and benefits of using four different spatiotemporal mixture modeling methods in the modeling of cancer of the lung and bronchus as well as "other" respiratory cancer incidences in the state of South Carolina. Of the methods tested, no single method outperforms the other methods; which method is best depends on the cancer under consideration. The lung and bronchus cancer incidence outcome is best described by the univariate modeling formulation, whereas the "other" respiratory cancer incidence outcome is best described by the multivariate modeling formulation. Spatiotemporal multivariate mixture methods can aid in the modeling of cancers with small and sparse incidences when including information from a related, more common type of cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Pure Insulin Nanoparticle Agglomerates for Pulmonary Delivery

    PubMed Central

    Bailey, Mark M.; Gorman, Eric M.; Munson, Eric J.; Berkland, Cory J.

    2009-01-01

    Diabetes is a set of diseases characterized by defects in insulin utilization, either through autoimmune destruction of insulin-producing cells (Type I) or insulin resistance (Type II). Treatment options can include regular injections of insulin, which can be painful and inconvenient, often leading to low patient compliance. To overcome this problem, novel formulations of insulin are being investigated, such as inhaled aerosols. Sufficient deposition of powder in the peripheral lung to maximize systemic absorption requires precise control over particle size and density, with particles between 1 and 5 μm in aerodynamic diameter being within the respirable range. Insulin nanoparticles were produced by titrating insulin dissolved at low pH up to the pI of the native protein, and were then further processed into microparticles using solvent displacement. Particle size, crystallinity, dissolution properties, structural stability, and bulk powder density were characterized. We have demonstrated that pure drug insulin microparticles can be produced from nanosuspensions with minimal processing steps without excipients, and with suitable properties for deposition in the peripheral lung. PMID:18959432

  2. Grain dust and the lungs.

    PubMed Central

    Chan-Yeung, M.; Ashley, M. J.; Grzybowski, S.

    1978-01-01

    Grain dust is composed of a large number of materials, including various types of grain and their disintegration products, silica, fungi, insects and mites. The clinical syndromes described in relation to exposure to grain dust are chronic bronchitis, grain dust asthma, extrinsic allergic alveolitis, grain fever and silo-filler's lung. Rhinitis and conjunctivitis are also common in grain workers. While the concentration and the quality of dust influence the frequency and the type of clinical syndrome in grain workers, host factors are also important. Of the latter, smoking is the most important factor influencing the frequency of chronic bronchitis. The role of atopy and of bronchial hyperreactivity in grain dust asthma has yet to be assessed. Several well designed studies are currently being carried out in North America not only to delineate the frequency of the respiratory abnormalities, the pathogenetic mechanisms and the host factors, but also to establish a meaningful threshold limit concentration for grain dust. Images p1272-a PMID:348288

  3. Classifying Non-Small Cell Lung Cancer by Status of Programmed Cell Death Ligand 1 and Tumor-Infiltrating Lymphocytes on Tumor Cells.

    PubMed

    Cui, Shaohua; Dong, Lili; Qian, Jialin; Ye, Lin; Jiang, Liyan

    2018-01-01

    Purpose: To explore the possible correlation between programmed death ligand 1 (PD-L1)/tumor-infiltrating lymphocytes (TIL) status and clinical factors in non-small cell lung (NSCLC). Materials and Methods: A total of 126 surgical NSCLC samples with stage I to IIIA were retrospectively collected and analyzed. Immunohistochemistry (IHC) assays were used to detect PD-L1 protein expression. PD-L1 positivity on tumor cells was defined by positive tumor cell (TC) percentage using 5% cutoff value. Results: Thirty-seven patients (29.4%), thirty patients (23.8%), six patients (4.8%) and fifty-three patients (42%) were classified as type I (PD-L1+, TIL+), type II (PD-L1-, TIL-), type III (PD-L1+, TIL-) and type IV (PD-L1-, TIL+) tumor environments according to PD-L1/TIL status, respectively. Statistical differences could be observed in factors including gender ( P <0.001), smoking status ( P <0.001), age ( P =0.002), histological types ( P <0.001), EGFR mutation ( P =0.008) and KRAS mutation ( P =0.003) across the four type tumors. Type I tumors were associated with ever smoking, non-adenocarcinoma histological types and KRAS mutation. Type II tumors were associated with female gender, never-smoking, adenocarcinoma histological types and EGFR mutation. Type III tumors were associated with ever smoking and type IV tumors were associated with female gender and EGFR mutation. Conclusion: Clinical factors associated with NSCLC microenvironment types based on PD-L1/TIL differed a lot across different types. The findings of this study may help to facilitate the understanding of the relationship between tumor microenvironment and clinical factors, and also the selecting of patients for combination immunotherapies.

