East China Sea Storm Surge Modeling and Visualization System: the Typhoon Soulik case.
Deng, Zengan; Zhang, Feng; Kang, Linchong; Jiang, Xiaoyi; Jin, Jiye; Wang, Wei
2014-01-01
East China Sea (ECS) Storm Surge Modeling System (ESSMS) is developed based on Regional Ocean Modeling System (ROMS). Case simulation is performed on the Typhoon Soulik, which landed on the coastal region of Fujian Province, China, at 6 pm of July 13, 2013. Modeling results show that the maximum tide level happened at 6 pm, which was also the landing time of Soulik. This accordance may lead to significant storm surge and water level rise in the coastal region. The water level variation induced by high winds of Soulik ranges from -0.1 to 0.15 m. Water level generally increases near the landing place, in particular on the left hand side of the typhoon track. It is calculated that 0.15 m water level rise in this region can cause a submerge increase of ~0.2 km(2), which could be catastrophic to the coastal environment and the living. Additionally, a Globe Visualization System (GVS) is realized on the basis of World Wind to better provide users with the typhoon/storm surge information. The main functions of GVS include data indexing, browsing, analyzing, and visualization. GVS is capable of facilitating the precaution and mitigation of typhoon/storm surge in ESC in combination with ESSMS.
NASA Astrophysics Data System (ADS)
Su, Wen-Ray; Tsai, Yuan-Fan; Huang, Kuei-Chin; Hsieh, Ching-En
2017-04-01
To facilitate disaster response and enhance the effectiveness of disaster prevention and relief, people and emergency response personnel should be able to rapidly acquire and understand information when disasters occur. However, in existing disaster platforms information is typically presented in text tables, static charts, and maps with points. These formats do not make it easy for users to understand the overall situation. Therefore, this study converts data into human-readable charts by using data visualization techniques, and builds a disaster information dashboard that is concise, attractive and flexible. This information dashboard integrates temporally and spatially correlated data, disaster statistics according to category and county, lists of disasters, and any other relevant information. The graphs are animated and interactive. The dashboard allows users to filter the data according to their needs and thus to assimilate the information more rapidly. In this study, we applied the information dashboard to the analysis of landslides during three typhoon events in 2016: Typhoon Nepartak, Typhoon Meranti and Typhoon Megi. According to the statistical results in the dashboard, the order of frequency of the disaster categories in all three events combined was rock fall, roadbed loss, slope slump, road blockage and debris flow. Disasters occurred mainly in the areas that received the most rainfall. Typhoons Nepartak and Meranti mainly affected Taitung, and Typhoon Megi mainly affected Kaohsiung. The towns Xiulin, Fengbin, Fenglin and Guangfu in Hualian County were all issued with debris flow warnings in all three typhoon events. The disaster information dashboard developed in this study allows the user to rapidly assess the overall disaster situation. It clearly and concisely reveals interactions between time, space and disaster type, and also provides comprehensive details about the disaster. The dashboard provides a foundation for future disaster visualization, since it can combine and present real-time information of various types; as such it will strengthen decision making in disaster prevention management.
NASA Astrophysics Data System (ADS)
Bilgera, P. H. T.
2015-12-01
Super Typhoon Haiyan, with wind speeds exceeding 300 km h-1 (160 knots) generated a storm surge in San Pedro Bay reaching heights of more than 6m in Tacloban City. Delft Dashboard (DDB), an open-source standalone Matlab based graphical user interface linked to the FLOW and WAVE modeling software of Deltares, was used to develop a coupled flow and wave storm surge model to understand the Typhoon Haiyan storm surge development and propagation. Various experiments were designed to determine the effect of waves, the occurrence of offshore winds prior to the surge, tidal phase, and typhoon translation speed on the surge height. Wave coupling decreased the surge height by about 0.5m probably due to energy dissipation from white capping, bottom friction, and depth-induced breaking. Offshore-directed winds before the arrival of the storm eye resulted to receding of the water level in San Pedro and Cancabato Bay, corroborated by eyewitness and tide gauge data. The experiment wherein the offshore winds were removed resulted to no water receding and a surge with a smaller and gentler surge front, pointing to the importance of the initial water level drawdown in contributing to the destructive power of the wave front. With regard to tides, the effect in Tacloban was actually neither linear nor additive to the surge, with higher surge coincident to low tides and lower surge coincident to high tides. Lastly, the model run with typhoon having a slower translation speed than Haiyan was found to generate higher surges.
NASA Astrophysics Data System (ADS)
Bilgera, P. H. T.; Villanoy, C.; Cabrera, O.
2016-02-01
Super Typhoon Haiyan, with wind speeds exceeding 300 km h-1 (160 knots) generated a storm surge in San Pedro Bay reaching heights of more than 6m in Tacloban City. Delft Dashboard (DDB), an open-source standalone Matlab based graphical user interface linked to the FLOW and WAVE modeling software of Deltares, was used to develop a coupled flow and wave storm surge model to understand the Typhoon Haiyan storm surge development and propagation. Various experiments were designed to determine the effect of waves, the occurrence of offshore winds prior to the surge, tidal phase, and typhoon translation speed on the surge height. Wave coupling decreased the surge height by about 0.5m probably due to energy dissipation from white capping, bottom friction, and depth-induced breaking. Offshore-directed winds before the arrival of the storm eye resulted to receding of the water level in San Pedro and Cancabato Bay, corroborated by eyewitness and tide gauge data. The experiment wherein the offshore winds were removed resulted to no water receding and a surge with a smaller and gentler surge front, pointing to the importance of the initial water level drawdown in contributing to the destructive power of the wave front. With regard to tides, the effect in Tacloban was actually neither linear nor additive to the surge, with higher surge coincident to low tides and lower surge coincident to high tides. Lastly, the model run with typhoon having a slower translation speed than Haiyan was found to generate higher surges.
Web 2.0 and internet social networking: a new tool for disaster management?--lessons from Taiwan.
Huang, Cheng-Min; Chan, Edward; Hyder, Adnan A
2010-10-06
Internet social networking tools and the emerging web 2.0 technologies are providing a new way for web users and health workers in information sharing and knowledge dissemination. Based on the characters of immediate, two-way and large scale of impact, the internet social networking tools have been utilized as a solution in emergency response during disasters. This paper highlights the use of internet social networking in disaster emergency response and public health management of disasters by focusing on a case study of the typhoon Morakot disaster in Taiwan. In the case of typhoon disaster in Taiwan, internet social networking and mobile technology were found to be helpful for community residents, professional emergency rescuers, and government agencies in gathering and disseminating real-time information, regarding volunteer recruitment and relief supplies allocation. We noted that if internet tools are to be integrated in the development of emergency response system, the accessibility, accuracy, validity, feasibility, privacy and the scalability of itself should be carefully considered especially in the effort of applying it in resource poor settings. This paper seeks to promote an internet-based emergency response system by integrating internet social networking and information communication technology into central government disaster management system. Web-based networking provides two-way communication which establishes a reliable and accessible tunnel for proximal and distal users in disaster preparedness and management.
Brown, Ruth C; Trapp, Stephen K; Berenz, Erin C; Bigdeli, Tim Bernard; Acierno, Ron; Tran, Trinh Luong; Trung, Lam Tu; Tam, Nguyen Thanh; Tuan, Tran; Buoi, La Thi; Ha, Tran Thu; Thach, Tran Duc; Amstadter, Ananda B
2013-11-01
Exposure to natural disasters has been associated with increased risk for various forms of psychopathology. Evidence indicates that socioeconomic status (SES) may be important for understanding post-disaster psychiatric distress; however, studies of SES-relevant factors in non-Western, disaster-exposed samples are lacking. The primary aim of the current study was to examine the role of pre-typhoon SES-relevant factors in relation to post-typhoon psychiatric symptoms among Vietnamese individuals exposed to Typhoon Xangsane. In 2006, Typhoon Xangsane disrupted a mental health needs assessment in Vietnam in which the Self Reporting Questionnaire-20 (SRQ-20), and the Demographic and Health Surveys Wealth Index, a measure of SES created for use in low-income countries, were administered pre-typhoon. The SRQ-20 was re-administered post-typhoon. Results of a linear mixed model indicated that the covariates of older age, female sex, and higher levels of pre-typhoon psychiatric symptoms were associated with higher levels of post-typhoon psychiatric symptoms. Analysis of SES indicators revealed that owning fewer consumer goods, having lower quality of household services, and having attained less education were associated with higher levels of post-typhoon symptoms, above and beyond the covariates, whereas quality of the household build, employment status, and insurance status were not related to post-typhoon psychiatric symptoms. Even after controlling for demographic characteristics and pre-typhoon psychiatric symptoms, certain SES factors uniquely predicted post-typhoon psychiatric distress. These SES characteristics may be useful for identifying individuals in developing countries who are in need of early intervention following disaster exposure.
NASA Astrophysics Data System (ADS)
Chang, W.; Tsai, W.; Lin, F.; Lin, S.; Lien, H.; Chung, T.; Huang, L.; Lee, K.; Chang, C.
2008-12-01
During a typhoon or a heavy storm event, using various forecasting models to predict rainfall intensity, and water level variation in rivers and flood situation in the urban area is able to reveal its capability technically. However, in practice, the following two causes tend to restrain the further application of these models as a decision support system (DSS) for the hazard mitigation. The first one is due to the difficulty of integration of heterogeneous models. One has to take into consideration the different using format of models, such as input files, output files, computational requirements, and so on. The second one is that the development of DSS requires, due to the heterogeneity of models and systems, a friendly user interface or platform to hide the complexity of various tools from users. It is expected that users can be governmental officials rather than professional experts, therefore the complicated interface of DSS is not acceptable. Based on the above considerations, in the present study, we develop an open system for integration of several simulation models for flood forecasting by adopting the FEWS (Flood Early Warning System) platform developed by WL | Delft Hydraulics. It allows us to link heterogeneous models effectively and provides suitable display modules. In addition, FEWS also has been adopted by Water Resource Agency (WRA), Taiwan as the standard operational system for river flooding management. That means this work can be much easily integrated with the use of practical cases. In the present study, based on FEWS platform, the basin rainfall-runoff model, SOBEK channel-routing model, and estuary tide forecasting model are linked and integrated through the physical connection of model initial and boundary definitions. The work flow of the integrated processes of models is shown in Fig. 1. This differs from the typical single model linking used in FEWS, which only aims at data exchange but without much physical consideration. So it really makes the tighter collaboration work among these hydrological models. In addition, in order to make communication between system users and decision makers efficient and effective, a real-time and multi-user communication platform, designated as Co-life, is incorporated in the present study. Through its application sharing function, the flood forecasting results can be displayed for all attendees situated at different locations to help the processes of decision making for hazard mitigation. Fig. 2 shows the cyber-conference of WRA officials with the Co-life system for hazard mitigation during the typhoon event.
NASA Astrophysics Data System (ADS)
Shu-Huei, Jhang; Chih-Chung, Wen; Dong-Jiing, Doong; Cheng-Han, Tsai
2017-04-01
Taiwan is an Island in the western Pacific Ocean and experienced more than 3 typhoons in a year. Typhoons bring intense rainfall, high waves, and storm surges, which often resulted in coastal flooding. The flooding can be aggravated by the sea level rise due to the global warming, which may subject Taiwan's coastal areas to more serious damage in the future than present. The objectives of this study are to investigate the flooding caused by typhoons in the Annan District, Tainan, a city on the southwest coast of Taiwan by numerical simulations, considering the effects of sea-level rises according to the level suggested by the 5th Assessment Report of IPCC (Intergovernmental Panel on Climate Change) for 2050 and 2100, respectively. The simulations were carried out by using MIKE21 HD (a hydrodynamic model) and MIKE21 SW (a spectral wave model). In our simulation, we used an intense typhoon, named Soudelor, as our base typhoon, which made its landfall on the east coast of Taiwan in the summer of 2015, traveled through the width of the island, and exited the island to the north of Tainan. The reasons we pick this typhoon are that it passed near our objective area, wind field data for this typhoon are available, and we have well documented coastal wave and water level measurements during the passage of Typhoon Soudelor. We firstly used ECMWF (European Centre for Medium-Range Weather Forecasts) wind field data to reconstruct typhoon waves and storm surges for this typhoon by using coupled MIKE21 SW and MIKE21 HD in a regional model. The resultant simulated wave height and sea-level height matched satisfactorily with the measured data. The wave height and storm surge calculated by the regional model provided the boundary conditions for our fine-grid domain. Then different sea-level rises suggested by the IPCC were incorporated into the fine-grid model. Since river discharge due to intense rainfall has also to be considered for coastal flooding, our fine-grid models encompass the estuary of River Yanshui, and measured upstream river discharges were used to simulate the interactions among tide, current, and wave near the estuary of Yanshui River. Our preliminary results showed that with only the effect of rainwater discharge, the maximum surface level of the river during the storm near the estuary was 1.4 m, which is not higher than the river embankments. With the storm surge, the river level at the same location was 2.2 m. With the storm surge and sea-level rise, the maximum river levels near the estuary were 3.6 m and 3.9 m for 2050 and 2100 scenarios, respective. These levels were higher than the embankment height of 3 m. This showed that due to higher sea-level, the area near the estuary will be flooded.
NASA Astrophysics Data System (ADS)
Chen, Y. W.; Chang, L. C.
2012-04-01
Typhoons which normally bring a great amount of precipitation are the primary natural hazard in Taiwan during flooding season. Because the plentiful rainfall quantities brought by typhoons are normally stored for the usage of the next draught period, the determination of release strategies for flood operation of reservoirs which is required to simultaneously consider not only the impact of reservoir safety and the flooding damage in plain area but also for the water resource stored in the reservoir after typhoon becomes important. This study proposes a two-steps study process. First, this study develop an optimal flood operation model (OFOM) for the planning of flood control and also applies the OFOM on Tseng-wun reservoir and the downstream plain related to the reservoir. Second, integrating a typhoon event database with the OFOM mentioned above makes the proposed planning model have ability to deal with a real-time flood control problem and names as real-time flood operation model (RTFOM). Three conditions are considered in the proposed models, OFOM and RTFOM, include the safety of the reservoir itself, the reservoir storage after typhoons and the impact of flooding in the plain area. Besides, the flood operation guideline announced by government is also considered in the proposed models. The these conditions and the guideline can be formed as an optimization problem which is solved by the genetic algorithm (GA) in this study. Furthermore, a distributed runoff model, kinematic-wave geomorphic instantaneous unit hydrograph (KW-GIUH), and a river flow simulation model, HEC-RAS, are used to simulate the river water level of Tseng-wun basin in the plain area and the simulated level is shown as an index of the impact of flooding. Because the simulated levels are required to re-calculate iteratively in the optimization model, applying a recursive artificial neural network (recursive ANN) instead of the HEC-RAS model can significantly reduce the computational burden of the entire optimization problem. This study applies the developed methodology to Tseng-wun Reservoir. Forty typhoon events are collected as the historical database and six typhoon events are used to verify the proposed model. These typhoons include Typhoon Sepat and Typhoon Korsa in 2007 and Typhoon Kalmaegi, Typhoon Fung-Wong, Typhoon Sinlaku and Typhoon Jangmi in 2008. The results show that the proposed model can reduce the flood duration at the downstream area. For example, the real-time flood control model can reduce the flood duration by four and three hours for Typhoon Korsa and Typhoon Sinlaku respectively. This results indicate that the developed model can be a very useful tool for real-time flood control operation of reservoirs.
Shifts in stream hydrochemistry in responses to typhoon and non-typhoon precipitation
NASA Astrophysics Data System (ADS)
Chang, Chung-Te; Huang, -Chuan, Jr.; Wang, Lixin; Shih, Yu-Ting; Lin, Teng-Chiu
2018-04-01
Climate change is projected to increase the intensity and frequency of extreme climatic events such as tropical cyclones. However, few studies have examined the responses of hydrochemical processes to climate extremes. To fill this knowledge gap, we compared the relationship between stream discharge and ion input-output budget during typhoon and non-typhoon periods in four subtropical mountain watersheds with different levels of agricultural land cover in northern Taiwan. The results indicated that the high predictability of ion input-output budgets using stream discharge during the non-typhoon period largely disappeared during the typhoon periods. For ions such as Na+, NH4+, and PO43-, the typhoon period and non-typhoon period exhibited opposite discharge-budget relationships. In other cases, the discharge-budget relationship was driven by the typhoon period, which consisted of only 7 % of the total time period. The striking differences in the discharge-ion budget relationship between the two periods likely resulted from differences in the relative contributions of surface runoff, subsurface runoff and groundwater, which had different chemical compositions, to stream discharge between the two periods. Watersheds with a 17-22 % tea plantation cover showed large increases in NO3- export with increases in stream discharge. In contrast, watersheds with 93-99 % forest cover showed very mild or no increases in NO3- export with increases in discharge and very low levels of NO3- export even during typhoon storms. The results suggest that even mild disruption of the natural vegetation could largely alter hydrochemical processes. Our study clearly illustrates significant shifts in hydrochemical responses between regular and typhoon precipitation. We propose that hydrological models should separate hydrochemical processes into regular and extreme conditions to better capture the whole spectrum of hydrochemical responses to a variety of climate conditions.
NASA Astrophysics Data System (ADS)
Chen, H.; Lu, W.; Yan, G.; Yang, S.; Lin, G.
2014-06-01
Typhoons are very unpredictable natural disturbances to subtropical mangrove forests in Asian countries, but litter information is available on how these disturbances affect ecosystem level carbon dioxide (CO2) exchange of mangrove wetlands. In this study, we examined short-term effect of frequent strong typhoons on defoliation and net ecosystem CO2 exchange (NEE) of subtropical mangroves, and also synthesized 19 typhoons during a 4-year period between 2009 and 2012 to further investigate the regulation mechanisms of typhoons on ecosystem carbon and water fluxes following typhoon disturbances. Strong wind and intensive rainfall caused defoliation and local cooling effect during typhoon season. Daily total NEE values were decreased by 26-50% following some typhoons (e.g. W28-Nockten, W35-Molave and W35-Lio-Fan), but were significantly increased (43-131%) following typhoon W23-Babj and W38-Megi. The magnitudes and trends of daily NEE responses were highly variable following different typhoons, which were determined by the balance between the variances of gross ecosystem production (GEP) and ecosystem respiration (RE). Furthermore, results from our synthesis indicated that the landfall time of typhoon, wind speed and rainfall were the most important factors controlling the CO2 fluxes following typhoon events. These findings not only indicate that mangrove ecosystems have strong resilience to the frequent typhoon disturbances, but also demonstrate the damage of increasing typhoon intensity and frequency on subtropical mangrove ecosystems under future global climate change scenarios.
NASA Astrophysics Data System (ADS)
Chen, H.; Lu, W.; Yan, G.; Yang, S.; Lin, G.
2014-10-01
Typhoons are very unpredictable natural disturbances to subtropical mangrove forests in Asian countries, but little information is available on how these disturbances affect ecosystem level carbon dioxide (CO2) exchange of mangrove wetlands. In this study, we examined short-term effect of frequent strong typhoons on defoliation and net ecosystem CO2 exchange (NEE) of subtropical mangroves, and also synthesized 19 typhoons during a 4-year period between 2009 and 2012 to further investigate the regulation mechanisms of typhoons on ecosystem carbon and water fluxes following typhoon disturbances. Strong wind and intensive rainfall caused defoliation and local cooling effect during the typhoon season. Daily total NEE values decreased by 26-50% following some typhoons (e.g., W28-Nockten, W35-Molave and W35-Lio-Fan), but significantly increased (43-131%) following typhoon W23-Babj and W38-Megi. The magnitudes and trends of daily NEE responses were highly variable following different typhoons, which were determined by the balance between the variances of gross ecosystem production (GEP) and ecosystem respiration (RE). Furthermore, results from our synthesis indicated that the landfall time of typhoon, wind speed and rainfall were the most important factors controlling the CO2 fluxes following typhoon events. These findings indicate that different types of typhoon disturbances can exert very different effects on CO2 fluxes of mangrove ecosystems and that typhoon will likely have larger impacts on carbon cycle processes in subtropical mangrove ecosystems as the intensity and frequency of typhoons are predicted to increase under future global climate change scenarios.
Typhoon Changes in Northwestern Pacific Region and Its Relationship to Hydrologic Variability
NASA Astrophysics Data System (ADS)
Kim, J. S.; Lee, J. H.
2017-12-01
Changes in typhoon intensity are sensitively related to the thermodynamic responses of the atmosphere and ocean to warmer temperature and increased CO2 concentrations in a changing climate. Atmospheric conditions in warmer climates are likely to promote the strengthening of typhoon activity. The pattern of typhoons in the North Pacific is constantly changing due to rising sea level, the occurrence of El Niño and La Niña, and changes in weather and climate patterns due to global warming. In particular, as typhoon genesis positions are shifted to the north compared to past typhoon, the East Asia region is exposed to possible typhoon landings and potential damage. Efforts to integrate typhoon-related information into management and planning have focused on recovery in the wake of damaging events—a reactive, hazard perspective; however, there have been insufficient efforts towards regulation and water management and for multilateral assessments of environmental impacts. Therefore, climate change adaptation and countermeasures based on a variety of hydrological changes and a clear understanding of sea surface temperature changes are needed to analyze the changes in ecological systems under the influence of typhoons at the regional and local scale. In this study, we focus on typhoon - sensitive watersheds and quantify the effects of typhoons to analyze various hydrological changes due to typhoons. The results of this study provide useful information for adapting to climate change and preparing measures.
Increasing threat of landfalling typhoons in the western North Pacific between 1974 and 2013
NASA Astrophysics Data System (ADS)
Guan, Shoude; Li, Shuiqing; Hou, Yijun; Hu, Po; Liu, Ze; Feng, Junqiao
2018-06-01
Long-term changes between 1974 and 2013 were investigated in western North Pacific typhoons making landfall in East and Southeast Asia. Landfalling typhoon parameters, including the percentage of typhoons making landfall, the annual mean landfall intensity (LFI), and the annual accumulated power dissipation index at land, all increased significantly (at the 99% confidence level), by 14%, 17%, and 94%, respectively, over the study period. The increase in probability of a typhoon making landfall was attributed to an eastward shift of the typhoon genesis location. The LFI was decomposed into the product of the intensification rate and intensification duration. The product reproduced variations in the observed LFI well, and the correlation coefficient was high at 0.82. Although the intensification duration decreased slightly, an unprecedented increase in the intensification rate was observed, this increased the LFI. Warming of the upper ocean in the western North Pacific typhoon main intensification region, giving a higher tropical cyclone heat potential, yielded better oceanic conditions and overcame the worsening atmospheric conditions (increasing vertical wind shear), allowing typhoons to intensify. The increase in the annual accumulated power dissipation index was mainly caused by the increase in the LFI, and the annual number of typhoons and typhoon duration contributed much less. Increasing typhoon landfalling activities might heighten the threat posed by typhoons to populations and infrastructure in coastal regions.
Development of a prototype Typhoon Risk Model over the Korean Peninsula
NASA Astrophysics Data System (ADS)
Kim, K. Y.; Cocke, S.; Shin, D. W.; CHOI, M.; Kwon, J.
2016-12-01
Risk can be defined as probability of a given hazard of a given level causing a particular level of loss of damage (Alexander, 2000). Risk management is important for mitigation and developing plans for emergencies. More effective risk management strategies can help reduce potential losses from natural disasters like typhoon, floods, earthquakes, and so on. We are developing a prototype typhoon risk model to assess the current and potentially future hazard due to typhoons in the Western Pacific. To develop the typhoon risk model, a variety of sources of data over Korea are used such as population, damage to buildings, agriculture, ships, etc. The model is based on proven concepts used in catastrophe models that have been used in the U.S. and other regions of the world. Recently, the sea surface temperatures where typhoons have occurred have tended to increase. According to recent studies of global warming, the intensity of typhoons could increase, and the frequency of typhoons may decrease in the future climate. The prototype risk model can help us determine the change in risk as a consequence of the change in typhoon activity. We focus on Korea and other regions of interest to Korean insurers, re-insurers, and related industries. The model can potentially be coupled to various damage models or emergency management systems for planning and mitigation. In addition, the assessment would be useful for emergency planners, coastal community planners, and private and governmental insurance programs. This work was funded by the Korea Meteorological Administration Research and Development Program under Grant KMIPA2016-8030.
Meteorological disaster management and assessment system design and implementation
NASA Astrophysics Data System (ADS)
Tang, Wei; Luo, Bin; Wu, Huanping
2009-09-01
Disaster prevention and mitigation get more and more attentions by Chinese government, with the national economic development in recent years. Some problems exhibit in traditional disaster management, such as the chaotic management of data, low level of information, poor data sharing. To improve the capability of information in disaster management, Meteorological Disaster Management and Assessment System (MDMAS) was developed and is introduced in the paper. MDMAS uses three-tier C/S architecture, including the application layer, data layer and service layer. Current functions of MDMAS include the typhoon and rainstorm assessment, disaster data query and statistics, automatic cartography for disaster management. The typhoon and rainstorm assessment models can be used in both pre-assessment of pre-disaster and post-disaster assessment. Implementation of automatic cartography uses ArcGIS Geoprocessing and ModelBuilder. In practice, MDMAS has been utilized to provide warning information, disaster assessment and services products. MDMAS is an efficient tool for meteorological disaster management and assessment. It can provide decision supports for disaster prevention and mitigation.
Meteorological disaster management and assessment system design and implementation
NASA Astrophysics Data System (ADS)
Tang, Wei; Luo, Bin; Wu, Huanping
2010-11-01
Disaster prevention and mitigation get more and more attentions by Chinese government, with the national economic development in recent years. Some problems exhibit in traditional disaster management, such as the chaotic management of data, low level of information, poor data sharing. To improve the capability of information in disaster management, Meteorological Disaster Management and Assessment System (MDMAS) was developed and is introduced in the paper. MDMAS uses three-tier C/S architecture, including the application layer, data layer and service layer. Current functions of MDMAS include the typhoon and rainstorm assessment, disaster data query and statistics, automatic cartography for disaster management. The typhoon and rainstorm assessment models can be used in both pre-assessment of pre-disaster and post-disaster assessment. Implementation of automatic cartography uses ArcGIS Geoprocessing and ModelBuilder. In practice, MDMAS has been utilized to provide warning information, disaster assessment and services products. MDMAS is an efficient tool for meteorological disaster management and assessment. It can provide decision supports for disaster prevention and mitigation.
The characteristic analysis of Korean August rainfall using Self-Organizing Maps
NASA Astrophysics Data System (ADS)
Lee, S. H.; Seo, K. H.; Kim, J.
2016-12-01
The characteristics of the low-level pressure pattern during Korean August rainfall have been investigated using a neural network-based cluster analysis called self-organizing map (SOM). On the basis of various SOM mode analyses, five major phases of low-level pressure pattern are dynamically identified. The first mode occurs with a distinct circulation state corresponding to a strengthened subtropical high to the south of Korea and migratory low passing though north of Korea. The cold, dry inflow from the north by the cyclonic anomaly and warm, moist air produced by the WNPSH demonstrate the convective instability that provides reasonably intense precipitation over the Korean Peninsula. The second mode represents that low-level anticyclonic anomaly is located to the south of Korea and low-level anticyclonic anomaly is located over the Sea of Okhotsk. The two high pressure pattern conflict with each other forming front, which is identified as the frontal precipitation. The third mode represents local instability with no specific large-scale environmental condition; weak low-level jets, weak upper-level jets, no front, and no typhoon. The fourth mode is typhoon near Taiwan suppling a lot of water vapor in the Korean peninsula to be unloaded precipitation. This can be represented as an indirect-typhoon mode. The fifth mode can be classified as direct-typhoon mode, which typhoon passes though the Korea.
Berenz, Erin C; Trapp, Stephen K; Acierno, Ron; Richardson, Lisa; Kilpatrick, Dean G; Tran, Trinh Luong; Trung, Lam Tu; Tam, Nguyen Thanh; Tuan, Tran; Buoi, La Thi; Ha, Tran Thu; Thach, Tran Duc; Gaboury, Mario; Amstadter, Ananda B
2013-05-01
Predisaster risk factors are related to postdisaster psychopathology even at relatively low levels of disaster exposure. A history of panic attacks (PA) may convey risk for postdisaster psychopathology and has been linked to a wide range of psychiatric disorders in Western and non-Western samples. The present study examined the main and interactive effects of pretyphoon PA and level of typhoon exposure in the onset of posttyphoon posttraumatic stress disorder (PTSD), major depression (MDD), and generalized anxiety disorder (GAD) in a Vietnamese sample of typhoon survivors. Typhoon Xangsane interrupted a Vietnamese epidemiological mental health needs assessment, providing a rare opportunity for preand posttyphoon assessments. Hierarchical logistic regression analyses evaluated whether the main and interactive effects of typhoon exposure severity and PA history were significantly related to posttyphoon diagnoses, above and beyond age, health status, pretyphoon psychiatric screening results, and history of potentially traumatic events. PA history moderated the relationship between severity of typhoon exposure and posttyphoon PTSD and MDD, but not GAD. Specifically, greater degree of exposure to the typhoon was significantly related to increased likelihood of postdisaster PTSD and MDD among individuals without a history of PA, above and beyond variance accounted for by pretyphoon psychiatric screening results. Individuals with a history of PA evidenced greater risk for postdisaster PTSD and MDD regardless of severity of typhoon exposure. Preexisting PA may affect the nature of the relationship between disaster characteristics and prevalence of postdisaster PTSD and MDD within Vietnamese samples. © 2013 Wiley Periodicals, Inc.
Suzuki, Yoshihiro; Teranishi, Kotaro; Matsuwaki, Tomonori; Nukazawa, Kei; Ogura, Yoshitoshi
2018-05-28
To determine the effects of bacteria pollution associated with a strong typhoon event and to assess the restoration of the normal bacterial flora, we used conventional filtration methods and nextgeneration sequencing of 16S rRNA genes to analyze the transition of fecal and total bacterial counts in water and core sand samples collected from a recreational beach. Immediately after the typhoon event, Escherichia coli counts increased to 82 CFU/100 g in the surface beach sand. E. coli was detected through the surface to sand 85-cm deep at the land side point (10-m land side from the high-water line). However, E. coli disappeared within a month from the land side point. The composition of the bacterial flora in the beach sand at the land point was directly influenced by the typhoon event. Pseudomonas was the most prevalent genus throughout the sand layers (0-102-cm deep) during the typhoon event. After 3 months, the population of Pseudomonas significantly decreased, and the predominant genus in the surface layer was Kaistobacter, although Pseudomonas was the major genus in the 17- to 85-cm layer. When the beach conditions stabilized, the number of pollutant Pseudomonas among the 10 most abundant genera decreased to lower than the limit of detection. The bacterial population of the sand was subsequently restored to the most populous pre-event orders at the land point. A land-side beach, where users directly contact the sand, was significantly affected by bacterial pollution caused by a strong typhoon event. We show here that the normal bacterial flora of the surface sand was restored within 1 month. Copyright © 2018 Elsevier B.V. All rights reserved.
Using the SRQ–20 Factor Structure to Examine Changes in Mental Distress Following Typhoon Exposure
Stratton, Kelcey J.; Richardson, Lisa K.; Tran, Trinh Luong; Tam, Nguyen Thanh; Aggen, Steven H.; Berenz, Erin C.; Trung, Lam Tu; Tuan, Tran; Buoi, La Thi; Ha, Tran Thu; Thach, Tran Duc; Amstadter, Ananda B.
2014-01-01
Empirical research is limited regarding postdisaster assessment of distress in developing nations. This study aimed to evaluate the factor structure of the 20-item Self-Reporting Questionnaire (SRQ–20) before and after an acute trauma, Typhoon Xangsane, in order to examine changes in mental health symptoms in an epidemiologic sample of Vietnamese adults. The study examined a model estimating individual item factor loadings, thresholds, and a latent change factor for the SRQ–20's single “general distress” common factor. The covariates of sex, age, and severity of typhoon exposure were used to evaluate the disaster-induced changes in SRQ–20 scores while accounting for possible differences in the relationship between individual measurement scale items and the latent mental health construct. Evidence for measurement noninvariance was found. However, allowing sex and age effects on the pre-typhoon and post-typhoon factors accounted for much of the noninvariance in the SRQ–20 measurement structure. A test of no latent change failed, indicating that the SRQ–20 detected significant individual differences in distress between pre- and post-typhoon assessment. Conditioning on age and sex, several typhoon exposure variables differentially predicted levels of distress change, including evacuation, personal injury, and peri-event fear. On average, females and older individuals reported higher levels of distress than males and younger individuals, respectively. The SRQ–20 is a valid and reasonably stable instrument that may be used in postdisaster contexts to assess emotional distress and individual changes in mental health symptoms. PMID:24512425
NASA Astrophysics Data System (ADS)
Ouyang, Huei-Tau
2017-07-01
Three types of model for forecasting inundation levels during typhoons were optimized: the linear autoregressive model with exogenous inputs (LARX), the nonlinear autoregressive model with exogenous inputs with wavelet function (NLARX-W) and the nonlinear autoregressive model with exogenous inputs with sigmoid function (NLARX-S). The forecast performance was evaluated by three indices: coefficient of efficiency, error in peak water level and relative time shift. Historical typhoon data were used to establish water-level forecasting models that satisfy all three objectives. A multi-objective genetic algorithm was employed to search for the Pareto-optimal model set that satisfies all three objectives and select the ideal models for the three indices. Findings showed that the optimized nonlinear models (NLARX-W and NLARX-S) outperformed the linear model (LARX). Among the nonlinear models, the optimized NLARX-W model achieved a more balanced performance on the three indices than the NLARX-S models and is recommended for inundation forecasting during typhoons.
Understanding the Microphysical Properties of Developing Cloud Clusters during TCS-08
2011-09-30
resolution (1.67-km) sensitivity simulations have been performed using Typhoon Mawar (2005) from the western North Pacific to demonstrate considerable...cloud-resolving) scheme is used in the model. Initial calculations of some basic cloud properties from infrared imagery for Typhoon Mawar indicate that...Figure 4: Intensity traces of simulated Typhoon Mawar (2005) showing sea-level pressure on the left axis and maximum wind speed on the right axis
Marine C2 in Support of HA/DR: Observations and Critical Assessments Following Super-Typhoon Haiyan
2014-06-01
farm (Figure 1), established Internet access over commercial satellite service 6 (Figure 2), and configured a wireless local area network ( WLAN ...included support for a larger diameter wireless local area network ( WLAN ), providing greater freedom of movement for users accessing the GATR...emerging commercial capabilities, both communications systems and handheld/user-access devices involves the establishment of a synergistic application
Influence of Typhoon Matsa on Phytoplankton Chlorophyll-a off East China
Shao, Jinchao; Han, Guoqi; Yang, Dezhou
2015-01-01
Typhoons can cause strong disturbance, mixing, and upwelling in the upper layer of the oceans. Rich nutrients from the subsurface layer can be brought to the euphotic layer, which will induce the phytoplankton to breed and grow rapidly. In this paper, we investigate the impact of an intense and fast moving tropical storm, Typhoon Matsa, on phytoplankton chlorophyll-a (Chl-a) concentration off East China. By using satellite remote sensing data, we analyze the changes of Chl-a concentration, Sea Surface Temperature (SST) and wind speed in the pre- and post-typhoon periods. We also give a preliminary discussion on the different responses of the Chl-a concentration between nearshore and offshore waters. In nearshore/coastal regions where nutrients are generally rich, the Chl-a maximum occurs usually at the surface or at the layer close to the surface. And, in offshore tropical oligotrophic oceans, the subsurface maxima of Chl-a exist usually in the stratified water column. In an offshore area east of Taiwan, the Chl-a concentration rose gradually in about two weeks after the typhoon. However, in a coastal area north of Taiwan high Chl-a concentration decreased sharply before landfall, rebounded quickly to some degree after landfall, and restored gradually to the pre-typhoon level in about two weeks. The Chl-a concentration presented a negative correlation with the wind speed in the nearshore area during the typhoon, which is opposite to the response in the offshore waters. The phenomena may be attributable to onshore advection of low Chl-a water, coastal downwelling and intensified mixing, which together bring pre-typhoon surface Chl-a downward in the coastal area. In the offshore area, the typhoon may trigger increase of Chl-a concentration through uptake of nutrients by typhoon-induced upwelling and entrainment mixing. PMID:26407324
Microseismic Properties of Typhoons in the Western Pacific
NASA Astrophysics Data System (ADS)
Xu, Y.; Koper, K. D.; Burlacu, R.
2017-12-01
We analyzed the ambient seismic noise recorded in 2012 by a temporary array of 240 seismometers deployed in Yunnan, China as part of Phase I of the ChinArray project. The stations were installed with a quasi-uniform spacing of about 70 km by the Yunnan Earthquake Administration. Each station consisted of a three-component Guralp-3ESP seismometer and a Reftek 130 data acquisition system with a sampling interval of 0.01 s. To identify the structure and source of the ambient noise, we applied frequency-dependent polarization analysis to the individual stations and f-k analysis for three sub-arrays consisting of 14-25 stations. The most prominent microseismic signals we observed were surface waves generated at periods of 3-7 s by 15 typhoons that occurred in the Western Pacific, mostly during the summer of 2012. The U.S. Navy's Joint Typhoon Warning Center divides a tropical cyclone into four levels, Tropical Depression (TD), Tropical Storm (TS), Typhoon (TY) and Super Typhoon (ST) based on the estimated wind speed. Four of the 15 analyzed typhoons reached ST intensity. The maximum microseism signals tended to last throughout the lifetime of a typhoon. Sometimes, we observed the splitting of a single microseism spectral peak into two parallel peaks. We compared the seismic observations to storm track data for typhoons Guchol, Jelawat, and Son-Tinh, and with oceanic models of wave-wave interaction. We find that microseismic power is correlated with changes in the direction or speed, or both, of the typhoon track. High wind speed or changing wind speed within the typhoon does not have a clear relationship with the microseismic power.
Local amplification of storm surge by Super Typhoon Haiyan in Leyte Gulf.
Mori, Nobuhito; Kato, Masaya; Kim, Sooyoul; Mase, Hajime; Shibutani, Yoko; Takemi, Tetsuya; Tsuboki, Kazuhisa; Yasuda, Tomohiro
2014-07-28
Typhoon Haiyan, which struck the Philippines in November 2013, was an extremely intense tropical cyclone that had a catastrophic impact. The minimum central pressure of Typhoon Haiyan was 895 hPa, making it the strongest typhoon to make landfall on a major island in the western North Pacific Ocean. The characteristics of Typhoon Haiyan and its related storm surge are estimated by numerical experiments using numerical weather prediction models and a storm surge model. Based on the analysis of best hindcast results, the storm surge level was 5-6 m and local amplification of water surface elevation due to seiche was found to be significant inside Leyte Gulf. The numerical experiments show the coherent structure of the storm surge profile due to the specific bathymetry of Leyte Gulf and the Philippines Trench as a major contributor to the disaster in Tacloban. The numerical results also indicated the sensitivity of storm surge forecast.
Climate change impacts in Zhuoshui watershed, Taiwan
NASA Astrophysics Data System (ADS)
Chao, Yi-Chiung; Liu, Pei-Ling; Cheng, Chao-Tzuen; Li, Hsin-Chi; Wu, Tingyeh; Chen, Wei-Bo; Shih, Hung-Ju
2017-04-01
There are 5.3 typhoons hit Taiwan per year on average in last decade. Typhoon Morakot in 2009, the most severe typhoon, causes huge damage in Taiwan, including 677 casualty and roughly NT 110 billion (3.3 billion USD) in economic loss. Some researches documented that typhoon frequency will decrease but increase in intensity in western North Pacific region. It is usually preferred to use high resolution dynamical model to get better projection of extreme events; because coarse resolution models cannot simulate intense extreme events. Under that consideration, dynamical downscaling climate data was chosen to describe typhoon satisfactorily. One of the aims for Taiwan Climate Change Projection and Information Platform (TCCIP) is to demonstrate the linkage between climate change data and watershed impact models. The purpose is to understand relative disasters induced by extreme rainfall (typhoons) under climate change in watersheds including landslides, debris flows, channel erosion and deposition, floods, and economic loss. The study applied dynamic downscaling approach to release climate change projected typhoon events under RCP 8.5, the worst-case scenario. The Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability (TRIGRS) and FLO-2D models, then, were used to simulate hillslope disaster impacts in the upstream of Zhuoshui River. CCHE1D model was used to elevate the sediment erosion or deposition in channel. FVCOM model was used to asses a flood impact in urban area in the downstream. Finally, whole potential loss associate with these typhoon events was evaluated by the Taiwan Typhoon Loss Assessment System (TLAS) under climate change scenario. Results showed that the total loss will increase roughly by NT 49.7 billion (1.6 billion USD) in future in Zhuoshui watershed in Taiwan. The results of this research could help to understand future impact; however model bias still exists. Because typhoon track is a critical factor to consider regional disaster risk and the projection of typhoon is still highly uncertain and typhoon number is very limited in a single model simulation. Since Taiwan is a small island, different typhoon tracks induce different level of disaster impacts in watersheds. Therefore, more samples dynamic downscaled typhoon events are needed for analysis to improve and increase reliability in future. Considering dynamical downscaling methods consume massive computing power, developing a new statistical downscaling approach and new method to release daily climate change data to hourly data could be a short-term solution.
NASA Astrophysics Data System (ADS)
Takaya, Y.; Kubo, Y.; Yamaguchi, M.; Vitart, F.; Hirahara, S.; Maeda, S.
2016-12-01
Strong El Niño events have lingering effects on the seasonal variability in the Indo- western Pacific region in the mature-decay phase of El Niño. Specifically, in the decay phase, a low-level anticyclonic circulation and suppressed convection in the western North Pacific are enforced as a result of a local air-sea feedback in the western North Pacific and remote response to the Indian Ocean warming due to El Niño. The typhoon activity in the western North Pacific is also modulated by the lingering effects in the early typhoon season (boreal spring to early summer) following the strong El Niño events. This study investigates underlying mechanisms and predictability by analyzing the historical analysis data, subseasonal and seasonal reforecast data, and sensitivity experiments with the use of an atmosphere-ocean coupled model for the 2016 typhoon season. In this study, we focus on the remote response of the typhoon activity in the Indo-Pacific region. First, we examined the case of 2016, which exhibited the striking inactive typhoon activity and marked the second latest genesis of the first typhoon of the year since 1977 (Typhoon Nipartak on 3 July 2016). The inactive typhoon activity in the early typhoon season of 2016 is plausibly related to the lingering effects of the preceding strong El Niño in 2015/2016 winter. And the inactive typhoon condition and its related atmosphere-ocean conditions in the western north Pacific were successfully predicted with sub-seasonal prediction systems and JMA seasonal prediction system (JMA/MRI-CPS2) well in advance. A composite analysis using historical analysis data indicates that the typhoon activity tends to be suppressed associated with the Indian Ocean warming in boreal spring to summer following El Niño winters. This is relatively well replicated in reforecasts of JMA/MRI-CPS2. We also carried out sensitivity experiments with JMA/MRI-CPS2, where we strongly nudge sea surface temperature (SST) in the Indian Ocean to climatological SST. The typhoon activity in the western North Pacific is enhanced in the sensitivity experiment, implying that the the Indian Ocean played a role in shaping the inactive typhoon conditions in the 2016 typhoon season. We will further discuss the underlying mechanisms and predictability using the series of experiments.
Impacts of Typhoon Soudelor (2015) on the water quality of Taipei, Taiwan
Fakour, Hoda; Lo, Shang-Lien; Lin, Tsair-Fuh
2016-01-01
Typhoon Soudelor was one of the strongest storms in the world in 2015. The category 5 hurricane made landfall in Taiwan on August 8, causing extensive damage and severe impacts on the environment. This paper describes the changes of trihalomethane (THM) concentrations in tap and drinking fountain water in selected typhoon-affected areas in Taipei before and after the typhoon. Samples were taken from water transmission mains at various distances from the local water treatment plant. The results showed that organic matter increased between pre- and post-typhoon periods with a greater proportion of aromatic compounds. Although drinking fountains showed moderately less total trihalomethane (TTHM) levels than that of tap water, the intake of high turbidity water considerably diminished the efficiency of their purification systems after the typhoon. The percentage distribution of THM species increased throughout the distribution network, probably due to a longer contact time between chlorine and the organic matter in the pipelines. After 2 to 5 min of boiling, THM reduction was considerable in all cases with the greater extent in post-typhoon samples. It is evident that extreme weather conditions may have a severe impact on water quality, and thus more cautious strategies should be adopted in such cases. PMID:27125312
NASA Astrophysics Data System (ADS)
Zhao, Ying; Wang, Bin; Ji, Zhongzhen; Liang, Xudong; Deng, Guo; Zhang, Xin
2005-07-01
In this study, an attempt to improve typhoon forecasts is made by incorporating three-dimensional Advanced Microwave Sounding Unit-A (AMSU-A) retrieved wind and temperature and the central sea level pressure of cyclones from typhoon reports or bogus surface low data into initial conditions, on the basis of the Fifth-Generation National Center for Atmospheric Research/Pennsylvania State University Mesoscale Model (MM5) four-dimensional variational data assimilation (4DVar) system with a full-physics adjoint model. All the above-mentioned data are found to be useful for improvement of typhoon forecasts in this mesoscale data assimilation experiment. The comparison tests showed the following results: (1) The assimilation of the satellite-retrieved data was found to have a positive impact on the typhoon track forecast, but the landing position error is ˜150 km. (2) The assimilation of both the satellite-retrieved data and moving information of the typhoon center dramatically improved the track forecast and captured the recurvature and landfall. The mean track error during the 72-hour forecast is 69 km. The predicted typhoon intensity, however, is much weaker than that from observations. (3) The assimilation of both the satellite-retrieved data and the bogus surface low data improved the intensity and track forecasts more significantly than the assimilation of only bogus surface low data (bogus data assimilation) did. The mean errors during the 72-hour forecast are 2.6 hPa for the minimum sea level pressure and 87 km for track position. However, the forecasted landing time is ˜6 hours earlier than the observed one.
Ouyang, Huei-Tau
2017-08-01
Accurate inundation level forecasting during typhoon invasion is crucial for organizing response actions such as the evacuation of people from areas that could potentially flood. This paper explores the ability of nonlinear autoregressive neural networks with exogenous inputs (NARX) to predict inundation levels induced by typhoons. Two types of NARX architecture were employed: series-parallel (NARX-S) and parallel (NARX-P). Based on cross-correlation analysis of rainfall and water-level data from historical typhoon records, 10 NARX models (five of each architecture type) were constructed. The forecasting ability of each model was assessed by considering coefficient of efficiency (CE), relative time shift error (RTS), and peak water-level error (PE). The results revealed that high CE performance could be achieved by employing more model input variables. Comparisons of the two types of model demonstrated that the NARX-S models outperformed the NARX-P models in terms of CE and RTS, whereas both performed exceptionally in terms of PE and without significant difference. The NARX-S and NARX-P models with the highest overall performance were identified and their predictions were compared with those of traditional ARX-based models. The NARX-S model outperformed the ARX-based models in all three indexes, whereas the NARX-P model exhibited comparable CE performance and superior RTS and PE performance.
Air Force F-22 Fighter Program: Background and Issues for Congress
2009-11-25
recover those critical skills becomes increasingly expensive, particularly where F-22 comprises a large share of their overall business.23 The Air...15, is offering for sale on the international market an upgraded version of the F-15 called the Silent Eagle, which incorporates some added stealth...is only stealthy from the front,” Hirata says, referencing a limitation shared by the Eurofighter Typhoon. “I am afraid that the F-15 Silent Eagle
Yang, Chun-Yuh; Lee, Min Sheng; Ho, Chi-Kung; Mena, Kristina D.; Wang, Peng-Yau; Chen, Pei-Shih
2014-01-01
Background Melioidosis is a severe bacterial infection caused by Burkholderia pseudomallei with a high case-fatality rate. Epidemiological and animal studies show the possibility of inhalation transmission. However, no B. pseudomallei concentrations in ambient air have been researched. Here, we developed a method to quantify ambient B. pseudomallei and then measured concentrations of ambient B. pseudomallei during the typhoon season and the non-typhoon season to determine the factors influencing ambient B. pseudomallei levels. Methods We quantified ambient B. pseudomallei by using a filter/real-time qPCR method in the Zoynan Region in Kaohsiung, southern Taiwan. Twenty-four hour samples were collected at a sampling rate of 20 L/min every day from June 11 to December 21, 2012 including during the typhoon season (June to September) and reference season (October to December). Results We successfully developed a filtration/real-time qPCR method to quantify ambient B. pseudomallei. To our knowledge, this is the first report describing concentrations of ambient B. pseudomallei. Ambient B. pseudomallei were only detected during the typhoon season when compared to the reference season. For the typhoons affecting the Zoynan Region, the positive rates of ambient B. pseudomallei were very high at 80% to 100%. During June to December, rainfall was positively correlated with ambient B. pseudomallei with a statistical significance. Sediment at a nearby pond significantly influenced the concentration of ambient B. pseudomallei. During the typhoon month, the typhoon was positively correlated with ambient B. pseudomallei whereas wind speed was reversely correlated with ambient B. pseudomallei. Conclusions Our data suggest the possibility of transmission of B. pseudomallei via inhalation during the typhoon season. PMID:24874950
Chen, Ya-Lei; Yen, Yu-Chuan; Yang, Chun-Yuh; Lee, Min Sheng; Ho, Chi-Kung; Mena, Kristina D; Wang, Peng-Yau; Chen, Pei-Shih
2014-01-01
Melioidosis is a severe bacterial infection caused by Burkholderia pseudomallei with a high case-fatality rate. Epidemiological and animal studies show the possibility of inhalation transmission. However, no B. pseudomallei concentrations in ambient air have been researched. Here, we developed a method to quantify ambient B. pseudomallei and then measured concentrations of ambient B. pseudomallei during the typhoon season and the non-typhoon season to determine the factors influencing ambient B. pseudomallei levels. We quantified ambient B. pseudomallei by using a filter/real-time qPCR method in the Zoynan Region in Kaohsiung, southern Taiwan. Twenty-four hour samples were collected at a sampling rate of 20 L/min every day from June 11 to December 21, 2012 including during the typhoon season (June to September) and reference season (October to December). We successfully developed a filtration/real-time qPCR method to quantify ambient B. pseudomallei. To our knowledge, this is the first report describing concentrations of ambient B. pseudomallei. Ambient B. pseudomallei were only detected during the typhoon season when compared to the reference season. For the typhoons affecting the Zoynan Region, the positive rates of ambient B. pseudomallei were very high at 80% to 100%. During June to December, rainfall was positively correlated with ambient B. pseudomallei with a statistical significance. Sediment at a nearby pond significantly influenced the concentration of ambient B. pseudomallei. During the typhoon month, the typhoon was positively correlated with ambient B. pseudomallei whereas wind speed was reversely correlated with ambient B. pseudomallei. Our data suggest the possibility of transmission of B. pseudomallei via inhalation during the typhoon season.
NASA Astrophysics Data System (ADS)
Chen, W.-B.; Liu, W.-C.; Hsu, M.-H.
2012-12-01
Precise predictions of storm surges during typhoon events have the necessity for disaster prevention in coastal seas. This paper explores an artificial neural network (ANN) model, including the back propagation neural network (BPNN) and adaptive neuro-fuzzy inference system (ANFIS) algorithms used to correct poor calculations with a two-dimensional hydrodynamic model in predicting storm surge height during typhoon events. The two-dimensional model has a fine horizontal resolution and considers the interaction between storm surges and astronomical tides, which can be applied for describing the complicated physical properties of storm surges along the east coast of Taiwan. The model is driven by the tidal elevation at the open boundaries using a global ocean tidal model and is forced by the meteorological conditions using a cyclone model. The simulated results of the hydrodynamic model indicate that this model fails to predict storm surge height during the model calibration and verification phases as typhoons approached the east coast of Taiwan. The BPNN model can reproduce the astronomical tide level but fails to modify the prediction of the storm surge tide level. The ANFIS model satisfactorily predicts both the astronomical tide level and the storm surge height during the training and verification phases and exhibits the lowest values of mean absolute error and root-mean-square error compared to the simulated results at the different stations using the hydrodynamic model and the BPNN model. Comparison results showed that the ANFIS techniques could be successfully applied in predicting water levels along the east coastal of Taiwan during typhoon events.
Local amplification of storm surge by Super Typhoon Haiyan in Leyte Gulf
Mori, Nobuhito; Kato, Masaya; Kim, Sooyoul; Mase, Hajime; Shibutani, Yoko; Takemi, Tetsuya; Tsuboki, Kazuhisa; Yasuda, Tomohiro
2014-01-01
Typhoon Haiyan, which struck the Philippines in November 2013, was an extremely intense tropical cyclone that had a catastrophic impact. The minimum central pressure of Typhoon Haiyan was 895 hPa, making it the strongest typhoon to make landfall on a major island in the western North Pacific Ocean. The characteristics of Typhoon Haiyan and its related storm surge are estimated by numerical experiments using numerical weather prediction models and a storm surge model. Based on the analysis of best hindcast results, the storm surge level was 5–6 m and local amplification of water surface elevation due to seiche was found to be significant inside Leyte Gulf. The numerical experiments show the coherent structure of the storm surge profile due to the specific bathymetry of Leyte Gulf and the Philippines Trench as a major contributor to the disaster in Tacloban. The numerical results also indicated the sensitivity of storm surge forecast. PMID:25821268
NASA Astrophysics Data System (ADS)
Kim, Ok-Yeon; Kim, Hye-Mi; Lee, Myong-In; Min, Young-Mi
2017-01-01
This study aims at predicting the seasonal number of typhoons (TY) over the western North Pacific with an Asia-Pacific Climate Center (APCC) multi-model ensemble (MME)-based dynamical-statistical hybrid model. The hybrid model uses the statistical relationship between the number of TY during the typhoon season (July-October) and the large-scale key predictors forecasted by APCC MME for the same season. The cross validation result from the MME hybrid model demonstrates high prediction skill, with a correlation of 0.67 between the hindcasts and observation for 1982-2008. The cross validation from the hybrid model with individual models participating in MME indicates that there is no single model which consistently outperforms the other models in predicting typhoon number. Although the forecast skill of MME is not always the highest compared to that of each individual model, the skill of MME presents rather higher averaged correlations and small variance of correlations. Given large set of ensemble members from multi-models, a relative operating characteristic score reveals an 82 % (above-) and 78 % (below-normal) improvement for the probabilistic prediction of the number of TY. It implies that there is 82 % (78 %) probability that the forecasts can successfully discriminate between above normal (below-normal) from other years. The forecast skill of the hybrid model for the past 7 years (2002-2008) is more skillful than the forecast from the Tropical Storm Risk consortium. Using large set of ensemble members from multi-models, the APCC MME could provide useful deterministic and probabilistic seasonal typhoon forecasts to the end-users in particular, the residents of tropical cyclone-prone areas in the Asia-Pacific region.
NASA Astrophysics Data System (ADS)
Wang, Jingmei; Gong, Adu; Li, Jing; Chen, Yanling
2017-04-01
Typhoon is a kind of strong weather system formed in tropical or subtropical oceans. China, located on the west side of the Pacific Ocean, is the country affected by the typhoon most frequently and seriously. To provide theoretical support for effectively reducing the damage caused by typhoon, the variation law of typhoon frequency is explored by analyzing the distribution of typhoon path and landing sites, sphere of influence, and the statistical characteristics of typhoon for every 5 years. In this study, the typhoon point data set was formed using the Best Path Data Set (0.1 ° × 0.1 °) compiled by China Meteorological Administration from 1950 to 2014. By using the tool of Point to Line in software ArgGIS, the typhoon paths are produced from the point data set. The influence sphere of typhoon is calculated from Euclidean distance of typhoon, whose threshold is set to 1°.The typhoon landing site was extracted by using the Chinese vector layer provided by the research group. By counting the frequency of typhoons, the landing sites, and the sphere of influence, some conclusions can be drawn as follows. In recent years, the number of typhoons generated has been reduced, typhoon intensity is relatively stable, but the impact of typhoon area has increased. Specific performance can be seen from the typhoon statistical and spatial distribution characteristics in China. In terms of frequency of typhoon landing, the number of typhoons landing in China has increased while the total number of typhoons is reduced. In terms of distribution of landing sites, the range of typhoon landing fluctuates. However, during the process of fluctuation, the range is gradually expanding. For example, in south of China, Hainan Island is affected by typhoon more frequently meanwhile China's northeast region is also gradually affected, which is extremely unusual before. Key words: spatial point model, distribution of typhoon, frequency of typhoon
The Typhoon Disaster Analysis Based on Weibo Topic Heat
NASA Astrophysics Data System (ADS)
Yuan, J.; Gong, A.; Wang, J.; Li, J.
2018-04-01
Could social media data be utilized in hazard evaluation? Typhoon disaster as one of the costly disaster has become devastating threats for human. Moreover, social media change the communication way of human and citizens can turn to this platform to express disasterrelated information at real time. Therefore, social media improves situational awareness and widens the method of hazard information acquiring. With more and more studies investigating in relationship between social media response and degree of damage, the strong correlation has been proved. Weibo as one of the most popular social media in China can provide data with posted text, location, user identification and other additional information. Combining with 10 tropical cyclones and Weibo data in 2013, We perform a quantitative analysis between the grade of hazard situation and Weibo related topic heat in province scale. We provide a new model of Weibo topic heat to evaluate the Weibo activity in study area. Also we demonstrate the hazard assessing formula is H = 1.8845 ln(α) + 15.636 in tropical cyclone disaster. High level goodness of curve fitting also suggest that this equation can be used for rapid assessment of hazard caused by tropical cyclones.
Tweeting Supertyphoon Haiyan: Evolving Functions of Twitter during and after a Disaster Event.
David, Clarissa C; Ong, Jonathan Corpus; Legara, Erika Fille T
2016-01-01
When disaster events capture global attention users of Twitter form transient interest communities that disseminate information and other messages online. This paper examines content related to Typhoon Haiyan (locally known as Yolanda) as it hit the Philippines and triggered international humanitarian response and media attention. It reveals how Twitter conversations about disasters evolve over time, showing an issue attention cycle on a social media platform. The paper examines different functions of Twitter and the information hubs that drive and sustain conversation about the event. Content analysis shows that the majority of tweets contain information about the typhoon or its damage, and disaster relief activities. There are differences in types of content between the most retweeted messages and posts that are original tweets. Original tweets are more likely to come from ordinary users, who are more likely to tweet emotions, messages of support, and political content compared with official sources and key information hubs that include news organizations, aid organization, and celebrities. Original tweets reveal use of the site beyond information to relief coordination and response.
Tweeting Supertyphoon Haiyan: Evolving Functions of Twitter during and after a Disaster Event
David, Clarissa C.; Ong, Jonathan Corpus; Legara, Erika Fille T.
2016-01-01
When disaster events capture global attention users of Twitter form transient interest communities that disseminate information and other messages online. This paper examines content related to Typhoon Haiyan (locally known as Yolanda) as it hit the Philippines and triggered international humanitarian response and media attention. It reveals how Twitter conversations about disasters evolve over time, showing an issue attention cycle on a social media platform. The paper examines different functions of Twitter and the information hubs that drive and sustain conversation about the event. Content analysis shows that the majority of tweets contain information about the typhoon or its damage, and disaster relief activities. There are differences in types of content between the most retweeted messages and posts that are original tweets. Original tweets are more likely to come from ordinary users, who are more likely to tweet emotions, messages of support, and political content compared with official sources and key information hubs that include news organizations, aid organization, and celebrities. Original tweets reveal use of the site beyond information to relief coordination and response. PMID:27019425
NASA Astrophysics Data System (ADS)
Xie, M.; Shu, L.
2017-12-01
Severe high ozone (O3) episodes usually have close relations to synoptic systems. A regional continuous O3 pollution episode was detected over the Yangtze River Delta (YRD) region in China during August 7-12, 2013, in which the O3 concentrations in more than half of the cities exceeded the national air quality standard. By means of the observational analysis and the WRF/CMAQ numerical simulation, the characteristics and the essential impact factors of the typical regional O3 pollution are investigated. The observational analysis shows that the atmospheric subsidence dominated by Western Pacific subtropical high plays a crucial role in the formation of high-level O3. In addition, when the YRD cities at the front of Typhoon Utor, the periphery circulation of typhoon system can enhance the downward airflows and cause more serious air pollution. But when the typhoon system weakens the subtropical high, the prevailing southeasterly surface wind leads to the mitigation of the O3 pollution. The Integrated Process Rate (IPR) analysis incorporated in CMAQ is applied to further illustrate the combined influence of subtropical high and typhoon system in this O3 episode. The results show that the vertical diffusion (VDIF) and the gas-phase chemistry (CHEM) are two major contributors to O3 formation. On August 10-11, the cities close to the sea are apparently affected by the typhoon system, with the contribution of VDIF increasing to 28.45 ppb/h in Shanghai and 19.76 ppb/h in Hangzhou. When the YRD region is under the control of the typhoon system, the contribution values of all individual processes decrease to a low level in all cities. These results provide an insight for the O3 pollution synthetically impacted by the Western Pacific subtropical high and the tropical cyclone system.
Understanding the Microphysical Properties of Developing Cloud Clusters during TCS-08
2010-09-30
Typhoon Mawar (2005) from the western North Pacific to demonstrate considerable differences in both the development of (Fig. 4), and the microphysical...traces of simulated Typhoon Mawar (2005) showing sea-level pressure on the left axis and maximum wind speed on the right axis. There is considerable...differences in both the speed at which Mawar develops and the final minimum sea-level pressure depending on which microphysics (cloud-resolving
Enhanced Pacific Ocean Sea Surface Temperature and Its Relation to Typhoon Haiyan
NASA Technical Reports Server (NTRS)
Comiso, Josefino C.; Perez, Gay Jane P.; Stock, Larry V.
2015-01-01
Typhoon Haiyan, which devastated the Visayan Islands in the Philippines on November 8, 2013 was recorded as the strongest typhoon ever-observed using satellite data. Typhoons in the region usually originate from the mid-Pacific region that includes the Warm Pool, which is regarded as the warmest ocean surface region globally. Two study areas were considered: one in the Warm Pool Region and the other in the West Pacific Region near the Philippines. Among the most important factors that affect the strength of a typhoon are sea surface temperature (SST) and water vapor. It is remarkable that in November 2013 the average SST in the Warm Pool Region was the highest observed during the 1981 to 2014 period while that of the West Pacific Region was among the highest as well. Moreover, the increasing trend in SST was around 0.20C per decade in the warm pool region and even higher at 0.23C per decade in the West Pacific region. The yearly minimum SST has also been increasing suggesting that the temperature of the ocean mixed layer is also increasing. Further analysis indicated that water vapor, clouds, winds and sea level pressure for the same period did not reveal strong signals associated with the 2013 event. The SST is shown to be well-correlated with wind strength of historically strong typhoons in the country and the observed trends in SST suggest that extremely destructive typhoons like Haiyan are likely to occur in the future.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Yin, Xiaobin; Shi, Hanqing; Wang, Zhenzhan; Xu, Qing
2018-04-01
Accurate estimations of typhoon-level winds are highly desired over the western Pacific Ocean. A wind speed retrieval algorithm is used to retrieve the wind speeds within Super Typhoon Nepartak (2016) using 6.9- and 10.7-GHz brightness temperatures from the Japanese Advanced Microwave Scanning Radiometer 2 (AMSR2) sensor on board the Global Change Observation Mission-Water 1 (GCOM-W1) satellite. The results show that the retrieved wind speeds clearly represent the intensification process of Super Typhoon Nepartak. A good agreement is found between the retrieved wind speeds and the Soil Moisture Active Passive wind speed product. The mean bias is 0.51 m/s, and the root-mean-square difference is 1.93 m/s between them. The retrieved maximum wind speeds are 59.6 m/s at 04:45 UTC on July 6 and 71.3 m/s at 16:58 UTC on July 6. The two results demonstrate good agreement with the results reported by the China Meteorological Administration and the Joint Typhoon Warning Center. In addition, Feng-Yun 2G (FY-2G) satellite infrared images, Feng-Yun 3C (FY-3C) microwave atmospheric sounder data, and AMSR2 brightness temperature images are also used to describe the development and structure of Super Typhoon Nepartak.
The study of disaster situation awareness based on volunteered geographic information
NASA Astrophysics Data System (ADS)
Zhao, Qiansheng; Chen, Zi; Li, Shengming; Luo, Nianxue
2015-12-01
As the development of Web 2.0, the social media like microblog, blogs and social network have supplied a bunch of information with locations (Volunteered Geographical Information, VGI).Recent years many cases have shown that, if disaster happened, the cyber citizens will get together very quickly and share the disaster information, this results a bunch of volunteered geographical information about disaster situation which is very valuable for disaster response if this VGIs are used efficiently and properly. This project will take typhoon disaster as case study. In this paper, we study the relations between weibo messages and the real typhoon situation, we proposed an analysis framework for mine the relations between weibo messages distribution and physical space. We found that the number of the weibo messages, key words frequency and spatial temporary distribution of the messages have strong relations with the disaster spread in the real world, and this research results can improve our disaster situation awareness in the future. The achievement of the study will give a method for typhoon disaster situation awareness based on VGI from the bottom up, and will locate the disaster spot and evolution quickly which is very important for disaster response and recover.
NASA Astrophysics Data System (ADS)
Tsuboki, Kazuhisa
2017-04-01
Typhoons are the most devastating weather system occurring in the western North Pacific and the South China Sea. Violent wind and heavy rainfall associated with a typhoon cause huge disaster in East Asia including Japan. In 2013, Supertyphoon Haiyan struck the Philippines caused a very high storm surge and more than 7000 people were killed. In 2015, two typhoons approached the main islands of Japan and severe flood occurred in the northern Kanto region. Typhoons are still the largest cause of natural disaster in East Asia. Moreover, many researches have projected increase of typhoon intensity with the climate change. This suggests that a typhoon risk is increasing in East Asia. However, the historical data of typhoon include large uncertainty. In particular, intensity data of the most intense typhoon category have larger error after the US aircraft reconnaissance of typhoon was terminated in 1987.The main objective of the present study is improvements of typhoon intensity estimations and of forecasts of intensity and track. We will perform aircraft observation of typhoon and the observed data are assimilated to numerical models to improve intensity estimation. Using radars and balloons, observations of thermodynamical and cloud-microphysical processes of typhoons will be also performed to improve physical processes of numerical model. In typhoon seasons (mostly in August and September), we will perform aircraft observations of typhoons. Using dropsondes from the aircraft, temperature, humidity, pressure, and wind are measured in surroundings of the typhoon inner core region. The dropsonde data are assimilated to a cloud-resolving model which has been developed in Nagoya University and named the Cloud Resolving Storm Simulator (CReSS). Then, more accurate estimations and forecasts of the typhoon intensity will be made as well as typhoon tracks. Furthermore, we will utilize a ground-based balloon with microscope camera, X-band precipitation radar, Ka-band cloud radar, aerosol sonde, and a drone to observe typhoon-associated clouds and precipitation. After a test flight in March 2017, typhoon observations will be made for next 4 years; 2017-2020. The main target area of observation is the south of Okinawa where a typhoon reaches the maximum intensity and often changes its moving direction. This research will advance aircraft observation technique of typhoon in Japan. The aircraft observation will be a breakthrough to improve typhoon intensity estimations. Assimilation of the aircraft observation data to the cloud-resolving model will improve intensity estimations and forecasts of typhoons. This is the first step for the future advanced aircraft observation and will contribute to prevention or reduction of typhoon disasters.
NASA Astrophysics Data System (ADS)
Liu, C.
2009-12-01
Formosat-2 is the first satellite with high-spatial-resolution sensor deployed in a daily-revisit orbit in the world. Together with its agility of pointing ±45 degree both across and along track, we are able to observe each accessible scene from the same angle under the similar illumination conditions. These characteristics make Formosat-2 an ideal satellite for site surveillance. We developed a Formosat-2 automatic image processing system (F-2 AIPS) that can accurately and rapidly process a large amount of Formosat-2 images to produce the higher levels of products, including rigorous band-to-band coregistration, automatic orthorectification, multi-temporal image coregistration and radiance normalization, and pan-sharpening. This system has been successfully employed to rapidly respond to many international disaster events in the past five years, including flood caused by Typhoon Mindulle (2004), landslide caused by Typhoon Aere (2004), South Asia earthquake and tsunami (2004), Hurricane Katrina (2005), California wildfire (2007), Sichuan Earthquake (2008), Typhoon Kalmaegi (2008), Typhoon Sinlaku (2008), Mountain Ali wildfire (2009), Victoria bushfire in Australia (2009), Honduras earthquake (2009), Typhoon Morakot (2009). This paper reviews the applications of Formosat-2 on rapidly responding to global disasters and monitoring earth environment.
Seismologically determined bedload flux during the typhoon season.
Chao, Wei-An; Wu, Yih-Min; Zhao, Li; Tsai, Victor C; Chen, Chi-Hsuan
2015-02-05
Continuous seismic records near river channels can be used to quantify the energy induced by river sediment transport. During the 2011 typhoon season, we deployed a seismic array along the Chishan River in the mountain area of southern Taiwan, where there is strong variability in water discharge and high sedimentation rates. We observe hysteresis in the high-frequency (5-15 Hz) seismic noise level relative to the associated hydrological parameters. In addition, our seismic noise analysis reveals an asymmetry and a high coherence in noise cross-correlation functions for several station pairs during the typhoon passage, which corresponds to sediment particles and turbulent flows impacting along the riverbed where the river bends sharply. Based on spectral characteristics of the seismic records, we also detected 20 landslide/debris flow events, which we use to estimate the sediment supply. Comparison of sediment flux between seismologically determined bedload and derived suspended load indicates temporal changes in the sediment flux ratio, which imply a complex transition process from the bedload regime to the suspension regime between typhoon passage and off-typhoon periods. Our study demonstrates the possibility of seismologically monitoring river bedload transport, thus providing valuable additional information for studying fluvial bedrock erosion and mountain landscape evolution.
Seismologically determined bedload flux during the typhoon season
Chao, Wei-An; Wu, Yih-Min; Zhao, Li; Tsai, Victor C.; Chen, Chi-Hsuan
2015-01-01
Continuous seismic records near river channels can be used to quantify the energy induced by river sediment transport. During the 2011 typhoon season, we deployed a seismic array along the Chishan River in the mountain area of southern Taiwan, where there is strong variability in water discharge and high sedimentation rates. We observe hysteresis in the high-frequency (5–15 Hz) seismic noise level relative to the associated hydrological parameters. In addition, our seismic noise analysis reveals an asymmetry and a high coherence in noise cross-correlation functions for several station pairs during the typhoon passage, which corresponds to sediment particles and turbulent flows impacting along the riverbed where the river bends sharply. Based on spectral characteristics of the seismic records, we also detected 20 landslide/debris flow events, which we use to estimate the sediment supply. Comparison of sediment flux between seismologically determined bedload and derived suspended load indicates temporal changes in the sediment flux ratio, which imply a complex transition process from the bedload regime to the suspension regime between typhoon passage and off-typhoon periods. Our study demonstrates the possibility of seismologically monitoring river bedload transport, thus providing valuable additional information for studying fluvial bedrock erosion and mountain landscape evolution. PMID:25652082
NASA Astrophysics Data System (ADS)
Moon, M.; Choi, Y.; Ha, K. J.
2017-12-01
The effects of sea surface temperature (SST) gradient induced by the previous typhoon and intensity of the previous typhoon on the following typhoon motion over East Asia have been investigated using Weather Research and Forecasting (WRF) model for the previous Typhoon Bolaven (1215) and following Typhoon Tembin (1214). Using the WRF experiments for the imposed cold wake over Yellow Sea (YS) and over East China Sea (ECS), this study demonstrates that the effects of eastward SST gradient including cold wake over YS is much significant rather than that over ECS in relation to unexpected Tembin's deflection and the effect of the strong previous typhoon is faster than weaker previous typhoon in relation to Tembin. This difference between two experiments is attributed to the fact that cold wake over YS increases the magnitude of SST gradient under the eastward SST gradient around East Asia and the resultant asymmetric flow deflects Typhoon Tembin eastward, which is mainly due to the different atmospheric response to the SST forcing between ECS and YS. the effect of the previous typhoon intensity developed mid-latitude trough and makes the following typhoon favorable to move fast.
Improving Our Understanding of Tropical Cyclone Genesis
2009-09-30
increasingly convergent. Figure 3: Model-derived outgoing long-wave radiation (W m−2) image of Typhoon Ketsana 2003 (left) and Typhoon Mawar 2005 (right...the Typhoon Ketsana simulation (left) and Typhoon Mawar simulation (right). Asterisks denote the time of pre-genesis convective bursts in each...5 s−1) for the Typhoon Ketsana simulation (left) and Typhoon Mawar simulation (right). IMPACT/APPLICATIONS A combined observational and numerical
Verberne, Frank M F; Ham, Jaap; Midden, Cees J H
2012-10-01
We examine whether trust in smart systems is generated analogously to trust in humans and whether the automation level of smart systems affects trustworthiness and acceptability of those systems. Trust is an important factor when considering acceptability of automation technology. As shared goals lead to social trust, and intelligent machines tend to be treated like humans, the authors expected that shared driving goals would also lead to increased trustworthiness and acceptability of adaptive cruise control (ACC) systems. In an experiment, participants (N = 57) were presented with descriptions of three ACCs with different automation levels that were described as systems that either shared their driving goals or did not. Trustworthiness and acceptability of all the ACCs were measured. ACCs sharing the driving goals of the user were more trustworthy and acceptable than were ACCs not sharing the driving goals of the user. Furthermore, ACCs that took over driving tasks while providing information were more trustworthy and acceptable than were ACCs that took over driving tasks without providing information. Trustworthiness mediated the effects of both driving goals and automation level on acceptability of ACCs. As when trusting other humans, trusting smart systems depends on those systems sharing the user's goals. Furthermore, based on their description, smart systems that take over tasks are judged more trustworthy and acceptable when they also provide information. For optimal acceptability of smart systems, goals of the user should be shared by the smart systems, and smart systems should provide information to their user.
NASA Astrophysics Data System (ADS)
Suarez, J. K. B.; Santiago, J. T.; Tablazon, J. P.; Dasallas, L. L.; Goting, P. G.; Lagmay, A. M. A.
2016-12-01
The Philippines, located in the Northwestern Pacific Typhoon gateway to Asia, is considered one of the most susceptible to tropical cyclone related hazards. One of the most disastrous effects of tropical cyclones is storm surge. With Metro Manila being a coastal area and the most populous region in the country, with approximately 12.8 million people residing in it, it is of great interest to determine the possibility of generating significant level of storm surge in the country's capital. The necessity to determine the storm surge susceptibility was brought upon by the effect of Typhoon Haiyan on eastern Visayas in 2013, where more than 6,000 people died and resulted to about 2.86 billion dollars' worth of damages. To achieve the objectives, the actual tracks and wind speed of historical typhoon (JMA data since 1951) was mapped for the Philippines. The simulated wind speed map shows that the maximum winds are mostly experienced on the eastern side of the country; with a considerable decrease in wind intensity as the typhoon reaches the western seaboard due to land surface. The Haiyan-strength wind speed is then applied to the actual historical typhoon tracks to determine the hypothetical values of wind speed as a typhoon with Haiyan intensity reached Metro Manila. Results show that, if a typhoon with a Haiyan-like intensity is to traverse tracks like those of Rita 1978, Collen 1992, Sybil 1995, Bebinca 2000 and Xangsane 2000, there is a huge possibility of generating storm surge height of 3.9 to 5.6 m in the western seaboard of Metro Manila, even after considering the diminishing effect of surface friction.