  4. CD103+CD8+ T lymphocytes in non-small cell lung cancer are phenotypically and functionally primed to respond to PD-1 blockade.

    PubMed

    Wang, Peiliang; Huang, Bing; Gao, Yi; Yang, Jianjian; Liang, Zhihui; Zhang, Ni; Fu, Xiangning; Li, Lequn

    2018-03-01

    CD103 + CD8 + tumor infiltrating lymphocytes (TILs) have been linked to prolonged survival in various types of cancer including non-small cell lung cancer (NSCLC). However, the factors associated with the retention of CD103 + CD8 + TILs in lung cancer tissues remain largely unknown. Additionally, the contribution of CD103 + CD8 + TILs to effective PD-1 based immunotherapy has not been fully elucidated. In this study, we identified that the expression levels of E-cadherin and TGF-β were significantly correlated with the distribution and the density of CD103 + TILs in lung cancer tumor tissues. Unexpectedly, we observed that CD103 + CD8 + TILs that expressed higher levels of PD-1 co-express Ki-67. Moreover, CD103 + CD8 + TILs expressed an increased level of T-bet compared to their counterparts, indicating these cells may be better armed for immunotherapy. Lastly, PD-1 pathway blockade led to a significantly increased production of IFN-γ by CD103 + CD8 + TILs, suggesting CD103 + CD8 + TILs could serve as a predictive biomarker for PD-1 based immunotherapy. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. A tree-parenchyma coupled model for lung ventilation simulation.

    PubMed

    Pozin, Nicolas; Montesantos, Spyridon; Katz, Ira; Pichelin, Marine; Vignon-Clementel, Irene; Grandmont, Céline

    2017-11-01

    In this article, we develop a lung ventilation model. The parenchyma is described as an elastic homogenized media. It is irrigated by a space-filling dyadic resistive pipe network, which represents the tracheobronchial tree. In this model, the tree and the parenchyma are strongly coupled. The tree induces an extra viscous term in the system constitutive relation, which leads, in the finite element framework, to a full matrix. We consider an efficient algorithm that takes advantage of the tree structure to enable a fast matrix-vector product computation. This framework can be used to model both free and mechanically induced respiration, in health and disease. Patient-specific lung geometries acquired from computed tomography scans are considered. Realistic Dirichlet boundary conditions can be deduced from surface registration on computed tomography images. The model is compared to a more classical exit compartment approach. Results illustrate the coupling between the tree and the parenchyma, at global and regional levels, and how conditions for the purely 0D model can be inferred. Different types of boundary conditions are tested, including a nonlinear Robin model of the surrounding lung structures. Copyright © 2017 John Wiley & Sons, Ltd.

  6. A case-control study relating railroad worker mortality to diesel exhaust exposure using a threshold regression model.

    PubMed

    Lee, Mei-Ling Ting; Whitmore, G A; Laden, Francine; Hart, Jaime E; Garshick, Eric

    2009-01-01

    A case-control study of lung cancer mortality in U.S. railroad workers in jobs with and without diesel exhaust exposure is reanalyzed using a new threshold regression methodology. The study included 1256 workers who died of lung cancer and 2385 controls who died primarily of circulatory system diseases. Diesel exhaust exposure was assessed using railroad job history from the US Railroad Retirement Board and an industrial hygiene survey. Smoking habits were available from next-of-kin and potential asbestos exposure was assessed by job history review. The new analysis reassesses lung cancer mortality and examines circulatory system disease mortality. Jobs with regular exposure to diesel exhaust had a survival pattern characterized by an initial delay in mortality, followed by a rapid deterioration of health prior to death. The pattern is seen in subjects dying of lung cancer, circulatory system diseases, and other causes. The unique pattern is illustrated using a new type of Kaplan-Meier survival plot in which the time scale represents a measure of disease progression rather than calendar time. The disease progression scale accounts for a healthy-worker effect when describing the effects of cumulative exposures on mortality.