Securely and Flexibly Sharing a Biomedical Data Management System
Wang, Fusheng; Hussels, Phillip; Liu, Peiya
2011-01-01
Biomedical database systems need not only to address the issues of managing complex data, but also to provide data security and access control to the system. These include not only system level security, but also instance level access control such as access of documents, schemas, or aggregation of information. The latter is becoming more important as multiple users can share a single scientific data management system to conduct their research, while data have to be protected before they are published or IP-protected. This problem is challenging as users’ needs for data security vary dramatically from one application to another, in terms of who to share with, what resources to be shared, and at what access level. We develop a comprehensive data access framework for a biomedical data management system SciPort. SciPort provides fine-grained multi-level space based access control of resources at not only object level (documents and schemas), but also space level (resources set aggregated in a hierarchy way). Furthermore, to simplify the management of users and privileges, customizable role-based user model is developed. The access control is implemented efficiently by integrating access privileges into the backend XML database, thus efficient queries are supported. The secure access approach we take makes it possible for multiple users to share the same biomedical data management system with flexible access management and high data security. PMID:21625285
The Re-Intensification of Typhoon Sinlaku (2008)
2010-06-01
Tropical Cyclones, TCS-08, T- PARC , Extratropical Transition, Airborne Dual Doppler Radar , ELDORA, Axisymmetrization, Mesoscale Vortices, Mesoscale...observed by multiple aircraft as part of the TCS-08 and T- PARC field programs. Airborne dual-Doppler radar , dropwindsondes, and flight-level...typhoon southwest of Japan. The evolution of the tropical cyclone (TC) structure was observed by multiple aircraft as part of the TCS-08 and T- PARC
Impacts of typhoon megi (2010) on the South China Sea
NASA Astrophysics Data System (ADS)
Ko, Dong Shan; Chao, Shenn-Yu; Wu, Chun-Chieh; Lin, I.-I.
2014-07-01
In October 2010, typhoon Megi induced a profound cold wake of size 800 km by 500 km with sea surface temperature cooling of 8°C in the South China Sea (SCS). More interestingly, the cold wake shifted from the often rightward bias to both sides of the typhoon track and moved to left in a few days. Using satellite data, in situ measurements and numerical modeling based on the East Asian Seas Nowcast/Forecast System (EASNFS), we performed detailed investigations. To obtain realistic typhoon-strength atmospheric forcing, the EASNFS applied typhoon-resolving Weather Research and Forecasting (WRF) model wind field blended with global weather forecast winds from the U.S. Navy Operational Global Atmospheric Prediction System (NOGAPS). In addition to the already known impacts from the slow typhoon translation speed and shallow pre-exiting ocean thermocline, we found the importance of the unique geographical setting of the SCS and the NE monsoon. As the event happened in late October, NE monsoon already started and contributed to the southwestward ambient surface current. Together with the topographicβ effect, the cold wake shifted westward to the left of Megi's track. It was also found that Megi expelled waters away from the SCS and manifested as a gush of internal Kelvin wave exporting waters through the Luzon Strait. The consequential sea level depression lasted and presented a favorable condition for cold dome development. Fission of the north-south elongated cold dome resulted afterward and produced two cold eddies that dissipated slowly thereafter.
Assessments on landslide susceptibility in the Tseng-wen reservoir watershed, Taiwan
NASA Astrophysics Data System (ADS)
Chen, Yu-Chin; Chen, Yung-Chau; Chen, Wen-Fu
2014-05-01
Typhoon Morakot under the strong influence of southwestern monsoon wind struck Taiwan on 8 August 2009, and dumped record-breaking rains in southern Taiwan. It triggered enormous landslides in mountains and severe flooding in low-lying areas. In addition, it destroyed or damaged houses, agricultural fields, roads, bridges, and other infrastructure facilities, causing massive economic loss and, more tragically, human casualties. In order to evaluate landslide hazard and risk assessment, it is important to understand the potential sites of landslide and their spatial distribution. Multi-temporal satellite images and geo-spatial data are used to build landslide susceptibility map for the post-disaster in the Tseng-wen reservoir watershed in this research. Elevation, slope, aspect, NDVI (normalized differential vegetation index), relief, roughness, distance to river, and distance to road are the considered factors for estimating landslide susceptibility. Maximum hourly rainfall and total rainfall, accompanied with typhoon event, are selected as the trigger factors of landslide events. Logistic regression analysis is adopted as the statistical method to model landslide susceptibility. The assessed susceptibility is represented in 4 levels which are high, high-intermediate, intermediate, and low level, respectively. Landslide spatial distribution can be depicted as a landslide susceptibility map with respect to each considered influence factors for a specified susceptible level. The landslide areas are about 358 ha and 1,485 ha before and after typhoon Morakot. The new landslide area, induced by typhoon Morakot, is as almost 4 times as the landslide area before typhoon Morakot. In addition, there is about 44.56% landslide area elevation ranging from 500m to 1000m and about 57.22% average slope ranging from 30° to 45° of landslide area. Furthermore, the devastating landslides were happened at those sites close to rivers, exposed area, and area with big land cover change (high human development). Among considered factors, slope, distance to river, NDVI, and maximum hourly rainfall are the major influence factors for landslide susceptibility. The results show that the accuracy of predicted landslide area is 74.74% and AUC is 0.82 corresponding to typhoon Morakot. Comparing model predicted with actual landslide areas, it shows that the predicted accuracy is 93% for high or high-intermediate level landslide area. It suggests that a landslide susceptibility map, depicted by this assessment model, is applicable on landslide prediction.
Estimation of typhoon rainfall in GaoPing River: A Multivariate Maximum Entropy Method
NASA Astrophysics Data System (ADS)
Pei-Jui, Wu; Hwa-Lung, Yu
2016-04-01
The heavy rainfall from typhoons is the main factor of the natural disaster in Taiwan, which causes the significant loss of human lives and properties. Statistically average 3.5 typhoons invade Taiwan every year, and the serious typhoon, Morakot in 2009, impacted Taiwan in recorded history. Because the duration, path and intensity of typhoon, also affect the temporal and spatial rainfall type in specific region , finding the characteristics of the typhoon rainfall type is advantageous when we try to estimate the quantity of rainfall. This study developed a rainfall prediction model and can be divided three parts. First, using the EEOF(extended empirical orthogonal function) to classify the typhoon events, and decompose the standard rainfall type of all stations of each typhoon event into the EOF and PC(principal component). So we can classify the typhoon events which vary similarly in temporally and spatially as the similar typhoon types. Next, according to the classification above, we construct the PDF(probability density function) in different space and time by means of using the multivariate maximum entropy from the first to forth moment statistically. Therefore, we can get the probability of each stations of each time. Final we use the BME(Bayesian Maximum Entropy method) to construct the typhoon rainfall prediction model , and to estimate the rainfall for the case of GaoPing river which located in south of Taiwan.This study could be useful for typhoon rainfall predictions in future and suitable to government for the typhoon disaster prevention .
Ali, Engy; Ferir, Marie-Christine; Reid, Tony; Gray, Henry; Van Den Boogaard, Wilma; Gonzales, Christopher; Zachariah, Rony
2017-06-01
Typhoon Haiyan hit the Philippines in November 2013 and left a trail of destruction. As part of its emergency response, Médecins Sans Frontières distributed materials for reconstructing houses and boats as standardized kits to be shared between households. Community engagement was sought and communities were empowered in deciding how to make the distributions. We aimed to answer, Was this effective and what lessons were learned? A cross-sectional survey using a semi-structured questionnaire was conducted in May 2014 and included all community leaders and 269 households in 22 barangays (community administrative areas). All houses were affected by the typhoon, of which 182 (68%) were totally damaged. All households reported having received and used the housing material. However, in 238 (88%) house repair was incomplete because the materials provided were insufficient or inappropriate for the required repairs. This experience of emergency mass distribution of reconstruction or repair materials of houses and boats led by the local community was encouraging. The use of "standardized kits" resulted in equity issues, because households were subjected to variable degrees of damage. A possible way out is to follow up the emergency distribution with a needs assessment and a tailored distribution. (Disaster Med Public Health Preparedness. 2017;11:285-289).
Roberson-Nay, Roxann; Berenz, Erin C.; Acierno, Ron; Tran, Trinh Luong; Trung, Lam Tu; Tam, Nguyen Thanh; Tuan, Tran; Buoi, La Thi; Ha, Tran Thu; Thach, Tran Duc; Amstadter, Ananda B.
2013-01-01
The association between trauma exposure and panic attacks has received increased attention over the past decade, with mounting evidence suggesting an overlapping etiologic pathway. This study examined the incidence of new onset panic attacks in 775 Vietnamese individuals in the 2–3 months following Typhoon Xangsane. Pre-typhoon (Wave 1) and post-typhoon (Wave 2) assessments were conducted, allowing for consideration of factors occurring prior to the typhoon in addition to typhoon-relevant responding. Of the 775 participants, 11.6% (n=90) met criteria for lifetime panic attack pre-typhoon and 2.8% (n=22) met post-typhoon panic attack criteria. Individuals with pre-typhoon panic were significantly older and reported less education compared to the no-panic group. Individuals in both panic groups were more likely to screen positive on a Wave1 psychiatric screening measure, endorse greater typhoon exposure and prior traumatic event exposure and were significantly more likely to meet DSM-IV criteria for posttraumatic stress disorder (PTSD) and major depression (MDD) post-typhoon compared with persons reporting no history of panic attacks. Pre and post-typhoon panic exhibited similar patterns across variables and both panic conditions were associated with the development of PTSD and MDD, suggesting that persons experiencing panic attacks may represent a vulnerable population in need of early intervention services. PMID:23778303
NASA Astrophysics Data System (ADS)
Fei, Jianfang; Ding, Juli; Huang, Xiaogang; Cheng, Xiaoping; Hu, Xiaohua
2013-06-01
The Weather Research and Forecasting model version 3.2 (WRF v3.2) was used with the bogus data assimilation (BDA) scheme and sea spray parameterization (SSP), and experiments were conducted to assess the impacts of the BDA and SSP on prediction of the typhoon ducting process induced by Typhoon Mindule (2004). The global positioning system (GPS) dropsonde observations were used for comparison. The results show that typhoon ducts are likely to form in every direction around the typhoon center, with the main type of ducts being elevated duct. With the BDA scheme included in the model initialization, the model has a better performance in predicting the existence, distribution, and strength of typhoon ducts. This improvement is attributed to the positive effect of the BDA scheme on the typhoon's ambient boundary layer structure. Sea spray affects typhoon ducts mainly by changing the latent heat (LH) flux at the air-sea interface beyond 270 km from the typhoon center. The strength of the typhoon duct is enhanced when the boundary layer under this duct is cooled and moistened by the sea spray; otherwise, the typhoon duct is weakened. The sea spray induced changes in the air-sea sensible heat (SH) flux and LH flux are concentrated in the maximum wind speed area near the typhoon center, and the changes are significantly weakened with the increase of the radial range.
Ko, Chia-Ying; Lai, Chao-Chen; Hsu, Huang-Hsiung; Shiah, Fuh-Kwo
2017-02-01
Information of the decadal timescale effects of episodic climatic disturbances (i.e., typhoons) on phytoplankton in freshwater ecosystems have received less attention and fewer seasonal evaluations partly due to the lack of long-term time-series monitoring data in typhoon prevailing areas. Through field observations of a total 36 typhoon cases in a subtropical deep freshwater ecosystem in the period of 2005-2014, we quantified phytoplankton biomass, production and growth rate in response to meteorological and hydrological changes in the weeks before, during and after typhoons between summer and autumn, and also investigated the effects of typhoon characteristics on the aforementioned phytoplankton responses. The results showed that phytoplankton exposed to typhoon disturbances generally exhibited an increasing trend over the weeks before, during and after typhoons in summer but varied in autumn. The correlations and multivariate regressions showed different contributions of meteorological and hydrological variables to individual phytoplankton responses before, during and after typhoons between seasons. The post-typhoon weeks (i.e., within two weeks after a typhoon had passed) were especially important for the timeline of phytoplankton increases and with a detectable seasonal variation that the chlorophyll a concentration significantly increased in autumn whereas both primary production and growth rate were associated with significant changes in summer. Additionally, phytoplankton responses during the post-typhoon weeks were significantly different between discrete or continuous types of typhoon events. Our work illustrated the fact that typhoons did influence phytoplankton responses in the subtropical deep freshwater ecosystem and typhoon passages in summer and autumn affected the phytoplankton dynamics differently. Nevertheless, sustained and systematic monitoring in order to advance our understanding of the role of typhoons between seasons in the modulation of phytoplankton productivity and functioning is required because such episodic climatic disturbances are projected to have intense magnitude and inconsistent frequency under 21st century climate change. Copyright © 2016 Elsevier Ltd. All rights reserved.
User Perceptions of Shared Sanitation among Rural Households in Indonesia and Bangladesh
Nelson, Kali B.; Karver, Jonathan; Kullman, Craig; Graham, Jay P.
2014-01-01
Background The practice of sharing sanitation facilities does not meet the current World Health Organization/UNICEF definition for what is considered improved sanitation. Recommendations have been made to categorize shared sanitation as improved sanitation if security, user access, and other conditions can be assured, yet limited data exist on user preferences with respect to shared facilities. Objective This study analyzed user perceptions of shared sanitation facilities in rural households in East Java, Indonesia, and Bangladesh. Methods Cross-sectional studies of 2,087 households in East Java and 3,000 households in Bangladesh were conducted using questionnaires and observational methods. Relative risks were calculated to analyze associations between sanitation access and user perceptions of satisfaction, cleanliness, and safety. Results In East Java, 82.4% of households with private improved sanitation facilities reported feeling satisfied with their place of defecation compared to 68.3% of households with shared improved facilities [RR 1.19, 95% CI 1.09, 1.31]. In Bangladesh, 87.7% of households with private improved facilities reported feeling satisfied compared to 74.5% of households with shared improved facilities [RR 1.15, 95% CI 1.10, 1.20]. In East Java, 79.5% of households who reported a clean latrine also reported feeling satisfied with their place of defecation; only 38.9% of households who reported a dirty latrine also reported feeling satisfied [RR 1.74, 95% CI 1.45, 2.08]. Conclusion Simple distinctions between improved and unimproved sanitation facilities tend to misrepresent the variability observed among households sharing sanitation facilities. Our results suggest that private improved sanitation is consistently preferred over any other sanitation option. An increased number of users appeared to negatively affect toilet cleanliness, and lower levels of cleanliness were associated with lower levels of satisfaction. However, when sanitation facilities were clean and shared by a limited number of households, users of shared facilities often reported feeling both satisfied and safe. PMID:25090096
User perceptions of shared sanitation among rural households in Indonesia and Bangladesh.
Nelson, Kali B; Karver, Jonathan; Kullman, Craig; Graham, Jay P
2014-01-01
The practice of sharing sanitation facilities does not meet the current World Health Organization/UNICEF definition for what is considered improved sanitation. Recommendations have been made to categorize shared sanitation as improved sanitation if security, user access, and other conditions can be assured, yet limited data exist on user preferences with respect to shared facilities. This study analyzed user perceptions of shared sanitation facilities in rural households in East Java, Indonesia, and Bangladesh. Cross-sectional studies of 2,087 households in East Java and 3,000 households in Bangladesh were conducted using questionnaires and observational methods. Relative risks were calculated to analyze associations between sanitation access and user perceptions of satisfaction, cleanliness, and safety. In East Java, 82.4% of households with private improved sanitation facilities reported feeling satisfied with their place of defecation compared to 68.3% of households with shared improved facilities [RR 1.19, 95% CI 1.09, 1.31]. In Bangladesh, 87.7% of households with private improved facilities reported feeling satisfied compared to 74.5% of households with shared improved facilities [RR 1.15, 95% CI 1.10, 1.20]. In East Java, 79.5% of households who reported a clean latrine also reported feeling satisfied with their place of defecation; only 38.9% of households who reported a dirty latrine also reported feeling satisfied [RR 1.74, 95% CI 1.45, 2.08]. Simple distinctions between improved and unimproved sanitation facilities tend to misrepresent the variability observed among households sharing sanitation facilities. Our results suggest that private improved sanitation is consistently preferred over any other sanitation option. An increased number of users appeared to negatively affect toilet cleanliness, and lower levels of cleanliness were associated with lower levels of satisfaction. However, when sanitation facilities were clean and shared by a limited number of households, users of shared facilities often reported feeling both satisfied and safe.
LiDAR observation of the flow structure in typhoons
NASA Astrophysics Data System (ADS)
Wu, Yu-Ting; Hsuan, Chung-Yao; Lin, Ta-Hui
2015-04-01
Taiwan is subject to 3.4 landfall typhoons each year in average, generally occurring in the third quarter of every year (July-September). Understanding of boundary-layer turbulence characteristics of a typhoon is needed to ensure the safety of both onshore and offshore wind turbines used for power generation. In this study, a floating LiDAR (Light Detection and Ranging) was deployed in a harbor to collect data of wind turbulence, atmospheric pressure, and temperature in three typhoon events (Matmo typhoon, Soulik typhoon, Trami typhoon). Data collected from the floating LiDAR and from meteorological stations located at Taipei, Taichung and Kaohsiung are adopted to analyse the wind turbulence characteristics in the three typhoon events. The measurement results show that the maximum 10-min average wind speed measured with the floating LiDAR is up to 24 m/s at a height of 200 m. Compared with other normal days, the turbulence intensity is lower in the three typhoon events where the wind speed has a rapid increase. Changes of wind direction take place clearly as the typhoons cross Taiwan from East to West. Within the crossing intervals, the vertical momentum flux is observed to have a significant pattern with both upward and downward propagating waves which are relevant to the flow structure of the typhoons.
Probabilistic vs linear blending approaches to shared control for wheelchair driving.
Ezeh, Chinemelu; Trautman, Pete; Devigne, Louise; Bureau, Valentin; Babel, Marie; Carlson, Tom
2017-07-01
Some people with severe mobility impairments are unable to operate powered wheelchairs reliably and effectively, using commercially available interfaces. This has sparked a body of research into "smart wheelchairs", which assist users to drive safely and create opportunities for them to use alternative interfaces. Various "shared control" techniques have been proposed to provide an appropriate level of assistance that is satisfactory and acceptable to the user. Most shared control techniques employ a traditional strategy called linear blending (LB), where the user's commands and wheelchair's autonomous commands are combined in some proportion. In this paper, however, we implement a more generalised form of shared control called probabilistic shared control (PSC). This probabilistic formulation improves the accuracy of modelling the interaction between the user and the wheelchair by taking into account uncertainty in the interaction. In this paper, we demonstrate the practical success of PSC over LB in terms of safety, particularly for novice users.
Effect of typhoon on atmospheric aerosol particle pollutants accumulation over Xiamen, China.
Yan, Jinpei; Chen, Liqi; Lin, Qi; Zhao, Shuhui; Zhang, Miming
2016-09-01
Great influence of typhoon on air quality has been confirmed, however, rare data especially high time resolved aerosol particle data could be used to establish the behavior of typhoon on air pollution. A single particle aerosol spectrometer (SPAMS) was employed to characterize the particles with particle number count in high time resolution for two typhoons of Soulik (2013) and Soudelor (2015) with similar tracks. Three periods with five events were classified during the whole observation time, including pre - typhoon (event 1 and event 2), typhoon (event 3 and event 4) and post - typhoon (event 5) based on the meteorological parameters and particle pollutant properties. First pollutant group appeared during pre-typhoon (event 2) with high relative contributions of V - Ni rich particles. Pollution from the ship emissions and accumulated by local processes with stagnant meteorological atmosphere dominated the formation of the pollutant group before typhoon. The second pollutant group was present during typhoon (event 3), while typhoon began to change the local wind direction and increase wind speed. Particle number count reached up to the maximum value. High relative contributions of V - Ni rich and dust particles with low value of NO3(-)/SO4(2-) was observed during this period, indicating that the pollutant group was governed by the combined effect of local pollutant emissions and long-term transports. The analysis of this study sheds a deep insight into understand the relationship between the air pollution and typhoon. Copyright © 2016 Elsevier Ltd. All rights reserved.
Assisted navigation based on shared-control, using discrete and sparse human-machine interfaces.
Lopes, Ana C; Nunes, Urbano; Vaz, Luis; Vaz, Luís
2010-01-01
This paper presents a shared-control approach for Assistive Mobile Robots (AMR), which depends on the user's ability to navigate a semi-autonomous powered wheelchair, using a sparse and discrete human-machine interface (HMI). This system is primarily intended to help users with severe motor disabilities that prevent them to use standard human-machine interfaces. Scanning interfaces and Brain Computer Interfaces (BCI), characterized to provide a small set of commands issued sparsely, are possible HMIs. This shared-control approach is intended to be applied in an Assisted Navigation Training Framework (ANTF) that is used to train users' ability in steering a powered wheelchair in an appropriate manner, given the restrictions imposed by their limited motor capabilities. A shared-controller based on user characterization, is proposed. This controller is able to share the information provided by the local motion planning level with the commands issued sparsely by the user. Simulation results of the proposed shared-control method, are presented.
Model-simulated coastal trapped waves stimulated by typhoon in northwestern South China Sea
NASA Astrophysics Data System (ADS)
Cao, Xuefeng; Shi, Hongyuan; Shi, Maochong; Guo, Peifang; Wu, Lunyu; Ding, Yang; Wang, Lu
2017-12-01
In this paper, we apply an unstructured grid coastal ocean model to simulate variations in the sea level and currents forced by two typhoons in the northwestern South China Sea (SCS). The model simulations show distinct differences for the two cases in which the typhoon paths were north and south of the Qiongzhou (QZ) Strait. In both cases, coastal trapped waves (CTWs) are stimulated but their propagation behaviors differ. Model sensitivity simulations suggest the dominant role played by alongshore wind in the eastern SCS (near Shanwei) and southeast of Hainan Island. We also examine the influence of the Leizhou Peninsula by changing the coastline in simulation experiments. Based on our results, we can draw the following conclusions: 1) The CTWs stimulated by the northern typhoon are stronger than the southern CTW. 2) In the two cases, the directions of the current structures of the QZ cross-transect are reversed. The strongest flow cores are both located in the middle-upper area of the strait and the results of our empirical orthogonal function analysis show that the vertical structure is highly barotropic. 3) The simulated CTWs divide into two branches in the QZ Strait for the northern typhoon, and an island trapped wave (ITW) around Hainan Island for the southern typhoon. 4) The Leizhou Peninsula plays a significant role in the distribution of the kinetic energy flux between the two CTW branches. In the presence of the Leizhou Peninsula, the QZ branch has only 39.7 percent of the total energy, whereas that ratio increases to 72.2 percent in its absence.
Recent decrease in typhoon destructive potential and global warming implications.
Lin, I-I; Chan, Johnny C L
2015-05-20
Typhoons (tropical cyclones) severely impact the half-billion population of the Asian Pacific. Intriguingly, during the recent decade, typhoon destructive potential (Power Dissipation Index, PDI) has decreased considerably (by ∼ 35%). This decrease, paradoxically, has occurred despite the increase in typhoon intensity and ocean warming. Using the method proposed by Emanuel (in 2007), we show that the stronger negative contributions from typhoon frequency and duration, decrease to cancel the positive contribution from the increasing intensity, controlling the PDI. Examining the typhoons' environmental conditions, we find that although the ocean condition became more favourable (warming) in the recent decade, the atmospheric condition 'worsened' at the same time. The 'worsened' atmospheric condition appears to effectively overpower the 'better' ocean conditions to suppress PDI. This stronger negative contribution from reduced typhoon frequency over the increased intensity is also present under the global warming scenario, based on analysis of the simulated typhoon data from high-resolution modelling.
NASA Astrophysics Data System (ADS)
Krall, G. M.; Cottom, W. R.
2012-01-01
Observational and model evidence suggest that a 2008 Western Pacific typhoon (NURI) ingested elevated concentrations of aerosol as it neared the Chinese coast. This study uses a regional model with two-moment bin-emulating microphysics to simulate the typhoon as it enters the field of elevated aerosol concentrations. A clean maritime field of cloud condensation nuclei (CCN) was prescribed as marine background CCN concentrations and then based on satellite and global aerosol model output, increased to pollution levels and further enhanced in sensitivity tests. The typhoon was simulated for 96 h beginning 17 August 2008. During the final 60 h CCN concentrations were enhanced as it neared the Philippines and coastal China. The model was initialized with both global reanalysis model data and irregularly spaced dropsonde data from the 2008 T-PARC observational campaign using an objective analysis routine. At 36 h, the internal nudging of the model was switched off and allowed to freely evolve on its own. As the typhoon encountered the elevated CCN in the sensitivity tests, a significant perturbation of windspeed, convective fluxes, and hydrometeor species behavior was simulated. Early during the ingestion of enhanced CCN, precipitation was reduced due to suppressed collision and coalescence, and storm winds increased in strength. Subsequently, owing to reduced fall speeds of the smaller drops, greater amounts of condensate were thrust into supercooled levels where the drops froze releasing greater amounts of latent heat of freezing. Convection thereby intensified which resulted in enhanced rainfall and more vigorous convectively-produced downdrafts. As the convection intensified in the outer rainbands the storm drifted over the developing cold-pools. The enhanced cold-pools blocked the inflow of warm, moist air into the core of the typhoon which led to a weakening of the typhoon with significantly reduced low level wind speeds. The very high amounts of pollution aerosols resulted in large amounts of condensate being thrust into the storm anvil which weakened convective downdrafts and cold-pools, yet the system did show reductions in windspeed (although weaker) compared with the clean control run. This study suggests that ingestion of elevated amounts of CCN into a tropical cyclone (TC) can appreciably alter the intensity of the storm. This implies that intensity prediction of TCs would be improved by including indirect aerosol affects. However, the pollution aerosols have very little impact on the storm track.
Oceanic response to Typhoon Nari (2007) in the East China Sea
NASA Astrophysics Data System (ADS)
Oh, Kyung-Hee; Lee, Seok; Kang, Sok-Kuh; Song, Kyu-Min
2017-06-01
The oceanic response to a typhoon in the East China Sea (ECS) was examined using thermal and current structures obtained from ocean surface drifters and a bottom-moored current profiler installed on the right side of the typhoon's track. Typhoon Nari (2007) had strong winds as it passed the central region of the ECS. The thermal structure in the ECS responded to Typhoon Nari (2007) very quickly: the seasonal thermocline abruptly collapsed and the sea surface temperature dropped immediately by about 4°C after the typhoon passed. The strong vertical mixing and surface cooling caused by the typhoon resulted in a change in the thermal structure. Strong near-inertial oscillation occurred immediately after the typhoon passed and lasted for at least 4-5 days, during which a strong vertical current existed in the lower layer. Characteristics of the near-inertial internal oscillation were observed in the middle layer. The clockwise component of the inertial frequency was enhanced in the surface layer and at 63 m depth after the typhoon passed, with these layers almost perfectly out of phase. The vertical shear current was intensified by the interaction of the wind-driven current in the upper layer and the background semi-diurnal tidal current during the arrival of the typhoon, and also by the near-inertial internal oscillation after the typhoon passage. The strong near-inertial internal oscillation persisted without significant interfacial structure after the mixing of the thermocline, which could enhance the vertical mixing over several days.
Dynamical Downscaling of Typhoon Vera (1959) and related Storm Surge based on JRA-55 Reanalysis
NASA Astrophysics Data System (ADS)
Ninomiya, J.; Takemi, T.; Mori, N.; Shibutani, Y.; Kim, S.
2015-12-01
Typhoon Vera in 1959 is historical extreme typhoon that caused severest typhoon damage mainly due to the storm surge up to 389 cm in Japan. Vera developed 895 hPa on offshore and landed with 929.2 hPa. There are many studies of the dynamical downscaling of Vera but it is difficult to simulate accurately because of the lack of the accuracy of global reanalysis data. This study carried out dynamical downscaling experiment of Vera using WRF downscaling forced by JRA-55 that are latest atmospheric model and reanalysis data. In this study, the reproducibility of five global reanalysis data for Typhoon Vera were compered. Comparison shows that reanalysis data doesn't have strong typhoon information except for JRA-55, so that downscaling with conventional reanalysis data goes wrong. The dynamical downscaling method for storm surge is studied very much (e.g. choice of physical model, nudging, 4D-VAR, bogus and so on). In this study, domain size and resolution of the coarse domain were considered. The coarse domain size influences the typhoon route and central pressure, and larger domain restrains the typhoon strength. The results of simulations with different domain size show that the threshold of developing restrain is whether the coarse domain fully includes the area of wind speed more than 15 m/s around the typhoon. The results of simulations with different resolution show that the resolution doesn't affect the typhoon route, and higher resolution gives stronger typhoon simulation.
NASA Astrophysics Data System (ADS)
Liu, Y. C.; Chen, H. F.
2016-12-01
Tropical cyclones often occur in tropical and subtropical ocean, especially in coastal areas in the Northwest Pacific. We can use modern satellite technology to study the tropical cyclones. In order to study the path and the frequency of tropical cyclones in the southeast coast hit in China and Taiwan since two thousand years ago,we have analyzed the data from Chinese historical record from AD 0 to AD 1910 and the statistics from US Joint Typhoon Warning Center from AD 1945 to AD 2013. According to the statistics, there are 532 tropical cyclone events from AD1 to AD 1910. We found that the frequency of typhoons have increased rapidly from AD 700 to AD 850 (the Tang Dynasty) and the Little Ice Age (AD 1400). These two periods just coincides with La Niño-like period. After AD 1700, the region hit by typhoon was moved towards to northward. As a whole, we compared the statistic results of historical typhoons with the core records in Taiwan and South Japan. We may certify that more typhoons hit south China in La Niño-like period, while more typhoons hit Japan in El Niño-like period. Typhoons, which made landfall onto South Korea and Jiangsu, Shanghai, Zhejiang, and Fujian in China, concentrated in July and August. On the other hand, the typhoons, which made landfall onto Taiwan and Guangdong in China often, happened during July, August, and September. Japan and Hainan in China were more often hit by typhoons in August and September. Vietnam and Philippines were often hit by typhoons from August to October and from October to November, respectively. Beside, the frequency of typhoon was enhanced in abnormal temperatures.
Impacts of Typhoon Megi (2010) on the South China Sea
2014-06-01
investigations. To obtain realistic typhoon-strength atmospheric forcing, the EASNFS applied typhoon-resolving Weather Research and Forecasting ( WRF ) model wind...EASNFS applied typhoon-resolving Weather Research and Forecasting ( WRF ) model wind field blended with global weather forecast winds from the U.S. Navy...only 1C. Sequential SST snapshots, of which only a Figure 1. The EASNFS model domain with topography and an inset covered by WRF model. Typhoon Megi’s
Typhoons Pat and Odessa in the Western Pacific Ocean
1985-08-30
51I-35-078 (30 Aug 1985) --- Typhoons Pat (left) and Odessa in the western Pacific. Of the many tropical cyclones photographed by the STS 51-I crew, the dual typhoons of Pat and Odessa were the most unusual. The twin typhoons constitute a Fujiwara system of connected cyclones first described by the Japanese meteorologist after whom the phenomena has been named. Never before have such paired typhoons been photographed from orbit.
NASA Astrophysics Data System (ADS)
Chen, Dongxing; He, Lei; Liu, Fenfen; Yin, Kedong
2017-07-01
Typhoons play an important role in the regulation of phytoplankton biomass and carbon fixation in the ocean. Data from the moderate-resolution imaging spectroradiometer (MODIS) on 35 typhoon events during 2002-2011 are analyzed to examine the effects of typhoon events on variations in sea surface temperature (SST), chlorophyll-a (Chl-a), and depth-integrated primary productivity (IPP) in the East China Sea (ECS). For all 35 typhoon cases, the average SST drops by 0.1 °C in the typhoon influenced regions, and the maximal decrease is 2.2 °C. During the same period, average Chl-a increases by 0.1 mg m-3, with the maximal increase reaching up to 1 mg m-3, and average IPP increases by 32.9 mg C m-2·d-1, with the largest increase being 221 mg C m-2·d-1. The IPP are significantly correlated with SST and Chl-a data, and the correlations become stronger after typhoon passage. On average, nearly one-third of the ECS is affected by typhoons during the 10 year period, and the resident time of the typhoons in the area reach to 38.2 h. Effects of the typhoon events on SST, Chl-a, and IPP manifest differently in the three key sea areas, namely, the coastal water (depths <50 m), continental shelf (depths 50-200 m), and open sea (depths >200 m) regions in the ECS. Specifically, stronger responses are observed in shallow water than in deeper depths. The comparisons between the pre- and post-typhoon periods show that IPP in the post-typhoon period increases by 19.7% and 12.2% in the coastal and continental shelf regions, respectively, but it decreases by 9.4% in the open sea region. Overall, our results reveal that there is a close coupling between Chl-a, SST, and IPP in shallow areas and that typhoon events can have strong effects on carbon fixation in coastal regions.
NASA Astrophysics Data System (ADS)
Jang, Dongmin; Park, Junghyun; Yuk, Jin-Hee; Joh, MinSu
2017-04-01
Due to typhoons, the south coastal cities including Busan in South Korea coastal are very vulnerable to a surge, wave and corresponding coastal inundation, and are affected every year. In 2016, South Korea suffered tremendous damage by typhoon 'Chaba', which was developed near east-north of Guam on Sep. 28 and had maximum 10-minute sustained wind speed of about 50 m/s, 1-minute sustained wind speed of 75 m/s and a minimum central pressure of 905 hpa. As 'Chaba', which is the strongest since typhoon 'Maemi' in 2003, hit South Korea on Oct. 5, it caused a massive economic and casualty damage to Ulsan, Gyeongju and Busan in South Korea. In particular, the damage of typhoon-induced coastal inundation in Busan, where many high-rise buildings and residential areas are concentrated near coast, was serious. The coastal inundation could be more affected by strong wind-induced wave than surge. In fact, it was observed that the surge height was about 1 m averagely and a significant wave height was about 8 m at coastal sea nearby Busan on Oct. 5 due to 'Chaba'. Even though the typhoon-induced surge elevated the sea level, the typhoon-induced long period wave with wave period of more than 15s could play more important role in the inundation. The present work simulated the coastal inundation induced by 'Chaba' in Busan, South Korea considering the effects of typhoon-induced surge and wave. For 'Chaba' hindcast, high resolution Weather Research and Forecasting model (WRF) was applied using a reanalysis data produced by NCEP (FNL 0.25 degree) on the boundary and initial conditions, and was validated by the observation of wind speed, direction and pressure. The typhoon-induced coastal inundation was simulated by an unstructured gird model, Finite Volume Community Ocean Model (FVCOM), which is fully current-wave coupled model. To simulate the wave-induced inundation, 1-way downscaling technique of multi domain was applied. Firstly, a mother's domain including Korean peninsula was simulated using wind and pressure produced by WRF to produce surge and wave. And then, the wave-induced inundation was simulated applying the surge height and wave height simulated by mother's model to the open boundary and initial condition of child's model which was ranged near Busan. Our simulated surge height is generally underestimated about 15 % due to the underestimation of surface pressure on WRF. However, since the effect of wave on inundation could be more significant than surge-induced forcing in this real system, our research could predict the typhoon-induced inundation by combining the surge and wave forcing in nested domain.
Does warmer China land attract more super typhoons?
Xu, Xiangde; Peng, Shiqiu; Yang, Xiangjing; Xu, Hongxiong; Tong, Daniel Q.; Wang, Dongxiao; Guo, Yudi; Chan, Johnny C. L.; Chen, Lianshou; Yu, Wei; Li, Yineng; Lai, Zhijuan; Zhang, Shengjun
2013-01-01
Accurate prediction of where and when typhoons (or named hurricanes which form over the North Atlantic Ocean) will make landfall is critical to protecting human lives and properties. Although the traditional method of typhoon track prediction based on the steering flow theory has been proven to be an effective way in most situations, it slipped up in some cases. Our analysis of the long-term Chinese typhoon records reveals that typhoons, especially super typhoons (those with maximum sustained surface winds of greater than 51 ms−1), have a trend to make landfalls toward warmer land in China over the past 50 years (1960–2009). Numerical sensitivity experiments using an advanced atmospheric model further confirm this finding. Our finding suggests an alternative approach to predict the landfall tracks of the most devastating typhoons in the southeastern China. PMID:23519311
The association between El Niño/Southern Oscillation events and typhoons in the Marshall Islands.
Spennemann, D H; Marschner, I C
1995-09-01
An analysis of the historic record of typhoons in the Marshall Islands has identified a significant association between the occurrence of the El Niño/Southern Oscillation phenomenon (ENSO) and the occurrence of typhoons in the Marshall Islands. Whilst typhoons normally occur further to the east, the warming of the ocean waters around the Marshall Islands, as part of the ENSO phenomenon, generates typhoons further to the west. The results suggest that typhoons are 2.6 times more likely to occur during ENSO years, with a 71 per cent chance of a typhoon striking during an ENSO year, and only a 26 per cent chance of one happening during a non-ENSO year. This has implications for planning and public safety, which the relevant authorities may wish to take note of.
User observations on information sharing (corporate knowledge and lessons learned)
NASA Technical Reports Server (NTRS)
Montague, Ronald A.; Gregg, Lawrence A.; Martin, Shirley A.; Underwood, Leroy H.; Mcgee, John M.
1993-01-01
The sharing of 'corporate knowledge' and lessons learned in the NASA aerospace community has been identified by Johnson Space Center survey participants as a desirable tool. The concept of the program is based on creating a user friendly information system that will allow engineers, scientists, and managers at all working levels to share their information and experiences with other users irrespective of location or organization. The survey addresses potential end uses for such a system and offers some guidance on the development of subsequent processes to ensure the integrity of the information shared. This system concept will promote sharing of information between NASA centers, between NASA and its contractors, between NASA and other government agencies, and perhaps between NASA and institutions of higher learning.
A Probabilistic Typhoon Risk Model for Vietnam
NASA Astrophysics Data System (ADS)
Haseemkunju, A.; Smith, D. F.; Brolley, J. M.
2017-12-01
Annually, the coastal Provinces of low-lying Mekong River delta region in the southwest to the Red River Delta region in Northern Vietnam is exposed to severe wind and flood risk from landfalling typhoons. On average, about two to three tropical cyclones with a maximum sustained wind speed of >=34 knots make landfall along the Vietnam coast. Recently, Typhoon Wutip (2013) crossed Central Vietnam as a category 2 typhoon causing significant damage to properties. As tropical cyclone risk is expected to increase with increase in exposure and population growth along the coastal Provinces of Vietnam, insurance/reinsurance, and capital markets need a comprehensive probabilistic model to assess typhoon risk in Vietnam. In 2017, CoreLogic has expanded the geographical coverage of its basin-wide Western North Pacific probabilistic typhoon risk model to estimate the economic and insured losses from landfalling and by-passing tropical cyclones in Vietnam. The updated model is based on 71 years (1945-2015) of typhoon best-track data and 10,000 years of a basin-wide simulated stochastic tracks covering eight countries including Vietnam. The model is capable of estimating damage from wind, storm surge and rainfall flooding using vulnerability models, which relate typhoon hazard to building damageability. The hazard and loss models are validated against past historical typhoons affecting Vietnam. Notable typhoons causing significant damage in Vietnam are Lola (1993), Frankie (1996), Xangsane (2006), and Ketsana (2009). The central and northern coastal provinces of Vietnam are more vulnerable to wind and flood hazard, while typhoon risk in the southern provinces are relatively low.
Ma, Jian; Wang, Ye-Chen; Hu, Yan-Yue; Lu, Ming-Hong; Wan, Gui-Jun; Chen, Fa-Jun; Liu, Wan-Cai; Zhai, Bao-Ping; Hu, Gao
2017-03-28
Sometimes, extreme weather is vital for the population survival of migratory insects by causing sudden population collapse or outbreak. Several studies have shown that rice planthopper migration was significantly influenced by typhoons in eastern Asia. Most typhoons occur in the summer, especially in August. In August, brown planthopper Nilaparvata lugens (Stål) migrates northward or southward depending on wind direction, and thus typhoons can potentially influence its migration process and population distribution. However, this has not yet been studied. This paper reported a case study on the effects of Typhoon Soudelor on the summer migration of N. lugens in eastern China in 2015. The migration pathways of N. lugens were reconstructed for the period under the influence of a typhoon by calculating the trajectories and migration events in eight counties of the Yangtze River Valley region with ancillary information. Trajectory modelling showed that most migrants took short distance migrations (less than 200 km) under the influence of the Typhoon Soudelor. Numerous N. lugens migrants were concentrated and deposited at the rear of the typhoon during the last 5 days of Typhoon Soudelor on August 9-13 due to horizontal convergence, and this led to an outbreak population. These results indicated that the N. lugens population was redistributed by the typhoon in the summer and that the population dynamics at the rear of a typhoon should be kept under close surveillance. This study provided insight into migratory organisms adapting to atmospheric features. © 2017 Institute of Zoology, Chinese Academy of Sciences.
Observations from Space: Marine Ecosystem and Environment Response to Typhoon/ Hurricanes
NASA Astrophysics Data System (ADS)
Tang, Danling; Yi, Sui
Marine ecosystem is sensitive to environmental factors, including typhoon. Typhoon's activities have been strengthening in both intensity and spatial coverage in the past several decades, along with global changes; however, our knowledge about the impact of typhoons upon the marine ecosystem is very scarce. To understand how could typhoon/hurricane impact on marine ecosystem, we have conducted a series studies in the South China Sea, by using Satellite remote sensing and in situ observation data to investigate phytoplankton concentration, sea surface temperature (SST) and related factors before, during, and after typhoon. Results show that typhoon can induce large area of phytoplankton blooms with increases of Chlorophyll a (Chl a) concentrations and decrease of sea surface temperature (SST) about 4 oC. Analysis showed that typhoon can support nutrients to surface phytoplankton by upwelling and vertical mixing, and typhoon rain can also nourish marine phytoplankton. More observations confirmed that typhoon can induce cold eddy, and cold eddy can support eddy-shape phyto-plankton bloom by upwelling. Typhoon can also induce transport of nutrient-rich water from depth and from the coast to offshore regions, nourishing phytoplankton biomass. Comparative study show that slow-moving typhoon induced phytoplankton blooms of higher Chlorophyll-a (Chl-a), the strong typhoon induced phytoplankton blooms of a large area. Therefore, typhoons may have important contribution to the marine primary production. Those studies may help better understand the mechanism of typhoon impacts on marine ecosys-tem, and the role of typhoon in the global environmental changes. The series research were sup-ported by: NSFC (40976091, 40811140533) and GD NSF (8351030101000002); (2) CAS(kzcx2-yw-226 and LYQ200701); (3) The CAS/SAFEA International Partnership Program for Creative Research Teams (KZCX2-YW-T001). References: Tang, DanLing, H Kawamura, P Shi, W Takahashi, T Shimada, F. Sakaida, O Isoguchi, 2005. Seasonal phytoplankton blooms associated with monsoonal influences and coastal environments in the sea areas either side of the Indochina Peninsula. JGR-Bio-geo. VOL. 111, G01010, doi:10.1029/2005JG000050, 2006. Tang, DanLing, H Kawamura, Hai Doan-Nhu, W Takahashi , 2004. Remote sensing oceanography of a harmful algal bloom (HAB) off the coast of southeastern Vietnam. J. of Geophysical Research (Ocean).Vol 109, doi:10.1029/2003JC002045; Tang, DanLing, H Kawamura, TV Dien. MA Lee, 2004. Offshore phytoplankton biomass increase and its oceanographic causes in the South China Sea. Marine Ecology Progress Series, 268: 31-41; Tang, DanLing, H ZHAO, B. Satyanarayana, GM ZHENG, RP. SINGH, JH LV, 2009, Enhancement of Chlorophyll-a in the Northeastern Indian Ocean after the 2004 South Asian Tsunami, Int. J. Remote Sensing doi10.1080/01431160802603778 , Vol.30 (17):4553-4565; Zhao, H., DanLing Tang, and Y. Wang, 2008, Comparison of phyto-plankton blooms triggered by two typhoons with different intensities and translation speeds in the South China SeaMar Ecol Prog Ser, 365, 57-65; Zheng, GM. and DanLing Tang ,2007Off-shore and nearshore chlorophyll increases induced by typhoon winds and subsequent terrestrial rainwater runoff, Mar Ecol Prog Ser, 333, 61-72; H Zhao, DanLing TANG, DX Wang, 2009, Phytoplankton blooms near the Pearl River Estuary induced by Typhoon Nuri, Journal of Geophysical Research -Oceans. 114, C12027; YQ Chen, DanLing Tang, 2010, Cold eddies and eddy-shape phytoplankton blooms induced by tropical cyclone Linfa in the South China Sea. In preparation; XX Yang, DanLing Tang, 2010, Sea Surface Temperature Decreasing in the Northern South China Sea Induced by Typhoon. In preparation.
Typhoon-Induced Ground Deformation
NASA Astrophysics Data System (ADS)
Mouyen, M.; Canitano, A.; Chao, B. F.; Hsu, Y.-J.; Steer, P.; Longuevergne, L.; Boy, J.-P.
2017-11-01
Geodetic instruments now offer compelling sensitivity, allowing to investigate how solid Earth and surface processes interact. By combining surface air pressure data, nontidal sea level variations model, and rainfall data, we systematically analyze the volumetric deformation of the shallow crust at seven borehole strainmeters in Taiwan induced by 31 tropical cyclones (typhoons) that made landfall to the island from 2004 to 2013. The typhoon's signature consists in a ground dilatation due to air pressure drop, generally followed by a larger ground compression. We show that this compression phase can be mostly explained by the mass loading of rainwater that falls on the ground and concentrates in the valleys towards the strainmeter sensitivity zone. Further, our analysis shows that borehole strainmeters can help quantifying the amount of rainwater accumulating and flowing over a watershed during heavy rainfalls, which is a useful constraint for building hydrological models.
Kuok, Sin-Chi; Yuen, Ka-Veng
2013-01-01
The goal of this study is to investigate the structural performance of reinforced concrete building under the influence of severe typhoon. For this purpose, full-scale monitoring of a 22-story reinforced concrete building was conducted during the entire passage process of a severe typhoon "Vicente." Vicente was the eighth tropical storm developed in the Western North Pacific Ocean and the South China Sea in 2012. Moreover, it was the strongest and most devastating typhoon that struck Macao since 1999. The overall duration of the typhoon affected period that lasted more than 70 hours and the typhoon eye region covered Macao for around one hour. The wind and structural response measurements were acquired throughout the entire typhoon affected period. The wind characteristics were analyzed using the measured wind data including the wind speed and wind direction time histories. Besides, the structural response measurements of the monitored building were utilized for modal identification using the Bayesian spectral density approach. Detailed analysis of the field data and the typhoon generated effects on the structural performance are discussed.
NASA Astrophysics Data System (ADS)
Kwon, Jae-Il; Park, Kwang-Soon; Choi, Jung-Woon; Lee, Jong-Chan; Heo, Ki-Young; Kim, Sang-Ik
2017-04-01
During last more than 50 years, 258 typhoons passed and affected the Korean peninsula in terms of high winds, storm surges and extreme waves. In this study we explored the performance of the operational storm surge forecasting system in the Korea Operational Oceanographic System (KOOS) with 8 typhoons from 2010 to 2016. The operation storm surge forecasting system for the typhoon in KOOS is based on 2D depth averaged model with tides and CE (U.S. Army Corps of Engineers) wind model. Two key parameters of CE wind model, the locations of typhoon center and its central atmospheric pressure are based from Korea Meteorological administrative (KMA)'s typhoon information provided from 1 day to 3 hour intervals with the approach of typhoon through the KMA's web-site. For 8 typhoons cases, the overall errors, other performances and analysis such as peak time and surge duration are presented in each case. The most important factor in the storm surge errors in the operational forecasting system is the accuracy of typhoon passage prediction.
Forecast simulation of rapidly-intensified typhoon in the Eddy-Rich Northwest Pacific region
NASA Astrophysics Data System (ADS)
Kim, Kyeong Ok; Yuk, Jin-Hee; Jung, Kyung Tae; Kuh Kang, Suk
2017-04-01
The real-time typhoon predictions in the Northwest Pacific (NWP) are being distributed by various agencies (for example, KMA, JMA, JTWC, NMC, CWB, HKO and PAGASA). Currently the movement of the typhoon can be predicted with an error of less than 100 km in 48 hours, however it is difficult to the predict of the intensity of the typhoon especially the Rapidly Intensified (RI) Typhoons. The mean occurrence of RI typhoon amounts to 5.4 times a year during 39 years (1977-2015), occupying 21% of typhoons in NWP. Especially the RI typhoon in the Eddy-Rich Northwest Pacific (ER-NWP) occurred 1.8 times a year, covering 29% of typhoons in ER-NWP. A RI typhoon, NEPARTAK (T201601), occurred in July 2016. It was formed in Caroline Islands and moved northwest, straightly heading for Taiwan. However, at the beginning stage many forecasting agencies predicts as move to the Yellow Sea. The accuracy of prediction data of the Typhoon NEPARTAK (T201601) from KMA, JMA and JTWC was compared with the adjusted best-track data from Digital-Typhoon (JMA-RSMC). The sequential prediction data are summarized with 6-hour interval from 3th to 10th July 2016.The JMA prediction of the typhoon track and the JTWC predictions of the maximum wind speed were found to be best. The numerical simulations using WRF model forced with NCEP GFS prediction data and microwave SST is compared. The simulations using one domain (D1), two domains (D2) using a moving nest scheme, and with or without the spectral nudging (-SN) are compared. Comparison of the errors on the track shows the differences of 100 km in 48-hour prediction and200 km in 72-hour prediction on average. The best results on the track prediction are shown in the D2 case of WRF model. However, underestimation of the maximum wind speed of WRF prediction still exists, obviously requiring better understanding of RI-related processes to improve the model prediction.
The influence of spectral nudging on typhoon formation in regional climate models
NASA Astrophysics Data System (ADS)
Feser, Frauke; Barcikowska, Monika
2012-03-01
Regional climate models can successfully simulate tropical cyclones and typhoons. This has been shown and was evaluated for hindcast studies of the past few decades. But often global and regional weather phenomena are not simulated at the observed location, or occur too often or seldom even though the regional model is driven by global reanalysis data which constitute a near-realistic state of the global atmosphere. Therefore, several techniques have been developed in order to make the regional model follow the global state more closely. One is spectral nudging, which is applied for horizontal wind components with increasing strength for higher model levels in this study. The aim of this study is to show the influence that this method has on the formation of tropical cyclones (TC) in regional climate models. Two ensemble simulations (each with five simulations) were computed for Southeast Asia and the Northwestern Pacific for the typhoon season 2004, one with spectral nudging and one without. First of all, spectral nudging reduced the overall TC number by about a factor of 2. But the number of tracks which are similar to observed best track data (BTD) was greatly increased. Also, spatial track density patterns were found to be more similar when using spectral nudging. The tracks merge after a short time for the spectral nudging simulations and then follow the BTD closely; for the no nudge cases the similarity is greatly reduced. A comparison of seasonal precipitation, geopotential height, and temperature fields at several height levels with observations and reanalysis data showed overall a smaller ensemble spread, higher pattern correlations and reduced root mean square errors and biases for the spectral nudged simulations. Vertical temperature profiles for selected TCs indicate that spectral nudging is not inhibiting TC development at higher levels. Both the Madden-Julian Oscillation and monsoonal precipitation are reproduced realistically by the regional model, with results slightly closer to reanalysis data for the spectral nudged simulations. On the basis of this regional climate model hindcast study of a single typhoon season, spectral nudging seems to be favourable since it has mostly positive effects on typhoon formation, location and general circulation patterns in the generation areas of TCs.
Characteristics of seismic noises excited from three typhoons in the western Pacific
NASA Astrophysics Data System (ADS)
Park, S.; Choi, E.; Hong, T. K.
2017-12-01
Typhoons play an important role in the atmospheric circulation. Strong winds from typhoons excite ocean waves that accompany seismic noises. The primary and double frequency microseisms are dominant in frequencies of 0.05-0.1 Hz and 0.1-0.4 Hz. We investigate the characteristics of seismic noises from three typhoons that include Son-tinh in October 2012, Bopha in November 2012, and Soulik in July 2013. The peak wind speeds were 148-184 km/h, and the central atmospheric pressures reached 925-955 hPa. The typhoons passed through the western Pacific to South China Sea. We analyzed the temporal changes in spectral amplitudes of seismic noises during typhoon periods. The amplitude of seismic noises increases with decreasing distance between typhoon and seismic station. We observe large spectral amplitudes in frequencies of 0.1-0.4 Hz, which corresponds to the dominant frequencies of the double frequency microseism. The seismic energy in the frequency band of the primary frequency microseism was relatively weak. The seismic-noise amplitudes displays high correlation with the equivalent pressures on ocean bottom from Wave Watch III model. The observation suggests that the seismic noises may be originated from the ocean waves. The dominant frequency of seismic noises generally increases after passage across the stations due to the dispersion of ocean waves. Also, the dominant frequencies of seismic noises from the typhoons in the South China Sea appear to be higher than those from the typhoons in the Pacific. This feature may allow us to identify the origin of seismic noises and the nature of typhoons.
2006-03-01
16 3. Typhoon Mawar ..................................................................... 19 4. Typhoon Talim...From: Digital Typhoon website) Infrared satellite image of Tropical Storm Mawar (center) and the seedling convection of what would become...Typhoon Mawar . The red triangular points represent the period covered by the two 72-h ARW integrations. The large red dot indicates the ending time of
Role of mixed precipitating cloud systems on the typhoon rainfall
NASA Astrophysics Data System (ADS)
Pan, C. J.; Krishna Reddy, K.; Lai, H. C.; Yang, S. S.
2010-01-01
L-band wind profiler data are utilized to diagnose the vertical structure of the typhoon precipitating cloud systems in Taiwan. For several typhoons, a pronounced bright band (BB) around 5 km is commonly observed from the observation. Since strong convection within typhoon circulation may disturb and/or disrupt the melting layer, the BB shall not appear persistently. Hence, an understanding of the vertical structure of the BB region is important because it holds extensive hydrometeors information on the type of precipitation and its variability. Wind profiler observational results suggest that the mixture of convective and stratiform (embedded type) clouds are mostly associated with typhoons. In the case of one typhoon, BB is appeared around 5.5 km with embedded precipitation and also BB height of 1 km higher than ordinary showery precipitation. This is evident from the long-term observations of wind profiler and Tropical Rainfall Measuring Mission. The Doppler velocity profiles show hydrometers (ice/snow) at 6 km but liquid below 5 km for typhoons and 4 km for showery precipitation. In the BB region the melting particles accelerations of 5.8 ms-1 km-1 and 3.2 ms-1 km-1 are observed for typhoon and showery precipitation, respectively.
Ocean response to typhoons in the western North Pacific: Composite results from Argo data
NASA Astrophysics Data System (ADS)
Lin, Sheng; Zhang, Wen-Zhou; Shang, Shao-Ping; Hong, Hua-Sheng
2017-05-01
Composite structures of ocean temperature and salinity anomalies caused by tropical cyclones (TCs) or typhoons in the western North Pacific Ocean were obtained from Argo data. These structures were used to analyze ocean responses to typhoons and the dynamic mechanisms inherent in those responses with a particular focus on upwelling. TC-induced cooling is often strongly rightward-biased in the surface layer, and shifts toward the typhoon track at depths exceeding roughly 100 m. In the central water column within approximately 75 km of the typhoon track, subsurface warming predicted by vertical mixing is restrained and replaced by cooling due to upwelling. Upwelling contributes 15% on average to temperature cooling in the near surface layer (10-30 m), 84% in the subsurface layer (30-250 m) and 94% in the deep layer (250-600 m) during the period of 0.5-2.5 days after the typhoon's passage. It is suggested that the sea surface cooling effect of vertical mixing can be enhanced by the upwelling. The effect of upwelling is also prominent in the salinity response to typhoons. The composite results from the Argo data clearly reveal basic ocean responses to typhoons and indicate the important role of upwelling therein.
Typhoon June /1975/ viewed by a scanning microwave spectrometer
NASA Technical Reports Server (NTRS)
Rosenkranz, P. W.; Staelin, D. H.; Grody, N. C.
1978-01-01
Data were collected by the scanning microwave spectrometer onboard Nimbus 6 during the June 1975 typhoon in the Philippine Sea. The spectrometer was equipped with channels centered on 22.23 GHz (a water vapor band), 31.65 GHz (a transmittance window), and 52.85, 53.85, and 55.45 GHz (an oxygen band). Temperature maps, derived from oxygen band measurements, showed that the typhoon eye had a single peak varying in amplitude with time. Water line and window measurements were used to develop a coordinate system having mutually orthogonal atmospheric variables of column water-vapor content and cloud liquid-water content. Vapor measurements showed a maximum around the intensifying typhoon with a more developed structure during typhoon development. Values were extrapolated for surface wind speed and cloud liquid water vapor content by assuming the troposphere to be saturated with respect to the water vapor in the typhoon. Comparisons with infrared cloud imagery and aircraft flight data show different time variations, attributed to poor typhoon-eye resolution in the microwave images.
Growing Typhoon Influence on East Asia
NASA Technical Reports Server (NTRS)
Wu, Liguang; Wang, BIn; Geng, Shuqin
2005-01-01
Numerical model studies have suggested that the ongoing global warming will likely affect tropical cyclone activity. But so far little observed evidence has been detected to support the projected future changes. Using satellite-supported best-track data from 1965 to 2003, we show for the first time that over the past four decades the two prevailing typhoon tracks in the western North Pacific (WNP) have shifted westward significantly; the typhoon activity over the South China Sea has considerably decreased; and East Asia has experienced increasing typhoon influence. Our trajectory model simulation indicates that the long-term shifts in the typhoon tracks result primarily from the changes in the mean translation velocity of typhoons or the large-scale steering flow, which is associated with the westward expansion and strengthening of the WNP subtropical high.
Damage and recovery assessment of the Philippines' mangroves following Super Typhoon Haiyan
Long, Jordan; Giri, Chandra; Primavera, Jurgene H.; Trivedi, Mandar
2016-01-01
We quantified mangrove disturbance resulting from Super Typhoon Haiyan using a remote sensing approach. Mangrove areas were mapped prior to Haiyan using 30 m Landsat imagery and a supervised decision-tree classification. A time sequence of 250 m eMODIS data was used to monitor mangrove condition prior to, and following, Haiyan. Based on differences in eMODIS NDVI observations before and after the storm, we classified mangrove into three damage level categories: minimal, moderate, or severe. Mangrove damage in terms of extent and severity was greatest where Haiyan first made landfall on Eastern Samar and Western Samar provinces and lessened westward corresponding with decreasing storm intensity as Haiyan tracked from east to west across the Visayas region of the Philippines. However, within 18 months following Haiyan, mangrove areas classified as severely, moderately, and minimally damaged decreased by 90%, 81%, and 57%, respectively, indicating mangroves resilience to powerful typhoons.
Typhoon Neoguri Approaching Japan
2014-07-09
NASA's Terra satellite captured this visible image on July 9 at 02:30 UTC (July 8 at 10:30 p.m. EDT) as Typhoon Neoguri was approaching Kyushu, Japan. The visible image revealed that Neoguri's eye had disappeared and the center has become somewhat elongated as the storm weakened into a tropical storm. The Joint Typhoon Warning Center or JTWC noted that an upper level analysis revealed that Neoguri is now in a more harsh environment as northerly vertical wind shear increased to as much as 30 knots. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Heo, J. H.; Ahn, H.; Kjeldsen, T. R.
2017-12-01
South Korea is prone to large, and often disastrous, rainfall events caused by a mixture of monsoon and typhoon rainfall phenomena. However, traditionally, regional frequency analysis models did not consider this mixture of phenomena when fitting probability distributions, potentially underestimating the risk posed by the more extreme typhoon events. Using long-term observed records of extreme rainfall from 56 sites combined with detailed information on the timing and spatial impact of past typhoons from the Korea Meteorological Administration (KMA), this study developed and tested a new mixture model for frequency analysis of two different phenomena; events occurring regularly every year (monsoon) and events only occurring in some years (typhoon). The available annual maximum 24 hour rainfall data were divided into two sub-samples corresponding to years where the annual maximum is from either (1) a typhoon event, or (2) a non-typhoon event. Then, three-parameter GEV distribution was fitted to each sub-sample along with a weighting parameter characterizing the proportion of historical events associated with typhoon events. Spatial patterns of model parameters were analyzed and showed that typhoon events are less commonly associated with annual maximum rainfall in the North-West part of the country (Seoul area), and more prevalent in the southern and eastern parts of the country, leading to the formation of two distinct typhoon regions: (1) North-West; and (2) Southern and Eastern. Using a leave-one-out procedure, a new regional frequency model was tested and compared to a more traditional index flood method. The results showed that the impact of typhoon on design events might previously have been underestimated in the Seoul area. This suggests that the use of the mixture model should be preferred where the typhoon phenomena is less frequent, and thus can have a significant effect on the rainfall-frequency curve. This research was supported by a grant(2017-MPSS31-001) from Supporting Technology Development Program for Disaster Management funded by Ministry of Public Safety and Security(MPSS) of the Korean government.
Buoy observation for typhoon in southeast of Taiwan during summers of 2015 and 2016
NASA Astrophysics Data System (ADS)
Hsieh, C. Y.; Yang, Y. J.; Chang, M. H.; Chang, H. I.; Jan, S.; Wei, C. L.
2016-12-01
The western North Pacific is the most active area for the typhoon in the world, and typhoon caused disasters in this area. The marine observations are very important for the typhoon prediction. National Taiwan University (NTU) was developed a real-time data buoy system for typhoon observation. This buoy not only collected meteorological data, but also measured the temperature and salinity profiles of ocean's upper 500 m. The buoys, NTU1 and NTU2, were moored about 375 km and 175 km, respectively, from the southernmost tip of Taiwan. In summer of 2015, NTU1 buoy equipped with temperature and humidity probes, wind sensor, pyranometer, barometer, conductivity-temperature-depth (CTD) recorders, and temperature-pressure recorders. In summer of 2016, NTU1 and NTU2 buoys installed more instruments, such as rain gauge, net radiometer, and current meter, etc. During the observation period, there were three typhoons (Chan-hom, Soudler, and Goni) in 2015 and one typhoon (Nepartak) in 2016 approached buoy. Goni passed south and west side of NTU1 and the air pressure dropped around 25 hPa. Nepartak passed north side of NTU1 and south side of NTU2. The minimum distance between center of typhoon and NTU1 and NTU2 were about 11.48 km and 4.85 km, respectively. The NTU2 buoy recorded a maximum wind gust of 44 m/s, thickness of mixed layer increased to 120 m, and sea-surface temperature dropped 3 °C. In addition, the typhoon induced the near inertial internal motion for a couple of days. Applied the in-situ data to derive the net heat flux and its variations were from 600 W/m2 to -1000W/m2 during typhoon period. It indicate that the ocean provide energy to typhoon around this area. Moreover, the sum of sensible and latent heat flux calculated from observation data was 4.5 times than satellite-based products.
Impact of Typhoon Haiyan on a Philippine Tarsier Population.
Gursky, Sharon; Salibay, Cristina; Grow, Nanda; Fields, Lori
2017-01-01
Over the last 2 decades the Philippine tarsier (Carlito syrichta aka Tarsius syrichta) has had its conservation status revised from Endangered to Data Deficient to Near Threatened. The last status change was based on a study of the species' population density, which suggested that a single natural catastrophe could potentially wipe out the Philippine tarsier. In 2013 typhoon Haiyan hit Bohol, one of the island strongholds for this species. In this study we compare the density of the Bohol tarsier population within the Philippine Tarsier and Wildlife Sanctuary before and after the typhoon. We demonstrate that the typhoon significantly affected the density of the Philippine tarsier in the sanctuary. Before the typhoon, tarsier density was approximately 157 individuals/km2 whereas after the typhoon the density was a mere 36 individuals/km2. Prior to the typhoon, more Philippine tarsiers were found in older secondary forest than in younger secondary forest, whereas after the typhoon all observed individuals were found in relatively younger secondary forest. Vegetation plots where we observed Philippine tarsiers prior to the typhoon contained a mean of 33 trees/m2, with a mean diameter at breast height (DBH) of 24 cm, and a mean height of 4 m. After the typhoon vegetation plots contained an average of 156 trees, had a mean DBH of 6 cm, and a mean height of 2 m. Based on the IUCN Red List criteria, the reduction and fluctuation in the density of this species suggests that the conservation status of the Philippine tarsier should be changed to Vulnerable. This study indicates natural disasters can have a significant effect on the extinction risk of primates, with implications for future effects of anthropogenic climate change. © 2017 S. Karger AG, Basel.
Gavaldà-Miralles, Arnau; Choffnes, David R; Otto, John S; Sánchez, Mario A; Bustamante, Fabián E; Amaral, Luís A N; Duch, Jordi; Guimerà, Roger
2014-10-28
Tens of millions of individuals around the world use decentralized content distribution systems, a fact of growing social, economic, and technological importance. These sharing systems are poorly understood because, unlike in other technosocial systems, it is difficult to gather large-scale data about user behavior. Here, we investigate user activity patterns and the socioeconomic factors that could explain the behavior. Our analysis reveals that (i) the ecosystem is heterogeneous at several levels: content types are heterogeneous, users specialize in a few content types, and countries are heterogeneous in user profiles; and (ii) there is a strong correlation between socioeconomic indicators of a country and users behavior. Our findings open a research area on the dynamics of decentralized sharing ecosystems and the socioeconomic factors affecting them, and may have implications for the design of algorithms and for policymaking.
Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures.
Mei, Wei; Xie, Shang-Ping; Primeau, François; McWilliams, James C; Pasquero, Claudia
2015-05-01
Dominant climatic factors controlling the lifetime peak intensity of typhoons are determined from six decades of Pacific typhoon data. We find that upper ocean temperatures in the low-latitude northwestern Pacific (LLNWP) and sea surface temperatures in the central equatorial Pacific control the seasonal average lifetime peak intensity by setting the rate and duration of typhoon intensification, respectively. An anomalously strong LLNWP upper ocean warming has favored increased intensification rates and led to unprecedentedly high average typhoon intensity during the recent global warming hiatus period, despite a reduction in intensification duration tied to the central equatorial Pacific surface cooling. Continued LLNWP upper ocean warming as predicted under a moderate [that is, Representative Concentration Pathway (RCP) 4.5] climate change scenario is expected to further increase the average typhoon intensity by an additional 14% by 2100.
NASA Astrophysics Data System (ADS)
Bernardo, Lawrence Patrick C.; Nadaoka, Kazuo; Nakamura, Takashi; Watanabe, Atsushi
2017-11-01
While widely known for their destructive power, typhoon events can also bring benefit to coral reef ecosystems through typhoon-induced cooling which can mitigate against thermally stressful conditions causing coral bleaching. Sensor deployments in Sekisei Lagoon, Japan's largest coral reef area, during the summer months of 2013, 2014, and 2015 were able to capture local hydrodynamic features of numerous typhoon passages. In particular, typhoons 2015-13 and 2015-15 featured steep drops in near-bottom temperature of 5 °C or more in the north and south sides of Sekisei Lagoon, respectively, indicating local cooling patterns which appeared to depend on the track and intensity of the passing typhoon. This was further investigated using Regional Ocean Modeling System (ROMS) numerical simulations conducted for the summer of 2015. The modeling results showed a cooling trend to the north of the Yaeyama Islands during the passage of typhoon 2015-13, and a cooling trend that moved clockwise from north to south of the islands during the passage of typhoon 2015-15. These local cooling events may have been initiated by the Yaeyama Islands acting as an obstacle to a strong typhoon-generated flow which was modulated and led to prominent cooling of waters on the leeward sides. These lower temperature waters from offshore may then be transported to the shallower inner parts of the lagoon area, which may partly be due to density-driven currents generated by the offshore-inner area temperature difference.
NASA Astrophysics Data System (ADS)
Wang, Aijun; Ye, Xiang; Cheng, Peng; Wang, Liang
2017-04-01
Estuaries are key nodes of land-ocean interaction, the associated suspended sediment processes being crucial for global and regional material fluxes and environmental health. Within estuaries, there is commonly a reach where the water turbidity is markedly higher than both landward and seaward. This elevated suspended sediment concentration (SSC) is termed the estuarine turbidity maximum (ETM). The ETM has important influences on harbor siltation, ecological conservation, and biogeochemical dynamics. Jiulongjiang estuary is a small macro-tidal estuary in southeast China coastal area, which is a typical example for estuarine ecosystem conservation and its response to catchment management. Observed results show that the tidal current is the main factor which control the variations of SSC in ETM under the normal condition. However, under the influence of typhoon event, the hydrodynamic action was strengthened and the salt water intrusion was also enhanced, and the fresh water and sediment discharged from river system increased, which led to the complicated variations of the ETM. Under the normal conditions, the maximum width of ETM was about 10 km in spring tide. However, before typhoon landed, the maximum width of the ETM was about 14 km; after the typhoon landed, the maximum width of the ETM was more than 20 km, and during the low tide stage, the width of the ETM was still 19 km which was induced by high turbidity water input from river system. The particulate organic carbon (POC) concentration reached 19.26 mg/L within the ETM at the next day after typhoon landed, which was much higher than that under normal weather condition (the maximum value was only 3.15 mg/L). During the low tide level, the POC concentration increased remarkably from upstream to the core of ETM and then decreased toward downstream, while the POC concentration decreased toward downstream during high tide level. Compared with normal weather condition, the POC concentration varied not obviously along the river channel except at the core of ETM. The existence of ETM plays a much significant role for POC trapping during the influence of typhoon event. Acknowledgement: This research was supported by the NSFC (41376070). The authors with thank Shu-ren Huang, Hai-huang Chen and Peng-fa Chen for their help in the field work.
NASA Astrophysics Data System (ADS)
Yu, Xiaolong; Pan, Weiran; Zheng, Xiangjing; Zhou, Shenjie; Tao, Xiaoqin
2017-08-01
The effects of wave-current interaction on storm surge are investigated by a two-dimensional wave-current coupling model through simulations of Typhoon Morakot in the Taiwan Strait. The results show that wind wave and slope of sea floor govern wave setup modulations within the nearshore surf zone. Wave setup during Morakot can contribute up to 24% of the total storm surge with a maximum value of 0.28 m. The large wave setup commonly coincides with enhanced radiation stress gradient, which is itself associated with transfer of wave momentum flux. Water levels are to leading order in modulating significant wave height inside the estuary. High water levels due to tidal change and storm surge stabilize the wind wave and decay wave breaking. Outside of the estuary, waves are mainly affected by the current-induced modification of wind energy input to the wave generation. By comparing the observed significant wave height and water level with the results from uncoupled and coupled simulations, the latter shows a better agreement with the observations. It suggests that wave-current interaction plays an important role in determining the extreme storm surge and wave height in the study area and should not be neglected in a typhoon forecast.
NASA Technical Reports Server (NTRS)
2007-01-01
Typhoon Man-Yi was pummeling the Japanese island of Okinawa with winds between 230 and 295 kilometers per hour (125-160 knots, 144-184 miles per hour) and heavy rain on the morning of July 13, 2007, when the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured this image. The immense storm covered hundreds of kilometers with spiraling bands of thunderstorms, though it had lost the distinctive cloud-free eye it exhibited the day before. Typhoons are common in Japan, but powerful typhoons usually strike the island nation later in the year. The Japan Meteorological Agency said that Man-Yi is the fourth typhoon of the 2007 season and may be the most powerful ever observed in the northwest Pacific in July, reported Kyodo News. The Joint Typhoon Warning Center expected the typhoon to strike Kyushu, a southern Japanese island, on July 14, and then curve northeast along the eastern shore of Japan. By the time the storm reaches Tokyo on July 15, it should be degraded to a tropical storm. As of July 13, Typhoon Man-Yi had injured eight and flooded twenty houses in Okinawa, and forced airlines to cancel hundreds of flights, said Kyodo News. The storm was expected to bring heavy rain to Japan's Pacific coast. NASA image created by Jesse Allen, using data provided courtesy of the MODIS Rapid Response team.
Business Models for Cost Sharing and Capability Sustainment
2012-04-30
studies in the research include the following: Programs o F-35 Lightning II (U.S./UK) o AV-8B/Harrier (U.S./UK) o Super Hornet (U.S.) o...made to learn internally how the Typhoon aircraft could benefit from an RTI approach. Externally, the use of a small group , such as the RTI team...long time frame. In order to identify the key factors in the Harrier RTI success, a SWOT analysis was carried out. The results are shown in Table 1
Assessing local resilience to typhoon disasters: A case study in Nansha, Guangzhou.
Song, Jinglu; Huang, Bo; Li, Rongrong
2018-01-01
Building communities' resilience to natural weather hazards requires the appropriate assessment of such capabilities. The resilience of a community is affected not only by social, economic, and infrastructural factors but also by natural factors (including both site characteristics and the intensity and frequency of events). To date, studies of natural factors have tended to draw on annual censuses and to use aggregated data, thus allowing only a limited understanding of site-specific hot or cold spots of resilience. To improve this situation, we carried out a comprehensive assessment of resilience to typhoon disasters in Nansha district, Guangzhou, China. We measured disaster resilience on 1×1-km grid units with respect to socioeconomic and infrastructural dimensions using a set of variables and also estimated natural factors in a detailed manner with a meteorological modeling tool, the Weather Research and Forecast model. We selected typhoon samples over the past 10 years, simulated the maximum typhoon-borne strong winds and precipitation of each sample, and predicted the wind speed and precipitation volume at the 100-year return-level on the basis of extreme value analysis. As a result, a composite resilience index was devised by combining factors in different domains using factor analysis coupled with the analytic hierarchy process. Resilience mapping using this composite resilience index allows local governments and planners to identify potential hot or cold spots of resilience and the dominant factors in particular locations, thereby assisting them in making more rational site-specific measures to improve local resilience to future typhoon disasters.