  7. Effects of Lewis lung carcinoma on trabecular microstructural changes in wild-type and plasminogen activator inhibitor-1 deficient mice fed a high-fat diet

    USDA-ARS?s Scientific Manuscript database

    Bone is a major target organ of metastasis. The present study investigated the effects of Lewis lung carcinoma (LLC) on trabecular microstructural changes, using tomographic analysis, in distal femur and lumbar 4 vertebra from LLC-bearing wild-type and plasminogen activator inhibitor-1 (PAI-1) defi...

  8. Global gene profiling of aging lungs in Atp8b1 mutant mice.

    PubMed

    Soundararajan, Ramani; Stearns, Timothy M; Czachor, Alexander; Fukumoto, Jutaro; Turn, Christina; Westermann-Clark, Emma; Breitzig, Mason; Tan, Lee; Lockey, Richard F; King, Benjamin L; Kolliputi, Narasaiah

    2016-09-29

    Recent studies implicate cardiolipin oxidation in several age-related diseases. Atp8b1 encoding Type 4 P-type ATPases is a cardiolipin transporter. Mutation in Atp8b1 gene or inflammation of the lungs impairs the capacity of Atp8b1 to clear cardiolipin from lung fluid. However, the link between Atp8b1 mutation and age-related gene alteration is unknown. Therefore, we investigated how Atp8b1 mutation alters age-related genes. We performed Affymetrix gene profiling of lungs isolated from young (7-9 wks, n=6) and aged (14 months, 14 M, n=6) C57BL/6 and Atp8b1 mutant mice. In addition, Ingenuity Pathway Analysis (IPA) was performed. Differentially expressed genes were validated by quantitative real-time PCR (qRT-PCR). Global transcriptome analysis revealed 532 differentially expressed genes in Atp8b1 lungs, 157 differentially expressed genes in C57BL/6 lungs, and 37 overlapping genes. IPA of age-related genes in Atp8b1 lungs showed enrichment of Xenobiotic metabolism and Nrf2-mediated signaling pathways. The increase in Adamts2 and Mmp13 transcripts in aged Atp8b1 lungs was validated by qRT-PCR. Similarly, the decrease in Col1a1 and increase in Cxcr6 transcripts was confirmed in both Atp8b1 mutant and C57BL/6 lungs. Based on transcriptome profiling, our study indicates that Atp8b1 mutant mice may be susceptible to age-related lung diseases.

  9. Lung tumors with distinct p53 mutations respond similarly to p53 targeted therapy but exhibit genotype-specific statin sensitivity

    PubMed Central

    Turrell, Frances K.; Kerr, Emma M.; Gao, Meiling; Thorpe, Hannah; Doherty, Gary J.; Cridge, Jake; Shorthouse, David; Speed, Alyson; Samarajiwa, Shamith; Hall, Benjamin A.; Griffiths, Meryl; Martins, Carla P.

    2017-01-01

    Lung adenocarcinoma accounts for ∼40% of lung cancers, the leading cause of cancer-related death worldwide, and current therapies provide only limited survival benefit. Approximately half of lung adenocarcinomas harbor mutations in TP53 (p53), making these mutants appealing targets for lung cancer therapy. As mutant p53 remains untargetable, mutant p53-dependent phenotypes represent alternative targeting opportunities, but the prevalence and therapeutic relevance of such effects (gain of function and dominant-negative activity) in lung adenocarcinoma are unclear. Through transcriptional and functional analysis of murine KrasG12D-p53null, -p53R172H (conformational), and -p53R270H (contact) mutant lung tumors, we identified genotype-independent and genotype-dependent therapeutic sensitivities. Unexpectedly, we found that wild-type p53 exerts a dominant tumor-suppressive effect on mutant tumors, as all genotypes were similarly sensitive to its restoration in vivo. These data show that the potential of p53 targeted therapies is comparable across all p53-deficient genotypes and may explain the high incidence of p53 loss of heterozygosity in mutant tumors. In contrast, mutant p53 gain of function and their associated vulnerabilities can vary according to mutation type. Notably, we identified a p53R270H-specific sensitivity to simvastatin in lung tumors, and the transcriptional signature that underlies this sensitivity was also present in human lung tumors, indicating that this therapeutic approach may be clinically relevant. PMID:28790158

  10. Differential N-Glycosylation Patterns in Lung Adenocarcinoma Tissue

    PubMed Central

    Ruhaak, L. Renee; Taylor, Sandra L.; Stroble, Carol; Nguyen, Uyen Thao; Parker, Evan A.; Song, Ting; Lebrilla, Carlito B.; Rom, William N.; Pass, Harvey; Kim, Kyoungmi; Kelly, Karen; Miyamoto, Suzanne

    2015-01-01

    To decrease the mortality of lung cancer, better screening and diagnostic tools as well as treatment options are needed. Protein glycosylation is one of the major post-translational modifications that is altered in cancer, but it is not exactly clear which glycan structures are affected. A better understanding of the glycan structures that are differentially regulated in lung tumor tissue is highly desirable and will allow us to gain greater insight into the underlying biological mechanisms of aberrant glycosylation in lung cancer. Here, we assess differential glycosylation patterns of lung tumor tissue and nonmalignant tissue at the level of individual glycan structures using nLC–chip–TOF–MS. Using tissue samples from 42 lung adenocarcinoma patients, 29 differentially expressed (FDR < 0.05) glycan structures were identified. The levels of several oligomannose type glycans were upregulated in tumor tissue. Furthermore, levels of fully galactosylated glycans, some of which were of the hybrid type and mostly without fucose, were decreased in cancerous tissue, whereas levels of non- or low-galactosylated glycans mostly with fucose were increased. To further assess the regulation of the altered glycosylation, the glycomics data was compared to publicly available gene expression data from lung adenocarcinoma tissue compared to nonmalignant lung tissue. The results are consistent with the possibility that the observed N-glycan changes have their origin in differentially expressed glycosyltransferases. These results will be used as a starting point for the further development of clinical glycan applications in the fields of imaging, drug targeting, and biomarkers for lung cancer. PMID:26322380

  11. EYA4 is inactivated biallelically at a high frequency in sporadic lung cancer and is associated with familial lung cancer risk

    PubMed Central

    Wilson, Ian M.; Vucic, Emily A.; Enfield, Katey S.S.; Thu, Kelsie L.; Zhang, Yu-An; Chari, Raj; Lockwood, William W.; Radulovich, Niki; Starczynowski, Daniel T.; Banáth, Judit P.; Zhang, May; Pusic, Andrea; Fuller, Megan; Lonergan, Kim M.; Rowbotham, David; Yee, John; English, John C.; Buys, Timon P.H.; Selamat, Suhaida A.; Laird-Offringa, Ite A.; Liu, Pengyuan; Anderson, Marshall; You, Ming; Tsao, Ming-Sound; Brown, Carolyn J.; Bennewith, Kevin L.; MacAulay, Calum E.; Karsan, Aly; Gazdar, Adi F.; Lam, Stephen; Lam, Wan L.