Assessing local resilience to typhoon disasters: A case study in Nansha, Guangzhou
Huang, Bo; Li, Rongrong
2018-01-01
Building communities’ resilience to natural weather hazards requires the appropriate assessment of such capabilities. The resilience of a community is affected not only by social, economic, and infrastructural factors but also by natural factors (including both site characteristics and the intensity and frequency of events). To date, studies of natural factors have tended to draw on annual censuses and to use aggregated data, thus allowing only a limited understanding of site-specific hot or cold spots of resilience. To improve this situation, we carried out a comprehensive assessment of resilience to typhoon disasters in Nansha district, Guangzhou, China. We measured disaster resilience on 1×1-km grid units with respect to socioeconomic and infrastructural dimensions using a set of variables and also estimated natural factors in a detailed manner with a meteorological modeling tool, the Weather Research and Forecast model. We selected typhoon samples over the past 10 years, simulated the maximum typhoon-borne strong winds and precipitation of each sample, and predicted the wind speed and precipitation volume at the 100-year return-level on the basis of extreme value analysis. As a result, a composite resilience index was devised by combining factors in different domains using factor analysis coupled with the analytic hierarchy process. Resilience mapping using this composite resilience index allows local governments and planners to identify potential hot or cold spots of resilience and the dominant factors in particular locations, thereby assisting them in making more rational site-specific measures to improve local resilience to future typhoon disasters. PMID:29522526
NASA Astrophysics Data System (ADS)
Wei, Jun; Jiang, Guo-Qing; Liu, Xin
2017-09-01
This study proposed three algorithms that can potentially be used to provide sea surface temperature (SST) conditions for typhoon prediction models. Different from traditional data assimilation approaches, which provide prescribed initial/boundary conditions, our proposed algorithms aim to resolve a flow-dependent SST feedback between growing typhoons and oceans in the future time. Two of these algorithms are based on linear temperature equations (TE-based), and the other is based on an innovative technique involving machine learning (ML-based). The algorithms are then implemented into a Weather Research and Forecasting model for the simulation of typhoon to assess their effectiveness, and the results show significant improvement in simulated storm intensities by including ocean cooling feedback. The TE-based algorithm I considers wind-induced ocean vertical mixing and upwelling processes only, and thus obtained a synoptic and relatively smooth sea surface temperature cooling. The TE-based algorithm II incorporates not only typhoon winds but also ocean information, and thus resolves more cooling features. The ML-based algorithm is based on a neural network, consisting of multiple layers of input variables and neurons, and produces the best estimate of the cooling structure, in terms of its amplitude and position. Sensitivity analysis indicated that the typhoon-induced ocean cooling is a nonlinear process involving interactions of multiple atmospheric and oceanic variables. Therefore, with an appropriate selection of input variables and neuron sizes, the ML-based algorithm appears to be more efficient in prognosing the typhoon-induced ocean cooling and in predicting typhoon intensity than those algorithms based on linear regression methods.
Morphological response of coastal dunes to a group of three typhoons on Pingtan Island, China
NASA Astrophysics Data System (ADS)
Yang, Lin; Dong, Yuxiang; Huang, Dequan
2018-06-01
Pingtan Island (Fujian, China) was severely impacted by a group of three typhoons in a sequence of Nepartak, Meranti, and Megi during the summer of 2016. Field investigations were conducted on the island before and after the typhoons using high-precision RTK GPS technology and surveying methods, and we analyzed the morphological responses of three types of coastal dunes (coastal foredunes, climbing dunes, and coastal sand sheets) to the typhoon group. The maximum height decrease among coastal foredunes was 2.89 m after the typhoon group landed; dune volume increased by 0.9%, and the windward side showed a slight height increase, whereas that of the slope crest and leeward slope were slightly lower than the values before the typhoon group landed. The maximum height decrease among climbing dunes was 1.43 m, and dune volume decreased slightly by 0.1%; the height change among climbing dunes differed in magnitude between sites. Among coastal sand sheets, the maximum height increase was 0.75 m, and dune volume increased by 1.5%; the height of frontal coastal sand sheets increased markedly as result of storm surge washover deposits, whereas the heights barely changed at the middle and trailing edges. The above results suggest that the typhoon group imposed significant morphological changes on coastal dunes. However, the features of morphological responses differed between the three types of coastal dunes studied, and also among dunes of the same type based on local characteristics. Furthermore, coastal dunes showed no cumulative effects in their responses to the typhoon group, despite the individual typhoon impacts on coastal dune morphology.
NASA Astrophysics Data System (ADS)
Chao, Y.; Cheng, C. T.; Hsiao, Y. H.; Hsu, C. T.; Yeh, K. C.; Liu, P. L.
2017-12-01
There are 5.3 typhoons hit Taiwan per year on average in last decade. Typhoon Morakot in 2009, the most severe typhoon, causes huge damage in Taiwan, including 677 casualties and roughly NT 110 billion (3.3 billion USD) in economic loss. Some researches documented that typhoon frequency will decrease but increase in intensity in western North Pacific region. It is usually preferred to use high resolution dynamical model to get better projection of extreme events; because coarse resolution models cannot simulate intense extreme events. Under that consideration, dynamical downscaling climate data was chosen to describe typhoon satisfactorily, this research used the simulation data from AGCM of Meteorological Research Institute (MRI-AGCM). Considering dynamical downscaling methods consume massive computing power, and typhoon number is very limited in a single model simulation, using dynamical downscaling data could cause uncertainty in disaster risk assessment. In order to improve the problem, this research used four sea surfaces temperatures (SSTs) to increase the climate change scenarios under RCP 8.5. In this way, MRI-AGCMs project 191 extreme typhoons in Taiwan (when typhoon center touches 300 km sea area of Taiwan) in late 21th century. SOBEK, a two dimensions flood simulation model, was used to assess the flood risk under four SSTs climate change scenarios in Tainan, Taiwan. The results show the uncertainty of future flood risk assessment is significantly decreased in Tainan, Taiwan in late 21th century. Four SSTs could efficiently improve the problems of limited typhoon numbers in single model simulation.
Gavaldà-Miralles, Arnau; Choffnes, David R.; Otto, John S.; Sánchez, Mario A.; Bustamante, Fabián E.; Amaral, Luís A. N.; Duch, Jordi; Guimerà, Roger
2014-01-01
Tens of millions of individuals around the world use decentralized content distribution systems, a fact of growing social, economic, and technological importance. These sharing systems are poorly understood because, unlike in other technosocial systems, it is difficult to gather large-scale data about user behavior. Here, we investigate user activity patterns and the socioeconomic factors that could explain the behavior. Our analysis reveals that (i) the ecosystem is heterogeneous at several levels: content types are heterogeneous, users specialize in a few content types, and countries are heterogeneous in user profiles; and (ii) there is a strong correlation between socioeconomic indicators of a country and users behavior. Our findings open a research area on the dynamics of decentralized sharing ecosystems and the socioeconomic factors affecting them, and may have implications for the design of algorithms and for policymaking. PMID:25288755
Remote sensing observations of phytoplankton increases triggered by successive typhoons
NASA Astrophysics Data System (ADS)
Huang, Lei; Zhao, Hui; Pan, Jiayi; Devlin, Adam
2017-12-01
Phytoplankton blooms in the Western North Pacific, triggered by two successive typhoons with different intensities and translation speeds under different pre-existing oceanic conditions, were observed and analyzed using remotely sensed chlorophyll-a (Chl-a), sea surface temperature (SST), and sea surface height anomaly (SSHA) data, as well as typhoon parameters and CTD (conductivity, temperature, and depth) profiles. Typhoon Sinlaku, with relatively weaker intensity and slower translation speed, induced a stronger phytoplankton bloom than Jangmi with stronger intensity and faster translation speed (Chl-a>0.18 mg·m‒3 versus Chl-a<0.15 mg·m‒3) east of Taiwan Island. Translation speed may be one of the important mechanisms that affect phytoplankton blooms in the study area. Pre-existing cyclonic circulations provided a relatively unstable thermodynamic structure for Sinlaku, and therefore cold water with rich nutrients could be brought up easily. The mixed-layer deepening caused by Typhoon Sinlaku, which occurred first, could have triggered an unfavorable condition for the phytoplankton bloom induced by Typhoon Jangmi which followed afterwards. The sea surface temperature cooling by Jangmi was suppressed due to the presence of the thick upper-ocean mixed-layer, which prevented the deeper cold water from being entrained into the upper-ocean mixed layer, leading to a weaker phytoplankton augment. The present study suggests that both wind (including typhoon translation speed and intensity) and pre-existing conditions (e.g., mixed-layer depths, eddies, and nutrients) play important roles in the strong phytoplankton bloom, and are responsible for the stronger phytoplankton bloom after Sinlaku's passage than that after Jangmi's passage. A new typhoon-influencing parameter is introduced that combines the effects of the typhoon forcing (including the typhoon intensity and translation speed) and the oceanic pre-condition. This parameter shows that the forcing effect of Sinlaku was stronger than that of Jangmi.
Small-scale wind disturbances observed by the MU radar during the passage of typhoon Kelly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, Kaoru
1993-02-14
This paper describes small-scale wind disturbances associated with Typhoon Kelly (October 1987) that were observed by the MU radar, one of the MST (mesosphere, stratosphere, and troposphere) radars, for about 60 hours with fine time and height resolution. To elucidate the background of small-scale disturbances, synoptic-scale variation in atmospheric stability related to the typhoon structure during the observation is examined. When the typhoon passed near the MU radar site, the structure was no longer axisymmetric. There is deep convection only in north-northeast side of the typhoon while convection behind it is suppressed by a synoptic-scale cold air mass moving eastwardmore » to the west of the typhoon. A change in atmospheric stability over the radar site as indicated by echo power profiles is likely due to the passage of the sharp transition zone of convection. Strong small-scale wind disturbances were observed around the typhoon passage. The statistical characteristics are different before (BT) and after (AT) the typhoon passage, especially in frequency spectra of vertical wind fluctuations. The spectra for BT are unique compared with earlier studies of vertical winds observed by VHF radars. Another difference is dominance of a horizontal wind component with a vertical wavelength of about 3 km, observed only in AT. Further analyses are made of characteristics and vertical momentum fluxes for dominant disturbances. Some disturbances are generated to remove the momentum of cyclonic wind rotation of the typhoon. Deep convection, topographic effects in strong winds, and strong vertical shear of horizontal winds around an inversion layer are possible sources of the disturbances. Two monochromatic disturbances lasting for more than 10 h in the lower stratosphere observed in BT and AT are identified as inertio-gravity waves, by obtaining wave parameters consistent with all observed quantities. Both of the inertio-gravity waves propagate energy away from the typhoon.« less
Recent Decrease in Typhoon Destructive Potential and Global Warming Implications
NASA Astrophysics Data System (ADS)
Lin, I. I.
2016-02-01
Despite the severe impact of individual tropical cyclones like Sandy (2012) and Haiyan (2013), global TC activities as a whole have actually dropped considerably since the early 1990's. Especially over the most active and hazardous TC basin on earth, the Western North Pacific (WNP) typhoon Main Development Region (MDR), an evident decrease in TC activity has been observed, as characterised by the drop in the annual Power Dissipation Index (Emanuel 2005). Paradoxically, this decrease occurred despite evident ocean warming, with upper ocean heat content increased by 12% over the western North Pacific MDR (Pun et al. 2013; Lin et al. 2014). This study explores the interesting interplay between atmosphere and ocean on the WNP typhoons. Though ocean may become more favourable (warming) to fuel individual typhoon event through temporal relaxation in the atmosphere condition (e.g. Haiyan in 2013), the overall `worsened' atmospheric condition (e.g. increase in vertical wind shear) can `over-powers' the `better' ocean to suppress the overall WNP typhoon activities. This stronger negative contribution from reduced typhoon frequency over the increased intensity is also present under the global warming scenario, based on analysis of the simulated typhoon data from high-resolution modelling.
Recent Decrease in Typhoon Destructive Potential and Global Warming Implications
NASA Astrophysics Data System (ADS)
Lin, I. I.
2015-12-01
Despite the severe impact of individual tropical cyclones like Sandy (2012) and Haiyan (2013), global TC activities as a whole have actually dropped considerably since the early 1990's. Especially over the most active and hazardous TC basin on earth, the Western North Pacific (WNP) typhoon Main Development Region (MDR), an evident decrease in TC activity has been observed, as characterised by the drop in the annual Power Dissipation Index (Emanuel 2005). Paradoxically, this decrease occurred despite evident ocean warming, with upper ocean heat content increased by ~ 12% over the western North Pacific MDR (Pun et al. 2013; Lin et al. 2014). This study explores the interesting interplay between atmosphere and ocean on the WNP typhoons. Though ocean may become more favourable (warming) to fuel individual typhoon event through temporal relaxation in the atmosphere condition (e.g. Haiyan in 2013), the overall 'worsened' atmospheric condition (e.g. increase in vertical wind shear) can 'over-powers' the 'better' ocean to suppress the overall WNP typhoon activities. This stronger negative contribution from reduced typhoon frequency over the increased intensity is also present under the global warming scenario, based on analysis of the simulated typhoon data from high-resolution modelling.
2011-03-01
FIGURES Figure 1. Radar image of the eye of Typhoon Cobra on 18 December 1944 from a ship located at the center of the area shown (from NOAA Library at...System Research and Predictability Experiment T- PARC : THORPEX-Pacific Asian Regional Campaign TS: Tropical Storm TUTT: Tropical Upper...Figure 1. Radar image of the eye of Typhoon Cobra on 18 December 1944 from a ship located at the center of the area shown (from NOAA Library at
NASA Astrophysics Data System (ADS)
Hsu, Ya-Ju; Chang, Yuan-Shu; Liu, Chi-Ching; Lee, Hsin-Ming; Linde, Alan T.; Sacks, Selwyn I.; Kitagawa, Genshio; Chen, Yue-Gau
2015-06-01
Taiwan experiences high deformation rates, particularly along its eastern margin where a shortening rate of about 30 mm/yr is experienced in the Longitudinal Valley and the Coastal Range. Four Sacks-Evertson borehole strainmeters have been installed in this area since 2003. Liu et al. (2009) proposed that a number of strain transient events, primarily coincident with low-barometric pressure during passages of typhoons, were due to deep-triggered slow slip. Here we extend that investigation with a quantitative analysis of the strain responses to precipitation as well as barometric pressure and the Earth tides in order to isolate tectonic source effects. Estimates of the strain responses to barometric pressure and groundwater level changes for the different stations vary over the ranges -1 to -3 nanostrain/millibar(hPa) and -0.3 to -1.0 nanostrain/hPa, respectively, consistent with theoretical values derived using Hooke's law. Liu et al. (2009) noted that during some typhoons, including at least one with very heavy rainfall, the observed strain changes were consistent with only barometric forcing. By considering a more extensive data set, we now find that the strain response to rainfall is about -5.1 nanostrain/hPa. A larger strain response to rainfall compared to that to air pressure and water level may be associated with an additional strain from fluid pressure changes that take place due to infiltration of precipitation. Using a state-space model, we remove the strain response to rainfall, in addition to those due to air pressure changes and the Earth tides, and investigate whether corrected strain changes are related to environmental disturbances or tectonic-original motions. The majority of strain changes attributed to slow earthquakes seem rather to be associated with environmental factors. However, some events show remaining strain changes after all corrections. These events include strain polarity changes during passages of typhoons (a characteristic that is not anticipated from our estimates of the precipitation transfer function) that are more readily explained in terms of tectonic-origin motions, but clearly the triggering argument is now weaker than that presented in Liu et al. (2009). Additional on-site water level sensors and rain gauges will provide data critical for a more complete understanding, including the currently unresolved issue of why, for some typhoons, there appears to be a much smaller transfer function for precipitation-induced strain changes.
Damage and recovery assessment of the Philippines' mangroves following Super Typhoon Haiyan.
Long, Jordan; Giri, Chandra; Primavera, Jurgenne; Trivedi, Mandar
2016-08-30
We quantified mangrove disturbance resulting from Super Typhoon Haiyan using a remote sensing approach. Mangrove areas were mapped prior to Haiyan using 30m Landsat imagery and a supervised decision-tree classification. A time sequence of 250m eMODIS data was used to monitor mangrove condition prior to, and following, Haiyan. Based on differences in eMODIS NDVI observations before and after the storm, we classified mangrove into three damage level categories: minimal, moderate, or severe. Mangrove damage in terms of extent and severity was greatest where Haiyan first made landfall on Eastern Samar and Western Samar provinces and lessened westward corresponding with decreasing storm intensity as Haiyan tracked from east to west across the Visayas region of the Philippines. However, within 18months following Haiyan, mangrove areas classified as severely, moderately, and minimally damaged decreased by 90%, 81%, and 57%, respectively, indicating mangroves resilience to powerful typhoons. Copyright © 2016 Elsevier Ltd. All rights reserved.
Helical circulations in the typhoon boundary layer
NASA Astrophysics Data System (ADS)
Ellis, Ryan; Businger, Steven
2010-03-01
Low-level wind data from the WSR-88D in Guam obtained in Typhoon Dale (1996) and Typhoon Keith (1997) are analyzed for coherent structures. Consistent with the results of previous studies of Atlantic hurricanes, velocity anomalies associated with coherent structures were found in the boundary layer of both storms. A total of 99 cases of coherent structures, also known as roll vortices, were documented during a 6 h evaluation period for each storm. Storm-relative roll location, roll vorticity, asymmetries in the upward and downward momentum fluxes, and signatures of circulations transverse to the mean flow associated with roll circulations were explored. The effects of terrain and convective precipitation systems, such as rainbands, on the occurrence of rolls were investigated. The results support and extend prior findings of roll observations, and can be used to help validate theoretical and numerical models of coherent structures within tropical cyclones. Moreover, the wind variations documented in this study may have application for wave runup and wind damage potential in tropical cyclones.
NASA Technical Reports Server (NTRS)
Lin, Pay-Liam; Chen, D.; Tao, Wei-Kuo; Shi, Jainn J.; Chang, Mei-Yu
2010-01-01
In recent years, the heavy rainfall that was associated with severe weather events (e.g., typhoons, local heavy precipitation events) has caused significant damages in the economy and loss of human life throughout Taiwan. Especially, the extreme heavy rainfall (over 2500 mm over 24 hours) associated with Typhoon Morakot 2009 caused more than 600 human beings lost and more than $100 million US dollar damage. In this paper, we are using WRF to simulate the precipitation processes associated Typhoon Morakot 2009. The preliminary results indicated that the wrf model with using 2 km grid size and with utilizing the 310E scheme (cloud ice, snow and hail) can simulate more than 2500 mm rainfall over 24 hour integration. In this talk, we will evaluate the performance of the microphysical schemes for the Typhoon Morakot case. In addition, we will examine the impact of model resolution (in both horizontal and vertical) on the Typhoon Morakot case.
NASA Astrophysics Data System (ADS)
Jiang, Guo-Qing; Xu, Jing; Wei, Jun
2018-04-01
Two algorithms based on machine learning neural networks are proposed—the shallow learning (S-L) and deep learning (D-L) algorithms—that can potentially be used in atmosphere-only typhoon forecast models to provide flow-dependent typhoon-induced sea surface temperature cooling (SSTC) for improving typhoon predictions. The major challenge of existing SSTC algorithms in forecast models is how to accurately predict SSTC induced by an upcoming typhoon, which requires information not only from historical data but more importantly also from the target typhoon itself. The S-L algorithm composes of a single layer of neurons with mixed atmospheric and oceanic factors. Such a structure is found to be unable to represent correctly the physical typhoon-ocean interaction. It tends to produce an unstable SSTC distribution, for which any perturbations may lead to changes in both SSTC pattern and strength. The D-L algorithm extends the neural network to a 4 × 5 neuron matrix with atmospheric and oceanic factors being separated in different layers of neurons, so that the machine learning can determine the roles of atmospheric and oceanic factors in shaping the SSTC. Therefore, it produces a stable crescent-shaped SSTC distribution, with its large-scale pattern determined mainly by atmospheric factors (e.g., winds) and small-scale features by oceanic factors (e.g., eddies). Sensitivity experiments reveal that the D-L algorithms improve maximum wind intensity errors by 60-70% for four case study simulations, compared to their atmosphere-only model runs.
DOT National Transportation Integrated Search
1999-05-01
The responses to the surveys were analyzed to determine consistent themes and trends in user satisfaction and perceptions. The study found that several trail attributes contribute significantly to user satisfaction and higher levels of trail use. Ade...
Typhoon Saomai taken from Atlantis during STS-106
2000-09-09
STS106-704-063 (9 September 2000) --- Typhoon Saomai swirls in the Pacific Ocean east of Taiwan and the Philippines. The typhoon was captured on film with a 70mm handheld camera by the STS-106 crew members aboard the Space Shuttle Atlantis on September. 9
User-generated online health content: a survey of Internet users in the United Kingdom.
O'Neill, Braden; Ziebland, Sue; Valderas, Jose; Lupiáñez-Villanueva, Francisco
2014-04-30
The production of health information has begun to shift from commercial organizations to health care users themselves. People increasingly go online to share their own health and illness experiences and to access information others have posted, but this behavior has not been investigated at a population level in the United Kingdom. This study aims to explore access and production of user-generated health content among UK Internet users and to investigate relationships between frequency of use and other variables. We undertook an online survey of 1000 UK Internet users. Descriptive and multivariate statistical analyses were used to interpret the data. Nearly one-quarter of respondents (23.7%, 237/1000) reported accessing and sharing user-generated health content online, whereas more than 20% (22.2%, 222/1000) were unaware that it was possible to do this. Respondents could be divided into 3 groups based on frequency of use: rare users (78.7%, 612/778) who accessed and shared content less than weekly, users (13.9%, 108/778) who did so weekly, and superusers (7.5%, 58/778) who did so on a daily basis. Superusers were more likely to be male (P<.001) and to be employed (P<.001), but there were no differences between the groups with respect to educational level (P=.99) or health status (P=.63). They were more likely to use the Internet for varied purposes such as banking and shopping (P<.001). Although this study found reasonably widespread access of user-generated online health content, only a minority of respondents reported doing so frequently. As this type of content proliferates, superusers are likely to shape the health information that others access. Further research should assess the effect of user-generated online content on health outcomes and use of health services by Internet users.
NASA Astrophysics Data System (ADS)
Briones, J. B. L. T.; Puno, J. V.; Lapidez, J. P. B.; Muldong, T. M. M.; Ramos, M. M.; Caro, C. V.; Ladiero, C.; Bahala, M. A.; Suarez, J. K. B.; Santiago, J. T.
2014-12-01
Sudden rises in sea water over and above astronomical tides due to an approaching storm are known as storm surges. The development of an early warning system for storm surges is imperative, due to the high threat level of these events; Typhoon Haiyan in 08 November 2013 generated storm surges that caused casualties of over 6,000. Under the Department of Science and Technology, the Nationwide Operational Assessment of Hazards (DOST - Project NOAH) was tasked to generate storm surge hazard maps for all the coastal areas in the Philippines. The objective of this paper is to create guidelines on how to utilize the storm surge hazard map as a tool for planning and disaster mitigation. This study uses the case of the hypothetical situation in which a tropical storm with an intensity similar to Typhoon Haiyan hits Metro Manila. This site was chosen for various reasons, among them the economic, political, and cultural importance of Metro Manila as the location of the capital of the Philippines and the coastal bay length of the area. The concentration of residential areas and other establishments were also taken into account. Using the Japan Meteorology Association (JMA) Storm Surge Model, FLO-2D flood modelling software and the application of other GIS technology, the impact of Haiyan-strength typhoon passing through Manila was analysed. We were able to identify the population affected, number of affected critical facilities under each storm surge hazard level, and possible evacuation sites. The results of the study can be used as the basis of policies involving disaster response and mitigation by city authorities. The methods used by the study can be used as a replicable framework for the analysis of other sites in the Philippines.
NASA Astrophysics Data System (ADS)
Brill, Dominik; May, Simon Matthias; Engel, Max; Reyes, Michelle; Pint, Anna; Opitz, Stephan; Dierick, Manuel; Gonzalo, Lia Anne; Esser, Sascha; Brückner, Helmut
2016-12-01
On 8 November 2013, category 5 Supertyphoon Haiyan made landfall on the Philippines. During a post-typhoon survey in February 2014, Haiyan-related sand deposition and morphological changes were documented at four severely affected sites with different exposure to the typhoon track and different geological and geomorphological settings. Onshore sand sheets reaching 100-250 m inland are restricted to coastal areas with significant inundation due to amplification of surge levels in embayments or due to accompanying long-wave phenomena at the most exposed coastlines of Leyte and Samar. However, localized washover fans with a storm-typical laminated stratigraphy occurred even along coasts with limited inundation due to waves overtopping or breaching coastal barriers. On a recent reef platform off Negros in the Visayan Sea, storm waves entrained coral rubble from the reef slope and formed an intertidal coral ridge several hundreds of metres long when breaking at the reef edge. As these sediments and landforms were generated by one of the strongest storms ever recorded, they not only provide a recent reference for typhoon signatures that can be used for palaeotempestological and palaeotsunami studies in the region but might also increase the general spectrum of possible cyclone deposits. Although a rather atypical example for storm deposition due to the influence of infra-gravity waves, it nevertheless provides a valuable reference for an extreme case that should be considered when discriminating between storm and tsunami deposits in general. Even for sites with low topography and high inundation levels during Supertyphoon Haiyan, the landward extent of the documented sand sheets seems significantly smaller than typical sand sheets of large tsunamis. This criterion may potentially be used to distinguish both types of events.
1995-10-30
STS073-E-5313 (3 Nov. 1995) --- Typhoon Angela packed winds of 115 knots when this shot was taken with an Electronic Still Camera (ESC) from the Earth-orbiting space shuttle Columbia. It subsequently increased to speeds of 155 nautical miles, making it a super typhoon, heading due west toward Luzon in the Philippines.
Supertyphoon Nepartak Barreling Towards Taiwan
Atmospheric Science Data Center
2016-12-30
... on the coast as the typhoon approaches, and air and train travel have been severely impacted. The typhoon is currently moving at about 10 ... view of Typhoon Nepartak on 7 July 2016 at 10:30 AM local time (2:30 AM UTC). On the left is an image from the nadir (vertical pointing) ...
2008-09-01
Structure and the Western North Pacific Category 5 Typhoons. Part 1: Ocean Features and the Category 5 Typhoons’ Intensification 5a. CONTRACT NUMBER...intensification of category 5 cyclones. Based on 13 yr of satellite altimetry data, in situ &climatological upper-ocean thermal structure data, best-track...Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 3288 MONTHLY WEATHER REVIEW VOLUME 136 Upper-Ocean Thermal Structure and the Western North
Impact of Tropical Cyclones on Soil Moisture over East Asia
NASA Astrophysics Data System (ADS)
Liess, S.
2016-12-01
A simulation of a series of three strong typhoons (Frankie, Gloria, and Herb) during the 1996 typhoon season shows that the Weather Research and Forecasting (WRF) model is representing the general characteristics of each typhoon, including sharp right turns by Gloria and Herb over the Philippine Sea. These sharp right turns can be attributed to tropical easterly waves and they are responsible for landfall over Taiwan, instead of following the general direction toward the Philippines. A second simulation where the typhoon signal is removed before landfall over East Asia shows that both rainfall and soil moisture is increased by up to 30% in coastal regions after landfall, mostly to the north of the landfall region. However, despite the noisier signal in rainfall, significant increases in soil moisture related to the paths of the simulated typhoons occur as far west as western China and Myanmar. Strong winds associated with the typhoons can also increase local evaporation and thus locally reduce soil moisture, especially south of the landfall region. Detailed observations of hydrologic variables such as soil moisture are needed to evaluate these model studies not only over coastal regions but also further inland where typhoon signals are weaker but local moisture availability is still influenced by increased rainfall and stronger winds.
Sedimentary records of Typhoon Haiyan in the South China Sea
NASA Astrophysics Data System (ADS)
Su, C. C.; Chen, Y. H.; Chang, J. H.; Hsu, H. H.; Yu, P. S.; Liu, C. S.
2016-12-01
South China Sea (SCS), which is located at the boundary of the Eurasian, Philippine Sea, and Indian plates, is the largest marginal sea of the northwest Pacific and also on the North Western Pacific corridor of typhoons. The unique tectonic setting and climatic conditions make it has to face the severe natural hazards, like submarine landslides, and high sediment discharges which induced by typhoon. On November 8, 2013, the Typhoon Haiyan, which was one of the largest tropical cyclones ever recorded in western Pacific, devastated Philippines and caused catastrophic destruction. Before the Typhoon Haiyan reached Hainan Province, China and Quangninh Province, Vietnam, it emerged over the SCS. How was the large amount of terrestrial materials distributed and recorded in deep sea sediments by such intense typhoon? Is it possible for us to reconstruct the history of extreme tropical cyclones by using deep sea cores? In this study, twelve gravity cores were collected in the Central SCS Basin and around Taiping Island (Itu Aba Island) from 2014 to 2015 and a series of analysis including Multi-Sensor Core Logger, XRF Core Scanner, core surface and X-radiograph images, grain size, and excess 210Pb chronology were conducted for modern extreme event records in cores and attempt to evaluate the possibility of reconstructed extreme typhoon records in cores from the SCS. On core surface images, an obvious brownish oxidized layer exist in core top with higher 210Pb activities beneath the layer. According to the sampling time, we conjecture the oxidized layer might formed by Typhoon Haiyan in 2013. In addition, the Itrax data shows high manganese content only exist in this layer which might related to the modern industrial pollution delivered by typhoon induced flooding from Philippines. The Power Barge 103 of Napocor in Estancia IIoilo was dislodged from its mount by Typhoon Haiyan and the United Nations Disaster Assessment and Coordination Team reported 600,000 liters of bunker fuel had spilled. To clarify the relationship between the oil spill and high manganese records in sediments, some further analysis is needed. Our analysis result shows, in the Central SCS Basin, over 80 cm turbidite layer was deposited by Typhoon Haiyan and it will take more than 4000 years to deposit on seafloor without the impact of extreme events.
Combined infragravity wave and sea-swell runup over fringing reefs by super typhoon Haiyan
NASA Astrophysics Data System (ADS)
Shimozono, Takenori; Tajima, Yoshimitsu; Kennedy, Andrew B.; Nobuoka, Hisamichi; Sasaki, Jun; Sato, Shinji
2015-06-01
Super typhoon Haiyan struck the Philippines on 8 November 2013, marking one of the strongest typhoons at landfall in recorded history. Extreme storm waves attacked the Pacific coast of Eastern Samar where the violent typhoon first made landfall. Our field survey confirmed that storm overwash heights of 6-14 m above mean sea level were distributed along the southeastern coast and extensive inundation occurred in some coastal villages in spite of natural protection by wide fringing reefs. A wave model based on Boussinesq-type equations is constructed to simulate wave transformation over shallow fringing reefs and validated against existing laboratory data. Wave propagation and runup on the Eastern Samar coast are then reproduced using offshore boundary conditions based on a wave hindcast. The model results suggest that extreme waves on the shore are characterized as a superposition of the infragravity wave and sea-swell components. The balance of the two components is strongly affected by the reef width and beach slope through wave breaking, frictional dissipation, reef-flat resonances, and resonant runup amplification. Therefore, flood characteristics significantly differ from site to site due to a large variation of the two topographic parameters on the hilly coast. Strong coupling of infragravity waves and sea swells produces extreme runup on steep beaches fronted by narrow reefs, whereas the infragravity waves become dominant over wide reefs and they evolve into bores on steep beaches.
A Probabilistic Approach to Tropical Cyclone Conditions of Readiness (TCCOR)
2008-09-01
from CDO SOP #10)....18 Figure 9. TCCOR boundaries produced by the TPU for Typhoon MAWAR in August 2005...19 Figure 10. The JTWC warning graphic for Typhoon MAWAR ...operational use, only as additional guidance for the forecaster. Figure 9. TCCOR boundaries produced by the TPU for Typhoon MAWAR in August
Rating knowledge sharing in cross-domain collaborative filtering.
Li, Bin; Zhu, Xingquan; Li, Ruijiang; Zhang, Chengqi
2015-05-01
Cross-domain collaborative filtering (CF) aims to share common rating knowledge across multiple related CF domains to boost the CF performance. In this paper, we view CF domains as a 2-D site-time coordinate system, on which multiple related domains, such as similar recommender sites or successive time-slices, can share group-level rating patterns. We propose a unified framework for cross-domain CF over the site-time coordinate system by sharing group-level rating patterns and imposing user/item dependence across domains. A generative model, say ratings over site-time (ROST), which can generate and predict ratings for multiple related CF domains, is developed as the basic model for the framework. We further introduce cross-domain user/item dependence into ROST and extend it to two real-world cross-domain CF scenarios: 1) ROST (sites) for alleviating rating sparsity in the target domain, where multiple similar sites are viewed as related CF domains and some items in the target domain depend on their correspondences in the related ones; and 2) ROST (time) for modeling user-interest drift over time, where a series of time-slices are viewed as related CF domains and a user at current time-slice depends on herself in the previous time-slice. All these ROST models are instances of the proposed unified framework. The experimental results show that ROST (sites) can effectively alleviate the sparsity problem to improve rating prediction performance and ROST (time) can clearly track and visualize user-interest drift over time.
NASA Astrophysics Data System (ADS)
Mo, W.; Fang, W.
2015-12-01
Vulnerability which quantifies the loss ratio under different hazard intensity is an important feature of the natural disaster system and has important significance to natural disaster risk assessment. Agriculture is an outdoor industry with high risk of meteorological disasters. The strong winds, heavy rain and storm surge are main typhoon hazard factors to crops. To provide a quantitative research method for the loss evaluation of crops due to typhoon disaster we first revised two vulnerability curves for crops under comprehensive intensity of typhoon based on the simulated hazard data and loss data related to historical typhoon events landing on China from 1949 to 2014;and then established a storm surge vulnerability matrix of crops regarding Zhanjiang City of Guangdong Province as the study area ; finally, we put forward three storm surge fragility curves for crops representing different states of loss. The results can effectively describe the typhoon vulnerability for crops in China coastal areas so as to provide the input to post-disaster loss assessments and catastrophe modeling applications.
Development of Operational Wave-Tide-Storm surges Coupling Prediction System
NASA Astrophysics Data System (ADS)
You, S. H.; Park, S. W.; Kim, J. S.; Kim, K. L.
2009-04-01
The Korean Peninsula is surrounded by the Yellow Sea, East China Sea, and East Sea. This complex oceanographic system includes large tides in the Yellow Sea and seasonally varying monsoon and typhoon events. For Korea's coastal regions, floods caused by wave and storm surges are among the most serious threats. To predict more accurate wave and storm surges, the development of coupling wave-tide-storm surges prediction system is essential. For the time being, wave and storm surges predictions are still made separately in KMA (Korea Meteorological Administration) and most operational institute. However, many researchers have emphasized the effects of tides and storm surges on wind waves and recommended further investigations into the effects of wave-tide-storm surges interactions and coupling module. In Korea, especially, tidal height and current give a great effect on the wave prediction in the Yellow sea where is very high tide and related research is not enough. At present, KMA has operated the wave (RWAM : Regional Wave Model) and storm surges/tide prediction system (STORM : Storm Surges/Tide Operational Model) for ocean forecasting. The RWAM is WAVEWATCH III which is a third generation wave model developed by Tolman (1989). The STORM is based on POM (Princeton Ocean Model, Blumberg and Mellor, 1987). The RWAM and STORM cover the northwestern Pacific Ocean from 115°E to 150°E and from 20°N to 52°N. The horizontal grid intervals are 1/12° in both latitudinal and longitudinal directions. These two operational models are coupled to simulate wave heights for typhoon case. The sea level and current simulated by storm surge model are used for the input of wave model with 3 hour interval. The coupling simulation between wave and storm surge model carried out for Typhoon Nabi (0514), Shanshan(0613) and Nari (0711) which were effected on Korea directly. We simulated significant wave height simulated by wave model and coupling model and compared difference between uncoupling and coupling cases for each typhoon. When the typhoon Nabi hit at southern coast of Kyushu, predicted significant wave height reached over 10 m. The difference of significant wave height between wave and wave-tide-storm surges model represents large variation at the southwestern coast of Korea with about 0.5 m. Other typhoon cases also show similar results with typhoon Nabi case. For typhoon Shanshan case the difference of significant wave height reached up to 0.3 m. When the typhoon Nari was affected in the southern coast of Korea, predicted significant wave height was about 5m. The typhoon Nari case also shows the difference of significant wave height similar with other typhoon cases. Using the observation from ocean buoy operated by KMA, we compared wave information simulated by wave and wave-storm surges coupling model. The significant wave height simulated by wave-tide-storm surges model shows the tidal modulation features in the western and southern coast of Korea. And the difference of significant wave height between two models reached up to 0.5 m. The coupling effect also can be identified in the wave direction, wave period and wave length. In addition, wave spectrum is also changeable due to coupling effect of wave-tide-storm surges model. The development, testing and application of a coupling module in which wave-tide-storm surges are incorporated within the frame of KMA Ocean prediction system, has been considered as a step forward in respect of ocean forecasting. In addition, advanced wave prediction model will be applicable to the effect of ocean in the weather forecasting system. The main purpose of this study is to show how the coupling module developed and to report on a series of experiments dealing with the sensitivities and real case prediction of coupling wave-tide-storm surges prediction system.
NASA Astrophysics Data System (ADS)
Huang, Chien-Lin; Hsu, Nien-Sheng
2016-04-01
This study develops a novel methodology to resolve the geophysical cause of typhoon-induced rainfall considering diverse dynamic co-evolution at multiple spatiotemporal components. The multi-order hidden patterns of complex hydrological process in chaos are detected to understand the fundamental laws of rainfall mechanism. The discovered spatiotemporal features are utilized to develop a state-of-the-art descriptive statistical model for mechanism validation, modeling and further prediction during typhoons. The time series of hourly typhoon precipitation from different types of moving track, atmospheric field and landforms are respectively precede the signal analytical process to qualify each type of rainfall cause and to quantify the corresponding affected degree based on the measured geophysical atmospheric-hydrological variables. This study applies the developed methodology in Taiwan Island which is constituted by complex diverse landform formation. The identified driving-causes include: (1) cloud height to ground surface; (2) co-movement effect induced by typhoon wind field with monsoon; (3) stem capacity; (4) interaction between typhoon rain band and terrain; (5) structural intensity variance of typhoon; and (6) integrated cloudy density of rain band. Results show that: (1) for the central maximum wind speed exceeding 51 m/sec, Causes (1) and (3) are the primary ones to generate rainfall; (2) for the typhoon moving toward the direction of 155° to 175°, Cause (2) is the primary one; (3) for the direction of 90° to 155°, Cause (4) is the primary one; (4) for the typhoon passing through mountain chain which above 3500 m, Cause (5) is the primary one; and (5) for the moving speed lower than 18 km/hr, Cause (6) is the primary one. Besides, the multiple geophysical component-based precipitation modeling can achieve 81% of average accuracy and 0.732 of average correlation coefficient (CC) within average 46 hours of duration, that improve their predictability.
NASA Astrophysics Data System (ADS)
Huang, C. L.; Hsu, N. S.
2015-12-01
This study develops a novel methodology to resolve the cause of typhoon-induced precipitation using principle component analysis (PCA) and to develop a long lead-time precipitation prediction model. The discovered spatial and temporal features of rainfall are utilized to develop a state-of-the-art descriptive statistical model which can be used to predict long lead-time precipitation during typhoons. The time series of 12-hour precipitation from different types of invasive moving track of typhoons are respectively precede the signal analytical process to qualify the causes of rainfall and to quantify affected degree of each induced cause. The causes include: (1) interaction between typhoon rain band and terrain; (2) co-movement effect induced by typhoon wind field with monsoon; (3) pressure gradient; (4) wind velocity; (5) temperature environment; (6) characteristic distance between typhoon center and surface target station; (7) distance between grade 7 storm radius and surface target station; and (8) relative humidity. The results obtained from PCA can detect the hidden pattern of the eight causes in space and time and can understand the future trends and changes of precipitation. This study applies the developed methodology in Taiwan Island which is constituted by complex diverse terrain formation and height. Results show that: (1) for the typhoon moving toward the direction of 245° to 330°, Causes (1), (2) and (6) are the primary ones to generate rainfall; and (2) for the direction of 330° to 380°, Causes (1), (4) and (6) are the primary ones. Besides, the developed precipitation prediction model by using PCA with the distributed moving track approach (PCA-DMT) is 32% more accurate by that of PCA without distributed moving track approach, and the former model can effectively achieve long lead-time precipitation prediction with an average predicted error of 13% within average 48 hours of forecasted lead-time.
The Influence of Ocean on Typhoon Nuri (2008)
NASA Astrophysics Data System (ADS)
Sun, J.; Oey, L. Y.; Xu, F.; Lin, Y.; Huang, S. M.; Chang, R.
2014-12-01
The influence of ocean on typhoon Nuri (2008) is investigated in this study using the WRF numerical model. Typhoon Nuri formed over the warm pool of the western North Pacific. The storm traversed west-northwestward and became a Category 3 typhoon over the Kuroshio east of the Luzon Strait and weakened as it moved across South China Sea. Three types of SST: NCEP RTG_SST (Real-time,global,sea surface temperature) GHRsst (Group for High Resolution Sea Surface Temperature) and SST from the ATOP North Pacific ocean model [Oey et al 2014, JPO] are used in WRF to test the effect of ocean on the intensity of typhoon Nuri. The typhoon intensity and track are also compared with simulations using different microphysics schemes but with fixed SST. The results show that thermodynamic control through ocean response is the dominant factor which determines Nuri's intensity. The simulated intensity agrees well with the observed intensity when ATOP SST is used, while using NCEP SST and GHRsst yield errors both in intensity and timing of maximum intensity. Over the Kuroshio, the thicker depth of 26 ℃ from ATOP provides stronger heating for the correct timing of intensification of Nuri. In South China Sea, the storm weakened because of cooled SST through ocean mixing by inertial resonance. A new way of explaining typhoon intensification though PV is proposed.
Aiding Young Children in Taiwan's Typhoon Disaster: How an NAEYC Interest Forum Takes Action
ERIC Educational Resources Information Center
Young Children, 2010
2010-01-01
When devastating natural disasters struck Asia last year--typhoons in Taiwan and the Philippines and an earthquake in Indonesia--members of the Asian Interest Forum (AIF) worried about basic living environments and the emotional needs of children in these regions. AIF decided to focus on helping victims of Morakot, the deadliest typhoon in…
NASA Astrophysics Data System (ADS)
Sueki, Kenta; Niino, Hiroshi
2016-12-01
The characteristics of typhoons that spawned tornadoes (tornadic typhoons: TTs) in Japan from 1991 to 2013 were investigated by composite analysis using the Japanese 55 year Reanalysis and compared with those of typhoons that did not spawn tornadoes (nontornadic typhoons: NTs). We found that convective available potential energy (CAPE), which considers the effects of entrainment (entraining CAPE: E-CAPE), and storm-relative environmental helicity (SREH) are significantly large in the northeast quadrant of TTs where tornadoes frequently occur and that E-CAPE and SREH in that quadrant for TTs are larger than those for NTs. On the other hand, ordinary CAPE without entrainment does not account for the spatial distribution of tornado occurrences nor does it distinguish TTs from NTs. E-CAPE is sensitive to humidity in the midtroposphere; thus, it is effective for detecting a conditionally unstable layer up to about 550 hPa, which is distinctive of TTs.
Zhang, Wenchao; Wang, Wei; Lin, Junfen; Zhang, Ying; Shang, Xiaopeng; Wang, Xin; Huang, Meilin; Liu, Shike; Ma, Wei
2017-01-01
(1) The objective of this study was to assess the risk perceptions, attitudes, knowledge, and behaviors related to typhoon among rural residents in Zhejiang province of China. A cross-sectional study was conducted among rural residents in Zhejiang province, China. Information was collected from 659 participants using a structured questionnaire. Univariate analysis and multivariable analysis were used to analyze the data. Participants were most concerned about property damage, followed by their health and life. Television, short message service (SMS), relatives and friends were the most common information sources. Most people had not been educated with disaster prevention measures. The complementary log–log (CLL) model showed that understanding typhoon warning signal, preparation time, risk perception of health damage and life threat, and fears of typhoon were independent predictors of adoption of coping behaviors. We found that: 1. Residents’ risk perception of health and life threat caused by typhoon is inadequate; 2. There is a gap between residents’ cognition or knowledge and behavior in rural areas; 3. The government should further make strategies to develop educational activities, in order to eliminate the gap and improve the ability of preparing for typhoon among rural residents. PMID:28481262
Zhang, Wenchao; Wang, Wei; Lin, Junfen; Zhang, Ying; Shang, Xiaopeng; Wang, Xin; Huang, Meilin; Liu, Shike; Ma, Wei
2017-05-06
(1) The objective of this study was to assess the risk perceptions, attitudes, knowledge, and behaviors related to typhoon among rural residents in Zhejiang province of China. A cross-sectional study was conducted among rural residents in Zhejiang province, China. Information was collected from 659 participants using a structured questionnaire. Univariate analysis and multivariable analysis were used to analyze the data. Participants were most concerned about property damage, followed by their health and life. Television, short message service (SMS), relatives and friends were the most common information sources. Most people had not been educated with disaster prevention measures. The complementary log-log (CLL) model showed that understanding typhoon warning signal, preparation time, risk perception of health damage and life threat, and fears of typhoon were independent predictors of adoption of coping behaviors. We found that: 1. Residents' risk perception of health and life threat caused by typhoon is inadequate; 2. There is a gap between residents' cognition or knowledge and behavior in rural areas; 3. The government should further make strategies to develop educational activities, in order to eliminate the gap and improve the ability of preparing for typhoon among rural residents.
ISBP: Understanding the Security Rule of Users' Information-Sharing Behaviors in Partnership.
Wu, Hongchen; Wang, Xinjun
2016-01-01
The rapid growth of social network data has given rise to high security awareness among users, especially when they exchange and share their personal information. However, because users have different feelings about sharing their information, they are often puzzled about who their partners for exchanging information can be and what information they can share. Is it possible to assist users in forming a partnership network in which they can exchange and share information with little worry? We propose a modified information sharing behavior prediction (ISBP) model that can help in understanding the underlying rules by which users share their information with partners in light of three common aspects: what types of items users are likely to share, what characteristics of users make them likely to share information, and what features of users' sharing behavior are easy to predict. This model is applied with machine learning techniques in WEKA to predict users' decisions pertaining to information sharing behavior and form them into trustable partnership networks by learning their features. In the experiment section, by using two real-life datasets consisting of citizens' sharing behavior, we identify the effect of highly sensitive requests on sharing behavior adjacent to individual variables: the younger participants' partners are more difficult to predict than those of the older participants, whereas the partners of people who are not computer majors are easier to predict than those of people who are computer majors. Based on these findings, we believe that it is necessary and feasible to offer users personalized suggestions on information sharing decisions, and this is pioneering work that could benefit college researchers focusing on user-centric strategies and website owners who want to collect more user information without raising their privacy awareness or losing their trustworthiness.
Study of car-sharing diffusion criticality conditions based on human traveling network
NASA Astrophysics Data System (ADS)
Xu, Yan; Ji, Xuehong
Car-sharing program, like Car2go, is an innovative urban transportation mode where the car-sharing company provides a car fleet to offer people with the short-term access of car traveling. As a new traveling service, car-sharing platforms have been struggling hard to trigger initial users and speed up their diffusion process. Unlike new product spreading via geographical proximity people, car-sharing users usually drive sharing cars to different destinations and influence people there, and potential user decision also depends on previous user activity at all their destinations. Car-sharing user connections are mainly affected by their traveling behaviors. The influence of user traveling network on new service/product spreading process has been rarely studied before. Here, we find that the infective rate between users with the same destination is critical to the minimum user base of car-sharing diffusion. Moreover, a city with central user network is more appropriate for car-sharing. It leads to a small critical infective rate for diffusion, and a large stable market size of car-sharing service. Our study can impact car-sharing market strategies ranging from market expansion in one city to optimal market selection among different cities.
NASA Astrophysics Data System (ADS)
Zhao, Y.; Wang, B.; Wang, Y.
2007-12-01
Recently, a new data assimilation method called “3-dimensional variational data assimilation of mapped observation (3DVM)” has been developed by the authors. We have shown that the new method is very efficient and inexpensive compared with its counterpart 4-dimensional variational data assimilation (4DVar). The new method has been implemented into the Penn State/NCAR mesoscale model MM5V1 (MM5_3DVM). In this study, we apply the new method to the bogus data assimilation (BDA) available in the original MM5 with the 4DVar. By the new approach, a specified sea-level pressure (SLP) field (bogus data) is incorporated into MM5 through the 3DVM (for convenient, we call it variational bogus mapped data assimilation - BMDA) instead of the original 4DVar data assimilation. To demonstrate the effectiveness of the new 3DVM method, initialization and simulation of a landfalling typhoon - typhoon Dan (1999) over the western North Pacific with the new method are compared with that with its counterpart 4DVar in MM5. Results show that the initial structure and the simulated intensity and track are improved more significantly using 3DVM than 4DVar. Sensitivity experiments also show that the simulated typhoon track and intensity are more sensitive to the size of the assimilation window in the 4DVar than that in the 3DVM. Meanwhile, 3DVM takes much less computing cost than its counterpart 4DVar for a given time window.
Social media as a risk communication tool following Typhoon Haiyan.
Cool, Christine Tiffany; Claravall, Marie Chantal; Hall, Julie Lyn; Taketani, Keisuke; Zepeda, John Paul; Gehner, Monika; Lawe-Davies, Olivia
2015-01-01
In the aftermath of Typhoon Haiyan, the World Health Organization (WHO) Representative Office in the Philippines had no social media presence to share timely, relevant public health information. Risk communication is essential to emergency management for public health message dissemination. As social media sites, such as Facebook, are popular in the Philippines, these were adopted for risk communication during the response to Haiyan. The WHO Representative Office in the Philippines established Facebook, Twitter and Instagram accounts. Thirty days after these social medial channels were established, a gradual increase in followers was observed. Facebook saw the largest increase in followers which occurred as posted content gradually evolved from general public health information to more pro-active public health intervention and preparedness messaging. This included information on key health interventions encouraging followers to adopt protective behaviours to mitigate public health threats that frequently occur after a disaster. During the response to Haiyan, creating a social media presence, raising a follower base and developing meaningful messages and content was possible. This event underscored the importance of building a social media strategy in non-emergency times and supported the value of developing public health messages and content that both educates and interests the general public.
Wind waves generated by Typhoon Vamei in the southern South China Sea
NASA Astrophysics Data System (ADS)
Mohammed, Aboobacker; Tkalich, Pavel; Krishnakumar, Vinod Kumar; Ponnumony, Vethamony
2013-04-01
Typhoon-generated waves are of interest scientifically for understanding wind-wave interaction physics, as well as operationally for predicting potential hazards. The Typhoon Vamei formed in the southern South China Sea (SCS) was one of the rare typhoon events that occurred near the equator. The typhoon developed on 26 Dec 2001 at 1.4°N in the southern SCS, strengthened quickly, made a landfall along the southeast coast of Malaysia and dissipated over Sumatra on 28 Dec 2001. With the wind speeds were as high as 36 m/s in the southern SCS, this event has significantly affected the atmospheric and oceanic conditions over the region. In the present study, we aim at understanding the wind wave characteristics induced by Vamei along the Sunda Shelf and the southeast coast of Malaysia. Wind velocity vectors over the southern SCS have been simulated for 22-30 Dec 2001 using Weather Research and Forecasting (WRF) model. These winds have been forced in a third generation wave model to compute the wind waves in the affected domain. Simulated significant wave heights reach as high as 7.5m off the southeast coast of Malaysia and 5.8m in the Singapore Strait (SS). Wave propagation from the SCS to the SS is highly noticeable during the typhoon event. Directional distribution and propagation of the Vamei generated waves towards the southeast coast of Malaysia and part of Singapore region have been discussed. Keywords: South China Sea; wind waves; typhoon; numerical modelling; significant wave height.
Response of upper ocean cooling off northeastern Taiwan to typhoon passages
NASA Astrophysics Data System (ADS)
Zheng, Zhe-Wen; Zheng, Quanan; Gopalakrishnan, Ganesh; Kuo, Yi-Chun; Yeh, Ting-Kuang
2017-07-01
A comprehensive investigation of the typhoon induced upper ocean processes and responses off northeastern Taiwan was conducted. Using the Regional Ocean Modeling System, the upper ocean responses of all typhoons striking Taiwan between 2005 and 2013 were simulated. In addition to Kuroshio intrusion, the present study demonstrates another important mechanism of typhoon induced near-inertial currents over the continental shelf of East China Sea, which can also trigger a distinct cooling (through entrainment mixing) within this region. Results indicate that the processes of typhoon inducing distinct cooling off northeastern Taiwan are conditional phenomena (only ∼12% of typhoons passing Taiwan triggered extreme cooling there). Subsequently, by executing a series of sensitivity experiments and systematic analyses on the behaviors and background conditions of all those typhoon cases, key criteria determining the occurrences of cooling through both mechanisms were elucidated. Occurrences of cooling through the Kuroshio intrusion mechanism are determined mainly by the strength of the local wind over northeastern Taiwan. A distinct cooling triggered by enhanced near-inertial currents is shown to be associated with the process of wind-current resonance. Both processes of Kuroshio intrusion and enhanced near-inertial currents are dominated by wind forcing rather than upper oceanic conditions. Based on the recent findings on the possible dynamic linkage between sea surface temperature near northeast Taiwan and local weather systems, the results elucidated in this study lay the foundation for further improvement in the regional weather prediction surrounding northeast Taiwan.
Typhoon induced summer cold shock advected by Kuroshio off eastern Taiwan
NASA Astrophysics Data System (ADS)
Kuo, Yi-Chun; Zheng, Zhe-Wen; Zheng, Quanan; Gopalakrishnan, Ganesh; Lee, Chia-Ying; Chern, Shi-We; Chao, Yan-Hao
2017-01-01
In this study, we used satellite observations, in-situ measurements, and numerical modelling to investigate an extreme temperature change triggered by a typhoon in the ocean near the Kuroshio region off eastern Taiwan. With the westward passage of Typhoon Morakot in 2009 through Taiwan, a distinct cool wake was generated at the southeastern corner of Taiwan (CWSET) and moved towards the downstream Kuroshio region; it involved a precipitous cooling of at least 4 °C within 10-20 km of the coast. Rapid and drastic temperature drops triggered by the CWSET and advected by the strong conveyor belt effect of the Kuroshio Current are highly probable sources of cold shocks in summer. We clarified the mechanism that generated the CWSET through a series of sensitivity experiments using the Regional Oceanic Modeling System. The cold shock was mainly triggered by local wind stress associated with the typhoon. In addition, the Kuroshio Current was demonstrated to have played a crucial role in both the generation of upwelling off the southeastern coast of Taiwan during the passage of the typhoon and the transporting of this impact downstream. This process was verified through a systematic analysis of all typhoons moving westward through Taiwan from 2005 to 2013. Cold-shock stress is thought to be linked with naturally occurring 'fish kills', and obtaining a more thorough understanding of the CWSET will be helpful for protecting aquaculture off the eastern coast of Taiwan from the impacts of cold shocks triggered by typhoons moving westward through Taiwan in summer.
Application of topography survey on the green sea turtle (Chelonia mydas) conservation
NASA Astrophysics Data System (ADS)
Fan, Yuan-Yu; Lo, Liu-Chih; Peng, Kuan-Chieh
2017-04-01
Taiwan is located in the Western Pacific monsoon region, typhoon is one of the common natural disasters. Taiwan is hit by typhoons 6 times on average each year, and 2016 have 5. Typhoon not only caused the loss of nature environment in Taiwan but also decreased the endangered species- green sea turtle's breeding success rate. In Wangan island, Penghu, green sea turtle nesting beach's slop is too steep to form the dune cliff, block the way which green sea turtle should nesting above the vegetation line. Nesting under the dune cliff is disturbed easily by the swell from typhoon, Leading to the whole nest was emptied or hatching rate decreased due to water content changed. In order to reduce the threat of typhoon on the green sea turtle, and promote the success of green sea turtle reproduction, we used LiDAR(Light Detection And Ranging) to monitor the topographic change of the green sea turtle nesting habitat and compare the invasion and deposition of the green sea turtle nests before and after the occurrence of typhoons. The results showed that the breeding success rate before the typhoon (2016/09/12) was 93%, which was not affected by the swell. The breeding success rate at the higher position after the typhoon was 95%, and under the dune cliff, 10 nests reproduction failed due to the swell changing the sand layer thickness. The production of dune cliffs is formed by the roots of coastal sand-fixation plants. In the past, the residents collected the coastal plants for fuel, after collecting, sparse vegetation is good to form the flat beach, and to promote green sea turtle nesting on the higher position from the disturbance of typhoon. In the future, to protect the success of green sea turtle's reproduction, should increase the human intervention that disturb the nesting beach's vegetation appropriately, Or cutting the roots directly to reduce the dune cliffs before the nesting season, help the green sea turtle nesting in a higher beach, improve the green sea turtle's breeding success rate.
Impacts of two super typhoons on the Kuroshio and marginal seas on the Pacific coast of Japan
NASA Astrophysics Data System (ADS)
Tada, Hiroaki; Uchiyama, Yusuke; Masunaga, Eiji
2018-02-01
High-resolution downscaling ocean modeling was conducted to investigate the impacts of two super typhoons on the Kuroshio in the fall of 2014 off the Kyushu and Shikoku Islands, Japan. The model result was compared with field observations and satellite altimetry. The synoptic and mesoscale oceanic structures around the Kuroshio exhibit a good reproducibility. The typhoons generated near-inertial oscillations (NIOs) and near-inertial internal waves (NIIWs) around the Kuroshio path, particularly on the right side of the typhoon tracks. The NIOs developed in the mixed layer to alter the direction of the Kuroshio by 30°. The associated velocity off the Shikoku and Kyushu Islands was significantly decelerated by 0.2 ms-1. The velocity almost vanished off Kyushu Island and thus induced an unstable fluctuating path shortly after both typhoons passed over that region. The NIIWs were also excited at the thermocline, resulting in the oscillation of the Kuroshio path occurred in the entire water column. In contrast, off Shikoku Island, the typhoons shifted the Kuroshio path northward to enhance the interactions with the topographies. This shift caused considerable eddy shedding from the capes that resulted in mesoscale counterclockwise circulations as cyclonic quasi-standing eddies with a shedding period of 3 days in the north of the Kuroshio path. The magnitude, direction, and meridional location of the path of the Kuroshio prominently fluctuated with the propagation of these eddies, manifested off Shikoku Island. Furthermore, these eddies induced sporadic northward intrusions of the Kuroshio warm water through the Kii Channel into the Seto Inland Sea (SIS), where a weak but persisting southward outflow prevails under normal conditions. Therefore, the process could collectively be called the "typhoon-Kuroshio-eddy interaction", which conceptually differs from the "typhoon-eddy-Kuroshio interaction" in the previous studies, where the Kuroshio was modulated by eddy collision. The wind stress curl and intrusions associated with the typhoons jointly provoked the inversion of the counterclockwise SIS residual circulation. The resultant spatially averaged volume flux was 8 times as high as that under normal conditions.
Potential indirect effects of aerosol on tropical cyclone development
NASA Astrophysics Data System (ADS)
Krall, Geoffrey
Observational and model evidence suggest that a 2008 Western Pacific typhoon (NURI) came into contact with and ingested elevated concentrations of aerosol as it neared the Chinese coast. This study uses a regional model with two-moment bin emulating microphysics to simulate the typhoon as it enters the field of elevated aerosol concentration. A continental field of cloud condensation nuclei (CCN) was prescribed based on satellite and global aerosol model output, then increased for further sensitivity tests. The typhoon was simulated for 96 hours beginning 17 August 2008, the final 60 of which were under varying CCN concentrations as it neared the Philippines and coastal China. The model was initialized with both global reanalysis model data and irregularly spaced dropsonde data from a 2008 observational campaign using an objective analysis routine. At 36 hours, the internal nudging of the model was switched off and allowed to evolve on its own. As the typhoon entered the field of elevated CCN in the sensitivity tests, the presence of additional CCN resulted in a significant perturbation of windspeed, convective fluxes, and hydrometeor species behavior. Initially ingested in the outer rainbands of the storm, the additional CCN resulted in an initial damping and subsequent invigoration of convection. The increase in convective fluxes strongly lag-correlates with increased amounts of supercooled liquid water within the storm domain. As the convection intensified in the outer rainbands the storm drifted over the developing cold-pools, affecting the inflow of air into the convective towers of the typhoon. Changes in the timing and amount of rain produced in each simulation resulted in differing cold-pool strengths and size. The presence of additional CCN increased resulted in an amplification of convection within the storm, except for the extremely high CCN concentration simulation, which showed a damped convection due to the advection of pristine ice away from the storm. This study examines the physical mechanisms that could potentially alter a tropical cyclone (TC) in intensity and dynamics upon ingesting elevated levels of CCN.
User-Generated Online Health Content: A Survey of Internet Users in the United Kingdom
Ziebland, Sue; Valderas, Jose; Lupiáñez-Villanueva, Francisco
2014-01-01
Background The production of health information has begun to shift from commercial organizations to health care users themselves. People increasingly go online to share their own health and illness experiences and to access information others have posted, but this behavior has not been investigated at a population level in the United Kingdom. Objective This study aims to explore access and production of user-generated health content among UK Internet users and to investigate relationships between frequency of use and other variables. Methods We undertook an online survey of 1000 UK Internet users. Descriptive and multivariate statistical analyses were used to interpret the data. Results Nearly one-quarter of respondents (23.7%, 237/1000) reported accessing and sharing user-generated health content online, whereas more than 20% (22.2%, 222/1000) were unaware that it was possible to do this. Respondents could be divided into 3 groups based on frequency of use: rare users (78.7%, 612/778) who accessed and shared content less than weekly, users (13.9%, 108/778) who did so weekly, and superusers (7.5%, 58/778) who did so on a daily basis. Superusers were more likely to be male (P<.001) and to be employed (P<.001), but there were no differences between the groups with respect to educational level (P=.99) or health status (P=.63). They were more likely to use the Internet for varied purposes such as banking and shopping (P<.001). Conclusions Although this study found reasonably widespread access of user-generated online health content, only a minority of respondents reported doing so frequently. As this type of content proliferates, superusers are likely to shape the health information that others access. Further research should assess the effect of user-generated online content on health outcomes and use of health services by Internet users. PMID:24784798
Rise in needle sharing among injection drug users in Pakistan during the Afghanistan war.
Strathdee, Steffanie A; Zafar, Tariq; Brahmbhatt, Heena; Baksh, Ahmed; ul Hassan, Salman
2003-07-20
The war in Afghanistan in 2001 may have had direct or indirect effects on drug users' behaviors in nearby Pakistan. We studied drug use patterns and correlates of needle sharing among injection drug users (IDUs) in Lahore, Pakistan, before and after the beginning of the Afghanistan war. Between August and October 2001, 244 drug users registering for needle exchange and other services underwent an interviewer-administered survey on sociodemographics, drug use and HIV/AIDS awareness. chi(2)-tests were used to compare drug use behaviors among subjects interviewed before and after October 6th, 2001, coinciding with the start of the Afghanistan war. Correlates of needle sharing among IDUs were identified using logistic regression. Comparing IDUs interviewed before and after October 6th, 2001, levels of needle sharing were significantly higher after the war (56% versus 76%, respectively; P=0.02). Factors independently associated with needle sharing included registering after the war began (adjusted odds ratio, AOR=3.76 (95% CI: 1.23-11.48)), being married (AOR=0.36), being homeless (AOR=3.91), having been arrested (AOR=6.00), and re-using syringes (AOR=6.19). Expansion of needle exchange, drug treatment and supportive services is urgently needed to avoid an explosive HIV epidemic in Pakistan.
Seasonal gravity wave drags on the upper stratosphere due to the northwestern pacific typhoons
NASA Astrophysics Data System (ADS)
Chen, Zeyu; Lu, Daren
In a recent study of the first author and his co-authors (Zeyu Chen, Peter Preusse, Michael Jarisch, Manfred Ern, and Dirk Offermann, 2003), it has been revealed that a northwestern Pacific typhoon can generate stratospheric gravity waves with the horizontal scales ranging from 500 km ˜ 1000 km, and carrying a magnitude of ˜ 0.001 Pascal of momentum flux into the upper stratosphere Statistics indicates that the annual mean number of typhoon in the northwestern Pacific is about 32, most of them happen in summer. In this presentation, we show that a parameterization scheme is developed to derive the magnitude of the momentum flux of the waves from operational satellite observations that can scale the intensity of a typhoon (e.g. the brightness temperature observations from the GMS-5 satellite), and operational meteorological data analysis. The seasonal effect of the Gravity Wave Drags due to the typhoons in the area is derived.
Parallelization of NAS Benchmarks for Shared Memory Multiprocessors
NASA Technical Reports Server (NTRS)
Waheed, Abdul; Yan, Jerry C.; Saini, Subhash (Technical Monitor)
1998-01-01
This paper presents our experiences of parallelizing the sequential implementation of NAS benchmarks using compiler directives on SGI Origin2000 distributed shared memory (DSM) system. Porting existing applications to new high performance parallel and distributed computing platforms is a challenging task. Ideally, a user develops a sequential version of the application, leaving the task of porting to new generations of high performance computing systems to parallelization tools and compilers. Due to the simplicity of programming shared-memory multiprocessors, compiler developers have provided various facilities to allow the users to exploit parallelism. Native compilers on SGI Origin2000 support multiprocessing directives to allow users to exploit loop-level parallelism in their programs. Additionally, supporting tools can accomplish this process automatically and present the results of parallelization to the users. We experimented with these compiler directives and supporting tools by parallelizing sequential implementation of NAS benchmarks. Results reported in this paper indicate that with minimal effort, the performance gain is comparable with the hand-parallelized, carefully optimized, message-passing implementations of the same benchmarks.
Estimation of solar collector area for water heating in buildings of Malaysia
NASA Astrophysics Data System (ADS)
Manoj Kumar, Nallapaneni; Sudhakar, K.; Samykano, M.
2018-04-01
Solar thermal energy (STE) utilization for water heating at various sectorial levels became popular and still growing especially for buildings in the residential area. This paper aims to study and identify the solar collector area needed based on the user requirements in an efficient manner. A step by step mathematical approach is followed to estimate the area in Sq. m. Four different cases each having different hot water temperatures (45°, 50°C, 55°C, and 60°C) delivered by the solar water heating system (SWHS) for typical residential application at Kuala Lumpur City, Malaysia is analysed for the share of hot and cold water mix. As the hot water temperature levels increased the share of cold water mix is increased to satisfy the user requirement temperature, i.e. 40°C. It is also observed that as the share of hot water mix is reduced, the collector area can also be reduced. Following this methodology at the installation stage would help both the user and installers in the effective use of the solar resource.
Economic benefits of capital bikeshare : a focus on users and businesses.
DOT National Transportation Integrated Search
2014-05-01
This study investigates potential economic benefits of bike sharing on the neighborhood level. Using a sample of five Capital Bikeshare (CaBi) stations in Washington, DC, we conducted an intercept survey of 333 bikeshare users at five CaBi stations a...
New target for rice lodging resistance and its effect in a typhoon.
Ishimaru, Ken; Togawa, Eiji; Ookawa, Taiichro; Kashiwagi, Takayuki; Madoka, Yuka; Hirotsu, Naoki
2008-02-01
We demonstrated the new target for lodging resistance in rice (Oryza sativa L.) by the analysis of physiological function of a locus for lodging resistance in a typhoon (lrt5) with the near isogenic line under rice "Koshihikari" genetic background (tentatively named S1). The higher lodging resistance of S1 was observed during a typhoon in September 2004 (28 days after heading), when most other plants in "Koshihikari" became lodged. Visual observations showed that bending of the upper stems triggered lodging during the typhoon; the upper stem of "Koshihikari" buckled completely, whereas that of S1 remained straight. In addition to the strong rain and winds during the typhoon, the weight of the buckled upper plant parts increased the pressure on adjacent plants and caused a domino effect in "Koshihikari". Young's modulus, an indicator of the rigidity of the culm, was significantly higher in S1 than in "Koshihikari". In the upper culm, the starch content in S1 was 4.8 times the value in "Koshihikari", and senescence was delayed in the upper leaves of S1. These results suggest that the rigidity of the upper culm by the higher starch content (as a result of delayed senescence in the upper leaves) may be responsible for the higher lodging resistance during a typhoon in rice.
The influence of asymmetric convections on typhoon cyclonic deflection tracks across Taiwan
NASA Astrophysics Data System (ADS)
Hsu, L. H.; Su, S. H.
2016-12-01
This study focus on the mechanisms of typhoon cyclonic deflection tracks (CDT) approaching the east coast of Taiwan. We analyzed for 84 landfall typhoons which has 49 CDT cases, 18 cases are with very large deflection angles (DA) ( > 20°) and another 7 cases are with cyclonic looping tracks (CLT). Most of the large DA and CLT cases are with relatively slow translation speeds of 4 m s-1 and occurred near the east coast, north of 23 °N in Taiwan. The Weather Research and Forecasting (WRF) Model was used to simulate the typhoon CDT cases. We use the potential vorticity (PV) tendency diagnosis to analyze the typhoon movements, and decompose the wave number one component of PV tendencies into horizontal advection (HA), vertical advection (VA) and diabatic heating (DH) terms. The northern landfall storms have significant vorticity stretching and subsidence warming to the south of the storm. The subsidence warming suppresses convections and produces heating asymmetries for the typhoon structure. The vorticity stretching (VA effect) and diabatic heating asymmetries (DH effect) which lead the southwestward deflection storm motion. The HA effect in general does not contribute to the CDT. Our results highlight the effects of vorticity stretching and asymmetric convective heating in producing the CDT to north of 23 °N near the east coast of Taiwan.
Microplastic in three urban estuaries, China.
Zhao, Shiye; Zhu, Lixin; Li, Daoji
2015-11-01
Estuarine Microplastics (MPs) are limited to know globally. By filtering subsurface water through 330 μm nets, MPs in Jiaojiang, Oujiang Estuaries were quantified, as well as that in Minjiang Estuary responding to Typhoon Soulik. Polymer matrix was analyzed by Raman spectroscopy. MP (<5 mm) comprised more than 90% of total number plastics. The highest MPs density was found in Minjiang, following Jiaojiang and Oujiang. Fibers and granules were the primary shapes, with no pellets found. Colored MPs were the majority. The concentrations of suspended microplastics determine their bioavailability to low trophic organisms, and then possibly promoting the transfer of microplastic to higher trophic levels. Polypropylene and polyethylene were the prevalent types of MPs analyzed. Economic structures in urban estuaries influenced on MPs contamination levels. Typhoon didn't influence the suspended MP densities significantly. Our results provide basic information for better understanding suspended microplastics within urban estuaries and for managerial actions. Copyright © 2015. Published by Elsevier Ltd.
Catastrophic impact of typhoon waves on coral communities in the Ryukyu Islands under global warming
NASA Astrophysics Data System (ADS)
Hongo, Chuki; Kawamata, Hideki; Goto, Kazuhisa
2012-06-01
Typhoon-generated storm waves generally cause mechanical damage to coral communities on present-day reefs, and the magnitude and extent of damage is predicted to increase in the near future as a result of global warming. Therefore, a comprehensive understanding of potential future scenarios of reef ecosystems is of prime interest. This study assesses the current status of coral communities on Ibaruma reef, Ryukyu Islands, on the basis of field observations, engineering and fluid dynamic models, and calculations of wave motion, and predicts the potential effects of a super-extreme typhoon (incident wave height,H = 20 m; wave period, T = 20 s) on the reef. On the present-day reef, massive corals occur in shallow lagoons and tabular corals occur from the reef crest to the reef slope. The observed distribution of corals, which is frequently attacked by moderate (H = 10 m, T = 10 s) and extreme (H = 10 m, T = 15 s) typhoons, is consistent with the predictions of engineering models. Moreover, this study indicates that if a super-extreme typhoon attacks the reef in the near future, massive corals will survive in the shallow lagoons but tabular corals on the reef crest and reef slope will be severely impacted. The findings imply that super-extreme typhoons will cause a loss of species diversity, as the tabular corals are important reef builders and are critical to the maintenance of reef ecosystems. Consequently, reef restoration is a key approach to maintaining reef ecosystems in the wake of super-extreme typhoons.
Mitigating mass movement caused by earthquakes and typhoons: a case study of central Taiwan
NASA Astrophysics Data System (ADS)
Lin, Jiun-Chuan
2013-04-01
Typhoons caused huge damages to Taiwan at the average of 3.8 times a year in the last 100 years, according to Central Weather Bureau data. After the Chi-Chi earthquake of 1999 at the magnitude of Richard Scale 7.3, typhoons with huge rainfall would cause huge debris flow and deposits at river channels. As a result of earthquakes, loose debris falls and flows became significant hazards in central Taiwan. Analysis of rainfall data and data about the sites of slope failure show that damage from natural hazards was enhanced in the last 20 years, as a result of the Chi-Chi earthquake. There are three main types of mass movement in Central Taiwan: landslides, debris flows and gully erosion. Landslides occurred mainly along hill slopes and river channel banks. Many dams, check dams, housing structures and even river channels can be raised to as high as 60 meters as a result of stacking up floating materials of landslides. Debris flows occurred mainly through typhoon periods and activated ancient debris deposition. New gullies were thus developed from deposits loosened and shaken up by earthquakes. Extreme earthquakes and typhoon events occurred frequently in the last 20 years. This paper analyzes the geological and geomorphologic background for the precarious areas and typhoons in central Taiwan, to make a systematic understanding of mass movement harzards. The mechanism and relations of debris flows and rainfall data in central Taiwan are analyzed. Ways for mitigating mass movement threats are also proposed in this paper. Keywords: mass movement, earthquakes, typhoons, hazard mitigation, central Ta
Mountain river meanders and typhoon strike frequency in the western Pacific
NASA Astrophysics Data System (ADS)
Stark, C. P.; Barbour, J.; Hsieh, M.; Hovius, N.; Jen, C.; Chen, M.
2004-12-01
Bedrock-floored mountain rivers are shaped by erosion processes that ultimately control the evolution of the landscape on geological time scales. In mountains across the western Pacific, meanders in bedrock channels are common and often emerge during incision rather than inherit their sinuosity from a past alluvial form. Incising emergent meanders are important because they reveal a process of lateral channel erosion at least as fast as the vertical rate erosion. Here we report a remarkable link between incised meander development and typhoon strike frequency, a good proxy for extreme rainfall and flood discharge. Using satellite imagery, shuttle-radar topographic data and a 58~year inventory of typhoon tracks, we mapped meander abundance and quantified regional densities of mountain river sinuosity and typhoon strikes. Our analysis shows that eroding meanders are most common in the typhoon-prone islands of Japan, Taiwan and the Philippines, and in rivers incising weak lithologies. One might expect that the faster the erosion rate, the greater the meandering, but we have found that monthly mean rainfall - and therefore mean discharge - correlates very poorly with sinuosity. Instead, the variability of rainfall, and presumably discharge, about the mean explains bedrock meander development much better. Mountain river sinuosity, for geologically similar bedrock, increases in a roughly linear fashion with typhoon strike frequency. The coefficient of variation of monthly rainfall (standard deviation normalized by the mean) exhibits a similar trend. We deduce that extreme flood discharge, e.g. driven by typhoon rainfall, accelerates lateral erosion rates and spurs meander development in mountain rivers.
NASA Astrophysics Data System (ADS)
Chen, Chi-Wen; Oguchi, Takashi; Hayakawa, Yuichi S.; Saito, Hitoshi; Chen, Hongey; Lin, Guan-Wei; Wei, Lun-Wei; Chao, Yi-Chiung
2018-02-01
Debris sourced from landslides will result in environmental problems such as increased sediment discharge in rivers. This study analyzed the sediment discharge of 17 main rivers in Taiwan during 14 typhoon events, selected from the catchment area and river length, that caused landslides according to government reports. The measured suspended sediment and water discharge, collected from hydrometric stations of the Water Resources Agency of Taiwan, were used to establish rating-curve relationships, a power-law relation between them. Then sediment discharge during typhoon events was estimated using the rating-curve method and the measured data of daily water discharge. Positive correlations between sediment discharge and rainfall conditions for each river indicate that sediment discharge increases when a greater amount of rainfall or a higher intensity of rainfall falls during a typhoon event. In addition, the amount of sediment discharge during a typhoon event is mainly controlled by the total amount of rainfall, not by peak rainfall. Differences in correlation equations among the rivers suggest that catchments with larger areas produce more sediment. Catchments with relatively low sediment discharge show more distinct increases in sediment discharge in response to increases in rainfall, owing to the little opportunity for deposition in small catchments with high connectivity to rivers and the transportation of the majority of landslide debris to rivers during typhoon events. Also, differences in geomorphic and geologic conditions among catchments around Taiwan lead to a variety of suspended sediment dynamics and the sediment budget. Positive correlation between average sediment discharge and average area of landslides during typhoon events indicates that when larger landslides are caused by heavier rainfall during a typhoon event, more loose materials from the most recent landslide debris are flushed into rivers, resulting in higher sediment discharge. The high proportion of large landslides in Taiwan contributes significantly to the high annual sediment yield, which is among the world's highest despite the small area of Taiwan.