    2015-01-01

    In an effort to identify novel biallelically inactivated tumor suppressor genes (TSG) in sporadic invasive and pre-invasive non-small cell lung cancer (NSCLC) genomes, we applied a comprehensive integrated multi-‘omics approach to investigate patient matched, paired NSCLC tumor and non-malignant parenchymal tissues. By surveying lung tumor genomes for genes concomitantly inactivated within individual tumors by multiple mechanisms, and by the frequency of disruption in tumors across multiple cohorts, we have identified a putative lung cancer TSG, Eyes Absent 4 (EYA4). EYA4 is frequently and concomitantly deleted, hypermethylated and underexpressed in multiple independent lung tumor data sets, in both major NSCLC subtypes, and in the earliest stages of lung cancer. We find not only that decreased EYA4 expression is associated with poor survival in sporadic lung cancers, but EYA4 SNPs are associated with increased familial cancer risk, consistent with EYA4’s proximity to the previously reported lung cancer susceptibility locus on 6q. Functionally, we find that EYA4 displays TSG-like properties with a role in modulating apoptosis and DNA repair. Cross examination of EYA4 expression across multiple tumor types suggests a cell type-specific tumorigenic role for EYA4, consistent with a tumor suppressor function in cancers of epithelial origin. This work shows a clear role for EYA4 as a putative TSG in NSCLC. PMID:24096489

  12. Lung Cancer Messages on Twitter: Content Analysis and Evaluation.

    PubMed

    Sutton, Jeannette; Vos, Sarah C; Olson, Michele K; Woods, Chelsea; Cohen, Elisia; Gibson, C Ben; Phillips, Nolan Edward; Studts, Jamie L; Eberth, Jan M; Butts, Carter T

    2018-01-01

    The aim of this project was to describe and evaluate the levels of lung cancer communication across the cancer prevention and control continuum for content posted to Twitter during a 10-day period (September 30 to October 9) in 2016. Descriptive and inferential statistics were used to identify relationships between tweet characteristics in lung cancer communication on Twitter and user-level data. Overall, 3,000 tweets published between September 30 and October 9 were assessed by a team of three coders. Lung cancer-specific tweets by user type (individuals, media, and organizations) were examined to identify content and structural message features. The study also assessed differences by user type in the use of hashtags, directed messages, health topic focus, and lung cancer-specific focus across the cancer control continuum. Across the universe of lung cancer tweets, the majority of tweets focused on treatment and the use of pharmaceutical and research interventions, followed by awareness and prevention and risk topics. Among all lung cancer tweets, messages were most consistently tweeted by individual users, and personal behavioral mobilizing cues to action were rare. Lung cancer advocates, as well as patient and medical advocacy organizations, with an interest in expanding the reach and effectiveness of social media efforts should monitor the topical nature of public tweets across the cancer continuum and consider integrating cues to action as a strategy to increase engagement and behavioral activation pertaining to lung cancer reduction efforts. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  13. Downregulation of Aquaporins (AQP1 and AQP5) and Na,K-ATPase in Porcine Reproductive and Respiratory Syndrome Virus-Infected Pig Lungs.

    PubMed

    Zhang, Jianping; Yan, Meiping; Gu, Wei; Chen, Ao; Liu, Jie; Li, Lexing; Zhang, Songlin; Liu, Guoquan

    2018-06-01

    Aquaporins (AQPs) and Na,K-ATPase control water transport across the air space-capillary barrier in the distal lung and play an important role in the formation and resolution of lung edema. Porcine reproductive and respiratory syndrome virus (PRRSV) infection usually causes pulmonary inflammation and edema in the infected pig lungs. To investigate the possibility that PRRSV infection may cause altered expression of AQPs and Na,K-ATPase messenger RNA (mRNA) levels and protein expression of AQP1, AQP5, and Na,K-ATPase in the PRRSV-infected pig lungs were detected. Quantitative real-time PCR (qRT-PCR) analysis showed markedly decreased mRNA levels of AQP1 and AQP5 and Na,K-ATPase in the PRRSV-infected pig lungs compared to those of uninfected pig lungs. Western blot studies also revealed significantly reduced levels of AQP1, AQP5, and Na,K-ATPase proteins in the PRRSV-infected pig lungs. In addition, immunohistochemical (IHC) analysis showed decreased protein expression of AQP1 and AQP5 in the endothelial cells of the capillaries and venules and secretory cells of terminal bronchiole and the alveolar type I cells, respectively. The expression of Na,K-ATPase in the basolateral membrane of alveolar type II cells presented great reduction in the PRRSV-infected pig lungs. To further understand the reduction of these proteins, the ubiquitination of AQP1 and Na,K-ATPase was examined in uninfected and PRRSV-infected pig lungs. The results showed that there is no difference of ubiquitination for these proteins. Thus, our results suggest that PRRSV infection may induce downregulation of these proteins and cause impairment of edema resolution by failed water clearance in the infected pig lungs.

  14. Combined EGFR/MEK Inhibition Prevents the Emergence of Resistance in EGFR mutant Lung Cancer

    PubMed Central

    Uddin, Sharmeen; Capelletti, Marzia; Ercan, Dalia; Ogino, Atsuko; Pratilas, Christine A.; Rosen, Neal; Gray, Nathanael S.; Wong, Kwok-Kin; Jänne, Pasi A.

    2016-01-01

    Irreversible pyrimidine based EGFR inhibitors, including WZ4002, selectively inhibit both EGFR activating and EGFR inhibitor resistant T790M mutations more potently than wild type EGFR. While this class of mutant selective EGFR inhibitors is effective clinically in lung cancer patients harboring EGFR T790M, prior preclinical studies demonstrate that acquired resistance can occur through genomic alterations that activate ERK1/2 signaling. Here we find that ERK1/2 reactivation occurs rapidly following WZ4002 treatment. Concomitant inhibition of ERK1/2 by the MEK inhibitor trametinib prevents ERK1/2 reactivation, enhances WZ4002 induced apoptosis and inhibits the emergence of resistance in WZ4002 sensitive models known to acquire resistance via both T790M dependent and independent mechanisms. Resistance to WZ4002 in combination with trametinib eventually emerges due to AKT/mTOR reactivation. These data suggest that initial co-targeting of EGFR and MEK could significantly impede the development of acquired resistance in mutant EGFR lung cancer. PMID:26036643

  15. Lung protective mechanical ventilation strategies in cardiothoracic critical care: a retrospective study.

    PubMed

    Zochios, Vasileios; Hague, Matthew; Giraud, Kimberly; Jones, Nicola

    2016-01-01

    A body of evidence supports the use of low tidal volumes in ventilated patients without lung pathology to slow progress to acute respiratory distress syndrome (ARDS) due to ventilator associated lung injury. We undertook a retrospective chart review and tested the hypothesis that tidal volume is a predictor of mortality in cardiothoracic (medical and surgical) critical care patients receiving invasive mechanical ventilation. Independent predictors of mortality in our study included: type of surgery, albumin, H + , bilirubin, and fluid balance. In particular, it is important to note that cardiac, thoracic, and transplant surgical patients were associated with lower mortality. However, our study did not sample equally from The Berlin Definition of ARDS severity categories (mild, moderate, and severe hypoxemia). Although our study was not adequately powered to detect a difference in mortality between these groups, it will inform the development of a large prospective cohort study exploring the role of low tidal volume ventilation in cardiothoracic critically ill patients.

  16. Low‐voltage electricity‐induced lung injury

    PubMed Central

    Le, Thuong Vu; Smith, David L.; Kantrow, Stephen P.; Tran, Van Ngoc

    2017-01-01

    We report a case of bilateral pulmonary infiltrates and haemoptysis following low‐voltage electricity exposure in an agricultural worker. A 58‐year‐old man standing in water reached for an electric watering machine and sustained an exposure to 220 V circuit for an uncertain duration. The electricity was turned off by another worker, and the patient was asymptomatic for the next 10 h until he developed haemoptysis. A chest radiograph demonstrated bilateral infiltrates, and chest computed tomography (CT) revealed ground‐glass opacities with interstitial thickening. Evaluations, including electrocardiogram, serum troponin, N‐terminal pro‐B‐type natriuretic peptide (NT‐pro BNP), coagulation studies, and echocardiogram, found no abnormality. The patient was treated for suspected electricity‐induced lung injury and bleeding with tranexamic acid and for rhabdomyolysis with volume resuscitation. He recovered with complete resolution of chest radiograph abnormalities by Day 7. This is the first reported case of bilateral lung oedema and/or injury after electricity exposure without cardiac arrest. PMID:29321936