ISBP: Understanding the Security Rule of Users' Information-Sharing Behaviors in Partnership
Wu, Hongchen; Wang, Xinjun
2016-01-01
The rapid growth of social network data has given rise to high security awareness among users, especially when they exchange and share their personal information. However, because users have different feelings about sharing their information, they are often puzzled about who their partners for exchanging information can be and what information they can share. Is it possible to assist users in forming a partnership network in which they can exchange and share information with little worry? We propose a modified information sharing behavior prediction (ISBP) model that can help in understanding the underlying rules by which users share their information with partners in light of three common aspects: what types of items users are likely to share, what characteristics of users make them likely to share information, and what features of users’ sharing behavior are easy to predict. This model is applied with machine learning techniques in WEKA to predict users’ decisions pertaining to information sharing behavior and form them into trustable partnership networks by learning their features. In the experiment section, by using two real-life datasets consisting of citizens’ sharing behavior, we identify the effect of highly sensitive requests on sharing behavior adjacent to individual variables: the younger participants’ partners are more difficult to predict than those of the older participants, whereas the partners of people who are not computer majors are easier to predict than those of people who are computer majors. Based on these findings, we believe that it is necessary and feasible to offer users personalized suggestions on information sharing decisions, and this is pioneering work that could benefit college researchers focusing on user-centric strategies and website owners who want to collect more user information without raising their privacy awareness or losing their trustworthiness. PMID:26950064
Immediate Needs and Concerns among Pregnant Women During and after Typhoon Haiyan (Yolanda)
Sato, Mari; Nakamura, Yasuka; Atogami, Fumi; Horiguchi, Ribeka; Tamaki, Raita; Yoshizawa, Toyoko; Oshitani, Hitoshi
2016-01-01
Introduction: Pregnant and postpartum women are especially vulnerable to natural disasters. These women suffer from increased risk of physical and mental issues including pregnant related problems. Typhoon Haiyan (Yolanda), which hit the Philippines affected a large number of people and caused devastating damages. During and after the typhoon, pregnant women were forced to live in particularly difficult circumstances. The purpose of this study was to determine concerns and problems regarding public health needs and coping mechanisms among pregnant women during and shortly after the typhoon. Methods: This study employed a cross-sectional design utilizing focus group discussions (FGDs). Participants were 53 women (mean age: 26.6 years old; 42 had children) from four affected communities who were pregnant at the time of the typhoon. FGDs were conducted 4 months after the typhoon, from March 19 to 28, 2014, using semi-structured interviews. Data were analyzed using the qualitative content analysis. Result: Three themes were identified regarding problems and concerns during and after the typhoon: 1) having no ideas what is going to happen during the evacuation, 2) lacking essentials to survive, and 3) being unsure of how to deal with health concerns. Two themes were identified as means of solving issues: 1) finding food for survival and 2) avoiding diseases to save my family. As the pregnant women already had several typhoon experiences without any major problems, they underestimated the catastrophic nature of this typhoon. During the typhoon, the women could not ensure their safety and did not have a strong sense of crisis management. They suffered from hunger, food shortage, and poor sanitation. Moreover, though the women had fear and anxiety regarding their pregnancy, they had no way to resolve these concerns. Pregnant women and their families also suffered from common health problems for which they would usually seek medical services. Under such conditions, the pregnant woman cooperated with others for survival and used their knowledge of disease prevention. Discussion: Pregnant women experienced difficulties with evacuation, a lack of minimum survival needs, and attending to their own health issues. Pregnant women were also concerned about needs and health issues of their families, particular, when they had small children. Collecting accurate information regarding the disaster and conducting self-sustainable preparation prior to the disaster among pregnant women will help them to protect their pregnancy status, thereby improving their families’ chance of survival during and after disasters. PMID:26865988
Resource Sharing in Times of Retrenchment.
ERIC Educational Resources Information Center
Sloan, Bernard G.
1992-01-01
Discusses the impact of decreases in revenues on the resource-sharing activities of ILLINET Online and the Illinois Library Computer Systems Organization (ILCSO). Strategies for successfully coping with fiscal crises are suggested, including reducing levels of service and initiating user fees for interlibrary loans and faxing photocopied journal…
Earth observations taken from Discovery during STS-85 mission - Typhoon Winnie
1997-08-15
S85-E-5092 (14 August 1997) --- Flying directly over the eye just before 3 p.m. (EST), Aug. 15, the STS-85 crew members captured this image of Super Typhoon Winnie. The massive typhoon is located about half way between Japan and New Guinea in the Pacific Ocean. The Canadian-built robot arm of Discovery, being used in operations with CRISTA-SPAS on this mission, is partially visible in left foreground.
Research on the Safety of Fishing Vessels Moored in Typhoon Weather
NASA Astrophysics Data System (ADS)
Zhang, Xinquan; Ai, Wanzheng; Dong, Hongcang
2018-01-01
As the first country of the global fishing, and year-round infestation by Typhoon in China, led to casualties among fishermen, significant economic losses, in order to better protect the safety of fishing boats in the Typhoon weather anchor, the paper around the anchorage of water depth, bottom topography, wind, wave and current ways of anchoring, to discuss research, Provide a reference for the mooring of boats better resistance and learn from.
Classification and Possible Causes of the Freaque Waves Occurred in Taiwanese Coastal Ocean
NASA Astrophysics Data System (ADS)
Doong, Dong-Jiing; Liu, Paul C.; Tsai, Cheng-Han; Tsai, Jen-Chih
2015-04-01
Freaque waves occur frequently in Taiwanese coastal ocean. This study collected and confirmed the media reported freaque wave events since 2000. There were 90 shipwrecks struck by extreme large waves or freaque waves from 2003 to 2014. In addition, 284 events of people swept into the sea from the coasts by freaque waves were recorded from 2000 to 2014. More than 950 persons in total were dead or injured for the past 15 years. This study classifies these cases according to their possible causes and the weather conditions of that time. It is found the probability of the events occurred during storm (typhoon) period is less than 15%. Most of the events occur in ordinary sea states. Analysis on the data from in-situ measurements that close to the event locations shows the average significant wave height is 1.46m. This study uses this threshold and long-term observations on sea states to present the navigation risk of ships in Taiwanese sea. In addition, it was found the typhoon generated swell is one of the causes to trigger the giant coastal freaque waves, experiences learning from the events occurred in typhoon Haiyan in 2013 (16 persons were swept into sea), typhoon Prapiroon in 2012 (3 persons and 2 cars were swept into sea), typhoon Neoguri in 2014 (7 persons were swept) and typhoon Vongfong in 2014 (1 motorcyclist was swept). Those typhoon swell induced coastal freaque wave is the worst case because they always occur with good weather conditions. Analysis on the field data shows the swell direction is a crucial factor for the coastal freaque wave occurrence.
Unemployment, Drug Use, and HIV Risk among American Indian and Alaska Native Drug Users.
ERIC Educational Resources Information Center
Reynolds, Grace L.; Fisher, Dennis G.; Estrada, Antonio L.; Trotter, Robert
2000-01-01
Study and 6-month followup of 3,622 drug users in Tucson, Flagstaff, and Anchorage found that American Indian and Alaska Native drug users were younger, less educated, and less likely to be employed than non-Native subjects. Individuals employed at intake or followup had lower levels of HIV risk factors: injection drug use and needle sharing.…
Surgical workload of a foreign medical team after Typhoon Haiyan.
Read, David J; Holian, Annette; Moller, Cea-Cea; Poutawera, Vaughan
2016-05-01
On 8 November 2013, Typhoon Haiyan struck the Philippines causing widespread loss of lives and infrastructures. At the request of the Government of the Philippines, the Australian Government deployed a surgical field hospital to the city of Tacloban for 4 weeks. This paper describes the establishment of the hospital, the surgical workload and handover to the local health system upon the end of deployment. A Microsoft excel database was utilized throughout the deployment, recording demographics, relationship to the typhoon and surgical procedure performed. Over the 21 days of surgical activity, the Australian field hospital performed 222 operations upon 131 persons. A mean of 10.8 procedures were performed per day (range 3-20). The majority (70.2%) of procedures were soft tissue surgery. Diabetes was present in 22.9% and 67.9% were typhoon-related. The Australian Medical Assistance Team field hospital adhered to the World Health Organization guidelines for foreign medical teams, in ensuring informed consent, appropriate anaesthesia and surgery, and worked collaboratively with local surgeons, ensuring adequate documentation and clinical handover. This paper describes the experience of a trained, equipped and collaborative surgical foreign medical team in Tacloban in the aftermath of Typhoon Haiyan. Sepsis from foot injuries in diabetic patients constituted an unexpected majority of the workload. New presentations of typhoon-related injuries were presented throughout the deployment. © 2015 Royal Australasian College of Surgeons.
Mitigation of Debris Flow Damage--Â A Case Study of Debris Flow Damage
NASA Astrophysics Data System (ADS)
Lin, J. C.; Jen, C. H.
Typhoon Toraji caused more than 30 casualties in Central Taiwan on the 31st July 2001. It was the biggest Typhoon since the Chi-Chi earthquake of 1999 with huge amounts of rainfall. Because of the influence of the earthquake, loose debris falls and flows became major hazards in Central Taiwan. Analysis of rainfall data and sites of slope failure show that damage from these natural hazards were enhanced as a result of the Chi-Chi earthquake. Three main types of hazard occurred in Central Taiwan: land- slides, debris flows and gully erosion. Landslides occurred mainly along hill slopes and banks of channels. Many dams and houses were destroyed by flooding. Debris flows occurred during typhoon periods and re-activated ancient debris depositions. Many new gullies were therefore developed from deposits loosened and shaken by the earthquake. This paper demonstrates the geological/geomorphological background of the hazard area, and reviews methods of damage mitigation in central Taiwan. A good example is Hsi-Tou, which had experienced no gully erosion for more than 40 years. The area experienced much gully erosion as a result of the combined effects of earth- quake and typhoon. Although Typhoon Toraji produced only 30% of the rainfall of Typhoon Herb of 1996, it caused more damage in the Hsi-Tou area. The mitigation of debris flow hazards in Hsi-tou area is discussed in this paper.
2004-12-09
This image, produced from data collected by the SeaWinds scatterometer instrument onboard NASA QuikScat mission reveals the details of the surface winds and rain in Typhoon Nanmadol as it moves westward.
Typhoon air-sea drag coefficient in coastal regions
NASA Astrophysics Data System (ADS)
Zhao, Zhong-Kuo; Liu, Chun-Xia; Li, Qi; Dai, Guang-Feng; Song, Qing-Tao; Lv, Wei-Hua
2015-02-01
The air-sea drag during typhoon landfalls is investigated for a 10 m wind speed as high as U10 ≈ 42 m s-1, based on multilevel wind measurements from a coastal tower located in the South China Sea. The drag coefficient (CD) plotted against the typhoon wind speed is similar to that of open ocean conditions; however, the CD curve shifts toward a regime of lower winds, and CD increases by a factor of approximately 0.5 relative to the open ocean. Our results indicate that the critical wind speed at which CD peaks is approximately 24 m s-1, which is 5-15 m s-1 lower than that from deep water. Shoaling effects are invoked to explain the findings. Based on our results, the proposed CD formulation, which depends on both water depth and wind speed, is applied to a typhoon forecast model. The forecasts of typhoon track and surface wind speed are improved. Therefore, a water-depth-dependence formulation of CD may be particularly pertinent for parameterizing air-sea momentum exchanges over shallow water.
Diagnosis of dynamic process over rainband of landfall typhoon
NASA Astrophysics Data System (ADS)
Ran, Ling-Kun; Yang, Wen-Xia; Chu, Yan-Li
2010-07-01
This paper introduces a new physical parameter — thermodynamic shear advection parameter combining the perturbation vertical component of convective vorticity vector with the coupling of horizontal divergence perturbation and vertical gradient of general potential temperature perturbation. For a heavy-rainfall event resulting from the landfall typhoon 'Wipha', the parameter is calculated by using National Centres for Enviromental Prediction/National Centre for Atmospheric Research global final analysis data. The results showed that the parameter corresponds to the observed 6 h accumulative rainband since it is capable of catching hold of the dynamic and thermodynamic disturbance in the lower troposphere over the observed rainband. Before the typhoon landed, the advection of the parameter by basic-state flow and the coupling of general potential temperature perturbation with curl of Coriolis force perturbation are the primary dynamic processes which are responsible for the local change of the parameter. After the typhoon landed, the disturbance is mainly driven by the combination of five primary dynamic processes. The advection of the parameter by basic-state flow was weakened after the typhoon landed.
Land-falling typhoons are controlled by the meridional oscillation of the Kuroshio Extension
NASA Astrophysics Data System (ADS)
Huang, Shihming; Oey, Lie-Yauw
2018-06-01
Low-frequency variations of typhoon paths are often attributed to changes in the North Pacific subtropical high and monsoon through influences on the steering wind. Evidence indicates however a strong imprint of the Kuroshio on the atmosphere. Here we show that the meridional oscillation of sea surface temperature (SST) front over the Kuroshio Extension east of Japan significantly correlates with the number of land-falling typhoons along East Asia from June to October, accounting for 70% of the low-frequency variance since 1980. We used observations and a simple model to show that when the SST front shifts poleward (equatorward), SST gradient south of the current and westerly tropospheric wind weaken (strengthen), steering more typhoons to veer toward (away from) the East Asian continent. Our analysis also indicates that long-term weakening of SST gradient and westerly wind appears to be concomitant with poleward shifting of the Kuroshio, attributed to global warming in some studies, and suggests the potential for more land-falling typhoons in East Asia in the coming decades.
Predictors of Sharing Injection Equipment by HIV-Seropositive Injection Drug Users
Latkin, Carl A.; Buchanan, Amy S.; Metsch, Lisa R.; Knight, Kelly; Latka, Mary H.; Mizuno, Yuko; Knowlton, Amy R.
2009-01-01
Among HIV-positive injection drug users (IDUs), we examined baseline predictors of lending needles and syringes, and sharing cookers, cotton, and rinse water in the prior 3 months at follow-up. Participants were enrolled in INSPIRE, a secondary prevention intervention for sexually active HIV-positive IDUs in four US cities during 2001–2005. The analyses involved 357 participants who reported injecting drugs in the prior six months at either the 6- or 12-months follow-up visit. About half (49%) reported at least one sharing episode. In adjusted analyses, peer norms supporting safer injection practices, and having primary HIV medical care visits in the prior 6 months were associated with reporting no sharing of injection equipment. Higher levels of psychological distress was associated with a greater likelihood of reporting drug paraphernalia sharing. These findings suggest that intervention approaches for reducing HIV-seropositive IDUs’ transmission of blood-borne infections should include peer-focused interventions to alter norms of drug paraphernalia sharing and promoting primary HIV care and mental health services. PMID:19186356
Cyber Physical Systems for User Reliability Measurements in a Sharing Economy Environment.
Seo, Aria; Jeong, Junho; Kim, Yeichang
2017-08-13
As the sharing economic market grows, the number of users is also increasing but many problems arise in terms of reliability between providers and users in the processing of services. The existing methods provide shared economic systems that judge the reliability of the provider from the viewpoint of the user. In this paper, we have developed a system for establishing mutual trust between providers and users in a shared economic environment to solve existing problems. In order to implement a system that can measure and control users' situation in a shared economic environment, we analyzed the necessary factors in a cyber physical system (CPS). In addition, a user measurement system based on a CPS structure in a sharing economic environment is implemented through analysis of the factors to consider when constructing a CPS.
CAD-CAM database management at Bendix Kansas City
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witte, D.R.
1985-05-01
The Bendix Kansas City Division of Allied Corporation began integrating mechanical CAD-CAM capabilities into its operations in June 1980. The primary capabilities include a wireframe modeling application, a solid modeling application, and the Bendix Integrated Computer Aided Manufacturing (BICAM) System application, a set of software programs and procedures which provides user-friendly access to graphic applications and data, and user-friendly sharing of data between applications and users. BICAM also provides for enforcement of corporate/enterprise policies. Three access categories, private, local, and global, are realized through the implementation of data-management metaphors: the desk, reading rack, file cabinet, and library are for themore » storage, retrieval, and sharing of drawings and models. Access is provided through menu selections; searching for designs is done by a paging method or a search-by-attribute-value method. The sharing of designs between all users of Part Data is key. The BICAM System supports 375 unique users per quarter and manages over 7500 drawings and models. The BICAM System demonstrates the need for generalized models, a high-level system framework, prototyping, information-modeling methods, and an understanding of the entire enterprise. Future BICAM System implementations are planned to take advantage of this knowledge.« less
2013-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Impact of Typhoons on the Western Pacific Ocean (ITOP...The measurement and modeling activities include a focus on the impact of surface waves, air-sea fluxes and the temperature, salinity and velocity...SUBTITLE Impact of Typhoons on the Western Pacific Ocean (ITOP) DRI: Numerical Modeling of Ocean Mixed Layer Turbulence and Entrainment at High Winds
NASA Astrophysics Data System (ADS)
Takagi, Hiroshi; Wu, Wenjie
2016-03-01
Even though the maximum wind radius (R
User-Perceived Reliability of M-for-N (M: N) Shared Protection Systems
NASA Astrophysics Data System (ADS)
Ozaki, Hirokazu; Kara, Atsushi; Cheng, Zixue
In this paper we investigate the reliability of general type shared protection systems i.e. M for N (M: N) that can typically be applied to various telecommunication network devices. We focus on the reliability that is perceived by an end user of one of N units. We assume that any failed unit is instantly replaced by one of the M units (if available). We describe the effectiveness of such a protection system in a quantitative manner. The mathematical analysis gives the closed-form solution of the availability, the recursive computing algorithm of the MTTFF (Mean Time to First Failure) and the MTTF (Mean Time to Failure) perceived by an arbitrary end user. We also show that, under a certain condition, the probability distribution of TTFF (Time to First Failure) can be approximated by a simple exponential distribution. The analysis provides useful information for the analysis and the design of not only the telecommunication network devices but also other general shared protection systems that are subject to service level agreements (SLA) involving user-perceived reliability measures.
Systematic Assessment of the Impact of User Roles on Network Flow Patterns
2017-09-01
Protocol SNMP Simple Network Management Protocol SQL Structured Query Language SSH Secure Shell SYN TCP Sync Flag SVDD Support Vector Data Description SVM...and evaluating users based on roles provide the best approach for defining normal digital behaviors? People are individuals, with different interests...activities on the network. We evaluate the assumption that users sharing similar roles exhibit similar network behaviors, and contrast the level of similarity
NASA Astrophysics Data System (ADS)
Iwamoto, T.; Takagawa, T.
2017-12-01
A long period damped oscillation, or seiche, sometimes happens inside a harbor after passing typhoon. For some cases, a maximum sea level is observed due to the superposition of astronomical tide and seiche rather than a peak of storm surge. Hence to clarify seiche factors for reducing disaster potential is important, a long-period seiche with a fundamental period of 5.46 hours in Tokyo Bay (Konishi, 2008) was investigated through numerical simulations and analyses. We examined the case of Typhoon Phanphon and Vongfong in 2014 (Hereafter Case P and V). The intensity and moving velocity were similar and the best-tracks were an arc-shaped, typical one approaching to Tokyo Bay. The track of Case V was about 1.5 degree higher latitude than that of Case P, only Typhoon Phanphon caused significant seiche.Firstly, numerical simulations for the 2 storm surges at Tokyo Bay were conducted by Regional Ocean Modeling System (ROMS) and Meso-Scale Model Grid Point Values (MSM-GPV). MSM-GPV gave the 10m wind speed and Sea Level Pressure (SLP), especially the Mean Error (ME) and Root Mean Squire Error (RMSE) of SLP were low compared to the 12 JMA observation points data (Case P: ME -0.303hPa, RMSE 1.87hPa, Case V: ME -0.285hPa, RMSE 0.74hPa). The computational results showed that the maximum of storm surge was underestimated but the difference was less than 20cm at 5 observation points in Tokyo Bay(Fig.1, 2).Then, power spectrals, coherences and phase differences of storm surges at the 5 observation points were obtained by spectral analysis of observed and simulated waveforms. For Case P, the phase-difference between the bay mouth and innermost part of Tokyo Bay was little, and coherence was almost 1(Fig.3, 4). However, for Case V, coherence was small around the fundamental period of 5.46 hours. Furthermore, Empirical Orthogonal Function (EOF) analysis of storm surge, SLP and sea surface stress were conducted. The contributions of EOF1 were above 90% for the all variables, the gradient of storm surge EOF1 was parallel to the bay axis for Case P, but about 50-degree oblique from the axis for Case V(Fig.5, 6). In addition, the EOF1 of SLP for Case P showed a concentric circle structure above Tokyo Bay, besides the structure was not appeared for Case V.
Settanni, Michele; Marengo, Davide
2015-01-01
Digital traces of activity on social network sites represent a vast source of ecological data with potential connections with individual behavioral and psychological characteristics. The present study investigates the relationship between user-generated textual content shared on Facebook and emotional well-being. Self-report measures of depression, anxiety, and stress were collected from 201 adult Facebook users from North Italy. Emotion-related textual indicators, including emoticon use, were extracted form users' Facebook posts via automated text analysis. Correlation analyses revealed that individuals with higher levels of depression, anxiety expressed negative emotions on Facebook more frequently. In addition, use of emoticons expressing positive emotions correlated negatively with stress level. When comparing age groups, younger users reported higher frequency of both emotion-related words and emoticon use in their posts. Also, the relationship between online emotional expression and self-report emotional well-being was generally stronger in the younger group. Overall, findings support the feasibility and validity of studying individual emotional well-being by means of examination of Facebook profiles. Implications for online screening purposes and future research directions are discussed.
NASA Astrophysics Data System (ADS)
Wdowinski, S.; Peng, Z.; Ferrier, K.; Lin, C. H.; Hsu, Y. J.; Shyu, J. B. H.
2017-12-01
Earthquakes, landslides, and tropical cyclones are extreme hazards that pose significant threats to human life and property. Some of the couplings between these hazards are well known. For example, sudden, widespread landsliding can be triggered by large earthquakes and by extreme rainfall events like tropical cyclones. Recent studies have also shown that earthquakes can be triggered by erosional unloading over 100-year timescales. In a NASA supported project, titled "Cascading hazards: Understanding triggering relations between wet tropical cyclones, landslides, and earthquake", we study triggering relations between these hazard types. The project focuses on such triggering relations in Taiwan, which is subjected to very wet tropical storms, landslides, and earthquakes. One example for such triggering relations is the 2009 Morakot typhoon, which was the wettest recorded typhoon in Taiwan (2850 mm of rain in 100 hours). The typhoon caused widespread flooding and triggered more than 20,000 landslides, including the devastating Hsiaolin landslide. Six months later, the same area was hit by the 2010 M=6.4 Jiashian earthquake near Kaohsiung city, which added to the infrastructure damage induced by the typhoon and the landslides. Preliminary analysis of temporal relations between main-shock earthquakes and the six wettest typhoons in Taiwan's past 50 years reveals similar temporal relations between M≥5 events and wet typhoons. Future work in the project will include remote sensing analysis of landsliding, seismic and geodetic monitoring of landslides, detection of microseismicity and tremor activities, and mechanical modeling of crustal stress changes due to surface unloading.
Typhoon generated surface gravity waves measured by NOMAD-type buoys
NASA Astrophysics Data System (ADS)
Collins, Clarence O., III
This study examines wind-generated ocean surface waves as measured by NOMAD-type buoys during the ONR-sponsored Impact of Typhoons on the Ocean in the Pacific (ITOP) field experiment in 2010. 1-D measurements from two new Extreme Air-Sea Interaction (EASI) NOMAD-type buoys were validated against measurements from established Air-Sea Interaction Spar (ASIS) buoys. Also, during ITOP, 3 drifting Miniature Wave Buoys, a wave measuring marine radar on the R/V Roger Revelle, and several overpasses of JASON-1 (C- and Ku-band) and -2 (Ku-band) satellite altimeters were within 100 km of either EASI buoy. These additional measurements were compared against both EASI buoys. Findings are in line with previous wave parameter inter-comparisons. A corroborated measurement of mean wave direction and direction at the peak of the spectrum from the EASI buoy is presented. Consequently, this study is the first published account of directional wave information which has been successfully gathered from a buoy with a 6 m NOMAD-type hull. This result may be applied to improve operational coverage of wave direction. In addition, details for giving a consistent estimate of sea surface elevation from buoys using strapped down accelerometers are given. This was found to be particularly important for accurate measurement of extreme waves. These technical studies established a high level of confidence in the ITOP wave measurements. Detailed frequency-direction spectra were analyzed. Structures in the wave field were described during the close passages of 4 major tropical cyclones (TC) including: severe tropical storm Dianmu, Typhoon Fanapi, Super Typhoon Megi, and Typhoon Chaba. In addition, significant swell was measured from a distant 5th TC, Typhoon Malakas. Changes in storm direction and intensity are found to have a profound impact on the wave field. Measurements of extreme waves were explored. More extreme waves were measured during TCs which coincided with times of increased wave steepness. The largest extreme waves, which are more impressive than the Draupner (aka Newyears) wave in terms of normalized wave height, were found to occur under circumstances which support the theory of modulation instability. It is suggested that swell and wind sea, as generated by complex TCs winds, may merge and/or couple in such a way to produce sea-states which are unstable. The largest extreme wave, which was over 21 m high, appears to have occurred under such circumstances. However, the development of unstable seas, and the possible connection between the occurrence of extreme waves and unstable seas, has yet to be confirmed.
Observations of Typhoon Center by Using Satellite-derived Normalized Difference Convection Index
NASA Astrophysics Data System (ADS)
Liu, Chung-Chih; Chen, Chun-Hsu
2015-04-01
A technique involving differencing water vapor and infrared window channel brightness temperature values to identify and quantify intense convection in tropical cyclones using bispectral geostationary satellite imagery was proposed by Olander and Velden (2009). Rouse et al. (1974) calculated a normalized ratio of the near infrared and red bands and proposed an index called the normalized difference vegetation index. It was then used in many fields such as estimations of vegetation biomass, leaf area, the proportion of absorbed photosynthetically active radiation, etc. The present study used the spectral features of the IR1 and WV channels of the satellite to define a new index, the brightness temperature of the infrared window channel minus the brightness temperature of the water vapor channel divided by the brightness temperature of the infrared window channel plus the brightness temperature of the water vapor channel. The values obtained by this formula are called the Normalized Difference Convection Index (NDCI) values. The NDCI value is between -1 and 1. The NDCI value at WV = 0K is the highest, 1; while that at IR1 = 0K is the lowest, -1. In cases of a clear sky or atmosphere with thin cloud and dry air, NDCI values should be larger than 0. In cases of a convective cloud system, NDCI values should be lower than 0. In addition, the newly defined NDCI does show significant difference from simple difference of IR1-WV. For example, the NDCI value is -0.0017 at IR1=299K and WV=300K, while the NDCI value is -0.0033 at IR1=149K and WV=150K. The two times difference of NDCI values shows the features of clouds with NDCI value -0.0017 are quite different from those with NDCI value -0.0033. The former may be low level clouds, but the latter may be deep convections. However, the simple difference of IR1-WV cannot be used to distinguish the difference. The NDCI was applied to determine the centers of Typhoon Longwang (2005). The results showed that the two-dimensional NDCI analysis helped to identify positions of overshooting areas. In addition, because the NDCI values near a typhoon eye were rather significant, if a typhoon eye was formed, the NDCI cross-section analysis could help to confirm its position. When the center of a typhoon was covered by the high Anvils and Cirrus Layers, it could still be found qualitatively through the two-dimensional analysis. Keywords:Typhoon, Satellite imagery, Normalized Difference Convection Index
NASA Astrophysics Data System (ADS)
Feng, Xingru; Li, Mingjie; Yin, Baoshu; Yang, Dezhou; Yang, Hongwei
2018-06-01
This is a study of the storm surge trends in some of the typhoon-prone coastal areas of China. An unstructured-grid, storm surge-wave-tide coupled model was established for the coastal areas of Zhejiang, Fujian and Guangdong provinces. The coupled model has a high resolution in coastal areas, and the simulated results compared well with the in situ observations and satellite altimeter data. The typhoon-induced storm surges along the coast of the study areas were simulated based on the established coupled model for the past 20 years (1997-2016). The simulated results were used to analyze the trends of the storm surges in the study area. The extreme storm surge trends along the central coast of Fujian Province reached up to 0.06 m/y, significant at the 90% confidence level. The duration of the storm surges greater than 1.0 and 0.7 m had an increasing trend along the coastal area of northern Fujian Province, significant at confidence levels of 70%-91%. The simulated trends of the extreme storm surges were also validated by observations from two tide gauge stations. Further studies show that the correlation coefficient (RTE) between the duration of the storm surge greater than 1 m and the annual ENSO index can reach as high as 0.62, significant at the 99% confidence level. This occurred in a location where the storm surge trend was not significant. For the areas with significant increasing storm surge trends, RTE was small and not significant. This study identified the storm surge trends for the full complex coastline of the study area. These results are useful both for coastal management by the government and for coastal engineering design.
NASA Astrophysics Data System (ADS)
Li, R. H.; Liu, S. M.; Li, Y. W.; Zhang, G. L.; Ren, J. L.; Zhang, J.
2014-01-01
Nutrient dynamics based on field observations made along the eastern Hainan Island during the period 2006-2009 were investigated to understand nutrient biogeochemical processes, and to provide an overview of human perturbations of coastal ecosystems in this tropical region. The rivers showed seasonal variations in nutrient concentrations, with enrichment of dissolved inorganic nitrogen and dissolved silicate, and depletion of PO43-. High riverine concentrations of nitrate mainly originated from agricultural fertilizer inputs. The DIN : PO43- ratios ranged from 37 to 1063, suggesting preferential depletion of PO43- relative to nitrogen in rivers. Chemical weathering in the drainage area might explain the high levels of dissolved silicate. Aquaculture ponds contained high concentrations of NH4+ and dissolved organic nitrogen. The particulate phosphorus concentrations in the study area were lower than those reported for estuaries worldwide. The particulate silicate levels in rivers and lagoons were lower than the global average level. Nutrient biogeochemistry in coastal areas was affected by human activities (e.g., aquaculture, agriculture), and by natural phenomena including typhoons. The nutrient concentrations in coastal waters were low because of dispersion of land-derived nutrients in the sea. Nutrient budgets were built based on a steady-state box model, which showed that riverine fluxes are magnified by estuarine processes (e.g., regeneration, desorption) in estuaries and Laoyehai Lagoon, but not in Xiaohai Lagoon. Riverine and groundwater inputs were the major sources of nutrients to Xiaohai and Laoyehai lagoons, respectively, and riverine inputs and aquaculture effluents were the major sources for the eastern coast of Hainan Island. Nutrient inputs to the coastal ecosystem increased with typhoon-induced runoff of rainwater, elucidating the important influence of typhoons on small tropical rivers.
NASA Astrophysics Data System (ADS)
Su, N.; Yang, S.
2017-12-01
We used time-series major cations (Ca2+, Na+, Mg2+ and K+), inorganic nutrient species (nitrogen, phosphorus and silica), stable isotopes of hydrogen and oxygen of water (δD and δ18O) along with nitrogen (N) and oxygen (O) of nitrate (δ18O-NO3- and δ15N-NO3-) to understand the water chemistry variability and chemical weathering in the Mulanxi River, southeast China, during a typhoon-induced stormwater runoff on 13-19 September, 2016. Abrupt increase of water level, discharge and concentration of suspended particulate matter coincided with the intensive storm surge. A remarkable drop in the δD and δ18O isotopes, the concentration of major ions and nutrients was also observed during the heavy rainfall, a result of both rainout effect and resultant dilution by precipitation. The results from a simple three component mixing model showed the first 6 h of increases in stream discharge comprising over 70% event water. During typhoon-induced flooding, the dissolved silica flux ( 74% of the total) associated CO2 consumption by silicate weathering (28.7×103 mol km-2 in a 96 h storm) reflected a dominant contribution of terrestrial inputs from the watershed by surface runoffs. In contrast to normal conditions, water chemistry in the Mulanxi River underwent significant stable isotopic changes in increasing of δ18O-NO3- and decreasing of δ15N-NO3- corresponding to potential NO3-N sources under typhoon-enhanced silicate weathering. This is one of the major sticking points in using isotope techniques to identify the sources and mechanisms by which extreme weather events take place to induce more dynamic watershed-scale processes.
NASA Astrophysics Data System (ADS)
Lee, Han Soo; Yamashita, Takao; Hsu, John R.-C.; Ding, Fei
2013-01-01
In August 2009, Typhoon Morakot caused massive flooding and devastating mudslides in the southern Taiwan triggered by extremely heavy rainfall (2777 mm in 4 days) which occurred during its passage. It was one of the deadliest typhoons that have ever attacked Taiwan in recent years. In this study, numerical simulations are performed for the storm surge and ocean surface waves, together with dynamic meteorological fields such as wind, pressure and precipitation induced by Typhoon Morakot, using an atmosphere-waves-ocean integrated modelling system. The wave-induced dissipation stress from breaking waves, whitecapping and depth-induced wave breaking, is parameterized and included in the wave-current interaction process, in addition to its influence on the storm surge level in shallow water along the coast of Taiwan. The simulated wind and pressure field captures the characteristics of the observed meteorological field. The spatial distribution of the accumulated rainfall within 4 days, from 00:00 UTC 6 August to 00:00 UTC 10 August 2009, shows similar patterns as the observed values. The 4-day accumulated rainfall of 2777 mm at the A-Li Shan mountain weather station for the same period depicted a high correlation with the observed value of 2780 mm/4 days. The effects of wave-induced dissipation stress in the wave-current interaction resulted in increased surge heights on the relatively shallow western coast of Taiwan, where the bottom slope of the bathymetry ranges from mild to moderate. The results also show that wave-breaking has to be considered for accurate storm surge prediction along the east coast of Taiwan over the narrow bank of surf zone with a high horizontal resolution of the model domain.
Cyber Physical Systems for User Reliability Measurements in a Sharing Economy Environment
Seo, Aria; Kim, Yeichang
2017-01-01
As the sharing economic market grows, the number of users is also increasing but many problems arise in terms of reliability between providers and users in the processing of services. The existing methods provide shared economic systems that judge the reliability of the provider from the viewpoint of the user. In this paper, we have developed a system for establishing mutual trust between providers and users in a shared economic environment to solve existing problems. In order to implement a system that can measure and control users’ situation in a shared economic environment, we analyzed the necessary factors in a cyber physical system (CPS). In addition, a user measurement system based on a CPS structure in a sharing economic environment is implemented through analysis of the factors to consider when constructing a CPS. PMID:28805709
The variation of riverbed material due to tropical storms in Shi-Wen River, Taiwan.
Lin, Chin-Ping; Wang, Yu-Min; Tfwala, Samkele S; Chen, Ching-Nuo
2014-01-01
Taiwan, because of its location, is a flood prone region and is characterised by typhoons which brings about two-thirds to three quarters of the annual rainfall amount. Consequently, enormous flows result in rivers and entrain some fractions of the grains that constitute the riverbed. Hence, the purpose of the study is to quantify the impacts of these enormous flows on the distribution of grain size in riverbeds. The characteristics of riverbed material prior to and after the typhoon season are compared in Shi-Wen River located at southern Taiwan. These include grain size variation, bimodality, and roughness coefficient. A decrease (65%) and increase (50%) in geometric mean size of grains were observed for subsurface and surface bed material, respectively. Geometric standard deviation decreased in all sites after typhoon. Subsurface material was bimodal prior to typhoons and polymodal after. For surface material, modal class is in the gravel class, while after typhoons it shifts towards cobble class. The reduction in geometric mean resulted to a decrease in roughness coefficient by up to 30%. Finally, the relationship of Shields and Froude numbers are studied and a change in the bed form to antidunes and transition form is observed, respectively.
The Variation of Riverbed Material due to Tropical Storms in Shi-Wen River, Taiwan
Lin, Chin-Ping; Tfwala, Samkele S.; Chen, Ching-Nuo
2014-01-01
Taiwan, because of its location, is a flood prone region and is characterised by typhoons which brings about two-thirds to three quarters of the annual rainfall amount. Consequently, enormous flows result in rivers and entrain some fractions of the grains that constitute the riverbed. Hence, the purpose of the study is to quantify the impacts of these enormous flows on the distribution of grain size in riverbeds. The characteristics of riverbed material prior to and after the typhoon season are compared in Shi-Wen River located at southern Taiwan. These include grain size variation, bimodality, and roughness coefficient. A decrease (65%) and increase (50%) in geometric mean size of grains were observed for subsurface and surface bed material, respectively. Geometric standard deviation decreased in all sites after typhoon. Subsurface material was bimodal prior to typhoons and polymodal after. For surface material, modal class is in the gravel class, while after typhoons it shifts towards cobble class. The reduction in geometric mean resulted to a decrease in roughness coefficient by up to 30%. Finally, the relationship of Shields and Froude numbers are studied and a change in the bed form to antidunes and transition form is observed, respectively. PMID:24526910
The Shadow of the Past: studying the impact of typhoon Yolanda on human behavior
NASA Astrophysics Data System (ADS)
Kampenhuber, Lukas; Landmann, Andreas; Hayo, Bernd; Vollan, Björn
2017-04-01
The Philippines is one of the most exposed countries towards natural disasters in the world. Because of its location on the typhoon belt of the Pacific, the Philippines are exposed to an average of nineteen typhoons or tropical storms per year. One of the most devastating typhoons (Yolanda/Haiyan) occurred in 2013, with an approximate death toll of 6340 people. Following up on a study from 2012, we observe solidarity transfers in a lab-in-the-field experiment one year before and three years after typhoon Yolanda occurred. Based on this unique experimental panel-dataset we can define key elements that influence solidarity, such as fairness and effectiveness of disaster relief and potential corruption of governmental and non-governmental agencies. Furthermore we observe risk and time preferences across affected and non-affected regions and seek to get a better understanding of the effects of natural disasters on human behavior. Understanding the consequences of natural disasters on human behavior might be crucial to develop strategies to conquer the challenges that come with the increasing exposure to environmental risk. Furthermore, our study has important consequences for studies that seek to investigate the stability of economic preferences.
2005-07-18
Typhoon Haitang is shown here churning steadily towards Taiwan and China. This image shows the storm swirling wind patterns as observed by NASA QuikScat satellite on July 14, 2005, at 19:19 UTC 14:19 Eastern Daylight Time.
Morin, Véronique M; Ahmad, Mokbul Morshed; Warnitchai, Pennung
2016-10-01
In many low- and middle-income countries informal communities-also termed slum and squatter areas-have become a dominant and distinct form of urban settlement, with ever increasing populations. Such communities are often located in areas of high hazard exposure and frequently affected by disasters. While often recognised as one of the highest 'at risk' populations, this paper will argue that informal settlers have been directly and indirectly excluded from many formal mechanisms, thereby increasing their vulnerability to disaster events. Household surveys were conducted across several frequently flooded informal coastal communities in Metro Manila, the Philippines, following a major typhoon and storm surge disaster. The study revealed a large level of diversity in socio-economic vulnerability, although all households faced similar levels of physical exposure and physical vulnerability. Disaster risk reduction policies and responses need to better integrate informal settlement areas and recognise the diversity within these communities. © 2016 The Author(s). Disasters © Overseas Development Institute, 2016.
NASA Technical Reports Server (NTRS)
Hung, R. J.; Smith, R. E.
1978-01-01
Atmospheric acoustic-gravity waves associated with severe thunderstorms, tornadoes, typhoons (hurricanes) and tsunamis can be studied through the coupling between the ionosphere and the troposphere. Reverse ray tracing computations of acoustic-gravity waves observed by an ionospheric Doppler sounder array show that wave sources are in the nearby storm systems and that the waves are excited prior to the storms. Results show that ionospheric observations, together with satellite observations, can contribute to the understanding of the dynamical behavior of typhoons, severe storms and tsunamis.
2015-03-31
ISS043E078169 (03/31/2015) --- This close up of the huge Typhoon Maysak "eye" of the category 5 (hurricane status on the Saffir-Simpson Wind Scale) was captured by astronauts on board the International Space Station Mar. 31, 2015. The massive Typhoon is headed toward the Philippines and expected to land on the upcoming Easter weekend. The Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) satellites, both co-managed by NASA and the Japan Aerospace Exploration Agency, captured rainfall and cloud data that revealed very heavy rainfall and high thunderstorms in the still strengthening storm.
2010-04-01
centennial -to millennial scale typhoon reconstructions from the western North Pacific are far more limited. Historical government documents of typhoon... Centennial scale swings from humid to drought conditions have been documented in some tropical locations (Hodell et al., 2001). By looking to the past... depressions with a maximum depth of roughly 12 meters. The lagoon hollows are bounded by sand flats and coral reefs (Fig. 2). Core VC9 was located in the
NASA Astrophysics Data System (ADS)
Zheng, Li-Wei; Ding, Xiaodong; Liu, James T.; Li, Dawei; Lee, Tsung-Yu; Zheng, Xufeng; Zheng, Zhenzhen; Xu, Min Nina; Dai, Minhan; Kao, Shuh-Ji
2017-05-01
Export of biospheric organic carbon from land masses to the ocean plays an important role in regulating the global carbon cycle. High-relief islands in the western Pacific are hotspots for such land-to-ocean carbon transport due to frequent floods and active tectonics. Submarine canyon systems serve as a major conduit to convey terrestrial organics into the deep sea, particularly during episodic floods, though the nature of ephemeral sediment transportation through such canyons remains unclear. In this study, we deployed a sediment trap in southwestern Taiwan's Gaoping submarine canyon during summer 2008, during which Typhoon Kalmaegi impacted the study area. We investigated sources of particulate organic carbon and quantified the content of fossil organic carbon (OCf) and biospheric non-fossil carbon (OCnf) during typhoon and non-typhoon periods, based on relations between total organic carbon (TOC), isotopic composition (δ13 C, 14C), and nitrogen to carbon ratios (N/C) of newly and previously reported source materials. During typhoons, flooding connected terrestrial rivers to the submarine canyon. Fresh plant debris was not found in the trap except in the hyperpycnal layer, suggesting that only hyperpycnal flow is capable of entraining plant debris, while segregation had occurred during non-hyperpycnal periods. The OCnf components in typhoon flood and trapped samples were likely sourced from aged organics buried in ancient landslides. During non-typhoon periods, the canyon is more connected to the shelf, where waves and tides cause reworking, thus allowing abiotic and biotic processes to generate isotopically uniform and similarly aged OCnf for transport into the canyon. Therefore, extreme events coupled with the submarine canyon system created an efficient method for deep-sea burial of freshly produced organic-rich material. Our results shed light on the ephemeral transport of organics within a submarine canyon system on an active tectonic margin.
NASA Astrophysics Data System (ADS)
Cuadra, Camille; Suarez, John Kenneth; Biton, Nophi Ian; Cabacaba, Krichi May; Lapidez, John Phillip; Santiago, Joy; Mahar Francisco Lagmay, Alfredo; Malano, Vicente
2014-05-01
On average, 20 typhoons enter the Philippine area of responsibility annually, making it vulnerable to different storm hazards. Apart from the frequency of tropical cyclones, the archipelagic nature of the country makes it particularly prone to storm surges. On 08 November 2013, Haiyan, a Category 5 Typhoon with maximum one-minute sustained wind speed of 315 kph, hit the central region of the Philippines. In its path, the howler devastated Bantayan Island, a popular tourist destination. The island is located north of Cebu City, the second largest metropolis of the Philippines in terms of populace. Having been directly hit by Typhoon Haiyan, Bantayan Island was severely damaged by strong winds and storm surges, with more than 11,000 houses totally destroyed while 5,000 more suffered minor damage. The adverse impacts of possible future storm surge events in the island can only be mitigated if hazard maps that depict inundation of the coastal areas of Bantayan are generated. To create such maps, Delft3D-Flow, a hydrodynamic model was used to simulate storm surges. These simulations were made over a 10-m per pixel resolution Digital Elevation Model (DEM) and the General Bathymetric Chart of the Oceans (GEBCO) bathymetry. The results of the coastal inundation model for Typhoon Haiyan's storm surges were validated using data collected from field work and local government reports. The hydrodynamic model of Bantayan was then calibrated using the field data and further simulations were made with varying typhoon tracks. This was done to generate scenarios on the farthest possible inland incursion of storm surges. The output of the study is a detailed storm surge inundation map that depicts safe zones for development of infrastructure near coastal areas and for construction of coastal protection structures. The storm surge inundation map can also be used as basis for disaster preparedness plans of coastal communities threatened by approaching typhoons.
NASA-NOAA's Suomi NPP Gets an Infrared look at Typhoon Soudelor
2015-08-10
On August 6, 2015, NASA-NOAA's Suomi NPP satellite passed over powerful Typhoon Soudelor when it was headed toward Taiwan. The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard NASA-NOAA's Suomi satellite captured an infrared image of the typhoon. The infrared image that showed there were some thunderstorms within the typhoon with very cold cloud top temperatures, colder than -63F/-53C. Temperatures that cold stretch high into the troposphere and are capable of generating heavy rain. Credit: UWM/CIMSS/SSEC, William Straka III NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Sharing health information online in South Korea: motives, topics, and antecedents.
Kye, S Y; Shim, M; Kim, Y C; Park, K
2017-10-11
This study aimed to examine the motives, topics and antecedents for sharing health information online among Korean Internet users. Eight hundred adults completed a web-based survey exploring the motives; topics; physical, cognitive, affective and environmental factors; and experiences relating to sharing health information online. The motives for not sharing information included information absence and inappropriateness. The most preferred topic was disease. Good subjective health was significantly associated with frequent information sharing while individuals with a history of disease involving themselves or family members were more likely to share health information than were those without such a history. Further, a higher level of depressed mood was related to a higher level of sharing. Internet-related self-efficacy and trust in information delivery channels were positively related to sharing. Future research could extend the factors related to information sharing to include the evaluation of shared information. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Landslide Mapping Using Imagery Acquired by a Fixed-Wing Uav
NASA Astrophysics Data System (ADS)
Rau, J. Y.; Jhan, J. P.; Lo, C. F.; Lin, Y. S.
2011-09-01
In Taiwan, the average annual rainfall is about 2,500 mm, about three times the world average. Hill slopes where are mostly under meta-stable conditions due to fragmented surface materials can easily be disturbed by heavy typhoon rainfall and/or earthquakes, resulting in landslides and debris flows. Thus, an efficient data acquisition and disaster surveying method is critical for decision making. Comparing with satellite and airplane, the unmanned aerial vehicle (UAV) is a portable and dynamic platform for data acquisition. In particularly when a small target area is required. In this study, a fixed-wing UAV that equipped with a consumer grade digital camera, i.e. Canon EOS 450D, a flight control computer, a Garmin GPS receiver and an attitude heading reference system (AHRS) are proposed. The adopted UAV has about two hours flight duration time with a flight control range of 20 km and has a payload of 3 kg, which is suitable for a medium scale mapping and surveying mission. In the paper, a test area with 21.3 km2 in size containing hundreds of landslides induced by Typhoon Morakot is used for landslides mapping. The flight height is around 1,400 meters and the ground sampling distance of the acquired imagery is about 17 cm. The aerial triangulation, ortho-image generation and mosaicking are applied to the acquired images in advance. An automatic landslides detection algorithm is proposed based on the object-based image analysis (OBIA) technique. The color ortho-image and a digital elevation model (DEM) are used. The ortho-images before and after typhoon are utilized to estimate new landslide regions. Experimental results show that the developed algorithm can achieve a producer's accuracy up to 91%, user's accuracy 84%, and a Kappa index of 0.87. It demonstrates the feasibility of the landslide detection algorithm and the applicability of a fixed-wing UAV for landslide mapping.
Chiu, Yu-Ting; Bain, Anthony; Deng, Shu-Lin; Ho, Yi-Chiao; Chen, Wen-Hsuan; Tzeng, Hsy-Yu
2017-01-01
Presently, climate change has increased the frequency of extreme meteorological events such as tropical cyclones. In the western Pacific basin, these cyclones are called typhoons, and in this area, around Taiwan Island, their frequency has almost doubled since 2000. When approaching landmasses, typhoons have devastating effects on coastal vegetation. The increased frequency of these events has challenged the survival of coastal plant species and their posttyphoon recovery. In this study, a population of coastal gynodioecious Ficus pedunculosa var. mearnsii (Mearns fig) was surveyed for two years to investigate its recovery after Typhoon Morakot, which occurred in August 2009. Similar to all the Ficus species, the Mearns fig has an obligate mutualistic association with pollinating fig wasp species, which requires syconia (the closed Ficus inflorescence) to complete its life cycle. Moreover, male gynodioecious fig species produces both pollen and pollen vectors, whereas the female counterpart produces only seeds. The recovery of the Mearns fig was observed to be rapid, with the production of both leaves and syconia. The syconium:leaf ratio was greater for male trees than for female trees, indicating the importance of syconium production for the wasp survival. Pollinating wasps live for approximately 1 day; therefore, receptive syconia are crucial. Every typhoon season, few typhoons pass by the coasts where the Mearns fig grows, destroying all the leaves and syconia. In this paper, we highlight the potential diminution of the fig population that can lead to the extinction of the mutualistic pair of species. The effects of climate change on coastal species warrant wider surveys.
NASA Astrophysics Data System (ADS)
Zhang, Xinchang; Zhong, Shanshan; Wu, Zhiwei; Li, Yun
2017-06-01
This study investigates the typhoon genesis frequency (TGF) in the dominant season (July to October) in Western North Pacific (WNP) using observed data in 1965-2015. Of particular interest is the predictability of the TGF and associated preseason sea surface temperature (SST) in the Pacific. It is found that, the TGF is positively related to a tri-polar pattern of April SST anomalies in North Pacific (NP{T}_{Apr}), while it is negatively related to SST anomalies over the Coral Sea (CSS{T}_{Apr}) off east coast of Australia. The NP{T}_{Apr} leads to large anomalous cyclonic circulation over North Pacific. The anomalous southwesterly weakens the northeast trade wind, decreases evaporation, and induces warm water in central tropical North Pacific. As such, the warming effect amplifies the temperature gradient in central tropical North Pacific, which in turn maintains the cyclonic wind anomaly in the west tropical Pacific, which favors the typhoon genesis in WNP. In the South Pacific, the CSS{T}_{Apr} supports the typhoon formation over the WNP by (a) strengthening the cross-equatorial flows and enhancing the Inter-tropical Convergence Zone; (b) weakening southeast and northeast trade wind, and keeping continuous warming in the center of tropical Pacific. The influence of both NP{T}_{Apr} and CSS{T}_{Apr} can persistently affect the zonal wind in the tropical Pacific and induce conditions favorable for the typhoon genesis in the typhoon season. A Poisson regression model using NP{T}_{Apr} and CSS}{T}_{Apr} is developed to predict the TGF and a promising skill is achieved.
Reputation offsets trust judgments based on social biases among Airbnb users.
Abrahao, Bruno; Parigi, Paolo; Gupta, Alok; Cook, Karen S
2017-09-12
To provide social exchange on a global level, sharing-economy companies leverage interpersonal trust between their members on a scale unimaginable even a few years ago. A challenge to this mission is the presence of social biases among a large heterogeneous and independent population of users, a factor that hinders the growth of these services. We investigate whether and to what extent a sharing-economy platform can design artificially engineered features, such as reputation systems, to override people's natural tendency to base judgments of trustworthiness on social biases. We focus on the common tendency to trust others who are similar (i.e., homophily) as a source of bias. We test this argument through an online experiment with 8,906 users of Airbnb, a leading hospitality company in the sharing economy. The experiment is based on an interpersonal investment game, in which we vary the characteristics of recipients to study trust through the interplay between homophily and reputation. Our findings show that reputation systems can significantly increase the trust between dissimilar users and that risk aversion has an inverse relationship with trust given high reputation. We also present evidence that our experimental findings are confirmed by analyses of 1 million actual hospitality interactions among users of Airbnb.
Reputation offsets trust judgments based on social biases among Airbnb users
Abrahao, Bruno; Parigi, Paolo; Gupta, Alok; Cook, Karen S.
2017-01-01
To provide social exchange on a global level, sharing-economy companies leverage interpersonal trust between their members on a scale unimaginable even a few years ago. A challenge to this mission is the presence of social biases among a large heterogeneous and independent population of users, a factor that hinders the growth of these services. We investigate whether and to what extent a sharing-economy platform can design artificially engineered features, such as reputation systems, to override people’s natural tendency to base judgments of trustworthiness on social biases. We focus on the common tendency to trust others who are similar (i.e., homophily) as a source of bias. We test this argument through an online experiment with 8,906 users of Airbnb, a leading hospitality company in the sharing economy. The experiment is based on an interpersonal investment game, in which we vary the characteristics of recipients to study trust through the interplay between homophily and reputation. Our findings show that reputation systems can significantly increase the trust between dissimilar users and that risk aversion has an inverse relationship with trust given high reputation. We also present evidence that our experimental findings are confirmed by analyses of 1 million actual hospitality interactions among users of Airbnb. PMID:28847948
Predictors of sharing injection equipment by HIV-seropositive injection drug users.
Latkin, Carl A; Buchanan, Amy S; Metsch, Lisa R; Knight, Kelly; Latka, Mary H; Mizuno, Yuko; Knowlton, Amy R
2008-12-01
Among HIV-positive injection drug users (IDUs), we examined baseline predictors of lending needles and syringes and sharing cookers, cotton, and rinse water in the prior 3 months at follow-up. Participants were enrolled in Intervention for Seropositive Injectors-Research and Evaluation, a secondary prevention intervention for sexually active HIV-positive IDUs in 4 US cities during 2001-2005. The analyses involved 357 participants who reported injecting drugs in the prior 6 months at either the 6- or 12-month follow-up visit. About half (49%) reported at least 1 sharing episode. In adjusted analyses, peer norms supporting safer injection practices and having primary HIV medical care visits in the prior 6 months were associated with reporting no sharing of injection equipment. Higher levels of psychological distress were associated with a greater likelihood of reporting drug paraphernalia sharing. These findings suggest that intervention approaches for reducing HIV-seropositive IDUs' transmission of blood-borne infections should include peer-focused interventions to alter norms of drug paraphernalia sharing and promoting primary HIV care and mental health services.
NASA Astrophysics Data System (ADS)
Wang, Mingjun; Zhao, Kun; Xue, Ming; Zhang, Guifu; Liu, Su; Wen, Long; Chen, Gang
2016-10-01
The evolution of microphysical characteristics of a rainband in Typhoon Matmo (2014) over eastern China, through its onset, developing, mature, and dissipating stages, is documented using observations from an S band polarimetric Doppler radar and a two-dimensional video disdrometer (2DVD). The drop size distributions observed by the 2DVD and retrieved from the polarimetric radar measurements indicate that the convection in the rainband generally contains smaller drops and higher number concentrations than the typical maritime type convection described in Bringi et al. (2003). The average mass-weighted mean diameter (Dm) of convective precipitation in the rainband is about 1.41 mm, and the average logarithmic normalized intercept (Nw) is 4.67 log10 mm-1 m-3. To further investigate the dominant microphysical processes, the evolution of the vertical structures of polarimetric variables is examined. Results show that complex ice processes are involved above the freezing level, while it is most likely that the accretion and/or coalescence processes dominate below the freezing level throughout the rainband life cycle. A combined examination of the polarimetric measurements and profiles of estimated vertical liquid and ice water contents indicates that the conversion of cloud water into rainwater through cloud water accretion by raindrops plays a dominant role in producing heavy rainfall. The high estimated precipitation efficiency of 50% also suggests that cloud water accretion is the dominant mechanism for producing heavy rainfall. This study represents the first time that radar and 2DVD observations are used together to characterize the microphysical characteristics and precipitation efficiency for typhoon rainbands in China.
Sharing intelligence: Decision-making interactions between users and software in MAESTRO
NASA Technical Reports Server (NTRS)
Geoffroy, Amy L.; Gohring, John R.; Britt, Daniel L.
1991-01-01
By combining the best of automated and human decision-making in scheduling many advantages can accrue. The joint performance of the user and system is potentially much better than either alone. Features of the MAESTRO scheduling system serve to illustrate concepts of user/software cooperation. MAESTRO may be operated at a user-determinable and dynamic level of autonomy. Because the system allows so much flexibility in the allocation of decision-making responsibilities, and provides users with a wealth of information and other support for their own decision-making, better overall schedules may result.
NASA Astrophysics Data System (ADS)
Tan, Chenyan; Fang, Weihua; Li, Jian
2016-04-01
In 2005, Typhoon Damery (200518) caused severe damage to the rubber trees in Hainan Island with its destructive winds and rainfall. Selection of proper vegetation indices using multi-source remote sensing data is critical to the assessment of forest disturbance and damage loss for this event. In this study, we will compare the performance of seven vegetation indices derived from MODIS and Landsat TM imageries prior to and after typhoon Damery, in order to select an optimal index for identifying rubber tree disturbance. The indices to be compared are normalized difference vegetation index (NDVI), Normalized Difference Water Index (NDWI), Normalized Difference Infrared Index (NDII), Enhanced vegetation index (EVI), Leaf area index (LAI), forest z-score (IFZ), and Disturbance Index (DI). The ground truth data of rubber tree damage collected through field investigation was used to verify and compare the results. Our preliminary result for the area with ground-truth data shows that DI has the most significant performance for disturbance detection for this typhoon event. This index DI is then applied to all the areas in Hainan Island hit by Darmey to evaluate the overall forest damage severity. At last, rubber tree damage severity is analyzed with other typhoon hazard factors such as wind, topography, soil and precipitation.
NASA Astrophysics Data System (ADS)
Kong, Jian; Yao, Yibin; Xu, Yahui; Kuo, Chungyen; Zhang, Liang; Liu, Lei; Zhai, Changzhi
2017-09-01
The global navigation satellite system (GNSS) total electron content (TEC) sequences were used to capture the arrival time and location of the ionosphere disturbances in response to the 2015 Typhoon Dujuan. After removing the de-trended TEC variation, the clear ionosphere disturbances on the typhoon landing day could be distinguished, and these disturbances disappeared from the TEC sequences before and after the typhoon landing day. The foF2 data observed by Xiamen ionosonde station also show ionosphere disturbances. Based on the advantages of GNSS multi-point observations, the disturbances horizontal velocity in the ionosphere were estimated according to the linear theory for a dispersion relation of acoustic gravity waves (AGWs) in an isothermal atmosphere. The average horizontal velocity (˜ 240 m/s) and the radial velocity (˜ 287 m/s) were used in the two-dimensional grid search for the origin point on the Earth's surface. The origin area was determined to be on the eastern side of Taiwan. Lastly, a possible physical mechanism is discussed in this study. When typhoons land on Taiwan, the severe convective storms and the drag effect from the Central Mountains create an ideal location for development of AGWs. Topographic conditions, like the high lapse rate, contribute to the formation of AGWs, which then propagates into the ionosphere altitude.
Enabling the sharing of neuroimaging data through well-defined intermediate levels of visibility.
Smith, Kenneth; Jajodia, Sushil; Swarup, Vipin; Hoyt, Jeffrey; Hamilton, Gail; Faatz, Donald; Cornett, Todd
2004-08-01
The sharing of neuroimagery data offers great benefits to science, however, data owners sharing their data face substantial custodial responsibilities, such as ensuring data sets are correctly interpreted in their new shared context, protecting the identity and privacy of human research participants, and safeguarding the understood order of use. Given choices of sharing widely or not at all, the result will often be no sharing, due to the inability of data owners to control their exposure to the risks associated with data sharing. In this context, data sharing is enabled by providing data owners with well-defined intermediate levels of data visibility, progressing incrementally toward public visibility. In this paper, we define a novel and general data sharing model, Structured Sharing Communities (SSC), meeting this requirement. Arbitrary visibility levels representing collaborative agreements, consortium memberships, research organizations, and other affiliations are structured into a policy space through explicit paths of permissible information flow. Operations enable users and applications to manage the visibility of data and enforce access permissions and restrictions. We show how a policy space can be implemented in realistic neuroinformatic architectures with acceptable assurance of correctness, and briefly describe an open source implementation effort.
Cooperative Data Sharing: Simple Support for Clusters of SMP Nodes
NASA Technical Reports Server (NTRS)
DiNucci, David C.; Balley, David H. (Technical Monitor)
1997-01-01
Libraries like PVM and MPI send typed messages to allow for heterogeneous cluster computing. Lower-level libraries, such as GAM, provide more efficient access to communication by removing the need to copy messages between the interface and user space in some cases. still lower-level interfaces, such as UNET, get right down to the hardware level to provide maximum performance. However, these are all still interfaces for passing messages from one process to another, and have limited utility in a shared-memory environment, due primarily to the fact that message passing is just another term for copying. This drawback is made more pertinent by today's hybrid architectures (e.g. clusters of SMPs), where it is difficult to know beforehand whether two communicating processes will share memory. As a result, even portable language tools (like HPF compilers) must either map all interprocess communication, into message passing with the accompanying performance degradation in shared memory environments, or they must check each communication at run-time and implement the shared-memory case separately for efficiency. Cooperative Data Sharing (CDS) is a single user-level API which abstracts all communication between processes into the sharing and access coordination of memory regions, in a model which might be described as "distributed shared messages" or "large-grain distributed shared memory". As a result, the user programs to a simple latency-tolerant abstract communication specification which can be mapped efficiently to either a shared-memory or message-passing based run-time system, depending upon the available architecture. Unlike some distributed shared memory interfaces, the user still has complete control over the assignment of data to processors, the forwarding of data to its next likely destination, and the queuing of data until it is needed, so even the relatively high latency present in clusters can be accomodated. CDS does not require special use of an MMU, which can add overhead to some DSM systems, and does not require an SPMD programming model. unlike some message-passing interfaces, CDS allows the user to implement efficient demand-driven applications where processes must "fight" over data, and does not perform copying if processes share memory and do not attempt concurrent writes. CDS also supports heterogeneous computing, dynamic process creation, handlers, and a very simple thread-arbitration mechanism. Additional support for array subsections is currently being considered. The CDS1 API, which forms the kernel of CDS, is built primarily upon only 2 communication primitives, one process initiation primitive, and some data translation (and marshalling) routines, memory allocation routines, and priority control routines. The entire current collection of 28 routines provides enough functionality to implement most (or all) of MPI 1 and 2, which has a much larger interface consisting of hundreds of routines. still, the API is small enough to consider integrating into standard os interfaces for handling inter-process communication in a network-independent way. This approach would also help to solve many of the problems plaguing other higher-level standards such as MPI and PVM which must, in some cases, "play OS" to adequately address progress and process control issues. The CDS2 API, a higher level of interface roughly equivalent in functionality to MPI and to be built entirely upon CDS1, is still being designed. It is intended to add support for the equivalent of communicators, reduction and other collective operations, process topologies, additional support for process creation, and some automatic memory management. CDS2 will not exactly match MPI, because the copy-free semantics of communication from CDS1 will be supported. CDS2 application programs will be free to carefully also use CDS1. CDS1 has been implemented on networks of workstations running unmodified Unix-based operating systems, using UDP/IP and vendor-supplied high- performance locks. Although its inter-node performance is currently unimpressive due to rudimentary implementation technique, it even now outperforms highly-optimized MPI implementation on intra-node communication due to its support for non-copy communication. The similarity of the CDS1 architecture to that of other projects such as UNET and TRAP suggests that the inter-node performance can be increased significantly to surpass MPI or PVM, and it may be possible to migrate some of its functionality to communication controllers.
Prediction of Flood Warning in Taiwan Using Nonlinear SVM with Simulated Annealing Algorithm
NASA Astrophysics Data System (ADS)
Lee, C.
2013-12-01
The issue of the floods is important in Taiwan. It is because the narrow and high topography of the island make lots of rivers steep in Taiwan. The tropical depression likes typhoon always causes rivers to flood. Prediction of river flow under the extreme rainfall circumstances is important for government to announce the warning of flood. Every time typhoon passed through Taiwan, there were always floods along some rivers. The warning is classified to three levels according to the warning water levels in Taiwan. The propose of this study is to predict the level of floods warning from the information of precipitation, rainfall duration and slope of riverbed. To classify the level of floods warning by the above-mentioned information and modeling the problems, a machine learning model, nonlinear Support vector machine (SVM), is formulated to classify the level of floods warning. In addition, simulated annealing (SA), a probabilistic heuristic algorithm, is used to determine the optimal parameter of the SVM model. A case study of flooding-trend rivers of different gradients in Taiwan is conducted. The contribution of this SVM model with simulated annealing is capable of making efficient announcement for flood warning and keeping the danger of flood from residents along the rivers.
Expanding Bicycle-Sharing Systems: Lessons Learnt from an Analysis of Usage.
Zhang, Ying; Thomas, Tom; Brussel, M J G; van Maarseveen, M F A M
2016-01-01
Bike-sharing programs, with initiatives to increase bike use and improve accessibility of urban transit, have received increasing attention in growing number of cities across the world. The latest generation of bike-sharing systems has employed smart card technology that produces station-based data or trip-level data. This facilitates the studies of the practical use of these systems. However, few studies have paid attention to the changes in users and system usage over the years, as well as the impact of system expansion on its usage. Monitoring the changes of system usage over years enables the identification of system performance and can serve as an input for improving the location-allocation of stations. The objective of this study is to explore the impact of the expansion of a bicycle-sharing system on the usage of the system. This was conducted for a bicycle-sharing system in Zhongshan (China), using operational usage data of different years following system expansion. To this end, we performed statistical and spatial analyses to examine the changes in both users and system usage between before and after the system expansion. The findings show that there is a big variation in users and aggregate usage following the system expansion. However, the trend in spatial distribution of demand shows no substantial difference over the years, i.e. the same high-demand and low-demand areas appear. There are decreases in demand for some old stations over the years, which can be attributed to either the negative performance of the system or the competition of nearby new stations. Expanding the system not only extends the original users' ability to reach new areas but also attracts new users to use bike-sharing systems. In the conclusions, we present and discuss the findings, and offer recommendations for the further expansion of system.
ERIC Educational Resources Information Center
Maruyama, Yukiko
2016-01-01
The paper provides the results of a preliminary investigation into the information sharing behavior of social media users after a natural disaster. The results indicate that users shared information that they thought victims would find useful. On the other hand, they reported that they usually do not or never share information considered useful to…
Simiyu, Sheillah; Swilling, Mark; Cairncross, Sandy; Rheingans, Richard
2017-01-11
Shared facilities are not recognised as improved sanitation due to challenges of maintenance as they easily can be avenues for the spread of diseases. Thus there is need to evaluate the quality of shared facilities, especially in informal settlements, where they are commonly used. A shared facility can be equated to a common good whose management depends on the users. If users do not work collectively towards keeping the facility clean, it is likely that the quality may depreciate due to lack of maintenance. This study examined the quality of shared sanitation facilities and used the common pool resource (CPR) management principles to examine the determinants of shared sanitation quality in the informal settlements of Kisumu, Kenya. Using a multiple case study design, the study employed both quantitative and qualitative methods. In both phases, users of shared sanitation facilities were interviewed, while shared sanitation facilities were inspected. Shared sanitation quality was a score which was the dependent variable in a regression analysis. Interviews during the qualitative stage were aimed at understanding management practices of shared sanitation users. Qualitative data was analysed thematically by following the CPR principles. Shared facilities, most of which were dirty, were shared by an average of eight households, and their quality decreased with an increase in the number of households sharing. The effect of numbers on quality is explained by behaviour reflected in the CPR principles, as it was easier to define boundaries of shared facilities when there were fewer users who cooperated towards improving their shared sanitation facility. Other factors, such as defined management systems, cooperation, collective decision making, and social norms, also played a role in influencing the behaviour of users towards keeping shared facilities clean and functional. Apart from hardware factors, quality of shared sanitation is largely due to group behaviour of users. The CPR principles form a crucial lens through which the dynamics of shared sanitation facilities in informal settlements can be understood. Development and policy efforts should incorporate group behaviour as they determine the quality of shared sanitation facilities.
Yuan, Xinzhe; Sun, Jian; Zhou, Wei; Zhang, Qingjun
2018-01-01
The purpose of our work is to determine the feasibility and effectiveness of retrieving sea surface wind speeds from C-band cross-polarization (herein vertical-horizontal, VH) Chinese Gaofen-3 (GF-3) SAR images in typhoons. In this study, we have collected three GF-3 SAR images acquired in Global Observation (GLO) and Wide ScanSAR (WSC) mode during the summer of 2017 from the China Sea, which includes the typhoons Noru, Doksuri and Talim. These images were collocated with wind simulations at 0.12° grids from a numeric model, called the Regional Assimilation and Prediction System-Typhoon model (GRAPES-TYM). Recent research shows that GRAPES-TYM has a good performance for typhoon simulation in the China Sea. Based on the dataset, the dependence of wind speed and of radar incidence angle on normalized radar cross (NRCS) of VH-polarization GF-3 SAR have been investigated, after which an empirical algorithm for wind speed retrieval from VH-polarization GF-3 SAR was tuned. An additional four VH-polarization GF-3 SAR images in three typhoons, Noru, Hato and Talim, were investigated in order to validate the proposed algorithm. SAR-derived winds were compared with measurements from Windsat winds at 0.25° grids with wind speeds up to 40 m/s, showing a 5.5 m/s root mean square error (RMSE) of wind speed and an improved RMSE of 5.1 m/s wind speed was achieved compared with the retrieval results validated against GRAPES-TYM winds. It is concluded that the proposed algorithm is a promising potential technique for strong wind retrieval from cross-polarization GF-3 SAR images without encountering a signal saturation problem. PMID:29385068
NASA Astrophysics Data System (ADS)
Ortwein, Annette; Schultz, Johannes; Rienow, Andreas
2017-04-01
Earth observation from space enables scientists and decision makers to forecast and react on the impacts of tropical storms. The project "Columbus Eye - Live-Imagery from the ISS in School Lessons" teaches pupils the implications of the coupled human-environment systems by applying remote sensing and digital image processing. Recently, Columbus Eye launched its first Android App featuring ISS videos. Generating a smartphone-based learning environment for working with ISS imagery introduces m-learning to the classrooms. The learning unit "The Eye of the Cyclone" addresses the formation and path of Philippine typhoon Maysak by using a multi-media approach. Based on a traditional work sheet, the diagrams of typhoon Maysak come alive when viewed through the smartphone's camera. A diagram of the typhoon's secret interior mechanics turns into a video of typhoon Maysak as seen from the ISS on 31st of March 2015, holding additional information on its unique specifications. The second diagram of air masses suddenly moves and shows the path of typhoon Maysak over time. But before those interactive parts are explored, the background information is presented in the work sheet by means of written scientific learning materials, including information on the occurrence, formation and inner structure of typhoons. Thus, fostering the reading competence, the pupils' understanding on the topic is assessed by several tasks on the work sheet's final page. The oral presentation explains how the haptic experience of writing the solutions on a sheet of paper makes the knowledge paperbound and "real", literally lifting pens & papers into space. In the light of the Copernicus services, it will be explained how Sentinel-based teaching units can be developed in order to communicating the knowledge and the handling of natural hazards in times of global change.
NASA Astrophysics Data System (ADS)
Llanes, F.; dela Resma, M.; Ferrer, P.; Realino, V.; Aquino, D. T.; Eco, R. C.; Lagmay, A.
2013-12-01
From November 14 to December 3, 2004, Luzon Island was ravaged by 4 successive typhoons: Typhoon Mufia, Tropical Storm Merbok, Tropical Depression Winnie, and Super Typhoon Nanmadol. Tropical Depression Winnie was the most destructive of the four when it triggered landslides on November 29 that devastated the municipalities of Infanta, General Nakar, and Real in Quezon Province, southeast Luzon. Winnie formed east of Central Luzon on November 27 before it moved west-northwestward over southeastern Luzon on November 29. A total of 1,068 lives were lost and more than USD 170 million worth of damages to crops and infrastructure were incurred from the landslides triggered by Typhoon Winnie on November 29 and the flooding caused by the 4 typhoons. FLO-2D, a flood routing software for generating flood and debris flow hazard maps, was utilized to simulate the debris flows that could potentially affect the study area. Based from the rainfall intensity-duration-frequency analysis, the cumulative rainfall from typhoon Winnie on November 29 which was approximately 342 mm over a 9-hour period was classified within a 100-year return period. The Infanta station of the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) was no longer able to measure the amount of rainfall after this period because the rain gauge in that station was washed away by floods. Rainfall data with a 100-year return period was simulated over the watersheds delineated from a SAR-derived digital elevation model. The resulting debris flow hazard map was compared with results from field investigation and previous studies made on the landslide event. The simulation identified 22 barangays (villages) with a total of 45,155 people at risk of turbulent flow and flooding.
NASA's Aqua Satellite Tracking Super Typhoon Vongfong
2017-12-08
The MODIS instrument aboard NASA's Aqua satellite captured this visible image of Super Typhoon Vongfong on Oct. 9 at 04:25 UTC (12:25 a.m. EDT as it moved north through the Philippine Sea. Credit: NASA Goddard MODIS Rapid Response Team --- Vongfong weakened to a Category 4 typhoon on the Saffir-Simpson scale on Thursday, October 9, with maximum sustained winds near 130 knots (149.6 mph/240.8 kph), down from a Category 5 typhoon on Oct. 8. Forecasters at the Joint Typhoon Warning Center predict slow weakening over the next several days. Vongfong was centered near 20.6 north and 129.5 east, about 384 nautical miles south-southeast of Kadena Air Base, Okinawa, Japan. It is moving to the north-northwest at 7 knots (8 mph/12.9 kph) and generating 44 foot (13.4 meter) high seas. For warnings and watches, visit the Japan Meteorological Agency website at: www.jma.go.jp/en/typh/. Vongfong is forecast to continue moving north through the Philippine Sea and is expected to pass just to the east of Kadena Air Base, then track over Amami Oshima before making landfall in Kyushu and moving over the other three big islands of Japan. Residents of all of these islands should prepare for typhoon conditions beginning on October 10. Read more: 1.usa.gov/1s0CCQy NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Llanes, F.; Rodolfo, K. S.; Lagmay, A. M. A.
2017-12-01
On 17 October 2015, Typhoon Koppu brought heavy rains that generated debris flows in the municipalities of Bongabon, Laur, and Gabaldon in Nueva Ecija province. Roughly two months later on 15 December, Typhoon Melor made landfall in the province of Oriental Mindoro, bringing heavy rains that also generated debris flows in multiple watersheds in the municipality of Baco. Despite not being in the direct path of the typhoon, debris flows were triggered in Bongabon, Gabaldon, and Laur, whereas old debris-flow deposits were remobilized in Dingalan, a coastal town in Aurora province adjacent to Gabaldon. During the onslaught of Typhoons Koppu and Melor, landslides of rock, soil, and debris converged in the mountain stream networks where they were remobilized into debris flows that destroyed numerous houses and structures situated on alluvial fans. Satellite images before and after the two typhoons were compared to calculate the deposit extents on the fans and to determine the number and extent of landslides on each watershed. The affected alluvial fans were investigated in the field to determine whether they are debris flow or flood-prone, using a set of established geomorphic and sedimentary characteristics that differentiate deposits of the two processes. Melton ratio, watershed length, and other significant morphometric indices were calculated and analyzed for the affected watersheds using geographic information system (GIS) and high-resolution digital terrain models. A GIS model that can delineate debris flow susceptible alluvial fans in the Philippines was derived and developed from the analysis. Limitations of the model are discussed, as well as recommendations to improve and refine it.
NASA Spacecraft Shows Before/After of Typhoon Haiyan Devastation
2013-11-20
On Nov. 8, 2013, NASA Terra spacecraft acquired this image of Super Typhoon Haiyan as it tore across the central Philippines, leaving a trail of destruction in its path. Among the worst-hit areas is eastern Leyte island and the city of Tacloban.
Towards a Ubiquitous User Model for Profile Sharing and Reuse
de Lourdes Martinez-Villaseñor, Maria; Gonzalez-Mendoza, Miguel; Hernandez-Gress, Neil
2012-01-01
People interact with systems and applications through several devices and are willing to share information about preferences, interests and characteristics. Social networking profiles, data from advanced sensors attached to personal gadgets, and semantic web technologies such as FOAF and microformats are valuable sources of personal information that could provide a fair understanding of the user, but profile information is scattered over different user models. Some researchers in the ubiquitous user modeling community envision the need to share user model's information from heterogeneous sources. In this paper, we address the syntactic and semantic heterogeneity of user models in order to enable user modeling interoperability. We present a dynamic user profile structure based in Simple Knowledge Organization for the Web (SKOS) to provide knowledge representation for ubiquitous user model. We propose a two-tier matching strategy for concept schemas alignment to enable user modeling interoperability. Our proposal is proved in the application scenario of sharing and reusing data in order to deal with overweight and obesity. PMID:23201995
NASA Astrophysics Data System (ADS)
Rodolfo, Kelvin S.; Lagmay, A. Mahar F.; Eco, Rodrigo C.; Herrero, Tatum Miko L.; Mendoza, Jerico E.; Minimo, Likha G.; Santiago, Joy T.
2016-12-01
Category 5 Super Typhoon Bopha, the world's worst storm of 2012, formed abnormally close to the Equator, and its landfall on Mindanao set the record proximity to the Equator for its category. Its torrential rains generated an enormous debris flow in the Mayo River watershed that swept away much of the village Andap in the New Bataan municipality, burying areas under rubble as thick as 9 m and killing 566 people. Established in 1968, New Bataan had never experienced super typhoons and debris flows. This unfamiliarity compounded the death and damage. We describe Bopha's history, debris flows and the Mayo River disaster, and then we discuss how population growth contributed to the catastrophe, as well as the possibility that climate change may render other near-Equatorial areas vulnerable to hazards brought on by similar typhoons. Finally, we recommend measures to minimize the loss of life and damage to property from similar future events.
NASA Astrophysics Data System (ADS)
Lin, Jyh-Woei
2012-09-01
This paper uses Nonlinear Principal Component Analysis (NLPCA) and Principal Component Analysis (PCA) to determine Total Electron Content (TEC) anomalies in the ionosphere for the Nakri Typhoon on 29 May, 2008 (UTC). NLPCA, PCA and image processing are applied to the global ionospheric map (GIM) with transforms conducted for the time period 12:00-14:00 UT on 29 May 2008 when the wind was most intense. Results show that at a height of approximately 150-200 km the TEC anomaly using NLPCA is more localized; however its intensity increases with height and becomes more widespread. The TEC anomalies are not found by PCA. Potential causes of the results are discussed with emphasis given to vertical acoustic gravity waves. The approximate position of the typhoon's eye can be detected if the GIM is divided into fine enough maps with adequate spatial-resolution at GPS-TEC receivers. This implies that the trace of the typhoon in the regional GIM is caught using NLPCA.
NASA Astrophysics Data System (ADS)
Tan, C.; Fang, W.
2018-04-01
Forest disturbance induced by tropical cyclone often has significant and profound effects on the structure and function of forest ecosystem. Detection and analysis of post-disaster forest disturbance based on remote sensing technology has been widely applied. At present, it is necessary to conduct further quantitative analysis of the magnitude of forest disturbance with the intensity of typhoon. In this study, taking the case of super typhoon Rammasun (201409), we analysed the sensitivity of four common used remote sensing indices and explored the relationship between remote sensing index and corresponding wind speeds based on pre-and post- Landsat-8 OLI (Operational Land Imager) images and a parameterized wind field model. The results proved that NBR is the most sensitive index for the detection of forest disturbance induced by Typhoon Rammasun and the variation of NBR has a significant linear dependence relation with the simulated 3-second gust wind speed.
Rus, Holly M; Cameron, Linda D
2016-10-01
Social media provides unprecedented opportunities for enhancing health communication and health care, including self-management of chronic conditions such as diabetes. Creating messages that engage users is critical for enhancing message impact and dissemination. This study analyzed health communications within ten diabetes-related Facebook pages to identify message features predictive of user engagement. The Common-Sense Model of Illness Self-Regulation and established health communication techniques guided content analyses of 500 Facebook posts. Each post was coded for message features predicted to engage users and numbers of likes, shares, and comments during the week following posting. Multi-level, negative binomial regressions revealed that specific features predicted different forms of engagement. Imagery emerged as a strong predictor; messages with images had higher rates of liking and sharing relative to messages without images. Diabetes consequence information and positive identity predicted higher sharing while negative affect, social support, and crowdsourcing predicted higher commenting. Negative affect, crowdsourcing, and use of external links predicted lower sharing while positive identity predicted lower commenting. The presence of imagery weakened or reversed the positive relationships of several message features with engagement. Diabetes control information and negative affect predicted more likes in text-only messages, but fewer likes when these messages included illustrative imagery. Similar patterns of imagery's attenuating effects emerged for the positive relationships of consequence information, control information, and positive identity with shares and for positive relationships of negative affect and social support with comments. These findings hold promise for guiding communication design in health-related social media.
Upper ocean response to the passage of two sequential typhoons
NASA Astrophysics Data System (ADS)
Wu, Renhao; Li, Chunyan
2018-02-01
Two sequential typhoons, separated by five days, Chan-hom and Nangka in the summer of 2015, provided a unique opportunity to study the oceanic response and cold wake evolution. The upper ocean response to the passage of these two typhoons was investigated using multi-satellite, Argo float data and HYCOM global model output. The sea surface cooling (SSC) induced by Chan-hom was gradually enhanced along its track when the storm was intensified while moving over the ocean with shallow mixed layer. The location of maximum cooling of sea surface was determined by the storm's translation speed as well as pre-typhoon oceanic conditions. As a fast-moving storm, Chan-hom induced significant SSC on the right side of its track. Localized maximum cooling patches are found over a cyclonic eddy (CE). An analysis of data from Argo floats near the track of Chan-hom demonstrated that the mixed layer temperature (MLT) and mixed layer depth (MLD) had more variabilities on the right side than those on the left side of Chan-hom's track, while mixed layer salinity (MLS) response was different from those of MLT and MLD with an increase in salinity to the right side and a decrease in salinity to the left side of the track. Subsequently, because of the remnant effect of Chan-hom, the strong upwelling induced by Typhoon Nangka, the pre-existing CE as well as a slow translation speed (<2 m s-1) of the storm, the most significant SSC ( 6 °C) was observed over the CE region in the wake of the storm. Further, Nangka experienced a rapid weakening suggesting immediate negative feedback from the intensified SSC occurred in the CE region. After these two typhoons, the CE was enhanced and the sea surface height of eddy core was depressed by 10 cm. It took more than one month for SSC to restore to its pre-typhoon conditions, with the anomalous geostrophic current advection playing an important role in the process. The enhancement of chlorophyll-a concentrations was also noticed at both the CE region and close to Chan-hom's track.
Cooperation stimulation strategies for peer-to-peer wireless live video-sharing social networks.
Lin, W Sabrina; Zhao, H Vicky; Liu, K J Ray
2010-07-01
Human behavior analysis in video sharing social networks is an emerging research area, which analyzes the behavior of users who share multimedia content and investigates the impact of human dynamics on video sharing systems. Users watching live streaming in the same wireless network share the same limited bandwidth of backbone connection to the Internet, thus, they might want to cooperate with each other to obtain better video quality. These users form a wireless live-streaming social network. Every user wishes to watch video with high quality while paying as little as possible cost to help others. This paper focuses on providing incentives for user cooperation. We propose a game-theoretic framework to model user behavior and to analyze the optimal strategies for user cooperation simulation in wireless live streaming. We first analyze the Pareto optimality and the time-sensitive bargaining equilibrium of the two-person game. We then extend the solution to the multiuser scenario. We also consider potential selfish users' cheating behavior and malicious users' attacking behavior and analyze the performance of the proposed strategies with the existence of cheating users and malicious attackers. Both our analytical and simulation results show that the proposed strategies can effectively stimulate user cooperation, achieve cheat free and attack resistance, and help provide reliable services for wireless live streaming applications.
Huge Super Typhoon Meranti Over Taiwan
Atmospheric Science Data Center
2016-12-30
... 20 meters per second (45 miles per hour) arrow in the key. Hurricanes and typhoons in the Northern Hemisphere rotate counterclockwise due ... from the eye at the storm tops. This is due to the fact that hurricanes draw in moist air at low altitudes, which then flows upwards and ...
Analysis on typhoon-induced microseisms from ocean bottom seismometer array
NASA Astrophysics Data System (ADS)
Lee, Tzu-Chuan; Lin, Jing-Yi
2013-04-01
Ocean-bottom seismometer (OBS) is usually used for active sources and passive listening experiments, such as air guns, explosives, earthquakes and other signals. In fact, the seismometer records not only the seismic waveforms but also noises generated by winds, waves, tides and other external forces. From the end of August to early September 2011, 15 OBSs were deployed offshore northeastern Taiwan for a recording period of about 20 days. At the end of August, the typhoon NANMADOL formed in the western Pacific and moved northwestward from the East Philippines and finally landed on the island of Taiwan. Due to storms or pressure changes caused by the typhoon, elastic waves would be directly or indirectly produced and recorded by the seismometers. In this study, by analyzing the seismic signals collected by the OBSs and the BATS stations, we investigate the influence induced by the changes of typhoon path and intensity on the submarine seismic noises. Preliminary results indicate that the seismic energy change related to the typhoon occurred mainly at 0.2-0.5 Hz, which is a relatively low frequency compared to that of earthquakes. The amplitude of this low-frequency noise increased when the distance between the typhoon and seismometer decreased. By comparing the seismic waves with the data collected from the marine weather buoy, we observed a positive correlation between the power of the low frequency microseisms and the wave height. This clearly indicates that the typhoon was the main source of microseisms during their passing. Owing to the ocean waves generated by the typhoon, the pressure altered by the water column change and recorded by the seismometers as seismic waves before being transmitted to the sea?oor. The spectrum analysis shows the presence of a high energy signals at 0.2-1 Hz with a period of about 12 hours which could be related to the tidal movements. In addition, the amplitude of the recorded microseisms is also affected by the depth of seismometers. In general, the deeper the seismometer is located, the smaller the amplitude of microseisms it recorded. All these observations show the seismic signal can respond to the wave and wind changes. However, some exceptions, probably induced by site effect, are observed. Analysis based on the data recorded by hydrophones and inland stations displays consistent results with that of geophones, showing that ocean wave heights appear to be the main origin of the low frequency microseisms signals. Therefore, we suggest that the low frequency ground motions are mostly induced by nearby water pressure ?elds, and transmitted through the rock to the stations.
NASA Astrophysics Data System (ADS)
Liu, Junliang; He, Yinghui; Li, Juan; Cai, Shuqun; Wang, Dongxiao; Huang, Yandan
2018-04-01
Nonlinear interaction between near-inertial waves (NIWs) and diurnal tides (DTs) after nine typhoons near the Xisha Islands of the northwestern South China Sea (SCS) were investigated using three-year in situ mooring observation data. It was found that a harmonic wave (f + D1, hereafter referred to as fD1 wave), with a frequency equal to the sum of frequencies of NIWs and DTs (hereafter referred to as f and D1, respectively), was generated via nonlinear interaction between typhoon-induced NIWs and DTs after each typhoon. The fD1 wave mainly concentrates in the subsurface layer, and is mainly induced by the first component of the vertical nonlinear momentum term, the product of the vertical velocity of DT and vertical shear of near-inertial current (hereafter referred to as Component 1), in which the vertical shear of the near-inertial current greatly affects the strength of the fD1 current. The larger the Component 1, the stronger the fD1 currents. The background preexisting mesoscale anticyclonic eddy near the mooring site may also enhance the vertical velocity of DT and thus Component 1, which subsequently facilitates the nonlinear interaction-induced energy transfer to the fD1 wave and enhances the fD1 currents after the passage of a typhoon.
NASA Astrophysics Data System (ADS)
Santiago, J. T.
2015-12-01
Storm surge is the abnormal rise in sea water over and above astronomical tides due to a forthcoming storm. Developing an early warning system for storm surges is vital due to the high level of hazard they might cause. On 08 November 2013, Typhoon Haiyan generated storm surges that killed over 6,000 people in the central part of the Philippines. The Nationwide Operational Assessment of Hazards under the Department of Science and Technology was tasked to create storm surge hazard maps for the country's coastal areas. The research project aims to generate storm surge hazard maps that can be used for disaster mitigation and planning. As part of the research, the team explored a scenario wherein a tropical cyclone hits the Metro Manila with strength as strong as Typhoon Haiyan. The area was chosen primarily for its political, economic and cultural significance as the country's capital. Using Japan Meteorological Agency Storm Surge model, FLO2D flooding software, LiDAR topographic data, and GIS technology, the effects of a Haiyan-induced tropical cyclone passing through Metro Manila was examined. The population affected, number of affected critical facilities, and potential evacuation sites were identified. The outputs of this study can be used by the authorities as basis for policies that involve disaster risk reduction and management.
High Probability of Cyclone Development in the Bay of Bengal
2014-05-22
The Joint Typhoon Warning Center states that formation of a significant tropical cyclone is possible in the Bay of Bengal within the next 12 - 24 hours as of 0730Z on May 21, 2014. Along with deep convective banding associated with a consolidating low-level circulation center, warm sea surface temperatures are conducive for further development. This image was taken by the Suomi NPP satellite's VIIRS instrument in two passes, the east pass around 0615Z and the west pass around 0755Z on May 21, 2014. Credit: NASA/NOAA/NPP/VIIRS The Joint Typhoon Warning Center states that formation of a significant tropical cyclone is possible in the Bay of Bengal within the next 12 - 24 hours as of 0730Z on May 21, 2014. Along with deep convective banding associated with a consolidating low-level circulation center, warm sea surface temperatures are conducive for further development. This image was taken by the Suomi NPP satellite's VIIRS instrument in two passes, the east pass around 0615Z and the west pass around 0755Z on May 21, 2014.
Enhancement of orographic precipitation in Jeju Island during the passage of Typhoon Khanun (2012)
NASA Astrophysics Data System (ADS)
Lee, Jung-Tae; Ko, Kyeong-Yeon; Lee, Dong-In; You, Cheol-Hwan; Liou, Yu-Chieng
2018-03-01
Typhoon Khanun caused over 226 mm of accumulated rainfall for 6 h (0700 to 1300 UTC), localized around the summit of Mt. Halla (height 1950 m), with a slanted rainfall pattern to the northeast. In this study, we investigated the enhancement mechanism for precipitation near the mountains as the typhoon passed over Jeju Island via dual-Doppler radar analysis and simple trajectory of passive tracers using a retrieved wind field. The analysis of vertical profiles of the mountain region show marked features matching the geophysical conditions. In the central mountain region, a strong wind (≥ 7 m s- 1) helps to lift low-level air up the mountain. The time taken for lifting is longer than the theoretical time required for raindrop growth via condensation. The falling particles (seeder) from the upper cloud were also one of the reasons for an increase in rainfall via the accretion process from uplifted cloud water (feeder). The lifted air and falling particles both contributed to the heavy rainfall in the central region. In contrast, on the leeward side, the seeder-feeder mechanism was important in the formation of strong radar reflectivity. The snow particles (above 5 km) were accelerated by strong downward winds (≤-6 m s- 1). Meanwhile, the nonlinear jumping flow (hydraulic jump) raised feeders (shifted from the windward side) to the upper level where particles fall. To support these development processes, a numerical simulation using cloud-resolving model theoretically carried out. The accreting of hydrometeors may be one of the key reasons why the lee side has strong radar reflectivity, and a lee side weighted rainfall pattern even though lee side includes no strong upward air motion.
Construction Carpentry. Secondary Schools. Curriculum Guide.
ERIC Educational Resources Information Center
Tellei, Patrick U.
This document is intended to help construction carpentry instructors in the State of Truk, Truk, Federated States of Micronesia, to prepare their senior high school students uniformly to design and build residential structures capable of withstanding typhoons. Because of the threat of typhoons, the carpentry curriculum contained in the guide has a…
Odinokova, Veronika A.; Heimer, Robert; Grau, Lauretta E.; Lyubimova, Alexandra; Safiullina, Liliya; Levina, Olga S.; Niccolai, Linda M.
2011-01-01
We investigated the influence of drug network characteristics including trust, size, and stability on HIV risk behaviors and HIV testing among injection drug users (IDUs) in St. Petersburg, Russia. Overall, male and female IDUs who reported having high levels of trust in their drug networks were significantly more likely to share syringes than those with lower levels of trust (OR [95% CI]) 2.87 [1.06, 7.81] and 4.89 [1.05, 21.94], respectively). Male and female IDUs in larger drug networks were more likely to share syringes than those in smaller networks (4.21 [1.54, 11.51] and 4.80 [1.20, 19.94], respectively). Characteristics that were significantly associated with not having been HIV tested included drug network instability among men and larger network size among women. High trust, large size, and instability were positively and significantly associated with syringe sharing and not having been HIV tested. Effectiveness of interventions in Russia to reduce the risk of HIV infection may be enhanced if network characteristics are addressed. PMID:20872063
Seasonal prediction of typhoon genesis frequency and track patterns in the North West Pacific area
NASA Astrophysics Data System (ADS)
Hyoun, Yoosun; Kang, Kiryong; Shin, Do-Shick
2014-05-01
This study is to investigate the performance of the typhoon seasonal predictability using a dynamical model. The check items are the monthly statistics for total number of typhoon genesis in Western North Pacific (WNP) area and possible threat to Korean peninsula among them, and the probability of each categorized track pattern. As the dynamical model the Florida State University/Center for Ocean-Atmospheric Prediction Studies (FSU/COAPS) was used, and it uses five ensemble members including control run are generated using time-lagged methods and the resolution of T126L27 (a Gaussian grid spacing of 0.94º). The model initial conditions are obtained from the National Center for Enviromental Prediction Global Forecast System (NCEP GFS) and the SST from Climate Forecast System with bias correction was used for ocean surface boundary condition. The summer (Jun-Jul-Aug) season prediction is made one month prior to target season. The detection of tropical cyclone used in this system is based on six criteria. First, the isolated vortex type minimum sea level pressure should be below 1008hPa. Second, the maximum wind speed is larger than 17m s-1. Third, the magnitude of the maximum relative vorticity at 850hPa exceeds 3.5x10-5s-1. Fourth, the average temperature difference from the area mean of surrounding region at 300hPa, 500hPa, 700hPa exceeds 2.5K. Fifth, the maximum wind speed at 850hPa is larger than that at 300hPa. Sixth, this identified vortex should last more than two days. These criteria were chosen after close examination from model-observation comparison. In this study, we will focus on performance of the system typhoon frequency and track pattern in the WNP area during 2004-2013.
Sharing feelings online: studying emotional well-being via automated text analysis of Facebook posts
Settanni, Michele; Marengo, Davide
2015-01-01
Digital traces of activity on social network sites represent a vast source of ecological data with potential connections with individual behavioral and psychological characteristics. The present study investigates the relationship between user-generated textual content shared on Facebook and emotional well-being. Self-report measures of depression, anxiety, and stress were collected from 201 adult Facebook users from North Italy. Emotion-related textual indicators, including emoticon use, were extracted form users’ Facebook posts via automated text analysis. Correlation analyses revealed that individuals with higher levels of depression, anxiety expressed negative emotions on Facebook more frequently. In addition, use of emoticons expressing positive emotions correlated negatively with stress level. When comparing age groups, younger users reported higher frequency of both emotion-related words and emoticon use in their posts. Also, the relationship between online emotional expression and self-report emotional well-being was generally stronger in the younger group. Overall, findings support the feasibility and validity of studying individual emotional well-being by means of examination of Facebook profiles. Implications for online screening purposes and future research directions are discussed. PMID:26257692
NASA Astrophysics Data System (ADS)
Matsumoto, Kengo; Kato, Kuranoshin; Otani, Kazuo
2017-04-01
In East Asia the significant subtropical frontal zone called the Meiyu (in China) / Baiu (in Japan) appears in early summer (just before the midsummer) and the huge rainfall is brought due to the frequent appearance of the "heavy rainfall days" (referred to as HRDs hereafter) mainly in that western part. On the other hand, large-scale fields around the front in eastern Japan is rather different from that in western Japan but the total precipitation in the eastern Japan is still considerable compared to that in the other midlatitude regions. Thus, it is also interesting to examine how the rainfall characteristics and large-scale atmospheric fields on HRDs (with more than 50 mm/day) in the eastern Japan in the mature stage of the Baiu season (16 June 15 July), together with those in midsummer (1 31 August). Based on such scientific background, further analyses were performed in this study mainly with the daily and the hourly precipitation data and the NCEP/NCAR re-analysis date from 1971 to 2010, succeeding to our previous results (e.g., EGU2015). As reported at EGU2014 and 2015, about half of HRDs at Tokyo (eastern Japan) were related to the typhoon even in the Baiu season. Interestingly, half of HRDs were characterized by the large contribution of moderate rain less than 10 mm/h. While, the precipitation on HRDs at Tokyo in midsummer was mainly brought by the intense rainfall with more than 10 mm/h, in association with the typhoons. In the present study, we examined the composite meridional structure of the rainfall area along 140E. In the pattern only associated with a typhoons in the Baiu season (Pattern A), the heavy rainfall area (more than 50 mm/day) with large contribution of the intense rain (stronger than 10 mm/h) showed rather wide meridional extension. The area was characterized by the duration of the intermittent enhancement of the rainfall. In the pattern associated with a typhoon and a front (Pattern B), while the contribution ratio of the rainfall more than 10mm/h was large in the southern half of the heavy rainfall area, moderate rain with less than 10 mm/h contributed greatly to the total rainfall in the northern half. In Patter B, that heavy rainfall area was located just in the area with strong low-level warm advection around the Baiu front to the east of the typhoon. The warm advection near the heavy rainfall area was also found in Pattern A, the heavy rainfall occurred just on the southwest of the large advection. It is noted that, although the very warm humid air can intrude northward by the strong S-ly wind to the east of the typhoon in both Pattern A and B, the low-level baroclinicity around the eastern Japan was stronger in Pattern B. In midsummer, the similar situations to while the "Pattern B"-like situation was not seen. This might be greatly reflected by the seasonal change in the southern boundary of the Okhotsk air mass from the Baiu to midsummer and we will also examine that in the future.
Content Sharing Based on Personal Information in Virtually Secured Space
NASA Astrophysics Data System (ADS)
Sohn, Hosik; Ro, Yong Man; Plataniotis, Kostantinos N.
User generated contents (UGC) are shared in an open space like social media where users can upload and consume contents freely. Since the access of contents is not restricted, the contents could be delivered to unwanted users or misused sometimes. In this paper, we propose a method for sharing UGCs securely based on the personal information of users. With the proposed method, virtual secure space is created for contents delivery. The virtual secure space allows UGC creator to deliver contents to users who have similar personal information and they can consume the contents without any leakage of personal information. In order to verify the usefulness of the proposed method, the experiment was performed where the content was encrypted with personal information of creator, and users with similar personal information have decrypted and consumed the contents. The results showed that UGCs were securely shared among users who have similar personal information.
Development of WMS Capabilities to Support NASA Disasters Applications and App Development
NASA Astrophysics Data System (ADS)
Bell, J. R.; Burks, J. E.; Molthan, A.; McGrath, K. M.
2013-12-01
During the last year several significant disasters have occurred such as Superstorm Sandy on the East coast of the United States, and Typhoon Bopha in the Phillipines, along with several others. In support of these disasters NASA's Short-term Prediction Research and Transition (SPoRT) Center delivered various products derived from satellite imagery to help in the assessment of damage and recovery of the affected areas. To better support the decision makers responding to the disasters SPoRT quickly developed several solutions to provide the data using open Geographical Information Service (GIS) formats. Providing the data in open GIS standard formats allowed the end user to easily integrate the data into existing Decision Support Systems (DSS). Both Tile Mapping Service (TMS) and Web Mapping Service (WMS) were leveraged to quickly provide the data to the end-user. Development of the deliver methodology allowed quick response to rapidly developing disasters and enabled NASA SPoRT to bring science data to decision makers in a successful research to operations transition.
Development of WMS Capabilities to Support NASA Disasters Applications and App Development
NASA Technical Reports Server (NTRS)
Bell, Jordan R.; Burks, Jason E.; Molthan, Andrew L.; McGrath, Kevin M.
2013-01-01
During the last year several significant disasters have occurred such as Superstorm Sandy on the East coast of the United States, and Typhoon Bopha in the Phillipines, along with several others. In support of these disasters NASA's Short-term Prediction Research and Transition (SPoRT) Center delivered various products derived from satellite imagery to help in the assessment of damage and recovery of the affected areas. To better support the decision makers responding to the disasters SPoRT quickly developed several solutions to provide the data using open Geographical Information Service (GIS) formats. Providing the data in open GIS standard formats allowed the end user to easily integrate the data into existing Decision Support Systems (DSS). Both Tile Mapping Service (TMS) and Web Mapping Service (WMS) were leveraged to quickly provide the data to the end-user. Development of the deliver methodology allowed quick response to rapidly developing disasters and enabled NASA SPoRT to bring science data to decision makers in a successful research to operations transition.
NASA Technical Reports Server (NTRS)
Burks, Jason E.; Molthan, Andrew L.; McGrath, Kevin M.
2014-01-01
During the last year several significant disasters have occurred such as Superstorm Sandy on the East coast of the United States, and Typhoon Bopha in the Phillipines, along with several others. In support of these disasters NASA's Short-term Prediction Research and Transition (SPoRT) Center delivered various products derived from satellite imagery to help in the assessment of damage and recovery of the affected areas. To better support the decision makers responding to the disasters SPoRT quickly developed several solutions to provide the data using open Geographical Information Service (GIS) formats. Providing the data in open GIS standard formats allowed the end user to easily integrate the data into existing Decision Support Systems (DSS). Both Tile Mapping Service (TMS) and Web Mapping Service (WMS) were leveraged to quickly provide the data to the end-user. Development of the deliver methodology allowed quick response to rapidly developing disasters and enabled NASA SPoRT to bring science data to decision makers in a successful research to operations transition.
NASA Technical Reports Server (NTRS)
Burks, Jason E.; Molthan, Andrew L.; McGrath, Kevin M.
2014-01-01
During the last year several significant disasters have occurred such as Superstorm Sandy on the East coast of the United States, and Typhoon Bopha in the Phillipines, along with several others. In support of these disasters NASA's Short-term Prediction Research and Transition (SPoRT) Center delivered various products derived from satellite imagery to help in the assessment of damage and recovery of the affected areas. To better support the decision makers responding to the disasters SPoRT quickly developed several solutions to provide the data using open Geographical Information Service (GIS) formats. Providing the data in open GIS standard formats allowed the end user to easily integrate the data into existing Decision Support Systems (DSS). Both Tile Mapping Service (TMS) and Web Mapping Service (WMS) were leveraged to quickly provide the data to the end-user. Development of the deliver methodology allowed quick response to rapidly developing disasters and enabled NASA SPoRT to bring science data to decision makers in a successful research to operations transition.
Wang, Jun; Yi, Si; Li, Mengya; Wang, Lei; Song, Chengcheng
2018-04-15
We compared the effects of three key environmental factors of coastal flooding: sea level rise (SLR), land subsidence (LS) and bathymetric change (BC) in the coastal areas of Shanghai. We use the hydrological simulation model MIKE 21 to simulate flood magnitudes under multiple scenarios created from combinations of the key environmental factors projected to year 2030 and 2050. Historical typhoons (TC9711, TC8114, TC0012, TC0205 and TC1109), which caused extremely high surges and considerable losses, were selected as reference tracks to generate potential typhoon events that would make landfalls in Shanghai (SHLD), in the north of Zhejiang (ZNLD) and moving northwards in the offshore area of Shanghai (MNS) under those scenarios. The model results provided assessment of impact of single and compound effects of the three factors (SLR, LS and BC) on coastal flooding in Shanghai for the next few decades. Model simulation showed that by the year 2030, the magnitude of storm flooding will increase due to the environmental changes defined by SLR, LS, and BC. Particularly, the compound scenario of the three factors will generate coastal floods that are 3.1, 2.7, and 1.9 times greater than the single factor change scenarios by, respectively, SLR, LS, and BC. Even more drastically, in 2050, the compound impact of the three factors would be 8.5, 7.5, and 23.4 times of the single factors. It indicates that the impact of environmental changes is not simple addition of the effects from individual factors, but rather multiple times greater of that when the projection time is longer. We also found for short-term scenarios, the bathymetry change is the most important factor for the changes in coastal flooding; and for long-term scenarios, sea level rise and land subsidence are the major factors that coastal flood prevention and management should address. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lin, Yuan-Chien; Yu, Hwa-Lung
2013-04-01
The increasing frequency and intensity of extreme rainfall events has been observed recently in Taiwan. Particularly, Typhoon Morakot, Typhoon Fanapi, and Typhoon Megi consecutively brought record-breaking intensity and magnitude of rainfalls to different locations of Taiwan in these two years. However, records show the extreme rainfall events did not elevate the amount of annual rainfall accordingly. Conversely, the increasing frequency of droughts has also been occurring in Taiwan. The challenges have been confronted by governmental agencies and scientific communities to come up with effective adaptation strategies for natural disaster reduction and sustainable environment establishment. Groundwater has long been a reliable water source for a variety of domestic, agricultural, and industrial uses because of its stable quantity and quality. In Taiwan, groundwater accounts for the largest proportion of all water resources for about 40%. This study plans to identify and quantify the nonlinear relationship between precipitation and groundwater recharge, find the non-stationary time-frequency relations between the variations of rainfall and groundwater levels to understand the phase difference of time series. Groundwater level data and over-50-years hourly rainfall records obtained from 20 weather stations in Pingtung Plain, Taiwan has been collected. Extract the space-time pattern by EOF method, which is a decomposition of a signal or data set in terms of orthogonal basis functions determined from the data for both time series and spatial patterns, to identify the important spatial pattern of groundwater recharge and using cross wavelet and wavelet coherence method to identify the relationship between rainfall and groundwater levels. Results show that EOF method can specify the spatial-temporal patterns which represents certain geological characteristics and other mechanisms of groundwater, and the wavelet coherence method can identify general correlation between rainfall and groundwater signal at low frequency and high frequency relationship at some certain extreme rainfall events. Keywords: extreme rainfall, groundwater, EOF, wavelet coherence
Monitoring Global Precipitation through UCI CHRS's RainMapper App on Mobile Devices
NASA Astrophysics Data System (ADS)
Nguyen, P.; Huynh, P.; Braithwaite, D.; Hsu, K. L.; Sorooshian, S.
2014-12-01
The Water and Development Information for Arid Lands-a Global Network (G-WADI) Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks—Cloud Classification System (PERSIANN-CCS) GeoServer has been developed through a collaboration between the Center for Hydrometeorology and Remote Sensing (CHRS) at the University of California, Irvine (UCI) and the UNESCO's International Hydrological Program (IHP). G-WADI PERSIANN-CCS GeoServer provides near real-time high resolution (0.04o, approx 4km) global (60oN - 60oS) satellite precipitation estimated by the PERSIANN-CCS algorithm developed by the scientists at CHRS. The G-WADI PERSIANN-CCS GeoServer utilizes the open-source MapServer software from the University of Minnesota to provide a user-friendly web-based mapping and visualization of satellite precipitation data. Recent efforts have been made by the scientists at CHRS to provide free on-the-go access to the PERSIANN-CCS precipitation data through an application named RainMapper for mobile devices. RainMapper provides visualization of global satellite precipitation of the most recent 3, 6, 12, 24, 48 and 72-hour periods overlaid with various basemaps. RainMapper uses the Google maps application programing interface (API) and embedded global positioning system (GPS) access to better monitor the global precipitation data on mobile devices. Functionalities include using geographical searching with voice recognition technologies make it easy for the user to explore near real-time precipitation in a certain location. RainMapper also allows for conveniently sharing the precipitation information and visualizations with the public through social networks such as Facebook and Twitter. RainMapper is available for iOS and Android devices and can be downloaded (free) from the App Store and Google Play. The usefulness of RainMapper was demonstrated through an application in tracking the evolution of the recent Rammasun Typhoon over the Philippines in mid July 2014.
NASA Astrophysics Data System (ADS)
Mullen, C.; Muller, M. F.
2017-12-01
Groundwater resources are depleting globally at an alarming rate. When the resource is shared, exploitation by individual users affects groundwater levels and increases pumping costs to all users. This incentivizes individual users to strategically over-pump, an effect that is challenging to keep in check because the underground nature of the resource often precludes regulations from being effectively implemented. As a result, shared groundwater resources are prone to tragedies of the commons that exacerbate their rapid depletion. However, we showed in a recent study that the vulnerability of aquifer systems to strategic overuse is strongly affected by local economic and physical characteristics, which suggests that not all shared aquifers are subject to tragedies of the commons. Building on these findings, we develop a vulnerability index based on coupled game theoretical and groundwater flow models. We show that vulnerability to strategic overdraft is driven by four intuitively interpretable adimensional parameters that describe economic and hydrogeologic disparities between the agents exploiting the aquifer. This suggests a scale-independent relation between the vulnerability of groundwater systems to common-pool overdraft and their economic and physical characteristics. We investigate this relation for a sample of existing aquifer systems and explore implications for enforceable groundwater agreements that would effectively mitigate strategic overdraft.
Managing ISR sharing policies at the network edge using Controlled English
NASA Astrophysics Data System (ADS)
Parizas, Christos; Pizzocaro, Diego; Preece, Alun; Zerfos, Petros
2013-05-01
In domains such as emergency response and military operations the sharing of Intelligence, Surveillance and Reconnaissance (ISR) assets among different coalition partners is regulated through policies. Traditionally, poli cies are created at the center of a coalitions network by high-level decision makers and expressed in low-level policy languages (e.g. Common Information Model SPL) by technical personnel, which makes them difficult to be understood by non-technical users at the edge of the network. Moreover, policies must often be modified by negotiation among coalition partners, typically in rapid response to the changing operational situation. Com monly, the users who must cope first with situational changes are those on the edge, so it would be very effective if they were able to create and negotiate policies themselves. We investigate the use of Controlled English (CE) as a means to define a policy representation that is both human-friendly and machine processable. We show how a CE model can capture a variety of policy types, including those based on a traditional asset ownership model, and those defining team-based asset sharing across a coalition. The use of CE is intended to benefit coalition networks by bridging the gap between technical and non-technical users in terms of policy creation and negoti ation, while at the same time being directly processable by a policy-checking system without transformation to any other technical representation.
Long-Term Stable Control of Motor-Imagery BCI by a Locked-In User Through Adaptive Assistance.
Saeedi, Sareh; Chavarriaga, Ricardo; Millan, Jose Del R
2017-04-01
Performance variation is one of the main challenges that BCIs are confronted with, when being used over extended periods of time. Shared control techniques could partially cope with such a problem. In this paper, we propose a taxonomy of shared control approaches used for BCIs and we review some of the recent studies at the light of these approaches. We posit that the level of assistance provided to the BCI user should be adjusted in real time in order to enhance BCI reliability over time. This approach has not been extensively studied in the recent literature on BCIs. In addition, we investigate the effectiveness of providing online adaptive assistance in a motor-imagery BCI for a tetraplegic end-user with an incomplete locked-in syndrome in a longitudinal study lasting 11 months. First, we report a reliable estimation of the BCI performance (in terms of command delivery time) using only a window of 1 s in the beginning of trials (AUC ≈ 0.8 ). Second, we demonstrate how adaptive shared control can exploit the output of the performance estimator to adjust online the level of assistance in a BCI game by regulating its speed. In particular, online adaptive assistance was superior to a fixed condition in terms of success rate ( ). Remarkably, the results exhibited a stable performance over severalmonths without recalibration of the BCI classifier or the performance estimator.
Global warming and tropical cyclone climate in the western North Pacific
NASA Astrophysics Data System (ADS)
Kang, Nam-Young
Violent tropical cyclones (TCs) continue to inflict serious impacts on national economies and welfare, but how they are responding to global warming has not been fully clarified. Here I construct an empirical framework that shows the observations supporting a strong link between rising global ocean warmth and increasing trade-off between TC intensity and frequency in the western North Pacific. Thermodynamic structure of the tropical western North Pacific with high global ocean warmth is characterized by convectively more unstable lower troposphere with greater heat and moisture, but this instability is simultaneously accompanied by anomalous high pressure in the middle and upper troposphere over the same region. Increasing trade-off level between TC intensity and frequency in a warmer year proves that this environment further inhibits the TC occurrences over the region, but TCs that form tend to discharge stored energy to upper troposphere with stronger intensities. By increasing the intensity threshold at higher levels we confirmed that the TC climate connection with global ocean warmth occurs throughout the strongest portion of TCs, and the environmental connection of the TC climate is more conspicuous in the extreme portion of TCs. Intensities at the strongest 10~% of the western North Pacific TCs are comparable to super typhoons on average, the increasing trade-off magnitude clearly suggests that super typhoons in a warmer year gets stronger. Conclusively, the negative collinear feature of the thermodynamics influences the portion of TCs at the highest intensities, and super typhoons are likely to become stronger at the expense of overall TC frequencies in a warmer world. The consequence of this finding is that record-breaking TC intensities occur at the expense of overall TC frequencies under global warming. TC activity is understood as a variation which is independent of global warming, and could be assumed to be an internal variability having no trend. Frequency variation and super typhoon intensity variation are regarded as the addition of global warming influence on TC activity variation. The structure depicts how a previous intensity record is overtaken and frequency falls continuously in the global warming environment in a linear perspective. A peak TC activity year when global ocean warmth is the highest ever is likely to experience a record-breaking intensity. In the same way, the least number of annual TCs may appear when a lull of TC activity occurs in the warmest year.
Supertyphoon Nepartak Barreling Toward Taiwan Viewed by NASA MISR
2016-07-08
Typhoon Nepartak, the first large typhoon in the northwest Pacific this season, is currently taking aim at the east coast of Taiwan. Over the past few days, Nepartak has rapidly gained strength, growing from a tropical storm to the equivalent of a Category 5 hurricane with sustained wind speeds of more than 160 miles (258 kilometers) per hour. Taiwan's Central Weather Bureau has issued a torrential rain warning, bracing for likely flooding as 5 to 15 inches (13 to 38 centimeters) of rain are expected to fall over Taiwan during the storm's passage. Waves of up to 40 feet (12 meters) are predicted on the coast as the typhoon approaches, and air and train travel have been severely impacted. The typhoon is currently moving at about 10 miles per hour (16 kilometers) to the west-northwest, and is predicted to pass over Taiwan within the next day and then hit the coast of mainland China. Central and eastern China are poorly situated to absorb the rainfall from Nepartak after suffering the effects of severe monsoon flooding, which has killed at least 140 people in the past week. The Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra satellite captured this view of Typhoon Nepartak on July 7, 2016, at 10:30 a.m. local time (2:30 a.m. UTC). On the left is an image from the nadir (vertical pointing) camera, which shows the central portion of Nepartak and the storm's eye. The image is about 235 miles (378 kilometers) across. The island of Manila in the Philippines, about 250 miles (400 kilometers) south of Taiwan, is visible to the southwest of the eye. The image shows that Nepartak's center is extremely compact, rather than broken up into spiral bands as is more typical of typhoons. This means that the storm may retain more of its strength as it passes over land. MISR uses nine cameras to capture images of the typhoon from different angles. This provides a stereographic view, which can be used to determine the height of the storm's cloud tops. These heights are plotted in the middle panel, superimposed on the image. This shows that the cloud tops are relatively low, about 2.5 miles (4 kilometers), in the eye, but much higher, up to 12.5 miles (20 kilometers), just outside it. By tracking the motion of clouds as they are viewed by each of the nine cameras over about seven minutes, it is possible to also derive how fast the clouds are moving due to wind. These wind vectors are superimposed on the image in the right panel. The length of each arrow shows the wind speed at that location (compare to the 45 miles per hour or 20 meters per second arrow in the legend), and the color shows the height at which the wind is being computed. The motion of the low-level winds (red and yellow arrows) is counterclockwise, while the motion of the high winds (blue and purple arrows) is mostly clockwise. This is because hurricanes draw in warm, moist air at low altitudes, which then flows upward around the eye, releases its moisture as rain, and moves outward at high altitudes. As is typical of these types of storm systems, the inflowing low winds and the outflowing high winds spin in different directions. http://photojournal.jpl.nasa.gov/catalog/PIA20719
Field Report: Medical Response to Super Typhoon Haiyan.
Noone, Michael
2015-10-01
This report describes the experience and observations during a humanitarian medical response 10 days after landfall of Typhoon Haiyan in the Leyte Island region of the Philippines. Loss of availability of local health care providers was observed to affect the ability of the local community to provide for immediate, post-event medical relief.
NASA Astrophysics Data System (ADS)
Ford, Murray R.; Kench, Paul S.
2014-06-01
In 1905, a devastating typhoon hit Nadikdik Atoll (5°54‧ N and 172°09‧ E) in the southern Marshall Islands. Evidence suggests that large sections of reef islands on Nadikdik were overwashed and destroyed. Comparison of aerial photographs taken in 1945 and modern satellite imagery provides a unique record of the geomorphic adjustment of islands after the typhoon. Between 1945 and 2010 the vegetated area of islands on Nadikdik grew from 0.74 to 0.90 km2. Observed changes to Nadikdik reef islands manifested through a range of styles and were largely accretionary. Of note, the formation of a new island was tracked from an embryonic deposit to a fully vegetated and stable island over a 61 year period. Similarly, a number of previously discrete islands have agglomerated and formed a single larger island. These changes were rapid and indicate that reef island formation can occur quickly. Evidence suggests that despite the typhoon occurring over a century ago the geomorphic adjustment of islands is still on-going.
NASA Astrophysics Data System (ADS)
Ozturk, Ugur; Marwan, Norbert; Kurths, Jürgen
2017-04-01
Complex networks are commonly used for investigating spatiotemporal dynamics of complex systems, e.g. extreme rainfall. Especially directed networks are very effective tools in identifying climatic patterns on spatially embedded networks. They can capture the network flux, so as the principal dynamics of spreading significant phenomena. Network measures, such as network divergence, bare the source-receptor relation of the directed networks. However, it is still a challenge how to catch fast evolving atmospheric events, i.e. typhoons. In this study, we propose a new technique, namely Radial Ranks, to detect the general pattern of typhoons forward direction based on the strength parameter of the event synchronization over Japan. We suggest to subset a circular zone of high correlation around the selected grid based on the strength parameter. Radial sums of the strength parameter along vectors within this zone, radial ranks are measured for potential directions, which allows us to trace the network flux over long distances. We employed also the delay parameter of event synchronization to identify and separate the frontal storms' and typhoons' individual behaviors.
Structure and Evolution of Band-shaped Convective Rainbands in Typhoon Marokot (2009)
NASA Astrophysics Data System (ADS)
Zhang, Y.
2012-12-01
Typhoon Morakot struck Taiwan on the night of Friday 7 August 2009 as a Category 1 storm (with sustained winds of 80 knots). Although the center made landfall in Hualien county along the central east coast of Taiwan, it was southern Taiwan that received the heaviest rainfall (2878 mm of rain in three days), resulting in the worst flooding over Taiwan in 50 years. This record-breaking rainfall is produced by the continuous impingement of typhoon rainbands with the steep terrain along the southern Central Mountain Range (CMR). In this study, rainband structures of Typhoon Morakot (2009) are analyzed and compared with the observations using outputs from the cloud-resolving WRF model with high spatial resolution (1-km horizontal grid spacing). The characteristics of the unique band-shaped convective rainband in TC Morakot are explained with respect to the following details: (i) horizontal shape, (ii) structure, and (iii) development and evolution process. The kinematic and precipitation structures of convective-scale elements in the Morakot rainbands are analyzed and compared with those of Hurricanes Katrina and Rita (2005).
NASA Astrophysics Data System (ADS)
Takahashi, Y.
2016-12-01
It has become known that lightning activity represents the thunderstorm activity, namely, the intensity and area of precipitation and/or updraft. Thunderstorm is also important as a proxy of the energy input from ocean to atmosphere in typhoon, meaning that if we could monitor the thunderstorm with lightning we could predict the maximum wind velocity near the typhoon center by one or two days before. Constructing ELF and VLF radio wave observation network in Southeast Asia (AVON) and a regional dense network of automated weather station in a big city, we plan to establish the monitoring system for thunderstorm development in western pacific warm pool (WPWP) where typhoon is formed and in detail in big city area. On the other hand, some developing countries in SE-Asia are going to own micro-satellites dedicated to meteorological remote sensing. Making use of the lightning activity data measured by the ground-based networks, and information on 3-D structures of thunderclouds observed by the flexible on-demand operation of the remote-sensing micro-satellites, we would establish a new methodology to obtain very detail semi-real time information that cannot be achieved only with existing observation facilities, such as meteorological radar or large meteorological satellite. Using this new system we try to issue nowcast for the local thunderstorm and for typhoons. The first attempt will be carried out in Metro Manila in Philippines and WPWP as one of the SATREPS projects.
Use the High-Resolution Numerical Model to Simulate Typhoon Morakot 2009
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Shi, Jainn J.; Lin, Pay-Liam
2010-01-01
Typhoon Morakot struck Taiwan on the night of Friday August 7th, 2009 as a category 2 storm with sustained winds of 85 knots (92 mph). Although the center made landfall in Hualien county along the central cast coast of Taiwan and passed over the central northern part of the island, it was southern Taiwan that received the worst effects of the storm where locally as Much as 2200 mm (2.2 m) of rain were reported, resulting in the worst flooding there in 50 years. The result of the enormous amount of rain has been massive flooding and devastating mudslides. More than 600 people are confirmed dead. In this paper, we will present the results from high-resolution (2-km) WRF for this typhoon case. The results showed that the model captured both in terms of maximum rainfall area and intensity. The model results also showed that the heavy amounts of rain over the southern portion of the island is due to persistent southwesterly flow associated with Morakot and it's circulation was able to draw up copious amounts of moisture from the South China Sea into southern Taiwan where it was able to interact with the steep topography. In the paper, we will also present results from sensitivity test of terrain heights and SST on the precipitation processes (rainfall) associated with Typhoon Morakot (2009), In addition, we will present high-resolution visualization (36 second and 2-km) to show the evolution of Typhoon Morakot.
NASA Astrophysics Data System (ADS)
Troselj, Josko; Sayama, Takahiro; Varlamov, Sergey M.; Sasaki, Toshiharu; Racault, Marie-Fanny; Takara, Kaoru; Miyazawa, Yasumasa; Kuroki, Ryusuke; Yamagata, Toshio; Yamashiki, Yosuke
2017-12-01
This study demonstrates the importance of accurate extreme discharge input in hydrological and oceanographic combined modeling by introducing two extreme typhoon events. We investigated the effects of extreme freshwater outflow events from river mouths on sea surface salinity distribution (SSS) in the coastal zone of the north-eastern Japan. Previous studies have used observed discharge at the river mouth, as well as seasonally averaged inter-annual, annual, monthly or daily simulated data. Here, we reproduced the hourly peak discharge during two typhoon events for a targeted set of nine rivers and compared their impact on SSS in the coastal zone based on observed, climatological and simulated freshwater outflows in conjunction with verification of the results using satellite remote-sensing data. We created a set of hourly simulated freshwater outflow data from nine first-class Japanese river basins flowing to the western Pacific Ocean for the two targeted typhoon events (Chataan and Roke) and used it with the integrated hydrological (CDRMV3.1.1) and oceanographic (JCOPE-T) model, to compare the case using climatological mean monthly discharges as freshwater input from rivers with the case using our hydrological model simulated discharges. By using the CDRMV model optimized with the SCE-UA method, we successfully reproduced hindcasts for peak discharges of extreme typhoon events at the river mouths and could consider multiple river basin locations. Modeled SSS results were verified by comparison with Chlorophyll-a distribution, observed by satellite remote sensing. The projection of SSS in the coastal zone became more realistic than without including extreme freshwater outflow. These results suggest that our hydrological models with optimized model parameters calibrated to the Typhoon Roke and Chataan cases can be successfully used to predict runoff values from other extreme precipitation events with similar physical characteristics. Proper simulation of extreme typhoon events provides more realistic coastal SSS and may allow a different scenario analysis with various precipitation inputs for developing a nowcasting analysis in the future.
Electric and Hybrid Electric Vehicle Technologies
1998-06-30
participants; car sharing logistics; liability issues; billing and col- lecting user fees; service and maintenance support; data acquisition; and...driven on the freeway, and their circumstances had changed. Among the challenges facing station-car and car - sharing programs that use EVs rather than...funding; selection and training of users; many different types of participants; car sharing logistics; liability issues; billing and collecting user
Typhoon Chan-Hom "Eyes" NASA's Aqua Satellite
2017-12-08
Typhoon Chan-Hom's eye was visible from space when NASA's Aqua satellite passed overhead early on July 8, 2015. The MODIS instrument, known as the Moderate Resolution Imaging Spectrometer, flies aboard NASA's Aqua satellite. When Aqua passed over Typhoon Chan-Hom on July 8 at 04:25 UTC (12:25 a.m. EDT), MODIS captured a visible-light image of the storm that clearly showed its eye. The MODIS image also a ring of powerful thunderstorms surrounding the eye of the storm, and the bulk of thunderstorms wrapping around the system from west to east, along the southern side. At 0900 UTC (5 a.m. EDT), Typhoon Chan-Hom's maximum sustained winds were near 85 knots (97.8 mph/157.4 kph). Tropical-storm-force winds extended 145 nautical miles (166.9 miles/268.5 km) from the center, making the storm almost 300 nautical miles (345 miles/555 km) in diameter. Typhoon-force winds extended out to 35 nautical miles (40 miles/64.8 km) from the center. Chan-Hom's eye was centered near 20.5 North latitude and 132.7 East longitude, about 450 nautical miles (517.9 miles/833.4 km) southeast of Kadena Air Base, Iwo To, Japan. Chan-Hom was moving to the northwest at 11 knots (12.6 mph/20.3 kph). The typhoon was generating very rough seas with wave heights to 28 feet (8.5 meters). The Joint Typhoon Warning Center expects Chan-Hom to continue tracking northwestward over the next three days under the steering influence of a sub-tropical ridge (elongated area of high pressure). Chan-Hom is expected to intensify steadily peaking at 120 knots (138.1 mph/222.2 kph) on July 10. The JTWC forecast predicts that Chan-Hom will make landfall near Wenzhou, Zhejiang, China and begin decaying due to land interaction. For updated warnings and watches from China's National Meteorological Centre, visit: www.cma.gov.cn/en/WeatherWarnings/. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team b>NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Evaluating the impact of Mobike on automobile-involved bicycle crashes at the road network level.
Li, Ye; Xing, Lu; Wang, Wei; Liang, Mingzhang; Wang, Hao
2018-03-01
As a booming system, free-floating bicycle-sharing (denoted as Mobike) attracts a large number of users due to the convenient utilization procedure. However, it brings about a rapid increase of bicycle volume on roadways, resulting in safety problems especially on road segments shared by automobiles and bikes. This study aimed to evaluate impacts of Mobike on automobile-involved bicycle crashes on shared roadways at a macro level, the network level. Relation between traffic volumes and crashes was first established. Then, the travel mode choice before and after supplying Mobike in the market was analyzed, based on which the multi-class multi-modal user equilibrium (MMUE) models were formulated and solved. Two attributes of Mobike, supply quantity and fare, were investigated via various scenarios. Results suggested the Mobike attracted more walkers than auto-users in travel mode choices, which caused the volume increase of bicycles but few volume decline of automobiles and resulted in more crashes. The supply quantity of Mobike had a negative impact on safety, while the fare had a positive effect. The total supply of Mobike in the market should be regulated by governments to avoid over-supply and reduce bicycle crashes. The fares should be also regulated by including taxes and insurances, which can be used to build up more separated bicycle facilities and cover the Mobike accidents, respectively. The findings of this study provide useful information for governments and urban transportation managers to improve bicycle safety and regulate the Mobike market. Copyright © 2018 Elsevier Ltd. All rights reserved.
RAPTOR: An Enterprise Knowledge Discovery Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
2010-11-11
SharePoint search capability is commonly criticized by users due to the limited functionality provided. This software takes a world class search capability (Piranha) and integrates it with an Enterprise Level Collaboration Application installed on most major government and commercial sites.
A Distributed Multi-Agent System for Collaborative Information Management and Learning
NASA Technical Reports Server (NTRS)
Chen, James R.; Wolfe, Shawn R.; Wragg, Stephen D.; Koga, Dennis (Technical Monitor)
2000-01-01
In this paper, we present DIAMS, a system of distributed, collaborative agents to help users access, manage, share and exchange information. A DIAMS personal agent helps its owner find information most relevant to current needs. It provides tools and utilities for users to manage their information repositories with dynamic organization and virtual views. Flexible hierarchical display is integrated with indexed query search-to support effective information access. Automatic indexing methods are employed to support user queries and communication between agents. Contents of a repository are kept in object-oriented storage to facilitate information sharing. Collaboration between users is aided by easy sharing utilities as well as automated information exchange. Matchmaker agents are designed to establish connections between users with similar interests and expertise. DIAMS agents provide needed services for users to share and learn information from one another on the World Wide Web.
Characteristics of Broadband Seismic Noise in Taiwan and Neighboring Islands
NASA Astrophysics Data System (ADS)
Chen, Ching-Wei; Rau, Ruey-Juin
2017-04-01
We used seismic waveform data from 115 broad-band stations of BATS (Institute of Earth Science, Academia Sinica) and Central Weather Bureau Seismic Network from 2012 to 2016 for noise-level mapping in Taiwan and neighboring islands. We computed Power Spectral Density (PSD) for each station and analyzed long-term variance of microseism energy and polarizations of noise for severe weather events. The island of Taiwan is surrounded by ocean and the Central Range which has the highest peak Jade Mountain at 3,952 meters height occupies more than 66% of the island and departs it into the east and west coasts. The geographic settings then result in the high population density in the western plain and northern Taiwan. The dominant noise source in the microseism band (periods from 4-20 seconds) is the coupling between the near-coast ocean and sea floor which produces the high noise of averaging -130 dB along the west coastal area. In the eastern volcanic-arc coastal areas, the noise level is about 7% smaller than the west coast due to its deeper offshore water depth. As for the shorter periods (0.1-0.25 seconds) band, the so-called culture noise, an anthropic activity variance with the highest -103 dB can be identified in the metropolitan areas, such as the Taipei city and the noise level in the Central Range area is averaging -138 dB. Moreover, the noise also shows a daily and temporal evolution mainly related to the traffic effect. Furthermore, we determined the noise level for the entire island of Taiwan during 26-28 September, 2016, when the typhoon Megi hit the island and retrieved the enhancement of secondary microseism energy for each stations. Typhoon Megi landed in eastern and central Taiwan and reached the maximum wind speed of 45m/s in the surrounded eyewall. The Central Range, as a barrier, decreased the wind speed in southern Taiwan making an enhancement less than 10 dB, while in northern Taiwan where the direction the typhoon headed to, can reach more than 35 dB.
Increasing Flood Risk due to Run-off Outflow near Estuarine City during Storm Event
NASA Astrophysics Data System (ADS)
Son, S.; Lee, C.; Do, K.; Jung, T.
2017-12-01
Tropical cyclone easily causes inundation damage to low-lying coastal area and the damage may be amplified due to tide motion, sea-level rise, riverine discharges. Specifically, typhoons are accompanied by intensive rainfall, which will of course raise the river water level and thus enhance the flooding damages. If the tidal cycle coincides the high water, flooding will be even aggravated. In the present study, we simulated storm surge motions at the coastal area considering combined effects of tidal and river discharge with aim to improve the accuracy of flooding prediction. The quasi 3-dimension ocean circulation model, Delf3D was used which solves the unsteady shallow water equation in the 2D and 3D. Since Delft3D is much applicable to accommodate the indirect flooding factors such as riverine discharge and short waves, outer-coupled modeling system was established to account for combined tide-surge-riverine discharge effects. In such integrated system, 11 tidal constituents were input as open boundary condition using TPXO 7.2 model, while the water level per unit time was preliminary calculated by HEC-HMS model and input as the upstream boundary conditions for river inside the domain. Typhoon MAEMI which attacked Masan city located at southern coast of South Korea and caused severe inundation damages in 2003 was selected for the study event. Basic information for typhoon such as path, wind speed, atmospheric pressure every 3 hours was provided by the Korea Meteorological Agency and was adopted. The simulation was implemented with tide and storm surge boundary conditions focusing on the target area, Masan, while the additional consideration on the discharge of the river inside the domain was also made. Simulated water level at the fixed location was compared to the observation for its verification and the extent of inundation areas of Masan were compared between observed and calculated. The marginal contribution of riverine discharge on the flooding area(or depth) was assessed by comparing tide-surge with tide-surge-riverine discharge simulations. Finally, the importance of the specific consideration on the riverine discharge during storm surge modeling can be addressed.
Investigating Typhoon Induced River-Surge Interactions in the Tamsui Estuary, Taiwan.
NASA Astrophysics Data System (ADS)
Maskell; J. H.; Grieser, J.; Rodney, J.; Howe, N. J.
2016-02-01
It is increasingly important to understand the combined influence of the main drivers of coastal risk due to sea level rise and the potential increase in extreme weather events. An Asian Basin stochastic typhoon set was used to force a storm surge model of Taiwan to investigate the interaction between storm surge and high river discharges (50, 100 and 200 year return period discharges) in the Tamsui River. Taiwan is a mountainous country leading to the combined risk of surge and high river discharge occurring simultaneously in estuary regions. The typhoon tracks were selected using a Hurricane Surge Index (Kantha, 2006) and cross the northern tip of Taiwan with maximum sustained winds (Vmax) between 51 m/s and 75 m/s (Cat 3-5). Peak surge elevations in the Tamsui River range from 5.7 m to 10.3 m. The surge interacts with the river flow to induce changes in the water elevation between -8 m and 4 m depending on the surge elevation and river discharge and increases the inundated area in the range 37 km to 204 km. Significant positive interactions occur in the Tamsui Estuary (Fig. 1a) but do not have implications for increased inundation and occur at the start of the flood phase and the end of the ebb phase as previously shown in idealized test cases (Maskell et al., 2013). Current vectors in the estuary show that at the time leading up to high water the river outflow starts to become dominant in the mid-channel reducing maximum water levels by up to 10% in the combined surge and river solution. However, surge inhibits downstream propagation of the flood wave in the upper river channels increasing water levels by up to 2 m. The maximum inundated area (1330 km2) is caused by the combination of defence overflow due to the maximum surge (10.27 m) and increased river levels (RP100) in the upper channels leading to significant inundation either side of the Keelung River (Fig. 1b). The Erchung floodway is effective in diverting some of the flow (up to 10,443 m3/s) reducing inundation elsewhere in the river network.
Richard A. MacKenzie; Nicole Cormier
2012-01-01
Structurally complex mangrove roots are thought to provide foraging habitat, predation refugia, and typhoon protection for resident fish, shrimp, and crabs. The spatially compact nature of Micronesian mangroves results in model ecosystems to test these ideas. Tidal creek nekton assemblages were compared among mangrove forests impacted by Typhoon Sudal and differing in...
Micronesian mangrove forest structure and tree responses to a severe typhoon
J. Boone Kauffman; Thomas G. Cole
2010-01-01
Tropical cyclones are common disturbances that have strong effects on mangrove composition and structure. Because there are numerous ecosystem services provided by mangroves, it is important to understand their adaptations and responses to these climatic events. In April 2004, Typhoon Sudal, a category 3-4 cyclone, passed over the state of Yap, Federated States of...
NASA Technical Reports Server (NTRS)
Wilcox, R. E.
1985-01-01
The similarities and differences between areas inside and outside U.S. metropolitan areas were evaluated in terms of their commercial/industrial and government employment characteristics. The comparison focuses on the levels, shares, and composition of employment in the commercial/industrial and government sectors that represent potential classes of land mobile communications users. The major findings of the analysis are as follows: (1) non-metropolitan commercial/industrial user classes of land mobile communication services exist in significant numbers; (2) the compositions of non-metropolitan and metropolitan commercial/industrial user classes of land mobile communication services closely resemble each other; (3) non-metropolitan areas have significant levels of the government user classes that represent potential markets for land mobile communication services; and (4) non-metropolitan local governments have a significantly larger proportion of their employment in the primary user classes of private land mobile radio service than do metropolitan local governments.
Application of Spaceborne Scatterometer to Study Typhoon, Tropical Hydrologic Balance and El Nino
NASA Technical Reports Server (NTRS)
Liu, W. Timothy
1995-01-01
The high spatial resolution and global coverage of a spaceborne microwave scatterometer make it a power instrument to study phenomena ranging from typhoon to El Nino Southern Oscillation which have regional and short term economic and ecological impacts as well as effects on long term and global climate changes. In this report, the application of scatterometer data, by itself, to study the intensity and the evolution of typhoon is demonstrated. The potential of combining wind vector and precipitable water derived from two spaceborne sensors to study the hydrologic balance in the tropics is discussed. The role of westerly wind bursts as a precursor of anomalous warming in the equatorial Pacific is investigated with coincident data from microwave scatterometer, altimeter and radiometer.
Expanding Bicycle-Sharing Systems: Lessons Learnt from an Analysis of Usage
Zhang, Ying; Thomas, Tom; Brussel, M. J. G.; van Maarseveen, M. F. A. M.
2016-01-01
Bike-sharing programs, with initiatives to increase bike use and improve accessibility of urban transit, have received increasing attention in growing number of cities across the world. The latest generation of bike-sharing systems has employed smart card technology that produces station-based data or trip-level data. This facilitates the studies of the practical use of these systems. However, few studies have paid attention to the changes in users and system usage over the years, as well as the impact of system expansion on its usage. Monitoring the changes of system usage over years enables the identification of system performance and can serve as an input for improving the location-allocation of stations. The objective of this study is to explore the impact of the expansion of a bicycle-sharing system on the usage of the system. This was conducted for a bicycle-sharing system in Zhongshan (China), using operational usage data of different years following system expansion. To this end, we performed statistical and spatial analyses to examine the changes in both users and system usage between before and after the system expansion. The findings show that there is a big variation in users and aggregate usage following the system expansion. However, the trend in spatial distribution of demand shows no substantial difference over the years, i.e. the same high-demand and low-demand areas appear. There are decreases in demand for some old stations over the years, which can be attributed to either the negative performance of the system or the competition of nearby new stations. Expanding the system not only extends the original users’ ability to reach new areas but also attracts new users to use bike-sharing systems. In the conclusions, we present and discuss the findings, and offer recommendations for the further expansion of system. PMID:27977794
Oeldorf-Hirsch, Anne; High, Andrew C; Christensen, John L
2018-04-23
This study investigates the relationship between sharing tracked mobile health (mHealth) information online, supportive communication, feedback, and health behavior. Based on the Integrated Theory of mHealth, our model asserts that sharing tracked health information on social networking sites benefits users' perceptions of their health because of the supportive communication they gain from members of their online social networks and that the amount of feedback people receive moderates these associations. Users of mHealth apps (N = 511) completed an online survey, and results revealed that both sharing tracked health information and receiving feedback from an online social network were positively associated with supportive communication. Network support both corresponded with improved health behavior and mediated the association between sharing health information and users' health behavior. As users received greater amounts of feedback from their online social networks, however, the association between sharing tracked health information and health behavior decreased. Theoretical implications for sharing tracked health information and practical implications for using mHealth apps are discussed.
Virtual communities of practice: can they support the prevention agenda in public health?
Ford, Jennifer; Korjonen, Helena; Keswani, Asha; Hughes, Emma
2015-01-01
Background Virtual Communities of Practice (CoPs) are flexible communication and knowledge management tools enabling collaboration, sharing of best practice and professional development. There have been few studies that have looked at the use and usefulness of virtual CoPs in public health. Methods This project sought to gather the evidence and develop recommendations for the value of virtual CoPs in public health through a literature review, and through piloting two CoPs in obesity. The research aimed to find out how useful CoPs are in obesity prevention, what makes a CoP successful and what evaluation methods are appropriate. Results CoPs are composed of observers, passive and active contributors with a small group of 'super-users'. All users learn through reading and listening, even if they do not post. The CoPs had higher levels of reading activity as opposed to low levels of posting activity. Longer existence of CoPs usually means more active membership. There are complex reasons why users fail to engage in knowledge sharing. Success of a CoP is creating an online environment where users feel comfortable. CoPs need administrative support and facilitation. Champions play a vital role. Conclusions Evidence shows some encouraging results about the value of CoPs in enabling collaboration and information sharing. Despite low membership numbers of the obesity CoPs piloted, members see value and suggest improvements. Findings suggest that success comes from leadership, champions, and larger networks with more posting activity. Mixed methods of quantitative and qualitative research are appropriate in measuring the use and impact of CoPs. PMID:26284150
Providing Effective Access to Shared Resources: A COIN Approach
NASA Technical Reports Server (NTRS)
Airiau, Stephane; Wolpert, David H.
2004-01-01
Managers of systems of shared resources typically have many separate goals. Examples are efficient utilization of the resources among its users and ensuring no user s satisfaction in the system falls below a preset minimal level. Since such goals will usually conflict with one another, either implicitly or explicitly the manager must determine the relative importance of the goals, encapsulating that into an overall utility function rating the possible behaviors of the entire system. Here we demonstrate a distributed, robust, and adaptive way to optimize that overall function. Our approach is to interpose adaptive agents between each user and the system, where each such agent is working to maximize its own private utility function. In turn, each such agent's function should be both relatively easy for the agent to learn to optimize, and "aligned" with the overall utility function of the system manager - an overall function that is based on but in general different from the satisfaction functions of the individual users. To ensure this we enhance the Collective INtelligence (COIN) framework to incorporate user satisfaction functions in the overall utility function of the system manager and accordingly in the associated private utility functions assigned to the users agents. We present experimental evaluations of different COIN-based private utility functions and demonstrate that those COIN-based functions outperform some natural alternatives.
Providing Effective Access to Shared Resources: A COIN Approach
NASA Technical Reports Server (NTRS)
Airiau, Stephane; Wolpert, David H.; Sen, Sandip; Tumer, Kagan
2003-01-01
Managers of systems of shared resources typically have many separate goals. Examples are efficient utilization of the resources among its users and ensuring no user's satisfaction in the system falls below a preset minimal level. Since such goals will usually conflict with one another, either implicitly or explicitly the manager must determine the relative importance of the goals, encapsulating that into an overall utility function rating the possible behaviors of the entire system. Here we demonstrate a distributed, robust, and adaptive way to optimize that overall function. Our approach is to interpose adaptive agents between each user and the system, where each such agent is working to maximize its own private utility function. In turn, each such agent's function should be both relatively easy for the agent to learn to optimize, and 'aligned' with the overall utility function of the system manager - an overall function that is based on but in general different from the satisfaction functions of the individual users. To ensure this we enhance the COllective INtelligence (COIN) framework to incorporate user satisfaction functions in the overall utility function of the system manager and accordingly in the associated private utility functions assigned to the users agents. We present experimental evaluations of different COIN-based private utility functions and demonstrate that those COIN-based functions outperform some natural alternatives.
NASA Astrophysics Data System (ADS)
Wang, Ji-Shang; Huang, Wen-Shun; Jan, Chyan-Deng; Yeh, Nai-Ching
2015-04-01
Haucha Village is an indigenous tribe of Rukai people in Pingtung County, Taiwan. Due to the difficulty of providing transportation, education, medical services and jobs, residents were migrated from "Kochapongan" to Haucha village by local authorities in 1980. The site of the relocation is located three km away from Haucha. The new residents in Haucha village lived safely and peacefully before 1996. However, Typhoon Herb brought the first debris flow hazard in 1996, and it caused four deaths. Then, several typhoons caused some damage to the village. Recently, Haucha village was destroyed during typhoon Morakot in 2009 when 128 buildings were buried by sediments. In this study, we used historical map, typhoon records, rainfall data, and the change of river bed elevation to determine the environmental change and the safety of Haucha village. Our results show that Haucha village was located on sand bar of Southern Ailiao stream before 1924, and formed a river terrace between 1925~1960 that was 30m higher than the river bed. Local authorities decided to move Rukai people from Kochapongan to Haucha in 1970. After 30 years, the elevation of Haucha village was equal to the river bed, in other words, the village formed a flood plain of Southern Ailiao stream after typhoon Morakot in 2009. The present landscape of Haucha village looks similar to the one 100 years ago. Morphological changes of mountain area is more rapid than plain changes, hence, we should considered larger temporal and spatial scales to evaluate the village`s safety in the mountain area.
NASA Astrophysics Data System (ADS)
Li, Y.; Wang, X.; Zhang, Y.
2014-12-01
There were two typhoon processes during Campaign PRIDE-PRD2006 in July 2006 and serious ozone pollution episodes occurred before the landing of the typhoons. Chemical transport model CMAQ was employed in this work to simulate the ozone pollution episode related by the typhoon KAEMI. According to the meteorological conditions, the pollution episode could be divided into three phases with the movement of the typhoon, which were (1) far away from the continent; (2) coming close to the continent; (3) before landing. Process analysis was applied to get the contributions of physical and chemical processes for the ozone. It revealed that transport process was dominant during this pollution episode, and the influence of chemical process increased in the second phase. Three typical regions, northern rural area, urban area and Hong Kong area, were selected to study the contribution of each chemical and physical process. In the first phase, the primary process in northern rural area and the urban area was vertical diffusion, accounting for 47% and 46% respectively. In the second phase, the primary process in northern rural area and the urban area was chemical process, accounting for 33% and 31% respectively. In the third phase, the region of high concentration ozone moved southward. For Hong Kong area, the western inflow was prominent as 40%. Sensitivity study showed that urban areas were VOCs-limited regime with decreased ozone concentration when reducing the emission of VOCs. On the contrary, the ozone concentration in downwind rural areas decreased with the reduction of NOx, and the reason may be the decrement of the accumulated precursors.
Abrupt state change of river water quality (turbidity): Effect of extreme rainfalls and typhoons.
Lee, Chih-Sheng; Lee, Yi-Chao; Chiang, Hui-Min
2016-07-01
River turbidity is of dynamic nature, and its stable state is significantly changed during the period of heavy rainfall events. The frequent occurrence of typhoons in Taiwan has caused serious problems in drinking water treatment due to extremely high turbidity. The aim of the present study is to evaluate impact of typhoons on river turbidity. The statistical methods used included analyses of paired annual mean and standard deviation, frequency distribution, and moving standard deviation, skewness, and autocorrelation; all clearly indicating significant state changes of river turbidity. Typhoon Morakot of 2009 (recorded high rainfall over 2000mm in three days, responsible for significant disaster in southern Taiwan) is assumed as a major initiated event leading to critical state change. In addition, increasing rate of turbidity in rainfall events is highly and positively correlated with rainfall intensity both for pre- and post-Morakot periods. Daily turbidity is also well correlated with daily flow rate for all the eleven events evaluated. That implies potential prediction of river turbidity by river flow rate during rainfall and typhoon events. Based on analysis of stable state changes, more effective regulations for better basin management including soil-water conservation in watershed are necessary. Furthermore, municipal and industrial water treatment plants need to prepare and ensure the adequate operation of water treatment with high raw water turbidity (e.g., >2000NTU). Finally, methodology used in the present of this study can be applied to other environmental problems with abrupt state changes. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tsuchiya, Kenji; Kuwahara, Victor S.; Yoshiki, Tomoko M.; Nakajima, Ryota; Shimode, Shinji; Kikuchi, Tomohiko; Toda, Tatsuki
2017-07-01
Daily field surveys were conducted at a coastal-shelf station in Sagami Bay, Japan after the passage of typhoon Malou in 2010 to evaluate the after-effect of a typhoon passage on the physical-chemical environment, phytoplankton bloom formation and microbial processes within and below the euphotic layer. The passage of Malou induced an abrupt decrease in salinity and increased loading of nutrients to the euphotic layer. Dinoflagellates dominated the phytoplankton community at the surface, whereas diatoms dominated below the surface just after the passage of Malou. Four days later, the dominant dinoflagellate taxa at the surface changed from Protoperidinium spp. to Prorocentrum spp. and Ceratium spp., indicating a dinoflagellate community succession from heterotrophic to autotrophic functional groups. Five days after passage, the dominant phytoplankton taxa shifted from dinoflagellates to diatom groups of Chaetoceros spp. and Cerataulina spp. throughout the water column. Below the euphotic layer, there were increases in diatom frustules, mainly composed of Chaetoceros spp. and Cerataulina spp., bacterial abundance and NH4+ concentrations. Diatom carbon biomass contributed to approximately half of particulate organic carbon (POC) below the euphotic layer, suggesting a significant contribution of diatoms to POC sinking flux after the passage of a typhoon. Bacterial abundance was positively correlated to both phaeopigment concentrations (p < 0.01) and NH4+ concentrations (p < 0.01), suggesting bacterial growth was associated with zooplankton grazing and remineralization of NH4+. The results suggest that the passage of a typhoon could significantly affect biogeochemical activities within and below the euphotic layer in temperate coastal waters.
Stewart, Samuel Alan; Abidi, Syed Sibte Raza
2017-05-01
Online communities of practice contain a wealth of information, stored in the free text of shared communications between community members. The Knowledge Maps (KMaps) system is designed to facilitate Knowledge Translation in online communities through multi-level analyses of the shared messages of these communications. Using state-of-the-art semantic mapping technologies (Metamap) the contents of the messages shared within an online community are mapped to terms from the MeSH medical lexicon, providing a multi-level topic-specific summary of the knowledge being shared within the community. Using the inherent hierarchical structure of the lexicon important insights can be found within the community. The KMaps system was applied to two medical mailing lists, the PPML (archives from 2009-02 to 2013-02) and SURGINET (archives from 2012-01 to 2013-04), identifying 27,924 and 50,597 medical terms respectively. KMaps identified content areas where both communities found interest, specifically around Diseases, 22% and 24% of the total terms, while also identifying field-specific areas that were more popular: SURGINET expressed an interest in Anatomy (14% vs 4%) while the PPML was more interested in Drugs (19% vs 9%). At the level of the individual KMaps identified 6 PPML users and 9 SURGINET users that had noticeably more contributions to the community than their peers, and investigated their personal areas of interest. The KMaps system provides valuable insights into the structure of both communities, identifying topics of interest/shared content areas and defining content-profiles for individual community members. The system provides a valuable addition to the online KT process. Copyright © 2017 Elsevier B.V. All rights reserved.