  17. Melatonin as a potential anticarcinogen for non-small-cell lung cancer

    PubMed Central

    Han, Jing; Wang, Dongjin; Di, Shouyin; Hu, Wei; Liu, Dong; Li, Xiaofei; Reiter, Russel J.; Yan, Xiaolong

    2016-01-01

    Non-small-cell lung cancer (NSCLC) is a leading cause of death from cancer worldwide. Melatonin, an indoleamine discovered in the pineal gland, exerts pleiotropic anticancer effects against a variety of cancer types. In particular, melatonin may be an important anticancer drug in the treatment of NSCLC. Herein, we review the correlation between the disruption of the melatonin rhythm and NSCLC incidence; we also evaluate the evidence related to the effects of melatonin in inhibiting lung carcinogenesis. Special focus is placed on the oncostatic effects of melatonin, including anti-proliferation, induction of apoptosis, inhibition of invasion and metastasis, and enhancement of immunomodulation. We suggest the drug synergy of melatonin with radio- or chemotherapy for NSCLC could prove to be useful. Taken together, the information complied herein may serve as a comprehensive reference for the anticancer mechanisms of melatonin against NSCLC, and may be helpful for the design of future experimental research and for advancing melatonin as a therapeutic agent for NSCLC. PMID:27102150

  18. Haemophilus influenzae and the lung (Haemophilus and the lung)

    PubMed Central

    2012-01-01

    Haemophilus influenzae is present as a commensal organism in the nasopharynx of most healthy adults from where it can spread to cause both systemic and respiratory tract infection. This bacterium is divided into typeable forms (such as type b) or nontypeable forms based on the presence or absence of a tough polysaccharide capsule. Respiratory disease is predominantly caused by the nontypeable forms (NTHi). Haemophilus influenzae has evolved a number of strategies to evade the host defense including the ability to invade into local tissue. Pathogenic properties of this bacterium as well as defects in host defense may result in the spread of this bacterium from the upper airway to the bronchi of the lung. This can result in airway inflammation and colonization particularly in chronic obstructive pulmonary disease. Treatment of respiratory tract infection with Haemophilus influenzae is often only partially successful with ongoing infection and inflammation. Improvement in patient outcome will be dependent on a better understanding of the pathogenesis and host immune response to this bacterium. PMID:23369277

  19. Imaging for lung physiology: What do we wish we could measure?

    PubMed Central

    Buxton, Richard B.

    2012-01-01

    The role of imaging as a tool for investigating lung physiology is growing at an accelerating pace. Looking forward, we wished to identify unresolved issues in lung physiology that might realistically be addressed by imaging methods in development or imaging approaches that could be considered. The role of imaging is framed in terms of the importance of good spatial and temporal resolution and the types of questions that could be addressed as these technical capabilities improve. Recognizing that physiology is fundamentally a quantitative science, a recurring emphasis is on the need for imaging methods that provide reliable measurements of specific physiological parameters. The topics included necessarily reflect our perspective on what are interesting questions and are not meant to be a comprehensive review. Nevertheless, we hope that this essay will be a spur to physiologists to think about how imaging could usefully be applied in their research and to physical scientists developing new imaging methods to attack challenging questions imaging could potentially answer. PMID:22582217

  20. A simple computer-based measurement and analysis system of pulmonary auscultation sounds.

    PubMed

    Polat, Hüseyin; Güler, Inan

    2004-12-01

    Listening to various lung sounds has proven to be an important diagnostic tool for detecting and monitoring certain types of lung diseases. In this study a computer-based system has been designed for easy measurement and analysis of lung sound using the software package DasyLAB. The designed system presents the following features: it is able to digitally record the lung sounds which are captured with an electronic stethoscope plugged to a sound card on a portable computer, display the lung sound waveform for auscultation sites, record the lung sound into the ASCII format, acoustically reproduce the lung sound, edit and print the sound waveforms, display its time-expanded waveform, compute the Fast Fourier Transform (FFT), and display the power spectrum and spectrogram.

Top