Micronesian mangrove forest structure and tree responses to a severe typhoon
J. Boone Kauffman; Thomas G. Cole
2010-01-01
Tropical cyclones are common disturbances that have strong effects on mangrove composition and structure. Because there are numerous ecosystem services provided by mangroves, it is important to understand their adaptations and responses to these climatic events. In April 2004, Typhoon Sudal, a category 3â4 cyclone, passed over the state of Yap, Federated States of...
Measurement of Non-Stationary Characteristics of a Landfall Typhoon at the Jiangyin Bridge Site.
He, Xuhui; Qin, Hongxi; Tao, Tianyou; Liu, Wenshuo; Wang, Hao
2017-09-22
The wind-sensitive long-span suspension bridge is a vital element in land transportation. Understanding the wind characteristics at the bridge site is thus of great significance to the wind- resistant analysis of such a flexible structure. In this study, a strong wind event from a landfall typhoon called Soudelor recorded at the Jiangyin Bridge site with the anemometer is taken as the research object. As inherent time-varying trends are frequently captured in typhoon events, the wind characteristics of Soudelor are analyzed in a non-stationary perspective. The time-varying mean is first extracted with the wavelet-based self-adaptive method. Then, the non-stationary turbulent wind characteristics, e.g.; turbulence intensity, gust factor, turbulence integral scale, and power spectral density, are investigated and compared with the results from the stationary analysis. The comparison highlights the importance of non-stationary considerations of typhoon events, and a transition from stationarity to non-stationarity for the analysis of wind effects. The analytical results could help enrich the database of non-stationary wind characteristics, and are expected to provide references for the wind-resistant analysis of engineering structures in similar areas.
Measurement of Non-Stationary Characteristics of a Landfall Typhoon at the Jiangyin Bridge Site
Qin, Hongxi; Tao, Tianyou; Liu, Wenshuo
2017-01-01
The wind-sensitive long-span suspension bridge is a vital element in land transportation. Understanding the wind characteristics at the bridge site is thus of great significance to the wind- resistant analysis of such a flexible structure. In this study, a strong wind event from a landfall typhoon called Soudelor recorded at the Jiangyin Bridge site with the anemometer is taken as the research object. As inherent time-varying trends are frequently captured in typhoon events, the wind characteristics of Soudelor are analyzed in a non-stationary perspective. The time-varying mean is first extracted with the wavelet-based self-adaptive method. Then, the non-stationary turbulent wind characteristics, e.g.; turbulence intensity, gust factor, turbulence integral scale, and power spectral density, are investigated and compared with the results from the stationary analysis. The comparison highlights the importance of non-stationary considerations of typhoon events, and a transition from stationarity to non-stationarity for the analysis of wind effects. The analytical results could help enrich the database of non-stationary wind characteristics, and are expected to provide references for the wind-resistant analysis of engineering structures in similar areas. PMID:28937641
Directional Wave Spectra Observed During Intense Tropical Cyclones
NASA Astrophysics Data System (ADS)
Collins, C. O.; Potter, H.; Lund, B.; Tamura, H.; Graber, H. C.
2018-02-01
Two deep-sea moorings were deployed 780 km off the coast of southern Taiwan for 4-5 months during the 2010 typhoon season. Directional wave spectra, wind speed and direction, and momentum fluxes were recorded on two Extreme Air-Sea Interaction buoys during the close passage of Severe Tropical Storm Dianmu and three tropical cyclones (TCs): Typhoon Fanapi, Super Typhoon Megi, and Typhoon Chaba. Conditions sampled include significant wave heights up to 11 m and wind speeds up to 26 m s-1. Details varied for large-scale spectral structure in frequency and direction but were mostly bimodal. The modes were generally composed of a swell system emanating from the most intense storm region and local wind-seas. The peak systems were consistently young, meaning actively forced by winds, when the storms were close. During the peaks of the most intense passages—Chaba at the northern mooring and Megi at the southern—the bimodal seas coalesced. During Chaba, the swell and wind-sea coupling directed the high frequency waves and the wind stress away from the wind direction. A spectral wave model was able reproduce many of the macrofeatures of the directional spectra.
NASA Astrophysics Data System (ADS)
Wu, Xiao; Wang, Houjie; Bi, Naishuang; Song, Zhenjie; Zang, Zhengchen; Kineke, Gail C.
2016-12-01
Based on the combination of synchronous satellite and in-situ observations, we here, for the first time, provide the compelling evidence of bio-physical response of coastal environment in the Bohai Sea (China) to the passage of Typhoon Meari over the northern Yellow Sea on June 26, 2011. Strong sustained winds induced a tongue-like intrusion of cool water from the northern Yellow Sea into the Bohai Sea, resulting in significant surface cooling and an anomalous increase in sea surface height along the coast of the western Bohai Sea. This, in return, produced downwelling and transport of the warm and nutrient-rich coastal water from the western coast to the central Bohai Sea, as driven by the barotropic pressure gradient force. In-situ observational data confirmed the cooling of both surface and bottom layers with salinity increase; however, the measured temperature increase by 2-3 °C, concomitant salinity decrease by 0.3 PSU and two-fold increase in chlorophyll-a in the middle layers suggested an influence from coastal downwelling. Ekman transport and typhoon-enhanced mixing redistributed the nutrients and thus resulted in higher chlorophyll-a concentrations in the upper layers.
Landslide Susceptibility Analysis along Li-Shing Mountain Road in Nantou County, Taiwan
NASA Astrophysics Data System (ADS)
Yeh, J. H.; Chan, H. C.; Chen, B. A.
2016-12-01
Slopeland hazards are frequently occurred during typhoon periods in the mountain areas of Taiwan. The Li-Shing Mountain Road was suffered from the landslide and erosion of road foundation due to its fragile geological structure, overuse of land, and heavy rainfall. Transportation of agricultural produce in Li-Shing areas was seriously affected while the Li-Shing Mountain Road was blocked by the landslides. To evaluate the landslide susceptibilities along the Li-Shing Mountain Road, this study collected the landslide inventories from Typhoon Mindulle in July, 2004 and Typhoon Kalmaegi in July, 2008. By combining the landslide inventories with hydrological and geological factors, such as rainfall, distance to river, geology, and land slope and aspect, the Instability Index Method was used to specify the landslide susceptibilities of the slopes along the Li-Shing Mountain Road. The accuracy of the present model was evaluated by comparison of the predicted and the typhoon triggered landslides. Finally, the high landslide potential slopes along the Li-Shing Mountain Road were identified. It is expected to provide the information for landslide warning system and engineering countermeasures planning along the Li-Shing Mountain Road. Keywords: Landslide, Instability Index Method, Li-Shing Mountain Road
A Night-time Look at Typhoon Soudelor from NASA-NOAA's Suomi NPP Satellite
2015-08-10
On August 6, 2015, NASA-NOAA's Suomi NPP satellite passed over powerful Typhoon Soudelor at night when it was headed toward Taiwan. The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard NASA-NOAA's Suomi satellite captured this night-time infrared image of the storm. At 1500 UTC (11 a.m. EDT) on August 6, 2015, Typhoon Soudelor had maximum sustained winds near 90 knots (103.6 mph/166.7 kph). It was centered near 21.3 North latitude and 127.5 East longitude, about 324 nautical miles (372.9 miles/600 km) south of Kadena Air Base, Okinawa, Japan. It was moving to the west at 10 knots (11.5 mph/18.5 kph). Taiwan is located west (left) of the powerful typhoon in this image. Credit: UWM/CIMSS/SSEC, William Straka III NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Racca, P.; Casarin, R.; Dondio, P.; Squazzoni, F.
2018-03-01
Group size can potentially affect collective activity and individual propensity to contribute to collective goods. Mancur Olson, in his Logic of Collective Action, argued that individual contribution to a collective good tends to be lower in groups of large size. Today, online communication platforms represent an interesting ground to study such collaborative dynamics under possibly different conditions (e.g., lower costs related to gather and share information). This paper examines the relationship between group size and activity in an online financial forum, where users invest time in sharing news, analysis and comments with other investors. We looked at about 24 million messages shared in more than ten years in the finanzaonline.com online forum. We found that the relationship between the number of active users and the number of posts shared by those users is of the power type (with exponent α > 1) and is subject to periodic fluctuations, mostly driven by hour-of-the-day and day-of-the-week effects. The daily patterns of the exponent showed a divergence between working week and weekend days. In general, the exponent was lower before noon, where investors are typically interested in market news, higher in the late afternoon, where markets are closing and investors need better understanding of the situation. Further research is needed, especially at the micro level, to dissect the mechanisms behind these regularities.
Tasking and sharing sensing assets using controlled natural language
NASA Astrophysics Data System (ADS)
Preece, Alun; Pizzocaro, Diego; Braines, David; Mott, David
2012-06-01
We introduce an approach to representing intelligence, surveillance, and reconnaissance (ISR) tasks at a relatively high level in controlled natural language. We demonstrate that this facilitates both human interpretation and machine processing of tasks. More specically, it allows the automatic assignment of sensing assets to tasks, and the informed sharing of tasks between collaborating users in a coalition environment. To enable automatic matching of sensor types to tasks, we created a machine-processable knowledge representation based on the Military Missions and Means Framework (MMF), and implemented a semantic reasoner to match task types to sensor types. We combined this mechanism with a sensor-task assignment procedure based on a well-known distributed protocol for resource allocation. In this paper, we re-formulate the MMF ontology in Controlled English (CE), a type of controlled natural language designed to be readable by a native English speaker whilst representing information in a structured, unambiguous form to facilitate machine processing. We show how CE can be used to describe both ISR tasks (for example, detection, localization, or identication of particular kinds of object) and sensing assets (for example, acoustic, visual, or seismic sensors, mounted on motes or unmanned vehicles). We show how these representations enable an automatic sensor-task assignment process. Where a group of users are cooperating in a coalition, we show how CE task summaries give users in the eld a high-level picture of ISR coverage of an area of interest. This allows them to make ecient use of sensing resources by sharing tasks.
NASA Sees a Wider-Eyed Typhoon Soudelor Near Taiwan
2017-12-08
The MODIS instrument aboard NASA's Aqua satellite flew over Typhoon Soudelor on Aug. 7, 2015, at 4:40 UTC (12:40 a.m. EDT) as it was approaching Taiwan. Credits: NASA Goddard's MODIS Rapid Response Team Clouds in Typhoon Soudelor's western quadrant were already spreading over Taiwan early on August 7 when NASA's Aqua satellite passed overhead. Soudelor is expected to make landfall and cross central Taiwan today and make a second landfall in eastern China. NASA satellite imagery revealed that Soudelor's eye "opened" five more miles since August 4. On Aug. 7 at 4:40 UTC (12:40 a.m. EDT) the Moderate Resolution Imaging Spectroradiometer or MODIS instrument aboard NASA's Aqua satellite captured a visible-light image of Typhoon Soudelor as its western quadrant began brushing eastern Taiwan. The MODIS image showed Soudelor's 17-nautical-mile-wide eye and thick bands of powerful thunderstorms surrounded the storm and spiraled into the center. Just three days before, the eye was 5 nautical miles smaller when the storm was more intense. On Aug. 4 at 4:10 UTC (12:10 a.m. EDT) Aqua's MODIS image showed the eye was 12-nautical-mile-wide eye. At 1500 UTC (11 a.m. EDT) on August 7, 2015, the Joint Typhoon Warning Center (JTWC) noted that Typhoon Soudelor's maximum sustained winds increased from 90 knots (103.6 mph/166.7 kph) to 105 knots (120.8 mph / 194.5 kph). It was centered near 23.1 North latitude and 123.2 East longitude, about 183 nautical miles (210.6 miles/338.9 km) southeast of Taipei, Taiwan. It was moving to the west-northwest at 10 knots (11.5 mph/18.5 kph). For warnings and watches for Taiwan, visit the Central Weather Bureau website: www.cwb.gov.tw/eng/. For warnings in China, visit the China Meteorological Administration website: www.cma.gov.cn/en. Soudelor's final landfall is expected in eastern China on Saturday, August 8. Clouds in Typhoon Soudelor's western quadrant were already spreading over Taiwan early on August 7 when NASA's Aqua satellite passed overhead. Soudelor is expected to make landfall and cross central Taiwan today and make a second landfall in eastern China. NASA satellite imagery revealed that Soudelor's eye "opened" five more miles since August 4. On Aug. 7 at 4:40 UTC (12:40 a.m. EDT) the Moderate Resolution Imaging Spectroradiometer or MODIS instrument aboard NASA's Aqua satellite captured a visible-light image of Typhoon Soudelor as its western quadrant began brushing eastern Taiwan. The MODIS image showed Soudelor's 17-nautical-mile-wide eye and thick bands of powerful thunderstorms surrounded the storm and spiraled into the center. Just three days before, the eye was 5 nautical miles smaller when the storm was more intense. On Aug. 4 at 4:10 UTC (12:10 a.m. EDT) Aqua's MODIS image showed the eye was 12-nautical-mile-wide eye. At 1500 UTC (11 a.m. EDT) on August 7, 2015, the Joint Typhoon Warning Center (JTWC) noted that Typhoon Soudelor's maximum sustained winds increased from 90 knots (103.6 mph/166.7 kph) to 105 knots (120.8 mph / 194.5 kph). It was centered near 23.1 North latitude and 123.2 East longitude, about 183 nautical miles (210.6 miles/338.9 km) southeast of Taipei, Taiwan. It was moving to the west-northwest at 10 knots (11.5 mph/18.5 kph). For warnings and watches for Taiwan, visit the Central Weather Bureau website: www.cwb.gov.tw/eng/. For warnings in China, visit the China Meteorological Administration website: www.cma.gov.cn/en. Soudelor's final landfall is expected in eastern China on Saturday, August 8.
Bevan, Jennifer L; Cummings, Megan B; Kubiniec, Ashley; Mogannam, Megan; Price, Madison; Todd, Rachel
2015-01-01
This study examined an aspect of Facebook disclosure that has as yet gone unexplored: whether a user prefers to share information directly, for example, through status updates, or indirectly, via photos with no caption or relationship status changes without context or explanation. The focus was on the sharing of important positive and negative life events related to romantic relationships, health, and work/school in relation to likelihood of sharing this type of information on Facebook and general attitudes toward privacy. An online survey of 599 adult Facebook users found that when positive life events were shared, users preferred to do so indirectly, whereas negative life events were more likely to be disclosed directly. Privacy shared little association with how information was shared. Implications for understanding the finer nuances of how news is shared on Facebook are discussed.
A simple tool for neuroimaging data sharing
Haselgrove, Christian; Poline, Jean-Baptiste; Kennedy, David N.
2014-01-01
Data sharing is becoming increasingly common, but despite encouragement and facilitation by funding agencies, journals, and some research efforts, most neuroimaging data acquired today is still not shared due to political, financial, social, and technical barriers to sharing data that remain. In particular, technical solutions are few for researchers that are not a part of larger efforts with dedicated sharing infrastructures, and social barriers such as the time commitment required to share can keep data from becoming publicly available. We present a system for sharing neuroimaging data, designed to be simple to use and to provide benefit to the data provider. The system consists of a server at the International Neuroinformatics Coordinating Facility (INCF) and user tools for uploading data to the server. The primary design principle for the user tools is ease of use: the user identifies a directory containing Digital Imaging and Communications in Medicine (DICOM) data, provides their INCF Portal authentication, and provides identifiers for the subject and imaging session. The user tool anonymizes the data and sends it to the server. The server then runs quality control routines on the data, and the data and the quality control reports are made public. The user retains control of the data and may change the sharing policy as they need. The result is that in a few minutes of the user’s time, DICOM data can be anonymized and made publicly available, and an initial quality control assessment can be performed on the data. The system is currently functional, and user tools and access to the public image database are available at http://xnat.incf.org/. PMID:24904398
Typhoon Champi Develops Massive Eye
2017-12-08
Taken on October 22, 2015 at 0400 UTC by the Suomi NPP satellite's VIIRS sensor, this colorized infrared image shows the extremely large eye of Typhoon Champi. With a diameter of 60 nautical miles, the eye of the storm is larger than the state of Rhode Island. Typhoon Champi is currently 700 nautical miles south of Tokyo, Japan with 110mph sustained winds, and is moving northeast with no threat to land. Credit: NASA/NOAA via NOAA Environmental Visualization Laboratory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Diagnostic Analysis of Second Strengthen Heavy Rain in Western Guangdong for NO.1011 Typhoon Fanapi
NASA Astrophysics Data System (ADS)
Liu, L.
2013-12-01
In order to learn more about the development mechanism of the rainstorm which is caused by No.1101 super typhoon "Fanapi", this paper use weather diagnostic methods to study two processes of heavy rain after "Fanapi" landed in the western part of Guangdong by applying Ncep1 ° × 1 ° reanalysis data and observed precipitation data. Through the preliminary analysis of this typhoon rainstorm, the result shows that cold air and water vapor transmission mainly cause the second strengthen precipitation ,the isoline slope of pseudoequivalent potential temperature reflect the second strengthen precipitation ,the upper troposphere high potential vorticity pass down and the cold dry air in the upper atomosphere confronts with the warm moist air in the lower atmosphere so that the precipitation increase.
Typhoon Soudelor's Eye over Northwestern Taiwan
2015-08-10
In this MODIS image from NASA's Aqua satellite, the eye of Typhoon Soudelor is seen over northwestern Taiwan on August 8, 2015 at 05:25 UTC (1:25 a.m. EDT). At that time, Soudelor had maximum sustained winds near 90 knots. It was less than 100 miles southwest of Taipei, Taiwan. Typhoon-force winds were felt up to 35 miles from the center, covering a 70 mile-wide diameter. Image credit: NASA Goddard MODIS Rapid Response Team/Jeff Schmaltz..NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Aoyama, T.; Iyemori, T.; Nakanishi, K.
2014-12-01
We present case studies of small-scale magnetic fluctuations above typhoons, hurricanes and cyclones as observed by the swarm constellation. It is reported lately that AGWs(atmospheric gravity waves) generated by meteorological phenomena in the troposphere such as typhoons and tornadoes, large earthquakes and volcanic eruptions propagate to the mesosphere and thermosphere. We observe them in various forms(e.g. airglows, ionospheric disturbances and TEC variations). We are proposing the following model. AGWs caused by atmospheric disturbances in the troposphere propagate to the ionospheric E-layer, drive dynamo action and generate field-aligned currents. The satellites observe magnetic fluctuations above the ionosphere. In this presentation, we focus on cases of tropical cyclone(hurricanes in North America, typhoons in North-West Pacific).
Near-Infrared Image of Typhoon Usagi Between Taiwan and the Philippines
2017-12-08
On Sept. 21, Typhoon Usagi was moving between the northern Philippines and Taiwan when NASA's Aqua satellite passed overhead. NASA's AIRS instrument that flies aboard the Aqua satellite captured this near-infrared image on Sept. 21 at 505 UTC/1:05 a.m. EDT as Usagi. The near-infrared image is similar to how the clouds of the typhoon would appear in the daylight. Image Credit: NASA JPL, Ed Olsen Caption: NASA Goddard, Rob Gutro NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
An Inter-Personal Information Sharing Model Based on Personalized Recommendations
NASA Astrophysics Data System (ADS)
Kamei, Koji; Funakoshi, Kaname; Akahani, Jun-Ichi; Satoh, Tetsuji
In this paper, we propose an inter-personal information sharing model among individuals based on personalized recommendations. In the proposed model, we define an information resource as shared between people when both of them consider it important --- not merely when they both possess it. In other words, the model defines the importance of information resources based on personalized recommendations from identifiable acquaintances. The proposed method is based on a collaborative filtering system that focuses on evaluations from identifiable acquaintances. It utilizes both user evaluations for documents and their contents. In other words, each user profile is represented as a matrix of credibility to the other users' evaluations on each domain of interests. We extended the content-based collaborative filtering method to distinguish other users to whom the documents should be recommended. We also applied a concept-based vector space model to represent the domain of interests instead of the previous method which represented them by a term-based vector space model. We introduce a personalized concept-base compiled from each user's information repository to improve the information retrieval in the user's environment. Furthermore, the concept-spaces change from user to user since they reflect the personalities of the users. Because of different concept-spaces, the similarity between a document and a user's interest varies for each user. As a result, a user receives recommendations from other users who have different view points, achieving inter-personal information sharing based on personalized recommendations. This paper also describes an experimental simulation of our information sharing model. In our laboratory, five participants accumulated a personal repository of e-mails and web pages from which they built their own concept-base. Then we estimated the user profiles according to personalized concept-bases and sets of documents which others evaluated. We simulated inter-personal recommendation based on the user profiles and evaluated the performance of the recommendation method by comparing the recommended documents to the result of the content-based collaborative filtering.
NASA Spots Typhoon Phanfone Affecting Japan
2017-12-08
Over the weekend of Oct. 5 and 6, Typhoon Phanfone's center made landfall just south of Tokyo and passed over the city before exiting back into the Northwestern Pacific Ocean. NASA's Aqua satellite captured a picture of the typhoon as Tokyo braced for its large eye. On its way to mainland Japan, Phanfone struck Kadena Air Base on the island of Okinawa. According to the website for U.S. Air Force Kadena Air Base (www.kadena.af.mil), "One Airman is confirmed deceased and two more are missing after they were washed out to sea from the northwest coast of Okinawa at about 3:45 p.m. Oct. 5. An Airman that was found by the Japanese Coast Guard and pulled from the sea was later pronounced dead at a local hospital. HH-60s from Kadena Air Base and Japanese Coast Guard are continuing to search for the remaining two Airmen. Rough seas are complicating rescue efforts." Typhoon Phanfone's large eye made landfall near the city of Hamamatsu on Oct. 5 around 8 a.m. local time and then tracked north before turning eastward into the Pacific Ocean north of Tokyo. The MODIS instrument known as the Moderate Resolution Imaging Spectroradiometer captures amazing pictures from its orbit aboard NASA's Aqua satellite. MODIS snapped a picture of Typhoon Phanfone approaching Japan on Oct. 5 at 12:55 a.m. EDT. At that time, the Typhoon had already passed north of Okinawa, and was just south of the large island of Kyushu. The MODIS image revealed a large eye with powerful bands of thunderstorms spiraling into the center. On Oct. 6 by 0900 UTC (5 a.m. EDT), Phanfone had weakened from a typhoon to a tropical storm back over open waters of the Northwestern Pacific Ocean. Maximum sustained winds were near 60 knots (69.0 mph/111.1 kph). Phanfone was located near 38.0 north longitude and 145.0 east latitude. That's about 201 nautical miles (271 miles/372 km) south-southeast of Misawa Air Base, Japan. Phanfone was moving to the northeast at 40 knots (46 mph/74 kph). Forecasters at the Joint Typhoon Warning Center (JTWC) using animated multispectral satellite imagery noted that Phanfone is being affected by strong wind shear. The wind shear has stretched the tropical storm out, and pushed the bulk of thunderstorms northeast of the center. In addition, Phanfone has transitioned into an extra-tropical storm, which means that its core transitioned from warm to cold. JTWC called for Phanfone to continue accelerating northeastward and weaken as an extra-tropical cyclone over water. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
ERIC Educational Resources Information Center
Kerawalla, Lucinda; Pearce, Darren; Yuill, Nicola; Luckin, Rosemary; Harris, Amanda
2008-01-01
We take a socio-cultural approach to comparing how dual control of a new user interface paradigm--Separate Control of Shared Space (SCOSS)--and dual control of a single user interface can work to mediate the collaborative decision-making process between pairs of children carrying out a multiple categorisation word task on a shared computer.…
Fan, Cheng-Wei; Kao, Shuh-Ji
2008-04-15
The seasonal concentrations of dissolved oxygen in a subtropical deep reservoir were studied over a period of one year. The study site was the Feitsui Reservoir in Taiwan. It is a dam-constructed reservoir with a surface area of 10.24 km(2) and a mean depth of 39.6 m, with a maximum depth of 113.5 m near the dam. It was found that certain weather and climate events, such as typhoons in summer and autumn, as well as cold fronts in winter, can deliver oxygen-rich water, and consequently have strong impacts on the dissolved oxygen level. The typhoon turbidity currents and winter density currents played important roles in supplying oxygen to the middle and bottom water, respectively. The whole process can be understood by the hydrodynamics driven by weather and climate events. This work provides the primary results of dissolved oxygen in a subtropical deep reservoir, and the knowledge is useful in understanding water quality in subtropical regions.
Satellite-observed latent heat release in a tropical cyclone
NASA Technical Reports Server (NTRS)
Adler, R. F.; Rodgers, E. B.
1976-01-01
Earlier observational estimates of storm latent heat release (LHR) have been made using a moisture budget approach. The present paper summarizes results for the tropical cyclone Nora, using the electrically scanning microwave radiometer (ESMR) on Nimbus 5, on the basis of the theoretical brightness temperature/rainfall rate relationship for an assumed freezing level of 5 km. The LHR of the storm as a function of time for a circular area of radius 4 deg latitude positioned on the circulation center is discussed along with the calculated mean rain rate as a function of distance from the storm center. The contribution of the various magnitudes of rain rates to the total LHR of the storm is examined. It is concluded that the Nimbus 5 ESMR data can be used to determine the LHR characteristics of tropical cyclones and are potentially useful in the monitoring of such storms. The calculations for Typhoon Nora indicate that the LHR for the storm increases as the storm intensifies from a tropical disturbance to a typhoon.
Evrard, Olivier; Chartin, Caroline; Onda, Yuichi; Patin, Jeremy; Lepage, Hugo; Lefèvre, Irène; Ayrault, Sophie; Ottlé, Catherine; Bonté, Philippe
2013-01-01
Measurement of radioactive dose rates in fine sediment that has recently deposited on channel bed-sand provides a solution to address the lack of continuous river monitoring in Fukushima Prefecture after Fukushima Dai-ichi nuclear power plant (FDNPP) accident. We show that coastal rivers of Eastern Fukushima Prefecture were rapidly supplied with sediment contaminated by radionuclides originating from inland mountain ranges, and that this contaminated material was partly exported by typhoons to the coastal plains as soon as by November 2011. This export was amplified during snowmelt and typhoons in 2012. In 2013, contamination levels measured in sediment found in the upper parts of the catchments were almost systematically lower than the ones measured in nearby soils, whereas their contamination was higher in the coastal plains. We thereby suggest that storage of contaminated sediment in reservoirs and in coastal sections of the river channels now represents the most crucial issue. PMID:24165695
ERIC Educational Resources Information Center
Lazarinis, Fotis
2014-01-01
iLM is a Web based application for representation, management and sharing of IMS LIP conformant user profiles. The tool is developed using a service oriented architecture with emphasis on the easy data sharing. Data elicitation from user profiles is based on the utilization of XQuery scripts and sharing with other applications is achieved through…
"Midget typhoon" in the western Pacific Ocean
2017-12-08
It’s usually the big, sprawling storms that attract the attention of meteorologists, but occasionally tiny storms can make news as well. The most recent example is a suspected mini-typhoon that drifted across the western Pacific Ocean in mid-July 2013. The storm system emerged on July 16 and dissipated by July 19 without making landfall or causing any significant damage. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite captured this true-color image of the storm on July 17, 2013. It had the spiral shape of a tropical cyclone, but the cloud field was less than 100 kilometers (60 miles) across. For comparison, Super Typhoon Jelawat, the most intense storm of the 2012 season, had a cloud field that stretched nearly 1,000 kilometers (600 miles). Jelawat’s eye alone—with a diameter of 64 kilometers (40 miles)—was two-thirds the size of the entire July 2013 storm. Despite their small size, mini-cyclones are driven by the same forces that drive larger storms. Both small and large cyclonic storms are simply organized convection feeding off warm water in areas with low wind shear. According to the Joint Typhoon Warning Center, the low-pressure areas for these mini-typhoons must span less than two degrees of latitude (about 140 miles) and have sustained winds of 65 knots (74 miles per hour). The 2013 storm in the Pacific certainly meets the first criteria, but it is unlikely that the storm achieved typhoon-force winds. It’s also unlikely that the system had a “warm core,” which all true tropical cyclones have. While this storm did not cause damage, other mini storms certainly have. In 1974, the miniature cyclone Tracy hit Darwin, Australia, killing 71 people and destroying more than 70 percent of the city’s buildings. According to the National Hurricane Center, tropical cyclone Marco unseated Tracy as the smallest tropical cyclone on record in 2008. Marco had gale force winds that extended just 19 kilometers (12 miles). Typhoon Tip, with gale force winds extending 1,000 kilometers (675 miles) is the largest tropical cyclone on record. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Visualisation and interaction design solutions to address specific demands in shared home care.
Scandurra, Isabella; Hägglund, Maria; Koch, Sabine
2006-01-01
When care professionals from different organisations are involved in patient care, their different views on the care process may not be meaningfully integrated. To use visualisation and interaction design solutions addressing the specific demands of shared care in order to support a collaborative work process. Participatory design, comprising interdisciplinary seminar series with real users and iterative prototyping, was applied. A set of interaction and visualisation design solutions to address care professionals' requirements in shared home care is presented, introducing support for identifying origin of information, holistic presentation of information, user group specific visualisation, avoiding cognitive overload, coordination of work and planning, and quick overviews. The design solutions are implemented in an integrated virtual health record system supporting cooperation and coordination in shared home care for the elderly. The described requirements are, however, generalized to comprise all shared care work. The presented design considerations allow healthcare professionals in different organizations to share patient data on mobile devices. Visualization and interaction design facilitates specific work situations and assists in handling specific demands in shared care. The user interface is adapted to different user groups with similar yet distinct needs. Consequently different views supporting cooperative work and presenting shared information in holistic overviews are developed.
NASA Astrophysics Data System (ADS)
Rezvani, Mohammad Hossein; Analoui, Morteza
2010-11-01
We have designed a competitive economical mechanism for application level multicast in which a number of independent services are provided to the end-users by a number of origin servers. Each offered service can be thought of as a commodity and the origin servers and the users who relay the service to their downstream nodes can thus be thought of as producers of the economy. Also, the end-users can be viewed as consumers of the economy. The proposed mechanism regulates the price of each service in such a way that general equilibrium holds. So, all allocations will be Pareto optimal in the sense that the social welfare of the users is maximized.
User-Centric Secure Cross-Site Interaction Framework for Online Social Networking Services
ERIC Educational Resources Information Center
Ko, Moo Nam
2011-01-01
Social networking service is one of major technological phenomena on Web 2.0. Hundreds of millions of users are posting message, photos, and videos on their profiles and interacting with other users, but the sharing and interaction are limited within the same social networking site. Although users can share some content on a social networking site…
NASA Astrophysics Data System (ADS)
Gan, T.; Tarboton, D. G.; Dash, P. K.; Gichamo, T.; Horsburgh, J. S.
2017-12-01
Web based apps, web services and online data and model sharing technology are becoming increasingly available to support research. This promises benefits in terms of collaboration, platform independence, transparency and reproducibility of modeling workflows and results. However, challenges still exist in real application of these capabilities and the programming skills researchers need to use them. In this research we combined hydrologic modeling web services with an online data and model sharing system to develop functionality to support reproducible hydrologic modeling work. We used HydroDS, a system that provides web services for input data preparation and execution of a snowmelt model, and HydroShare, a hydrologic information system that supports the sharing of hydrologic data, model and analysis tools. To make the web services easy to use, we developed a HydroShare app (based on the Tethys platform) to serve as a browser based user interface for HydroDS. In this integration, HydroDS receives web requests from the HydroShare app to process the data and execute the model. HydroShare supports storage and sharing of the results generated by HydroDS web services. The snowmelt modeling example served as a use case to test and evaluate this approach. We show that, after the integration, users can prepare model inputs or execute the model through the web user interface of the HydroShare app without writing program code. The model input/output files and metadata describing the model instance are stored and shared in HydroShare. These files include a Python script that is automatically generated by the HydroShare app to document and reproduce the model input preparation workflow. Once stored in HydroShare, inputs and results can be shared with other users, or published so that other users can directly discover, repeat or modify the modeling work. This approach provides a collaborative environment that integrates hydrologic web services with a data and model sharing system to enable model development and execution. The entire system comprised of the HydroShare app, HydroShare and HydroDS web services is open source and contributes to capability for web based modeling research.
2013-07-11
ISS036-E-017957 (11 July 2013) --- One of the Expedition 36 crew members aboard the International Space Station photographed this image of Typhoon Soulik just east of northern Taiwan in the Pacific Ocean. [Editor?s update: Thousands of people were evacuated in Taiwan; and the entire island was declared an "alert zone," as Typhoon Soulik made landfall early on July 13 (local time), pounding the country with powerful winds and heavy rain].
2013-07-11
ISS036-E-017952 (11 July 2013) --- One of the Expedition 36 crew members aboard the International Space Station photographed this image of Typhoon Soulik just east of northern Taiwan in the Pacific Ocean. [Editor?s update: Thousands of people were evacuated in Taiwan; and the entire island was declared an "alert zone," as Typhoon Soulik made landfall early on July 13 (local time), pounding the country with powerful winds and heavy rain].
ERIC Educational Resources Information Center
Nivera, Gladys; Camacho, Vic Marie; Sia, Shila Rose; Avilla, Ruel; Butron, Benilda; Fernandez, Eisha Vienna; Pastor, Crist John; Reyes, Allan; Palomar, Brando
2017-01-01
The catastrophic devastation from recent natural calamities in the Philippines such as Typhoon Yolanda and Central Visayas earthquake in 2013 had made disaster preparedness a primary concern in the country. Prompted by the critical need to use science to save lives, this study developed Science of Survival (SOS) pamphlets titled "When the…
Earth observation taken by the Expedition 43 crew
2015-05-08
ISS043E183985 (05/08/2015) --- Typhoon Noul from a camera aboard the International Space Station taken by the Expedition 43 crew led by Commander Terry Virts, NASA astronaut. Noul originated in the tropical Western Pacific, brushing the island of Yap before strengthening rapidly and clipping the northern Philippines as a super typhoon, winding up on the Pacific coast of Japan reduced to a tropical storm.
2015-03-31
ISS043E078143 (03/31/2015) --- Astronauts on board the International Space Station captured this image on Mar. 31, 2015 of the category 5 super Typhoon Maysak which is headed toward the Philippines. The Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) satellites, both co-managed by NASA and the Japan Aerospace Exploration Agency, captured rainfall and cloud data that revealed heavy rainfall and high thunderstorms in the strengthening storm.
Typhoon seen during the STS-79 mission
1996-09-20
STS79-E-5099 (20 September 1996) --- The crew members have been able to spot two typhoons - the larger Violet, north of the Philippines, and a lesser one called Willie, near Vietnam - and a tropical depression from Earth-orbit, during Flight Day 5. They aimed the Electronic Still Camera (ESC) at this storm, believed to be Violet, during the early hours of September 20, 1996.
NASA Astrophysics Data System (ADS)
Yang, S. Y.; Jan, C. D.; Wang, Y. C.
2014-12-01
Active evolving rivers are some of the most dynamic and sensitive parts of landscapes. From geologic and geomorphic perspectives, a stable river channel can adjust its width, depth, and slope to prevent significant aggradation or degradation caused by external triggers, e.g., hydrologic events caused by typhoon storms. In particular, the processes of lateral riverbank erosion play a majorly important role in forming horizontal river geomorphology, dominating incised river widens and meanders. Sediment materials produced and mobilized from riverbanks can also be substantial sediment supplying into river channel networks, affecting watershed sediment yield. In Taiwan, the geological and climatic regimes usually combine to generate severely lateral erosion and/or riverbed deposition along river channels, causing the significant change in river width. In the August of 2009, Typhoon Morakot brought severe rainfall of about 2000 mmin Southern Taiwan during three days at the beginning of Aug. 5, leading to significant changes in geomorphic system. Here we characterized river width widening (including Cishan, Laonong, and Ilao Rivers) in the Kaoping River watershed after Typhoon Morakot disturbance interpreted through a power law. On the basis of a temporal pair (2008 and 2009) of Formosat-II (Formosa satellite II) images analysis, the river channels were digitalized within geographic information system (GIS), and river widths were extracted per 100 m along the rivers, then differentiating the adjustment of river width before and after Typhoon Morkot. The river width adjusted from -83 m (contracting) to 1985 m (widening), with an average of 170 m. The noncumulative frequency-magnitude distribution for river width adjustment caused by Typhoon Morakot in the study area satisfies a power-law relation with a determined coefficient (r2) of 0.95, over the range from 65 m to 2373m in the study area. Moreover, the value of the power-law exponent is equal to -2.09. This pattern suggests that river channel widening caused by large, infrequent hydrologic episodes has self-organized criticality. This study can provide useful information to river and watershed management, thereby refining the prevention and mitigation of hazard risks due to the effect of river width widening.
Typhoon-driven landsliding induces earthquakes: example of the 2009 Morakot typhoon
NASA Astrophysics Data System (ADS)
Steer, Philippe; Jeandet, Louise; Cubas, Nadaya; Marc, Odin; Meunier, Patrick; Hovius, Niels; Simoes, Martine; Cattin, Rodolphe; Shyu, J. Bruce H.; Liang, Wen-Tzong; Theunissen, Thomas; Chiang, Shou-Hao
2017-04-01
Extreme rainfall events can trigger numerous landslides in mountainous areas and a prolonged increase of river sediment load. The resulting mass transfer at the Earth surface in turn induces stress changes at depth, which could be sufficient to trigger shallow earthquakes. The 2009 Morakot typhoon represents a good case study as it delivered 3 m of precipitation in 3 days and caused some of the most intense erosion ever recorded. Analysis of seismicity time-series before and after the Morakot typhoon reveals a systematic increase of shallow (i.e. 0-15 km of depth) earthquake frequency in the vicinity of the areas displaying a high spatial density of landslides. This step-like increase in frequency lasts for at least 2-3 years and does not follow an Omori-type aftershock sequence. Rather, it is associated to a step change of the Gutenberg-Richter b-value of the earthquake catalog. Both changes occurred in mountainous areas of southwest Taiwan, where typhoon Morakot caused extensive landsliding. These spatial and temporal correlations strongly suggest a causal relationship between the Morakot-triggered landslides and the increase of earthquake frequency and their associated b-value. We propose that the progressive removal of landslide materials from the steep mountain landscape by river sediment transport acts as an approximately constant increase of the stress rate with respect to pre-typhoon conditions, and that this in turn causes a step-wise increase in earthquake frequency. To test this hypothesis, we investigate the response of a rate-and-state fault to stress changes using a 2-D continuum elasto-dynamic model. Consistent with the results of Ader et al. (2013), our preliminary results show a step-like increase of earthquake frequency in response to a step-like decrease of the fault normal stress. We also investigate the sensitivity of the amplitude and time-scale of the earthquake frequency increase to the amplitude of the normal stress change and to rheological parameters. Our study offers new insights on the potential influence of extreme erosional events on the short-time scale dynamics of faults and earthquakes.
Delineation of typhoon-induced shoreline changes in Taiwan
NASA Astrophysics Data System (ADS)
Lin, Yun-Bin; Chiang, Jie-Lun
2010-05-01
Taiwan, an island country located at the southwestern Pacific Ocean, has a coast line of 1,355 km long. And only 55% proportion of the coast line remains natural. The maximum daily accumulated rainfall over 1000 mm brought by the typhoon Mindulle in 2004 generated huge disaster, including a broad flood-prone area and a sick sedimentation, in the littoral zones of the low-latitude part of Taiwan. The event resulted in the official definition of the coastal area, which is a 9 km wide belt area surrounding Taiwan island and is composed of one third land area and two third sea area. And human constructions are restricted in the proposed coast area to prevent or reduce the possible disaster in the future. Not only the sea level rising induced by the global climate warming may seriously affect the littoral zones, but also the extreme climate accompanying with the global climate warming, such as typhoons and storms, can heavily disturb the coastal environment in Taiwan. In the storm area, the wave and the storm surge may induce the coast erosion. But even being outside the storm area, the coastal environment is still regularly influenced by the sediment transportation triggered by the storm in the Cainozoic zones in the central part of Taiwan. Therefore, the continuous and regular monitoring of shoreline changes is essential for the disaster management in Taiwan. The two dimensional Morlet wavelet analysis is used to detect edges on synthetic aperture radar (SAR) images. And a block tracing algorithm and an active contour model are integrated for the final shorelines auto-delineation in the study. The SAR image that is climate unaffected and is free of visible light can provide reliable information. The Morlet wavelet function has the smallest window size and is directional. Therefore, the Morlet wavelet function is more flexible and efficient in extracting specific information from image signals. The shoreline changes induced by the typhoon Mindulle were studied. The outcome that is well coincided with the result of a field survey can be obtained in a more efficient way. Keywords: shoreline, auto-delineation, wavelet analysis, SAR
NASA Astrophysics Data System (ADS)
Munsell, E.; Braun, S. A.; Zhang, F.
2017-12-01
The dynamics that govern the intensification of tropical cyclones (TC) are dominated by rapidly evolving moist convective processes in the inner-core region. Remotely sensed satellite observations are typically available but in the past have lacked the necessary resolution to sufficiently examine TC intensification processes. However, as a result of the recent launch of next-generation high-resolution satellites (JMA's Himawari-8 and NOAA/NASA's GOES-16), the spatial and temporal frequency of remotely-sensed observations of TCs have increased significantly. This study utilizes brightness temperatures observed by the Advanced Himawari Imager to examine the structure of Typhoon Soudelor (2015) throughout its rapid intensification (RI) from a tropical storm to a super typhoon. Wavenumber decompositions are performed on brightness temperature fields that correspond to channels sensitive to upper-, mid-, and lower-level water vapor, and IR longwave radiation, to study wave features associated with the inner-core region. A scale-separation is also performed to assess the degree to which the intensification processes are dominated by phenomenon of various wavelengths. Higher-order wavenumbers reveal asymmetric features that propagate outwards from the storm on short time scales ( 1-2 h). The identification of these waves and their contribution to intensification is ongoing. A deterministic forecast of Typhoon Soudelor performed using a convection-permitting WRF simulation coupled to an Ensemble Kalman Filter that assimilates brightness temperatures, accurately captures the TCs RI event. The Community Radiative Transfer Model (CRTM) is used to produce simulated brightness temperature fields for the applicable channels. The model demonstrates the ability to reproduce the observed brightness temperatures in great detail, including smaller-scale features such as primary rainbands and the eye; however, a uniform warm bias is present. It is hypothesized that this likely results from inaccuracies in the heights and depths of the simulated upper-tropospheric clouds and is primarily related to deficiencies in the microphysics scheme. The sensitivity of various microphysics parameters is being explored to assess ways to improve the representation of the brightness temperatures within the CRTM.
Incentive Mechanism for P2P Content Sharing over Heterogenous Access Networks
NASA Astrophysics Data System (ADS)
Sato, Kenichiro; Hashimoto, Ryo; Yoshino, Makoto; Shinkuma, Ryoichi; Takahashi, Tatsuro
In peer-to-peer (P2P) content sharing, users can share their content by contributing their own resources to one another. However, since there is no incentive for contributing contents or resources to others, users may attempt to obtain content without any contribution. To motivate users to contribute their resources to the service, incentive-rewarding mechanisms have been proposed. On the other hand, emerging wireless technologies, such as IEEE 802.11 wireless local area networks, beyond third generation (B3G) cellular networks and mobile WiMAX, provide high-speed Internet access for wireless users. Using these high-speed wireless access, wireless users can use P2P services and share their content with other wireless users and with fixed users. However, this diversification of access networks makes it difficult to appropriately assign rewards to each user according to their contributions. This is because the cost necessary for contribution is different in different access networks. In this paper, we propose a novel incentive-rewarding mechanism called EMOTIVER that can assign rewards to users appropriately. The proposed mechanism uses an external evaluator and interactive learning agents. We also investigate a way of appropriately controlling rewards based on the system service's quality and managing policy.
Finet, Philippe; Gibaud, Bernard; Dameron, Olivier; Le Bouquin Jeannès, Régine
2016-03-01
The number of patients with complications associated with chronic diseases increases with the ageing population. In particular, complex chronic wounds raise the re-admission rate in hospitals. In this context, the implementation of a telemedicine application in Basse-Normandie, France, contributes to reduce hospital stays and transport. This application requires a new collaboration among general practitioners, private duty nurses and the hospital staff. However, the main constraint mentioned by the users of this system is the lack of interoperability between the information system of this application and various partners' information systems. To improve medical data exchanges, the authors propose a new implementation based on the introduction of interoperable clinical documents and a digital document repository for managing the sharing of the documents between the telemedicine application users. They then show that this technical solution is suitable for any telemedicine application and any document sharing system in a healthcare facility or network.
Flooding Associated with Typhoon Chata'an, July 5, 2002, Guam
Fontaine, Richard A.
2003-01-01
Introduction On July 5, 2002, starting at about 8 a.m., the southern half of the eye of Typhoon Chata'an passed directly over the northern part of the island of Guam. Data collected on Guam indicate that the typhoon had sustained winds of 85 to 90 miles per hour (mi/hr) with gusts of up to 115 mi/hr (Charles Guard, National Weather Service, written commun., 2003). Storm rainfall totals exceeded 21 inches (in.) over the mountainous areas in south-central Guam. During the peak of the storm, rain fell at rates of up to 6.48 inches per hour (in/hr). Because of the damage caused by Typhoon Chata'an, the President signed a major disaster declaration on July 6, 2002. Damages associated with Typhoon Chata'an, while considered moderate relative to other storms that have affected Guam, amounted to several tens of millions of dollars. In excess of 1,000 single-family and multi-family homes were either extensively damaged or destroyed. Electrical power was out for several days over most of the island and no potable water was available through public distribution systems (Federal Emergency Management Agency, 2002). The extreme rainfall led to flooding in southern Guam and caused numerous landslides and severe erosion along water courses. The most significant evidence of these effects could be found in the Fena Valley Reservoir, where elevated sediment concentrations made the water unsuitable for use as a domestic water supply for several days. During normal operation, Fena Valley Reservoir supplies most of the drinking water for the military and some of the general public in southern Guam. All of the stream-gaging stations operated by the U.S. Geological Survey (USGS) on Guam were damaged to some extent during the flood and three of the stations were totally destroyed. Peak flows in many rivers in southern Guam reached record levels during Typhoon Chata'an. New record peak stages and/or flows of record occurred at 14 of 15 sites where the USGS has collected data. In some areas, the magnitude of flood peaks exceeded previous records significantly. Peak flows had recurrence intervals of 80 years or more at 9 of the 13 sites where sufficient data were available to make the computations. Four of the 9 sites had recurrence intervals that were determined to be greater than 100 years. In this fact sheet, storm rainfall totals and maximum rainfall totals for durations of 1-, 3-, 6-, and 12-hours are summarized for 12 rain gages on Guam. Peak stages and/or flows were computed at 15 USGS streamflow-gaging stations and recurrence intervals for the peaks determined. Rainfall and streamflow-gaging stations operated by the USGS on Guam are supported by funding provided by numerous agencies including the U.S. Navy, the U.S. Army Corps of Engineers (USACE), and the University of Guam through the Water and Environmental Research Institute (WERI). The USGS Office of Surface Water, as part of a national program to document the effects of extreme floods in the United States, provided funding to support the preparation of this fact sheet.
NASA Astrophysics Data System (ADS)
Wang, L.-C.; Behling, H.; Lee, T.-Q.; Li, H.-C.; Huh, C.-A.; Shiau, L.-J.; Chang, Y.-P.
2014-05-01
In this study, we reconstructed the paleoenvironmental changes from a sediment archive of the floodplain lake in Ilan Plain of NE Taiwan on multi-decadal resolution for the last ca. 1900 years. On the basis of pollen and diatom records, we evaluated the record of past vegetation, floods, typhoons and agriculture activities of this area, which is sensitive to the hydrological conditions of the West Pacific. High sedimentation rates with low microfossil preservations reflected multiple flood events and humid climatic conditions during 100-1400 AD. A shortly interrupted dry phase can be found during 940-1010 AD. The driest phase corresponds to the Little Ice Age phase 1 (LIA1, 1400-1620 AD) with less disturbance by flood events, which enhanced the occurrence of wetlands (Cyperaceae) and diatom depositions. Humid phases with frequent typhoons are inferred by high percentages of Lagerstroemia and high ratios of planktonic/benthic diatoms, respectively, during 500-700 AD and Little Ice Age phase 2 (LIA2, 1630-1850 AD). The occurrences of cultivated Poaceae (Oryza) during 1250-1300 AD and the last ~400 years, reflect agriculture activities, which seems to implicate strongly with the environmental stability. Finally, we found flood events which dominated during the El Niño-like stage, but dry events as well as frequent typhoon events happened during the La Niña-like stage. After comparing our results with the reconstructed proxy for tropical hydrological conditions, we suggested that the local hydrology in coastal East Asia were strongly affected by the typhoon-triggered heavy rainfalls which were influenced by the variation of global temperature, expansion of the Pacific warm pool and intensification of ENSO events.
NASA Astrophysics Data System (ADS)
Mas, E.; Bricker, J.; Kure, S.; Adriano, B.; Yi, C.; Suppasri, A.; Koshimura, S.
2014-05-01
Three weeks after the deadly Bohol earthquake of magnitude Mw 7.2, which claimed at least 222 victims; another disaster struck the Philippines. This time, Super Typhoon Haiyan, also known as Typhoon Yolanda in the Philippines, devastated the Eastern Visayas islands on 8 November 2013. Its classification as a Super Typhoon was based on its maximum sustained 1 min surface wind speed of 315 km h-1, which is equivalent to a strong Category 5 hurricane on the Saffir-Simpson Scale. This was one of the deadliest typhoon events in the Philippines' history, after the 1897 and 1912 tropical cyclones. At least 6268 individuals have been reported dead and 1061 people are missing. In addition, a wide area of destruction was observed in the Eastern Visayas, on Samar and Leyte Islands. The International Research Institute of Disaster Science (IRIDeS) at Tohoku University in Sendai, Japan has deployed several teams for damage recognition, relief support and collaboration with regard to this disaster event. One of the teams, the hazard and damage evaluation team, visited the affected areas in the Eastern Visayas in mid-January 2014. In this paper, we summarize the rapid damage assessment conducted days after the event and report on the inundation measurements and the damage surveyed in the field. Damage interpretation results by satellite images were qualitatively confirmed for the Tacloban city area on Leyte Island, the most populated city in the Eastern Visayas. During the survey, significant damage was observed from wind and storm surges on poorly designed housing on the east coast of Leyte Island. Damage, mainly from surface waves and winds was observed on the east coast of Samar Island.
NASA Astrophysics Data System (ADS)
Mas, E.; Bricker, J.; Kure, S.; Adriano, B.; Yi, C.; Suppasri, A.; Koshimura, S.
2015-04-01
Three weeks after the deadly Bohol earthquake of Mw 7.2, which claimed at least 222 victims, another disaster struck the Philippines. This time, Super Typhoon Haiyan, also known as Typhoon Yolanda in the Philippines, devastated the Eastern Visayas islands on 8 November 2013. Its classification as a super typhoon was based on its maximum sustained 1 min surface wind speed of 315 km h-1, which is equivalent to a strong Category 5 hurricane on the Saffir-Simpson scale. This was one of the deadliest typhoon events in the Philippines' history, after the 1897 and 1912 tropical cyclones. At least 6268 individuals have been reported dead and 1061 people are missing. In addition, a wide area of destruction was observed in the Eastern Visayas, on Samar and Leyte islands. The International Research Institute of Disaster Science (IRIDeS) at Tohoku University in Sendai, Japan, has deployed several teams for damage recognition, relief support and collaboration with regard to this disaster event. One of the teams, the hazard and damage evaluation team, visited the affected areas in the Eastern Visayas in mid-January 2014. In this paper, we summarize the rapid damage assessment from satellite imagery conducted days after the event and report on the inundation measurements and the damage surveyed in the field. Damage interpretation results by satellite images were qualitatively confirmed for the Tacloban city area on Leyte Island, the most populated city in the Eastern Visayas. During the survey, significant damage was observed from wind and storm surges on poorly designed housing on the east coast of Leyte Island. Damage, mainly from surface waves and winds, was observed on the east coast of Samar Island.
Fuzzy-rule-based Adaptive Resource Control for Information Sharing in P2P Networks
NASA Astrophysics Data System (ADS)
Wu, Zhengping; Wu, Hao
With more and more peer-to-peer (P2P) technologies available for online collaboration and information sharing, people can launch more and more collaborative work in online social networks with friends, colleagues, and even strangers. Without face-to-face interactions, the question of who can be trusted and then share information with becomes a big concern of a user in these online social networks. This paper introduces an adaptive control service using fuzzy logic in preference definition for P2P information sharing control, and designs a novel decision-making mechanism using formal fuzzy rules and reasoning mechanisms adjusting P2P information sharing status following individual users' preferences. Applications of this adaptive control service into different information sharing environments show that this service can provide a convenient and accurate P2P information sharing control for individual users in P2P networks.
ERIC Educational Resources Information Center
Andia, Jonny F.; Deren, Sherry; Robles, Rafaela R.; Kang, Sung-Yeon; Colon, Hector M.
2008-01-01
This study examines the influence of peer norms on sharing of injection paraphernalia (e.g., indirect sharing behaviors, including sharing of cookers, cotton, rinse water and back/front loading) among Puerto Rican injection drug users (IDUs) in Bayamon, Puerto Rico, and East Harlem, New York City. Data were collected from 873 Puerto Rican IDUs…
NASA Astrophysics Data System (ADS)
Ramos, Noelynna T.; Maxwell, Kathrine V.; Tsutsumi, Hiroyuki; Chou, Yu-Chen; Duan, Fucai; Shen, Chuan-Chou; Satake, Kenji
2017-12-01
Recent 230Th dating of fossil corals in west Luzon has provided new insights on the emergence of late Quaternary marine terraces that fringe west Luzon Island facing the Manila Trench. Apart from regional sea level changes, accumulated uplift from aseismic and seismic processes may have influenced the emergence of sea level indicators such as coral terraces and notches. Varied elevations of middle-to-late Holocene coral terraces along the west Luzon coasts reveal the differential uplift that is probably associated with the movement of local onland faults or upper-plate structures across the Manila Trench forearc basin. In Badoc Island, offshore west of Luzon mainland, we found notably young fossil corals, dated at 945.1 ± 4.6 years BP and 903.1 ± 3.9 years BP, on top of a 5-m-high reef platform. To constrain the mechanism of emergence or emplacement of these fossil corals, we use field geomorphic data and wave inundation models to constrain an extreme wave event that affected west Luzon about 1000 years ago. Our preliminary tectonic and tsunami models show that a megathrust rupture will likely lead to subsidence of a large part of the west Luzon coast, while permanent coastal uplift is attributed to an offshore upper-plate rupture in the northern Manila Trench forearc region. The modeled source fault ruptures and tsunami lead to a maximum wave height of more than 3 m and inundation distance as far as 2 km along the coasts of western and northern Luzon. While emplacement of coral boulders by an unusually strong typhoon is also likely, modeled storm surge heights along west Luzon do not exceed 2 m even with Typhoon Haiyan characteristics. Whether tsunami or unusually strong typhoon, the occurrence of a prehistoric extreme wave event in west Luzon remains an important issue in future studies of coastal hazards in the South China Sea region.
Typhoon Neoguri in the East China Sea
2017-12-08
The MODIS instrument on NASA's Aqua satellite captured Typhoon Neoguri in the East China Sea at 05:00 UTC (1:00 AM EDT) on July 8, 2014. Typhoon Neoguri hit Japan’s Okinawa islands on Tuesday local time (July 8, 2014), bringing high winds, huge waves and storm surges. Neoguri packed sustained winds of 175 kilometers (108 miles) per hour with some gusts up to 250 kph (154 mph), according to the Japan Meteorological Agency. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Regimes for the ocean, outer space, and weather
NASA Technical Reports Server (NTRS)
Brown, S.; Cornell, N. W.; Fabian, L. L.; Weiss, E. B.
1977-01-01
The allocation of resources among users of the oceans, outer space and the weather is discussed. Attention is given to the international management of maritime navigation, the control of fisheries, offshore oil and gas exploitation, mineral exploitation in the deep seabed (especially the mining of manganese nodules), and the regulation of oceanographic studies. The management of outer space is considered, with special reference to remote sensing by satellites, television broadcasting, the technical requirements of maritime satellites, and problems associated with satellite frequency and orbit allocation. Rainmaking and typhoon modification, as well as the distribution of weather modification capabilities in the world, are also mentioned. The United Nations, international agencies and tribunals, and multi- or bilateral agreements are some of the implements suggested for use in the regulation of the oceans, outer space and the weather.
Genesis of Typhoon Nari (2001) from a mesoscale convective system
NASA Astrophysics Data System (ADS)
Zhang, Da-Lin; Tian, Liqing; Yang, Ming-Jen
2011-12-01
In this study, the origin and genesis of Typhoon Nari (2001) as well as its erratic looping track, are examined using large-scale analysis, satellite observations, and a 4 day nested, cloud-resolving simulation with the finest grid size of 1.33 km. Observational analysis reveals that Nari could be traced 5 days back to a diurnally varying mesoscale convective system with growing cyclonic vorticity and relative humidity in the lower troposphere and that it evolved from a mesoscale convective vortex (MCV) as moving over a warm ocean under the influence of a subtropical high, a weak westerly baroclinic disturbance, an approaching-and-departing Typhoon Danas to the east, and the Kuroshio Current. Results show that the model reproduces the genesis, final intensity, looping track, and the general convective activity of Nari during the 4 day period. It also captures two deep subvortices at the eye-eyewall interface that are similar to those previously observed, a few spiral rainbands, and a midget storm size associated with Nari's relatively dry and stable environment. We find that (1) continuous convective overturning within the MCV stretches the low-level vorticity and moistens a deep mesoscale column that are both favorable for genesis; (2) Nari's genesis does not occur until after the passage of the baroclinic disturbance; (3) convective asymmetry induces a smaller-sized vortex circulation from the preexisting MCV; (4) the vortex-vortex interaction with Danas leads to Nari's looping track and temporal weakening; and (5) midlevel convergence associated with the subtropical high and Danas accounts for the generation of a nearly upright eyewall.
NASA Astrophysics Data System (ADS)
Terry, James P.; Jankaew, Kruawun; Dunne, Kieran
2015-11-01
At the head of the Gulf of Thailand, the subsiding Chao Phraya delta and adjacent low-lying coastlines surrounding the Bay of Bangkok are at risk of coastal flooding. Although a significant marine inundation event has not been experienced in historical times, this work identifies coastal depositional evidence for high-energy waves in the past. On Ko Larn island in eastern Bay of Bangkok, numerous coastal carbonate boulders (CCBs) were discovered at elevations up to 4+ m above sea level, the largest weighing over 1.3 tonnes. For the majority of CCBs, their karstified appearance bears testimony to long periods of immobility since original deposition, whilst their geomorphic settings on coastal slopes of coarse blocky talus is helpful in recognising lifting (saltation) as the probable mode of wave transport. In the absence of local tsunamigenic potential, these CCBs are considered to be prehistoric typhoon deposits, presumably sourced from fringing coral reefs by high-energy wave action. Application of existing hydrodynamic flow transport equations reveals that 4.7 m/s and 7.1 m/s are the minimum flow velocities required to transport 50% and 100% of the measured CCBs, respectively. Such values are consistent with cyclone-impacted coastlines studied elsewhere in the tropical Asia-Pacific region. Overall, the evidence of elevated carbonate boulder deposits on Ko Larn implies that typhoons before the modern record may have entered the Bay of Bangkok. The recurrence of a similar event in future would have the potential to cause damaging marine inundation on surrounding low-lying coastlines.
NASA Astrophysics Data System (ADS)
Cheng, Youg-Sin; Yu, Teng-To; Tarolli, Paolo
2017-04-01
Taiwan mountains are severely affected each year by landslides, rock falls, and debris flows where the roads system suffer the most critical consequences. Among all mountain highways, Ali Highway, located into the main entrance of Alishan Mountain region, is one of the most landslide-prone areas in southern Taiwan. During the typhoon season, between May and August, the probability of occurrence of mass movements is at higher level than usual seeing great erosion rates. In fact, during Typhoon Morakot, in 2009, the intense rainfall caused abrupt interruption of the circulation for three months triggering several landslides (Liu et al. 2012). The topographic features such as slope, roughness and curvature among others have been extracted from 1 m DTM derived by a LiDAR dataset (collected in 2015) to investigate the slope failures along the Ali Mountain Highway. The high-resolution DTM highlighted that the hydrogeomorphological (e.g. density of stream, the distance from the ridge and terrain) features are one of the most influencing factors affecting the change and the instability of the slopes. To detect the landslide area, the decision tree classifier and the random forest algorithm (RF) have been adopted. The results provided a suitable analysis of the area involved in the failure. This will be a useful step in the understanding (and management) landslide processes of study area. References Liu CN, Dong JJ, Chen CJ, Lee WF (2012) Typical landslides and related mechanisms in Ali Mountain highway induced by typhoon Morakot: Perspectives from engineering geology. Landslides 9:239-254.
The HydroShare Collaborative Repository for the Hydrology Community
NASA Astrophysics Data System (ADS)
Tarboton, D. G.; Idaszak, R.; Horsburgh, J. S.; Ames, D. P.; Goodall, J. L.; Couch, A.; Hooper, R. P.; Dash, P. K.; Stealey, M.; Yi, H.; Bandaragoda, C.; Castronova, A. M.
2017-12-01
HydroShare is an online, collaboration system for sharing of hydrologic data, analytical tools, and models. It supports the sharing of, and collaboration around, "resources" which are defined by standardized content types for data formats and models commonly used in hydrology. With HydroShare you can: Share your data and models with colleagues; Manage who has access to the content that you share; Share, access, visualize and manipulate a broad set of hydrologic data types and models; Use the web services application programming interface (API) to program automated and client access; Publish data and models and obtain a citable digital object identifier (DOI); Aggregate your resources into collections; Discover and access data and models published by others; Use web apps to visualize, analyze and run models on data in HydroShare. This presentation will describe the functionality and architecture of HydroShare highlighting our approach to making this system easy to use and serving the needs of the hydrology community represented by the Consortium of Universities for the Advancement of Hydrologic Sciences, Inc. (CUAHSI). Metadata for uploaded files is harvested automatically or captured using easy to use web user interfaces. Users are encouraged to add or create resources in HydroShare early in the data life cycle. To encourage this we allow users to share and collaborate on HydroShare resources privately among individual users or groups, entering metadata while doing the work. HydroShare also provides enhanced functionality for users through web apps that provide tools and computational capability for actions on resources. HydroShare's architecture broadly is comprised of: (1) resource storage, (2) resource exploration website, and (3) web apps for actions on resources. System components are loosely coupled and interact through APIs, which enhances robustness, as components can be upgraded and advanced relatively independently. The full power of this paradigm is the extensibility it supports. Web apps are hosted on separate servers, which may be 3rd party servers. They are registered in HydroShare using a web app resource that configures the connectivity for them to be discovered and launched directly from resource types they are associated with.
Das-Munshi, Jayati; Bhugra, Dinesh; Crawford, Mike J
2018-04-18
Ethnic minority service users with schizophrenia and schizoaffective disorders may experience inequalities in care. There have been no recent studies assessing access to evidence-based treatments for psychosis amongst the main ethnic minority groups in the UK. Data from nationally representative surveys from England and Wales, for 10,512 people with a clinical diagnosis of schizophrenia or schizoaffective disorders, were used for analyses. Multi-level multivariable logistic regression analyses were used to assess ethnic minority inequalities in access to pharmacological treatments, psychological interventions, shared decision making and care planning, taking into account a range of potential confounders. Compared with white service users, black service users were more likely prescribed depot/injectable antipsychotics (odds ratio 1.56 (95% confidence interval 1.33-1.84)). Black service users with treatment resistance were less likely to be prescribed clozapine (odds ratio 0.56 (95% confidence interval 0.39-0.79)). All ethnic minority service users, except those of mixed ethnicity, were less likely to be offered cognitive behavioural therapy, compared to white service users. Black service users were less likely to have been offered family therapy, and Asian service users were less likely to have received copies of care plans (odds ratio 0.50 (95% confidence interval 0.33-0.76)), compared to white service users. There were no clinician-reported differences in shared decision making across each of the ethnic minority groups. Relative to white service users, ethnic minority service users with psychosis were generally less likely to be offered a range of evidence-based treatments for psychosis, which included pharmacological and psychological interventions as well as involvement in care planning.
2013-05-10
tropical depression; yellow, a tropical storm ; red, a typhoon; and purple, an extratropical cyclone (after http://agora.ex.nii.ac.jp/digital- typhoon... storm (JTWC 2012). Tropical Storm Jelawat continued into the Sea of Japan, where it completed extratropical transition (JTWC 2012...including strong winds, storm surge, high waves, and heavy rainfall, threaten archipelagos, densely crowded coastlines, and naval forces ashore and
Evrard, Olivier; Chartin, Caroline; Onda, Yuichi; Lepage, Hugo; Cerdan, Olivier; Lefèvre, Irène; Ayrault, Sophie
2014-04-03
Summer typhoons and spring snowmelt led to the riverine spread of continental Fukushima fallout to the coastal plains of Northeastern Japan and the Pacific Ocean. Four fieldwork campaigns based on measurement of radioactive dose rates in fine riverine sediment that has recently deposited on channel bed-sand were conducted between November 2011 and May 2013 to document the spread of fallout by rivers. After a progressive decrease in the fresh riverine sediment doses rates between 2011 and early spring in 2013, a fifth campaign conducted in November 2013 showed that they started to increase again after the occurrence of violent typhoons. We show that this increase in dose rates was mostly due to remobilization of contaminated material that was temporarily stored in river channels or, more importantly, in dam reservoirs of the region during the typhoons. In addition, supply of particles from freshly eroded soils in autumn 2013 was the most important in areas where decontamination works are under progress. Our results underline the need to monitor the impact of decontamination works and dam releases in the region, as they may provide a continuous source of radioactive contamination to the coastal plains and the Pacific Ocean during the coming years.
Typhoon Soudelor's Eye Close-Up from NASA-NOAA's Suomi NPP
2015-08-10
On August 6, 2015, NASA-NOAA's Suomi NPP satellite passed over powerful Typhoon Soudelor when it was headed toward Taiwan. The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard NASA-NOAA's Suomi satellite captured this night-time infrared close-up image of Soudelor's eye. The infrared image that showed there were some thunderstorms within the typhoon with very cold cloud top temperatures, colder than -63F/-53C. Temperatures that cold stretch high into the troposphere and are capable of generating heavy rain. At 1500 UTC (11 a.m. EDT) on August 6, 2015, Typhoon Soudelor had maximum sustained winds near 90 knots (103.6 mph/166.7 kph). It was centered near 21.3 North latitude and 127.5 East longitude, about 324 nautical miles (372.9 miles/600 km) south of Kadena Air Base, Okinawa, Japan. It was moving to the west at 10 knots (11.5 mph/18.5 kph). Credit: UWM/CIMSS/SSEC, William Straka III NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Tang, Tze-Chun; Yang, Pinchen; Yen, Cheng-Fang; Liu, Tai-Ling
2015-07-01
In this case-control study, we aimed to assess the intervention effects of four-session eye movement desensitization and reprocessing (EMDR) on reducing the severity of disaster-related anxiety, general anxiety, and depressive symptoms in Taiwanese adolescents who experienced Typhoon Morakot. A total of 83 adolescents with posttraumatic stress disorder related to Typhoon Morakot, major depressive disorder, or current moderate or high suicide risk after experiencing Typhoon Morakot were allocated to a four-session course of EMDR (N = 41) or to treatment as usual (TAU; N = 42). A multivariate analysis of covariance was performed to examine the effects of EMDR in reducing the severity of disaster-related anxiety, general anxiety, and depressive symptoms in adolescents by using preintervention severity values as covariates. The multivariate analysis of covariance results indicated that the EMDR group exhibited significantly lower preintervention severity values of general anxiety and depression than did the TAU group. In addition, the preintervention severity value of disaster-related anxiety in the EMDR group was lower than that in the TAU group (p = 0.05). The results of this study support that EMDR could alleviate general anxiety and depressive symptoms and reduce disaster-related anxiety in adolescents experiencing major traumatic disasters. Copyright © 2015. Published by Elsevier Taiwan.
Qiao, Liang; Li, Ying; Chen, Xin; Yang, Sheng; Gao, Peng; Liu, Hongjun; Feng, Zhengquan; Nian, Yongjian; Qiu, Mingguo
2015-09-01
There are various medical image sharing and electronic whiteboard systems available for diagnosis and discussion purposes. However, most of these systems ask clients to install special software tools or web plug-ins to support whiteboard discussion, special medical image format, and customized decoding algorithm of data transmission of HRIs (high-resolution images). This limits the accessibility of the software running on different devices and operating systems. In this paper, we propose a solution based on pure web pages for medical HRIs lossless sharing and e-whiteboard discussion, and have set up a medical HRI sharing and e-whiteboard system, which has four-layered design: (1) HRIs access layer: we improved an tile-pyramid model named unbalanced ratio pyramid structure (URPS), to rapidly share lossless HRIs and to adapt to the reading habits of users; (2) format conversion layer: we designed a format conversion engine (FCE) on server side to real time convert and cache DICOM tiles which clients requesting with window-level parameters, to make browsers compatible and keep response efficiency to server-client; (3) business logic layer: we built a XML behavior relationship storage structure to store and share users' behavior, to keep real time co-browsing and discussion between clients; (4) web-user-interface layer: AJAX technology and Raphael toolkit were used to combine HTML and JavaScript to build client RIA (rich Internet application), to meet clients' desktop-like interaction on any pure webpage. This system can be used to quickly browse lossless HRIs, and support discussing and co-browsing smoothly on any web browser in a diversified network environment. The proposal methods can provide a way to share HRIs safely, and may be used in the field of regional health, telemedicine and remote education at a low cost. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Enabling Interoperable and Selective Data Sharing among Social Networking Sites
NASA Astrophysics Data System (ADS)
Shin, Dongwan; Lopes, Rodrigo
With the widespread use of social networking (SN) sites and even introduction of a social component in non-social oriented services, there is a growing concern over user privacy in general, how to handle and share user profiles across SN sites in particular. Although there have been several proprietary or open source-based approaches to unifying the creation of third party applications, the availability and retrieval of user profile information are still limited to the site where the third party application is run, mostly devoid of the support for data interoperability. In this paper we propose an approach to enabling interopearable and selective data sharing among SN sites. To support selective data sharing, we discuss an authenticated dictionary (ADT)-based credential which enables a user to share only a subset of her information certified by external SN sites with applications running on an SN site. For interoperable data sharing, we propose an extension to the OpenSocial API so that it can provide an open source-based framework for allowing the ADT-based credential to be used seamlessly among different SN sites.
A General Comparison of SharePoint 2007 and SharePoint 2010
2012-10-01
rich as some dedicated Wiki offerings, e.g. Confluence, appropriately authorised users can collaboratively develop content. Unlike Wiki pages...Workspace 2010 uses Windows credentials instead of a Groove-specific logon for authenticating users, thus improving consistency with the rest of the Office...environment, such as authentication properties. In SharePoint 2010 the Business Data Connectivity service is the new version of SharePoint 2007’s Business
Models of user involvement in the mental health context: intentions and implementation challenges.
Storm, Marianne; Edwards, Adrian
2013-09-01
Patient-centered care, shared decision-making, patient participation and the recovery model are models of care which incorporate user involvement and patients' perspectives on their treatment and care. The aims of this paper are to examine these different care models and their association with user involvement in the mental health context and discuss some of the challenges associated with their implementation. The sources used are health policy documents and published literature and research on patient-centered care, shared decision-making, patient participation and recovery. The policy documents advocate that mental health services should be oriented towards patients' or users' needs, participation and involvement. These policies also emphasize recovery and integration of people with mental disorders in the community. However, these collaborative care models have generally been subject to limited empirical research about effectiveness. There are also challenges to implementation of the models in inpatient care. What evidence there is indicates tensions between patients' and providers' perspectives on treatment and care. There are issues related to risk and the person's capacity for user involvement, and concerns about what role patients themselves wish to play in decision-making. Lack of competence and awareness among providers are further issues. Further work on training, evaluation and implementation is needed to ensure that inpatient mental health services are adapting user oriented care models at all levels of services.
NASA Astrophysics Data System (ADS)
Chang, Kuo-Jen; Huang, Yu-Ting; Huang, Mei-Jen; Chiang, Yi-Lin; Yeh, En-Chao; Chao, Yu-Jui
2014-05-01
Taiwan, due to the high seismicity and high annual rainfall, numerous landslides triggered every year and severe impacts affect the island. Typhoon Morakot brought extreme and long-time rainfall for Taiwan in August 2009. It further caused huge loss of life and property in central and southern Taiwan. Laonong River is the largest tributary of Gaoping River. It's length is 137 km, and the basin area is 1373 km2. More than 2000mm rainfall brought and maximum rainfall exceeded 100mm/hr in the region by Typhoon Morakot in Aug, 2009. Its heavy rains made many landslides and debris flew into the river and further brought out accumulation and erosion on river banks of different areas. It caused severe disasters within the Laonong River drainage. In the past, the study of sediment blockage of river channel usually relies on field investigation, but due to inconvenient transportation, topographical barriers, or located in remote areas, etc. the survey is hardly to be completed sometimes. In recent years, the rapid development of remote sensing technology improves image resolution and quality significantly. Remote sensing technology can provide a wide range of image data, and provide essential and precious information. Furthermore, although the amount of sediment transportation can be estimated by using data such as rainfall, river flux, and suspended loads, the situation of large debris migration cannot be studied via those data. However, landslides, debris flow and river sediment transportation model in catchment area can be evaluated easily through analyzing the digital terrain model (DTM) . The purpose of this study is to investigate the phenomenon of river migration and to evaluate the amount of migration along Laonong River by analyzing the DEM before and after the typhoon Morakot. The DEMs are built by using the aerial images taken by digital mapping camera (DMC) and by airborne digital scanner 40 (ADS 40) before and after typhoon event. The results show that lateral erosion of the Laonong River caused by the typhoon seriously, especially in Yushan National Park, and midstream region. However, lateral erosion in downstream region is not so obvious. Meanwhile the siltation depth resulted from the Typhoon Morakot is larger in upstream region than in midstream and downstream regions. The amount of landslide debris created by Typhoon Morakot was too excessive to be transported. Materials just siltated in the upstream in place, same as in the middle stream area. Because of the amount of river slope erosion and sediment collapse in the downstream region is less than in upstream and midstream region, the amount of river erosion slightly larger than the amount of river siltation. The goals of this project are trying to decipher the sliding process and morphologic changes of large landslide areas, sediment transport and budgets, and to investigate the phenomenon of river migration. The results of this study provides not only geomatics and GIS dataset of the hazards, but also for essential geomorphologic information for other study, and for hazard mitigation and planning, as well.
An analysis of Super typhoon Rammasun's(2014) peak intensity
NASA Astrophysics Data System (ADS)
Cai, Qinbo; Xu, Yinglong
2016-04-01
Super typhoon Rammasun (2014) made landfall over Hainan Island, China, at 0730UTC 18 July 2014. Due to the damage of the anemometers, the Automatic Weather Stations (AWS) and the bouy which by Rammasun passed, failed to obtain its peak wind. Lack of the direct evident, in real-time monitoring, its peak intensities were given by 110kts (.i.e. 60m/s)/910hPa,135kts/922hPa , and 90kts/935hPa based on Dvorak technique , which were made by China Meteorological Administration (CMA),Joint Typhoon Warning Center(JTWC), and Japan Meteorological Agency (JMA) respectively. However, a minimum pressure of 881.2hPa recorded by a barometer which located at Qixhou island (19.982︒N,111.269︒E) while Rammasun approaching, indicates that its intensity was under estimated. By using observation data such as AWS, satellite, Doppler radar and wind tower near the ground, this study performs a detail evaluation to obtain its actual intensity. At 0521UTC, Qizhou Island station recorded 881.2hPa of the minimum station pressure and 899.2hPa of minimum sea level pressure (MSLP) while the anemometer had been destroyed. These are the lowest records in Chinese history and also are ones of the global lowest pressures obtained directly by barometer. It is evident that Rammasun's eyewall did not pass across Qizhou Island directly, so the actual MSLP should be lower than 899.2hPa. By applying wind-pressure relationship, it is reckoned that the reasonable MSLP and peak wind of Rammasun should be 888hPa and 70-76m/s, which makes Rammasun the strongest typhoon ever made landfall in China's history. In order to intuitively investigate the real intensity of Ramasun, eyewall structures are compared with some historical extreme typhoons (hurricanes) such as Saomai(2006), Haiyan(2013) and Katrina(2005). Satellite images show that the dense overcast convection strength of Rammasun is stronger than those when Saomai and Katrina were in their peak intensities and before landing, but weaker than Haiyan. The advanced Dvorak Technique (ADT), which was developed by Cooperative Institute for Meteorological Satellite Studies (CIMSS) of University of Wisconsin, is used to estimate their intensities. The results show that Rammasun is significantly stronger than Saomai and Katrina in peak and before landing, but weaker than that of Haiyan. Moreover, the 891.7hPa of MSLP given by ADT is approximately the same as the estimated value of 888hPa. The study demonstrates that there the pure Dvorak technique has still limitations in operational monitoring, and presents significant insights for validation and improvement of satellite-based intensity estimates.
Human Factors In the Joint Typhoon Warning Center Watch Floor
2012-11-01
Report 3. DATES COVERED (From-To) 01-10-2010 – 30-03-2011 4. TITLE AND SUBTITLE Human Factors in the Joint Typhoon Warning Center Watch Floor...between users’ information requirements and interpretation process and the JTWC’s forecast fields. The language of TCCOR definitions provides one (of...direction error is less than 90°, predicting a position 10 nautical miles (nmi) too close to the current position produces a lower FTE than
2013-07-11
ISS036-E-017943 (11 July 2013) --- One of the Expedition 36 crew members aboard the International Space Station photographed this image of Typhoon Soulik just east of northern Taiwan The city of Guangzhou can be seen along the coast. [Editor?s update: Thousands of people were evacuated in Taiwan; and the entire island was declared an "alert zone," as Typhoon Soulik made landfall early on July 13 (local time), pounding the country with powerful winds and heavy rain].
Impact of global warming on the typhoon intensities during 2015
NASA Astrophysics Data System (ADS)
Kang, N. Y.; Yang, S. H.; Elsner, J.; Chun, Y.
2017-12-01
The climate of 2015 was characterized by a strong El Nino, global warmth, and record setting tropical cyclone (TC) intensity for western North Pacific typhoons. In this study, the highest TC intensity in 32 years (1984-2015) is shown to be a consequence of above normal TC activity—following natural internal variation—and greater efficiency of intensity. The efficiency of intensity (EINT) is termed the `blasting effect' and refers to typhoon intensification at the expense of occurrence. Statistical models show that the EINT is mostly due to the anomalous warmth in the environment as indicated by global mean sea-surface temperature. In comparison, the EINT due to El Nino is negligibly small. This implies that the record-setting intensity of 2015 might not have occurred without environmental warming and suggests that a year with even greater TC intensity is possible in the near future when above normal activity coincides with another record EINT due to continuous warming.
NASA Sees Typhoon Soudelor's Remnants Over Eastern China
2017-12-08
On August 9 at 03:00 UTC (Aug. 8 at 11 p.m. EDT) the MODIS instrument aboard NASA's Terra satellite passed over the remnant clouds of Typhoon Soudelor when it was over eastern China. By 22:35 UTC (6:35 p.m. EDT) on August 8, 2015, Typhoon Soudelor had made landfall in eastern China and was rapidly dissipating. Maximum sustained winds had dropped to 45 knots (51.7 mph/83.3 kph) after landfall, making it a tropical storm. Image credit: NASA Goddard MODIS Rapid Response Team/Jeff Schmaltz..NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Super Typhoon Utor Impacts the Philippines
2017-12-08
With maximum sustained wind speeds of 140 mph, Super Typhoon Utor made landfall in the Philippines on August 11, 2013 around 18:00z. The storm crossed over the island of Luzon and into the South China Sea. The Joint Typhoon Warning Center predicts Utor will head for the Chinese mainland and make landfall again around 12:00z on the 14th about 200 miles southwest of Hong Kong. This colorized infrared image from the Suomi NPP satellite shows the storm on August 11th at 4:30z. NASA/NOAA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
SpecialNet. A National Computer-Based Communications Network.
ERIC Educational Resources Information Center
Morin, Alfred J.
1986-01-01
"SpecialNet," a computer-based communications network for educators at all administrative levels, has been established and is managed by National Systems Management, Inc. Users can send and receive electronic mail, share information on electronic bulletin boards, participate in electronic conferences, and send reports and other documents to each…
Mental Health Status, Drug Treatment Use, and Needle Sharing among Injection Drug Users
ERIC Educational Resources Information Center
Lundgren, Lena M.; Amodeo, Maryann; Chassler, Deborah
2005-01-01
This study examined the relationship among mental health symptoms, drug treatment use, and needle sharing in a sample of 507 injection drug users (IDUs). Mental health symptoms were measured through the ASI psychiatric scale. A logistic regression model identified that some of the ASI items were associated with needle sharing in an opposing…
Win–win data sharing in neuroscience
Ascoli, Giorgio A; Maraver, Patricia; Nanda, Sumit; Polavaram, Sridevi; Armañanzas, Rubén
2017-01-01
Most neuroscientists have yet to embrace a culture of data sharing. Using our decade-long experience at NeuroMorpho.Org as an example, we discuss how publicly available repositories may benefit data producers and end-users alike. We outline practical recipes for resource developers to maximize the research impact of data sharing platforms for both contributors and users. PMID:28139675
1995-01-01
Determination of reconnais- sance requirements for tropical cyclone surveillance and assignment of appropriate priorities. 4. In depth post- analysis of all...obtained by the Satellite Selective Reconnaissance Program network of stations. The personnel of Det 1, lWW, co -located with JTWC at Nimitz Hill, Guam...various programs. Manual streamline analysis of the 500 mb level is accomplished on the 00002 and 1200Z data. This analysis is used to dcli- eye/center
An assessment of drinking-water quality post-Haiyan.
Magtibay, Bonifacio; Anarna, Maria Sonabel; Fernando, Arturo
2015-01-01
Access to safe drinking-water is one of the most important public health concerns in an emergency setting. This descriptive study reports on an assessment of water quality in drinking-water supply systems in areas affected by Typhoon Haiyan immediately following and 10 months after the typhoon. Water quality testing and risk assessments of the drinking-water systems were conducted three weeks and 10 months post-Haiyan. Portable test kits were used to determine the presence of Escherichia coli and the level of residual chlorine in water samples. The level of risk was fed back to the water operators for their action. Of the 121 water samples collected three weeks post-Haiyan, 44% were contaminated, while 65% (244/373) of samples were found positive for E. coli 10 months post-Haiyan. For the three components of drinking-water systems - source, storage and distribution - the proportions of contaminated systems were 70%, 67% and 57%, respectively, 10 months after Haiyan. Vulnerability to faecal contamination was attributed to weak water safety programmes in the drinking-water supply systems. Poor water quality can be prevented or reduced by developing and implementing a water safety plan for the systems. This, in turn, will help prevent waterborne disease outbreaks caused by contaminated water post-disaster.
An assessment of drinking-water quality post-Haiyan
Anarna, Maria Sonabel; Fernando, Arturo
2015-01-01
Introduction Access to safe drinking-water is one of the most important public health concerns in an emergency setting. This descriptive study reports on an assessment of water quality in drinking-water supply systems in areas affected by Typhoon Haiyan immediately following and 10 months after the typhoon. Methods Water quality testing and risk assessments of the drinking-water systems were conducted three weeks and 10 months post-Haiyan. Portable test kits were used to determine the presence of Escherichia coli and the level of residual chlorine in water samples. The level of risk was fed back to the water operators for their action. Results Of the 121 water samples collected three weeks post-Haiyan, 44% were contaminated, while 65% (244/373) of samples were found positive for E. coli 10 months post-Haiyan. For the three components of drinking-water systems – source, storage and distribution – the proportions of contaminated systems were 70%, 67% and 57%, respectively, 10 months after Haiyan. Discussion Vulnerability to faecal contamination was attributed to weak water safety programmes in the drinking-water supply systems. Poor water quality can be prevented or reduced by developing and implementing a water safety plan for the systems. This, in turn, will help prevent waterborne disease outbreaks caused by contaminated water post-disaster. PMID:26767136
Weitzman, Elissa R; Adida, Ben; Kelemen, Skyler; Mandl, Kenneth D
2011-04-27
Surveillance and response to diabetes may be accelerated through engaging online diabetes social networks (SNs) in consented research. We tested the willingness of an online diabetes community to share data for public health research by providing members with a privacy-preserving social networking software application for rapid temporal-geographic surveillance of glycemic control. SN-mediated collection of cross-sectional, member-reported data from an international online diabetes SN entered into a software application we made available in a "Facebook-like" environment to enable reporting, charting and optional sharing of recent hemoglobin A1c values through a geographic display. Self-enrollment by 17% (n = 1,136) of n = 6,500 active members representing 32 countries and 50 US states. Data were current with 83.1% of most recent A1c values reported obtained within the past 90 days. Sharing was high with 81.4% of users permitting data donation to the community display. 34.1% of users also displayed their A1cs on their SN profile page. Users selecting the most permissive sharing options had a lower average A1c (6.8%) than users not sharing with the community (7.1%, p = .038). 95% of users permitted re-contact. Unadjusted aggregate A1c reported by US users closely resembled aggregate 2007-2008 NHANES estimates (respectively, 6.9% and 6.9%, p = 0.85). Success within an early adopter community demonstrates that online SNs may comprise efficient platforms for bidirectional communication with and data acquisition from disease populations. Advancing this model for cohort and translational science and for use as a complementary surveillance approach will require understanding of inherent selection and publication (sharing) biases in the data and a technology model that supports autonomy, anonymity and privacy.
Levin, Lia; Schwartz-Tayri, Talia
2017-06-01
Partnerships between service users and social workers are complex in nature and can be driven by both personal and contextual circumstances. This study sought to explore the relationship between social workers' involvement in shared decision making with service users, their attitudes towards service users in poverty, moral standards and health and social care organizations' policies towards shared decision making. Based on the responses of 225 licensed social workers from health and social care agencies in the public, private and third sectors in Israel, path analysis was used to test a hypothesized model. Structural attributions for poverty contributed to attitudes towards people who live in poverty, which led to shared decision making. Also, organizational support in shared decision making, and professional moral identity, contributed to ethical behaviour which led to shared decision making. The results of this analysis revealed that shared decision making may be a scion of branched roots planted in the relationship between ethics, organizations and Stigma. © 2016 The Authors. Health Expectations Published by John Wiley & Sons Ltd.
Analysis of Compound Water Hazard in Coastal Urbanized Areas under the Future Climate
NASA Astrophysics Data System (ADS)
Shibuo, Y.; Taniguchi, K.; Sanuki, H.; Yoshimura, K.; Lee, S.; Tajima, Y.; Koike, T.; Furumai, H.; Sato, S.
2017-12-01
Several studies indicate the increased frequency and magnitude of heavy rainfalls as well as the sea level rise under the future climate, which implies that coastal low-lying urbanized areas may experience increased risk against flooding. In such areas, where river discharge, tidal fluctuation, and city drainage networks altogether influence urban inundation, it is necessary to consider their potential interference to understand the effect of compound water hazard. For instance, pump stations cannot pump out storm water when the river water level is high, and in the meantime the river water level shall increase when it receives pumped water from cities. At the further downstream, as the tidal fluctuation regulates the water levels in the river, it will also affect the functionality of pump stations and possible inundation from rivers. In this study, we estimate compound water hazard in the coastal low-lying urbanized areas of the Tsurumi river basin under the future climate. We developed the seamlessly integrated river, sewerage, and coastal hydraulic model that can simulate river water levels, water flow in sewerage network, and inundation from the rivers and/or the coast to address the potential interference issue. As a forcing, the pseudo global warming method, which applies the changes in GCM anomaly to re-analysis data, is employed to produce ensemble typhoons to drive the seamlessly integrated model. The results show that heavy rainfalls caused by the observed typhoon generally become stronger under the pseudo global climate condition. It also suggests that the coastal low-lying areas become extensively inundated if the onset of river flooding and storm surge coincides.
Xu, Jie; Le, Kim; Deitermann, Annika; Montague, Enid
2014-01-01
The aim of this study was to investigate the antecedents of trust in technology for active users and passive users working with a shared technology. According to the prominence-interpretation theory, to assess the trustworthiness of a technology, a person must first perceive and evaluate elements of the system that includes the technology. An experimental study was conducted with 54 participants who worked in two-person teams in a multi-task environment with a shared technology. Trust in technology was measured using a trust in technology questionnaire and antecedents of trust were elicited using an open-ended question. A list of antecedents of trust in technology was derived using qualitative analysis techniques. The following categories emerged from the antecedent: technology factors, user factors, and task factors. Similarities and differences between active users and passive user responses, in terms of trust in technology were discussed. PMID:24882059
Xu, Jie; Le, Kim; Deitermann, Annika; Montague, Enid
2014-11-01
The aim of this study was to investigate the antecedents of trust in technology for active users and passive users working with a shared technology. According to the prominence-interpretation theory, to assess the trustworthiness of a technology, a person must first perceive and evaluate elements of the system that includes the technology. An experimental study was conducted with 54 participants who worked in two-person teams in a multi-task environment with a shared technology. Trust in technology was measured using a trust in technology questionnaire and antecedents of trust were elicited using an open-ended question. A list of antecedents of trust in technology was derived using qualitative analysis techniques. The following categories emerged from the antecedent: technology factors, user factors, and task factors. Similarities and differences between active users and passive user responses, in terms of trust in technology were discussed. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Large Scale Landslide Database System Established for the Reservoirs in Southern Taiwan
NASA Astrophysics Data System (ADS)
Tsai, Tsai-Tsung; Tsai, Kuang-Jung; Shieh, Chjeng-Lun
2017-04-01
Typhoon Morakot seriously attack southern Taiwan awaken the public awareness of large scale landslide disasters. Large scale landslide disasters produce large quantity of sediment due to negative effects on the operating functions of reservoirs. In order to reduce the risk of these disasters within the study area, the establishment of a database for hazard mitigation / disaster prevention is necessary. Real time data and numerous archives of engineering data, environment information, photo, and video, will not only help people make appropriate decisions, but also bring the biggest concern for people to process and value added. The study tried to define some basic data formats / standards from collected various types of data about these reservoirs and then provide a management platform based on these formats / standards. Meanwhile, in order to satisfy the practicality and convenience, the large scale landslide disasters database system is built both provide and receive information abilities, which user can use this large scale landslide disasters database system on different type of devices. IT technology progressed extreme quick, the most modern system might be out of date anytime. In order to provide long term service, the system reserved the possibility of user define data format /standard and user define system structure. The system established by this study was based on HTML5 standard language, and use the responsive web design technology. This will make user can easily handle and develop this large scale landslide disasters database system.
Social Networking Adapted for Distributed Scientific Collaboration
NASA Technical Reports Server (NTRS)
Karimabadi, Homa
2012-01-01
Share is a social networking site with novel, specially designed feature sets to enable simultaneous remote collaboration and sharing of large data sets among scientists. The site will include not only the standard features found on popular consumer-oriented social networking sites such as Facebook and Myspace, but also a number of powerful tools to extend its functionality to a science collaboration site. A Virtual Observatory is a promising technology for making data accessible from various missions and instruments through a Web browser. Sci-Share augments services provided by Virtual Observatories by enabling distributed collaboration and sharing of downloaded and/or processed data among scientists. This will, in turn, increase science returns from NASA missions. Sci-Share also enables better utilization of NASA s high-performance computing resources by providing an easy and central mechanism to access and share large files on users space or those saved on mass storage. The most common means of remote scientific collaboration today remains the trio of e-mail for electronic communication, FTP for file sharing, and personalized Web sites for dissemination of papers and research results. Each of these tools has well-known limitations. Sci-Share transforms the social networking paradigm into a scientific collaboration environment by offering powerful tools for cooperative discourse and digital content sharing. Sci-Share differentiates itself by serving as an online repository for users digital content with the following unique features: a) Sharing of any file type, any size, from anywhere; b) Creation of projects and groups for controlled sharing; c) Module for sharing files on HPC (High Performance Computing) sites; d) Universal accessibility of staged files as embedded links on other sites (e.g. Facebook) and tools (e.g. e-mail); e) Drag-and-drop transfer of large files, replacing awkward e-mail attachments (and file size limitations); f) Enterprise-level data and messaging encryption; and g) Easy-to-use intuitive workflow.
NASA Astrophysics Data System (ADS)
Huang, Shao-Yi; Yen, Jiun-Yee; Wu, Bo-Lin; Kao, Yu-Hsuan; Chang, Ting-Yi
2017-04-01
As an island surrounded by open water bodies, Taiwan faces associated challenges of oceanic events such as tidal, current and seasonsal wave cycles. In addition to the secular variations of the adjacent oceans, researchers have raised public awareness toward extreme wave events such as tsunamis and storm surges that may cause great damage to coastal infrastructures and loss of valuable lives. The east coast of Taiwan is prone to suffer from typhoons every year and records have shown that more than 30% of the low-pressure centers took the east coastline as their landing point. In year 2015, Typhoon Soudelor attacked the east coast of Taiwan and resulted in a great number of casualties and severe damage to the infrastructures all over the island. Soudelor is not the greatest typhoon of the year yet still brought in significant influences to the coastal topography due to its path and robust structure. In order to understand the impacts of typhoons like Soudelor, we investigated the coastal areas of Hualien, east Taiwan, to document how sediments and debris are transported along the shoreline under the extreme wave condition. Four coastal areas were surveyed to extract applicable information such as local relief profiles, grain size distribution of drifted sediments/debris, maximum inundation limit and so forth. Field observation suggests that the waves displayed great capability of transporting the sediments and redistributing the beach morphology. For instance, the beach of Qixing Lake (Chishingtan) has astonishing records like maximum volume of transported boulder around 3,000,000 cm3, maximum long axis of transported boulder around 144 cm, maximum distance of boulder transportation of 70 m, and maximum inundation distance of ca. 180 m. The composition and distribution of the drifted sediments in every areas vary with local geological conditions but in general all suggest similar characteristics: 1. the transported materials size down toward inland; 2. The sediments are originated from the vicinity and link positively with the local beach relief; 3. The occurrence of the drifted boulders shows a pattern of boulder field instead of sheet beds which is commonly observed at tsunami-related outcrops. By adding the detailed documentations of coastal environmental changes after the typhoon events, we hope to establish a thorough database that can facilitate tracking and predicting the behavior of extreme wave events in the future.
Ganchoon, Filipinas; Bugho, Rommel; Calina, Liezel; Dy, Rochelle; Gosney, James
2017-06-09
Physiatrists have provided humanitarian assistance in recent large-scale global natural disasters. Super Typhoon Haiyan, the deadliest and most costly typhoon in modern Philippine history, made landfall on 8 November 2013 resulting in significant humanitarian needs. Philippine Academy of Rehabilitation Medicine physiatrists conducted a project of 23 emergency basic relief and medical aid missions in response to Super Typhoon Haiyan from November 2013 to February 2014. The final mission was a medical aid mission to the inland rural community of Burauen, Leyte. Summary data were collected, collated, and tabulated; project and mission evaluation was performed. During the humanitarian assistance project, 31,254 basic relief kits containing a variety of food and non-food items were distributed and medical services including consultation, treatment, and medicines were provided to 7255 patients. Of the 344 conditions evaluated in the medical aid mission to Burauen, Leyte 85 (59%) were physical and rehabilitation medicine conditions comprised of musculoskeletal (62 [73%]), neurological (17 [20%]), and dermatological (6 [7%]) diagnoses. Post-mission and project analysis resulted in recommendations and programmatic changes to strengthen response in future disasters. Physiatrists functioned as medical providers, mission team leaders, community advocates, and in other roles. This physiatrist-led humanitarian assistance project met critical basic relief and medical aid needs of persons impacted by Super Typhoon Haiyan, demonstrating significant roles performed by physiatrists in response to a large-scale natural disaster. Resulting disaster programing changes and recommendations may inform a more effective response by PARM mission teams in the Philippines as well as by other South-Eastern Asia teams comprising rehabilitation professionals to large-scale, regional natural disasters. Implications for rehabilitation Large-scale natural disasters including tropical cyclones can have a catastrophic impact on the affected population. In response to Super Typhoon Haiyan, physiatrists representing the Philippine Academy of Rehabilitation Medicine conducted a project of 23 emergency basic relief and medical aid missions from November 2013 to February 2014. Project analysis indicates that medical mission teams responding in similar settings may expect to evaluate a significant number of physical medicine and rehabilitation conditions. Medical rehabilitation with participation by rehabilitation professionals including rehabilitation doctors is essential to the emergency medical response in large-scale natural disasters.
Mao, Yuxing; Cheng, Tao; Zhao, Huiyuan; Shen, Na
2017-11-27
In Wireless Sensor Networks (WSNs), unlicensed users, that is, sensor nodes, have excessively exploited the unlicensed radio spectrum. Through Cognitive Radio (CR), licensed radio spectra, which are owned by licensed users, can be partly or entirely shared with unlicensed users. This paper proposes a strategic bargaining spectrum-sharing scheme, considering a CR-based heterogeneous WSN (HWSN). The sensors of HWSNs are discrepant and exist in different wireless environments, which leads to various signal-to-noise ratios (SNRs) for the same or different licensed users. Unlicensed users bargain with licensed users regarding the spectrum price. In each round of bargaining, licensed users are allowed to adaptively adjust their spectrum price to the best for maximizing their profits. . Then, each unlicensed user makes their best response and informs licensed users of "bargaining" and "warning". Through finite rounds of bargaining, this scheme can obtain a Nash bargaining solution (NBS), which makes all licensed and unlicensed users reach an agreement. The simulation results demonstrate that the proposed scheme can quickly find a NBS and all players in the game prefer to be honest. The proposed scheme outperforms existing schemes, within a certain range, in terms of fairness and trade success probability.
NASA Astrophysics Data System (ADS)
Yamanaka, Hideo
Problems of shared use of bicycles and pedestrians on sidewalks have been an important issue for cycling policy promotion in Japan. Several studies on evaluation methods of shared use have been carried out, but it remains no appropriate index which can be used operationally in planning process. The aim of this study is to develop a method of evaluation of level-of-service for the shared use sidewalks using hindrance events index which newly considers the gap width in meeting and passing of cycling and pedestrians. This index can be estimated only by traffic volume, velocity, width of sidewalks which can be obtained in usual traffic observation. In conclusion, the author shows the appropriate indices which can explains conflicts behavior and unsafe sense of street users, and show the present situation of necessity of separation of existing streets in Japan by analyzing the ratio of street miles by the LOS.
2014-08-27
are used to perform circula- tion tendency calculations at multiple distances from the low- level circulation center. The results demonstrate a net...the first day of observations. The findings herein strongly support a recent tropical cyclogenesis model posit- ing that the Kelvin cat’s eye...originate and in- tensify. In their observational study, Dunkerton et al. (2009, here- after DMW09) developed a new tropical cyclogenesis model that
Overview of Privacy in Social Networking Sites (SNS)
NASA Astrophysics Data System (ADS)
Powale, Pallavi I.; Bhutkar, Ganesh D.
2013-07-01
Social Networking Sites (SNS) have become an integral part of communication and life style of people in today's world. Because of the wide range of services offered by SNSs mostly for free of cost, these sites are attracting the attention of all possible Internet users. Most importantly, users from all age groups have become members of SNSs. Since many of the users are not aware of the data thefts associated with information sharing, they freely share their personal information with SNSs. Therefore, SNSs may be used for investigating users' character and social habits by familiar or even unknown persons and agencies. Such commercial and social scenario, has led to number of privacy and security threats. Though, all major issues in SNSs need to be addressed, by SNS providers, privacy of SNS users is the most crucial. And therefore, in this paper, we have focused our discussion on "privacy in SNSs". We have discussed different ways of Personally Identifiable Information (PII) leakages from SNSs, information revelation to third-party domains without user consent and privacy related threats associated with such information sharing. We expect that this comprehensive overview on privacy in SNSs will definitely help in raising user awareness about sharing data and managing their privacy with SNSs. It will also help SNS providers to rethink about their privacy policies.
NASA Astrophysics Data System (ADS)
Prashad, L. C.; Christensen, P. R.; Fink, J. H.; Anwar, S.; Dickenshied, S.; Engle, E.; Noss, D.
2010-12-01
Our society currently is facing a number of major environmental challenges, most notably the threat of climate change. A multifaceted, interdisciplinary approach involving physical and social scientists, engineers and decisionmakers is critical to adequately address these complex issues. To best facilitate this interdisciplinary approach, data and models at various scales - from local to global - must be quickly and easily shared between disciplines to effectively understand environmental phenomena and human-environmental interactions. When data are acquired and studied on different scales and within different disciplines, researchers and practitioners may not be able to easily learn from each others results. For example, climate change models are often developed at a global scale, while strategies that address human vulnerability to climate change and mitigation/adaptation strategies are often assessed on a local level. Linkages between urban heat island phenomena and global climate change may be better understood with increased data flow amongst researchers and those making policy decisions. In these cases it would be useful have a single platform to share, visualize, and analyze numerical model and satellite/airborne remote sensing data with social, environmental, and economic data between researchers and practitioners. The Arizona State University 100 Cities Project and Mars Space Flight Facility are developing the open source application J-Earth, with the goal of providing this single platform, that facilitates data sharing, visualization, and analysis between researchers and applied practitioners around environmental and other sustainability challenges. This application is being designed for user communities including physical and social scientists, NASA researchers, non-governmental organizations, and decisionmakers to share and analyze data at multiple scales. We are initially focusing on urban heat island and urban ecology studies, with data and users from local to global levels. J-Earth is a Geographic Information System (GIS) that provides analytical tools for visualizing high-resolution and hyperspectral remote sensing imagery along with numeric and vector data. J-Earth is part of the JMARS (Java Mission-planning and Analysis for Remote Sensing) suite of tools which were first created to target NASA instruments on Mars and Lunar missions. Data can currently be incorporated in J-Earth at a scale of over 32,000 pixels per degree. Among other GIS functions, users can analyze trends along a transect line, or across vector regions, over multiple stacked numerical data layers and export their results. Open source tools, like J-Earth, are not only generally free or low-cost to users but provide the opportunity for users to contribute direction, functionality, and data standards to these projects. The flexible nature of open source projects often facilitates the incorporation of unique and emerging data sources, such as mobile phone data, sensor networks, croudsourced inputs, and social networking. The J-Earth team plans to incorporate datasources such as these with the feedback and participation of the user community.
Butterworth, S J
2014-01-01
Super-Typhoon Haiyan struck the Philippines on 7 November 2013. The initial reports estimated 10 000 fatalities and four million displaced persons. As the United Kingdom's initial response to this disaster, HMS DARING was diverted from her deployment to take part in humanitarian aid, named Operation PATWIN. This article will outline the medical aspects of the relief effort undertaken and aim to identify any lessons that may inform future operations.
Earth observations taken from Discovery during STS-85 mission - Typhoon Winnie
1997-08-13
S85-E-5071 (13 August 1997) --- The STS-85 crew members aboard the Space Shuttle Discovery downlinked this oblique, Electronic Still Camera (ESC) view of the Super Typhoon Winnie about halfway between New Guinea and Japan in the Pacific Ocean late evening, August 13, 1997. Maximum sustained winds of 105 knots, gusts up to 130 knots. This photo was taken 14 1/2 hours after STS085-E-5069 was recorded with the same ESC.
1995-01-01
George T. McKaige, USN *CAPT Frederick P. Milwer, USAF CAPT Alan W. Hassebrock, USAF CAPT Charles P. Guard , USAF CAPT”John D. Shewchuk, USAF ENS Edward...Det 1, lWW - USAF 1977 ANNUAL TYPHOON REPORT *Departed during 1977 season FRONTCOVER: ln&a.tedphoztogzaphof a - tmJ -A.toZmb.iaZatAn o.ulh a M dtig -&A...ships provide day and night coverage in the JTWC area of responsibility. Interpretation of this satellite imagery pro- vides cyclone positions, and for
2013-09-23
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Impact of Typhoons on the Western Pacific Ocean (ITOP) DRI...measurement and modeling activities include a focus on the impact of surface waves, air- sea fluxes and the temperature, salinity and velocity structure...moment closure (SMC) to represent the impact of Langmuir turbulence. WORK COMPLETED Encouraged by good quantitative comparisons between LES
Comparison of the landslide susceptibility models in Taipei Water Source Domain, Taiwan
NASA Astrophysics Data System (ADS)
WU, C. Y.; Yeh, Y. C.; Chou, T. H.
2017-12-01
Taipei Water Source Domain, locating at the southeast of Taipei Metropolis, is the main source of water resource in this region. Recently, the downstream turbidity often soared significantly during the typhoon period because of the upstream landslides. The landslide susceptibilities should be analysed to assess the influence zones caused by different rainfall events, and to ensure the abilities of this domain to serve enough and quality water resource. Generally, the landslide susceptibility models can be established based on either a long-term landslide inventory or a specified landslide event. Sometimes, there is no long-term landslide inventory in some areas. Thus, the event-based landslide susceptibility models are established widely. However, the inventory-based and event-based landslide susceptibility models may result in dissimilar susceptibility maps in the same area. So the purposes of this study were to compare the landslide susceptibility maps derived from the inventory-based and event-based models, and to interpret how to select a representative event to be included in the susceptibility model. The landslide inventory from Typhoon Tim in July, 1994 and Typhoon Soudelor in August, 2015 was collected, and used to establish the inventory-based landslide susceptibility model. The landslides caused by Typhoon Nari and rainfall data were used to establish the event-based model. The results indicated the high susceptibility slope-units were located at middle upstream Nan-Shih Stream basin.
Assimilation of GMS-5 satellite winds using nudging method with MM5
NASA Astrophysics Data System (ADS)
Gao, Shanhong; Wu, Zengmao; Yang, Bo
2006-09-01
With the aid of Meteorological Information Composite and Processing System (MICAPS), satellite wind vectors derived from the Geostationary Meteorological Statellite-5 (GMS-5) and retrieved by National Satellite Meteorology Center of China (NSMC) can be obtained. Based on the nudging method built in the fifth-generation Mesoscale Model (MM5) of Pennsylvania State University and National Center for Atmospheric Research, a data preprocessor is developed to convert these satellite wind vectors to those with specified format required in MM5. To examine the data preprocessor and evaluate the impact of satellite winds from GMS-5 on MM5 simulations, a series of numerical experimental forecasts consisting of four typhoon cases in 2002 are designed and implemented. The results show that the preprocessor can process satellite winds smoothly and MM5 model runs successfully with a little extra computational load during ingesting these winds, and that assimilation of satellite winds by MM5 nudging method can obviously improve typhoon track forecast but contributes a little to typhoon intensity forecast. The impact of the satellite winds depends heavily upon whether the typhoon bogussing scheme in MM5 was turned on or not. The data preprocessor developed in this paper not only can treat GMS-5 satellite winds but also has capability with little modification to process derived winds from other geostationary satellites.
Northwest Pacific typhoons documented by the Philippine Jesuits, 1566-1900
NASA Astrophysics Data System (ADS)
GarcíA-Herrera, Ricardo; Ribera, Pedro; HernáNdez, Emiliano; Gimeno, Luis
2007-03-01
In recent years, the population and the value of properties in areas prone to tropical cyclone (TC) have increased dramatically. This has caused more attention to be placed on the characterization of TC climatologies and the identification of the role that factors such as the main teleconnection patterns may play in TC variability. Due to the timescales involved, the instrumental records have proven too short to provide a complete picture. Thus, documentary and other paleoclimatological techniques have been used to reconstruct TC occurrence. This has been done mostly for the Atlantic basin, whereas in the Pacific basin, fewer attempts have been made. The aim of this paper is to provide a high-resolution chronology of typhoons and intense storms occurring in the Philippine Islands and their vicinity for the period 1566-1900. The chronology is based upon the writings of the Spanish Jesuit Miguel Selga, who produced the original work at the beginning of the 20th century. The sources, reliability, and completeness of the chronology are examined critically. A total of 652 events are included, 524 of which are reported as typhoons, the rest being considered as tropical storms. For each of these classes, the landfall location and the track (when sufficient information is available) have been drawn. This chronology is an indispensable step toward a final and complete typhoon record in the western Pacific basin.
NASA Astrophysics Data System (ADS)
Wang, L.-C.; Behling, H.; Lee, T.-Q.; Li, H.-C.; Huh, C.-A.; Shiau, L.-J.; Chang, Y.-P.
2014-10-01
We reconstructed paleoenvironmental changes from a sediment archive of a lake in the floodplain of the Ilan Plain of NE Taiwan on multi-decadal resolution for the last ca. 1900 years. On the basis of pollen and diatom records, we evaluated past floods, typhoons, and agricultural activities in this area which are sensitive to the hydrological conditions in the western Pacific. Considering the high sedimentation rates with low microfossil preservations in our sedimentary record, multiple flood events were. identified during the period AD 100-1400. During the Little Ice Age phase 1 (LIA 1 - AD 1400-1620), the abundant occurrences of wetland plant (Cyperaceae) and diatom frustules imply less flood events under stable climate conditions in this period. Between AD 500 and 700 and the Little Ice Age phase 2 (LIA 2 - AD 1630-1850), the frequent typhoons were inferred by coarse sediments and planktonic diatoms, which represented more dynamical climate conditions than in the LIA 1. By comparing our results with the reconstructed changes in tropical hydrological conditions, we suggested that the local hydrology in NE Taiwan is strongly influenced by typhoon-triggered heavy rainfalls, which could be influenced by the variation of global temperature, the expansion of the Pacific warm pool, and the intensification of El Niño-Southern Oscillation (ENSO) events.
NASA Astrophysics Data System (ADS)
Rajib, M. A.; Merwade, V.; Song, C.; Zhao, L.; Kim, I. L.; Zhe, S.
2014-12-01
Setting up of any hydrologic model requires a large amount of efforts including compilation of all the data, creation of input files, calibration and validation. Given the amount of efforts involved, it is possible that models for a watershed get created multiple times by multiple groups or organizations to accomplish different research, educational or policy goals. To reduce the duplication of efforts and enable collaboration among different groups or organizations around an already existing hydrology model, a platform is needed where anyone can search for existing models, perform simple scenario analysis and visualize model results. The creator and users of a model on such a platform can then collaborate to accomplish new research or educational objectives. From this perspective, a prototype cyber-infrastructure (CI), called SWATShare, is developed for sharing, running and visualizing Soil Water Assessment Tool (SWAT) models in an interactive GIS-enabled web environment. Users can utilize SWATShare to publish or upload their own models, search and download existing SWAT models developed by others, run simulations including calibration using high performance resources provided by XSEDE and Cloud. Besides running and sharing, SWATShare hosts a novel spatio-temporal visualization system for SWAT model outputs. In temporal scale, the system creates time-series plots for all the hydrology and water quality variables available along the reach as well as in watershed-level. In spatial scale, the system can dynamically generate sub-basin level thematic maps for any variable at any user-defined date or date range; and thereby, allowing users to run animations or download the data for subsequent analyses. In addition to research, SWATShare can also be used within a classroom setting as an educational tool for modeling and comparing the hydrologic processes under different geographic and climatic settings. SWATShare is publicly available at https://www.water-hub.org/swatshare.
Evaluation of Twitter Users Writings about Teachers in Turkey
ERIC Educational Resources Information Center
Yavuz, Mustafa
2014-01-01
As a social sharing network whose number of users worldwide continues to rapidly increase, Twitter has become an active network for individuals to share their thoughts and feelings at any given time. The purpose of this work, then, is to evaluate Twitter users of Turkey in terms of how they write about their teachers on Twitter. In order to…
ERIC Educational Resources Information Center
Ball, Albert L.
2012-01-01
Although reports of identity theft continue to be widely published, users continue to post an increasing amount of personal information online, especially within social networking sites (SNS) and e-learning systems (ELS). Research has suggested that many users lack awareness of the threats that risky online personal information sharing poses to…
Comparison of two recent storm surge events based on results of field surveys
NASA Astrophysics Data System (ADS)
Nakamura, Ryota; Shibayama, Tomoya; Mikami, Takahito; Esteban, Miguel; Takagi, Hiroshi; Maell, Martin; Iwamoto, Takumu
2017-10-01
This paper compares two different types of storm surge disaster based on field surveys. Two cases: a severe storm surge flood with its height of over 5 m due to Typhoon Haiyan (2013) in Philippine, and inundation of storm surge around Nemuro city in Hokkaido of Japan with its maximum surge height of 2.8 m caused by extra-tropical cyclone are taken as examples. For the case of the Typhoon Haiyan, buildings located in coastal region were severely affected due to a rapidly increase in ocean surface. The non-engineering buildings were partially or completely destroyed due to their debris transported to an inner bay region. In fact, several previous reports indicated two unique features, bore-like wave and remarkably high speed currents. These characteristics of the storm surge may contribute to a wide-spread corruption for the buildings around the affected region. Furthermore, in the region where the surge height was nearly 3 m, the wooden houses were completely or partially destroyed. On the other hand, in Nemuro city, a degree of suffering in human and facility caused by the storm surge is minor. There was almost no partially destroyed residential houses even though the height of storm surge reached nearly 2.8 m. An observation in the tide station in Nemuro indicated that this was a usual type of storm surge, which showed a gradual increase of sea level height in several hours without possessing the unique characteristics like Typhoon Haiyan. As a result, not only the height of storm surge but also the robustness of the buildings and characteristics of storm surge, such as bore like wave and strong currents, determined the existent of devastation in coastal regions.
NASA Astrophysics Data System (ADS)
Chen, Y. Y.; Ho, C. C.; Chang, L. C.
2017-12-01
The reservoir management in Taiwan faces lots of challenge. Massive sediment caused by landslide were flushed into reservoir, which will decrease capacity, rise the turbidity, and increase supply risk. Sediment usually accompanies nutrition that will cause eutrophication problem. Moreover, the unevenly distribution of rainfall cause water supply instability. Hence, how to ensure sustainable use of reservoirs has become an important task in reservoir management. The purpose of the study is developing an optimal planning model for reservoir sustainable management to find out an optimal operation rules of reservoir flood control and sediment sluicing. The model applies Genetic Algorithms to combine with the artificial neural network of hydraulic analysis and reservoir sediment movement. The main objective of operation rules in this study is to prevent reservoir outflow caused downstream overflow, minimum the gap between initial and last water level of reservoir, and maximum sluicing sediment efficiency. A case of Shihmen reservoir was used to explore the different between optimal operating rule and the current operation of the reservoir. The results indicate optimal operating rules tended to open desilting tunnel early and extend open duration during flood discharge period. The results also show the sluicing sediment efficiency of optimal operating rule is 36%, 44%, 54% during Typhoon Jangmi, Typhoon Fung-Wong, and Typhoon Sinlaku respectively. The results demonstrate the optimal operation rules do play a role in extending the service life of Shihmen reservoir and protecting the safety of downstream. The study introduces a low cost strategy, alteration of operation reservoir rules, into reservoir sustainable management instead of pump dredger in order to improve the problem of elimination of reservoir sediment and high cost.
NASA Astrophysics Data System (ADS)
Wu, Ying; Liu, Zongguang; Hu, Jun; Zhu, Zhuoyi; Liu, Sumei; Zhang, Jing
2016-02-01
Total suspended matter (TSM) was collected in the Changjiang Estuary and adjacent areas of the East China Sea in July, August, and November 2011, to study the composition and fate of particulate organic nitrogen (PON) during an August typhoon event and bottom trawling activities. Concentrations of particulate organic carbon (POC), particulate nitrogen (PN), and hydrolyzable particulate amino acids (PAA, D- and L-enantiomers) were higher during July and August than during November; however, D-arginine and alanine levels were significantly higher in November. Seasonal trends in the composition of PAAs indicate that in situ production is a key factor in their temporal distribution. No significant increase in TSM or decrease in labile organic matter was observed during the transit period following a typhoon event in August. In contrast, higher primary production was observed at this time as a result of the penetration of Changjiang Diluted Water caused by the typhoon event. Trawling effects were studied by comparing the calm season (July) with the bottom-trawling period (November) at similar sampling sites. The effect of trawling on the composition of bottom organic matter was studied by comparing D-amino acids concentrations and C/N ratios in the calm season (July) with the bottom-trawling period (November). A substantial contribution of microbial organic matter during the November cruise was indicated by a decrease in glutamic acid, an increase in TSM and D-alanine, and a lower carbon/nitrogen (C/N) ratio. In shallow coastal regions, anthropogenic activities (bottom trawling) may enhance the transfer of low-nutritional-value particulate organic matter into the benthic food chain.
Storm Surge Modeling of Typhoon Haiyan at the Naval Oceanographic Office Using Delft3D
NASA Astrophysics Data System (ADS)
Gilligan, M. J.; Lovering, J. L.
2016-02-01
The Naval Oceanographic Office provides estimates of the rise in sea level along the coast due to storm surge associated with tropical cyclones, typhoons, and hurricanes. Storm surge modeling and prediction helps the US Navy by providing a threat assessment tool to help protect Navy assets and provide support for humanitarian assistance/disaster relief efforts. Recent advancements in our modeling capabilities include the use of the Delft3D modeling suite as part of a Naval Research Laboratory (NRL) developed Coastal Surge Inundation Prediction System (CSIPS). Model simulations were performed on Typhoon Haiyan, which made landfall in the Philippines in November 2013. Comparisons of model simulations using forecast and hindcast track data highlight the importance of accurate storm track information for storm surge predictions. Model runs using the forecast track prediction and hindcast track information give maximum storm surge elevations of 4 meters and 6.1 meters, respectively. Model results for the hindcast simulation were compared with data published by the JSCE-PICE Joint survey for locations in San Pedro Bay (SPB) and on the Eastern Samar Peninsula (ESP). In SPB, where wind-induced set-up predominates, the model run using the forecast track predicted surge within 2 meters in 38% of survey locations and within 3 meters in 59% of the locations. When the hindcast track was used, the model predicted within 2 meters in 77% of the locations and within 3 meters in 95% of the locations. The model was unable to predict the high surge reported along the ESP produced by infragravity wave-induced set-up, which is not simulated in the model. Additional modeling capabilities incorporating infragravity waves are required to predict storm surge accurately along open coasts with steep bathymetric slopes, such as those seen in island arcs.
Supporting shared data structures on distributed memory architectures
NASA Technical Reports Server (NTRS)
Koelbel, Charles; Mehrotra, Piyush; Vanrosendale, John
1990-01-01
Programming nonshared memory systems is more difficult than programming shared memory systems, since there is no support for shared data structures. Current programming languages for distributed memory architectures force the user to decompose all data structures into separate pieces, with each piece owned by one of the processors in the machine, and with all communication explicitly specified by low-level message-passing primitives. A new programming environment is presented for distributed memory architectures, providing a global name space and allowing direct access to remote parts of data values. The analysis and program transformations required to implement this environment are described, and the efficiency of the resulting code on the NCUBE/7 and IPSC/2 hypercubes are described.
Using scenarios to capture work processes in shared home care.
Hägglund, Maria; Scandurra, Isabella; Koch, Sabine
2007-01-01
Shared home care is increasingly common, and in order to develop ICT that support such complex cooperative work it is crucial obtain an understanding of the work routines, information demands, and other central preconditions at the clinical level before the development is initiated. Scenarios are proposed as a technique that can be useful for capturing work processes in shared home care and experiences from the Old@Home project are presented. The scenarios are useful not only in the initial phases of the development project but throughout the development process, improving the accessibility of end user requirements and usability issues for the design team, and as a basis for use cases and further design.
NASA Gets an Eye-Opening Look at Typhoon Soulik
2017-12-08
NASA satellite imagery from July 10 revealed a very clear and cloudless eye in the Northwestern Pacific’s Typhoon Soulik as it moves toward a landfall in China by the end of the week. The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard NASA’s Terra satellite captured a visible image of Typhoon Soulik and its clear eye on July 10, 2013 at 2:10 UTC as it continues to move through the northwestern Pacific Ocean. Soulik’s round eye is about 25 nautical miles (28.7 miles/46.3 km) wide. Typhoon Soulik’s maximum sustained winds have increased dramatically over the last 24 hours and at 1500 UTC (11 a.m. EDT) on July 10, were blowing at 120 knots (138 mph/222 kph). According to the Joint Typhoon Warning Center, Soulik’s powerful winds are creating seas over 40 feet (12.2 meters) high in the northwestern Pacific Ocean. Soulik’s center was near 21.9 north latitude and 132.9 east longitude, about 420 nautical miles (483.3 miles/777.7 km) southeast of Kadena Air Base, Japan. Soulik is moving to the west-northwest at 13 knots (15 mph/24 kph). Soulik is tracking west-northwest along the southern edge of a subtropical ridge (elongated area) of high pressure. The ridge of high pressure stretches from east to west and westward over the Ryukyu Islands and into the East China Sea along about 30 north latitude. Soulik is still expected to make a landfall in southeastern China on July 12 or 13 after passing north of Taiwan. Text credit: Rob Gutro More info about the storm: 1.usa.gov/12mvQcC NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Application of terrestrial laser scanner on tidal flat morphology at a typhoon event timescale
NASA Astrophysics Data System (ADS)
Xie, Weiming; He, Qing; Zhang, Keqi; Guo, Leicheng; Wang, Xianye; Shen, Jian; Cui, Zheng
2017-09-01
Quantification of tidal flat morphological changes at varying timescales is critical from a management point of view. High-resolution tidal flat morphology data, including those for mudflats and salt-marshes, are rare due to monitoring difficulty by traditional methods. Recent advances in Terrestrial Laser Scanner (TLS) technology allow rapid acquisition of high-resolution and large-scale morphological data, but it remains problematic for its application on salt-marshes due to the presence of dense vegetation. In this study, we applied a TLS system to retrieve high-accuracy digital elevation models in a tidal flat of the Yangtze Estuary by using a robust and accurate Progressive Morphological filter (PM) to separate ground and non-ground points. Validations against GPS-supported RTK measurements suggested remarkable performance. In this case the average estimation error was about 0.3 cm, while the Root Mean Square Error (RMSE) was 2.0 cm. We conducted three TLS surveys on the same field including salt-marshes and mudflats at the time points 5 days before, 3 days after, and 45 days after a typhoon event. The retrieved data showed that the mudflats suffered from profound erosion while the salt-marshes slightly accreted during the typhoon period. The average elevation change of the total area was about - 4 cm (- 0.28 cm per day). However, both the mudflats and salt-marshes deposited in the post-typhoon period and the accretion over salt-marshes occurred at a higher rate than that during the typhoon. The elevation of the total area increased by 15.9 cm (0.37 cm per day), suggesting fast recovery under calm conditions. Quantification of the erosion and deposition rates was aided by the high quality TLS data. This study shows the effectiveness of TLS in quantifying morphological changes of tidal flats at an event (and post-event) timescale. The data and analysis also provide sound evidence on vegetation impact in stimulating salt-marsh development and restoration, shedding lights on bio-morphological interactions.
Flood hazard, vulnerability, and risk assessment for human life
NASA Astrophysics Data System (ADS)
Pan, T.; Chang, T.; Lai, J.; Hsieh, M.; Tan, Y.; Lin, Y.
2011-12-01
Flood risk assessment is an important issue for the countries suffering tropical cyclones and monsoon. Taiwan is located in the hot zone of typhoon tracks in the Western Pacific. There are three to five typhoons landing Taiwan every year. Typhoons and heavy rainfalls often cause inundation disaster rising with the increase of population and the development of social economy. The purpose of this study is to carry out the flood hazard, vulnerability and risk in term of human life. Based on the concept that flood risk is composed by flood hazard and vulnerability, a inundation simulation is performed to evaluate the factors of flood hazard for human life according to base flood (100-year return period). The flood depth, velocity and rising ratio are the three factors of flood hazards. Furthermore, the factors of flood vulnerability are identified in terms of human life that are classified into two main factors, residents and environment. The sub factors related to residents are the density of population and the density of vulnerable people including elders, youngers and disabled persons. The sub factors related to environment include the the number of building floors, the locations of buildings, the and distance to rescue center. The analytic hierarchy process (AHP) is adopted to determine the weights of these factors. The risk matrix is applied to show the risk from low to high based on the evaluation of flood hazards and vulnerabilities. The Tseng-Wen River watershed is selected as the case study because a serious flood was induced by Typhoon Morakot in 2009, which produced a record-breaking rainfall of 2.361mm in 48 hours in the last 50 years. The results of assessing the flood hazard, vulnerability and risk in term of human life could improve the emergency operation for flood disaster to prepare enough relief goods and materials during typhoon landing.
Design and evaluation of a trilateral shared-control architecture for teleoperated training robots.
Shamaei, Kamran; Kim, Lawrence H; Okamura, Allison M
2015-08-01
Multilateral teleoperated robots can be used to train humans to perform complex tasks that require collaborative interaction and expert supervision, such as laparoscopic surgical procedures. In this paper, we explain the design and performance evaluation of a shared-control architecture that can be used in trilateral teleoperated training robots. The architecture includes dominance and observation factors inspired by the determinants of motor learning in humans, including observational practice, focus of attention, feedback and augmented feedback, and self-controlled practice. Toward the validation of such an architecture, we (1) verify the stability of a trilateral system by applying Llewellyn's criterion on a two-port equivalent architecture, and (2) demonstrate that system transparency remains generally invariant across relevant observation factors and movement frequencies. In a preliminary experimental study, a dyad of two human users (one novice, one expert) collaborated on the control of a robot to follow a trajectory. The experiment showed that the framework can be used to modulate the efforts of the users and adjust the source and level of haptic feedback to the novice user.
Software for Sharing and Management of Information
NASA Technical Reports Server (NTRS)
Chen, James R.; Wolfe, Shawn R.; Wragg, Stephen D.
2003-01-01
DIAMS is a set of computer programs that implements a system of collaborative agents that serve multiple, geographically distributed users communicating via the Internet. DIAMS provides a user interface as a Java applet that runs on each user s computer and that works within the context of the user s Internet-browser software. DIAMS helps all its users to manage, gain access to, share, and exchange information in databases that they maintain on their computers. One of the DIAMS agents is a personal agent that helps its owner find information most relevant to current needs. It provides software tools and utilities for users to manage their information repositories with dynamic organization and virtual views. Capabilities for generating flexible hierarchical displays are integrated with capabilities for indexed- query searching to support effective access to information. Automatic indexing methods are employed to support users queries and communication between agents. The catalog of a repository is kept in object-oriented storage to facilitate sharing of information. Collaboration between users is aided by matchmaker agents and by automated exchange of information. The matchmaker agents are designed to establish connections between users who have similar interests and expertise.
Implementing a user-driven online quality improvement toolkit for cancer care.
Luck, Jeff; York, Laura S; Bowman, Candice; Gale, Randall C; Smith, Nina; Asch, Steven M
2015-05-01
Peer-to-peer collaboration within integrated health systems requires a mechanism for sharing quality improvement lessons. The Veterans Health Administration (VA) developed online compendia of tools linked to specific cancer quality indicators. We evaluated awareness and use of the toolkits, variation across facilities, impact of social marketing, and factors influencing toolkit use. A diffusion of innovations conceptual framework guided the collection of user activity data from the Toolkit Series SharePoint site and an online survey of potential Lung Cancer Care Toolkit users. The VA Toolkit Series site had 5,088 unique visitors in its first 22 months; 5% of users accounted for 40% of page views. Social marketing communications were correlated with site usage. Of survey respondents (n = 355), 54% had visited the site, of whom 24% downloaded at least one tool. Respondents' awareness of the lung cancer quality performance of their facility, and facility participation in quality improvement collaboratives, were positively associated with Toolkit Series site use. Facility-level lung cancer tool implementation varied widely across tool types. The VA Toolkit Series achieved widespread use and a high degree of user engagement, although use varied widely across facilities. The most active users were aware of and active in cancer care quality improvement. Toolkit use seemed to be reinforced by other quality improvement activities. A combination of user-driven tool creation and centralized toolkit development seemed to be effective for leveraging health information technology to spread disease-specific quality improvement tools within an integrated health care system. Copyright © 2015 by American Society of Clinical Oncology.
2010-07-01
September and Typhoon Jangmi two weeks later. These storms were both distinguished by especially large maximum rainfall accumulations, par- ticularly...TCS08 and produced as much rainfall as Sinlaku and Jangmi combined. 2. MODEL SETUP Numerical simulations for these events were per- formed using a...end result was record rainfall at many locations. The highest ob- served total was 1611 mm (63.43 in), but many locations received in excess of 1000 mm
2009-09-01
123, 93–109. ——, T.-H. Yen, Y.-H. Kuo, and W. Wang, 2002: Rainfall simu- lation associated with Typhoon Herb (1996) near Taiwan . Part I: The topographic...Bureau, Taipei, Taiwan MELINDA S. PENG Marine Meteorology Division, Naval Research Laboratory, Monterey, California DER-SONG CHEN, KANG-NING HUANG, AND...TIEN-CHIANG YEH Central Weather Bureau, Taipei, Taiwan (Manuscript received 13 May 2008, in final form 25 December 2008) ABSTRACT Tropical cyclone
Opportunities for Tropical Cyclone Motion Research in the Northwest Pacific Region.
1987-08-01
Taiwan (from Wang, 1980). LAL I LIST OF TABLES Table 1. Frequency of typhoons occurring In the Northwest Pacific region by month from 1959 to 1985. Table...e.g., the Philippines, Taiwan , Japan and also the Korean peninsula) are very mountainous with coastal mountains of 6000 to 10,000 ft and peaks as...strength of typhoons In Taiwan and Its vicinity. Research Report 18, National Science Council (NSC-67M-0202-0501), Taipei, Taiwan , 100 pp. 3 APPENDIX A DATA
Shared virtual environments for aerospace training
NASA Technical Reports Server (NTRS)
Loftin, R. Bowen; Voss, Mark
1994-01-01
Virtual environments have the potential to significantly enhance the training of NASA astronauts and ground-based personnel for a variety of activities. A critical requirement is the need to share virtual environments, in real or near real time, between remote sites. It has been hypothesized that the training of international astronaut crews could be done more cheaply and effectively by utilizing such shared virtual environments in the early stages of mission preparation. The Software Technology Branch at NASA's Johnson Space Center has developed the capability for multiple users to simultaneously share the same virtual environment. Each user generates the graphics needed to create the virtual environment. All changes of object position and state are communicated to all users so that each virtual environment maintains its 'currency.' Examples of these shared environments will be discussed and plans for the utilization of the Department of Defense's Distributed Interactive Simulation (DIS) protocols for shared virtual environments will be presented. Finally, the impact of this technology on training and education in general will be explored.
Huge Super Typhoon Meranti Over Taiwan Spotted by NASA MISR
2016-09-14
On Sept. 14, 2016, the eye of Super Typhoon Meranti passed just south of Taiwan. The enormous storm, classified as a Category 5 typhoon at the time, still caused much disruption on the island. Nearly 500,000 homes lost power, schools were closed, and most flights were cancelled. Maximum wind speeds were 180 miles per hour (290 kilometers per hour) as the storm passed, and more than 25 inches (64 centimeters) of rain fell on some areas of the country. However, the storm did not pass over Taiwan's mountainous landscape, which would have weakened it. That means it will remain strong as it heads toward mainland China, unlike Super Typhoon Nepartak in July, which weakened from a Category 5 typhoon to a tropical storm after crossing Taiwan. Meranti is currently maintaining Category 4 strength and is expected to make landfall near Shantou, Guangdong province, on Thursday, September 15. The coast of China is more vulnerable to storm surges than Taiwan due to shallower coastal waters and recent rainfall. There is risk of substantial flooding. On Sept. 14, at 10:45 AM local time, the Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra satellite passed directly over the eye of Meranti. On the left is a natural-color image from MISR's nadir-pointing camera. At this time the eye of Meranti was just off the southern tip of Taiwan, which is invisible under the clouds. The coast of China is barely visible through the clouds in the upper left portion of the image. The small eye and dense high clouds are both markers of the storm's power. MISR's nine cameras, each pointed at a different angle, can be used to determine the heights of clouds based on geometric shifts among the nine images. The middle panel shows these stereo-derived cloud top heights superimposed on the natural color image. The clouds of the central core of Typhoon Meranti have heights ranging between 16 and 20 kilometers (10 and 12.5 miles). It takes about seven minutes for all nine cameras to image the same location on the ground, and wind velocity can be calculated from the motion of the clouds over this seven-minute period. The right panel plots these wind velocities as vectors which indicate both direction and speed. The length of the arrow corresponds to the wind speed, which can be compared to the reference 20 meters per second (45 miles per hour) arrow in the key. Hurricanes and typhoons in the Northern Hemisphere rotate counterclockwise due to the Earth's rotation, but these wind vectors mainly show motion outward from the eye at the storm tops. This is due to the fact that hurricanes draw in moist air at low altitudes, which then flows upwards and outwards around the eye reversing direction. These data were acquired during Terra orbit 88865. http://photojournal.jpl.nasa.gov/catalog/PIA17309
Controlling QoS in a collaborative multimedia environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alfano, M.; Sigle, R.
1996-12-31
A collaborative multimedia environment allows users to work remotely on common projects by sharing applications (e.g., CAD tools, text editors, white boards) and simultaneously communicate audiovisually. Several dedicated applications (e.g., MBone tools) exist for transmitting video, audio and data between users. Due to the fact that they have been developed for the Internet which does not provide any Quality of Service (QoS) guarantee, these applications do not or only partially support specification of QoS requirements by the user. In addition, they all come with different user interfaces. In this paper we first discuss the problems that we experienced both atmore » the host and network levels when executing a multimedia application and varying its resource requirements. We then present the architectural details of a collaborative multimedia environment (CME) that we have been developing in order to help a user to set up and control a collaborative multimedia session.« less
Comparative Investigation of Shared Filesystems for the LHCb Online Cluster
NASA Astrophysics Data System (ADS)
Vijay Kartik, S.; Neufeld, Niko
2012-12-01
This paper describes the investigative study undertaken to evaluate shared filesystem performance and suitability in the LHCb Online environment. Particular focus is given to the measurements and field tests designed and performed on an in-house OpenAFS setup; related comparisons with NFSv4 and GPFS (a clustered filesystem from IBM) are presented. The motivation for the investigation and the test setup arises from the need to serve common user-space like home directories, experiment software and control areas, and clustered log areas. Since the operational requirements on such user-space are stringent in terms of read-write operations (in frequency and access speed) and unobtrusive data relocation, test results are presented with emphasis on file-level performance, stability and “high-availability” of the shared filesystems. Use cases specific to the experiment operation in LHCb, including the specific handling of shared filesystems served to a cluster of 1500 diskless nodes, are described. Issues of prematurely expiring authenticated sessions are explicitly addressed, keeping in mind long-running analysis jobs on the Online cluster. In addition, quantitative test results are also presented with alternatives including NFSv4. Comparative measurements of filesystem performance benchmarks are presented, which are seen to be used as reference for decisions on potential migration of the current storage solution deployed in the LHCb online cluster.
Global warming-induced upper-ocean freshening and the intensification of super typhoons
Balaguru, Karthik; Foltz, Gregory R.; Leung, L. Ruby; Emanuel, Kerry A.
2016-01-01
Super typhoons (STYs), intense tropical cyclones of the western North Pacific, rank among the most destructive natural hazards globally. The violent winds of these storms induce deep mixing of the upper ocean, resulting in strong sea surface cooling and making STYs highly sensitive to ocean density stratification. Although a few studies examined the potential impacts of changes in ocean thermal structure on future tropical cyclones, they did not take into account changes in near-surface salinity. Here, using a combination of observations and coupled climate model simulations, we show that freshening of the upper ocean, caused by greater rainfall in places where typhoons form, tends to intensify STYs by reducing their ability to cool the upper ocean. We further demonstrate that the strengthening effect of this freshening over the period 1961–2008 is ∼53% stronger than the suppressive effect of temperature, whereas under twenty-first century projections, the positive effect of salinity is about half of the negative effect of ocean temperature changes. PMID:27886199
Global warming-induced upper-ocean freshening and the intensification of super typhoons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balaguru, Karthik; Foltz, Gregory R.; Leung, L. Ruby
Here, super typhoons (STYs), intense tropical cyclones of the western North Pacific, rank among the most destructive natural hazards globally. The violent winds of these storms induce deep mixing of the upper ocean, resulting in strong sea surface cooling and making STYs highly sensitive to ocean density stratification. Although a few studies examined the potential impacts of changes in ocean thermal structure on future tropical cyclones, they did not take into account changes in near-surface salinity. Here, using a combination of observations and coupled climate model simulations, we show that freshening of the upper ocean, caused by greater rainfall inmore » places where typhoons form, tends to intensify STYs by reducing their ability to cool the upper ocean. We further demonstrate that the strengthening effect of this freshening over the period 1961–2008 is ~53% stronger than the suppressive effect of temperature, whereas under twenty-first century projections, the positive effect of salinity is about half of the negative effect of ocean temperature changes.« less
Wave characteristics and hydrodynamics at a reef island on Dongsha Atoll in the South China Sea
NASA Astrophysics Data System (ADS)
Su, Shih-Feng; Chiang, Te-Yun; Lin, Yi-Hao; Chen, Jia-Lin
2017-04-01
An inhabited coral reef island, located at the Dongsha Atoll in the northern South China Sea, is frequently attacked by typhoon waves. Coastline has suffered severe erosion and coastal inundation during certain typhoon paths. Groins were therefore built surround the island to stabilize the shoreline. However, the engineering structures redistributed the characteristics of hydrodynamics, which resulted in the disappearance of seasonal sediment movements on the reef flat. Additionally, infragravity waves (20-200 sec) on reefs have be found to generate strong resonance during energetic wave events. To understand wave characteristics and nearshore circulations around the reef under typical waves and typhoon waves, a phase-averaged and a phase-resolving wave models validated with previous field experiments are used to simulate significant wave height, wave setup and reef circulations. The phase-resolving model is specially applied to investigate infragravity motions around the island. Model results will illustrate the spatial variations of infragravity-wave field and wave-induced nearshore circulation and can provide information for coastal management and protection.
Daily reservoir sedimentation model: Case study from the Fena Valley Reservoir, Guam
Marineau, Mathieu D.; Wright, Scott A.
2017-01-01
A model to compute reservoir sedimentation rates at daily timescales is presented. The model uses streamflow and sediment load data from nearby stream gauges to obtain an initial estimate of sediment yield for the reservoir’s watershed; it is then calibrated to the total deposition calculated from repeat bathymetric surveys. Long-term changes to reservoir trapping efficiency are also taken into account. The model was applied to the Fena Valley Reservoir, a water supply reservoir on the island of Guam. This reservoir became operational in 1951 and was recently surveyed in 2014. The model results show that the highest rate of deposition occurred during two typhoons (Typhoon Alice in 1953 and Typhoon Tingting in 2004); each storm decreased reservoir capacity by approximately 2–3% in only a few days. The presented model can be used to evaluate the impact of an extreme event, or it can be coupled with a watershed runoff model to evaluate potential impacts to storage capacity as a result of climate change or other hydrologic modifications.
Global warming-induced upper-ocean freshening and the intensification of super typhoons.
Balaguru, Karthik; Foltz, Gregory R; Leung, L Ruby; Emanuel, Kerry A
2016-11-25
Super typhoons (STYs), intense tropical cyclones of the western North Pacific, rank among the most destructive natural hazards globally. The violent winds of these storms induce deep mixing of the upper ocean, resulting in strong sea surface cooling and making STYs highly sensitive to ocean density stratification. Although a few studies examined the potential impacts of changes in ocean thermal structure on future tropical cyclones, they did not take into account changes in near-surface salinity. Here, using a combination of observations and coupled climate model simulations, we show that freshening of the upper ocean, caused by greater rainfall in places where typhoons form, tends to intensify STYs by reducing their ability to cool the upper ocean. We further demonstrate that the strengthening effect of this freshening over the period 1961-2008 is ∼53% stronger than the suppressive effect of temperature, whereas under twenty-first century projections, the positive effect of salinity is about half of the negative effect of ocean temperature changes.
Global warming-induced upper-ocean freshening and the intensification of super typhoons
Balaguru, Karthik; Foltz, Gregory R.; Leung, L. Ruby; ...
2016-11-25
Here, super typhoons (STYs), intense tropical cyclones of the western North Pacific, rank among the most destructive natural hazards globally. The violent winds of these storms induce deep mixing of the upper ocean, resulting in strong sea surface cooling and making STYs highly sensitive to ocean density stratification. Although a few studies examined the potential impacts of changes in ocean thermal structure on future tropical cyclones, they did not take into account changes in near-surface salinity. Here, using a combination of observations and coupled climate model simulations, we show that freshening of the upper ocean, caused by greater rainfall inmore » places where typhoons form, tends to intensify STYs by reducing their ability to cool the upper ocean. We further demonstrate that the strengthening effect of this freshening over the period 1961–2008 is ~53% stronger than the suppressive effect of temperature, whereas under twenty-first century projections, the positive effect of salinity is about half of the negative effect of ocean temperature changes.« less
Dell, Colleen Anne; Kilty, Jennifer M.
2013-01-01
This article illustrates how the Aboriginal female drug user is responded to as an expected offender based on the intersection of her gender, race, and class. Drawing on the findings of a national Canadian study documenting the lived experiences of First Nations, Métis, and Inuit female drug users, we argue that the strengthening of cultural identity can potentially disrupt this expected status at both the individual and social system levels. Within the framework of critical victimology, the challenge then becomes to translate this understanding into praxis. In response, we suggest advancing women’s agency at the individual level in the face of disempowering images and practices related to the offender, the victim, and Aboriginality. For change at the system level, we return to Christie’s notion of the need to dismantle the stereotypical construction of the Aboriginal female drug user. We illustrate both levels of change with an innovative form of knowledge sharing, which aims to evoke transformation with respect to individual and socially constructed conceptualizations of identity. PMID:24795492
Abundance in Capital: Global Risk Sharing and Insurance in a Changing Financial Environment
NASA Astrophysics Data System (ADS)
Michel, Gero; Schaper, Christopher
2014-05-01
Insurance has played a viable role in the hedging of homeowners and commercial risks around the world. Countries that have significant penetration in insurance have in addition performed better after large regional or over-regional catastrophic losses. Insurance has hence increased the resilience of western societies. This is opposed to emerging or developing markets with low insurance penetration which have suffered significant drawbacks in their development after large catastrophic events. Examples include the recent Typhoon(s) in the Philippines and the 2010 Haiti earthquake. This presentation will provide insights into the opportunities, views and risk management features a global reinsurance company must assume in order to hedge and mitigate risk across the world. During the past year, an unprecedented amount of new capital has been entering the insurance market, looking for profitable investments outside the much wider capital market. Catastrophe insurance is seen as a valuable alternative to investing in assets that that have shown low returns and high correlation in the recent financial meltdown. The new capital is mostly deployed - or competing with already deployed capital - in the US where insurance penetration is already high. This is opposed to more than half of the world including all developing and most emerging countries which have low insurance penetration and often lack infrastructure hindering new capital to be deployed effectively. What is needed to overcome this obvious deficiency in capital supply and demand? One reason why it is difficult to deploy capital in developing countries is the lack of available exposure information and catastrophe models. This presentation sheds light on the potential science needs of our market and gives an overview of what is being done at Montpelier, a global reinsurance company, to understand catastrophe risk around the globe.
FRIEND: a brain-monitoring agent for adaptive and assistive systems.
Morris, Alexis; Ulieru, Mihaela
2012-01-01
This paper presents an architectural design for adaptive-systems agents (FRIEND) that use brain state information to make more effective decisions on behalf of a user; measuring brain context versus situational demands. These systems could be useful for alerting users to cognitive workload levels or fatigue, and could attempt to compensate for higher cognitive activity by filtering noise information. In some cases such systems could also share control of devices, such as pulling over in an automated vehicle. These aim to assist people in everyday systems to perform tasks better and be more aware of internal states. Achieving a functioning system of this sort is a challenge, involving a unification of brain- computer-interfaces, human-computer-interaction, soft-computin deliberative multi-agent systems disciplines. Until recently, these were not able to be combined into a usable platform due largely to technological limitations (e.g., size, cost, and processing speed), insufficient research on extracting behavioral states from EEG signals, and lack of low-cost wireless sensing headsets. We aim to surpass these limitations and develop control architectures for making sense of brain state in applications by realizing an agent architecture for adaptive (human-aware) technology. In this paper we present an early, high-level design towards implementing a multi-purpose brain-monitoring agent system to improve user quality of life through the assistive applications of psycho-physiological monitoring, noise-filtering, and shared system control.
Issues central to a useful image understanding environment
NASA Astrophysics Data System (ADS)
Beveridge, J. Ross; Draper, Bruce A.; Hanson, Allen R.; Riseman, Edward M.
1992-04-01
A recent DARPA initiative has sparked interested in software environments for computer vision. The goal is a single environment to support both basic research and technology transfer. This paper lays out six fundamental attributes such a system must possess: (1) support for both C and Lisp, (2) extensibility, (3) data sharing, (4) data query facilities tailored to vision, (5) graphics, and (6) code sharing. The first three attributes fundamentally constrain the system design. Support for both C and Lisp demands some form of database or data-store for passing data between languages. Extensibility demands that system support facilities, such as spatial retrieval of data, be readily extended to new user-defined datatypes. Finally, data sharing demands that data saved by one user, including data of a user-defined type, must be readable by another user.
Hugelius, Karin; Gifford, Mervyn; Örtenwall, Per; Adolfsson, Annsofie
2017-12-01
Natural disasters affected millions of people worldwide every year. Evaluation of disaster health and health response interventions is faced with several methodological challenges. This study aimed (1) to describe survivors' and health professionals' health, 30 months after a natural disaster using a web-based self-selected Internet sample survey designed and (2) to evaluate the health effects of disaster response interventions, in the present study with a focus on disaster radio. A web-based survey was used to conduct a cross-sectional study approximately 30 months after typhoon Haiyan. The GHQ-12, EQ-5D-3L, and EQ-VAS instruments were used in addition to study-specific questions. A self-selected Internet sample was recruited via Facebook. In total, 443 survivors, from what 73 were health professionals, participated in the study. The Haiyan typhoon caused both physical and mental health problems as well as social consequences for the survivors. Mental health problems were more frequently reported than physical injuries. Health professionals reported worse overall health and a higher frequency of mental health problems compared to other survivors. There were short-term and long-term physical, psychological, and social consequences for the survivors as a result of the Haiyan typhoon. Mental health problems were more frequently reported and lasted longer than physical problems. Health professionals deployed during the disaster reported worse health, especially concerning mental health problems. The survey used was found useful to describe health after disasters.
Impacts of heavy rain and typhoon on allergic disease.
Park, Kwan Jun; Moon, Jong Youn; Ha, Jong Sik; Kim, Sun Duk; Pyun, Bok Yang; Min, Taek Ki; Park, Yoon Hyung
2013-06-01
Allergic disease may be increased by climate change. Recent reports have shown that typhoon and heavy rain increase allergic disease locally by concentration of airborne allergens of pollen, ozone, and fungus, which are causes of allergic disease. The objective of this study was to determine whether typhoon and heavy rain increase allergic disease in Korea. This study included allergic disease patients of the area declared as a special disaster zone due to storms and heavy rains from 2003 to 2009. The study used information from the Korea Meteorological Administration, and from the National Health Insurance Service for allergic diseases (asthma, allergic rhinitis, and atopic dermatitis). During a storm period, the numbers of allergy rhinitis and atopic dermatitis outpatients increased [rate ratio (RR) = 1.191; range, 1.150-1.232] on the sixth lag day. However, the number of asthma outpatients decreased (RR = 0.900; range, 0.862-0.937) on the sixth lag day after a disaster period. During a storm period, the numbers of allergic rhinitis outpatients (RR = 1.075; range, 1.018-1.132) and atopy outpatients increased (RR = 1.134; range, 1.113-1.155) on the seventh lag day. However, the number of asthma outpatients decreased to RR value of 0.968 (range, 0.902-1.035) on the fifth lag day. This study suggests that typhoon and heavy rain increase allergic disease apart from asthma. More study is needed to explain the decrease in asthma.
NASA Astrophysics Data System (ADS)
Lee, Yong-Keun; Li, Jun; Li, Zhenglong; Schmit, Timothy
2017-11-01
The next generation Geostationary Operational Environmental Satellite-R series (GOES-R) Advanced Baseline Imager (ABI) legacy atmospheric profile (LAP) retrieval algorithm is applied to the Advanced Himawari Imager (AHI) radiance measurements from the Himawari-8 satellite. Derived products included atmospheric temperature/moisture profiles, total precipitable water (TPW), and atmospheric stability indices. Since both AHI and ABI have 9 similar infrared bands, the GOES-R ABI LAP retrieval algorithm can be applied to the AHI measurements with minimal modifications. With the capability of frequent (10-min interval) full disk observations over the East Asia and Western Pacific regions, the AHI measurements are used to investigate the atmospheric temporal variation in the pre-landfall environment for typhoon Nangka (2015). Before its landfall over Japan, heavy rainfalls from Nangka occurred over the southern region of Honshu Island. During the pre-landfall period, the trends of the AHI LAP products indicated the development of the atmospheric environment favorable for heavy rainfall. Even though, the AHI LAP products are generated only in the clear skies, the 10-minute interval AHI measurements provide detailed information on the pre-landfall environment for typhoon Nangka. This study shows the capability of the AHI radiance measurements, together with the derived products, for depicting the detailed temporal features of the pre-landfall environment of a typhoon, which may also be possible for hurricanes and storms with ABI on the GOES-R satellite.
NASA Astrophysics Data System (ADS)
Chiang, Po-Neng; Yu, Jui-Chu; Lai, Yen-Jen
2017-04-01
Global forests contain 69% of total carbon stored in forest soil and litter. But the carbon storage ability and release rate of warming gases of forest soil also affect global climate change. Reforestation is one of the best solutions to mitigate warming gases release and to store in soil. Typhoon is one of the most hazards to disturb forest ecosystem and change carbon cycle. Typhoon disturbance is also affect soil carbon cycle such as soil respiration, carbon storage. Therefore, the objective of this study is to clarify the effect of typhoon disturbance on soil respiration dynamic in a tropical broadleaves plantation in southern Taiwan. Fourteen broadleaved tree species were planted in 2002-2005. Twelves continuous soil respiration chambers was divided two treatments (trench and non-trench) and observed since 2011 to 2014. The soil belongs to Entisol with over 60% of sandstone. The soil pH is 5.5 with low base cations because of high sand percentage. Forest biometric such as tree high, DBH, litterfall was measured in 2011-2014. Data showed that the accumulation amount of litterfall was highest in December to February and lowest in June. Soil respiration was related with season variation in research site. Soil temperature showed significantly exponential related with soil respiration in research site (p<0.001).However, soil respiration showed significantly negative relationship with total amount of litterfall (p<0.001), suggesting that the tree was still young and did not reach crown closure.
Sharing Vital Signs between mobile phone applications.
Karlen, Walter; Dumont, Guy A; Scheffer, Cornie
2014-01-01
We propose a communication library, ShareVitalSigns, for the standardized exchange of vital sign information between health applications running on mobile platforms. The library allows an application to request one or multiple vital signs from independent measurement applications on the Android OS. Compatible measurement applications are automatically detected and can be launched from within the requesting application, simplifying the work flow for the user and reducing typing errors. Data is shared between applications using intents, a passive data structure available on Android OS. The library is accompanied by a test application which serves as a demonstrator. The secure exchange of vital sign information using a standardized library like ShareVitalSigns will facilitate the integration of measurement applications into diagnostic and other high level health monitoring applications and reduce errors due to manual entry of information.
The economics of time shared computing: Congestion, user costs and capacity
NASA Technical Reports Server (NTRS)
Agnew, C. E.
1982-01-01
Time shared systems permit the fixed costs of computing resources to be spread over large numbers of users. However, bottleneck results in the theory of closed queueing networks can be used to show that this economy of scale will be offset by the increased congestion that results as more users are added to the system. If one considers the total costs, including the congestion cost, there is an optimal number of users for a system which equals the saturation value usually used to define system capacity.
Transmissibility of the Campaign for Colorectal Cancer Awareness in Korea Among Twitter Users
Lee, Keun Chul; Park, Gibeom; Park, SoHyun; Bae, Woo Kyung; Kim, Jin Won; Yoon, Hyuk; Kim, Myung Jo; Kang, Sung-Il; Son, Il Tae; Kim, Duck-Woo; Kang, Sung-Bum
2016-01-01
Purpose The Korean Society of Coloproctology holds its annual colorectal awareness month every September. This study analyzed the users and the contents of Korean tweets regarding colorectal cancer and estimated the transmissibility of the awareness campaign among Twitter users. Methods Prospective data collection was employed to accumulate Korean tweets containing the keywords "colorectal cancer," "colorectal cancer awareness campaign," "gold ribbon," and/or "love handle," from August 1 to September 30, 2014. Twitter users and contents were analyzed, and the credibility of information-sharing tweets throughout the study period was evaluated. Results In total, 10,387 tweets shared by 1,452 unique users were analyzed. As for users, 57.8% were individuals whereas 5.8% were organizations/communities; spambots accounted for a considerable percentage (36.4%). As for content, most tweets were spam (n = 8,736, 84.1%), repetitively advertising unverified commercial folk remedies, followed by tweets that shared information (n = 1,304, 12.6%) and non-information (n = 347, 3.3%). In the credibility assessment, only 80.6% of the information-sharing tweets were medically correct. After spam tweets had been excluded, a significant increase was seen in the percentage of information-sharing tweets (77.1% to 81.1%, P = 0.045) during the awareness campaign month. Conclusion Most Korean tweets regarding colorectal cancer during the study months were commercial spam tweets; informative public tweets accounted for an extremely small percentage. The transmissibility of the awareness campaign among Twitter users was questionable at best. To expand the reach of credible medical information on colorectal cancer, public health institutions and organizations must pay greater attention to social media. PMID:27847789
Ramos, S Raquel
2017-11-01
Health information exchange is the electronic accessibility and transferability of patient medical records across various healthcare settings and providers. In some states, patients have to formally give consent to allow their medical records to be electronically shared. The purpose of this study was to apply a novel user-centered, multistep, multiframework approach to design and test an electronic consent user interface, so patients with HIV can make more informed decisions about electronically sharing their health information. This study consisted of two steps. Step 1 was a cross-sectional, descriptive, qualitative study that used user-centric design interviews to create the user interface. This informed Step 2. Step 2 consisted of a one group posttest to examine perceptions of usefulness, ease of use, preference, and comprehension of a health information exchange electronic consent user interface. More than half of the study population had college experience, but challenges remained with overall comprehension regarding consent. The user interface was not independently successful, suggesting that in addition to an electronic consent user interface, human interaction may also be necessary to address the complexities associated with consenting to electronically share health information. Comprehension is key factor in the ability to make informed decisions.
User-Side Subsidies for Shared Ride Taxi Service in Danville, Illinois : Phase 1.
DOT National Transportation Integrated Search
1977-06-01
An UMTA Service and Methods Demonstration has been implemented in Danville, Illinois. The Purpose of the Demonstration is to test the use of a user-side subsidy on a shared ride taxi service for handicapped and elderly persons. This report presents t...
Risk analysis for the flood control capacity of dikes under climate change
NASA Astrophysics Data System (ADS)
Wei, Hsiao Ping; Yeh, Keh-Chia; Hsiao, Yi-Hua
2017-04-01
Climate change is the major reason for many extreme disaster events. In recent years, scientists have revealed many findings and most of them agree that the frequency of extreme weather and its corresponding hydrological impact will increase due to climate change. In such situation, the current hydrologic designs based upon historical observation, which could be changed, are necessary to review again under the scenario of climate change. It is for this reason that this study uses Kao-Ping River Basin as an example, using high resolution dynamical downscaling data (base period, near future, and end of the century) to simulate changes in hourly flow rate of typhoon events in each of the three 25-year periods. Results are further compared with the design flow rate announced by the competent authority of water resources, as well as recorded river water levels of the most severe typhoon event in history and risk analysis basic on factors, to evaluate the risk and impact of river flooding under climate change.From the simulation results, the frequency of exceeding design discharge in Kao-ping river catchment will increase in the end of century. The water level at these LI-LIN BRIDGE and SAN-TI-MEN gauges could be obviously influenced due to the extreme rainfall events, so that their flood control capacity should be assessed and improved.
System-Level Virtualization Research at Oak Ridge National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, Stephen L; Vallee, Geoffroy R; Naughton, III, Thomas J
2010-01-01
System-level virtualization is today enjoying a rebirth as a technique to effectively share what were then considered large computing resources to subsequently fade from the spotlight as individual workstations gained in popularity with a one machine - one user approach. One reason for this resurgence is that the simple workstation has grown in capability to rival that of anything available in the past. Thus, computing centers are again looking at the price/performance benefit of sharing that single computing box via server consolidation. However, industry is only concentrating on the benefits of using virtualization for server consolidation (enterprise computing) whereas ourmore » interest is in leveraging virtualization to advance high-performance computing (HPC). While these two interests may appear to be orthogonal, one consolidating multiple applications and users on a single machine while the other requires all the power from many machines to be dedicated solely to its purpose, we propose that virtualization does provide attractive capabilities that may be exploited to the benefit of HPC interests. This does raise the two fundamental questions of: is the concept of virtualization (a machine sharing technology) really suitable for HPC and if so, how does one go about leveraging these virtualization capabilities for the benefit of HPC. To address these questions, this document presents ongoing studies on the usage of system-level virtualization in a HPC context. These studies include an analysis of the benefits of system-level virtualization for HPC, a presentation of research efforts based on virtualization for system availability, and a presentation of research efforts for the management of virtual systems. The basis for this document was material presented by Stephen L. Scott at the Collaborative and Grid Computing Technologies meeting held in Cancun, Mexico on April 12-14, 2007.« less
2016-05-01
Sharik 1.0: User Needs and System Requirements for a Web -Based Tool to Support Collaborative Sensemaking Shadi Ghajar-Khosravi...share the new intelligence items with their peers. In this report, the authors describe Sharik (SHAring Resources, Information, and Knowledge), a web ...SHAring Resources, Information and Knowledge, soit le partage des ressources, de l’information et des connaissances), un outil Web qui facilite le
FORCEnet Net Centric Architecture - A Standards View
2006-06-01
SHARED SERVICES NETWORKING/COMMUNICATIONS STORAGE COMPUTING PLATFORM DATA INTERCHANGE/INTEGRATION DATA MANAGEMENT APPLICATION...R V I C E P L A T F O R M S E R V I C E F R A M E W O R K USER-FACING SERVICES SHARED SERVICES NETWORKING/COMMUNICATIONS STORAGE COMPUTING PLATFORM...E F R A M E W O R K USER-FACING SERVICES SHARED SERVICES NETWORKING/COMMUNICATIONS STORAGE COMPUTING PLATFORM DATA INTERCHANGE/INTEGRATION
The Who, What and How of Social Media Exploitation for a Combatant Commander
2013-05-20
intelligence information. Social media platforms such as Facebook, Twitter and YouTube provide users with the ability to create, disseminate, share... users with the ability to create, disseminate, share and access information from almost anywhere in the world in real time, on any subject one may...media in translating words into actions. First, users of social media are not uniform from country to country or even within a specific country
Proximity Displays for Access Control
ERIC Educational Resources Information Center
Vaniea, Kami
2012-01-01
Managing access to shared digital information, such as photographs and documents. is difficult for end users who are accumulating an increasingly large and diverse collection of data that they want to share with others. Current policy-management solutions require a user to proactively seek out and open a separate policy-management interface when…
2011-11-29
economies need in ways that are imperiling the climate its environment needs. 2 The climate - change dimension • Global climate is changing rapidly compared...cloudy & clear • humid & dry • drizzles & downpours • snowfall, snowpack, & snowmelt • breezes, blizzards, tornadoes, & typhoons Climate change means...droughts • heat waves • pest outbreaks • coastal erosion • coral bleaching events • power of typhoons & hurricanes • geographic range of tropical pathogens
1995-01-01
a17idl$8WOOLOWOOL34SaoH13HXld 6HOOLNIHNIH)(VHXwJ!# fl ,. A3NVNNOOHdAl-S3XIJlAVXINIVONVNV(IVNaNVl LAND RADAR AND AIRCRAFT FIXES - TYPHOON NANCY (CONT’D) UNIT...3IA:NO~Hd\\~_.::::..:::. “d”” ~ I::;(ll;-)1’:;;;y%;~8.(ol,-)n,# d bklb 01~IOAXO1 -1......-..,.-- Fl ..--..,.—-....-.+,’ 6 .+m~~~~~~‘k:K2Y4...STUDY BASED ON THE VEIGAS -blILLER SCREENING PROCEDURE USED TO DEVELOP A SIMILAR METHOD OF FORECASTING ATLANTIC HURRICANE MOVEMENT. THREE SETS OF
E-Center: A Collaborative Platform for Wide Area Network Users
NASA Astrophysics Data System (ADS)
Grigoriev, M.; DeMar, P.; Tierney, B.; Lake, A.; Metzger, J.; Frey, M.; Calyam, P.
2012-12-01
The E-Center is a social collaborative web-based platform for assisting network users in understanding network conditions across network paths of interest to them. It is designed to give a user the necessary tools to isolate, identify, and resolve network performance-related problems. E-Center provides network path information on a link-by-link level, as well as from an end-to-end perspective. In addition to providing current and recent network path data, E-Center is intended to provide a social media environment for them to share issues, ideas, concerns, and problems. The product has a modular design that accommodates integration of other network services that make use of the same network path and performance data.
Hargreaves, Sarah; Bath, Peter A; Duffin, Suzanne; Ellis, Julie
2018-06-14
The availability of an increasing number of online health forums has altered the experience of living with a health condition, as more people are now able to connect and support one another. Empathy is an important component of peer-to-peer support, although little is known about how empathy develops and operates within online health forums. The aim of this paper is to explore how empathy develops and operates within two online health forums for differing health conditions: breast cancer and motor neuron disease (MND), also known as amyotrophic lateral sclerosis. This qualitative study analyzed data from two sources: interviews with forum users and downloaded forum posts. Data were collected from two online health forums provided by UK charities: Breast Cancer Care and the Motor Neurone Disease Association. We analyzed 84 threads from the breast cancer forum and 52 from the MND forum. Threads were purposively sampled to reflect varied experiences (eg, illness stages, topics of conversation, and user characteristics). Semistructured interviews were conducted with 14 Breast Cancer Care forum users and five users of the MND forum. All datasets were analyzed thematically using Braun and Clarke's six-phase approach and combined to triangulate the analysis. We found that empathy develops and operates through shared experiences and connections. The development of empathy begins outside the forum with experiences of illness onset and diagnosis, creating emotional and informational needs. Users came to the forum and found their experiences and needs were shared and understood by others, setting the empathetic tone and supportive ethos of the forum. The forum was viewed as both a useful and meaningful space in which they could share experiences, information, and emotions, and receive empathetic support within a supportive and warm atmosphere. Empathy operated through connections formed within this humane space based on similarity, relationships, and shared feelings. Users felt a need to connect to users who they felt were like themselves (eg, people sharing the same specific diagnosis). They formed relationships with other users. They connected based on the emotional understanding of ill health. Within these connections, empathic communication flourished. Empathy develops and operates within shared experiences and connections, enabled by structural possibilities provided by the forums giving users the opportunity and means to interact within public, restricted, and more private spaces, as well as within groups and in one-to-one exchanges. The atmosphere and feeling of both sites and perceived audiences were important facilitators of empathy, with users sharing a perception of virtual communities of caring and supportive people. Our findings are of value to organizations hosting health forums and to health professionals signposting patients to additional sources of support. ©Sarah Hargreaves, Peter A Bath, Suzanne Duffin, Julie Ellis. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 14.06.2018.
Lymperopoulos, Ilias N; Ioannou, George D
2016-10-01
We develop and validate a model of the micro-level dynamics underlying the formation of macro-level information propagation patterns in online social networks. In particular, we address the dynamics at the level of the mechanism regulating a user's participation in an online information propagation process. We demonstrate that this mechanism can be realistically described by the dynamics of noisy spiking neurons driven by endogenous and exogenous, deterministic and stochastic stimuli representing the influence modulating one's intention to be an information spreader. Depending on the dynamically changing influence characteristics, time-varying propagation patterns emerge reflecting the temporal structure, strength, and signal-to-noise ratio characteristics of the stimulation driving the online users' information sharing activity. The proposed model constitutes an overarching, novel, and flexible approach to the modeling of the micro-level mechanisms whereby information propagates in online social networks. As such, it can be used for a comprehensive understanding of the online transmission of information, a process integral to the sociocultural evolution of modern societies. The proposed model is highly adaptable and suitable for the study of the propagation patterns of behavior, opinions, and innovations among others. Copyright © 2016 Elsevier Ltd. All rights reserved.
Privacy-preserving photo sharing based on a public key infrastructure
NASA Astrophysics Data System (ADS)
Yuan, Lin; McNally, David; Küpçü, Alptekin; Ebrahimi, Touradj
2015-09-01
A significant number of pictures are posted to social media sites or exchanged through instant messaging and cloud-based sharing services. Most social media services offer a range of access control mechanisms to protect users privacy. As it is not in the best interest of many such services if their users restrict access to their shared pictures, most services keep users' photos unprotected which makes them available to all insiders. This paper presents an architecture for a privacy-preserving photo sharing based on an image scrambling scheme and a public key infrastructure. A secure JPEG scrambling is applied to protect regional visual information in photos. Protected images are still compatible with JPEG coding and therefore can be viewed by any one on any device. However, only those who are granted secret keys will be able to descramble the photos and view their original versions. The proposed architecture applies an attribute-based encryption along with conventional public key cryptography, to achieve secure transmission of secret keys and a fine-grained control over who may view shared photos. In addition, we demonstrate the practical feasibility of the proposed photo sharing architecture with a prototype mobile application, ProShare, which is built based on iOS platform.
Space Images for NASA JPL Android Version
NASA Technical Reports Server (NTRS)
Nelson, Jon D.; Gutheinz, Sandy C.; Strom, Joshua R.; Arca, Jeremy M.; Perez, Martin; Boggs, Karen; Stanboli, Alice
2013-01-01
This software addresses the demand for easily accessible NASA JPL images and videos by providing a user friendly and simple graphical user interface that can be run via the Android platform from any location where Internet connection is available. This app is complementary to the iPhone version of the application. A backend infrastructure stores, tracks, and retrieves space images from the JPL Photojournal and Institutional Communications Web server, and catalogs the information into a streamlined rating infrastructure. This system consists of four distinguishing components: image repository, database, server-side logic, and Android mobile application. The image repository contains images from various JPL flight projects. The database stores the image information as well as the user rating. The server-side logic retrieves the image information from the database and categorizes each image for display. The Android mobile application is an interfacing delivery system that retrieves the image information from the server for each Android mobile device user. Also created is a reporting and tracking system for charting and monitoring usage. Unlike other Android mobile image applications, this system uses the latest emerging technologies to produce image listings based directly on user input. This allows for countless combinations of images returned. The backend infrastructure uses industry-standard coding and database methods, enabling future software improvement and technology updates. The flexibility of the system design framework permits multiple levels of display possibilities and provides integration capabilities. Unique features of the software include image/video retrieval from a selected set of categories, image Web links that can be shared among e-mail users, sharing to Facebook/Twitter, marking as user's favorites, and image metadata searchable for instant results.
Rosenberg, David; Schön, Ulla-Karin; Nyholm, Maria; Grim, Katarina; Svedberg, Petra
2017-04-01
Despite the potential impact of shared decision making on users satisfaction with care and quality in health care decisions, there is a lack of knowledge and skills regarding how to work with shared decision making among health care providers. The aim of this study was to evaluate the psychometric properties of three instruments that measure varied dimensions of shared decision making, based on self-reports by clients, in a Swedish community mental health context. The study sample consisted of 121 clients with experience of community mental health care, and involved in a wide range of decisions regarding both social support and treatment. The questionnaires were examined for face and content validity, internal consistency, test-retest reliability and construct validity. The instruments displayed good face and content validity, satisfactory internal consistency and a moderate to good level of stability in test-retest reliability with fair to moderate construct correlations, in a sample of clients with serious mental illness and experience of community mental health services in Sweden. The questionnaires are considered to be relevant to the decision making process, user-friendly and appropriate in a Swedish community mental health care context. They functioned well in settings where non-medical decisions, regarding social and support services, are the primary focus. The use of instruments that measure various dimensions of the self-reported experience of clients, can be a key factor in developing knowledge of how best to implement shared decision making in mental health services.
NASA Astrophysics Data System (ADS)
Bambace, Luís Antonio Waack; Ceballos, Décio Castilho
CDMA Mobile Satellite Systems (CDMA MSS) are able to co-directional, co-frequency and co-coverage sharing, and they are strongly interdependent in case of such a sharing. It is also known that the success of any telecommunication project is the use of the correct media to each task. Operators have a clear sight of such a media adequacy in traditional systems, but not necessarily in the case of Mobile Satellite Systems. This creates a risk that a wrong market objective operator causes trouble to other systems. This paper deals with the sharing alternatives for up to four CDMA MSS operating in the same frequency band, and analysts both: satellite to user downlink and user to satellite uplink. The influence of several items in capacity is here treated. The scope includes: downlink power flux density: code availability; single system internal interference; inter-system interference; diversity schemes: average link impairments, margins; user cooperation; terminal specifications and the dependence of the insulation between RHCP and LHCP with fade.
DWTP: a basis for networked VR on the Internet
NASA Astrophysics Data System (ADS)
Broll, Wolfgang; Schick, Daniel
1998-04-01
Shared virtual worlds are one of today's major research topics. While limited to particular application areas and high speed networks in the past, they become more and more available to a large number of users. One reason for this development was the introduction of VRML (the Virtual Reality Modeling Language), which has been established as a standard of the exchange of 3D worlds on the Internet. Although a number of prototype systems have been developed to realize shared multi-user worlds based on VRML, no suitable network protocol to support the demands of such environments has yet been established. In this paper we will introduce our approach of a network protocol for shared virtual environments: DWTP--the Distributed Worlds Transfer and communication Protocol. We will show how DWTP meets the demands of shared virtual environments on the Internet. We will further present SmallView, our prototype of a distributed multi-user VR system, to show how DWTP can be used to realize shared worlds.
Planning future care services: Analyses of investments in Norwegian municipalities.
Hagen, Terje P; Tingvold, Laila
2018-06-01
To analyse whether the Norwegian Central Government's goal of subsidizing 12,000 places in nursing homes or sheltered housing using an earmarked grant was reached and to determine towards which group of users the planned investments were targeted. Data from the investment plans at municipal level were provided by the Norwegian Housing Bank and linked to variables describing the municipalities' financial situation as well as variables describing the local needs for services provided by Statistics Norway. Using regression analyses we estimated the associations between municipal characteristics and planned investments in total and by type of care place. The Norwegian Central Government reached its goal of giving subsidies to 12,000 new or rebuilt places in nursing homes and sheltered housing. A total of 54% of the subsidies (6878 places) were given to places in nursing homes. About 7500 places were available by the end of the planning period and the rest were under construction. About 50% of the places were planned for user groups aged <67 years and 23% of the places for users aged <25 years. One-third of the places were planned for users with intellectual disabilities. Investments in nursing homes were correlated with the share of the population older than 80 years and investments in sheltered houses were correlated with the share of users with intellectual disabilities. Earmarked grants to municipalities can be adequate measures to affect local resource allocation and thereby stimulate investments in future care. With the current institutional setup the municipalities adapt investments to local needs.
2010-12-01
strategy “to establish a net- centric environment that increasingly leverages shared services and SOAs that are: Supported by…a single set of common...component services. As mentioned previously, this is an important characteristic of SOA. Also noteworthy is set of shared services seen on the...transmit information products directly to the user(s). 6. Shared Services One of the key benefits of Service Oriented Architecture is the ability to
Current Trends in Social Media and the Department of Defense’s Social Media Policy
2014-09-23
environment in which these interactions occur. Facebook, Twitter, YouTube , and Instagram are social media websites that allow users to create and/or...post photographs, while YouTube specializes in user-generated videos. The accessibility of social media on mobile technology, such as smartphones...websites. • Evernote Video A video-sharing website that allows users to upload, share, view and comment on videos. • Vimeo • YouTube • Twitter Music
NASA Astrophysics Data System (ADS)
Yang, Z. L.; Cao, J.; Hu, K.; Gui, Z. P.; Wu, H. Y.; You, L.
2016-06-01
Efficient online discovering and applying geospatial information resources (GIRs) is critical in Earth Science domain as while for cross-disciplinary applications. However, to achieve it is challenging due to the heterogeneity, complexity and privacy of online GIRs. In this article, GeoSquare, a collaborative online geospatial information sharing and geoprocessing platform, was developed to tackle this problem. Specifically, (1) GIRs registration and multi-view query functions allow users to publish and discover GIRs more effectively. (2) Online geoprocessing and real-time execution status checking help users process data and conduct analysis without pre-installation of cumbersome professional tools on their own machines. (3) A service chain orchestration function enables domain experts to contribute and share their domain knowledge with community members through workflow modeling. (4) User inventory management allows registered users to collect and manage their own GIRs, monitor their execution status, and track their own geoprocessing histories. Besides, to enhance the flexibility and capacity of GeoSquare, distributed storage and cloud computing technologies are employed. To support interactive teaching and training, GeoSquare adopts the rich internet application (RIA) technology to create user-friendly graphical user interface (GUI). Results show that GeoSquare can integrate and foster collaboration between dispersed GIRs, computing resources and people. Subsequently, educators and researchers can share and exchange resources in an efficient and harmonious way.
The Data Reliability of Volunteered Geographic Information with Using Traffic Accident Data
NASA Astrophysics Data System (ADS)
Sevinç, H. K.; Karaş, I. R.
2017-11-01
The development of mobile technologies is important in the lives of humans. Mobile devices constitute a great part of the daily lives of people. It has come to such a point that when people first wake up, they check their smart phones for the first thing. Users may share their positions with the GNSS sensors in mobile devices or they can add information about their positions in mobile applications. Users contribute to Geographical Information System with this sharing. These users consist of native (citizens) living in that geographical position not of the CBS specialists. Creating, collecting, sharing and disseminating the geographical data provided by voluntary individuals constitute the Volunteered Geographic Information System. The data in the Volunteered Geographic Information System are received from amateur users. "How reliable will the data received from amateur users instead of specialists of the field be in scientific terms?" In this study, the reliability between the data received from the voluntary users through Volunteered Geographic Information System and real data is investigated. The real data consist of the traffic accident coordinates. The data that will be received from users will be received through the speed values in the relevant coordinates and the marking of the users for possible accident points on the map.
Koniotou, Marina; Evans, Bridie Angela; Chatters, Robin; Fothergill, Rachael; Garnsworthy, Christopher; Gaze, Sarah; Halter, Mary; Mason, Suzanne; Peconi, Julie; Porter, Alison; Siriwardena, A Niroshan; Toghill, Alun; Snooks, Helen
2015-07-10
Health services research is expected to involve service users as active partners in the research process, but few examples report how this has been achieved in practice in trials. We implemented a model to involve service users in a multi-centre randomised controlled trial in pre-hospital emergency care. We used the generic Standard Operating Procedure (SOP) from our Clinical Trials Unit (CTU) as the basis for creating a model to fit the context and population of the SAFER 2 trial. In our model, we planned to involve service users at all stages in the trial through decision-making forums at 3 levels: 1) strategic; 2) site (e.g. Wales; London; East Midlands); 3) local. We linked with charities and community groups to recruit people with experience of our study population. We collected notes of meetings alongside other documentary evidence such as attendance records and study documentation to track how we implemented our model. We involved service users at strategic, site and local level. We also added additional strategic level forums (Task and Finish Groups and Writing Days) where we included service users. Service user involvement varied in frequency and type across meetings, research stages and locations but stabilised and increased as the trial progressed. Involving service users in the SAFER 2 trial showed how it is feasible and achievable for patients, carers and potential patients sharing the demographic characteristics of our study population to collaborate in a multi-centre trial at the level which suited their health, location, skills and expertise. A standard model of involvement can be tailored by adopting a flexible approach to take account of the context and complexities of a multi-site trial. Current Controlled Trials ISRCTN60481756. Registered: 13 March 2009.
The Jet Propulsion Laboratory shared control architecture and implementation
NASA Technical Reports Server (NTRS)
Backes, Paul G.; Hayati, Samad
1990-01-01
A hardware and software environment for shared control of telerobot task execution has been implemented. Modes of task execution range from fully teleoperated to fully autonomous as well as shared where hand controller inputs from the human operator are mixed with autonomous system inputs in real time. The objective of the shared control environment is to aid the telerobot operator during task execution by merging real-time operator control from hand controllers with autonomous control to simplify task execution for the operator. The operator is the principal command source and can assign as much autonomy for a task as desired. The shared control hardware environment consists of two PUMA 560 robots, two 6-axis force reflecting hand controllers, Universal Motor Controllers for each of the robots and hand controllers, a SUN4 computer, and VME chassis containing 68020 processors and input/output boards. The operator interface for shared control, the User Macro Interface (UMI), is a menu driven interface to design a task and assign the levels of teleoperated and autonomous control. The operator also sets up the system monitor which checks safety limits during task execution. Cartesian-space degrees of freedom for teleoperated and/or autonomous control inputs are selected within UMI as well as the weightings for the teleoperation and autonmous inputs. These are then used during task execution to determine the mix of teleoperation and autonomous inputs. Some of the autonomous control primitives available to the user are Joint-Guarded-Move, Cartesian-Guarded-Move, Move-To-Touch, Pin-Insertion/Removal, Door/Crank-Turn, Bolt-Turn, and Slide. The operator can execute a task using pure teleoperation or mix control execution from the autonomous primitives with teleoperated inputs. Presently the shared control environment supports single arm task execution. Work is presently underway to provide the shared control environment for dual arm control. Teleoperation during shared control is only Cartesian space control and no force-reflection is provided. Force-reflecting teleoperation and joint space operator inputs are planned extensions to the environment.
A first near real-time seismology-based landquake monitoring system.
Chao, Wei-An; Wu, Yih-Min; Zhao, Li; Chen, Hongey; Chen, Yue-Gau; Chang, Jui-Ming; Lin, Che-Min
2017-03-02
Hazards from gravity-driven instabilities on hillslope (termed 'landquake' in this study) are an important problem facing us today. Rapid detection of landquake events is crucial for hazard mitigation and emergency response. Based on the real-time broadband data in Taiwan, we have developed a near real-time landquake monitoring system, which is a fully automatic process based on waveform inversion that yields source information (e.g., location and mechanism) and identifies the landquake source by examining waveform fitness for different types of source mechanisms. This system has been successfully tested offline using seismic records during the passage of the 2009 Typhoon Morakot in Taiwan and has been in online operation during the typhoon season in 2015. In practice, certain levels of station coverage (station gap < 180°), signal-to-noise ratio (SNR ≥ 5.0), and a threshold of event size (volume >10 6 m 3 and area > 0.20 km 2 ) are required to ensure good performance (fitness > 0.6 for successful source identification) of the system, which can be readily implemented in other places in the world with real-time seismic networks and high landquake activities.
A first near real-time seismology-based landquake monitoring system
Chao, Wei-An; Wu, Yih-Min; Zhao, Li; Chen, Hongey; Chen, Yue-Gau; Chang, Jui-Ming; Lin, Che-Min
2017-01-01
Hazards from gravity-driven instabilities on hillslope (termed ‘landquake’ in this study) are an important problem facing us today. Rapid detection of landquake events is crucial for hazard mitigation and emergency response. Based on the real-time broadband data in Taiwan, we have developed a near real-time landquake monitoring system, which is a fully automatic process based on waveform inversion that yields source information (e.g., location and mechanism) and identifies the landquake source by examining waveform fitness for different types of source mechanisms. This system has been successfully tested offline using seismic records during the passage of the 2009 Typhoon Morakot in Taiwan and has been in online operation during the typhoon season in 2015. In practice, certain levels of station coverage (station gap < 180°), signal-to-noise ratio (SNR ≥ 5.0), and a threshold of event size (volume >106 m3 and area > 0.20 km2) are required to ensure good performance (fitness > 0.6 for successful source identification) of the system, which can be readily implemented in other places in the world with real-time seismic networks and high landquake activities. PMID:28252039
Structure and formation of convection of secondary rainbands in a simulated typhoon Jangmi (2008)
NASA Astrophysics Data System (ADS)
Xiao, Jing; Tan, Zhe-Min; Chow, Kim-Chiu
2018-04-01
Secondary rainbands in tropical cyclone are relatively transient compared with the quasi-stationary principle rainbands. To have a better understanding on their convective structure, a cloud-resolving scale numerical simulation of the super typhoon Jangmi (2008) was performed. The results suggest that the convections in secondary rainbands have some distinctive features that may not be seen in other types of rainbands in tropical cyclone. First, they have a front-like structure and are triggered to form above the boundary layer by the convergence of the above-boundary outflow from the inner side (warmer) and the descending inflow (colder) from the outer side. These elevated convections can be further confirmed by the three-dimensional backward trajectory calculations. Second, due to the release in baroclinic energy, the lower portion of the mid-level inflow from outside may penetrate into the bottom of the convection tower and may help accelerate the boundary layer inflow in the inner side. Third, the local maximum tangential wind is concentrated in the updraft region, with a lower portion which is dipping inward. Tangential wind budget analysis also suggests that the maxima are mainly contributed by the updraft advection, and can be advected cyclonically downstream by the tangential advection.
NASA Technical Reports Server (NTRS)
Coverse, G. L.
1984-01-01
A turbine modeling technique has been developed which will enable the user to obtain consistent and rapid off-design performance from design point input. This technique is applicable to both axial and radial flow turbine with flow sizes ranging from about one pound per second to several hundred pounds per second. The axial flow turbines may or may not include variable geometry in the first stage nozzle. A user-specified option will also permit the calculation of design point cooling flow levels and corresponding changes in efficiency for the axial flow turbines. The modeling technique has been incorporated into a time-sharing program in order to facilitate its use. Because this report contains a description of the input output data, values of typical inputs, and example cases, it is suitable as a user's manual. This report is the second of a three volume set. The titles of the three volumes are as follows: (1) Volume 1 CMGEN USER's Manual (Parametric Compressor Generator); (2) Volume 2 PART USER's Manual (Parametric Turbine); (3) Volume 3 MODFAN USER's Manual (Parametric Modulation Flow Fan).
Computer-Aided Parallelizer and Optimizer
NASA Technical Reports Server (NTRS)
Jin, Haoqiang
2011-01-01
The Computer-Aided Parallelizer and Optimizer (CAPO) automates the insertion of compiler directives (see figure) to facilitate parallel processing on Shared Memory Parallel (SMP) machines. While CAPO currently is integrated seamlessly into CAPTools (developed at the University of Greenwich, now marketed as ParaWise), CAPO was independently developed at Ames Research Center as one of the components for the Legacy Code Modernization (LCM) project. The current version takes serial FORTRAN programs, performs interprocedural data dependence analysis, and generates OpenMP directives. Due to the widely supported OpenMP standard, the generated OpenMP codes have the potential to run on a wide range of SMP machines. CAPO relies on accurate interprocedural data dependence information currently provided by CAPTools. Compiler directives are generated through identification of parallel loops in the outermost level, construction of parallel regions around parallel loops and optimization of parallel regions, and insertion of directives with automatic identification of private, reduction, induction, and shared variables. Attempts also have been made to identify potential pipeline parallelism (implemented with point-to-point synchronization). Although directives are generated automatically, user interaction with the tool is still important for producing good parallel codes. A comprehensive graphical user interface is included for users to interact with the parallelization process.
Anger Is More Influential than Joy: Sentiment Correlation in Weibo
Fan, Rui; Zhao, Jichang; Chen, Yan; Xu, Ke
2014-01-01
Recent years have witnessed the tremendous growth of the online social media. In China, Weibo, a Twitter-like service, has attracted more than 500 million users in less than five years. Connected by online social ties, different users might share similar affective states. We find that the correlation of anger among users is significantly higher than that of joy. While the correlation of sadness is surprisingly low. Moreover, there is a stronger sentiment correlation between a pair of users if they share more interactions. And users with larger number of friends possess more significant sentiment correlation with their neighborhoods. Our findings could provide insights for modeling sentiment influence and propagation in online social networks. PMID:25333778
Impacts of Heavy Rain and Typhoon on Allergic Disease
Park, Kwan Jun; Moon, Jong Youn; Ha, Jong Sik; Kim, Sun Duk; Pyun, Bok Yang; Min, Taek Ki; Park, Yoon Hyung
2013-01-01
Objectives Allergic disease may be increased by climate change. Recent reports have shown that typhoon and heavy rain increase allergic disease locally by concentration of airborne allergens of pollen, ozone, and fungus, which are causes of allergic disease. The objective of this study was to determine whether typhoon and heavy rain increase allergic disease in Korea. Methods This study included allergic disease patients of the area declared as a special disaster zone due to storms and heavy rains from 2003 to 2009. The study used information from the Korea Meteorological Administration, and from the National Health Insurance Service for allergic diseases (asthma, allergic rhinitis, and atopic dermatitis). Results During a storm period, the numbers of allergy rhinitis and atopic dermatitis outpatients increased [rate ratio (RR) = 1.191; range, 1.150–1.232] on the sixth lag day. However, the number of asthma outpatients decreased (RR = 0.900; range, 0.862–0.937) on the sixth lag day after a disaster period. During a storm period, the numbers of allergic rhinitis outpatients (RR = 1.075; range, 1.018–1.132) and atopy outpatients increased (RR = 1.134; range, 1.113–1.155) on the seventh lag day. However, the number of asthma outpatients decreased to RR value of 0.968 (range, 0.902–1.035) on the fifth lag day. Conclusion This study suggests that typhoon and heavy rain increase allergic disease apart from asthma. More study is needed to explain the decrease in asthma. PMID:24159545
Infrasound in the ionosphere from earthquakes and typhoons
NASA Astrophysics Data System (ADS)
Chum, J.; Liu, J.-Y.; Podolská, K.; Šindelářová, T.
2018-06-01
Infrasound waves are observed in the ionosphere relatively rarely, in contrast to atmospheric gravity waves. Infrasound waves excited by two distinguished sources as seismic waves from strong earthquakes (M > 7) and severe tropospheric weather systems (typhoons) are discussed and analyzed. Examples of observation by an international network of continuous Doppler sounders are presented. It is documented that the co-seismic infrasound is generated by vertical movement of the ground surface caused by seismic waves propagating at supersonic speeds. The coseismic infrasound propagates nearly vertically and has usually periods of several tens of seconds far away from the epicenter. However, in the vicinity of the epicenter (up to distance about 1000-1500 km), the large amplitudes might lead to nonlinear formation of N-shaped pulse in the upper atmosphere with much longer dominant period, e.g. around 2 min. The experimental observation is in good agreement with numerical modeling. The spectral content can also be nonlinearly changed at intermediate distances (around 3000-4000 km), though the N-shaped pulse is not obvious. Infrasound waves associated with seven typhoons that passed over Taiwan in 2014-2016 were investigated. The infrasound waves were observed at heights approximately from 200 to 300 km. Their spectra differed during the individual events and event from event and covered roughly the spectral range 3.5-20 mHz. The peak of spectral density was usually around 5 mHz. The observed spectra exhibited fine structures that likely resulted from modal resonances. The infrasound was recorded during several hours for strong events, especially for two typhoons in September 2016.
Numerical Study of the Influences of a Monsoon Gyre on Intensity Changes of Typhoon Chan-Hom (2015)
NASA Astrophysics Data System (ADS)
Liang, Jia; Wu, Liguang; Gu, Guojun
2018-05-01
Typhoon Chan-Hom (2015) underwent a weakening in the tropical western North Pacific (WNP) when it interacted with a monsoon gyre, but all operational forecasts failed to predict this intensity change. A recent observational study indicated that it resulted from its interaction with a monsoon gyre on the 15-30-day timescale. In this study, the results of two numerical experiments are presented to investigate the influence of the monsoon gyre on the intensity changes of Typhoon Chan-Hom (2015). The control experiment captures the main observed features of the weakening process of Chan-Hom (2015) during a sharp northward turn in the Philippine Sea, including the enlargement of the eye size, the development of strong convection on the eastern side of the monsoon gyre, and the corresponding strong outer inflow. The sensitivity experiment suggests that intensity changes of Chan-Hom (2015) were mainly associated with its interaction with the monsoon gyre. When Chan-Hom (2015) initially moved westward in the eastern part of the monsoon gyre, the monsoon gyre enhanced the inertial stability for the intensification of the typhoon. With its coalescence with the monsoon gyre, the development of the strong convection on the eastern side of the monsoon gyre prevented moisture and mass entering the inner core of Chan-Hom (2015), resulting in the collapse of the eyewall. Thus, the weakening happened in the deep tropical WNP region. The numerical simulations confirm the important effects of the interaction between tropical cyclones and monsoon gyres on tropical cyclone intensity.
NASA Astrophysics Data System (ADS)
Su, Jianzhong; Dai, Minhan; He, Biyan; Wang, Lifang; Gan, Jianping; Guo, Xianghui; Zhao, Huade; Yu, Fengling
2017-09-01
We assess the relative contributions of different sources of organic matter, marine vs. terrestrial, to oxygen consumption in an emerging hypoxic zone in the lower Pearl River Estuary (PRE), a large eutrophic estuary located in Southern China. Our cruise, conducted in July 2014, consisted of two legs before and after the passing of Typhoon Rammasun, which completely de-stratified the water column. The stratification recovered rapidly, within 1 day after the typhoon. We observed algal blooms in the upper layer of the water column and hypoxia underneath in bottom water during both legs. Repeat sampling at the initial hypoxic station showed severe oxygen depletion down to 30 µmol kg-1 before the typhoon and a clear drawdown of dissolved oxygen after the typhoon. Based on a three endmember mixing model and the mass balance of dissolved inorganic carbon and its isotopic composition, the δ13C of organic carbon remineralized in the hypoxic zone was -23.2 ± 1.1 ‰. We estimated that 65 ± 16 % of the oxygen-consuming organic matter was derived from marine sources, and the rest (35 ± 16 %) was derived from the continent. In contrast to a recently studied hypoxic zone in the East China Sea off the Changjiang Estuary where marine organic matter dominated oxygen consumption, here terrestrial organic matter significantly contributed to the formation and maintenance of hypoxia. How varying amounts of these organic matter sources drive oxygen consumption has important implications for better understanding hypoxia and its mitigation in bottom waters.
Microseisms Generated by Super Typhoon Megi in the Western Pacific Ocean
NASA Astrophysics Data System (ADS)
Lin, Jianmin; Lin, Jian; Xu, Min
2017-12-01
Microseisms generated by the super typhoon Megi (13-24 October 2010) were detected on both land-based and island-based seismic stations. We applied temporal frequency spectrum analysis to investigate the temporal evolution of the microseisms. When Megi was over the deep basins of the Philippine Sea, only weak microseisms with short-period double frequency (SPDF, ˜0.20-0.40 Hz) were observed. However, after Megi traveled into the shallower waters of the South China Sea, microseisms with both long-period double frequency (LPDF, ˜0.12-0.20 Hz) and SPDF were recorded. The excitation source regions of the microseisms were analyzed using seismic waveform records and synthetic modeling in frequency domain. Results reveal that part of the LPDF microseisms were excited in coastal source regions, while the intensity of both LPDF and SPDF microseisms correlated well with the distance from seismic stations to the typhoon center. Synthetic computations of equivalent surface pressure and corresponding microseisms show that the wave-to-wave interaction induced by coastal reflection has primary effects on microseismic frequency band of ˜0.10-0.20 Hz. The coastal generation of the dispersive LPDF microseisms is also supported by the observation of ocean swells induced by Megi through the images of C-band ENVISAT-ASAR satellite during its migration process. Two source regions of the microseisms during the life span of Megi are finally distinguished: One was mainly located in the left-rear quadrant of the typhoon center that generated both LPDF and SPDF microseisms at shallow seas, while the other one was near the coasts that generated mostly LPDF microseisms.
76 FR 4750 - Survey of Information Sharing Practices With Affiliates
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-26
... creditors or users of consumer reports. The OTS will use the Survey responses to prepare a report to Congress on the information sharing practices by financial institutions, creditors, or users of consumer... Numbers: N/A. Description: The OTS is required to submit a report to the Congress with any recommendations...
2014-04-01
flight-level wind measurements at an altitude of about 500 m in hurricanes Allen (1980) and Hugo (1989) by Zhang et al. (2011). In Hugo these were... Hurricanes Allen (1980) and Hugo (1989). Mon. Weather Rev. 139: 1447–1462. c© 2013 Royal Meteorological Society Q. J. R. Meteorol. Soc. 140: 792–804 (2014) ...in this direction. Key Words: hurricanes ; tropical cyclones; typhoons; surface drag coefficient; frictional drag; boundary layer Received 16 June 2010
Sensitivity of Tropical-Cyclone Intensification to Perturbations in the Surface Drag Coefficient
2012-12-11
low-level region of intense hurricanes Allen (1980) and Hugo (1989). Mon. Weather Rev. 139: 1447–1462. c© 2012 Royal Meteorological Society Q. J. R. Meteorol. Soc. 140: 407–415 (2014) ...accurately forecast tropical-cyclone intensification and mature intensity. Key Words: hurricanes ; typhoons; wind–wave coupling Received 2 February 2012...10.1002/qj.2048 1. Introduction The boundary layer of a mature hurricane has been long recognized to be an important feature of the storm as it strongly
Chan, Emily YY; Yue, Janice; Lee, Poyi; Wang, Susan Shuxin
2016-01-01
Objectives: There is limited evidence on urban Asian communities' disaster risk perceptions and household level preparedness. Hong Kong is characterized by high population density, and is susceptible to large-scale natural disasters and health crises such as typhoons, fires and infectious disease outbreaks. This research paper investigates the rates and predictors of urban community disaster risk perception, awareness and preparedness, at individual and household levels. Methods: A randomized cross-sectional, population-based telephone survey study was conducted among the Cantonese-speaking population aged over 15 years in Hong Kong. Descriptive statistics were reported. A stepwise multivariate logistic regression analysis was conducted to determine the independent associations between risk perceptions, socioeconomic factors, household characteristics, and personal background. Findings: Final study sample comprised of 1002 respondents with a 63% response rate. The majority of respondents (82.3%) did not perceive Hong Kong as a disaster-susceptible city. Half (54.6%) reported beliefs that the local population had lower disaster awareness than other global cities. Infectious disease outbreak (72.4%), typhoon (12.6%), and fire (7.1%) were ranked as the most-likely-to-occur population-based disasters. Although over 77% believed that basic first aid training was necessary for improving individual disaster preparedness, only a quarter (26.1%) of respondents reported participation in training. Conclusion: Despite Hong Kong’s high level of risk, general public perceptions of disaster in Hong Kong were low, and little preparedness has occurred at the individual or household levels. This report has potential to inform the development of related policies and risk communication strategies in Asian urban cities. PMID:28856059
Mordeno, Imelu G; Carpio, Jennifer Gay E; Nalipay, Ma Jenina N; Saavedra, Rhea Lina J
2017-03-01
The recent changes in posttraumatic stress disorder (PTSD) symptomatology in the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) call for a re-examination of PTSD's latent factor structure. The present study assessed six competing models of PTSD based on DSM-5 symptomatology using confirmatory factor analysis in a sample of young adult Filipino survivors of typhoon Haiyan, one of the strongest typhoons in the world ever recorded at the time of its landfall (N = 632). Furthermore, the differential relationships of the factors of the best-fitting model with posttraumatic cognitions were also investigated. Results showed the 7-factor hybrid model of PTSD comprised of intrusion, avoidance, negative affect, anhedonia, externalizing behaviors, anxious arousal, and dysphoric arousal, to be the best fitting model. In addition, the varying degrees of relationship with posttraumatic cognitions support the distinctiveness of each factor. These findings are pertinent in light of the changes in DSM-5 PTSD symptomatology, as well as in understanding the underlying dimensions of PTSD among Asian, particularly Filipino, survivors of a natural disaster.
Typhoon Soudelor's Eye Close-Up from NASA-NOAA's Suomi NPP
2015-08-10
On August 6, 2015, NASA-NOAA's Suomi NPP satellite passed over powerful Typhoon Soudelor when it was headed toward Taiwan. The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard NASA-NOAA's Suomi satellite captured this night-time infrared close-up image of Soudelor's eye. At 1500 UTC (11 a.m. EDT) on August 6, 2015, Typhoon Soudelor had maximum sustained winds near 90 knots (103.6 mph/166.7 kph). It was centered near 21.3 North latitude and 127.5 East longitude, about 324 nautical miles (372.9 miles/600 km) south of Kadena Air Base, Okinawa, Japan. It was moving to the west at 10 knots (11.5 mph/18.5 kph). Credit: UWM/CIMSS/SSEC, William Straka III NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
A model-driven privacy compliance decision support for medical data sharing in Europe.
Boussi Rahmouni, H; Solomonides, T; Casassa Mont, M; Shiu, S; Rahmouni, M
2011-01-01
Clinical practitioners and medical researchers often have to share health data with other colleagues across Europe. Privacy compliance in this context is very important but challenging. Automated privacy guidelines are a practical way of increasing users' awareness of privacy obligations and help eliminating unintentional breaches of privacy. In this paper we present an ontology-plus-rules based approach to privacy decision support for the sharing of patient data across European platforms. We use ontologies to model the required domain and context information about data sharing and privacy requirements. In addition, we use a set of Semantic Web Rule Language rules to reason about legal privacy requirements that are applicable to a specific context of data disclosure. We make the complete set invocable through the use of a semantic web application acting as an interactive privacy guideline system can then invoke the full model in order to provide decision support. When asked, the system will generate privacy reports applicable to a specific case of data disclosure described by the user. Also reports showing guidelines per Member State may be obtained. The advantage of this approach lies in the expressiveness and extensibility of the modelling and inference languages adopted and the ability they confer to reason with complex requirements interpreted from high level regulations. However, the system cannot at this stage fully simulate the role of an ethics committee or review board.
NASA Astrophysics Data System (ADS)
Othman, Raha binti; Bakar, Muhamad Shahbani Abu; Mahamud, Ku Ruhana Ku
2017-10-01
While Spatial Data Infrastructure (SDI) has been established in Malaysia, the full potential can be further realized. To a large degree, geospatial industry users are hopeful that they can easily get access to the system and start utilizing the data. Some users expect SDI to provide them with readily available data without the necessary steps of requesting the data from the data providers as well as the steps for them to process and to prepare the data for their use. Some further argued that the usability of the system can be improved if appropriate combination between data sharing and focused application is found within the services. In order to address the current challenges and to enhance the effectiveness of the SDI in Malaysia, there is possibility of establishing a collaborative business venture between public and private entities; thus can help addressing the issues and expectations. In this paper, we discussed the possibility of collaboration between these two entities. Interviews with seven entities are held to collect information on the exposure, acceptance and sharing of platform. The outcomes indicate that though the growth of GIS technology and the high level of technology acceptance provides a solid based for utilizing the geospatial data, the absence of concrete policy on data sharing, a quality geospatial data, an authority for coordinator agency, leaves a vacuum for the successful implementation of the SDI initiative.
A market-based approach to share water and benefits in transboundary river basins
NASA Astrophysics Data System (ADS)
Arjoon, Diane; Tilmant, Amaury; Herrmann, Markus
2016-04-01
The equitable sharing of benefits in transboundary river basins is necessary to reach a consensus on basin-wide development and management activities. Benefit sharing arrangements must be collaboratively developed to be perceived as efficient, as well as equitable, in order to be considered acceptable to all riparian countries. The current literature falls short of providing practical, institutional arrangements that ensure maximum economic welfare as well as collaboratively developed methods for encouraging the equitable sharing of benefits. In this study we define an institutional arrangement that distributes welfare in a river basin by maximizing the economic benefits of water use and then sharing these benefits in an equitable manner using a method developed through stakeholder involvement. In this methodology (i) a hydro-economic model is used to efficiently allocate scarce water resources to water users in a transboundary basin, (ii) water users are obliged to pay for water, and (iii) the total of these water charges are equitably redistributed as monetary compensation to users. The amount of monetary compensation, for each water user, is determined through the application of a sharing method developed by stakeholder input, based on a stakeholder vision of fairness, using an axiomatic approach. The whole system is overseen by a river basin authority. The methodology is applied to the Eastern Nile River basin as a case study. The technique ensures economic efficiency and may lead to more equitable solutions in the sharing of benefits in transboundary river basins because the definition of the sharing rule is not in question, as would be the case if existing methods, such as game theory, were applied, with their inherent definitions of fairness.
Visionmaker NYC: A bottom-up approach to finding shared socioeconomic pathways in New York City
NASA Astrophysics Data System (ADS)
Sanderson, E. W.; Fisher, K.; Giampieri, M.; Barr, J.; Meixler, M.; Allred, S. B.; Bunting-Howarth, K. E.; DuBois, B.; Parris, A. S.
2015-12-01
Visionmaker NYC is a free, public participatory, bottom-up web application to develop and share climate mitigation and adaptation strategies for New York City neighborhoods. The goal is to develop shared socioeconomic pathways by allowing a broad swath of community members - from schoolchildren to architects and developers to the general public - to input their concepts for a desired future. Visions are comprised of climate scenarios, lifestyle choices, and ecosystem arrangements, where ecosystems are broadly defined to include built ecosystems (e.g. apartment buildings, single family homes, etc.), transportation infrastructure (e.g. highways, connector roads, sidewalks), and natural land cover types (e.g. wetlands, forests, estuary.) Metrics of water flows, carbon cycling, biodiversity patterns, and population are estimated for the user's vision, for the same neighborhood today, and for that neighborhood as it existed in the pre-development state, based on the Welikia Project (welikia.org.) Users can keep visions private, share them with self-defined groups of other users, or distribute them publicly. Users can also propose "challenges" - specific desired states of metrics for specific parts of the city - and others can post visions in response. Visionmaker contributes by combining scenario planning, scientific modelling, and social media to create new, wide-open possibilities for discussion, collaboration, and imagination regarding future, shared socioeconomic pathways.
Water and Benefit Sharing in Transboundary River Basins
NASA Astrophysics Data System (ADS)
Arjoon, D.; Tilmant, A.; Herrmann, M.
2015-12-01
Growing water scarcity underlies the importance of cooperation for the effective management of river basins, particularly in the context of international rivers in which unidirectional externalities can lead to asymmetric relationships between riparian countries. Studies have shown that significant economic benefits can be expected through basin-wide cooperation, however, the equitable partitioning of these benefits over the basin is less well studied and tends to overlook the importance of stakeholder input in the definition of equitability. In this study, an institutional arrangement to maximize welfare and then share the scarcity cost in a river basin is proposed. A river basin authority plays the role of a bulk water market operator, efficiently allocating bulk water to the users and collecting bulk water charges which are then equitably redistributed among water users. This highly regulated market restrains the behaviour of water users to control externalities and to ensure basin-wide coordination, enhanced efficiency, and the equitable redistribution of the scarcity cost. The institutional arrangement is implemented using the Eastern Nile River basin as a case study. The importance of this arrangement is that it can be adopted for application in negotiations to cooperate in trans-boundary river basins. The benefit sharing solution proposed is more likely to be perceived as equitable because water users help define the sharing rule. As a result, the definition of the sharing rule is not in question, as it would be if existing rules, such as bankruptcy rules or cooperative game theory solutions, are applied, with their inherent definitions of fairness. Results of the case study show that the sharing rule is predictable. Water users can expect to receive between 93.5% and 95% of their uncontested benefits (benefits that they expect to receive if water was not rationed), depending on the hydrologic scenario.
Pacula, Rosalie Liccardo; Lundberg, Russell
Recent debates regarding liberalization of marijuana policies often rest on assumptions regarding the extent to which such policy changes would lead to a change in marijuana consumption and by whom. This paper reviews the economics literature assessing the responsiveness of consumption to changes in price and enforcement risk and explicitly considers how this responsiveness varies by different user groups. In doing so, it demonstrates how most of the research has examined responsiveness to prevalence of use, which is a composite of different user groups, rather than level of consumption among regular or heavy users, which represent the largest share of total quantities consumed. Thus, it is not possible to generate reliable estimates of the impact of liberalizing policies on either tax revenues or harms, as these outcomes are most directly influenced by the amounts consumed by regular or heavy users, not prevalence rates.
Galaxy Zoo: An Experiment in Public Science Participation
NASA Astrophysics Data System (ADS)
Raddick, Jordan; Lintott, C. J.; Schawinski, K.; Thomas, D.; Nichol, R. C.; Andreescu, D.; Bamford, S.; Land, K. R.; Murray, P.; Slosar, A.; Szalay, A. S.; Vandenberg, J.; Galaxy Zoo Team
2007-12-01
An interesting question in modern astrophysics research is the relationship between a galaxy's morphology (appearance) and its formation and evolutionary history. Research into this question is complicated by the fact that to get a study sample, researchers must first assign a shape to a large number of galaxies. Classifying a galaxy by shape is nearly impossible for a computer, but easy for a human - however, looking at one million galaxies, one at a time, would take an enormous amount of time. To create such a research sample, we turned to citizen science. We created a web site called Galaxy Zoo (www.galaxyzoo.org) that invites the public to classify the galaxies. New members see a short tutorial and take a short skill test where they classify galaxies of known types. Once they pass the test, they begin to work with the entire sample. The site's interface shows the user an image of a single galaxy from the Sloan Digital Sky Survey. The user clicks a button to classify it. Each classification is stored in a database, associated with the galaxy that it describes. The site has become enormously popular with amateur astronomers, teachers, and others interested in astronomy. So far, more than 110,000 users have joined. We have started a forum where users share images of their favorite galaxies, ask science questions of each other and the "zookeepers," and share classification advice. In a separate poster, we will share science results from the site's first six months of operation. In this poster, we will describe the site as an experiment in public science outreach. We will share user feedback, discuss our plans to study the user community more systematically, and share advice on how to work with citizen science projects to the mutual benefit of both professional and citizen scientists.
Tracing the Potential Flow of Consumer Data: A Network Analysis of Prominent Health and Fitness Apps
Held, Fabian P; Bero, Lisa A
2017-01-01
Background A great deal of consumer data, collected actively through consumer reporting or passively through sensors, is shared among apps. Developers increasingly allow their programs to communicate with other apps, sensors, and Web-based services, which are promoted as features to potential users. However, health apps also routinely pose risks related to information leaks, information manipulation, and loss of information. There has been less investigation into the kinds of user data that developers are likely to collect, and who might have access to it. Objective We sought to describe how consumer data generated from mobile health apps might be distributed and reused. We also aimed to outline risks to individual privacy and security presented by this potential for aggregating and combining user data across apps. Methods We purposively sampled prominent health and fitness apps available in the United States, Canada, and Australia Google Play and iTunes app stores in November 2015. Two independent coders extracted data from app promotional materials on app and developer characteristics, and the developer-reported collection and sharing of user data. We conducted a descriptive analysis of app, developer, and user data collection characteristics. Using structural equivalence analysis, we conducted a network analysis of sampled apps’ self-reported sharing of user-generated data. Results We included 297 unique apps published by 231 individual developers, which requested 58 different permissions (mean 7.95, SD 6.57). We grouped apps into 222 app families on the basis of shared ownership. Analysis of self-reported data sharing revealed a network of 359 app family nodes, with one connected central component of 210 app families (58.5%). Most (143/222, 64.4%) of the sampled app families did not report sharing any data and were therefore isolated from each other and from the core network. Fifteen app families assumed more central network positions as gatekeepers on the shortest paths that data would have to travel between other app families. Conclusions This cross-sectional analysis highlights the possibilities for user data collection and potential paths that data is able to travel among a sample of prominent health and fitness apps. While individual apps may not collect personally identifiable information, app families and the partners with which they share data may be able to aggregate consumer data, thus achieving a much more comprehensive picture of the individual consumer. The organizations behind the centrally connected app families represent diverse industries, including apparel manufacturers and social media platforms that are not traditionally involved in health or fitness. This analysis highlights the potential for anticipated and voluntary but also possibly unanticipated and involuntary sharing of user data, validating privacy and security concerns in mobile health. PMID:28659254
Unidata's Vision for Providing Comprehensive and End-to-end Data Services
NASA Astrophysics Data System (ADS)
Ramamurthy, M. K.
2009-05-01
This paper presents Unidata's vision for providing comprehensive, well-integrated, and end-to-end data services for the geosciences. These include an array of functions for collecting, finding, and accessing data; data management tools for generating, cataloging, and exchanging metadata; and submitting or publishing, sharing, analyzing, visualizing, and integrating data. When this vision is realized, users no matter where they are or how they are connected to the Internetwill be able to find and access a plethora of geosciences data and use Unidata-provided tools and services both productively and creatively in their research and education. What that vision means for the Unidata community is elucidated by drawing a simple analogy. Most of users are familiar with Amazon and eBay e-commerce sites and content sharing sites like YouTube and Flickr. On the eBay marketplace, people can sell practically anything at any time and buyers can share their experience of purchasing a product or the reputation of a seller. Likewise, at Amazon, thousands of merchants sell their goods and millions of customers not only buy those goods, but provide a review or opinion of the products they buy and share their experiences as purchasers. Similarly, YouTube and Flickr are sites tailored to video- and photo-sharing, respectively, where users can upload their own content and share it with millions of other users, including family and friends. What all these sites, together with social-networking applications like MySpace and Facebook, have enabled is a sense of a virtual community in which users can search and browse products or content, comment and rate those products from anywhere, at any time, and via any Internet- enabled device like an iPhone, laptop, or a desktop computer. In essence, these enterprises have fundamentally altered people's buying modes and behavior toward purchases. Unidata believes that similar approaches, appropriately tailored to meet the needs of the scientific community, can be adopted to provide and share geosciences data and actively collaborate in the future. For example, future case-study data access systems, in addition to providing datasets and tools, will provide services that allow users to provide commentaries on a weather event, say a hurricane, as well as provide feedback on the quality, usefulness, and interpretation of the datasets through integrated blogs, forums, and Wikis, along with uploading and sharing products they derive, ancillary materials that users might have gathered (such as photos and videos from the storm), and publications and curricular materials they develop, all through a single data portal. In essence, such case study collections will be "living" or dynamic, allowing users to be also contributors as they add value to and grow existing case study collections.
A Working Framework for Enabling International Science Data System Interoperability
NASA Astrophysics Data System (ADS)
Hughes, J. Steven; Hardman, Sean; Crichton, Daniel J.; Martinez, Santa; Law, Emily; Gordon, Mitchell K.
2016-07-01
For diverse scientific disciplines to interoperate they must be able to exchange information based on a shared understanding. To capture this shared understanding, we have developed a knowledge representation framework that leverages ISO level reference models for metadata registries and digital archives. This framework provides multi-level governance, evolves independent of the implementation technologies, and promotes agile development, namely adaptive planning, evolutionary development, early delivery, continuous improvement, and rapid and flexible response to change. The knowledge representation is captured in an ontology through a process of knowledge acquisition. Discipline experts in the role of stewards at the common, discipline, and project levels work to design and populate the ontology model. The result is a formal and consistent knowledge base that provides requirements for data representation, integrity, provenance, context, identification, and relationship. The contents of the knowledge base are translated and written to files in suitable formats to configure system software and services, provide user documentation, validate input, and support data analytics. This presentation will provide an overview of the framework, present a use case that has been adopted by an entire science discipline at the international level, and share some important lessons learned.
Using participatory design to develop (public) health decision support systems through GIS.
Dredger, S Michelle; Kothari, Anita; Morrison, Jason; Sawada, Michael; Crighton, Eric J; Graham, Ian D
2007-11-27
Organizations that collect substantial data for decision-making purposes are often characterized as being 'data rich' but 'information poor'. Maps and mapping tools can be very useful for research transfer in converting locally collected data into information. Challenges involved in incorporating GIS applications into the decision-making process within the non-profit (public) health sector include a lack of financial resources for software acquisition and training for non-specialists to use such tools. This on-going project has two primary phases. This paper critically reflects on Phase 1: the participatory design (PD) process of developing a collaborative web-based GIS tool. A case study design is being used whereby the case is defined as the data analyst and manager dyad (a two person team) in selected Ontario Early Year Centres (OEYCs). Multiple cases are used to support the reliability of findings. With nine producer/user pair participants, the goal in Phase 1 was to identify barriers to map production, and through the participatory design process, develop a web-based GIS tool suited for data analysts and their managers. This study has been guided by the Ottawa Model of Research Use (OMRU) conceptual framework. Due to wide variations in OEYC structures, only some data analysts used mapping software and there was no consistency or standardization in the software being used. Consequently, very little sharing of maps and data occurred among data analysts. Using PD, this project developed a web-based mapping tool (EYEMAP) that was easy to use, protected proprietary data, and permit limited and controlled sharing between participants. By providing data analysts with training on its use, the project also ensured that data analysts would not break cartographic conventions (e.g. using a chloropleth map for count data). Interoperability was built into the web-based solution; that is, EYEMAP can read many different standard mapping file formats (e.g. ESRI, MapInfo, CSV). Based on the evaluation of Phase 1, the PD process has served both as a facilitator and a barrier. In terms of successes, the PD process identified two key components that are important to users: increased data/map sharing functionality and interoperability. Some of the challenges affected developers and users; both individually and as a collective. From a development perspective, this project experienced difficulties in obtaining personnel skilled in web application development and GIS. For users, some data sharing barriers are beyond what a technological tool can address (e.g. third party data). Lastly, the PD process occurs in real time; both a strength and a limitation. Programmatic changes at the provincial level and staff turnover at the organizational level made it difficult to maintain buy-in as participants changed over time. The impacts of these successes and challenges will be evaluated more concretely at the end of Phase 2. PD approaches, by their very nature, encourage buy-in to the development process, better addresses user-needs, and creates a sense of user-investment and ownership.
Lachowsky, Nathan; Hawkins, Blake W; Jollimore, Jody; Baharuddin, Fahmy; Hogg, Robert S
2018-01-01
Background Social media is used by community-based organizations (CBOs) to promote the well-being of gay and bisexual men (GBM). However, few studies have quantified which factors facilitate the diffusion of health content tailored for sexual minorities. Objective The aim of this study was to identify post characteristics that can be leveraged to optimize the health promotion efforts of CBOs on Facebook. Methods The Facebook application programming interface was used to collect 5 years’ of posts shared across 10 Facebook pages administered by Vancouver-based CBOs promoting GBM health. Network analysis assessed basic indicators of network structure. Content analyses were conducted using informatics-based approaches. Hierarchical negative binomial regression of post engagement data was used to identify meaningful covariates of engagement. Results In total, 14,071 posts were shared and 21,537 users engaged with these posts. Most users (n=13,315) engaged only once. There was moderate correlation between the number of posts and the number of CBOs users engaged with (r=.53, P<.001). Higher user engagement was positively associated with positive sentiment, sharing multimedia, and posting about pre-exposure prophylaxis, stigma, and mental health. Engagement was negatively associated with asking questions, posting about dating, and sharing posts during or after work (versus before). Conclusions Results highlight the existence of a core group of Facebook users who facilitate diffusion. Factors associated with greater user engagement present CBOs with a number of strategies for improving the diffusion of health content. PMID:29625953
Ogilvie, F; Goodman, A
2012-07-01
Cycling confers individual and population-level health benefits, but uptake is not always equitable across socio-demographic groups. We sought to examine inequalities in uptake and usage of London's Barclays Cycle Hire (BCH) scheme. We obtained complete BCH registration data, and compared users with the general population. We examined usage levels by explanatory variables including gender, small-area income-deprivation and local cycling prevalence. 100,801 registered individuals made 2.5 million trips between July 2010 and March 2011. Compared with residents and workers in the central London area served by the scheme, registered individuals were more likely to be male and to live in areas of low deprivation and high cycling prevalence. Among those registered, females made 1.63 (95%CI 1.53, 1.74) fewer trips per month than males, and made under a fifth of all trips. Adjusting for the fact that deprived areas were less likely to be close to BCH docking stations, users in the most deprived areas made 0.85 (95%CI 0.63,1.07) more trips per month than those in the least deprived areas. Females and residents in deprived areas are underrepresented among users of London's public bicycle sharing scheme. The scheme's planned expansion into more deprived areas has, however, the potential to create a more equitable uptake of cycling. Copyright © 2012 Elsevier Inc. All rights reserved.
Setting Priorities in Behavioral Interventions: An Application to Reducing Phishing Risk.
Canfield, Casey Inez; Fischhoff, Baruch
2018-04-01
Phishing risk is a growing area of concern for corporations, governments, and individuals. Given the evidence that users vary widely in their vulnerability to phishing attacks, we demonstrate an approach for assessing the benefits and costs of interventions that target the most vulnerable users. Our approach uses Monte Carlo simulation to (1) identify which users were most vulnerable, in signal detection theory terms; (2) assess the proportion of system-level risk attributable to the most vulnerable users; (3) estimate the monetary benefit and cost of behavioral interventions targeting different vulnerability levels; and (4) evaluate the sensitivity of these results to whether the attacks involve random or spear phishing. Using parameter estimates from previous research, we find that the most vulnerable users were less cautious and less able to distinguish between phishing and legitimate emails (positive response bias and low sensitivity, in signal detection theory terms). They also accounted for a large share of phishing risk for both random and spear phishing attacks. Under these conditions, our analysis estimates much greater net benefit for behavioral interventions that target these vulnerable users. Within the range of the model's assumptions, there was generally net benefit even for the least vulnerable users. However, the differences in the return on investment for interventions with users with different degrees of vulnerability indicate the importance of measuring that performance, and letting it guide interventions. This study suggests that interventions to reduce response bias, rather than to increase sensitivity, have greater net benefit. © 2017 Society for Risk Analysis.
Typhoon Haiyan Near Hainan Island, China
2013-11-12
On Nov. 10 at 03:30 UTC/Nov. 9 at 10:30 p.m. EDT, the MODIS instrument aboard NASA's Terra satellite showed the center of Typhoon Haiyan just south of Hainan Island, China in the South China Sea. Credit: NASA Goddard MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Typhoon Usagi approaching China
2017-12-08
On Saturday, Sept. 21, TRMM captured rainfall data on Typhoon Usagi as it passed between the northern Philippines and southern Taiwan. TRMM found rain falling at a rate of over 134 mm/hr (~5.2 inches) in USAGI's eye wall. Credit: SSAI/NASA, Hal Pierce NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Typhoon Usagi approaching China
2013-09-23
The Moderate Resolution Imaging Spectroradiometer or MODIS instrument that flies aboard NASA's Terra satellite captured this image of Typhoon Usagi on Sept. 22 at 02:45 UTC/Sept. 21 at 10:45 p.m. EDT on its approach to a landfall in China. Credit: NASA Goddard MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Data Assimilation and Predictability Studies on Typhoon Sinlaku (2008) Using the WRF-LETKF System
NASA Astrophysics Data System (ADS)
Miyoshi, T.; Kunii, M.
2011-12-01
Data assimilation and predictability studies on Tropical Cyclones with a particular focus on intensity forecasts are performed with the newly-developed Local Ensemble Transform Kalman Filter (LETKF) system with the WRF model. Taking advantage of intensive observations of the internationally collaborated T-PARC (THORPEX Pacific Asian Regional Campaign) project, we focus on Typhoon Sinlaku (2008) which intensified rapidly before making landfall to Taiwan. This study includes a number of data assimilation experiments, higher-resolution forecasts, and sensitivity analysis which quantifies impacts of observations on forecasts. This presentation includes latest achievements up to the time of the conference.
Typhoon Ioke in the Western Pacific
2006-08-29
This infrared image shows Typhoon Ioke in the Western Pacific, from the Atmospheric Infrared Sounder AIRS on NASA Aqua satellite in August, 2006. Because infrared radiation does not penetrate through clouds, AIRS infrared images show either the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the storm. In cloud-free areas the AIRS instrument will receive the infrared radiation from the surface of the Earth, resulting in the warmest temperatures (orange/red). http://photojournal.jpl.nasa.gov/catalog/PIA00511
NASA Observes Super Typhoon Hagupit; Philippines Under Warnings
2017-12-08
On Dec. 4 at 02:10 UTC, the MODIS instrument aboard NASA's Terra satellite took this visible image of Super Typhoon Hagupit approaching the Philippines. Image Credit: NASA Goddard's MODIS Rapid Response Team Read more: 1.usa.gov/12q3ssK NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Monitoring Seawall Deformation With Repeat-Track Space-Borne SAR Images
NASA Astrophysics Data System (ADS)
Pei, Yuanyuan; Wan, Qing; Wei, Lianhuan; Fang, Zhilei; Liao, Mingsheng
2010-10-01
Seawalls are constructed to protect coastal cities from typhoon, flood and sea tide. It is necessary to monitor the deformation of seawalls in real time. Repeat-track space-borne SAR images are useful for environment monitoring, especially ground deformation monitoring. Shanghai sits on the Yangtze River Delta on China's eastern coast. Each year, the city is hit by typhoons from Pacific Ocean and threatened by the flood of the Yangtze River. PS-InSAR technique is carried out to monitor the deformation of the seawalls. Experiment exhibits that the seawalls around Pudong airport and Lingang town suffered serious deformation.
NASA Astrophysics Data System (ADS)
Tseng, Chih-Ming; Chen, Yie-Ruey; Wu, Szu-Mi
2018-03-01
This study focused on landslides in a catchment with mountain roads that were caused by Nanmadol (2011) and Kong-rey (2013) typhoons. Image interpretation techniques were employed to for satellite images captured before and after the typhoons to derive the surface changes. A multivariate hazard evaluation method was adopted to establish a landslide susceptibility assessment model. The evaluation of landslide locations and relationship between landslide and predisposing factors is preparatory for assessing and mapping landslide susceptibility. The results can serve as a reference for preventing and mitigating slope disasters on mountain roads.
Shea, S; Sengupta, S; Crosswell, A; Clayton, P D
1992-01-01
The developing Integrated Academic Information System (IAIMS) at Columbia-Presbyterian Medical Center provides data sharing links between two separate corporate entities, namely Columbia University Medical School and The Presbyterian Hospital, using a network-based architecture. Multiple database servers with heterogeneous user authentication protocols are linked to this network. "One-stop information shopping" implies one log-on procedure per session, not separate log-on and log-off procedures for each server or application used during a session. These circumstances provide challenges at the policy and technical levels to data security at the network level and insuring smooth information access for end users of these network-based services. Five activities being conducted as part of our security project are described: (1) policy development; (2) an authentication server for the network; (3) Kerberos as a tool for providing mutual authentication, encryption, and time stamping of authentication messages; (4) a prototype interface using Kerberos services to authenticate users accessing a network database server; and (5) a Kerberized electronic signature.
Thomas W. Spencer; Robert E. Pfister
1995-01-01
Recreation managers have established more effective communication with dispersed recreation users of the Angeles National Forest in southern California, through the development and use of Challenge Cost-Share Partnerships with regional non-profit organizations. From 1988 to 1990, researchers conducted a series of surveys of recreation visitor populations in the heavily...
Motivation for Knowledge Sharing by Expert Participants in Company-Hosted Online User Communities
ERIC Educational Resources Information Center
Cheng, Jingli
2014-01-01
Company-hosted online user communities are increasingly popular as firms continue to search for ways to provide their customers with high quality and reliable support in a low cost and scalable way. Yet, empirical understanding of motivations for knowledge sharing in this type of online communities is lacking, especially with regard to an…
NASA Technical Reports Server (NTRS)
Shalkhauser, Mary JO; Quintana, Jorge A.; Soni, Nitin J.
1994-01-01
The NASA Lewis Research Center is developing a multichannel communication signal processing satellite (MCSPS) system which will provide low data rate, direct to user, commercial communications services. The focus of current space segment developments is a flexible, high-throughput, fault tolerant onboard information switching processor. This information switching processor (ISP) is a destination-directed packet switch which performs both space and time switching to route user information among numerous user ground terminals. Through both industry study contracts and in-house investigations, several packet switching architectures were examined. A contention-free approach, the shared memory per beam architecture, was selected for implementation. The shared memory per beam architecture, fault tolerance insertion, implementation, and demonstration plans are described.
Data List - Specifying and Acquiring Earth Science Data Measurements All at Once
NASA Astrophysics Data System (ADS)
Shie, C. L.; Teng, W. L.; Liu, Z.; Hearty, T. J., III; Shen, S.; Li, A.; Hegde, M.; Bryant, K.; Seiler, E.; Kempler, S. J.
2016-12-01
Natural phenomena, such as tropical storms (e.g., hurricane/typhoons), winter storms (e.g., blizzards) volcanic eruptions, floods, and drought, have the potential to cause immense property damage, great socioeconomic impact, and tragic losses of human life. In order to investigate and assess these natural hazards in a timely manner, there needs to be efficient searching and accessing of massive amounts of heterogeneous scientific data from, particularly, satellite and model products. This is a daunting task for most application users, decision makers, and science researchers. The NASA Goddard Earth Sciences Data and Information Service Center (GES DISC) has, for many years, archived and served massive amounts of Earth science data, along with value-added information and services. In order to facilitate the GES DISC users in acquiring their data of interest "all at once," with minimum effort, the GES DISC has started developing a value-added and knowledge-based data service framework. This framework allows the preparation and presentation to users of collections of data and their related resources for natural disaster events or other scientific themes. These collections of data, initially termed "Data Bundle" and then "Virtual Collections" and finally "Data Lists," contain suites of annotated Web addresses (URLs) that point to their respective data and resource addresses, "all at once" and "virtually." Because these collections of data are virtual, there is no need to duplicate the data. Currently available "Data Lists" for several natural disaster phenomena and the architecture of the data service framework will be presented.